

ibm.com/redbooks

IBM WebSphere
Application Server V7.0
Web Services Guide

Henry Cui
Raymond Josef Edward A. Lara

Rosaline Makar
Nicky Moelholm

Felipe Pittella Rodrigues

Explore new technology

Develop Web services by
example

Find leading practices

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM WebSphere Application Server V7.0 Web
Services Guide

August 2009

International Technical Support Organization

SG24-7758-00

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2009)

This edition applies to WebSphere Application Server V7.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this book . xi
Become a published author . xiii
Comments welcome. xiv

Part 1. Introduction to Web services technology and programming model 1

Chapter 1. Introduction . 3
1.1 WebSphere, Web services, and SOA . 4

1.1.1 Service-oriented architecture . 4
1.1.2 WebSphere and SOA . 7
1.1.3 Web services approach to an SOA . 7
1.1.4 WebSphere Application Server V7 and Web services 9

1.2 Web services roadmap . 10
1.2.1 JSR-109 Web services for Java EE Version 1.2. 12
1.2.2 Web Services Interoperability . 13

1.3 Web services core technologies overview . 18
1.3.1 SOAP 1.2 . 18
1.3.2 JAX-WS 2.1. 20
1.3.3 JAXB 2.1 . 27
1.3.4 Web Services Invocation Framework . 29

1.4 WS-* standards . 30
1.4.1 WS-ReliableMessaging. 31
1.4.2 WS-Addressing . 35
1.4.3 WS-SecureConversation. 38
1.4.4 Web Services Resource Framework. 39
1.4.5 WS-Security . 42
1.4.6 WS-Policy . 44
1.4.7 WS-MetadataExchange . 45
1.4.8 Policy sets . 46
1.4.9 WS-Security Policy Language. 48
1.4.10 WS-SecurityKerberos . 48
1.4.11 WS-Trust Language . 50
1.4.12 WS-AtomicTransaction . 51
1.4.13 WS-Coordination. 52
1.4.14 WS-BusinessActivity . 53

© Copyright IBM Corp. 2009. All rights reserved. iii

1.5 Web services for Java EE . 54
1.5.1 EJB 3.0 for WebSphere Application Server Version V7 54
1.5.2 Web services for EJB 3.0 . 54

Chapter 2. Web services programming model . 59
2.1 Web service development with JAX-WS 2.1 . 60

2.1.1 Creating a Web service and client . 60
2.1.2 Relation of WSDL and Java types . 65
2.1.3 Web service providers. 78
2.1.4 Web service clients . 89
2.1.5 Handlers . 104
2.1.6 Handling binary content . 110
2.1.7 Enabling SOAP 1.2 . 116

2.2 Working with SOAP using SAAJ 1.3 . 117
2.2.1 SAAJ overview . 117
2.2.2 Developing a dispatch client that uses SAAJ 119
2.2.3 Developing a JAX-WS protocol handler . 121

2.3 Working with XML using JAXB 2.1 . 123
2.3.1 Overview of JAXB . 124
2.3.2 Developing a dispatch client that uses JAXB 128
2.3.3 Developing a JAX-WS logical handler that uses JAXB. 130

2.4 Web services for Java EE . 131
2.4.1 Overview of WSEE . 132
2.4.2 Server programming model. 133
2.4.3 Client programming model . 138

Part 2. Developing and deploying Web services . 145

Chapter 3. The WeatherForecast sample application 147
3.1 The WeatherForecast application components. 148

3.1.1 The WeatherForecast application packages. 148
3.1.2 Information flow. 151

3.2 The weather database. 152
3.3 Testing the WeatherForecast application . 153

Chapter 4. Developing Web services applications. 161
4.1 Web services development environment . 162

4.1.1 Web services development tools . 162
4.1.2 Integrated development environments and Web services 163
4.1.3 Setup for the Web services development examples 165

4.2 Server-side Web services development . 166
4.2.1 Web services development from a WSDL file 166
4.2.2 Web services development from an existing Java bean 183

4.3 Developing clients for Web services . 189

iv IBM WebSphere Application Server V7.0 Web Services Guide

4.3.1 Creating a managed Web service client . 189
4.3.2 Creating a Web service thin client. 194

4.4 EJB Web services . 197
4.4.1 Creating an EJB Web service . 198
4.4.2 Testing a Web service with a synchronous client 205
4.4.3 Creating an asynchronous client . 208

4.5 Testing and monitoring Web services . 214
4.5.1 The Web Services Explorer . 214
4.5.2 The TCP/IP Monitor . 219

Chapter 5. Web services administration . 225
5.1 WebSphere Application Server administration . 226

5.1.1 Administrative facilities . 226
5.1.2 Administration basics . 226

5.2 Web services deployment . 229
5.3 Web services configuration . 236

5.3.1 Configuring Web service server-side settings. 236
5.3.2 Configuring Web service client settings . 241

5.4 Managing Web service resources . 243
5.4.1 Configuring JDBC resources. 244
5.4.2 Configuring JMS resources. 249

5.5 Tracing Web services . 256

Part 3. Advanced concepts . 259

Chapter 6. Policy sets . 261
6.1 Motivation . 262
6.2 Overview of policy sets . 264

6.2.1 Qualities of service . 264
6.2.2 Policy set definitions . 265
6.2.3 Using policy sets . 268

6.3 New in WebSphere Application Server V7 . 268
6.4 Policy set administration . 269

6.4.1 Policy set life cycle . 269
6.4.2 Viewing policy sets . 271
6.4.3 Attaching a policy set to a Web service . 273
6.4.4 Using a customized policy set . 284
6.4.5 Configuring the application-specific bindings 291
6.4.6 Configuring general bindings . 306
6.4.7 Exploring the integration with multiple security domains. 311
6.4.8 Configuring policy sets by using wsadmin scripting 312

6.5 Rational Application Developer support . 313
6.5.1 Importing the policy set and general binding into the workspace . . 313
6.5.2 Attaching a policy set and general binding to a service provider . . 315

 Contents v

6.5.3 Attaching policy set and general binding to Web service client . . . 319
6.5.4 Attaching policy set and application-specific binding to Web service

client . 321
6.6 More information . 325

Chapter 7. WS-Policy and WS-MetadataExchange 327
7.1 Overview of the WS-Policy specification . 328

7.1.1 WS-Policy concepts . 328
7.1.2 WS-Policy operators . 329
7.1.3 WS-PolicyAttachment . 330
7.1.4 Policy intersection . 332

7.2 WS-Policy support in WebSphere Application
Server V7 . 334

7.2.1 Service provider policy sharing . 335
7.2.2 Service client policy acquisition. 336
7.2.3 Policy intersection in WebSphere Application Server 336
7.2.4 Relationship to policy sets. 337

7.3 WS-MetadataExchange . 337
7.3.1 Overview of WS-MetadataExchange . 338
7.3.2 WS-MetadataExchange support . 338
7.3.3 Securing WS-MetadataExchange requests 339

7.4 Applying WS-Policy and WS-MEX to the sample application 339
7.4.1 Preparing for the example. 339
7.4.2 Configuring a service provider to share its policy configuration . . . 343
7.4.3 Configuring client policy by using the service provider policy 346
7.4.4 Configuring service provider to share a policy by using WS-MEX . 351

7.5 Tools support. 355
7.5.1 Importing the Web service general binding. 355
7.5.2 Configuring a service provider to share its policy configuration . . . 355
7.5.3 Configuring the client policy by using a service provider policy . . . 357

7.6 More information . 359

Chapter 8. Web services transaction specifications 361
8.1 Overview of the WS-Transaction specifications 362
8.2 WS-Coordination . 363
8.3 WS-AtomicTransaction . 365

8.3.1 Example of using WS-AtomicTransaction. 366
8.3.2 SOAP messages for atomic transaction . 378
8.3.3 WS-Transaction policy assertions. 379

8.4 WS-BusinessActivity . 382
8.4.1 Example of using WS-BusinessActivity. 382
8.4.2 Weather EJB Web service . 384
8.4.3 Using the business activity support . 385

vi IBM WebSphere Application Server V7.0 Web Services Guide

8.4.4 Application testing with business activity support 394
8.5 More information . 395

Chapter 9. WS-Notification . 397
9.1 WS-Notification overview . 398

9.1.1 WS-BaseNotification . 398
9.1.2 WS-BrokeredNotification. 399
9.1.3 WS-Topics. 401

9.2 WS-Notification in WebSphere Application Server 402
9.2.1 Core WS-Notification resources . 402
9.2.2 Configuring a WS-Notification broker application 408
9.2.3 WS-Notification wsadmin commands . 415

9.3 Developing WS-Notification applications. 416
9.3.1 Introduction to the weather applications . 417
9.3.2 Developing a producer . 424
9.3.3 Developing a push consumer . 431
9.3.4 Developing a pull consumer . 449

9.4 WS-Notification runtime administration . 458
9.4.1 Administering subscriptions . 460
9.4.2 Administering pull points . 461
9.4.3 Administering messages . 462

9.5 Advanced features and options. 464
9.5.1 Using policy sets with WS-Notification services 464
9.5.2 Implementing demand-based publishers . 465
9.5.3 Using handlers with WS-Notification services. 465
9.5.4 JMS producers and consumers . 466
9.5.5 Administered subscribers . 466
9.5.6 Topic namespace documents . 467
9.5.7 Raw notification message format . 469

Chapter 10. WS-SecureConversation . 471
10.1 WS-Security review . 472

10.1.1 Message-level security versus transport-level security 472
10.1.2 Major issues addressed by WS-Security 473
10.1.3 Digital signature and XML encryption . 474
10.1.4 WS-Security support in WebSphere Application Server V7 477

10.2 WS-Trust . 478
10.2.1 Security Token Service . 478
10.2.2 WS-Trust model . 479
10.2.3 Security token service framework . 480

10.3 Overview of WS-SecureConversation. 482
10.3.1 Motivation . 482
10.3.2 Key concepts. 484

 Contents vii

10.3.3 Secure conversation scenario. 488
10.3.4 Secure conversation with reliable messaging scenario 495

10.4 Secure conversation example . 496
10.4.1 Applying secure conversation to Web services. 496
10.4.2 Apply secure conversation and reliable messaging 507

10.5 More information . 510

Chapter 11. Leading practices for Web services 513
11.1 Web services design best practices . 514

11.1.1 Basics of Web services planning . 514
11.1.2 When is the use of a Web service an appropriate choice 515
11.1.3 JAX-WS versus JAX RPC. 517
11.1.4 When to use JavaBeans or EJB as provider implementation 517
11.1.5 Considerations when using SOAP over JMS transport. 517

11.2 Leading practices for developing Web services 518
11.2.1 Common best practices . 518
11.2.2 JAX-WS best practices . 520

11.3 Leading practices for Web services performance 533
11.3.1 Design for performance. 533
11.3.2 Monitor the performance of your Web services 533

11.4 For more information . 535

Appendix A. Additional material . 537
Locating the Web material . 537
Using the Web material . 537
Set up the WEATHER database (Derby) . 540
Set up the WEATHER database (DB2) . 542
Importing project interchange files . 542
Using the WeatherJavaBean application . 543

Importing the base Web services application . 543
Deploying the enterprise applications to the server 543
Testing the enterprise applications . 544
Testing the Weather Web service application. 546

Related publications . 549
IBM Redbooks . 549
Online resources . 549
How to get Redbooks . 553
Help from IBM . 554

viii IBM WebSphere Application Server V7.0 Web Services Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2009. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
developerWorks®
IBM®

Rational®
Redbooks®
Redbooks (logo) ®

Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Interchange, JBoss, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in
the U.S. and other countries.

EJB, Enterprise JavaBeans, J2EE, Java, Java runtime environment, JavaBeans, JavaServer, JDBC, JDK,
JRE, JSP, JVM, Sun, Sun Enterprise, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication describes how to implement Web services in
IBM WebSphere® Application Server V7. It starts by describing the concepts of
the major building blocks on which Web services rely and leading practices for
Web services applications. It then illustrates how to use Rational® Application
Developer and the WebSphere tools to build and deploy a Web services
application.

In addition to the fundamentals of Web services development, this book provides
information about advanced topics, including WS-Policy,
WS-MetadataExchange, Web services transactions, WS-Notification, and
WS-SecureConversation.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Raleigh Center.

Henry Cui is a Software Developer working at the IBM Toronto
lab. Henry has been on the IBM Rational Application Developer
service and support team for six years. He has helped many
customers resolve design, development, and migration issues
with Web services development. He is the subject matter expert
(SME) for Web services on his team. His areas of expertise
include developing Java™ EE applications using Rational tools,

configuring WebSphere Application Servers, Enterprise JavaBeans™ (EJBs),
application security, Web services, and service-oriented architecture (SOA).
Henry is a frequent contributor of developerWorks® articles. He also co-authored
three IBM Redbooks publications related to Web services. Henry holds a degree
in Computer Science from York University.

Raymond Josef Edward A. Lara is an IT Specialist for IBM
Software Lab Services in the Association of Southeast Asian
Nations (ASEAN) region, covering Singapore, Malaysia,
Thailand, Vietnam, Indonesia, and the Philippines, where he is
based. He is a certified instructor for WebSphere Education and
conducts software education classes for the WebSphere

portfolio. He has spent the last six years with IBM as a WebSphere Specialist
and covers a wide range of products including WebSphere Application Server,

© Copyright IBM Corp. 2009. All rights reserved. xi

WebSphere Process Server, WebSphere MQ, and WebSphere Portal. Raymond
has 14 years of industry experience as a technical consultant. He specializes in
application design and development using IBM and open-source technology.

Rosaline Makar is a Software Engineer in IBM Egypt, Cairo
Technology Development Center (C-TDC). She earned a
Bachelor of Science in Computer Engineering and a Master of
Science in Computer Science. Rosaline’s areas of expertise
include Web services, WebSphere Integration Developer,
WebSphere Process Server, WebSphere Enterprise Service
Bus, WebSphere Message Broker, and WebSphere Service

Registry and Repository.

Nicky Moelholm is an IT Specialist working for IBM Software
Services WebSphere in Denmark. His primary focus is on Java
EE development using IBM WebSphere products. He holds a
Master’s degree in Information Technology from the IT University
of Copenhagen, has multiple Java certifications, and is a certified
WebSphere Application Server Administrator. In total Nicky has
8.5 years of experience developing enterprise Java applications.

Felipe Pittella Rodrigues is an IT Specialist and IT Architect
who has been working for IBM Brazil and Global Services since
2005. He has six years of professional IT experience in many
areas covering financial and Java EE enterprise projects. Felipe
holds certifications as a Sun™ Certified Java Programmer
(SCJP), Sun Certified Web Component Developer (SCWCD),
Sun Certified Developer For Java Web Services (SCDJWS), Sun

Certified Business Component Developer (SCBCD), and Sun Enterprise™
Architect. He is also a Sun Authorized Instructor certified for Java 5 Platform.
Felipe graduated in IT Information Systems from the University Technological
and Federal of Paraná (UTFPR/Brazil). Felipe is expert in WebSphere
Application Server and Web services applications. SOA architecture, patterns,
RFID, and autonomic computing implementations are among his areas of
expertise.

Thanks to the following people for their contributions to this project:

Carla Sadtler
International Technical Support Organization, Raleigh Center

Margaret Ticknor
International Technical Support Organization, Raleigh Center

Hyen Chung
IBM US

xii IBM WebSphere Application Server V7.0 Web Services Guide

Jacek Laskowski
IBM Poland

Charles Levay
IBM US

Greg Truty
IBM US

Thanks to the authors of the following books:

� Authors of Web Services Handbook for WebSphere Application Server 6.1,
SG24-7257, published in October 2006, were:

Ueli Wahli, Owen Burroughs, Owen Cline, Alec Go, Larry Tung

� Authors of Web Services Feature Pack for WebSphere Application Server
V6.1, SG24-7618, published in August 2008, were:

Peter Swithinbank, Russell Butek, Henry Cui, Andrew Das, David Illsley, Mark
Lewis

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publications form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xiv IBM WebSphere Application Server V7.0 Web Services Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction to Web
services technology
and programming
model

Part 1

© Copyright IBM Corp. 2009. All rights reserved. 1

2 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 1. Introduction

This chapter introduces several key features that enable you to develop and
expose Web services applications by using WebSphere Application Server V7.
By doing so, you can provide an even more flexible and reliable foundation for
your service-oriented architecture (SOA) Web services environment than you
have today.

This chapter includes the following topics:

� “WebSphere, Web services, and SOA” on page 4
� “Web services roadmap” on page 10
� “Web services core technologies overview” on page 18
� “WS-* standards” on page 30
� “Web services for Java EE” on page 54

1

© Copyright IBM Corp. 2009. All rights reserved. 3

1.1 WebSphere, Web services, and SOA

Businesses face two fundamental concerns:

� The ability to change quickly
� The need to reduce costs

To remain competitive, businesses must adapt quickly to internal factors, such as
acquisitions and restructuring, or external factors, such as competitive forces and
customer requirements.

IBM WebSphere Application Server V7 is a major release that offers dramatic
runtime improvements, in addition to simpler and easier ways to develop and
deploy SOA applications. An SOA consists of a set of business-aligned services
that collectively fulfill an organization’s business process goals and objectives.
These services can be choreographed into composite applications and can be
invoked through Internet-based open standards and protocols.

Web services are self-contained, modular applications that you can describe,
publish, locate, and invoke over a network to perform encapsulated business
functions. These functions range from a simple request-reply interaction to full
business process interactions using Internet standards and protocols.

A cost-effective, flexible IT infrastructure is required to support these business
needs. IBM WebSphere, along with SOA and Web services, can address these
needs in a powerful manner.

1.1.1 Service-oriented architecture

Companies want to integrate existing systems to implement IT support for
business processes that cover the entire business value chain. A variety of
patterns are used to make their IT systems available to internal departments or
external customers. However, such interactions are not flexible and do not
provide standardized architecture.

Because of this increasing demand for technologies that support connecting and
sharing resources and data, a need exists for a flexible and standardized
architecture. SOA is a flexible architecture that unifies business processes by
structuring large applications into building blocks, or small modular functional units
or services, for various groups of people to use inside and outside the company.

4 IBM WebSphere Application Server V7.0 Web Services Guide

In an SOA, applications are made up from loosely coupled services, which
interact to provide all the functionality that is needed by the application. To
efficiently use an SOA, you must follow these requirements:

� Interoperability between multiple systems and programming languages

The most important basis for a simple integration between applications on
various platforms is to provide a communication protocol that is available for
most systems and programming languages.

� Clear and unambiguous description language

To use a service offered by a service provider, it is not only necessary to
access the provider system, but the syntax of the service interface must also
be clearly defined in a platform-independent manner.

� Retrieval of the service

To support a convenient integration at design time or even system run time, a
search mechanism is required to retrieve services. Classify these services
according to their category and how they can be discovered.

SOA architecture and benefits
SOA offers the following benefits to help organizations succeed in a dynamic
environment:

� Leverages existing assets

SOA provides a layer of abstraction that enables an organization to continue
using its IT investment by wrapping these existing assets as services that
consequently provide business functions. Organizations can potentially
continue getting value from existing resources instead of rebuilding
applications from scratch.

� Is easier to integrate and manage complexity

The integration point in an SOA is the service specification and not the
implementation. This service specification integration point provides
implementation transparency and minimizes the impact when infrastructure
and implementation changes occur. By providing a service specification in
front of existing resources and assets that are built on disparate systems,
integration becomes more manageable, because complexities are isolated.
This ease of integration becomes even more important as more businesses
work together to provide the value chain.

More information: For additional information about service-oriented
architecture, see “Service-oriented architecture” at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cwbs_soa.html

 Chapter 1. Introduction 5

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cwbs_soa.html

� Is more responsive and offers a faster time-to-market

The ability to compose new services from existing services provides a distinct
advantage to an organization that must be agile to respond to demanding
business requirements. Usage of existing components and services reduces
the time needed to go through the software development life cycle of
gathering requirements and performing design, development, and testing.
This shorter cycle leads to the rapid development of new business services
and allows an organization to respond quickly to changes and reduce the
time-to-market.

� Reduces cost and increases reuse

With core business services exposed in a loosely coupled manner, they can
be more easily used and combined based on business needs, which means
less duplication of resources and more potential for reuse and, therefore,
lower costs.

� Helps businesses prepare for what lies ahead

SOA allows businesses be ready for the future. Business processes that are
comprised of a series of business services can be more easily created,
changed, and managed to meet the needs of the time. SOA provides the
flexibility and responsiveness that is critical to businesses to survive and
thrive.

SOA is by no means a magical solution, and migration to SOA is not an easy
task. Rather than migrating the entire enterprise to an SOA overnight, migrate an
appropriate subset of business functions as the business need arises or is
anticipated.

IBM SOA Foundation
The IBM SOA Foundation is an integrated, open standard-based set of IBM
software, best practices, and patterns. It is designed to provide what you need to
get started with SOA from an architectural perspective. A key element of the SOA
Foundation is the SOA Foundation scenarios.

The SOA Foundation scenarios (or simply, SOA scenarios) represent common
scenarios regarding the use of IBM products and solutions for SOA
engagements. The SOA scenarios communicate the business value,
architecture, and IBM scenarios that can be then used as reference materials to
accelerate an SOA implementation based on your requirements.

More information: For more information about SOA architecture and benefits
see Patterns: Service-Oriented Architecture and Web Services, SG24-6303.

6 IBM WebSphere Application Server V7.0 Web Services Guide

1.1.2 WebSphere and SOA

IBM WebSphere Application Server V7 delivers an agile, solid foundation with
high performance for SOA applications by aligning innovation in both IT and
business. The WebSphere Platform provides simplification for developers by
enabling the reuse and creation of applications and services that promote
business agility, both anticipating and adjusting to the critical issues that help
businesses win in the marketplace.

WebSphere has the following major goals regarding the SOA environment for
Web services:

� Achieve maximum flexibility and high productivity for SOA initiatives.
� Protect your critical SOA applications with strong security management.
� Increase the effectiveness of SOA application infrastructure management.

1.1.3 Web services approach to an SOA

Web services provides a technology foundation for implementing an SOA. A
major focus of Web services is to make functional building blocks accessible over
standard Internet protocols that are independent from platforms and
programming languages. These services can be new applications or just new
adapters wrapped around existing systems to make them network enabled.

Web services are self-contained, modular applications that you can describe,
publish, locate, and invoke over a network. They perform encapsulated business
functions ranging from a simple request-reply interaction to a full business
process interaction by using Internet standards and protocols.

Web services technology is an ideal technology choice for implementing an SOA,
for the following reasons:

� Web services are standards based. Interoperability is a key business
advantage within the enterprise and in business-to-business scenarios.

� Web services are widely supported across the industry. Most major vendors
recognize and provide support for Web services.

� Web services provide a migration path to gradually enable existing business
functions as Web services are needed.

More information: For more information about IBM SOA Foundation
scenarios, see Best Practices for SOA Management, REDP-4233.

 Chapter 1. Introduction 7

Conversely, many Web services implementations are not SOAs. For example,
the use of Web services to connect two heterogeneous systems directly together
is not an SOA. This use of Web services solves real problems and provides
significant value on its own, and it might form the starting point of an SOA.

In general, an SOA environment must be implemented at an enterprise or
organizational level to provide many of the benefits.

Web services business models supported
The characteristics and benefits of using an SOA environment, such as Web
services, is well suited for binding small modules that perform independent tasks
within a highly heterogeneous e-business model. Web services can be easily
wrapped around existing applications in your business model and plugged into
various business processes.

Web services support the following business models:

� Business information

Share information with consumers or other businesses. You can use Web
services to expand the reach of the business through services, such as news
streams, local weather reports, integrated travel planning, and intelligent
agents.

� Business integration

Provide transactional, fee-based services for customers. You can easily
create a global network of suppliers. You can implement Web services in
auctions, e-marketplaces, and reservation systems.

� Business process externalization

You can use Web services to model value chains by dynamically integrating
processes to create a new solution within an organizational unit or with those
processes of other e-businesses. You can achieve this modeling by
dynamically linking internal applications to new partners and suppliers to offer
their services in order to complement internal services.

More information: For additional information about the Web services
approach for SOA, see Web services approach to a service-oriented
architecture at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cwbs_soawbs.html

8 IBM WebSphere Application Server V7.0 Web Services Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cwbs_soawbs.html

1.1.4 WebSphere Application Server V7 and Web services

WebSphere Application Server V7 has powerful new features and enhancements
to help you achieve heightened productivity, stronger security, integration, and
interoperability with Web services-based applications. It builds upon the stable
core of previous releases and provides key improvements in the area of systems
software development to support the latest specifications and programming
models. Together, these features further expand on WebSphere Application
Server platform coverage, runtime management capabilities, and application
deployment options to help you decrease costs and grow your business.

In addition, WebSphere Application Server V7 provides the following features:

� Quality of service (QoS)

A set of Web services standards that supports the creation and administration
of reliable, securable, and transactionable Web services applications.

� Interoperability

Extensive Web services support, which makes it easier to integrate
applications inside the enterprise and externally with customers, partners,
and suppliers.

� SOA

A secure and scalable SOA run time, which provides resource-efficient
features and a faster run time with a new high-performance Web services
engine.

� Security

Web services security model enhancements, including WS-I Reliable Secure
Profile support and policy sets for simple QoS definition.

� Programming model

Fast new Java API for XML Web services (JAX-WS) engine with improved
administration for Web services applications.

More information: For additional information about the Web services
business models see Business models supported at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cwbs_wbsbiz.html

 Chapter 1. Introduction 9

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cwbs_wbsbiz.html

1.2 Web services roadmap

WebSphere Application Server V6.1 added support for the Web services Feature
Pack that introduced the third engine for Web services in the WebSphere family.
In many respects, the three generations of Web services engines reflected the
last three stages in the history of Web services:

� Web Services Description Language (WSDL) and SOAP specifications
� Web Services Standards
� Web Services Interoperability (WS-I) Organization profiles

The feature pack included an implementation of JAX-WS 2.0, SOAP 1.1, Reliable
Asynchronous Messaging Profile (RAMP), and Basic Profile 1.0 functionalities as
part of its core distribution.

WebSphere Application Server V7 supports Web services for Java Platform
JSR-109 Version 1.2, which means that it fully supports the new edition of Web
services for Java EE, which includes Java Platform, Standard Edition (SE) 6.
This support provides even more flexibility than before with regard to the new
programming models and qualities of service, reflecting the progress in the world
of Web services in recent years.

More information: For additional information about the Web services Feature
Pack, see Web Services Feature Pack for WebSphere Application Server
V6.1, SG24-7618.

10 IBM WebSphere Application Server V7.0 Web Services Guide

WebSphere V7 supports the following standards and specifications:

� Transport, SOAP, and XML description (Figure 1-1)

Figure 1-1 WebSphere Application Server V7 support

• V1.0WSIL

• V1.1WSDL

• Unit Test UDDI wizard creates V3.0 registries
• Web Services Explorer works with V2.0 and 3.0 registries

UDDI

Description

• V1.0 support limited to JAX-WS Web servicesSOAP MTOM

• SAAJ 1.2 and 1.3SOAP attachments

• V1.1 supported for all Web services
• V1.2 support limited to JAX-WS Web services

SOAP specification

SOAP specification

• Supported for JAX-RPC EJB Web services
• Supported for JAX-WS EJB Web services

JMS

• V1.0 and V1.1HTTP/HTTPS

Transports

WebSphere Application Server 7.0Technology or Specification

 Chapter 1. Introduction 11

� Other core standards, such as JSRs, JAX-WS, and JAX Binding (JAXB)
(Figure 1-2)

Figure 1-2 WebSphere Application Server V7 support

1.2.1 JSR-109 Web services for Java EE Version 1.2

The goal of the maintenance release for JSR-109 Web services for Java EE
Version 1.2 is to align JSR-109 to the latest Web service specification and to fix
programming errors and inconsistencies in the previous version of the
specification. Since the last release, further progress has been made with
several relevant standards and profiles. Transport protocols, descriptors,
messaging, security, and interoperability are many of the important updates.

This maintenance release includes the following major updates:

� New for developers:

– WS-I Basic Profile 1.2

– JAX-WS 2.1 - JSR-224

– JAXB 2.1 - JSR-222

– Web services Metadata 2.0 (JSR-181) and a Metadata Facility for the Java
Programming Language (JSR-175)

– SOAP protocol 1.2

•V2.0 for JAX-WS Web services
•Not supported for JAX-RPC Web services

JSR-181 - Web Services Metadata
(Annotations)

•V2.1 for JAX-WS Web services
•Not supported for JAX-RPC Web services

JSR-175 - Metadata Facil ity for the
Java Programming Language

• V1.0 for J2EE 1.3
• V1.1 for J2EE 1.4

JAX-RPC

•V2.0, V2.1

Other related Standards (APIs)

JAXB/JSR-222

Other Standards (Web services engines)

• JSR 109 1.0 –J2EE 1.3
• JSR 921 1.0 –J2EE 1.4
• JSR 109 1.1 –Java EE 5
• JSR 109 1.2 –Java EE 5

JSR 109 and JSR 921

• V2.0, 2.1JAX-WS

Other Standards (Java Specification Requests)

WebSphere Application Server 7.0Technology or Specification

12 IBM WebSphere Application Server V7.0 Web Services Guide

– SOAP Message Transmission Optimization Mechanism (MTOM)

– Web services Security (WS-Security) 1.1 enhancements

– Web services ReliableMessaging (WS-ReliableMessaging) 1.1

– Web services SecureConversation (WS-SecConv) 1.3

– WS-MEX

– Web services Policy (WS-Policy) and policy sets

� New for security specialists:

– Configuring the Kerberos token profile 1.1 for WS-Security

– General JAX-WS default bindings for WS-Security

– Multiple security domains

� New for administrators:

– Adding assured delivery to Web services through WS-ReliableMessaging
with WS-I Secure Reliable Profile (WS-I SRP) 1.0

– Configuring transaction properties for an application server

– Web services Transaction (WS-Transaction) policy types for
WS-AtomicTransaction (WS-AT) and WS-BusinessActivity (WS-BA)
protocols

– Using SOAP over Java Message Service (JMS) to transport Web services

WebSphere Application Server V7 supports JSR-109 1.2 and, therefore, also
supports all of the features mentioned here.

1.2.2 Web Services Interoperability

The WS-I Organization is an open industry organization that is designed to
promote Web service interoperability across platforms, operating systems, and
programming languages. It was founded specifically with the intent of facilitating
interoperability of Web services between various vendor products and to clarify
where gaps or ambiguities exist between the various standards.

There are various standards organizations, such as the World Wide Web
Consortium (W3C), Organization for the Advancement of Structured Information

More information: You can obtain the JSR-109 V1.2 specification at the
following address:

http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/jsr-109
-changelog-1_2-fcs.html

 Chapter 1. Introduction 13

http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/jsr-109-changelog-1_2-fcs.html

Standards (OASIS), and Internet Engineering Task Force (IETF). All of these
organizations work to publish Web services standards. Each standard has been
developed to address a specific Web services problem set. Developers who are
in charge of building a Web services solution are required to discover, interpret,
and apply the rules of multiple Web services standards. Even within an
enterprise, multiple development teams are likely to interpret and apply the rules
for the group of standards differently. WS-I has formulated the concept of profiles
to solve this problem and to reduce complexity.

All organizations that are interested in promoting interoperability among Web
services are encouraged to become members of the WS-I Organization.

WS-I Basic Profile updates
The WS-I Basic Profile is a set of non-proprietary Web services specifications
that promote interoperability. The WS-I Basic Profile is governed by a consortium
of industry-leading corporations, including IBM, under the direction of the WS-I
Organization.

WS-I Basic Profile is an outline of requirements to which WSDL and Web service
protocol (SOAP/HTTP) traffic must comply to claim WS-I conformance. It
consists of a set of principles and existing specifications that relate to defining
open standards for Web services technology and introducing the restrictions
necessary to improve interoperability.

Several technology components are used in the composition and implementation
of Web services, including messaging, description, discovery, and security. Each
component is supported by specifications and standards. The WS-I Basic Profile
specifies how these technology components are used together to achieve
interoperability and mandates the specific use of each technology when
appropriate.

WebSphere Application Server V7 conforms to WS-I Basic Profile Version 1.1,
WS-I Basic Profile Version 1.2, and WS-I Basic Profile Version 2.0.

WS-I Basic Profile Version 1.1
The WS-I Basic Profile Version 1.1 requires support for the following
specifications:

� XML 1.0

� HTTP 1.1

� SOAP 1.1 (over HTTP 1.1)

� WSDL 1.1

14 IBM WebSphere Application Server V7.0 Web Services Guide

� Universal Description, Discovery, and Integration (UDDI) 2.03

� HTTP over Transport Layer Security (TLS) or Secure Sockets Layer (SSL) 3.0
(not mandatory)

WS-I Basic Profile Version 1.2
WS-I Basic Profile V1.2 builds on WS-I Basic Profile V1.0 and 1.1 and adds the
following support:

� SOAP 1.1
� RFC2616: HTTP/1.1
� RFC2965: HTTP State Management Mechanism
� WS-Addressing 1.0 - Core
� WS-Addressing 1.0 - SOAP Binding
� WS-Addressing 1.0 - WSDL Binding
� SOAP 1.1 Request Optional Response HTTP Binding
� SOAP Message Transmission Optimization Mechanism
� XML-Binary Optimized Packaging
� SOAP 1.1 Binding for MTOM 1.0

At the time this book was written, Version 1.2 had not been finalized. The draft is
currently available on the WS-I official Web site:

http://www.ws-i.org/Profiles/BasicProfile-1.2.html

WS-I Basic Profile Version 2.0
The WS-I Basic Profile Version 2.0 is a follow-on version of the Basic Profile
Version 1.2 with the addition of the following support:

� SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
� SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
� RFC2616: HTTP/1.1
� RFC2965: HTTP State Management Mechanism
� WS-Addressing 1.0 - Core
� WS-Addressing 1.0 - SOAP Binding
� WS-Addressing 1.0 - Metadata
� SOAP MTOM
� XML-Binary Optimized Packaging
� UDDI 3

More information: WS-I Basic Profile Version 1.1 can be found at the
following address:

http://www.ws-i.org/Profiles/BasicProfile-1.1.html

 Chapter 1. Introduction 15

http://.ws-i.org/Profiles/BasicProfile-1.1.html
http://.ws-i.org/Profiles/BasicProfile-1.2.html

At the time this book was written, this specification was still a working group draft
version.

WS-I Reliable Secure Profile 1.0
The RAMP profile comprises the WS-I Basic Profile 1.1 and WS-I Basic Security
Profile 1.0 and adds the following specifications:

� WS-Addressing
� WS-ReliableMessaging
� WS-SecureConversation

The major difference in the proposed work is that, for the new Reliable Secure
Profile 1.0 (RSP), WS-I includes WS-Addressing in an amended version of the
WS-I Basic Profile 1.1 that is called Basic Profile 1.2. Additionally, to address the
interoperability of attachments support, support for MTOM/XOP in a SOAP1.1
context is considered. Also, when the rechartered Basic Profile workgroup
completes its work on Basic Profile 1.2, it then begins work on Basic Profile 2.0
that is based on SOAP1.2 and MTOM/XOP.

More information: WS-I Basic Profile Version 2.0 can be found at the
following address:

http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html

16 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html

Figure 1-3 illustrates the relationship between the WS-I Basic Profile
specification and WS* standards.

Figure 1-3 WS-I Basic Profiles specification and WS-Standards relationship

Approved
Draft

WS Reliable
Messaging

1.1

WS Security
1.0

WS Security
1.1

WS
Addressing

1.0

WS Make
Connection

1.2

WS Security
Policy

1.2

WS Secure
Conversation

1.3

WS-I
BSP 1.0

WS-I
BSP 1.1

WS-I
RSP

Incompatible, but…

Working
Group

WS-I
BP 1.1

WS-I
BP 2.0

WS-I
BP 1.2

Uses

Composed
with

Approved
Draft

Composed
with
(Intended)

Minor backward
compatibility problems

Minor forward
compatibility problems

Working
Draft

 Chapter 1. Introduction 17

Figure 1-4 shows that the proposed Secure Reliable Profile 1.0 comprises the
remaining specifications in the RAMP profile after moving WS-Addressing to the
basic profile. It is designed so that it comprises versions 1.2 and 2.0 of the basic
profile. The WS-ReliableMessaging and WS-SecureConversation specifications
provide bindings to both SOAP 1.1 and SOAP 1.2. Figure 1-4 shows a complete
table with WS-Profiles for WebSphere Application Server V7.

Figure 1-4 WS-Profiles for WebSphere Application Server V7

1.3 Web services core technologies overview

In this section we discuss the following standards as part of the core
technologies for Web services:

� SOAP
� JAX-WS
� JAXB
� Web Services Invocation Framework (WSIF)

We introduce each technology and explain what it contributes to the new
JSR-109 V1.2.

1.3.1 SOAP 1.2

SOAP 1.2 provides a more specific definition of the SOAP processing model. It
removes many of the ambiguities that sometimes lead to interoperability
problems in the absence of the WS-I profiles.

Support for SOAP 1.2 has been added to JAX-WS 2.1, which supports SOAP
Versions 1.1 and 1.2. This allows you to send binary attachments, such as
images or files, along with Web services requests, which adds support for the
optimized transmission of data as specified by MTOM. For more information
about MTOM, see 1.3, “Web services core technologies overview” on page 18.

WebSphere Application Server 7.0Technology or Specification

• 1.0WS-I Basic Security Profile

• 1.0WS-I Reliable Secure Profile

• 1.0WS-I Attachments Profi le

• 1.0.3, 1.1WS-I Simple SOAP Binding Profile

• 1.1.2, 1.2, 2.0WS-I Basic Profile

Interoperability

18 IBM WebSphere Application Server V7.0 Web Services Guide

With regard to the SOAP 1.2 specification, there are a few practical differences
between SOAP 1.1 and SOAP 1.2:

� SOAP 1.2 has been rewritten in terms of XML information sets (Infoset).

� SOAPAction is optional.

� SOAP 1.2 adds a few new attributes and more crisply defines several existing
attributes.

� SOAP 1.2 adds a few new fault codes.

� The SOAP encoding and remote procedure call (RPC) definitions have been
cleaned up. For example, the styleEncoding attribute is no longer supported
in SOAP 1.2.

Figure 1-5 shows the relationship between SOAP standards and WS-I Basic
Profiles.

Figure 1-5 SOAP standards and WS-I Basic Profiles relationship

In addition, it illustrates the dependency between the WS profile standards and
the SOAP specifications, thereby dictating how to build an application that is fully
compliant with WS-I Organization Basic Profiles specifications.

More information: For details about the differences between SOAP 1.1 and
1.2 see “Changes Between SOAP 1.1 and SOAP 1.2” at:

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/#L4697

Uses

Specifics

Incompatible

Minor forward
compatibility
problems

Minor backward
compatibility
problems

Approve/
Draft

Incompatible, but…

Working
Draft

WS-I
BP 2.0

WS-I
BP 1.1

WS-I
BP 1.2

WSDL 1.1

SOAP 1.2SOAP 1.1

 Chapter 1. Introduction 19

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/#L4697

SOAP 1.2 is not incorporated into version 1 of the WS-I Organization Basic
Profiles. SOAP 1.2 is planned for Basic Profile 2.0.

1.3.2 JAX-WS 2.1

JAX-WS, previously known as JSR-224, is a required part of Java SE 6 that
delivers a new programming model for developing Web services. JAX-WS
simplifies Java applications with more platform independence by using new
features, such as dynamic clients, asynchronous invocations, and dependency
injection with Java 5 annotations.

JAX-WS is the centerpiece of a newly re-architected API stack for Web services,
called the integrated stack, that strategically aligns with the current industry trend
toward a more document-centric messaging model. The integrated stack
supersedes the foundation that was provided by the RPC programming style that
was previously defined by JAX-RPC API. This new foundation represents a
logical re-architecture of Web services functionality in the open-source
Java EE 5-compliant application server. JAX-WS JSR-224 is designed to take
the place of JAX-RPC in Web services and Web applications.

While the JAX-RPC programming model and applications are still supported by
WebSphere Application Server V7, JAX-RPC has limitations and does not
support various complex document-centric services. Figure 1-6 outlines the main
features for JAX-WS 2.1.

Figure 1-6 JAX-WS 2.1

More information: For more information see the official SOAP 1.2
specification Web site at the following address:

http://www.w3.org/TR/2003/REC-soap12-part0-20030624

Java 6

JAX-WS Engine

JAXB 2.1 SOAP 1.1/1.2 MTOM SAAJ 1.3 StAX

Policy Set Implementation

WS-* support
(WS-ReliableMessaging)

(WS-SecureConversation)
(WS-Addressing)

20 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.w3.org/TR/2003/REC-soap12-part0-20030624

The implementation of the JAX-WS 2.1 programming model provides many
enhancements for developing Web services applications. The following sections
provide insight into JAX-WS features and enhancements to previous
technologies.

Features
JAX-WS 2.1 introduces the concept of features as a way to programmatically
control specific functions and behaviors. Three standard features are specified
as follows:

� jaax.xml.ws.soap.AddressingFeature for WS-Addressing reliable messaging

� jaax.xml.ws.soap.MTOMFeature when optimizing the transmission of binary
attachments

� jaax.xml.ws.soap.RespectBindingFeature for wsdl:binding extensions

Better platform independence for Java applications
By using JAX-WS APIs, the development of Web services and clients is
simplified with better platform independence. JAX-WS takes advantage of the
dynamic proxy mechanism to provide a formal delegation model with a pluggable
provider, which is an enhancement over JAX-RPC, which relies on the
generation of vendor-specific stubs for invocation.

Extended support for WS-Addressing in an API
With the new WS-Addressing standard API, you can create, transmit, and use
endpoint references to target a specific Web service endpoint. You can also
explicitly specify the action URIs associated with the WSDL operations of your
Web service.

Support for annotations
JAX-WS introduces support for annotating Java classes with metadata to
indicate that the Java class is a Web service. JAX-WS supports the use of
annotations that are based on the Metadata Facility for the Java Programming
Language (JSR-175) specification and the Web services Metadata for the Java
Platform (JSR-181) specification.

The use of annotations within the Java source simplifies the development of Web
services. You use annotations to define information that is typically specified in
deployment descriptor files, such as WSDL, or by mapping metadata from XML
and WSDL files into the source artifacts.

More information: For a comparison of JAX-WS 2.1 and JAX-RPC, see Web
Services Feature Pack for WebSphere Application Server V6.1, SG24-7618.

 Chapter 1. Introduction 21

Example 1-1 shows a Java bean that contains the @javax.jws.WebService
annotation and then exposes the bean as a Web service (service implementation
class (service endpoint interface (SEI)).

Example 1-1 Java bean containing the @javax.jws.WebService annotation

@javax.jws.WebService
public class WeatherBean implements IWeatherForecast{

public Weather getDayForecast(Calendar theDate) {
...

}
}

The use of annotations also improves the development of Web services within a
team structure, because you do not need to define every Web service in a single
or common deployment descriptor as was required with JAX-RPC Web services.
Taking advantage of annotations with JAX-WS Web services enables parallel
development of the services and metadata information.

Support for resource injection
JAX-WS provides support for a subset of annotations that are defined in the
JSR-250 specification for resource injection and application life cycle to further
simplify the development of Web services.

The @Resource and @WebServiceRef annotations are part of the Common
Annotations specification that is delivered by the JSR-250 specification and
included in Java EE 5. JAX-WS uses these key features of Java EE 5 to shift the
burden of creating and initializing common resources in a Java runtime
environment™ (JRE™) from your Web service application to the application
container environment.

The webservices.xml deployment descriptor: Using the webservices.xml
deployment descriptor is now optional for JAX-WS services, because you can
use annotations to specify all the information that is within the deployment
descriptor file. You can use the deployment descriptor file to augment or
override existing JAX-WS annotations. Any information that you define in the
webservices.xml deployment descriptor overrides any corresponding
information that is specified by annotations.

22 IBM WebSphere Application Server V7.0 Web Services Guide

The @Resource annotation is used in the wsContext field to obtain an instance
of a WebServiceContext object and then to invoke the getMessageContext()
method and work with the MessageContext object. Example 1-2 shows that by
placing the @Resource annotation on a variable of the type
javax.xml.ws.WebServiceContext within a service endpoint implementation class
you can request a resource injection and collect the
javax.xml.ws.WebServiceContext interface that is related to that particular
endpoint invocation.

Example 1-2 @Resource annotation

@javax.jws.WebService
public class ProxyProvider implement Provider {

@Resource WebServiceContext wsContext;

public SOAPMessage invoke(SOAPMessage input) {
 MessageContext mc = wsContext.getMessageContext();
 //…

}
}

In Example 1-3, the application server, through JAX-WS support, also accepts
the use of the @WebServiceRef annotation to request injection of JAX-WS
services and ports.

Example 1-3 @WebServiceRef annotation

@javax.jws.WebService
public class ProxyProvider implement Provider {

//WebServiceRef using the generated service interface type
@WebServiceRef
public StockQuoteService service;

//WebServiceRef using the SEI type
@WebServiceRef(StockQuoteProvider.class)
private StockQuoteProvider provider;

//......
}

In conclusion, either one of these annotations can be used on a field or method
and result in injection of a JAX-WS service or port instance. The usage of these
annotations also results in the type that is specified by the annotation being
bound into the Java Naming and Directory Interface (JNDI) namespace.

 Chapter 1. Introduction 23

For more information see Chapter 2, “Web services programming model” on
page 59.

You can also see 5.2.1 and 5.3 of the JAX-WS specification for further
information about resource injection and the JSR-250 specification.

Dynamic and static clients
The static client programming model is called proxy client and is conceptually
implemented by the JAX-RPC applications. The proxy client uses the
javax.xml.rpc.Call object to invoke a Web service based on an SEI that must be
provided at compile time. The Web services application does not need to get
access to the WSDL artifact at run time, and the binding is performed statically.

The dynamic client API for JAX-WS, which is a XML messaging-oriented client
model, uses the javax.xml.ws.Dispatch object implementation to provide support
for operating at either of the following levels of interaction:

� Hiding the details of converting between the Java method invocation and the
corresponding XML messages

� Operating at the XML message level to obtain more control over the message

The dynamic client does not work at compile time and requires access to the
service implementation at run time, thereby discovering the service and binding
dynamically.

The Dispatch implementation also supports two usage modes, which are
identified by the constants javax.xml.ws.Service.Mode.MESSAGE and
javax.ws.xml.Service.Mode.PAYLOD.

In addition, the dynamic client also supports asynchronous invocations by using
a callback or polling mechanism. JAX-WS does not add additional information to
the message.

Important: Usage of the @Resource and @WebServiceRef annotations must
be applied to JAX-WS-managed clients. If you apply these annotations to a
non-managed Web service client, it will not work.

More information: For further information about dispatch objects and
dynamic invocation, see Chapter 2, “Web services programming model” on
page 59.

24 IBM WebSphere Application Server V7.0 Web Services Guide

Implementation models
With JAX-WS, Web services are called both synchronously and asynchronously.
JAX-WS adds support for both a polling mechanism and a callback mechanism
when calling Web services asynchronously. By using a polling model, a Web
service client can issue a request and get a response object back. The response
object is polled to determine whether the server has responded. When the server
responds, the actual response is retrieved. On the other hand, by using the
callback model, the client provides a callback handler implementation to accept
and process the inbound response object.

Both polling and callback mechanisms enable the Web service clients to
continue to process work without waiting for a response to be returned, thereby
providing a more dynamic and efficient model to invoke Web services.

MTOM/XOP
The Message Transmission Optimization Mechanism is a mechanism for sending
binary data, which is often called an attachment, along with Web services
requests. Prior to MTOM, there was no universally accepted interoperable way to
transmit attachments, although SOAP with Attachments (SwA) came close.

JAX-WS 2.1 adds support for the optimized transmission of binary data as
specified by MTOM and dictates that a compliant Web service engine must
support MTOM and SwA.

MTOM uses the XML-binary Optimized Packaging (XOP) in the context of SOAP
and Multipurpose Internet Mail Extensions (MIME) over HTTP to define a
serialization mechanism for the XML Infoset with binary content that is applicable
to SOAP and MIME packaging, as well as any XML Infoset and packaging
mechanism.

WebSphere Application Server V7.0 supports MTOM and SwA Versions 1.2
and 1.3.

Command-line tools to generate portable artifacts
JAX-WS provides the wsgen and wsimport command-line tools to generate
portable artifacts for JAX-WS Web services. When creating JAX-WS Web
services, you can start with either a WSDL file or an implementation bean class.

More information: For further details about asynchronous messages, see
Chapter 2, “Web services programming model” on page 59.

More information: For further details about asynchronous messages see
Chapter 2, “Web services programming model” on page 59.

 Chapter 1. Introduction 25

If you start with an implementation bean class, use the wsgen command-line tool
to generate all the Web services provider artifacts, including a WSDL file if
requested.

If you start with a WSDL file, use the wsimport command-line tool to generate all
the Web services artifacts for either the server or the client. The wsimport
command-line tool processes the WSDL file with schema definitions to generate
the portable artifacts, which include the service class, the service endpoint
interface class, and the JAXB 2.1 classes for the corresponding XML schema.

Extensions to Web services clients
WebSphere Application Server provides extensions to Web services clients
using the JAX-WS programming model. You can customize Web services by
using the following extensions to the JAX-WS client programming model:

� SOAP headers

Set the JAXWS_OUTBOUND_SOAP_HEADERS and
JAXWS_INBOUND_SOAP_HEADERS properties on the request context of
the dispatch or proxy object to enable a JAX-WS Web services client to send
or retrieve implicit SOAP headers.

� HTTP headers

Set the REQUEST_TRANSPORT_PROPERTIES and
RESPONSE_TRANSPORT_PROPERTIES properties to enable a Web
services client to send or retrieve transport headers.

Transport neutral
JAX-WS 2.1 provides support for HTTP/HTTPS. Other transports are planned for
future releases.

More information: For any further information about JAX-WS Version 2.1,
see Chapter 2, “Web services programming model” on page 59.

More information: For further information see “Implementing extensions to
JAX-WS Web services clients” in the WebSphere Application Server - Express
Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=
/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/twbs_extend
pmjaxws.html

26 IBM WebSphere Application Server V7.0 Web Services Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/twbs_extendpmjaxws.html

Application handlers
JAX-WS helps you to insert and retrieve data from a message as it moves
through the Web services engine. Handlers are simple Java beans that
implement a handler contract and can be associated with Web services
endpoints and Web services clients, allowing the interception of a message at
various points in its transmission. JAX-WS provides two levels of handlers:

� Logical handlers deal with the payload level of the message.
� Protocol handlers deal with protocol information, such as SOAP headers.

1.3.3 JAXB 2.1

For historical reasons, there was a considerable overlap of the data binding
functionality between the JAX-RPC 1.x and JAXB 1.x APIs in the previous Web
services stack. JAX-RPC 1.x originally included basic data binding functionality.
When JAXB 1.x emerged after JAX-RPC and when data binding functionality
became more comprehensive with enhanced standards, such as XML Schema,
the need for separating the Web services definition and the data binding
components became more obvious.

Java Architecture for XML Binding (JAXB 2.1) API, which is specified by
JSR-222, replaces the data binding that is described by the JAX-RPC
specification. JAXB 2.1 provides enhancements, such as improved compilation
and annotation support, to leverage the flexibility of platform-neutral XML data in
Java applications to bind XML schema to Java applications without requiring an
extensive knowledge of XML programming.

JAX-WS relies on XML binding technology, which consists of a runtime API and
accompanying tools that simplify access to XML documents, as the primary
technology for the default two-way data binding mappings between Java objects
and XML documents that both conform to and validate to the XML schema.

More information: For more information about handlers, see Chapter 2, “Web
services programming model” on page 59.

 Chapter 1. Introduction 27

The result is an easier-to-understand architecture for Web services development
to build Web applications and Web services, as shown in Figure 1-7.

Figure 1-7 XML binding technology

JAXB annotated classes and artifacts contain all the information that is needed
by the JAXB runtime API to process XML instance documents. The JAXB
runtime API supports marshaling of JAXB objects to XML and unmarshalling the
XML document back to JAXB class instances. Optionally, you can use JAXB to
provide XML validation to enforce both incoming and outgoing XML documents
to conform to the XML constraints that are defined within the XML schema.

New for JAXB 2.1
The new features are:

� Tools

With the improved compilation support, we now have the flexibility to control
whether a new schema file is generated when using the schemagen schema
generator. Also, you can configure the xjc schema compiler so that it does
not automatically generate new classes for a particular schema.

� Annotations

You can also use the @XMLSeeAlso annotation to know about all classes
that are potentially involved in marshaling or unmarshalling, because it is not

XML
Schema

XML
Output

Document

XML

Customization
Binding

Declarations

Schema
Generator

(schemagen)

Schema
Compiler

(xjc)

Application

Application Code

Object Factory
JAX-B Runtime

(Annotation-driven
Binding Framework)

Unmarshal

Marshal

XML
Input

Document

JAX-B

Portable,
annotated classes

Package

javax.xml.bind

Binding Legend:

Java to Schema
Schema to Java

28 IBM WebSphere Application Server V7.0 Web Services Guide

always possible or practical to list all of the subclasses of a given Java class.
JAX-WS 2.1 also supports the use of the @XMLSeeAlso annotation on an
SEI or on a service implementation bean to ensure that all of the classes that
are referenced by the annotation are passed to JAXB for processing.

1.3.4 Web Services Invocation Framework

WSIF aims to extend the flexibility provided by SOAP services into a general
model for invoking Web services, irrespective of the underlying binding or access
protocols.

SOAP bindings for Web services are part of the WSDL specification, which for
extensibility enables points that describe alternate ways of invoking a Web
service. Therefore, when you think of using a Web service, you probably think of
assembling a SOAP message and sending it across the network to a service
endpoint, using a SOAP client API.

While this process works for SOAP, it is limited in its use as a general model for
invoking Web services for the following reasons:

� Web services are more than just SOAP services.
� Tying client code to a particular protocol implementation is restricting.
� Incorporating new bindings into client code is difficult.
� Multiple bindings can be used in flexible ways.
� A freer Web services environment enables intermediaries.

Therefore, the goals of the WSIF are:

� To define a binding-independent mechanism for Web service invocation

� To free client code from the complexities of any particular protocol that is used
to access a Web service

� To enable dynamic selection between multiple bindings to a Web service

� To help the development of Web service intermediaries

Depending on the type of Web service that is created, you might want your Web
service to comply with the WS-I profiles. For example, the default level of
compliance is to generate a warning if a non-WS-I Simple SOAP Binding Profile
1.0 (WS-I SSBP)-complaint Web service option is selected and to ignore any
non-WS-I Attachments Profile 1.0 (WS-I AP)-compliant selections. However, you
can set the level of WS-I compliance at the workspace or project level. The Web
services wizards, the WebSphere runtime environments, the WSDL editor, and

Note: You can obtain detailed information about the JAXB 2.1 features in
Chapter 2, “Web services programming model” on page 59.

 Chapter 1. Introduction 29

other Web services tools provide support and encourage the development of
WS-I-compliant services.

WSIF clients
A WSIF client can make use of non-SOAP descriptions to invoke a service in a
more efficient way. For example, a Web service provider might offer a SOAP
binding for the service and a local Java binding, which enables you to treat the
local service implementation (a Java class) as a Web service. If the client is
deployed in the same environment as the service, the local Java binding for the
service can be used, which provides more efficient communication with the
service by making direct Java calls rather than sending and receiving SOAP
messages through the network.

To deploy a Web service as a WSIF-enabled service, you first develop and
deploy the Web service, and then you develop the WSIF client based on the
WSDL document for that Web service.

1.4 WS-* standards

A variety of specifications are associated with Web services. These
specifications vary in their degree of maturity and are maintained or supported by
various standards bodies and entities. Specifications can complement, overlap,
and compete with each other. Web service specifications are occasionally
collectively referred as WS-*. The reference term WS-* is more of a
generalization, because many specifications use WS- as their prefix. This section
includes many of the specifications that are considered the core part of WS-* for
Web services JSR-109 V1.2 and WebSphere 7.

WS-* standards are classified by non-functional requirements such as the QoS,
for example, messaging transmission, security, transaction, and management.

More information: For more information see the following Web sites:

� For more information about WS-I, see the Web Services Interoperability
Organization Web site at the following address:

http://www.ws-i.org/

This site contains resources, such as an overview of Web services
interoperability, usage scenarios, and specifications.

� Learning about the Web services Invocation Framework (WSIF)

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.nd.doc/info/ae/ae/twsf_learning.html

30 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ws-i.org/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/twsf_learning.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/twsf_learning.html

Figure 1-8 shows the core WS-* standards for Web services development
supported by WebSphere Application Server V7.

Figure 1-8 Core WS-* standards used to develop the JSR-109 V1.2 support

1.4.1 WS-ReliableMessaging

The WS-ReliableMessaging specification describes a protocol that allows
messages to be delivered reliably between distributed applications. The
WS-ReliableMessaging protocol ensures that error conditions are detectable and
facilitates the successful transmission of messages that are sent synchronously
or asynchronously from a source to a destination.

• OASIS Standard 1.3WS-Trust

• 1.2WS-SecurityPolicy

• OASIS Standard 1.1

• OASIS Standard 1.1

• OASIS Standard 1.1

Transaction

WS-Transaction

WS-BusinessActivity

WS-Coordination

• W3C 1.1WS-MetadataExchange

• 1.1Security Kerberos Token profile

• OASIS Standard 1.3WS-Notification

• OASIS Standard 1.3WS-SecureConversation

WebSphere Application Server 7.0Technology or Specification

• W3C 1.0WS-Addressing

• OASIS Standard 1.1WS-ReliableMessaging

• OASIS Standard 1.2WS-Resource

Messaging

• W3C 1.5WS-Policy

• OASIS Standard 1.1WS-Security

Security

 Chapter 1. Introduction 31

Figure 1-9 illustrates the core environment for WS-ReliableMessaging and the
relevant standards and APIs to which it relates.

Figure 1-9 WS-ReliableMessaging

Java 6

JAX-WS Engine

JAXB2.1 SOAP 1.1/1.2 MTOM SAAJ 1.3 StAX

Policy Set Implementation
WS-* support

(WS-ReliableMessaging)
(WS-SecureConversation)

(WS-Addressing)

32 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 1-10 shows a sequence diagram that shows how the
WS-ReliableMessaging flow works.

Figure 1-10 WS-ReliableMessaging flow

When a Web service client issues a request synchronously,
WS-ReliableMessaging information is sent in the headers of the normal request
and response messages. However, when you break the response from the
request in asynchronous messaging, endpoint B needs to know the address of
endpoint A so that it can send responses back to A. Likewise, in reliable
asynchronous messaging, which is shown in Figure 1-10, the acknowledge
message might be sent from B to A outside of the normal response messages,
and B again needs A’s address. The mechanism for exchanging this address
information is defined by the WS-Addressing specification. To support
interoperable Web services, a SOAP binding is defined. The protocol is
transport-independent, which allows it to be implemented using various network
technologies.

WS-ReliableMessaging is, therefore, a requirement of many enterprise systems.
Because large companies are adopting architectural systems based on Web

Sequence(Identifier = http: //fabrikam123.co m/ abc, MessageNum ber = 2, AckRequested)

C reateSeque nce ()

Sequence(Identifier = http: //fabrikam123.co m/ abc, MessageNum ber = 2)

Sequence(Identifier = http: //fabrikam123.co m/ abc, MessageNum ber = 3, LastM essage)

SequenceAcknowle dgement (Iden tifier = ht tp://fabr ikam12 3.com/abc,
Acknowledge me ntRange = 1, 3)

SequenceAcknowle dgement (Iden tifier = ht tp://fabr ikam12 3.com/abc,
Acknowledge me ntRange = 1… 3)

Terminate Seq uence (Identifier = ht tp://fabr ika m123.com/abc)

X

Estab lish Protoco l Precondit ions

Endpoint
A

Endpoint
BReliable Messaging Protocol

CreateSequenceRespo nse(Iden tifier = htt p://fabr ikam123 .co m/ abc)

Sequence(Identifier = http: //fabrikam123.co m/ abc, MessageNum ber = 1)

 Chapter 1. Introduction 33

services, a new specification was written to address these communication issues
and to help then to meet the industry requirements.

New for WS-ReliableMessaging
Support for the WS-ReliableMessaging standard was first introduced as part of
the WebSphere Application Server 6.1 Feature Pack for Web services. At that
time, the RAMP Version 1.0 specification, which was used to ensure the reliable
delivery of messages, was included as the default policy set.

With WebSphere Application Server V7, you can migrate from WebSphere
Application Server V6.1 Feature Pack WS-ReliableMessaging configurations,
which use RAMP 1.0-based policy sets, to WS-I RSP 1.0 policy sets.

As a result of this transition, the WS-ReliableMessaging 1.1 specification
supports WS-I RSP policy sets and integrates with WS-SecureConversation 1.3,
WS-Addressing, and many other Web services standards, such as WS-Security
and WS-Policy, to secure messages. Combined, these Web services standards
lead to a wide range of reliable and secure messaging options.

Note: WS-ReliableMessaging is not a messaging and queuing system, such
as WebSphere MQ, nor is it a message service, such as JMS. The most
obvious distinction is that the Web services reliable messaging mechanism
provides qualities of service that are applied to application services, as
compared to JMS and WebSphere MQ, which provide distributed messaging
and queuing software layers on top of which applications are built. The goal of
WS-ReliableMessaging is to make the service request traverse the Internet
reliably and securely. WebSphere MQ and JMS provide a platform for building
reliable, loosely coupled, message-driven, distributed applications that can be
deployed to multiple networks, such as the Internet.

34 IBM WebSphere Application Server V7.0 Web Services Guide

1.4.2 WS-Addressing

In a moderately complex system, a receiver of a message must know information
about the sender. With an asynchronous request-response implementation
model, the receiver must know at least the sender’s address to send back
responses that are disconnected from the request channel that was previously
used by the Web services client to issue the request.

The purpose of the WS-Addressing specification is to provide an interoperable
way of communicating between senders and receivers by providing a
transport-neutral mechanism to address Web services and messages. The
WS-Addressing specification defines XML elements to identify the Web services
endpoints and to secure end-to-end endpoint identification in messages. This
specification enables messaging systems to support message transmission
through networks that include processing nodes, such as endpoint managers,
firewalls, and gateways.

More information: For more information see the following Web sites:

� WS-ReliableMessaging specification

http://docs.oasis-open.org/ws-rx/wsrm/200702

� WS-ReliableMessaging artifacts (schema, WSDL)

http://www.ibm.com/developerworks/webservices/library/specification
/ws-rm/?S_TACT=105AGX04&S_CMP=LP

� Learning about WS-ReliableMessaging

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.express.iseries.doc/info/iseriesexp/ae/twbs_wsrm_learning.
html

� WS-I Reliable Secure Profile specification

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

� Web services Reliable Messaging Policy Assertion

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm
/ws-rmpolicy200502.pdf

 Chapter 1. Introduction 35

http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.ibm.com/developerworks/webservices/library/specification/ws-rm/?S_TACT=105AGX04&S_CMP=LP
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/twbs_wsrm_learning.html
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-rmpolicy200502.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-rmpolicy200502.pdf

WS-Addressing is a World Wide Web Consortium (W3C) specification that aids
interoperability between Web services by defining a standard way to address
Web services and to provide addressing information in messages. The
WS-Addressing specification introduces two primary concepts:

� Endpoint references

Endpoint references provide a standard mechanism to encapsulate
information about specific endpoints. Endpoint references can be propagated
to other parties and then used to target the Web service endpoint that they
represent.

� Message addressing properties

Message addressing properties (MAPs) are a set of well-defined
WS-Addressing properties that can be represented as elements in SOAP
headers and provide a standard way of conveying information, such as the
endpoint to which to a direct message replies, or information about the
relationship that the message has with other messages.

New for WS-Addressing
For JAX-WS applications, you can enable WS-Addressing support in several
ways, such as configuring policy sets or using annotations in code. You can now
use JAX-WS 2.1 annotations and feature classes to do the following tasks:

� Enable WS-Addressing from either the server or the client.

� Have more control over the behavior of WS-Addressing when using policy
sets.

� Specify whether WS-Addressing is enabled and whether to use synchronous,
asynchronous, or both messaging patterns.

� Specify actions to be associated with a Web service operation or fault
response.

For Web service clients, WS-Addressing support is disabled by default. For
Web service providers, WS-Addressing support is enabled by default.
Therefore, you do not have to enable this support. However, you can use the
enabling mechanisms to modify other WS-Addressing behavior for the
service, such as whether WS-Addressing information is required and what is
included in the generated WSDL document.

The following additional features are related to the JAX-WS enhancements:

� Java representations of WS-Addressing endpoint references are available.

� You can create Java endpoint reference instances for the application
endpoint, or other endpoints in the same application, at run time. You do not
have to specify the URI of the endpoint reference.

36 IBM WebSphere Application Server V7.0 Web Services Guide

� You can create Java endpoint reference instances for endpoints in other
applications by specifying the URI of the endpoint reference.

� On services, you can use annotations to specify whether WS-Addressing
support is enabled and whether it is required.

� On clients, you can use features to specify whether WS-Addressing support is
enabled and whether it is required.

� You can configure client proxy or dispatch objects by using endpoint
references.

� Java support for endpoint references that represent Web services Resource
(WS-Resource) instances is available.

� You can associate reference parameters with an endpoint reference at the
time of its creation to correlate it with a particular resource instance.

� In targeted Web services, you can extract the reference parameters of an
incoming message so that the Web service can route the message to the
appropriate WS-Resource instance.

For complete information about setting up provider policy settings, see Table 1 in
the “Enabling Web services Addressing support for JAX-WS applications” topic
at the following Web site:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.base.doc/info/aes/ae/twbs_wsa_dep_jaxws.html

Features of the IBM proprietary WS-Addressing support
WebSphere Application Server V7 provides an IBM proprietary implementation
of the WS-Addressing specification that you can use with JAX-WS applications to
undertake more advanced functions, such as creating endpoint references that
represent highly available objects, or directly setting message addressing
properties in the SOAP header. Use these APIs if you want to create JAX-RPC
applications that use addressing or if you want to undertake more advanced
functions that are not possible with the JAX-WS 2.1 APIs.

The IBM proprietary API provides the following features:

� You can easily create Java endpoint reference instances to represent any
endpoint in the server, based on the deployment environment of the
application. You do not have to specify the URI of the endpoint reference.
Additionally, endpoint references can represent highly available or
workload-managed objects.

� You can configure client JAX-WS BindingProvider request context objects, or
JAX-RPC Stub or Call objects, with a WS-Addressing endpoint reference.
Future invocations to these objects are targeted at the endpoint that is
represented by the endpoint reference. The invocations also automatically

 Chapter 1. Introduction 37

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/twbs_wsa_dep_jaxws.html

conform to the WS-Addressing specification (namespace) that is associated
with that endpoint reference.

1.4.3 WS-SecureConversation

WS-Security focuses on the message authentication model rather than the
security context, which leads to several forms of security attacks. The Web
services Secure Conversation Language (WS-SecureConversation or
WS-SecConv) specification defines mechanisms to provide a secured session
for long-running message exchanges and to use the symmetric cryptographic
algorithm.

WS-SecureConversation provides session-based security. Session-based
security optimizes and secures a sequence of message exchanges by using
symmetric cryptography that can be used to sign and encrypt the messages.
Typically, the symmetric cryptographic algorithm is less CPU-intensive than the
asymmetric cryptography. Therefore, symmetric cryptographic algorithms
provide better performance and throughput when compared to the asymmetric
cryptographic algorithms. The symmetric cryptographic algorithm also provides a
means to secure other session-based protocol and exchange patterns, such as
WS-ReliableMessaging.

WS-SecureConversation, however, does not provide a complete security solution
by itself. WS-SecureConversation is a building block that is used in conjunction
with other standards and application-specific protocols, such as WS-Trust and
WS-Security, to accommodate a wide variety of security models and
technologies. WS-SecureConversation defines extensions to allow security
context establishment and sharing, and session key derivation, which allows
contexts to be established and, potentially, more efficient keys or new key
material to be exchanged.

More information: For more information see the following Web sites:

� WS-Addressing specification

http://www.w3.org/TR/ws-addr-core/

� Web services Addressing support

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.nd.doc/info/ae/ae/cwbs_wsa.html

38 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.w3.org/TR/ws-addr-core/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wsa.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wsa.html

New for WS-SecureConversation
Figure 1-11 shows a comparison of the OASIS specifications between
WebSphere Application Server versions. WS-SecureConversation 1.3 and
WS-Trust 1.3 are now supported by WebSphere Application Server V7, which
previously supported the Version 1.1 draft for both standards.

Figure 1-11 WebSphere Application Server support for WS-SecureConversation

WS-SecureConversation support
Several key functions are supported in WebSphere Application Server 7:

� A security context token (SCT) that is established between the initiating party
and the receiving party is supported.

� The WS-SecureConversation operations, such as issue token, renew token,
and cancel token, are supported on the SCT. The Validate token is supported
by using the WS-Trust protocol.

� A derived key (explicit and implied) is supported.

1.4.4 Web Services Resource Framework

The WSRF defines a system for creating stateful resources between Web
services in terms of an implied resource pattern. The motivation for this new
specification is that, while Web service implementations typically do not maintain
state information during their interactions, their interfaces must frequently allow

More information: For more information see the following sources:

� Chapter 10, “WS-SecureConversation” on page 471

� WS-SecureConversation specification

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-os.html

� Web services secure conversation

http://www.ibm.com/developerworks/library/specification/ws-secon/

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.nd.doc/info/ae/ae/cwbs_wssecureconv.html

• OASIS Standard 1.3OASIS Standard 1.1 draft

WS-SecureConversation

WebSphere Application Server 7.0
WebSphere Application Server

6.1 Feature Pack

 Chapter 1. Introduction 39

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://www.ibm.com/developerworks/library/specification/ws-secon/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wssecureconv.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wssecureconv.html

for the manipulation of state, that is, data values that persist across and evolve as
a result of Web service interactions.

The WSRF defines a family of specifications for accessing stateful resources by
using Web services. It includes the following specifications:

� WS-Resource Properties define how the data that is associated with a stateful
resource can be queried and changed by using Web services technologies.
This capability allows a standard means by which data that is associated with
a WS-Resource can be accessed by clients. The declaration of the
WS-Resource’s properties represents a projection, or view, of the
WS-Resource’s state. This projection represents an implied resource type,
which serves to define a basis for access to the resource properties through
Web service interfaces.

� WS-Resource Lifetime defines two ways of destroying a WS-Resource:

– Immediate
– Scheduled

This capability allows designers the flexibility to design how their Web
services applications can clean up resources that are no longer needed.

� WS-BaseFaults defines an XML schema type for a base fault, along with rules
for how this fault type is used by Web services. A designer of a Web services
application often uses interfaces that were defined by other designers.
Managing faults in this type of application is more difficult when each interface
uses a separate convention for representing common information in fault
messages. Support for problem determination and fault management can be
enhanced by specifying Web services fault messages in a common way.
When the information that is available in faults from various interfaces is
consistent, it is easier for requestors to understand the faults. It is also more
likely that common tooling can be created to assist in handling faults.

� WS-ServiceGroup defines a means by which Web services and
WS-Resources can be aggregated or grouped together for a domain-specific
purpose. In order for requestors to form meaningful queries against the
contents of the ServiceGroup, membership in the group must be constrained.
The constraints for membership are expressed by intension using a
classification mechanism. Furthermore, the members of each intension must
share a common set of information over which queries can be expressed.

WSRF programming model
The WSRF specifications define only the protocol messages and the semantic
behavior that is expected of a WS-Resource when it processes these messages.
The specifications do not prescribe the means to implement WS-Resource
objects. WSRF is primarily an application-level protocol, and the tools for
implementing WS-Resources are the same tools that are used for implementing

40 IBM WebSphere Application Server V7.0 Web Services Guide

any other type of Web service. WSRF uses WS-Addressing endpoint references.
The application programming model for WS-Resources is similar to the model for
any Web service that uses WS-Addressing.

WSRF extends the WebSphere Application Server WS-Addressing programming
model in two ways, which differentiate a WS-Resource from a generic resource
that is accessed through a Web service by using WS-Addressing:

� WSRF requires the ResourceProperties attribute on the wsdlPortType
element.

This attribute declares that the portType element is implemented by a
WS-Resource rather than a generic Web service. The WS-Resource must
declare which WSRF operations it supports by copying those operations into
the portType element of its WSDL definition. The WS-Resource is free to
choose any implementation strategy to represent the stateful resource and to
process the WSRF messages. You can implement a resource by using a
simple Java class, a stateless session enterprise bean, an entity bean backed
by a relational database, a Service Data Object (SDO), and so on.

� WSRF defines a hierarchy of Java BaseFault types.

WS-Resource property and life-cycle operations
WSRF contains specifications that describe the operations that a WS-Resource
can implement to get, set, or query the state of the resource by operating on the
resource properties document.

For a complete description of all the standard property and lifetime operations
that are defined by the WSRF, see “Web services Resource Framework resource
property and life-cycle operations” at the following Web site:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/rwbs_wsrf_ops.html

WS-Resource base faults
WSRF provides a recommended basic fault message element type from which
you can derive all service-specific faults. The advantage of a common basic type
is that all faults can, by default, contain common information. This behavior is
useful in complex systems where faults might be systematically logged or
forwarded through several layers of software before being analyzed.

To check the list of base faults, see “Web services Resource Framework base
faults” at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.iseries.doc/info/iseriesnd/ae/cwbs_wsrf_basefault.
html

 Chapter 1. Introduction 41

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rwbs_wsrf_ops.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.iseries.doc/info/iseriesnd/ae/cwbs_wsrf_basefault.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.iseries.doc/info/iseriesnd/ae/cwbs_wsrf_basefault.html

1.4.5 WS-Security

The WS-Security specification and its associated token profiles define a way to
send security tokens and provide message integrity and confidentiality. The
WS-SecureConversation specification establishes a secure context, based on
shared keys, for the client and server to use for a series of messages. This
standard provides a framework across organizations that defines how to secure
the entire conversation. Use the WS-Security policy to define how the SOAP
messages are secured. It has following options, among others:

� The option to define which message parts are signed and encrypted
� The option to specify the types of tokens to be included
� The option to choose whether to use symmetric or asymmetric cryptography

You can also use the WS-Security policies to define the bootstrap policy that is
used to acquire security context tokens. Security context tokens are used by the
WS-SecureConversation specification.

New for WS-Security
In WebSphere Application Server V7, there are many security enhancements for
Web services. The enhancements include supporting sections of the
WS-Security specifications and providing architectural support for plugging in
and extending the capabilities of security tokens.

In WebSphere Application Server, the WS-Security for SOAP Message Version
1.1 specification is flexible and accommodates the requirements of Web
services. For example, the specification does not have a mandatory security
token definition. Instead, the specification defines a generic mechanism to
associate the security token with a SOAP message.

More information: For more information see the following Web sites:

� Web services Resource Framework (WSRF) Primer V.2

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

� Web services Resource Framework overview

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf#
overview

� Web services Resource Framework support

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.nd.doc/info/ae/ae/cwbs_wsrf.html

42 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf#overview
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wsrf.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wsrf.html

The use of security tokens is defined in the various Version 1.0 and Version 1.1
security token profiles, such as the following examples:

� The Username Token Profile
� The X.509 Token Profile
� The Kerberos Token Profile

The WS-Security for SOAP Message Version 1.1 updates the WS-Security for
SOAP Message core specifications and the various security token profiles. For
this release, WebSphere Application Server V7 implements the Username Token
Profile 1.1 and the X.509 Token Profile 1.1, which includes support for the
Thumbprint type of security token reference. In addition, it supports the signature
confirmation and encrypted header portions of the WS-Security Version 1.1
standard.

In addition, WebSphere Application Server V7 includes the following key
enhancements:

� Support for the Lightweight Third Party Authentication (LTPA) Version 2 token

� Support for the configuration of multiple callers and an order attribute on the
caller to determine which caller is used for the WebSphere credential

� Support for the published WS-SecurityPolicy Version 1.2 specification
embedded in WSDL

� Support for the WS-SecureConversation Version 1.3 specification and the
WS-Trust Version 1.3 specification (used by WS-SecureConversation)

� Support for Kerberos token profile for JAX-WS (and JAX-RPC) as defined in
the WS-Kerberos Token Profile Version 1.1 specification:

– For JAX-RPC applications, the Kerberos token can only be used as an
authentication token.

– For JAX-WS applications, the Kerberos token can be used for both
authentication and message protection (signing and encrypting).

 Chapter 1. Introduction 43

1.4.6 WS-Policy

The Web Services Policy Framework (WS-Policy) is an interoperability standard
that is used to describe and communicate the policies of a Web service so that
service providers can export policy requirements in a standard format. Clients
can combine the service provider requirements with their own capabilities to
establish the policies required for a specific interaction.

A policy represents the capabilities and requirements of a Web service, for
example, whether a message is secure and how to secure it, and whether a
message is delivered reliably and how this is achieved. In addition, you can
communicate the policy configuration to any other client, service registry, or
service that supports the WS-Policy specification, including non-WebSphere
Application Server products in a heterogeneous environment.

For a service provider, the policy configuration can be shared in a published Web
Services Description Language (WSDL) file. The WSDL file is then obtained by a
client using an HTTP Get request or by using the Web Services Metadata
Exchange (WS-MEX) protocol. The WSDL is in the standard
WS-PolicyAttachments format. The client can use this information to establish a
configuration that is acceptable to both the client and the service provider. In
other words, the client can be configured dynamically, based on the policies
supported by its service provider. The provider policy can be attached at the
application or service level.

More information: See the following resources:

� Chapter 10, “WS-SecureConversation” on page 471

� WS-Security specification

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-
spec-os-SOAPMessageSecurity.pdf

� OASIS Standards for security Web services

http://www.oasis-open.org/specs/#wssv1.0

� What is new for security

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.base.doc/info/aes/ae/cwbs_welcwebsvcsec.html

44 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/specs/#wssv1.0
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/cwbs_welcwebsvcsec.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/cwbs_welcwebsvcsec.html

The WS-Policy assertion specifications that are supported in this version of
WebSphere Application Server 7 are:

� WS-Addressing policy settings
� WS-ReliableMessaging settings
� WS-Security policy settings
� WS-Transaction policy settings

1.4.7 WS-MetadataExchange

WS-MEX is a Web services protocol specification that is part of the
WS-Federation roadmap. It is designed to work in conjunction with
WS-Addressing, WSDL, and WS-Policy to allow the retrieval of metadata about a
Web services endpoint.

Web services use metadata to describe what other endpoints must know to
interact with the service. For example, WS-Policy describes the capabilities,
requirements, and general characteristics of a Web service. WSDL describes
abstract messages (operations), concrete network protocols (bindings), and
endpoint addresses (SEI) that are used by the Web service. XML schema
describes the structure and content of XML-based messages that are received
and sent by a Web service.

To bootstrap communication with a Web service, the WS-MEX specification
defines how an endpoint can request the various types of metadata that it might

More information: For more information about WS-Policy see:

� Chapter 7, “WS-Policy and WS-MetadataExchange” on page 327.

� Learning about WS-Policy

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.nd.doc/info/ae/ae/twbs_wsp_learning.html

� Web services Policy Working Group

http://www.w3.org/2002/ws/policy/

� Web services Policy 1.5 - Framework

http://www.w3.org/TR/ws-policy/

� WS-PolicyAttachment

http://www.ibm.com/developerworks/library/specification/ws-polatt/

� WS-PolicyAssertions

http://www.ibm.com/developerworks/webservices/library/specification
/ws-polas/

 Chapter 1. Introduction 45

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/twbs_wsp_learning.html
http://www.w3.org/2002/ws/policy/
http://www.w3.org/TR/ws-policy/
http://www.ibm.com/developerworks/library/specification/ws-polatt/
http://www.ibm.com/developerworks/webservices/library/specification/ws-polas/
http://www.ibm.com/developerworks/webservices/library/specification/ws-polas/

need to effectively communicate with the Web service. In response to the
request, this specification defines an encapsulation that contains the three ways
in which the metadata can be returned:

� The metadata itself can be included in the response.

� A URI can be returned, to which an HTTP GET can then be sent to retrieve
the metadata from that location.

� A WS-Addressing Endpoint Reference of a WS-Transfer Metadata Resource
can be returned, to which a WS-Transfer Get can be issued to retrieve the
metadata. This specification also defines how a WS-Addressing Endpoint
Reference can be modified to include this encapsulation.

1.4.8 Policy sets

An important new systems management capability in WebSphere Application
Server V7.0 is in the area of Web services. Policy sets are assertions about how
services are defined. It provides a mechanism for centrally defining the QoS
configuration for Web services.

Policy sets combine configuration settings, including those configuration settings
for transport and message-level configuration, such as WS-Addressing,
WS-ReliableMessaging, WS-Security, and WS-AtomicTransaction.

There are two major types of policy sets:

� Application policy sets are used for business-related assertions. These
assertions are related to the business operations that are defined in the
WSDL file.

� System policy sets are used for non-business-related system messages.
These messages are not related to the business operations that are defined
in the WSDL. Instead, they refer to messages that are defined in other
specifications that apply to QoS. Consider the following examples:

– Security token (RST) messages that are defined in WS-Trust

– The creation of sequence messages that are defined in WS-Reliable
Messaging metadata exchange messages of the WS-MEX

More information: For more information see:

� Chapter 7, “WS-Policy and WS-MetadataExchange” on page 327

� WS-MEX specification

http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/

46 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/

An instance of a policy set consists of a collection of policies. For example, the
WS-I RSP default policy set consists of instances of the WS-Security,
WS-Addressing, and WS-ReliableMessaging policy types. A policy set is
identified by a unique name that is unique across the cell. An empty policy set is
a policy set with no policies defined.

Policy sets can be applied to all Web service applications to which they are
applicable instead of defining individual policies and applying them to each Web
service. This approach ensures a uniform QoS for a specific type of Web service.

The following default policy sets are provided:

� WS-I RSP default
� LTPA WS-I RSP default
� Username WS-I RSP default
� SecureConversation
� LTPA SecureConversation
� Username SecureConversation
� WSAddressing default
� WSHTTPS default
� Kerberos V5 HTTPS default
� TrustServiceKerberosDefault
� WSReliableMessaging default
� WSReliableMessaging persistent
� WSReliableMessaging 1_0
� WSSecurity default
� LTPA WSSecurity default
� Username WSSecurity default
� WS-Transaction
� SSL WS-Transaction

For more information about each of these default policy sets, go to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com
.ibm.websphere.web20fep.multiplatform.doc/info/ae/ae/cwbs_wsspsps.html

More information: For more information see:

� Chapter 6, “Policy sets” on page 261

� Web Services Policy Working Group

http://www.w3.org/2002/ws/policy/

� Web Services Policy 1.5 - Framework

http://www.w3.org/TR/ws-policy/

 Chapter 1. Introduction 47

http://www.w3.org/2002/ws/policy/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.web20fep.multiplatform.doc/info/ae/ae/cwbs_wsspsps.htm.l

1.4.9 WS-Security Policy Language

A key benefit of the emerging Web services architecture is the ability to deliver
integrated and interoperable solutions. This capability makes it critical to ensure
the integrity, confidentiality, and overall security of these services.

The recently updated WS-Security Policy Language (WS-SecurityPolicy)
specification defines a set of security policy assertions that applies to
WS-Security:

� SOAP Message Security
� WS-Trust
� WS-SecureConversation

The intent of WS-SecurityPolicy is to provide enough information for compatibility
and interoperability to be determined by Web services participants, along with all
of the information that is necessary to actually enable a participant to engage in a
secure exchange of messages.

1.4.10 WS-SecurityKerberos

Kerberos Version 5 is a mature, open standard that provides a secure third-party
authentication mechanism. IBM WebSphere Application Server V7 provides
Kerberos token support for WS-Security at the message level. The support is
based on the OASIS WS-Security Kerberos Token Profile Version 1.1.

The Kerberos specification references the Kerberos token in the SOAP message.
Web services applications can use the Kerberos token to send identities and
protect messages more securely. Overall, Kerberos support involves Kerberos
support in Java EE security and the Kerberos token support in WS-Security.

The Kerberos token is a binary security token for Web services message-level
security. WS-Security provides SOAP message-level security, such as security

More information: For more information see:

� Chapter 7, “WS-Policy and WS-MetadataExchange” on page 327

� WS-SecurityPolicy 1.2 specification

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-security
policy.html

� Web services Security Policy Language

https://www.ibm.com/developerworks/webservices/library/specification/
ws-secpol/

48 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html
https://www.ibm.com/developerworks/webservices/library/specification/ws-secpol/
https://www.ibm.com/developerworks/webservices/library/specification/ws-secpol/

token propagation, message signature, and message encryption. The Kerberos
token is used for message security, specifically with the SOAP message security
specification for Web services, and is another supported token, such as the
username token and the secure conversation token.

Security Kerberos Token Profile features
There are two new functions for the Security Kerberos Token Profile:

� Kerberos token for JAX-WS applications
� SPNEGO Web authentication

Kerberos and JAX-WS
The support for Kerberos with WS-Security in WebSphere Application Server
V7.0 is based on the OASIS WS-Security Kerberos Token Profile 1.1
specification. The Kerberos token for JAX-WS applications is configured by using
policy sets and bindings. The JAX-WS application is attached with a custom
policy, and the Kerberos token is configured as a message protection token or an
authentication token.

The implemented Kerberos functionality for Web services security also uses
existing tools and frameworks for the Kerberos token profile configuration for
authentication and message protection.

SPNEGO Web authentication
WebSphere Application Server Version 6.1 introduced the trust association
interceptor (TAI). TAI uses the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) to securely negotiate and authenticate HTTP requests
for secured resources. In WebSphere Application Server V7.0, the TAI function is
deprecated. SPNEGO Web authentication has taken its place to provide the
dynamic reload of the SPNEGO filters and to enable fallback to the application
login method.

More information: For more information see:

� Security Kerberos Token Profile 1.1 specification

http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-
spec-os-KerberosTokenProfile.pdf

� Kerberos Token support

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.express.iseries.doc/info/iseriesexp/ae/cwbs_kerberos.html

 Chapter 1. Introduction 49

http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/cwbs_kerberos.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/cwbs_kerberos.html

1.4.11 WS-Trust Language

The WS-Trust Language (WS-Trust) uses the secure messaging mechanisms of
WS-Security to define additional primitives and extensions for security token
exchange to enable the issuance and dissemination of credentials within
separate trust domains. To secure communication between two parties, the
parties must exchange security credentials (directly or indirectly). However, each
party must determine whether it can trust the asserted credentials of the other
party.

This specification defines extensions to WS-Security for issuing and exchanging
security tokens and for ways to establish and access the presence of trust
relationships. By using such extensions, applications can engage in secure
communication that is designed to work with the general Web services
framework, including WSDL service descriptions, UDDI businessServices,
binding templates, and SOAP messages.

New for WS-Trust
WebSphere Application Server V7 provides support for the WS-Trust 1.3
specification (Figure 1-12).

Figure 1-12 WS-Trust support for WebSphere Application Server V7

More information: For more information see:

� Chapter 10, “WS-SecureConversation” on page 471

� WS-Trust V1.3 specification

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

� WS-Trust IBM developerWorks article, “Web services Trust Language”

http://www.ibm.com/developerworks/library/specification/ws-trust/

� Trust service

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.nd.doc/info/ae/ae/cwbs_wstrust.html

• OASIS Standard 1.3OASIS Standard 1.1 draft

WS-Trust

WebSphere Application Server 7.0
WebSphere Application Server

6.1 Feature Pack

50 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wstrust.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_wstrust.html

1.4.12 WS-AtomicTransaction

The WS-AT support in the WebSphere Application Server provides transactional
QoS to the Web services environment. Distributed Web services applications,
and the resources that they use, can take part in distributed global transactions.

The WS-AT is an interoperable standard that provides the definition of the atomic
transaction coordination type to be used with the extensible WS-Coordination
framework. It defines three specific agreement coordination protocols for the
atomic transaction coordination type:

� Completion
� Volatile two-phase commit
� Durable two-phase commit

WS-AT is a two-phase commit transaction protocol and is suitable for
short-duration transactions only. Therefore, it is most appropriate for distributing
transaction context across Web services that are deployed in a single enterprise.
However, developers can use any or all of these protocols when building
applications that require consistent agreement on the outcome of short-lived
distributed activities that have the all-or-nothing property.

The WS-AT support introduces no new programming interfaces for transactional
support. Global transaction demarcation is provided by the standard enterprise
application use of the Java Transaction API (JTA) UserTransaction interface.

New for WS-Transaction
WebSphere Application Server V7 supports both the WS-Transaction 1.1 and the
WS-Transaction 1.0 specifications. You can configure the default WS-Transaction
specification level for use for outbound requests if the specification level that the
server requires cannot be determined from the provider policy. This level applies
to outbound requests that include a WS-AT or WS-BA coordination context.

For JAX-WS applications, enable WS-AT support by creating a policy set, adding
the WS-Transaction policy type to the policy set, optionally configuring the policy
type, and attaching the policy set to the application or client that will be involved

Note: When an application component that is running under a global
transaction makes a Web services request, a WS-AT CoordinationContext is
implicitly propagated to the target Web service. This happens only if the
appropriate application deployment descriptors are set. For more information
see “Configuring transactional deployment attributes” at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tjta_entra2.html

 Chapter 1. Introduction 51

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tjta_entra2.html

in the WS-AT communication. The JAX-WS run time supports WS-AT 1.0,
WS-AT 1.1, and the WS-Policy assertion for WS-AT.

1.4.13 WS-Coordination

The WS-Transaction specifications define mechanisms for transactional
interoperability between Web services domains. They provide a means to
compose transactional qualities of service into Web services applications.

The WS-Coordination (WS-COORD) specification describes an extensible
framework for providing protocols that coordinate the actions of distributed
applications. Such coordination protocols are used to support several
applications, including those applications that must reach consistent agreement
on the outcome of distributed activities. The framework enables an application
service to create a context that is needed to propagate an activity to other
services and to register for coordination protocols. It also enables existing
transaction processing, workflow, and other systems for coordination to hide their
proprietary protocols and to operate in a heterogeneous environment.

Additionally, the WS-Coordination specification describes a definition of the
structure of the context and the requirements for propagating the context
between cooperating services.

More information: For more information see:

� Chapter 8, “Web services transaction specifications” on page 361

� WS-Transaction specification

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-
1.1-spec-os.html

� Learning about WS-Transaction

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.soafep.multiplatform.doc/info/ae/ae/twbs_wstx_learning.html

52 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/twbs_wstx_learning.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/twbs_wstx_learning.html

However, this specification is not enough to coordinate transactions among Web
services. It describes an extensible coordination framework (WS-Coordination)
and specific coordination types for the following transactions:

� Short duration and atomicity, consistency, isolation, durability (ACID)
transactions (WS-AT)

� Longer running business transactions (WS-BA)

1.4.14 WS-BusinessActivity

With WS-BA support in WebSphere Application Server, Web services on
separate systems can coordinate activities that are more loosely coupled than
atomic transactions. These activities can be difficult or impossible to roll back
atomically. Therefore, they require a compensation process if an error occurs.

Web services protocols are defined by the OASIS group and provide standard
ways of defining Web services applications. They allow the applications to
operate independently of the product, platform, or programming language that is
used. The WS-BA support is an implementation specification in the application
server. These specifications define a set of protocols that enables Web services
applications to participate in loosely coupled business processes that are
distributed across the heterogeneous Web services environment, with the ability
to compensate actions if an error occurs.

The WS-BA specification provides the definition of the business activity
coordination type that is to be used with the extensible WS-Coordination
framework. It defines two specific agreement coordination protocols for the
business activity coordination type:

� BusinessAgreementWithParticipantCompletion
� BusinessAgreementWithCoordinatorCompletion

Developers can use either or both of these protocols when building applications
that require consistent agreement on the outcome of long-running distributed
activities.

More information: For more information see:

� WS-Coordination specification

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx
/WS-Coordination.pdf

� WS-Coordination

http://www.ibm.com/developerworks/library/specification/ws-tx/

 Chapter 1. Introduction 53

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://www.ibm.com/developerworks/library/specification/ws-tx/

1.5 Web services for Java EE

One of the most notable supported standards in WebSphere Application
Server V7 is the Java EE 5 Platform powered by JSR-109 V1.2. In the following
sections we describe the major changes for Java EE regarding Web services.

1.5.1 EJB 3.0 for WebSphere Application Server Version V7

The Web services feature pack for WebSphere Application Server V6.1 does not
support the @Web service or @Web Method annotations on Enterprise
JavaBeans (EJB™) 3.0 stateless session beans (identifying the stateless
session bean as a JAX-WS implementation). Nor does it support injection of Web
services references. Alternatively, you can invoke EJB 3.0 beans indirectly by
defining a servlet as the JAX-WS implementation and placing code in the servlet
that invokes the target EJB 3.0 bean. You can do this by declaring a link between
the desired endpoint name in the Web service deployment descriptor of the EJB
module. During deployment and installation of the bean into the application
server environment, the bean is linked to the specified Web service endpoint.

WebSphere Application Server V7 (and JAX-WS 2.1) provides complete support
for the Java EE 5 specification by enabling you to expose an EJB stateless
session bean as a Web service.

1.5.2 Web services for EJB 3.0

The improvements to the Java EE 5 programming model are not limited to EJB
development. Web services development is also greatly simplified with generics,
annotations, and dependency injection features.

More information: For more information see:

� Chapter 8, “Web services transaction specifications” on page 361

� WS-BA specification

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-
1.1-spec-os.html

� Web Services Business Activity support in the application server

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm
.websphere.soafep.multiplatform.doc/info/ae/ae/cjta_wsba.html

54 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cjta_wsba.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/cjta_wsba.html

Future
A Future represents the result of an asynchronous invocation. It is a placeholder
for a result that does not exist at the time of creation but will exist at a point in the
future. Therefore, the definition of the asynchronous APIs of JAX-WS includes
the Java Future type (Example 1-4).

Example 1-4 Java Future type

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customerTom, new
AsyncHandler<Score>() {

public void handleResponse (Response<Score> response) {
score = response.get();
// process the request...

}
});

Generics
Java generics allow the definition of a class that contains data, but the type of
that data is immaterial to the logic of the class. JAX-WS uses generics. The
Java 5 Future class is a generic class that can be declared as a specific type
that, in the case of JAX-WS, is the response type.

The polling version of an asynchronous operation invocation returns a response
object. The response is defined with a specific response type in the generated
interface, as shown in Example 1-5.

Example 1-5 Response type

Response<EchoOperationResponse> echoResponse = ...;

Handlers can be defined as generics. For example, Example 1-6 contains a
MessageContext.

Example 1-6 MessageContext

javax.xml.ws.handler.Handler handler;

However, Example 1-7 contains a LogicalMessageContext, which is a subclass
of MessageContext.

Example 1-7 LogicalMessageContext

javax.xml.ws.handler.Handler<LogicalMessageContext> logicalHandler;

 Chapter 1. Introduction 55

Annotations
Both JAX-WS (JSR-224) and WS-Metadata (JSR-181) specifications introduce
the WS-Metadata Facility (JSR-175) annotation programming model. This model
aims to make it easier to create and modify a Web service. The annotations
embed metadata in the compiled .class file of a Web service implementation
and SEIs and can be processed at run time similar to deployment descriptors.

Dependency injection
Developer productivity is further enhanced when it is time to override the
defaults. Overrides can be accomplished quickly and simply by using annotations
rather than writing code. Annotations are used in conjunction with a programming
pattern known as dependency injection, or Inversion of Control (IoC). In this
patter, the application code declares variables and annotates them to indicate
what is needed. Then the container injects the specified object or resource
references.

Example 1-8 shows a Java EE 1.4 JAX-RPC application.

Example 1-8 JAX-RPC 1.1 EJB code

public interface IWeatherForecast extends Remote {
public Weather getDayForecast(Calendar theDate) throws

RemoteException;
}
public class WeatherEJBBean implements IWeatherForecast{
public Weather getDayForecast(Calendar theDate) throws RemoteException
{ ... }
}

The JAX-RPC code in Example 1-8 is still tied to the java.io.Remote interface to
handle the external communication. Besides, the WeatherBean service
implementation is not annotated.

The corresponding Java EE 5 JAX-WS application is shown in Example 1-9. It
shows the code with annotations where there is no need to include the
java.io.Remote exception any longer.

Example 1-9 JAX-WS 2.1 EJB code

@javax.jws.WebService
@Remote
public interface IWeatherForecast {

public Weather getDayForecast(Calendar theDate) throws Exception;
}
@javax.jws.WebService
@Stateless

56 IBM WebSphere Application Server V7.0 Web Services Guide

public class WeatherEJBBean implements IWeatherForecast{

@WebMethod
public Weather getDayForecast(@WebParam(name=”date”)Calendar theDate)
{

...
}

}

Top-down and bottom-up methods for JAX-WS Web services EJB
You can create Web services by using two approaches:

� Top-down EJB Web services

Top-down EJB Web services development involves creating a Web service
from a WSDL file. When creating a Web service by using a top-down
approach, first you design the implementation of the Web service by creating
a WSDL file. You can use the WSDL Editor. Then you can use the Web
services wizard to create the Web service and skeleton Java classes to which
you can add the required code.

� Bottom-up EJB Web services

Bottom-up EJB Web services development involves creating a Web service
from an existing Java bean or enterprise bean and then using the Web
services wizard to create the WSDL file and the Web service.

Although bottom-up EJB Web service development might be faster and easier,
especially if you are new to Web services, the top-down approach is the
recommended way to create a Web service. By creating the WSDL file first, you
will ultimately have more control over the Web service. In addition, you can
eliminate interoperability issues that might arise when creating a Web service by
using the bottom-up method.

More information: For more information see 4.4, “EJB Web services” on
page 197.

Note: You can use either IBM Rational Application Developer 7.5 or the
command-line tools (wsgen and wsimport), which are provided by JAX-WS
support, to work with the top-down and bottom-up approaches.

 Chapter 1. Introduction 57

58 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 2. Web services programming
model

This chapter introduces the Web services programming model that is supported
by WebSphere Application Server V7. It introduces the programming model by
using many simple, but complete, Java code examples. The following key topics
are discussed in this chapter:

� “Web service development with JAX-WS 2.1” on page 60
� “Working with SOAP using SAAJ 1.3” on page 117
� “Working with XML using JAXB 2.1” on page 123
� “Web services for Java EE” on page 131

Although this chapter does not introduce any Web services tools, you can find
more information about such tools in Chapter 4, “Developing Web services
applications” on page 161.

2

© Copyright IBM Corp. 2009. All rights reserved. 59

2.1 Web service development with JAX-WS 2.1

The Java API for XML-based Web services (JSR-224), commonly abbreviated
JAX-WS, is the next generation Web services programming model. It effectively
replaces the earlier JAX-RPC technology. JAX-WS defines a model that uses
Java annotations to develop Web service providers and Web service clients. In
addition, compared to JAX-RPC, JAX-WS Web service clients and Web service
providers are more portable because no vendor-specific artifacts are necessary.

Although the Java EE 5 platform requires compatible application servers to
support JAX-WS 2.0, WebSphere Application Server V7 has already taken the
next step and supports JAX-WS 2.1. As an example, with this support, you can
take advantage of the new Web services Addressing (WS-Addressing)
functionality.

In the next section we explain how to develop a simple Web service and client.

2.1.1 Creating a Web service and client

The example provided in this section illustrates how to program a simple
SOAP-based JAX-WS Web service and client. As shown in “Provider-based Web
services” on page 85, JAX-WS offers an alternative Web services approach that
is not based on the standardized SOAP, but rather on your own custom protocol.

The provider
Using JAX-WS, developing a Web service can be as simple as adding a single
annotation. Example 2-1 shows a Web service with one method that greets the
caller.

Example 2-1 The HelloMessenger Web service

package itso.hello;

import javax.jws.WebService;

@WebService
public class HelloMessenger {

public String sayHello(String name) {
return String.format("Hello %s", name);

}
}

60 IBM WebSphere Application Server V7.0 Web Services Guide

The Java bean in Example 2-1 on page 60 provides enough information to the
JAX-WS runtime environment to let it be deployed as a real SOAP-based Web
service. The WebService annotation specifies that, upon deployment, the bean
and all of its public methods should be exposed as a Web service. The default
conventions governed by the JAX-WS specification mean that the bean will be
exposed as a SOAP 1.1-based document/literal Web service. In fact, the same
rules allow the JAX-WS engine to expose a Web Services Description Language
(WSDL) 1.1-compliant document, which can then be used by any client, Java or
not, to use the service.

Granted, this Web service is almost as simple as it can get. By using JAX-WS
annotations, you can specify much more information. The reasons for specifying
further Web service metadata include the ability to affect the WSDL document
that is exposed to clients, enabling a specific feature such as Message
Transmission Optimization Mechanism (MTOM).

Also in Example 2-1 on page 60, the bean class represents both the service
endpoint interface (SEI) and the service implementation class. In a production
grade Web service, you typically create a separate SEI that specifies the Web
service contract to avoid mixing it with the actual business logic.

Taking it for a test run
For the sake of simplicity, this section demonstrates how you can expose the
Web service from a simple Java application. In a production grade application,
you are advised to deploy your Web services to WebSphere Application
Server V7.

Example 2-2 shows how you can use the JAX-WS javax.xml.ws.Endpoint class
to expose the HelloMessenger Web service.

Example 2-2 Publishing the Web service endpoint

package itso.hello;

import javax.xml.ws.Endpoint;

public class HelloServer {

public static void main(String... args) {

String address = "http://localhost:9999/Hello";
HelloMessenger endpointImpl = new HelloMessenger();

 Chapter 2. Web services programming model 61

Endpoint.publish(address, endpointImpl);
}

}

The HelloServer application exposes the Web service endpoint in the URL
http://localhost:9999/Hello. The main method consists of three lines of code.
In the first line, we configure the address variable so that it contains the URL at
which the Web service endpoint is found. In the second line, we instantiate the
Web service that we created in “The provider” on page 60. In the last line of
code, we use the endpoint class to expose the HelloMessenger Java bean as a
Web service.

When you run the HelloServer application, the HelloMessenger Web service is
published and ready for requests. You can now access the WSDL document,
which according to the JAX-WS specification, is accessible at the endpoint URL
followed by the WSDL query string ?wsdl or ?WSDL. Example 2-3 shows the
WSDL document that is generated by the JAX-WS run time.

Example 2-3 HelloMessenger WSDL document

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://hello.itso/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://hello.itso/"
name="HelloMessengerService">
<types>

JDK™ to run the HelloServer application: To run the HelloServer
application, you must have either of the following Java Development Kits
(JDKs):

� A Java Platform, Standard Edition (Java SE), 6 compliant JDK

� A Java SE 5-compliant JDK and the WebSphere Application Server V7
Web service thin client library

WebSphere Application Server V7 comes with its own Java SE 6-compliant
JDK, which is in the WAS_HOME/java directory.

Before you can publish the HelloServer application, you must generate
auxiliary JAX-WS classes for the HelloMessenger Web service endpoint. To
generate these classes, you can use the Java SE 6 wsgen tool, which we
describe in Chapter 4, “Developing Web services applications” on page 161.

62 IBM WebSphere Application Server V7.0 Web Services Guide

<xsd:schema>
<xsd:import namespace="http://hello.itso/"

schemaLocation="http://localhost:9999/Hello?xsd=1"></xsd:import>
</xsd:schema>

</types>
<message name="sayHello">

<part name="parameters" element="tns:sayHello"></part>
</message>
<message name="sayHelloResponse">

<part name="parameters" element="tns:sayHelloResponse"></part>
</message>
<portType name="HelloMessenger">

<operation name="sayHello">
<input message="tns:sayHello"></input>
<output message="tns:sayHelloResponse"></output>

</operation>
</portType>
<binding name="HelloMessengerPortBinding" type="tns:HelloMessenger">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"></soap:binding>

<operation name="sayHello">
<soap:operation soapAction=""></soap:operation>
<input>

<soap:body use="literal"></soap:body>
</input>
<output>

<soap:body use="literal"></soap:body>
</output>

</operation>
</binding>
<service name="HelloMessengerService">

<port name="HelloMessengerPort"
binding="tns:HelloMessengerPortBinding">

<soap:address
location="http://localhost:9999/Hello"></soap:address>

</port>
</service>

</definitions>

 Chapter 2. Web services programming model 63

The WSDL document in Example 2-3 on page 62 can be used by applications to
generate client-side code that can interact with the Web service. In 2.1.2,
“Relation of WSDL and Java types” on page 65, we explain how the Java code is
mapped to the WSDL document. We provide a brief description of the WSDL
parts as follows:

� At the top of the WSDL document, you find the types section, which in this
example imports an XML schema document. (The schema can also be in-line
inside the types section.) The XML schema document describes all complex
types that are used in the Web service input and output.

� After the types section, you find one or more message sections. These
messages are referenced later and provide the bridge from the WSDL
document constructs to the schema document types.

� The message sections are followed by one or more portType sections. A
portType is the WSDL equivalent of the SEI, in that it describes the abstract
service interface in terms of service operations.

� The portType section is followed by one or more binding sections. A binding
associates a portType with an actual protocol. In this example, it specifies that
the HelloMessenger portType is exposed as a SOAP 1.1 service (indicated by
the transport attribute with the value "http://schemas.xmlsoap.org/soap/http").

� At the end of the document, you find the service section, which summarizes
the location of the applicable bindings.

In the next section we explain how a client application can use JAX-WS
generated code to interact with the HelloMessenger Web service.

The client
Writing a Web service by using JAX-WS is almost as simple as writing the Web
service. Example 2-4 shows a simple Java application client that uses the
HelloMessenger Web service.

Example 2-4 The HelloMessenger Web service client

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;

public class HelloClient {

public static void main(String... args) throws Exception {

HelloMessengerService service = new HelloMessengerService();

HelloMessenger port = service.getHelloMessengerPort();

64 IBM WebSphere Application Server V7.0 Web Services Guide

String message = port.sayHello("Milo");

System.out.println(message);
}

}

HelloClient invokes the sayHello method on the HelloMessenger Web service
and prints the result to the standard output stream. The application uses two
generated JAX-WS types:

HelloMessengerService A subclass of the JAX-WS javax.xml.ws.Service that
acts as a factory of dynamic proxies

HelloMessenger The SEI that represents the remote Web service
port

In the source code in Example 2-4 on page 64, when the client obtains
HelloMessenger from the HelloMessengerService, a dynamic proxy is returned
that implements the SEI. The dynamic proxy is the actual implementation code
that knows how to issue the outbound request and return the response. The
underlying request and response messages that are exchanged between the
dynamic proxy and the Web service endpoint are based on the SOAP XML
message format and are typically transmitted over the HTTP protocol. See 2.1.3,
“Web service providers” on page 78, for an example of the SOAP messages that
are exchanged between the Web service and client.

2.1.2 Relation of WSDL and Java types

The JAX-WS 2.1 specification defines how Web service run times should map
between Java and a Web services Interoperability (WS-I) Basic Profile
1.0-compliant WSDL 1.1 document. In this section we introduce these mapping
rules.

Whether you develop Web services endpoints using a bottom-up approach or a
top-down approach, the end result is the same: a collection of Java types
(interfaces and classes) that comprise the implementation. These Java types
typically are richly annotated as defined by the JAX-WS 2.1 specification
(JSR-224) and the Web services Metadata Facility for the Java Platform
(JSR-181).

Important: Before you can run the HelloClient application, you must generate
auxiliary JAX-WS classes for the HelloMessenger Web service endpoint. To
generate these classes, use the Java SE 6 wsimport tool, which is described
in Chapter 4, “Developing Web services applications” on page 161.

 Chapter 2. Web services programming model 65

The point of view presented in this section is how annotated Java Web services
code is mapped to the automatically generated WSDL 1.1 document. In most
cases, the mapping rules that apply when generating Java code from a WSDL
1.1 document are the same. However, this is not always the case. Therefore,
consult the JAX-WS 2.1 specification in situations where you must know the
exact mapping rules.

The main difference that you might encounter when generating Java code from
an existing WSDL document (either on the client side or as an initial Web service
implementation skeleton) is that the source code contains several JAX-WS
annotations. These annotations occur because the JAX-WS specification in
general requires tools to insert these annotations. For example, JAX-WS
requires that generated exceptions be annotated with WebFault annotations and
all method parameters be annotated with WebParam annotations.

Mapping of Java packages
In JAX-WS, the Web service Java package maps to a WSDL namespace. In the
HelloMessenger example, the itso.hello package was mapped to the
http://hello.itso/ XML target namespace. Example 2-5 shows the relevant
part of the WSDL.

Example 2-5 HelloMessenger WSDL document: target namespace

<?xml version="1.0" encoding="UTF-8"?>

<definitions
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://hello.itso/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://hello.itso/"
name="HelloMessengerService">

<!-- abbreviated for clarity...-->

</definitions>

As you can see in Example 2-5, the namespace is the inverse of the Java
package name. To be more exact, the JAX-WS mapping algorithm states that the
package name is tokenized by using the period (.) delimiter, the order of tokens is

Annotation reference: For an overview of the JAX-WS annotations and how
they apply to SEIs, see “Annotation reference” on page 80.

66 IBM WebSphere Application Server V7.0 Web Services Guide

reversed, and the target namespace value is prepended with “http://” and
appended with “/”.

By using JAX-WS, you can explicitly configure the WSDL target namespace by
using the targetNamespace attribute applicable to the WebService annotation:

@WebService(targetNamespace="http://my.specific.namespace/")

Mapping Java SEIs
The HelloMessenger Web service shown so far has an implicit SEI where the
bean implementation itself contains all the Web service metadata. JAX-WS also
allows you to define an SEI explicitly. To define the SEI, you define an ordinary
Java interface that specifies the Web service metadata and a Web service
implementation bean that implements the business logic. Example 2-6 shows an
explicit HelloMessenger SEI.

Example 2-6 HelloMessenger explicit SEI

package itso.hello;

import javax.jws.WebService;

@WebService()
public interface HelloMessenger {

public String sayHello(String name);
}

Example 2-7 shows the corresponding endpoint implementation bean.

Example 2-7 HelloMessenger endpoint implementation bean

package itso.hello;

import javax.jws.WebService;

@WebService(endpointInterface="itso.hello.HelloMessenger")
public class HelloMessengerImpl implements HelloMessenger {

public String sayHello(String name) {
return String.format("Hello %s", name);

}
}

The difference is highlighted in bold. As you can see, the bean declares the
endpointInterface attribute on the WebService annotation. This attribute tells the
JAX-WS runtime environment where to find the explicit SEI.

 Chapter 2. Web services programming model 67

The SEI, explicit or not, is mapped by JAX-WS to the WSDL portType element.
Example 2-8 shows how the HelloMessenger SEI maps to the WSDL portType
element.

Example 2-8 The SEI mapping to the WSDL portType element

<?xml version="1.0" encoding="UTF-8"?>

<definitions ...>
<!-- abbreviated for clarity...-->

<portType name="HelloMessenger">
<operation name="sayHello">

<input message="tns:sayHello"></input>
<output message="tns:sayHelloResponse"></output>

</operation>
</portType>

<!-- abbreviated for clarity...-->
</definitions>

The portType element in a WSDL document represents an interface. The name
of the interface is specified by using the WSDL name. By default, JAX-WS
generates the same name as the original SEI name, hence HelloMessenger. Just
as Java interfaces define methods, the WSDL portType also defines operations.
In this example, the portType contains a single operation corresponding to the
Java SEI method. In the next section, we explain how the Java methods and
WSDL operations relate.

With JAX-WS, you can customize the portType name by using the name
attribute, which you can apply on the WebService annotation. For example, to
change the WSDL portType name to MyHelloMessenger, change the
WebService annotation as follows:

@WebService(name=”MyHelloMessenger”)

By using the WebService annotation, you can customize other aspects of the
WSDL document. For a complete list of applicable attributes, see the
WebService annotation JavaDoc.

Mapping Java methods
All public methods on the SEI are automatically exposed as Web service
methods. If the SEI inherits public methods from another interface, then all of
these methods are exposed, too. Given that you have an explicit SEI, public

68 IBM WebSphere Application Server V7.0 Web Services Guide

methods declared in a service endpoint implementation bean are only exposed
as part of the Web service if they are also on the SEI.

Each Java method exposed on the SEI is mapped to a corresponding WSDL
operation element in the portType, as shown in Example 2-9.

Example 2-9 WSDL operation name

<?xml version="1.0" encoding="UTF-8"?>

<definitions ...>
<!-- abbreviated for clarity...-->

<portType name="HelloMessenger">
<operation name="sayHello">

<input message="tns:sayHello"></input>
<output message="tns:sayHelloResponse"></output>

</operation>
</portType>

<!-- abbreviated for clarity...-->
</definitions>

The operation is highlighted in bold. The name is identical to that of the Java SEI.

You can customize the WSDL operation name by using the operationName
attribute, which is applicable to the @WebMethod annotation. Example 2-10
shows how to change the WSDL operation name to “MySayHello”.

Example 2-10 Customizing the WSDL operation name

package itso.hello;

import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService
public class HelloMessenger {

@WebMethod(operationName="MySayHello")
public String sayHello(String name) {

return String.format("Hello %s", name);
}

}

 Chapter 2. Web services programming model 69

Example 2-11 shows the corresponding WSDL.

Example 2-11 WSDL with custom operation name

<?xml version="1.0" encoding="UTF-8"?>

<definitions ...>
<!-- abbreviated for clarity...-->

<portType name="HelloMessenger">
<operation name="MySayHello">

<input message="tns:MySayHello"></input>
<output message="tns:MySayHelloResponse"></output>

</operation>
</portType>

<!-- abbreviated for clarity...-->
</definitions>

The JAX-WS specification specifies that, in the absence of the name attribute of
the WebMethod annotation, the WSDL operation name must be the same as the
Java method name.

With JAX-WS, you can exclude certain public methods by using the exclude
attribute (Example 2-12). The exclude attribute is part of the WebMethod
annotation that you can add to your Java methods.

Example 2-12 Excluding methods from the SEI

package itso.hello;

import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService()
public class HelloMessenger {

@WebMethod()
public void includeMe() {

// This method is a Web method
}

70 IBM WebSphere Application Server V7.0 Web Services Guide

@WebMethod(exclude = true)
public void excludeMe() {

// This method is NOT a Web method
}

}

If you deploy this Web service, the HelloMessenger WSDL portType only
contains the includeMe operation.

Mapping Java parameters and a return type
The HelloMessenger Web service contains a two-way operation. That is, it has
exactly one input message and one output message:

� <input message=”tns:sayHello”></message>
� <output message=”tns:sayHelloResponse”></message>

By using the message attributes, these messages refer to XML schema types
that are defined in the types block of the WSDL documents. In turn, the types
section imports an externally generated XML schema document. Example 2-13
shows the contents of this schema.

Example 2-13 HelloMessenger schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:tns="http://hello.itso/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

version="1.0" targetNamespace="http://hello.itso/">

<xs:element name="sayHello" type="tns:sayHello"></xs:element>
<xs:element name="sayHelloResponse"

type="tns:sayHelloResponse"></xs:element>

<xs:complexType name="sayHello">
<xs:sequence>

<xs:element name="name" type="xs:string"
minOccurs="0"></xs:element>

</xs:sequence>
</xs:complexType>

<xs:complexType name="sayHelloResponse">
<xs:sequence>

<xs:element name="return" type="xs:string"
minOccurs="0"></xs:element>

</xs:sequence>

 Chapter 2. Web services programming model 71

</xs:complexType>
</xs:schema>

The schema shown in Example 2-13 on page 71 is generated according to the
JAXB binding rules. The schema contains a complexType for the method input
and one for the method output. For further details see 2.3, “Working with XML
using JAXB 2.1” on page 123.

You can use the JAX-WS WebParam annotation to affect the element names that
are displayed inside the generated schema. In Example 2-13 on page 71, the
input parameter shows the name name inside the generated schema under the
complexType called sayHello. Example 2-14 shows how to change the schema
name to myName.

Example 2-14 Changing the schema name

...
@WebMethod
public String sayHello(@WebParam(name = "myName") String name) {

return String.format("Hello %s", name);

...

The WebParam configuration instructs the JAX-WS run time to generate the
schema shown in Example 2-15.

Example 2-15 The changed schema name

<xs:complexType name="sayHello">
<xs:sequence>

<xs:element name="myName" type="xs:string"
minOccurs="0"></xs:element>

</xs:sequence>
</xs:complexType>

The WebParam annotation also has a mode attribute. The mode attribute
specifies whether the parameter in question is an input parameter, output
parameter, or both. The default mode is IN, which means that the parameter is an
ordinary input parameter. Because the Java programing language does not have
real output parameters or input/output parameters, JAX-WS defines special
javax.xml.ws.Holder classes instead.

72 IBM WebSphere Application Server V7.0 Web Services Guide

Example 2-16 shows an output parameter mapping.

Example 2-16 An output parameter

package itso.hello;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import javax.jws.WebParam.Mode;
import javax.xml.ws.Holder;

@WebService
public class HelloMessenger {

@WebMethod
public String sayHello(

@WebParam(mode = Mode.IN) String name,
@WebParam(mode = Mode.OUT) Holder<NameOutputResult>

nameOutputResult) {

// This is an example of specifying an out parameter
nameOutputResult.value = new NameOutputResult();
nameOutputResult.value.setName(String.format("Hello %s", name));

// This is the usual Java return statement
return String.format("Hello %s", name);

}
}

Notice how the second method parameter declares a javax.xml.ws.Holder
instance that encapsulates an output object. The NameOutputResult type is a
simple Java bean with a name property.

The use of javax.xml.ws.Holder to work with output parameters and input/output
parameters can be avoided if you design the Web service contract yourself. You
use a single Java object that contains all the return values. However, you might
find it necessary to work with javax.xml.ws.Holder objects if you are required to
adhere to an existing WSDL contract.

Mapping Java exceptions
The HelloMessenger Web service presented so far does not use any Java
exceptions. However, there might be situations where your business must model
service specific exceptions.

 Chapter 2. Web services programming model 73

The JAX-WS specification indicates how and when Java exceptions are mapped
to WSDL fault elements. To be exposed as a Web service fault, the Java
exception must have the following characteristics:

� It must be a checked exception, and therefore, not extend RuntimeException.
� It must not extend the checked java.rmi.RemoteException.

To demonstrate how JAX-WS maps Java exceptions to WSDL 1.1 fault elements,
we provide an updated version of the HelloMessenger Web service.
Example 2-17 shows a new version of the Web service that throws an
itso.hello.UnknownCallerException if the caller is not named “milo”.

Example 2-17 HelloMessenger with Exception logic

package itso.hello;

import javax.jws.WebService;

@WebService
public class HelloMessenger {

public String sayHello(String name) throws UnknownCallerException {
if ("milo".equalsIgnoreCase(name)) {

return String.format("Hello %s", name);
} else {

throw new UnknownCallerException(name);
}

}
}

For completeness, Example 2-18 shows the exception it its entirety.

Example 2-18 UnknownCallerException thrown by HelloMessenger

package itso.hello;

public class UnknownCallerException extends Exception {

public UnknownCallerException(String caller) {
super(String.format("%s is unknown!", caller));

}

}

The exception is an ordinary checked Java exception. The constructor prepares
the exception message and sends it to the java.lang.Exception super class.

74 IBM WebSphere Application Server V7.0 Web Services Guide

Upon deployment of this Web service, the JAX-WS runtime environment
generates the WSDL fault information, as shown in Example 2-19.

Example 2-19 WSDL with fault element

<?xml version="1.0" encoding="UTF-8"?>

<definitions ...>

<!-- abbreviated for clarity...-->

<message name="UnknownCallerException">
<part name="fault" element="tns:UnknownCallerException"></part>

</message>

<portType name="HelloMessenger">
<operation name="sayHello">

<input message="tns:sayHello"></input>
<output message="tns:sayHelloResponse"></output>
<fault message="tns:UnknownCallerException"

name="UnknownCallerException"></fault>
</operation>

</portType>

<!-- abbreviated for clarity...-->

</definitions>

The portType now has a new element, called the WSDL fault element. This
element references the UnknownCallerException message, which in turn
references an element in the generated XML schema. Example 2-20 shows the
referenced schema.

Example 2-20 The XML schema type representing the exception

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema ...>

<!-- abbreviated for clarity...-->

<xs:element name="UnknownCallerException"
type="tns:UnknownCallerException"></xs:element>

<xs:complexType name="UnknownCallerException">
<xs:sequence>

 Chapter 2. Web services programming model 75

<xs:element name="message" type="xs:string"
minOccurs="0"></xs:element>

</xs:sequence>
</xs:complexType>

<!-- abbreviated for clarity...-->

</xs:schema>

The element in the schema references a complexType, which defines an XML
schema type that is capable of containing the Java exception information.

With JAX-WS, you can customize the WSDL fault by annotating your exception
with the WebFault annotation. As previously explained, JAX-WS requires that
exceptions generated from WSDL faults are annotated with the WebFault
annotation. In fact, any generated exception simply wraps a Java bean that
encapsulates the actual Web service fault detail. See the JAX-WS 2.1
specification for further details about the mapping between Java exceptions and
WSDL faults.

WSDL styles
The JAX-WS 2.1 specification supports Web services by using different SOAP
binding styles. A SOAP binding style is specified in the binding section of a
WSDL document. The following styles are supported:

� RPC style
� Document style

From a developer’s perspective, the choice of style does not matter. In most
cases, the SEI code is the same, with the exception of the style attribute value in
the SEI javax.jws.sopa.SOAPBinding annotation. For example, to expose the
HelloMessenger endpoint by using the RPC style, add the following line to the
endpoint class definition:

@SOAPBinding(style=Style.RPC)

If you are generating a client SEI for an RPC style Web service, then the JAX-WS
run time inserts the annotation.

However, the choice of SOAP binding style has an impact on the WSDL
document itself and most likely on the format of the SOAP messages that are
exchanged. Although JAX-WS 2.1 supports both the remote procedure call
(RPC) and document style, it defaults to the document style. We recommend the
default document style because it enforces strictly typed payloads. The entire
payload content, using the document style, adheres to the XML schema types

76 IBM WebSphere Application Server V7.0 Web Services Guide

declared in the WSDL document’s types section (either inlined schema or
externally referenced schema).

In addition to having different SOAP binding styles, a binding style can also have
a special use, which can be either encoded or literal. JAX-WS only supports
literal. Therefore, the default WSDL style in JAX-WS is typically referred to as the
document/literal style. Further description of the WSDL styles and use modes is
outside the scope of this book and we do not discuss it further.

In the next section we introduce a common pattern known as message wrapping,
which relates to the document/literal WSDL style.

The document/literal wrapped pattern
As explained in the previous section, the default WSDL style or use mode
employed by JAX-WS 2.1 is the document/literal style. In the RPC style, the
immediate element in the SOAP message body names the operation to be
invoked. In the document style, SOAP messages are not required to specify the
operation that is being invoked. Therefore, the payload does not need to reveal
which method to invoke on the endpoint implementation. A problem with this is
that it makes it a bit harder for developers to make the connection between the
SOAP message and the endpoint method that is being used.

The primary purpose of the document/literal wrapped pattern is to make
document/literal-generated SEI code look like RPC style code. The pattern
ensures that the SOAP messages always contain a top-level element that wraps
the actual input/output. For request messages, the wrapped pattern ensures that
the top-level element has the same name as the operation that is being invoked.
For response messages, the wrapper element is the operation name appended
with “Response”. However, in contrast to the RPC style, the element is part of the
well-defined XML schema that is declared in the WSDL documents types section
(either inline or external document).

If you are generating Java code from an existing WSDL document, the JAX-WS
specification specifies in detail the conditions that must apply before the Java
code can be generated by using the wrapped pattern. That is, you might
encounter situations where the generated code is not wrapped, which is also

More information about WSDL styles: For a good article about WSDL
styles, see “Which style of WSDL should I use?” from IBM developerWorks at:

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl

The article provides detailed examples of how the WSDL style and use
combinations affect the SOAP messages and SEI code. It also provides a
good discussion about the strengths and weaknesses of each combination.

 Chapter 2. Web services programming model 77

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl

known as bare. An SEI specifies whether it uses wrapped or bare code by using
the javax.jws.soap.SOAPBinding annotation as follows:

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED)

If you omit the SOAPBinding customization on the SEI, JAX-WS 2.1 run times
default to use the document/literal style combined with the wrapped pattern. In
addition, by using both IBM Rational Application Developer 7.5 and the JDK 1.6
JAX-WS wsimport tool, you can specify whether message wrapping should be
enabled when the tools generate SEI code from a WSDL document.

2.1.3 Web service providers

By using JAX-WS, you can develop server-side Web service endpoints by using
two different approaches:

� SEI-based Web services
� Provider-based Web services

The SEI-based Web services model is the one that you have already seen in the
HelloMessenger example. When developing SEI-based Web services, the
developer works on a high level using ordinary Java types. At this level, the
underlying SOAP message and transport protocol details are hidden. In addition,
JAX-WS implementations provide powerful tools that ease SEI-based Web
service development.

Provider-based Web services is an alternative approach with JAX-WS. It is a
lower-level approach in which the developer is directly aware of the Web service
requests and responds. In addition, provider-based Web service messages can
be based on the SOAP message protocol, but they do not have to be.
Provider-based Web services are flexible enough that you can use them to
implement Representational State Transfer (REST) type Web services.

SEI-based Web services
The HelloMessenger Web service is an example of a SEI-based Web service. As
described in 2.1.1, “Creating a Web service and client” on page 60, and 2.1.2,
“Relation of WSDL and Java types” on page 65, JAX-WS has well-defined
annotations that you use in developing SEI-based service endpoints.

In this section we briefly introduce the SOAP messages that are exchanged on
the wire. In addition, you will find an annotation reference that explains which
annotations are applicable to SEI-based endpoints and to which level they apply
(class/interface, method, or parameter).

78 IBM WebSphere Application Server V7.0 Web Services Guide

The underlying SOAP messages
In cooperation with JAXB 2.1 binding rules, JAX-WS is capable of generating the
underlying request and response messages. Example 2-21 shows an example of
the SOAP 1.1 request message that is generated by the HelloMessenger Web
service client.

Example 2-21 SOAP 1.1 request

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:q0="http://hello.itso/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<q0:sayHello>
<arg0>Milo</arg0>

</q0:sayHello>
</soapenv:Body>

</soapenv:Envelope>

A SOAP envelope encapsulates the entire request. However, a SOAP envelope
can initially have an optional header section that can be used to transfer
message metadata such as security authentication credentials (not shown in this
example). The SOAP envelope also contains a mandatory body section that is
used to transfer the actual message payload. Because the default style is
document/literal wrapped, the root element inside the SOAP envelope body
identifies the Web service operation, which is sayHello, that is being invoked.
Within that element, you find the operation’s input data. The XML payload
adheres to the XML schema rules that are defined in the WSDL document’s
types section.

Example 2-22 shows an example of the corresponding SOAP 1.1 response
message that is generated by the HelloMessenger Web service endpoint
implementation.

Example 2-22 SOAP 1.1 response

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:sayHelloResponse xmlns:ns2="http://hello.itso/">

<return>Hello Milo</return>
</ns2:sayHelloResponse>

 Chapter 2. Web services programming model 79

</S:Body>
</S:Envelope>

As is the case with the request envelope, the XML payload adheres to the XML
schema rules that are defined in the WSDL document’s types section.

The marshalling rules for the request and response SOAP payload are defined
by JAXB 2.1. See 2.3, “Working with XML using JAXB 2.1” on page 123, for
further information about JAXB.

Annotation reference
In this section we provide an overview of the JAX-WS 2.1 annotations that apply
to SEI-based Web service providers. The annotations presented here can be
either generated automatically or added manually:

� In top-down development, the annotations are automatically generated by
JAX-WS tools, such as the Web service wizards in Rational Application
Developer 7.5 or the JDK 1.6 wsimport tool.

� In bottom-up development, the annotations are manually added by the Java
developer.

Most of the annotations that apply to SEI-based providers also apply to the
generated SEIs for proxy clients.

Example 2-23 shows the annotations that apply to JAX-WS 2.1 SEI-based Web
services.

Example 2-23 JAX-WS 2.1 annotations and their applicability to the SEI

package itso.hello;

//JSR 181 (Web services meta data specification):
import javax.jws.HandlerChain;
import javax.jws.Oneway;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

//JSR 224 (JAX-WS 2.1 specification):
import javax.xml.ws.BindingType;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.RespectBinding;
import javax.xml.ws.ResponseWrapper;
import javax.xml.ws.soap.Addressing;

80 IBM WebSphere Application Server V7.0 Web Services Guide

import javax.xml.ws.soap.MTOM;

@WebService()
@SOAPBinding()
@HandlerChain(file = "")
@BindingType()
@RespectBinding()
@Addressing()
@MTOM()
public class HelloMessenger {

 @WebMethod()
 @Oneway()
 @WebResult()
 @SOAPBinding()
 @RequestWrapper()
 @ResponseWrapper()
 public String sayHello(@WebParam() String name) {

return String.format("Hello %s", name);
 }
}

Example 2-23 on page 80 shows the annotations and their applicability at the
class, method, and parameter level. The comments in the import part indicate to
which JSR specification the annotations belong. A short description of each of
these annotations follows. Annotations have been described in the context of
their applicability (classes, methods, variables, and method parameters) and with
a short description of their attributes. Unless otherwise noted, the annotation
attribute types are of type java.lang.String.

Example 2-23 on page 80 has the following class-level annotations:

� javax.jws.WebService

This annotation marks a Java class as implementing a Web service or marks
a Java interface as defining a WS-I. This annotation includes the following
applicable attributes:

name Specifies the portType name in the WSDL document.
Defaults to the simple name of the class.

targetNamespace Specifies the wsdl:portType elements namespace.

serviceName Specifies the service name in the service in the WSDL
document. Defaults to the simple name of the class
appended with “Service”.

 Chapter 2. Web services programming model 81

portName Used as the name of the wsdl:port when mapped to
WSDL.

wsdlLocation The location of a predefined WSDL that describes the
service. The wsdlLocation is a URL (relative or
absolute) that refers to a pre-existing WSDL file. The
presence of a wsdlLocation value indicates that the
service implementation bean is implementing a
predefined WSDL contract.

endpointInterface Can be used to specify the explicit full class name of
an SEI.

� javax.jws.soap.SOAPBinding

This annotation specifies the mapping of the Web service onto the SOAP
binding protocol. When the SOAPBinding.style is DOCUMENT, this
annotation can also be used on methods. This annotation includes the
following applicable attributes:

style Specifies the WSDL encoding style. The valid values
are DOCUMENT and RPC. The default is
DOCUMENT.

use Specifies the formatting style. The valid values are
LITERAL or ENCODED. The default is LITERAL.

parameterStyle Specifies the parameter mapping strategy. The
WRAPPED style ensures that parameters are
wrapped in an element named after the method. The
valid values are BARE or WRAPPED. The default is
WRAPPED.

� javax.jws.HandlerChain

This annotation associates a Web service endpoint with a handler chain.

This annotation includes the file attribute. This mandatory attribute specifies
the relative or absolute URL location of the handler chain XML file.

� javax.xml.ws.BindingType

This annotation specifies the binding to use when publishing the endpoint.

This annotation includes the value attribute. This attribute specifies the
binding ID, which essentially is a URI. The default is SOAP 1.1/HTTP, which is
represented by the constant SOAP11HTTP_BINDING on the
javax.xml.ws.soap.SOAPBinding annotation.

82 IBM WebSphere Application Server V7.0 Web Services Guide

� javax.xml.ws.RespectBinding

This annotation controls whether the JAX-WS implementation must honor the
contents of the endpoint’s corresponding wsdl:binding section in the WSDL
document.

This annotation includes the enabled attribute. This attribute is a boolean that
indicates whether the binding must be honored. The default is
Boolean.TRUE.

� javax.xml.ws.soap.Addressing

This annotation controls the use of WS-Addressing. The annotation includes
the following applicable attributes:

enabled A boolean that specifies whether WS-Addressing is
enabled. The default is Boolean.TRUE.

required A boolean that specifies whether WS-Addressing
headers must be present on incoming messages. The
default is Boolean.FALSE.

� javax.xml.ws.soap.MTOM

This annotation controls the use of MTOM. The annotation includes the
following applicable attributes:

enabled A boolean that specifies whether MTOM is enabled.
The default is Boolean.TRUE.

threshold An integer that specifies how many bytes binary data
should be before it is sent as an attachment. The
default is 0 bytes. (All binary types are sent as
attachments.)

Example 2-23 on page 80 has the following method-level annotations:

� javax.jws.WebMethod

This annotation customizes a Java method that is exposed as a Web service
operation. The annotation includes the following applicable attributes:

operationName Specifies the name of the wsdl:operation in the WSDL
document that matches the method.

action Specifies the action for the method (SOAP action for
SOAP bindings).

exclude A boolean that specifies whether the method is
exposed as a Web service operation. The default is
Boolean.False.

 Chapter 2. Web services programming model 83

� javax.jws.Oneway

This annotation can be used on Java methods that do not have a return value
(void methods) and denotes the method as a Web service one-way operation
that only has an input message and no output message. A one-way method
typically returns to the calling application prior to executing the actual
business method. This annotation has no applicable attributes.

� javax.jws.WebResult

This annotation customizes the mapping of a Java return value to the WSDL
document’s Web service message part and XML element. This annotation
includes the following applicable attributes:

name Specifies the local name of the XML element that
represents the return value.

partName Specifies the name of the wsdl:part element that
represents the return value.

targetNamespace Specifies the XML namespace of the return value.

header A boolean value that specifies whether the return
valued is stored in a message header rather than the
message body. The default is Boolean.FALSE.

� javax.xml.ws.RequestWrapper

This annotation specifies the SOAP request JAXB wrapper bean and the XML
target namespace. The annotation includes the following applicable
attributes:

localName Specifies the local element name. Defaults to the
operationName property of the WebMethod
annotation.

targetNamespace Specifies the request element target namespace.
Defaults to the target namespace of the SEI.

className Specifies the JAXB wrapper bean class.

� javax.xml.ws.ResponseWrapper

This annotation specifies the SOAP response JAXB wrapper bean and the
XML target namespace. The annotation includes the following applicable
attributes:

localName Specifies the local element name. The default is the
operationName property of the WebMethod annotation
appended with "Response".

targetNamespace Specifies the response element target namespace.
The default is to the target namespace of the SEI.

className Specifies the JAXB wrapper bean class.

84 IBM WebSphere Application Server V7.0 Web Services Guide

Example 2-23 on page 80 has the following parameter-level annotation:

� javax.jws.WebParam

This annotation customizes the mapping of a Java method parameter to the
WSDL document’s Web service message part and XML element. The
annotation includes the following applicable attributes:

name Specifies the local name of the XML element that
represents the parameter.

partName Specifies the name of the wsdl:part element that
represents the parameter.

targetNamespace Specifies the XML namespace of the parameter.

mode Specifies whether the parameter is an IN parameter,
OUT parameter, or INOUT parameter. The default is
IN for non-holder types and INOUT for holder types.

header A boolean value that specifies whether the parameter
is pulled from a message header rather than the
message body. The default is Boolean.FALSE.

Provider-based Web services
With provider-based Web services, you work directly with the Web services
request and response messages. The messages can be based on the SOAP
message format or your own custom message format.

More information: For more details about the JAX-WS 2.1 annotations and
their properties, see the WebSphere Application Server 7 Information Center
at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=
/com.ibm.websphere.express.doc/info/exp/ae/rwbs_jaxwsannotations.html

Alternatively, you can consult the following specifications, which are available
as PDF documents from the Java Community Process home page at the
following address:

http://www.jcp.org

� Web services Metadata for the Java Platform (JSR-181)
� The Java API for XML-Based Web Services 2.1 (JSR-224)
� Web services for Java EE Version 1.2 (JSR-109)

 Chapter 2. Web services programming model 85

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_jaxwsannotations.html
http://www.jcp.org

By implementing the provider interface on your endpoint implementation bean
and annotating it with the WebServiceProvider annotation, you signal to the
JAX-WS runtime environment that you are implementing a provider-based Web
service endpoint. Example 2-24 shows a simple custom Web service provider.

Example 2-24 A simple custom provider

package itso.hello;

import java.io.StringReader;

import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class HelloMessengerProvider implements Provider<Source> {

public Source invoke(Source request) {

// The fixed response
String responseXML = "<h1>Hello Milo</h1>";

// Return the XML reply
return new StreamSource(new StringReader(responseXML));

}
}

The Web service in Example 2-24 illustrates how to implement a
javax.xml.ws.Provider, which works with javax.xml.transform.Source objects.
This example ignores any data from the incoming request and always returns a
response that says “Hello Milo”. In fact, when published, you can use a browser
and go to the endpoint URL to receive that message. This method works
because the provider in this particular example does not expect any well-defined
XML request message and, therefore, returns the message upon any POST or
GET HTTP request that is sent to the endpoint.

86 IBM WebSphere Application Server V7.0 Web Services Guide

When you work with provider-based endpoints, note the following points:

� The Java bean must implement a typed provider. The provider type, which is
specified in angle brackets, has three possible values:

– javax.xml.transform.Source

By using this object, the endpoint can work directly with the XML data,
including both request XML data and response XML data. You can work
with the source XML stream in different ways. One way is to use the JAXB
2.1 API to convert the XML data stream into a Java object. For more
information about the JAXB API, see 2.3, “Working with XML using JAXB
2.1” on page 123.

– javax.xml.soap.SOAPMessage

This object is part of the SAAJ 1.3 API. By using this object, you can
consume and produce SOAP messages by using a typed SOAP message
API. For more information about the SAAJ API, see 2.2, “Working with
SOAP using SAAJ 1.3” on page 117.

– javax.activation.DataSource

With this object, the endpoint can work with MIME-typed messages.

� The endpoint must be annotated with the WebServiceProvider annotation, as
opposed to the WebService annotation specified by the SEI-based endpoints.

� The endpoint can specify a service mode and has the following possible
values:

– javax.xml.ws.Service.Mode.PAYLOAD

This is the default mode, which indicates that the endpoint only works on
the request payload. When working with SOAP by using the SAAJ API,
you gain access to the SOAP body only.

Publishing the endpoint by using the JAX-WS endpoint publisher: To
publish Example 2-24, by using the JAX-WS endpoint publisher, you must
explicitly create the endpoint with an HTTP binding:

1. Instantiate the provider-based endpoint:

HelloMessengerProvider e = new HelloMessengerProvider();

2. Create the endpoint so that it is exposed with the HTTP binding:

Endpoint endpoint = Endpoint.create(HTTPBinding.HTTP_BINDING, e)

3. Publish the endpoint:

endpoint.publish(address);

 Chapter 2. Web services programming model 87

– javax.xml.ws.Service.Mode.MESSAGE

This mode indicates that the endpoint works on the entire protocol
message. When working with SOAP using the SAAJ API, you gain access
to the entire SOAP envelope.

Accessing the context
JAX-WS allows Web service endpoints to gain access to transport protocol
information by allowing resource injection of a special context-aware object, the
WebServiceContext object. By using this object, the endpoint can, for example,
obtain information about the HTTP headers and determine the actual HTTP
method used to invoke the endpoint (such as GET, PUT, POST, DELETE).

Example 2-25 shows a modified version of the provider endpoint example that
accesses the resource injected WebServiceContext.

Example 2-25 Accessing the context

package itso.hello;

import java.io.StringReader;

import javax.annotation.Resource;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.handler.MessageContext;

@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class HelloMessengerProvider implements Provider<Source> {

@Resource
private WebServiceContext context;

public Source invoke(Source request) {

// Determine the HTTP method
MessageContext messageContext = context.getMessageContext();
String httpMethod =

messageContext.get(MessageContext.HTTP_REQUEST_METHOD).toString();

88 IBM WebSphere Application Server V7.0 Web Services Guide

// Include HTTP method information in the response
String responseXML = String.format("<h1>Hello Milo (HTTP %s

method)</h1>", httpMethod);

// Return the XML reply
return new StreamSource(new StringReader(responseXML));

}
}

The relevant code is highlighted in bold. The endpoint gains access to the
context by annotating a WebServiceContext member variable with a resource
annotation. Inside the invoke method, the endpoint uses the WebServiceContext
to access the MessageContext, which contains information about the currently
active HTTP request method. The MessageContext object contains other useful
information also, such as the HTTP request headers sent by the client.
Descriptive constants are available on the MessageContext class that you can
use to retrieve the data.

2.1.4 Web service clients

JAX-WS defines two service usage models:

� Proxy clients
� Dispatch clients

The proxy-based client model was demonstrated in 2.1.1, “Creating a Web
service and client” on page 60. In this model, your applications work on local
proxy objects that implement the SEI that is being exposed by the Web service
endpoint.

The dispatch-client model offered by JAX-WS is a lower-level model that requires
you to supply the necessary XML request yourself. This model can be used in
the situations where you want to dynamically build up the SOAP request itself or
where you must use a non-SOAP-based Web service endpoint.

Collectively, both client types are also known as BindingProviders because both
clients realize the JAX-WS javax.xml.ws.BindingProvider interface. The
BindingProvider interface allows for a common configuration model, which is
described in “Configuring the client BindingProviders” on page 102.

Proxy clients
By using the proxy client model, you can write SOAP 1.1 and SOAP 1.2 Web
service clients without having an intimate knowledge of the underlying SOAP

 Chapter 2. Web services programming model 89

protocol. The client applications use a dynamic proxy object that implements a
statically generated SEI.

Keep in mind the following points:

� Since Java is a statically typed language, the proxy client model requires you
to use a tool, such as the wsimport tool or Rational Application
Developer V7.5, to generate the necessary Web service client code that you
will use in your applications.

� The JAX-WS run time accesses the WSDL document at run time to generate
the dynamic proxy implementation. The implication is that the stub cannot be
instantiated unless the WSDL document is available.

In the following sections, we describe the synchronous and asynchronous
programming models for working with the JAX-WS generated proxy clients.

Synchronous clients
By using the synchronous model, you can develop SOAP-based Web service
client code without worrying about the underlying protocol details. The
HelloMessenger client shown in Example 2-4 on page 64 uses a generated
JAX-WS-compliant subclass of javax.xml.ws.Service. Example 2-26 shows this
class in its entirety, although comments have been removed for brevity.

Example 2-26 JAX-WS generated HelloMessengerService

package itso.hello;

import java.net.MalformedURLException;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.WebEndpoint;
import javax.xml.ws.WebServiceClient;
import javax.xml.ws.WebServiceFeature;

@WebServiceClient(
name = "HelloMessengerService",
targetNamespace = "http://hello.itso/",
wsdlLocation = "http://localhost:9999/Hello?wsdl")

public class HelloMessengerService extends Service {

private final static URL HELLOMESSENGERSERVICE_WSDL_LOCATION;

static {
URL url = null;
try {

90 IBM WebSphere Application Server V7.0 Web Services Guide

url = new URL("http://localhost:9999/Hello?wsdl");
} catch (MalformedURLException e) {

e.printStackTrace();
}
HELLOMESSENGERSERVICE_WSDL_LOCATION = url;

}

public HelloMessengerService(URL wsdlLocation, QName serviceName) {
super(wsdlLocation, serviceName);

}

public HelloMessengerService() {
super(HELLOMESSENGERSERVICE_WSDL_LOCATION, new QName(

"http://hello.itso/", "HelloMessengerService"));
}

@WebEndpoint(name = "HelloMessengerPort")
public HelloMessenger getHelloMessengerPort() {

return (HelloMessenger) super.getPort(new
QName("http://hello.itso/",

"HelloMessengerPort"), HelloMessenger.class);
}

@WebEndpoint(name = "HelloMessengerPort")
public HelloMessenger getHelloMessengerPort(WebServiceFeature...

features) {
return (HelloMessenger) super.getPort(new

QName("http://hello.itso/",
"HelloMessengerPort"), HelloMessenger.class, features);

}

}

You can tell that Example 2-26 on page 90 is a JAX-WS-generated client
because of its class-level WebServiceClient annotation. The class has two
constructors:

� The first constructor is the default constructor. It configures the service so that
any dynamic proxies created from it are produced by using the WSDL
document that was used to generate the client code.

In the HelloMessenger example, the tool was not instructed to create a local
copy of the WSDL document. This is why there is an absolute reference to the
actual URL at which the Endpoint publisher makes the WSDL document
available. Because we do not recommend this, make sure that you generate

 Chapter 2. Web services programming model 91

the Web service client code so that it is copied to the client. See Chapter 4,
“Developing Web services applications” on page 161, for more information.

One of the implications of not having a local WSDL document is that the
constructor throws an exception in cases where the JAX-WS run time cannot
connect to the server that is exposing the document.

� The second constructor initializes the service by using a specified WSDL
document.

In addition to these two constructors, the generated client has a couple of
getHelloMessenger methods with which you can get a dynamic proxy that binds
to the specified Web service endpoint. The HelloMessenger client that we
presented in Example 2-4 on page 64 uses the default constructor to connect to
instantiate the Web service:

HelloMessengerService service = new HelloMessengerService();

This approach can present a problem when you want the client application to
switch from the test environment’s Web service endpoint to the production
environment’s Web service endpoint. There are a couple of ways to override this
endpoint location from your client code:

� Use the overloaded constructor of the generated javax.xml.ws.Service
subclass that takes another WSDL document location. This supplied WSDL
document can, in turn, specify the service endpoint location of interest.

� Use the default constructor, but specify the endpoint location on the dynamic
proxy returned by the service.

After the HelloClient application has obtained a HelloMessengerService
instance, it uses that instance to obtain a dynamic stub, which binds to the actual
Web service endpoint. Example 2-27 shows the generated Web service client
type that is implemented by the stub.

Example 2-27 The generated Web service client interface

package itso.hello;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlSeeAlso;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;

@WebService(name = "HelloMessenger", targetNamespace =
"http://hello.itso/")

92 IBM WebSphere Application Server V7.0 Web Services Guide

@XmlSeeAlso({
 ObjectFactory.class
})
public interface HelloMessenger {

 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "sayHello", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHello")
 @ResponseWrapper(localName = "sayHelloResponse", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHelloResponse")
 public String sayHello(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);

}

The HelloMessenger type is an ordinary Java interface with some
JAX-WS-specific annotations. Although the return type of the
HelloMessengerService is of this interface type, in reality what is returned is a
dynamic stub that implements this interface.

Example 2-28 shows a new HelloMessenger client application that explicitly
specifies, on the dynamic stub, a new Web service endpoint location.

Example 2-28 Configuring the Web service endpoint location

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;

import javax.xml.ws.BindingProvider;

public class HelloClientCustomEndpoint {

public static void main(String... args) throws Exception {

HelloMessengerService service = new HelloMessengerService();

HelloMessenger port = service.getHelloMessengerPort();

((BindingProvider)port).getRequestContext().put(BindingProvider.ENDPOIN
T_ADDRESS_PROPERTY, "http://itso.ibm.com:69693/Hello");

 Chapter 2. Web services programming model 93

String message = port.sayHello("Thilde");

System.out.println(message);
}

}

The client-relevant code is highlighted in bold. The application casts the dynamic
Web service port proxy to a javax.xml.ws.BindingProvider. The BindingProvider
is implemented by the dynamic client proxies and gives you access to the
request and the response contexts. The application specifies the endpoint
address on the request context using the
BindingProvider.ENDPOINT_ADDRESS_PROPERTY property.

Asynchronous clients
If you are familiar with JAX-RPC, you might already know that it does not offer an
asynchronous model. The asynchronous client programming model in JAX-WS
is merely a convenient functionality for developing Web service clients. It does
not refer to real asynchronous message exchanges. You can create
asynchronous clients by configuring the tool that you use to generate JAX-WS
Web service client code.

JAX-WS offers two asynchronous programming models:

� Polling clients
� Callback clients

These approaches merely differentiate, in the Java method, signatures that are
generated on the client-side Web service port interface. When you enable
asynchronous clients in your tool, JAX-WS generates three methods for every
operation that is defined in the Web service portType:

� Asynchronous method
� An asynchronous polling method
� An asynchronous callback method

Example 2-29 shows the HelloMessenger client-side endpoint interface that is
generated when asynchronous method generation is activated by the JAX-WS
tool.

Example 2-29 HelloMessenger asynchronous client interface

package itso.hello;

import java.util.concurrent.Future;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;

94 IBM WebSphere Application Server V7.0 Web Services Guide

import javax.jws.WebService;
import javax.xml.bind.annotation.XmlSeeAlso;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.Response;
import javax.xml.ws.ResponseWrapper;

@WebService(name = "HelloMessenger", targetNamespace =
"http://hello.itso/")
@XmlSeeAlso({
 ObjectFactory.class
})
public interface HelloMessenger {

 @WebMethod(operationName = "sayHello")
 @RequestWrapper(localName = "sayHello", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHello")
 @ResponseWrapper(localName = "sayHelloResponse", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHelloResponse")
 public Response<SayHelloResponse> sayHelloAsync(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);

 @WebMethod(operationName = "sayHello")
 @RequestWrapper(localName = "sayHello", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHello")
 @ResponseWrapper(localName = "sayHelloResponse", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHelloResponse")
 public Future<?> sayHelloAsync(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0,
 @WebParam(name = "asyncHandler", targetNamespace = "")
 AsyncHandler<SayHelloResponse> asyncHandler);

 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "sayHello", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHello")
 @ResponseWrapper(localName = "sayHelloResponse", targetNamespace =
"http://hello.itso/", className = "itso.hello.SayHelloResponse")
 public String sayHello(

 Chapter 2. Web services programming model 95

 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);

}

The method signatures are highlighted in bold. The first signature is used to
create asynchronous polling clients. The second signature is used to create
asynchronous callback clients. The third signature is used to create synchronous
clients and is the signature that is used by the HelloClient application.

In the following sections we explain you how to use the asynchronous methods.

Polling clients
The polling client programming model refers to the usage of the asynchronous
method that returns a typed javax.xml.ws.Response. Example 2-30 shows an
asynchronous HelloMessenger Web service client application.

Example 2-30 HelloAsyncPollingClient

import javax.xml.ws.Response;

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;
import itso.hello.SayHelloResponse;

public class HelloAsyncPollingClient {

public static void main(String... args) throws Exception {

HelloMessengerService service = new HelloMessengerService();

HelloMessenger port = service.getHelloMessengerPort();

Response<SayHelloResponse> sayHelloAsync =
port.sayHelloAsync("Thilde");

while (! sayHelloAsync.isDone()) {
// Do something useful for now

}

// Web service endpoint has now responded:
SayHelloResponse sayHelloResponse = sayHelloAsync.get();
String message = sayHelloResponse.getReturn();

96 IBM WebSphere Application Server V7.0 Web Services Guide

System.out.println(message);
}

}

The relevant code is highlighted in bold. The client application invokes the
sayHelloAsync method, which returns a response object. This object provides
methods to query for response arrival, cancel a response, and get the actual
response. The application, in this case, performs a busy wait, looping until the
Response.isDone() method returns true, which indicates that the response has
been received. The application then fetches the response by using the get()
method. This method returns the response wrapper element that contains the
actual method return value, which in this case is a simple java.lang.String object.
If an endpoint throws a service exception, the get() method can throw a
java.util.concurrent.ExecutionException, which can then be queried for the cause.

Callback clients
The callback client programming model refers to the usage of the asynchronous
method that accepts an input parameter of a typed javax.xml.ws.AsyncHandler.
Example 2-31 shows an asynchronous callback HelloMessenger Web service
client application.

Example 2-31 HelloAsyncCallbackClient

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;
import itso.hello.SayHelloResponse;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

public class HelloAsyncCallbackClient {

public static void main(String... args) throws Exception {

HelloMessengerService service = new HelloMessengerService();

HelloMessenger port = service.getHelloMessengerPort();

port.sayHelloAsync("Teresa", new AsyncHandler<SayHelloResponse>()
{

public void handleResponse(Response<SayHelloResponse> res) {
try {

SayHelloResponse response = res.get();

 Chapter 2. Web services programming model 97

String message = response.getReturn();
System.out.println(message);

} catch (Exception e) {
e.printStackTrace();

}
}

});
}

}

The application passes in an anonymous inner class of type AsyncHandler. This
class has a method called handleResponse that is invoked by the JAX-WS run
time when the message is received. The argument to this method is of the same
type that is used for the polling method, a typed response object.

Example 2-31 on page 97 does not show that you can save the return value of
the asynchronous method invocation into a java.util.concurrent.Future:

Future<?> future = port.sayHelloAsync("Teresa", ...)

As is the case with the polling response object, you can query this object to
obtain status and possibly cancel the operation.

Asynchrony on the wire
The asynchronous examples presented so far show you how to write clients that
call a Web service asynchronously. However, that is only a statement about the
client program. It does not mean that the SOAP messages that flow between the
client and server over HTTP are themselves asynchronous. In fact, they are not.
The SOAP/HTTP protocol is no different in the asynchronous case from the
synchronous one. The client Web services run time opens a connection, sends
the request, and receives the response back along the same connection.

What are the implications of this? From a client application, functional point of
view, it does not matter. The client programming model is defined by the WSDL
definitions of messages and port types. As long as that does not change,
whether the pair of request and response messages are sent in the same TCP/IP
session or in different sessions does not affect the client program. However, from
an architectural and resource perspective, it matters a great deal. Tightly
coupling the resources in the connection layer to the behavior of the client and
server in the application layer has a lot of implications, especially for reliability,
availability, resource use, and performance.

98 IBM WebSphere Application Server V7.0 Web Services Guide

WebSphere Application Server V7 provides an easy-to-use feature that provides
real wire-level asynchronous message exchange to your client applications. You
simply configure the client-side proxy with a special property as follows:

// Get the request context from the SEI

Map<String, Object> requestContext =
((BindingProvider)port).getRequestContext():

// Configure the client for wire-level asynchronous message exchange

requestContext.put("com.ibm.websphere.webservices.use.async.mep",
true);

When enabling wire-level asynchronous message exchange like this, the client
listens on a separate channel to receive the response messages from a
service-initiated channel. Upon the request the client uses WS-Addressing to
provide the ReplyTo endpoint reference (EPR) value to the service. After the
request message is sent, the connection is effectively closed. When the service
finishes the appropriate processing, it initiates a connection to the ReplyTo EPR
to send a response.

To learn more about this feature, consult the WebSphere Application Server V7
Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/twbs_jaxwsclientasynch.html

Dispatch clients
With JAX-WS, you can work at the XML level by using a typed low-level interface
called javax.xml.ws.Dispatch. By using the dispatch interface, you can work on
the following objects:

� javax.xml.transform.Source objects

You can use the usual Java XML-based approaches to work with source
request and response objects.

� JAXB objects

By specifying a JAXBContext, you can send and receive JAXB 2.1 objects.

Important: This feature is specific to WebSphere Application Server V7. It is
non-portable and not defined in the JAX-WS 2.1 specification.

 Chapter 2. Web services programming model 99

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/twbs_jaxwsclientasynch.html

� javax.xml.soap.SOAPMessage objects

As previously explained, this is part of the SAAJ 1.3 API that allows you to
work with a SOAP envelope in a typesafe manner. Example 2-46 on page 119
illustrates how to develop a dispatch client that uses the SAAJ API.

� javax.activation.DataSource objects

By using these objects, you can work with MIME-typed messages.

Although the dispatch client programming model is particularly useful when
developing clients for non-SOAP XML-based Web services, you are by no means
limited to that. Example 2-32 illustrates how the HelloMessenger SOAP-based
Web service can be used from a dispatch client.

Example 2-32 HelloDispatchClient

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;

import javax.xml.namespace.QName;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
import javax.xml.ws.http.HTTPBinding;

public class HelloDispatchClient {

private static final String TNS = "http://hello.itso/";

public static void main(String... args) throws Exception {

// Define the service name, port name, and endpoint address
QName serviceName = new QName(TNS, "HelloMessengerService");
QName portName = new QName(TNS, "HelloMessenger");
String endpointAddress = "http://localhost:9999/Hello";

// Create a service that can bind to the HelloMessenger port
Service service = Service.create(serviceName);
service.addPort(portName, HTTPBinding.HTTP_BINDING,

endpointAddress);

// Create a Dynamic Dispatch client

100 IBM WebSphere Application Server V7.0 Web Services Guide

Dispatch<Source> dispatch = service.createDispatch(portName,
Source.class, Service.Mode.MESSAGE);

// Create a SOAP request String
String request =

 "<?xml version='1.0' encoding='UTF-8'?>"
+ "<soap:Envelope "
+

"xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'"
+ "xmlns:q0='http://hello.itso/'>"
+ "<soap:Body>"
+ "<q0:sayHello>"
+ "<arg0>Milo</arg0>"
+ "</q0:sayHello>"
+ "</soap:Body>"
+ "</soap:Envelope>";

// Invoke the HelloMessenger web service
Source soapRequest = new StreamSource(new

ByteArrayInputStream(request.getBytes()));
Source soapResponse = dispatch.invoke(soapRequest);

// Convert the response to a String
ByteArrayOutputStream baos = new ByteArrayOutputStream();
Transformer transformer =

TransformerFactory.newInstance().newTransformer();
transformer.transform(soapResponse, new StreamResult(baos));
String response = baos.toString();

// Print the SOAP response String
System.out.println(response);

}
}

The application in Example 2-32 on page 100 first configures a JAX-WS Service
class that can bind to the HelloMessenger endpoint. Then it creates a Dispatch
object typed for working with javax.xml.transform.Source objects by using the
createDispatch method on the JAX-WS Service object. The createDispatch
method takes, as its last argument, a constant that indicates whether you intend
to work on the entire message (for instance, an entire SOAP envelope) or on the
payload only (for instance, a SOAP body). In this application, we use the
Service.Mode.MESSAGE constant to indicate that we are supplying the entire
SOAP message.

 Chapter 2. Web services programming model 101

The application then creates a request variable, which is an ordinary string that
contains a SOAP envelope with the request message payload in the body.

The last line that is highlighted in bold shows the Web service invocation that
results in SOAP messages being sent between the client and the endpoint.

Finally, by using the Java XML transformation API, the application produces a
string that contains the SOAP response envelope and prints it to the standard
outputstream.

Configuring the client BindingProviders
As previously explained, both proxy-based clients and dispatch-based clients
share a common configuration model. The configuration is performed
programmatically in the context of the Java Web service client code. By using this
configuration, you can specify an explicit endpoint location, HTTP protocol
session behavior, HTTP authentication credentials, and more.

The actual programmatic configuration is performed on the
javax.xml.ws.BindingProvider client-side object. The dynamic proxies that are
generated by the JAX-WS run time implement the javax.xml.ws.BindingProvider
interface, where the Dispatch interface extends it. Therefore, dispatch objects
produced by the JAX-WS Service class, by contract, also implement the
BindingProvider behavior.

To configure the client BindingProvider, you add information to the request
context, which is an ordinary java.util.Map<String, Object> that contains the
actual configuration. The keys are strings and the values are objects. The map is
available by using the BindingProvider.getRequestContext() method.

JAX-WS 2.1 specifies the following standard properties that can be used to
configure the request context:

� javax.xml.ws.service.endpoint.adress (value type: String)

Specifies the Web service endpoint address

� javax.xml.ws.security.auth.username (value type: String)

Specifies the user name in a set of HTTP basic authentication credentials

� javax.xml.ws.security.auth.password (value type: String)

Specifies the password in a set of HTTP basic authentication credentials

� javax.xml.ws.session.maintain (value type: Boolean, default: false)

Specifies whether the client is willing to participate in a server-initiated
session

102 IBM WebSphere Application Server V7.0 Web Services Guide

Example 2-28 on page 93 illustrates how a client application casts the dynamic
proxy object to a BindingProvider and configures that object with an explicit
endpoint location. Example 2-33 shows how to allow the Web service client to
participate in Web service endpoint initiated sessions.

Example 2-33 HelloClientHttpSession

import java.util.Map;

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;

import javax.xml.ws.BindingProvider;

public class HelloClientHttpSession {

public static void main(String... args) throws Exception {

// Obtain the dynamic stub from the Service:
HelloMessengerService service = new HelloMessengerService();
HelloMessenger proxy = service.getHelloMessengerPort();

// Cast the proxy to a BindingProvider:
BindingProvider bindingProvider = (BindingProvider) proxy;

// Get the request context
Map<String, Object> requestContext = bindingProvider

.getRequestContext();

// Configure session preference
requestContext.put(BindingProvider.SESSION_MAINTAIN_PROPERTY,

true);

// Perform Web service method invocation and print the result
String message = proxy.sayHello("Bass");
System.out.println(message);

}
}

Knowing that all dynamic proxies also are BindingProviders, the application
explicitly casts the proxy. It then grabs the request context map and specifies to
the JAX-WS run time that it is willing to participate in server-side initiated
sessions.

 Chapter 2. Web services programming model 103

2.1.5 Handlers

The handler framework allows interception of a message at various points in its
transmission. Handlers are simple Java bean classes that implement a handler
contract and can be associated with Web service endpoints and Web service
clients. With outgoing messages, handlers are invoked before a message is sent
to the wire. With incoming messages, handlers are invoked before the receiving
application receives the message. The same handler implementation is used for
both incoming and outgoing messages. Handler classes are organized into
handler chains. There are detailed rules about the order of handler invocation,
particularly during fault handling. See the JAX-WS 2.1 specification for details.

JAX-WS provides two levels of handlers:

� Logical handlers deal with the payload level of the message. Logical handlers
can be used for building non-functional behavior, such as logging and
caching, that is common across protocols.

� Protocol handlers deal with protocol information, such as SOAP headers.

Logical handlers
Example 2-34 shows a logical handler skeleton. The main method is the
handleMessage method. The close method is to clean up any resources that
handler invocation might have consumed. The handleFault method is invoked if
an error condition occurs, for example, if a response message contains a fault.

Example 2-34 HelloMessengerLogicalHandler skeleton

package itso.hello;

import javax.xml.ws.handler.LogicalHandler;
import javax.xml.ws.handler.LogicalMessageContext;

Transport level options and a response context map: This section
described the request context map that is available on the BindingProvider
implementation. After examining the map, you might notice that it contains
additional transport-level configuration options. These options are specific to
the protocol binding that you use. If the application communicates by using
SOAP/HTTP, for example, you have the option to configure HTTP headers in
the request.

The BindingProvider implementation also exposes a response context map.
Similarly to the request context, this object gives you access to transport level
data. Again, by using SOAP/HTTP, you are most likely to find the HTTP
response code inside the response context.

104 IBM WebSphere Application Server V7.0 Web Services Guide

import javax.xml.ws.handler.MessageContext;

public class HelloMessengerLogicalHandler implements
LogicalHandler<LogicalMessageContext> {

public void close(MessageContext ctx) {
}

public boolean handleFault(LogicalMessageContext ctx) {
return false;

}

public boolean handleMessage(LogicalMessageContext ctx) {
return false;

}
}

The handleMessage method (and handleFault) return a boolean. Returning true
from the handleMessage method tells the JAX-WS run time that processing
should move to the next handler in the chain. Returning false tells the JAX-WS
run time that processing of the handler chain should end.

The parameter to handleMessage is a LogicalMessageContext. It is an extension
of java.util.Map and contains <key, value> pairs of context properties. There are
properties for items such as WSDL element names and attachment information
(if any). Since handlers are invoked for both incoming and outgoing messages, a
useful property is the MESSAGE_OUTBOUND_PROPERTY defined on the
MessageContext interface, which gives you the direction of the message:

Boolean outbound = ctx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

Another useful property is the message itself:

LogicalMessage message = ctx.getMessage();

You can get the payload as XML data by using the javax.xml.transform.Source:

Source payload = message.getPayload();

Alternatively, you can get the payload as JAXB objects:

Object jaxbPayload = message.getPayload(jaxbContext);

In either case, you get the payload. In the case of SOAP, the payload is the
contents of the soap:body, either in XML form (javax.xml.transform.Source) or in
JAXB form (java.lang.Object).

 Chapter 2. Web services programming model 105

In 2.3.3, “Developing a JAX-WS logical handler that uses JAXB” on page 130, we
show how you can use the JAXB 2.1 API in combination with a logical handler.

Protocol handlers
The only protocol handler that is currently supported by WebSphere Application
Server V7 is the SOAP handler. The primary reason for writing a SOAP handler
is to manipulate SOAP headers. Example 2-35 shows an example of a SOAP
handler skeleton.

Example 2-35 HelloMessengerProtocolHandler skeleton

package itso.hello;

import java.util.Set;

import javax.xml.namespace.QName;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

public class HelloMessengerProtocolHandler implements
SOAPHandler<SOAPMessageContext> {

public Set<QName> getHeaders() {
return null;

}

public void close(MessageContext ctx) {
}

public boolean handleFault(SOAPMessageContext ctx) {
return false;

}

public boolean handleMessage(SOAPMessageContext ctx) {
return false;

}
}

The SOAP handler skeleton in Example 2-35 has the familiar methods of close,
handleFault, and handleMessage. The parameter to handleFault and
handleMessage, however, is now SOAPMessageContext instead of
LogicalMessageContext. In addition, the getHeaders method is a new method to
implement.

106 IBM WebSphere Application Server V7.0 Web Services Guide

The getHeaders method returns the set of the header names that the handler
understands. The JAX-WS run time calls this method to determine whether the
handler can process SOAP headers that must be understood (as indicated by the
SOAP mustUnderstand attribute). It does not call this method to filter handler
invocation. All handlers in a chain are called for all messages.

The SOAPMessageContext class adds a few properties to the context map that
are SOAP-specific, such as roles. The getMessage method returns a
SOAPMessage, which is an SAAJ class. By using the SOAPMessage, you can
programmatically examine or modify SOAP message headers.

In 2.2.3, “Developing a JAX-WS protocol handler” on page 121, we show how
you can use the SAAJ 1.3 API in combination with a protocol handler.

Enabling handlers in Web services and clients
In this section we explain how to enable JAX-WS handlers for Web service
endpoints and Web service clients.

Enabling handlers in Web services
With JAX-WS, you can declaratively specify a Web service handler chain by
using the javax.jws.HandlerChain annotation. Example 2-36 shows how to apply
a handler chain to the HelloMessenger Web service.

Example 2-36 Enabling handlers for HelloMessenger

package itso.hello;

import javax.jws.HandlerChain;
import javax.jws.WebService;

@WebService
@HandlerChain(file = "handler-chain.xml")
public class HelloMessenger {

public String sayHello(String name) {

Using JAX-WS properties to send and receive SOAP headers:
WebSphere Application Server V7 provides extensions to the JAX-WS client
programming model in which special properties are used to send and receive
SOAP headers. For performance reasons, use this extension to process
SOAP headers instead of using the SAAJ API in handlers. For more
information see the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwbs_impsoapheade
xmpjaxws.html

 Chapter 2. Web services programming model 107

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwbs_impsoapheadexmpjaxws.html

return String.format("Hello %s", name);
}

}

The modified HelloMessenger Web service contains a class-level HandlerChain
annotation, which specifies that the handler configuration should be loaded from
the handler-chain.xml file that is available in the class path. Example 2-37
shows the handler-chain.xml file in its entirety.

Example 2-37 The handler-chain.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<javaee:handler-chains xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<javaee:handler-chain>
<javaee:handler>

<javaee:handler-class>itso.hello.HelloMessengerProtocolHandler
</javaee:handler-class>

</javaee:handler>
</javaee:handler-chain>

</javaee:handler-chains>

The highlighted line tells the JAX-WS run time to use the
HelloMessengerProtocolHandler to handle incoming and outgoing messages.

Enabling handlers in Web service clients
JAX-WS specifies two approaches to enabling handlers in Web service clients:

� Declarative configuration
� Programmatic configuration

The declarative configuration works for proxy clients only and works in the same
way as for the endpoint example. That is, you simply add an annotation to the
client-side generated SEI, which enables the handlers for all proxies and
dispatch clients that are generated by using any ports on the SEI.

The programmatic configuration works for all JAX-WS services, generated
service interfaces, and the generic service. Handlers are added to the client-side
service by using the following method:

Service.setHandlerResolver(HandlerResolver handlerResolver)

108 IBM WebSphere Application Server V7.0 Web Services Guide

Example 2-38 shows a modified version of the HelloClient that programmatically
adds the HelloMessengerProtocolHandler to the client-side SEI.

Example 2-38 HelloClientWithHandler

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;

import java.util.Collections;
import java.util.List;

import javax.xml.ws.handler.HandlerResolver;
import javax.xml.ws.handler.PortInfo;

public class HelloClientWithHandler {

public static void main(String... args) throws Exception {

HelloMessengerService service = new HelloMessengerService();

service.setHandlerResolver(new HandlerResolver() {

public List getHandlerChain(PortInfo inf) {
return Collections.singletonList(new

HelloMessengerProtocolHandler());
}

});

HelloMessenger port = service.getHelloMessengerPort();

String message = port.sayHello("Bastian");

System.out.println(message);
}

}

The highlighted code shows the relevant handler configuration code. The
application creates a new anonymous inner HandlerResolver that returns a
singleton list that contains an instance of the HelloMessengerProtocolHandler.

An advantage of the programmatic approach is that you are not required to
change generated code.

 Chapter 2. Web services programming model 109

2.1.6 Handling binary content

By using JAX-WS 2.1, you can send binary data in SOAP-based Web service
applications. You can choose between the following two approaches to send the
binary data:

� Sending the encoded binary data in the SOAP requests payload
� Sending the binary data as an attachment to the SOAP payload

The first approach is easy, mostly interoperable, and supported over any
transport protocol (SOAP,/HTTP, SOAP/JMS, and so on). However, use of this
method means that the data being sent inside the SOAP body is encoded by
using the Base64 algorithm by JAXB 2.1 and transferred in the SOAP body
payload by using the xs:base64Binary XML schema data type. The Base64
encoding scheme can result in large SOAP messages being sent over the wire.

In the second approach, the binary data is attached to the SOAP envelope in a
transport protocol-specific manner. ln general, this results in much smaller SOAP
messages simply because the payload is not encoded. In JAX-WS 2.1, you use
the MTOM functionality to handle the attachments automatically. However,
JAX-WS 2.1 only requires run times to support MTOM with SOAP 1.1/HTTP and
SOAP 1.2/HTTP.

The following sections provide a simple example of these two approaches.

SOAP messages with attachments versus MTOM: In addition to MTOM,
WebSphere Application Server V7 allows the sending of attachments by using
SOAP Messages with Attachments. Both approaches send attachments as
MIME parts. However, there are several reasons for using MTOM instead:

� MTOM has good interoperability. Since MTOM is a W3C recommendation
that is endorsed by most of the major players (Microsoft®, IBM, Oracle®,
and so on), there is a good chance for better interoperability than SOAP
Messages with Attachments solutions offer.

� MTOM attachments can be processed by the Web services functionalities
as needed. As part of the serialization process, the SOAP engine is
invoked with a temporary Base64 representation of the attachments. This
allows the SOAP engine to use them for generating a message signature,
performing encryption, and so on.

� MTOM has no impact on development. Contrary to SOAP Messages with
Attachments, there is no special API for handling the SOAP attachments.

110 IBM WebSphere Application Server V7.0 Web Services Guide

Binary content in the payload
JAX-WS 2.1 allows for different binary Java types as determined by the JAXB 2.1
binding rules. Examples of Java types that are treated as binary types include
java.awt.Image, javax.activation.DataHandler, javax.xml.transform.Source, and
byte arrays. These types are all transmitted by using Base64 encoding (with the
xs:base64Binary schema type) in the SOAP payload.

Example 2-39 shows a modified version of the HelloMessenger Web service that
allows for binary data transfer.

Example 2-39 HelloBinaryMessenger

package itso.hello;

import javax.jws.WebService;

@WebService
public class HelloBinaryMessenger {

public byte[] sayHello(byte[] nameAsBytes) {
return String.format("Hello %s", new

String(nameAsBytes)).getBytes();
}

}

The endpoint naively assumes that the byte array received in the method input
argument contains valid numeric char values. The result of invoking the endpoint
method sayHello is the usual Hello <name> name message, but in the form of a
byte array. Example 2-40 shows the corresponding binary SEI client generated
by JAX-WS tools.

Example 2-40 HelloBinaryClient

import itso.hello.HelloBinaryMessenger;
import itso.hello.HelloBinaryMessengerService;

import javax.xml.ws.BindingProvider;

public class HelloBinaryClient {

public static void main(String... args) throws Exception {

HelloBinaryMessengerService service = new
HelloBinaryMessengerService();

 Chapter 2. Web services programming model 111

HelloBinaryMessenger port =
service.getHelloBinaryMessengerPort();

byte[] message = port.sayHello("Milo".getBytes());

System.out.println(new String(message));
}

}

The highlighted code illustrates that the generated port signature is identical to
that of the service endpoint implementation.

Example 2-41 shows the SOAP messages that are exchanged as a result of
running this example.

Example 2-41 Binary data in the SOAP payload messages

<!-- SOAP Request Envelope -->

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:sayHello xmlns:ns2="http://hello.itso/">
 <arg0>TWlsbw==</arg0>
 </ns2:sayHello>
 </S:Body>
</S:Envelope>

Note: The WSDL interface that is exposed by the example Web service
endpoint uses the xs:base64Binary schema for representation of the binary
types. The implication of this is that Web service client generation tools, such
as the wsimport tool, by default, generate a client-side SEI that uses the byte[]
signatures. Even though the original Web service endpoint has a
java.awt.Image type in its method signature, the generated client code might
result in a byte[] signature.

A simple solution is to annotate the schema types that are used by the WSDL
document with a metadata attribute. By using this method, you can tell the
JAXB run time which content type is really expected. With this method, you
can affect which binary types are used in the client-side SEI. See the JAXB
2.1 specification for more information.

112 IBM WebSphere Application Server V7.0 Web Services Guide

<!-- SOAP Response Envelope -->

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:sayHelloResponse xmlns:ns2="http://hello.itso/">
 <return>SGVsbG8gTWlsbw==</return>
 </ns2:sayHelloResponse>
 </S:Body>
</S:Envelope>

As expected, the SOAP messages reveal that the default behavior of sending
binary data is to send it in the SOAP envelope payload by using a Base64
encoding.

Binary content as attachments using MTOM
With JAX-WS 2.1, you can send binary content as attachments by using the
MTOM. The MTOM describes a mechanism for optimizing the transmission of a
SOAP message by selectively re-encoding portions of the message while still
presenting an XML information set (Infoset) to the SOAP application.

MTOM uses XML-binary Optimized Packaging (XOP) in the context of SOAP
and MIME over HTTP. XOP defines a serialization mechanism for the XML
Infoset with binary content that is applicable to SOAP and MIME packaging, as
well as any XML Infoset and any packaging mechanism. It is an alternate
serialization of XML that happens to look similar to a MIME multipart or related
package, with XML documents as the root part.

That root part is similar to the normal XML serialization of the document, except
that Base64 encoded data is replaced by a reference to one of the MIME parts,
which is not Base64 encoded. This reference allows the JAX-WS run time to
avoid the overhead in terms of size and processing that is associated with
encoding.

To enable MTOM on a service endpoint, simply annotate it by using
MTOM-specific metadata. Example 2-42 shows a modified version of the
HelloBinaryMessenger endpoint.

Example 2-42 HelloBinaryMessenger using MTOM

package itso.hello;

import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.soap.SOAPBinding;

 Chapter 2. Web services programming model 113

@WebService
@BindingType(value=SOAPBinding.SOAP11HTTP_MTOM_BINDING)
public class HelloBinaryMessenger {

public byte[] sayHello(byte[] nameAsBytes) {
return String.format("Hello %s", new

String(nameAsBytes)).getBytes();
}

}

The endpoint specifies that its binding should be SOAP 1.1/HTTP with MTOM
support. Now the endpoint can use MTOM on its outbound SOAP responses.
Running HelloBinaryClient against this MTOM-enabled endpoint does not mean
that the SOAP request message will be MTOM encoded. That requires
configuration on the client-side BindingProvider (proxy client or dispatch client).

Example 2-43 shows the complete response message including HTTP protocol
information.

Example 2-43 HelloBinaryMessenger response

HTTP/1.1 200 OK
Content-Type: multipart/related;
boundary=MIMEBoundaryurn_uuid_A235ABD296C37F53271239995376835;
type="application/xop+xml";
start="<0.urn:uuid:A235ABD296C37F53271239995376836@apache.org>";
start-info="text/xml"
Content-Language: en-US
Content-Length: 881
Date: Fri, 17 Apr 2009 19:09:34 GMT
Server: WebSphere Application Server/7.0

--MIMEBoundaryurn_uuid_A235ABD296C37F53271239995376835
Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"
Content-Transfer-Encoding: binary
Content-ID: <0.urn:uuid:A235ABD296C37F53271239995376836@apache.org>

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<ns2:sayHelloResponse xmlns:ns2="http://hello.itso/">

114 IBM WebSphere Application Server V7.0 Web Services Guide

<return>
<xop:Include

xmlns:xop="http://www.w3.org/2004/08/xop/include"
href="cid:urn:uuid:A235ABD296C37F53271239995303364@apache.org"/>

</return>
</ns2:sayHelloResponse>

</soapenv:Body>
</soapenv:Envelope>
--MIMEBoundaryurn_uuid_A235ABD296C37F53271239995376835
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-ID: <urn:uuid:A235ABD296C37F53271239995376837@apache.org>

Hello Milo
--MIMEBoundaryurn_uuid_A235ABD296C37F53271239995376835--

In the first block highlighted in bold, the SOAP payload uses the include element
from the XOP namespace to refer to the actual attachment part. At the bottom
you see the attachment. Notice that the binary data has not been encoded.

For a client BindingProvider to use MTOM when sending binary data, you must
configure it programmatically. Example 2-44 shows a modified version of the
HelloBinaryClient that configures the Binding for MTOM.

Example 2-44 HelloBinaryClient with MTOM enabled

import itso.hello.HelloBinaryMessenger;
import itso.hello.HelloBinaryMessengerService;

import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPBinding;

public class HelloBinaryClient {

public static void main(String... args) throws Exception {

HelloBinaryMessengerService service = new
HelloBinaryMessengerService();

HelloBinaryMessenger port =
service.getHelloBinaryMessengerPort();

BindingProvider bindingProvider = (BindingProvider) port;

 Chapter 2. Web services programming model 115

SOAPBinding soapBinding = (SOAPBinding)
bindingProvider.getBinding();

soapBinding.setMTOMEnabled(true);

byte[] message = port.sayHello("Milo".getBytes());

System.out.println(new String(message));
}

}

The MTOM-related change is highlighted in bold. Because MTOM is specific to
the SOAP binding, the application obtains the SOAPBinding object from the
BindingProvider class. The SOAPBinding interface contains a method,
setMTOMEnabled, which is used by the application to enable MTOM for outgoing
SOAP messages. The request SOAP message is identical in structure to the
response message and is therefore not described further.

2.1.7 Enabling SOAP 1.2

JAX-WS 2.1 uses SOAP 1.1 as the default binding protocol. In order for the
JAX-WS run time to expose a Web service endpoint by using the SOAP 1.2
binding protocol, the endpoint must explicitly provide the metadata.

Example 2-45 shows a modified HelloMessenger endpoint that binds to SOAP
1.2/HTTP.

Example 2-45 SOAP 1.2/HTTP enabled HelloMessenger endpoint

package itso.hello;

import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.soap.SOAPBinding;

@WebService
@BindingType(value=SOAPBinding.SOAP12HTTP_BINDING)
public class HelloMessenger {

public String sayHello(String name) {
return String.format("Hello %s", name);

}
}

The highlighted line shows how the endpoint configures the JAX-WS run time for
the SOAP 1.2/HTTP binding. The endpoint WSDL document reveals that SOAP

116 IBM WebSphere Application Server V7.0 Web Services Guide

1.2 is enabled because of its SOAP 1.2 namespace declaration on the WSDL
definitions element:

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

2.2 Working with SOAP using SAAJ 1.3

Until now, we have primarily demonstrated how to work on a higher level with
SEI-based Web services. However, there might be times where it is necessary
for you to work on the actual SOAP envelope details. An example of where
low-level access is necessary is when you develop JAX-WS handlers that
process SOAP header metadata such as security information, trace information,
and so on. JAX-WS itself does not contain a low-level SOAP API. Rather, it
delegates it to another matured API called SOAP with Attachments API for Java.

WebSphere Application Server V7 comes with SAAJ 1.3, which supports both
SOAP 1.1 and 1.2 messages. Additionally, by using SAAJ 1.3, you can write
WS-I BP 1.1-compliant messages.

2.2.1 SAAJ overview

Although the SAAJ API can be used from JAX-WS applications, it can also be
used alone. In fact, the SAAJ API contains all the classes that you need to send
and receive SOAP messages. All the SAAJ classes belong to the javax.xml.soap
package namespace.

SOAP 1.2 Web service clients: With regard to JAX-WS 2.1 Web service
clients, there is no need to manually specify the SOAP 1.2/HTTP protocol
binding information. Rather, at run time, the client-side JAX-WS
implementation uses binding information from the WSDL document of the
Web service endpoint to produce an appropriate dynamic proxy
implementation.

 Chapter 2. Web services programming model 117

As shown in Figure 2-1, the core SAAJ API exposes classes that closely mimic
the actual SOAP messages structure.

Figure 2-1 Core SAAJ 1.3 API

The core SAAJ API includes the following classes:

� The SOAPMessage object represents the entire SOAP message. It has a
single SOAPPart and possibly one or more AttachmentParts.

� The SOAPPart object contains a SOAPEnvelope message. The
SOAPEnvelope represents the actual SOAPEnvelope.

� The SOAPEnvelope has an optional SOAPHeader and a mandatory
SOAPBody.

� The SOAPHeader represents the SOAP header block in a SOAP message
and is allowed to be empty as is the case with the header section in a SOAP
1.1 or 1.2 message.

� The SOAPBody element can contain either a SOAPFault object or the actual
SOAP payload XML content (SOAPBodyElement).

� The SOAPFault object represents a SOAP fault message.

The SAAJ types and the types from the org.w3c.dom Java XML package are
closely related. In fact, many of the classes in SAAJ extend or implement
behavior from classes in the org.w3c.dom package namespace. An example of
this is the SOAPPart object that implements the org.w3c.dom.Document
interface.

SOAP Message

SOAPPart AttachmentPart

<<Interface>>
SOAPHeader

<<Interface>>
SOAPFault

<<Interface>>
SOAPBodyElement

<<Interface>>
SOAPEnvelope

<<Interface>>
SOAPBody

*

*

0..1

0..1

118 IBM WebSphere Application Server V7.0 Web Services Guide

In the next section we illustrate one way of putting the API into use, which is by
developing a dispatch client that uses SAAJ.

2.2.2 Developing a dispatch client that uses SAAJ

You can use SAAJ, among other tasks, to write SOAP-based clients.
Example 2-46 shows a dispatch client application that uses SAAJ to construct
the core SOAP envelope.

Example 2-46 SimpleSaajClient

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
import javax.xml.ws.soap.SOAPBinding;

public class HelloSaajClient {

private static final String TNS = "http://hello.itso/";

public static void main(String... args) throws Exception {

// Define the service name, port name, and endpoint address
QName serviceName = new QName(TNS, "HelloMessengerService");
QName portName = new QName(TNS, "HelloMessenger");
String endpoint = "http://localhost:80/Hello";

// Create a service that can bind to the HelloMessenger port
Service service = Service.create(serviceName);
service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING,

endpoint);

// Create a Dynamic Dispatch client
Dispatch<SOAPMessage> dispatch = service.createDispatch(portName,

SOAPMessage.class, Service.Mode.MESSAGE);

// Grab the SOAPBinding which has a SAAJ MessageFactory
BindingProvider bindingProvider = (BindingProvider) dispatch;
SOAPBinding binding = (SOAPBinding) bindingProvider.getBinding();

 Chapter 2. Web services programming model 119

// Use the SAAJ API to create the request
MessageFactory factory = binding.getMessageFactory();
SOAPMessage requestMessage = factory.createMessage();
SOAPBody soapBody = requestMessage.getSOAPBody();
QName payloadRootElem = new QName(TNS, "sayHello", "h");
SOAPBodyElement bodyElement =

soapBody.addBodyElement(payloadRootElem);
bodyElement.addChildElement("arg0").addTextNode("Milo");

// Invoke the HelloMessenger Web service
SOAPMessage responseMessage = dispatch.invoke(requestMessage);

// Convert the response message
String response = responseMessage.getSOAPBody().getTextContent();

// Print the response
System.out.println(response);

}
}

The application creates a dispatch client typed for usage with the SOAPMessage
element, which is part of SAAJ.

The third argument in the createDispatch method (value
Service.Mode.MESSAGE) indicates that the application is responsible for
building the entire SOAP envelope. It then gets a SAAJ MessageFactory from the
SOAPBinding object and uses that object to create a SAAJ SOAPMessage
object (variable requestMessage).

By using the SOAPBody and SOAPBodyElement SAAJ API objects, the
application adds the sayHello request wrapper element (sayHello) together with
the argument (arg0) to the SOAP message payload. Having built the request
message, the application uses the invoke method on the dispatch object to send
the message and subsequently gets the response SOAPMessage object.

Finally, the application gets the result message (“Hello Milo“) by extracting all text
content from the SOAPBody payload element and prints it to the standard
outputstream.

120 IBM WebSphere Application Server V7.0 Web Services Guide

2.2.3 Developing a JAX-WS protocol handler

As explained in “Protocol handlers” on page 106, with JAX-WS you can write
SOAP protocol handlers by using the SAAJ API. Example 2-47 shows a protocol
handler that adds a custom SOAP header.

Example 2-47 HeaderMessageHandler

package itso.hello;

import java.util.Set;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPHeaderElement;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

public class HeaderMessageHandler implements
SOAPHandler<SOAPMessageContext> {

public boolean handleMessage(SOAPMessageContext ctx) {

String outboundProp = MessageContext.MESSAGE_OUTBOUND_PROPERTY;
boolean outbound = (Boolean) ctx.get(outboundProp);

if (outbound) {

try {
SOAPMessage soapMessage = ctx.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

QName headerQName = new QName("http://hello.itso/",
"header-message", “hm”);

String headerValue = "Hello SAAJ";

SOAPHeader soapHeader = soapEnvelope.addHeader();
SOAPHeaderElement soapHeaderElement =

soapHeader.addHeaderElement(headerQName);

 Chapter 2. Web services programming model 121

soapHeaderElement.addTextNode(headerValue);

} catch (SOAPException e) {
e.printStackTrace();

}

}

return true /* continue chain */;
}

public Set<QName> getHeaders() {
return null;

}

public void close(MessageContext ctx) {
}

public boolean handleFault(SOAPMessageContext ctx) {
return false;

}
}

The HelloMessageHandler checks whether the message being processed is
outbound. If it is, the handler adds a SOAP header by using the SAAJ
SOAPHeader object. To the SOAPHeader element, it then adds a custom
header-message header that contains the greeting Hello SAAJ.

Example 2-48 shows a SOAP response message that is generated from the
HelloMessenger service when it uses the HeaderMessageHandler.

Example 2-48 SOAP response message with custom SOAP header

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header>
<hm:header-message xmlns:hm="http://hello.itso/">Hello

SAAJ</hm:header-message>
</S:Header>
<S:Body>

<ns2:sayHelloResponse xmlns:ns2="http://hello.itso/">
<return>Hello Milo</return>

</ns2:sayHelloResponse>

122 IBM WebSphere Application Server V7.0 Web Services Guide

</S:Body>
</S:Envelope>

2.3 Working with XML using JAXB 2.1

From a developer’s perspective, Java Architecture for XML Binding (JAXB)
provides an object-oriented approach to working with XML documents. The
JAXB API contains classes with which you can serialize annotated Java objects
to XML and back again.

In reality, JAXB provides a detailed description of the mapping between XML
types and Java types. JAX-WS describes a mapping between WSDL and Java.
Note the distinction. As described in 2.1.2, “Relation of WSDL and Java types” on
page 65, JAX-WS maps WSDL messages, portTypes, bindings, and services.
Anything that is displayed in the WSDL document’s types section that is XML
schema types is not mapped by JAX-WS. JAX-WS defers that mapping to JAXB.
WebSphere Application Server V7 supports JAX-WS 2.1.

JAXB can be used in applications that are not related to Web services in any way.
However, in the context of JAX-WS Web services development, knowledge of
JAXB can be helpful in the following situations:

� You are developing JAX-WS handlers that need access to the message
payload. With JAXB, you can avoid working with technologies such as XPath
and DOM.

� You are developing a dispatch client that communicates with a non-SOAP
Web service that has an XML schema that describes the message exchange.

� You are developing non-SOAP Web service endpoints (as described in
“Provider-based Web services” on page 85) but want to work on XML
schema-compliant request/response documents.

� You must customize generated SEI Java code. By providing certain JAXB
binding hints, for example, you can change the way JAX-WS tools generate
code.

While this list is not complete, the key point is that JAXB can, either directly or
indirectly, be a core technology in your daily Java Web service development
toolbox.

 Chapter 2. Web services programming model 123

2.3.1 Overview of JAXB

The JAXB mapping rules between XML schema types and Java types are quite
simple. As an example, primitives, such as the Java int, are mapped to a
corresponding xsd:int schema primitive, and complex Java beans are mapped to
xsd:complexType declarations. A binding compiler, such as the JDK tool xjc.sh,
can use these rules to generate Java objects from an XML schema file. The Java
objects that are generated can then, by means of the JAXB API classes, be
marshalled into schema-compliant XML documents and vice versa.

Table 2-1 shows some of the default mapping rules that are defined by JAXB 2.1
for binding XML schema data types to Java.

Table 2-1 JAXB mapping rules

Before you can develop and run the HelloClient application (Example 2-4 on
page 64), you must first use a JAX-WS tool, such as the wsimport tool, to
generate client-side support code. The generated code is produced according to
the JAXB binding rules such as those in Table 2-1.

As is the case with JAX-WS WSDL-to-Java and Java-to-WSDL mapping rules,
there are cases where JAXB rules from Java to XML schema and XML schema
to Java might not always agree. For example, if you have a schema that has
xsd:hexBinary type declarations, they will map to Java byte[]. However, going the
other way can result in xsd:base64Binary schema declarations.

Although we initially claimed that the conversion rules are simple, JAXB 2.1 is
quite an elaborate specification that thoroughly describes many elaborate
mapping scenarios. For details about the exact mapping rules between XML
schema and Java, consult the JAXB 2.1 specification.

XML schema type Java type

xsd:string java.lang.String

xsd:int int

xsd:long long

xsd:decimal java.math.BigDecimal

xsd:date javax.xml.datatype.XMLGregorianCalendar

xsd:boolean boolean

xsd:base64Binary byte[]

124 IBM WebSphere Application Server V7.0 Web Services Guide

Example JAXB mapping
JAXB is able to marshal and unmarshal Java objects that carry JAXB
annotations. You can develop the Java beans yourself or generate them by using
a JAXB compiler (either directly or indirectly through a JAX-WS tool).

In the HelloMessenger Web service endpoint, we describe how to access the
WSDL document (that is, access the endpoint URL with an appended ?wsdl
query string with a browser). The WSDL document contains a types section that
defines the XML schema types that are being used by the endpoint. Although the
actual schema type definitions might be inline in the WSDL types section, you will
typically find that the WSDL document imports an external XML schema
document, which you also can view from the browser. If you look at the XML
schema, you can see the definition of the response wrapper element that is being
used in the marshalling process when the HelloMessenger endpoint sends
SOAP responses to the client.

Example 2-49 shows the sayHelloResponse complexType definition that is
present in the XML schema.

Example 2-49 sayHelloResponse XML schema type

<xs:complexType name="sayHelloResponse">
<xs:sequence>

<xs:element name="return" type="xs:string"
minOccurs="0"></xs:element>

</xs:sequence>
</xs:complexType>

The line highlighted in bold shows the definition of the actual operation’s return
value. From this schema type, a JAXB compiler can then generate a
corresponding Java bean.

The Java bean in Example 2-50 shows the corresponding response wrapper
Java bean that is generated by the JAXB rules when running the wsimport tool
on the HelloMessenger WSDL document. Note that the JAXB-generated
comments have been removed for brevity.

Example 2-50 SayHelloResponse

package itso.hello;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

 Chapter 2. Web services programming model 125

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "sayHelloResponse",

namespace = "http://hello.itso/",
propOrder = { "_return" })

public class SayHelloResponse {

@XmlElement(name = "return")
protected String _return;

public String getReturn() {
return _return;

}

public void setReturn(String value) {
this._return = value;

}

}

The actual mapping is quite simple. It only requires a few JAXB annotations from
the javax.xml.bind.annotation package.

The core annotation that makes this bean serializable by using JAXB is the
XmlType annotation. However, to make JAXB marshalled and unmarshalled
instances of this bean into schema-compliant XML documents, it requires further
metadata. The first letter in the Java bean class name is uppercase, but the
schema type is not. Therefore, specifying the name attribute on the XmlType
annotation specifically defines the serialized name. The XmlType namespace
attribute ensures that the bean maps to the target namespace that is defined
inside the schema.

The XmlType propOrder attribute ensures that the bean properties are mapped
in the exact same order as defined by the XML schema sequence element.

The XmlAccessorType with the value XmlAccessType.FIELD ensures that the
_return field (annotated with XmlElement) is used in the marshal or unmarshal
process rather than the get and set methods.

As you might suspect, JAXB allows for further customization of the mapping. For
more information, see the JAXB 2.1 specification.

Using the JAXB API
In addition to defining a set of binding rules, JAXB also defines an API that can
be used to initiate the marshalling between XML documents and Java object
trees.

126 IBM WebSphere Application Server V7.0 Web Services Guide

JAXB includes the following central objects:

� javax.xml.bind.JAXBContext

Acts as a factory and is used for creating marshaller and unmarshaller objects

� javax.xml.bind.Marshaller

Can serialize a Java object graph into an XML stream

� javax.xml.bind.Unmarshaller

Can deserialize an XML stream into a Java object graph

Example 2-51 shows the HelloJaxb application, which uses the JAXBContext
and unmarshaller classes to unmarshal a chunk of raw XML that is identical to
the payload that is sent by the HelloMessenger SOAP Web service.

Example 2-51 HelloJaxb

import itso.hello.SayHelloResponse;

import java.io.StringReader;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.Unmarshaller;

public class HelloJaxb {

public static void main(String... args) throws Exception {

StringReader xml = new StringReader(
"<ns2:sayHelloResponse xmlns:ns2='http://hello.itso/'>" +

"<return>Hello Thilde</return>" +
"</ns2:sayHelloResponse>");

JAXBContext context = JAXBContext.newInstance("itso.hello");
Unmarshaller unmarshaller = context.createUnmarshaller();
JAXBElement<SayHelloResponse> jaxbElement =

(JAXBElement<SayHelloResponse>)unmarshaller.unmarshal(xml);
SayHelloResponse response = jaxbElement.getValue();

System.out.println(response.getReturn());
}

}

 Chapter 2. Web services programming model 127

The lines that are highlighted in bold show how to use the JAXB API to
deserialize a raw XML document into a Java object: the JAXB generated
response wrapper Java bean.

The first object created is the JAXBContext object, which, in this example, is
created by using a package name that contains the Java beans that can be
marshalled or unmarshalled by using JAXB.

From the context, the application then creates the unmarshaller object, which in
the subsequent line is used to unmarshal the XML document in the form of an
ordinary java.io.Reader subclass. The result of this unmarshal process is the
creation of a JAXBElement wrapper that contains the unmarshalled Java object.

Finally, the application prints the response value, which in this case is Hello
Thilde.

You might wonder why the JAXBElement container element is involved in the
previous example. The reason is that the SayHelloResponse object generated by
the binding compiler omits the XmlRootElement annotation. You can avoid the
JAXBElement container if you specify this annotation on the SayHelloResponse
class and create the context with an SayHelloResponse.class argument instead.
In short, the relevant lines change as follows:

JAXBContext context = JAXBContext.newInstance(SayHelloResponse.class);
Unmarshaller unmarshaller = context.createUnmarshaller();
SayHelloResponse response = (SayHelloResponse)
unmarshaller.unmarshal(xml);

2.3.2 Developing a dispatch client that uses JAXB

Example 2-52 demonstrates how JAX-WS allows you to work with JAXB objects
from a dispatch client.

Example 2-52 HelloJaxbClient

import itso.hello.ObjectFactory;
import itso.hello.SayHello;
import itso.hello.SayHelloResponse;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
import javax.xml.ws.soap.SOAPBinding;

128 IBM WebSphere Application Server V7.0 Web Services Guide

public class HelloJaxbClient {

private static final String TNS = "http://hello.itso/";

public static void main(String... args) throws Exception {

// Define the service name, port name, and endpoint address
QName serviceName = new QName(TNS, "HelloMessengerService");
QName portName = new QName(TNS, "HelloMessenger");
String endpoint = "http://localhost:80/Hello";

// Create a service that can bind to the HelloMessenger port
Service service = Service.create(serviceName);
service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING,

endpoint);

// Create a JAXB enabled Dynamic Dispatch client
JAXBContext context = JAXBContext.newInstance("itso.hello");
Dispatch<Object> dispatch = service.createDispatch(portName,

context,
Service.Mode.PAYLOAD);

// Create JAXB request object
ObjectFactory objectFactory = new ObjectFactory();
SayHello request = objectFactory.createSayHello();
request.setArg0("Milo");
JAXBElement<SayHello> requestMessage =

objectFactory.createSayHello(request);

// Invoke the HelloMessenger Web service
JAXBElement<SayHelloResponse> responseMessage =

(JAXBElement<SayHelloResponse>)
dispatch.invoke(requestMessage);

// Get the JAXB response
SayHelloResponse response = responseMessage.getValue();
String value = response.getReturn();

// Print the response
System.out.println(value);

}
}

 Chapter 2. Web services programming model 129

The lines in bold illustrate where JAXB functionality is being used.

The key point to note with regards to the dispatch client creation is that the
Service.createDispatch method is invoked with a JAXBContext and a PAYLOAD
service mode. The PAYLOAD argument specifies to the JAX-WS run time that it
should take care of handling the SOAP envelope details. The JAXBContext
argument specifies that we will let JAXB handle the marshalling and
unmarshalling of the actualSOAP payload.

After creation of the dispatch client, the application demonstrates how the
generated ObjectFactory class is used to produce the request objects that will be
sent over the wire. Since the generated classes (SayHello and
SayHelloResponse) in this example have not been annotated with a
XmlRootElement by the JAXB binding compiler, JAXB requires that they be
wrapped in a JAXBElement wrapper.

2.3.3 Developing a JAX-WS logical handler that uses JAXB

JAXB works well with logical handlers that are unaware of the actual transport
protocol details. Example 2-53 demonstrates a logical JAX-WS handler that
transforms outgoing payload text to uppercase.

Example 2-53 UppercaseMessageHandler

package itso.hello;

import itso.hello.jaxws.SayHelloResponse;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.ws.LogicalMessage;
import javax.xml.ws.handler.LogicalHandler;
import javax.xml.ws.handler.LogicalMessageContext;
import javax.xml.ws.handler.MessageContext;

public class UppercaseMessageHandler implements
LogicalHandler<LogicalMessageContext> {

public boolean handleMessage(LogicalMessageContext ctx) {

String outboundProp = MessageContext.MESSAGE_OUTBOUND_PROPERTY;
boolean outbound = (Boolean) ctx.get(outboundProp);

if (outbound) {
try {

130 IBM WebSphere Application Server V7.0 Web Services Guide

LogicalMessage message = ctx.getMessage();

JAXBContext context = JAXBContext
.newInstance(SayHelloResponse.class);

SayHelloResponse response = (SayHelloResponse) message
.getPayload(context);

response.setReturn(response.getReturn().toUpperCase());

message.setPayload(response, context);

} catch (JAXBException e) {
e.printStackTrace();

}
}

return true /* continue chain */;
}

public void close(MessageContext ctx) {
}

public boolean handleFault(LogicalMessageContext ctx) {
return false;

}
}

The lines that involve JAXB are highlighted in bold. The handler checks whether
the current message being handled is outbound or inbound. If the message is
outbound, it gets the JAXB payload object from the LogicalMessage, updates the
return value to uppercase, and overrides the entire payload. The
SayHelloResponse object in this example was generated with an
XmlRootElement annotation. Therefore, we did not need to be concerned with
the JAXBElement wrapper.

2.4 Web services for Java EE

In this section we introduce how the JAX-WS programming model fits into the
Java EE environment. The requirements are formally defined in JSR-109, “Web
services for Java EE specification (WSEE). Because compliance with

 Chapter 2. Web services programming model 131

WSEE V1.2 is a defined requirement in the Java EE 5 specification, WebSphere
Application Server V7 provides full support for it.

In short, WSEE defines the required architecture for Web services running inside
the Java EE environment. WSEE standardizes the packaging, deployment, and
programming model for Web services in a Java EE environment.
WSEE-compliant services are portable and interoperable across different
application server platforms.

2.4.1 Overview of WSEE

Prior to the appearance of the WSEE, there was no standard definition of how to
deploy a Web service in a Java EE environment. Thus, the process to do so was
mainly dependent on the destination run time. WSEE standardizes the process
and makes it portable to every Java EE-compliant server platform. Specifically,
WSEE defines the concepts, interfaces, file formats, and responsibilities to
support the model for defining and deploying Web services.

The end result for developers is that WSEE brings the Web services
programming models JAX-WS and JAX-RPC to the Java EE container. The
JAX-WS programming model is the new standard Web services programming
model for use in Java EE 5 containers. The JAX-RPC programming model was
the standard Web services model used in Java 2 Platform, Enterprise Edition
(J2EE™), 1.4 containers. Therefore, it is outside the scope of this book and is not
described further.

WSEE defines two programming models:

� Server programming models
� Client programming model

For the server programming model, WSEE requires that Java EE 5-compliant
containers must support the following two methods of implementing a Web
service endpoint:

� Stateless session EJB in an EJB container
� Java classes running in a Web container

For the client programming model, WSEE describes how Java EE components,
such as servlets and EJBs, should use the JAX-WS API.

The primary focus here is to describe these how JAX-WS fits into the two
programming models. WSEE describes the usage of Java EE deployment
descriptors in great detail. However, because Web-service-specific deployment
descriptor information is optional in JAX-WS, we do not discuss this subject here.
WSEE additionally provides details about the subjects of assembly and

132 IBM WebSphere Application Server V7.0 Web Services Guide

deployment of both Web service client modules and endpoints modules. For an
in-depth description of these matters, consult the WSEE specification.

2.4.2 Server programming model

The server programming model provides the server guidelines for standardizing
the deployment of Web services in a Java EE server environment. Depending on
the run time, two implementation models are described:

� Web container programming model

An ordinary Java class hosted in the Web container

� EJB container programming model

A stateless session EJB hosted in the EJB container

From a developer’s perspective the implementations look similar. That is caused
by the new lightweight annotation-based Java EE 5 programming model.
However, the choice that you make can impact the quality of service provided to
your module:

� The Web container programming model is simplistic and easily adapted by
Web developers.

� The EJB container programming model automatically brings thread safety
and endpoint local transactions to your Web services. In addition, with Java
EE 5, development of Enterprise JavaBeans (EJB) 3.0 components have
been dramatically simplified and, therefore, are a viable alternative to the Web
container programming model.

In the following sections we explain how you can use JAX-WS with these two
approaches.

Web container programming model
The Web container programming model supports both SEI-based endpoints and
provider-based endpoints. To deploy the HelloMessenger endpoint from the
provider (see “The provider” on page 60) to WebSphere Application Server V7,
place it in a Java EE 5-compliant WAR module and deploy it.

Publishing endpoints using the Endpoint API not allowed: The WSEE
specification requires Java EE 5-compliant application server vendors to
disallow publishing Web service endpoints by using the javax.xml.ws.Endpoint
API. The reason is that the usage is considered non-portable in a managed
environment. Vendors are instructed not to grant publishingEndpoint security
permission to applications.

 Chapter 2. Web services programming model 133

Figure 2-2 shows a WAR module made with Rational Application Developer V7.5
that contains the HelloMessenger Web service endpoint.

Figure 2-2 HelloWseeWEB WAR archive

This HelloWseeWEB project is a regular dynamic Web project, which with
regards to Web services-related files, only contains the HelloMessenger
endpoint. The WEB-INF folder contains the mandatory Web.xml deployment
descriptor and the IBM-specific extension and binding file. Upon deployment of
this module, WebSphere Application Server V7 exposes a dynamically
generated WSDL document at the following URL:

http://localhost:[port]/HelloWseeWEB/HelloMessengerService?wsdl

In essence, besides wrapping Web services code in a WAR module, the
programming model is basically mandated by JAX-WS. If you are used to the
JAX-RPC programming model, you might notice that the module does not
contain a webservices.xml file, the JAX-RPC XML mapping file, a WSDL
document, and so on. By using JAX-WS 2.1, there is no longer a need for such
files, unless you insist on developing JAX-RPC-based services under Java EE 5.

The webservices.xml file can still be used in JAX-WS applications. If you use this
file, it can override the metadata that you specified by using the JAX-WS
annotations. For more information about usage of the webservices.xml file, see
the WSEE specification.

134 IBM WebSphere Application Server V7.0 Web Services Guide

Lifecycle events
The Web service endpoint life cycle is completely determined by the Web
container. However, a service implementation bean can use
javax.annotation.PostConstruct or javax.annotation.PreDestroy annotations on
methods for life-cycle event callbacks. Example 2-54 shows a modified version of
the HelloMessenger endpoint that uses these annotations.

Example 2-54 HelloMessenger using life-cycle annotations

package itso.hello;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.jws.WebService;

@WebService
public class HelloMessenger {

public String sayHello(String name) {
return String.format("Hello %s", name);

}

@PostConstruct
@WebMethod(exclude = true)
public void init() {

System.out.println("Initializing bean");
}

@PreDestroy
@WebMethod(exclude = true)
public void destroy() {

System.out.println("Destroying bean");
}

}

Thread safety in the Web container programming model: A JAX-WS
service endpoint in the Web container can be either single threaded or
multi-threaded. WSEE specifies that endpoints that require single threaded
access must implement the javax.servlet.SingleThreadModel interface. When
this interface is implemented by the endpoint, the container is required to
serialize all method requests to the service implementation bean.

 Chapter 2. Web services programming model 135

The method annotated with the PostConstruct annotation is invoked by the Web
container after bean instantiation but before the container starts dispatching
requests to the methods exposed as Web service operations of the bean.

The method annotated with the PreDestroy annotation is invoked to notify the
bean of its intent to remove it. The method is not called during request
processing, and the endpoint can safely assume that the container will not
dispatch further Web service requests after the method is invoked.

In this example, the bean writes a string to the standard output stream. In a real
program, you might use these methods to initialize and destroy resources that
are used by the bean, for example, data sources, JMS resources, and so on.

EJB container programming model
The EJB container programming model supports both SEI-based endpoints and
provider-based endpoints. To change the HelloMessenger endpoint into an
EJB-based Web service and deploy it to WebSphere Application Server V7, the
following steps are required:

1. Place the bean class into a Java EE 5-compliant EJB Jar module.

2. Turn the endpoint into a stateless session EJB:

a. Add the javax.ejb.Stateless annotation to the bean class.

b. Create an interface, annotate it with javax.ejb.Local, and add the sayHello
method signature.

c. Change the bean class so that it implements the interface.

3. Assemble the EJB Java archive (JAR) module into a Java EE 5-compliant
enterprise archive (EAR) module and generate a Web router module for it.

4. Deploy the application.

Note that the concept of Web router modules is not defined by WSEE. In
WebSphere Application Server V7, Web router modules are used to handle the
SOAP/HTTP protocol specifics. WebSphere Application Server V7 also supports
Java Message Service (JMS)-based router modules so that you can expose an
EJB-based endpoint over the SOAP/JMS protocol. (Notice that SOAP/JMS is not
WS-I compliant.) Tools such as Rational Application Developer V7.5 and the
WebSphere Application Server V7 endptEnabler command-line tool can
automatically generate the router module.

136 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 2-3 shows an EJB JAR module made with Rational Application Developer
V7.5 that contains the HelloMessenger Web service endpoint.

Figure 2-3 HelloWseeEJB EJB JAR module

This HelloWseeEJB project is a regular EJB 3.0 project. The HelloMessenger
endpoint has been renamed to HelloMessengerBean to imply that it is also a
session bean. The HelloMessenger file is the interface that defines the local EJB
view. The META-INF folder contains an IBM-specific binding file that indicates to
WebSphere Application Server which Web archive is the router module.
Example 2-55 shows the EJB 3.0 interface.

Example 2-55 HelloMessenger EJB 3.0 local view

package itso.hello;

import javax.ejb.Local;

@Local
public interface HelloMessenger {

public String sayHello(String name);
}

The javax.ejb.Local annotation indicates that the EJB must be exposed with a
local view only. Notice that there is no Web service information here.
Example 2-56 shows the EJB 3.0-based Web service endpoint.

Example 2-56 HelloMessengerBean EJB 3.0 Web service endpoint

package itso.hello;

import javax.ejb.Stateless;
import javax.jws.WebService;

 Chapter 2. Web services programming model 137

@WebService
@Stateless
public class HelloMessengerBean implements HelloMessenger {

public String sayHello(String name) {
return String.format("Hello %s", name);

}
}

The only difference between this endpoint and the original HelloMessenger
endpoint is that it carries the javax.ejb.Stateless annotation and implements the
local EJB 3.0 view interface (changes are highlighted in bold). The stateless
annotation indicates that the bean is to be exposed as a stateless session bean.

Although the code might look the same, remember that the EJB container gives
you free services for immediate use. The HelloMessengerBean, for example, is
threadsafe. In addition, all business logic that occurs within the sayHello method
is part of a container-managed transaction. However, this Web service does not
participate in any global transaction that is established by the Web service client.

2.4.3 Client programming model

The WSEE specification describes the model for implementing Web service
clients hosted in a Java EE environment. A Java EE Web service client can be a
Java EE application client, Web component (for instance a servlet), EJB
component, or another Web service. The client uses the WSEE run time to
access and invoke Web service methods.

With a typical JAX-WS dynamic proxy-based client, the run time can inject a
service object or a port object into a member variable annotated with
javax.xml.ws.WebServiceRef and use that variable to exchange messages with
the Web service. Alternatively, the client can look up the service object or port
object in the JNDI namespace. After the client obtains a reference to the client
proxy, it uses that reference as it might with any other Java client.

Note: The WSEE specification mandates that only stateless session EJBs are
eligible as EJB-based Web service endpoints.

138 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 2-4 shows an ordinary dynamic Web project made with Rational
Application Developer V7.5. The project contains a servlet client that uses the
HelloMessenger Web service.

Figure 2-4 HelloWsseClientWEB project with Servlet Web service client

More information: The “Developing deployment descriptors for a JAX-WS
client” topic in the WebSphere Application Server 7 Information Center, at the
following address, describes how managed clients can configure and access
the JNDI to use Web services:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/twbs_jaxwsclientdd.html

 Chapter 2. Web services programming model 139

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/twbs_jaxwsclientdd.html

The src Java source code folder contains two packages:

� itso.hello
� itso.hellowebclient

The first package contains the generated JAX-WS classes. The second package
contains the client servlet component, ClientServlet, which uses the generated
client classes to communicate with the HelloMessenger Web service.

Under the WEB-INF folder is the usual web.xml deployment descriptor together
with the IBM-specific binding file and extension file. In addition, the client was
generated so that it has a local copy of the WSDL document that describes the
Web service contract. WSEE specifies that WSDL documents by convention
should be in WEB-INF/wsdl, but this is not required. Example 2-57 shows the
ClientServlet class.

Example 2-57 HelloClientServlet

package itso.hellowebclient;

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;

import java.io.IOException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

public class ClientServlet extends HttpServlet {

@WebServiceRef(HelloMessengerService.class)
private HelloMessenger port;

protected void doGet(HttpServletRequest req, HttpServletResponse
resp)

throws IOException {

String result = port.sayHello("Milo");

String html = String.format(
"<html><body>Message was: %s</body></html>", result);

140 IBM WebSphere Application Server V7.0 Web Services Guide

resp.getWriter().write(html);
}

}

The ClientServlet class is an ordinary HTTP servlet that calls the
HelloMessenger endpoint’s sayHello method and prints the result as a simplified
HTML string.

Notice the WebServiceRef declaration, which points, using the argument, to the
generated HelloMessengerService class. The HelloMessengerService class is
annotated with the javax.xml.ws.WebServiceClient annotation, which has a
wsdlLocation attribute. This attribute points to the actual WSDL document rooted
at WEB-INF/wsdl/HelloMessengerService.wsdl. By consulting this WSDL
document, the run time can find the endpoint address and the information
necessary to generate the dynamic proxy that implements the HelloMessenger
SEI interface.

In the previous example, the WebServiceRef annotation was used to inject a
dynamic proxy into the servlet. The annotation can also be used to inject the
generated Service class instead:

@WebServiceRef private HelloMessengerService service;

From the doGet method, the servlet then uses the service variable to obtain a
dynamic proxy object. See the JavaDoc for more information about the
WebServiceRef annotation.

 Chapter 2. Web services programming model 141

Handlers
Web service clients in a Java EE 5-compliant container, such as WebSphere
Application Server V7, can use the javax.jws.HandlerChain annotation in
combination with the WebServiceRef annotation.

Example 2-58 shows the ClientServlet that is modified to apply a client-side
handler chain to any message exchange with the HelloMessenger Web service.

Example 2-58 ClientServlet with HandlerChain annotation

package itso.hellowebclient;

import itso.hello.HelloMessenger;
import itso.hello.HelloMessengerService;

import java.io.IOException;

import javax.jws.HandlerChain;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;

Restrictions on the use of the asynchronous callback model: All JAX-WS
client models are allowed by the WSSE specification. However, WSEE defines
a few requirements for usage of the asynchronous callback approach. The
requirements are specific to the client container in use (EJB container or Web
container).

For the EJB container:

� An EJB instance cannot be passed as a callback handler instance. Place
the handler in a separate class from the EJB bean class.

� The developer must not attempt to access the EJBContext from the
handler. The behavior is undefined if it is accessed from the handler.

� The developer must not attempt to access the EJB bean instance from the
handler. The behavior is undefined if it is accessed from the handler.

For the Web container:

� A servlet instance cannot be passed as a callback handler instance. Place
the handler in a separate class from the servlet instance class.

� The developer must not attempt to access the servlet instance from the
handler. The behavior is undefined if it is accessed from the handler.

� Developers must not cache the HttpSession and HttpRequest objects from
the servlet in the handler.

142 IBM WebSphere Application Server V7.0 Web Services Guide

import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

public class ClientServlet extends HttpServlet {

@WebServiceRef(HelloMessengerService.class)
@HandlerChain(file="handler-chain.xml")
private HelloMessenger port;

protected void doGet(HttpServletRequest req, HttpServletResponse
resp)

throws IOException {

String result = port.sayHello("Milo");

String html = String.format(
"<html><body>Message was: %s</body></html>", result);

resp.getWriter().write(html);
}

}

Usage of the HandlerChain annotation is highlighted in bold. This HandlerChain
annotation is a convenient way to use client-side handlers with Java EE 5 Web
service clients. Compare this to the approach used in an unmanaged
environment. In an unmanaged environment, you must add the handler
programmatically or manually edit the generated service class to add the
HandlerChain annotation. For a description of the unmanaged approach, see
2.1.5, “Handlers” on page 104.

Handler configuration in Java EE module deployment descriptors: An
alternative to using the HandlerChain annotation in Java EE-managed clients
is to declare handlers in the appropriate module’s deployment descriptor
(ejb-jar.xml, web.xml, and so on). When using this method, client-side
handlers are added to the <service-ref> element by using the <handler> child
elements.

 Chapter 2. Web services programming model 143

144 IBM WebSphere Application Server V7.0 Web Services Guide

Part 2 Developing and
deploying Web
services

Part 2

© Copyright IBM Corp. 2009. All rights reserved. 145

146 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 3. The WeatherForecast
sample application

In this chapter we describe the base Java code of the WeatherForecast
application that is used to demonstrate Web services technology. The
WeatherForecast application is similar to the one that is used in Web Services
Handbook for WebSphere Application Server 6.1, SG24-7257. However, we
modified the application in this book to reflect some of the programming
language features of Java 5.

This chapter contains the following topics:

� “The WeatherForecast application components” on page 148
� “The weather database” on page 152
� “Testing the WeatherForecast application” on page 153

3

© Copyright IBM Corp. 2009. All rights reserved. 147

3.1 The WeatherForecast application components

The WeatherForecast application is used throughout this book to demonstrate
how to create and use Web services. The WeatherForecast application simulates
weather forecast predictions.

3.1.1 The WeatherForecast application packages

The WeatherForecast application consists of four packages:

� itso.businessobjects
� itso.objects
� itso.dao
� itso.utils

Downloadable materials: The sample application used in this chapter is
available in the downloadable materials for this book. For information about
downloading the files, see Appendix A, “Additional material” on page 537.

The Chapter3 folder contains the following compressed (.zip) files:

� The ch03_sample_app.zip file contains the ITSO package files that are
required to create the WeatherForecast application. If you follow the
instructions in this chapter, extract these files into a temporary directory for
use in the example.

� The ch03_PIF_testapp.zip file contains a project interchange file with the
completed application. The file can be imported into Rational Application
Developer. If you want to simply reference the application discussed in this
chapter rather than build it, import this file.

“Importing project interchange files” on page 542 provides the steps to import
a project interchange file

The examples assume that a Derby database is available for use. For
information about creating this database, see “Set up the WEATHER database
(Derby)” on page 540.

Attention: In later chapters you will see these classes packaged as the
WeatherBase utility project for inclusion in sample applications.

148 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 3-1 shows the class diagram of the WeatherForecast application.

Figure 3-1 WeatherForecast application class diagram

The itso.businessobjects package
The itso.businessobjects package contains the implementations of the
WeatherForecast application that we turn into Web services:

� The IWeatherForecast interface is the service’s abstraction.
� The WeatherForecast class provides the service’s implementation.

The functionality offered by the WeatherForecast application is described by the
IWeatherForecast interface with the method signatures shown in Table 3-1.

Table 3-1 WeatherForecast application interface

Method summary

Weather getDayForecast(java.util.Calendar) Get weather information
for a specific day.

List<Weather> getForecast(java.util.Calendar, int) Get the forecast for a
specific period of time.

int[] getTemperatures(java.util.Calendar, int) Get temperatures for a
specific period of time.

void setWeather(Weather) Set a forecast for a
specific day.

<<Interface>>
IWeatherForecast

WeatherForecast

WeatherPredictor

WeatherLogger

uses

uses

implements

itso.objects

itso.utilsitso.businessobjects

Weather

uses

uses

itso.dao

WeatherDAO

 Chapter 3. The WeatherForecast sample application 149

The itso.objects package
The itso.objects package contains one class, Weather, that represents the
WeatherForecast application’s encapsulated data (with corresponding getter and
setter methods) in a Java bean:

� A String variable, windDirection, which represents the compass point from
which the wind is blowing for a particular date

� An int variable, windSpeed, which represents the wind’s speed in Km/h for a
particular date

� An int variable, temperatureCelcius, which represents the temperature in
degrees Celcius for a particular date

� A string variable, condition, which represents the general weather condition
(sunny, partly cloudy, cloudy, rainy, stormy) for a particular date

� A calendar variable, date, which represents the date of the weather forecast

� An boolean variable, dbflag, which signifies whether the forecast was
extracted from the database

The itso.dao package
The itso.dao package contains one class, WeatherDAO, which consists of all the
functionality to store and retrieve weather information from the database.

The itso.utils package
The itso.utils package contains utility classes that are used by the
WeatherForecast application:

� The WeatherLogger class sends a log message into the system console.

� The WeatherPredictor class randomly creates a weather forecast for the
current date.

getForecast() method generics: Observe that the getForecast() method
uses generics, which is a new feature in the Java 5 programming language.

150 IBM WebSphere Application Server V7.0 Web Services Guide

3.1.2 Information flow

Figure 3-2 shows the internal flow of the system information for the query
methods.

Figure 3-2 Weather forecast information flow

The internal flow follows this sequence of actions:

1. A client requests weather information from the WeatherForecast class.

2. The WeatherForecast class creates a Weather element (or elements) for the
response to the client’s weather request.

3. The WeatherForecast class queries the weather prediction from the weather
database by using WeatherDAO.

4. The WeatherDAO class populates the weather element (or elements) based
on the information present at that moment in the database.

Request
weather

information

Return the weather elements with
the weather prediction

Generate random
weather if no

information is in the
database

Populate the
database with
new weather

elements

Query the
database for

weather
prediction

Populate the
weather
elements

Create the weather
elements

Weather
Forecast1

WeatherWeatherWeatherWeatherWeather

Weather
DAO

Weather
Database

6a

3a

4

2

3 6Client

Weather
Predictor

5

7

WeatherWeatherWeatherWeather

 Chapter 3. The WeatherForecast sample application 151

5. The weather information that is not in the database is requested from
WeatherPredictor.

6. The database is populated by the queries with the new weather element (or
elements) generated by WeatherPredictor.

7. The WeatherForecast class returns the weather element (or elements) to the
client.

Figure 3-3 shows the internal flow of the system information for the load method.

Figure 3-3 Weather forecast load flow

The load flow entails the following actions:

1. A client sends weather information to the WeatherForecast bean to load the
database.

2. The WeatherForecast bean populates the database with the Weather element
by using the WeatherDAO class.

3.2 The weather database

The WeatherForecast application uses a simple database to store data for
weather forecasts. The database is implemented by using the default Derby
database that is embedded in WebSphere Application Server.

WeatherPredictor class: The WeatherPredictor class uses a random number
algorithm to populate weather information, which makes our example simple.
However, it enables us to concentrate on the important Web services aspects
instead of trying to write a sophisticated back-end application.

Send weather
information

Load the weather
prediction

into the database

Weather
Forecast1 Weather

Database

2

Client

WeatherWeatherWeatherWeather

Weather
DAO

152 IBM WebSphere Application Server V7.0 Web Services Guide

Database implementation
The weather database contains one table, ITSO.SANJOSE, which has five
columns:

WEATHERDATE DATE Date of weather prediction, primary key

CONDITION VARCHAR (20) Condition: sunny, partly cloudy, cloudy, rainy,
stormy

WINDDIR VARCHAR (20) Wind direction: N, NE, E, SE, S, SW, W, NW

WINDSPEED INTEGER Wind speed (kilometers/hour)

TEMPERATURE INTEGER Temperature (degree Celsius)

Data source
The WeatherDAO class uses a data source to connect to the weather database.
All the modules that use the WeatherForecast packages must define a data
source in the enhanced EAR or within the system resources of WebSphere
Application Server. The WeatherDAO class uses the JNDI name jdbc/weather to
look up the data source.

3.3 Testing the WeatherForecast application

In this section we create and test the WeatherForecast application by using a
Java Platform Enterprise Edition (Java EE) 5 enterprise application client that
was developed with the Rational Application Developer V7.5 integrated
development environment.

The WeatherForecast enterprise application client
In the following sections we create an application client that runs the code for the
WeatherForecast sample application.

Creating an application client project
To create an application client project in Rational Application Developer:

1. Switch to the Java EE perspective.

2. From the main menu, select File → New → Application Client Project.

3. In the New Application Client Project window:

a. For the project name, type WeatherForecast.

b. Under EAR Membership, ensure that the Add project to an EAR check
box is selected.

c. Click New.

 Chapter 3. The WeatherForecast sample application 153

d. In the New EAR Application Project window, for the project name, type
WeatherForecastEAR and click Finish.

e. Back in the New Application Project window, click Finish.

Creating a dynamic Web project
Next create an empty dynamic Web project and include it in the enterprise
application (EAR) file that you just created. By doing this, you can deploy the
enterprise application into the WebSphere Application Server V7.0 test
environment.

To create the dynamic Web project and include it in the EAR file:

1. Switch to the Java EE perspective if it is not already open.

2. From the main menu, select File → New → Dynamic Web Project.

3. In the New Dynamic Web Project window, enter the following:

a. For Project name, type WeatherForecastDummyWeb.

b. For EAR Project Name, type WeatherForecastEAR.

c. Click Finish.

4. If asked to switch perspectives, click No.

Importing the application packages
The WeatherForecast application packages must be imported in the application
client project. To import the WeatherForecast application packages:

1. Extract the ch03_sample_app.zip file from the download material into a
temporary directory.

2. Right-click appClientModule on the application client project
(WeatherForecast) and select Import.

3. Select General → File System. Click Next.

4. Browse into the directory where the download materials have been extracted.
Select the itso folder and its contents and import them.

5. Click Finish.

Note: Explicitly specify the enterprise application project that was made
for the application client project. If other enterprise application projects
are in the workspace, this might not be the default.

154 IBM WebSphere Application Server V7.0 Web Services Guide

Implementing the business logic
To implement the business logic for the WeatherForecast program:

1. Select appClientModule → (default package).

2. Double-click Main.java.

3. Write the client implementation in the main(String[] args) method of the Java
class.

Example 3-1 shows sample code for the main Java class. You can find this
code in the WeatherForecast_TestApp_snippet.txt file in the downloadable
materials that you extracted.

While you can expect errors because of unresolved type declarations, you
can ignore them.

Example 3-1 The main() method of Main.java

try {
IWeatherForecast port = new WeatherForecast();

Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.YEAR, 2006);
calendar.set(Calendar.MONTH, Calendar.JANUARY);
calendar.set(Calendar.DAY_OF_MONTH, 7);

Weather weather = port.getDayForecast(calendar);
System.out.println(weather.toString());

} catch(Exception ex) {
ex.printStackTrace();

}

4. Organize the imports by pressing Ctrl+Shift+O.

5. Save the file. All errors should be resolved.

 Chapter 3. The WeatherForecast sample application 155

Figure 3-4 shows the results.

Figure 3-4 Main.java and itso package files

Configuring a JDBC data source in the EAR file
To configure a JDBC™ data source in the enhanced EAR file:

1. Right-click the enterprise application project (WeatherForecastEAR) and
select Java EE → Open WebSphere Application Server Deployment.

2. In the enhanced EAR deployment descriptor editor that opens in the main
area, under the Data source defined in the JDBC provider selected above
section, click the Add button.

3. In the Create Data Source window, select Version 5.0 data source and
Derby JDBC Provider (XA). Click Next.

4. In the next window for the data source:

a. For name, type Weather WS Data Source.
b. For JNDI name, type jdbc/weather.
c. Click Next.

5. In the Create Resource Properties window:

a. Select the databaseName property.

b. In the Value field, type the full path of the database directory. The path
delimiter for the enhanced EAR is a forward slash (/). The path to the
WEATHER directory is /Database/WEATHER.

156 IBM WebSphere Application Server V7.0 Web Services Guide

c. Click Finish.

6. Save the enhanced EAR.

Deploying and testing the application
Start the test environment and deploy the EAR file of the application client project
into it:

1. In the Servers view, right-click the WebSphere Application Server v7.0
instance and select Start. Wait until the server has achieved a started state.

2. Right-click the server instance again and select Add and Remove Projects.

3. In the Add and Remove Projects window, select the enterprise application
that contains the application client project from the left pane. In this case, we
select WeatherForecastEAR. Click the Add button.

4. Click Finish.

5. Go back to the Servers view and see whether the server has achieved a
Synchronized status.

To run the application client project:

1. Expand appClientModule → (default package).

2. Right-click Main.java and select Run As → Run Configurations.

 Chapter 3. The WeatherForecast sample application 157

3. In the left pane of the Run Configurations window (Figure 3-5), select
WebSphere Application Server v7.0 Application Client. In the top row of
icons, select New launch configuration.

Figure 3-5 Launch configurations

4. In the right pane of the Run Configurations window:

a. In the Name field, enter a new launch configuration name. In this example,
we type WeatherForecast.

158 IBM WebSphere Application Server V7.0 Web Services Guide

b. On the Application tab (Figure 3-6):

i. Select the EAR and application client module.

ii. Ensure that the provider URL points to the bootstrap port of your test
server.

iii. Click Apply.

Figure 3-6 Application tab for launching the configuration

 Chapter 3. The WeatherForecast sample application 159

c. Click the Classpath tab (Figure 3-7), then:

i. Select User Entries.

ii. Click the Add External JARs button.

Figure 3-7 Adding the derby.jar file to the classpath

iii. Browse to the rad_root/SDP/runtimes/base_v7/derby/lib/derby.jar
directory and select the derby.jar file to add it to the classpath of the
application client project. Click Open.

iv. Click Apply.

d. Click Run. The results are displayed in the Console view (Figure 3-8)
based on the data that is retrieved from the weather database.

Figure 3-8 WeatherForecast application results

160 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 4. Developing Web services
applications

In this chapter we explain how to develop Web services applications by using
specific techniques that are common to most application development tools. We
use these techniques to create Web services that will be deployed to the
WebSphere Application Server V7.0 run time. To help illustrate the development
process, we use the WeatherForecast sample application as an example.

This chapter contains the following topics:

� “Web services development environment” on page 162
� “Server-side Web services development” on page 166
� “Developing clients for Web services” on page 189
� “EJB Web services” on page 197
� “Testing and monitoring Web services” on page 214

4

© Copyright IBM Corp. 2009. All rights reserved. 161

4.1 Web services development environment

Web services rely heavily on standards and specifications. Therefore, a suitable
development environment is essential for creating the Web-services-enabled
applications and the Web services themselves.

4.1.1 Web services development tools

An effective development environment is made up of tools and utilities that aid in
the programming tasks of the application developer. At a minimum, the
development environment should make the appropriate API available to the
developer.

Enterprise platforms for Java have included Web services as part of their API
offering since Java 2 Platform, Enterprise Edition (J2EE) V1.4. The latest
iteration of this standard, Java Platform, Enterprise Edition (Java EE) V5,
continues to support Web services with its current version. This means that any
development environment for Java EE includes support for the creation of Web
services by using the Java API for XML Web services (JAX-WS) and the Java
Specification Request (JSR) 109 V1.2 specifications.

Java Standard Edition V6
Java Standard Edition (Java SE) V6 is the specification for the core runtime
environment for Java-based platforms including Java EE V5. Java SE V6
includes the JAX-WS API and the default implementations of the command-line
tools that are used in Web services development, such as wsimport and wsgen.
Java SE V6 also includes the classes for creating endpoint publishers that allow
a Web service to run on a standalone Java Runtime Environment (JRE) without
being deployed to an application server.

WebSphere Application Server V7.0
WebSphere Application Server V7.0 is the latest version of the IBM enterprise
platform that is updated to the Java EE 5 standard, which includes the new Web
services specifications. The JAX-WS API and class definitions are available
through this runtime environment. Aside from this, WebSphere Application
Server also provides several command-line tools that are used in the
development of Web services. Such tools include wsimport, wsgen, schemagen,
and xjc.

162 IBM WebSphere Application Server V7.0 Web Services Guide

Ant
Another Neat Tool or Ant has been a long-time favorite among enterprise Java
programmers. It uses an XML file to manage an automated build process for
particularly complicated assembly tasks, such as those used in Java EE and
Web services. WebSphere Application Server has its own version of this utility
called ws_ant with additional functionalities such as module deployment, starting
and stopping of the server, and execution of administration scripts.

4.1.2 Integrated development environments and Web services

An integrated development environment (IDE) simplifies programming tasks for
application developers. An IDE plays an important role in Web services
development because of the complex XML constructs that are used by these
kinds of applications. Programming Web services is error prone and inefficient to
do manually. Using an IDE increases a developer’s productivity.

Rational Application Developer
For WebSphere Application Server V7.0, the preferred IDE for application
development is Rational Application Developer. Rational Application Developer is
built on the Eclipse software platform and features a wide array of tools that are
used for developing, assembling, and deploying applications in Java EE and Web
services.

Two variants of Rational Application Developer are available for use with
WebSphere Application Server V7.0:

� Rational Application Developer V7.5
� Rational Application Developer Assembly and Deploy

Rational Application Developer V7.5 is a full-featured IDE with a complete set of
application development tools for the Java EE environment. Rational Application
Developer Assembly and Deploy is the Java EE application assembly tool that
comes with WebSphere Application Server V7.0 and features only a minimal set
of tools.

Web services command-line tools: WebSphere Application Server V7.0 has
its own implementation of the same Web services command-line tools that the
Java SE 6 development kit provides. The artifacts that are generated by the
Java SE 6 version of these tools are generally portable across different
runtime environments. However, for seamless integration with the WebSphere
Application Server platform, use the tools that are provided with WebSphere
Application Server.

 Chapter 4. Developing Web services applications 163

Table 4-1 summarizes the fundamental differences between these variants.

Table 4-1 WebSphere Application Server V7.0 IDEs

Rational Application
Developer V7.5

Rational Application Developer
Assembly and Deploy

Primary purpose Full-featured Java EE IDE Java EE application assembly tool
for WebSphere Application Server
V7.0

Development tools Complete Java EE
development toolset

Minimal Java EE development
toolset

Web services development
tools

JAX-WS and Java API for
XML-based remote procedure
call (JAX-RPC)

JAX-RPC only

Test environment Embedded WebSphere
Application Server V7.0
test environment

External WebSphere Application
Server V7.0 installation

Development and test environment for the sample application: All
examples in this chapter use the Rational Application Developer Assembly
and Deploy tool that comes with WebSphere Application Server V7.0. (You
must have installed both prior to performing the examples.) By using this tool,
we demonstrate how most Web service IDEs operate internally. The only
exception is for the examples in 4.4, “EJB Web services” on page 197, which
use Rational Application Developer V7.5.

In practice, perform Web services development by using a full-featured IDE
such as Rational Application Developer V7.5.

164 IBM WebSphere Application Server V7.0 Web Services Guide

4.1.3 Setup for the Web services development examples

The Chapter4/ch04_app_dev.zip file contains a Files folder that has the artifacts
that we use in the development process outlined in this chapter. To follow the
instructions in this chapter, extract these files to a temporary directory for use in
the example.

The ch04_app_dev.zip archive includes the following files:

� The itso folder contains the source files for the WeatherForecast sample
application in the Java package directory structure that is used for the
bottom-up Web services development example.

� The jms_setup.py file contains the administrative script that is used to create
Java Message Services (JMS) resources for the Enterprise JavaBeans (EJB)
Web service example.

� The WeatherForecast_java_snippet.txt file contains the code that is used to
implement the business logic for the top-down Web services development
example.

� The WeatherForecast_JMS_snippet.txt file contains the code that is used to
implement the business logic for the EJB Web service example.

� The WeatherForecastService.wsdl and
WeatherForecastService_schema1.xsd files are the Web Services Description
Language (WSDL) and schema files that are used as the service definition for
the top-down Web services development example.

� The WeatherWSTest_java_snippet.txt file contains the code that is used to
implement the business logic for the thin client example.

Downloadable materials: You can find the files for building the sample
application in the ch04_app_dev.zip file of the Chapter4 folder in the
downloadable materials for this book. Each completed example in this chapter
is also available for download with this book as a project interchange file for
Rational Application Developer or Rational Application Developer Assembly
and Deploy. For information about downloading the files, see Appendix A,
“Additional material” on page 537.

The examples assume that a Derby database is available for use. For
information about creating this database, see “Set up the WEATHER database
(Derby)” on page 540.

 Chapter 4. Developing Web services applications 165

� The WeatherWSTest_JMS_snippet.txt file contains the code that is used to
implement the business logic for the asynchronous client of the EJB Web
service example.

� The WeatherWSTest_jsp_snippet.txt file contains the code that is used to
implement the business logic for the JSP™-managed client example.

4.2 Server-side Web services development

A distributed system programming model separates an application into
server-side and client-side components. The server and client components are
independent of one another and can be developed by different teams of
programmers.

Web services development follows this distributed programming paradigm. The
examples in this section show strategies in server-side Web services
development that are supported by the JAX-WS programming model.

4.2.1 Web services development from a WSDL file

Web services development can be initiated from the information from a service
definition. This information is stored in a file by using the WSDL XML format. The
WSDL file is parsed, and the information is used to construct skeleton Java code
that developers can use to write the business logic in. Making Web services in
this manner is known as top-down development. Development of Web services in
this way involves the following tasks:

1. Acquiring or creating the WSDL file
2. Generating the skeleton code (from a command line)
3. Implementing the Web service
4. Configuring the enhanced EAR file
5. Deploying the Web service
6. Testing the Web service (from an external browser)

We explain each of these tasks in the sections the follow.

Acquiring or creating the WSDL file
In practice, you can create the WSDL file by using an XML tool or you can use an
existing WSDL file. In this example we use an existing WSDL file to develop the
Web service.

166 IBM WebSphere Application Server V7.0 Web Services Guide

To create a generic project to hold the WSDL for viewing:

1. In the workspace, switch to the Java perspective.

2. Select File → New → Project.

3. Expand General and select Project. Click Next.

4. In the Project name field, type WeatherForecastProject and click Finish. A
new generic project is created and is displayed on the workspace.

5. Right-click the project in the workspace and select New → Folder.

6. In the New Folder window, for folder name, type wsdl, then click Finish. A
new folder is created under the WeatherForecastProject.

Import the existing WSDL file into the Rational Application Developer Assembly
and Deploy workspace:

1. Under WeatherForecastProject, right-click the wsdl folder and select Import.

2. In the Import window, expand General and select File System. Click Next.

3. In the next window:

a. Browse to the directory of the WSDL and schema files (included with the
ch04_app_dev.zip archive).

b. Select the WeatherForecastService.wsdl and
WeatherForecastService_schema1.xsd files.

c. Click Finish.

Note: In this example, Rational Application Developer Assembly and Deploy is
used to merely view the contents of the WSDL file using its WSDL editor. If
you choose to forego this step, proceed to “Generating the skeleton code
(from a command line)” on page 171.

 Chapter 4. Developing Web services applications 167

View the imported files by using the WSDL editor:

1. Double-click the WeatherForecastService.wsdl file.

2. In the WSDL editor that opens in the main area (Figure 4-1), in the upper right
corner, click View and select Advanced. The advanced view mode of the
WSDL editor shows the parts of the WSDL in native XML notation as
opposed to a functional notation in the simplified view mode.

Figure 4-1 WSDL editor

Usually, when XML is involved in any application development undertaking,
such as in Web services, it is preferable to use a tool to craft or modify the file.
Using such a tool reduces the errors that are encountered in dealing with the
usually complex XML structures such as WSDL files.

The WSDL editor tool is available in both Rational Application Developer
Assembly and Deploy and in Rational Application Developer V7.5. You can
use it to create a new WSDL file or to view or modify an existing one.

Click the arrow link to the right of the getDayForecast variable in the WSDL
editor.

The schema editor opens and shows the mapping between the WSDL part
with the data type in the XML Schema Definition (XSD) file (Figure 4-2). If the

168 IBM WebSphere Application Server V7.0 Web Services Guide

style attribute has a value of document in the binding section of the WSDL, the
WSDL data types are defined in a separate schema (XSD) document. This
schema document is specified in an import element in the WSDL. The Web
services tools access the XSD file when the WSDL is parsed. Therefore,
always keep the WSDL and XSD together.

Figure 4-2 Schema editor

 Chapter 4. Developing Web services applications 169

3. Return to the WSDL editor and click a graphic area on the WSDL. Click the
Properties view (Figure 4-3) to see the values from the selected area. If the
Properties view is not present, switch to the Java EE perspective.

Figure 4-3 Properties view

170 IBM WebSphere Application Server V7.0 Web Services Guide

Generating the skeleton code (from a command line)
For the top-down development strategy, wsimport is used to generate the
skeleton code from which to build the Web service implementation. Figure 4-4
shows a graphic view of how wsimport fits into the process and the components
it generates.

Figure 4-4 wsimport process

To generate the skeleton code for the Web service by using the WSDL file:

1. Open a console window and navigate to WAS_HOME/bin.

2. Type the setupCmdLine command to set up the environment variable
WAS_PATH.

3. On a command line, enter the following command to set the path:

set PATH=%PATH%;%WAS_PATH%

wsimport steps: In Rational Application Developer V7.5, the steps for using
wsimport are incorporated into the Web service Wizard that automates most
of the Web services development steps. For most of the examples in this
chapter we perform the wsimport steps from the command line because the
Web service wizard is not included in Rational Application Developer
Assembly and Deploy. However, the examples in 4.4, “EJB Web services” on
page 197, use of this tool because it uses Rational Application Developer
V7.5.

Service
Client

Service
Endpoint
Interface

(SEI)

JAXB
Beans

Operation
Wrappers

wsimportWSDL

 Chapter 4. Developing Web services applications 171

4. Change to the directory of the WSDL (WeatherForecastService.wsdl) and
schema (WeatherForecastService_schema1.xsd) files. These files are
included with the ch04_app_dev.zip file.

5. On a command line, enter the wsimport command as follows on the WSDL
file:

wsimport -verbose -keep WeatherForecastService.wsdl

The following options are used:

– The verbose option provides a trace output of the operations being
performed by the command

– The keep option retains the *.java source files that are generated by the
command.

The wsimport command generates the several artifacts in an
itso.businessobjects package (Figure 4-5). These files (in the itso folder) are
generated in the same location as the WSDL file.

Figure 4-5 The wsimport generated artifacts

The following artifacts are generated:

� The service endpoint interface (SEI) provides the interface definition for the
Web service implementation

� The service client is used in client programs.

172 IBM WebSphere Application Server V7.0 Web Services Guide

� The request and response wrappers encapsulate the operations that are
defined in the WSDL file. Each operation specified in the WSDL has a
operation_name.java and operation_nameResponse.java file generated for it.

� The complex data types that are defined in the WSDL have representations of
their own.

� Exceptions are specified for the faults defined for each operation defined in
the WSDL.

� An ObjectFactory is used for Java API for XML Binding (JAXB) purposes.

� A package-info encapsulates the Java package format that is derived from the
WSDL namespace.

Implementing the Web service
After the skeleton code is generated by using wsimport, you must write the
business logic of the Web service to a Java class known as the service
implementation bean (SIB).

To create a Dynamic Web Project for the Web service:

1. In Rational Application Developer Assembly and Deploy, switch to the Java
EE perspective if it is not already open.

2. Select File → New → Dynamic Web Project.

3. In the New Dynamic Web Project window, for project name, type
WeatherForecastWS, and for EAR project name, type WeatherForecastWSEAR.
Click Finish.

4. If prompted to switch perspectives, click No.

Import the wsimport generated artifacts (in the itso folder) into the Dynamic Web
Project:

1. Expand Java Resources on the Dynamic Web Project (WeatherForecastWS).
Right-click src and select Import.

2. Expand General and select File System. Then click Next.

3. In the File system window (Figure 4-6 on page 174):

a. Click Browse and go to the directory of the files created by wsimport (the
itso package).

b. Import the itso package created by wsimport.

itso package contents: The contents of the itso package generated by
wsimport are different from the those in the ch04_app_dev.zip file. The
package name was derived by wsimport from the WSDL file.

 Chapter 4. Developing Web services applications 173

c. Click the Filter Types button to import only the *.java source files.

d. Click Finish.

Figure 4-6 Importing the files that are generated by the wsimport tool

174 IBM WebSphere Application Server V7.0 Web Services Guide

Create the SIB Java class that will implement the Web service business logic:

1. Right-click the imported package itso.businessobjects and select New →
Class.

2. In the New Java Class wizard (Figure 4-7):

a. In the Name field, type WeatherForecast.

b. Next to the Interfaces section, click Add and select the WeatherForecast
SEI class as the implemented interface.

Figure 4-7 Creating a new Java class

 Chapter 4. Developing Web services applications 175

c. Click Finish.

In JAX-WS, it is not necessary for the SIB Java class to implement the
interface type of the SEI. Only the annotation attribute in the SIB source code
must refer to the SEI by name. However, for Java style purposes, this example
has the SIB Java class implement the SEI Java interface.

The Java editor opens in the main area of Rational Application Developer
Assembly and Deploy.

3. In the SIB class’s source code (WeatherForecast.java), add the @WebService
annotation with the endpointInterface attribute set to the SEI class name,
itso.businessobjects.IWeatherForecast. Place this before the class
declaration (Figure 4-8).

Figure 4-8 SIB annotation

4. Organize imports by pressing Ctrl+Shift+O.

5. Write business logic into the getDayForecast() method of the SIB class
(WeatherForecast.java).

Example 4-1 shows the code for the getDayForecast() operation of the
WeatherForecast SIB. You can also find this code in the
WeatherForecast_java_snippet.txt file in the ch04_app_dev.zip archive file.
This code fragment uses Java Database Connectivity (JDBC) to look up and
return data from the weather database by using a given a date. Notice that
JAX-WS tools use the XMLGregorianCalendar for XML representations of
dateTime.

Example 4-1 The getDayForecast() method of WeatherForecast.java

public Weather getDayForecast(XMLGregorianCalendar arg0)
throws Exception_Exception {
Connection con = null;

The getDayForecast() method: For this example, the getDayForecast()
method is the only one required to be implemented. The following service
methods of WeatherForecast.java are optional for implementation per the
user’s discretion.

� getForecast()
� getTemperatures()
� setWeather()

176 IBM WebSphere Application Server V7.0 Web Services Guide

PreparedStatement pm = null;
Weather result = null;

try{
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/weather");

con = ds.getConnection();
pm = con.prepareStatement(

"SELECT * FROM ITSO.SANJOSE WHERE WEATHERDATE = ?");
Date sqlDate =

new
Date(arg0.toGregorianCalendar().getTime().getTime());

pm.setDate(1, sqlDate);
ResultSet rs = pm.executeQuery();
while (rs.next()) {

GregorianCalendar cal = new GregorianCalendar();
cal.setTime(rs.getDate("WEATHERDATE"));

XMLGregorianCalendar xmlCal =
DatatypeFactory.newInstance().

newXMLGregorianCalendar(cal);

result = new Weather();
result.setDate(xmlCal);
result.setCondition(rs.getString("CONDITION"));
result.setTemperatureCelsius(rs.getInt("TEMPERATURE"));
result.setWindDirection(rs.getString("WINDDIR"));
result.setWindSpeed(rs.getInt("WINDSPEED"));
result.setDbflag(true);

}
} catch (NamingException nmex) {

nmex.printStackTrace(System.err);
} catch (SQLException e) {

e.printStackTrace(System.err);
result = null;

} catch (DatatypeConfigurationException dtypconfex) {
dtypconfex.printStackTrace(System.err);

} finally {
try {

if (pm != null)
pm.close();

if (con != null)
con.close();

} catch (SQLException ex) {

 Chapter 4. Developing Web services applications 177

ex.printStackTrace(System.err);
}

}
return result;

}

6. Organize imports by pressing Ctrl+Shift+O.

For the code shown in Example 4-1 on page 176, choose the following
classes to resolve the import declarations:

– javax.sql.ResultSet
– javax.sql.DataSource
– javax.xml.datatype.DatatypeFactory
– java.sql.Date
– java.sql.Connection

7. Save the file. All errors should be resolved.

Configuring the enhanced EAR file
The WebSphere Application Server uses a proprietary set of configuration data
to supplement the information stored in the standard Java EE deployment
descriptor. This is known as the enhanced enterprise archive (EAR) feature,
which includes configuration information for JDBC providers and data sources.

To configure the JDBC data source in the enhanced EAR file:

1. Right-click the Enterprise Application Project (WeatherForecastWSEAR)
and select Java EE → Open WebSphere Application Server Deployment.

2. In the enhanced EAR deployment descriptor editor that opens in the main
area, in the Data source defined in the JDBC provider selected above section,
click the Add button.

3. In the Create Data Source window, select Derby JDBC Provider (XA) and
click Next.

4. In the next window, for the data source, in the Name field type Weather WS
Data Source, and in the JNDI name field type jdbc. Click Next.

5. In the Create Resource Properties window:

a. Select the databaseName property.

b. In the Value field, enter the full path of the database directory. Note that
the path delimiter for the enhanced EAR is a forward slash (/).

Note: If the weather database is set up as explained in “Set up the
WEATHER database (Derby)” on page 540, the value for this filed
should be C:/Database/WEATHER.

178 IBM WebSphere Application Server V7.0 Web Services Guide

c. Click Finish.

6. Close and save the enhanced EAR file.

Deploying the Web service
Rational Application Developer Assembly and Deploy uses an external
WebSphere Application Server V7.0 installation as an attached test environment.
in this section we explain how to set up a WebSphere Application Server V7.0
server definition inside Rational Application Developer Assembly and Deploy.

Create a server definition for a WebSphere Application Server V7.0 installation:

1. In Rational Application Developer Assembly and Deploy, switch to the Java
EE perspective if it is not already open.

2. In the Servers view, right-click the empty space and select New → Server.

Note: As mentioned in the beginning of this chapter, WebSphere Application
Server V7.0 must be installed for these examples so that a server definition
can be created for it in Rational Application Developer Assembly and Deploy.
The server definition that we create in this section is used in all examples in
this chapter, except in 4.4, “EJB Web services” on page 197, which uses the
embedded test environment of Rational Application Developer V7.5.

 Chapter 4. Developing Web services applications 179

3. In the New Server window (Figure 4-9), for Select the server type, select
WebSphere Application Server v7.0. Next to the Server runtime
environment section, click the Add link.

Figure 4-9 New Server window

4. In the New Server Runtime Environment window, under the Installation
directory, browse to the WAS_HOME directory. Click Finish.

5. Back in the New Server window, click Next.

180 IBM WebSphere Application Server V7.0 Web Services Guide

6. As shown in Figure 4-10, if Security is enabled on this server is selected,
enter the user ID and password. You can test the settings by clicking the Test
Connection link. Click Finish.

Figure 4-10 Entering the server credentials

A new server definition for WebSphere Application Server V7.0 is created in the
Servers view.

To deploy the Web service to the attached WebSphere Application Server V7.0:

1. In the Servers view, right-click the WebSphere Application Server v7.0 at
localhost server definition and select Start.

If not previously present, the Console view is displayed, and the WebSphere
Application Server V7.0 startup trace commences.

2. In the Console view (Figure 4-11), wait for the line reads Server server1
open for e-business to display. In the Servers view, wait for the state heading
for the server to read Started.

Figure 4-11 Server started

3. In the Servers view, right-click the server definition and select Add and
Remove Projects.

 Chapter 4. Developing Web services applications 181

4. In the Add and Remove Projects window:

a. Select the Enterprise Application Project to be deployed
(WeatherForecastWSEAR).

b. Click the Add button and wait for the project to be displayed under
Configured projects.

c. Click Finish.

5. In the Servers view, right-click the server definition and select Publish. Wait
for the status heading in the Servers view to read Synchronized. At this stage,
the Web service is deployed.

Testing the Web service (from an external browser)
A simple way to test a deployed Web service is to exploit the fact that it must
expose its WSDL interface for clients. You can access the exposed WSDL by
using a Web browser, which is convenient because a client application is not
required to perform this test.

To test the ability to access the deployed Web service’s WSDL file by using a
browser, open a browser and enter the following URL:

http://localhost:9080/WeatherForecastWS/WeatherForecastService?wsdl

182 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 4-12 shows the WSDL of the Web service. When the request is sent, the
URL on the address bar of the browser changes to a direct access URL, for
example, ../WeatherForecastService.wsdl.

Figure 4-12 Accessing the Web service WSDL

4.2.2 Web services development from an existing Java bean

Web services development can also begin with business logic that is already in a
Java bean, or in this case, with a working Java application in a package. A
minimal amount of code made through Java annotations is inserted into the
bean, after which the bean is introspected and the Web service interface is
derived.

Alternative: You can also test deployed Web services by using the Web
Services Explorer, which we explain in 4.5.1, “The Web Services Explorer” on
page 214.

 Chapter 4. Developing Web services applications 183

This strategy for creating Web services is known as bottom-up development.
Development of a Web service by using this strategy involves the following tasks:

1. Annotating the Java bean (from a text editor)
2. Generating the Web service interface (from a command line)
3. Completing the Web service implementation
4. Configuring the enhanced EAR file
5. Deploying and testing the Web service (from an external browser)

We explain each of these tasks in the sections the follow.

Annotating the Java bean (from a text editor)
Before a Web service interface can be generated, you must annotate the existing
Java bean. In this example, the Java bean that is being used implements an
interface, which must also be annotated.

Annotate the existing Java bean’s interface as the Web service’s SEI:

1. Open the IWeatherForecast.java SEI in any text editor. This file is in the
/itso/businessobjects directory of the ch04_app_dev.zip file.

2. Add the @WebService annotation and the appropriate import statement to the
interface (Figure 4-13).

Figure 4-13 Annotating the interface class

3. Save and close the file.

184 IBM WebSphere Application Server V7.0 Web Services Guide

To annotate the existing Java bean as the Web service’s SIB:

1. Open the WeatherForecast.java SIB class in any text editor. This file is in the
/itso/businessobjects directory of the ch04_app_dev.zip file.

2. Add the @WebService annotation with SEI class name,
itso.businessobjects.IWeatherForecast, that is specified in the
endpointInterface attribute. Also add the appropriate import statement
(Figure 4-14).

Figure 4-14 Annotating the Java bean

3. Save and close the file.

Generating the Web service interface (from a command line)
You must now compile the annotated Java bean and its accompanying classes
and run them through the wsgen command to generate the service interface.
Figure 4-15 illustrates where the wsgen tool fits in this task.

Figure 4-15 The role of the wsgen tool for generating the Web service interface

wsgen

WSDLJAXB
Beans

Service
Endpoint
Interface

Service
Impl

Operation
Wrappers

*

*

 Chapter 4. Developing Web services applications 185

To generate the Web service’s interface artifacts from a Java bean:

1. Open a console window and navigate to WAS_HOME/bin.

2. On a command line, enter the setupCmdLine command to set up the
environment variable WAS_PATH.

3. On a command line, enter the following command to set the path:

set PATH=%PATH%;%WAS_PATH%

4. Navigate to the directory of the itso folder. This folder is in the
ch04_app_dev.zip file and where the annotated Java classes are (“Annotating
the Java bean (from a text editor)” on page 184).

5. On a command line, enter the following command to compile the annotated
Java bean in its package directory:

javac ./itso/businessobjects/*.java

6. On a command line, enter the wsgen command on the compiled classes:

wsgen -verbose -keep -wsdl -cp .
itso.businessobjects.WeatherForecast

The options used are summarized as follows:

– The verbose option provides a trace output of the operations that are
being performed by the command.

– The keep option retains the *.java source files that are generated by the
command.

– The wsdl option generates a WSDL file from the service implementation.

– The cp option specifies the Java class path for this command to use.

wsgen steps and the Web service wizard: In Rational Application Developer
V7.5, the wsgen steps are incorporated into the Web service wizard, which
automates most of the Web services development steps. For most of the
examples in this chapter, we perform the wsgen steps from a command line
because the Web service wizard is not included in Rational Application
Developer Assembly and Deploy. However, the examples in 4.4, “EJB Web
services” on page 197, use this tool because it uses Rational Application
Developer V7.5.

186 IBM WebSphere Application Server V7.0 Web Services Guide

The wsgen command generates the same artifacts as the wsimport command.
Such artifacts include the request/response wrappers and complex type
implementations. Figure 4-16 shows a list of these artifacts. The difference is that
the SEI and SIB are already present before the command was run on the
annotated Java bean. If the -wsdl option was specified, a WSDL file is also
derived from the Java bean.

Figure 4-16 The wsgen generated artifacts

Completing the Web service implementation
Before proceeding, undeploy and delete the previous Web service projects (see
4.2.1, “Web services development from a WSDL file” on page 166) from the

 Chapter 4. Developing Web services applications 187

Rational Application Developer Assembly and Deploy workspace to avoid
conflicts:

1. In the Servers view, right-click the server definition and select Add and
Remove Projects.

2. In the Add and Remove Projects window, select the Enterprise Application
Project to be removed (WeatherForecastWSEAR). Click the Remove button
and wait for the project to be displayed under Available projects. Click Finish.

3. In the Servers view, right-click the server definition and select Publish. Wait
for the status heading in the Servers view to read Synchronized.

4. In the Servers view, right-click the server definition and select Stop. Wait for
the state heading in the Servers view for the server to read Stopped.

5. Press Ctrl and select the WeatherForecastWS and
WeatherForecastWSEAR projects, right-click, and select Delete.

6. In the Delete Resources dialog box, select Delete project contents on disk
and click OK.

Import the generated artifacts into a Dynamic Web Project in Rational Application
Developer Assembly and Deploy and assemble into an EAR file.

Create a Dynamic Web Project for the Web service:

1. In Rational Application Developer Assembly and Deploy, switch to the Java
EE perspective if it is not already open.

2. Select File → New → Dynamic Web Project.

3. In the New Dynamic Web Project window, for project name type
WeatherForecastWS, and for EAR project name type WeatherForecastWSEAR.
Click Finish.

4. If prompted to switch perspectives, click No.

Import the wsgen artifacts (including the annotated Java bean) into the Dynamic
Web Project:

1. Expand Java Resources in the Dynamic Web Project (WeatherForecastWS).
Right-click src and select Import.

2. Expand General and select File System. Then click Next.

3. In the File system window:

a. Click Browse and go to the directory of the itso folder (with the annotated
Java bean and the artifacts created by wsgen).

b. Import the itso folder created by wsimport.

188 IBM WebSphere Application Server V7.0 Web Services Guide

c. Click the Filter Types button to import only the *.java source files.

d. Click Finish.

Configuring the enhanced EAR file
After assembling the Web service into an enterprise application, the JDBC data
source settings are configured by using the enhanced EAR file. The following
steps are the same as in the top-down approach example in 4.2.1, “Web services
development from a WSDL file” on page 166.

1. Use the WebSphere Application Server Deployment editor to configure the
enhanced EAR file.

2. Configure a JDBC data source for the Derby database.

3. Save the enhanced EAR file.

Deploying and testing the Web service (from an
external browser)
Assuming that you created the server definition as explained in “Deploying the
Web service” on page 179, after the EAR is properly configured, deploy it to the
attached WebSphere Application Server V7.0:

1. Deploy the EAR file to the attached WebSphere Application Server V7.0
instance (see “Deploying the Web service” on page 179).

2. Test the Web service by accessing its WSDL file from a browser (see “Testing
the Web service (from an external browser)” on page 182).

4.3 Developing clients for Web services

In the next series of examples we show techniques for client-side Web services
development. Now that the server-side component is in place, the client
programs can be created to access the Web service.

4.3.1 Creating a managed Web service client

In this example we develop a managed client to access a Web service. A
managed client is an application that resides in the same server run time as the
server-side Web service.

Development of a managed Web service client involves the following tasks:

1. Generating the client skeleton code (from a command line)
2. Writing the client application
3. Deploying and running the client application

 Chapter 4. Developing Web services applications 189

We explain each of these tasks in the sections the follow.

Generating the client skeleton code (from a command line)
When we used wsimport in the top-down example in 4.2.1, “Web services
development from a WSDL file” on page 166, a service client class
(WeatherForecastService.java) was generated along with the other artifacts (see
Figure 4-5 on page 172). This service client was ignored in that example. Now
the service client is the crucial piece in the development of the client application.

By using the WSDL (WeatherForecastService.wsdl) and schema
(WeatherForecastService_schema1.xsd) files from the ch04_app_dev.zip file,
follow the same steps in “Generating the skeleton code (from a command line)”
on page 171.

Writing the client application
Before writing the client application, a working WeatherForecastWSEAR project
must be deployed in the attached WebSphere Application Server V7.0 in
Rational Application Developer Assembly and Deploy. This project can come
from either 4.2.1, “Web services development from a WSDL file” on page 166, or
4.2.2, “Web services development from an existing Java bean” on page 183.
Follow the instructions in “Deploying the Web service” on page 179 to deploy the
project to the defined server.

In this section, the service client is used in a simple JavaServer™ Pages (JSP)
page (acting as a managed client) that is deployed in a Web application. Create a
Dynamic Web Project for the Web service client:

1. In Rational Application Developer Assembly and Deploy, switch to the Java
EE perspective if it is not already open.

2. Select File → New → Dynamic Web Project.

3. In the New Dynamic Web Project window, for project name type
WeatherForecastWebClient, and for EAR project name type
WeatherForecastWebClientEAR. Click Finish.

4. If prompted to switch perspectives, click No.

WSDL: In an actual development scenario, the WSDL that is used to generate
the client comes from the Web service provider. Usage of this WSDL ensures
that the Web service contract, as specified in the WSDL, is fulfilled in the
client-side application.

190 IBM WebSphere Application Server V7.0 Web Services Guide

Import the wsimport-generated artifacts (itso folder) into the Dynamic Web
Project:

1. Expand Java Resources in the Dynamic Web Project
(WeatherForecastWebClient). Right-click src and select Import.

2. Expand General and select File System. Then click Next.

3. In the File system window:

a. Click Browse and go to the directory of the files created by wsimport (the
itso package).

b. Import the itso package created by wsimport.

c. Click the Filter Types button to import only the *.java source files.

d. Click Finish.

Modify the URLs in the service client Java class to reference the Web service
WSDL:

1. In the imported package under Java Resources → src, double-click the
WeatherForecastService.java service client to open it in the Java editor.

2. Modify the client code to correct the value of the WSDL URLs, as shown in
Figure 4-17. The URL for the example looks like this:

http://localhost:9080/WeatherForecastWS/WeatherForecastService?wsdl

Figure 4-17 Modifying the service client

URL to access the WSDL: This URL is the same one that is used to
access the WSDL from a browser in “Testing the Web service (from an
external browser)” on page 182.

 Chapter 4. Developing Web services applications 191

3. Save the WeatherForecastService.java service client.

Create a client JSP in the Dynamic Web Project:

1. In the Rational Application Developer Assembly and Deploy workspace,
under WeatherForecastWebClient, right-click Web Content and select
New → Other.

2. In the Select a Wizard window, expand Web and select JSP. If the JSP option
is not available, select the Show All Wizards box at the bottom of the window.
Click Next.

3. In the JavaServer Page window, for the parent folder select WebContent and
for the file name type WeatherWSTest.jsp. Click Finish.

4. Write the client implementation on the JSP.

Example 4-2 shows the code for the JSP of the client Web application. This
code is also written in the WeatherWSTest_jsp_snippet.txt file that is
included with the ch04_app_dev.zip file as part of the additional materials for
this book. (See Appendix A, “Additional material” on page 537.)

The crucial section here lies in the scriptlet, which is the area delimited by
<%...%>. The service client, WeatherForecastService, is used to obtain an
instance of IWeatherForecast by using the getWeatherForecastPort() method.
From this instance, the operations of the Web service, such as
getDayForecast(), are invoked.

Example 4-2 The WeatherWSTest.jsp file

<%@ page language="java"
 contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

<%@page import="itso.businessobjects.WeatherForecastService"%>
<%@page import="itso.businessobjects.IWeatherForecast"%>
<%@page import="itso.businessobjects.Weather"%>
<%@page import="javax.xml.datatype.DatatypeFactory"%>
<%@page import="java.util.GregorianCalendar"%><html>

<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-1">
<title>Weather Web service Test</title>
</head>

<body>

192 IBM WebSphere Application Server V7.0 Web Services Guide

<%
 WeatherForecastService service =
 new WeatherForecastService();
 IWeatherForecast port = service.getWeatherForecastPort();

 Weather weather = port.getDayForecast(
 DatatypeFactory.newInstance().newXMLGregorianCalendar(
 "2006-01-07T00:00:00"));

 out.print("The weather is " +
 weather.getCondition() + " ");

 out.print("with temperature at " +
 weather.getTemperatureCelsius() + " deg. C ");

 out.print("and winds gusting at " +
 weather.getWindSpeed() + " MPH ");

 out.println("from a direction of " +
 weather.getWindDirection() + ".");
%>
</body>
</html>

5. Save the file.

Deploying and running the client application
After the EAR file is properly configured, deploy it to the attached WebSphere
Application Server V7.0. To deploy the file, the server definition must already be
properly created, as explained in “Deploying the Web service” on page 179.

1. In Rational Application Developer Assembly and Deploy, in the Servers view,
right-click the WebSphere Application Server v7.0 at localhost server
definition and select Start. Wait for the server to indicate that it is started.

2. In the Servers view, right-click the server definition and select Add and
Remove Projects.

3. In the Add and Remove Projects window, select the Enterprise Application
Project to be deployed (WeatherForecastWebClientEAR). Click the Add
button and wait for the project to be displayed under Configured projects.
Click Finish and wait for the server to indicate that it is synchronized.

4. Under WeatherForecastWebClient → WebContent, right-click
WeatherWSTest.jsp and select Run As → Run on Server.

 Chapter 4. Developing Web services applications 193

5. In the Run On Server window, highlight WebSphere Application Server v7.0
at localhost and click Finish. The embedded Web browser of Rational
Application Developer Assembly and Deploy is displayed with the results
(Figure 4-18).

Figure 4-18 Client Web application results

4.3.2 Creating a Web service thin client

WebSphere Application Server V7.0 provides a way by which Web services can
be invoked by clients that are not on the same server run time. This application
model is known as an unmanaged client.

Development of a Web service thin (unmanaged) client involves the following
tasks:

1. Generating the skeleton code (from a command line)
2. Writing the client application
3. Running the client application

We explain each of these tasks in the sections that follow.

Generating the skeleton code (from a command line)
As in the client example from 4.3.1, “Creating a managed Web service client” on
page 189, use the wsimport command to generate the artifacts that are required
to develop the client application.

By using the WSDL (WeatherForecastService.wsdl) and schema
(WeatherForecastService_schema1.xsd) files from the ch04_app_dev.zip, follow
the same steps in “Generating the skeleton code (from a command line)” on
page 171.

Writing the client application
Before you write the client application, ensure that a working
WeatherForecastWSEAR project is deployed in the attached WebSphere
Application Server V7.0 in Rational Application Developer Assembly and Deploy.
This project can come from either 4.2.1, “Web services development from a

194 IBM WebSphere Application Server V7.0 Web Services Guide

WSDL file” on page 166, or 4.2.2, “Web services development from an existing
Java bean” on page 183. Use the instructions in “Deploying the Web service” on
page 179 to deploy the project to the defined server.

In this example, we use a standalone Java application as a client. The
programming logic is the same. The only major difference is the presence of a
JAR class library that is included in the client application.

Create a Java project for the thin client application:

1. In Rational Application Developer Assembly and Deploy, switch to the Java
perspective.

2. Select File → New → Project.

3. In the Select a Wizard window, expand Java and select Java Project. Click
Next.

4. In the Create a Java Project window, for project name type
WeatherForecastThinClient. Click Next.

5. In the Java Settings window, click the Libraries tab. Click the Add External
JARs button.

6. Navigate to the runtimes folder of was_home, which is the WebSphere
Application Server directory. Select com.ibm.jaxws.thinclient_7.0.0.jar and
click Open. The JAR file is displayed in the list of referenced libraries.

7. Back in the Java Settings window, click Finish.

Modify the WSDL URLs in the service client Java class:

1. Under Java Resources → src, in the imported package
(itso.businessobjects), double-click the WeatherForecastService.java
service client to open it in the Java editor.

2. Modify the code to use the correct WSDL URLs. The URL for the example
looks like this:

http://localhost:9080/WeatherForecastWS/WeatherForecastService?wsdl

This is the same step as in “Writing the client application” on page 190. See
Figure 4-17 on page 191 for details.

3. Save the service client Java class.

Note: The com.ibm.jaxws.thinclient_7.0.0.jar file enables a client
application to act as an unmanaged client.

 Chapter 4. Developing Web services applications 195

Create the client Java program:

1. Under WeatherForecastThinClient, right-click src and select New → Class.

2. In the New Java Class wizard:

a. In the Name field, type WeatherWSTest.

b. Under Which method stubs would you like to create?:

i. Select public static void main(String[] args) to let the wizard
generate a main() method for this Java class.

ii. Clear Inherited abstract methods to declutter the generated code of
other methods that are not needed for this example.

c. Click Finish.

3. Write the client implementation in the main(String[] args) method of the Java
class.

The code in Example 4-3 is for the main method of the Java class of the thin
client application. The code is also in the WeatherWSTest_java_snippet.txt
file that is included with the ch04_app_dev.zip file.

The program logic is the same as in the JSP file of the previous client
example. That is, the Web service’s operations are invoked through the
service client class, WeatherForecastService.

Example 4-3 The main(String[] args) method of WeatherWSTest.java

public static void main(String[] args) {
try {

WeatherForecastService service = new
WeatherForecastService();

IWeatherForecast port = service.getWeatherForecastPort();

Weather weather = port.getDayForecast(
DatatypeFactory.newInstance().newXMLGregorianCalendar(

"2006-01-07T00:00:00"));

System.out.print("The weather is " +
weather.getCondition() + " ");

System.out.print("with temperature at " +
weather.getTemperatureCelsius() + " deg. C ");

System.out.print("and winds gusting at " +
weather.getWindSpeed() + " MPH ");

System.out.println("from a direction of " +
weather.getWindDirection() + ".");

} catch(Exception_Exception ex_ex) {
ex_ex.printStackTrace();

196 IBM WebSphere Application Server V7.0 Web Services Guide

} catch(DatatypeConfigurationException dtypeconfex) {
dtypeconfex.printStackTrace();

}
}

4. Organize the imports by pressing Ctrl+Shift+O.

5. Save the file. All errors should be resolved.

Running the client application
With the client implemented, the application can be run from any Java run time.
To run the thin client Java application, right-click the main Java class
(WeatherWSTest.java) and select Run As → Java Application. The results are
displayed in the Console view (Figure 4-19) based on the data that is retrieved
from the weather database.

Figure 4-19 Client Java application results

4.4 EJB Web services

EJBs are Java EE 5 components that encapsulate business logic and have the
capability of being deployed for distributed system architectures. EJBs have a
distributed application execution model that is similar to Web services minus the
XML-based protocols. In fact, for the JAX-WS programming model, a particular
kind of EJB, the session bean, can be used to create Web services.

A distinct advantage of using an EJB implementation is the ability to use the JMS
as the Web service transport. In an HTTP transport, the client blocks when the
service request is sent and waits until the response is received. In a JMS
transport, control is given back to the client when the request is sent to a queue.
Therefore, the client is able to continue operation. The response is sent to
another queue to hold the message until the client can retrieve it. JMS provides

Resulting values: The values of the result are the same as the managed client
example in 4.3.1, “Creating a managed Web service client” on page 189,
because the same parameter is used to invoke the Web service operation.

 Chapter 4. Developing Web services applications 197

Web services a true asynchronous invocation mechanism, as illustrated in
Figure 4-20.

Figure 4-20 JMS EJB Web service transport

4.4.1 Creating an EJB Web service

In the example in this section we use a top-down approach to develop an EJB
Web service. We use a WSDL file to start the process, similar to what we did in
an earlier example. The difference is that the Web service wizard of Rational
Application Developer is used for the development effort and the resulting Web
service uses an EJB with a JMS transport.

Development of an EJB Web service involves the following tasks:

1. Setting up the JMS resources
2. Running the Web service wizard
3. Implementing the EJB Web service
4. Configuring the enhanced EAR file

We explain each of these tasks in the sections that follow.

Setting up the JMS resources
Because the EJB that is being developed uses JMS, you must set up the
appropriate JMS resources in the WebSphere Application Server to provide this
capability. To do this, you can use an administrative script.

The WebSphere Application Server has the ability to configure resources by
using a Jython language script through a facility called wsadmin. Rational

Note: This example uses the full version of Rational Application Developer
V7.5 with the complete set of development tools. These tools include the Web
service wizard that automates most of the development processes seen in
earlier examples in this chapter.

EJB
JAX-WS
Service

JAX-WS
Runtime

Request
Queue

Reply
Queue

198 IBM WebSphere Application Server V7.0 Web Services Guide

Application Developer has the ability to edit, debug, and run Jython scripts for
wsadmin.

Create a Jython project for the administrative script and WSDL:

1. In the Rational Application Developer, right-click the WebSphere Application
Server v7.0 instance in the Servers view and select Start. Wait until the
server has achieved a started state.

2. Select File → New → Other.

3. Expand Jython and select Jython Project. Click Next.

4. For project name, type WeatherForecastSetup. Click Finish.

Import the administrative script and WSDL into the Jython project:

1. Right-click the Jython Project and select Import.

2. In the Import window, select General → File System. Click Next.

3. Browse for the directory of the administrative script (jms_setup.py), WSDL
(WeatherForecastService.wsdl), and schema
(WeatherForecastService_schema1.xsd) files. Import the files. Click Finish.

Run the administrative script:

1. Right-click the administrative script (*.py file) and select Run As →
Administrative Script.

2. In the Edit Configuration window, in which you indicate the run time that the
script will use, for scripting run time:

a. Use the selector to choose WebSphere Application Server v7.0.
b. Use the selector to choose a WebSphere profile.
c. Click Run.

Test environment: Rational Application Developer V7.5 includes the
WebSphere Application Server V7.0 test environment, which is embedded into
the IDE. This example uses the test environment as the development run time.

 Chapter 4. Developing Web services applications 199

The administrative script runs, and the results are displayed in the Console
view (Figure 4-21).

Figure 4-21 Administrative script results

3. In the Servers view, right-click the server and select Restart.

Restarting the server finalizes the configurations that the script performed on
the messaging resources.

Running the Web service wizard
As mentioned earlier, this example uses the top-down approach, which is similar
to the example in 4.2.1, “Web services development from a WSDL file” on
page 166. However, this time we use the Web service wizard of Rational
Application Developer V7.5. This tool automates most of the Web services
development process and is less error prone than manually using wsimport or
wsgen.

Similar to previous example, a WSDL is required to begin the process and
provide a service interface. A WSDL gives a location attribute for the
<soap:address> element. The value for this attribute is a URL. The specified
protocol (HTTP or JMS) determines the transport that is used for the Web
service. This becomes relevant later in the process.

Note: The sample script jms_setup.py creates the following JMS
resources that are needed for the JMS Web service:

� Request queue (JNDI name: jms/Weather_Request_Q)
� Connection factory (JNDI name: jms/Weather_CF)
� ActivationSpec (JNDI name: eis/Weather_ActivationSpec)

200 IBM WebSphere Application Server V7.0 Web Services Guide

To initiate the Web service Wizard and configure server-side and client-side
properties:

1. Right-click the WSDL file and select Web services → Generate Java bean
skeleton.

2. In the Web service wizard (Figure 4-22):

a. For Web service type, select Top down EJB Web service.

b. In the Configuration (server-side) section:

i. For server, select WebSphere Application Server v7.0.
ii. For Web service runtime, select IBM WebSphere JAX-WS.
iii. For service project, type WeatherForecastJMS.

Figure 4-22 The Web service wizard

 Chapter 4. Developing Web services applications 201

c. For client type, select Java Proxy.

d. In the Configuration (client-side) section:

i. Generate a test client for the generated Web service by pushing the
slider to the top-most position until it reads Test client. The client-side
slider is set to Client only by default.

ii. For client project, type WeatherForecastWebClient (use the Dynamic
Web Project).

iii. For the Client EAR project, type WeatherForecastWebClientEAR. Click
Next.

To bind the implementation to JMS resources in the Web service Wizard:

1. On the WebSphere JAX-WS Top Down EJB Web service Configuration page,
under WSDL bindings, select Switch to JMS binding.

Because of the value of the <soap:address> location attribute, the WSDL
bindings field is set to HTTP. This step ignores this setting and generates the
service based on the JMS transport instead.

Click Next.

2. On the WebSphere JAX-WS JMS Binding Configuration page, for destination
JNDI name (request queue) type jms/Weather_Request_Q, and for JMS
connection factory (connection factory) type jms/Weather_CF. Click Next.

3. On the WebSphere JAX-WS Router Project Configuration page, for
activationSpec JNDI name (ActivationSpec), type
eis/Weather_ActivationSpec.

A router module handles the transport for EJB-based Web services. For the
HTTP protocol, the router is a Web module and uses a servlet. A JMS router
uses a message-driven bean (MDB) EJB module.

The WSDL bindings are now set for JMS and to use a JMS router module.
The HTTP router field has been disabled.

Click Next.

To complete the Web service wizard processing:

1. On the Test Web service page, click Next.

2. On the WebSphere JAX-WS Web Service Client Configuration page, click
Next.

3. On the Web service Client Test page, ensure that the test facility is set to
JAX-WS JSPs. Click Finish.

202 IBM WebSphere Application Server V7.0 Web Services Guide

Implementing the EJB Web service
After using the Web service wizard, the skeleton EJB code is generated. The
EJB Web service SIB Java source file opens in the main area. Note the
annotations for both EJB and Web services.

To write the Web service implementation into the EJB skeleton:

1. Expand WeatherForecastJMS → src → itso.businessobjects. Double-click
WeatherForecastPortBindingImpl.java to open it.

2. Implement the getDayForecast() method.

The code in Example 4-4 is for the getDayForecast() operation of the
WeatherForecastPortBindingImpl SIB. You can also find the body of the code
written in the WeatherForecast_JMS_snippet.txt file that is included with the
ch04_app_dev.zip file. This code fragment is similar to the one used in the
top-down (non-EJB) example in 4.2.1, “Web services development from a
WSDL file” on page 166.

Errors as a result of unresolved type declarations are expected and should be
ignored in the meantime.

Example 4-4 The getDayForecast() method of WeatherForecastPortBindingImpl.java

public Weather getDayForecast(XMLGregorianCalendar arg0)
throws Exception_Exception {
Connection con = null;
PreparedStatement pm = null;
Weather result = null;

try{
InitialContext ic = new InitialContext();

Adding the EAR file to the test environment: The Web service wizard
automatically adds (deploys) the created EAR file to the WebSphere
Application Server V7.0 test environment. It starts the server as part of the
wizard’s development process.

Note: For this example, only the getDayForecast() method is required to be
implemented. The following service methods of
WeatherForecastPortBindingImpl.java are optional for implementation per
the user’s discretion:

� getForecast()
� getTemperatures()
� setWeather()

 Chapter 4. Developing Web services applications 203

DataSource ds = (DataSource) ic.lookup("jdbc/weather");

con = ds.getConnection();
pm = con.prepareStatement(

"SELECT * FROM ITSO.SANJOSE WHERE WEATHERDATE = ?");
Date sqlDate =

new
Date(arg0.toGregorianCalendar().getTime().getTime());

pm.setDate(1, sqlDate);
ResultSet rs = pm.executeQuery();
while (rs.next()) {

GregorianCalendar cal = new GregorianCalendar();
cal.setTime(rs.getDate("WEATHERDATE"));

XMLGregorianCalendar xmlCal =
DatatypeFactory.newInstance().

newXMLGregorianCalendar(cal);

result = new Weather();
result.setDate(xmlCal);
result.setCondition(rs.getString("CONDITION"));
result.setTemperatureCelsius(rs.getInt("TEMPERATURE"));
result.setWindDirection(rs.getString("WINDDIR"));
result.setWindSpeed(rs.getInt("WINDSPEED"));
result.setDbflag(true);

}
} catch (NamingException nmex) {

nmex.printStackTrace(System.err);
} catch (SQLException e) {

e.printStackTrace(System.err);
result = null;

} catch (DatatypeConfigurationException dtypconfex) {
dtypconfex.printStackTrace(System.err);

} finally {
try {

if (pm != null)
pm.close();

if (con != null)
con.close();

} catch (SQLException ex) {
ex.printStackTrace(System.err);

}
}

204 IBM WebSphere Application Server V7.0 Web Services Guide

return result;
}

3. Organize imports by pressing Ctrl+Shift+O.

For the code in Example 4-4 on page 203, choose the following classes to
resolve the import declarations:

– java.sql.ResultSet
– javax.sql.DataSource
– javax.xml.datatype.DatatypeFactory
– java.sql.Date
– java.sql.Connection

4. Save the file. All errors should be resolved.

5. In the Servers view, right-click the WebSphere Application server test
environment and select Publish.

Configuring the enhanced EAR file
After implementing the EJB Web service, configure the JDBC data source
settings by using the enhanced EAR file:

1. Right-click the Enterprise Application Project for the Web service
(WeatherForecastJMSEAR) and select Properties.

2. In the Properties window, select Project Facets.

3. Select WebSphere Applications (Co-existence) and WebSphere
Applications (Extended). Click Apply, then click OK.

4. Configure the enhanced EAR file by using the WebSphere Application Server
Deployment editor.

5. Configure a JDBC data source for the Derby database.

6. Save the enhanced EAR file.

7. In the Servers view, right-click the WebSphere Application server test
environment and select Publish.

4.4.2 Testing a Web service with a synchronous client

The Web service wizard can develop both the Web service (server-side) and the
client. The wizard creates the skeleton EJB Web service project and a client

Important: You must configure the Project Facets of
WeatherForecastJMSEAR to access the WebSphere Application Server
Deployment editor.

 Chapter 4. Developing Web services applications 205

project. It also provides an option to create a test client within the client project.
The previous example did this (see “Running the Web service wizard” on
page 200) and created JSP clients (because the client application is a Dynamic
Web Project) that can be used to test the implemented Web service.

Running the Web Services Test Client JSPs
The Web Services Test Client for a client Web application is a JSP page created
by the Web service wizard that is used to test the developed Web service. This
page is in a Dynamic Web Project that can be used to test the Web service and
create Web applications that can access the Web service.

The Web Services Test Client that was generated in 4.4.1, “Creating an EJB Web
service” on page 198, performs a synchronous invocation of the EJB Web
service, as illustrated in Figure 4-23.

Figure 4-23 Synchronous invocation of the JMS Web service

To test the Web service by using the Web Services Test Client:

1. Select the Dynamic Web Project created by the Web service Wizard
(WeatherForecastWebClient). Expand WebContent →
sampleWeatherForecastPortProxy. Right-click TestClient.jsp. Select Run
As → Run on Server.

2. In the Run On Server window, select WebSphere Application Server v7.0
as the server to use. Click Finish.

EJB
JAX-WS
Service

JAX-WS
Runtime

Request
Queue

Reply
Queue

JAX-WS
Client

Synchronous
Invocation

206 IBM WebSphere Application Server V7.0 Web Services Guide

3. In the Web Services Test Client (Figure 4-24), which is displayed in the main
area:

a. In the Methods pane, click the link for the getDayForecast operation.

b. In the right pane, in the arg0 field, type 2006-01-07T00:00:00 as the
parameter for the operation.

c. Click Invoke.

Figure 4-24 Web Services Test Client results

Resulting value: The values of the result should be the same as in the
previous example (4.3.2, “Creating a Web service thin client” on page 194)
because the same parameter is used to invoke the Web service operation.

 Chapter 4. Developing Web services applications 207

4.4.3 Creating an asynchronous client

The last example in 4.4.2, “Testing a Web service with a synchronous client” on
page 205, used a Web application to do a synchronous invocation on a JMS Web
service. This is forgivable in a testing environment but makes little sense in
practice because the JMS transport is asynchronous by nature.

In the example shown in this section we create a client that uses the generated
asynchronous methods of the client to invoke the JMS Web service, as illustrated
in Figure 4-25.

Figure 4-25 Asynchronous invocation of the JMS Web service

Development of an asynchronous EJB Web service client involves the following
tasks:

1. Running the Web service wizard
2. Implementing the EJB Web service
3. Running the client application

We explain each of these tasks in the sections the follow.

Running the Web service wizard
In “Running the Web service wizard” on page 200, the WSDL used to generate
the Web service artifacts is the same one that is used to generate the client
application. The same actions are done here except that the Web service wizard
is used to generate the client application.

To initiate the Web service wizard for client development only:

1. In Rational Application Developer, switch to the Java EE perspective if it is not
already open.

2. On the client’s Dynamic Web Project (WeatherForecastWebClient), expand
WebContent → WEB-INF → wsdl, right-click the
WeatherForecastService.wsdl file, and select Web services → Generate
Client.

EJB
JAX-WS
Service

JAX-WS
Runtime

Request
Queue

Reply
Queue

JAX-WS
Client

invokeAsync

handleResponse

208 IBM WebSphere Application Server V7.0 Web Services Guide

The WSDL used here is in the Dynamic Web Project that was created by
using the Web service wizard. This WSDL has been updated by the Web
service wizard with a JMS binding for the location attribute of the
<soap:address> element.

3. In the Web service wizard (Figure 4-26), specify the properties for a client
configuration. Under Configuration, for client project (use Application Client
Project) type WeatherForecastJMSClient, and for client EAR project type
WeatherForecastJMSClientEAR.

Click Next.

Figure 4-26 The Web service wizard (client only)

Application client project: An application client project is a standalone
application that acts as an unmanaged client. Application client projects
are supported in the Java EE 5 specification and are packaged into an
EAR file similar to Dynamic Web Projects and EJB projects. Rational
Application Developer has the tools to develop and test application client
projects.

 Chapter 4. Developing Web services applications 209

4. In the WebSphere JAX-WS Web service Client Configuration window, select
Enable asynchronous invocation for generated client.

JAX-WS allows for the creation of clients that are able to invoke Web services
in an asynchronous manner. This type of client is best suited for JMS Web
services since the execution model of message-based services is an
asynchronous one.

Because we selected the asynchronous client option, the Web service wizard
has created <operation_name>Async() methods for the generated proxy
class, as shown in Figure 4-27.

Click Finish.

Figure 4-27 Asynchronous methods

Implementing the EJB Web service
After the Web service wizard executes and the skeleton code for the client is
created, the business logic of the client application is written to the client project.

210 IBM WebSphere Application Server V7.0 Web Services Guide

To write the client program in the application client project:

1. In the application client project (WeatherForecastJMSClient), expand src →
(default package) and double-click Main.java.

2. Implement the client into the main(String[] args) method of Main.java.

The code in Example 4-5 is for the main method of the Java class of the
application client. You can also find this code in the
WeatherWSTest_JMS_snippet.txt file that is included in the ch04_app_dev.zip
file.

The program invokes the selected operation asynchronously by using the
getDayForecastAsync() method. The async method returns a response object
that can be polled while the client’s operation continues (in this case,
displaying a string repeatedly). When the Web service places a reply on
queue, the polling loop ends and the response is retrieved.

Errors that result because of unresolved type declarations are expected and
should be ignored in the meantime.

Example 4-5 The main(String[] args) method of Main.java

public static void main(String[] args) {
try {

WeatherForecastPortProxy proxy =
new WeatherForecastPortProxy ();

javax.xml.ws.Response<GetDayForecastResponse> resp =
proxy.getDayForecastAsync(DatatypeFactory.

newInstance().newXMLGregorianCalendar(
"2006-01-07T00:00:00"));

// Poll for the response.
while (!resp.isDone()) {

System.out.println(
"Waiting for asynchronous response...");

// Wait for 0.2 seconds.
Thread.sleep(200);

}
GetDayForecastResponse gdfr = resp.get();
Weather weather = gdfr.getReturn();
System.out.println(

"getDayForecast async invocation complete.");
System.out.print("The weather is " +

weather.getCondition() + " ");
System.out.print("with temperature at " +

weather.getTemperatureCelsius() + " deg. C ");
System.out.print("and winds gusting at " +

weather.getWindSpeed() + " MPH ");

 Chapter 4. Developing Web services applications 211

System.out.println("from a direction of " +
weather.getWindDirection() + ".");

} catch (InterruptedException e) {
System.out.println(e.getCause());

} catch(DatatypeConfigurationException dtypeconfex) {
dtypeconfex.printStackTrace();

} catch(ExecutionException execex) {
execex.printStackTrace();

}
}

3. Organize the imports by pressing Ctrl+Shift+O.

4. For the code in Example 4-5 on page 211, select
javax.xml.datatype.DatatypeFactory to resolve the import declarations.

5. Save the file. All errors should be resolved.

Running the client application
Application client projects for WebSphere Application Server run on a specialized
environment called the WebSphere Application Server client runtime or
application client. This client is packaged together with the WebSphere
Application Server and can recognize deployment of an EAR file.

Rational Application Developer has an embedded client run time in the IDE that
can be configured by using the Run Configurations window.

To run the client application:

1. In the Application Client Project, expand src → (default package), right-click
Main.java, and select Run As → Run Configurations.

212 IBM WebSphere Application Server V7.0 Web Services Guide

2. In the Run Configurations window (Figure 4-28), select WebSphere
Application Server v7.0 Application Client. From the top row of icons,
select New launch configuration.

Figure 4-28 Launch configuration

3. In the Name field, type WeatherForecastJMSClient as the new launch
configuration name.

4. Click Apply.

5. Click Run.

 Chapter 4. Developing Web services applications 213

The results are displayed in the Console view (Figure 4-29), based on the data
retrieved from the weather database.

Figure 4-29 Asynchronous client results

4.5 Testing and monitoring Web services

Rational Application Developer includes the capability to test and monitor Web
services during its execution.

4.5.1 The Web Services Explorer

Rational Application Developer uses the Web application Web Services Explorer
tool to test deployed Web services. This tool executes a Web service’s
operations and displays the results. The tool offers a better alternative for the
service provider than creating a client just to test the developed service.

Resulting values: The values of the result should be the same as in the
previous example because the same parameter is used to invoke the Web
service operation.

214 IBM WebSphere Application Server V7.0 Web Services Guide

To run the Web Services Explorer in Rational Application Developer:

1. From the main menu, select Run → Launch the Web Services Explorer.

2. In the Web Services Explorer view, which opens in the main area
(Figure 4-30), in the upper right corner, click the WSDL Page icon to use a
WSDL service definition to locate the Web service (inset in Figure 4-30).

Figure 4-30 Web Services Explorer

Alternative for launching Web Services Explorer: You can also run the
Web Services Explorer from the Services view. Right-click a listed Web
service and select Test with Web Services Explorer.

 Chapter 4. Developing Web services applications 215

3. In the Navigator pane, click the WSDL Main link. In the main area, in the
Actions pane, under Open WSDL, click the Browse link (Figure 4-31).

Figure 4-31 Browsing for a WSDL file

4. In the WSDL Browser dialog box (Figure 4-32), for Workspace Projects,
select a project on the workspace that contains the WSDL of the service to be
tested. Click Go.

Figure 4-32 WSDL Browser dialog box

5. In the main area (Actions pane), click Go.

216 IBM WebSphere Application Server V7.0 Web Services Guide

Test the operations of the selected Web service:

1. In the Actions pane, for WSDL Binding Details (Figure 4-33), under the listing
of operations of the Web service, click an operation.

Figure 4-33 WSDL Binding Details in the Actions pane

Endpoints field URL value: The Endpoints field should have a correct
URL value. If not, you can add a new endpoint value, which is similar to
modifying the URL values in the service client class in “Writing the client
application” on page 194.

 Chapter 4. Developing Web services applications 217

2. On the Invoke a WSDL Operation page (Figure 4-34), notice that the URL
entered is displayed under Endpoints. Under Body, enter the parameters of a
Web service operation, then click Go.

Figure 4-34 Invoking a WSDL operation

The results are displayed in the Status pane (Figure 4-35).

Figure 4-35 Results of the WSDL operation

218 IBM WebSphere Application Server V7.0 Web Services Guide

3. On the Invoke a WSDL Operation page (Figure 4-34 on page 218), click the
Source link.

You can view the request and response SOAP messages (Figure 4-36).

Figure 4-36 Viewing the SOAP messages

4.5.2 The TCP/IP Monitor

The TCP/IP Monitor is a feature of Rational Application Developer that allows the
real-time inspection of requests and responses between the client and the
server. You can use TCP/IP Monitor to monitor the SOAP messages of the
deployed Web service as it interacts with a client.

The TCP/IP Monitor operates by redirecting the request message intended for
the Web service through the configured port of the TCP/IP Monitor. The TCP/IP

 Chapter 4. Developing Web services applications 219

Monitor then sends the request message through the port that is designated for
the Web service and relays the response back to the client. Figure 4-37
illustrates this process.

Figure 4-37 TCP/IP Monitor operation

To use the TCP/IP Monitor, you must modify the client to use the local
monitoring port of the TCP/IP Monitor. In Rational Application Developer, you do
this task during the development of the Web service client by selecting the
Monitor the Web service check box in the Web Service Wizard for clients, as
shown in Figure 4-38. This option configures the client’s sending port and the
local monitoring port of the TCP/IP Monitor to have the same value.

Figure 4-38 Monitor the Web service check box

Web Service
(Server)

Web Service
Client

Redirect request to configured
TCP/IP monitor port

TCP/IP
Monitor

Send request to actual
Web service port

220 IBM WebSphere Application Server V7.0 Web Services Guide

When the generated client executes, the SOAP messages that it sends are
redirected to the TCP/IP Monitor. Figure 4-39 shows the TCP/IP Monitor view of
Rational Application Developer.

Figure 4-39 TCP/IP Monitor view

You can also use TCP/IP Monitor for existing (already developed) Web service
clients. However, you must modify them at the source code level to use the local
monitoring port.

Request and Response panes: You can set the Request and Response
panes in the TCP/IP Monitor view for XML to properly view the SOAP
messages of Web services.

Note: To modify an existing Web service client’s sending port, you must have
a deep understanding of the JAX-WS API for clients. This is demonstrated in
Chapter 2, “Web services programming model” on page 59 (see
Example 2-28 on page 93).

 Chapter 4. Developing Web services applications 221

To configure the TCP/IP Monitor for an existing client:

1. In Rational Application Developer, select Window → Show View → Other.

2. In the Show View dialog box (Figure 4-40), in the type filter text field, type
TCP/IP Monitor. Select TCP/IP Monitor and click OK.

Figure 4-40 Show View dialog box

3. In the TCP/IP Monitor view in the workspace of Rational Application
Developer, right-click the top pane and select Properties.

4. In the Preferences dialog box (Figure 4-41), click the Add button.

Figure 4-41 TCP/IP Monitor preferences

222 IBM WebSphere Application Server V7.0 Web Services Guide

5. In the New Monitor dialog box (Figure 4-42), for Local monitoring port, enter a
value that is the same as the one used by the existing client. For host name
enter the name of the server where the service is deployed, and for port type
the port of the service. Click OK.

Figure 4-42 New Monitor dialog box

6. Back in the Preferences dialog box, select the new monitor and click the Start
button.

 Chapter 4. Developing Web services applications 223

224 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 5. Web services administration

In this chapter we discuss the aspects of WebSphere Application Server V7.0
system administration that relate specifically to Web services. We begin with the
basic concept of WebSphere Application Server system administration. Then we
discuss the task of deploying Web services and configuring them for the runtime
environment. We also explain the configuration of WebSphere Application Server
runtime resources. Finally, we discuss the testing and monitoring of Web
services.

This chapter contains the following topics:

� “WebSphere Application Server administration” on page 226
� “Web services deployment” on page 229
� “Web services configuration” on page 236
� “Managing Web service resources” on page 243
� “Tracing Web services” on page 256

5

© Copyright IBM Corp. 2009. All rights reserved. 225

5.1 WebSphere Application Server administration

WebSphere Application Server system administration involves the management
of resources that allow the server run time to maintain operations. For this
purpose, WebSphere Application Server exposes interfaces through which
system administrators can perform their tasks.

5.1.1 Administrative facilities

WebSphere Application Server provides the following general facilities for system
administration:

� Commands

WebSphere Application Server provides a set of commands that perform
general system administration tasks. These tasks include starting and
stopping the server.

� Administrative console

The administrative console is the most common interface used for
WebSphere Application Server system administration. It is a secure Web
application that is accessed through a Web browser.

� wsadmin

wsadmin is the system administration command interpreter for WebSphere
Application Server. It is used primarily for automating system administration
tasks using scripts.

5.1.2 Administration basics

WebSphere Application Server system administration requires basic skills for
operating the server run time. Regardless of role, all users are expected to know
the basic operational commands and facilities of WebSphere Application Server.

Note: This chapter only touches on the WebSphere Application Server
administration concepts. The intent is to introduce concepts to WebSphere
administrators that are specific to Web service applications and to application
developers that might be dealing with a test environment.

For this reason, we assume that we are dealing with a single-server
environment. However, these concepts can be applied to a deployment
manager in a distributed server environment.

226 IBM WebSphere Application Server V7.0 Web Services Guide

WebSphere Application Server organizes runtime resources around the concept
of a node. The node is used as the building block for robust systems with a
flexible architecture because a single node can operate in a standalone capacity
or be grouped together into a cell. Administrative functions, consequently, are
focused on the node. The discussions in this chapter assume a standalone
application server configuration on a single node.

Basic operational commands
When WebSphere Application Server is installed, a node is created with one
server instance, server1, which is used as the default application server. The
node and all its administrative facilities are in the installation directory. The
installation directory varies depending on the platform or what was specified by
the user during installation, but it is referred to here as WAS_HOME.

To start the WebSphere Application Server default server, type the following
command:

startServer server1

To stop the WebSphere Application Server, type the following command:

stopServer server1

Situations can arise when a user might need to determine whether the default
server is currently running. In this case, you can type the following command:

serverStatus server1

These commands are in the WAS_HOME/bin directory.

The log files
WebSphere Application Server records its internal operations in log files that are
viewed for monitoring or troubleshooting purposes. For the default server of the
node named node_name, these files are in the
WAS_HOME/profiles/node_name/logs/server1 directory.

Administrative security: If administrative security is enabled, the -username
and -password options can be used with these commands for authentication.

 Chapter 5. Web services administration 227

The general output of the WebSphere Application Server run time can be viewed
in the SystemOut.log file. Figure 5-1 shows a sample of content from this file.

Figure 5-1 SystemOut.log sample

Opening the administrative console
Most system administration tasks are done through the administrative console,
which can be accessed through a Web browser. When the WebSphere
Application Server is running, the administrative console is available by entering
the following URL:

http://localhost:9060/ibm/console

Note: If administrative security is enabled, the login page requires a user
name and a password. If administrative security is not enabled, it requires only
a user name for logging purposes.

The port number will vary for your environment. If in doubt, you can access the
console from the First Steps menu the first time. You can open the menu by
entering the following command:

WAS_HOME/profiles/node_name/firststeps/firststeps.bat (.sh)

228 IBM WebSphere Application Server V7.0 Web Services Guide

Using wsadmin
To automate system administration functions, WebSphere Application Server
provides the wsadmin script interface. The wsadmin facility uses the Jython script
language to run administrative tasks as an interactive shell (default), inline on the
console with the -c option, or through a script file with the -f option. Rational
Application Developer has the ability to edit, debug, and run Jython
administrative scripts for the application server.

5.2 Web services deployment

The Java Platform Enterprise Edition (EE) 5 standard includes support for the
Web service specifications. As such, both the Web service server components
and their clients can be deployed into Java EE 5 run times such as WebSphere
Application Server V7.0. To do this, Web services must be packaged into Java
EE deployment modules and installed by using the enterprise application
deployment process.

The standard deployment unit for Java EE 5 enterprise applications, including
WebSphere Application Server, is the enterprise archive (EAR) file. The EAR file
is a compressed file that includes the component modules of an enterprise
application.

The standard EAR file consists of the following major modules:

� Web module

This module contains the resources of a Web application including servlets
and JavaServer Pages (JSP). It is packaged into a Web archive (WAR) file.

� EJB module

This module contains Enterprise JavaBeans (EJB) components. It is
packaged into an EJB Java archive (EJB-JAR) file.

� Application client module

This module contains a standalone application that can access server
components. It runs on a client run time and is packaged into a JAR file.

Important: You must ensure that the application server is started before you
use the wsadmin interface.

 Chapter 5. Web services administration 229

Table 5-1 shows how Web service-related components are packaged and
deployed in an EAR file.

Table 5-1 Web service components packaging

Web service component Deployment
submodule

Main deployment
module

Runtime
environment

Web service (server) WAR EAR Application server

EJB Web service (server) EJB-JAR EAR Application server

Web service Web client WAR EAR Application server

Web service EJB client EJB-JAR EAR Application server

Web service application
client

JAR EAR Client run time

Hint: Not all Web service components must be packaged in the same EAR
deployment file.

230 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 5-2 illustrates how Web-service-related components are packaged.

Figure 5-2 Web service packaging

Managing deployed Web services
After the EAR file is assembled, Web services are treated by WebSphere
Application Server similarly to any other enterprise application. The most
common facility for managing enterprise applications in WebSphere Application
Server is the administrative console. In this section we describe the
administrative console and its features for managing enterprise applications and
Web services.

EJB 3.0
ModuleEJB 3.0

Module

EJB 3.0
Module
Application

Client
Module

EJB Web service
(server)

Web service
EJB client

EJB 3.0
ModuleWeb

Module

JEE 5
Application

EAR file

Web service
Web client

Web service
(server)

Web service
application client

EJB Ext PME DD

EJB Bind DD

EJB Ext DD

EJB DD

EJB Ext PME DD

EJB Bind DD

EJB Ext DD

EJB DD

Client Ext PME DD

Client Bind DD

Client Ext DD

Client DD

Web Ext PME DD

Web Bind DD

Web Svcs DD

Web Ext DD

Web DD

 Chapter 5. Web services administration 231

Deploying a Web service EAR file
Management of enterprise applications begins with the installation or deployment
of the EAR file into the application server. To deploy an enterprise application
using the administrative console take the following steps.

1. Using a Web browser, open the administrative console and log in. In the left
navigation pane, select Applications → New Application. In the right pane,
click Install to install a new application.

2. On the Path to the new application page, select Local file system and click
Browse. Browse for the EAR file to be deployed. Click Next.

3. On the How do you want to install the application? page, select Fast Path.
Click Next.

4. On the Select installation options page, accept the default values and click
Next.

5. On the Map modules to servers page, accept the default values and click
Next.

6. On the Summary page, click Finish.

Standard versus complex deployment: The following steps are for a
standard deployment and use default options for the process. Complex
deployments might require you to use different options depending on the
situation.

Deploy Web services option: On the Select installation options page,
selecting the Deploy Web services option ensures that the wsdeploy
command is run against the EAR file that is being deployed. Selecting this
option makes the JAX-RPC Web services in the application compatible
with the WebSphere Application Server run time. Because most of the
examples used in this book use the new Java API for XML Web Services
(JAX-WS) standard, we do not use this option.

232 IBM WebSphere Application Server V7.0 Web Services Guide

7. After you see the Application name installed successfully message, click
the Save link to commit the changes to the master configuration (Figure 5-3).

Figure 5-3 Successful installation

Saving changes to the master configuration: In WebSphere Application
Server, you must commit any configuration changes made through the
administrative console by saving the settings to the master configuration. You
must do this for all areas of WebSphere Application Server that are managed
through the administrative console.

 Chapter 5. Web services administration 233

The Enterprise Applications page
When deployed, the enterprise application is listed on the Enterprise
Applications page of the administrative console (Figure 5-4). You can access this
page by navigating to Applications → Application Types → WebSphere
enterprise applications. The following functions are some of the more relevant
enterprise application management functions that are available:

Start Makes the enterprise application active

Stop Disables the enterprise application

Install Operates the same as selecting Applications → New
Application

Uninstall Removes the enterprise application

Update Updates portions of the enterprise application

Export Assembles the enterprise application EAR file for export

Figure 5-4 Enterprise Applications collection

234 IBM WebSphere Application Server V7.0 Web Services Guide

Starting a deployed enterprise application
To start an application by using the management functions of the Enterprise
Application page:

1. In the left navigation pane, select Applications → Application Types →
WebSphere enterprise applications.

2. In the right pane (Figure 5-5), select the enterprise application to start and
click the Start button.

Figure 5-5 Starting the application

3. Wait for a message indicating that the application has started successfully
(Figure 5-6).

Figure 5-6 Successful start message

Uninstalling an enterprise application
To uninstall an enterprise application and remove it from WebSphere Application
Server:

1. In the left navigation bar, select Applications → Application Types →
WebSphere enterprise applications.

2. In the right pane, select the enterprise application to be uninstalled and click
the Uninstall button in the top row of the collection.

3. Click OK to confirm the removal of the enterprise application.

4. Click the Save link to commit the changes to the master configuration.

 Chapter 5. Web services administration 235

5.3 Web services configuration

With WebSphere Application Server administrative facilities, the deployment and
management of Web services components (server and client) and the
configuration of the properties of these components are allowed. As in the
previous section, the administrative console is used to illustrate the capabilities of
WebSphere Application Server regarding this aspect.

5.3.1 Configuring Web service server-side settings

To configure the settings for Web services, the administrator must drill down to a
specific enterprise application to access the enterprise application settings page
(Figure 5-7). To open the enterprise application settings page:

1. In the left navigation pane of the administrative console, click Applications →
Application Types → WebSphere enterprise applications.

2. In the right pane, click the link that represents an enterprise application. See
the highlighted box in Figure 5-7.

Figure 5-7 Application settings for a Web service (server)

236 IBM WebSphere Application Server V7.0 Web Services Guide

Web services configuration items
The application settings page of the WebSphere Application Server’s
administrative console has links to facilities that are used to modify the following
Web services properties:

� Service providers
� Service provider policy sets and bindings
� Reliable messaging state
� Provide endpoint URL information
� Publish WSDL files

Service providers
The Service providers link leads to a page that lists all service providers (Web
services) that are deployed in the application (Figure 5-8). This page provides
administrators with the option to start or stop the listeners of the listed service
providers.

Figure 5-8 Service providers

 Chapter 5. Web services administration 237

Service provider policy sets and bindings
The Service provider policy sets and bindings link references a page that lists the
components for a particular service provider (Web service). See Figure 5-9. On
this page, you can attach or detach policy sets and assign bindings. Chapter 6,
“Policy sets” on page 261, describes these functions in more detail.

Figure 5-9 Service provider policy sets and bindings

238 IBM WebSphere Application Server V7.0 Web Services Guide

Reliable messaging state
The Reliable messaging state link opens a page where administrators can
manage the WS-ReliableMessaging properties of the Web service (Figure 5-10).

Figure 5-10 Reliable messaging state

Provide endpoint URL information
The application settings page provides two links that are used to manage
endpoint URLs for Web services—one link is for HTTP endpoints and the other
link is for Java Message Service (JMS) or EJB endpoints. With both links,
administrators can modify the endpoint URL for a particular Web service.

To access the application settings, select Applications → Application types →
WebSphere enterprise applications. Click the application name to open the
configuration page. The links are in the Web Services Properties section.

 Chapter 5. Web services administration 239

By clicking the Provide JMS and EJB endpoint URL information link, you
access the page for JMS and EJB endpoint URL information (Figure 5-11).

Figure 5-11 Provide JMS and EJB endpoint URL information

By clicking Provide HTTP endpoint URL information, you access the page for
HTTP endpoint URL information (Figure 5-12).

Figure 5-12 Provide HTTP endpoint URL information

240 IBM WebSphere Application Server V7.0 Web Services Guide

Publish WSDL files
The Publish WSDL files link leads to a page that allows administrators to
download the published WSDL files of a Web service. Published WSDL files are
often used by application developers in the Web service development process.
Figure 5-13 shows an illustration of this page.

Figure 5-13 Publish WSDL files

5.3.2 Configuring Web service client settings

Configuring the settings for Web services clients provides similar functions but
with fewer options. Selecting an enterprise application with Web service client
components leads to the application settings page (Figure 5-14).

Figure 5-14 Application settings for a Web service client

 Chapter 5. Web services administration 241

Web service clients configuration items
Unlike in the Web services server-side settings list, there are only two
configuration options available for client-side settings:

� Service clients
� Service client policy sets and bindings

Service clients
The Service clients link opens a page that lists all service clients that are
deployed in the application (Figure 5-15). This page provides additional links that
reference the specific modules that are related to a particular service client.

Figure 5-15 Service clients

242 IBM WebSphere Application Server V7.0 Web Services Guide

Service client policy sets and bindings
The Service client policy sets and bindings link opens a page that is similar to the
server-side version of this link (Figure 5-16). The page lists the components for a
particular service client. You can attach or detach policy sets and assign
bindings. Chapter 6, “Policy sets” on page 261, describes these functions in
detail.

Figure 5-16 Service client policy sets and bindings

5.4 Managing Web service resources

Web services often require access to resources that are managed by the
WebSphere Application Server. Part of the role of a system administrator
includes the configuration of these resources to make them available to the
deployed Web service.

 Chapter 5. Web services administration 243

5.4.1 Configuring JDBC resources

One advantage of Web services is its ability to abstract data resources, which
include relational databases. The application server manages connections to
Java Database Connectivity (JDBC)-compliant relational database providers.

One method of defining JDBC resources is to configure them within the Web
service’s deployment unit by using a WebSphere Application Server feature
known as the enhanced EAR file. Application developers typically do this by
using the enhanced EAR file editors of Rational Application Developer. See
“Configuring the enhanced EAR file” on page 178 for an example.

This chapter focuses on tasks performed by the administrator. When an
enhanced EAR file is not used, the administrator uses the WebSphere
administrative tools to define the JDBC provider and data source for the
resource. System administrators must ensure that the runtime configuration
matches the expected values that are used in the Web service implementation.
To be more specific, the data source that is used in the Web service (specified
during development time) must match the data source that is configured (before
deployment) in the server by its Java Naming and Directory Interface (JNDI)
name.

Using the administrative console
To configure the JDBC settings for a DB2® database provider, use the
administrative console.

First set the environment variables for the DB2 JDBC drivers:

1. Select Environment → WebSphere Variables.

2. Select the scope of this resource. In a standalone server environment, it is
sufficient to create the data source at the server level with a value of:

Node=node_name, Server=server1

3. Locate and click the DB2_JCC_DRIVER_PATH entry.

For more information: For more information about defining JDBC resources
and examples using other JDBC providers, see WebSphere Application
Server V7 Administration and Configuration Guide, SG24-7615.

244 IBM WebSphere Application Server V7.0 Web Services Guide

4. On the Configuration page (Figure 5-17), in the value field, enter the path to
the DB2 JDBC driver. Click OK.

Figure 5-17 Configuring the DB2 driver path

5. Repeat the process for the DB2_JCC_DRIVER_NATIVEPATH variable. For
DB2, it should use the same path as DB2_JCC_DRIVER_PATH.

The user ID and password that are required to access the database are specified
in a J2C authentication data entry. To create the authentication data:

1. Select Security → Global Security. Expand Authentication → Java
Authentication and Authorization Service and select J2C authentication
data.

2. Click New.

 Chapter 5. Web services administration 245

3. On the Properties page (Figure 5-18):

a. Provide a name for the new alias.
b. Enter the user ID and password that will provide access to the database.
c. Click OK.

Figure 5-18 Creating a JAAS authentication alias

To create a JDBC provider that targets a DB2 database:

1. Expand Resources → JDBC and select JDBC Providers.

2. Select the scope of this resource. In a standalone server environment, it is
sufficient to create the data source at the server level with a value of:

Node=node_name, Server=server1

Ensure that the environment variables set earlier are in the same scope.

3. Click the New button.

246 IBM WebSphere Application Server V7.0 Web Services Guide

4. In the Configuration dialog box (Figure 5-19), select the general properties for
the JDBC provider:

a. For database type, select DB2.
b. For provider type, select DB2 Using IBM JCC Driver.
c. For implementation type, select XA data source.
d. For name, type DB2 Using IBM JCC Driver (XA).

e. Click Next.

Figure 5-19 Creating a DB2 JDBC provider

5. The next panel allows you to enter database provider classpath information.
In this case, the defaults are acceptable. Click Next.

6. On the Summary page, click Finish.

Create the data source:

1. Select Resources → JDBC → JDBC Providers.

2. Select the DB2 Using IBM JCC Driver (XA) that was defined earlier, and
under Additional Properties, select Data Sources.

Driver: A DB2 XA-capable JDBC Driver is used in this example. If the
application does not require two-phase commit capabilities, use the
regular driver.

 Chapter 5. Web services administration 247

3. Click New.

4. Add the new data source (Figure 5-20):

a. For data source name, enter a value for administrative purposes.

b. For JNDI name, enter the same name that was used in the Web service
implementation to obtain a JDBC connection. Click Next.

Figure 5-20 Basic data source properties

248 IBM WebSphere Application Server V7.0 Web Services Guide

5. Enter the properties for the data source (Figure 5-21):

a. For driver type, which represents the JDBC level of the driver being used,
select 4. A type of 4 JDBC driver is a pure Java-implemented network (thin
client) driver.

b. For database name, specify the name of the database that is being
accessed.

c. For server name, enter the name of the host of the database.

d. For port number, enter the post number that is being used by the database.

e. Select Use this Data Source in container-managed persistence (CMP).
Selecting this option means that the data source being created should be
configured for use with CMP entity EJBs. Click Next.

Figure 5-21 Data source database properties

6. On the Setup security aliases page, click Next.

7. On the Summary page, click OK.

8. Save the configuration.

9. Test the connection. Select the data source and click Test Connection.

5.4.2 Configuring JMS resources

Web services can use JMS as the transport protocol to achieve an asynchronous
mode of operation. The JMS resources used by the Web service are managed

 Chapter 5. Web services administration 249

by WebSphere Application Server. These resources must be properly configured
to ensure the correct operation of the Web service that uses them.

Using the administrative console
JMS resources can be configured directly by using the administrative console or
through an administrative script by using the wsadmin facility. In this section we
show how to configure JMS resources by using the administrative console.

The messaging infrastructure of WebSphere Application Server, as illustrated in
Figure 5-22, requires several resources that you must create for JMS transport of
Web services:

� The service integration bus, which is the primary messaging structure of
WebSphere Application Server

� A connection factory that allows Java programs to access messaging points
on the service integration bus

� A destination, which binds the messaging point (queue or topic) to the service
integration bus

� A queue or topic, which is the messaging point itself

� An ActivationSpec, which is required by JCA to access the messaging system
of WebSphere Application Server

Figure 5-22 WebSphere messaging infrastructure

More information: For more information about defining a service integration
bus and JMS resources, see WebSphere Application Server V7
Administration and Configuration Guide, SG24-7615.

Service
integration bus

Bus Member

Queue or
topic

Service
integration bus

destination

JMS
connection

factory

EJB MDB

JMS standard API

JMS
ActivationSpec

Messaging
engine
(ME)

250 IBM WebSphere Application Server V7.0 Web Services Guide

To create a service integration bus in the WebSphere Application Server and add
a bus member for it:

1. In the WebSphere Application Server administrative console, select Service
Integration → Buses and click the New button.

2. Under Create a new bus (Figure 5-23), for the name of the new service
integration bus, type Weather_Bus. Clear Bus security, because it is not
needed for a test environment, and click Next.

Figure 5-23 Creating a new service integration bus

3. Click Finish.

4. Save the changes to the master configuration.

5. When the bus collection is displayed, click the recently created Weather_Bus
to view its properties.

6. Under Topology, click Bus members. On the Bus members collection, click
Add.

7. As shown in Figure 5-24, select Server. Ensure that server1 is displayed.
Click Next.

Figure 5-24 Adding bus members

 Chapter 5. Web services administration 251

8. For the following steps, accept the default configurations and click Next until
you reach the Step 2: Summary page.

9. On the Step 2: Summary page, click Finish.

10.Save the changes to the master configuration.

To create a JMS queue connection factory:

1. In the WebSphere Application Server administrative console, select
Resources → JMS → Queue Connection Factories.

2. Select the scope of this resource. In a standalone server environment, it is
sufficient to create this at the server level with a value of Node=node_name,
Server=server1. Click the New button.

3. Select the Default messaging provider and click OK.

4. Define the queue connection factory properties (Figure 5-25):

a. For name, type Weather_CF.

b. For JNDI name, type jms/Weather_CF, which will be used by the Web
service to connect to the service integration bus.

c. For bus name, select Weather_Bus, which you defined earlier.

d. Click OK.

Figure 5-25 Queue connection factory properties

252 IBM WebSphere Application Server V7.0 Web Services Guide

5. Save the properties to the master configuration.

To create a destination for the service integration bus:

1. In the WebSphere Application Server administrative console, select Service
Integration → Buses and click Weather_Bus to view its properties.

2. Under Destination resources, click Destinations.

3. Under Destinations collection, click New.

4. Select Queue to create a queue messaging point. Click Next.

5. In the Identifier field, type Weather_SIB_Request, which is the queue’s name.
Click Next.

6. Under Bus member, ensure that server1 is displayed. Server1 is where the
destination will be located. Click Next.

7. In the summary step, click Finish.

8. Save the changes to the master configuration.

To create a queue and bind it to the previously defined destination:

1. In the WebSphere Application Server administrative console, select
Resources → JMS → Queues.

2. Select the scope of this resource. In a standalone server environment, it is
sufficient to create this at the server level with a value of Node=node_name,
Server=server1. Click the New button.

3. Select the Default messaging provider and click OK.

 Chapter 5. Web services administration 253

4. Define the queue general properties (Figure 5-26):

a. For name, type Weather_Request_Q.

b. For JNDI name, type jms/Weather_Request_Q, which is used by the Web
service to connect to this queue.

c. For bus name, select Weather_Bus, which you defined earlier.

d. For queue name, select Weather_SIB_Request_Q, which you defined
earlier as a service integration bus destination.

e. Click OK.

Figure 5-26 Queue general properties

5. Save the changes to the master configuration.

254 IBM WebSphere Application Server V7.0 Web Services Guide

To create an ActivationSpec:

1. In the WebSphere Application Server administrative console, select
Resources → JMS → Activation specifications.

2. Select the scope of this resource. In a standalone server environment, it is
sufficient to create this at the server level with a value of Node=node_name,
Server=server1. Click the New button.

3. Select the Default messaging provider and click OK.

4. Define the ActivationSpec properties (Figure 5-27):

a. For name, type Weather_ActivationSpec.

b. For JNDI name, type eis/Weather_ActivationSpec, which is used by the
Web service to connect to this queue using JCA.

c. For destination type, select Queue.

d. For destination JNDI name, type jms/Weather_Request_Q, which you
defined earlier for the queue resource.

e. For bus name, select Weather_Bus, which you defined earlier.

f. Click OK.

Figure 5-27 ActivationSpec properties

 Chapter 5. Web services administration 255

5. Save the changes to the master configuration.

5.5 Tracing Web services

WebSphere Application Server uses a diagnostic trace facility to capture
information regarding specific components in the server run time. This
information is recorded in the trace.log file (default name) and is in the
WAS_HOME/profiles/node_name/logs/server1 directory, which is the same as the
other WebSphere Application Server log files.

The diagnostic trace facility presents fine-grained information about runtime
components. On the Change Log Detail Levels page, administrators can
configure the trace for the specific components to log. To access this page, in the
WebSphere Application Server administrative console, select
Troubleshooting → Logs and trace → server → Diagnostic Trace → Change
Log Detail Levels.

To specify components to include in the trace, specify a trace string in the entry
field, as shown in Figure 5-28.

Figure 5-28 Change Log Detail Levels page

wsadmin versus administrative console for setting up JMS resources: In
“Setting up the JMS resources” on page 198, we use the wsadmin facility to
create JMS resources that are specific to that example. In the previous
example, we performed the same task, but by using the administrative console
for Web services in general. The outputs (created resources) of the two
methods are not the same.

256 IBM WebSphere Application Server V7.0 Web Services Guide

The trace string must have the following format:

component_item1=detail_level:component_item2=detail_level

Consider the following trace string as an example:

=info:com.ibm.ws.websvcs.=all

This means that all components will be logged in the trace file at an info detail
level and all messages for components under com.ibm.ws.websvcs will be
logged.

The following list of trace strings is related to Web services:

� com.ibm.ws.websvcs.* (JAX-WS integration layer with WebSphere)
� com.ibm.ws.websvcs.transport.jms.* (JMS transport)
� com.ibm.ws.policyset.* (policy sets)
� com.ibm.ws.wssecurity.* (WS-Security)
� com.ibm.ws.addressing.* (WS-Addressing)
� com.ibm.ws.wstx.* (WS-Transactions)
� org.apache.axis2.* (Axis2 run time)
� org.apache.axis2.jaxws.* (JAX-WS run time)

You can also enter trace strings by selecting a component item, right-clicking,
and specifying the log detail level for the component (Figure 5-29).

Figure 5-29 Specifying trace strings from the component list

 Chapter 5. Web services administration 257

When all trace strings are entered, click OK or Apply and save them to the
master configuration. Restart the WebSphere Application Server and access the
Web service by using a client.

The trace.log file is now generated, with a record of all information for the
components specified and at the detail levels given. Figure 5-30 shows an
example trace.log file.

Figure 5-30 A trace.log example

258 IBM WebSphere Application Server V7.0 Web Services Guide

Part 3 Advanced concepts

Part 3

© Copyright IBM Corp. 2009. All rights reserved. 259

260 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 6. Policy sets

In this chapter we explore the policy set feature in WebSphere Application Server
V7. The use of policy sets can greatly reduce the amount of configuration that
must be done for Web services by providing reusable configurations.

We begin by describing the motivation to use policy sets and the policy set
definitions. Then we guide you through samples to administer policy sets in
WebSphere Application Server. This includes applying policy sets to your Web
services by using a default policy set and a custom policy set. We also show you
how to configure an application-specific binding and a general binding for your
Web service. Finally, we explore the support for policy set tools in Rational
Application Developer V7.5.

This chapter contains the following topics:

� “Motivation” on page 262
� “Overview of policy sets” on page 264
� “New in WebSphere Application Server V7” on page 268
� “Policy set administration” on page 269
� “Rational Application Developer support” on page 313
� “More information” on page 325

6

© Copyright IBM Corp. 2009. All rights reserved. 261

6.1 Motivation

The motivation for using policy sets is three-fold:

� Proliferation of specifications

The proliferation of Web service specifications and the interdependencies
between them makes the configuration of qualities of service for a Web
service a large task. This task is best tackled in a step that is separate from
the implementation of interfaces, clients, and services.

� Multi-vendor environment

The configuration task is all the more daunting in a multivendor environment
because of the need to match client and server configurations. The use of
policy sets to separate the configuration parameters for Web services from
the implementation of the clients and services is the first step in simplifying
configuration in a multivendor environment. The second step is to standardize
the way in which the configuration is expressed (for example, by using Web
services Description Language (WSDL)), so that configuration files are
exchangeable.

� Development and management of qualities of service

Separating policy sets from the services is preferable to a development and
management perspective. The skills to configure policies are different from
defining and implementing services. An expert in a particular area develops
and maintains policy sets, which are combined and applied to Web services
administratively, without any necessity to redevelop or redeploy the clients or
the services themselves.

Managing the complexity of Web services configurations
Working with Web services has certain difficulties. One challenge in particular is
the abundance of standards associated with Web services and the complexity
that this adds when configuring Web services. Configuration is made more
difficult because there are few defaults, and configuration data must be
re-entered for each Web service separately. Web services are relatively difficult
to locate and manage in a WebSphere Application Server environment.

262 IBM WebSphere Application Server V7.0 Web Services Guide

Each Web service application can contain multiple services. Each service can
expose multiple endpoints. Finally, each endpoint has one or more operations
associated with it, which can lead to a large number of configuration points for a
single application, as illustrated in Figure 6-1.

Figure 6-1 Configuration points for a Web service application

In previous releases of WebSphere Application Server, each service had its own
quality of service (QoS) separately defined. In many cases, QoS configurations
were not reusable. You had to repeat the configuration for each service, which is
error-prone and difficult to manage.

As more qualities of service are added to the Web service with additional Web
services specifications, such as WS-Addressing, WS-ReliableMessaging, and
WS-Security, there is a requirement to manage more information about the Web
service effectively.

In addition, there are relationships between the various qualities of service. For
example, to prevent a sequence attack against WS-ReliableMessaging, you must
use WS-SecureConversation to establish a secure context between the two
parties. Managing the individual configuration of each set of the qualities of
service is a daunting task.

Application

Service

Endpoint
Operation

Operation

Service

Endpoint
Operation

Operation

Non-service EJB

 Chapter 6. Policy sets 263

Managing a single set of configurations for these qualities of service is a much
simpler model. This is especially true if you can relate these configuration
groupings to a well-defined name and reuse it in different services and across
multiple application servers. Managing a combination of WS-ReliableMessaging
and WS-SecureConversation to secure WS-ReliableMessaging headers is a
good example of how combining related policies into a single policy set helps to
make the management of configurations easier. See 10.4, “Secure conversation
example” on page 496, for an example.

6.2 Overview of policy sets

In WebSphere Application Server V7, you can configure and apply a QoS to
deployed Java API for XML Web services (JAX-WS) service providers and
service clients by using policy sets. Policy sets reduce the complexity of
configuring Web services in WebSphere Application Server. By providing
reusable configurations, administrators can deploy and configure Web services
applications more quickly. The policy sets also provide a template for new users,
which show them how to properly configure WebSphere Application Server for
specific qualities of service.

6.2.1 Qualities of service

With the widespread adoption of Web services as the key technology for
implementing a service-oriented architecture (SOA), QoS has become a major
priority for service providers and consumers. Qualities of service cover an entire
range of requirements that match the requirements of service consumers with
those of the service providers. This includes reliability, security, accessibility,
availability, interoperability, performance, transaction, management, and so on.

264 IBM WebSphere Application Server V7.0 Web Services Guide

6.2.2 Policy set definitions

Figure 6-2 illustrates the elements of policy sets. We describe these elements in
the sections that follow.

Figure 6-2 Policy sets

Policy type
A policy type is a single type of QoS that is defined by a set of assertions. Policy
types can also be defined based on specific Web services standards. Policy
types include the following examples:

� WS-Security
� WS-Addressing
� WS-ReliableMessaging
� HTTPS
� WS-Transaction

A policy type definition is based on WS-Policy standard language, for example,
the WS-SecurityPolicy type is based on the WS-SecurityPolicy standard from the
Organization for the Advancement of Structured Information Standards (OASIS).

Policy Type A
Policy Type A

Service

Policy B

Policy Set

A
tta

ch
, D

et
ac

h

Bind Binding value 1
Binding value 2

Binding value 1
Binding value 2

Policy parameter 1
Policy parameter 2
Policy A

Policy parameter 1
Policy parameter 2

Instance of

Add, Remove,
Enable, Disable

 Chapter 6. Policy sets 265

Policy
A policy is a named, configured instance of policy type. A policy does not include
environment-specific or platform-specific information such as a key for signing,
keystore information, or persistent store information. These types of information
are defined in the binding.

Binding
A binding is the topology-specific configuration of a QoS. It contains
environment-specific and platform-specific information, such as keys for signing,
keystore information, or persistent store information, which indicates that
bindings are not normally shared. In WebSphere Application Server V7, there
are two types of bindings:

� Application-specific bindings
� General bindings

Application-specific binding
You can create application-specific bindings only at a policy set attachment point.
These bindings are specific to and constrained to the characteristics of the
defined policy. Application-specific bindings are capable of providing
configuration for advanced policy requirements, such as multiple signatures.
However, these bindings are only reusable within an application. Furthermore,
application-specific bindings have limited reuse across policy sets.

When you create an application-specific binding for a policy set attachment, the
binding begins in a completely unconfigured state. You must add each policy that
you want to override the default binding and fully configure the bindings for each
policy that you add. For a Web services Security (WS-Security) policy, some
high-level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo can be obtained from the default bindings if they
are not configured in the application-specific bindings.

General binding
General bindings are new for WebSphere Application Server V7. They were
created because of the success of reusing policy sets. These bindings can be
configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Although general bindings are
highly reusable, they are unable to provide configuration for advanced policy
requirements, such as multiple signatures. There are two types of general
bindings:

� General provider policy set bindings
� General client policy set bindings

266 IBM WebSphere Application Server V7.0 Web Services Guide

The reason for having separate provider and client bindings is that the same
binding cannot be reused for the provider and client in cases such as
WS-Security. For the client, the private key is different from the server's private
key. Therefore, separate binding files must be used in production.

General provider and client bindings are not linked to a particular policy set. They
provide configuration information that you can reuse across multiple applications.
You can create and manage general provider and client policy set bindings, and
then select one of each binding type to use as the default for an application
server. Setting the server default bindings is useful if you want the services that
are deployed to a server to share binding configuration.

You can also share a binding configuration by assigning the binding to each
application that is deployed to the server or by setting default bindings for a
security domain and assigning the security domain to one or more servers. You
can specify default bindings for your service provider or client that are used at the
global security (cell) level, for a security domain, for a particular server.

Policy set
A policy set is a collection of policy types that are configured and associated with
a given Web service provider or requester. A policy set is either predefined or
user-defined. Policy types are added, removed, enabled, or disabled in the policy
set. Policy sets are attached or detached to and from Web services and clients.

A policy set consists of a collection of policies of different types. For example, the
Reliable Secure Profile (RSP) default policy set consists of instances of the
WS-Security, WS-Addressing, and WS-ReliableMessaging policy types. A policy
set is identified by a unique name that is unique across the cell.

WebSphere Application Server V7 ships with the following predefined policy sets:

� LTPA WSSecurity default
� Kerberos V5 HTTPS default
� SSL WSTransaction
� Username SecureConversation
� Username WSSecurity default
� WS-Addressing default
� WSHTTPS default
� WS-I RSP (Network Deployment)
� WS-ReliableMessaging persistent

These default policy sets can be used as starting points and best practices. The
application server also provides other default policy sets that you can use or
customize. To use the additional policy sets, you must import them from the
default repository.

 Chapter 6. Policy sets 267

6.2.3 Using policy sets

After policy sets are created, they are associated with bindings that tailor specific
details about the policy to the application (Figure 6-3). The combination of the
policy set and the binding is applied to Web services or their clients.

Figure 6-3 Attaching policy sets and bindings to Web services

6.3 New in WebSphere Application Server V7

WebSphere Application Server V7 enhances the usability and consumability of
policy sets by providing the following new features:

� The ability to define multiple cell-level general bindings and to reuse these
bindings across multiple applications

This capability significantly enhances the ease of use for binding
configuration.

� The ability to choose default bindings for each security domain

Application
Service

Endpoint
Operation

Operation

Service

Endpoint
Operation

Operation

Policy Set

Addressing

Reliability

Security

Policy Set

Addressing

Reliability

Security

Bindings

Addressing

Reliability

Security

Bindings

Addressing

Reliability

Security

268 IBM WebSphere Application Server V7.0 Web Services Guide

� The ability to import a policy set from the WebSphere Application Server
administrative console

� The ability to import a policy set that already exists by renaming the newly
imported policy set

This capability makes it easier for users to share policy set configurations
across systems.

� The ability to import only default policy sets that are needed and to delete
default policy sets, since they can be re-imported, if necessary

� The ability to import and export a general cell-level binding and to copy an
existing general cell-level binding

� The ability to attach policy sets to WS-Notification service client endpoints

6.4 Policy set administration
In the following sections we explain how to manage and administer policy sets in
a WebSphere Application Server V7 environment, which includes how to perform
the tasks in the following sections:

� 6.4.2, “Viewing policy sets” on page 271
� 6.4.3, “Attaching a policy set to a Web service” on page 273
� 6.4.4, “Using a customized policy set” on page 284
� 6.4.5, “Configuring the application-specific bindings” on page 291
� 6.4.6, “Configuring general bindings” on page 306

First we briefly discuss the life cycle of a policy set.

6.4.1 Policy set life cycle

Rather than starting from scratch, create new policy sets by copying existing
ones. Then modify the copies to configure them to your QoS requirements.

You attach a policy set to an application, service, endpoint, or operation either at
deployment or after an application is deployed. When a policy set is attached, the
application must be restarted to pick up the configuration changes.

Unless the child resources of an application are attached directly to another
policy set, a policy set associated with a resource at any level is inherited by any
resources underneath that resource. An application-level attachment is inherited
by all child services, endpoints, and operations. A service-level attachment is
inherited by all child endpoints and operations. An endpoint-level attachment is
inherited by all child operations.

 Chapter 6. Policy sets 269

Existing user-defined policy sets are modifiable. However, because of
unintended side effects, make a copy of a policy set and work with the copy. It is
safer to work with an unattached policy set, such as a new copy. However,
modifying an attached policy set alters the configuration for a deployed
application, although the changes are not made until the application is restarted.

If the changes were intended to affect a particular application, and the application
is not restarted for days or weeks, perhaps on a different shift, then there is a
greater possibility for confusion. To help alert you to any problems, a warning
message informs the administrator that specific endpoints will be affected. After
changes are made, the associated application must be restarted for the changes
to take effect.

270 IBM WebSphere Application Server V7.0 Web Services Guide

6.4.2 Viewing policy sets

To view policy sets from the WebSphere administrative console:

1. Log in to the console.

2. In the left navigation area, expand Services → Policy sets (Figure 6-4). Two
types of policy sets are listed:

– Application policy sets are used by application resources.

– System policy sets are used by system resources, such as the Security
Token Service. See Chapter 10, “WS-SecureConversation” on page 471,
to learn more about system policy sets.

Figure 6-4 Application policy sets

 Chapter 6. Policy sets 271

Default policy set bindings are also provided and listed here to minimize the
configuration required by the policy sets.

Select Application policy sets.

The right pane shows the available policy sets, including a description of the
qualities of service provided by the policy set. From this pane, you can create,
copy, delete, import, and export policy sets. You are only allowed to modify user
policy sets.

When you click a policy set name, the configuration opens. If the policy set is a
user policy set, the fields on the configuration pages are editable. If the policy set
is provided as a default, the policy set cannot be changed.

Reviewing the list of the policy sets
Default policy sets are provided with WebSphere Application Server V7 so that
users can immediately and quickly configure most qualities of service (for
example, the WS-I RSP policy set enables WS-ReliableMessaging,
WS-Addressing, and WS-Security). To view the WS-I RSP policy set, click WS-I
RSP on the page shown in Figure 6-4 on page 271. Figure 6-5 shows the result.

Figure 6-5 Details of the WS-I RSP policy set

272 IBM WebSphere Application Server V7.0 Web Services Guide

As you can see, the WS-I RSP policy set consists of the WS-Addressing,
WS-ReliableMessaging, and WS-Security policy types.

6.4.3 Attaching a policy set to a Web service

In this section we take you through an example of applying the WS-Addressing
policy set. We also monitor the SOAP messages to confirm that the
WS-Addressing policy set is successfully applied.

Preparing for the sample
The example application used in this chapter is the WeatherJavaBean
application. It is similar to the application discussed in 4.2.2, “Web services
development from an existing Java bean” on page 183.

The instructions in this chapter assume that you are using Rational Application
Developer V7.5 with its integrated WebSphere Application Server V7 test
environment. To follow along with the instructions, you can download the sample
application, import it into a workspace, and install it to the test environment.

Downloadable material: The examples in this chapter use the
WeatherJavaBean application. This application is included in the download
material for this book in the WeatherBase/WeatherWebService.zip archive.

The project interchange file contains the following projects:

� WeatherBase: contains the core weather classes used by the applications
(See 3.1.1, “The WeatherForecast application packages” on page 148.)

� WeatherJavaBeanServer: the Web service provider application

� WeatherJavaBeanWebClient: the Web service client application

For information about downloading the material, see Appendix A, “Additional
material” on page 537.

For information about importing the application into your workspace, installing
it on the server, and testing it, see “Using the WeatherJavaBean application”
on page 543.

 Chapter 6. Policy sets 273

Attaching a WS-Addressing policy set
To apply the WS-Addressing default policy set to the Web services and Web
services client:

1. In the administrative console (Figure 6-6) expand Services → Service
providers to display a list of Web services.

Figure 6-6 Selecting the WeatherJavaBeanService to configure it with a policy

2. In the right pane, click WeatherJavaBeanService to configure it with a policy.

274 IBM WebSphere Application Server V7.0 Web Services Guide

3. On the Policy Set Attachments page:

a. From the list of services, endpoints, and operations, select
WeatherJavaBeanService (Figure 6-7).

b. Click Attach Policy Set.

Figure 6-7 Attaching a policy set to the Weather Web service

A Web service has three levels of generality:

• Service
• Endpoint
• Operation

The service level is the most general, and the operation level is the most
specific. The most specific attachment that applies is used for a given
invocation of a Web service. For example, if you create attachments to
both a Web service and an operation in that service, invocations of the
operation use the attachment for the operation, but invocations of other
operations use the attachment for the service.

 Chapter 6. Policy sets 275

In this example we apply the policy at the service level by attaching a
policy set to the Weather Web service.

c. From the list of available policy sets to attach, select WSAddressing
default (Figure 6-8).

Figure 6-8 Attaching a WSAddressing default policy set

The WS-Addressing default policy set is applied to the
WeatherJavaBeanService (Figure 6-9).

Figure 6-9 Attached WSAddressing default policy set

4. Save the changes.

276 IBM WebSphere Application Server V7.0 Web Services Guide

5. In the left navigation pane, under Services, select Service clients.

6. From the list of service clients, click WeatherJavaBeanService (Figure 6-10).

Figure 6-10 Service clients page

7. On the configuration page (Figure 6-11), select WeatherJavaBeanService.
Click Attach Client Policy Set, and from the list of available policy sets to
attach, select WSAddressing default.

Figure 6-11 Attaching the WS-Addressing default to the client

8. Save the changes to the master configuration.

9. Restart the service and the client for the configuration changes to take effect.

 Chapter 6. Policy sets 277

10.On the next page:

a. In the left navigation pane, select Applications → Application Types →
WebSphere Enterprise Applications.

b. In the right pane (Figure 6-12):

i. Select WeatherJavaBeanServer and
WeatherJavaBeanWebClientEAR and click Stop.

ii. Select both applications again and click Start.

Figure 6-12 Stopping and then starting WeatherJavaBeanServer and WeatherJavaBeanWebClientEAR

The WS-Addressing default policy set is applied to the weather Web service and
Web service client. To ensure that the policy has taken effect, monitor the SOAP
traffic to see whether WS-Addressing information is added to the SOAP
message.

Monitoring the SOAP traffic
Rational Application Developer provides a TCP/IP monitor that you use to
monitor SOAP traffic over HTTP. The TCP/IP monitor acts as an intermediary
between a Web service and its client. The client calls the TCP/IP address of the
monitor rather than the SOAP endpoint. The monitor is configured to forward the
request to the endpoint, and if it is a two-way request/reply, return the response
to the start point, which is the client, unless a different endpoint for the reply is
used.

To monitor the SOAP traffic:

1. Start Rational Application Developer if it is not already running.

2. Select Window → Preferences → Run/Debug → TCP/IP Monitor and click
Add. The New Monitor window opens.

278 IBM WebSphere Application Server V7.0 Web Services Guide

Alternatively, on the Servers tab, right-click the server name and select
Monitoring → Properties → Add. Then the Monitoring Ports window opens.

Although the windows are different, you can achieve the same result with
either one. In this example, we use the New Monitor window.

3. In the New Monitor window (Figure 6-13):

a. In the Local monitoring port field, specify a unique port number on your
local machine that is not used by any process (for example, 9089).

b. In the Host name field, type localhost.

c. For port, specify the port number of your WebSphere Application Server
V7 for Web services provider.

d. Select Start monitor automatically.

e. Click OK.

Figure 6-13 Creating a new TCP/IP monitor

4. Click OK again to close the preferences window.

 Chapter 6. Policy sets 279

The TCP/IP Monitor starts (Figure 6-14).

Figure 6-14 TCP/IP monitor started

5. Open a Web browser and run the sample JSP client. For example, if your
server is running at port 9080, enter the following URL:

http://localhost:9080/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

6. When the sample Web service JSP client opens in the browser, in the bottom
pane, change the endpoint from 9080 to 9089. This value points to the port to
which the TCP/IP monitor is listening.

280 IBM WebSphere Application Server V7.0 Web Services Guide

As shown on the Web service Test Client page (Figure 6-15), in the Quality of
Service pane, the URL is as follows:

http://localhost:9089/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

Figure 6-15 Updating the Web service endpoint

 Chapter 6. Policy sets 281

7. On the Web service Test Client page, in the Methods pane, click the
getDayForecast method. In the upper right pane, type a value for arg0. You
can copy and paste the example value provided by the JSP client. In this
case, we use 2009-04-10T16:22:19. Click Invoke. Figure 6-16 shows the
result.

Figure 6-16 Web services result

282 IBM WebSphere Application Server V7.0 Web Services Guide

8. In the TCP/IP Monitor view, which opens automatically, in the upper right
corner, select XML for the request and response to view its contents
(Figure 6-17).

Figure 6-17 Using TCP/IP Monitor to watch the SOAP traffic

Look at the WS-Addressing information in the SOAP request:

� <wsa:to> specifies the destination of the SOAP message.
� <wsa:MessageID> is the unique identifier for the SOAP message.
� <wsa:Action> is the in-envelope version of the SOAP HTTP Action header.

This information shows that the WS-Addressing policy set is successfully applied
to the Weather Web service and its client.

Cleaning up the sample
To proceed with the next sample, we must restore the application to the original
state. If you are using a standalone server, to detach the WS-Addressing policy:

1. Detach the service provider’s policy set:

a. In the administrative console, expand Services → Service providers.
b. Click WeatherJavaBeanService.
c. Select WeatherJavaBeanService.
d. Click Detach Policy Set.
e. Click Save.

2. Detach the service client’s policy set:

a. Expand Services → Service clients.
b. Click WeatherJavaBeanService.
c. Select WeatherJavaBeanService.
d. Click Detach Client Policy Set.
e. Click Save.

 Chapter 6. Policy sets 283

3. Restart the applications:

a. In the navigation pane, select Applications → Application Types →
WebSphere Enterprise Applications.

b. Select WeatherJavaBeanServer and WeatherJavaBeanWebClientEAR.

c. Click Stop.

d. After the applications stop, click Start.

If you are using Rational Application Developer and its integrated WebSphere
Application Server:

1. Right-click WebSphere Application Server V7.0 and select Add and
Remove Projects.

2. In the Add and Remove Projects window, select Remove All to uninstall the
Web service and the client.

Note that after you uninstall the Web service and the client application, the
specific policy set and the binding that are attached with the Web service
application are also gone.

3. Right-click WebSphere Application Server V7.0 and select Add and
Remove Projects.

4. In the Add and Remove Projects window, select Add All to install the Web
service and the client.

You now have a fresh Web service and client without the policy set and binding
attached.

6.4.4 Using a customized policy set

WebSphere Application Server V7 ships several default policy sets that are
configured for use and are available as a template that you can copy and
customize to suit your applications. In this example, we apply a custom policy set
to the WeatherJavaBean application. Here is a summary of the requirements:

� Enable WS-Addressing, providing a transport-neutral way to uniformly
address Web services and messages.

� Encrypt the message body of the SOAP request by using RSA encryption.
The SOAP response is not required to be encrypted.

� Message integrity is not required.

None of the default policy sets matches these requirements exactly. Note that the
WS-Security default policy set most closely meets our needs. Therefore, we use
the WS-Security default policy set as a template to create our own policy set.

284 IBM WebSphere Application Server V7.0 Web Services Guide

Keystores for the sample
Two keystores that contain the keys are provided with this book as part of the
downloadable material:

� The receiver.jks keystore
� The sender.jks keystore

Table 6-1 indicates the properties of the keystores.

Table 6-1 Keystore properties

When the Web service consumer sends a SOAP request to the Web service
provider, it encrypts the message with the Web service provider’s public key.
When the Web service provider receives the encrypted message, it uses its own
private key to decrypt the message.

Downloadable material: You can find the keystore files in the downloadable
material in the Chapter6/PolicySet.zip file. For more information see
Appendix A, “Additional material” on page 537.

To use the files as we do in this section, extract the keystore files and place
them in the location indicated in the first row of Table 6-1.

Property Service Client

Key store path C:\ITSO7758\PolicySet\
receiver.jks

C:\ITSO7758\PolicySet\
sender.jks

Key store type JKS JKS

Key store password itso itso

Key alias mark henry

Distinguished name cn=server,o=IBM, c=US cn=client,o=IBM, C=US

Certificate file server.arm client.arm

 Chapter 6. Policy sets 285

For our example, Henry represents the Web services consumer and Mark
represents the Web services provider. Henry uses Mark’s public key to encrypt
the SOAP request, and Mark uses his own private key to decrypt the SOAP
request (Figure 6-18).

Figure 6-18 Customized policy set example scenario

Creating the custom policy set
To create our custom policy set, in the WebSphere administrative console:

1. In the left navigation pane, select Services → policy sets → Application
policy sets.

2. In the right pane, click New.

a. In the Name field, type ITSO WSSecurity.
b. Under the Policies section, click Add and select WS-Addressing.
c. Under the Policies section, click Add and select WS-Security.
d. Click OK.
e. Click Save.

3. Because this scenario encrypts only the body, update the WS-Security policy:

a. Click ITSO WSSecurity to open the policy set.

b. Click WS-Security.

Henry

SOAP body
encrypted with

Mark's public key

Mark's
Certificate

Store

Mark

Public key

Private key

286 IBM WebSphere Application Server V7.0 Web Services Guide

c. Click the Main policy button to open the Main policy configuration page
(Figure 6-19).

Figure 6-19 Main policy page

 Chapter 6. Policy sets 287

d. On the Main policy page (Figure 6-19 on page 287), click the Request
message part protection link. This opens the panel shown in
Figure 6-20.

Figure 6-20 Request message part protection page

e. For this scenario, apply only message encryption. The digital signature is
not required.

i. Under the Integrity protection section (Figure 6-20), select
app_signparts and click Delete. Then click Save.

288 IBM WebSphere Application Server V7.0 Web Services Guide

ii. Under Encrypted parts, select app_encparts and click Edit.

Figure 6-21 Editing the encrypted parts

 Chapter 6. Policy sets 289

iii. Because you encrypt the body only, remove the UsernameToken
encryption in the SOAP header. In the Elements in Part section
(Figure 6-21 on page 289), select each XPath expression and then
click Remove. The results are shown in Figure 6-22.

Figure 6-22 Encrypted message body

iv. Click Apply and then click Save.

f. In the navigation path, click Main policy to return to the Main policy page.

g. Click Response message part protection. The response message does
not have to be secured.

h. On the Response message part protection page:

i. In the Confidentiality section, select app_encparts and click Delete.

ii. In the Integrity protection section, select app_signparts and click
Delete.

iii. Click Save.

You have now created the customized policy set. Next attach the customized
policy set to the Web service and client.

290 IBM WebSphere Application Server V7.0 Web Services Guide

Attaching the custom policy set to the Web service
To attach the ITSO WSSecurity policy set to the WeatherJavaBean application:

1. In the navigation pane, click Services → Service providers.

2. Click WeatherJavaBeanService.

3. Select WeatherJavaBeanService. Click Attach Policy Set and from the list,
select ITSO WSSecurity.

4. Click Save.

You have now attached the policy set and binding to the Web service.

Assigning the custom policy set to the Web service client
To attach the custom policy set to the Web service client:

1. In the navigation pane, click Services → Service clients.

2. Click WeatherJavaBeanService.

3. Select WeatherJavaBeanService. Click Attach Client Policy Set and from
the list, select ITSO WSSecurity.

4. Click Save.

You have now attached the policy set and binding to your Web service client.

6.4.5 Configuring the application-specific bindings

In this section, you configure the application-specific binding for the
WeatherJavaBeanService service. You configure XML encryption for the request
message. On the client side, you use Mark’s public key to encrypt the SOAP
request. On the service side, you use Mark’s private key to decrypt the inbound
message (Figure 6-18 on page 286).

Configuring the Web service binding
In this section, you configure the custom binding for the
WeatherJavaBeanService service. You configure the XML encryption to decrypt
the request message by using Mark’s private key.

To configure the Web service binding:

1. In the administrative console, expand Services → Service providers.

2. Click WeatherJavaBeanService to open the configuration page.

 Chapter 6. Policy sets 291

3. Check WeatherJavaBeanService, click Assign Binding, and select New
Application Specific Binding (Figure 6-23).

Figure 6-23 Selecting New Application Specific Binding

4. On the next page:

a. For the bindings configuration name, type ITSO-service.

b. Click Add and select WS-Addressing. Click OK.

292 IBM WebSphere Application Server V7.0 Web Services Guide

c. Click Add and select WS-Security. This opens the pane shown in
Figure 6-24. From this window you will configure the WS-Security
bindings.

Figure 6-24 WS-Security policy bindings

5. To begin the configuration of the server protection token click Authentication
and protection.

Server protection token: In the steps that follow, you configure the server
protection token. First, you configure the protection token to encrypt the
request message, and then you configure the way in which the message is
encrypted.

 Chapter 6. Policy sets 293

6. On the Authentication and protection page (Figure 6-25), because the Web
services provider only has to decrypt the SOAP request, only configure the
asymmetric encryption consumer. Click
AsymmetricBindingRecipientEncryptionToken0.

Figure 6-25 Authentication and protection page

294 IBM WebSphere Application Server V7.0 Web Services Guide

7. Verify that the JAAS login is wss.consume.x509 and click Apply to generate
a callback handler binding (Figure 6-26).

Figure 6-26 Generate callback handler binding

 Chapter 6. Policy sets 295

8. Click Callback handler (which is now available) to open the configuration
page (Figure 6-27).

Figure 6-27 Callback handler configuration page

9. On the Callback Handler configuration page:

a. In the Certificates section, make sure that Trust any certificate is
selected.

b. In the Keystore section, for the name, select Custom and then click
Custom keystore configuration.

296 IBM WebSphere Application Server V7.0 Web Services Guide

10.On the Custom keystore configuration page (Figure 6-28):

a. In the Keystore section, for full path, enter the name for the receiver.jks
keystore of C:\ITSO7758\PolicySet\receiver.jks.

b. For type, select JKS.

c. For password and confirm password, type itso.

d. Under Key, in the Name field, type cn=server,o=IBM, C=US.

e. In the Alias field, type mark.

f. For key password and confirm password, type itso.

Figure 6-28 Custom keystore configuration

 Chapter 6. Policy sets 297

g. Click OK to close the panel.

11.Click OK again to close the callback handler configuration page.

12.Click OK to close the AsymmetricBindingRecipientEncryptionToken0
configuration.

You return to the page shown in Figure 6-25 on page 294. The
AsymmetricBindingRecipientEncryptionToken0 is now configured.

13.Click Save.

14.For the other three protection tokens, change their status to configured. It is
not necessary to adjust their configuration.

a. Click AsymmetricBindingInitiatorEncryptionToken0. Click OK.
b. Click AsymmetricBindingInitiatorSignatureToken0. Click OK.
c. Click AsymmetricBindingRecipientSignatureToken0. Click OK.
d. Click Save.

15.In the Authentication and protection page (see Figure 6-25 on page 294),
under Request message signature and encryption protection, click
request:app encparts.

a. In the Name field, type req-enc-part and click Apply.

b. Under Key information, click New.

i. Enter req-enc-keyinfo for the name.

ii. Ensure that AsymmetricBindingRecipientEncryptionToken0 is
selected for token generator or consumer name.

i. Click OK.

c. Under Key information, select req-enc-keyinfo. Click Add, and then click
OK.

d. Click Save.

Configuring the server request message encryption protection: Under
Request message signature and encryption protection, request:app
encparts must still be configured. The next series of steps performs this
configuration.

298 IBM WebSphere Application Server V7.0 Web Services Guide

You have now configured the binding for the Web services (Figure 6-29).

Figure 6-29 WS-Security configured for the service

Configuring the WeatherJavaBeanService client bindings
In this section, you configure the custom binding for the
WeatherJavaBeanService client. You configure the XML encryption to encrypt
the request message by using Mark’s public key. Again, there are two parts to the
configuration. The first is the protection token and second is the message
configuration.

 Chapter 6. Policy sets 299

Configuring the client protection token
To configure the client protection token:

1. In the navigation pane, click Services → Service clients.

2. Click WeatherJavaBeanService.

3. Check the WeatherJavaBeanService. Click Assign Binding and select New
Application Specific Binding.

a. Type ITSO-client as the name.
b. Click Add and select WS-Security.

4. In the WS-Security configuration page, click Authentication and protection.

5. In the authentication and protection configuration panel, click
AsymmetricBindingRecipientEncryptionToken0.

a. Verify that JAAS login is wss.generate.x509.
b. Click Apply to generate a callback handler binding.

6. Click Callback handler.

a. In the Keystore section, select Custom and then click Custom keystore
configuration.

b. On the Custom keystore configuration page:

i. Enter the full path name for the sender.jks keystore, such as
C:\ITSO7758\PolicySet\sender.jks.

ii. For type, select JKS.

iii. For password and confirm password, type itso.

iv. Under Key, in the Name field, type cn=client,o=IBM,C=US.

v. In the Alias field, type mark.

vi. Click OK to close the custom keystore configuration.

7. Click OK to close the callback handler configuration.

8. Click OK to close the AsymmetricBindingRecipientEncryptionToken0
configuration.

9. Click Save. The AsymmetricBindingRecipientEncryptionToken0 is now
configured.

10.For the other three protection tokens, change their status to configured. You
do not have adjust their configuration.

a. Click AsymmetricBindingInitiatorEncryptionToken0 and click OK.
b. Click AsymmetricBindingInitiatorSignatureToken0 and click OK.
c. Click AsymmetricBindingRecipientSignatureToken0 and click OK.
d. Click Save.

300 IBM WebSphere Application Server V7.0 Web Services Guide

The results are shown in Figure 6-30.

Figure 6-30 WS Security authentication and protection custom bindings

 Chapter 6. Policy sets 301

Configuring client request message encryption protection
To configure the client request message encryption protection:

1. Under Request message signature and encryption protection (Figure 6-30 on
page 301), click request:app encparts.

a. In the Name field, type req-enc-part.

b. Under Key information, click New.

On the next page:

i. For name, type req-enc-keyinfo.

ii. Under Type, select Key identifier.

iii. For token generator or consumer name, ensure that
AsymmetricBindingRecipientEncryptionToken0 is selected.

iv. Click OK to close the key information configuration panel.

2. Click OK again to close the request message signature and encryption
protection configuration.

3. Click Save.

Restarting the Web service and client
Restart the service and the client application for the configuration changes to
take effect:

1. In the navigation pane, select Applications → Application Types →
WebSphere Enterprise Applications.

2. Select WeatherJavaBeanServer and WeatherJavaBeanWebClientEAR.

3. Click Stop.

4. After the applications stop, click Start.

The ITSO WSSecurity custom policy set is now applied to the Web service and
its client. To ensure that the policy set has taken effect, examine the SOAP traffic
to see whether WS-Security information is added to the SOAP message.

Monitoring the SOAP traffic
You use the TCP/IP monitor shipped with Rational Application Developer to
watch the SOAP traffic to make sure that the SOAP request is encrypted. To
monitor the SOAP traffic, do the following tasks:

1. Start Rational Application Developer if it is not already running.

2. Click Window → Preferences → Run/Debug → TCP/IP Monitor.

3. Select the monitor that was created in “Monitoring the SOAP traffic” on
page 278.

302 IBM WebSphere Application Server V7.0 Web Services Guide

4. Click Start if the status is stopped.

5. Open a Web browser and enter a URL with the host name and port set as
follows:

http://<hostname>:port/WeatherJavaBeanWebClient/sampleWeatherJavaBea
nPortProxy/TestClient.jsp

For example, if your server is running at port 9080, you might enter the
following URL:

http://localhost:9080/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

6. In the bottom pane of the sample Web service JSP client that opens in the
browser, change the endpoint from 9080 to 9089. This endpoint points to a
port to which the TCP/IP monitor is listening. The URL must be displayed as
follows:

http://localhost:9089/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

7. Click the getDayForecast method and enter a value for arg0. You can copy
and paste the example value that is provided by the JSP client, such as
2009-04-10T16:22:19. Click Invoke.

8. In the TCP/IP monitor view, which opens automatically, select the XML format
for the request and response to view its contents. Example 6-1 shows the
(formatted) SOAP request.

Example 6-1 Encrypted SOAP request message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

<s:Security xmlns:d="http://www.w3.org/2000/09/xmldsig#"
xmlns:e="http://www.w3.org/2001/04/xmlenc#"

xmlns:s="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
soapenv:mustUnderstand="1">
<u:Timestamp>

<u:Created>2009-04-13T15:58:37.828Z
</u:Created>

</u:Timestamp>
<e:EncryptedKey>

Tip: A quick way to format the XML results is to create a new file with a
.xml extension in Rational Application Developer and paste the XML trace
into it. Right-click the contents and select Source → Format.

 Chapter 6. Policy sets 303

<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
<d:KeyInfo>

<s:SecurityTokenReference>
<s:KeyIdentifier

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509S
ubjectKeyIdentifier">vmFljXX4Bpp4awaZeM3pL9nPf3s=

</s:KeyIdentifier>
</s:SecurityTokenReference>

</d:KeyInfo>
<e:CipherData>

<e:CipherValue>NRt ... =</e:CipherValue>
</e:CipherData>
<e:ReferenceList>

<e:DataReference URI="#w_20" />
</e:ReferenceList>

</e:EncryptedKey>
</s:Security>
<wsa:To>

http://localhost:9089/WeatherJavaBeanWeb/WeatherJavaBeanService
</wsa:To>
<wsa:MessageID>urn:uuid:68ADA74396C3B417C61239638321837
</wsa:MessageID>
<wsa:Action>

http://bean.itso/WeatherJavaBeanDelegate/getDayForecastRequest
</wsa:Action>

</soapenv:Header>
<soapenv:Body>

<e:EncryptedData xmlns:e="http://www.w3.org/2001/04/xmlenc#"
Id="w_20" Type="http://www.w3.org/2001/04/xmlenc#Content">
<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc" />
<e:CipherData>

<e:CipherValue>N0v ... /0=</e:CipherValue>
</e:CipherData>

</e:EncryptedData>
</soapenv:Body>

</soapenv:Envelope>

You should see WS-Addressing information in the SOAP header. The SOAP
message body is encrypted. Therefore, the ITSO WSSecurity custom policy set
is successfully applied.

304 IBM WebSphere Application Server V7.0 Web Services Guide

Example 6-2 shows the unencrypted response message.

Example 6-2 SOAP response

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<s:Security

xmlns:s="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
soapenv:mustUnderstand="1">
<u:Timestamp>

<u:Created>2009-04-13T15:58:37.937Z
</u:Created>

</u:Timestamp>
</s:Security>
<wsa:Action>

http://bean.itso/WeatherJavaBeanDelegate/getDayForecastResponse
</wsa:Action>
<wsa:RelatesTo>urn:uuid:68ADA74396C3B417C61239638321837
</wsa:RelatesTo>

</soapenv:Header>
<soapenv:Body>

<ns2:getDayForecastResponse xmlns:ns2="http://bean.itso/">
<return>

<condition>sunny</condition>
<date>2009-04-13T00:00:00-04:00</date>
<dbflag>true</dbflag>
<temperatureCelsius>17</temperatureCelsius>
<windDirection>NW</windDirection>
<windSpeed>26</windSpeed>

</return>
</ns2:getDayForecastResponse>

</soapenv:Body>
</soapenv:Envelope>

The response has the WS-Addressing correlation information for routing the
reply in the SOAP header. Note that the uuid matches the request. The SOAP
header also contains security tags, although they are not used.

Cleaning up the sample
To proceed with the next sample, restore the application to the original state.
Follow the instructions in “Cleaning up the sample” on page 283 to clean up the
sample.

 Chapter 6. Policy sets 305

6.4.6 Configuring general bindings

General bindings can be configured to be used across a range of policy sets.
They can also be reused across applications and for trust service attachments.
Since binding configuration can be time consuming and complex, this capability
can reduce the number of bindings that must be configured. Users can configure
a binding once and reuse it for multiple policy sets, even if the policy sets are for
resources in different applications.

The general bindings that ship with WebSphere Application Server are initially
set as the default bindings. However, you can choose a different binding as the
default or change the level of binding that should be used as the default, for
example, from cell-level binding to server-level binding. Default bindings are used
when no application-specific binding or trust service binding is assigned to a
policy set attachment.

In this section you configure a general binding and then apply it to the
WeatherJavaBeanService service. You also configure XML encryption for the
request message. On the client side, you use Mark’s public key to encrypt the
SOAP request. On the service side, you use Mark’s private key to decrypt the
inbound message.

Creating the general provider policy set binding
To create the general provider policy set binding:

1. In the administrative console (Figure 6-31 on page 307):

a. In the left navigation pane, expand Services → Policy sets and click
General provider policy set bindings.

WebSphere Application Server V7 includes provider and client sample
bindings for testing purposes. In the bindings, the product provides sample
values for supporting tokens for different token types, such as the X.509
token and the username token. The bindings also include sample values
for message protection information for token types such as X.509. Both
provider and client sample bindings can be applied to the applications that
are attached with a policy set. The sample bindings can be used as a base
by making a copy of the bindings and then modifying the copy for your
application needs. For example, you must change the key and keystore
settings to ensure security and modify the binding settings to match your
environment.

b. In the right pane, select Provider sample and then click Copy.

306 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 6-31 General provider policy set bindings

2. On the next page, for name, type ITSO provider binding. Click OK and then
click Save.

3. Click ITSO provider binding.

4. On the next page for the binding, from the list of policies, click WS-Security.

5. Click Authentication and protection.

 Chapter 6. Policy sets 307

6. On the service side, use Mark’s private key to decrypt the inbound message.
Click con_encx509token (Figure 6-32).

Figure 6-32 Updating the decryption for the service provider

7. Click Callback handler.

8. Click Custom keystore configuration.

On the Custom keystore configuration page (Figure 6-28 on page 297):

a. In the Keystore section, for full path, update the name to point to the new
receiver.jks keystore, for example C:\ITSO7758\PolicySet\receiver.jks.

b. For type, select JKS.

c. For password and confirm password, type itso.

d. Under Key, in the Name field, type cn=server, o=IBM, C=US.

e. In the Alias field, type mark.

f. For password and confirm password, type itso.

g. Click OK to close the custom keystore configuration.

9. Click OK again to close the callback handler configuration.

10.Click OK to return to the list of general provider policy set bindings.

11.Save the configuration.

308 IBM WebSphere Application Server V7.0 Web Services Guide

Creating the general client policy set binding
To create the general client policy set binding:

1. In the administrative console, select Services → Policy sets → General
client policy set bindings.

2. Select Client sample and then click Copy.

3. For name, type ITSO client binding. Click OK.

4. Click Save.

5. Click ITSO client binding.

6. Click WS-Security.

7. Click Authentication and protection.

8. On the client side, use Mark’s public key to encrypt the SOAP request. Click
gen_encx509token.

9. Click Callback handler.

10.Click Custom keystore configuration.

On the Custom keystore configuration page:

a. Enter the full path name for the sender.jks keystore, such as
C:\ITSO7758\PolicySet\sender.jks.

b. Select JKS as the type.

c. For password and confirm password, enter itso.

d. Select JKS as the type.

e. For password and confirm password, enter itso.

f. Under Key, in the Name field, type cn=client, o=IBM, C=US.

g. In the Alias field, type mark.

h. Click OK to close the custom keystore configuration.

11.Click OK to close the callback handler configuration.

12.Click OK again to return to the list of general client policy set bindings.

13.Click Save.

Applying the policy set and binding to the service and client
Attach the ITSO WSSecurity policy set and the general binding to the
WeatherJavaBean application:

1. Assign the policy set to the weather forecast Web service:

a. In the navigation pane, click Services → Service providers.
b. Click WeatherJavaBeanService.

 Chapter 6. Policy sets 309

c. Select WeatherJavaBeanService.
d. Click Attach Policy Set, and from the list select ITSO WSSecurity.
e. Select WeatherJavaBeanService again.
f. Click Assign Binding, and from the list select ITSO provider binding.
g. Save the configuration.

2. Assign the policy set to the client:

a. In the navigation pane, click Services → Service clients.
b. Click WeatherJavaBeanService.
c. Select WeatherJavaBeanService.
d. Click Attach client policy set, and from the list select ITSO WSSecurity.
e. Select WeatherJavaBeanService.
f. Click Assign Binding, and from the list select ITSO client binding.

3. Save the configuration.

4. Restart the application for the configuration changes for the general binding to
take effect:

a. In the navigation pane, select Applications → Application Types →
WebSphere Enterprise Applications.

b. Select WeatherJavaBeanServer and WeatherJavaBeanWebClientEAR.

c. Click Stop.

d. After the applications stop, click Start.

5. Follow the instructions in “Monitoring the SOAP traffic” on page 278 to test
your application. You should see WS-Addressing information in the SOAP
header. The SOAP message body is encrypted.

Exporting the customized policy set and general binding
After you configure the custom policy set and the general binding, you can export
them from one system to another. Both the policy set and the binding are
exported as an archive file, which can be imported to another system by using
the import policy set and binding function. With this approach, you can configure
the file once and reuse it for multiple systems. You can also import the policy set
and the binding into a development environment such as Rational Application
Developer. This is extremely useful, as the binding configuration can be time
consuming and complex.

To export the customized policy set and general binding:

1. In the administrative console, expand Services → Policy sets →
Application policy sets.

2. Select ITSO WSSecurity and click Export.

310 IBM WebSphere Application Server V7.0 Web Services Guide

3. Select ITSO WSSecurity.zip and click Save to save the file to your local
drive.

4. Expand Services → Policy sets → General provider policy set bindings.

5. Select ITSO provider binding and click Export.

6. Click ITSO provider binding.zip and click Save to save the file to your local
drive.

7. Expand Services → Policy sets → General client policy set bindings.

8. Select ITSO client binding and click Export.

9. Click ITSO client binding.zip and then click Save to save the file to your local
drive.

6.4.7 Exploring the integration with multiple security domains

WebSphere Application Server V7 offers multiple security domain support. With
this feature you can create multiple security configurations and assign them to
different applications in WebSphere Application Server processes. By creating
multiple security domains, you can configure different security attributes for both
administrative and user applications within a cell environment. You can configure
each application to use a different security configuration by assigning the security
domain to the server, cluster, or service integration bus that hosts the application.
For instructions on how to configure multiple security domains, see “Achieving
Web services interoperability between the WebSphere Web services Feature
Pack and Windows® Communication Foundation, Part 2: Configure and test
WS-Security” in IBM developerWorks at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/V7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/csec_sec_multiple_domains.html

 Chapter 6. Policy sets 311

http://publib.boulder.ibm.com/infocenter/wasinfo/V7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_sec_multiple_domains.html
http://publib.boulder.ibm.com/infocenter/wasinfo/V7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_sec_multiple_domains.html

In support of multiple security domains, each of the general bindings is scoped to
a security domain (Figure 6-33). With domain scoping, applicable configuration
settings in the bindings, such as Java Authentication and Authorization Service
(JAAS) logins, are constrained based on the configuration attributes of the
assigned domain. The default domain for bindings is the global security domain.
The bindings scoped to the global security domain are available for all
attachments, regardless of the domain in which the attached resource resides.

Figure 6-33 Multiple security domains for the general binding

6.4.8 Configuring policy sets by using wsadmin scripting

The WebSphere Application Server wsadmin tool gives you the ability to run
scripts by using the JACL and Jython scripting languages. You can use the
wsadmin tool to configure application or system policy sets for Web services. For
instructions about how to configure policy sets by using wsadmin scripting, see

312 IBM WebSphere Application Server V7.0 Web Services Guide

the “Configuring application and system policy sets for Web services using
wsadmin scripting” topic in the WebSphere Application Server V7 Information
Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/txml_wsfpsecurewebservices.html

6.5 Rational Application Developer support

Several policy sets are included with WebSphere Application Server V7, which
are available in the Rational Application Developer workbench. Policy sets are
attached to Web services and clients by using a wizard. All policy sets that are
attached to the service are listed. More can be added or removed. Policy sets are
also modifiable by using Rational Application Developer.

You can import policy sets and general bindings into Rational Application
Developer. By doing so, you can work with policy sets and bindings that are
exported from a production environment. You can also create application-specific
client-side bindings with Rational Application Developer.

In this section we show how to use the tools that ship with Rational Application
Developer to apply a policy set to the weather forecast Web service.

6.5.1 Importing the policy set and general binding into the workspace

To import policy sets into your workspace:

1. From the main menu, click File → Import.

 Chapter 6. Policy sets 313

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/txml_wsfpsecurewebservices.html

2. In the Import window (Figure 6-34), expand Web services and select
WebSphere Policy Sets. Click Next.

Figure 6-34 Importing WebSphere Policy Sets

3. Click Browse and select the ITSO WSSecurity.zip file that you created in
“Exporting the customized policy set and general binding” on page 310. Click
Finish.

To import the general Web service provider binding into your workspace:

1. From the main menu, click File → Import.

2. In the Import window, expand Web services and select WebSphere Named
Bindings. Click Next.

3. Click Browse and select the ITSO provider binding.zip file that you created
in “Exporting the customized policy set and general binding” on page 310.
Click Finish.

To import the general Web service client binding into your workspace:

1. From the main menu, click File → Import.

2. In the Import window, expand Web services and select WebSphere Named
Bindings. Click Next.

314 IBM WebSphere Application Server V7.0 Web Services Guide

3. Click Browse and select the ITSO client binding.zip file that you created in
“Exporting the customized policy set and general binding” on page 310. Click
Finish.

To verify that the policy set and the general binding are imported successfully,
click Window → Preferences. In the left pane of the Preferences window
(Figure 6-35), select Service Policies. In the right pane of the Preferences
window, you see the policy set and general bindings.

Figure 6-35 Service Policies in the Preferences window

6.5.2 Attaching a policy set and general binding to a service provider

You can apply a policy set at the service, port, or operation level of a Web
service. Different policy sets can be applied to various endpoints and operations
within a single Web service. However, the service and client must have the same
policy set settings. This example applies a policy set to all operations.

 Chapter 6. Policy sets 315

To attach a policy set and general binding to a service provider:

1. In the Services view, expand the JAX-WS folder. Right-click the
WeatherJavaBeanService service entry and select Manage Policy Set
Attachment (Figure 6-36). The Service Side Policy Set Attachment Wizard
opens.

Figure 6-36 Selecting Manage Policy Set Attachment

2. In the Service Side Policy Set Attachment for WebSphere window
(Figure 6-37):

a. For application, select WeatherJavaBeanServer.

The Application section lists all endpoints for this Web service that are
already attached to a policy set. This table is currently empty because you
have not attached any service endpoint to any policy set yet.

b. Click Add.

Figure 6-37 Add Policy Set Attachment to Service panel

316 IBM WebSphere Application Server V7.0 Web Services Guide

3. In the End Point Definition Dialog window (Figure 6-38):

a. Select the service endpoint to which to attach a policy set. You can attach
the policy set to the entire service, to a specific endpoint, or to a specific
operation.

For this example, for endpoints, attach the policy set to the entire service.
Therefore, accept the default of <all endpoints>.

b. For policy set, select ITSO WSSecurity.

c. For binding, select ITSO provider binding.

d. Click OK.

Figure 6-38 End Point Definition Dialog window

4. Click Ignore to ignore the WS-I warning message.

 Chapter 6. Policy sets 317

When you return to the Add Policy Set Attachment to Service panel
(Figure 6-39), the entry that you just created is now in the application table.

Figure 6-39 Policy set applied to the service

5. In the Add Policy Set Attachment to Service panel, click Finish.

After a policy set is attached to a Web service, a policyAttachments.xml file is
generated in the WeatherJavaBeanServer\META-INF folder (Example 6-3). This
file is appended for each additional policy set setting that is added to any service
within the EAR file.

Example 6-3 The policyAttachments.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<psa:PolicySetAttachment
xmlns:psa="http://www.ibm.com/xmlns/prod/websphere/200605/policysetattachment"
xmlns:ps="http://www.ibm.com/xmlns/prod/websphere/200605/policyset">
 <psa:PolicySetReference name="ITSO WSSecurity" id="com.ibm.ast.ws.local.qos.policyset.id1">
 <psa:PolicySetBinding scope="domain" name="ITSO provider binding"/>
 <psa:Resource
pattern="WebService:/WeatherJavaBeanWeb.war:{http://bean.itso/}WeatherJavaBeanService"/>
 </psa:PolicySetReference>
</psa:PolicySetAttachment>

318 IBM WebSphere Application Server V7.0 Web Services Guide

6.5.3 Attaching policy set and general binding to Web service client

To attach the policy set and the general binding to the Web service client:

1. In the Services view (Figure 6-40), expand JAX-WS → Clients. Right-click
WeatherJavaBeanService and select Manage policy set Attachment.

The Client Side Policy Set Attachment Wizard opens.

Figure 6-40 Attaching a policy set to the client

2. In the Configure Policy Acquisition for Web service Client panel, click Next.

3. In the Add Policy Set Attachment to Web service Client panel, click Add.

 Chapter 6. Policy sets 319

4. In the End Point Definition Dialog window (Figure 6-41), apply the ITSO
WSSecurity policy set to the client. The policy sets and bindings configuration
for our Web service client must match the service to function correctly.

a. For policy set, select the ITSO WSSecurity policy set.
b. In the Binding field, select ITSO client binding.
c. Click OK.

Figure 6-41 End Point Definition Dialog window for the client

5. Click Ignore to the message that is displayed.

6. Click Finish.

After a policy set is attached to a Web service, a clientPolicyAttachments.xml
file is generated in the WeatherJavaBeanWebClientEAR\META-INF folder
(Example 6-4). This file is appended for each additional policy set setting that is
added to any service within the EAR file.

Example 6-4 The clientPolicyAttachments.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<psa:PolicySetAttachment
xmlns:psa="http://www.ibm.com/xmlns/prod/websphere/200605/policysetattachment"
xmlns:ps="http://www.ibm.com/xmlns/prod/websphere/200605/policyset">
 <psa:PolicySetReference name="ITSO WSSecurity" id="com.ibm.ast.ws.local.qos.policyset.id1">
 <psa:PolicySetBinding scope="domain" name="ITSO client binding"/>
 <psa:Resource pattern="WebService:/{http://bean.itso/}WeatherJavaBeanService"/>
 </psa:PolicySetReference>
</psa:PolicySetAttachment>

320 IBM WebSphere Application Server V7.0 Web Services Guide

7. Follow the instructions in “Monitoring the SOAP traffic” on page 278 to test
your application. You should see WS-Addressing information in the SOAP
header. The SOAP message body is encrypted.

Cleaning up the sample
To proceed with the next sample, remove the general binding for the client. To
detach the client-side policy set and binding:

1. In the Services view, expand the JAX-WS → Clients. Right-click
WeatherJavaBeanService and select Manage policy set Attachment.

2. In the window that opens, click Next.

3. Select Remove and click Finish.

6.5.4 Attaching policy set and application-specific binding to Web
service client

Rational Application Developer supports the client-side application-specific
binding. For example, if you want to use your own keystore and key to encrypt the
SOAP request, a wizard is provided to configure such a custom binding. The
policy set configuration wizard currently does not support Web service provider
custom binding configurations.

To configure the client custom binding:

1. In the Services view, expand JAX-WS → Clients. Right-click
WeatherJavaBeanService and select Manage policy set Attachment.

2. In the window that opens, click Next.

3. In the Add Policy Set Attachment to Web Service Client window, click Add.

 Chapter 6. Policy sets 321

4. In the End Point Definition Dialog window (Figure 6-42), in the Binding field,
type ITSO custom binding. Click OK.

Figure 6-42 Configuring the application-specific binding

5. In the message window that opens, click Ignore.

322 IBM WebSphere Application Server V7.0 Web Services Guide

6. In the Add Policy Set Attachment to Web Service Client panel (Figure 6-43),
in the Bindings Configuration table, under Policy Type, select WSSecurity.

The policy types listed in this table are in the policy set. Any of these policies
that require additional configuration information are marked. For the ITSO
WSSecurity policy set, the WSAddressing policy does not have to be
configured, while the WSSecurity policy must be configured. The warning
message shown at the top of the panel is displayed because you have not
configured the client-side binding.

Click Configure.

Figure 6-43 Configuration warning message

 Chapter 6. Policy sets 323

7. In the WSSecurity Binding Configuration panel (Figure 6-44), click Key Store
Settings.

Figure 6-44 WSSecurity Binding Configuration panel

324 IBM WebSphere Application Server V7.0 Web Services Guide

8. In the Key Store Settings Dialog window (Figure 6-45):

a. For keystore path, type C:\ITSO7758\sender.jks.
b. For keystore password, type itso.
c. For keystore type, enter JKS.
d. For key alias, type mark.
e. Click OK.

Figure 6-45 Key store settings

9. In the WSSecurity Binding Configuration panel (Figure 6-44 on page 324),
click OK.

10.In the next window, click Finish.

11.Test the application by following the instructions in “Monitoring the SOAP
traffic” on page 302.

6.6 More information

The WebSphere Application Server Application V7 Information Center includes
tremendous detail about policy sets. A good pace to start is with the “WebSphere
Application Server documentation for Feature Pack for Web 2.0, Version 1.0 Fix
Pack 2” topic at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/V7r0/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/cwbs_wsspsps.html

For complete instructions about applying the WS-Security policy set to JAX-WS
Web services, see the developerWorks article “Achieving Web services
interoperability between the WebSphere Web services Feature Pack and

 Chapter 6. Policy sets 325

Windows Communication Foundation, Part 2: Configure and test WS-Security” at
the following address:

http://www.ibm.com/developerworks/websphere/library/techarticles/0712_
levay/0712_levay.html

Also about developerWorks is the article “Using the WS-I Supply Chain
Management application in WebSphere V6.1 Web services Feature Pack, Part 2:
Apply WS-Security 1.0 to the JAX-WS SCM application,” which shows a variety
of WS-Security configurations using the policy set. You can find this article at the
following address:

http://www.ibm.com/developerworks/websphere/library/techarticles/0801_
zeitouni/0801_zeitouni.html

You can use the policy set for the JAX-WS Web services thin client. For a
complete example of the usage from a Web services thin client, see Web
Services Feature Pack for WebSphere Application Server V6.1, SG24-7618.

326 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/developerworks/websphere/library/techarticles/0712_levay/0712_levay.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_zeitouni/0801_zeitouni.html

Chapter 7. WS-Policy and
WS-MetadataExchange

Web Services Policy (WS-Policy) is an interoperability standard that is used to
describe and communicate the policies of a Web service so that service
providers can export policy requirements in a standard format. Web Services
Metadata Exchange (WS-MetadataExchange or WS-MEX) defines a mechanism
to retrieve Web services metadata from a Web service endpoint.

In this chapter first we introduce the key concepts of WS-Policy. Then we explain
the WS-Policy and WS-MEX support in WebSphere Application Server V7. We
also guide you through samples of using WS-Policy and WS-MEX in WebSphere
Application Server. Finally, we explore the tools support in Rational Application
Developer V7.5.

The chapter contains the following topics:

� “Overview of the WS-Policy specification” on page 328
� “WS-Policy support in WebSphere Application Server V7” on page 334
� “WS-MetadataExchange” on page 337
� “Applying WS-Policy and WS-MEX to the sample application” on page 339
� “Tools support” on page 355
� “More information” on page 359

7

© Copyright IBM Corp. 2009. All rights reserved. 327

7.1 Overview of the WS-Policy specification

The WS-Policy framework specification provides a way to describe and
communicate the policies associated with Web services. A service provider can
export its policy requirements in a standardized format. By doing so, service
clients can combine these requirements with their own capabilities to establish
the policies required for a specific interaction. This practice allows for the
interoperability for quality of service (QoS) configurations and easier
configuration of Web service clients.

7.1.1 WS-Policy concepts

WS-Policy introduces several key concepts. The following list of WS-Policy terms
and their associated WS-Policy definitions is taken directly from the WS-Policy
specification:

Policy A potentially empty collection of policy alternatives.

Policy alternative A potentially empty collection of policy assertions.

Policy assertion Represents an individual requirement, capability, or other
property of a behavior. For example, a policy assertion
can require a username security token to be used for Web
services authentication.

Policy attachment A mechanism for associating a policy with one or more
policy scopes.

Policy expression An XML information set (Infoset) representation of a
policy, either in a normal form or in an equivalent compact
form.

Policy scope A collection of policy subjects to which a policy can apply.

328 IBM WebSphere Application Server V7.0 Web Services Guide

7.1.2 WS-Policy operators

Policies are used to convey a set of capabilities, requirements, and general
characteristics of entities. These are generally expressible as a set of policy
alternatives. Policy operators are used to group policy assertions into policy
alternatives. WS-Policy introduces three operators that you might see in the
WS-Policy XML for a service definition:

<wsp:ExactlyOne> Specifies a list of possible policy alternatives, one of
which must be adhered to in order to conform to the
policy.

<wsp:All> Specifies a list of policy alternatives, all of which must be
adhered to in order to conform to the policy.

<wsp:Policy> The semantics for <wsp:Policy> are the same as for
<wsp:All>.

To compactly express complex policies, policy operators can be recursively
nested. That is, one or more instances of wsp:Policy, wsp:All, and
wsp:ExactlyOne can be nested within wsp:Policy, wsp:All, and wsp:ExactlyOne.

Example 7-1 shows a policy document that uses assertions that are defined in
WS-SecurityPolicy.

Example 7-1 Sample WS-Policy document

(01) <wsp:Policy
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsp="http://www.w3.org/ns/ws-policy">

(02) <wsp:ExactlyOne>
(03) <wsp:All>
(04) <sp:SignedParts>
(05) <sp:Header Namespace="http://www.w3.org/2005/08/addressing" />
(06) </sp:SignedParts>
(07) </wsp:All>
(08) <wsp:All>
(09) <sp:EncryptedParts>
(10) <sp:Body />
(11) </sp:EncryptedParts>
(12) </wsp:All>
(13) </wsp:ExactlyOne>
(14) </wsp:Policy>

 Chapter 7. WS-Policy and WS-MetadataExchange 329

Essentially, a Web service that uses this policy file has one requirement for the
clients: The client must either sign the message header or encrypt the message
body. Let us look more closely at the sample in Example 7-1 on page 329:

� In Line (01), the http://www.w3.org/ns/ws-policy namespace (with the wsp
prefix) defines the policy language, which is the generic syntax shared by all
domains to define the policy. The policy is specific to the WS-SecurityPolicy
domain as defined by the http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702 namespace (noted by the sp prefix in
Example 7-1 on page 329).

The WS-Policy specification creates namespaces that define the policy
languages. The policy language is the generic syntax shared by all domains
to define policy configurations. Each domain, such as Web services Security
(WS-Security), Web services Transactions (WS-Transaction), or Web
services Addressing (WS-Addressing), has its own set of predefined policy
assertions that can be used within the generic policy language. The policy
assertions describe the configurations that are needed to communicate with
the service provider.

� Lines (03–07) represent one policy alternative for signing a message header.

� Lines (08–12) represent a second policy alternative for encrypting a message
body.

� Lines (02–13) illustrate the ExactlyOne policy operator. Policy operators
group policy assertions into policy alternatives. A valid interpretation of the
policy in Example 7-1 on page 329 is that an invocation of a Web service
either signs or encrypts the message body.

7.1.3 WS-PolicyAttachment

The Web services PolicyAttachment (WS-PolicyAttachment) specification
defines two general-purpose mechanisms for associating policies with the
subjects to which they apply. The policies can be defined as part of existing
metadata about the subject. Alternatively, the policies can be defined
independently and associated through an external binding to the subject.

330 IBM WebSphere Application Server V7.0 Web Services Guide

To enable a Web services policy to be used with existing Web service
technologies, the WS-PolicyAttachment specification describes the use of these
general-purpose mechanisms with WSDL definitions and Universal Description,
Discovery, and Integration (UDDI). Example 7-2 shows a Web Services
Description Language (WSDL) with the WS-Addressing policy attached.

Example 7-2 WSDL with a policy attachment

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="WeatherJavaBeanService" targetNamespace="http://bean.itso/"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility
-1.0.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://bean.itso/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
... ...
<portType name="WeatherJavaBeanDelegate">

<operation name="getDayForecast">
... ...
</operation>

</portType>
<binding name="WeatherJavaBeanPortBinding" type="tns:WeatherJavaBeanDelegate">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

<wsp:PolicyReference URI="#429de5ff-5f0c-4742-9ce9-78ff93985bc1" />
<operation name="getDayForecast">
... ...
</operation>

</binding>
<service name="WeatherJavaBeanService">

<port name="WeatherJavaBeanPort" binding="tns:WeatherJavaBeanPortBinding">
<soap:address

location="http://localhost:9080/WeatherJavaBeanWeb/WeatherJavaBeanService"
/>

</port>
</service>
<wsp:Policy wsu:Id="429de5ff-5f0c-4742-9ce9-78ff93985bc1">

<wsp:ExactlyOne>
<wsp:All>

<addressing:Addressing
xmlns:addressing="http://www.w3.org/2007/05/addressing/metadata">
<wsp:Policy>

<wsp:ExactlyOne>

 Chapter 7. WS-Policy and WS-MetadataExchange 331

<wsp:All>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

</addressing:Addressing>
</wsp:All>

... ...
</wsp:ExactlyOne>

</wsp:Policy>
</definitions>

In Example 7-2 on page 331, the Web service operation "getDayForecast" that is
being bound to the specified portType must enforce the Web service policy. To
reference a policy expression within the WSDL, the wsu:Id attribute is used to
identify a policy expression and a URI to this ID value for referencing this policy
expression by using a wsp: PolicyReference element.

7.1.4 Policy intersection

Policy intersection is the process of comparing Web services policies for
common alternatives. The interaction takes place when only both sides of an
interaction agree on at least one policy alternative. This operation is typically
used when a requester expresses its capabilities and requirements in policy
form. The requester policy indicates the assertions that its local runtime
infrastructure is capable of processing. The intersection of two policies gives zero
or more alternatives on which both parties agree.

As an example of intersection, consider Example 7-3 in which you have a service
provider policy (P1).

Example 7-3 Service provider policy P1

(01) <wsp:Policy
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 xmlns:wsp="http://www.w3.org/ns/ws-policy" >
 <!-- Policy P1 -->
(02) <wsp:ExactlyOne>
(03) <wsp:All> <!-- Alternative A1 -->
(04) <sp:SignedElements>
(05) <sp:Body/>
(06) </sp:SignedElements>
(07) <sp:EncryptedElements>
(08) <sp:Body/>
(09) </sp:EncryptedElements>
(10) </wsp:All>

332 IBM WebSphere Application Server V7.0 Web Services Guide

(11) <wsp:All> <!-- Alternative A2 -->
(12) <sp:EncryptedParts>
(13) <sp:Body />
(14) </sp:EncryptedParts>
(15) </wsp:All>
(16) </wsp:ExactlyOne>
(17) </wsp:Policy>

Example 7-3 on page 332 indicates two policy alternatives:

� The first alternative (A1, lines 03–10) contains two policy assertions. One
indicates that the SOAP body should be signed (lines 04–06). The other
assertion (lines 07–09) indicates that the SOAP body should be encrypted.

� The second alternative (A2, lines 11–15) contains one assertion, which
indicates that the SOAP body must be encrypted (lines 12–14).

Example 7-4 shows the service requester policy (P2).

Example 7-4 Service requester policy P2

(01) <wsp:Policy
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 xmlns:wsp="http://www.w3.org/ns/ws-policy" >
 <!-- Policy P2 -->
(02) <wsp:ExactlyOne>
(03) <wsp:All> <!-- Alternative A3 -->
(04) <sp:EncryptedParts>
(05) <sp:Body />
(06) </sp:EncryptedParts>
(07) </wsp:All>
(08) <wsp:All> <!-- Alternative A4 -->
(09) <sp:SignedElements>
(10) <sp:Body/>
(11) </sp:SignedElements>
(12) </wsp:All>
(13) </wsp:ExactlyOne>
(14) </wsp:Policy>

Example 7-4 indicates two policy alternatives:

� The first alternative (A3, lines 03–07) contains one assertion, which indicates
that the SOAP body must be encrypted (lines 04–06).

� The second alternative (A4, lines 08–12) contains one assertion, which
indicates that the SOAP body must be signed (lines 12–14).

 Chapter 7. WS-Policy and WS-MetadataExchange 333

Because there is only one alternative (A2) in policy P1 with the same assertion
type as another alternative (A3) in policy P2, the intersection is a policy with a
single alternative that contains all of the assertions in A2 and in A3, as shown in
Example 7-5.

Example 7-5 Policy intersection result

(01) <wsp:Policy
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 xmlns:wsp="http://www.w3.org/ns/ws-policy" >
 <!-- Intersection of P1 and P2 -->
(02) <wsp:ExactlyOne>
(03) <wsp:All>
(04) <sp:EncryptedParts>
(05) <sp:Body />
(06) </sp:EncryptedParts>
(07) <sp:EncryptedParts>
(08) <sp:Body />
(09) </sp:EncryptedParts>
(10) </wsp:All>
(11) </wsp:ExactlyOne>
(12) </wsp:Policy>

Note that there are two assertions of the type sp:EncryptedParts, one from each
of the input policies. In general, whether two assertions of the same type are
compatible or the repetition is a redundancy depends on the domain-specific
semantics of the assertion type. If the assertions have no parameters and the
assertions in nested policy expressions have no parameters, multiple assertions
of the type within a policy alternative in the intersection result have the same
meaning as a single assertion of the type within the policy alternative.

Based on the semantics of multiple assertions of the EncryptedParts assertion
type, as specified in the WS-SecurityPolicy specification, one of the
sp:EncryptedParts assertions in Example 7-5 is redundant and can be removed
from the result. The intersection of the two policies provides one alternative that
the SOAP body must be encrypted.

7.2 WS-Policy support in WebSphere Application
Server V7

WebSphere Application Server conforms to the WS-Policy Framework V1.5
specification. With this support, service providers can share their policy set

334 IBM WebSphere Application Server V7.0 Web Services Guide

configurations in an interoperable format that is embedded in the WSDL
document.

A policy represents the capabilities and requirements of a Web service, for
example, whether a message is secure and how to secure it, and whether a
message is delivered reliably and how this is achieved. You can communicate the
policy configuration to any other client, service registry, or service that supports
the WS-Policy specification, including non-WebSphere Application Server
products in a heterogeneous environment. Clients can then use WSDL
documents that contain this policy data to dynamically configure themselves at
run time. You must administratively configure the service to embed the policy
data in its WSDL document and configure client environments to dynamically use
that information.

The following WS-Policy assertion specifications are supported in WebSphere
Application Server V7:

� WS-Addressing

http://www.w3.org/TR/ws-addr-core/

� WS-Transaction

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1
-spec-os.html

� WS-ReliableMessaging

http://docs.oasis-open.org/ws-rx/wsrm/200702

� WS-SecurityPolicy

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-security
policy.html

7.2.1 Service provider policy sharing

A WebSphere Application Server service provider can share its current policy
configuration through its WSDL. The policy configuration is in the standard
WSDL WS-PolicyAttachment format so that it can be shared with other clients,
service registries, or services that support the WS-Policy specification.

 Chapter 7. WS-Policy and WS-MetadataExchange 335

http://www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html

You can make the policy configuration of a Java API for XML Web services
(JAX-WS) service endpoint available to share in two ways:

� Include the policy configuration of the service provider in the WSDL. The
WSDL is then available for publishing, or to be obtained using an HTTP Get
request.

� Enable the WS-MEX protocol so that the policy configuration of the service
provider is included in the WSDL and is available to a WS-MetadataExchange
GetMetadata request. An advantage of using the WS-MEX protocol is that
you can apply message-level security to WS-MetadataExchange
GetMetadata requests by using a suitable system policy set.

7.2.2 Service client policy acquisition

A WebSphere Application Server service client can obtain the policy of the
service provider in the standard WS-PolicyAttachments format and use this
information to establish a configuration that is acceptable to both the client and
the service provider. The client can be configured dynamically, based on the
policies that are supported by its service provider. A client can acquire the
provider policy by using the following mechanisms:

� A WSDL publication
� An HTTP Get request
� In metadata returned by a WS-MetadataExchange request

7.2.3 Policy intersection in WebSphere Application Server

As explained previously, policy intersection is the comparison of a client policy
and a provider policy to determine whether they are compatible. It entails the
calculation of a new policy that complies with the requirements and capabilities of
both the client policy and the provider policy.

When you obtain the policy of a service provider, you can choose to use the
provider policy only or to use the client and the provider policy in WebSphere
Application Server. Policy intersection has the following outcomes:

� When you specify provider policy only, the calculated policy is based on all
the policies that the WebSphere Application Server client supports that are
intersected by the provider policy. Effectively, the provider determines the
policy as long as the client can support that policy. This policy configuration is
available if the scope point (endpoint operation) where the provider policy is
attached is not attached to a client policy set and does not inherit a policy set
attachment from parent scope points.

336 IBM WebSphere Application Server V7.0 Web Services Guide

� When you specify client and provider policy, the calculated policy is based on
the policy that is acceptable to the client that is intersected by the provider
policy. Effectively, the policy conforms to the client policy set, but it might be
restricted further by the policies that are dictated by the provider.

The policy that is acceptable to the client is defined by the policy set that is
either attached to the client scope point or that the client scope point inherits
from a parent scope point. This policy configuration is available if the scope
point (endpoint operation) where the provider policy is attached is attached to
a client policy set or inherits a policy set attachment from parent scope points.

7.2.4 Relationship to policy sets

Policy sets provide reusable constructs that configure qualities of service that
can be shared. The same configuration for policy sets can be used for the client
and server side. You can combine a collection of policy documents in a policy set
to address your requirements for qualities of service. Keep in mind that you might
have to define the bindings for the policy set.

A binding is the specific configuration of a QoS. It contains the environment and
platform-specific information, such as keys for signing, keystore information, or
persistent information.

WS-Policy is a separate concept from policy sets. Policy sets are not inherently
concerned with the WS-Policy specification. Instead, they deal with the specific
configuration of Web services. Consider policy sets as a front end to WS-Policy.
Policy sets provide a mechanism to specify policy configurations within a
WebSphere Application Server environment, which is enough in certain
environments. Policy sets do not provide a mechanism to communicate this
policy configuration to non-WebSphere Application Server partners in a
heterogeneous environment. Policy sets also do not provide a mechanism for the
client to calculate an effective policy that is acceptable to both the service client
and provider based the intersection of a list of client and provider policies.
WS-Policy provides these extra capabilities.

7.3 WS-MetadataExchange

The WS-MEX specification defines a mechanism to retrieve Web services
metadata from an Web service endpoint.

 Chapter 7. WS-Policy and WS-MetadataExchange 337

7.3.1 Overview of WS-MetadataExchange

Web services use metadata to describe what other endpoints need to know to
interact with them. There are three types of metadata:

WS-Policy Describes the capabilities, requirements, and general
characteristics of Web services

WSDL Describes abstract message operations, concrete
network protocols, and endpoint addresses used by Web
services

XML Schema Describes the structure and contents of XML-based
messages received by and sent by Web services

To bootstrap communication with Web services, the WS-MEX specification
defines the following mechanisms to retrieve metadata:

� A WS-MetadataExchange request can be realized by sending a WS-Transfer
Get request to a resource endpoint that represents the metadata of the actual
endpoint. A WS-Transfer Get returns a one-time snapshot of the endpoint.
When issued against the actual endpoint, this is a snapshot of the endpoint’s
data. To get a snapshot of the endpoint’s metadata, a special metadata
resource endpoint must be used.

� A WS-MetadataExchange request can be realized by issuing a
WS-MetadataExchange GetMetadata request to the actual endpoint. The
GetMetadata response can return the following information:

– A reference to the resource endpoint

The reference is resolved by using a WS-Transfer request (or equivalent
requests such as WS-ResourceTransfer).

– The metadata inline in the response itself.

7.3.2 WS-MetadataExchange support

WebSphere Application Server V7 supports usage of the
WS-MetadataExchange 1.1 GetMetadata request to return metadata in a
response. A service provider can use this mechanism to make available WSDL
that is annotated with WS-Policy information. That is, the service provider can
share its policies. A service client can use this mechanism to obtain WSDL that is
annotated with WS-Policy information from a service provider and then apply
those policies. The policy configuration must be in the WS-PolicyAttachments
format in the WSDL of the service provider.

WebSphere Application Server V7 does not provide full support for the WS-MEX
specification. Rather, the implementation is focused on key support for

338 IBM WebSphere Application Server V7.0 Web Services Guide

WS-Policy. It is not possible to explicitly drive WS-MEX in WebSphere Application
Server V7. Instead, it is used purely for the export and acquisition of the
WS-Policy by the run time.

7.3.3 Securing WS-MetadataExchange requests

You can secure WS-MetadataExchange requests by using transport-level
security or message-level security (WS-Security). WS-MEX is the preferred
mechanism (over HTTP GET) for policy exchange in cases where the metadata
exchange requires message-level security because transport-level security is
either not available on the application endpoint or is inadequate. An advantage of
message-level security is that it provides end-to-end security by incorporating
security features in the header of the SOAP message.

To provide message-level security for a GetMetadata request, you must attach a
system policy set that contains only WS-Security or WS-Addressing policies. You
can specify general bindings that are scoped either to the global domain or to the
security domain of the service.

7.4 Applying WS-Policy and WS-MEX to the sample
application

In this section we provide examples to show how to apply the WS-Policy and
WS-MEX to our WeatherJavaBean application by using the WebSphere
Application Server administrative console. You apply the Username WSSecurity
policy set to the WeatherJavaBean application. After the policy set is applied to
the provider, you can share its policy configuration in published WSDL. On the
client side, the WSDL is obtained by using an HTTP Get request or the
WS-MetadataExchange GetMetadata request. The client is configured
dynamically based on the policies that are supported by the provider.

7.4.1 Preparing for the example

The example application used in this chapter is the WeatherJavaBean
application. It is similar to the application discussed in 4.2.2, “Web services
development from an existing Java bean” on page 183.

The instructions in this chapter assume that you are using Rational Application
Developer V7.5 with its integrated WebSphere Application Server V7 test
environment. To follow along with the instructions, you can download the sample
application, import it into a workspace, and install it to the test environment.

 Chapter 7. WS-Policy and WS-MetadataExchange 339

Configuring WebSphere Application Server security
Because this example uses the Username WSSecurity policy set, you must also
enable WebSphere Application Server security to authenticate the username
token. You can enable the security either during or after profile creation. If you
enable security during profile creation, you can skip to the next section. The
federated repository is used as the default user repository at profile creation time.

To enable WebSphere Application Server security:

1. Start the deployment manager.

2. In the administrative console, expand Security → Global security.

3. Click Security Configuration Wizard.

4. Select Enable application security and click Next.

5. Select Federated repositories and click Next.

6. Enter the user ID and password to add to the repository for administration. In
the test environment for this example we enter admin as the primary
administrative user name and admin as the password. Click Next.

7. Click Finish.

8. Save the changes and restart the WebSphere environment.

Downloadable material: The examples in this chapter use the
WeatherJavaBean application. This application is included in the download
material for this book in the WeatherBase/WeatherWebService.zip archive.

The project interchange file contains the following projects:

� WeatherBase: contains the core weather classes used by the applications
(See 3.1.1, “The WeatherForecast application packages” on page 148.)

� WeatherJavaBeanServer: the Web service provider application

� WeatherJavaBeanWebClient: the Web service client application

For information about downloading the material, see Appendix A, “Additional
material” on page 537.

For information about importing the application into your workspace, installing
it on the server, and testing it, see “Using the WeatherJavaBean application”
on page 543

340 IBM WebSphere Application Server V7.0 Web Services Guide

Enabling security in Rational Application Developer
If you are using Rational Application Developer and its integrated WebSphere
Application Server, to start the server from the workbench:

1. In the Servers view, double-click WebSphere Application Server V7.0 to
open the server configuration editor.

2. In the server configuration editor (Figure 7-1):

a. Under Publishing settings for WebSphere Application Server, select Run
server with resources on Server.

b. Expand the Security section.

c. Select Security is enabled on this server. Enter a user ID and password.
The User ID and Password fields specify the administrator user of the
WebSphere administrative console. These values must be the same as
those entered in the Security Configuration wizard window.

d. Select Automatically trust server certificate during SSL handshake.

Figure 7-1 Server editor settings

3. Save and close the server configuration editor.

Creating a general binding for the Username WSSecurity
policy set
WebSphere Application Server V7.0 includes provider and client sample bindings
for testing purposes. In the bindings, the product provides sample values for
supporting tokens for different token types, such as the X.509 token and the
username token. The bindings also include sample values for message protection

 Chapter 7. WS-Policy and WS-MetadataExchange 341

information for token types such as X.509. Both provider and client sample
bindings can be applied to the applications that are attached with a policy set.

When using the Username WSSecurity default policy set, you must configure the
user name and password for username token authentication separately from the
security settings defined in the bindings. The sample binding does not include a
user name or password for token authentication, because it is specific to the
target deployed system. You must specify a valid user name and password in
your environment by using the WebSphere administrative console. You can do
this by copying the sample binding and customizing it:

1. In the administrative console, expand Services → Policy sets → General
client policy set bindings.

2. Select Client sample and click Copy.

3. For name, type ITSO Username WSSecurity binding and click OK.

4. Click ITSO Username WSSecurity binding to edit the binding.

5. Click WS-Security → Authentication and protection.

6. In the Authentication tokens list, select gen_signunametoken to edit the
username token settings.

7. In the Additional Bindings section at the bottom of the page, click Callback
handler.

342 IBM WebSphere Application Server V7.0 Web Services Guide

8. Enter the WebSphere administrator user name and password. Confirm the
password and click Apply (Figure 7-2).

Figure 7-2 Configuring the username token

9. Click Save.

You have configured the client-side general binding to use for the
WeatherJavaBean application.

7.4.2 Configuring a service provider to share its policy configuration

In this section you include the policy configuration of the service provider in the
WSDL. The WSDL is then available for the client to obtain using an HTTP Get
request.

To configure a service provider to share its policy configuration:

1. In the administrative console, expand Services → Service providers.

2. Click WeatherJavaBeanService to configure it with a policy.

 Chapter 7. WS-Policy and WS-MetadataExchange 343

3. On the next page:

a. Select WeatherJavaBeanService. Click Attach and select Username
WSSecurity default.

b. Select WeatherJavaBeanService. Click Assign Binding and select
Provider sample. In theory, you do not need to do this step, because the
provider sample binding is set as the default binding. However, at the time
at which this book was written, we had to do this manually. Figure 7-3
shows the result.

c. Click the Disabled hyperlink to share its policy configuration. By default,
the policy configuration is not available in its WSDL, which is why you see
Disabled in the Policy Sharing column.

Figure 7-3 Assigning the policy set and binding

344 IBM WebSphere Application Server V7.0 Web Services Guide

4. To include the policy configuration of the service provider in its WSDL so that
it can be either published or obtained by using an HTTP Get request, select
Exported WSDL (Figure 7-4). Click OK.

Figure 7-4 Share the policy using the exported WSDL

5. Click Save.

 Chapter 7. WS-Policy and WS-MetadataExchange 345

The policy configuration of the service provider is now available to its clients. The
WSDL of the service provider contains the current policy configuration in the
WS-PolicyAttachments format so that it is available to other clients, service
registries, and services that support the WS-Policy specification. The link in the
Policy Sharing column on the Service provider policy sets and bindings page
changes to Enabled (Figure 7-5).

Figure 7-5 Policy sharing enabled

7.4.3 Configuring client policy by using the service provider policy

A Web service client can obtain the policy configuration of a Web service
provider and use this information to establish a policy configuration that is
acceptable to both the client and the service provider. There are four scenarios
when applying a policy to the Web service client:

� No policy

� Client policy

The policy is calculated based on the policy set, which is a static client policy
configuration. This option is available when a client policy set is attached.

346 IBM WebSphere Application Server V7.0 Web Services Guide

� Provider policy

The policy is calculated based on a dynamically acquired provider policy. This
option is available when a client policy set is not attached. In this scenario, the
policy configuration is based on the provider’s requirements.

� Client and provider policy

The policy is calculated based on a dynamically acquired provider policy and
static client policy configuration. In this scenario, the policy configuration is
based on the provider’s policy requirements, but the client can configure
restrictions as to what is acceptable. This option is available when a client
policy set is attached.

In this section, we apply the provider only policy to the Web service client:

1. In the administrative console, expand Services → Service clients.

2. Click WeatherJavaBeanService to configure it with a policy.

3. Select WeatherJavaBeanService.

4. Because no client policy set is applied, in the Policies Applied column, click
None.

5. On the Policies Applied page (Figure 7-6):

a. Under Apply the following policies, select Provider policy only. By
selecting this option, you can configure the client based solely on the
policy of the service provider.

Figure 7-6 Applying the Provider only policy

 Chapter 7. WS-Policy and WS-MetadataExchange 347

b. To obtain the provider policy using an HTTP Get request, select HTTP
GET request. By default, the HTTP Get request targets the URL for the
service endpoint followed by “?WSDL”.

c. Click OK.

6. Assign the customized client policy set binding to the Web service client:

a. Select WeatherJavaBeanService. Click Assign Binding and select
ITSO Username WSSecurity binding.

b. Click Save.

The Web application client-side policy is calculated when it is required at run
time, based on either the policy of the service provider or the client policy set
and the policy of the service provider, depending on which option you
selected. This calculated policy is known as the effective policy and is cached
as a runtime configuration. The effective policy is used for subsequent
outbound Web service requests to the endpoint or operation for which the
dynamic policy calculation was performed. The policy set configuration of the
client does not change.

Figure 7-7 shows that the provider only policy is now applied.

Figure 7-7 Provider only policy now applied

348 IBM WebSphere Application Server V7.0 Web Services Guide

7. Test the application by following the instructions in “Monitoring the SOAP
traffic” on page 278. In the TCP/IP Monitor, the client first acquires the WSDL
through the HTTP GET (Figure 7-8). The client policy calculations for a
service are performed at the first invocation on that service. Calculated
policies are cached in the client for performance.

Figure 7-8 WS-Policy traffic

8. To see the policy-annotated WSDL, query the Web service endpoint as
follows:

http://localhost:9080/WeatherJavaBeanWeb/WeatherJavaBeanService?wsdl

Example 7-6 shows the policy-annotated WSDL.

Example 7-6 WSDL with the user name WS-Security policy

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="WeatherJavaBeanService" targetNamespace="http://bean.itso/"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility
-1.0.xsd"
... ...>

... ...
</portType>

<binding name="WeatherJavaBeanPortBinding" type="tns:WeatherJavaBeanDelegate">
<soap:binding style="document"

 Chapter 7. WS-Policy and WS-MetadataExchange 349

transport="http://schemas.xmlsoap.org/soap/http" />
<wsp:PolicyReference URI="#95761ca1-23ba-4e85-abb8-9b3689405a08" />
<operation name="getDayForecast">

... ...
</operation>

</binding>
<service name="WeatherJavaBeanService">... ...</service>
<wsp:Policy wsu:Id="95761ca1-23ba-4e85-abb8-9b3689405a08">

<wsp:ExactlyOne>
<wsp:All>

<addressing:Addressing
xmlns:addressing="http://www.w3.org/2007/05/addressing/metadata">
<wsp:Policy>

<wsp:ExactlyOne>
<wsp:All>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

</addressing:Addressing>
</wsp:All>

... ...
</wsp:ExactlyOne>
<sp:AsymmetricBinding

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
</sp:AsymmetricBinding>
<sp:Wss10 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

<wsp:Policy>
<sp:MustSupportRefKeyIdentifier />

</wsp:Policy>
</sp:Wss10>

</wsp:Policy>
... ...

<wsp:Policy wsu:Id="a5a0a090-bf59-4906-bddd-725dd07281ea">
<sp:SignedParts

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<sp:Body />
<sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" />
<sp:Header Namespace="http://www.w3.org/2005/08/addressing" />

</sp:SignedParts>
<sp:EncryptedParts

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<sp:Body />

</sp:EncryptedParts>
<sp:SignedEncryptedSupportingTokens

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

350 IBM WebSphere Application Server V7.0 Web Services Guide

</sp:SignedEncryptedSupportingTokens>
</wsp:Policy>

... ...
</definitions>

7.4.4 Configuring service provider to share a policy by using
WS-MEX

In this section, you configure the service provider to share its policy by using
WS-MEX through the administrative console. The client is configured to use
WS-MEX to acquire a provider’s policy.

To enable the service provider to share its policy by using WS-MEX:

1. In the administrative console, expand Services → Service providers.

2. Click WeatherJavaBeanService to configure it with a policy.

3. Click the Enabled hyperlink to change the settings for the policy-sharing
configuration.

4. To enable WS-MEX and make the policy configuration of the service provider
available to a WS-MetadataExchange GetMetada request, select
WS-MetadataExchange request (Figure 7-9). You can choose both the
Exported WSDL and WS-MetadataExchange request options so that they
are available to different client requests.

Figure 7-9 Policy sharing using WS-MEX

 Chapter 7. WS-Policy and WS-MetadataExchange 351

After you select the WS-MetadataExchange request option, the Attach as
system policy to the WS-MetaExchange check box is available for you to
select. You can apply message-level security to secure the
WS-MetadataExchange GetMetadata request by attaching a system policy
set. An advantage of message-level security is that it provides end-to-end
security, which is important for the exchange of security metadata. For this
example, we do not select it (the default).

To configure the client to use WS-MEX to acquire the provider’s policy:

1. In the administrative console, expand Services → Service clients.

2. Click WeatherJavaBeanService to configure it with a policy.

3. Click Provider policy only.

4. To obtain the provider policy by using a WS-MetadataExchange GetMetadata
request, click WS-MetadataExchange request. Click OK.

5. Click Save.

Test the Web services again. In the TCP/IP Monitor, the client issues a WS-MEX
GetMetadata request to the actual Web service endpoint (Example 7-7). The
dialect of the request is WSDL.

Example 7-7 WS-MetadataExchange GetMetadata request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

<wsa:To>
http://localhost:9089/WeatherJavaBeanWeb/WeatherJavaBeanService

</wsa:To>
<wsa:MessageID>urn:uuid:76EF2707340C93E6F81240589174816
</wsa:MessageID>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata/Request
</wsa:Action>

</soapenv:Header>
<soapenv:Body>

<mex:GetMetadata xmlns:mex="http://schemas.xmlsoap.org/ws/2004/09/mex">
<mex:Dialect>http://schemas.xmlsoap.org/wsdl/
</mex:Dialect>

</mex:GetMetadata>
</soapenv:Body>

</soapenv:Envelope>

352 IBM WebSphere Application Server V7.0 Web Services Guide

The GetMetadata response returns the WSDL with the policy information
(Example 7-8).

Example 7-8 WS-MetadataExchange GetMetadata response

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Action>

http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata/Response
</wsa:Action>
<wsa:RelatesTo>urn:uuid:76EF2707340C93E6F81240589174816
</wsa:RelatesTo>

</soapenv:Header>
<soapenv:Body>

<mex:Metadata xmlns:mex="http://schemas.xmlsoap.org/ws/2004/09/mex"
xmlns:tns="http://bean.itso/">
<mex:MetadataSection Dialect="http://schemas.xmlsoap.org/wsdl/"

Identifier="{http://bean.itso/}WeatherJavaBeanService">
<definitions name="WeatherJavaBeanService"

targetNamespace="http://bean.itso/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility
-1.0.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... Anotated wsdl content with WS-Policy info...

</definitions>
</mex:MetadataSection>
<mex:MetadataSection Dialect="http://schemas.xmlsoap.org/wsdl/">

<mex:Location>
http://localhost:9089/WeatherJavaBeanWeb/WeatherJavaBeanService?wsdl

</mex:Location>
</mex:MetadataSection>

</mex:Metadata>
</soapenv:Body>

</soapenv:Envelope>

 Chapter 7. WS-Policy and WS-MetadataExchange 353

Cleaning up the sample
To proceed with the next sample, restore the application to the original state. If
you are using a stand-alone WebSphere Application Server, detach the
username WS-Security policy:

1. Detach the service provider’s policy set:

a. In the administrative console, expand Services → Service providers.
b. Click WeatherJavaBeanService.
c. Select WeatherJavaBeanService.
d. Click Detach Policy Set.
e. Click Save.

2. Detach the service client’s policy set:

a. Expand Services → Service clients.
b. Click WeatherJavaBeanService.
c. Select WeatherJavaBeanService.
d. Click Detach Client Policy Set.
e. Click Save.

3. Restart the applications:

a. In the left pane, select Applications → Application Types →
WebSphere Enterprise Applications.

b. Select WeatherJavaBeanServer and WeatherJavaBeanWebClientEAR.

c. Click Stop.

d. After the application stops, click Start.

If you are using Rational Application Developer and its integrated WebSphere
Application Server, uninstall and re-install the Web service and client:

1. Right-click WebSphere Application Server V7.0 and select Add and
Remove Projects. In the Add and Remove Projects window, select Remove
All and click Finish to uninstall the Web service and the client.

After you uninstall the Web service and the client application, the specific
policy set and the binding that are attached with the Web service application
are also gone.

2. Right-click WebSphere Application Server V7.0 and select Add and
Remove Projects. In the Add and Remove Projects window, select Add All
to install the Web service and the client.

Now you have a fresh Web service and client without policy set and binding
attached.

354 IBM WebSphere Application Server V7.0 Web Services Guide

Exporting the general binding for username WS-Security
To proceed to the next sample, export the general binding from the administrative
console so that you can import it into the Rational Application Developer. To
export the general binding:

1. In the administrative console, expand Services → Policy sets and select
General client policy set bindings.

2. Select ITSO Username WSSecurity binding and click Export.

3. Select the ITSO Username WSSecurity binding.zip file and click Save to
save the file to your local drive.

7.5 Tools support

Rational Application Developer V7.5 provides tools support for WS-Policy and
WS-MEX. It provides wizards that are equivalent to those provided by the
administration for WS-Policy so that users can omit the step of logging into the
administrative console to configure.

In this section we configure the service provider to share its policy configuration,
and configure the client policy by using a service provider policy. We
demonstrate these tasks by using the tools that ship with Rational Application
Developer.

7.5.1 Importing the Web service general binding

Before you use the wizard to share the policy configuration, import the Web
service general binding into your workspace:

1. Click File → Import.

2. In the Import window, expand Web services and select WebSphere Named
Bindings. Click Next.

3. In the next window, click Browse and select the ITSO Username
WSSecurity binding.zip file that you created in “Exporting the general
binding for username WS-Security” on page 355. Click Finish.

4. Verify that the policy set and the general binding imported successfully. Click
File → Preferences → Service Policies. You see ITSO Username
WSSecurity binding listed in the Service Policies preferences.

7.5.2 Configuring a service provider to share its policy configuration

Configure a service provider to share its policy configuration:

 Chapter 7. WS-Policy and WS-MetadataExchange 355

1. In the Services view, expand JAX-WS → Services. Right-click
WeatherJavaBeanService and select Manage Policy Set Attachment.

2. Click Add.

3. For policy set select Username WSSecurity default, and for binding select
Provider Sample. Click OK.

4. In the message window that opens, click Ignore.

5. In the next window, click Next.

6. In the Configure Policy Sharing window, select the service and click
Configure.

7. In the Configure Policy Sharing for Web Service panel (Figure 7-10), select
Share Policy Information via WSDL and click OK.

Figure 7-10 Choosing the Share Policy Information via WSDL option

8. In the warning message window that opens, click Ignore.

9. Click Finish.

After you configure the Web service project to share the policy information, a
wsPolicyServiceControl.xml file is generated in the
WeatherJavaBeanServer\META-INF folder (Example 7-9). With this file, the Web
service developer can specify the policy acquisition information during tools time,
thus omitting the requirement for an additional administrative step.

Example 7-9 The wsPolicyServiceControl.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

356 IBM WebSphere Application Server V7.0 Web Services Guide

<ns2:WSPolicyServiceControl
xmlns:ns2="http://www.ibm.com/xmlns/prod/websphere/200709/WSPolicyServiceControl"
Version="1.0">
 <WSPolicyServiceControlReference
Resource="WebService:/WeatherJavaBeanWeb.war:{http://bean.itso/}WeatherJavaBeanServic
e/">
<WSPolicyAttachmentNamespace>http://www.w3.org/ns/ws-policy</WSPolicyAttachmentNamesp
ace>
 <ExportPolicySetConfigurationInWSDL>true</ExportPolicySetConfigurationInWSDL>
 </WSPolicyServiceControlReference>
</ns2:WSPolicyServiceControl>

7.5.3 Configuring the client policy by using a service provider policy

To configure the client policy by using the service provider policy:

1. In the Services view, expand JAX-WS → Clients. Right-click
WeatherJavaBeanService and select Manage Policy Set Attachment.

2. In the Client Side Policy Set Attachment window (Figure 7-11), click the Use
Provider Policy button.

Figure 7-11 Clicking the Use Provider Policy button

 Chapter 7. WS-Policy and WS-MetadataExchange 357

3. In the Configure Policy acquisition for Web service Client window
(Figure 7-12), select HTTP Get request targeted at <default WSDL URL>,
and click OK.

Figure 7-12 Selecting the HTTP Get request targeted at option

4. In the message window that opens, click Ignore. The Policy Acquisition field
for the service changes to Acquire Provider Policy.

5. Back in the Client Side Policy Set Attachment window, click Finish.

6. After you configure policy acquisition for Web service client, a
wsPolicyClientControl.xml file is generated in the
WeatherJavaBeanWebClient\META-INF folder (Example 7-10). With this file, the
Web service developer can specify the policy acquisition information during
tools time, thus omitting the requirement for an additional administrative step.

Example 7-10 The wsPolicyClientControl.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:WSPolicyClientControl
xmlns:ns2="http://www.ibm.com/xmlns/prod/websphere/200709/WSPolicyClientControl"
Version="1.0">
 <WSPolicyClientControlReference
Resource="WebService:/{http://bean.itso/}WeatherJavaBeanService/">
 <ProviderPolicyAcquisition>
<PolicyAcquisitionClass>com.ibm.ws.wspolicy.acquisition.AcquireViaQWSDL</PolicyAcquis
itionClass>
 </ProviderPolicyAcquisition>

358 IBM WebSphere Application Server V7.0 Web Services Guide

 </WSPolicyClientControlReference>
</ns2:WSPolicyClientControl>

7. In the WebSphere administrative console, expand Services →Policy sets →
Default policy set bindings. In the Default service client binding drop
down menu, choose ITSO Username WSSecurity binding. Click Apply and
then Save.

8. Test the application by following the instructions in “Monitoring the SOAP
traffic” on page 278. In the TCP/IP Monitor, you see that the client first
acquires the WSDL through HTTP GET. The effective policy is used for
subsequent outbound Web service requests to the endpoint or operation for
which the dynamic policy calculation was performed.

7.6 More information

For more information, consult the following sources:

� The Web services Policy 1.5 - Framework specification

http://www.w3.org/TR/ws-policy/

� The Web services Policy 1.2 - Attachment (WS-PolicyAttachment)
specification

http://www.w3.org/Submission/WS-PolicyAttachment/

� The WS-SecurityPolicy 1.2 specification

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-security
policy.html

� The WS-MetadataExchange 1.2 specification draft

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

 Chapter 7. WS-Policy and WS-MetadataExchange 359

http://www.w3.org/TR/ws-policy/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

360 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 8. Web services transaction
specifications

This chapter introduces the Web Services Transaction (WS-Transaction)
specifications and those that are supported in WebSphere Application Server. To
illustrate the transactional Web services support, we provide simple examples
that use Web Services AtomicTransaction (WS-AT) and Web Services
BusinessActivity (WS-BA).

This chapter contains the following topics:

� “Overview of the WS-Transaction specifications” on page 362
� “WS-Coordination” on page 363
� “WS-AtomicTransaction” on page 365
� “WS-BusinessActivity” on page 382
� “More information” on page 395

8

© Copyright IBM Corp. 2009. All rights reserved. 361

8.1 Overview of the WS-Transaction specifications

The WS-Transaction specifications define mechanisms for transactional
interoperability between Web services domains and provide a means to
compose transactional qualities of service into Web services applications. These
specifications describe an extensible Web Services Coordination
(WS-Coordination) framework and specific coordination types for the following
transactions (Figure 8-1):

� Short duration and atomicity, consistency, isolation, durability (ACID)
transactions (WS-AT)

� Longer running business transactions (WS-BA)

Figure 8-1 WS-Transaction block diagram

The WS-AT specification support in the application server provides transactional
quality of service (QoS) to the Web services environment. Distributed Web
services applications and the resources that they use can take part in distributed
global transactions.

With Web services Business Activity (WS-BA) support in the application server,
Web services on different systems can coordinate activities that are more loosely
coupled than atomic transactions. Such activities can be difficult or impossible to
roll back atomically and, therefore, require a compensation process if an error
occurs.

Web Services Coordination (WS-Coordination) specifies a CoordinationContext
and a registration service with which participant Web services can enlist to take
part in the protocols that are offered by specific coordination types.

WS-Transaction

WS-AtomicTransaction WS-BusinessActivity

WS-Coordination

362 IBM WebSphere Application Server V7.0 Web Services Guide

WebSphere Application Server V7 supports WS-Transaction 1.0 by default, but
you can change it to 1.1. To access this setting, click Servers → Server
Types → WebSphere application servers → server_name. In the right pane,
select Container Services → Transaction Service.

Figure 8-2 WS-Transaction 1.0 and 1.1 support

In the following sections, we discuss WS-Coordination at a high level, then
WS-AT and WS-BA in detail with examples.

8.2 WS-Coordination

The WS-Coordination specification describes a framework for a coordination
service (or coordinator) that consists of the following component services:

� An activation service with a CreateCoordinationContext operation that
performs the following tasks:

a. Creates a new activity

b. Returns its coordination context that supports a certain coordination type,
such as WS-AT

Note: WebSphere Application Server V7 supports both the WS-Transaction
1.1 and the WS-Transaction 1.0 specifications. In this case, note the following
points:

� Java API for XML-based Web services (JAX-WS) run time supports
WS-Transaction 1.1 and 1.0 specifications.

� Java API for XML-based remote procedure calls (JAX-RPC) run time
supports WS-Transaction 1.0 specifications only.

 Chapter 8. Web services transaction specifications 363

� A registration service with a register operation that performs the following
tasks:

a. Enables an application to register for a certain coordination protocol under
the current coordination type.

b. Exchanges endpoint references (EPRs). Each side of the coordination
protocol (participant and coordinator) supplies an EPR.

� A set of coordination protocol services for each supported coordination type.

Figure 8-3 shows the sequence of the interaction between certain applications
and a coordinator.

Figure 8-3 WS-Coordination sequence diagram

For more information about WS-Coordination, see the following Web address:

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.
1-spec-os.html#_Toc160426472

:Application :ActivationService :RegistrationService :ProtocolService

1:CreateCoordinationContext

2:CreateCoordinationContext

3:Register (ParticipantEndpointReference)

(CoordinatorEndpointReference)4:Register

5:ProtocolMessages

6:ProtocolMessages

Coordinator

364 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html#_Toc160426472
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html#_Toc160426472

8.3 WS-AtomicTransaction

The Web services specification provides the definition of the atomic transaction
coordination type that is to be used with the extensible coordination framework
described in the WS-Coordination specification. WS-AT is a specific coordination
type that defines protocols for atomic transactions.

WS-AT support in the application server provides transactional QoS to the Web
services environment. Distributed Web services applications and the resources
they use can take part in distributed global transactions. WS-AT is a two-phase
commit transaction protocol and is suitable for short-duration transactions only.

WS-AT support is an interoperability protocol that introduces no new
programming interfaces for transactional support. Global transaction
demarcation is provided by standard enterprise application use of the Java
Transaction API (JTA) UserTransaction interface. If an application component
that is running under a global transaction makes a Web services request, a
WS-AT CoordinationContext is implicitly propagated to the target Web service,
but only if the appropriate application deployment descriptors are set.

Figure 8-4 shows a transaction context that is shared between two WebSphere
application servers for a Web services request that contains a WS-AT
CoordinationContext.

Figure 8-4 WS-AT support in WebSphere Application Server V7

Application Server1

Web Service
Client

XA Resource

Application Server2

Web Service
Application

XA Resource

 Chapter 8. Web services transaction specifications 365

8.3.1 Example of using WS-AtomicTransaction

The following example illustrates the action of WS-AT. It is composed of three
components:

� The WeatherEJB project contains the JAX-WS Weather Enterprise
JavaBeans (EJB) Web service, which inserts a record into the database. This
service is developed by using the top-down method from the
WeatherJavaBeanService.wsdl file.

� The WeatherJavaBeanWeb project contains the JAX-WS Weather JavaBean
Web service, which inserts another record into the database. This service is
developed by using the bottom-up method.

� The WeatherJavaBeanWebClient project contains the JAX-WS Weather
JavaBean test client.

Download material: The completed example used in this section is included
in the download materials in the Chapter8/ws-at.zip project interchange file
for Rational Application Developer V7.5.

This example uses a DB2 database. The instructions for setting up this
database can be found in “Set up the WEATHER database (DB2)” on
page 542.

366 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 8-5 shows the sequence of the interactions between the WeatherEJB,
WeatherJavaBeanWeb, and the WeatherJavaBeanWebClient components.

Figure 8-5 Web service example for atomic transaction

To experiment with atomic transactions, this example performs two database
record insertions by using two applications:

� The TestClient.jsp file invokes the JavaBean Web service in the Web
project and passes a weather object for insertion into the database.

� The JavaBean Web service then invokes the EJB Web service to perform
another insertion operation. Note that WeatherJavaBeanWeb contains
generated Java proxy classes for calling the EJB Web service.

These two database insertions are executed in one global transaction.

:TestClient.jsp weatherJavaBeanPortProxy weatherJavaBeanDelegate :DB weatherEJBImpl

1.1: setWeather

1.2: setWeather
1.1.4: setWeather

1.1.3.2: insert

1.1.3.1: insert

1.1.3: setWeather

1.1.1: insert

1.1.2: insert

2: setWeather

1: setWeather

Java Bean Web Service Client Java Bean Web Service EJB Web Service

Record 1 insertion

Record 2 insertion

 Chapter 8. Web services transaction specifications 367

Weather EJB Web service
The Weather EJB Web service uses the WeatherBase utility project to insert a
weather record into the database, as shown in Example 8-1.

Example 8-1 setWeather() method implementation in EJB Web service

public void setWeather(Weather arg0) throws Exception_Exception {
WeatherDAO weatherDao = new WeatherDAO();
itso.objects.Weather weather = new itso.objects.Weather();
weather.setCondition(arg0.getCondition());
weather.setDate(arg0.getDate().toGregorianCalendar());
weather.setTemperatureCelsius(arg0.getTemperatureCelsius());
weather.setWindDirection(arg0.getWindDirection());
weather.setWindSpeed(arg0.getWindSpeed());
weatherDao.insertWeather(weather);
//throw new Exception_Exception("WeatherEJB insert failed", new

Exception());
}

The setWeather() method optionally throws an exception to simulate an error in
the database insertion.

Weather JavaBean Web service
The Weather JavaBean Web service (WeatherJavaBean) does the following
actions:

� Starts a global transaction
� Inserts a weather object into the database
� Calls the EJB Web service (to insert another weather object)
� Commits the changes

Example 8-2 illustrates this Web service.

Example 8-2 setWeather() method implementation in JavaBean Web service

public void setWeather(Weather dayWeather) throws Exception {

UserTransaction userTransaction = null;
try {

Global transaction: WeatherDAO uses connections with automatic commit.
By using a global transaction around the JDBC access, autocommit is
disabled, and the commit is performed when the global transaction ends. The
global transaction is carried from the JavaBean Web service to the EJB Web
service when you activate the atomic transaction support.

368 IBM WebSphere Application Server V7.0 Web Services Guide

InitialContext context = new InitialContext();
userTransaction = (UserTransaction) context

.lookup("java:comp/UserTransaction");
// start transaction
userTransaction.begin();

//insert record in database
WeatherForecast wfc = new WeatherForecast();
wfc.setWeather(dayWeather);

//insert record in database via EJB service
WeatherJavaBeanPortProxy beanPortProxy = new

WeatherJavaBeanPortProxy();
itso.ejbean.Weather weather = new itso.ejbean.Weather();
XMLGregorianCalendar xl = DatatypeFactory.newInstance()

.newXMLGregorianCalendar(2009, 04, 24, 00, 00, 00, 00,
1);

weather.setDate(xl);
weather.setCondition("windy");
weather.setTemperatureCelsius(22);
weather.setWindDirection("W");
weather.setWindSpeed(22);
beanPortProxy.setWeather(weather);

// commit transaction
userTransaction.commit();

} catch (Exception e) {
throw new java.rmi.RemoteException("web service bean

transaction error: "
+ e.getMessage());

}

}

Activating WS-Transaction support
Policy sets are used to simplify the configuration of the QoS for Web services
and clients. Policy sets are assertions about how Web services are defined. By
using policy sets, you can combine configurations for different policies. For more
information see Chapter 6, “Policy sets” on page 261.

More about policy sets: Policy sets are used with JAX-WS applications, but
not with JAX-RPC applications.

 Chapter 8. Web services transaction specifications 369

You can configure the way that a JAX-WS client or Web service handles WS-AT
or Web Services Business Activity (WS-BA) context by configuring the
WS-Transaction policy type. You can specify that the client must send context,
can send context if it is available, or must not send context. You can also specify
that the Web service must receive context, can receive context if it is available, or
must not receive context.

WebSphere Application Server V7 provides default policy sets, including the
SSL WSTransaction policy set that provides transactional integrity by using SSL.
In this example, SSL will not be required, so the WSTransaction policy set is
imported from a default repository of WebSphere Application Server:

1. Run the WebSphere Application Server administrative console.

2. Navigate to Services → Policy sets → Application policy sets.

3. On the Application policy sets page (Figure 8-6), select Import → From
Default Repository.

Figure 8-6 Importing policy sets

4. From the list of policy sets, select WSTransaction and click OK.

370 IBM WebSphere Application Server V7.0 Web Services Guide

Now the WSTransaction policy set is imported into the list of supported
application policy sets. To add the WSTransaction policy set to the development
tool:

1. In the administrative console, select WSTransaction, which was imported,
and click Export.

2. Click the WSTransaction.zip link to download this file (Figure 8-7).

Figure 8-7 Exporting WSTransaction policy set

3. In Rational Application Developer, select File → Import.

4. In the Import window (Figure 8-8), expand Web services and select
WebSphere Policy Sets. Click Next.

Figure 8-8 Importing the WSTransaction policy set

 Chapter 8. Web services transaction specifications 371

5. Browse to the WSTransaction.zip file and click Finish to import the file.

Now the workspace is synchronized with WebSphere Application Server policy
sets and the WSTransaction policy set is successfully added to both.

To activate WSTransaction policy sets for the projects (clients and Web services):

1. In Rational Application Developer, select the Services view and expand the
JAX-WS folder. The list of Web services and clients are displayed, as shown
in Figure 8-9.

Figure 8-9 JAX-WS Web services and clients

2. For each Web service”

a. Right-click the Web service and select Manage Policy Set Attachment.

Figure 8-10 Attaching policy sets

Clients

Web services

372 IBM WebSphere Application Server V7.0 Web Services Guide

b. Click Add.

c. In the End Point Definition Dialog window (Figure 8-11), for Policy Set,
select WSTransaction. For the binding, select <Default Binding>. Click
OK, then Finish.

Figure 8-11 Adding WSTransaction policy set

3. For each Web service client:

a. Right-click each Web service client and select Manage Policy Set
Attachment.

b. In the Configure Policy Acquisition for Web Service Client window, click
Next.

c. Click Add.

d. In the Configure Policy Set and Binding window, select WSTransaction as
the policy set. For the binding, select <Default Binding>. Click OK.

e. Click Finish.

 Chapter 8. Web services transaction specifications 373

Testing the application
At this point, we can test the application:

1. Deploy the following enterprise applications in the server:

– WeatherEJBEAR
– WeatherJavaBeanServer
– WeatherJavaBeanWebClientEAR

2. Then run the TestClient.jsp file found in:

WeatherJavaBeanWebClient/WebContent/sampleWeatherJavaBeanPortProxy.

To start the client, right-click TestClient.jsp and select Run As → Run on
Server (Figure 8-12).

Figure 8-12 Run the test client

374 IBM WebSphere Application Server V7.0 Web Services Guide

The test client will open as shown in Figure 8-14 on page 376. Note that you
can modify the endpoint to use the WC_defaulthost port for your server.

Figure 8-13 Test client

3. Click the setWeather method.

 Chapter 8. Web services transaction specifications 375

4. Complete the fields as shown in Figure 8-14. Be sure to enter a date that
does not exist in the database.

Figure 8-14 Running test client

376 IBM WebSphere Application Server V7.0 Web Services Guide

5. Click Invoke. After running the setWeather() operation, the ITSO.SANJOSE
table displays the records. There should be two new records, as shown in
Figure 8-15.

Figure 8-15 Database output (two records inserted)

Testing atomic transactions
The atomic transaction is tested by using error simulation in the EJB Web
service.

EJB Web service error simulation
To simulate an error in the EJB Web service:

1. Edit the setWeather() method of the WeatherEJB and activate the following
statement:

throw new Exception_Exception("WeatherEJB insert failed", new
Exception());

2. Run the client. No records are inserted in the database. The Web service
returns the following exception:

Exception: javax.xml.ws.soap.SOAPFaultException: web service bean
transaction error: WeatherEJB insert failed Message: web service
bean transaction error: WeatherEJB insert failed

 Chapter 8. Web services transaction specifications 377

8.3.2 SOAP messages for atomic transaction

The SOAP message passed from the JavaBean to the EJB Web service carries
the WS-AT information in the header, as shown in Example 8-3.

Example 8-3 SOAP message for atomic transaction

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wscoor:CoordinationContext soapenv:mustUnderstand="1"
xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor">

<wscoor:Identifier>com.ibm.ws.wstx:0000012....</wscoor:Identifier>
 <wscoor:Expires>130000</wscoor:Expires>

<wscoor:CoordinationType>http://schemas.xmlsoap.org/ws/2004/10/wsat</ws
coor:CoordinationType>
 <wscoor:RegistrationService>
 <wsa:Address
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">https://IB
M-11B9...</wsa:Address>
 <wsa:ReferenceParameters
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <websphere-wsat:instanceID
xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com
.ibm.ws.wstx:0000012...</websphere-wsat:instanceID>
 <wsaucf:RoutingInformation
xmlns:wsaucf="http://ucf.wsaddressing.ws.ibm.com">
 <wsaucf:Fragile>0...</wsaucf:Fragile>
 </wsaucf:RoutingInformation>
 <websphere-wsat:deferable
xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">tru
e</websphere-wsat:deferable>
 <websphere-wsat:txID
xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com
.ibm.ws.wstx:0000012</websphere-wsat:txID>
 <wsaucf:VirtualHostName
xmlns:wsaucf="http://ucf.wsaddressing.ws.ibm.com">default_host</wsaucf:
VirtualHostName>
 </wsa:ReferenceParameters>
 </wscoor:RegistrationService>
 </wscoor:CoordinationContext>
 </soapenv:Header>
 <soapenv:Body>

378 IBM WebSphere Application Server V7.0 Web Services Guide

 <ns2:setWeather xmlns:ns2="http://bean.itso/">
 <arg0>
 <condition>Windy</condition>
 <date>2009-04-24T00:00:00.000+00:01</date>
 <dbflag>false</dbflag>
 <temperatureCelsius>22</temperatureCelsius>
 <windDirection>W</windDirection>
 <windSpeed>22</windSpeed>
 </arg0>
 </ns2:setWeather>
 </soapenv:Body>
</soapenv:Envelope>

8.3.3 WS-Transaction policy assertions

If you configure the policies for WS-Transaction protocol for a provider, this
configuration affects the assertions that are included in any Web Services
Description Language (WSDL) that is generated for the Web service with which
the policy type is associated. The WS-Policy assertion that is used to describe
the transactional requirements of a client or provider that uses WS-AT is
ATAssertion.

Note: The SOAP message shown in Example 8-3 has information from the
WS-Coordination, WS-Addressing, and WS-AT specifications.

 Chapter 8. Web services transaction specifications 379

Because the WS-Transaction policy type has a WS-AtomicTransaction (WS-AT)
setting of Supports, a policy assertion is included in the WSDL. The
WS-Transaction policy setting is determined from the administrative console
(under Services → Policy sets → Application policy sets →
WSTransaction → WS-Transaction). See Figure 8-16.

Figure 8-16 WS-Transaction setting

The application server can also parse, understand, and apply such assertions
that are in WSDL.

380 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 8-17 shows the WSDL where the WS-AT ATAssertion indicates that an
endpoint must be invoked with WS-AT context included in the request message
and that the context can be in WS-Transaction 1.0 or 1.1 format. There are two
namespaces and two assertions, one for each WS-Transaction specification
level, using the WS-Policy ExactlyOne operator to show that the client must
choose which specification level to use.

Figure 8-17 ATAssertion in the WSDL file

<wsdl:definitions targetNamespace="http://bean.itso/"
 xmlns:tns="http://bean.itso/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:Policy wsu:Id="ATPolicy">
 <wsp:ExactlyOne>

<wsp:All>
 <wsat:ATAssertion wsp:Optional="true"
xmlns:wsat="http://schemas.xmlsoap.org/ws/2004/10/wsat"/>
 </wsp:All>
 <wsp:All>
 <wsat11:ATAssertion wsp:Optional="true"
xmlns:wsat11="http://docs.oasis-open.org/ws-tx/wsat/2006/06"/>
 </wsp:All>

<!-- omitted assertions -->
 </wsp:ExactlyOne />
 </wsp:Policy>
 <!-- omitted elements -->
 <wsdl:binding name="WeatherJavaBeanPortBinding"
type="tns:WeatherJavaBeanDelegate">
 <!-- omitted elements -->
 <wsdl:operation name="setWeather">
 <wsp:PolicyReference URI="#ATPolicy"/>
 <!-- omitted elements -->
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

WS-Transaction 1.0

WS-Transaction 1.1

The endpoint must be invoked with WS-AT
context included in the request message

 Chapter 8. Web services transaction specifications 381

8.4 WS-BusinessActivity

A business activity is a collection of tasks that are linked together so that they
have an agreed-upon outcome. Unlike atomic transactions, activities such as
sending an e-mail can be difficult or impossible to roll back atomically and,
therefore, require a compensation process in the event of an error. The
WebSphere Application Server business activity support provides this
compensation ability through business activity scopes.

WS-BA support is an implementation of the WS-BA and WS-Coordination
specifications in WebSphere Application Server. These specifications define a
set of protocols that enable Web service applications to participate in loosely
coupled business processes. These processes are distributed across the
heterogeneous Web service environment, with the ability to compensate actions
if an error occurs. For example, an application that sends an e-mail cannot
unsend it following a failure. However, the application can provide a
business-level compensation handler that sends another e-mail that advises of
the new circumstances.

In addition to supporting the WS-BA interoperability protocol, WebSphere
Application Server provides a programming interface called the Business Activity
API for creating business activities and compensation handlers. With this
programming interface, you can specify compensation data and check or alter
the status of a business activity.

8.4.1 Example of using WS-BusinessActivity

The following example is used to illustrate the action of WS-BA. It is composed of
two components:

� The WeatherBAEJB project contains the following session EJBs:

– WeatherUpdaterSoapBindingImpl session EJB that is exposed as
JAX-WS Web service

Download material: The example used in this section is included in the
download materials in the Chapter8/ws-ba.zip project interchange file for
Rational Application Developer V7.5.

This example uses a DB2 database. The instructions for setting up this
database can be found in “Set up the WEATHER database (DB2)” on
page 542.

382 IBM WebSphere Application Server V7.0 Web Services Guide

This service is developed by using the top-down method from the
WeatherUpdater.wsdl file.

– WeatherRaleigh session EJB that inserts a weather record into the
database

– WeatherSanJose session EJB that inserts another weather record into the
database

� The WeatherBAEJBClient project contains the JAX-WS Weather EJB test
client.

Figure 8-18 shows a sequence that illustrates the interaction between these
components. It also shows a business activity that spans multiple transactions.

Figure 8-18 Web service example for business activity transaction

TestClient.jsp WeatherUpdaterSoapBindingImpl WeatherSanJose DB weatherRaleigh

1: updateWeather 1.1: updateSanJose

1.2: updateSanJose

1.3: updateRaleigh

1.4: updateRaleigh

1.3.1: insert

1.3.2: insert

1.1.1: insert

1.1.2: insert

2: updateWeather

EJB Web ServiceEJB Web Service
Client

Transaction 1 for Record 1 insertion

Transaction 2 for Record 2 insertion

 Chapter 8. Web services transaction specifications 383

To experiment with business activity transactions, this example performs two
database record insertions by using two applications:

� The TestClient invokes the WeatherUpdaterSoapBindingImpl session EJB as
a Web service to insert multiple weather records.

� The WeatherUpdaterSoapBindingImpl session EJB calls two session EJBs
(WeatherRaleigh and WeatherSanJose) to each insert a weather record.
Each session EJB runs as its own transaction. This simulates a more realistic
scenario where each session EJB invokes external services to perform work
that cannot be done under one transaction.

If anything goes wrong in one of the transactions, updates must be rolled back by
invoking compensation services for each session EJB.

8.4.2 Weather EJB Web service

Example 8-4 shows updateWeather() method in the
WeatherUpdaterSoapBindingImpl session EJB. It invokes the WeatherRaleigh
and WeatherSanJose session EJBs to each insert two weather records.

Example 8-4 updateWeather() method

public String updateWeather(XMLGregorianCalendar date) throws
Exception{

Calendar date1 = Calendar.getInstance();
date1.setTime(date.toGregorianCalendar().getTime());
Calendar date2 = (Calendar)date1.clone();
date2.roll(Calendar.DATE, true);

String result1=null, result2=null;

//Create a new context
InitialContext ctx = new InitialContext();
//use the context to lookup the remote interface.
WeatherSanJoseRemote ejbSanJose = (WeatherSanJoseRemote)

ctx.lookup(WeatherSanJoseRemote.class.getName());
WeatherRaleighRemote ejbRaleigh = (WeatherRaleighRemote)

ctx.lookup(WeatherRaleighRemote.class.getName());

result1 = ejbSanJose.updateSanJose(date1);
result2 = ejbRaleigh.updateRaleigh(date2);

return "Updated weather: \n" + result1 + "\n" + result2 ;
}

384 IBM WebSphere Application Server V7.0 Web Services Guide

The two other session beans are identical and insert a weather record, as shown
in Example 8-5.

Example 8-5 updateSanJose() method

public String updateSanJose (Calendar date) throws Exception
{
 Weather w = new Weather(date);
 WeatherPredictor.calculateWeatherValues(w);
 WeatherDAO dao = new WeatherDAO();
 dao.deleteWeather(date);
 dao.insertWeather(w);
 System.out.println("Weather San Jose inserted: " + w);
 return "San Jose " + w;

}

8.4.3 Using the business activity support

To activate business activity support for the Weather application:

1. Activate the compensation service in the application server.
2. Use multiple transactions for the three EJBs.
3. Create a Service Data Object (SDO) for compensation.
4. Create the compensation classes.
5. Activate compensation for the session beans.
6. Register the session bean with the compensation service.

We explain each of these steps in the following sections.

Activating the compensation service in the server
The compensation service required for business activities is not active by default
in the server. To activate the compensation service:

1. Open the administrative console.

2. Expand Servers → Server Types → WebSphere Application servers and
select the server.

3. Under Container Settings, select Container Services → Compensation
service.

Note: All the EJBs in this example are EJB 3.0.

 Chapter 8. Web services transaction specifications 385

4. Under General Properties (Figure 8-19), select Enable service at server
startup and click OK.

Figure 8-19 Activating compensation service

5. Save the configuration and restart the server. By default, the recovery log
directory is in profile_root/recoveryLogs.

Using multiple transactions
To run the three EJBs in separate transactions, inject the annotations that are
shown in Example 8-6 at the class level of each EJB to specify the default
transaction management and attribute, respectively, for all EJB business
methods.

Example 8-6 Transaction EJB annotations

@TransactionManagement(value=TransactionManagementType.CONTAINER)
@TransactionAttribute(value=TransactionAttributeType.REQUIRES_NEW)

386 IBM WebSphere Application Server V7.0 Web Services Guide

Creating a service data object for compensation
To register a bean as a business activity, you must set up a compensation bean
and a service data object (SDO) that holds the information necessary to perform
the compensation. For our application, the SDO only requires the date of the
weather record. This is enough to delete the inserted weather record for that date
as a compensation of the insert.

Example 8-7 shows the compensation data bean. The CompensationData
JavaBean is imported into the itso.compensation package.

Example 8-7 Compensation data JavaBean (SDO)

public class CompensationData {

private DataObject weatherDate;

public CompensationData(Calendar date, String location) {
super();
try {

MetadataFactory mFactory = MetadataFactory.eINSTANCE;
Metadata metadata = mFactory.createMetadata();
Table table = metadata.addTable("ANYTABLE");
table.setSchemaName("ITSO");
Column dateColumn = table.addDateColumn("WeatherDate"); //key
table.addStringColumn("Location");
dateColumn.setNullable(false);
table.setPrimaryKey(dateColumn);
metadata.setRootTable(table);

JDBCMediatorFactory medFactory =
JDBCMediatorFactory.soleInstance;

JDBCMediator mediator = medFactory.createMediator(metadata);
DataObject graph = mediator.getEmptyGraph();
weatherDate = graph.createDataObject(0);
weatherDate.setDate("WeatherDate", date.getTime());
weatherDate.setString("Location", location);
System.out.println("Created CompensationData: " + location + "

" + weatherDate.getDate("WeatherDate"));
} catch (Exception e) {

System.out.println("Cannot create CompensationData: " +
e.getMessage());

}
}

 Chapter 8. Web services transaction specifications 387

public DataObject getSDO() { return weatherDate; }

}

In this code, a JDBCMediator is used to create the SDO for an imaginary table
with two columns:

� WeatherDate, which is the date of the weather record
� Location, which indicates the location

The getSDO() method retrieves the SDO.

Creating the compensation classes
For each session bean of the business activity, define a compensation class that
is invoked if something goes wrong and the data must be rolled back.

Example 8-8 shows the code of the RaleighCompensate class.

The three compensation classes, RaleighCompensate, SanJoseCompensate,
and UpdaterCompensate, are imported into the itso.compensation package.

Example 8-8 Compensation class

public class RaleighCompensate implements CompensationHandler {

public void close(DataObject arg0) throws
RetryCompensationHandlerException, CompensationHandlerFailedException {

System.out.println("Compensate close for " +
arg0.getString("Location"));

}

public void compensate(DataObject arg0) throws
RetryCompensationHandlerException, CompensationHandlerFailedException {

Calendar cal = Calendar.getInstance();
cal.setTime(arg0.getDate("WeatherDate"));
WeatherDAO dao = new WeatherDAO();
boolean result = dao.deleteWeather(cal);
if (result) System.out.println("Compensate: deleted weather for "

+ arg0.getString("Location"));
}

}

388 IBM WebSphere Application Server V7.0 Web Services Guide

A compensation class must provide the following methods:

� close(), which is called after a commit (can do some cleanup)

� compensate(), which is called to roll back the update (in our case, delete the
weather record that was inserted)

The SDO is passed as a parameter and should have enough information to
perform the rollback.

Note that the UpdaterCompensate bean has no work to perform.

Activating compensation for the session beans
To activate compensation and provide the name of the compensation class for
each bean:

1. In the workspace, right-click the WeatherBAEJB project and select Java
EE → Generate WebSphere Programming Model Extensions
Deployment Descriptor (Figure 8-20).

Figure 8-20 Generating the PME

 Chapter 8. Web services transaction specifications 389

2. Right-click EJB PME and select Add → Compensation (Figure 8-21).

Figure 8-21 Adding compensation

3. Right-click Compensation and select Add → Bean Policy (Figure 8-22).

Figure 8-22 Adding bean policy

390 IBM WebSphere Application Server V7.0 Web Services Guide

4. Change the Type field to REQUIRED, and for Class, browse to the
itso.compensation.RaleighCompensate class as the compensation handler
(Figure 8-23).

Figure 8-23 Configuring the bean policy

5. Click EJB (), which is the child of Bean Policy, and set the EJB name to
WeatherRaleigh.

Figure 8-24 Setting the EJB name

 Chapter 8. Web services transaction specifications 391

6. Repeat the steps starting from step 3, but this time for the WeatherSanJose
and WeatherUpdaterSoapBindingImpl EJB. Figure 8-25 shows the result.

Figure 8-25 The result for adding all the bean policies

Registering the session bean with the compensation service
Finally, write the code in the session bean to register the EJB with the
compensation service and set the SDO object for compensation.

Example 8-9 shows the updateSanJose() method with business activity support
added.

Example 8-9 Session bean with business activity support

public String updateSanJose (Calendar date) throws Exception
{

InitialContext ctx = new InitialContext();
UserBusinessActivity uba = (UserBusinessActivity)
ctx.lookup("java:comp/websphere/UserBusinessActivity");
CompensationData sdo = new CompensationData(date, "San Jose");
uba.setCompensationDataImmediate(sdo.getSDO());

Weather w = new Weather(date);
WeatherPredictor.calculateWeatherValues(w);
WeatherDAO dao = new WeatherDAO();
dao.deleteWeather(date);
dao.insertWeather(w);
System.out.println("Weather San Jose inserted: " + w);

392 IBM WebSphere Application Server V7.0 Web Services Guide

// rollback if month=October
if (date.get(Calendar.MONTH) == 9)

 throw new Exception("Simulated abort in San Jose");

return "San Jose " + w;
}

The method in Example 8-9 on page 392 does the following actions:

� Retrieves the UserBusinessActivity, initializes the SDO, and registers the
SDO for compensation:

– setCompensationDataImmediate activates the compensation immediately.

– setCompensationDataAtCommit is used when a global transaction is
present.

These methods can be called multiple times with an updated SDO as the
application makes changes to the database.

� For testing the compensation, it throws an exception when the month is
October. In the updateRaleigh() method, the same is done for September.

Example 8-10 shows the updateWeather method with business activity support
added. In the main session bean, any exceptions that occur in the called beans
are caught to initiate a rollback.

Example 8-10 Session bean method in WeatherUpdater

public String updateWeather(XMLGregorianCalendar date) throws
Exception{

Calendar date1 = Calendar.getInstance();
date1.setTime(date.toGregorianCalendar().getTime());
Calendar date2 = (Calendar)date1.clone();
date2.roll(Calendar.DATE, true);

String result1=null, result2=null;
//Create a new context
InitialContext ctx = new InitialContext();
// business activity
UserBusinessActivity uba = (UserBusinessActivity)

ctx.lookup("java:comp/websphere/UserBusinessActivity");
CompensationData sdo = new CompensationData(date1, "Updater");
uba.setCompensationDataImmediate(sdo.getSDO());

//use the context to lookup the remote interface.

 Chapter 8. Web services transaction specifications 393

WeatherSanJoseRemote ejbSanJose = (WeatherSanJoseRemote)
ctx.lookup(WeatherSanJoseRemote.class.getName());

WeatherRaleighRemote ejbRaleigh = (WeatherRaleighRemote)
ctx.lookup(WeatherRaleighRemote.class.getName());

try{
result1 = ejbSanJose.updateSanJose(date1);
result2 = ejbRaleigh.updateRaleigh(date2);

} catch (Exception e) {
e.printStackTrace();
uba.setCompensateOnly();

}
// rollback if month=August
if (date1.get(Calendar.MONTH) == 7)
{

throw new RemoteException("Simulated abort in Updater");
}
if (uba.isCompensateOnly())

System.out.println("Weather updates will be compensated");
else

System.out.println("Updated weather: \n" + result1 + "\n" +
result2);

return "Updated weather: \n" + result1 + "\n" + result2 ;
}

The method in Example 8-10 on page 393 shows the following actions:

� To initiate compensation when a rollback occurs in a called bean, we issue
the setCompensateOnly method.

� If the date is in August, we simulate an exception in the main bean.

8.4.4 Application testing with business activity support

After making all the changes, run the Web service client.

Deploy the application on the server and run the TestClient.jsp file found in
WeatherBAEJBClient/WebContent/sampleWeatherUpdaterProxy.

394 IBM WebSphere Application Server V7.0 Web Services Guide

Test the following scenarios:

� Run the Web service with a July date. Both inserts should be committed.

� Run the Web service with an August date. All updates are compensated by
simulating an exception in the main bean.

� Run the Web service with a September date. All updates are compensated
because the Raleigh bean throws an exception.

� Run the Web service with an October date. The San Jose update is
compensated. (The Raleigh bean has not been called yet.)

Watch the messages in the console. Example 8-11 shows the messages when
all updates are compensated.

Example 8-11 Console messages

Created CompensationData: Updater Sat Aug 01 00:00:00 GMT+02:00 2009
Created CompensationData: San Jose Sat Aug 01 00:00:00 GMT+02:00 2009
Weather San Jose inserted: Weather: Sat. Aug 1, 2009 GMT+02:00, stormy,
wind: NE at 1km/h , temperature: 20 Celsius
Created CompensationData: Raleigh Sun Aug 02 00:00:00 GMT+02:00 2009
Weather Raleigh inserted: Weather: Sun. Aug 2, 2009 GMT+02:00, cloudy,
wind: NW at 17km/h , temperature: 33 Celsius
CNTR0020E: EJB threw an unexpected Exception data:
java.rmi.RemoteException: Simulated abort in Updater
Compensate compensate for Updater
Compensate: deleted weather for San Jose
Compensate: deleted weather for Raleigh

8.5 More information

The WS-Transactions specifications are available from the following resources:

� WS- AtomicTransaction 1.1

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1
-spec-os.html

� WS- AtomicTransaction 1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/#atom

� WS-BusinessActivity 1.1

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1
-spec-os.html

 Chapter 8. Web services transaction specifications 395

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html

� WS-BusinessActivity 1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/#ba

� WS-Coordination 1.1

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor
-1.1-spec-os.html

� WS-Coordination 1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/#coor

In addition, consult the following topics in the WebSphere Application Server V7
Information Center:

� “Web services Atomic Transaction support in WebSphere Application Server”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.base.doc/info/aes/ae/cjta_wstran.html

� “Web services Business Activity support in the application server”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.base.doc/info/aes/ae/cjta_wsba.html

� “Configuring a server to use business activity support”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.base.iseries.doc/info/iseries/ae/tjta_wsba_enable
.html

� “Transaction compensation and business activity support”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/cjta_wsbascope
.html

� “Business activity API”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.express.doc/info/exp/ae/rjta_wsba_api.html

396 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/developerworks/library/specification/ws-tx/#ba
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#coor
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cjta_wstran.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/cjta_wsba.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.iseries.doc/info/iseries/ae/tjta_wsba_enable.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/cjta_wsbascope.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rjta_wsba_api.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rjta_wsba_api.html

Chapter 9. WS-Notification

In this chapter we describe the support that is provided by WebSphere
Application Server V7.0 and Rational Application Developer for WebSphere
Software 7.5 for developing and configuring Web Services Notification
(WS-Notification)-based applications.

In this chapter we begin by providing an overview of the WS-Notification
specification. Next we discuss how WebSphere Application Server supports the
WS-Notification specification. Then we explain how to configure a
WS-Notification broker application and how to develop WS-Notification consumer
and producer applications. In addition, we discuss the advanced features and
configuration options for WS-Notification.

The WS-Notification examples in this chapter introduce WS-Notification
development by using the new Java API for XML Web Services (JAX-WS) 2.1
programming model.

This chapter contains the following topics:

� “WS-Notification overview” on page 398
� “WS-Notification in WebSphere Application Server” on page 402
� “Developing WS-Notification applications” on page 416
� “WS-Notification runtime administration” on page 458
� “Advanced features and options” on page 464

9

© Copyright IBM Corp. 2009. All rights reserved. 397

9.1 WS-Notification overview

WS-Notification can be described as publish/subscribe for Web services. More
formally, WS-Notification is a family of related white papers and specifications
that define a standard Web services approach to notification by using a
topic-based publish/subscribe pattern.

The event-driven, or notification-based, interaction pattern is a commonly used
pattern for interobject communications. Examples exist in many domains, for
example, in publish/subscribe systems provided by message-oriented
middleware vendors or in system and device management domains. This
notification pattern is increasingly being used in a Web services context.

The white paper Publish-Subscribe Notification for Web services, available at the
following address, introduces the concepts of notification patterns. It also sets the
goals and requirements for the WS-Notification family of specifications.

http://www-128.ibm.com/developerworks/webservices/library/specification
/ws-pubsub/

WS-Notification consists of the following specifications:

� WS-BaseNotification

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

� WS-BrokereredNotification

http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec
-os.pdf

� WS-Topics

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

9.1.1 WS-BaseNotification

The WS-BaseNotification specification defines the basic roles that are required
for publishing and subscribing. These roles are the NotificationProducer and
NotificationConsumer roles. The NotificationProducer role is responsible for
producing (publishing) notification messages to a NotificationConsumer.

To establish a relationship between the producer and the consumer, the
NotificationProducer accepts subscription requests from, or on behalf of, a
NotifcationConsumer. Such requests include, among other information, a
definition of which topics the consumer wants to receive messages.

398 IBM WebSphere Application Server V7.0 Web Services Guide

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-pubsub/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

The following two styles of consumer are described within the specification:

� Push-style consumer

A push-style consumer is sent notifications when the producer determines
that messages are available for a topic to which the consumer is subscribed.
The producer pushes messages to the consumer. The push-style consumer
is required to expose a Web service endpoint to accept receipt of such
messages.

� Pull-style consumer

A pull-style consumer takes the opposite approach. Instead of the producer
(or broker) sending messages to the consumer whenever they are available,
the consumer controls the rate and timing of the message transfer by
requesting messages from the producer when it requires them. The
consumer pulls messages from the producer.

To facilitate the ability to pull messages from a producer (or broker), a
mechanism called a pull point is defined. Before subscribing to the producer,
a pull style consumer requests that the producer create a pull point. In
response, the producer returns an endpoint reference for the pull point. When
the consumer subsequently subscribes to the producer, it specifies the pull
point endpoint reference as the consumer reference. This endpoint reference
indicates to the producer that messages destined for the consumer should be
sent to the pull point.

At a time of its choosing, the consumer then retrieves (pulls) the messages
from the pull point. The roles that are necessary for handling pull points are
defined by the CreatePullPoint and PullPoint port types.

Finally, the WS-BaseNotification specification defines roles for handling the
lifetime management of subscriptions (SubscriptionManager and
PausableSubscriptionManager). The port types for these roles allow a
subscription to be paused, resumed, renewed, and deleted (unsubscribed).

All roles are specified in the form of Web services Description Language
(WSDL) 1.1 port types and associated operations, messages, and XML schema
definitions. You can find detailed descriptions of the roles and the WSDL and
XML schemas that are used in the WS-BaseNotification specification.

9.1.2 WS-BrokeredNotification

The WS-BrokeredNotification specification builds on the concepts defined in the
WS-BaseNotification specification to describe a NotificationBroker role. A
NotificationBroker is an intermediary between a NotificationProducer and a
NotificationConsumer.

 Chapter 9. WS-Notification 399

The NotificationBroker role includes the following benefits, among others:

� Allows applications that do not expose Web service endpoints to publish
messages

From the consumer point of view, the necessary Web service endpoints for
creating and managing subscriptions are provided by the broker.

� Reduces the number of messages sent by a producer

The producer can send an individual message to the broker who then
potentially distributes it to multiple consumers.

� Reduces the number of messages sent to a consumer

The broker can consolidate notifications from multiple producers that match
the requirements of a consumer subscription, into a single call to the notify
operation of the NotificationConsumer.

� Anonymizes notifications so that consumers and producers are unaware of
each other’s identity

Demand-based publishing is an important pattern introduced by the
WS-BrokeredNotification specification. In this pattern, a producer registers with
the broker before it publishes messages. As part of the registration process, the
producer indicates that it is interested in knowing whether subscribers exist for
the topics to which it publishes. In return, the broker subscribes to the producer
and uses the subscription as an indication of the demand for messages. By
pausing the subscription, the broker indicates that no active subscriptions exist.
Therefore, the producer can decide to temporarily stop publishing messages.
When the subscription is resumed by the broker, once again, demand for
messages exists.

Figure 9-1 shows the basic interactions that occur for a brokered WS-Notification
system.

Figure 9-1 Basic brokered WS-Notification interactions

Notification
broker

Notification
producer

Subscriber

Notification
consumer

Subscribes
on behalf of

Subscription
managerSubscriber

Publisher
registration

manager

Publisher
registering
application

Managing publisher registrations

Managing consumer subscriptions

Basic brokered publishing/subscribing

Publisher registering
application

Registers
on behalf of

Optional

400 IBM WebSphere Application Server V7.0 Web Services Guide

9.1.3 WS-Topics

The WS-Topics specification defines the terms and mechanisms for
discriminating between items of interest when subscribing or publishing. These
items (or topics as they are called) can be organized into hierarchies and
grouped by XML namespaces. The WS-Topic specification defines a convention
for referring to a single topic or group of topics, called a topic expression.

Topic expressions contain two pieces of information, a component that dictates
the style of the content in the expression, known as a dialect, and the content of
the expression itself. The WS-Topics specification defines three standard dialects
of topic expressions:

� Simple topic expressions

This is a basic style of topic expression in which the only allowed expressions
are QNames. That is, only root topics (those with no parent topic) can be
referred to by simple topic expressions. There is no topic hierarchy or wild cards.

A simple topic expression has the following dialect value:

http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple

The following example shows a simple topic expression:

tns1:stock Indicates a topic named "stock" in a namespace
corresponding to the prefix "tns1"

� Concrete topic expressions

This topic dialect extends the simple topic expression pattern to allow topic
hierarchies by using the forward slash (/) character to indicate a child of a
relationship. This topic dialect does not allow any wild cards, and a valid simple
topic expression is automatically valid in the concrete topic expression dialect.

A concrete topic expression has the following dialect value:

http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete

The following example shows a concrete topic expression:

tns1:stock/IBM Indicates a subtopic named "IBM" of topic "stock"
in a namespace correponding to the prefix "tns1"

� Full topic expressions

This topic dialect extends the concrete topic expression dialect to include the
concepts of wild cards and conjunction. It is based on a subset of the XPath

Separation of entities: The separation of the NotificationBroker,
SubscriptionManager, and PublisherRegistrationManager entities shown is for
clarity only and is not a requirement of the WS-Notification specification.

 Chapter 9. WS-Notification 401

location path expressions and describes how expressions of this type can be
evaluated by using the XML document representation of a topic space. Wild
cards in topics are achieved by using the XPath style asterisk (*) and dot (.)
characters, with conjugation described using the pipe (|) operator.

A full topic expression has the following dialect value:

http://docs.oasis-open.org/wsn/t-1/TopicExpression/Full

The following examples are full topic expressions:

tns1:stock/* Indicates all subtopics of the topic named stock in
the namespace that corresponds to the prefix tns1.

tns1:cars|tns2:boats Indicates the topic named cars in the namespace
that corresponds to the prefix tns1 or the topic
named boats in the namespace that corresponds to
the prefix tns2.

Additional terms defined by WS-Topics include topic trees (a hierarchical
grouping of topics), topic namespaces (a hierarchical grouping of topics under
the same namespace), and topic sets (the set of topics supported by a producer
or broker).

For full details about all concepts, and additional examples of topic expressions,
see the WS-Topics specification document.

9.2 WS-Notification in WebSphere Application Server

WebSphere Application Server V7 supports Version 1.3 of the WS-Notification
family of specifications. In the following sections we discuss the resources that
are provided within the application server to support the use of WS-Notification.

9.2.1 Core WS-Notification resources

The WS-Notification resources are services and service points.

WS-Notification services
A WS-Notification service provides the ability to expose some or all of the
messaging resources that are defined on a service integration bus (SIB) for use
by WS-Notification applications. It encapsulates the Web service and messaging
resources necessary for the application server or cluster to act as a
WS-Notification broker application.

402 IBM WebSphere Application Server V7.0 Web Services Guide

Usually, you configure one WS-Notification service for an SIB, but you can
configure more than one.

A WS-Notification service references three SIB inbound services:

� Notification broker inbound service

This inbound service exposes operations that are defined by the
NotificationBroker port type from WS-BrokeredNotification and the
CreatePullPoint and PullPoint port types from WS-BaseNotification. These
port types define the functions that are necessary to subscribe consumers
and publish messages.

� Subscription manager inbound service

This inbound service exposes operations that are defined by the
PausableSubscriptionManager port type from WS-BaseNotification. This port
type defines the function necessary to manage the lifetime of a consumer
subscription.

� Publisher registration manager inbound service

This inbound service exposes operations that are defined by the
PublisherRegistrationManager port type from WS-BrokeredNotification. This
port type defines the function necessary to manage the lifetime of a publisher
registration.

All three inbound services support the GetResourceProperty and
SetTerminationTime operations that are defined by the WS-ResourceProperties
specification. These operations allow properties of WS-Notification service
resources to be queried and, for some resources such as subscriptions, allow the
termination time to be set.

WS-Notification service types: Version 6.1 versus Version 7.0
WebSphere Application Server V7 introduces the following types of
WS-Notification services. Upon creation of a WS-Notification service, you must
make a choice between the two types:

� Version 6.1
� Version 7.0

With the Version 6.1 WS-Notification service, you can expose a Java API for
XML-based remote procedure calls (JAX-RPC) WS-Notification service by using
the same technology that is provided in WebSphere Application Server V6.1.
One reason for choosing this type of WS-Notification service is the ability to
apply existing JAX-RPC handlers to the service. Another reason might be that
you want to use the SOAP/JMS binding, which is not supported by the Version
7.0 service.

 Chapter 9. WS-Notification 403

The Version 7.0 WS-Notification service exposes a JAX-WS 2.1 WS-Notification
service. This is the recommended type of service for new deployments for the
following reasons:

� It allows you to apply JAX-WS logical and protocol handlers.

� It allows you to apply policy sets for easy configuration of quality of service
(QoS) features.

The applicability of policy sets is a compelling option that comes with WebSphere
Application Server V7. With policy sets, you can easily add advanced QoS
features, such as reliable message exchange, by using WS-ReliableMessaging,
or security, by using WS-Security features.

WS-Notification service points
A WS-Notification service point defines access to a WS-Notification service on a
given bus member through a specified Web service binding (for example, SOAP
over HTTP). Applications connect to a WS-Notification service by the bus
member that is associated with a service point.

You can define any number of service points for a given WS-Notification service.
Each service point defined for the same WS-Notification service represents an
alternative entry point to the service. Event notifications that are published to a
particular WS-Notification service point are received by all applications that are
connected to any service point of the same WS-Notification service (subject to
subscription on the correct topic). This happens regardless of the particular
service point to which they are connected.

There are two main cases for which you may want to create more than one
service point for a given WS-Notification service:

� To expose one WS-Notification service on multiple bus members (servers or
clusters)

� To expose a WS-Notification service on a single bus member (server or
cluster) by using multiple bindings or by using different security configurations

Each WS-Notification service point encapsulates three SIB inbound ports, one
corresponding to each of the three inbound services that belong to the parent
WS-Notification service.

404 IBM WebSphere Application Server V7.0 Web Services Guide

Relationships with service integration bus Web services
Figure 9-2 illustrates how WS-Notification service and service points relate to
SIB Web services.

Figure 9-2 Relationships between WS-Notification and SIB Web services resources

We explain Figure 9-2 as follows:

� A WS-Notification service contains one or more service points (two in
Figure 9-2) and refers to three inbound services. Each inbound service is
related to port types from the WS-Notification specifications.

� Each WS-Notification service point refers to three inbound ports, each one
belonging to an inbound service that is referred to the parent WS-Notification
service.

� Each of the three inbound services relates to the same individual
WS-Notification service.

� Each inbound port relates to the same individual WS-Notification service
point and relates to one inbound service.

Service integration bus
Web services resources

WS-Notification resources

Publisher registration manager inbound service

Publisher registration manager inbound ports

WS-Notification service WS-Notification service points

Subscription manager inbound service

Subscription manager inbound ports

Notification broker inbound service

Notification broker inbound ports

Notification Broker

Subscription Manager

Registration Manager

 Chapter 9. WS-Notification 405

Topic namespaces and other topic-related features
Similar terminologies are used by the WS-Notification specifications and
WebSphere Application Server messaging in relation to the handling of topics. In
the following sections we list the terms and provide brief definitions.

For full definitions and further information, see the “WS-Notification terminology”
topic in the WebSphere Application Server Information Center at the following
address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.pmc.nd.doc/ref/rjwsn_terms.html

Topic-related terms
The following terms are related to the handling of topics:

Topic namespace A WS-Notification term for a hierarchical collection (tree)
of topics, referenced by a namespace Uniform Resource
Identifier (URI). In WebSphere Application Server V7,
topic namespaces are broken down into two patterns:

Permanent topic namespace
A static association between a WS-Notification
topic namespace URI and a WebSphere
Application Server topic space.

Dynamic topic namespace
Used in response to a request from a
WS-Notification application for a topic
namespace that has not been defined as a
permanent topic namespace.

Topic space A WebSphere Application Server term for a hierarchy of
topics that is used for publish/subscribe messaging.

Topic In WebSphere Application Server, a discriminator within a
topic space. In WS-Notification, a discriminator within a
topic namespace.

Topic expression A WS-Notification term for the means by which you refer
to a topic. A topic expression contains a dialect
component. WebSphere Application Server V7 supports
the three standard dialects defined by WS-Topics, which
are simple, concrete, and full topic expressions. For more
information about these dialects, see “WS-Topics” on
page 401.

An additional term that might be encountered if you configure Java Message
Service (JMS) resources or applications is JMS topic. JMS topic is an

406 IBM WebSphere Application Server V7.0 Web Services Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.pmc.nd.doc/ref/rjwsn_terms.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.pmc.nd.doc/ref/rjwsn_terms.html

administrative object that encapsulates the name of a topic and a topic space on
an SIB. JMS applications can publish or subscribe to JMS topics.

Overview of WS-Notification in WebSphere Application Server
Figure 9-3 shows an outline of WS-Notification applications interacting with a
WS-Notification service.

Figure 9-3 WS-Notification applications interacting with a WS-Notification service

In a Version 7.0 WS-Notification service, WS-Notification applications interact
with the three inbound services (notification broker, subscription manager, and
publisher registration manager) through JAX-WS Web services. These Web
services are part of the WS-Notification service point that is implemented as a
Java Platform, Enterprise Edition (Java EE), application.

WS-Notification message publishing is destined for a topic namespace in the
WS-Notification service. This topic namespace in turn refers to an actual topic
space on the active messaging engine of the SIB.

WS-Notification service

WS-Notification
service point

Producer application

Consumer application

Demand-based
producer application

Subscriber application

Publisher registering
application

Requests originating in
the WS-Notification service

WebSphere Application Server 7

Topic namespace

Topic
space

Messaging engine

Durable
subscription

JAX-WS
Web

services

 Chapter 9. WS-Notification 407

The following applications, as shown in Figure 9-3 on page 407, typically interact
with a WS-Notification service in WebSphere Application Server V7:

� Producer applications

The applications that publish WS-Notification messages.

� Subscriber applications

The applications that subscribe on behalf of the consumer applications.
Alternatively, subscription functionality can be part of the consumer
applications.

� Publisher registering applications

The applications that register the (demand based) producer applications.
Alternatively, this functionality can be part of the publisher applications.

� Demand-based producer applications

The applications that publish WS-Notifications messages and are subscribed
to by the broker service.

� Consumer applications

The applications that consume WS-Notification messages.

9.2.2 Configuring a WS-Notification broker application

A WS-Notification broker application is represented in WebSphere Application
Server V7 by a combination of a WS-Notification service and related
WS-Notification service points. To configure a WS-Notification broker, it is
necessary to configure these resources.

In 9.3, “Developing WS-Notification applications” on page 416, we introduce a
daily weather WS-Notification development example. In this section we
demonstrate how to create the WS-Notification broker application resources that
are used for the example. The resources are created by using the WebSphere
administrative console. However, it is possible to create all of these resources by
using the wsadmin command-line tool if you prefer. See 9.2.3, “WS-Notification
wsadmin commands” on page 415, for a list of WS-Notification wsadmin
commands.

408 IBM WebSphere Application Server V7.0 Web Services Guide

Creating a service integration bus
A WS-Notification service must be attached to a bus. For the Weather example,
we created an SIB named weatherWSNBus with a single application server
instance member. We restarted the application server to ensure that the bus was
active.

Creating WS-Notification resources by using the
administrative console
You can create the core WS-Notification resources by using the administrative
console in WebSphere Application Server V7. The administrative console has a
wizard with which you can create a WS-Notification service, one or more
WS-Notification service points, and one or more permanent topic namespaces.

To create a WS-Notification service, a single service point, and a single
permanent topic namespace, create these resources for the weather
WS-Notification examples:

1. From the WebSphere administrative console, in the left pane, select Service
integration → WS-Notification → Services. In the right pane, click New.

Using a script to get up and running quickly with WS-Notification: To
save time or to try WS-Notification, consult the “Using a script to get up and
running quickly with WS-Notification” topic in the WebSphere Application
Server Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.pmc.nd.doc/tasks/tjwsn_task_sysa0.html

This topic provides a Jython script that automatically creates all the necessary
resources that comprise a basic WS-Notification broker application. To run the
script, run the wsadmin tool as follows:

wsadmin -f wsnQuickStart.py

 Chapter 9. WS-Notification 409

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.pmc.nd.doc/tasks/tjwsn_task_sysa0.html

2. On the New WS-Notification service page (Figure 9-4):

a. For name, type weatherWSNService.

Figure 9-4 New WS-Notification service page

b. For service integration bus name, select weatherWSNBus.

Reminder: A WS-Notification service is associated with only one bus,
but multiple WS-Notification services can be associated with the same
bus.

410 IBM WebSphere Application Server V7.0 Web Services Guide

c. Select the following options as appropriate for your WS-Notification
service:

• Select the Enable dynamic topic namespaces? option if you want
messages to be published to topics that belong to namespaces other
than those that are defined by permanent topic namespaces. This
option specifies whether dynamic topic namespaces are supported by
the service. The default setting is to enable dynamic topic
namespaces.

• Select the Requires registration option if you want to prevent the
processing of messages that are received by non-registered publishers.
This option specifies whether publishers (NotificationProducers) must
register with the WS-Notification service before they can publish
messages to it. The default setting is registration not required.

d. Click Next.

3. When prompted to choose between a Version 7.0 and Version 6.1
WS-Notification type service, select Version 7.0 and click Next.

4. On the Configure handler and Web service policy settings page, accept the
suggested default values and click Next.

5. On the Create WS-Notification service points page, create a service point and
click Next.

6. For the service point name, type weatherWSNServicePoint and click Next.

7. On the Define transport settings page, select either a SOAP 1.1/HTTP
binding or a SOAP 1.2/HTTP binding. If you choose SOAP 1.1, leave the
default values as suggested. Then click Next.

 Chapter 9. WS-Notification 411

8. Back on the Create WS-Notification service points page (Figure 9-5), on
which you now see the service point, for Create another instance?, select No
and then click Next.

Figure 9-5 Create WS-Notification service points page

9. On the Create permanent topic namespaces page, for Create a new
instance?, select Yes and click Next.

412 IBM WebSphere Application Server V7.0 Web Services Guide

10.On the Configure namespace and select service integration bus topic space
page (Figure 9-5 on page 412):

a. For namespace, type http://weather.

b. For service integration bus topic space, select Create a new topic space
to create a new topic namespace on the SIB that is dedicated to the
WS-Notification messages.

c. For the topic space name, type weatherTS. Click Next.

Figure 9-6 Configure namespace and select SIB topic space page

11.On the next page, for Create another instance?, select No and click Next.

12.On the Summary page, click Finish.

13.When prompted by the administrative console to save or discard the
configuration changes, save all changes to the master configuration.

 Chapter 9. WS-Notification 413

After you finish the WS-Notification configuration, WebSphere Application Server
generates, among other output, the enterprise application
WSN_weatherWSNService_weatherWSNServicePoint. This application contains
Web service endpoints that correspond to the three inbound notification services,
which are:

� Notification broker
� Subscription manager
� Publisher registration manager

Ensure that this enterprise application is started. Otherwise, none of the
WS-Notification resources are accessible by using the three inbound Web
services. As with any other enterprise application, you can start the
WS-Notification service point application by using the administrative console. In
the administrative console, select Applications → Application Types →
WebSphere enterprise applications.

Administering WS-Notification resources
By using the administrative console, select Service integration →
WS-Notification to see the WS-Notification services that you created. Figure 9-7
shows the one that we created.

Figure 9-7 Created WS-Notification services page

You can either create a new service or select the one that you created and delete
it. If you click the WS-Notification service name, which is weatherWSNService in
Figure 9-7, on the page that opens, you can add additional service points and
topic namespaces, as well as perform miscellaneous administrative tasks.

414 IBM WebSphere Application Server V7.0 Web Services Guide

9.2.3 WS-Notification wsadmin commands

The wsadmin program provides several AdminTask commands that you can use to
administer WS-Notification resources in WebSphere Application Server V7.
Table 9-1 provides an overview of these commands.

Table 9-1 The wsadmin commands for administering WS-Notification resources

Task description Command

WS-Notification services

Create a WS-Notification service. createWSNService

Delete a WS-Notification service. deleteWSNService

List WS-Notification services. listWSNServices

Show properties of a WS-Notification service. showWSNService

WS-Notification service points

Create a WS-Notification service point. createWSNServicePoint

Delete a WS-Notification service point. deleteWSNServicePoint

List WS-Notification service points. listWSNServicePoints

Show properties of a WS-Notification service
point.

showWSNServicePoint

Permanent topic namespaces

Create a permanent topic namespace. createWSNTopicNamespace

Delete a permanent WS-Notification topic
namespace.

deleteWSNTopicNamespace

List WS-Notification topic namespaces. listWSNTopicNamespaces

Show properties of a WS-Notification topic
namespace.

showWSNTopicNamespace

Administered subscribers

Create a WS-Notification administered
subscriber.

createWSNAdministeredSubscriber

Delete a WS-Notification administered
subscriber.

deleteWSNAdministeredSubscriber

List WS-Notification administered subscribers. listWSNAdministeredSubscribers

 Chapter 9. WS-Notification 415

9.3 Developing WS-Notification applications

In this section we explain how to develop WS-Notification applications based on
the JAX-WS programming model. The development steps and code examples
used here are based on a weather example, but they can be easily adapted to
any other business domain.

Show properties of WS-Notification
administered subscriber.

showWSNAdministeredSubscriber

Topic namespace documents

Add a topic namespace document to a topic
namespace.

createWSNTopicDocument

Remove a topic namespace document from a
topic namespace.

deleteWSNTopicDocument

List topic namespace documents. listWSNTopicDocuments

Show the contents of the topic namespace
document.

showWSNTopicDocument

Related service integration bus Web service resources

Get a reference to an inbound service
associated with a WS-Notification service.

getWSN_SIBWSInboundService

Get a reference to an inbound port associated
with a WS-Notification service point.

getWSN_SIBWSInboundPort

Task description Command

416 IBM WebSphere Application Server V7.0 Web Services Guide

The sample applications were developed using Rational Application Developer
for WebSphere Software 7.5. However, Rational Application Developer is not a
requirement for developing WS-Notification applications for WebSphere
Application Server. You can easily develop the same applications by using the
following tools that ship with WebSphere Application Server:

� Rational Application Developer Assembly and Deployment

� WebSphere Application Server command-line tools such as the Java
Developer Kit (JDK) 6 binaries javac, wsimport, and wsgen

In 9.3.1, “Introduction to the weather applications” on page 417, we introduce the
three applications from both a user’s point of view and a class design point of
view.

9.3.1 Introduction to the weather applications

The three sample applications are Java EE 5 Web applications that use a few
HTTP servlets. In this section, we introduce each of these applications by using
simple Uniform Modelling Language (UML) class diagrams.

The basic theme of the applications is that the producer application can generate
a daily weather WS-Notification message to the daily-weather topic. The pull
consumer can create and remove a pull point in WebSphere Application Server
and use that pull point to subscribe to the daily-weather topic. The push

Downloadable material: The examples in this chapter use three simple
applications that have been developed to illustrate WS-Notification. These
applications are included in the download material for this book in the
Chapter9/ws-notification project interchange.zip archive.

The project interchange file contains the following enterprise applications:

� WeatherWSNProducerEAR: a WS-Notification producer application

� WeatherWSNConsumerEAR: a WS-Notification consumer application that
contains two Web applications:

– A pull-based consumer application
– A push-based consumer application

For information about downloading the material, see Appendix A, “Additional
material” on page 537.

For information about importing the application into your workspace, see
“Importing project interchange files” on page 542

 Chapter 9. WS-Notification 417

consumer exposes a Web service that similarly can be subscribed to the
daily-weather topic.

From a user perspective, there is no difference between the two consumer
applications. As you will see, there are only small differences between the
classes that are involved in them.

WS-Notification resource requirements
Before you can deploy and run the three WS-Notification applications in
WebSphere Application Server V7, create the WS-Notification resources listed in
Table 9-2.

Table 9-2 WS-Notification names and values required by the sample

We explain how to create these WS-Notification resources in “Creating
WS-Notification resources by using the administrative console” on page 409.

Deploying the applications
The three applications are available in an ordinary Rational Application
Developer project interchange file. After you import them into Rational
Application Developer, the resources shown in Figure 9-8 are listed in the
workspace, as viewed from the Enterprise Explorer view in the Java EE
perspective.

Figure 9-8 WS-Notification weather example projects

Resource Value

Service integration bus name weatherWSNBus

WS-Notification service name weatherWSNService

WS-Notification service point name weatherWSNServicePoint

Permanent topic namespace URI http://weather

Service integration bus topic space name weatherTS

418 IBM WebSphere Application Server V7.0 Web Services Guide

The project interchange contains the following projects:

� WeatherBase

Contains the core weather classes used by the applications

� WeatherWSNProducerEAR

An enterprise application project that deploys with a single Web application
project, WeatherWSNProducerWeb, which is a Web module that contains the
producer application code

� WeatherWSNConsumerEAR

An enterprise application project that deploys with the following two consumer
projects:

– WeatherWSNConsumerPushWeb

A Web module that contains the push consumer application code

– WeatherWSNConsumerPullWeb

A Web module that contains the pull consumer application code

You can deploy the two enterprise application projects,
WeatherWSNConsumerEAR and WeatherWSNProducerEAR, to the Rational
Application Developer 7.5 and WebSphere Application Server V7 test
environment by using the normal Rational Application Developer deployment
functionality. Alternatively, you can export the two enterprise application projects
to enterprise archive (EAR) files and deploy them to WebSphere Application
Server V7 by using the administrative console or wsadmin tools.

Using the sample applications
After the applications are deployed to WebSphere Application Server V7, you
can try using them. In this section we use the applications for the following tasks:

� To subscribe a consumer application to the daily-weather topic

� To publish a WS-Notification message by using the publisher application

� To view the published WS-Notifications messages by using a consumer
application

Subscribing to and from the daily-weather topic
To subscribe or unsubscribe the pull consumer to the daily-weather topic, access
the SubscriptionManagerServlet by pointing your browser to the following URL:

http://localhost:9080/WeatherWSNConsumerPushWeb/SubscriptionManagerServlet

 Chapter 9. WS-Notification 419

The servlet renders a simple HTML page that shows the action that it just
performed (Figure 9-9).

Figure 9-9 SubscriptionManagerServlet

In this case, the pull consumer is subscribed to the daily-weather example.
Similarly, to subscribe or unsubscribe the push consumer, point your browser to
the following URL:

http://localhost:9080/WeatherWSNConsumerPullWeb/SubscriptionManagerServlet

Publishing a message to the daily-weather topic
To publish a daily weather message to the WS-Notification service in WebSphere
Application Server, access the PublisherServlet by pointing your browser to the
following URL:

http://localhost:9080/WeatherWSNProducerWeb/ProducerServlet

The ProducerServlet renders a simple HTML page (Figure 9-10) that shows the
daily weather information that it published to the daily-weather topic.

Figure 9-10 ProducerServlet

420 IBM WebSphere Application Server V7.0 Web Services Guide

Showing information received from the daily-weather topic
To see the WS-Notification message that was just published to the pull consumer
(while the subscription is active), access the ConsumerServlet by pointing your
browser to the following URL:

http://localhost:9080/WeatherWSNConsumerPullWeb/ConsumerServlet

The ConsumerServlet renders a simplistic HTML page (Figure 9-11) that shows
the daily weather received so far.

Figure 9-11 ConsumerServlet

In a similar way, you can use the push consumer’s ConsumerServlet by pointing
your browser to the following URL:

http://localhost:9080/WeatherWSNConsumerPushWeb/ConsumerServlet

Producer application
The producer application is implemented in the WeatherWSNProducerWeb
project. Figure 9-12 shows the classes that are involved in developing the
producer application.

Figure 9-12 Producer application classes

<<HTTPServlet>>
ProducerServlet

<<UtilityClass>>
WeatherPredictor

<<JavaBean>>
Weather

Encodes and publishes as
WS-Notification messages

Generate daily
Weather information with Generates random

weather information
into

 Chapter 9. WS-Notification 421

The producer application is the simplest one because it contains only a single
class that was developed for the ProducerServlet. The ProducerServlet is an
ordinary HTTP servlet that uses the WeatherPredictor class to generate random
values for a Weather object. On the contrary, the Weather object is serialized to a
comma-delimited text format and published by using WS-Notification to the
NotificationBroker Web service in WebSphere Application Server.

Push consumer application
The push consumer application is implemented in the
WeatherWSNConsumerPushWeb project. Figure 9-13 shows the classes that
are involved in developing the push consumer application.

Figure 9-13 Push consumer application classes

The main class of interest in the push consumer application is the Web service
endpoint implementation, NotificationConsumer. The implementation class’s full
name is WeatherNotificationConsumerSOAPImpl. This class receives
WS-Notification messages that are sent by the WS-Notification service in
WebSphere Application Server. It immediately gives the messages to the
WeatherReceiver. WeatherReceiver is a singleton class that, for each
WS-Notification message, decodes the comma-delimited weather information
into a Weather object and stores a WeatherResult object in an internal ArrayList.
Each WeatherResult object contains the decoded Weather object together with
the publication topic name, which in this example is always daily-weather.

<<HTTPServlet>>
ConsumerServlet

Converts WS-Notification
messages to- and has a
list of

<<HTTPServlet>>
SubscriptionManagerServlet

<<Singleton JavaBean>>
WeatherReceiver

<<JavaBean>>
WeatherResult

<<JavaBean>>
Weather

<<String>>
Topic

Subscribes and
unsubscribes

Forwards
WS-Notification
messages to

Gets results from

Presents
<<Web Service Endpoint>>

NotificationConsumer

*

422 IBM WebSphere Application Server V7.0 Web Services Guide

The application also comes with two HTTP servlets, which are ConsumerServlet
and SubscriptionManagerServlet. The ConsumerServlet generates a simplistic
HTML page that shows the daily weather information received so far. The
SubscriptionManagerServlet contains functionality to switch between
subscription and unsubscription of the Web service as a push consumer of the
daily-weather topic. The subscribe/unsubscribe behavior of the
SubscriptionManagerServlet alternates for every reload in the browser. However,
regardless of the action taken, the servlet generates a simplistic HTML page that
shows the action that was just performed.

Pull consumer application
The pull consumer application is implemented in the
WeatherWSNConsumerPullWeb project. Figure 9-14 shows the classes that are
involved in developing the pull consumer application.

Figure 9-14 Pull consumer application classes

In the pull consumer application, you find copies of the same classes that are
used in the push consumer application. These copies are of the
WeatherReceiver, WeatherResult, and ConsumerServlet classes. However,
contrary to the push consumer application, the pull consumer application does
not include a Web service class. Instead, it includes a subclass of the
WeatherReceiver class called PullWeatherReceiver.

<<HTTPServlet>>
ConsumerServlet

Converts WS-Notification
messages to- and has a
list of

<<HTTPServlet>>
SubscriptionManagerServlet

<<Singleton JavaBean>>
WeatherReceiver

<<JavaBean>>
WeatherResult

<<JavaBean>>
Weather

<<String>>
Topic

Subscribes and
unsubscribes

Adds WS-Notification message
pull functionality by overriding
getWeatherResultList()

Gets results from

Presents
<<Singleton JavaBean>>

PullWeatherReceiver

*

Bootstraps to
PullWeatherReceiver
implementation

 Chapter 9. WS-Notification 423

The PullWeatherReceiver class is used as the WeatherReceiver singleton
implementation. This is bootstrapped by a static initializer block in the pull
application’s SubscriptionManagerServlet). Whenever the ConsumerServlet in
the pull consumer application is about to render the daily weather information, it
invokes the getWeatherResultList() method on the PullWeatherReceiver class.
This method contains the functionality that pulls WS-Notification messages from
the WS-Notification pull point in WebSphere Application Server.

The SubscriptionManagerServlet in this application is similar to the one that is
used in the push consumer application, but is not identical. The minor difference
is that, prior to subscription to the daily-weather topic, the servlet first creates a
pull point. Similarly, the servlet destroys the pull point when it is about to
unsubscribe from the daily-weather topic.

9.3.2 Developing a producer

The simplest form of a producer application is one that publishes to a broker
rather than directly to a consumer, but does not participate in demand-based
publishing. In this scenario, the application is not required to expose a Web
service endpoint and can be implemented as a Web service client application.
For demand-based publishing or producers who will accept subscriptions directly
from consumers, a Web service endpoint that implements the
WS-BaseNotification-defined NotificationProducer port type must be exposed.

In this section we explain how to create a simple producer application that sends
messages to the WS-Notification service (broker) in WebSphere Application
Server. We explain the development techniques in the context of the daily
weather example.

Developing a WS-Notification producer entails the following tasks:

1. Export the WSDL documents from WebSphere Application Server. The
NotificationBroker port type is described in one of the WSDL documents that
you can download from WebSphere Application Server by using the
administrative console.

2. Create the application module. For the daily weather example, we implement
a Java EE Web project.

3. Generate the JAX-WS Web service client code, which is used by the
application code to publish messages to the WS-Notification broker service.

4. Implement the producer. In the weather example, we implemented a servlet
client that posts daily weather information to the daily-weather topic.

424 IBM WebSphere Application Server V7.0 Web Services Guide

Exporting WSDL documents from WebSphere
Application Server
The WS-Notification Notify operation is used to receive messages at a
NotificationConsumer or NotificationBroker endpoint. In the application server
WS-Notification services, this operation is exposed by the notification broker
inbound service and related inbound ports. Therefore, we must obtain the WSDL
document that describes this service to develop the producer application.

To extract the NotificationBroker WSDL documents of the weather
WS-Notification service:

1. From the WebSphere administrative console, select Service integration →
WS Notification → Services.

2. Click weatherWSNService to open the configuration page.

3. Click WS-Notification service points in the Additional Properties section.

4. Click weatherWSNServicePoint to open the configuration page.

5. Click Publish WSDL files to zip in the Additional Properties section.

6. Click the WSN_weatherWSNService_weatherWSNServicePoint.ear
_WSDLFiles.zip link to download the WSDL ZIP archive to the operating
system file system.

7. Extract the WSN_weatherWSNService_weatherWSNServicePoint.ear/
NBModule.war/WEB-INF/wsdl/NotificationBroker.wsdl broker WSDL
document from the ZIP archive file.

The ZIP archive contains the WSDL documents from all three inbound
services, which are the notification broker inbound service (NBModule.war),
subscription manager inbound service (SMModule.war), and publisher
registration manager inbound service (PRMModule.war).

8. Save the archive file because you will need it later to extract the
SubscriptionManager WSDL document when developing the consumer
applications.

Prerequisites: The machine on which you develop the producer application
must have access to the Internet so that the WS-Notification WSDL and
schema documents can be resolved by the tooling.

You must have configured a WS-Notification service to which you will publish
messages. See “Creating WS-Notification resources by using the
administrative console” on page 409.

 Chapter 9. WS-Notification 425

Creating the application client module
After you download the WSDL files, create the application project. For the daily
weather example, we created a dynamic Web project called
WeatherWSNProducerWeb.

Generating the JAX-WS Web service client code
When you have the application module structure in place, you are ready to
generate the Web service client code that can interact with the WS-Notification
broker service in WebSphere Application Server. For the weather example, we
generated the JAX-WS client classes into the WeatherWSNProducerWeb project
by using the Web service client wizard in Rational Application Developer.

To generate the JAX-WS client classes by using the Web service wizard in
Rational Application Developer:

1. Import the NotificationBroker.wsdl WSDL file into your project. For the
weather example, we created the WeatherWSNProducerWeb/
WebContent/wsdlstart folder and imported the document into that folder.

2. Right-click the NotificationBroker.wsdl file and select Web services →
Generate Client.

3. In the wizard that opens, which is configured by default to generate the client
classes into the project of the WSDL file, click Next.

4. On the WebSphere JAX-WS Web Service Client Configuration page:

a. Select Generate portable client, which ensures that the WSDL document
is copied to the client.

b. Specify either JAX-WS or JAXB binding files, which is required for the
next page.

c. For the JAX-WS version, leave the suggested value of 2.1. Click Next.

5. On the Custom Binding Declarations page, click Add and add the
${rad.home}/runtimes/base_v7/util/ ibm-wsn-jaxb.xml custom JAXB
binding file from the WebSphere Application Server utility folder. This custom
binding file ensures that you can take advantage of a few useful IBM helper
classes when working with the generated client code.

6. Click Finish to generate the client code.

More information: For details see the IBM developerWorks article
“WS-Notification in WebSphere Application Server V7: Part 1: Writing
JAX-WS applications for WS-Notification” at the following address:

http://www.ibm.com/developerworks/websphere/techjournal/0811_
partridge/0811_partridge.html

426 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html

You have now generated the code that publishes messages to WebSphere
Application Server by using the SOAP/HTTP protocol. If you look inside your
client project, you see the following generated code:

� A package named com.ibm.websphere.wsn.notification_broker

This package contains the client-side representation of the broker Web
service, which includes the following service class and endpoint interface:

– WeatherWSNServiceweatherWSNServicePointNB

This is the client-side service class that is annotated with
WebServiceClient to indicate that this is a JAX-WS client. This name is
specific to the daily weather example.

– NotificationBroker

This is the endpoint interface that is implemented by the dynamic proxy
client and the one that we use to publish the WS-Notification messages.

� Several subpackages of the org.oasis_open.docs.wsn.b_2 package

These subpackages contain miscellaneous types that are used by the
NotificationBroker Web service.

Implementing the producer
With the project structure in place and generated Web service client code, you
are ready to develop the Java code that publishes messages to the
WS-Notification broker Web service in WebSphere Application Server. In the
weather example, we created an ordinary HTTP Servlet,
itso.servlet.ProducerServlet, to serve as the WS-Notification producer.

Producing a WS-Notification message is simple and only requires you to specify
the actual message contents and topic to which you will publish the message. In
the following steps we continue to use the weather example.

To add WS-Notification publishing functionality to a client:

1. Create an instance of the broker Web service port (service endpoint interface,
or SEI). In a managed client, you can let WebSphere Application Server inject
it into the servlet class as follows:

@WebServiceRef(WeatherWSNServiceweatherWSNServicePointNB. class)
private NotificationBroker brokerPort;

 Chapter 9. WS-Notification 427

2. Prepare the contents of the message that you want to send and wrap it up in
a SOAP with Attachments API for Java (SAAJ) 1.3 SOAPElement and store
that in an OASIS type Message object.

In the weather example, we perform the following tasks:

a. Generate a random weather object by using the WeatherPredictor class:

Weather weather = new Weather(Calendar.getInstance());
WeatherPredictor.calculateWeatherValues(weather);

b. Serialize its contents to a string:

String weatherString = serializeWeatherObject(weather);

c. Wrap the contents in a SOAPElement:

SOAPFactory soapFactory = SOAPFactory.newInstance();
SOAPElement dataElement =soapFactory.createElement("weatherobj");
dataElement.addTextNode(weatherString);

d. Store the SOAPElement in a Message object:

Message message = new Message();
message.setAny(dataElement);

3. Prepare the topic expression that identifies the topic to which the message is
published. At this point, the IBM-specific helper class conveniently and easily
allows you to configure the prefix mapping that you use in the expression
configuration (highlighted in bold in the following expression). The following
expression ensures that the daily weather message is published to the
daily-weather topic in the permanent topic namespace http://weather:

TopicExpressionType topic = new TopicExpressionType();
topic.setExpression("tns:daily-weather");

topic.setDialect(TopicExpressionType.
DIALECT_SIMPLE_TOPIC_EXPRESSION);

topic.addPrefixMapping("tns", "http://weather");

4. Assemble the message object and the topic expression object in a
NotificationMessageHolderType object:

NotificationMessageHolderType holder = new
NotificationMessageHolder Type();

holder.setTopic(topic);
holder.setMessage(message);

5. Publish the message by invoking the NotificationBroker.nofify() operation,
which accepts a notify message that keeps a list of the holder objects:

Notify notify = new Notify();
notify.getNotificationMessage().add(holder);
brokerPort.notify(notify);

428 IBM WebSphere Application Server V7.0 Web Services Guide

Example 9-1 shows the daily weather ProducerServlet in its entirety.

Example 9-1 ProducerServlet

package itso.servlet;

import itso.objects.Weather;
import itso.utils.WeatherPredictor;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Calendar;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.ws.WebServiceRef;

import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;
import org.oasis_open.docs.wsn.b_2.Notify;
import
org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType.Message;

import com.ibm.websphere.sib.wsn.jaxb.base.TopicExpressionType;
import com.ibm.websphere.wsn.notification_broker.NotificationBroker;
import
com.ibm.websphere.wsn.notification_broker.WeatherWSNServiceweatherWSNSe
rvicePointNB;

public class ProducerServlet extends HttpServlet {

@WebServiceRef(WeatherWSNServiceweatherWSNServicePointNB.class)
private NotificationBroker brokerPort;

protected void doGet(HttpServletRequest req, HttpServletResponse
resp)

throws IOException {

// Create a random Weather object using WeatherPredictor
Weather weather = new Weather(Calendar.getInstance());
WeatherPredictor.calculateWeatherValues(weather);

 Chapter 9. WS-Notification 429

// Encode Weather object, add it to a SOAPElement and
// store the element in a OASIS type Message wrapper
String weatherString = serializeWeatherObject(weather);
SOAPElement dataElement = createSOAPElement(weatherString);
Message message = new Message();
message.setAny(dataElement);

// Define topic
TopicExpressionType topic = new TopicExpressionType();
topic.setExpression("tns:daily-weather");

topic.setDialect(TopicExpressionType.DIALECT_SIMPLE_TOPIC_EXPRESSION);
topic.addPrefixMapping("tns", "http://weather");

// Assemble topic expression + message in a holder object
NotificationMessageHolderType holder = new

NotificationMessageHolderType();
holder.setTopic(topic);
holder.setMessage(message);

// Publish the message to the Broker Web service
Notify notify = new Notify();
notify.getNotificationMessage().add(holder);
brokerPort.notify(notify);

// Generate the HTML result page
writeHtmlResponse(resp.getWriter(), weather);

}

private static SOAPElement createSOAPElement(String data) {
try {

SOAPFactory soapFactory = SOAPFactory.newInstance();
SOAPElement element = soapFactory.createElement("weatherobj");
element.addTextNode(data);
return element;

} catch (SOAPException e) {
throw new RuntimeException(e);

}
}

private static String serializeWeatherObject(Weather weather) {
StringBuilder builder = new StringBuilder();
builder.append(weather.getCondition()).append(",");
builder.append(weather.getTemperatureCelsius()).append(",");
builder.append(weather.getWindDirection()).append(",");

430 IBM WebSphere Application Server V7.0 Web Services Guide

builder.append(weather.getWindSpeed()).append(",");
builder.append(weather.getDate().getTimeInMillis());
return builder.toString();

}

private static void writeHtmlResponse(PrintWriter out, Weather
weather) {

String title = ProducerServlet.class.getSimpleName();
String weatherStr = weather.toString();
out.printf("<html><head><title>%s</title></head><body>", title);
out.printf("<h1>%s</h1>", title);
out.printf("Published daily weather:
");
out.printf("<small>%s</small>", weatherStr);
out.printf("</body></html>");

}
}

The code lines related to WS-Notification are highlighted in bold. The actual
WS-Notification business logic is placed in the servlet’s doGet method. The
doGet method delegates functionality, such as weather object serialization and
so on, to a few simplistic helper methods.

9.3.3 Developing a push consumer

A push consumer is required to implement the NotificationConsumer port type
defined in the WS-BaseNotification specification and expose this as a Web
service. The WS-Notification broker service in WebSphere Application Server
then sends published messages to this Web service, provided that the messages
are destined for the appropriate topic subscription. The topic subscription can be
implemented as part of the consumer application, but is not required.

In this section we explain how to create a simple push consumer application that
receives messages from the WS-Notification service (broker) in WebSphere
Application Server. The consumer application includes functionality to subscribe
and unsubscribe from a WS-Notification topic. We explain the development
techniques in context of the daily weather example introduced earlier in this
chapter.

 Chapter 9. WS-Notification 431

Developing a WS-Notification push consumer with subscribe/unsubscribe
functionality entails the following tasks:

1. Export WSDL documents from WebSphere Application Server.

We are interested in two of the inbound services, which are the notification
broker service (for subscription) and the subscription manager service (for
unsubscription).

2. Create the application module.

In the daily weather example, we expose a JAX-WS 2.1-based Web service
(the push consumer) in a Java EE Web module.

3. Import the WSDL documents to the application project and generate the
JAX-WS Web service client code.

You must do this task for the notification broker service and the subscription
manager service. The generated code artifacts are used by the application
code to subscribe and unsubscribe the push consumer.

4. Design a WSDL document for the push consumer.

The WSDL document is simple. It imports the consumer contract from a
standard WS-BaseNotification WSDL document, adding only a binding
section and a service section.

5. Implement the push consumer Web service.

In the weather example, we generated a skeleton implementation from the
WSDL document by using the Rational Application Developer Web service
wizard. Then we added the business logic to implement the notify operation.

6. Implement the subscription management code.

In the weather example, we implement a servlet that subscribes the Web
service to and unsubscribes it from the daily-weather topic, which is the same
topic to which the publisher application posts messages.

Exporting WSDL documents from WebSphere
Application Server
The instructions for this task are the same as those in “Exporting WSDL
documents from WebSphere Application Server” on page 425. In addition to the
NotificationBroker.wsdl file, ensure that you also extract the
SubscriptionManager.wsdl file, which is in the
WSN_weatherWSNService_weatherWSNServicePoint.ear/SMModule.war/WEB-INF/w
sdl/ directory of the WSDL bundle.

Creating the application module
To write a WS-Notification push consumer application, you must expose a Web
service to which WebSphere Application Server sends notification messages.

432 IBM WebSphere Application Server V7.0 Web Services Guide

For the weather example, we created a dynamic Web project called
WeatherWSNConsumerPushWeb.

Generating the JAX-WS Web service client code
The Java code that subscribes and unsubscribes the push consumer endpoint
uses two Web service endpoints from the WS-Notification service:

� NotificationBroker

We use the subscribe operation on this port type to subscribe the push
consumer for the topic.

� SubscriptionManager

We use the unsubscribe operation on this port type to unsubscribe the push
consumer from the topic.

To send messages to these Web services, generate the JAX-WS Web service
client classes for both of the endpoints. Follow the procedure in “Generating the
JAX-WS Web service client code” on page 426. However, this time, run it twice,
once for the NotificationBroker.wsdl file and once for the
SubscriptionManager.wsdl file.

In the weather example, we copied the two WSDL documents,
NotificationBroker.wsdl and SubscriptionManager.wsdl, to the
WebContent/wsdlstart folder of the WeatherWSNConsumerPushWeb module.
We then executed the Rational Application Developer Web service client wizard
twice to generate Web service client stubs into the module.

Designing a WSDL document for the push consumer
The Web service that you expose (the push consumer) must adhere to the
interface that is defined by the WS-BaseNotification specification. By defining
your Web service to this interface, you enable the possibility for WebSphere
Application Server to send WS-Notification messages to it.

To design a consumer WSDL document:

1. Create a new WSDL document.

2. Add an import declaration that imports the interface definition from a WSDL
document that is available online at the following address:

http://docs.oasis-open.org

3. Add a SOAP/HTTP binding (document/literal style) for the
NotificationConsumer port type.

4. Add a service section to define the endpoint location.

 Chapter 9. WS-Notification 433

http://docs.oasis-open.org

You can write the WSDL file manually or by using the Web service tools in
Rational Application Developer. For the weather example, we used Rational
Application Developer.

To create a consumer WSDL file by using Rational Application Developer:

1. Create a destination folder for the WSDL file. In the weather example, we
used the WebContent/wsdlstart folder in the
WeatherWSNConsumerPushWeb project.

2. Right-click the destination folder and select New → Other. Expand Web
services and select WSDL. Click Next.

3. Enter a file name, for example, WeatherNotificationConsumer.wsdl. Click
Next.

4. In the next panel:

a. Enter the target namespace, for example:

http://weather.itso/WeatherNotificationConsumer/

b. You can change the prefix value, but the common convention is to use the
default of tns.

c. Select Create WSDL Skeleton.

d. For protocol, select SOAP.

e. For SOAP binding, select document literal.

f. Click Finish.

5. Ensure that the new WSDL document is opened by using the WSDL Editor in
Rational Application Developer (Figure 9-15). The elements of the WSDL file
are denoted in italics.

Figure 9-15 New WSDL file

service port

binding

port type

434 IBM WebSphere Application Server V7.0 Web Services Guide

6. In the outline view associated with the new WSDL document, right-click the
Imports area and select Add Import.

7. In the WSDL editor, select the Source tab. Edit the import statement in the
WSDL source:

<wsdl:import namespace="http://docs.oasis-open.org/wsn/bw-2"

location="http://docs.oasis-open.org/wsn/bw-2.wsdl"></wsdl:import>

8. In the outline view, right-click the import to open the Properties view. For the
new import, type a prefix of bw2.

9. Return to the Design tab of the WSDL Editor. All the port types defined by
WS-BaseNotification are now listed.

10.The next step is to update the references between the service port, binding,
and port type. Update the properties of each of these as follows:

a. Select the generated binding (see Figure 9-15 on page 434), right-click,
and select Set Port Type → Existing Port Type. Select
NotificationConsumer. Click OK.

b. Select the binding again. In the Properties view click Generate Binding
Content.

c. In the Specify Binding Details panel, select Overwrite existing binding
information.

d. Specify SOAP for the protocol.

e. Specify document literal for the SOAP binding option.

f. Click Finish.

 Chapter 9. WS-Notification 435

11.Use the Outline view to remove the local port type,
WeatherNotificationConsumer (Figure 9-16). A default port type and
messages are defined if you created a skeleton WSDL.

Figure 9-16 Remove the local port type

12.Use the Outline view to remove any type elements.

436 IBM WebSphere Application Server V7.0 Web Services Guide

13.Edit select the port and use the Properties view to set the endpoint address
location to match your application and port.

Figure 9-17 Update the port address

The WSDL document for the NotificationProducer port type is now finished.
Example 9-2 shows the WSDL source for the weather push consumer.

Example 9-2 WSDL file for the push consumer

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="WeatherNotificationConsumer"

targetNamespace="http://weather.itso/WeatherNotificationConsumer/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://weather.itso/WeatherNotificationConsumer/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bw2="http://docs.oasis-open.org/wsn/bw-2">

<wsdl:import namespace="http://docs.oasis-open.org/wsn/bw-2"
location="http://docs.oasis-open.org/wsn/bw-2.wsdl"></wsdl:import>

 Chapter 9. WS-Notification 437

<wsdl:binding name="WeatherNotificationConsumerSOAP"
type="bw2:NotificationConsumer">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="Notify">
<soap:operation

soapAction="http://weather.itso/WeatherNotificationConsumer/Notify" />
<wsdl:input>

<soap:body use="literal" />
</wsdl:input>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="WeatherNotificationConsumer">

<wsdl:port binding="tns:WeatherNotificationConsumerSOAP"
name="WeatherNotificationConsumerSOAP">
<soap:address

location="http://localhost:9080/WeatherWSNConsumerPushWeb/WeatherNotificationCo
nsumerSOAP" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

The WSDL import is highlighted in bold. As you can see, the resulting WSDL file
is simple. It merely specifies binding details and the endpoint where the binding
is exposed.

Implementing the push consumer Web service
With the push consumer Web service’s WSDL document in place, you only need
to generate the Web service implementation bean and put in the business logic
that handles incoming WS-Notification messages.

Again you use Web service tools to generate the Web service implementation
classes. You can either use the command-line wsimport tool or the top-down
Web service wizard in Rational Application Developer to generate the Web
service. For the weather example, we used Rational Application Developer.

438 IBM WebSphere Application Server V7.0 Web Services Guide

To generate a Web service using Rational Application Developer:

1. Right-click the WSDL document that you designed in “Designing a WSDL
document for the push consumer” on page 433
(WeatherNotificationConsumer.wsdl in the weather example) and select
Web services → Generate Java bean skeleton.

2. Select Top down Java bean Web service and Deploy on the slider widget.
Ensure that the project configuration targets the Web module that should host
the Web service (WeatherWSNConsumerPushWeb in the weather example).
Click Next.

3. On the WebSphere JAX-WS Top Down Web service Configuration page,
select Customize JAX-WS or JAXB binding files. Click Next.

4. On the Custom Binding Declarations page, click Add and add the
${rad.home}/runtimes/base_v7/util/ ibm-wsn-jaxb.xml JAXB binding file.
Adding this file enables IBM-specific helper classes in the same manner as
for the Web service client generation.

5. Click Finish to generate the Web service code.

When the Wizard is done, the destination project contains a package with the
service endpoint interface and the endpoint implementation bean. In the weather
example, the following interface and bean are generated:

� itso.weather.weathernotificationconsumer.NotificationConsumer

This is the service endpoint interface. It defines one method, which is the
notify method.

� itso.weather.weathernotificationconsumer.WeatherNotificationConsumerSOAPImpl

This is the endpoint implementation bean that implements the notify method.

Finally, implement the notify method in the Web service implementation. To
process WS-Notification messages received by the push consumer’s notify
method:

1. Extract all the pushed messages from the Web service method input
parameter (a notification object):

List<NotificationMessageHolderType> messages =
notify.getNotificationMessage();

2. Process each message:

for (NotificationMessageHolderType message : messages) {
// Determine the topic to which the message was published:
String topic = message.getTopic().getStringExpression();

// Get the actual message contents:
Element messageElement = (Element) message.getMessage().getAny();

 Chapter 9. WS-Notification 439

String messageContent = messageElement.getTextContent();
}

The messageElement is a DOM Element, which means that, if you receive an
XML document, you have all the Java XML processing facilities at your disposal.

Example 9-3 shows the endpoint implementation in the weather example.

Example 9-3 WeatherNotificationConsumerSOAPImpl

package itso.weather.weathernotificationconsumer;

import itso.receiver.WeatherReceiver;

import java.util.List;

import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;
import org.oasis_open.docs.wsn.b_2.Notify;

@javax.jws.WebService(endpointInterface =
"itso.weather.weathernotificationconsumer.NotificationConsumer",
targetNamespace = "http://weather.itso/WeatherNotificationConsumer/",
serviceName = "WeatherNotificationConsumer", portName =
"WeatherNotificationConsumerSOAP")
public class WeatherNotificationConsumerSOAPImpl {

public void notify(Notify notify) {

// Get a reference to the published messages
List<NotificationMessageHolderType> messages = notify

.getNotificationMessage();

// Let WeatherReceiver convert messages to Weather objects
WeatherReceiver.getInstance().addWeatherObjects(messages);

}
}

This implementation extracts the messages in the form of
NotificationMessageHolderType objects and lets the WeatherReceiver singleton
do the work that extracts the daily weather information and transforms that into
weather objects.

440 IBM WebSphere Application Server V7.0 Web Services Guide

Example 9-4 shows the WeatherReceiver class in its entirety.

Example 9-4 WeatherReceiver class

package itso.receiver;

import itso.objects.Weather;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.List;
import java.util.Scanner;

import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;
import org.w3c.dom.Element;

public class WeatherReceiver {

private static WeatherReceiver instance;

private List<WeatherResult> weatherList = new
ArrayList<WeatherResult>();

public List<WeatherResult> getWeatherResultList() {
return weatherList;

}

public void addWeatherObjects(List<NotificationMessageHolderType>
messages) {

for (NotificationMessageHolderType message : messages) {

// Extract topic
String topic = message.getTopic().getStringExpression();

// Extract message content
Element messageElement = (Element)

message.getMessage().getAny();
String serializedWeather = messageElement.getTextContent();

// Reconstruct Weather object
Scanner scanner = new Scanner(serializedWeather);
scanner.useDelimiter(",");

Weather weather = new Weather();

 Chapter 9. WS-Notification 441

weather.setCondition(scanner.next());
weather.setTemperatureCelsius(scanner.nextInt());
weather.setWindDirection(scanner.next());
weather.setWindSpeed(scanner.nextInt());
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(scanner.nextLong());
weather.setDate(cal);
weatherList.add(0, new WeatherResult(topic, weather));

}
}

public static WeatherReceiver getInstance() {
if (instance == null) {

instance = new WeatherReceiver();
}
return instance;

}

public static void setInstance(WeatherReceiver instance) {
WeatherReceiver.instance = instance;

}

}

The lines highlighted in bold of the addWeatherObjects method show how to
extract the topic and message contents from the WS-Notification-related APIs.
For each message received by the Web service, the addWeatherObjects method
stores a WeatherResult object inside a list. The WeatherResult object
(Example 9-5) is a simple bean that correlates a Weather object (generated from
parsing the comma-delimited message content text string) with the topic to which
it was published.

Example 9-5 WeatherResult object

package itso.receiver;

import itso.objects.Weather;

public class WeatherResult {
public final String topic;
public final Weather weather;

WeatherResult(String topic, Weather weather) {
this.topic = topic;
this.weather = weather;

442 IBM WebSphere Application Server V7.0 Web Services Guide

}
}

The list of WeatherResult objects is obtained by the ConsumerServlet
(Example 9-6) to generate an HTML page that shows the received weather.

Example 9-6 ConsumerServlet

package itso.servlet;

import itso.receiver.WeatherReceiver;
import itso.receiver.WeatherResult;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ConsumerServlet extends HttpServlet {

protected void doGet(HttpServletRequest req, HttpServletResponse
resp)

throws ServletException, IOException {

// Get the Weather notifications from the WeatherReceiver
WeatherReceiver receiver = WeatherReceiver.getInstance();
List<WeatherResult> weatherList =

receiver.getWeatherResultList();

// Build a textual representation of the list
StringBuilder weatherStr = new StringBuilder();
if (weatherList.isEmpty()) {

weatherStr.append("No publications yet");
} else {

for (WeatherResult weather : weatherList) {
weatherStr.append("[Topic=").append(weather.topic)

.append("]: ");
weatherStr.append(weather.weather).append("
");

}
}

 Chapter 9. WS-Notification 443

// Generate HTML document
String title = ConsumerServlet.class.getSimpleName();
PrintWriter out = resp.getWriter();
out.printf("<html><head><title>%s</title></head><body>", title);
out.printf("<h1>%s</h1>", title);
out.printf("Weather publications:
");
out.printf("<small>%s</small>", weatherStr.toString());
out.printf("</body></html>");

}

}

The line highlighted in bold shows how the servlet obtains a list of the published
WeatherResult objects.

Implementing the subscription management code
Before a consumer receives any WS-Notification messages from the broker
service in WebSphere Application Server, it must be subscribed to a topic to
which messages are sent. In the weather example, we implement a servlet
component that contains the functionality to subscribe to and unsubscribe from
the daily-weather topic.

To programmatically subscribe a push consumer by using the weather example:

1. Build an endpoint reference object that references the push consumer
endpoint URL:

W3CEndpointReference endpointReference = new
W3CEndpointReferenceBuilder().address(PUSH_ENDPOINT_URL).build();

2. Specify to which topic the endpoint should subscribe:

TopicExpressionType topic = new TopicExpressionType();
topic.setExpression("tns:daily-weather");

topic.setDialect(TopicExpressionType.DIALECT_SIMPLE_TOPIC_EXPRESSION
);

topic.addPrefixMapping("tns", "http://weather");
FilterType filter = new FilterType();
filter.addTopicExpression(topic);

The tns:daily-weather expression indicates to the broker that we are
interested in the daily-weather topic in the tns namespace. The expression
dialect specifies that the topic subscription expression is simple. See 9.1.3,
“WS-Topics” on page 401, for details about topic subscription expressions.

The prefix mapping tells the broker that the daily-weather topic specified in
the expression is part of the http://weather permanent topic namespace.

444 IBM WebSphere Application Server V7.0 Web Services Guide

The FilterType object accumulates the topics in which we are interested. In
this case there is only one.

3. Optional: Specify a subscription termination time. The following code ensures
that the subscription is terminated one hour after subscription:

// Create an XMLGregorianCalendar representing 1 hour from
now DatatypeFactory factory = DatatypeFactory.newInstance();
XMLGregorianCalendar calendar = factory.newXMLGregorianCalendar();
calendar.add(factory.newDuration("1H"));

// Create a JAXBElement to hold the termination time
ObjectFactory oFactory = new ObjectFactory();
JAXBElement<String> terminationTime =

oFactory.createSubscribeInitialTerminationTime(calendar.toString());

Note that the weather example does not specify a subscription termination
time.

4. Prepare a subscription request input wrapper object with the topic
subscription criterion and the consumer endpoint location:

Subscribe subscribeRequest = new Subscribe();
subscribeRequest.setConsumerReference(endpointReference);
subscribeRequest.setFilter(filter);

subscribeRequest.setInitialTerminationTime(terminationTime);

5. Create a NotificationBroker dynamic proxy with the WS-Addressing feature
enabled:

NotificationBroker broker =
brokerService.getNotificationBrokerPort(
new AddressingFeature());

6. Send the subscription request to the NotificationBroker Web service and store
the subscription reference available in the response:

SubscribeResponse response =
broker.subscribe(subscribeRequest);

subscriptionReference = response.getSubscriptionReference();

To unsubscribe the consumer:

1. Use the subscriptionReference (returned by the subscription response) to
produce a SubscriptionManager dynamic proxy with the WS-Addressing
feature enabled:

SubscriptionManager subscriptionManagerPort =
subscriptionReference.getPort(SubscriptionManager.class, new
AddressingFeature());

 Chapter 9. WS-Notification 445

2. Unsubscribe from the topic as follows by sending an empty unsubscribe
message to the SubscriptionManager Web service. Because of the
WS-Addressing feature enablement, the subscriptionReference already
contains information about the endpoint consumer’s location.

subscriptionManagerPort.unsubscribe(new Unsubscribe());

Example 9-7 shows the SubscriptionServlet that is used in the weather example
to subscribe and unsubscribe the push consumer.

Example 9-7 SubscriptionServlet

package itso.servlet;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;
import javax.xml.ws.soap.AddressingFeature;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder;

import org.oasis_open.docs.wsn.b_2.Subscribe;
import org.oasis_open.docs.wsn.b_2.SubscribeResponse;
import org.oasis_open.docs.wsn.b_2.Unsubscribe;

import com.ibm.websphere.sib.wsn.jaxb.base.FilterType;
import com.ibm.websphere.sib.wsn.jaxb.base.TopicExpressionType;
import com.ibm.websphere.wsn.notification_broker.NotificationBroker;
import
com.ibm.websphere.wsn.notification_broker.WeatherWSNServiceweatherWSNSe
rvicePointNB;
import com.ibm.websphere.wsn.subscription_manager.SubscriptionManager;

public class SubscriptionManagerServlet extends HttpServlet {

private static final String PUSH_ENDPOINT_URL =
"http://localhost:9080/WeatherWSNConsumerPushWeb/WeatherNotificationCon
sumer";

@WebServiceRef()

446 IBM WebSphere Application Server V7.0 Web Services Guide

private static WeatherWSNServiceweatherWSNServicePointNB
brokerService;

private static W3CEndpointReference subscriptionReference;

protected void doGet(HttpServletRequest req, HttpServletResponse
resp)

throws ServletException, IOException {

boolean isSubscribed = (subscriptionReference != null);

if (isSubscribed) {
unsubscribe();

} else {
subscribe();

}

String title = SubscriptionManagerServlet.class.getSimpleName();
PrintWriter out = resp.getWriter();
out.printf("<html><head><title>%s</title></head><body>", title);
out.printf("<h1>%s</h1>", title);
String message = (isSubscribed) ? "unsubscribed from" :

"subscribed to";
out.printf("The consumer %s topic <i>daily-weather</i>",

message);
out.printf("</body></html>");

}

private static void unsubscribe() {

// Get a SubscriptionManager from the subscription reference
SubscriptionManager subscriptionManagerPort =

subscriptionReference
.getPort(SubscriptionManager.class, new

AddressingFeature());

// Unsubscribe by sending an empty Unsubscribe message
try {

subscriptionManagerPort.unsubscribe(new Unsubscribe());
} catch (Exception e) {

throw new RuntimeException(e);
}

// Enable subscription functionality again
subscriptionReference = null;

 Chapter 9. WS-Notification 447

}

private static void subscribe() {

// Configure the receiver consumer endpoint
W3CEndpointReference endpointReference = new

W3CEndpointReferenceBuilder()
.address(PUSH_ENDPOINT_URL).build();

// Subscribe to the random-weather topic
TopicExpressionType topic = new TopicExpressionType();
topic.setExpression("tns:daily-weather");

topic.setDialect(TopicExpressionType.DIALECT_SIMPLE_TOPIC_EXPRESSION);
topic.addPrefixMapping("tns", "http://weather");
FilterType filter = new FilterType();
filter.addTopicExpression(topic);

// Create subscription information input message
Subscribe subscribeRequest = new Subscribe();
subscribeRequest.setConsumerReference(endpointReference);
subscribeRequest.setFilter(filter);

// Send subscription request
NotificationBroker broker = brokerService

.getNotificationBrokerPort(new AddressingFeature());
try {

SubscribeResponse response =
broker.subscribe(subscribeRequest);

subscriptionReference = response.getSubscriptionReference();
} catch (Exception e) {

throw new RuntimeException(e);
}

}
}

By using the subscriptionReference variable, the doGet method checks whether
the consumer is already subscribed. If it is not, then it executes the subscribe
method, which subscribes the Web service endpoint as a WS-Notification
consumer to the daily-weather topic.

Upon successful subscription, the subscribe method stores a
subscriptionReference. This way, the next time that the doGet method is
executed, the servlet effectively calls the unsubscribe method instead.

448 IBM WebSphere Application Server V7.0 Web Services Guide

The unsubscribe method similarly uses the techniques to unsubscribe the Web
service again. After the doGet method has either subscribed or unsubscribed the
push consumer, it renders a simple HTML page indicating which action it took.

9.3.4 Developing a pull consumer

A pull consumer is not required to implement any Web service endpoints.
Instead, it uses the WS-Notification broker service to create a pull point and then
configures a topic subscription for that pull point. The WS-Notification broker
service in WebSphere Application Server then sends published messages to the
pull point, provided that the messages are destined for the appropriate topic
subscription. At its own frequency, the pull consumer application can then
choose to connect to the pull point and fetch the published messages. As is the
case with the push consumer, the topic subscription can optionally be
implemented as part of the consumer application.

In this section we explain how to create a simple pull consumer application that
receives messages from a pull point in WebSphere Application Server. The
consumer application includes functionality to create and destroy the pull point as
well as functionality to subscribe and unsubscribe from a WS-Notification topic.
We explain the development techniques in the context of the daily weather
example.

Developing a WS-Notification pull consumer with subscribe/unsubscribe
functionality entails the following tasks:

1. Export WSDL documents from WebSphere Application Server.

We are interested in two of the inbound services, which are the notification
broker service (for subscription) and the subscription manager service (for
unsubscription).

2. Create the application module.

In the daily weather example, we developed the pull consumer in a Java EE
Web module.

3. Import the WSDL documents to the application project and generate the
JAX-WS Web service client code.

We must generate clients for the notification broker service and the
subscription manager service. The generated code artifacts are used by the
application code to create or remove the pullpoint and subscriber unsubscribe
the pull consumer.

 Chapter 9. WS-Notification 449

4. Implement the pull consumer.

Contrary to the push consumer example, this does not need to be in a Web
service. In the weather example, the pull functionality is implemented in a
simple JavaBean class.

5. Implement the subscription management code.

In the weather example, we implement a servlet that subscribes the pull point
to, and unsubscribes it from, the daily-weather topic (the same topic to which
the publisher application posts messages).

Exporting WSDL documents from WebSphere
Application Server
You perform the same step when developing the push consumer application. See
“Exporting WSDL documents from WebSphere Application Server” on page 425.

Creating the application module
For the weather example, we used Rational Application Developer for
WebSphere Software 7.5 to create a dynamic Web project called
WeatherWSNConsumerPullWeb.

Generating the JAX-WS Web service client code
This step is identical to the one performed in developing the push consumer
application. See “Generating the JAX-WS Web service client code” on page 426.

Implementing the pull consumer
Where a push consumer implementation (using JAX-WS) is a Web service
implementation bean, the pull consumer is an ordinary Java application
component. You can implement it as a standalone application, an EJB
component, a servlet component, or another component that you choose.

To fetch messages from the pull point:

1. Use the pull point reference to obtain a NotificationBroker Web service
dynamic proxy that, by using WS-Addressing headers, contains information
about the pull point location:

NotificationBroker broker =
pullPointReference.getPort(NotificationBroker.class,

new AddressingFeature());

450 IBM WebSphere Application Server V7.0 Web Services Guide

2. Pull all messages from the endpoint:

GetMessages request = new GetMessages();
GetMessagesResponse response =

broker.getMessages(request);
List<NotificationMessageHolderType> messages =
 response.getNotificationMessage();

Instead of pulling all messages at once, you can specify the maximum
number of messages to pull by using the setMaximumNumber method on the
GetMessages request object.

In the push example, we implemented a ConsumerServlet that uses the
WeatherReceiver class to obtain the published weather result messages. Both of
these classes are unchanged in the pull consumer example. (They have been
copied, unmodifed, to the WeatherWSNConsumerPullWeb Web module.)
However, in the pull consumer, we added the PullWeatherReceiver class, which
extends the WeatherReceiver such that, when the ConsumerServlet invokes the
getWeatherResultList method, it synchronously pulls messages from the
WS-Notification pull point.

Example 9-8 shows the PullWeatherReceiver class in its entirety.

Example 9-8 PullWeatherReceiver class

package itso.receiver;

import java.util.List;

import org.oasis_open.docs.wsn.b_2.GetMessages;
import org.oasis_open.docs.wsn.b_2.GetMessagesResponse;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

import com.ibm.websphere.wsn.notification_broker.NotificationBroker;

public class PullWeatherReceiver extends WeatherReceiver {

public NotificationBroker broker;

@Override
public List<WeatherResult> getWeatherResultList() {

if (broker != null) {

// Fetch published messages
List<NotificationMessageHolderType> messages = null;
try {

GetMessages request = new GetMessages();

 Chapter 9. WS-Notification 451

GetMessagesResponse response = broker.getMessages(request);
messages = response.getNotificationMessage();

} catch (Exception e) {
throw new RuntimeException(e);

}

// Let WeatherReceiver convert messages to Weather objects
super.addWeatherObjects(messages);

}

return super.getWeatherResultList();
}

}

The code related to WS-Notification message pull functionality is highlighted in
bold. The NotificationBroker variable is injected by the SubscriptionManager
servlet after successful creation of the pull point and topic subscription. It is set to
null when the pull point is removed and the topic is unsubscribed from. The
getWeatherResultList method ensures that messages are synchronously pulled
and added to the super class list prior to the list being returned to the
ConsumerServlet.

Implementing the subscription management code
Before the pull consumer can receive any WS-Notification messages from the
broker service in WebSphere Application Server, you must perform the following
tasks:

1. Create a pull point to which messages will be sent.

The pull point is the place where the pull consumer fetches its messages.

2. Create a subscription for the pull point.

Without a subscription to a topic, the pull consumer’s pull point will not receive
any messages.

To programmatically create a pull point and subscribe the pull consumer to the
daily-weather topic by using the weather example:

1. Obtain a JAX-WS Service object. In the weather example, we use a servlet
component so that WebSphere Application Server can inject it for us:

@WebServiceRef()
private static WeatherWSNServiceweatherWSNServicePointNB

brokerService;

452 IBM WebSphere Application Server V7.0 Web Services Guide

2. Create a NotificationBroker with WS-Addressing support:

NotificationBroker broker =
brokerService.getNotificationBrokerPort(new AddressingFeature());

3. Create a pull point in WebSphere Application Server by using the
NotificationBroker dynamic proxy:

CreatePullPoint request = new CreatePullPoint();
CreatePullPointResponse response = broker.createPullPoint(request);
W3CEndpointReference pullPointReference = response.getPullPoint();

4. Specify to which topic the endpoint should subscribe (identical to the push
consumer’s approach):

TopicExpressionType topic = new TopicExpressionType();
topic.setExpression("tns:daily-weather");

topic.setDialect(TopicExpressionType.DIALECT_SIMPLE_TOPIC_EXPRESSION
);

topic.addPrefixMapping("tns", "http://weather");
FilterType filter = new FilterType();
filter.addTopicExpression(topic);

5. Optional: Specify a subscription termination time. The following code ensures
that the subscription is terminated one hour after subscription:

// Create an XMLGregorianCalendar representing 1 hour from
now DatatypeFactory factory = DatatypeFactory.newInstance();
XMLGregorianCalendar calendar = factory.newXMLGregorianCalendar();
calendar.add(factory.newDuration("1H"));

// Create a JAXBElement to hold the termination time
ObjectFactory oFactory = new ObjectFactory();
JAXBElement<String> terminationTime =

oFactory.createSubscribeInitialTerminationTime(calendar.toString());

6. Prepare a subscription request input wrapper object with the topic
subscription criterion and the pull point consumer endpoint location:

Subscribe subscribeRequest = new Subscribe();
subscribeRequest.setConsumerReference(pullPointReference);
subscribeRequest.setFilter(filter);

subscribeRequest.setInitialTerminationTime(terminationTime);

Subscription termination in the weather example: The weather
example does not specify a subscription termination time.

 Chapter 9. WS-Notification 453

7. Send the subscription request to the NotificationBroker Web service and store
the subscription reference available in the response:

SubscribeResponse response =
broker.subscribe(subscribeRequest);

subscriptionReference = response.getSubscriptionReference();

You have now ensured that messages targeted for the topic are sent to the
pull point that you created.

8. Use the pullPointReference to create a new NotificationBroker dynamic proxy
that you can use to pull messages from the pull point that you created.

NotificationBroker newBroker = pullPointReference.getPort(
NotificationBroker.class, new AddressingFeature());

This new dynamic proxy knows, by means of WS-Addressing, from which pull
point messages can be pulled. In the weather example, we stored this broker
reference inside the PullWeatherReceiver so that the getWeatherResultList
method can pull messages from it.

To unsubscribe the consumer and destroy the pull point:

1. Use the subscriptionReference (returned by the subscription response) to
produce a SubscriptionManager dynamic proxy with the WS-Addressing
feature enabled:

SubscriptionManager subscriptionManagerPort =
subscriptionReference.getPort(SubscriptionManager.class, new
AddressingFeature());

2. Unsubscribe from the topic by sending an empty Unsubscribe message to the
SubscriptionManager Web service as follows. Because the WS-Addressing
feature is enabled, the subscriptionReference already contains information
about the endpoint consumer’s location:

subscriptionManagerPort.unsubscribe(new Unsubscribe());

3. To remove the pull point from WebSphere Application Server, invoke the
destroyPullPoint method on the NotificationBroker:

broker.destroyPullPoint(new DestroyPullPoint());

Example 9-9 shows the SubscriptionManager servlet from the
WeatherWSNConsumerPullWeb project.

Example 9-9 SubscriptionManager servlet (pull consumer)

package itso.servlet;

import itso.receiver.PullWeatherReceiver;
import itso.receiver.WeatherReceiver;

454 IBM WebSphere Application Server V7.0 Web Services Guide

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;
import javax.xml.ws.soap.AddressingFeature;
import javax.xml.ws.wsaddressing.W3CEndpointReference;

import org.oasis_open.docs.wsn.b_2.CreatePullPoint;
import org.oasis_open.docs.wsn.b_2.CreatePullPointResponse;
import org.oasis_open.docs.wsn.b_2.DestroyPullPoint;
import org.oasis_open.docs.wsn.b_2.Subscribe;
import org.oasis_open.docs.wsn.b_2.SubscribeResponse;
import org.oasis_open.docs.wsn.b_2.Unsubscribe;

import com.ibm.websphere.sib.wsn.jaxb.base.FilterType;
import com.ibm.websphere.sib.wsn.jaxb.base.TopicExpressionType;
import com.ibm.websphere.wsn.notification_broker.NotificationBroker;
import
com.ibm.websphere.wsn.notification_broker.WeatherWSNServiceweatherWSNSe
rvicePointNB;
import com.ibm.websphere.wsn.subscription_manager.SubscriptionManager;

public class SubscriptionManagerServlet extends HttpServlet {

@WebServiceRef()
private static WeatherWSNServiceweatherWSNServicePointNB

brokerService;

private static W3CEndpointReference subscriptionReference;

protected void doGet(HttpServletRequest req, HttpServletResponse
resp)

throws ServletException, IOException {

boolean isSubscribed = (subscriptionReference != null);

if (isSubscribed) {
unsubscribe();

} else {
subscribe();

 Chapter 9. WS-Notification 455

}

String title = SubscriptionManagerServlet.class.getSimpleName();
PrintWriter out = resp.getWriter();
out.printf("<html><head><title>%s</title></head><body>", title);
out.printf("<h1>%s</h1>", title);
String message = (isSubscribed) ? "unsubscribed from" :

"subscribed to";
out.printf("The consumer %s topic <i>daily-weather</i>",

message);
out.printf("</body></html>");

}

private static void unsubscribe() {

// Get a SubscriptionManager from the subscription reference
SubscriptionManager subscriptionManagerPort =

subscriptionReference
.getPort(SubscriptionManager.class, new

AddressingFeature());

// Unsubscribe by sending an empty Unsubscribe message
try {

subscriptionManagerPort.unsubscribe(new Unsubscribe());
} catch (Exception e) {

throw new RuntimeException(e);
}

// Destroy the pull point and broker reference
try {

WeatherReceiver receiver = WeatherReceiver.getInstance();
PullWeatherReceiver pullReceiver = (PullWeatherReceiver)

receiver;

pullReceiver.broker.destroyPullPoint(new DestroyPullPoint());
pullReceiver.broker = null;

} catch (Exception e) {
throw new RuntimeException(e);

}

// Enable subscription functionality again
subscriptionReference = null;

}

private static void subscribe() {

456 IBM WebSphere Application Server V7.0 Web Services Guide

// Create the dynamic proxy client for the NotificationBroker
NotificationBroker broker = brokerService

.getNotificationBrokerPort(new AddressingFeature());

// Create a pull point
W3CEndpointReference pullPointReference = null;
try {

CreatePullPoint request = new CreatePullPoint();
CreatePullPointResponse response =

broker.createPullPoint(request);
pullPointReference = response.getPullPoint();

} catch (Exception e) {
throw new RuntimeException(e);

}

// Subscribe to the random-weather topic
TopicExpressionType topic = new TopicExpressionType();
topic.setExpression("tns:daily-weather");

topic.setDialect(TopicExpressionType.DIALECT_SIMPLE_TOPIC_EXPRESSION);
topic.addPrefixMapping("tns", "http://weather");
FilterType filter = new FilterType();
filter.addTopicExpression(topic);

// Create subscription information input message
Subscribe subscribeRequest = new Subscribe();
subscribeRequest.setConsumerReference(pullPointReference);
subscribeRequest.setFilter(filter);

// Send subscription request
try {

SubscribeResponse response =
broker.subscribe(subscribeRequest);

subscriptionReference = response.getSubscriptionReference();
} catch (Exception e) {

throw new RuntimeException(e);
}

// Store the Broker dynamic proxy in the PullWeatherReceiver
// "singleton"
broker = pullPointReference.getPort(NotificationBroker.class,

new AddressingFeature());
WeatherReceiver receiver = WeatherReceiver.getInstance();
((PullWeatherReceiver) receiver).broker = broker;

 Chapter 9. WS-Notification 457

}

static {
// Bootstrap the WeatherReciver "singleton" such that
// it returns the receiver that can pull messages
WeatherReceiver.setInstance(new PullWeatherReceiver());

}
}

The structure of the SubscriptionManager servlet in Example 9-9 on page 454 is
similar to the one in the push example. That is, the doGet method switches
between subscription and unsubscription behavior. However, there is a slight
difference if you look inside the subscribe and unsubscribe methods. These
methods have been modified to also create and destroy the pull point
respectively. The static block at the end of the servlet ensures that, when the
SubscriptionManager servlet is loaded by the Java virtual machine (JVM™), it
bootstraps the WeatherReceiver singleton so that it uses the
PullWeatherReceiver subclass. This action ensures that the ConsumerServlet
triggers WS-Notification message pulling whenever it is reloaded in the browser.

9.4 WS-Notification runtime administration

By using the administrative console of WebSphere Application Server, you can
manage runtime entities such as subscriptions, pull points, and publisher
registrations. With the administrative console, you can also manage
WS-Notification messages on the underlying SIB.

To access the runtime management features of the WS-Notification service:

1. Expand Service integration → WS-Notification → Services and select a
WS-Notification service, for example, weatherWSNService.

458 IBM WebSphere Application Server V7.0 Web Services Guide

2. Click the Runtime tab (Figure 9-18). On the Runtime page, you can select
any of the additional properties to see publisher registrations, pull points, or
subscriptions.

Figure 9-18 WS-Notification service runtime view

Tip: Use the administrative console to monitor the subscriptions and pull
points and remove old information. This is especially helpful while you are
developing and testing the applications. At each change, the applications
are redeployed, and old subscriptions and pull points remain in the server.

 Chapter 9. WS-Notification 459

9.4.1 Administering subscriptions

In the weather WS-Notification example, after both consumers are subscribed to
the daily-weather topic, click the Subscriptions link (from the WS-Notification
services Runtime tab) to open the Subscriptions page (Figure 9-19). This page
shows an overview of all consumer subscriptions. Additional columns are not
shown in Figure 9-19. You can select any of the subscription lines and delete
them if you need to, which might be necessary if your applications fail to
unsubscribe themselves.

Figure 9-19 Managing subscriptions

Each subscription line specifies the following information:

� Subscription ID

A unique internal ID.

� Topics

Indicates which topics the consumer is subscribed to.

� Delivery state

Indicates successfullness of message delivery.

� Consumer EPR

The Web service endpoint address of the consumer. This can be a pull point
Web service address.

460 IBM WebSphere Application Server V7.0 Web Services Guide

� Creation time

Indicates the date of subscription.

� Termination time

Indicates when the subscription expires. If the client application has not
specified it in the subscription request, then the value shown is None.

� Pull type

Indicates whether the consumer is a pull consumer. In the weather example,
we have one of each.

� Service integration bus subscriptions

Provides a link to the underlying SIB topic space runtime page.

9.4.2 Administering pull points

In the weather WS-Notification example, after the pull consumer subscribes to
the daily-weather topic, clicking the Pull points link (from the WS-Notification
services Runtime tab) opens the Pull points page (Figure 9-20).

Figure 9-20 Managing pull points

From this page, you see an overview of all consumer pull points and can delete
them if necessary. Each pull point line specifies the following information:

Pull point id A unique internal ID
Creation time Indicates at which time the pull point was created
Termination time Indicates at which time the pull point will be removed

 Chapter 9. WS-Notification 461

9.4.3 Administering messages

A feature that you might find useful is the ability to inspect published
WS-Notification messages that have not yet been delivered to registered
consumers. Published WS-Notification messages are stored by WebSphere
Application Server on the SIB until the following actions occur:

� Messages are delivered to all subscribed push consumers (Web service
endpoints).

� Messages are consumed by the subscribed pull consumers.

If you click any of the SIB subscriptions links in the Subscriptions runtime view,
you see the runtime view of the underlying SIB topic space, as shown in
Figure 9-21.

Figure 9-21 Message depth of undelivered messages

462 IBM WebSphere Application Server V7.0 Web Services Guide

The Current message depth section shows the number of messages that are yet
to be consumed. If you click the Messages link under Additional Properties, you
see a list of the unconsumed messages (Figure 9-22).

Figure 9-22 Unconsumed messages

The administrative console gives you the ability to delete either selected
messages or all of them if necessary. If you click one of the links, you see the
page shown in Figure 9-23, where you can inspect the message details.

Figure 9-23 Message details

 Chapter 9. WS-Notification 463

Although not shown in Figure 9-23 on page 463, this page contains many
interesting properties about the message, including details about how long the
message has been on the messaging engine, the message length, and so on.

If you click the Message body link under Additional Properties on the message
details page, you see the actual contents. The message contents in Figure 9-24
show the serialized version of one of the published daily weather messages.

Figure 9-24 Inspecting the message content

9.5 Advanced features and options

WS-Notification offers several advanced features.

9.5.1 Using policy sets with WS-Notification services

You can apply policy sets to Version 7.0 WS-Notification services. This policy set
configuration is a compelling feature because it allows you to easily configure
qualities of service behavior such as reliability or security.

464 IBM WebSphere Application Server V7.0 Web Services Guide

The configuration of policy sets for WS-Notification is two-fold:

� Service provider policy set configuration

This configuration refers to the policy set configuration of Web services that
are exposed by the WS-Notification service points. Version 7.0
WS-Notification service points (NotificationBrokers, SubscriptionManagers,
and PublisherRegistrationManagers) are implemented as JAX-WS
applications. The policy sets for these service points are configured by using
the policy set administrative infrastructure for service providers.

� Service client policy set configuration

This configuration refers to the policy set configuration of the Web service
clients for the WS-Notification service. Each WS-Notification service has two
Web service clients, which are OutboundNotificationService and
OutboundRemotePublisherService. The policy sets for these two services are
configured by using the policy set administrative infrastructure for service
clients.

For more information about applying policy sets to WS-Notification, see the
“WS-Notification: Overview” topic in the WebSphere Application Server V7
Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.pmc.nd.doc/concepts/cjwsn_overview.html

9.5.2 Implementing demand-based publishers

The WS-Notification development examples in this chapter demonstrate how to
create a simple WS-Notification publisher application. However, as explained in
9.1.2, “WS-BrokeredNotification” on page 399, another publisher variant exists,
which is the demand-based publisher.

The demand-based publisher is more resource aware in that it ensures that the
producer does not publish messages to topics to which no consumers subscribe.
However, the demand-based publisher is slightly more complex to implement
than the simple publisher because it requires development of a Web service
endpoint that keeps track of the current demand for publishing.

9.5.3 Using handlers with WS-Notification services

Depending on the WS-Notification service type that you have, you can associate
either JAX-WS handlers (Version 7.0) or JAX-RPC handlers (Version 6.1).
WebSphere Application Server allows handlers to be associated with inbound
requests (and related responses) to a WS-Notification service and outbound

 Chapter 9. WS-Notification 465

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.pmc.nd.doc/concepts/cjwsn_overview.html

requests (and related responses) from the service. Handlers for inbound
requests are configured on the inbound ports that belong to a WS-Notification
service point. Handlers for outbound requests are configured on the
WS-Notification service itself.

9.5.4 JMS producers and consumers

WS-Notification services in WebSphere Application Server V7 use the service
integration bus (SIB). In particular, they publish messages to SIB topic spaces.
Topic spaces can by published and subscribed to by JMS applications by using
JMS topics. Therefore, it is possible for a JMS application to receive messages
that are published by a notification producer and for a JMS application to publish
messages that will be received by a notification consumer.

For more information about sharing notifications with other bus clients, see the
“Sharing event notification messages with other bus client applications” topic in
the WebSphere Application Server V7 Information Center at the following
address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.pmc.nd.doc/ref/rjwsn_ex_sysa2.html

9.5.5 Administered subscribers

An administered subscriber provides a mechanism for a WS-Notification service
point to subscribe to an external notification producer at server startup time. The
WS-Notification service point thereby plays a consumer role to the external
producer. One possible use of such a configuration is to have a connection
between WS-Notification services on different buses. Messages published to a
particular topic on WS-Notification service A are received by a consumer that is
subscribed to the same topic on WS-Notification service B.

Creating an administered subscriber
To create an administered subscriber:

1. From the WebSphere administrative console, select Service integration →
WS-Notification → Services. Select the service that contains the
WS-Notification service point to which you want to add an administered
subscriber.

2. Under Additional Properties, select WS-Notification service points and then
select the service point to which you want to add an administered subscriber.

3. Under Additional Properties, select Administered subscribers and then
click New.

466 IBM WebSphere Application Server V7.0 Web Services Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.pmc.nd.doc/ref/rjwsn_ex_sysa2.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.pmc.nd.doc/ref/rjwsn_ex_sysa2.html

4. Complete the general properties for the notification producer endpoint that
you want to be subscribed to at server startup.

5. Click OK and save your changes.

9.5.6 Topic namespace documents

Topic namespace documents define the hierarchical structure of the topics in a
topic namespace. They also allow the user to define restrictions for messages
received on a topic or the ability to use subtopics. Example 9-10 shows a simple
topic namespace document.

Example 9-10 Topic namespace document

<?xml version="1.0" encoding="UTF-8"?>
<t1:TopicNamespace name="RedbookTopicNamespace"
targetNamespace="http://example.redbook"
 xmlns:tns="http://example.redbook"
 xmlns:abc="http://example2.redbook"
 xmlns:xyz="http://example3.redbook"
 xmlns:t1="http://docs.oasis-open.org/wsn/t-1">
 <t1:Topic name="myTopic1">
 <t1:Topic name="subTopic1a" messageTypes="abc:SomeData"/>
 <t1:Topic name="subTopic1b"/>
 </t1:Topic>
 <t1:Topic name="myTopic2">
 <t1:Topic name="aSubTopic" messageTypes="xyz:Information"/>
 <t1:Topic name="anotherSubTopic" final="true"/>
 </t1:Topic>
</t1:TopicNamespace>

In Example 9-10, note the following points of interest:

� The attribute final

A value of true for this attribute indicates that messages cannot be published
to subtopics of this topic. The default value, if not specified, is false.

� The attribute messageTypes

This attribute defines a list of qualified names. All messages published to this
topic must have a global element definition that matches one of the qualified
names listed.

 Chapter 9. WS-Notification 467

For a full list of attributes and elements that can be used in topic namespace
documents, see the WS-Topics specification.

In WebSphere Application Server V7, topic namespace documents can be
applied to permanent topic namespaces. To apply a document, first make sure
that the target namespace for the topic namespace document matches the
namespace URI for the permanent topic namespace to which you want to apply
it. Then follow these steps:

1. From the WebSphere administrative console, select Service integration →
WS-Notification → Services. Select the service to which the permanent
topic namespace belongs.

2. Under the Additional Properties list, click Permanent topic namespaces.
From the list, locate the permanent topic namespace to which you want to
apply a topic namespace document. The value in the Topic namespace
documents column indicates the number of documents applied or shows the
value None. Click the value.

3. When you see a list of topic namespace documents that are applied, click
New. Enter the URL location of the namespace document and optionally a
description. Click OK.

4. Save your changes.

468 IBM WebSphere Application Server V7.0 Web Services Guide

9.5.7 Raw notification message format

The WS-BaseNotification specification defines the concept of the raw notification
format. A raw notification is one where the notification message contents are not
sent in the form described by the notify operation. Rather, the contents of the
message form the entire body of the SOAP message (Figure 9-25).

Figure 9-25 Notify and raw message formats

<soapenv:Envelope xmlns:soapenv=“http://schemas.xmlsoap.org/soap/envelope/” …>
<soapenv:Header>
…
</soapenv:Header>
<soapenv:Body>

<b2:Notify xmlns:b2="http://docs.oasis-open.org/wsn/b-2">
<b2:NotificationMessage>

<b2:Topic>…</b2:Topic>
<b2:ProducerReference> … </b2:ProducerReference>
<b2:Message>

<soapenv:Envelope xmlns:soapenv=“http://schemas.xmlsoap.org/soap/envelope/” …>
<soapenv:Header>
…
</soapenv:Header>
<soapenv:Body>

Notify (default)
format message

Raw format
message

Message content
<abc:SomeData xmlns:abc="http://somenamespace">
…
</abc:SomeDate>

</b2:Message>
</b2:NotificationMessage>

</b2:Notify>
</soapenv:Body>

</soapenv:Envelope>

Message content
<abc:SomeData xmlns:abc="http://somenamespace">
…
</abc:SomeDate>

</soapenv:Body>
</soapenv:Envelope>

 Chapter 9. WS-Notification 469

Raw message support in WebSphere Application Server V7
WS-Notification services in WebSphere Application Server V7 support the use of
the raw notification format for messages sent from the service but not for
messages received by the service. Therefore, a consumer can subscribe to the
WS-Notification service, requesting that messages be sent to it by using the raw
notification format, but a producer cannot publish messages in the raw format to
the WS-Notification service. For an example that shows how to specify the use of
raw messages in a subscription, see the “Example: Subscribing a
WS-Notification consumer” topic in the WebSphere Application Server V7
Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.pmc.nd.doc/ref/rjwsn_ex_sub.html

470 IBM WebSphere Application Server V7.0 Web Services Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.pmc.nd.doc/ref/rjwsn_ex_sub.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.pmc.nd.doc/ref/rjwsn_ex_sub.html

Chapter 10. WS-SecureConversation

In this chapter we discuss support for the Web services Secure Conversation
(WS-SecureConversation) specification in WebSphere Application Server V7.
We review the basic concepts in WS-Security and present an overview of Web
Services Trust (WS-Trust). We also explore the motivation and mechanism of
WS-SecureConversation and introduce WS-SecureConversation scenarios. In
addition, we provide two examples for applying WS-SecureConversation to a
Web services application by using WebSphere Application Server and Rational
Application Developer.

This chapter contains the following topics:

� “WS-Security review” on page 472
� “WS-Trust” on page 478
� “Overview of WS-SecureConversation” on page 482
� “Secure conversation example” on page 496
� “More information” on page 510

10

© Copyright IBM Corp. 2009. All rights reserved. 471

10.1 WS-Security review

WS-SecureConversation is built on top of the Web services Security
(WS-Security) and WS-Trust models to provide secure communication across
one or more messages. We first review the WS-Security concepts.

10.1.1 Message-level security versus transport-level security

Web services are secured by using the transport-level security and
message-level security mechanisms.

Traditionally, WS-Security has used transport-level security to secure
point-to-point communications. HTTPS is used to maintain the security context
between messaging endpoints. This approach works well for securing remote
procedure call-based Web services. In cases where network intermediaries and
multiple sessions connect the client with the server, trust relationships are
associated with the point-to-point communications. The trust relationship is
between the requester and the intermediary, as well as between the intermediary
and the Web service (Figure 10-1).

Figure 10-1 Transport-level security: trust relationship between the requester and intermediary

While this is acceptable in some scenarios, it might not be acceptable in others.
With intermediaries, the entire message must be decrypted to access the routing
information, which might break the overall security context. Also, with HTTPS,
there is no option to apply security selectively on certain parts of the message.

With message-level protection, security is encapsulated in the SOAP message.
Message-level security focuses on securing the entire end-to-end
communication within a single security context. This type of security is done
through a combination of message integrity, confidentiality, and security tokens to
verify messages.

Web Service
Client

Web Service
Provider

(Trust relationship)
Security context

HTTPS
Intermediary

(Trust relationship)
Security context

HTTPS

472 IBM WebSphere Application Server V7.0 Web Services Guide

The trust relationship is established between the requester and the target Web
service, even when an intermediary is involved in the message flow, as shown in
Figure 10-2. Sometimes intermediaries must work with parts of the message.
Parts of the message can be left clear, and other parts secured with different
keys for different recipients. The WS-Security specification provides
message-level security.

Figure 10-2 Transport-level security: trust relationship between the requester and target Web service

10.1.2 Major issues addressed by WS-Security

WS-Security addresses three issues with securing SOAP message exchanges:

� Authentication
� Message integrity
� Message confidentiality

Authentication
Authentication ensures that parties within a business transaction are really who
they claim to be. Therefore, proof of identity is required. This proof can be
claimed in the following ways:

� Presenting a user ID and a password, which is referred to as a username
token in WS-Security domain

� Using an X.509 certificate issued by a trusted Certificate Authority (a more
complex method)

The certificate contains identity credentials and has a pair of private and public
keys associated with it. The proof of identity presented by a party includes the
certificate and a separate piece of information that is digitally signed by using the
certificate’s private key. By validating the signed information using the public key
associated with the party’s certificate, the receiver can authenticate the sender
as being the owner of the certificate, thereby validating their identity.

Web Service
Provider

Intermediary

Web Service
Client

Security Context (Trust relationship)

 Chapter 10. WS-SecureConversation 473

Two WS-Security specifications, the Username Token Profile 1.0/1.1 and the
X.509 Certificate Token Profile 1.0/1.1, describe how to use these authentication
mechanisms with WS-Security.

Message integrity
To validate that a message has not been tampered with or corrupted during its
transmission over the Internet, the message can be digitally signed by using
security keys. The sender uses the private key of the their X.509 certificate to
digitally sign the SOAP request. The receiver uses the sender’s public key to
check the signature and identity of the signer. The receiver signs the response
with its private key, and the sender can validate that the response has not been
tampered with or corrupted by using the receiver’s public key to check the
signature and identity of the responder.

The WS-Security: SOAP Message Security 1.0/1.1 specification describes
enhancements to SOAP messaging to provide message integrity.

Message confidentiality
To keep the message safe from eavesdropping, encryption technology is used to
scramble the information in Web services requests and responses. The
encryption ensures that no one accesses the data in transit, in memory, or after it
has been persisted, unless they have the private key of the recipient.

The WS-Security: SOAP Message Security 1.0/1.1 specification describes
enhancements to SOAP messaging to provide message confidentiality.

10.1.3 Digital signature and XML encryption

WS-Security uses a digital signature to provide message integrity, XML
encryption, and security tokens to authenticate the client. In this section, we look
at digital signature and XML encryption technologies.

Digital signature
A digital signature provides message integrity as follows:

1. The sender creates a hash of the SOAP message to be sent by using a
certain algorithm. A hash function takes the SOAP message as input and
produces a fixed length string as output, sometimes called a message digest.
The hash value is a concise representation of the longer message or
document from which it was computed.

2. The sender encrypts the hash data (message digest) by using the sender’s
private key and attaches the result to the SOAP message. The result is the
signature of the message.

474 IBM WebSphere Application Server V7.0 Web Services Guide

3. When the recipient receives the message, the receiver decrypts the signature
by using the sender’s public key. The result is the value of the hash the sender
put in the signature. Then the receiver runs the same hash algorithm to
calculate the hash value (message digest) of the received message. If these
two hash values match, the recipient is confident that the message has not
been tampered with. If the original message changes during transmission,
these two hash values will not match.

Figure 10-3 illustrates the digital signature process.

Figure 10-3 Digital signature process

XML encryption
There are two popular algorithms in modern encryption methods. One algorithm
is the symmetric key algorithm, and the other one is the asymmetic key
algorithm.

In a symmetric key algorithm, the sender and receiver must have a shared key
set up in advance. The shared key must be kept in secret from all other parties.
The sender encrypts the message by using the shared key, and the receiver
must use the same key to decrypt the message.

In an asymmetric key algorithm, a certificate has a pair of keys, a public key and
a private key. The private key is kept secret and the public key can be widely

Message
Digest

Message Message
Digest

Message
Digest

Hash

Encrypt Decrypt

Compare

Digital
Signature

Sender’s
Private Key

Hash

Sender’s
Public Key

Sender ReceiverMessage
transmitted

 Chapter 10. WS-SecureConversation 475

distributed. The keys are related mathematically, but they cannot be derived from
each other. A message encrypted with the public key can be decrypted only with
the corresponding private key and vice versa.

A symmetric key algorithm is more efficient than an asymmetric key algorithm.
However, it requires management of shared keys between the parties and has
the inherent security risks of the keys being exposed to people unauthorized to
know the key. Asymmetric key algorithms do not suffer from this weakness, but
the algorithms are slow. To benefit from the best of both algorithms, XML
encryption usually uses a two-phase process with both symmetric and
asymmetric algorithms:

1. The sender generates a symmetric key, which is used for only one
communication session. Therefore, it is referred to as the session key. The
sender uses this key to encrypt the message.

The sender encrypts the session key by using the public key of the message
recipient and attaches the encrypted key to the message. By encrypting the
session key instead of the entire SOAP message by using the asymmetric key
algorithm, XML encryption provides a more efficient way to encrypt the SOAP
message.

2. The recipient receives the message. It uses its own private key to decrypt the
session key and then to decrypt the message. Because the session key is
used only once, even if someone managed to discover it, they might only be
able to decrypt one message.

476 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 10-4 illustrates the XML encryption process.

Figure 10-4 XML encryption process

XML encryption provides both a relatively efficient solution and one that is easy
to manage by using a hybrid of symmetric and asymmetric algorithms. Note the
word relatively. In scenarios that involve long duration, multi-message
conversations between the Web services, the computationally expensive
asymmetric key algorithm is repeatedly used to encrypt the session key. Ideally,
you should be able to perform a simple negotiation that defines
conversation-specific keys and then use the conversation-specific keys to
encrypt the subsequent message exchanges. WS-SecureConversation uses this
technique, and we discuss the mechanism in 10.3, “Overview of
WS-SecureConversation” on page 482.

10.1.4 WS-Security support in WebSphere Application Server V7

WebSphere Application Server V7 provides full support for the following
Organization for the Advancement of Structured Information Standards (OASIS)
specifications and WS-I profiles:

� OASIS: WS-Security: SOAP Message Security 1.1 (WS-Security 2004)
� OASIS: WS-Security: UsernameToken Profile 1.1
� OASIS: WS-Security X.509 Certificate Token Profile 1.1
� WS-I Basic Security Profile (WS-I BSP) 1.0

Session
Key

Unencrypted
Data

Encrypt

Receiver’s
Public Key

Sender

Session
Key Encrypted

Session
Key

Encrypted
Data

Encrypt

Session
Key

Decrypted
Data

Decrypt

Receiver’s
Private Key

Decrypt

Session
Key

Receiver

 Chapter 10. WS-SecureConversation 477

WebSphere Application Server V7 also supports the following specifications:

� OASIS: WS-Trust Version 1.3.
� OASIS: WS-SecureConversation Version 1.3
� OASIS: Kerberos Token Profile Version 1.1
� OASIS: WS-SecurityPolicy Version 1.2

10.2 WS-Trust

WS-Security describes enhancements to SOAP messaging to provide quality of
protection through message integrity, message confidentiality, and single
message authentication. An important class of WS-Security is to define
mechanisms for signing and encrypting SOAP messages by using security
tokens.

Security tokens are a collection of claims that are used to prove the identity of a
client. They contain an identifier for the client and a proof of the client's identity,
such as a password. They can also include information, such as a signature, to
indicate that the issuer certifies the claims in the credential. While WS-Security
specifies mechanisms to securely exchange messages by using security tokens,
it does not address how security tokens are issued and exchanged.

The WS-Trust specification builds on the WS-Security specification. The goal of
WS-Trust is to enable applications to construct trusted SOAP message
exchanges. This trust is represented through the exchange and brokering of
security tokens. WS-Trust provides a protocol agnostic way to issue, renew, and
validate these security tokens. It defines ways to establish, access the presence
of, and broker trust relationships. It is designed to support the creation of multiple
security token formats to accommodate a variety of authentication and
authorization mechanisms.

10.2.1 Security Token Service

The key concept in WS-Trust is a security token service. A security token service
is a distinguished Web service that issues, exchanges, and validates security
tokens. WS-Trust allows Web services to set up and agree on which security
servers they trust and to rely on these servers. To communicate trust, a security
token service requires proof, such as a signature, to verify knowledge of a
security token or set of security tokens.

The security token service has broad applicability in that it can be used to issue
security tokens that make a wide range of assertions. It can also rely on a
separate security token service to issue a security token with its own trust

478 IBM WebSphere Application Server V7.0 Web Services Guide

statement. In many cases, security token service is used to issue the same
assertions but in different formats. For example, a security token service might
issue an X.509 certificate, asserting that the key holder is Alice, and it might do
this based on a Kerberos token issued by a Kerberos key distribution center
(KDC). The process, illustrated in Figure 10-5, forms the basis of trust brokering
by issuing a range of security tokens that can be used to broker trust relationship
between different trust domains.

Figure 10-5 Issuing security tokens in different formats by the security token service

10.2.2 WS-Trust model

The Web service security model defined in WS-Trust is based on a process in
which a Web service requires that an incoming message prove a set of claims
(for example, name, key, permission, capability, and so on) before it is
authenticated as a trustworthy consumer of the Web service. If the requester
does not have the necessary tokens to prove required claims to a service, it
contacts the security token service and requests the tokens with the proper
claims. In turn, the security token service can require its own set of claims for
authenticating and authorizing the request for security tokens. In this case, the
security token service establishes two separate trust relationships. One is with
the Web service and the other is with the Web service client.

Kerberos Token

User KDC

X.509 Certificate

User

CA

Client Security Token
Service

 Chapter 10. WS-SecureConversation 479

Figure 10-6 illustrates the WS-Trust model.

Figure 10-6 WS-Trust model

10.2.3 Security token service framework

The security token service defines a framework for token issuance. A requester
sends a request. If the policy permits and the recipient's requirements are met,
then the requester receives a security token response. This process uses the
<wst:RequestSecurityToken> element to send the request and the
<wst:RequestSecurityTokenResponse> element to receive the new or renewed
security token.

Requesting a security token
The <wst:RequestSecurityToken> element is used to request a security token.
This element is signed by the requester, by using tokens contained or referenced
in the request that are relevant to the request. Four possible requests are sent to
the Security Token Service:

� Issue a new token.
� Renew token.
� Validate a token.
� Cancel a token.

Security
Token
Service

Security
Token

Policy ClaimsClaims

Web
Service

Security
Token

Policy ClaimsClaims

Requester

Security
Token

PolicyClaimsClaims

480 IBM WebSphere Application Server V7.0 Web Services Guide

Example 10-1 shows the syntax for this element.

Example 10-1 The <wst:RequestSecurityToken> element

<wst:RequestSecurityToken Context="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
</wst:RequestSecurityToken>

Returning a security token
The <wst:RequestSecurityTokenResponse> element is used to return a security
token or response. The security token is used in subsequent SOAP messages
and is referred to based on the mechanisms defined by WS-Security.
Example 10-2 shows the syntax for this element.

Example 10-2 The <wst:RequestSecurityTokenResponse> element

<wst:RequestSecurityTokenResponse Context="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>

WS-Trust in WebSphere Application Server V7
WebSphere Application Server V7 supports the WS-Trust 2005 Submission Draft
specification (Version 1.1). However, WebSphere Application Server does not
provide a full security token service that implements all the contents of the
WS-Trust draft specification.

WebSphere Application Server V7 also supports the approved version WS-Trust
1.3 specification, which is dated March 2007. The security context token provider
supports the OASIS Version 1.3 specifications for WS-Trust and
WS-SecureConversation. A configuration option allows support for the two
different levels of the WS-Trust standard to coexist on the same server. This
option provides interoperability between systems and products that support
different specification levels.

A setting is also provided to specifically disable support for the WS-Trust 2005
Submission Draft specification (Version 1.1) for the security context token
provider. For more details see the “Web services Trust standard” topic in the
WebSphere Application Server Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/cwbs_wstruststd.html

 Chapter 10. WS-SecureConversation 481

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/cwbs_wstruststd.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/cwbs_wstruststd.html

10.3 Overview of WS-SecureConversation

The WS-Security Version 1.1 standard from OASIS defines how to digitally sign
and encrypt a SOAP message to provide message-level protection. The
standard also defines how to attach and reference a security token for digital
signature and encryption. However, it does not provide session-based protection
when a long series of related messages are exchanged.

The WS-SecureConversation standard is a building block. It is used in
conjunction with the other Web service and application-specific protocols,
including WS-Security and WS-Trust, to accommodate a wide variety of security
models and technologies. WS-SecureConversation is built on top of the
WS-Security and WS-Trust models to provide secure communication across one
or more messages. The WS-SecureConversation specification explains how to
establish a security context token between two parties. It uses the WS-Trust
specification to issue and exchange security context tokens.

10.3.1 Motivation

Two major forces drive WS-SecureConversation. One force is from the
performance perspective and the other force is from the security requirements of
WS-ReliableMessaging. For details about WS-ReliableMessaging, see Web
Services Feature Pack for WebSphere Application Server V6.1, SG24-7618.

Improving Web services performance
Some Web service scenarios only involve the short, sporadic exchange of a few
messages. WS-Security readily supports this model. Other scenarios involve
long-duration, multimessage conversations between the Web services.
WS-Security also supports this model, but the solution is not optimal.

WS-Security has two suboptimal usages in these scenarios:

� Repeated use of computationally expensive cryptographic operations such as
public key validation

� Sending and receiving many messages by using the same cryptographic
keys, providing more information that allows brute force attacks to break the
code

For these reasons, protocols such as HTTPS use public keys to perform a simple
negotiation that defines conversation-specific keys. This key exchange allows
more efficient security implementations and decreases the amount of information
encrypted with a specific set of keys.

482 IBM WebSphere Application Server V7.0 Web Services Guide

WS-SecureConversation provides similar support for WS-Security. Participants
often use WS-Security with public keys to start a conversation or session. They
use WS-SecureConversation to agree on session-specific keys for signing and
encrypting information.

Protecting the sequence of reliable messaging
With reliable messaging in Web services, applications can send and receive
messages simply, reliably, and efficiently even in the face of application, platform,
or network failure. Reliable messaging uses a message sequence to reliably
deliver a set of messages.

The WS-Security policy secures the Web services application messages, but it
does not secure the sequence of the messages and thus not the
WS-ReliableMessaging message sequence numbers. This approach can expose
the recipient to sequence spoofing. The reliable messaging policy requires the
reliable messaging headers to be signed to overcome sequence spoofing. If you
want to use secure conversation and reliable messaging policies in the same
policy set, the secure conversation bindings must be configured to require that
the reliable messaging headers are signed.

Sequence spoofing is a class of threats in which the attacker uses knowledge of
the identifier for a particular sequence to forge sequence life-cycle or traffic
messages. Imagine two valid clients, each with a sequence. Both are authorized
at the service level, but one of the clients is in reality a hacker who wants to
attack the other sequence. If the hacker can guess the sequence identifier, this
person can create a fake TerminateSequence message that references the
target sequence and sends this message to the appropriate RM destination.

 Chapter 10. WS-SecureConversation 483

Figure 10-7 illustrates this scenario.

Figure 10-7 Sequence attack

WS-SecureConversation provides a mechanism for protecting sequences. We
explain the mechanism in 10.3.4, “Secure conversation with reliable messaging
scenario” on page 495.

10.3.2 Key concepts

There are two key concepts in WS-SecureConversation, which we explain in the
following sections:

� Security context token
� Derived key

Security context token
A security context is an abstract concept that refers to an established
authentication state and negotiated keys that might have additional
security-related information. Parties that want to exchange multiple messages
establish a security context in which to exchange multiple messages. A security
context is shared among the communicating parties for the lifetime of a
communications session. A security context is a way to provide session-based
security, rather than establishing new keys for every message.

CreateSequence ()

CreateSequenceResponse (Identifier=http://ibm.com/xyz)

Sequence (Identifier=http://ibm.com/xyz, MessageNumber=1)

Sequence (Identifier=http://ibm.com/xyz, MessageNumber=2)

TerminateSequence (Identifier=http://ibm.com/xyz)

Sequence (Identifier=http://ibm.com/xyz, MessageNumber=3)

SequenceAcknowledgement (Identifier=http://ibm.com/xyz, MessageNumber=1,2,3)

TermateSequence (Identifier=http://ibm.com/xyz)

Client 1 Service

Attacker

484 IBM WebSphere Application Server V7.0 Web Services Guide

A security context token is a type of security token that represents a security
context that is shared by the two communicating parties, which are the Web
service and the consumer of that Web service. A security context token typically
contains keys that are used as the basis of providing WS-Security-related
services, such as XML encryption and digital signature.

In the WS-SecureConversation specification, a security context is represented by
the <wsc:SecurityContextToken> security token. The following Uniform Resource
Identifier (URI) represents the security context token type that is required to
establish a secure conversation:

thttp://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

To request a security context token, a request security token (RST) is sent to the
service endpoint to which you are setting up a secure conversation. The request
is transparently rerouted to the trust service. The trust service processes the
RST and responds with a request security token response (RSTR). This response
is returned to the requester as though it were generated by the endpoint service.

Example 10-3 shows an RST request to issue a security token.

Example 10-3 Security context token request

<wst:RequestSecurityToken
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

Context="http://www.ibm.com/login/">
<wst:TokenType>

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
<wst:RequestType>

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>

http://localhost:80/WSSampleSei/EchoService
</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:Entropy>

<wst:BinarySecret
Type="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce">
zb//KsawV6DmfC8kB6vNOQ==

</wst:BinarySecret>
</wst:Entropy>

 Chapter 10. WS-SecureConversation 485

<wst:KeySize>128</wst:KeySize>
</wst:RequestSecurityToken>

Example 10-4 shows an RSTR response to issue a security token.

Example 10-4 RST response

<wst:RequestedSecurityToken>
<wsc:SecurityContextToken

xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility
-1.0.xsd"

wsu:Id="uuid:FFA51A32EB818FB6EA1222986227363">
<wsc:Identifier>

uuid:FFA51A32EB818FB6EA1222986227346
</wsc:Identifier>

<wsc:Instance>
uuid:FFA51A32EB818FB6EA1222986227345

</wsc:Instance>
</wsc:SecurityContextToken>

</wst:RequestedSecurityToken>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>

http://localhost:80/WSSampleSei/EchoService
</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:RequestedProofToken>

<wst:ComputedKey>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1

</wst:ComputedKey>
</wst:RequestedProofToken>

Derived key
A security context token implies or contains a shared secret. This secret can be
used to sign and encrypt messages. However, it is considered bad practice to
sign and encrypt messages with the same key because certain attacks are more
likely to succeed in this case. Signing and encrypting multiple messages by using
the same key in multimessage conversations is also considered bad practice
because it provides too much data to attackers to analyze. Therefore, use
derived keys to sign and encrypt messages that are associated only with the
security context.

486 IBM WebSphere Application Server V7.0 Web Services Guide

WS-SecureConversation provides a secured session for long-running message
exchanges and usage of the symmetric cryptographic algorithm with coordinated
derived keys.

By using a common secret in the security context token, parties can define
different key derivations to use. For example, four keys can be derived so that
two parties can sign and encrypt using separate keys, as illustrated in
Figure 10-8.

Figure 10-8 Using derived keys to sign and encrypt SOAP messages

To keep the keys fresh, subsequent derivations can be used in multimessage
conversations. WS-SecureConversation introduces the <wsc:DerivedKeyToken>
token as a mechanism for indicating which derivation is being used within a given
message.

With the derived key, you can then use symmetric cryptography to sign and
encrypt the message. A symmetric cryptographic algorithm is less CPU intensive
than the asymmetric cryptography. It also provides better performance and
throughput when compared with the asymmetric cryptographic algorithms.

SOAP Request

Derived key 1

Client Service

signature info

encryption info

SOAP Response

signature info

encryption info

Security
Context
Token

Derived key 2

Derived key 3

Derived key 4

 Chapter 10. WS-SecureConversation 487

10.3.3 Secure conversation scenario

In this section, we describe the overall flow on the message exchanges in
WS-SecureConversation. During the secure conversation session, the initiator
establishes the security context token by using the WS-Trust protocol for
session-based security with the recipient. Then derived keys from the security
context token are used to sign and encrypt the SOAP message to provide
message-level protection.

Trust service
The security token service that is provided by WebSphere Application Server is
called the trust service. The WebSphere Application Server trust service uses
the secure messaging mechanisms of WS-Trust to define additional extensions
for the issuance, exchange, and validation of security tokens.

Message overflow
WebSphere Application Server supports the ability of an endpoint to issue a
security context token for WS-SecureConversation, and thereby provides a
secure session between the initiator and recipient of SOAP messages.

Figure 10-9 illustrates the flow that is required to establish a secured context and
to use session-based security.

Figure 10-9 Message overflow in a secure conversation

Request security token (1)

Request security token response (2)

Request secured using SCT (3)

Response secured using SCT (4)

Request secured using SCT (5)

Response secured using SCT (5)

Web service
runtime

Trust service

Web service
security
runtime

Web service
client

Web service
provider

488 IBM WebSphere Application Server V7.0 Web Services Guide

To use secure conversation, the following steps are involved:

1. The client sends an RST for a security context token to an application
endpoint. The RST is encrypted and signed by using WS-Security information
that is defined in the bootstrap security policy. The bootstrap policy is used by
the initiator to acquire a security token from the security token services.

2. The RST is processed by the trust service, and if the request is trusted based
on the bootstrap policy, the trust service returns the security context token by
using the RSTR. The RSTR is also signed and encrypted to ensure that the
established security context token is not compromised. The client verifies
whether the RSTR can be trusted, based on the bootstrap policy.

3. If the RSTR is trusted, the client secures (signs and encrypts) the subsequent
application messages by using the derived keys. The derived keys are
derived from a secret contained in the security context token that is obtained
from the initial RST and RSTR messages that are exchanged between the
initiator and the recipient.

4. The target Web service uses the derived key to verify and decrypt the
message based on the application security policy. Then the target Web
service uses the derived key to sign and encrypt the response based on the
application security policy. Finally, the client uses the derived key to verify and
decrypt the message based on the application security policy. The first
message exchange is finished.

5. For subsequent message exchanges, steps 3 and 4 are repeated until the
communications session is finished.

In-depth look at the stages of WS-SecureConversation
To help understand WS-SecureConversation better, in this section we look
in-depth at the two stages of WS-SecureConversation. We examine how a
security context token is established and the usage of derived keys.

 Chapter 10. WS-SecureConversation 489

Establishing a security context token
Figure 10-10 shows how the messages are exchanged between the initiator and
the recipient to establish the security context token in WebSphere Application
Server.

Figure 10-10 Establishing a security context token between the initiator and recipient

The Web services client sends an RST for a security context token to an
application endpoint. It uses its private key to sign the WS-Addressing header,
timestamp, and body. The body content and signature elements are encrypted by
using the trust service’s public key.

The trust service that processed the request is trusted based on the bootstrap
policy. After the request is validated, the trust service returns the security context
token by using RSTR. The trust service uses its private key to sign the
WS-Addressing header, timestamp, and body. The body content and signature
elements are encrypted by using the client’s public key. This process uses the
asymmetric cryptography algorithm.

Bootstrap Security Policy

Client
Sign WS-Addressing Headers, Timestamp and Body
with client's private key
Body Content and Signature element are encrypted
with service's public key

Service
Sign WS-Addressing Headers, Timestamp and Body
with service's private key
Body Content, Signature and SignatureConfirmation
elements are encrypted with client's public key
(signer certificate)

Web services runtime

Trust module

Web services
security
runtime

Web
services
provider

Web
services

client

RST
RSTR (with SCT)

Bootstrap is different
from application policy

DONE:DONE:

Note: The bootstrap policy, which is used to secure the RST and validate the
RSTR request, is different from the application security policy.

490 IBM WebSphere Application Server V7.0 Web Services Guide

Using a derived key
After the security context token is established, the application messages are
secured by using a derived key based on the security context token, as illustrated
in Figure 10-11.

Figure 10-11 Using a derived key to secure the application messages

The derived keys are used to secure the application messages by signing and
encrypting the application messages. The security context token contains a
Universally Unique Identifier (UUID), which is used as the identification of a
shared secret. The token UUID can be used in the SOAP message to identify the
security context token for the message exchanges. The secret must be kept in
memory by the session participants (in this case, the initiator and the recipient)
and protected. Compromising the secret undermines the secure conversation
between the participants.

With the derived key, the client and the service can use the symmetric
cryptography algorithm to communicate, which is more efficient than the
asymmetric cryptography algorithm.

Exploring the trust service configuration
In Chapter 6, “Policy sets” on page 261, we explain how to use a policy set to
apply a group of policies to your Web services. The trust service provided by
WebSphere Application Server is a security token service that can issue, cancel,
renew, and validate security tokens. Because the trust service is a Web service,

Application Security Policy

Client
Sign WS-Addressing Headers, Timestamp and Body
with Sx1 (derived key from SCT) using HMAC
Signature Element and Body content are encrypted
with Sx2 (derived key from SCT) using AES

Service
Sign WS-Addressing Headers, Timestamp and Body
with Sx3 (derived key from SCT) using HMAC
Signature Element and Body content are encrypted
with Sx4 (derived key from SCT) using AES

Web services runtime

Trust module

Web services
security
runtime

Web
services
provider

Web
services

client

SecureRequest
(with SCT)

Application policy based
on SCT (Symmetric

Cryptographic Algorithm)

 Chapter 10. WS-SecureConversation 491

you can also configure the security policies against the trust service. For the trust
service, you must use a special class of policy sets, known as system policy sets.
The main difference between a system policy set and an application policy set is
that a system policy set is not available for application resources.

To view the system policy sets in the administrative console, expand Services →
Policy sets → System policy sets. The default system policy sets that ship with
WebSphere Application Server are displayed (Figure 10-12).

Figure 10-12 System policy set

WebSphere Application Server provides three system policy sets for the security
trust service:

� SystemWSSecurityDefault
� TrustServiceSecurityDefault
� TrustServiceSymmetricDefault

492 IBM WebSphere Application Server V7.0 Web Services Guide

Figure 10-12 on page 492 describes each of these default policy sets.

You can create your own custom system policy set and apply it to the trust service
instead of using the default system policy set. For example, WebSphere is
configured to use the security token reference by default. Windows Communication
Foundation (WCF) is configured to expect a key identifier (KeyID) reference for
signed messages by default. If your application is running on WebSphere and it
needs to interoperate with WCF by using secure conversation, you might have to
create a custom system policy set to use a key identifier.

To begin exploring the trust service configuration, click Services → Trust
service → Token providers → Security Context Token to open the Security
context token information (Figure 10-13).

Figure 10-13 Security context token provider configuration page

 Chapter 10. WS-SecureConversation 493

To access the page to configure trust service endpoint targets (Figure 10-14),
click Services → Trust service → Targets.

Figure 10-14 Trust service endpoint targets configuration page

The trust service manages tokens on behalf of service endpoints. A token
provider is either explicitly or implicitly associated with each service endpoint. A
specific token can be explicitly assigned to be issued when access to an
endpoint is requested. Otherwise, the trust service default token is issued.

To open the trust service attachments page (Figure 10-15), click Services →
Trust service → Trust service attachments.

Figure 10-15 Trust service attachments page

Each new endpoint that is specified initially has four operations:

� Issue.
� Renew.
� Cancel.
� Validate.

By default, all endpoints inherit the policy set and binding that are attached to the
respective trust service operation under Trust Service Defaults. However, you
can explicitly attach a different policy set.

494 IBM WebSphere Application Server V7.0 Web Services Guide

10.3.4 Secure conversation with reliable messaging scenario

Reliable messaging uses a message sequence to deliver a set of messages.
WS-Security secures the Web services application messages, but it does not
secure the sequence. This exposes the danger for a possible sequence attack.

In the secure conversation with reliable messaging scenario, the security context
token is used to secure the reliable messaging sequence. Figure 10-16 shows
the message flows that are required to establish a security context token to
secure reliable messaging.

Figure 10-16 Message overflow for secure conversation with reliable messaging

To use secure conversation with reliable messaging, the following steps are
involved:

1. The WS-ReliableMessaging run time calls WS-Security APIs to get the UUID
of the security context token (SCT) for the session. If a security context token
is already established, the UUID of the existing security context token is
returned to WS-ReliableMessaging. If no security context token is
established, the WS-Security run time initiates a call to the recipient to
establish the security context token.

2. After the WS-ReliableMessaging run time acquires the UUID of the security
context token, the WS-ReliableMessaging run time scopes the
CreateSequence message to the security context token by using the security

Client

Reliable messaging
run time

Request security token

Request security token response

Create sequence using SCT

Create sequence response using SCT

Send message 1 using SCT

Send message 2 using SCT

Send message 3 using SCT

Sequence acknowledgement using SCT

Terminate sequence using SCT

Trust client

WS-Security
runtime

Web service
client

Service

Reliable messaging
run time

Trust service

WS-Security
runtime

Web service
provider

Key: SCT = security context token

 Chapter 10. WS-SecureConversation 495

token reference argument in the CreateSequence message and responds
with the CreateSequenceResponse message.

3. The exchange of the application messages is similar to the
WS-SecureConversation scenario. The messages are secured by the
security context token.

4. The WS-ReliableMessaging run time responds with the
CreateSequenceResponse message.

5. The WS-ReliableMessaging run time sends a SequenceAcknowledgement
message to acknowledge that the message is properly delivered and the
message is secured by the security context token.

6. The WS-ReliableMessaging run time sends a TerminateSequence message
to terminate the sequence, and the message is secured by the security
context token.

10.4 Secure conversation example

In this section we provide two examples of how to apply secure conversation to
Web services applications by using Rational Application Developer. In the first
example, we apply WS-SecureConversation to the Web service. In the second
example, we apply the WS-I Reliable Secure Profile (RSP) to our Web services.
WS-I RSP is an interoperability profile to deal with secure, reliable messaging
capabilities for Web services. We also monitor the SOAP traffic to see the
message flows of secure conversation.

10.4.1 Applying secure conversation to Web services

The first example is to apply secure conversation to the WeatherJavaBean Web
services. WebSphere Application Server V7 ships with the Username
SecureConversation policy set, which is ready for immediate use. For our
example, we do not need the username token for message authentication. To
see the SOAP traffic, we create a custom policy set to include the
HTTPTransport policy. We use TCP/IP Monitor (TCPMon), which ships with
WebSphere Application Server, to monitor the SOAP traffic.

496 IBM WebSphere Application Server V7.0 Web Services Guide

Preparing for the example

Creating the custom policy set and general binding
In this section we create a custom policy set to include the SecureConversation
policy and HTTPTransport policy. We also create a general binding to direct the
SOAP request to a proxy server running on port 9088. Then we export the
custom policy set and general binding to the local directory to import them into
the Rational Application Developer development environment.

To create the custom policy set:

1. Log in to the administrative console.

2. In the left pane, select Services → Policy Sets → Application Policy Sets.

TCP/IP Monitor: The TCP/IP Monitor that ships with Rational Application
Developer is not capable of handling WS-SecureConversation-related traffic,
which includes multiple messages and SOAP envelopes in requests and
responses. For this reason, we use TCPMon that ships with WebSphere
Application Server as the monitoring tool.

To use the TCPMon to monitor the WS-SecureConversation-related traffic, we
must also add the HTTPTransport policy. We add this policy because the
proxy capability provided by HTTPTransport policy offers a convenient
mechanism to configure TCPMon to capture both the application
request/response and the trust service request/response.

Downloadable material: The examples in this chapter use the
WeatherJavaBean application. This application is included in the download
material for this book in the WeatherBase/WeatherWebService.zip archive.

The project interchange file contains the following projects:

� WeatherBase: contains the core weather classes used by the applications
(See 3.1.1, “The WeatherForecast application packages” on page 148.)

� WeatherJavaBeanServer: the Web service provider application

� WeatherJavaBeanWebClient: the Web service client application

For information about downloading the material, see Appendix A, “Additional
material” on page 537.

For information about importing the application into your workspace, installing
it on the server, and testing it, see “Using the WeatherJavaBean application”
on page 543

 Chapter 10. WS-SecureConversation 497

3. Select Username SecureConversation (Figure 10-17) and click Copy at the
top of the page.

Figure 10-17 Copying Username SecureConversation

4. On the Application policy sets page (Figure 10-18), in the Name field, type
ITSO SecureConversation and click OK.

Figure 10-18 Naming the custom policy set

5. Click ITSO SecureConversation.

6. Click Add and select HTTP transport (Figure 10-19). Then click Apply.

Figure 10-19 Adding the HTTP transport policy

498 IBM WebSphere Application Server V7.0 Web Services Guide

7. Click WS-Security → Main policy → Request token policies. The user
name token authentication is not needed.

8. Select token_auth. Click Delete and then click Save.

9. Navigate back to the list of application policy sets. Select ITSO
SecureConversation Policy Set and click Export.

10.Click ITSO SecureConversation.zip and save it to your local directory.

You have now created the custom policy set. To create the general client binding:

1. In the administrative console, expand Services → Policy sets → General
client policy set bindings.

2. Select Client sample and then click Copy.

3. For name, type ITSO Secure Conversation client binding. Then click OK.

4. Click ITSO Secure Conversation client binding, then click HTTP transport.

5. On the HTTP transport page (Figure 10-20), for host, type localhost. For
port, type 9088. Click OK, then click Save.

Figure 10-20 HTTP transport configuration

We choose port 9088 because usually this port is not used by any process.
You can choose any other port as long as it is not used by any process. After
you configure the proxy for outbound service requests, the SOAP request
from the client is directed to the proxy server running at
http://localhost:9088.

 Chapter 10. WS-SecureConversation 499

TCPMon is also started in proxy mode and listens to port 9088. It directs the
SOAP request to the Web service provider. Using the proxy capability of the
HTTPTransport policy is a convenient mechanism to configure TCPMon to
capture both the application request/response and the trust service
request/response.

6. Select ITSO Secure Conversation client binding and click Export. Click
ITSO Secure Conversation client binding.zip and click Save to save the file
to your local drive.

7. Restart WebSphere Application Server.

Applying a policy set to a Web service and client
In this section we import the ITSO SecureConversation policy set into the
Rational Application Developer development environment. Then we apply the
ITSO SecureConversation policy set to the Web service and client.

To import the policy set:

1. In Rational Application Developer, click File → Import → Web services →
WebSphere Policy Sets. Click Next.

2. Click Browse and select ITSO SecureConversation.zip, which you created
in “Creating the custom policy set and general binding” on page 497. Then
click Finish.

3. From the main menu, click File → Import → Web services → WebSphere
Named Bindings. Click Next.

4. Click Browse and select ITSO Secure Conversation client binding.zip,
which you created in “Creating the custom policy set and general binding” on
page 497. Then click Finish.

500 IBM WebSphere Application Server V7.0 Web Services Guide

5. Verify that the policy set and the general binding imported successfully:

a. Click File → Preferences.

b. In the left pane of the Preferences window (Figure 10-21), select Service
Policies. In the right pane you should see that the ITSO
SecureConversation policy set and ITSO Secure Conversation client
binding are imported.

Figure 10-21 Importing the ITSO SecureConversation policy set and binding

6. In the Services view, expand JAX-WS → Services. Right-click
WeatherJavaBeanService and select Manage policy set Attachment.

7. In the Add Policy Set Attachment to Service window, select the
WeatherJavaBeanServer application from the drop-down list if it is not
already selected. Click Add under the table inside the Application group.

 Chapter 10. WS-SecureConversation 501

8. In the End Point Definition Dialog window (Figure 10-22), for policy set select
ITSO SecureConversation, and for binding leave Provider sample. Click
OK.

Figure 10-22 Applying the ITSOSecureConversation policy set to the service

9. In the message window that opens, click Ignore.

10.Click Finish. The ITSO SecureConversation policy set is now applied to your
service.

To apply this policy set to your client:

1. In the Services view, expand the JAX-WS → Clients. Right-click
WeatherJavaBeanService and select Manage policy set Attachment.

2. On the Add Policy Set Attachment to Web service Client page, click Add.

502 IBM WebSphere Application Server V7.0 Web Services Guide

3. In the End Point Definition Dialog window (Figure 10-23), for policy set, select
ITSO SecureConversation. For binding, type ITSO Secure Conversation
client binding and click OK.

Figure 10-23 Attaching the ITSO SecureConversation policy set to the client

4. In the message window that opens, click Ignore.

5. Click Finish.

Monitoring SOAP traffic in WS-SecureConversation
As explained earlier, use TCPMon that ships with WebSphere Application Server
to monitor the SOAP traffic, because the TCP/IP Monitor that ships with Rational
Application Developer is not capable of handling
WS-SecureConversation-related traffic.

To monitor the SOAP traffic using TCPMon:

1. Start TCPMon:

a. Open a command prompt and navigate to the <%WAS_HOME%>\bin folder.

b. Type the commands shown in Example 10-5 to start TCPMon.

Example 10-5 Launching TCPMon

C:\Documents and Settings\Administrator>cd \ibm\was\nd\bin
C:\IBM\WAS\ND\bin>setupcmdline
...
C:\IBM\WAS\ND\bin>set
classpath=C:\IBM\WAS\ND\runtimes\com.ibm.ws.webservices.thinclient_7.0.0.jar;%classpath%

 Chapter 10. WS-SecureConversation 503

C:\IBM\WAS\ND\bin>java -Djava.ext.dirs=%WAS_EXT_DIRS%
com.ibm.ws.webservices.engine.utils.tcpmon

2. In the TCPMonitor window (Figure 10-24), for Listen Port #, type 9088. Select
Proxy and click Add. Port 9088 is now ready for the SOAP traffic.

Figure 10-24 TCPMonitor window

3. Open a Web browser and run the sample JSP client. For example, if your
server is running at port 9080, then type the following URL:

http://localhost:9080/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

Tip: A simple way to set up TCPMon is to download it from the Apache
Software Foundation Web site at the following address:

http://ws.apache.org/commons/tcpmon/download.cgi

When you reach this page, select Binary Distribution. Download and
extract the file. Then double-click tcpmon.bat in the
tcpmon-1.0-bin\build folder to start TCPMon.

Notice that the TCPMon version from Apache has more functions than the
version that ships with WebSphere Application Server.

504 IBM WebSphere Application Server V7.0 Web Services Guide

http://ws.apache.org/commons/tcpmon/download.cgi

4. Click the getDayForecast method and enter a value for arg0. You can copy
and paste the example value that is given by the JSP client. For example, type
2009-04-10T16:22:19 and click Invoke.

The weather information is shown in the JSP page. The SOAP traffic is
displayed in TCPMon, as shown in Figure 10-25.

Figure 10-25 SOAP traffic in TCPMon

The SOAP request is shown in the upper pane, and the SOAP response is
shown in the lower pane. The request pane has two SOAP requests, and the
response pane has two SOAP responses, which reflects the nature of secure
conversation. As discussed in 10.3.3, “Secure conversation scenario” on
page 488, the secure conversation has two stages:

– In the first stage, the Web service client sends an RST for a security
context token to an application endpoint.

The RST is encrypted and signed by using WS-Security information that is
defined in the bootstrap security policy. The request is transparently
rerouted to the trust service. The trust service processes the RST and
responds with an RSTR. This response is returned to the requester as

 Chapter 10. WS-SecureConversation 505

though it were generated by the endpoint service. Because the security
context token is encrypted, you might not be able to find anything
interesting in the first request/response pair in TCPMon.

– In the second stage, after the security context token is established, the
application messages are secured by using a derived key based on the
security context token.

In taking a closer look at the second request/response pair, Example 10-6
shows the interesting part of the second SOAP request. Two derived key
tokens are used to secure the SOAP message. One is for signing and one is
for encrypting.

Example 10-6 SOAP request snippet

<wsc:DerivedKeyToken
xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="w_29">
<wsse:SecurityTokenReference>

<wsse:Reference URI="uuid:3AE92E133DC70A8B1C1239918947523"

ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct"></wsse:Reference>
</wsse:SecurityTokenReference>
<wsc:Length>16</wsc:Length>
<wsc:Nonce>hC3DuVY1fHLOsskwSh9Clg==</wsc:Nonce>

</wsc:DerivedKeyToken>
<wsc:DerivedKeyToken

xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="w_26">
<wsse:SecurityTokenReference>

<wsse:Reference URI="uuid:3AE92E133DC70A8B1C1239918947523"

ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct"></wsse:Reference>
</wsse:SecurityTokenReference>
<wsc:Length>20</wsc:Length>
<wsc:Nonce>IUnoIWG9fLDpRlWVRj488Q==</wsc:Nonce>

</wsc:DerivedKeyToken>

5. In the JSP client, click Invoke again.

The second invocation is much faster than the first one. With the security
context token, the client and the service use the symmetric cryptography
algorithm to communicate, which is more efficient than the asymmetric
cryptography algorithm.

506 IBM WebSphere Application Server V7.0 Web Services Guide

By looking at TCPMon, you can see that the subsequent message
invocations use the security context token to encrypt and sign the messages.

10.4.2 Apply secure conversation and reliable messaging

The second example is to apply secure conversation and reliable messaging to
Web services. WebSphere Application Server V7 ships with the WS-I RSP policy
set that can be used immediately.

This policy set provides the following features:

� Reliable message delivery to the intended receiver by enabling
WS-ReliableMessaging

� Message integrity by digital signature that includes signing the body,
timestamp, WS-Addressing headers, and WS-ReliableMessaging headers by
using the WS-SecureConversationand WS-Security specifications

� Confidentiality by encryption, which includes encrypting the body, signature,
and signature confirmation elements, by using the WS-SecureConversation
and WS-Security specifications

To see the SOAP traffic, you must create a custom policy set to include the
HTTPTransport policy. We use TCPMon that ships with WebSphere Application
Server to monitor the SOAP traffic. The steps to apply Secure Conversation and
reliable messaging are very similar to those in 10.4.1, “Applying secure
conversation to Web services” on page 496. We simply outline the steps here:

1. Remove the policy set that you applied to the WeatherJavaBean sample.

2. Create a custom policy set named ITSO RSP to include the WS-I RSP policy
and HTTPTransport policy. You can create a copy of the WS-I RSP Policy set
and then add the HTTPTransport policy.

3. Create a general binding named ITSO RSP client binding and update the
HTTP transport to use 9088 as the port.

4. Import the ITSO RSP policy set and the ITSO RSP client binding into the
Rational Application Developer development environment.

5. Apply the ITSO RSP policy set to the Web service and client.

6. Monitor the SOAP traffic by using TCPMon.

 Chapter 10. WS-SecureConversation 507

Next, study the SOAP traffic that is shown in TCPMon:

1. The first SOAP request/response pair shows that the Web service client
sends an RST, and the trust service processes the RST and responds with an
RSTR. This process is signed and encrypted by WS-Security.

2. In the second SOAP request, after the reliable messaging run time acquires
the UUID of the security context token, scopes the CreateSequence message
to the security context token by using the security token reference argument.

<wsrm:UsesSequenceSTR soap:mustUnderstand=’1’/> forces the reliable
messaging destination to ensure that the sequence is secured by using the
supplied security token reference. Example 10-7 shows the SOAP request.

Example 10-7 Second SOAP request snippet

<c:DerivedKeyToken u:Id="w_31">
<s:SecurityTokenReference>

<s:Reference URI="uuid:832FF02B2C7A42A4581239995679380"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct" />

</s:SecurityTokenReference>
<c:Length>16</c:Length>
<c:Nonce>q4t6xFhYMaGGeR07rGSaaQ==</c:Nonce>

</c:DerivedKeyToken>
<c:DerivedKeyToken u:Id="w_28">

<s:SecurityTokenReference>
<s:Reference URI="uuid:832FF02B2C7A42A4581239995679380"

ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct" />
</s:SecurityTokenReference>
<c:Length>20</c:Length>
<c:Nonce>UeRO3dHc5rRrKMqhvXflVQ==</c:Nonce>

</c:DerivedKeyToken>
... ...
<wsrm:UsesSequenceSTR xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
soapenv:mustUnderstand="1" wsu:Id="w_26"></wsrm:UsesSequenceSTR>

... ...
<wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="w_25">http://docs.oasis-open.org/ws-rx/wsrm/200702/CreateSequence</wsa:Action>

508 IBM WebSphere Application Server V7.0 Web Services Guide

3. The reliable messaging destination responds with the
CreateSequenceResponse message. Because the SOAP body is encrypted
and signed, you do not see the returned sequence identifier. Example 10-8
shows the SOAP message.

Example 10-8 Second response snippet

<wsa:Action

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="w_24">http://docs.oasis-open.org/ws-rx/wsrm/200702/CreateSequenceResponse</wsa:Action>

<soapenv:Body

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="w_21">
<e:EncryptedData xmlns:d="http://www.w3.org/2000/09/xmldsig#"

xmlns:e="http://www.w3.org/2001/04/xmlenc#"

xmlns:s="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
Id="w_28" Type="http://www.w3.org/2001/04/xmlenc#Content">
<e:CipherData>

<e:CipherValue>Sequence identifier is encrypted here</e:CipherValue>
</e:CipherData>

</e:EncryptedData>
</soapenv:Body>
</soapenv:Envelope>

4. The client sends the message to the service secured by the security context
token, as shown in Example 10-9.

Example 10-9 Third request snippet

<e:EncryptedData Id="w_30"
Type="http://www.w3.org/2001/04/xmlenc#Element">
<e:CipherData> signature is encrypted here<e:CipherValue>
</e:CipherData>

</e:EncryptedData>
<wsrm:Sequence xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility
-1.0.xsd"

soapenv:mustUnderstand="1" wsu:Id="w_26">
<wsrm:Identifier>urn:uuid:6383BD25ABF40B4B691239998749544
</wsrm:Identifier>
<wsrm:MessageNumber>1</wsrm:MessageNumber>

</wsrm:Sequence>

 Chapter 10. WS-SecureConversation 509

The goal of the RSP policy is to ensure the integrity of the reliable messaging
elements. This is accomplished by digitally signing all the
WS-ReliableMessaging header elements such as <wsrm:Sequence> and
<wsrm:SequenceAcknowledgement>. It is difficult to tell that this has
happened from looking at the messages that are sent over the wire because
the <wsse:Signature> element has been encrypted. However, one artifact of
the signing operation that you can see is the addition of the wsu:Id attribute
that is added to the WS-RM header elements. Both the <wsrm:Sequence>
elements and the two child elements, <wsrm:Identifier> and
<wsrm:MessageNumber>, are signed.

5. The reliable messaging run time sends a SequenceAcknowledgement
message to acknowledge that the message is properly delivered and secured
by the security context token, as shown in Example 10-10.

Example 10-10 Third response snippet

<wsrm:SequenceAcknowledgement
xmlns:wsrm="http://docs.oasis-open.org/ws-rx/wsrm/200702"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility
-1.0.xsd"

soapenv:mustUnderstand="1" wsu:Id="w_25">
<wsrm:Identifier>urn:uuid:832FF02B2C7A42A4581239995689759
</wsrm:Identifier>
<wsrm:AcknowledgementRange Lower="1" Upper="1"></wsrm:AcknowledgementRange>

</wsrm:SequenceAcknowledgement>

Again, you can see that all the WS-ReliableMessaging header elements are
digitally signed. The SOAP body is encrypted and signed by the security
context token. By signing the WS-ReliableMessaging header and the
message body, the sequence of WS-ReliableMessaging is secured.

10.5 More information

You can find the WS-Trust specification on the Web at the following address:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

For the WS-SecureConversation specification, go to the following address:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secure
conversation-1.3-os.html

510 IBM WebSphere Application Server V7.0 Web Services Guide

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.ht
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html

In addition, see the WebSphere Application Server V7 Information Center at the
following address, which offers a tremendous amount of detail about
WS-SecureConversation:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/cwbs_wssecureconvstd.html

 Chapter 10. WS-SecureConversation 511

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_wssecureconvstd.html

512 IBM WebSphere Application Server V7.0 Web Services Guide

Chapter 11. Leading practices for Web
services

This chapter introduces approaches that you should consider in order to deliver
quality of service for your Web services development, design, and architecture. It
contains leading practices to for leveraging your Web services components.
These leading practices have been collected from various published documents
and advice from leading IBM specialists.

This chapter contains the following topics:

� “Web services design best practices” on page 514
� “Leading practices for developing Web services” on page 518
� “Leading practices for Web services performance” on page 533
� “For more information” on page 535

11

© Copyright IBM Corp. 2009. All rights reserved. 513

11.1 Web services design best practices

This section discusses basic considerations for designing a Web services
solution. It includes high-level guidelines that apply to any development effort,
and then discusses technology selection options.

You should also consider design patterns when planning for Web services. For
more information see Patterns: Service-Oriented Architecture and Web Services,
SG24-6303.

11.1.1 Basics of Web services planning

The first step is to perform the basics of design planning. Understand what you
have in place today, what your goals are, and what technology you want to use in
order to position your applications for future growth. The following list provides a
high-level view of the planning tasks that you should perform:

1. Review the standards used in the development and design phase.

Web services can be based on a variety of Java programming models. Start
by identifying how your existing Web services are designed as well as the
APIs, standards, and specifications that were part of the design.

2. Identify your goals.

Consider what you want to accomplish by using Web services. Identify
applications and business logic that you want to make available as a service.
Consider which existing services you want to migrate to newer technology.

3. Determine how Web services fit into your current topology, applications, and
programming model.

Determine how your current Web services process requests on the server
and how the clients manage and use the Web service. Keep these factors in
mind when planning for new or migrated Web services.

4. Design your Web services for non-functional requirements to fit your
e-business solution.

In other words, design your Web services for reliability, availability,
manageability, and security. For example, you may want your Web services to
process a transaction in a reasonable amount of time at all hours of the day
and provide users with optimal security, such as authentication mechanism.

Have a dialogue with your security organization on what business functions
should be exposed over the Internet and what precautions should be taken to
protect them.

514 IBM WebSphere Application Server V7.0 Web Services Guide

Factor in the performance implications of using a Web service over an EJB
call in tightly coupled, high-volume internal applications. Web services might
not be the answer in this situation.

5. Decide what development and implementation tools to use.

You can use a variety of manual development and implementation tasks.
Whether you have an existing Web service to implement or you want to
develop your own from a JavaBeans implementation or from an Enterprise
JavaBeans (EJB) module, you can choose different tasks respective to your
resources. You can also use assembly tools to complete development and
implementation tasks.

6. Select the runtime environment.

You should choose the application server runtime topology that best applies
for your architecture based on your functional and non-functional
requirements.

11.1.2 When is the use of a Web service an appropriate choice

A critical part of the design phase for an application is determining how to make
the function provided by the application available. Exposing the function as a
Web service is not always the correct choice. This section discusses when, and
when not, to use a Web service.

Do not use Web services between the layers of an application
Try not to use XML-based Web services between the layers of a logical
application. Web services function best where they complement other J2EE
technologies, not replace them. For instance, one way to use Web services is
when connecting an application client running out on the Internet to business
logic written in EJBs inside an application server. Here you get a nice, clean
separation of communication between the controller and domain layers of your
application. This is the same place where you would use EJBs and so, if you
consider Web services as another object distribution mechanism, then you can
see why this would be appropriate. SOAP over HTTP can work in places where
RMI over IIOP cannot, and so this allows the XML-based Web services to
complement the existing EJBs architecture.

However, where people often go wrong with this is when they assume that if this
works between one pair of layers, it will work well between another. For instance,
a common anti-pattern is a design where a persistence layer is wrapped inside
an XML API and then placed in a process separate from the business logic that
must invoke the persistence layer. In versions of this design, we have seen
people serializing Java objects into XML, sending them over the network,
deserializing them again, performing database queries with the objects (which

 Chapter 11. Leading practices for Web services 515

were sent in as an argument), converting the database result set to XML, and
then sending the result set back across the network only to be converted into
Java objects and finally operated on.

There are several major problems with such an approach:

� Persistent objects should always remain local to the business object that
operates on them. The overhead of serialization and deserialization is
something that you want to avoid whenever possible.

� In EJBs with RMI-IIOP you have the option (although you are not required to)
of including persistence operations in an outer transaction scope if you use
entity beans or session beans with mapper objects. If you introduce a layer of
Web services between the persistent objects and the business objects
operating on them, then you lose that ability.

In general, XML Web services are not appropriate for fine-grained interactions,
even more so than RMI-IIOP. For instance, do not use a Web service between
the view layer and the controller layer of an application. The overhead of the
parsing/XML generation and the garbage generation overhead kills the
performance of your overall application.

When to use Web services between application servers
Be very careful when using Web services between application servers. In many
ways, interoperability between systems is the main reason for applying Web
services. Therefore, if you are connecting to a system written using Microsoft
.NET, the use of Web services is almost a given. Even though you could use
other mechanisms like WebSphere Application Server's COM support, the best
solution for interoperability going forward for both the Microsoft and IBM
platforms is probably Web services.

Sometimes it makes sense to use Web services when connecting disparate Java
application servers from different vendors, but this is a less common occurrence.
It is possible, for instance, to connect to EJBs written in WebSphere from a
JBoss® or WebLogic server by using the WebSphere Thin Application Client for
WebSphere Application Server V7. This would be a much better performing
solution than one using HTTP over SOAP-based Web services.

A more common occurrence is when you want asynchronous invocation of
business logic written either in another application server or in an existing
enterprise information system. In this case, sending XML over JMS makes a lot
of sense, and if you wrap your document-oriented XML in a SOAP envelope then
you can take advantage of the header structure of SOAP and even possibly gain
some out-of-the box features like WS-Security support.

516 IBM WebSphere Application Server V7.0 Web Services Guide

11.1.3 JAX-WS versus JAX RPC

JAX-WS is the next-generation Web services programming model extending the
foundation provided by the JAX-RPC programming model. Using the strategic
JAX-WS programming model, the development of Web services is simplified
through the support of a standards-based annotations model. Although the
JAX-RPC programming model is still supported by WebSphere Application
Server V7, you should take advantage of the easy-to-implement JAX-WS
programming model to develop new Web services applications. Give some
thought also to re-writing existing JAX-RPC applications to take advantage of the
features of the JAX-WS programming model.

11.1.4 When to use JavaBeans or EJB as provider implementation

You must choose to use either JavaBeans or EJB components for your Web
service provider’s SEI. This decision is no different from when you are
architecting other Java EE applications. If your solution does not require support
for transactions, security, and the management that are enabled through the use
of EJB components and the EJB container, then JavaBeans can suffice and
provide better performance.

If you are using EJB components and deploying them locally within the same
JVM as the SOAP engine, then ensure that you deploy them such that they are
called using pass by reference. By enabling pass by reference, the parameters of
the method are not copied to the stack with every remote call, which can be
expensive. Enabling pass by reference can improve performance up to 50%,
when the SOAP engine (EJB client) and the Web service provider (EJB Server)
are installed in the same application server instance and remote interfaces are
used.

11.1.5 Considerations when using SOAP over JMS transport

You can use SOAP over Java Message Service (JMS) transport protocol as an
alternative to SOAP over HTTP for communicating SOAP messages between
clients and servers. When using SOAP/JMS, it is a best practice to use the
industry standard SOAP/JMS protocol. The IBM proprietary SOAP/JMS protocol
has been deprecated with this release. However, if your application must
interoperate with previous versions of the product, use the proprietary protocol.

 Chapter 11. Leading practices for Web services 517

If you use the industry standard SOAP over JMS protocol, then use JMS
bindings to specify an endpoint URL prefix that adheres to the JMS endpoint URI
syntax that is associated with the standard (Example 11-1).

Example 11-1 JMS endpoint URI syntax sample

jms:jndi:jms/StockQuote_Q&jndiConnectionFactoryName=jms/StockQuote_CF

If you use the IBM proprietary SOAP over JMS protocol, use the JMS bindings to
specify a JMS endpoint URL prefix that adheres to the IBM proprietary SOAP
over JMS protocol (Example 11-2).

Example 11-2 JMS endpoint URI syntax sample

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuot
e_CF

In addition, It is important to mention that SOAP over JMS is not compliant to
WS-I Basic Profiles 1.1, whereas SOAP over HTTP is.

11.2 Leading practices for developing Web services

This section discusses leading practices to incorporate into the development
cycle for Web services.

11.2.1 Common best practices

Basic common practices that you must always consider when developing your
Web services are:

� Use simple data types.

Even though Web services were designed with interoperability in mind, it is a
good practice to use simple data types where possible. By simple, we mean
integers and strings. Compound types (similar to Struts in C++) and arrays of
simple types are also considered simple data types. Anything that does not
fall into this pattern should be used carefully. In particular, the Java collection
classes and similarly complex data types should be avoided altogether
because there might be no proper counterparts at the client side. While
JAX-WS and JAXB have made it easier to map XSD types to Java types,

More Information: For an example of using SOAP over JMS see 4.4.1,
“Creating an EJB Web service” on page 198.

518 IBM WebSphere Application Server V7.0 Web Services Guide

doing so will still require someone who understands those types on the other
end of the pipe.

� Avoid nillable primitives.

Nillable primitive types (indicating that an element can be null) are allowed for
Web services, but there are interoperability issues when using them. The best
advice is not use them at all, and use dedicated flags to control the condition
that a value does not exist.

� Avoid fine-grained Web services.

Web services use a simple, but powerful format to exchange data using the
SOAP protocol: XML. While reading and structuring XML documents with a
simple text editor eases the use of SOAP, the process of automatically
creating and interpreting XML documents is more complex. Without careful
design, you can end up in a situation where the complexity of dealing with the
SOAP protocol has a higher performance cost than performing the actual
computation.

Design course-grained Web services that perform more complex business
logic. This allows the Web service to return more data in response to a single
request, rather than having multiple requests to retrieve smaller portions of
data. Working with coarser grained services also allows a single service to be
reused, instead of creating multiple fine-grained services.

� Avoid Web services for intra-application communication.

Intra-application communication (that is, communication within an application)
is generally not exposed to any third-party clients. Therefore, it is not
necessary to allow for an interoperable interface in this case. However, try to
take into consideration that this might change in the future.

� Use short attribute, property, and tag names.

Because each attribute, property, and tag name is transmitted verbatim, the
length of a message is directly dependent on the length on the attribute and
property names. The general guideline is that the shorter the attribute,
property, and tag names are, the shorter the transmitted message and the
faster the communication and processing.

� Avoid deep nesting of XML structures.

Because parsing of deeply nested XML structures increases the processing
time, deeply nested compound data types should be avoided. This also
increases comprehension time of the data type itself.

� Apply common sense (also known as being defensive).

If a standard or specification is not clear enough, try to implement your Web
service such that it can handle any of the interpretations that you can think of.

 Chapter 11. Leading practices for Web services 519

� Use Web services caching as provided by the platform.

WebSphere Application Server provides an excellent caching framework that
allows for caching of information at various levels. This framework allows you
to cache Web service requests, and thus save processing time.

� Minimize parsing of XML data.

If a business function is to be exposed as an XML Web service that leverages
SOAP for both internal consumption and for external consumption by
business partners, intermediaries such as gateways or service agents should
avoid or minimize the parsing of the SOAP Body element.

If a gateway component is used but no network transport or message
manipulation is required (such as SOAP/HTTP to RMI/IIOP), then the
gateway should not perform parsing of the SOAP body.

Service agents, however, often rely on business context information within the
SOAP body, such as partner IDs, transaction correlators, message IDs, and
authorization codes in order to provide their system with management
capabilities. Using the business context, the service agents provide statistics
on business events, enforce business policies, and route requests to meet
quality of service commitments. In this case, do no more parsing than
necessary.

11.2.2 JAX-WS best practices

This section provides some of the leading practices to be applied during the
development phase for a Web services application based on the new version of
JAX-WS 2.1 supported by JSR-224 specification.

Use existing samples that implement best practices
When developing a Web service application, it is useful to use existing samples
known to illustrate best practices as a starting point.

WebSphere Application Server provides Web services sample applications.
These are stored in the following directory:

WAS_HOME/profiles/server_name/samples/src/WebServicesSamples

IBM developerWorks also has a Web services page that contains links to Web
services information, including community groups, learning resources, and
articles on Web services. You can find this Web page at:

http://www.ibm.com/developerworks/webservices/

520 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/developerworks/webservices/

Considerations for the bottom-up approach
We recommended that you generate your Web service Java code from a
well-defined WSDL mapping as dictated by the top-down technique. However,
sometimes it makes sense to use the bottom-up approach to annotate your Java
beans and, thereby, customize your WSDL file.

The following are leading practices for using the bottom-up approach.

Use JAX-WS annotations for Java to WSDL mapping
Use the following annotations to perform Java to WSDL mapping customizations:

� Use the operationName property of the @WebMethod to customize the
WSDL operation name.

� Use the @WebParam annotation to customize the mapping of a parameter to
a Web service message part and XML element.

Example 11-3 shows an example of using the @WebParam annotation to use
these annotations.

Example 11-3 Using the WebMethod and WebParam annotations

@WebService
public class Calculator {

@WebMethod(operationName="Add")
public int add(@WebParam(name=”param1”)int a,

@WebParam(name=”param2”)int b) {
…

}
}

In addition, consider the following implications of using the bottom-up
mechanism:

� Inheritance

– All public methods on inherited classes with @WebService will be
included as operations in the base service.

– Use the @WebMethod(exclude=true) to remove methods from the
service.

� Void operations

The void operations must be marked as one way (@OneWay) to ensure
one-way semantics. Otherwise, they will be treated as two-way operation with
empty return.

 Chapter 11. Leading practices for Web services 521

Use wrapper styles for request and response objects
Two styles are available for defining request and response objects:

� Wrapper stye
� Non-wrapper style

Wrapper style is the default and that is what we recommend that you use in most
circumstances.

With wrapper style, the @RequestWrapper annotation supplies the
JAXB-generated request wrapper bean, the element name, and the namespace
for serialization and deserialization with the request wrapper bean that is used at
run time. When starting with a Java object, this element is used to resolve
overloading conflicts in document literal mode. Only the className attribute is
required in this case.

Example 11-4 Wrapper style sample

@WebService
public class Calculator {

@RequestWrapper(className=“sample.Add”)
@ResponseWrapper(className=“sample.AddResponse”)
public int add(int a, int b) {

...
}

}

For more information, see “Which style of WSDL should I use?” at:

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

Use JAX-WS annotations to manage life cycle
Use the @PostConstruct and @PreDestroy annotations (Example 11-5) to help
you and your team understand what must be processed when your Web services
are initialized and destroyed.

Example 11-5 Example of @PostConstruct and @PreDestroy annotations

@Stateless
@WebService
public class HelloServiceBean {

private String message = "Hello, ";
@WebMethod

public String sayHello(String name) {
 return message + name + ".";
 }

@PostConstruct

522 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

void init() {
//....
}

@PreDestroy
void release() {

//....
}

}

The @PostConstruct method is called by the container before the implementing
class begins responding to Web service clients. The @PreDestroy method is, on
the other hand, called by the container before the endpoint is removed from
operation.

Web service client static and dynamic APIs
The JAX-WS Web service client programming model supports both the Dispatch
client API and the Dynamic Proxy client API. The Dispatch client API is a
dynamic client programming model, whereas the static client programming
model for JAX-WS is the Dynamic Proxy client.

� Use the Dispatch client when you want to work at the XML message level or
when you want to work without any generated artifacts at the JAX-WS level.

� Use the Dynamic Proxy client when you want to invoke a Web service based
on a service endpoint interface.

Dynamic proxy client API
The following considerations are relevant for static API usage:

� Reuse proxy instances.

Web services applications that use the static API do not need to access the
WSDL artifact at run time. The binding itself is performed statically. Therefore,
consider re-using proxy instances when possible. It is expensive to create
them because of metadata processing and potential QoS initialization.

� Create or generate an SEI for usage on client and server.

Create or generate a service endpoint interface for use on the client and
server side. This approach allows for greater symmetry between client and
server code.

 Chapter 11. Leading practices for Web services 523

Dispatch client API
The Dispatch API is intended for advanced XML developers who prefer using
XML constructs at the java.lang.transform.Source or
javax.xml.soap.SOAPMessage level. For convenience, the use of the Dispatch
with JAXB data binding object is supported. Consider the following
recommendations when using the dispatch API:

� Use the PAYLOAD mode unless sending SOAP headers.

The Dispatch client can send data in either MESSAGE or PAYLOAD mode.

– When using the javax.xml.ws.Service.Mode.MESSAGE mode, the
Dispatch client is responsible for providing the entire SOAP envelope
including the <soap:Envelope>, <soap:Header>, and <soap:Body>
elements.

– When using the javax.xml.ws.Service.Mode.PAYLOAD mode, the dispatch
client is only responsible for providing the contents of the <soap:Body>.
JAX-WS includes the payload in a <soap:Envelope> element. The
PAYLOAD approach allows the run time to do less parsing.

When using a SOAP protocol binding, a Web services client application
should work with the contents of the SOAP Body (PAYLOAD mode) rather
than the SOAP messages (MESSAGE mode) as a whole.

Figure 11-1 shows an example of a SOAP envelope. In this figure:

– When using PAYLOAD mode, the parameter is the <soap:body> content:
<hello:greeting>.

– When using MESSAGE mode, the parameter is the entire SOAP message
(XML source).

Figure 11-1 SOAP envelope

For further information see 2.1.4, “Web service clients” on page 89.

The following WebSphere Information Center article also contains additional
relevant information about Dispatch clients:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com
.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cwbs_jaxwsclients.html

<soap:envelope>
<soap:header/>

<soap:body xmlns:hello=“http://www.itso.org/hello”>
<hello:greeting>Hi Edith, Ione and Leila!</hello:greeting>

</soap:body>
</soap:envelope>

PAYLOADMESSAGE

524 IBM WebSphere Application Server V7.0 Web Services Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cwbs_jaxwsclients.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cwbs_jaxwsclients.html

Invoke Web services asynchronously when appropriate
An asynchronous invocation of a Web service sends a request to the service
endpoint and then immediately returns control to the client program without
waiting for the response to return from the service. JAX-WS asynchronous Web
service clients consume Web services using either the callback approach or the
polling approach.

Consider using asynchronous calls for your requests when appropriate. Be sure
to examine the length of the target service invocation, adjust client timeout, and
handle errors appropriately in order to avoiding losing control of the flow of your
application. The following list contains additional information about asynchronous
calls that you must know:

� Asynchronous calls require WS-Addressing.

� Asynchronous communication can be enabled using the
com.ibm.websphere.webservices.enable.async.mep property on the client.
For example:

// Use Proxy Instance as BindingProvider
BindingProvider bp = (BindingProvider) port;
Map<String, Object> rc = bp.getRequestContext();
rc.put("com.ibm.websphere.webservices.enable.async.mep",
Boolean.TRUE);
// invoke the operation asynchronously

� For client asynchronous listeners that start on demand, the listening port can
be secured using a policy set.

� The CallBack model uses Java 5 Executor for response threads. The default
Executor has a configurable thread pool.

� With the polling model, the polling request is not sent automatically to the
service. It must be controlled (sent) manually.

For more information see 2.1.4, “Web service clients” on page 89.

The “JAX-WS Asynchronous client” WebSphere Information Center article
contains additional relevant information:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/twbs_jaxwsclientasync.html

WSDL binding customization
The JAX-WS specification defines standard XML-based customization for WSDL
to Java mapping. These customizations, or binding declarations, can customize
almost all WSDL components that can be mapped to Java, such as the service
endpoint interface class, method name, parameter name, exception class, and

 Chapter 11. Leading practices for Web services 525

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/twbs_jaxwsclientasync.html

so on. The following list provides recommendations for the binding
customizations:

� Using WSDL document/literal style

Use document/literal wrapped WSDL style for the greatest level of
interoperability.

Although JAX-WS 2.1 supports both the RPC and the document style, it
defaults to the document style. The default document style is the
recommended style because it enforces strictly typed payloads. The entire
payload content, using the document style, adheres to the XML schema types
declared in the WSDL document’s types section (either inlined schema or
externally referenced schema).

The primary purpose of the document/literal wrapped pattern is to make
document/literal-generated SEI code look like RPC style code. Among other
things, the pattern ensures that the SOAP messages always contain a
top-level element that wraps the actual input/output.

For request messages, the wrapped pattern ensures that the top-level
element has the same name as the operation being invoked. For response
messages the wrapper element is the operation name appended with
Response.

In contrast to the RPC style, the element is part of the well-defined XML
schema declared in the WSDL documents types section (either inlined or
external document).

� Using binding customizations for JAX-WS

Consider using the binding customizations in order to resolve mapping
differences. Certain industry schemas are not consumable by JAX-WS tooling
without it. Example 11-6 shows an example of binding customizations (in
bold).

Example 11-6 Binding customizations

<wsdl:portType name="StockQuoteUpdater">
 <wsdl:operation name="setLastTradePrice">
 <wsdl:input message="tns:setLastTradePrice"/>
 <wsdl:output message="tns:setLastTradePriceResponse"/>
 <jaxws:bindings>
 <jaxws:method name="updatePrice"/>
 </jaxws:bindings>
 </wsdl:operation>

<jaxws:bindings>
 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>

526 IBM WebSphere Application Server V7.0 Web Services Guide

 </jaxws:bindings>
</wsdl:portType>

� JAX-WS and JAXB binding customizations

JAX-WS binding customization files can contain JAXB customizations. The
customizations available include:

– Package to namespace mapping.
– Enable wrapper style.
– Enable async mapping.
– SEI name mapping.
– Method/parameter name mapping.

� Using separate files for bindings

Use separate files for bindings. Do not inline bindings in WSDL documents.
Leave the WSDL implementation agnostic. Example 11-7 illustrates how to
generate JAX-WS artifacts for sample.wsdl and uses the customization file
sample.xml (jax-ws customization file) in the process.

Example 11-7 wsimport using separate files for WSDL customization

c:\> wsimport sample.wsdl –b sample.xml

The -b option specifies the external JAX-WS or JAXB binding files. You can
specify multiple JAX-WS and JAXB binding files with this option. However,
each file must be specified with its own -b option.

 Chapter 11. Leading practices for Web services 527

Additional information
The following WebSphere Information Center articles contain additional relevant
information:

� Using separate files for bindings

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/twbs_jaxwsclientfrom
wsdl.html

� Generating JAX-WS artifacts for JAX-WS applications from WSDFL file

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=
/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/twbs_jaxwsfromwsdl.
html

� General sample bindings for JAX-WS applications

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.nd.doc/info/ae/ae/cwbs_defaultconfigjaxws.html

Command-line tools
WebSphere provides JAX-WS and JAXB command-line tools to help you to
generate and import your Web services artifacts. The wsimport, wsgen,
schemagen, and xjc command-line tools are located in the WAS_HOME\bin\
directory of your WebSphere's installation.

While the wsimport and wsgen tools are also provided by the JDK, WebSphere
Application Server provides its own version of these tools. For the most part,
artifacts generated by the tools that come with WebSphere and the JDK are the
same. In general, artifacts generated by the JDK tools are portable across
compliant runtime environments. However, it is best to use the WebSphere tools
to achieve seamless integration within the WebSphere environment. Note that
the wsimport, wsgen, schemagen, and xjc command-line tools are not supported
on the z/OS® platform. This functionality is provided by the assembly tools
provided with WebSphere Application Server running on the z/OS platform.

This following list provides leading practices for developing Web services using
these tools:

� Generate beans from the WSDL schema, then writes the service class.

Use the JAXB tools to generate Java classes from an XML schema with the
xjc schema compiler tool. This tool allows explicit control over changes to the
schema and still makes data objects round-trip capable.

You can generate fully annotated Java classes from an XML schema file by
using the JAXB schema compiler, xjc command-line tool. Use the xjc schema
compiler tool to start with an XML schema definition (XSD) to create a set of
JavaBeans that map to the elements and types defined in the XSD schema.

528 IBM WebSphere Application Server V7.0 Web Services Guide

Once the mapping between XML schema and Java classes exists, XML
instance documents can be converted to and from Java objects through the
use of the JAXB binding runtime API. The resulting annotated Java classes
contain all the necessary information that the JAXB run time requires to parse
the XML for marshaling and unmarshaling. You can use the resulting JAXB
classes within Java API for XML Web services (JAX-WS) applications or in
your non-JAX-WS Java applications for processing XML data.

� Use the wsimport command for JAX-WS applications.

Use the top-down development approach whenever possible. The top-down
approach provides the greatest amount of metadata to the run time.

The wsimport command-line tool processes an existing WSDL file and
generates the required artifacts for developing JAX-WS Web service
applications. Using wsimport provides strict conformance to WS-I BP 1.1.
Operation wrappers are generated for the document/literal wrapped pattern.

When using wsimport, you must specify the –keep flag to generate the
source.

� Use wsgen to generate the necessary artifacts for JAX-WS applications.

When using a bottom-up approach to develop JAX-WS Web services and you
are starting from a service endpoint implementation, use the wsgen
command-line tool to generate the required JAX-WS artifacts.

Additional information
For further information related to command-line tools see 4.1.1, “Web services
development tools” on page 162.

The following WebSphere Information Center articles contain additional relevant
information:

� “Using JAXB xjc tooling to generate JAXB classes from an XML schema file”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.zseries.doc/info/zseries/ae/twbs_jaxbschema2java.
html

� “Using wsgen command for JAX-WS applications”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.nd.iseries.doc/info/iseriesnd/ae/rwbs_wsgen.html

� “Command tools (wsimport and wsgen) for JAX-WS applications”

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/rwbs_wsimport.html

 Chapter 11. Leading practices for Web services 529

Use MTOM for attachments larger than 30 k
For small binary data, it is more efficient to base64 encode the data. However,
after a certain threshold it becomes more efficient to use MTOM as a
serialization mechanism. In WebSphere, that threshold is typically around 30 k in
attachment size. Therefore, anything larger than that size is typically more
efficient to send via MTOM. Note that WebSphere streams from in-memory to
disk at 100 k in order to efficiently handle large attachments.

The following examples show how to enable MTOM. Example 11-8 shows how to
enable MTOM on the client side.

Example 11-8 Client code enabling MTOM

Dispatch d = … create a Dispatch instance
BindingProvider bp = d.getBindingProvider();
SOAPBinding soapBnd = (SOAPBinding) bp.getBinding();
soapBnd.setMTOMEnabled(true);

Example 11-9 shows how to enable MTOM on the server side.

Example 11-9 Annotated server-side code to enable MTOM

@WebService
@BindingType(SOAPBinding.SOAP11HTTP_MTOM_BINDING)

public class MTOMService {
…
}

}

For further information see 2.1.6, “Handling binary content” on page 110.

Considerations when using SOAP 1.2
This section contains leading practices to consider when designing your Web
services for SOAP 1.2:

� Configure the service provider implementation.

The service provider implementation is configured on endpoint
implementations using the @BindingType annotation (like MTOM). The
interfaces model the PortType element, which remains protocol agnostic.
However, without @BindingType, the service defaults to SOAP 1.1.

530 IBM WebSphere Application Server V7.0 Web Services Guide

� Use an explicit WSDL file in the client implementation with SOAP 1.2.

The client dispatch implementation must specify SOAP 1.2 during its creation.
A dynamic proxy client requires that WSDL be present to determine
SOAP 1.2. Without WSDL, the proxy uses SOAP 1.1.

� Special considerations for wsgen with SOAP 1.2.

The wsgen generation using WSDL with SOAP 1.2 bindings requires the
-extension flag to be used. Note that extension-generated artifacts are not
guaranteed to be portable (or migratable in the future).

To generate WSDL with SOAP 1.2 bindings, two additional parameters are
required on the wsgen command, as shown in Example 11-10:

– -extension
– –wsdl:Xsoap1.2

Example 11-10 wsgen with the -extension parameter

c:\> wsgen -classpath . example.Stock -wsdl:Xsoap1.2 –extension

Even with an @BindingType annotation, wsgen options are required.
Example 11-11 shows an example of the error that you receive when you do
not specify these parameters.

Example 11-11 Error

c:\> wsgen -classpath . example.Stock -wsdl
error: The -wsdl option cannot be used with SOAP1.2 bindings.
Try using "-wsdl:Xsoap1.2 -extension".
Class "example.Stock" binding:
"http://www.w3.org/2003/05/soap/bindings/HTTP/".

Additional information
For additional information see:

� “Generating the Web service interface (from a command line)” on page 185

� SOAP 1.2 specification

http://www.w3.org/TR/soap12

Note: JAX-WS requires that run times not generate WSDL for endpoints
that use SOAP 1.2. Therefore, a WSDL file cannot be accessed using a
URL that ends with ?WSDL when the endpoints specify a SOAP 1.2
binding but do not provide an explicit WSDL file.

 Chapter 11. Leading practices for Web services 531

Resource injection
Use resource injection to access MessageContext and transport properties.
Example 11-12 shows a simple example of resource injection.

Example 11-12 Resource injection example

@WebService
public class ProxyProvider implement Provider {

@Resource WebServiceContext wsContext;
public SOAPMessage invoke(SOAPMessage input) {

MessageContext mc = wsContext.getMessageContext(); …
}

}

For further information see “Accessing the context” on page 88.

Package and deployment
Server-side implementations can be deployed without WSDL. In the absence of
WSDL, from the service implementation's perspective, the deployment
configuration will be based on JAX-WS annotations, resolved by appending the
?WSDL parameter to the end of service endpoint URI (for example,
<host>weather-app/weather?WSDL) and generating the WSDL descriptor by
caching it on the application server.

However, from the client's perspective, once you generate client objects and
interfaces using the command-line tools, you will notice that wsimport captures
the location of your WSDL. If the WSDL resides within your file system, you will
see the actual physical file location of the endpoint (for example,
C:\itso-projects\weather-app\weather.wsdl). Therefore, you are better off
changing the location to something that is relative to your project, thereby making
it portable.

Example 11-13 shows you how to change your code manually in case you need
to use wsimport to generate your code.

Example 11-13 Changing the WSDL location to a relative path

@WebService(wsdlLocation=“WEB-INF/wsdl/weather.wsdl”)

Note: Rational Application Developer performs this task automatically for you.
The relative path is defined at the Web services's creation time when running
the wizard to generate the client code.

532 IBM WebSphere Application Server V7.0 Web Services Guide

11.3 Leading practices for Web services performance

Web services are developed and deployed based on standards provided mainly
by the Web Services for Java Enterprise Edition specification and JAX-WS. This
topic explains performance considerations for Web services supported by these
specifications.

11.3.1 Design for performance

When you develop or deploy a Web service, several artifacts are required, for
instance, a WSDL file. The WSDL file describes the format and syntax of the
Web service input and output SOAP messages. When a Web service is
implemented in the WebSphere Application Server run time, the SOAP message
is translated based on the Java EE request. The Java EE-based response is then
translated back to a SOAP message.

The most critical performance consideration is the translation between the
XML-based SOAP message and the Java object. Performance is high for a Web
service implementation in WebSphere Application Server. However, application
design, deployment, and tuning can be applied in order to improve such
performance. The following are some basic considerations for achieving
high-performance, which you should know once you start designing a Web
services application:

� Reduce the Web services requests by using a few highly functional APIs,
rather than several simple APIs.

� Design your WSDL file interface to limit the size and complexity of SOAP
messages.

� Use the document/literal style argument when you generate the WSDL file.

� Leverage the caching capabilities offered for WebSphere Application Server.

11.3.2 Monitor the performance of your Web services

On-going performance management requires that you test your applications for
performance and then monitor them to ensure that performance goals are being
met. In order to monitor the performance of your Web services you can use the
following tools:

� RAD V7.5 TCP/IP Monitor
� Tivoli® Performance Monitor

 Chapter 11. Leading practices for Web services 533

Rational TCP/IP Monitor
The first (and preferred) option for a developer to use to monitor Web services is
the TCP/IP Monitor that is embedded in the Rational tools. This monitor allows
you to track the SOAP request and response payload as well as the HTTP
headers and SOAP/HTTP traffic.

The TCP/IP Monitor works like a proxy server, passing TCP/IP requests on to
another server and directing the returned responses back to the originating
client. The TCP/IP messages that are exchanged are displayed in a special view
within Rational Application Developer.

Performance Monitoring Infrastructure tool
You can monitor the performance of a Web service that is deployed to
WebSphere Application Server by using the Performance Monitoring
Infrastructure (PMI) tool. You can use the Performance Monitoring Infrastructure
to measure the time required to process Web services requests. The PMI
services are enabled through the WebSphere administrative console. The Tivoli
Performance Monitor is available in the administrative console to allow you to
monitor the results.

PMI provides detailed statistics that can help you gain clear insight into the
runtime behavior and performance of Web services. Performance counters
enable you to see key performance data for each individual Web service
including:

� The number of requests dispatched to an implementation bean.

� The number of requests dispatched with successful replies.

� The average time in milliseconds to process full requests.

� The average time in milliseconds between receiving the request and
dispatching it to the bean.

� The average time in milliseconds between the dispatch and receipt of a reply
from the bean. This represents the time spent in business logic.

� The average time in milliseconds between the receipt of a reply from a bean
to the return of a result to the client.

� The average size of the SOAP request.

� The average size of the SOAP reply.

Note: For further information about monitoring Web services, see Chapter 18
in Rational Application Developer V7.5 Programming Guide, SG24-7672.

534 IBM WebSphere Application Server V7.0 Web Services Guide

Additional information can be found at:

� Monitoring the performance of Web services applications

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=
/com.ibm.websphere.base.iseries.doc/info/iseries/ae/tprf_prfstartadmin
.html

� Monitoring performance with Tivoli Performance Viewer

http://bidoc.torolab.ibm.com:9089/help/index.jsp?topic=/com.ibm.
websphere.nd.doc/info/ae/ae/twbs_performance.html

11.4 For more information

The following articles and IBM Redbooks publications were used as references to
create this chapter:

� IBM WebSphere Developer Technical Journal: Web services Architectures and
Best Practices

http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/
brown.html

� This chapter is restricted to high-level and common best practices. For further
information about Web services see Patterns Patterns: Service-Oriented
Architecture and Web Services, SG24-6303

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� JAX-WS annotations

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic
=/com.ibm.websphere.nd.doc/info/ae/ae/rwbs_jaxwsannotations.html

 Chapter 11. Leading practices for Web services 535

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.iseries.doc/info/iseries/ae/tprf_prfstartadmin.html
http://bidoc.torolab.ibm.com:9089/help/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twbs_performance.html
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html

536 IBM WebSphere Application Server V7.0 Web Services Guide

Appendix A. Additional material

This book includes additional material that can be downloaded from the Web.
This appendix explains how to get this material and how to use it.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks publications Web server. Point your Web
browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247758

Alternatively, you can go to the IBM Redbooks publications Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks publication form number, SG247758.

Using the Web material

The Web material consists of files required to build the sample applications and
project interchange files intended for import into a Rational Application Developer

A

© Copyright IBM Corp. 2009. All rights reserved. 537

ftp://www.redbooks.ibm.com/redbooks/SG247758
ftp://www.redbooks.ibm.com/redbooks/SG247758
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

V7.5 workspace. The material also includes the files required to build the sample
Derby database. Most of the chapters that use this material assume that the
WebSphere Application Server V7 integrated test environment in Rational
Application Developer is used as a runtime. The exceptions to this are Chapter 4,
“Developing Web services applications” on page 161 and Chapter 5, “Web
services administration” on page 225. Both of these chapters use a WebSphere
Application Server V7 installation as the runtime.

This appendix provides instructions for setting up the weather database,
importing the project interchange file into a workspace, deploying the application
to the integrated test environment in Rational Application Developer, and testing
the application.

The additional Web material that accompanies this book includes the following
files:

� The Chapter3 folder

This folder contains the material used in Chapter 3, “The WeatherForecast
sample application” on page 147. You would typically only use one of these
files.

– The ch03_sample_app.zip file contains the itso package files that are
needed to create the WeatherForecast application. If you follow the
instructions in this chapter, extract these files into a temporary directory for
use in the example.

– The ch03_PIF_TestApp.zip file contains a project interchange file with the
completed application. The file can be imported into Rational Application
Developer. If you want to simply reference the application discussed in this
chapter, rather than build it, import this file.

� The Chapter4 folder

This folder contains the material used in Chapter 4, “Developing Web
services applications” on page 161.

ch04_app_dev.zip contains a Files folder that has the artifacts used in the
development process outlined in this chapter. To follow the instructions in this
chapter, extract these files into a temporary directory for use in the example.

Each finished example in this chapter is also available for download with this
book as a project interchange file for Rational Application Developer:

– ch04_PIF_wsdev_from_wsdl.zip for 4.2.1, “Web services development
from a WSDL file” on page 166

– ch04_PIF_wsdev_from_javabean.zip for 4.2.2, “Web services development
from an existing Java bean” on page 183

538 IBM WebSphere Application Server V7.0 Web Services Guide

– ch04_PIF_crt_managed_wsclient.zip for 4.3.1, “Creating a managed Web
service client” on page 189

– ch04_PIF_crt_ws_thinclient.zip for 4.3.2, “Creating a Web service thin
client” on page 194

– ch04_PIF_EJB_ws.zip for the whole of 4.4, “EJB Web services” on
page 197

� The WeatherBase folder

This folder contains the WeatherWebService.zip project interchange file. The
WeatherJavaBean application contained in this archive can be used as a
starting point for the following chapters:

– Chapter 6, “Policy sets” on page 261
– Chapter 7, “WS-Policy and WS-MetadataExchange” on page 327
– Chapter 9, “WS-Notification” on page 397
– Chapter 10, “WS-SecureConversation” on page 471

Instructions for importing this application into your workspace can be found in
“Using the WeatherJavaBean application” on page 543.

� The Chapter6 folder

This folder contains PolicySet.zip, which has the keystore files used for the
policy set examples.

� The Chapter8 folder

This folder contains two project interchange files that contain the completed
examples for the chapter:

– ws-at.zip
– ws-ba.zip

This folder also contains the DB2V8 folder with the DB2 command files to
define and load the WEATHER database.

� The Chapter9 folder

This folder contains the following project interchange file that contains the
completed examples for the chapter:

ws-notification project interchange.zip

� The Weather Derby Database folder

This folder contains a zip file of the Weather database:

weather_database.zip

 Appendix A. Additional material 539

Set up the WEATHER database (Derby)

The WEATHER database is implemented as a Derby database for all chapters
with the exception of Chapter 8, “Web services transaction specifications” on
page 361. The following procedure illustrates how to set up the WEATHER Derby
database.

1. Extract the weather database files from weather_db.zip into the (root) C:\
directory. Figure A-1 shows a listing of these files.

Figure A-1 Weather database files

2. Open the following files in a text editor:

– DerbyCreate.bat
– DerbyLoad.bat
– DerbyList.bat

3. Modify the paths on the first three lines to match the installation directory of
WebSphere Application Server:

SET WAS_HOME=C:\WAS_HOME
SET JAVA_HOME=C:\WAS_HOME\java
SET DERBY_HOME=C:\WAS_HOME\derby

4. Run DerbyCreate.bat to create the database schema and tables. A WEATHER
directory will be created containing the database itself. See Figure A-2.

Figure A-2 The WEATHER directory

540 IBM WebSphere Application Server V7.0 Web Services Guide

5. Run DerbyLoad.bat to load the weather application data into the database.

6. Run DerbyList.bat to test the database and list all its contents. See
Example A-1.

Example: A-1 Database listing

C:\weatherdb\Database>java -classpath
"C:\webspherev7\appserver\derby\lib\derby
jar;C:\webspherev7\appserver\derby\lib\derbytools.jar"
org.apache.derby.tools.i
 list.bat
ij version 10.3
ij> connect 'jdbc:derby:WEATHER';
ij> run 'WeatherList.sql';
ij> SELECT * from ITSO.SANJOSE;
WEATHERDA&|CONDITION |WINDDIR |TEMPERATURE|WINDSPEED

2006-01-07|stormy |W |6 |11
2006-07-07|rainy |NE |33 |5
2006-09-17|sunny |SW |23 |6
2006-09-18|partly cloudy |W |20 |9
2006-09-19|cloudy |W |17 |11
2006-09-28|sunny |WE |30 |7

6 rows selected
ij> disconnect all;
ij> exit;

7. Create a JDBC provider for Derby and a data source for the weatherdb
database. Create these in the EAR file (see “Configuring a JDBC data source
in the EAR file” on page 156) or use the administrative console for the
application server (see 5.4.1, “Configuring JDBC resources” on page 244).

– The JNDI name is jdbc/weather.
– The path to the database is C:/Database/WEATHER.

Note: Keep the full path of the database directory handy. In the succeeding
chapters, it will be used when configuring the data source for the Web
service modules derived from the weather forecast application packages.

The path is:

C:/Database/WEATHER

 Appendix A. Additional material 541

Set up the WEATHER database (DB2)

The WEATHER database is implemented as a DB2 database for Chapter 8,
“Web services transaction specifications” on page 361. If you plan to import the
applications used in that traffic and want to test them, you must install the DB2
database.

DB2 command files to define and load the WEATHER database are provided in
\Chapter8\DB2V8:

� Execute the DB2Create.bat file to define the database and table.
� Execute the DB2Load.bat file to delete the existing data and add six records.
� Execute the DB2List.bat file to list the contents of the database.

These command files use the SQL statements provided in:

� Weather.ddl: database and table definition
� WeatherLoad.sql: SQL statements to load sample data
� WeatherList.sql: SQL statement to list the sample data

You must define a JDBC provider for DB2 and a data source for the DB2
database in your server run time. 5.4.1, “Configuring JDBC resources” on
page 244, provides instructions for creating a JDBC provider

The JNDI name that the application in Chapter 8, “Web services transaction
specifications” on page 361 uses is jdbc/weather1.

Importing project interchange files

The following procedure can be used to import project interchange files (PIFs) to
a Rational Application Developer workspace:

1. In the workbench of the Rational Application Developer, select File →
Import → expand Other folder → Project Interchange™. Click Next.

2. Click Browse to locate the project interchange file (name.zip file) and then
click Select All.

3. Click Finish.

542 IBM WebSphere Application Server V7.0 Web Services Guide

Using the WeatherJavaBean application

The WeatherJavaBean application can be used as a starting point for the
following chapters:

� Chapter 6, “Policy sets” on page 261
� Chapter 7, “WS-Policy and WS-MetadataExchange” on page 327
� Chapter 9, “WS-Notification” on page 397
� Chapter 10, “WS-SecureConversation” on page 471

Importing the base Web services application

To import the base Weather Web services application, complete the following
steps:

1. In the workbench of the Rational Application Developer, select File → Import.
Expand Other and select Project Interchange. Click Next.

2. Click Browse to locate the WeatherWebService.zip, then click Select All.

3. Click Finish.

Deploying the enterprise applications to the server

The next step is to deploy the application to the server:

1. In the Servers view, double-click WebSphere Application Server V7.0 to
open the server editor.

2. Under the Publishing settings for WebSphere Application Server section,
select Run server with resources on server.

3. Start the server.

4. In the Servers view, right-click WebSphere Application Server V7.0 and
select Add and Remove Projects. Select the following projects to add to the
server:

– WeatherJavaBeanServer
– WeatherJavaBeanWebClient

If the projects have already been installed, remove them first.

 Appendix A. Additional material 543

Testing the enterprise applications

Our Weather Web services application is built on top of an existing Java EE
application, so we must make the base Java EE application work before we
expose it as a Web service. To test the basic functionality of the applications, a
simple servlet is included in the base code:

1. In the Enterprise Explorer expand WeatherJavaBeanWeb →
Java Resources → src → itso.test. Right-click WeatherServlet and select
Run As → Run on Server.

2. When prompted for Server Selection, ensure that the correct server is
selected.

3. Click Finish.

Note: The Run server with resources on server option installs and copies the
full application and its server-specific configuration from the workbench into
the directories of the server.

If you use the Run server with resources within the workspace option, you are
unable to modify the settings inside the EAR file by using the WebSphere
administrative console.

In Chapter 6, “Policy sets” on page 261, the administrative console is used to
apply the policy set and binding to the Web service application so the Run
server with resources on Server option is used.

544 IBM WebSphere Application Server V7.0 Web Services Guide

The servlet should produce sample output in the Web browser (Figure A-3).

Figure A-3 Test the enterprise application

 Appendix A. Additional material 545

Testing the Weather Web service application

A sample JSP client is provided to test the weather Web service application. To
test it, do the following:

1. In the Enterprise Explorer expand
WeatherJavaBeanWebClient →WebContent →
sampleWeatherJavaBeanPortProxy. Right-click TestClient.jsp and select
Run As → Run on Server. The JSP page is displayed in the browser
(Figure A-4).

Figure A-4 Sample Web service JSP client

2. Take a close look at the Endpoint section. Note that the endpoint is set to:

http://localhost:9080/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

546 IBM WebSphere Application Server V7.0 Web Services Guide

If your WebSphere Application Server is not running on port 9080, you must
update the endpoint. For example, if the server is running on port 9081, you
must set the endpoint to the following URL and then click Update:

http://localhost:9081/WeatherJavaBeanWebClient/sampleWeatherJavaBean
PortProxy/TestClient.jsp

3. Click the getDayForecast method and enter a value for arg0. You can copy
and paste the example value given by the JSP client, for example,
2009-04-10T16:22:19. Click Invoke. The result is shown in Example A-2.

Example: A-2 getDayForecast result

returnp:
 condition: partly cloudy
 date: 2009-06-08T00:00:00-04:00
 dbflag: true
 temperatureCelsius: 34
 windDirection: NE
 windSpeed: 35

 Appendix A. Additional material 547

548 IBM WebSphere Application Server V7.0 Web Services Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 553. Note that some of the documents referenced here may be available in
softcopy only.

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Best Practices for SOA Management, REDP-4233

� Web Services Feature Pack for WebSphere Application Server V6.1,
SG24-7618

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

Online resources

These Web sites are also relevant as further information sources:

� WebSphere Application Server V7 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

� IBM WebSphere Developer Technical Journal: Web services Architectures
and Best Practices

http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/
brown.html

� Achieving Web services interoperability between the WebSphere Web
services Feature Pack and Windows Communication Foundation, Part 2:
Configure and test WS-Security

http://www.ibm.com/developerworks/websphere/library/techarticles/0712
_levay/0712_levay.html

© Copyright IBM Corp. 2009. All rights reserved. 549

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_levay/0712_levay.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_levay/0712_levay.html

� Changes Between SOAP 1.1 and SOAP 1.2

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/#L4697

� Java Community Process home page

http://www.jcp.org

� JSR-109 V1.2 specification

http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/jsr-109
-changelog-1_2-fcs.html

� Index of OASIS documents

http://docs.oasis-open.org

� OASIS Standards for security Web services

http://www.oasis-open.org/specs/#wssv1.0

� Publish-Subscribe Notification for Web services

http://www-128.ibm.com/developerworks/webservices/library/specification
/ws-pubsub/

� SOAP 1.2 specification

http://www.w3.org/TR/2003/REC-soap12-part0-20030624

� Using the WS-I Supply Chain Management application in WebSphere V6.1
Web services Feature Pack, Part 2: Apply WS-Security 1.0 to the JAX-WS
SCM application

http://www.ibm.com/developerworks/websphere/library/techarticles/0801
_zeitouni/0801_zeitouni.html

� Which style of WSDL should I use?

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl

� WS-Addressing specification

http://www.w3.org/TR/ws-addr-core/

� WS- AtomicTransaction 1.1

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1
-spec-os.html

� WS- AtomicTransaction 1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/#atom

� WS-BaseNotification

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

550 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/#L4697
http://www.jcp.org
http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/jsr-109-changelog-1_2-fcs.html
http://docs.oasis-open.org
http://www.oasis-open.org/specs/#wssv1.0
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-pubsub/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_zeitouni/0801_zeitouni.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_zeitouni/0801_zeitouni.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_zeitouni/0801_zeitouni.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_zeitouni/0801_zeitouni.html
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl
http://www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

� WS-BrokereredNotification

http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec
-os.pdf

� Web services Interoperability Organization Web site

http://www.ws-i.org/

� WS-I Basic Profile Version 1.1

http://www.ws-i.org/Profiles/BasicProfile-1.1.html

� WS-I Basic Profile Version 1.2

http://www.ws-i.org/Profiles/BasicProfile-1.2.html

� WS-I Basic Profile Version 2.0

http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html

� WS-BusinessActivity 1.1 specification

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1
-spec-os.html

� WS-BusinessActivity 1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/#ba

� WS-Coordination specification

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS
-Coordination.pdf

� WS-Coordination 1.1

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor
-1.1-spec-os.html

� WS-Coordination

http://www.ibm.com/developerworks/library/specification/ws-tx/

� WS-Coordination 1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/#coor

� WS-MetadataExchange specification

http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/

� WS-MetadataExchange 1.2 specification draft

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

 Related publications 551

http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#ba
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/#coor
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

� WS-Notification in WebSphere Application Server V7: Part 1: Writing JAX-WS
applications for WS-Notification:

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge
/0811_partridge.html

� Learning about WS-Policy

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/twbs_wsp_learning.html

� Web services Policy Working Group

http://www.w3.org/2002/ws/policy/

� Web services Policy 1.5 - Framework

http://www.w3.org/TR/ws-policy/

� WS-PolicyAttachment

http://www.ibm.com/developerworks/library/specification/ws-polatt/

� WS-PolicyAssertions

http://www.ibm.com/developerworks/webservices/library/specification/
ws-polas/

� Web services Policy 1.2 - Attachment (WS-PolicyAttachment) specification

http://www.w3.org/Submission/WS-PolicyAttachment/

� WS-I Reliable Secure Profile specification

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

� WS-MetadataExchange specification at the following address:

http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/

� Web services Resource Framework (WSRF) Primer V.2

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

� Web services Resource Framework overview

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf#over
view

� WS-ReliableMessaging specification

http://docs.oasis-open.org/ws-rx/wsrm/200702

� WS-ReliableMessaging artifacts (schema, WSDL)

http://www.ibm.com/developerworks/webservices/library/specification/
ws-rm/?S_TACT=105AGX04&S_CMP=LP

552 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/twbs_wsp_learning.html
http://www.w3.org/2002/ws/policy/
http://www.w3.org/TR/ws-policy/
http://www.ibm.com/developerworks/library/specification/ws-polatt/
http://www.ibm.com/developerworks/webservices/library/specification/ws-polas/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://www.w3.org/TR/2009/WD-ws-metadata-exchange-20090317/
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf#overview
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.ibm.com/developerworks/webservices/library/specification/ws-rm/?S_TACT=105AGX04&S_CMP=LP
http://www.ibm.com/developerworks/webservices/library/specification/ws-rm/?S_TACT=105AGX04&S_CMP=LP

� Web services Reliable Messaging Policy Assertion

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws
-rmpolicy200502.pdf

� WS-SecureConversation specification

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-os.html

� Web services Secure Conversation

http://www.ibm.com/developerworks/library/specification/ws-secon/

� WS-Security specification

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec
-os-SOAPMessageSecurity.pdf

� WS-SecurityPolicy 1.2 specification

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securityp
olicy.html

� Web services Security Policy Language

https://www.ibm.com/developerworks/webservices/library/specification
/ws-secpol/

� WS-Topics

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

� WS-Transaction specification

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1
-spec-os.html

� WS-Trust V1.3 specification

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

� WS-Trust IBM developerWorks article, “Web services Trust Language”

http://www.ibm.com/developerworks/library/specification/ws-trust/

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks
publications, at this Web site:

ibm.com/redbooks

 Related publications 553

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-rmpolicy200502.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://www.ibm.com/developerworks/library/specification/ws-secon/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html
https://www.ibm.com/developerworks/webservices/library/specification/ws-secpol/
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

554 IBM WebSphere Application Server V7.0 Web Services Guide

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

IBM
 W

ebSphere Application Server V7.0 W
eb Services Guide

IBM
 W

ebSphere Application
Server V7.0 W

eb Services Guide

IBM
 W

ebSphere Application
Server V7.0 W

eb Services
Guide

IBM
 W

ebSphere Application Server V7.0 W
eb Services Guide

IBM
 W

ebSphere
Application Server V7.0
W

eb Services Guide

IBM
 W

ebSphere
Application Server V7.0
W

eb Services Guide

®

SG24-7758-00 ISBN 0738433209

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IBM WebSphere
Application Server V7.0
Web Services Guide

Explore new
technology

Develop Web
services by example

Find leading
practices

This IBM Redbooks publication describes how to implement
Web services in WebSphere Application Server V7. It starts
by describing the concepts of the major building blocks on
which Web services rely and leading practices for Web
services applications. It then illustrates how to use Rational
Application Developer and the WebSphere tools to build and
deploy a Web services application.

In addition to the fundamentals of Web services
development, this book provides information about advanced
topics, including WS-Policy, WS-MetadataExchange, Web
services transactions, WS-Notification, and
WS-SecureConversation.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Introduction to Web services technology and programming model
	Chapter 1. Introduction
	1.1 WebSphere, Web services, and SOA
	1.1.1 Service-oriented architecture
	1.1.2 WebSphere and SOA
	1.1.3 Web services approach to an SOA
	1.1.4 WebSphere Application Server V7 and Web services

	1.2 Web services roadmap
	1.2.1 JSR-109 Web services for Java EE Version 1.2
	1.2.2 Web Services Interoperability

	1.3 Web services core technologies overview
	1.3.1 SOAP 1.2
	1.3.2 JAX-WS 2.1
	1.3.3 JAXB 2.1
	1.3.4 Web Services Invocation Framework

	1.4 WS-* standards
	1.4.1 WS-ReliableMessaging
	1.4.2 WS-Addressing
	1.4.3 WS-SecureConversation
	1.4.4 Web Services Resource Framework
	1.4.5 WS-Security
	1.4.6 WS-Policy
	1.4.7 WS-MetadataExchange
	1.4.8 Policy sets
	1.4.9 WS-Security Policy Language
	1.4.10 WS-SecurityKerberos
	1.4.11 WS-Trust Language
	1.4.12 WS-AtomicTransaction
	1.4.13 WS-Coordination
	1.4.14 WS-BusinessActivity

	1.5 Web services for Java EE
	1.5.1 EJB 3.0 for WebSphere Application Server Version V7
	1.5.2 Web services for EJB 3.0

	Chapter 2. Web services programming model
	2.1 Web service development with JAX-WS 2.1
	2.1.1 Creating a Web service and client
	2.1.2 Relation of WSDL and Java types
	2.1.3 Web service providers
	2.1.4 Web service clients
	2.1.5 Handlers
	2.1.6 Handling binary content
	2.1.7 Enabling SOAP 1.2

	2.2 Working with SOAP using SAAJ 1.3
	2.2.1 SAAJ overview
	2.2.2 Developing a dispatch client that uses SAAJ
	2.2.3 Developing a JAX-WS protocol handler

	2.3 Working with XML using JAXB 2.1
	2.3.1 Overview of JAXB
	2.3.2 Developing a dispatch client that uses JAXB
	2.3.3 Developing a JAX-WS logical handler that uses JAXB

	2.4 Web services for Java EE
	2.4.1 Overview of WSEE
	2.4.2 Server programming model
	2.4.3 Client programming model

	Part 2 Developing and deploying Web services
	Chapter 3. The WeatherForecast sample application
	3.1 The WeatherForecast application components
	3.1.1 The WeatherForecast application packages
	3.1.2 Information flow

	3.2 The weather database
	3.3 Testing the WeatherForecast application

	Chapter 4. Developing Web services applications
	4.1 Web services development environment
	4.1.1 Web services development tools
	4.1.2 Integrated development environments and Web services
	4.1.3 Setup for the Web services development examples

	4.2 Server-side Web services development
	4.2.1 Web services development from a WSDL file
	4.2.2 Web services development from an existing Java bean

	4.3 Developing clients for Web services
	4.3.1 Creating a managed Web service client
	4.3.2 Creating a Web service thin client

	4.4 EJB Web services
	4.4.1 Creating an EJB Web service
	4.4.2 Testing a Web service with a synchronous client
	4.4.3 Creating an asynchronous client

	4.5 Testing and monitoring Web services
	4.5.1 The Web Services Explorer
	4.5.2 The TCP/IP Monitor

	Chapter 5. Web services administration
	5.1 WebSphere Application Server administration
	5.1.1 Administrative facilities
	5.1.2 Administration basics

	5.2 Web services deployment
	5.3 Web services configuration
	5.3.1 Configuring Web service server-side settings
	5.3.2 Configuring Web service client settings

	5.4 Managing Web service resources
	5.4.1 Configuring JDBC resources
	5.4.2 Configuring JMS resources

	5.5 Tracing Web services

	Part 3 Advanced concepts
	Chapter 6. Policy sets
	6.1 Motivation
	6.2 Overview of policy sets
	6.2.1 Qualities of service
	6.2.2 Policy set definitions
	6.2.3 Using policy sets

	6.3 New in WebSphere Application Server V7
	6.4 Policy set administration
	6.4.1 Policy set life cycle
	6.4.2 Viewing policy sets
	6.4.3 Attaching a policy set to a Web service
	6.4.4 Using a customized policy set
	6.4.5 Configuring the application-specific bindings
	6.4.6 Configuring general bindings
	6.4.7 Exploring the integration with multiple security domains
	6.4.8 Configuring policy sets by using wsadmin scripting

	6.5 Rational Application Developer support
	6.5.1 Importing the policy set and general binding into the workspace
	6.5.2 Attaching a policy set and general binding to a service provider
	6.5.3 Attaching policy set and general binding to Web service client
	6.5.4 Attaching policy set and application-specific binding to Web service client

	6.6 More information

	Chapter 7. WS-Policy and WS-MetadataExchange
	7.1 Overview of the WS-Policy specification
	7.1.1 WS-Policy concepts
	7.1.2 WS-Policy operators
	7.1.3 WS-PolicyAttachment
	7.1.4 Policy intersection

	7.2 WS-Policy support in WebSphere Application Server V7
	7.2.1 Service provider policy sharing
	7.2.2 Service client policy acquisition
	7.2.3 Policy intersection in WebSphere Application Server
	7.2.4 Relationship to policy sets

	7.3 WS-MetadataExchange
	7.3.1 Overview of WS-MetadataExchange
	7.3.2 WS-MetadataExchange support
	7.3.3 Securing WS-MetadataExchange requests

	7.4 Applying WS-Policy and WS-MEX to the sample application
	7.4.1 Preparing for the example
	7.4.2 Configuring a service provider to share its policy configuration
	7.4.3 Configuring client policy by using the service provider policy
	7.4.4 Configuring service provider to share a policy by using WS-MEX

	7.5 Tools support
	7.5.1 Importing the Web service general binding
	7.5.2 Configuring a service provider to share its policy configuration
	7.5.3 Configuring the client policy by using a service provider policy

	7.6 More information

	Chapter 8. Web services transaction specifications
	8.1 Overview of the WS-Transaction specifications
	8.2 WS-Coordination
	8.3 WS-AtomicTransaction
	8.3.1 Example of using WS-AtomicTransaction
	8.3.2 SOAP messages for atomic transaction
	8.3.3 WS-Transaction policy assertions

	8.4 WS-BusinessActivity
	8.4.1 Example of using WS-BusinessActivity
	8.4.2 Weather EJB Web service
	8.4.3 Using the business activity support
	8.4.4 Application testing with business activity support

	8.5 More information

	Chapter 9. WS-Notification
	9.1 WS-Notification overview
	9.1.1 WS-BaseNotification
	9.1.2 WS-BrokeredNotification
	9.1.3 WS-Topics

	9.2 WS-Notification in WebSphere Application Server
	9.2.1 Core WS-Notification resources
	9.2.2 Configuring a WS-Notification broker application
	9.2.3 WS-Notification wsadmin commands

	9.3 Developing WS-Notification applications
	9.3.1 Introduction to the weather applications
	9.3.2 Developing a producer
	9.3.3 Developing a push consumer
	9.3.4 Developing a pull consumer

	9.4 WS-Notification runtime administration
	9.4.1 Administering subscriptions
	9.4.2 Administering pull points
	9.4.3 Administering messages

	9.5 Advanced features and options
	9.5.1 Using policy sets with WS-Notification services
	9.5.2 Implementing demand-based publishers
	9.5.3 Using handlers with WS-Notification services
	9.5.4 JMS producers and consumers
	9.5.5 Administered subscribers
	9.5.6 Topic namespace documents
	9.5.7 Raw notification message format

	Chapter 10. WS-SecureConversation
	10.1 WS-Security review
	10.1.1 Message-level security versus transport-level security
	10.1.2 Major issues addressed by WS-Security
	10.1.3 Digital signature and XML encryption
	10.1.4 WS-Security support in WebSphere Application Server V7

	10.2 WS-Trust
	10.2.1 Security Token Service
	10.2.2 WS-Trust model
	10.2.3 Security token service framework

	10.3 Overview of WS-SecureConversation
	10.3.1 Motivation
	10.3.2 Key concepts
	10.3.3 Secure conversation scenario
	10.3.4 Secure conversation with reliable messaging scenario

	10.4 Secure conversation example
	10.4.1 Applying secure conversation to Web services
	10.4.2 Apply secure conversation and reliable messaging

	10.5 More information

	Chapter 11. Leading practices for Web services
	11.1 Web services design best practices
	11.1.1 Basics of Web services planning
	11.1.2 When is the use of a Web service an appropriate choice
	11.1.3 JAX-WS versus JAX RPC
	11.1.4 When to use JavaBeans or EJB as provider implementation
	11.1.5 Considerations when using SOAP over JMS transport

	11.2 Leading practices for developing Web services
	11.2.1 Common best practices
	11.2.2 JAX-WS best practices

	11.3 Leading practices for Web services performance
	11.3.1 Design for performance
	11.3.2 Monitor the performance of your Web services

	11.4 For more information

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	Set up the WEATHER database (Derby)
	Set up the WEATHER database (DB2)
	Importing project interchange files
	Using the WeatherJavaBean application
	Importing the base Web services application
	Deploying the enterprise applications to the server
	Testing the enterprise applications
	Testing the Weather Web service application

	Related publications
	IBM Redbooks
	Online resources
	How to get Redbooks
	Help from IBM

	Back cover

