

ibm.com/redbooks

Getting Started with IBM WebSphere
Process Server and IBM WebSphere
Enterprise Service Bus
Part 1: Development

Carla Sadtler
Srinivasa Rao Borusu

Sergiy Fastovets
Thalia Hooker

Ernese Norelus
Fabio Paone

Dong Yu

Build business integration applications

Build mediations

Use adapters

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Getting Started with IBM WebSphere Process
Server and IBM WebSphere Enterprise Service Bus
Part 1: Development

June 2008

International Technical Support Organization

SG24-7608-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2008)

This edition applies to IBM WebSphere Process Server V6.1 and IBM WebSphere Enterprise
Service Bus V6.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiii
Become a published author . xv
Comments welcome. xv

Chapter 1. Introduction to the products . 1
1.1 WebSphere Process Server . 2

1.1.1 Introduction to the product . 2
1.1.2 V6.1 highlights. 3

1.2 WebSphere Enterprise Service Bus . 5
1.2.1 Introduction to the product . 5
1.2.2 V6.1 highlights. 6

1.3 WebSphere Adapters . 7
1.3.1 WebSphere JCA Adapters . 7
1.3.2 WebSphere Business Integration Adapters . 8

1.4 WebSphere Integration Developer . 9
1.4.1 Introduction to the product . 10
1.4.2 V6.1 highlights. 10

Chapter 2. Concepts for development. 11
2.1 SCA and WebSphere Process Server . 12

2.1.1 Service components . 12
2.1.2 Service component assembly . 14
2.1.3 Import and export bindings . 17
2.1.4 Quality of service. 21

2.2 WebSphere Process Server components . 21
2.2.1 WebSphere Process Server specific components 22
2.2.2 WebSphere Enterprise Service Bus specific components 26
2.2.3 Common event infrastructure . 27

Chapter 3. Basics of development. 29
3.1 WebSphere Integration Developer key features . 30

3.1.1 Base tools and run times. 30
3.1.2 Developer roles . 30
3.1.3 Workspace and perspectives . 31
3.1.4 Assembly diagram. 32

© Copyright IBM Corp. 2008. All rights reserved. iii

3.1.5 Editors . 33
3.1.6 Business Integration view . 36
3.1.7 Physical Resources view . 37
3.1.8 Other Business Integration views . 38

3.2 Working with WebSphere Integration Developer 39
3.2.1 Typical development flow . 39
3.2.2 Start WebSphere Integration Developer . 42
3.2.3 Using the Business Integration perspective 43

3.3 Project types . 44
3.3.1 Libraries . 44
3.3.2 Modules and mediation modules . 46

3.4 Business objects . 53
3.4.1 Business object fields . 53
3.4.2 Business graph . 54
3.4.3 Creating a business object . 54
3.4.4 Adding fields to a business object. 55
3.4.5 Creating a business graph . 62

3.5 Interfaces. 63
3.5.1 Creating a new interface . 65
3.5.2 Adding operations . 66

3.6 Module assembly . 69
3.6.1 Module assembly diagrams . 69
3.6.2 Mediation module assembly diagrams . 73
3.6.3 Generating a binding. 74
3.6.4 Using adapters . 78

3.7 Business object maps . 79
3.7.1 Data transformation types . 80
3.7.2 Creating a business object map . 81

3.8 Using a stand-alone reference . 85
3.8.1 Invoking the reference from a JSP . 89

3.9 Working with databases in the workspace . 91
3.9.1 Derby databases . 91
3.9.2 Using the Database Explorer to connect to a database 92
3.9.3 Using the SQL editor. 95
3.9.4 Loading data into tables . 96
3.9.5 Viewing and editing data in the tables. 97
3.9.6 Closing connections . 99

3.10 Derby ij tool . 99
3.10.1 Create a database. 100
3.10.2 Database disconnect and reconnect. 102
3.10.3 Drop tables . 103
3.10.4 Viewing a database. 104

iv Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.11 Deploying modules . 105
3.11.1 Deploying the module for testing. 105
3.11.2 Deploying the module for production . 105

3.12 Test tools. 105
3.12.1 Integrated test environment . 106
3.12.2 Component testing . 110
3.12.3 JSP component testing . 114

3.13 Team development . 115
3.13.1 Sharing your integration project . 116
3.13.2 Using CVS. 117
3.13.3 Install CVS and create a repository. 117
3.13.4 Adding a CVS repository to the workspace. 118
3.13.5 Sharing a project with CVS . 119
3.13.6 Checking out a project from CVS . 122
3.13.7 Checking in changes to a project to CVS 122

Chapter 4. Building business integration applications 127
4.1 Typical development flow . 128
4.2 Service components for modules . 129
4.3 Using Java objects . 130

4.3.1 Creating a Java component . 130
4.3.2 Creating a “HelloWorld” sample . 131

4.4 Business processes . 134
4.4.1 Types of business processes . 134
4.4.2 New, enhanced business process features with WebSphere Process

Server V6.1. 136
4.4.3 Creating a business process. 139
4.4.4 Business process editor . 146
4.4.5 Building blocks of a business process . 148
4.4.6 Using partners in a business process . 148
4.4.7 Using variables in a business process . 151
4.4.8 Using activities in a business process. 153
4.4.9 Using elements in a business process . 177
4.4.10 Using correlation in a business process . 178
4.4.11 Using handlers in a business process. 179

4.5 Human tasks . 184
4.5.1 Implementations and types of human tasks 185
4.5.2 Creating a human task . 189
4.5.3 Human task editor . 195
4.5.4 Building blocks of a human task . 197
4.5.5 People assignments . 198
4.5.6 User interfaces . 206
4.5.7 Escalations . 206

 Contents v

4.5.8 Ad-hoc tasks . 209
4.5.9 New human task features in WebSphere Process Server V6.1 . . . 210

4.6 Administering processes and tasks. 212
4.6.1 Business process templates and instances 212
4.6.2 Human task templates and instances . 213
4.6.3 Administering process and task templates 213
4.6.4 Business Process Choreographer Explorer 214
4.6.5 Administering process and task instances 217
4.6.6 Business Process Choreographer Observer. 219
4.6.7 New, enhanced Business Process Choreographer features with

WebSphere Process Server V6.1. 219
4.7 Business state machines. 221

4.7.1 Creating a state machine . 223
4.7.2 Business state machine editor . 227
4.7.3 Building blocks of a state machine . 228
4.7.4 Using correlation properties in a state machine 228
4.7.5 Using states in a state machine . 230
4.7.6 Using transitions in a state machine . 233
4.7.7 Vending machine sample . 236

4.8 Business rules . 237
4.8.1 Cashback business rule sample . 238
4.8.2 Rule groups. 239
4.8.3 Rule sets . 244
4.8.4 Decision tables . 252
4.8.5 Business rules manager . 261
4.8.6 New, enhanced business rules features with WebSphere Process

Server V6.1. 264
4.9 Selectors . 265

4.9.1 Creating a selector . 265
4.9.2 Configuring the selector . 269
4.9.3 Adding selectors to the assembly diagram 271

4.10 Interface maps. 271
4.10.1 Creating an interface map. 273
4.10.2 Adding the map to the assembly diagram. 281

Chapter 5. Building mediations . 285
5.1 WebSphere Enterprise Service Bus architecture 286

5.1.1 Mediations, service consumers, and service providers. 286
5.1.2 Mediation modules . 288
5.1.3 Mediation flow components. 289
5.1.4 Mediation flows . 290
5.1.5 Mediation primitives . 291
5.1.6 Security . 293

vi Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5.2 Service message objects . 294
5.2.1 SMO structure . 294
5.2.2 SMO manipulation. 304

5.3 Typical development flow . 305
5.4 Creating a mediation . 306

5.4.1 Mediation flow editor . 309
5.5 Service connection and invocation . 312
5.6 Transformation primitives . 318

5.6.1 XSL Transformation primitive . 318
5.6.2 Business Object Map primitive . 325
5.6.3 Database Lookup primitive . 327
5.6.4 Message Element Setter primitive . 333
5.6.5 Set Message Type primitive . 336

5.7 Routing primitives . 339
5.7.1 Message Filter primitive . 339
5.7.2 The Endpoint Lookup primitive . 343
5.7.3 Fan Out and Fan In primitive. 348
5.7.4 Service Invoke primitive . 352

5.8 Tracing primitives . 355
5.8.1 Message Logger primitive . 355
5.8.2 Event Emitter primitive . 358

5.9 Error Handling primitives . 361
5.9.1 Fail primitive . 361
5.9.2 Stop primitive . 361

5.10 Custom Mediation primitive . 361

Chapter 6. Mediation examples . 363
6.1 Database Lookup example . 364

6.1.1 Create the database and connection . 365
6.1.2 Create the mediation module . 368
6.1.3 Complete the assembly diagram. 370
6.1.4 Wire the operation connections. 371
6.1.5 Build the mediation flow . 372
6.1.6 Response flow. 376
6.1.7 Preparing the run time. 377
6.1.8 Test the module . 380

6.2 Message Element Setter example . 385
6.2.1 Build the assembly diagram . 385
6.2.2 Operation connections . 385
6.2.3 Build the request flow . 386
6.2.4 Build the response flow . 387
6.2.5 Test the module . 389

 Contents vii

6.3 Set Message Type example . 391
6.3.1 Build the ExternalCustomerLib library. 391
6.3.2 Build the ExternalCustomerInfo Web service 392
6.3.3 Build SetMessageTypeMediation module. 399
6.3.4 Create an anyType business object and the interface 400
6.3.5 Wire the connections. 402
6.3.6 Build the request flow . 402
6.3.7 Response flow. 407
6.3.8 Test the flow . 409

6.4 Message Filter example . 419
6.4.1 Create the module. 419
6.4.2 Build the response flow . 419
6.4.3 Message Filter primitive . 420
6.4.4 NorthCarolinaXSLT XSL Transformation . 425
6.4.5 Test the flow . 427

6.5 Endpoint Lookup example. 429
6.5.1 Building ThirdPartyCustomerInfo . 429
6.5.2 Export the service as a Web service. 432
6.5.3 Export the service definitions . 434
6.5.4 Load the definitions to the registry . 436
6.5.5 Configure the registry to WebSphere Enterprise Service Bus 447
6.5.6 Create the mediation module . 449
6.5.7 Create the interface. 450
6.5.8 Build the assembly diagram . 450
6.5.9 Build the operation connections . 452
6.5.10 Build the request flow . 453
6.5.11 Build the response flow . 458
6.5.12 Test the flow . 459

6.6 The Event Emitter primitive . 461
6.6.1 Operation connections . 462
6.6.2 Build the mediation flow . 463
6.6.3 Test the mediation. 466

Chapter 7. Using adapters . 471
7.1 IBM WebSphere JCA Adapter architecture. 472

7.1.1 Different types of WebSphere JCA Adapters 474
7.2 IBM WebSphere Adapter Toolkit . 476
7.3 Enterprise Metadata Discovery . 476
7.4 Tools for creating JCA adapters . 477

7.4.1 Using the external service wizard . 477
7.4.2 Using the adapter pattern wizard . 478
7.4.3 Adapter deployment options . 479

viii Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7.5 Example: Using the WebSphere Adapter for JDBC 479
7.5.1 Creating an authentication alias for the database. 491
7.5.2 Creating the data source for the database 492
7.5.3 Deploying the module to the test environment 498

Appendix A. WebSphere Integration Developer installation 503
Installation of WebSphere Integration Developer. 504

Hardware and software requirements . 504
Getting started with the installation . 504

Appendix B. Additional material . 511
Locating the Web material . 511
Using the Web material . 512

Related publications . 513
IBM Redbooks publications . 513
Online resources . 513
How to get IBM Redbooks . 514
Help from IBM . 514

Index . 515

 Contents ix

x Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
ClearCase®
Cloudscape®
DB2®
developerWorks®
i5/OS®

IBM®
IMS™
Informix®
Lotus®
MVS™
OS/2®
Rational®

Redbooks®
Redbooks (logo) ®
Tivoli®
WebSphere®
Workplace™
z/OS®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

EJB, J2EE, Java, JavaServer, JDBC, JSP, JVM, Solaris, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Microsoft, SQL Server, Windows Server, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii Getting Started with WebSphere Process Server and WebSphere Enterprise Service Bus Part 1: Development

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication provides developers with information about
building and testing applications for IBM WebSphere® Process Server and IBM
WebSphere Enterprise Service Bus. It helps developers with the tasks of
creating business integration applications and mediations. It also includes
information about the use of adapters.

This is the first book of a three-part series:

Getting Started with IBM WebSphere Process Server and IBM WebSphere
Enterprise Service Bus:

� Part 1: Development, SG24-7608
� Part 2: Scenario, SG24-7642
� Part 3: Runtime, SG24-7643

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization (ITSO), Raleigh Center.

Carla Sadtler is a Consulting IT Specialist at the ITSO, Raleigh
Center. She writes extensively about WebSphere and Patterns
for e-business areas. Before joining the ITSO in 1985, Carla
worked in the Raleigh branch office as a Program Support
Representative, supporting MVS™ customers. She holds a
degree in mathematics from the University of North Carolina at
Greensboro.

Srinivasa Rao Borusu is a Senior IT Specialist at IBM India
Software Labs, Bangalore. He is currently working as a
WebSphere Consultant with IBM Business Partner Technical
Strategy and Enablement (BPTSE) Developer Services team,
enabling and supporting worldwide business partners on
WebSphere products. Since he joined IBM in 2000, he has
played various roles, including Tech Lead for the IBM Java™
Virtual Machine Support during his tenure at OS/2® worldwide

support center. His technical portfolio also includes one FILE rated patent, four
IBM SOA and WebSphere product certifications, and several published articles.

© Copyright IBM Corp. 2008. All rights reserved. xiii

He holds a masters degree in Computer Applications from the Andhra University,
Visakhapatnam, India.

Sergiy Fastovets joined IBM in 1996 in the Research Triangle
Park. He has 10 years of experience in design, development,
and sales support in the Host Integration area. In 2006, Sergiy
transferred to the IBM UK where he is an IT Consultant for
WebSphere Software Services. He holds a degree in
mathematics from the University of Saint Petersburg, Russia.
His native town is Poltava, Ukraine.

Thalia Hooker Ph.D., is a Consulting IT Specialist and
member of the WebSphere Americas iPoC Team. She
executes proof-of-concepts using the WebSphere platform to
show customers how IBM solutions and products can help
them meet their integration requirements. These solutions and
products include Service Oriented Architecture (SOA) and
WebSphere Business Process Management products such as,
WebSphere Process Server and WebSphere Enterprise
Service Bus.

Ernese Norelus is an IBM Certified Consulting IT Specialist
with the ASEAN Software Services team in Singapore. He has
been in IT for 10 years, with eight years of experience
presenting, teaching, and proposing solution architectures to
customers using the WebSphere business integration portfolio.
He is also a well-known conference speaker, and he holds
certifications in IM/DB2®, Lotus®, Rational®, Tivoli®, and
WebSphere. He holds degrees in Biochemistry and Computer

Science and Information Technology Management from the Université du
Québec à Montréal, Québec, Canada.

Fabio Paone is in WebSphere technical sales supporting the
Channel (Business Partners) in Italy. He has four years of
experience as a developer in the Rome Tivoli Lab, primarily in
J2EE™ development. He is certified as a WebSphere
Application Server Administrator (versions 5, 6, and 6.1) and
has participated in WebSphere Application Server certification
test reviews.

xiv Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Dong Yu is a Staff Software Engineer at IBM China
Development Lab. He has four years of experience in the
WebSphere Business Integration Field. His areas of expertise
include WebSphere Process Server installation and
Configuration. Dong holds a master degree in Software
Engineering from Northwestern Polytechnical University.

Thanks to the following people for their contributions to this project:

Stephen Cocks
IBM UK

Rich Conway
International Technical Support Organization, Poughkeepsie Center

Margaret Ticknor
International Technical Support Organization, Raleigh Center

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xvi Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 1. Introduction to the products

This book focuses on the development of business integration solutions for IBM
WebSphere Process Server and IBM WebSphere Enterprise Service Bus.
Development activities are performed using IBM WebSphere Integration
Developer. This chapter introduces these products and includes the following
topics:

� WebSphere Process Server

� WebSphere Enterprise Service Bus

� WebSphere Adapters

� WebSphere Integration Developer

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 WebSphere Process Server

WebSphere Process Server is one of the key products in the IBM WebSphere
Business Process Management suite. WebSphere Process Server integrates
with WebSphere Portal to deliver business process management through a
portal.

In this section, we provide a brief introduction to WebSphere Process Server.

1.1.1 Introduction to the product

A business process is a series of tasks executed in a specific order that an
organization follows to achieve a larger business goal. WebSphere Process
Server is a process engine that provides a hosting environment for business
processing. It provides support for the Service Component Architecture (SCA)
programming model. WebSphere Process Server includes support for both Web
Services Business Process Execution Language (WS-BPEL) based process
flows and business state machines. It supports the integration of business rules
and for the incorporation of tasks that are carried out by users (human tasks) in a
business process.

WebSphere Process Server is underpinned by IBM WebSphere Application
Server Network Deployment, giving it extensive J2EE capabilities and the
qualities of service (QoS) of that product, including the high availability,
scalability, and security features. The administrative facilities of WebSphere
Application Server have been enhanced to support processes and mediations. In
addition, WebSphere Process Server provides several Web-based applications
for managing the various aspects of business processes:

� Business Process Choreographer Explorer for managing business process
and human tasks.

� Business Process Choreographer Observer that creates reports about events
that occur during the execution of business processes and human tasks.

� Business rules manager that assists the business analyst in browsing and
modifying business rule values.

� Common Base Event browser to retrieve and view events in the Common
Event Infrastructure (CEI) event database.

� Failed event manager to find and manage WebSphere Process Server failed
events, which can be a request sent to an application from an external source
or an invocation to a Web service.

� Relationship manager to manipulate relationship data manually to correct
errors found in automated relationship management or to provide more

2 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

complete relationship information. Relationships are services that are used to
model and maintain associations between business objects and other data.

WebSphere Process Server incorporates the functionality of WebSphere
Enterprise Service Bus to execute mediations. Mediation service applications
intercept and modify messages that are passed between existing services
(providers) and clients (requesters) that want to use those services. Both
business processes and mediations can be deployed to a WebSphere Process
Server application server.

Development of business integration processes for deployment to WebSphere
Process Server and mediations for deployment to WebSphere Enterprise
Service Bus is done using WebSphere Integration Developer. The tools are
designed so that users can compose integrated business solutions easily without
programming skills.

1.1.2 V6.1 highlights

The highlights of this release include:

� New platform support, including support for i5/OS and 64-bit Windows and
UNIX® platforms. You can find a full list of supported platforms at:

http://www-1.ibm.com/support/docview.wss?rs=2307&context=SSQH9M&uid=
swg27009829

� Performance enhancements

Information Center: The WebSphere Process Server V6.1 information center
is a critical resource for learning about and using WebSphere Process Server:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.websphere.wps.610.doc/welcome_top_wps.htm

Note: For a full list of what is new in WebSphere Process Server V6.1, see:

� What is new in this release (AIX®, HP-UX, Linux®, Solaris™, Windows®,
i5/OS®)

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/co
m.ibm.websphere.wps.610.doc/doc/covw_new.html

� What is new in this release (z/OS®)

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/co
m.ibm.websphere.wps.z.610.doc/doc/covw_new.html

 Chapter 1. Introduction to the products 3

http://www-1.ibm.com/support/docview.wss?rs=2307&context=SSQH9M&uid=swg27009829
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/covw_new.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/welcome_top_wps.htm
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.z.610.doc/doc/covw_new.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.z.610.doc/doc/covw_new.html

� New support for export and import bindings:

– HTTP 1.0 and HTTP 1.1 are now supported as a general transport.
Previously, HTTP support was provided only as a transport for SOAP over
HTTP Web services.

– Generic JMS is now supported to provide the ability to use any JMS 1.1
Application Server Facilities (ASF) compliant providers. Previously,
support included only WebSphere MQ and the WebSphere Application
Server default messaging provider.

– Support has been added to allow you to use WebSphere Transformation
Extender for data bindings

� Business objects can now be validated at run time. Validation can be done
implicitly at the interface on all objects (for example, in a test environment) or
programmatically.

� New structured activities

– The Cyclic Flow activity allows you to add links that go back to a previous
activity. Prior to V6.1, flow could only go forward and While Loops were
commonly used to create cycles of activity.

– The ForEach activity allows processing a dynamic number of work
branches to be processed in parallel or serially. A completion condition
can be specified to terminate the flow before all branches complete.

� Human tasks have been enhanced with extended people directory support,
participant substitution, auto-deletion for completed tasks, and batch
processing support.

� The Business Flow Manager now supports a generic JMS interface and
extensions to the generic Web Services interface.

� The Business Process Choreographer Explorer has been enhanced to allow
the substitution of users, suspend human tasks and business processes for a
specific time, and to include other usability features.

� Forms that are created using IBM Lotus Forms Designer (integrated into
WebSphere Integration Developer) can be used as the user interface for
human tasks and processes.

� The WebSphere Portal Server My Task portlet can be extended with portlets
that are generated from WebSphere Integration Developer.

4 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

1.2 WebSphere Enterprise Service Bus

WebSphere Enterprise Service Bus delivers an enterprise service bus (ESB)
infrastructure to connect applications that have standards-based interfaces
(typically a Web service interface described in a WSDL file). WebSphere
Enterprise Service Bus can be obtained as a stand-alone product. It is also
included in WebSphere Process Server.

In this section, we provide a brief introduction to WebSphere Enterprise Service
Bus.

1.2.1 Introduction to the product

WebSphere Enterprise Service Bus intercepts the requests of service
consumers and fulfills additional tasks through mediations in order to support
loose coupling. When the mediation completes, the service providers are
invoked. WebSphere Enterprise Service Bus provides pre-built mediation
primitives and easy-to-use tools to enable rapid construction and implementation
mediations.

The mediation tasks include:

� Centralizing the routing logic so that service providers can be exchanged
transparently

� Performing tasks like protocol translation and transport mapping

� Acting as a facade in order to provide different interfaces between service
consumers and providers

� Adding logic to tasks such as logging and fan-in and fan-out operations

Information Center: The WebSphere Enterprise Service Bus V6.1
information center is a critical resource for learning about and using
WebSphere Enterprise Service Bus:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.websphere.wesb.61x.root.doc/info/welcome.html

 Chapter 1. Introduction to the products 5

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wesb.61x.root.doc/info/welcome.html

1.2.2 V6.1 highlights

The following new and updated mediation primitives provide some of the new
features in WebSphere Enterprise Service Bus V6.1:

� The Service Invoke primitive is used to call a service from within a mediation
flow, which is similar to a Callout node but the flow continues rather than
switching to a response flow. It can retry a failed call, as well as route the call
to another service or different endpoints of the service.

� The Callout node has been updated so that it also can retry a call to the same
service or to a list of endpoints.

� The Fan Out and Fan In primitives are used to perform aggregation and
broadcasting operations. Fan Out allows you to send a message multiple
times or to send new messages created using single message as input. Fan
In allows you to receive multiple messages and combine them into one
message.

� The Endpoint Lookup primitive has been updated. The primitive is used to
retrieve dynamically a service endpoint from the WebSphere Service Registry
Repository. The primitive has been updated so that an alternate target list can
be populated during the lookup. This alternate target list is used for service
callout retries.

� The Set Message Type primitive allows you to overlay message fields with
more detailed structures. It lets you do the equivalent of casting a generic
data type to a more specific data type.

� The Business Object Map primitive allows you to use a business object map
for message transformation. This is a new alternative to XSLT transformation.

Note: For a full list of what is new in WebSphere Enterprise Service Bus V6.1,
see:

� What is new in this release (AIX, HP-UX, Linux, Solaris, Windows, i5/OS)

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/co
m.ibm.websphere.wesb610.doc/ref/rwesb_releasenotes.html

� What is new in this release (z/OS)

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/co
m.ibm.websphere.wesb610.zseries.doc/ref/rwesb_releasenotes.html

6 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wesb610.doc/ref/rwesb_releasenotes.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wesb610.zseries.doc/ref/rwesb_releasenotes.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wesb610.zseries.doc/ref/rwesb_releasenotes.html

1.3 WebSphere Adapters

Enterprise information systems (EIS) provide the information infrastructure for an
enterprise by providing a set of services to clients, for example:

� Enterprise resource planning (ERP)
� Customer relationship management (CRM)
� Human resource systems (HR)
� Relational database systems

Adapters provide integration with enterprise information systems that do not
provide service interfaces. They allow you to take advantage of these existing IT
assets in your service-oriented architecture (SOA) without significant
programming, thus simplifying integration. Adapters are presented as SCA
components.

Adapters can be divided into two classes:

� WebSphere JCA Adapters
� WebSphere Business Integration Adapters

1.3.1 WebSphere JCA Adapters

WebSphere JCA Adapters provide a mechanism that allows for the integration of
an existing EIS infrastructure with the WebSphere Process Server and
WebSphere Enterprise Server Bus server. They provide a service-oriented
approach to EIS integration. Resource adapters offer a consistent framework for
access to back-end systems and their applications.

WebSphere JCA Adapters are compliant to the Java Connector Architecture 1.5
specification, the J2EE standard for EIS connectivity. This standard provides a
managed framework. That is, quality of service (QoS) is provided by the
application server, which offers life cycle management and security to
transactions. WebSphere JCA Adapters are also compliant with the Enterprise
Metadata Discovery specification with the exception of the IBM CICS® ECI
Resource Adapter and the IBM IMS™ Connector for Java.

The following IBM WebSphere Adapters are supported for WebSphere Process
Server and WebSphere Enterprise Service Bus:

� IBM CICS ECI Resource Adapter Version 7
� IBM IMS Connector for Java Version 9.1.0.2.4
� IBM WebSphere Adapter for Email Version 6.1
� IBM WebSphere Adapter for FTP Version 6.1
� IBM WebSphere Adapter for Flat Files Version 6.1
� IBM WebSphere Adapter for JDBC™ Version 6.1

 Chapter 1. Introduction to the products 7

� IBM WebSphere Adapter for JD Edwards® EnterpriseOne Version 6.1
� IBM WebSphere Adapter for Oracle® E-Business Suite Version 6.1
� IBM WebSphere Adapter for PeopleSoft® Version 6.1
� IBM WebSphere Adapter for SAP® Software Version 6.1
� IBM WebSphere Adapter for Siebel® Business Applications Version 6.1

WebSphere Adapters are included with WebSphere Integration Developer. CICS,
IMS, JD Edwards, Oracle, PeopleSoft, SAP, and Siebel resource adapters are
shipped in WebSphere Integration Developer for development purposes only.
That is, you can use them to develop and test an application. When deployed to a
production server, your application will need a licensed runtime resource adapter.
Note that when you build your service, you have the option of embedding the
resource adapter with the service. If you use that option, your resource adapter
licensing might allow you to use the embedded resource adapter as the licensed
runtime resource adapter.

1.3.2 WebSphere Business Integration Adapters

IBM WebSphere Business Integration Adapters do not comply to either the JCA
architecture or the Enterprise Metadata Discovery specification. The WebSphere
Business Integration Adapter artifacts must first be created using the tool set that
is provided with the WebSphere Business Integration Adapter Framework. Unlike
the IBM WebSphere Adapters, none of these adapters are supplied for
development purposes.

Some additional differences between the IBM WebSphere JCA Adapters and the
IBM WebSphere Business Integration Adapters include:

� IBM WebSphere JCA Adapters rely on standard JCA contracts to manage life
cycle tasks such as stopping and starting. IBM WebSphere Business
Integration Adapters rely on the WebSphere Adapter Framework to manage
connectivity.

� With WebSphere Adapters, you use an external service wizard in WebSphere
Integration Developer to discover an EIS system and its available information.
The external service wizard develops business objects from the discovered
information. WebSphere Business Integration Adapters use a separate
Object Discovery Agent (ODA) to probe an EIS and generate business object
definition schemas.

� An outbound service type in WebSphere Adapters is known as request
processing with WebSphere Business Integration Adapters. An inbound
service type in WebSphere Adapters is known as event processing with
WebSphere Business Integration Adapters.

8 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� WebSphere Business Integration Adapters always reside outside of an
application server at run time. The server communicates with this type of
adapter through a Java Messaging Service (JMS) transport layer.

� WebSphere Business Integration Adapters use an asynchronous stand-alone
runtime architecture (the WBI Framework) with WebSphere MQ or JMS as
the underlying transport protocol. Originally designed for WebSphere
InterChange Server, they remain available for WebSphere Message Broker,
WebSphere Enterprise Service Bus, and WebSphere Process Server users
transitioning from WebSphere InterChange Server or WebSphere Business
Integration Server.

WebSphere Adapters V6.1 no longer ships the WebSphere Business Integration
components. WebSphere Adapters V6.0.2 is available for the users requiring the
WebSphere Business Integration components for the following adapters:

� Flat File Adapter
� FTP Adapter
� Email Adapter
� JDBC Adapter
� PeopleSoft Adapter
� JD Edwards EnterpriseOne Adapter
� SAP Software Adapter
� Siebel Business Applications Adapter
� Oracle eBusiness Suite Adapter

1.4 WebSphere Integration Developer

WebSphere Integration Developer is the common tool for building SOA-based
integration solutions across WebSphere Process Server, WebSphere Enterprise
Service Bus, and WebSphere Adapters. It simplifies integration with rich features
that accelerate the adoption of SOA by rendering existing IT assets as service
components, encouraging reuse and efficiency.

In this section, we provide a brief introduction to WebSphere Integration
Developer.

Information Center: The WebSphere Integration Developer V6.1 information
center is a critical resource for learning about and using WebSphere
Integration Developer:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.wbit.610.help.nav.doc/topics/welcome.html

 Chapter 1. Introduction to the products 9

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.610.help.nav.doc/topics/welcome.html

1.4.1 Introduction to the product

WebSphere Integration Developer enables integration developers to assemble
complex business solutions that require minimal skills, whether they involve
processes, mediations, adapters, or code components. Users can construct
process and integration solutions using drag-and-drop technology without having
a working knowledge of Java.

In addition to providing the tools that are necessary to build and assemble these
artifacts, the product includes a full test framework that allows you to execute
results in a seamless fashion in an environment that is identical to that found in
production but without having to perform the steps to administer and configure
such an environment.

1.4.2 V6.1 highlights

WebSphere Integration Developer has been enhanced to support the new
features and functions in WebSphere Enterprise Service Bus V6.1 and
WebSphere Process Server V6.1.

10 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 2. Concepts for development

This chapter provides information about key concepts that are required to
develop applications for WebSphere Enterprise Service Bus and WebSphere
Process Server.

The chapter includes the following topics:

� SCA and WebSphere Process Server

� WebSphere Process Server components

2

© Copyright IBM Corp. 2008. All rights reserved. 11

2.1 SCA and WebSphere Process Server

Service Component Architecture (SCA) is a set of specifications that describe a
model for building applications and systems using service-oriented architecture
(SOA). SCA encourages an organization of business application code based on
components that implement business logic. These business applications offer
their capabilities as services through interfaces and consume services that are
offered by other components through references.

SCA separates business logic from implementation. The implementation of
business processes is contained in service components (also referred to as
components), which can be assembled graphically in WebSphere Integration
Developer. The service components can be implemented later.

There are four basic tasks that are required to build service-oriented applications
for WebSphere Process Server and WebSphere Enterprise Service Bus using
SCA:

� The implementation of service components that provide services and
consume other services.

� The assembly of service components to build business applications, through
the wiring of service references to services.

� The generation of bindings to define the transport and protocol that are used
to connect to external clients and services.

� The assignment of quality of service attributes.

2.1.1 Service components

A service component consists of an implementation, one or more interfaces that
defines its inputs, outputs and faults, and zero or more references. A reference
identifies the interface of another service or component that this component
requires or consumes.

Figure 2-1 on page 13 shows an SCA module with its service components,
interfaces and references. The implementation types for the service component
are specific to a business integration module in WebSphere Process Server.

12 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 2-1 Block diagram of a component

A service component has an implementation that is associated with it that
performs the logic of the module. You can implement services using a variety of
programming paradigms, from process-flow style BPEL processes, to state
machine-style event management, to declarative business rules style. The style
of implementation that you select is determined both by your comfort level with a
given paradigm and the nature of the problem.

The following implementation types are available for service components in a
business integration module:

� Interface maps
� Business state machines
� Java objects
� Processes
� Human tasks
� Selectors
� Rule groups (business rules)

A service component in a mediation module is implemented as a mediation flow.

Implementation

Component

Java

WSDL
Port Type

Java

WSDL
Port Type

IInterface ReferenceR

Process Human Task

Selector Java Interface Map

State
Machine

Business
Rule

 Chapter 2. Concepts for development 13

2.1.2 Service component assembly

A service component is presented in a standard block diagram referred to as a
module assembly, or in WebSphere Integration Developer, as an assembly
diagram. Figure 2-2 shows an example of an assembly diagram. It contains
components that are wired together. The figure shows the implementation for the
components, but you can also add untyped components to an assembly diagram
to implement later.

Figure 2-2 Service component module

Interfaces
An interface provides the input and output of a component and is independent of
the internal implementation of the component. The interface specifies the
operations that can be called and the data that is passed, such as input, output
parameters, and exceptions.

All components have WSDL type interfaces. Only Java components support Java
type interfaces in addition to WSDL type interfaces. If a component, import, or
export has more than one interface, all the interfaces must be of the same type.

An interface supports synchronous and asynchronous interaction styles.

References
A reference (sometimes referred to as a partner reference) is required when one
component uses another component. It is defined on the component that wants

14 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

to use another component. A reference specifies the interface that is used in the
invocation of the other component.

The implementation type of the component determines the type of interface that
its partner references can have. All components support WSDL interfaces in their
partner references.

A service component can include zero or more references to other service
components or imports included in the current module.

You can define references in two ways:

� You can in-line the reference in the service component definition. In this
approach, the references are available only to the service component in which
the references are included.

� You can include reference definitions within the stand-alone references file. In
this approach, the references can be used by a non-SCA client or by another
component within the module. An example of a non-SCA component that
might use a reference in the stand-alone references file is a user interface
component such as a JSP™ that needs the ability to invoke a particular
service. In order to invoke the service, the client needs a reference so that it
can use the SCA run time to lookup the appropriate target.

By simply naming a reference and specifying its interface, the component
implementation author can defer binding that reference to an actual service until
later. At that later time, the integration specialist will do so by wiring the reference
to the interface of another component or import. This loose coupling, which
allows for deferred binding and the re-use of implementations, is one of the key
reasons for using SCA.

Stand-alone references
Stand-alone references allow services that are not defined as SCA components
(for example, JavaServer™ Pages) to invoke SCA components. Stand-alone
references contain partner references that identify the components to call. On
their own, stand-alone references do not have any implementation or interface.

A module assembly can contain one stand-alone reference artifact. You can add
partner references to the stand-alone references and wire them to target
components or target imports.

Stand-alone references can be used in a mediation module. They can be
deployed to either a WebSphere Process Server or a WebSphere Enterprise
Service Bus server.

 Chapter 2. Concepts for development 15

Exports
An export component exposes an interface for use by external service callers or
other SCA modules. An export has an associated binding that describes the
physical communication mechanism to be used. The interface for the export
describes how a caller must interact with the module. It shields the
implementation of the module from the caller. The export component is wired to
the first component in the module, for example, a business process or mediation
flow component.

Imports
Import components identify services outside of a module, so they can be called
from within the module. An import component has an associated binding that
specifies the means of transporting the data to and from the external service.

Every import has an associated interface. Thus, the import can be wired to any
other component that has a matching Interface type reference. The caller of the
import has no knowledge that it is calling an import, only that it is calling another
SCA component that has a specific interface.

Wires
Wires are used to assemble these nodes in a module assembly. There are two
types of wires:

� The first type of wire comes from a partner reference (the source) that is
defined for a component or stand-alone references and goes to a component
or import (the target). In this case, the wire identifies the component or import
(target) that is accessed when the source component uses that partner
reference. By default, a partner reference allows only one wire leading from it
unless the partner reference’s multiplicity property is changed to 0...n.

The target of a wire should support the interface or interfaces that the source
specifies. If the partner reference on a source node cannot find a matching
interface on the target node, you will have the option to create an interface
map or to add a new interface on the target. Also, a WSDL partner reference
cannot be wired directly to a Java interface.

16 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� The second type of wire comes from an export (the source) and goes to a
component or import (the target), as illustrated in Figure 2-3. In this case, the
wire identifies the (target) component that provides the service. An export can
only have one wire leading out of it.

Figure 2-3 Wire the business process component to a human task component

Data is passed between the components in the form a business objects (in
business integration modules) or service message objects (in mediation
modules).

2.1.3 Import and export bindings

Bindings determine specifically how the import and export components interact
with clients outside the module. Bindings specify the message format, protocol,
and invocation style details for a particular interface.

In order to convert data external to WebSphere Process Server to and from data
objects, some transport bindings require a data binding to be specified. The data
binding translates between the data that is provided by the transport binding as
part of a message and a data object. For information about the data bindings for
each transport binding type, refer to the WebSphere Process Server V6.1.0
information center, which is available at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topi
c=/com.ibm.websphere.wps.610.doc/welcome_top_wps.htm

Messaging bindings
Using a resource adapter or using the JMS API directly are two ways to connect
to a messaging provider. Another way is to use native calls to a messaging
provider such as IBM WebSphere MQ. These calls are made using the Message
Queue Interface (MQI). MQ JMS uses the JMS API (as opposed to MQI) to
access WebSphere MQ.

 Chapter 2. Concepts for development 17

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.websphere.wps.610.doc/welcome_top_wps.htm

The following messaging bindings are available for use on import and export
components:

� MQ binding

WebSphere MQ bindings allow interoperation with native WebSphere MQ or
WebSphere Message Broker applications using WebSphere MQ. Conversion
for the data to and from an MQ message is accomplished through the MQ
header and body data bindings.

The MQ binding does not currently support the publish-subscribe method of
distributing messages. MQ client connections are the only type of
connections supported.

The binding settings specify the information that is required for connection to
MQ, including the destination names, queue manager name, and the host
name for the queue manager.

� MQ JMS binding

MQ JMS is a set of Java classes that enables communication with JMS
applications using WebSphere MQ as the messaging provider. If you are
using an MQ JMS binding, you can define the destination using one of the
following methods:

– Specify the JNDI name for a pre-configured messaging provider resource,
that is the JNDI name for the queue or topic and the JNDI name for the
connection factory

– Specify properties that are required to configure a new messaging
provider resource, meaning, the WebSphere queue manager and
WebSphere queue name.

If the import or export component has an interface with a one-way operation,
then both queues (point-to-point) and topics (publish/subscribe) are
supported by the MQ JMS binding. For request-response operations, only
point-to-point is supported.

In WebSphere Message Broker, you can use either MQ or JMS input and
output nodes as the corresponding message point. No special configuration is
necessary on the MQ JMS binding that would make it necessary that you use
one or the other.

18 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� JMS binding

The JMS bindings provide support for JMS communication using “plain” JMS
messages (that is not SOAP). You have the following options for JMS
bindings:

– The default messaging provider that is included in WebSphere Application
Server. The transport mechanism for this provider is the service
integration bus within WebSphere Application Server.

– The WebSphere MQ messaging provider. You can use an installed
WebSphere MQ as the messaging provider.

Destinations are defined to the JNDI namespace and the bindings designate
the JNDI name for the destination.

� Generic JMS binding

The generic JMS binding application provides integration with non-JCA
1.5-compliant JMS providers that support JMS 1.1 and implement the
optional JMS Application Server Facility, including Oracle AQ, TIBCO,
SonicMQ, WebMethods, BEA WebLogic, and WebSphere MQ.

Destinations are defined to the JNDI namespace and the bindings designate
the JNDI name for the destination.

Guidelines for messaging bindings
A key decision by developers is choosing the best strategy for a particular
application. Some guidelines are:

� If you are working with native JMS applications, then use JMS bindings.

� If you are working with JMS applications that are using the MQ backbone,
then use MQ JMS bindings.

� If you are working with native MQ applications, then use the MQ binding.

The portability versus performance trade-off is another factor to consider.

� If portability is important, choose JMS bindings.

� If performance is important, using WebSphere MQ with native calls might be
the appropriate choice.

MQ JMS bindings provide some portability with some performance benefits over
JMS bindings. The choice of strategy decides what type of binding to select.

Web service binding
Web services bindings allow the call-out of SOAP-based Web services (through
imports), as well as exposing SOAP-based Web services interfaces (through
exports). Both SOAP/HTTP and SOAP/JMS are supported.

 Chapter 2. Concepts for development 19

Both the HTTP and JMS transport types are presented as one binding type in
WebSphere Integration Developer, but when you generate a Web service
binding, you are asked which transport type you want to use. SOAP/HTTP is
more common than SOAP/JMS.

As SOAP is well-defined and maps cleanly into the SCA and SDO model, there
is no requirement (or facility) to provide any form of data binding, either for
imports or exports. The Web services bindings support the well-known encoding
styles: document/literal, doc-lit-wrapped, RPC-literal, and RPC-encoded.

When you generate a Web service binding for an export, a WSDL file for the
service is created. When you generate a Web service binding for an import, you
can specify an existing WSDL file for the service or launch a wizard to help you
define the service.

A Web services binding that uses SOAP/JMS, supports JMS using the default
WebSphere Application Server default messaging provider in a point-to-point
configuration. The SOAP/JMS binding does not support: generic JMS, MQ JMS,
or the JMS broadcast mode.

SCA binding
An SCA binding on an import component specifies an SCA-bound export
component in another module. That export can be connected to either a
component or import. As a result, the SCA import binding requires only two
pieces of information:

� The name of the export that it is calling
� The module containing that export

The export must also have an SCA export binding. If the export has any export
binding other than SCA, you cannot import it in another module with the SCA
import binding. You must import it with the corresponding import binding type.

HTTP binding
HTTP is a widely-used protocol for transferring information on the Web. The
HTTP binding supports the HTTP 1.0, HTTP 1.1, and SSL protocols.

Messages are presented to components in a manner that preserves HTTP
format and message header information. An existing data binding framework is
extended for HTTP conventions and provides mapping between SCA messages
and HTTP message headers and bodies.

When you install an SCA module containing HTTP imports or exports, the
runtime environment is automatically configured appropriately to allow
connectivity to HTTP.

20 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

An HTTP binding on an import specifies the endpoint URL for the target
application. An HTTP binding on an export specifies the context path for your
module.

WebSphere Adapters
WebSphere Adapters enable interaction with enterprise information systems.
The Enterprise Service Discovery tool can be used to create import and export
components representing applications on the systems. An EIS binding is
associated with the adapter.

2.1.4 Quality of service

Qualifiers in SCA allow developers to place quality of service (QoS) requirements
on the SCA run time. There are several different categories of qualifiers available
in SCA:

� Security
� Transactions (with ActivitySessions as a special type)
� Reliable messaging

Each qualifier has a particular scope within the Service Component Definition
Language (SCDL) specification for an SCA component where the qualifier can
be added (interface, implementation, and partner reference).

2.2 WebSphere Process Server components

WebSphere Integration Developer provides an assembly editor where the
developer groups service components into modules and specifies which service
interfaces are exposed by the module to outside consumers. Services that are
available include imported components such as Java beans or Web services and
service components that WebSphere Process Server and WebSphere
Enterprise Service Bus provide. Modules are then connected to form complete
integration solutions.

 Chapter 2. Concepts for development 21

Figure 2-4 shows the components of WebSphere Process Server and indicates
where they are developed in WebSphere Integration Developer.

Figure 2-4 Key features of WebSphere Integration Developer

2.2.1 WebSphere Process Server specific components

WebSphere Process Server provides a hosting environment for business
processing. WebSphere Process Server includes ESB functionality that is
provided by WebSphere Enterprise Service Bus. Both business processes and
mediations can be deployed to a WebSphere Process Server application server.

This section focuses on the components of WebSphere Process Server that
support business processing applications. This type of application is developed
in a module, also referred to as a business integration module.

Business state machines
A business state machine provides another way of modeling a business process,
enabling a business process to be represented based on states and events.

It is an event-driven business application in which external operations trigger
changes that guide the state machine from one discrete mode to another. Each

Business
Objects

Component
Interfaces

Visual
Snippets

Business Event
Monitoring

Interface
Maps

Business
State

Machines

Java
Components

Business
Processes

Human
Tasks Selectors

Resource
Adapters

Business
Rules

Mediation
Flows

Web Services &
HTTP PUT/GET

Java & Session
EJBs

Messaging
Resources

Exports
Imports

Artifacts used in
Component

Creation

Artifacts
Assembled in

Assembly Editor

J2EE and non-
J2EE Artifacts

22 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

mode is an individual state, and this mode determines what activities and
operations can occur.

State machines are useful modeling aids for developing real-time or event-driven
systems because they show dynamic behavior. You can develop state machines
during all phases of a software project and for business modeling. You can use
state machines in the following situations:

� During business modeling, you can create state machines to model a use
case scenario.

� During analysis and design, you can model event-driven objects that react to
events outside an object's context.

� During analysis and design, you can use several state machine diagrams to
show different aspects of the same state machine and its behavior.

Business processes
The business process component in WebSphere Process Server implements a
WS-BPEL compliant process engine.

Business processes are an important concept in today’s integrated environments
and play a key role in business-to-business and enterprise application integration
scenarios by exposing the appropriate invocation and interaction patterns.
Processes are the building blocks for developing consistent distributed
applications in heterogeneous environments.

Process-based applications are composed of two distinct pieces:

� A process model that describes the logical order in which the different
activities of the process model are being carried out

� The individual services and components that implement the various activities

Therefore, a business process is a set of business-related activities, rules, and
conditions that are invoked in a defined sequence to achieve a business goal.
Those activities can be a variety of different resources that are represented as
one or more SCA components. All activities are logically connected with implicit
or explicit connectors (control links), which define the logical order in which the
business process is executed. Process activities can be executed in sequence or
in parallel, depending on the business requirement and the internal dependency
of the process steps.

The purpose of the business process container (BPC) is to interpret the process
templates, manage the life cycle of business processes, navigate through the
associated process model, and integrate the appropriate business functions.

 Chapter 2. Concepts for development 23

A business process runs under one of two execution modes:

� Microflows run under a single transaction in a short period of time.

� Long-running business processes run in a series of chained transactions
over days, months, or even years. Long-running processes can be optimized
with respect to transaction boundaries.

Business process developers can declare transaction behavior for invoke, human
task, and snippet activities:

� Commit before guarantees that the activity runs in a new transaction.

� Commit after guarantees that the current transaction is committed after
executing the activity.

� Requires own guarantees that the activity runs in a new transaction and the
current transaction is committed after executing the activity.

� Participates behavior states that the activity runs within an existing
transaction, if one is available.

Human tasks
Human tasks in WebSphere Process Server are stand-alone components that
can be used to assign work to employees or to invoke any other service.

Human tasks are used to allow components to “invoke humans as services.” The
human is actually a person that is authorized to select that task from a group of
authorized users. Because the human is considered simply a service, the
replacement of one service for another is just a simple matter of component
wiring or assembly. As a result, an operation performed by a person in the first
place could be replaced by an operation represented as a business process, a
Web service invocation, an operation on an enterprise bean, a CICS transaction,
or other component interfaces.

Human tasks provide a common interface for humans to deal with human centric
and automatic tasks in a uniform way. Client applications using the HTM API
provide users with a single view to start, for example, a BPEL process, a
document management system, or a Workplace™ application. The API allows
users to create and start tasks independently of their implementation and, as a
result, to provide a uniform administration scheme throughout applications.

A task activity contains the data that is required to complete the task. Some of
this information comes from the specific business scenario (as an example, the
creation of purchase requisition). The properties of a task type represent the
meta information specific for that task. Meta information can be specified when
creating a task or by defining a task type called task template.

24 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The human task manager provides the human task capabilities for WebSphere
Process Server to:

� Start a process or other service components
� Implement staff activities
� Allow for process administration
� Create tasks dynamically that involves humans or services

The human task manager addresses the following basic scenarios:

� The machine-to-human (M2H) scenario is the classical staff service
component scenario where a process engine (a machine) creates tasks for
people who participate in the execution of a business process.

� The human-to-machine (H2M) scenario is different in the sense that it allows
a person to create a task that is executed by an automatic service. An
example of an automatic service is a BPEL business process or an arbitrary
Web service that can do a variety of functions, such as invoking a SOAP
service, calling a CICS transaction, invoking a method on an enterprise bean,
or retrieving a document from a document management store.

� In the human-to-human (H2H) scenario a task is created by a person (a
human) for another person. An example is a travel approval request that is
created by an employee for his manager. Especially for ad-hoc scenarios, this
scenario plays a major role.

Selectors
A selector’s main job is to determine dynamically which implementation to invoke
based on some defined set of criteria (currently, based on a date and time). Think
of a selector as a router that routes inputs and outputs to the appropriate target
component based on a certain date (past, current, or future).

Business rules
Business rules are a means of implementing and enforcing business policy by
externalizing business function, which enables dynamic changes of a business
process.

Relationships
A relationship establishes associations between semantically equivalent
business entities. For example, when customer business objects exist in different
EIS applications with different keys, correlating key values allows synchronization
of record creation and updates across systems. WebSphere Process Server
manages the relationship data, not the application, and simplifies the task of the
integration developer.

 Chapter 2. Concepts for development 25

Relationship is one of the transformation rules that you can set from a business
object map. Therefore, the participants are at the business object level.
Relationships are an SCA artifact that you can define in a shared library, and
those modules that contain participating business objects need to include the
library as a dependency.

Business objects
Business objects are enhanced Service Data Objects (SDOs). SDOs provide an
abstraction that can be used over various types of data, providing a common
mechanism for accessing data. Business objects include extensions that are
important for integration solutions and are used to further describe the data that
is being exchanged between SCA services.

Special business object types
Application-specific business objects (ASBOs) are business objects with a data
structure that corresponds to a particular application. Adapters create an
instance of an ASBO at run time to hold application data, information about the
data, and actions to be performed on the data.

Generic business objects (GBOs) are business objects with no
application-specific Information and not tied to any application. It is a canonical
representation of the information that is held in an ASBO. The generic business
object serves as a common application- and implementation-independent data
set.

Business graph
A business graph is the container around the top level of a business object. The
business graph adds change summary, event summary, and verb capability to
the business object. For example, a business graph can represent a
synchronization scenario between two EIS systems.

2.2.2 WebSphere Enterprise Service Bus specific components

Development of mediations for WebSphere Enterprise Service Bus development
is similar to that of developing business processes for WebSphere Process
Server. However, a mediation is developed within a mediation module that has a
mediation flow component as its implementation. The mediation module is a
specific type of SCA component that can process or mediate service
interactions.

26 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Mediation flow components
A mediation module can have one mediation flow component. The
implementation of the mediation module is a mediation flow.

Mediation flows contain mediation logic and the processing steps of a request
declared in a graphical way using mediation primitives. Mediation flows are
distinguished between a request flow and a response flow. In both directions,
logic can be added or modifications can be applied to process a message.

Service message objects
Messages can come from a variety of sources, so the payload has to be able to
carry a number of different types of messages. Mediation primitives need to be
able to operate on these messages, and service message objects (SMOs)
represents the common representation that is needed. The SMO model is a
pattern for using SDO DataObjects to represent messages. SMO extends SDO
with additional information to support the needs of a messaging subsystem.

2.2.3 Common event infrastructure

Events occur all the time within a software system. An event can be defined as
something interesting that happens within the environment. This might be as
simple as the completion of a step in a process or as sophisticated as the arrival
of a new customer order. The Common Event Infrastructure (CEI) is a powerful
technology that is implemented within WebSphere Process Server and that
provides for the creation, consumption, and warehousing of events. The events
are generated by a standard API and are available to be consumed by
applications that might also use this API. The content of an event is configurable
by the component that produces it but always contains a base set of attributes
that are common to all events.

CEI provides the ability to audit, monitor, and track the execution of processes
throughout the entire life cycle. The application that creates the event object is
called the event source. The event source passes the event object to the event
infrastructure. The event infrastructure’s role is to extract information from the
WebSphere runtime environment and add it to the event object. The event object
is then passed onto any applications that have expressed an interest in receiving
it. These applications are called event consumers. The event infrastructure also
stores the event object in a database for later retrieval.

 Chapter 2. Concepts for development 27

28 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 3. Basics of development

WebSphere Integration Developer is the common tool for building SOA-based
integration solutions across WebSphere Process Server, WebSphere Enterprise
Service Bus, and WebSphere Adapters. This chapter discusses the development
concepts and methods that are common across these products using
WebSphere Integration Developer. It includes the following topics:

� WebSphere Integration Developer key features
� Working with WebSphere Integration Developer
� Project types
� Business objects
� Interfaces
� Module assembly
� Business object maps
� Using a stand-alone reference
� Working with databases in the workspace
� Derby ij tool
� Deploying modules
� Test tools
� Team development

3

© Copyright IBM Corp. 2008. All rights reserved. 29

3.1 WebSphere Integration Developer key features

WebSphere Integration Developer is a development environment for building
integrated applications. It enables integration developers to create, manage, and
test services for IBM WebSphere Process Server and WebSphere Enterprise
Service Bus. The features in WebSphere Integration Developer separate
business logic from implementation details.

3.1.1 Base tools and run times

WebSphere Integration Developer is built on the Rational Software Development
V7.0.0.5 Platform, which is based on Eclipse 3.2 technology. Each IBM product
that is built on the Rational Software Development Platform coexists and shares
plug-ins and features with other products that are based upon this platform. The
Rational Software Development Platform is installed once per system with the
first product that is installed. As other products that are built on this platform are
installed on the system, only the necessary plug-ins are installed.

3.1.2 Developer roles

There are two primary user roles that are associated with WebSphere Integration
Developer:

� integration developer
� Application developer

Integration developer
The integration developer integrates existing and new services and users into
the business process definition the service composition components. The
specialist typically uses visual composition tools and service-bus configuration
tools to wire abstract service components that comprise the business processes.
The integration specialist, along with the enterprise architect, is involved in
establishing an approach that satisfies the security and quality of service
requirements of the enterprise when composing services from business partners
and other service providers outside of the enterprise operational environment.

The integration developer is the primary role. This role focuses on building
service-oriented solutions. This user role expects the tooling to simplify and

Note: For more information about Eclipse and tutorials, visit the following Web
site and explore the Getting Started pages:

http://www.eclipse.org

30 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

http://www.eclipse.org

abstract advanced IT implementation details. The integration developer is familiar
with basic programming constructs such as loops, conditions, and string
manipulation.

Application developer
The application developer implements the design for services that are provided
by the software architect. This includes using an appropriate language and
technology in which to implement the services, and following the design for those
components provided by the software architect. It might also include working with
existing application functions, languages and technologies. The developer
assists the software architect in identifying potential re-use of these functions and
in helping determine how best to extend or re-factor those functions to enable a
better fit with the business design.

Unlike the integration developer, the application developer is typically
knowledgeable in one or more programming languages or application
development platforms. The application developer also has a basic
understanding of one or more technologies that are associated with building
integrated business applications such as SOA, process choreography, workflow,
WSDL, or BPEL. Because the application developer has more extensive
knowledge of the implementation details that are associated with building a
business application, it is this user who typically implements the application
specific business logic for the actual business application being built. In addition,
with the introduction of the SCA programming model, it is also the application
developer who exposes specific application logic as an SCA service component.

3.1.3 Workspace and perspectives

When you open WebSphere Integration Developer, you select a workspace to
contain projects and test environment configuration. A workspace is a collection
of projects and other physical resources that you are currently developing in the
workbench. You can have multiple workspaces to segregate project
development, switching between workspaces when necessary.

WebSphere Integration Developer provides perspectives for development,
testing, and team repositories. A perspective is a grouping of views that are
geared toward specific tasks. The primary perspective for working with business
modules is the Business Integration perspective.

 Chapter 3. Basics of development 31

3.1.4 Assembly diagram

When you create a module (for business services) or mediation module, an
assembly diagram for the module is created. As you add components to the
module, you populate the assembly diagram with these components.

Figure 3-1 shows the Business Integration perspective with one module defined.
The assembly diagram for the module is in the editor area on the upper right.
Selecting a component displays information about it in the Properties view
(bottom right). From the assembly diagram, you define the interfaces to each
component, generate binding information for access to the module, and generate
the implementation for service components.

Figure 3-1 Business Integration perspective - assembly diagram

32 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Icons in the module assembly diagram indicate the type of component or artifact.
For example, Figure 3-1 shows:

� An export for the module. A Web service binding was generated for this
component, denoted with the icon.

� An interface is defined on each component, denoted with the icon.

� References denoted by the icon.

� An import component with a JMS binding, denoted with the icon.

� A rule group, denoted by the icon.

� An import component for an adapter interface. It has an EIS binding, denoted
by the icon.

� The service component in the middle was implemented as a business
process, denoted by the icon.

3.1.5 Editors

Each artifact has an associated editor that provides features suited for editing
that artifact (for example, WSDL files, XML, components, and so forth). The two
primary editors that you use are the business process editor and the mediation
flow editor.

 Chapter 3. Basics of development 33

Double-clicking a component in the assembly diagram opens the component for
development with the appropriate editor. For example, Figure 3-2 shows a
business process open with the editor.

Figure 3-2 Business process editor

34 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 3-3 shows a mediation flow open in the editor.

Figure 3-3 Mediation flow editor

 Chapter 3. Basics of development 35

3.1.6 Business Integration view

The Business Integration perspective has a Business Integration view that
provides a logical view of the key resources in each module, mediation module,
and library (as shown in Figure 3-4 on page 36). Use this view to locate artifacts
with which you want to work. Double-click the artifact to open it in an editor.

Figure 3-4 Business Integration view

36 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.1.7 Physical Resources view

The Physical Resources view shows all of the file-level resources from the
modules and libraries in their natural form (as shown in Figure 3-5). For example,
business objects are stored as XSD files, and interfaces are represented in
WSDL format. You can also see generated artifacts that are not shown in the
business Integration view, such as classpath files, the sca.module files, and the
file resources for the resource adapters.

Figure 3-5 Physical Resources view

 Chapter 3. Basics of development 37

3.1.8 Other Business Integration views

The Business Integration perspective has additional views that you might find
useful as you develop your modules. You can add views that are not in the
perspective by default by selecting Window → Show View.

References view
The References view shows all of the artifacts that reference the selected item in
the Business Integration view, and it shows all the artifacts that it references (as
shown in Figure 3-6).

Figure 3-6 References view

38 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Outline view in Show Outline mode
The Outline view in the Show Outline mode displays all the elements in the
assembly diagram that is open in the editor pane. You enable the Show Outline
mode by clicking the icon.

Figure 3-7 Outline view

3.2 Working with WebSphere Integration Developer

The basic steps that you follow for development in WebSphere Integration
Developer are very similar, regardless of whether you are creating modules or
mediation modules. This section takes you through these basic development
steps. We discuss more details for developing the component implementations in
Chapter 4, “Building business integration applications” on page 127 and
Chapter 5, “Building mediations” on page 285.

3.2.1 Typical development flow

This section provides an overview of the development process for business
integration and mediation modules.

A typical development flow is as follows:

1. Start WebSphere Integration Developer and open a workspace (described in
3.2.2, “Start WebSphere Integration Developer” on page 42)

2. Switch to the Business Integration perspective for development (described in
3.2.3, “Using the Business Integration perspective” on page 43).

 Chapter 3. Basics of development 39

3. Create a library to store artifacts, such as business objects and interfaces,
that are shared among multiple modules (described in 3.3.1, “Libraries” on
page 44).

4. Create a new module or mediation module (described in 3.3.2, “Modules and
mediation modules” on page 46).

A module has an assembly diagram that shows the components of the
module and how the interfaces and references are wired together. The
module is the basic unit of deployment for WebSphere Process Server.

5. Create the business objects to contain the application data, for example,
customer or order data (described in 3.4, “Business objects” on page 53).

6. Create the interface and define the interface operations for each component.
The interface determines what data can be passed from one component to
another (described in 3.5, “Interfaces” on page 63).

7. Create and implement the service components.

A service component for a module can be implemented as one of the
following components:

– Java objects
– Business processes
– Human tasks
– State machines
– Rule groups (Business rules)
– Selectors
– Interface maps

We discuss how to implement the components in a business integration
module in Chapter 4, “Building business integration applications” on
page 127.

A service component for a mediation module will be implemented always as a
mediation flow.

We discuss how to implement the components in a business integration
module in Chapter 5, “Building mediations” on page 285.

Best Practice: Artifacts such as business objects (data types) and
interfaces need to be created within a library and referenced by the
module. A library, such as a module, contains resources and code for
applications. Libraries allow you to share these resources and code
between modules. However, unlike modules, libraries cannot be deployed
by themselves.

40 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

8. Build the module assembly by adding the service components, imports, and
exports to the assembly diagram. Bind the imports and exports to a protocol
(described in 3.6, “Module assembly” on page 69).

9. Test the module in the integrated test environment (described in 3.12, “Test
tools” on page 105).

10.Deploy the module to WebSphere Process Server.

When you deploy a module to the test environment or to WebSphere Process
Server, WebSphere Integration Developer packages the module as a J2EE
EAR file.

For any given module project, there can be up to three J2EE staging projects
that are generated with naming conventions based off of the module project’s
name:

– An Enterprise Application project.

– An EJB™ project (which includes the generated EJBs that represent the
runtime artifacts that make components into reality).

– A Dynamic Web project (which includes artifacts that represent Web
components, for example servlets and JSPs). A dynamic Web project is
generated when needed.

You cannot see these projects in the Business Integration view. To view these
projects, you need to change perspectives, for example, the Web perspective.

This step is discussed in Getting Started with IBM WebSphere Process
Server and IBM WebSphere Enterprise Service Bus Part 3: Run time,
SG24-7643.

11.Share the tested module with others on the team by putting it in a repository
(described in 3.13, “Team development” on page 115).

Note: J2EE staging projects (EJB projects and Web projects) are
generated artifacts from the deployment process. When you issue a
Project → Clean command, the system discards the former J2EE staging
project and regenerates it.

 Chapter 3. Basics of development 41

3.2.2 Start WebSphere Integration Developer

To start the WebSphere Integration Developer 6.1 with a new workspace, follow
these steps:

1. From the start menu select Start → Programs → IBM WebSphere
Integration Developer → IBM WebSphere Integration Developer 6.1 →
WebSphere Integration Developer 6.1.

2. Start WebSphere Integration Developer and create a new workspace in
C:\itso\DevWKSP, using upper case characters where specified.

Figure 3-8 Workspace launcher

3. When the WebSphere Integration Developer 6.1 opens, close the Welcome
page.

Figure 3-9 Business Integration Welcome page launcher

42 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.2.3 Using the Business Integration perspective

The Business Integration view provides a logical view of the key resources in
each module, mediation module, and library. Within each project, the resources
are categorized by type. You can also use the Business Integration view to
navigate through Java and J2EE resources and to open the various Java and
J2EE editors. See Figure 3-10.

Figure 3-10 Business Integration perspective

 Chapter 3. Basics of development 43

By default, when you launch the product, the Business Integration perspective is
opened. This perspective includes views that are designed for working with SCA
modules and their implementation. If the Business Integration perspective is not
open, you can open it as follows:

1. Select Window → Open Perspective on the menu bar.
2. Select Other from the drop-down menu.
3. Select the Business Integration perspective. If you do not see the

perspective, select Show all.

The Business Integration view is the primary navigation tool for the perspective.
Modules and their artifacts are organized in a logical manner. Double-clicking an
item in this view opens it with the appropriate editor in the editor area (upper right
section of the perspective).

The Physical Resources view provides a comparable view of the modules and
their artifacts, but it is organized to reflect the actual file structure on the system.

3.3 Project types

A project is an organized collection of folders or packages that are related to a
single work effort. The project types that you work with most in WebSphere
Integration Developer are modules, libraries, and mediation modules.

3.3.1 Libraries

Often, artifacts need to be shared so that resources in several modules can use
them. A library project is used to store these resources. Libraries contain the
following artifact types:

� Data types
� Interfaces
� Mappings

In order for a module or mediation module to use the resources from a library, the
library has to be added as a dependency to the module. A library cannot be
deployed by itself. However, you can add a library to the module and select to
deploy it with the module.

Also, you can add library dependencies to a library. For example, if one library
uses resources in another library, then you need to add the library dependency.

You can define dependencies when you create the project, if the library exists, or
later using the dependency editor.

44 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Creating a library
To create a new library, follow these steps in the Business Integration
perspective:

1. Right-click the Business Integration view and select New → Library from the
context menu (Figure 3-11). If Library is not an option, select Other →
Library.

Figure 3-11 Create a new library

2. Enter a name for the library and ensure that the “Use default location” option
is selected (Figure 3-12). Click Finish.

Figure 3-12 Name the new library

 Chapter 3. Basics of development 45

The new library is created, and you can view the structure of the library in the
Business Integration view, as shown in Figure 3-13.

Figure 3-13 Library structure

3.3.2 Modules and mediation modules

The fundamental project type for building an SCA application in WebSphere
Integration Developer is a module. A module is a project that is used for
development, version management, and organizing business integration
resources.

A module that includes business integration logic is referred to simply as a
module or sometimes as a business integration module. A business integration
module can contain various types of components, such as business processes,
human tasks, rules, state machines, and so forth, that are assembled together to
achieve an intended business goal. A module must be deployed to a WebSphere
Process Server runtime environment.

Modules that provide mediation services are referred to as mediation modules.
Mediation modules contain mediation flows and other components that are
required to provide the mediation. Mediation modules can be deployed to
WebSphere Enterprise Service Bus or WebSphere Process Server runtime
environments.

Modules and mediation modules, packaged as enterprise archive files (EAR
files) are the basic unit of deployment into WebSphere Process Server and
WebSphere Enterprise Service Bus runtime environments.

46 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Creating a module
The following steps illustrate how to create a module and the resulting structure
of the module:

1. Right-click in the Business Integration view and select New → Module
(Figure 3-14). If Module is not an option, select Other → Module. The New
Module wizard opens.

Figure 3-14 Create a new module

 Chapter 3. Basics of development 47

2. In the Module Name field, type the module name, as shown in Figure 3-15.

Figure 3-15 Create a new module

If you have a library defined in your workspace, click Next to select the
required libraries for this module. If not, click Finish. In this example, we have
a library, and click Next.

3. Select any libraries that you want to add as a dependency as shown in
Figure 3-16 and click Finish.

Figure 3-16 Add dependencies

48 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. The new module and artifacts display in the Business Integration view, as
shown in Figure 3-17.

Folders exist for the artifact types that can be placed in the module, and the
assembly diagram opens.

The assembly diagram opens but is initially empty.

Figure 3-17 New module

Note: Dependencies, data types, interfaces, and mappings can be shared
across modules only when they are stored in libraries. You need to create
in the module only artifacts of these types that you do not intend to use
beyond the module.

 Chapter 3. Basics of development 49

5. The next step is to create the artifacts (for example, business objects, and
interfaces), to implement the logic (Figure 3-18 shows the possible artifacts
that can be created to implement the business logic), and to populate the
assembly diagram with the components for the module.

Figure 3-18 Create new business logic artifacts

50 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Creating a mediation module
To create a mediation module, open the Business Integration perspective and do
the following steps:

1. Right-click in the white space of the Business Integration view and select
New → Mediation Module from the context menu.

2. Enter a name for the mediation. Select the target run time (mediations can run
in either WebSphere Process Server or WebSphere Enterprise Service Bus
run times). Then, click Next. See Figure 3-19.

Figure 3-19 Create the module

 Chapter 3. Basics of development 51

3. To add dependencies, select the required libraries as illustrated in
Figure 3-20.

Figure 3-20 Add libraries as dependencies

4. Click Finish. The new mediation module displays in the Business Integration
view, and the assembly diagram for the module opens, as shown in
Figure 3-21. Note that the assembly module has one component by default
that represents the mediation flow because we elected to create the
mediation component in step 2.

A mediation module can have the following implementation types:

– Mediation flow
– Java

Figure 3-21 CustomerMediation assembly diagram

52 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.4 Business objects

Business objects are one of the primary building blocks of any business
integration solution. They are containers for application data that represent
business functions or elements, such as a customer or an invoice. WebSphere
Integration Developer enables the simple creation of business objects using the
business object editor.

3.4.1 Business object fields

A business object contains fields that define the content of the business object.
Business objects can extend (define a super-set of fields) other business objects
through parent/child relationships; however, a business object can only inherit
from a single parent. These objects can also be used in conjunction with each
other to perform a desired task. You can create and edit business objects using
the business object editor.

Essentially, business object fields are the mechanism through which you define
what information a business object can hold and how that information should be
accessible. Each field has a name, type, cardinality, and other optional
properties. A business object is simply a container for the data that is specified in
its fields. An empty business object without fields is essentially useless because
it does not have the means to actually hold any data.

Business objects are the primary data structure for:

� Business data
� Data types that are defined in WSDL (interface) definitions

WebSphere Integration Developer’s business object editor is used to build and
edit business objects and their fields through a graphical interface.

You can add fields to a business object after you create it. In addition, you have
the following options:

� Create a new business object that inherits data from an exiting business
object

� Create a new business object from entries in an existing business object
� A business object can contain scalars or arrays of other business objects

 Chapter 3. Basics of development 53

3.4.2 Business graph

Business graphs are related to business objects. A business graph definition is
the wrapper added around a simple business object or a hierarchy of business
objects to provide additional capabilities, such as carrying change summary and
event summary information related to the business objects in the business graph.

3.4.3 Creating a business object

Business objects are created in the Data Types folder in a library, module, or
mediation module. To share a business object among modules, create it in a
library.

To create a new Customer business object:

1. In the Business Integration view, right-click the Data Types folder and select
New → Business Object from the context menu.

2. Enter the name for the new business object and, optionally, a folder name
(Figure 3-22). If the folder does not exist, it is created.

Figure 3-22 New Business Object wizard

3. Click Finish.

54 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The new business object (Customer in this example) is created in the location
that you specified and opens in the business object editor. See Figure 3-23.

Figure 3-23 New business object

3.4.4 Adding fields to a business object

With the business object editor, you can build and edit business objects and
business graphs (Figure 3-24). Use this editor to add, delete, and reorder fields
and to change the type of an field. To add a simple field to the business object:

1. Click the Add a field to a business object icon.

2. Replace the default name, field1, with the name of the field (that is,
CustomerId), as shown in Figure 3-24.

Figure 3-24 Business Object editor

 Chapter 3. Basics of development 55

3. You can take the default type, String, or select a new type by clicking String
and selecting a type, existing business object, or New (to create a new object)
from the drop-down menu as shown in Figure 3-25.

Figure 3-25 Select the field type

4. Repeat the previous step to add each field. If you create the fields in the
wrong order accidentally, you can use the up and down arrows in the toolbar
to change the order.

A field type can be a simple type or a business object type. You can select from
the list of existing business objects in the drop-down menu, or you can create a
new one. In the next example, we create a new business object called Address as
the data type for the CustomerAddress field in the Customer business object.
This example also illustrates the use of an array for a field.

56 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

To create a new business object type for CustomerAddress, follow these steps:

1. Click string and click New to start the New Business Object wizard
(Figure 3-26).

Figure 3-26 Building a complex business object

 Chapter 3. Basics of development 57

2. Enter the name and location values for the new business object and click
Finish (Figure 3-27). In this example, the new business object, Address, is
placed in a library.

Figure 3-27 Creating a super-set business object

58 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. The new business object opens, and you can populate the fields as shown in
Figure 3-28.

Figure 3-28 Derived business object

4. Save and close the new business object to go back to the original business
object, Customer. The new Address business object shows as the type for the
CustomerAddress field.

 Chapter 3. Basics of development 59

5. Next, define CustomerAddress as an array of Address objects. Select
CustomerAddress and in the Properties view (lower right pane), and then
select the Description tab. Select Array. Note the brackets ([]) display in the
field data type to indicate it is an array. See Figure 3-29.

Figure 3-29 List of addresses as a complex element type

6. Save the business object.

60 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

You can view and edit business objects in table format to make it easier to
examine the fields and their properties in a single view. To open the Customer
business object definition as a table:

1. Double-click the Customer business object in the Business Integration view to
open it.

2. In the business object editor, click the Display this business object in a table
view icon as shown in Figure 3-30.

Figure 3-30 Display business object as a table

Figure 3-31 shows the table view. You can toggle back and forth between these
views.

Figure 3-31 Table view of a business object

 Chapter 3. Basics of development 61

3.4.5 Creating a business graph

You can also create a business graph of your business object. In the Business
Integration view, right-click the business object and select Create a Business
Graph from the context menu.

The new business graph definition opens in the editor as shown in Figure 3-32.

Figure 3-32 Business graph created from a business object

62 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The business graph provides a verb field. Figure 3-33 shows the initial properties
of this field. The verbs that are allowed for this business graph are enumerated in
the properties. The back-end system that receives this container uses the verb to
determine what to do with the container.

Figure 3-33 Business graph verb properties

3.5 Interfaces

Interfaces link the components in a module. The inputs and outputs of each
component, specified by the interface, determine which data can be passed from
one component to another. An interface is created independently from the
implementation of the component. An interface can also be created for a
component that has no implementation; that is, the implementation is done later.

The following approaches can be taken in developing an interface. Which
approach you choose depends on your circumstance.

� Top-down development: Use this methodology when there is no existing
interface to work with. You launch the interface editor, provide a name for the
interface, and add one or more operations to it. Inputs, outputs, and faults are
added to each operation.

 Chapter 3. Basics of development 63

� Bottom-up development: Use this approach when you already have an
interface that was created as a WSDL file. In this case, you import the
interface into a module and then start the interface editor. The editor displays
the interface as operations, inputs, outputs, and faults. You can then use the
interface editor to modify operations, inputs, outputs, and faults.

� Meet-in-the-middle development: Use this approach when you have an
interface that either exactly matches the interface needs for a component or is
close to what you need. Drag the interface onto the component, and it either
is a perfect fit, or you might need to make a few modifications to it with the
interface editor to make the interface work. Meet-in-the-middle development
saves you development time.

An interface map enables you to connect components, despite disparities in their
respective interfaces. For example, when two components that have interfaces
with different method names need to be wired together, an interface map enables
these two components to interact. The interface acts as a mediator between the
two components, mapping the operations and parameters of both the source and
target interfaces.

Note: An interface map cannot be used in a mediation module. It can only be
deployed to a WebSphere Process Server.

64 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.5.1 Creating a new interface

This section describes the process of creating a new interface. The example that
we use here creates a new interface called CustomerDeliveryInterface with a
one-way operation that accepts a CustomerBG business graph input. To create a
new interface:

1. In the Business Integration view, expand the library or project folder where
you will create the interface. Right-click Interfaces and select New →
Interface from the context menu.

2. Enter the name for the interface and the location in the first panel of the New
Interface wizard. Click Finish. See Figure 3-34.

Figure 3-34 New interface wizard

 Chapter 3. Basics of development 65

The new interface is added to the folder in the Business Integration view, and the
interface opens for editing, as shown in Figure 3-35.

Figure 3-35 CustomerDeliveryInterface

3.5.2 Adding operations

You can use the interface editor to build WSDL port type interfaces that are used
to define some SCA components (Figure 3-36). You use this editor to add and to
remove operations and specify an operation’s inputs and outputs.

Two operation types are supported:

� Request-response operations: A request is sent, and a response is returned to
the interface. The operation has an input and an output that is defined by
default. You can add additional input and outputs for the operation, and you
can add faults.

� One-way operations: A request is sent, and no response is needed. The
operation has only an input defined. You can add additional inputs.

To add a new operation and input parameter to the interface:

1. In the interface editor, click the Add One Way Operation icon as shown in
Figure 3-36.

Figure 3-36 Add a one-way operation

66 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Change the operation name from operation1 to a meaningful operation name
(customerDelivery in this case) as shown in Figure 3-37. You can also
change the name in the Properties view.

Figure 3-37 Interface operations editor

Depending on the type of operation, you have additional active icons to help
add input , output , and fault fields and to delete a selected field
or operation .

3. In the Input(s) row, click the default input of input1. Type over this name with a
meaningful name (inputCustomerBG).You can also change the name of this
field in the Properties view.

4. Click the string value in the Type field. Then, scroll down and select the
business object or, as in this example, the business graph (CustomerBG).
See Figure 3-38 on page 68.

 Chapter 3. Basics of development 67

Figure 3-38 Interface Operations wizard

5. With the new input field selected, you can view its settings in the Properties
view as shown in Figure 3-39.

Figure 3-39 Interface description

68 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. Save and close the new interface definition.

3.6 Module assembly

A module provides business services that are modeled as SCA components that
are wired together in an assembly diagram. The WebSphere Integration
Developer’s assembly editor lets you build applications by assembling the SCA
components that make up the module.

The assembly diagram is created when you create the module. Business
integration modules initially have an empty assembly diagram. Mediation
modules initially have one component that is implemented as a mediation flow.

3.6.1 Module assembly diagrams

WebSphere Integration Developer provides a number of methods that are
designed for convenience during the performance of different tasks for populating
the assembly diagram. You will see some of these methods in the various
examples throughout this book. To simplify the process for illustration purposes,
consider the following flow for assembling the components in an assembly
diagram:

1. Create a new module. This process also creates the assembly diagram.

2. Open the assembly diagram in the assembly editor by double-clicking
Assembly Diagram for the module in the Business Integration view
(Figure 3-40). Initially the diagram is empty.

You can drop existing components to the assembly diagram, or you can use
the palette to drop a new component on the diagram. Double-clicking a new
component starts a wizard to help you build the implementation for the
component.

 Chapter 3. Basics of development 69

Figure 3-40 Initial assembly diagram

3. Add a new business process component. In the Business Integration view,
right-click Business Logic and select New → Business Process. Complete
the wizard to create the new business process component.

During the process, you create a new interface or select an existing interface
for this component. You also identify the operation in the interface that starts
the process.

At this point, the business process opens in a separate editor. See
Figure 3-41.

Figure 3-41 Business process logic

70 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Close the business process logic.

5. Return to the assembly diagram and drag the new business process from the
Business Integration view to the assembly diagram as shown in Figure 3-42.

Figure 3-42 Add the business process logic to the assembly diagram

6. Add import components to the assembly diagram for services the process will
call. You can add these to the diagram by dragging an existing export from
this or another module, an interface from this module or a library, or a Web
service port to the diagram. Alternatively, you can use the palette to create a
new import component to the diagram.

Dragging an existing artifact to the diagram to use as an import allows you to
select the component type and binding. For example, when you drag an
interface to the assembly diagram, you will have the options shown in
Figure 3-43.

Figure 3-43 Creating imports and exports

 Chapter 3. Basics of development 71

7. Wire the business process to the interface for the import component as shown
in Figure 3-44.

Figure 3-44 Wire the business process to the import component

This creates the reference as shown in Figure 3-45.

Figure 3-45 Wire the import component

8. Import components must have matching reference partners in the business
logic implementation. If you add an import to the assembly diagram and no
reference partner exists in the implementation, you see an error.

Because we have not added any logic to the business process, the simplest
way to fix the error is to regenerate the implementation for the business
process component. Select the business process in the assembly diagram,
right-click, and select Regenerate Implementation. The problem with this
method is that you lose any work that you have done to the business process
logic.

72 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

9. Add additional components as needed (for example interface maps, human
tasks, adapters, and rule groups). Wire the business process to the interfaces
for these components, creating references in the process. See Figure 3-46.

Figure 3-46 Assembly diagram

10.Generate an export for the business process. Right-click the business
process, and select Generate Export → binding type.

11.Generate bindings for any import and export components that do not already
have them.

3.6.2 Mediation module assembly diagrams

The process for populating a mediation module assembly diagram is very similar
to the process for a module, though somewhat simplified because you do not
have as many choices for implementation.

A typical flow for assembling the components in an assembly diagram for a
mediation module is:

1. Open the assembly diagram in the assembly editor by double-clicking the
Assembly Diagram for the module in the Business Integration view. The
assembly diagram has a mediation flow component.

2. Add import components to the assembly diagram for services that the
mediation will call. You can add these to the diagram by dragging an existing
export, Web service port, or interface to the diagram. Alternatively, use the
Palette to create a new Import.

3. Wire references to the interfaces.

4. Generate an export component for the business process. Right-click the
mediation flow in the assembly diagram, and select Generate Export →
binding type. You can elect to create the binding when you create the export,
or later.

 Chapter 3. Basics of development 73

5. Generate bindings for import and export components that do not already have
one generated.

3.6.3 Generating a binding

Each export and import component must have a binding generated for it before
deployment. The binding determines the type of transport used for the message
and the characteristics of the transport. To generate a binding:

1. Select the export or import component on the assembly diagram. Right-click
and select Generate Binding → binding type.

Figure 3-47 shows the binding options for an export component.

Figure 3-47 Export bindings

Figure 3-47 shows the binding options for an import component.

Figure 3-48 Import bindings

2. Use the Properties view to define the required transport settings.

74 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

JMS binding example
This example illustrates how to define a JMS binding for an export component,
which allows a JMS client to call the process. In this example, we add an export
component with a JMS binding to the business integration module shown in
Figure 3-49. In this case, we have not yet created the export component. We will
define the export component and binding at the same time.

Figure 3-49 CustomerProcess assembly diagram

To define a JMS binding, follow these steps:

1. Right-click the business process and select Generate Export → Messaging
Binding → JMS Binding.

Figure 3-50 Generate an export component with a JMS binding

 Chapter 3. Basics of development 75

2. Complete the information that is required for the JMS binding as shown in
Figure 3-51.

Figure 3-51 JMS binding options

The options are as follows:

a. The domain options depend on the type of operations that are defined on
the interface. Interfaces with only one-way operations can support both
publish/subscribe and point-to-point domains. Interfaces with
request-response operations only support point-to-point.

b. JMS bindings require a JNDI namespace entry that defines the messaging
resources (activation specification, queues, and topics).

You have an option to create the connections and destinations that are
required for the JMS binding when the component is installed on your
server, or you can specify the JNDI name of existing resources on the
server.

c. JMS resources can require security authorization. You can specify the J2C
authentication data entry to use for this purpose at run time.

d. A data binding provides a mapping between the format that is used by an
external JMS message and the SDO representation that is used by the
module.

76 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Click Browse to open the Data Binding Selection window. Select Show
predefined data bindings, and select the data binding. In this example,
we serialize the data as XML. Then, click OK.

Figure 3-52 Select the data binding

e. The function selector is used to determine which operation corresponds to
an incoming message.

Click Browse to select a function. Select Show predefined function
selectors, and select JMS default Function Selector. Click OK.

 Chapter 3. Basics of development 77

3. Click OK again to create the export component and binding. The export
component is created with the same interface as the business process and
are wired to the process. See Figure 3-53.

Figure 3-53 Full module assembly in the assembly diagram

4. You can view and modify the values that you specified for the bindings and
additional settings in the Binding tab in the Properties view.

3.6.4 Using adapters

WebSphere Adapters provide a mechanism that allows for integration of existing
EIS infrastructure with process integration applications. Adapters can be plugged
into the process server to provide connectivity between the EIS, the process
server, and the business integration application.

The external service discovery wizard discovers applications and data on an EIS
and lets you generate services from the discovered applications and data. During
this discovery, a resource adapter is imported and used to create a service to
access the information from the external system. The generated artifacts include
the interfaces and business objects, the import or export component, and an EIS
binding to provide communication with the service on the EIS system.

To create an export component that uses an adapter, select an adapter from the
Inbound Adapters folder on the assembly editor palette and drag it onto the
canvas. Complete the fields in the wizard to generate the export.

To create an import component that uses an adapter, select an adapter from the
Outbound Adapters folder on the assembly editor palette and drag it onto the
canvas. Complete the fields in the wizard to generate the import.

78 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 3-54 shows the list of both application adapters (for example, PeopleSoft,
SAP, and so forth) and technology adapters (for example, Email, JDBC, and so
forth) available on the palette of assembly editor.

Figure 3-54 List of Outbound and Inbound Adapters

For more detailed discussion about adapters, refer to Chapter 7, “Using
adapters” on page 471.

3.7 Business object maps

The business entities that travel through WebSphere Process Server are in the
form of service data and business objects. A business object map provides the
means to map each part of an input message to the corresponding part of an
output message.

Note: Unlike interface maps, business object maps can also be used in
WebSphere Enterprise Service Bus.

 Chapter 3. Basics of development 79

WebSphere Process Server data mapping support provides the following
capabilities:

� Transforming data values from one or more fields in a source business object
to one or more fields in a destination business object.

� Establishing and maintaining relationships between data entities that are
equivalent but are represented differently and cannot be directly transformed.

� Enabling access to external mapping resources, such as databases for
performing queries.

3.7.1 Data transformation types

The data transformation types that you can use in business object maps are:

� Move: Assigns the value in the source to the target.

� Extract: The source value must be a string, which extracts a portion of the
string and assigns it to the target. This is similar to the String.substring()
method in Java.

� Join: Combines the values of two or more sources into one, and assigns it to
the target. The target of a Join transform must be a string.

� Submap: The source and target must be business objects (that is, they must
be complex types). The input and output of the specified business object map
must be of the same type as the sources and targets of the transform.

� Custom: Specifies custom logic for mapping the inputs and outputs by using
Java code.

� Assign: Sets the constant value to the output.

� Relationship: Performs relationship management. The source and target of
a Relationship transform must also be complex types.

� Relationship Lookup: Performs relationship management between static
cross-referencing data. The source and target of a Relationship Lookup
transform must be simple types.

� Custom Assign: Similar to Custom, except that it does not take any input. It
is also similar to Assign, except that you can use more logic in assigning the
values using Java (using the text or visual editors).

� Custom Callout: Similar to Custom, except that it does not take any output. It
can be useful for initialization before executing any transforms.

80 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.7.2 Creating a business object map

This example illustrates how to create a business object map. In this particular
example, the map transforms a GBO (Customer) to an ASBO (ITSOCustomer).
Follow these steps:

1. In the Business Integration view, expand the module or library. Right-click the
Mapping folder and select New → Business Object Map from the context
menu.

2. In the New Business Object Map dialog box, enter the name and location for
the map as shown in Figure 3-55. Click Next.

Figure 3-55 New Business Object Map wizard

 Chapter 3. Basics of development 81

3. Click Add to select the input (source) and output (target) business objects
click Finish. In Figure 3-56, two business graphs are selected.

Figure 3-56 New business object map wizard

The new map is created and opens in the editor.

82 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 3-57 Double-click here to make the view full-screen

4. Map the source elements to the target.

As you hover the mouse over an element in the source business object, an
orange circle displays. Select the circle, and drag it to the target element.

Connections made between two elements in a business object have the Move
action as the default. You can change the transformation type by clicking
Move and selecting a new transformation type from the drop-down menu.

Connections made between the source and target at the business object level
are created with Submap as the transformation type.

Tip: The mapping editor requires a wide view to show all the business
object fields. You can make the mapping editor full-screen within the
perspective by double-clicking the top bar of the view. You can go back to
the original perspective layout by double-clicking again. See Figure 3-57.

 Chapter 3. Basics of development 83

Figure 3-58 Mapping CustomerBG to ItsoCustomerBG

5. Submaps have an underlying map that defines the mapping between the
fields in the source and target business objects. The submap mappings are
creating in the Details tab of the Properties view for the submap. A submap is
stored as a new map. To the right of the business object map field, click the
New button to provide a name for the new map. See Figure 3-59.

Figure 3-59 Properties tab to create the Customer_to_ITSOCustomer map

84 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. The new map opens. Map the fields as shown in Figure 3-60.

Figure 3-60 Submap

7. Close the submap and save the business object map.

3.8 Using a stand-alone reference

A stand-alone reference allows you to access a process from a non-SCA client
(for example from a JSP in a J2EE application). The stand-alone reference is put
in the assembly diagram.

To add a stand-alone reference to the assembly diagram:

1. Select References from the Palette, and drop it on the canvas.

2. Wire the stand-alone reference to the process component.

Note: Only one stand-alone Reference node available in each assembly
diagram at a given time.

 Chapter 3. Basics of development 85

If multiple interfaces exist, select the interface (CustomerDeliveryInterface
in this example).

When prompted, if you want to convert the WSDL interface to Java interface,
click Yes because you will be using a Java client (the JSP). See Figure 3-61.

Figure 3-61 Accepting CustomerDeliveryInterface wiring

The stand-alone reference is now wired with the process component as
shown in Figure 3-62.

Figure 3-62 Assembly Diagram with Stand-alone Reference

3. Save the assembly diagram.

Note: In most applications, you use WSDL definition interface definitions,
which is one of the few times that you use Java (the exception to the rule).

86 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. The Properties view for the stand-alone reference resemble those shown in
Figure 3-63.

Figure 3-63 Stand-alone References Properties

Note: The name of the stand-alone reference is
CustomerDeliveryInterfacePartner, which is the name of the non-SCA
components that are used to locate the stand-alone reference. (You will
see this name used later in the Java code of the client JSP.)

 Chapter 3. Basics of development 87

In the Business Integration view, you see a new class file is generated with
the name of the interface (CustomerDeliveryInterface) as shown in
Figure 3-64.

Figure 3-64 Java Usages class file

88 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Double-click the CustomerDeliveryInterface class file and observe the
generated file with customerDelivery method as shown in Figure 3-65.

Figure 3-65 Generated class file

3.8.1 Invoking the reference from a JSP

The following steps illustrate how to build a client to invoke an SCA component
from a JSP:

1. Create a Web project and create a JSP in the project.

2. Add code in JSP to invoke the process (see Example 3-1).

Example 3-1 JSP code snippet to call the CustomerDeliveryInterfacePartner client code

<%@ page import="com.ibm.websphere.sca.ServiceManager" %>
<%@ page import="com.ibm.websphere.sca.Service" %>
<%@ page import="commonj.sdo.DataObject" %>
<%@ page import="com.ibm.websphere.bo.BOFactory" %>
<%@ page import="com.ibm.websphere.sca.scdl.*" %>
<%@ page import="com.ibm.websphere.sca.*" %>

 Chapter 3. Basics of development 89

<%@ page import="com.ibm.websphere.sca.sdo.*" %>
<%
 try {

ServiceManager serviceManager = new ServiceManager();
Service service =

(Service)serviceManager.locateService("CustomerDeliveryInterfacePartner");

 BOFactory boFactory = (BOFactory)
serviceManager.locateService("com/ibm/websphere/bo/BOFactory");

DataObject inputCustomerBGBO = boFactory.create("http://CustomerLibrary/gbo",
"CustomerBG");

DataObject inputCustomerBO = boFactory.create("http://CustomerLibrary/gbo",
"Customer");

 inputCustomerBO.setString("CustomerId","100");
inputCustomerBO.setString("CustomerNumber","JS00");
inputCustomerBO.setString("CustomerName","Jane Smith");
inputCustomerBO.setString("CustomerType","Partner");
inputCustomerBO.setString("CustomerStatus","Active");

 inputCustomerBGBO.setDataObject("Customer",inputCustomerBO);
service.invoke("customerDelivery", inputCustomerBGBO);

}
catch (ServiceBusinessException e) {

System.out.println("Exception occured: ServiceBusinessException" + e);
}
catch (Exception e) {

System.out.println("Exception occured: Exception" + e);
}
%>

3. Open the dependencies for the business integration module with the
stand-alone reference. Add a dependency for the Web project as a J2EE
project.

4. Make sure that the “Deploy with Module” option is selected so that the Web
project is added to the EAR file.

90 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.9 Working with databases in the workspace

WebSphere Integration Developer provides the Data perspective to help you
integrate databases into a solution. This perspective provides tools for creating
connections to and working with the following database types:

� Cloudscape®
� DB2 UDB
� DB2 for i5/OS
� DB2 for z/OS
� Derby
� Generic JDBC
� Informix®
� MySql
� Oracle
� SQL Server®
� Sybase

To open the perspective, select Window → Data Perspective. If the Data
Perspective is not in the list, select Other and then Data in the Open Perspective
panel.

3.9.1 Derby databases

Apache Derby is a Java relational database management system that is included
with WebSphere Process Server 6.1 and, thus, WebSphere Integration
Developer 6.1.

There are two approaches to working with Derby databases:

� Using WebSphere Integration Developer Database Explorer
� Using the ij tool

Two variations of Derby are included with WebSphere Process Server:

� Derby Embedded (for stand-alone servers)
� Derby Network (for distributed server environments)

Neither version is appropriate for a production environment.

 Chapter 3. Basics of development 91

3.9.2 Using the Database Explorer to connect to a database

The Data perspective includes the Database Explorer view that allows you to
define connections to databases and to work with those databases (Figure 3-66).
In the Database Explorer view click the plus (+) sign to view all available
connections. By default, a sample connection for Derby is included.

Figure 3-66 Data perspective and the Database Explorer view

92 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Connections are generally made to existing databases, but if you are working
with Cloudscape or Derby, you can create a new database at the same time that
you create the connection. Follow these steps:

1. Right-click Connections. and select New Connection. (You could also
simply click the New Connection icon). See Figure 3-67.

Figure 3-67 Add a new connection

2. On the New Connection panel, select the database type.

3. Enter the information that is required to connect to the database (as shown in
Figure 3-68 on page 94). This information varies depending on the database
server type that you select, but the basic properties remain the same. Enter:

– A name for the connection
– Information that is required to connect to (or create) the database

 Chapter 3. Basics of development 93

Figure 3-68 Create a new database connection

4. Use the Test Connection to test the connection to the database.

94 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Click Finish. The new connection shows in the Database Explorer view. You
can see the schema, tables, and other data for the database as shown in
Figure 3-69.

Figure 3-69 New connection

3.9.3 Using the SQL editor

You can use the SQL editor to execute SQL statements against the database to
which you are connected:

1. Click the Open SQL Editor icon in the toolbar of the Database Explorer
view to open a New_Statement_1 tab where you can type or paste SQL
statements.

2. When you have entered the statements, right-click anywhere in SQL editor
panel, and select Run SQL from the pop-up menu.

3. In the Connection Selection panel select Use an existing connection, and
select the connection.

4. Click Finish.

 Chapter 3. Basics of development 95

You see the DataOutput report shown in Figure 3-70. Each SQL statement is
executed, and its result is reported in the Status column.

Figure 3-70 SQL output

3.9.4 Loading data into tables

Data can be loaded into tables from a file that contains the data. For example, the
data for the CUSTOMER table is stored in a file (see Example 3-2)

Example 3-2 Database data to load

"10001","John Smith Corp.","G","ABC0000000001231","245 South
Road","12601","Poughkeepsie","NY",1000,50000
"10002","Jane Doe Inc.","G","ERT0000000001235","3039 E. Cornwallis
Road","27709","RTP","NC",50000,15000
"10003","YXZ itso Corp.","F","LKJ0000000001232","4205 S. Miami
Blvd","27709","RTP","NC",10000,5000
"10101","John Smith Corp.","P","ABC0000000001231","245 South
Road","12601","Poughkeepsie","NY",1000,50000

To load the data into the table:

1. Expand the schema, then expand Tables.

2. Select the table, right-click, select Data from the pop-up menu, and then
select Load.

3. On the Load Data panel select the input file and review the file format
parameters to make sure that they correspond to the format that is used in the
data file that you plan to load. Then, click Finish.

96 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

You can see the results in the DataOutput window as shown in Figure 3-71.

Figure 3-71 Results

3.9.5 Viewing and editing data in the tables

Working with the data in the tables is easy with the Database Explorer. Using the
CUSTOMER table as an example, to view and edit data in the tables:

1. On Database Explorer window right-click the table, and select Data → Edit as
shown in Figure 3-72.

Figure 3-72 Edit tables

 Chapter 3. Basics of development 97

A new tab opens that shows the contents of the table (Figure 3-73).

Figure 3-73 Table contents

2. To save the updates press Ctrl+S, or right-click and select Save.

If you want to restore the changes that you just made, right-click and select
Revert. You can insert and delete rows as well.

3. To exit, click the X at the top of the tab.

98 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.9.6 Closing connections

The context menu for the connection has options to disconnect and reconnect to
the database.

To gracefully close the database connection, select the connection, right-click,
and select Disconnect (Figure 3-74). The icon to the left of the connection
changes color from green to yellow.

Figure 3-74 Disconnect from the Derby database

To reconnect select the connection, right-click and select Reconnect.

3.10 Derby ij tool

Another way to work with Derby database is to use scripts and the ij scripting tool
that comes with WebSphere Integration Developer 6.1, WebSphere Process
Server 6.1, and WebSphere Enterprise Service Bus 6.1. You can find more
information about ij at:

http://db.apache.org/derby/papers/DerbyTut/ij_intro.html

 Chapter 3. Basics of development 99

http://db.apache.org/derby/papers/DerbyTut/ij_intro.html

Here, we provide just a quick demo on how to get started with ij. To start the tool,
open a Command Prompt window and type:

WID_root\runtimes\bi_v61\derby\bin\embedded\ij

If you are working with a WebSphere Process Server or WebSphere Enterprise
Service Bus installation rather than WebSphere Integration Developer, replace
WID_root with WPS_root or WESB_root respectively.

Figure 3-75 Starting ij

Now, you are ready to work with ij.

You can use:

� The help; command to learn more about the tool.

� The run ‘filename’; command to execute scripts.

3.10.1 Create a database

Databases are created by running scripts that contain the SQL that is required to
create the database and tables. For example, Example 3-3 shows a portion of
the script that is used to build the ORDERDB database, create the tables, and
import data to the tables.

Example 3-3 ConnectCreateLoadORDERDBTablesLoad.ddl

-- ConnectCreateLoadORDERDBTablesLoad.ddl
connect
'jdbc:derby:C:\itso\sampleDB\ORDERDB;create=true;user=dbadmin;password=
dbadmin';

CREATE TABLE "DBADMIN"."ITEM" (
 "ITEMID" VARCHAR(10) NOT NULL ,
 "ITEMNAME" VARCHAR(30) ,
 "PRICE" INTEGER NOT NULL) ;

Note: Every ij command ends with semicolon (;).

100 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

ALTER TABLE "DBADMIN"."ITEM"
 ADD PRIMARY KEY
 ("ITEMID");
... (more here) ..
CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE (null,
'ITEM','C:\itso\RedBookData\Item.data',null,null,null,0);

Example 3-4 shows the ij command to run this script and the output.

run ‘C:\junk\testDerby_ddl\ConnectCreateLoadORDERDBTablesLoad.ddl’

Example 3-4 The ij command and output

C:\WID61\runtimes\bi_v61\derby\bin\embedded>ij
ij version 10.1
ij> run 'C:\itso\RedBookData\ConnectCreateLoadORDERDBTablesLoad.ddl';
ij> -- ConnectCreateLoadORDERDBTablesLoad.ddl
connect
'jdbc:derby:C:\itso\sampleDB\TESTDB;create=true;user=dbadmin;password=d
b
admin';
ij> ---
-- DDL Statements for table "ORDERHEADER"
--

 CREATE TABLE "DBADMIN"."ORDERHEADER" (
 "ORDID" VARCHAR(40) NOT NULL,
 "CUSTID" VARCHAR(20) ,
 "AMOUNT" INTEGER ,
 "SUBMITTERID" VARCHAR(30) ,
 "STATE" VARCHAR(10) ,
 "CREATIONDATE" TIMESTAMP ,
 "COMPLETIONDATE" TIMESTAMP ,
 "ITEMID" VARCHAR(10) NOT NULL ,
 "ITEMQTY" INTEGER NOT NULL) ;
0 rows inserted/updated/deleted
ij> -- DDL Statements for primary key on Table ORDERHEADER

ALTER TABLE "DBADMIN"."ORDERHEADER"
 ADD PRIMARY KEY
 ("ORDID");

Note: If the command hangs, be sure that you entered the semicolon (;) at the
end of the command.

 Chapter 3. Basics of development 101

0 rows inserted/updated/deleted

... more output here ..

ij> CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE (null,
'ITEMWHS','C:\itso\RedBookData\Ite
mwhs.data',null,null,null,0);
0 rows inserted/updated/deleted
ij>

Note that the output indicates:

0 rows inserted/updated/deleted

Data was actually loaded into the tables, which can be verified with Database
Explorer. However, note that you have to disconnect from the database in the
ij session before accessing the same database from the Database Explorer.
Otherwise, you will get an error.

3.10.2 Database disconnect and reconnect

Use the following commands to disconnect from a Derby database (as shown in
Figure 3-76):

disconnect;
exit;

Figure 3-76 The command to disconnect from a Derby database

To reconnect to a database, use the following command (as shown in
Figure 3-77):

connect 'jdbc:derby:file;create=true;user=userID;password=pw';

Figure 3-77 The command to reconnect to a database

102 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.10.3 Drop tables

To drop tables and disconnect from the database, create a script with the
commands and run it from the ij tool.

Figure 3-78 shows the commands that are included in this file and that are
executed by the script.

Figure 3-78 The DropAllORDERDBTablesDisconnect.ddl script

Note: The order in which the ORDERDB tables are dropped is important
because of imposed constraints. The script that is used to drop ORDERDB is
called DropAllORDERDBTablesDisconnect.ddl.

 Chapter 3. Basics of development 103

3.10.4 Viewing a database

You can type SQL statements directly in ij to interact with a database. For
example:

connect 'jdbc:derby:file;create=true;user=userID;password=pw';
SELECT * FROM table;
(view output)
disconnect;
exit;

For example, if you want to verify whether the CUSTOMER table was initialized
correctly with application data, you type in the SQL statements shown in
Figure 3-79.

Figure 3-79 Viewing a database

104 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.11 Deploying modules

Deploying modules involves placing the files that comprise modules and
adapters, if used, into an operational environment for production or testing. The
two deployment environments include:

� WebSphere Integration Developer integrated test environment
� WebSphere Process Server production environment

3.11.1 Deploying the module for testing

WebSphere Integration Developer integrated test environment incorporates the
runtime environment support for WebSphere Process Server, WebSphere
Enterprise Service Bus, or both, depending on the test environment profiles that
are installed when WebSphere Integration Developer is installed.

In WebSphere Integration Developer, you can deploy the modules to one or more
servers in the test environment. This method is typically the most common
practice for running and testing business integration modules.

3.11.2 Deploying the module for production

Deploying a module built in WebSphere Integration Developer to WebSphere
Process Server in a production environment is a two-step process:

� Export the module in WebSphere Integration Developer as an enterprise
archive (EAR) file.

� Deploy the EAR file using the WebSphere Process Server administrative
console.

3.12 Test tools

WebSphere Integration Develop provides a variety of tools to help you test your
SCA application as well as J2EE applications. This section discusses the most
commonly used features for testing for business integration and mediation
modules.

 Chapter 3. Basics of development 105

3.12.1 Integrated test environment

WebSphere Integration Developer provides a WebSphere Process Server and a
WebSphere Enterprise Service Bus runtime environment. The two server types
are predefined when you open a workspace. The Servers view and Console view
are the primary views that you use to work with servers.

Servers view
The Servers view, shown in Figure 3-80, allows you to start and stop the servers
and to publish (deploy) to the server. The toolbar at the top of the view has icons
to help you do these actions quickly. You can also select options from the context
menu (right-click) of the server.

Figure 3-80 Server view

To start a server, select the server, and click the Start icon . The server
starts, and you are switched to the Console view where you can monitor the
progress of the startup.

To stop a server, select the server, and click the Stop icon . The server stops,
and you are switched to the Console view where you can monitor the progress.

When you make changes to deployed applications, you need to republish the
applications to the server. To do this, select the server, and click the Publish icon

. You need to publish changes only if the server state is Republish. If the
state is synchronized, the server has the latest copy of the application.

106 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Console view
The Console view, shown in Figure 3-81, shows you SystemOut messages from
the server. Because the messages tend to be very long, double-click the bar
above the view (to the right of the Console tab) to make it a full-screen view.

Figure 3-81 Console view

You can clear the console so that you only see new messages by clicking the
Clear console icon .

You can switch between consoles of active servers by clicking the Display
selected console icon and selecting the server from a drop-down list.

 Chapter 3. Basics of development 107

Deploying and undeploying applications
To deploy or undeploy applications to a server, select the server in the Servers
view, right-click, and select Add and remove projects.

Move the projects to deploy from the Available projects column to the Configured
projects column, and click Finish. Note that projects are packaged as
applications automatically. The project names you see will be the EAR file name.
See Figure 3-82.

Figure 3-82 Add and remove projects

The server must be started for an application to deploy. If the server is stopped,
this process starts it and deploys the application.

Component testing: When you run a component test, the application is
deployed for you automatically. However, you might want to deploy the
application and any dependent applications ahead of time to make sure all the
components that you need are available.

108 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Administrative console
WebSphere Process Servers and WebSphere Enterprise Service Bus servers
are managed through administrative tools. The primary tool is the Web-based
administrative console, shown in Figure 3-83.

To open the console in the workspace, select the server in the Servers view,
right-click and select Run administrative console.

Log in to the console using admin as both the user ID and password.

Figure 3-83 Administrative console

Logs
The SystemOut and SystemErr logs for the servers is stored, by default, in the
WID_root\pf\profile\logs\server directory, where profile is “wps” or “esb”
depending on the server.

You can also view these logs through the administrative console by selecting
Troubleshooting → Logs and Trace → server → JVM™ logs. Select the
Runtime tab.

 Chapter 3. Basics of development 109

3.12.2 Component testing

WebSphere Integration Developer provides an integration test client that is
intended to test modules, individual components, and inter-module components.

The test client provides emulation services so that you can test individual
components without having all the components available. An emulator can be
defined for references, components, or imports in the module. Emulators are
manual by default, meaning the test stops at the emulator and allows you to enter
the response parameters for the emulated artifact before continuing. You can
also have programmatic emulators that use a response file to emulate the
artifact.

You can open the integration test client from the Business Integration view or
assembly diagram by right-clicking the module or component that you want to
test and selecting Test Module or Test Component.

A typical test sequence for a component is as follows:

1. Deploy the modules to the server.

2. Open the module in the assembly editor.

3. Right-click the component, and select Test Component. The integration test
client opens to the Events tab.

4. Select the module, component, interface, and operation that you want to test.
The test starts with the component that you select, so you can test by
providing input at any component interface in the module.

5. Enter the data that you want to provide as input data in the Initial request
parameters area. You have several options for entering this data, in addition to
entering it manually:

– Test data can be stored in XML files for import. Attributes in the XML that
match the test data attributes are imported. The simplest way to create the
XML files is to enter the data into the initial request parameters. Then,
right-click the business object in the table, and select Export to XML file
from the context menu. To use the file in a subsequent test, right-click the
business object in the initial request parameters table and select Import
from XML file.

This allows you to populate all the input parameter fields easily with
pre-set values.

– Store the data in the data pool. Enter the data manually the first time that
you start the test. Then, right-click the field that you want to save and
select Add value to pool from the context menu. You can retrieve the
value for this field in subsequent tests by right-clicking the field and
selecting Use value from pool.

110 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

This allows you to populate individual fields with pre-set values.

– You can also use the Copy value and Paste value functions from the
context menu of each field to copy data from one field to another.

Figure 3-84 The integration test client populated with Customer info

6. Switch to the Configuration tab to verify, define or remove emulators.

7. Switch back to the Events tab and click the Continue icon to start the test.

 Chapter 3. Basics of development 111

8. Select the deployment location (WebSphere Process Server v6.1) as shown
in Figure 3-85 and click Finish.

Figure 3-85 Deployment Location wizard

9. Enter the administrative user ID and password (admin for both) and click OK
as shown in Figure 3-86.

Figure 3-86 User Login for Test Module

112 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

10.The invocation of the test runs with the data that you provided. Each step
through the components is recorded in the Events pane (Figure 3-87), which
lets you verify that the path that you expected the module to take is what
actually happened.

Figure 3-87 Values retuned from the emulation

11.If a component implementation is missing (that is, if the reference in the
assembly diagram is not wired), an emulator is defined for that reference.
When the module reaches that point, the test client stops with an Emulate
event. Select the event, and fill in the data the emulator is to provide as
output. Then, click the Continue icon again.

12.At the end of the run, the output data is displayed in the Output parameters
window.

13.To run a new test with different input parameters, click the Invoke icon .
Complete the new input parameters, and click the Continue icon.

To repeat a test using the same input data, right-click the Invoke event and
select Rerun.

 Chapter 3. Basics of development 113

3.12.3 JSP component testing

To test a JSP component:

1. Switch to the J2EE perspective or one of the Java perspectives.

2. In the Physical Resources view, navigate to the Web module and locate the
JSP as shown in Figure 3-88.

Figure 3-88 CustomerModuleWeb in the J2EE perspective

114 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Right-click the JSP and select Run As → 1. Run on Server (Figure 3-89).

Figure 3-89 Starting JSP page from J2EE perspective

4. Select WebSphere Process Server v6.1 and click Finish.

5. Open a browser, enter the URL for the JSP, and test the execution.

3.13 Team development

WebSphere Integration Development supports team development with
Concurrent Versions System (CVS) and Rational ClearCase®. This support
allows developers to coordinate complex development projects and tasks (for
example building and reuse, sharing of components, and version control) in a
team environment.

 Chapter 3. Basics of development 115

3.13.1 Sharing your integration project

The single user environment is the basic environment for authoring a project. In
this environment, a single user at a time builds, stores, validates, and analyzes
the application. The single user environment is ideal for small scale projects in
which parallel (or concurrent) development of the project does not often occur.

The multi-user environment supports larger projects with several users
contributing to build the project. Parallel development occurs when two or more
users work on the project simultaneously. The danger with parallel development
in the single user environment is that data loss can occur.

If the team is using importing and exporting artifacts to share the project, the
team members must cooperate and coordinate closely to avoid overwriting each
other’s changes and causing data loss.

Figure 3-90 Shared project integration

The following are reasons for using versioning tools:

� Efficient, reliable, and layered security
� Diversity of support for multiple platforms
� Central and distributed code
� Backup and multiple layers of saved changes
� Only differences are stored on server—not copies
� Concurrent access to the same file by multiple users

User
User

User
User

User

Central
repository

Workstation
Workstation

WebSphere Integration
Developer

Workspace

WebSphere Integration
Developer

Workspace

Single user environment
Multi-user environment Version control system

116 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.13.2 Using CVS

CVS is a program that allows multiple users to access, modify, and update
projects and their contents simultaneously. It lets a team of developers share
control of different versions of files in a common repository of files. CVS provides
options to record the history of the source files in such way that several
developers can work on the same project concurrently, where developers can
edit files within their own working copy of the project and send (or check in)
modifications to the server.

Table 3-1 lists common CVS terminology.

Table 3-1 Common CVS terminologies

3.13.3 Install CVS and create a repository

The first step to using a CVS repository is to download the code and to install the
server. This process is relatively simple, so we do not cover it here. For more
information about downloading and installing a CVS server, see:

http://www.nongnu.org/cvs/

Components Descriptions

Commit
(check in)

The user makes changes to an artifact that is checked out by CVS and uploads the
changes to the CVS repository.

Update The user synchronizes the workspace with the repository. The user realizes that the
local files are unmodified but that newer versions are available on the server. The user’s
local copy is out of date, and the user must extract the most recent copy from CVS.

Conflict The user is trying to commit a file that has already been modified and committed by a
different user. In other words, the version currently in CVS is not the version the user
originally checked out. The user’s artifacts are out of synch with the remote CVS server.

Share Connect a project to a version control system.

Disconnect Stop sharing from a version control system.

Check out Copy to different local machine to make changes.

Synchronize To determine the differences between the local copy and the central repository and
when the user is ready to commit work and to synchronize with the repository.

 Chapter 3. Basics of development 117

http://www.nongnu.org/cvs/

3.13.4 Adding a CVS repository to the workspace

You must define the CVS repository to your workspace in WebSphere Integration
Developer. Each development team member must perform the following steps to
define the repository on the workspace:

1. Open the CVS Repository Exploring Perspective. Anywhere in the CVS
Repositories pane, right-click New → Repository Location.

2. Enter the information that defines the location of the repository, the user ID
with which to connect, and the connection type. Click Finish. See
Figure 3-91.

Figure 3-91 Add new CVS Repository wizard

118 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3.13.5 Sharing a project with CVS

Use this option if you have not shared this project before and if this project does
not exist in the CVS repository.

To share a project with CVS:

1. Open the Business Integration perspective.

2. In the Business Integration view, right-click the project that you want to share,
and then select Team → Share Project.

3. Select CVS as the repository type and click Next.

4. Select Use existing repository location and select the repository that you
added as shown in Figure 3-92. Then, click Next.

Figure 3-92 Share Project with CVS Repository

5. Accept the default for the module name (Use project name as module
name) as shown in Figure 3-93, and then click Next.

Figure 3-93 Enter Module Name

 Chapter 3. Basics of development 119

6. Accept the defaults, as shown in Figure 3-94, and then click Finish.

Figure 3-94 Share Project Resources

120 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7. Enter a comment to the commit operation as shown in Figure 3-95, and then
click Finish.

Figure 3-95 Commit files

 Chapter 3. Basics of development 121

3.13.6 Checking out a project from CVS

If other team members already have projects checked into CVS (for example, the
shared library), you can use the following steps to check these projects out of
CVS to start your own development:

1. Open the CVS Repositories view, expand the server, then expand HEAD as
shown in Figure 3-96.

Figure 3-96 CVS server showing HEAD expanded

2. Right-click the project that you want to check out and select Check Out.

3. If you switch back to the Business Integration perspective, you see the Project
that you just checked out from CVS.

3.13.7 Checking in changes to a project to CVS

As you develop your modules, you will want to check in changes periodically into
CVS. The instructions in this section assume that you have either shared your
project or that you have checked out a project from CVS.

122 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

For example, if you have checked in the module EmailOutbound previously in
CVS and made additional changes, you check in new changes with the following
steps:

1. The Business Integration perspective shows when a module or file has
changes that are not in CVS. A > symbol is prefixed to the artifact name as
shown in Figure 3-97.

Figure 3-97 Business Integration perspective showing differences with CVS

2. To check in the changes to EmailOutbound, right-click EmailOutbound →
Team → Synchronize with Repository. Confirm that you want to switch to
the Team Synchronizing perspective by clicking Yes.

3. The Synchronize view has a toolbar at the top with icons that allow you to
work with the changes (Figure 3-98).

Figure 3-98 Synchronize view

The status bar at the bottom of the screen shows a total for the incoming,
outgoing, and conflicting changes. In this example, there are, respectively, 0
incoming, 2 outgoing, and 0 conflicting changes.

 Chapter 3. Basics of development 123

4. Click the Incoming Mode icon to see the changes that are incoming from
the repository. In this case, there are no incoming changes as shown in
Figure 3-99.

s

Figure 3-99 Incoming mode

5. Click the Outgoing Mode icon to see the changes that are outgoing
(Figure 3-100). You can expand the folders to examine your changes.

Figure 3-100 Outgoing mode

6. Click the Incoming/Outgoing Mode icon to see both (Figure 3-101).

Figure 3-101 Incoming and Outgoing modes

124 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7. To check in your changes to CVS, right-click EmailOutbound in the
Synchronize view and select Commit as shown in Figure 3-102.

Figure 3-102 Checking in changes into CVS

8. Enter a comment for the commit operation, then click Finish.

 Chapter 3. Basics of development 125

126 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 4. Building business
integration applications

Business integration means integrating applications, data, and processes within
an enterprise or among a set of enterprises. Integration also means developing
processes, because there is some logic to the sequence of the applications that
are assembled to integrate them. WebSphere Integration Developer is used to
create business integration applications.

This chapter discusses the details of creating business integration applications
and their supporting artifacts. It includes the following topics:

� Typical development flow
� Service components for modules
� Using Java objects
� Business processes
� Human tasks
� Administering processes and tasks
� Business state machines
� Business rules
� Selectors
� Interface maps

4

© Copyright IBM Corp. 2008. All rights reserved. 127

4.1 Typical development flow

This section provides overview information of the development process for a
business integration module.

In Chapter 3, “Basics of development” on page 29, we discussed the typical
development flow for modules and mediation modules, which is as follows:

1. Start WebSphere Integration Developer and open a workspace (as described
in 3.2.2, “Start WebSphere Integration Developer” on page 42).

2. Switch to the Business Integration perspective for development (as described
in 3.2.3, “Using the Business Integration perspective” on page 43).

3. Create a library to store artifacts, such as business objects and interfaces that
are shared among multiple modules (as described in 3.3.1, “Libraries” on
page 44).

4. Create a new module or mediation module (as described in 3.3.2, “Modules
and mediation modules” on page 46).

5. Create the business objects to contain the application data, for example,
customer or order data (as described in 3.4, “Business objects” on page 53).

6. Create the interface and define the interface operations for each component.
The interface determines what data can be passed from one component to
another (as described in 3.5, “Interfaces” on page 63).

7. Create and implement the service components.

8. Build the module assembly by adding the service components, imports, and
exports to the assembly diagram. Wire the components together. Bind the
imports and exports to a protocol (as described in 3.6, “Module assembly” on
page 69).

9. Test the module in the integrated test environment (as described in 3.12, “Test
tools” on page 105).

10.Deploy the module to WebSphere Process Server. We discuss this step in
Getting Started with IBM WebSphere Process Server and IBM WebSphere
Enterprise Service Bus, Part 3: Run time, SG24-7643.

11.Share the tested module with others on the team by putting it in a repository
(as described in 3.13, “Team development” on page 115).

This chapter focuses on step 7, the implementation of the service components for
a business integration module.

128 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.2 Service components for modules

When you create a module, an assembly diagram for the module is created. As
you add components to the module, you populate the assembly diagram with
these components. The assembly editor is used to visually compose the
integrated application by using elements from the palette or from the tree in the
Business Integration view.

The implementations of components that are used in a module assembly reside
within the module. Components in other modules can be used in the assembly by
publishing the external service as an export, and then dragging the exports into
the required assembly diagram to create the import to call the service.

Figure 4-1 shows an example of an assembly diagram.

Figure 4-1 Assembly diagram of a sample module

In Figure 4-1, the main component (in the center) is implemented using a
business process. The process has two references:

� The first invokes a Java component.
� The second invokes an external service through an import component.

The process is made available to clients through the export or stand-alone
reference (on the left).

 Chapter 4. Building business integration applications 129

The service component’s implementation contains the logic of the process. The
various implementation types that are supported in WebSphere Integration
Developer for components of a business integration module include:

� Java objects
� Business processes
� Human tasks
� State machines
� Rule groups (Business rules)
� Selectors
� Interface maps

In the assembly diagram, the component’s implementation type is represented by
an icon in the component. Figure 4-1 on page 129 shows all the implementation
types listed with their symbols on the assembly editor palette.

In the remaining sections, we discuss how to build the important implementation
types to implement the business logic.

4.3 Using Java objects

An implementation of a component in Java is referred to as a Java object. This
implementation is one of the common implementations for a service component.
This Java implementation type is sometimes termed as a plain old Java object or
POJO. Generally, this implementation has a WSDL interface type, although this
implementation can also have a Java interface.

When working with a Java object, the code remains hidden from you within the
context of the editors. A POJO can also be used in a mediation module. So, it can
be deployed to either a WebSphere Process Server or a WebSphere Enterprise
Service Bus.

4.3.1 Creating a Java component

Follow any of these methods to create a new Java component:

� Click Java on the palette menu of the assembly editor, move the cursor to the
canvas, and click again to drop a Java component into the assembly diagram.

� Drag a Java class onto the assembly editor canvas. A Java class becomes a
Java component in the assembly diagram.

� Apply a Java implementation to a component that has no implementation
type.

130 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.3.2 Creating a “HelloWorld” sample

Follow these steps to create a Java component and implement using a POJO:

1. Create a module, HelloWorldModule, and an interface, HelloWorldIF, in the
module, that looks similar to the one shown in Figure 4-2.

Figure 4-2 HelloWorldIF interface

2. Expand the HelloWorldModule, and then double-click Assembly Diagram to
open it in assembly editor. Click Java on the palette menu of the assembly
editor, move the cursor to the canvas, and click again to drop a Java
component into the assembly diagram. Now, the assembly diagram looks
similar to the one shown in Figure 4-3.

Figure 4-3 Java component on the assembly diagram

 Chapter 4. Building business integration applications 131

3. Use the Properties view to rename the component as
HelloWorldJavaComponent as shown in Figure 4-4.

Figure 4-4 Renaming Java component

4. Add the HelloWorldIF interface to the component:

a. Select the component.

b. Right-click it, and select Add → Interface.

c. Select HelloWorldIF from the Add Interface wizard, and click OK.

5. Add an implementation to the component:

a. Click the component to select it, and select Generate Implementation.

Alternatively double-click the component, and click Yes on the Open
dialog box to implement it.

b. Click OK on the Generate Implementation dialog box to use default
package.

132 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

c. Implement the sayHello method in HelloWorldJavaComponentImpl.java as
shown in the Figure 4-5.

Figure 4-5 Implementing Java component

6. Save the assembly diagram and all other resources. Now, the component
looks similar to the one shown in Figure 4-6.

Figure 4-6 Implemented Java component in assembly diagram

7. Deploy the module by right-clicking WebSphere Process Server in the
Servers view of WebSphere Integration Developer and by selecting Add and
Remove Projects. Move the new application from the Available projects list to
the Configured projects list, and click Finish.

8. Test the component in the integration test client by right-clicking
HelloWorldModule in the Business Integration View and by selecting Test →
Test Module. Supply a string value for the input (Borusu in this example).

9. In the Events area of the test client, a message is sent to the
HelloWorldJavaComponent, and then the Java component returns a

 Chapter 4. Building business integration applications 133

response after a moment. In the Value column of the value editor, the text
Hello Borusu is returned for the outputResponse, as shown in Figure 4-7.

Figure 4-7 Response from HelloWorldJavaComponent in integration test client

10.Now the test is complete and successful. Close the integration test client and
click No when asked whether you want to save the changes.

4.4 Business processes

A business process consists of a series of activities or individual tasks that are
executed in a specific order, sequentially or in parallel, to achieve a larger
business goal.The business process editor is used to build business processes
based on BPEL standards.

4.4.1 Types of business processes

Business processes can be either long-running processes or microflows. You
select the type of process when you create it. You can change the type from the
Properties view for the business process in the business process editor.

134 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Long-running processes
A long-running process executes over an extended period of time and is
asynchronous in nature. It is used most commonly with services that might not
respond immediately, in particular human tasks. Interruptible business processes
and asynchronous business processes are examples of long running processes.

When a business process is interruptible, it is long running, and execution stops
at specific activities and does not continue until an appropriate action takes
place.

Typically, components that are implemented as long running processes are
called asynchronous, which means that a client calls them and then proceeds to
do other work while waiting for a reply.

When a process is paused, it is waiting. You decide what it waits for. For
example, you might decide that the process needs instruction from a human
before continuing, or you might decide that it cannot proceed until it has specific
input from a partner.

Microflows
A microflow is a non-interruptible business process and runs within a single
transaction. Because it runs automatically from start to finish, it is ideal for
situations where the user is expecting an immediate response and does not
require the use of a human task. Microflows are an IBM extension to BPEL.

A microflow has the following characteristics:

� Runs in one transaction or activity session
� Normally runs for a short time
� Is in a transient state and, therefore, is not stored in the runtime database
� Typically invokes services synchronously
� Can have only non-interruptible child processes
� Cannot contain:

– Human tasks
– Wait activities
– Non-initiating receive activities or pick activities

Microflows are faster than long-running processes. Thus, you need to use them
when possible. For example, you can attempt to decompose a long-running
process into multiple processes using microflows when possible.

 Chapter 4. Building business integration applications 135

4.4.2 New, enhanced business process features with WebSphere
Process Server V6.1

This section describes the new or enhanced business process capabilities for
business integration applications that are available with WebSphere Process
Server V6.1.

The new or enhanced features include:

� Generic JMS interface for the Business Flow Manager allows for
programmatic interaction with business process templates and instances
(Figure 4-8).

In WebSphere Process Server V6.0.2, there is support for Enterprise Java
Bean (EJB) clients and Web Services clients to interact generically with
business process templates and instances.

In V6.1, this interface is also exposed to JMS clients. It allows custom JMS
clients to:

– Query and retrieve processes and activities
– Invoke and send messages to processes
– Life cycle operations (Restart/Delete/Suspend/Resume instances)
– Repair a business process
– Create and work with stored queries
– Handle variable
– Handle Input/Output/Fault

Figure 4-8 Generic JMS binding

Note: We discuss some of these new features in detail in the subsequent
sections.

136 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� Extensions to the Generic Web Services Interface for Business Flow Manager
and new runtime capabilities.

� The ForEach activity allows processing a dynamic number of multiple
branches (either in parallel or serially).

The ForEach activity is an iterator that repeats its contained activity a
specified number of times, either serially or in parallel. It allows you to specify
a completion condition to be used if not all branches are required to complete
(for example, when parallel requests are sent out and a sufficiently large
subset of the recipients respond). The remaining branches are terminated if
the completion condition is met.

� Suspend capabilities are extended to allow specifying that process instances
resume automatically.

Suspending a business process instance means the navigation or execution
of the process instance is put on hold. In all releases of WebSphere Process
Server V6.0, processes can be suspended using a suspend operation, and
are resumed explicitly calling a resume operation. In V6.1, suspending a
process instance allows you to specify a duration or point in time if the
process instance is to be resumed automatically.

� Automatic deletion can be restricted to processes that completed
successfully, allowing you to keep only the process instances that need
further analysis or repair (Figure 4-9).

In all releases of WebSphere Process Server V6.0, the process-level attribute
autoDelete specifies whether a long-running process instance is deleted
automatically upon its completion. In V6.1, an additional option is introduced
that allows to delete only successfully completed process instances
automatically. This additional option enables you to keep only those process
instances that might need further attention, for example those processes that
need to be analyzed or even repaired and restarted.

Figure 4-9 Automatic deletion on successful completion of a process

 Chapter 4. Building business integration applications 137

� Additional data-handling option ignores missing data during access instead of
throwing faults.

� Back links in single-threaded flows are supported.

In WebSphere Process Server V6.0.2, a flow cannot contain back links.
Arbitrary cycles can be circumvented using (nested) loop constructs (while
activities). In V6.1, graph-oriented modeling of business processes is
enhanced by enabling arbitrary cycles (also known as back links).

This capability is introduced by providing the cyclic flow activity, also known as
single threaded graph. With arbitrary back links or cycles, it is possible to
return to a prior activity in the flow. In particular, this capability is useful for
human workflows to allow to go back to a prior step in the workflow.

� Support for wildcards and unconstrained content in interfaces, variables, and
assign activities.

� Allow accessing an activity within a process.

In WebSphere Process Server V6.1, an additional variant of method
activityInstance is introduced to allow accessing of not only the current activity
but also an activity that is identified using its name. It returns null if no activity
is found.

If there is no activity with the specified name or if the name is not unique
within the scope of the process, a StandardFaultException of type
bpws:selectionFailure is thrown.

138 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.4.3 Creating a business process

Follow these steps to create a new business process:

1. Create a new module. In this example, the module name is SampleModule.

2. Create a new interface for the module. The interface, SampleIF, looks similar
to that shown in Figure 4-10.

We discuss how to create interfaces in 3.5.1, “Creating a new interface” on
page 65.

Figure 4-10 SampleIF in Interface Editor

 Chapter 4. Building business integration applications 139

3. Select File → New → Business Process. In the New Business Process
window, shown in Figure 4-11:

a. Select New default Business Process.

b. Browse to the module (or click New to create one).

c. Specify a folder (optional).

d. Specify a name for the new process (for example, SampleBP).

e. Click Next.

Figure 4-11 New Business Process Wizard

140 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Select a type for the business process, as shown in Figure 4-12.

You have the following process types:

– Long-running process: Executes over an extended period of time and is
asynchronous in nature. It is used most commonly with services that might
not respond immediately, in particular human tasks.

– Microflow: A non-interruptible business process that runs within a single
transaction. Because it runs from start to finish automatically, a microflow
process is ideal for situations where the user is expecting an immediate
response and does not require the use of a human task.

WebSphere Integration Developer enhances BPEL capabilities through the
use of extensions. If you want to create a process without the use of these
extensions, then disable the “Use WebSphere Process server extensions”
option. This option is not applicable to microflows because they are a BPEL
extension.

Click Next.

Figure 4-12 Select business process type in the New Business Process wizard

 Chapter 4. Building business integration applications 141

5. Click Select an existing Interface as shown in Figure 4-13. Alternatively, you
can select Generate a new Interface to generate a new interface to be used
with this process.

Figure 4-13 Select an interface in the New Business Process wizard

142 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. To select an existing interface, click Browse and select the interface as shown
in Figure 4-14. Then, click OK.

Figure 4-14 Interface Selection wizard

 Chapter 4. Building business integration applications 143

7. Click Finish (Figure 4-15).

Figure 4-15 Selecting an existing interface on New Business Process wizard

144 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The business process is created and opens in the business process editor as
shown in Figure 4-16.

Figure 4-16 SampleBP Business Integration View

 Chapter 4. Building business integration applications 145

4.4.4 Business process editor

The business process editor allows you to visually build and manipulate business
processes. The editor consists of several distinct areas, including the palette,
canvas, action bar, tray, and Properties view, as shown in Figure 4-17.

Figure 4-17 The Business Process Editor

146 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The palette
The palette is the shaded area to the left of the canvas that houses the objects
that can be dropped onto the canvas to build the process. The icons are
categorized under several different headings. Click the heading once, and the
icons remain hidden until you click that heading again.

To increase the size of the icons, right-click the palette and select Use Large
Icons.

The canvas
The canvas is the white area in the middle of the editor that is used to assemble
the activities to build the business process. When you click and drag an activity
from the palette onto the canvas, the icon beside the cursor has a plus symbol,
and you can decide where to drop the activity. When the cursor becomes a
crossed out circle, continue moving the cursor until it becomes a plus sign again.

The action bar
The action bar is a miniature dialog box that opens beside certain activities when
you select them. It contains a series of one or more icons that represent the
actions that are relevant to that activity. For example, when you select the
Receive activity, the Set Partner icon displays as shown in Figure 4-17 on
page 146.

The tray
The tray displays the interface partners, reference partners, variables, correlation
sets, and correlation properties that are associated with the process.

To see the interfaces and operations associated with the partners, click the small
gray arrow () beside the partner’s name. To create a new partner, variable,
correlation set or correlation properties, click the corresponding green plus
icon, or to remove one, highlight it and click the red X icon.

The Properties view
This area of the business process editor displays properties of the object that are
currently selected on the canvas or the tray. Click the tabs to the left of this view
to toggle through various property pages. Properties marked with an asterisk (*)
are mandatory.

 Chapter 4. Building business integration applications 147

4.4.5 Building blocks of a business process

Several types of building blocks are used to compose a business process using
the business process editor:

� Activities: The individual business tasks within the process.

� Correlations: The records that are used to keep track of multiple partners and
messages and to correlate them with a specific instance of a business
process at any point of time.

� Elements: The objects that are used to support or configure activities.

� Handlers: Consist of a group of activities that represent a specific course of
action that is associated with a particular activity. A handler runs when certain
situations occur within the parent activity (that is, the activity with which the
handler is associated).

� Partners: The external parties (users or services) that interact with the
business process. Within a process, the term partner describes the other
services that might be calling the interfaces or that it might be calling.

� Variables: Store the data that is used within a business process. A variable
belongs to the scope in which it is declared. When you create a variable, you
need to declare what type it is before using it.

4.4.6 Using partners in a business process

The two types of partners that are available for use in a business process
include:

� Interface partners: A direct link to the interface where the partner is
configured. An interface partner is the process interface and exposes
operations that can be called by external partners.

� Reference partners: The reference is not an interface but instead tells the
process where to find operations that it can invoke. More to the point, it
specifies the interface that is used in the invocation of another component.

When a client calls your process, that call comes from an interface partner. When
the process calls another service, it does so using a reference partner. So, an
interface partner contains incoming operations and a reference partner performs
the outgoing operations.

148 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Adding a partner to a business process
To create a partner in a business process using the business process editor:

1. Click the plus icon besides the partner’s (Interface Partners or Reference
Partners) section on the tray.

2. Specify an appropriate name for the partner.

3. Click the Description tab in the properties area.

4. Select an interface from the drop-down list, or click Browse to choose an
interface with the Interface Selection wizard.

When a business process is created, the interface partner that is associated with
the Receive activity is created automatically. If you need any additional interface
partners, you can add them by following the steps described here.

Figure 4-18 shows the interface partner, SampleIF, on the tray and its properties.

Figure 4-18 Properties of an interface Partner

 Chapter 4. Building business integration applications 149

You can create a reference partner following these same steps. Alternatively, you
can select an interface from the Business Integration view and drag it onto the
canvas. Figure 4-19 shows a reference partner, SampleReferenceIF, on the tray
and its properties, which were created using this approach.

Figure 4-19 Properties of a reference partner

Use the Process template field to invoke another process from this process. The
connection is resolved dynamically in the runtime environment. The calling
process always picks up the current valid version of the process that it is
invoking. In addition, if this is a subprocess binding, the called process is subject
to life cycle operations of the calling process. For example, when the parent
process is terminated, it will terminate the child process, too.

150 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.4.7 Using variables in a business process

Variables store the data that is used within a business process. The two types of
variables that are available to use in a business process include:

� Data type variables: Can be either a business object or a simple type, such
as string or integer.

� Interface variables: Uses either an input or output parameter as defined
within an interface.

A variable belongs to the scope in which it is declared. If it is created in the global
process scope, then it is a global variable and, thus, is visible to all objects and
activities within the process. Those variables that are created within nested
scopes are called scoped or local variables and are visible only to the objects
within the scope in which they were declared.

Adding a variable to a business process
To create a variable in a business process using the business process editor:

1. To create a global variable, click a blank area of the canvas or any other
activity that is not a scope.

2. Then, click the plus icon () beside the Variables section on the tray.
Alternatively, you can right-click in the Variables section and select Add
Variable.

3. Specify an appropriate name for the variable.

4. Click the Description tab in the properties area.

5. Select the type for the variable by selecting either Data type variable or
Interface variable.

If you select Data type variable, click Browse to choose a type or business
object from the Data Type Selection wizard.

If you select Interface variable, follow these steps:

a. Select an interface from the drop-down list, or click Browse to choose one
with the Interface Selection wizard.

b. Select an operation from the drop-down list.

c. Select a direction by selecting Input or Output.

Note: Unlike Data type variables, when you use an Interface variable to send
data to a partner, the variable must be initialized before sending it. You can
use an Assign activity or a Java snippet for this purpose.

 Chapter 4. Building business integration applications 151

Figure 4-20 shows the properties of sampleInput variable.

Figure 4-20 Properties of sampleInput variable

When you create a business process, global variables are created automatically.
These variables are associated with the corresponding input and output
parameters of the operation that is associated with the respective Receive and
Reply activities of this business process. (Refer to Figure 4-23 on page 155 and
Figure 4-24 on page 156.)

152 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.4.8 Using activities in a business process

The various categories of activities that are available on the palette of the
business process editor, as shown in Figure 4-21, include:

� Basic Actions: Primitive activities that do not contain other activities. These
activities represent an individual task within a business process.

� Structures: Define the order in which a collection of activities takes place.
Structured activities are comprised of one or more basic activities and are
used to express control patterns, data flow, and coordination of message
exchanges between process instances.

� Faults: Anticipated errors that can occur in situations that arise which prevent
a business process from reaching completion. Fault activities deal with these
cases.

Figure 4-21 Snippets of Palette Menu of Business Process Editor

Adding an activity to a business process
To add an activity to a business process using the business process editor:

1. Click an activity icon on the palette and move the cursor onto the canvas.

The icon beside the cursor has a plus symbol when the cursor is at a place
where you are allowed to drop the activity. When the cursor becomes a
crossed out circle, continue moving the cursor until it becomes a plus sign
again. If there are already activities on the path, then a black line displays as
you hover over the path showing where you can drop this new activity (as
shown in Figure 4-22 on page 154).

 Chapter 4. Building business integration applications 153

Figure 4-22 Adding an activity to a business process

2. Click the area of the canvas where you want to drop the activity.

3. If the activity added is a structured activity (that contains other activities), you
can expand or collapse it by clicking the plus () or minus () icons or by
double-clicking the structured activity itself.

4. Configure the activity as necessary in the properties area of the business
process editor.

Receive activity
The Receive activity allows a business process to wait for a message (external
input) to arrive and channels it into the process. It can have one or more
associated reply activities if it is used in request-response operations.

A Receive activity is an entry point to a process; it is the point where the process
starts or continues. You can associate a specific operation of an interface to a
Receive activity using an interface partner. Figure 4-23 on page 155 shows the
properties of a sample Receive activity.

When a call is made to this process’s operation, the corresponding Receive
activity accepts the call, and the process continues running from there. A
Receive activity can also occur in the middle of a business process. In this case,
if the process encounters a Receive activity while it is running, the process stops
and waits for the corresponding operation to be invoked.

When you create a business process, Receive and Reply activities are created
automatically and are associated with the operation of the interface for the
process. The interface partners and global variables are also created
automatically. (Refer to Figure 4-23 on page 155 and Figure 4-24 on page 156.)

Details tab of the Properties view of Receive activity
The Details tab of the Properties view allows you to choose the interface partner
and the operation. The table that displays below the “Use Data Type Variables”

154 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

options shows all of the inputs of the selected operation. If you want to use data
type variables, select one from the list, or clear the option to use interface type
variables. Then, browse to the appropriate interface variables with input direction.
We discuss the interface variables in 4.4.7, “Using variables in a business
process” on page 151.

The “Create a new process instance if one does not already exist” option
determines how to proceed in cases where an instance of this process has not
yet been created in the runtime environment. Enabling this option allows the
creation of a new instance of the process. Clearing it denies such authority.
There must be one receive-type activity or element in the process that has this
setting enabled, usually it is the first receive of the process.

Figure 4-23 Receive activity of a business process

 Chapter 4. Building business integration applications 155

Reply activity
When a Receive activity belongs to a request-response operation, a Reply
activity returns the output of the operation. The Reply activity specifies the same
partner implementation as the corresponding Receive activity. A reply is always
sent to the same partner from which a message was received previously.

A Reply activity does not necessarily need to be at the end of the process. A
process can start with a Receive activity and then return a response before
proceeding to do other work. You can have more than one Reply activity for each
Receive activity, such as in the case where a process has multiple paths. The
idea is that when another component calls a request-response operation of a
process’ interface, it needs to eventually get a response for that operation.

Figure 4-24 shows the properties of a sample Reply activity.

Figure 4-24 Reply activity of a business process

156 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Invoke activity
The Invoke activity allows a business process to call a one-way operation
(asynchronous) or request-response operation (synchronous) on a specific
partner. The components and artifacts that can be invoked include:

� A Web service
� A Java class
� An EJB
� Another process
� Another SCA component

Figure 4-25 shows the implementation details of an Invoke activity, where the
activity, labelled Invoke, is configured to invoke the sampleRefOperation of the
reference partner, SampleRefIF.

Figure 4-25 Properties of Invoke activity

 Chapter 4. Building business integration applications 157

Assign activity
The Assign activity allows basic data manipulation through the use of
expressions to map service endpoint references to or from partner links or to
copy some form of information from one part of your process to another. For
example, the Assign activity can used to copy values from one variable to
another or to initialize variables.

The following example demonstrates one of the usages of the Assign activity. In
this example, two Assign activities are used to populate request and response
interface type variables:

1. Create a new business process as shown in Figure 4-25 on page 157.

2. Configure the properties of Invoke activity to use interface variables as shown
in Figure 4-26.

Figure 4-26 Properties of SampleRefIF invoke activity

You need to create two interface variables called IFVarInput and
IFVarOutput. Figure 4-27 shows the properties of IFVarInput.

Figure 4-27 Properties of an interface variable, IFVarInput

158 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Add an Assign activity between the existing Receive and Invoke activities, and
change its properties as follows:

a. Select the Assign activity and go to the Description tab of the Properties
view. Change both the Name and Display Name fields to
AssignRequestParams.

b. Select the Details tab, and click Select From under the Assign From
column. Select sampleInput by clicking it in the content assist dialog box.

c. Click Select To under the Assign To column and expand IFVarInput on the
content assist dialog box. Select sampleRefInput. Figure 4-28 shows the
results.

Figure 4-28 Properties of AssignRequestParams, an Assign activity

4. Add one more Assign activity between the existing Invoke and Reply activities
to assign the response from Invoke to the response to be send back by Reply.
Configure its properties as shown in Figure 4-29.

Figure 4-29 Properties of AssignResponseParams, an Assign activity

 Chapter 4. Building business integration applications 159

Your completed business process looks similar to the one shown in Figure 4-30.

Figure 4-30 Assign example business process

Human Task activity
A Human Task activity is used when work is to be performed by a person. This
activity sends a process-related task out to a human for completion. It is referred
to as inline because the task is implemented within a business process. We
discuss human tasks in more detail in 4.5, “Human tasks” on page 184.

Snippet activity
The Snippet activity allows you to implement custom behavior into a business
process. You implement the task of this activity using a Java programming
snippet. You can either write a Java code or use the built-in graphical editor,
visual snippet editor, to compose visual expressions and snippets that can be
generated into valid Java code that can be used internally in the run time.

As shown in Figure 4-31 on page 161, you type in the Java code snippets in the
Details tab of snippet’s properties by selecting the Java editor and by clicking
Java radio button.

160 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 4-31 Properties of a Snippet activity

For a more detailed discussion about using the visual snippet editor to compose
Java code, refer to:

� Customizing behavior with visual snippets

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?t
opic=/com.ibm.wbit.610.help.activity.ui.doc/topics/cactint.html

� IBM WebSphere Developer Technical Journal: A guided tour of WebSphere
Integration Developer—Part 4, Unleashing visual snippets and business state
machines in your service-oriented application

http://www.ibm.com/developerworks/websphere/techjournal/0606_gregory
/0606_gregory.html#VSE

Wait activity
The Wait activity pauses the process execution for a specified period of time. You
configure this activity either by specifying a duration to wait, or by specifying a
specific time and date when the process should continue to run. You can even
use the visual snippet editor to compute the duration to wait.

 Chapter 4. Building business integration applications 161

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.610.help.activity.ui.doc/topics/cactint.html
http://www.ibm.com/developerworks/websphere/techjournal/0606_gregory/0606_gregory.html#VSE

Figure 4-32 shows a Wait activity configured to wait until 01 January 2009,
00 a.m., to proceed executing the next activity, which is named Welcome to New
Year 2009.

Figure 4-32 Properties of a Wait activity

Empty Action activity
The Empty Action activity is an activity which does nothing. Use this activity
when you have a construct that requires an activity but there is no work to be
done.

For example, you might want to ignore certain faults and just carry on with the
process. Because a fault handler must contain an activity, you can insert an
empty activity to suppress the fault.

You can also use this activity as an undefined object to act as a placeholder
within your process. You might do this if you are designing a process that you
expected somebody else to implement or if you are trying to synchronize the
activities within a parallel activity. Alternatively, these placeholders can be the
activities whose details you will fill in later.

You can also change an Empty Action activity to a different activity using the
Details tab of properties of this activity (Figure 4-33). Simply click the appropriate
icon on the Details tab, and the Empty Action changes accordingly.

162 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 4-33 Properties of EmptyAction, Details tab

Sequence activity
The Sequence activity is a structured activity that contains one or more other
activities that are performed sequentially, in the order in which they are placed
within the sequence activity. The editor canvas is actually one big Sequence
activity (that is hidden) where you add more simple or structured activities.

 Chapter 4. Building business integration applications 163

Figure 4-34 shows a simple Sequence activity that contains three other activities
to be executed in sequence.

Figure 4-34 A Sequence activity

Parallel Activities activity
Use this structured activity to nest other activities that run concurrently. The
nested activities run sequentially in an order that is dictated by links and
transition conditions. (When no links are present, all activities will be executed
concurrently.) When activities are arranged on separate control paths, the paths
run concurrently.

This activity is equivalent to the concept of fork/join—all the paths within the
activity run simultaneously and the target activity does not fire until all paths have
completed.

A link is used to connect the activities within a Parallel Activities activity to form
individual control paths. It is directional so that you can draw from a source
activity to a target activity. When the source activity finishes running, the target
activity at the other end of the link runs. You can create links from a single source
activity to multiple target activities or from multiple source activities to a single
target activity.

You can specify a transition condition on the link. If the link condition evaluates to
false and if it is the only link between a source and a target activity, the target
activity does not run.

To understand these concepts better, let us look at the business process in
Figure 4-35 on page 166. This example shows a parallel activity that contains
five activities. (For simplicity, we used snippets for all these activities, which might
not be the case in the real world.)

164 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Task1 → Task3 and Task2 → Task4 are two paths that run concurrently followed
by Task5. More specifically, Task1 and Task2 run concurrently, where as Task3
and Task4 run only after the completion of Task1 and Task2 (as dictated by the
Links). There is a link, Link3 from Task3 to Task5 that is followed, and the other
link, Link4 from Task4 to Task5, is followed only if the condition (shown as bubble;
select the link to see the condition in properties area) on Link4 is satisfied. Task5
is a special activity that is a target for multiple (two in this case) incoming links.

By default, the target activity runs when any one of the incoming links is followed.
A join condition specifies when the target of one or more links should run. These
join conditions can be created using Java code, a visual snippet, XPath, or by
selecting from a list of simple choices: True, False, Any, and All.

If the link condition on Link4, the one from Task4 to Task5, evaluates to false,
that link is not followed. So in this case, the join condition, All for Task5 as set in
the Join Behavior tab cannot be satisfied, and a join failure occurs. Join failures
for Task5 are suppressed as indicated by the selected setting.

Note: If a join condition is not satisfied, then a join failure fault is thrown. This
can be suppressed to allow the process execution to skip the activity and carry
on to the next one by selecting Yes for Suppress Join Failure on the Join
Behavior tab of the activity’s properties.

 Chapter 4. Building business integration applications 165

Figure 4-35 A parallel activity

Choice activity
The Choice activity is a structured activity that contains a set of activities that are
organized onto individual control paths. The Choice activity decides the path of
execution based on a condition.

A Choice activity contains case elements that include expressions that evaluate
to either true or false, followed by a sequence of activities. During execution, the
Choice activity evaluates the conditions on the paths in order (case elements)
and follows the first path that evaluates to true. A Choice activity can also contain
an otherwise element to be taken when no case element evaluates to true.

166 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The business process shown in Figure 4-36 shows the usage of Choice activity.

Figure 4-36 A Choice activity

Receive Choice activity
The Receive Choice activity is a structured activity that halts the process in order
to wait for an operation to be called on it or for a time-out alarm to go off. A
Receive Choice activity is similar to a Choice activity. The difference is that
instead of case elements, there are receive case elements that represent
Receive activities and there is no otherwise element. Instead the Receive Choice
activity can have a timeout element.

Each of the receive case elements in a Receive Choice activity accepts a
particular type of message (an operation of the process’s interface). When a
Receive Choice activity is encountered, the process execution stops and waits to
receive a message (operation). The difference between a normal Receive activity
and a Receive Choice activity is that the Receive Choice activity can receive any
one of the multiple operations of the associated interface. It follows the control
path that is appropriate to the first message (operation) that it receives. The first
activity in any path can be either a receive case element or a timeout element.

A timeout element is used within a Receive Choice activity to create a control
path that is executed when a specified time either has been reached or has
elapsed. During process execution, this path is chosen when no operation is
received within this time period (duration) or by the specified date.

 Chapter 4. Building business integration applications 167

Figure 4-37 shows an example of a Receive Choice activity called
ArithmeticOperations. When this activity is encountered, the process execution
is paused and awaits a call to any one of the arithmetic operations (that is add,
subtract, multiply, and divide) as configured on the receive case elements.
Whichever is called first, the corresponding path is executed. In Figure 4-37, add
is called first, then a DoAddition activity is invoked, and the process ends after
sending back the reply through a Reply-add activity.

Figure 4-37 A Receive Choice activity

While Loop activity
The While Loop activity is a structured activity that repeatedly executes one or
more activities as long as specific success criteria or conditions are met. This
structured activity contains a group of other activities and a condition as part of
its configuration. If the condition evaluates to true, then the activities within this
While Loop activity are executed. When the condition evaluates to false, the loop
terminates, and the process execution continues with the next activity.

The condition is checked before the first iteration of the loop, so it might happen
that none of the nested activities are executed if the condition evaluates to false.
The condition can be a Java or visual expression, a simple true or false, or an
XPath.

Scope activity
A Scope activity is a structured activity that acts as a behavioral container for one
or more activities in the process. By design, a process as a whole is contained
within a single global scope, and you can create and nest other scopes within it,
forming a hierarchy.

A Scope activity allows you to define local variables, local correlation sets, and
various handlers. A variable is visible only in the scope in which it is created. If it

168 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

is created in the global process scope, then it is a global variable and, thus, is
visible to the process as a whole. Those variables that are created within nested
scopes can only be seen by activities or objects within that scope.

Each scope has a primary activity that defines its normal behavior. You can
define fault, event, or compensation handlers for a particular scope (see 4.4.11,
“Using handlers in a business process” on page 179).

A scope can be configured either as isolated or compensable:

� Choose isolated when you want to control simultaneous access to variables
that are shared across various scopes and activities.

� Choose compensable if you want to allow compensation related activities on
this scope. If this option is clear, then this scope is transparent to all
compensation logic.

ForEach activity
The ForEach activity is an iterator that repeats the execution of the activities that
it contains either sequentially or in parallel for a specified number of iterations. It
is possible to define an early exit condition if not all branches are required to
complete.

The ForEach activity is very useful in scenarios where you want to interact with a
set of partners in parallel and where the partners are identified only at run time.
Usually, this activity executes a part of the process multiple times in parallel,
without having the knowledge of the actual number of parallel branches at the
time that the process is defined. Instead, this number is determined dynamically
during the process execution.

For example, you might want to get a quote for a particular product from all
available supplier services and can determine only at run time which services are
available. Or, you might want to design a process to perform the technical review
of an article prior to publication by several independent reviewers in parallel and
then consolidate the review comments. In this case, you can add an early exit
criterion that specifies that the business process continues with the next activity
of review comments consolidation when a reply is received from at least two of
the reviewers.

 Chapter 4. Building business integration applications 169

Figure 4-38 lists the properties to be configured when adding a ForEach activity
to a business process.

Figure 4-38 Properties of a ForEach activity in a business process

The properties include:

� Execution of iterations

– Choose Sequential if you want the iterations (to execute group of activities)
run one after the other.

– Choose Parallel if you want the iterations run simultaneously.

� Index-Variable Name

Use this field to specify a name for the index variable. For each iteration, the
value of this integer variable is increased by one. You can use this variable to
determine which iteration you are in or to access an array element.

170 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� Iteration

Use this section to specify the iteration type (how you want the ForEach
activity to iterate). This property implicitly defines the bounds of the range
values for start and end. The various iteration options are as follows:

– Array (dynamic bounds): A simple option to define bounds of the range.
When you choose this option, the ForEach activity then iterates through
the elements of this array. The index variable’s value starts with 1 and is
increased in each iteration up to the size of the selected array.

– Integer (static bounds): Use this option when you know the number of
iterations. When you choose this option, two text fields displays into which
you enter the start and end values of the iteration.

– Expression: The most flexible option to specify expressions for start and
end values. These expressions can be Java or XPath expressions.

� Early Exit Criterion

You can specify an early exit criterion if you do not want to wait for all
iterations to complete before the business process execution continues with
next activity. When the criterion is met, the business process terminates the
remaining iterations and continues with the next activity after the ForEach.

To specify an early exit criterion, you can use either an expression (Java or
XPath) or an integer value.

Count successful iterations only: Select this option to count only
successful iterations for the early exit criterion. An iteration is deemed
successful if no fault occurs within the scope that is nested directly inside the
ForEach activity.

Cyclic Flow activity
The Cyclic Flow activity (also known as single threaded graph) is used to nest
activities on individual, customized control paths. This activity enhances the
modeling of a business process by enabling arbitrary cycles (also known as back
links). With arbitrary back links or cycles, it is possible to return to a prior activity
in the flow. In particular, this activity is useful for human workflows to allow to go
back to a prior step in the workflow.

This activity is equivalent to the concept of split/merge. Although there are
multiple paths within the activity, only the path that evaluates to true is followed,
and the target activity starts the moment that path is complete.

Use the link within a Cyclic Flow activity to connect nested activities and to form
individual control paths. This activity is directional so that you can draw from a
source activity to a target activity. When the source activity finishes running, the
target activity at the other end of the link runs. You can create links from a single

 Chapter 4. Building business integration applications 171

source activity to multiple target activities or from multiple source activities to a
single target activity.

You can specify a transition condition on the link. If the link condition evaluates to
false and if it is the only link between a source and a target activity, the target
activity does not run.

Figure 4-39 shows a section of a business process with a Cyclic Flow activity.
The process execution can go back to a prior activity, PerformCodeChanges is
based on the reviewer comments as modelled using the back link.

Figure 4-39 A sample Cyclic Flow activity

Compensate activity
You use the Compensate activity within a scope’s fault or compensation handler
to invoke a specific compensation handler within the scope. We discuss
compensate handlers in detail in 4.4.11, “Using handlers in a business process”
on page 179.

Compensation is an “undo” action for work that has completed successfully. For
example, suppose that your process involves shipping orders after payment is
received and that an activity to accept payment from a customer completes
successfully. Then, something goes wrong, and the complete order cannot be
shipped. A compensation handler can perform an action such as reimburse the
customer for the unshipped order.

172 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

You must configure the Compensation activity with a target activity for the
compensation. The target activity specifies the activity whose compensation
handler or compensation operation executes when this compensation activity is
invoked. This field lists only targets a single activity or a scope that are
downstream from this activity (in other words, scopes that are nested and,
therefore, can be called). You can leave the field empty. Then, all enclosing
successfully completed activities are compensated.

Figure 4-40 shows a snippet of a business process with a Compensate activity
for the Scope activity. This snippet is configured to invoke the compensation
handler that is defined for the Invoke activity contained within the Scope activity.

Figure 4-40 Target Activity for a Compensate Activity

Throw activity
A Throw activity is used to signal an error that can occur that might prevent a
business process from reaching completion. A fault thrown by a Throw activity
can be caught and handled within the business process using a fault handler.

If a fault that is thrown by a Throw activity is not handled within a process with a
request-response operation, it is returned as a runtime exception to the process
caller. A fault must have a name and, optionally, can contain a variable that holds
information related to the error.

Note: You cannot return a fault with a Throw activity. You must use a Reply
activity to return a fault to the process caller. A Reply activity can only return a
fault that is defined on the interface that the process implements.

 Chapter 4. Building business integration applications 173

As shown in Figure 4-41, an InvaildChoiceFault is thrown for transaction choices
other than deposit and withdraw, which are not covered by any of the case
elements.

Figure 4-41 A Throw activity

Rethrow activity
You can use a Rethrow activity in a fault handler to rethrow the fault to the next
enclosing scope. This activity might be useful when you want to do some fault
handling on the current scope, such as triggering specific compensation
handlers, and still want to make the enclosing scopes aware of this issue. You
can also use a Rethrow activity when the current fault handler cannot handle the
fault and wants to propagate it to an outer-scoped fault handler.

In the absence of a Rethrow activity, a fault propagated to a higher level using a
Throw activity is a new fault instance. When a Rethrow activity is invoked, the
fault is the same instance. The fault is rethrown exactly as it was caught by the
fault handler (that is, any modifications of the associated fault data are ignored).

Terminate activity
A Terminate activity halts the execution of a process. When used, all activities
that are currently active are stopped without any fault handling or compensation
behavior.

174 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Terminology for activity labels per BPEL specification
The palette menu shown in Figure 4-42 uses labels for activities per the BPEL
specification.

Figure 4-42 Palette of Business Process Editor

 Chapter 4. Building business integration applications 175

Many of the labels that are used for activities and elements in the process editor
differ from those used in the BPEL specification. Table 4-1 lists the original terms
and how these terms map to those used in this editor.

Table 4-1 Terminology used in the process editor and in the BPEL spec

Business process editor terminology BPEL terminology

Receive Choice activity Pick activity

Empty Action activity Empty activity

Parallel Activities activity Flow activity

Choice activity Switch activity

While Loop activity While activity

Cyclic Flow activity Single Thread Graph activity

Receive case element OnMessage element

Partner Partner Link

176 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The business process editor uses labels for its activities and elements that are
meaningful and easy to understand, but you can change them.

To modify the terminology, follow these steps:

1. Select Window → Preferences.

2. In the preferences window, expand Business Integration → Business
Process Editor as shown in Figure 4-43.

Figure 4-43 Business Process Editor Preferences window

3. Select the “Terms from the BPEL specification” option to use labels that are
identical to those that are defined in the BPEL specification.

4. Click OK.

4.4.9 Using elements in a business process

Elements are the objects that are used to support or configure activities. The
simple way to add elements to an activity is to use the action bar menu. Also, an
alternative is to right-click the activity and then choose the add element option

 Chapter 4. Building business integration applications 177

from the drop-down menu. The elements and handlers that display in the action
bar vary according to what activity is currently selected.

Figure 4-44 illustrates these two methods of adding elements for the Choice
activity.

Figure 4-44 Adding elements to Choice activity

You can choose Add Case or Add Otherwise, as follows:

� Case element: This element within a Choice activity is used to create a control
path and define the conditions that causes this path to run. During execution,
the process evaluates the conditions in each of the case elements and follows
the first condition that evaluates to true.

� Otherwise element: This element within a Choice activity is used to create a
control path that runs when none of the other cases evaluate to true. Use this
element on only one of the paths within a choice activity. When run, the
process evaluates the conditions in each of the case elements and if none of
the conditions evaluate to true, it runs the activities in this path.

4.4.10 Using correlation in a business process

Business process interactions involve stateful conversations between processes.
In practice, these conversations can occur over a long period of time, possibly
days or months. Message correlation is used to match returning consumers or
partners to long-running business processes. When a request is issued by a
partner, it is necessary to identify whether a new instance of the business
process needs to be created or whether the request needs to be directed to an
existing process instance. Instead of using a special instance ID, WS-BPEL
correlation reuses identifying information from the existing business messages.

Correlation are the records that are used to keep track of multiple partners or
messages and that correlate them with a specific and same instance of a
business process at any point of time.

The two types of correlation artifacts include:

� Correlation sets: Used in runtime environments where there are multiple
instances of the same process running. The sets allow two partners to

178 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

initialize a business process transaction, temporarily suspend activity, and
then recognize each other again when that transaction resumes.

� Correlation properties: Similar to correlation sets, correlation properties make
it possible for the runtime engine to recognize a specific process in an
environment where multiple ones are running.

4.4.11 Using handlers in a business process

Handlers consists of a group of activities that represent a specific course of
action, which is associated with a particular activity. A handler runs when certain
situations occur within the parent activity (that is, the activity with which the
handler is associated).

The various types of handlers include:

� Compensation handlers
� Event handlers
� Fault handlers

Faults are any exceptional conditions that can change the normal processing of a
business process. A well-designed process should consider faults and handle
them whenever possible. Compensation and fault handlers are the two ways of
handling faults.

Fault handlers
Use a fault handler to handle partial and unsuccessful work that is a result of a
fault (problem or exceptional situation during process execution). A fault handler
is a collection of specific activities that run when a fault is thrown on a particular
activity with which the handler is associated. When a fault occurs in a process,
the navigation moves to the fault handler.

Fault handlers can be added on an invoke or Scope activity. A fault handler can
catch a specific fault name, fault type, or both using one or more catch elements.
Each path within the fault handler is preceded by either a catch or a catch all
element. You can add one catch element for each fault that can potentially occur
within the scope or the invoke activity. Each catch is succeeded by a set of
activities to deal with that particular fault. You can also add a catch all element to
deal with any other faults that are not caught by any of the existing catch
elements in the fault handler.

 Chapter 4. Building business integration applications 179

Adding a fault handler
To add a fault handler, follow these steps:

1. Click the scope or invoke activity for which you want to add a fault handler.

2. In the action bar, click the Add Fault Handler icon as shown in Figure 4-45. A
fault handler is created with one default catch element and displays on the
canvas besides the parent activity.

Figure 4-45 Action bar showing Add Fault Handler icon

180 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Add to the existing catch path all the activities that are appropriate to deal with
the specific exception that has occurred (as shown in Figure 4-46, the
properties of the catch element, invalidAccountNo).

Figure 4-46 Properties of Catch element

 Chapter 4. Building business integration applications 181

4. To add another path, click the fault handler to launch the action bar, and
choose the appropriate element (that is Catch or Catch All) as shown in
Figure 4-47.

Figure 4-47 Action bar showing Add Catch All

Compensation handlers
Compensation lets you to undo a completed activity. The goal of a compensation
handler is to return a failed process to a balanced state by executing a series of
associated activities necessary to reverse the completed work. The handler runs
only when a fault is thrown and after the parent activity is committed.

You can add a compensation handler to an Invoke or Scope activity. The activity
that defines the compensation handler must complete before the compensation
handler can run. Therefore, if a the activity throws a fault, compensation for that
activity cannot run because it never completed its work. When you define a
compensation handler for an activity, you can invoke the handler using a
compensate activity.

Figure 4-48 shows the compensation handler for an invoke activity in the scope,
and it contains an UndoInvoke activity.

Figure 4-48 Compensation Handler for an Invoke activity

182 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Event handlers
Event handlers enable a running business process to react to events that occur
independently and asynchronously. They can respond to events that happen at
any time during an application’s lifetime or as many times as those events repeat.
There might be zero or multiple events at any time.

The advantage of using event handlers
In the GUI environment, events usually signify that the user has made a demand
on the system, and the application must respond to it appropriately. In such
cases, a Receive or Pick activity can usually be used, but these activities have
limitations. For example, they can be used only during normal execution of a
process, and they can be implemented only once. These limitations effectively
mean that you have to know ahead of time how many events to expect and when
to expect them.

Event handlers can be associated with either a scope or with the business
process (which in turn is also a scope). When a scope starts, all associated event
handlers are enabled. The event handlers belonging to a scope are disabled
when the scope ends. If the scope ends with a fault, the processing of the event
handler is terminated.

While a scope is active, the event handlers that are associated with that scope
wait for specified events. If no event occurs while the scope is active, the event
handler does nothing and is disabled when the scope completes. This behavior is
different from a Receive or Pick activity. Receive or pick activities must encounter
the message for which they are waiting before processing can continue. Event
handlers stop waiting after the associated scope is complete.

There are two elements to support the events:

� OnEvent element: Use to create a control path and to specify the operation
that causes this path to execute. These events are the incoming messages
that correspond to a WSDL operation. A correlation must be specified for the
incoming messages.

� Timeout element: Use to create a control path that is executed when a
specified time either is reached or has elapsed. This element is used on a
single path and is configured to specify either a specific date or period of time.
During execution, this path is chosen when no input is received within this
time period or by the specified date.

 Chapter 4. Building business integration applications 183

Figure 4-49 shows an event handler that is configured for the Scope activity. The
Scope activity is designed to wait for specified duration. Whenever a
sendAnEvent operation is invoked, the event handler is triggered, and the events
are counted by CountEvents snippet. When timeout happens, the count of the
events occurred display as designed in Display No of Events snippet.

Figure 4-49 Event handler configured for the Scope activity

4.5 Human tasks

Human interaction is key to many business integration applications. Human
interaction can be required for input and initiation of a process or for review and
approval of an item or activity in a business process. Human interaction can also
be required to review and correct an error or exception situation in a process that
is not fully automated. Even straight-through processing processes invariably
have exceptions that cannot be handled automatically. So human interaction is
still needed, even with the very capable fault handlers or compensation capability
that currently exists.

184 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

There are many challenges that are involved when you add human interaction to
a process integration solution, such as:

� How to make sure that the correct people are involved?

� How to add capabilities that model real-life human task management, where
tasks are claimed, transferred, and completed or are overdue and need
escalation?

� How do you make sure that the human interaction provides a suitable
interface without disrupting the flexibility to change the business process?

A human task is an activity that needs the interaction of a human user. Whenever
it is not possible to code logic or to automate part of a process, a human task is
the way to enable the staff of a company to interact with a business process. The
human task component recognizes the reality that many processes require
human intervention for tasks such as reviewing, researching, and approving.

A human task implements a task that is carried out by a person. Human tasks
are service components that either can assign work to users or staff or can
invoke other services. Human task components include built-in support for
role-based task assignment, scheduling, and escalation policies in case a task is
not processed within in a predefined time limit.

The Human Task Manager in WebSphere Process Server supports the creation
and tracking of tasks during run time. You can use existing Lightweight Directory
Access Protocol (LDAP) directories (as well as operating system repositories
and the WebSphere user registry) to access staff information. WebSphere
Process Server also supports multi-level escalation for human tasks, including
e-mail notification and priority aging.

WebSphere Process Server includes an extensible Web client that can be used
to work with tasks of processes. This Web client is based on a set of reusable
Java Server Faces (JSF) components that you can use to create custom clients
or to embed human task functionality into other Web applications.

4.5.1 Implementations and types of human tasks

There are two methods to implement a human task, depending on the usage
scenario, and four main types of tasks.

 Chapter 4. Building business integration applications 185

Implementations of human tasks
Human tasks can be implemented as:

� Inline tasks: Defined within an implementation of a business process. A inline
task can be implemented either directly in the process using a human task
activity or as a property of an Invoke, Receive, Receive Choice, event handler,
or OnMessage activity. This task does not appear outside of the process and
cannot be reused.

� Stand-alone tasks: Implemented as an independent component
implementation that can be wired to any other components. This task exists
independently of a business process and implements human interaction as a
service, which is reusable.

The main differences between these two methods of implementation are as
follows:

� Inline tasks are tied to a particular process, whereas stand-alone tasks can
be reused across multiple processes.

� Stand-alone tasks can be replaced by other SCA implementations, for
example business rules, without altering the original process.

� Inline tasks have access to the context information of the process in which
they contained and any other inline task within the same process.
Stand-alone tasks have access only to the context information of the
individual human task.

� Inline tasks can be used for server-driven page flow applications using the
completeAndClaimNext functionality. Stand-alone tasks are independent of
each other.

� Inline tasks are deleted when their parent process is deleted.

Types of human tasks
The four main types of human tasks are:

� To-do task
� Invocation task
� Collaboration task
� Administration task

To-do task
A to-do task (machine-to-human or M2H) is a human task that is invoked by a
service component, which assigns a task to a human to do something. A to-do
task can be either inline or stand-alone. In earlier releases of WebSphere
Process Server V6.1, this task is referred to as a participating task.

186 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Invocation task
An invocation task (human-to-machine or H2M) is a human task that is triggered
by a human who assigns a task to a service component. In this case, a human
invokes a service component such as a business process. An invocation task can
be either inline or stand-alone.

When this task is inline, an invocation task allows humans to invoke the
operations that a business process exposes through activities such as Receive,
Receive Choice, or event handlers. Through this task, a user can start a process
and define authorization for its inbound activities. In earlier releases of
WebSphere Process Server V6.1, this task is referred as an originating task.

Collaboration task
A collaboration task (human-to-human or H2H) is a human task that is triggered
by a human who assigns a task to another human. A collaboration task is
stand-alone in that there is no interaction between it and any other component.
This task is self-contained and implements a stand-alone human interaction
without any reference or interface to another service. In earlier releases of
WebSphere Process Server V6.1, this task is referred to as a pure human task.

Administration task
An administration task is a human task that is created by components to offer an
interface for a human administrator. This type of task grants to a human the right
to perform administrative actions, such as suspend, terminate, restart,
force-retry, or force-complete a business process. Administration tasks can be
set up on either an Invoke activity or the process as a whole. This type of task is
available only within a business process (inline task).

 Chapter 4. Building business integration applications 187

These tasks have the interaction patterns shown in Figure 4-50.

Figure 4-50 The interactions of the main types of human tasks

Collaboration
Task

Collaboration
Task

Ta
sk

 P
ar

tic
ip

an
t

In
te

rfa
ce

Ta
sk

 P
ar

tic
ip

an
t

In
te

rfa
ce

Ta
sk

 O
rig

in
at

or
In

te
rfa

ce
Ta

sk
 O

rig
in

at
or

In
te

rfa
ce

create

start

notify

query

claim

complete

To-do
Task

To-do
TaskTa

sk
S

er
vi

ce
 In

te
rfa

ce
Ta

sk
S

er
vi

ce
 In

te
rfa

ce

Ta
sk

 P
ar

tic
ip

an
t

In
te

rfa
ce

Ta
sk

 P
ar

tic
ip

an
t

In
te

rfa
ceinvoke

return

query

claim

complete

Service

Invocation
Task

Invocation
Task

create

start

notify

invoke

return

S
er

vi
ce

In
te

rfa
ce

S
er

vi
ce

In
te

rfa
ce

Ta
sk

 O
rig

in
at

or
In

te
rfa

ce
Ta

sk
 O

rig
in

at
or

In
te

rfa
ce

Web serviceService

Administration
Task

Administration
TaskTa

sk
S

er
vi

ce
 In

te
rfa

ce
Ta

sk
S

er
vi

ce
 In

te
rfa

ce

Ta
sk

 P
ar

tic
ip

an
t

In
te

rfa
ce

Ta
sk

 P
ar

tic
ip

an
t

In
te

rfa
ce

suspend

restart

terminate

Business Process

create
grant

188 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.5.2 Creating a human task

To create a new human task, follow these steps:

1. Create a module. In this example, the module is CustomerSupportModule.

2. Create an interface in the module. In this example, we use
CustomerSupportIF, as shown in Figure 4-51.

Figure 4-51 CustomerSupportIF for a new human task

 Chapter 4. Building business integration applications 189

3. Select File → New → Human Task. In the New Human Task window, shown
in Figure 4-52:

a. Select New default Human Task
b. Browse to an existing module (or click New to create one).
c. Specify a folder (optional).
d. Specify a name for the new human task (for example, CustomerSupportHT).
e. Click Next.

Figure 4-52 New Human Task Wizard

190 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Select the type of interaction for the human task. As shown in Figure 4-53,
you have the following options in a stand-alone human task implementation:

To-do task A service component assigns a task to a human to do
something.

Invocation task A human can “assign” a task to a service component.

Collaboration task A human assigns a task to another human.

In this example, click To-do Task, and then click Next.

Figure 4-53 Select type of interaction for human task

 Chapter 4. Building business integration applications 191

5. In the New Human Task dialog box, shown in Figure 4-54:

a. Click Select an existing Interface. Alternatively, you can select Generate
a new Interface to generate a new interface to be used with this human
task.

b. Select the existing interface, CustomerSupportIF, from the drop-down
menu. Alternatively, you can click Browse and select an interface in
Interface Selection wizard as shown in Figure 4-55 on page 193.

c. Click Finish.

Figure 4-54 Select an interface in the New Human Task wizard

192 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 4-55 Interface Selection wizard for human task

 Chapter 4. Building business integration applications 193

The CustomerSupportHT is created and opens in the human task editor as
shown in Figure 4-56.

Figure 4-56 CustomerSupportHT Business Integration View

194 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.5.3 Human task editor

The human task editor, shown in Figure 4-57 on page 196, is a is a GUI-based
tool. It helps you to visually configure the interaction between a service and its
associated human participants. The human task editor includes the following
areas:

� The service interface area

This area shows the interface and the operation, which is associated with this
human task and the corresponding inputs and outputs. You can click the
interface name link to launch the interface editor to make any changes to the
interface.

� The people assignment area

This area shows a list of the people assignments (roles with criteria) who can
interact with the task, providing the “Add roles to define access rights to the
task” icon () to add a new people assignment. To remove an authorization
role, highlight a role and click the delete () icon.

� The user interface area

Use this area to add additional, client type specific information to a human
task. The clients that are listed here are the clients that can interact with the
task in the runtime environment. Click the “Add definitions to be used by
clients” icon () to add a new user interface and then to configure it in the
Details tab of Properties view.

� The escalation area

The escalation settings define how a task is handled when an expected action
has not been performed within a predefined time period.

� The Properties view

This area displays properties of the object that are currently selected in the
editor. Click the tabs to the left of this view to toggle through various property
pages. You can add or modify any of the properties by clicking the appropriate
field shown on GUI.

 Chapter 4. Building business integration applications 195

Figure 4-57 The human task editor

196 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.5.4 Building blocks of a human task

A human task definition is comprised of the following building blocks:

� Type and name of the task (the type can be to-do, invocation, or collaboration)
� Service interface (what needs to be done and how)
� People assignment (who can do the task)
� User interface (how the human interacts with the task)
� Escalation (what happens when the task takes too long)

You can configure or manipulate each of these settings using the human task
editor. Figure 4-58 shows the building blocks for each type of human task. The
figure contains a small portion of what you see when you open each of these
three task types in the human task editor.

Figure 4-58 To-do, invocation, and collaboration tasks in the human task editor

 Chapter 4. Building business integration applications 197

4.5.5 People assignments

People assignment roles and the criteria that is defined for a task identifies the
staff members to interact with the task based on their access rights. More
specifically, authorization roles determine what the members are allowed to do in
the runtime environment, and people assignment criteria defines who is a
member of an authorization role.

The people assignment area of a task in human task editor facilitates the
configuration of authorization roles and people assignment criteria.

A task is assigned to a role, not an individual. Each staff member who belongs to
this role group has permissions assigned to the role as a whole. Figure 4-59
shows the assigned roles (for example, Potential creators, potential owners)
under the people assignment area of the human task editor.

Figure 4-59 People assignment roles and criteria

People assignment criteria (of a specific role) further refines the list of members
of the specific role group who can work with the task. Figure 4-59 shows the
people assignment criteria for a role (for example, Potential Owners as
Everybody) that can be changed on the Assign People tab of the Properties view
of the human task editor.

198 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Authorization roles for human tasks
Authorization is the mechanism by which certain people (staff of an organization)
are enabled to perform selected actions on tasks. Authorization roles are used to
define sets of actions that are available to specific roles. Role-based
authorization requires that administrative and application security is enabled for
the application server. A role can be:

� A system-level J2EE role
� An instance-based role

System-level J2EE roles
System-level J2EE roles are set up when the Human Task Manager is
configured. The authority level that is implied by these roles is valid for all tasks
and escalations. You can change the assignment of users and groups to these
roles using the administrative console of WebSphere Process Server. The
following J2EE roles are supported:

� TaskSystemAdministrator: Users assigned to this role have all privileges. This
role is also referred to as the system administrator for human tasks.

� TaskSystemMonitor: Users assigned to this role can view the properties of all
of the task objects. This role is also referred to as the system monitor for
human tasks.

Instance-based roles
Instance-based roles are valid for tasks and escalation instances or for the
templates that are used to create task or escalation instances. The association of
users to instance-based roles is determined either by people assignment criteria
or as the result of task actions.

People are assigned to roles at run time by people assignment criteria that is
based on the user and user group information that is stored in a people directory,
namely, virtual member manager, LDAP, user registry, and system (operating
system), as shown in Table 4-2.

Table 4-2 Authorization roles determined by people assignment criteria

Role name Description

 Members of this role can create an instance of the task
but cannot start it.

 Members of this role can start an existing task instance.
This role is associated only with an invocation task.

 Members of this role can claim, work on, and complete
tasks.

 Chapter 4. Building business integration applications 199

The roles shown in Table 4-3 are associated with only one user and are assigned
as the result of a task action.

Table 4-3 Authorization roles determined by task actions

People assignment criteria
People assignment criteria are constructs that are used with human tasks to
identify sets of people that can be assigned to an instance-based authorization
role. At run time, this criteria is used to retrieve sets of users from people
directories. The criteria can be composed using predefined staff verbs or
keywords, such as Everybody, Group, and so forth, and replacement
expressions.

 Members of this role can view tasks but cannot work on
them. This role can be used in situations where an
employee wants to monitor a task without taking any
action on it.

 Members of this role can work with the content of a task
but cannot claim or complete it.

 Members of this role can administer tasks. They have the
authority to perform higher authority duties, such as
suspend, terminate, restart, force-retry, and
force-complete.

Escalation receiver Members of this role have the authority of a reader for the
escalation and the escalated task.

Role name Description

Originator The person who created the task. A person with a potential creator role
becomes an originator after creating a task. The person with this role has
administrative rights until the task starts. When the task starts, the
originator has the authority of a reader and can perform some
administrative actions, such as suspending tasks, resuming tasks, and
transferring work items.

Starter The person who started the task. A person with a potential starter role
becomes a starter after starting a task. The person with this role has the
authority of a reader and can perform some administrative actions, such
as transferring work items.

Owner The person who claimed the task. A person with a potential owner role
becomes an owner after claiming a task. The person with this role works
on and completes a task.

Role name Description

200 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

People directories
People directories store user and groups information that is used for people
resolution based on the people assignment criteria. The following people
directories are supported:

� Virtual member manager (VMM), also referred to as federated repositories:
This is the default people directory that is supported by WebSphere
Application Server.

� LDAP directory

� Local operating system user registry

� WebSphere Application Server user registry

Figure 4-60 shows the people directory configuration property page for a to-do
task, using a preconfigured sample VMM configuration. The drop-down list in the
figure is expanded to capture the JNDI names of other people directories.

Figure 4-60 People directory configuration page for a to-do task

 Chapter 4. Building business integration applications 201

Assigning a role to a human task
To add a role to a task using the human task editor, follow these steps:

1. Open the task in the human task editor. Table 4-4 shows the roles that are
added by default during creation for various types of human tasks.

Table 4-4 People assignment settings for various human tasks

2. Click the “Add roles to define access rights to the task” icon () to add a new
role and to select one from the drop-down list.

3. Configure the people assignment criteria settings on the Assign People tab of
Properties view of the human task editor (Figure 4-59 on page 198).

Task Type People Assignment Display Description

To-do

Person is a receiver. In this
case, you can configure the
roles for the people who can
claim and work on this task.

Invocation

Person is an originator. In this
case, you can configure the
roles for the people who can
initiate the task.

Collaboration

Person-to-person (that is, the
person is both a receiver and an
originator). Because a
collaboration task is assigned to
one person from another, it has
both receiver and originator
settings.

Note: The drop-down list shows only those roles that are applicable and
still not added. The roles that are listed as images in Table 4-2 on page 199
are the ones that you can add to the tasks under people assignment area.

202 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Testing people assignment criteria
You can test the people assignment criteria that is used in a human task to make
sure that the correct people are retrieved from the people directory. Follow these
steps:

1. Open a human task in the human task editor.

2. Select a role.

3. Click Test in the Assign tab of the properties page as shown in Figure 4-61).

Figure 4-61 Testing people assignment criteria

Note: This button is available for all people assignment criteria except
everybody and nobody.

 Chapter 4. Building business integration applications 203

4. Select one of the running WebSphere Process Server instances from the
drop-down menu on the Test People Search window (shown in Figure 4-62),
and click Submit.

Figure 4-62 Test people search window

Note: If the people assignment criteria contains one or more replacement
variables, the dialog box includes an input field for each variable to enter
some input data to be used in the query.

204 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Figure 4-63 shows an example of the query results. Click OK to close the
window.

Figure 4-63 People names queries in test people search

 Chapter 4. Building business integration applications 205

4.5.6 User interfaces

The User Interface area in the human task editor lists the clients that are used by
people to interact with the task in the runtime environment. Click the “Add
definitions to be used by clients” icon () to add a new user interface, and then
configure it in the Details tab of Properties view.

Figure 4-64 User interface clients for a human task

There are three user interfaces:

� IBM Lotus Forms client: Select IBM Lotus Forms client to present information
to the user with the Lotus Forms Client.

� Portal client: Select the portal client to specify a client that is executed on
WebSphere Portal.

� Business Process Choreographer Explorer: Select the Business Process
Choreographer Explorer to use the standard Web client that is provided with
the product.

4.5.7 Escalations

An escalation is a notification or an alert that can be raised automatically when a
human task has not been actioned in the specified amount of time. Escalations
for human tasks are optional but are very useful to ensure that tasks do not go
overdue or get forgotten. For example, you can use an escalation to alert a
supervisor or manager when a staff member is unable to complete a task by the
defined deadline.

Escalations allow WebSphere Process Server run time to request an action
automatically if a task has not been actioned (for example, claimed and
completed) in a certain amount of time.

206 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Escalations gets activated at a certain task state and escalate only if the task is
not moved to the expected task state when the defined time limit for the
escalation expires. You can set up escalations to escalate a task to users or
groups that are defined by any of the staff verbs and can use varying durations.
The time period until the escalation is calculated from the point of time when the
task is set to the particular state.

You can define escalations for tasks, and they get activated when the task
reaches the task states shown in Figure 4-65.

Figure 4-65 Escalation task states

These task states are as follows:

� Ready

For tasks in the ready state, you can define escalations for the following
situations:

– Escalate when the task is not claimed in time using the expected task
state of claimed.

– Escalate when the task is not completed in time using the expected task
state of ended.

� Claimed

For to-do tasks or collaboration tasks in the claimed state, you can define
escalations for the following situations:

– Escalate when the task is not completed in time using the expected task
state of ended.

– Escalate when the subtasks of this task are not completed in time using
the expected task state of all subtasks ended.

Note: The escalation time values in WebSphere Process Server human tasks
are not the same as the task duration values. Although a human task might
exceed its duration and so become due, this does not trigger an escalation
event automatically if no escalation details are defined.

If you want a task to be escalated, you must explicitly define an escalation for it.

 Chapter 4. Building business integration applications 207

� Subtask started

In the subtasks started sub-state of a to-do task or collaboration task, you can
escalate the task when its subtasks are not completed in time using the
expected task state of all subtasks ended. Note that it is the parent task that
gets escalated, not the subtasks. For more information about subtasks, see
4.5.8, “Ad-hoc tasks” on page 209.

� Running

In the running state of an invocation task, you can escalate when the invoked
service does not return in time using the expected task state of ended.

When an escalation is raised, the people that are affected by the escalation (the
escalation receivers) receive work items. Depending on the definition of the
escalation, the escalation receivers might also receive an e-mail that notifies
them that the task is escalated. The list of users who are notified is defined by
people assignment criteria on the Assign People tab in the Properties view of the
escalation.

The e-mail functionality is especially beneficial when you are notifying users who
only occasionally interact with the business process and alerts them to the fact
that they have a task to perform in the form of an escalation. The e-mail can
contain the escalated task name, the state that the task should have reached,
and a description of the task.

You can define repeating escalations. These escalations check the same
expected task state at every timeout, and perform the defined escalation action
until the expected task state is reached.

You can configure the escalation to increase the priority of the escalated task
using the increase task priority property. The priority can be increased
automatically either for this time only or for every iteration of the escalation.

208 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

These configuration properties are shown in Figure 4-66.

Figure 4-66 Escalation properties

4.5.8 Ad-hoc tasks

Ad-hoc tasks are created “on-the-fly” in the runtime environment and represent
parts of the original task or partially completed task. These tasks can be used
when the application is stand-alone and when the task is either to-do or
collaboration.

When you work on a task in the user interface of the runtime environment, you
can define a task dynamically either as a subtask or as a follow-on task.

Subtasks
In the runtime environment, if a person who claims a task finds that the task
cannot be completed, that person can delegate portions of that original task to
other people in the form of subtasks. You can create subtasks from stand-alone
task templates that are stored in the Business Process Choreographer database,
from task templates created at run time, or by providing a new task model at run

 Chapter 4. Building business integration applications 209

time. The parent task can be a to-do task or a collaboration task, and it must
have the supportsSubtask attribute set to true. The subtasks that you create can
be either collaboration tasks or invocation tasks. These subtasks can, in turn,
have subtasks or follow-on tasks.

There can be more than one subtask for any given parent task and the parent
task owner has the control over the overall result. The parent task owner must
then consolidate the information received from the subtasks back into the parent
task. Escalation is still available on the parent task, and if the parent task fails to
complete, the owner can see that it is because there are still subtasks to
complete. So the owner of the parent task still has responsibility for the
completion of the parent task.

Follow-on tasks
In the runtime environment, if a person who claims a task finds that the task
cannot be completed, that person can assign the remaining work to other people
in the form of a follow-on task. Follow-on tasks can be only collaboration tasks.
You can start a collaboration task from a to-do task or a collaboration task that
has the supportsFollowOnTask attribute set to true.

The follow-on task is similar in concept to the subtask; however, the data in the
follow-on task must match the data in the original task from which you are
following. This time, the original task is put into a forwarded state, and the original
task owner does not get the response back. On completion of the follow-on task,
the process continues as usual. Also, the follow-on task can have its own
escalation. So, in this case the owner of the follow-on task has responsibility for
completing the follow-on task.

4.5.9 New human task features in WebSphere Process Server V6.1

The new or enhanced human task capabilities for business integration
applications available with WebSphere Process Server V6.1 include:

� Extended people directory support

The Human Task Manager uses VMM as a people directory. VMM is a new
component in WebSphere Application Server V6.1 to integrate customer
specific people directories. This component provides the following
functionality:

– A common schema that offers powerful people query functionality.

– Various external repositories.

– People repository federation, that is multiple directories are represent as a
single directory with unified schema. For example, it allows federating
multiple LDAP directories.

210 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

– Extending the built-in schema by adding additional people properties. Data
from schema extensions is stored in VMM’s look-aside repository.

– Plugging in custom repositories with powerful query functionality

� Pre-configured people directory

The WebSphere Integration Developer test environment allows for rapid
prototyping of human tasks. This functionality is built upon VMM’s file
repository and supports testing of people resolution in the integrated test
environment.

� The ability to test the people assignment criteria in the runtime environment.

� Participant substitution capabilities

Substitution capabilities allow users of the runtime applications to temporarily
delegate work when they are unavailable. Human Task Manager allows users
to specify substitutes for users.

People can specify a list of substitutes. If users notify the system of their
absence, then work is assigned to substitutes:

– If someone is absent, then the tasks for that person are assigned to the
appropriate person on that person’s substitute list.

– If the first substitute is absent also, then the second substitute is used, and
so on.

Tasks that are assigned to unavailable users are re-assigned automatically to
their specified substitutes. Substitution occurs during people resolution and is
re-evaluated upon refresh of people assignments. Substitution takes
advantage of VMM and is supported only when using VMM as the people
directory.

� Enhanced performance for task list queries

In systems with large numbers of human tasks (hundreds of thousands) and
large numbers of users (many thousands), the performance of task list
queries might become an issue. Materialized views, a technique known from
database management systems, are introduced to optimize the performance
of task list queries.

� Batch processing support

This support allows you to perform operations on batches of human tasks and
work items. This operation leads to improved performance when dealing with
a large number of items as only one client. Server interaction is required. New
bulk HTM APIs are introduced to support batch processing.

� Auto deletion can be restricted (optional) to tasks that completed successfully.

 Chapter 4. Building business integration applications 211

� Forms created using IBM Lotus Forms Designer (integrated into WebSphere
Integration Developer) can be used as the user interface for human tasks and
processes.

4.6 Administering processes and tasks

Business processes and human tasks are part of modules that are deployed and
installed as part of an enterprise application. You can use the administrative
console or the administrative commands to administer process templates and
task templates, and you can use Business Process Choreographer Explorer to
work with process instances and task instances. You can use Business Process
Choreographer Observer to report on business processes and human tasks.

4.6.1 Business process templates and instances

Process templates define business processes within an enterprise application
that can run on WebSphere Process Server. You can think of the template as the
cookie-cutter that lets you create copies of business processes with the same
definition. The user who wants to initiate a process must have permission to
create an instance of that process from its template. If you want to control who
can start and stop your process, you do that by controlling access to its template.

When an enterprise application that contains process templates is installed or
deployed and started, the process templates are put into the started state. When
a process template is started, new instances of the template can be started. The
process template must be stopped before the business process application can
be uninstalled. When a process template is in the stopped state, no new
instances of this template can be started.

A process instance is an instance of a process template and can be a
long-running process or a microflow.

The Business Process Choreographer Explorer displays information about
process templates and process instances or acts on process instances. These
actions can be, for example, starting process instances and, for long-running
processes, other process life cycle actions, such as suspending, resuming, or
terminating process instances, or repairing activities.

212 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.6.2 Human task templates and instances

A task template contains the definition of a deployed human task that was
created using WebSphere Integration Developer or at run time using the
Business Process Choreographer APIs.

The template contains properties, such as the task name and priority, and
aggregates artifacts, such as escalation templates, custom properties, and
people query templates. When an enterprise application that contains task
templates is installed or deployed and then started, the task templates are put
into the started state.

When a task template is started, new instances of the template can be started.
The task template must be stopped before the human task application can be
uninstalled. When a task template is in the stopped state, no new instances of
this template can be started.

A task instance is an instance of a task template and represents a running human
task.

4.6.3 Administering process and task templates

You can use the administrative console that is provided by the WebSphere
Process Server runtime environment to administer process or task templates.

When an enterprise application that contains process or task templates is
installed or deployed and then started, the process or task templates are put into
the started state. You can use the administrative console or the administrative
commands to stop and start these templates. The process or task templates that
are started are shown in Business Process Choreographer Explorer.

Follow these steps to start or stop the templates:

1. Select the module that you want to manage from the administrative console
by clicking Applications → SCA modules → <module_name>.

2. In the Configuration page for the module under Additional Properties:

a. Click Business processes, and then select a process template.

or

b. Click Human tasks, and then select a task template.

3. To start the template, click Start. To stop the template, click Stop.

Existing instances of the stopped templates continue to run until they end
normally. However, you cannot create instances from a stopped template.

 Chapter 4. Building business integration applications 213

4.6.4 Business Process Choreographer Explorer

The Business Process Choreographer (BPC) Explorer is a Web client that
facilitates a user to communicate with the runtime environment of WebSphere
Process Server. It provides a user interface for administering business processes
and human tasks or to work with assigned tasks.

When you start Business Process Choreographer Explorer, the objects that you
see in the user interface and the actions that you can take depend on your user
role. You can use Business Process Choreographer Explorer to perform the
following tasks:

� If you are a business process administrator, you can manage the life cycle of
business processes and human tasks, as well as manage work assignments.
You can view information about process and task templates, process
instances, task instances, and their associated objects. You can also act on
these objects (for example, you can start new process instances, create and
start tasks, repair and restart failed activities, manage work items, and delete
completed process instances and task instances).

� If you are a business user, you can view and work with your assigned tasks.

You can configure the Business Process Choreographer Explorer using a script
or through the WebSphere Process Server administrative console.

Launching Business Process Choreographer Explorer

To launch the Business Process Choreographer Explorer:

1. Open the Business Process Choreographer Explorer URL from a Web
browser:

http://<app_server_host>:<default_host_port_no>/context_root

A sample URL in the address bar might be:

http://localhost:9080/bpc

2. If security is enabled, you must enter a user name and password, and then
click Login.

Note: Before you can start using Business Process Choreographer Explorer
from a Web browser, you must have installed the business process container,
human task container, and the Business Process Choreographer Explorer
application, and the application must be running.

214 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Launching the Business Process Choreographer Explorer
from WebSphere Integration Developer
Alternatively, if you are using WebSphere Integration Developer test
environment, you can perform the following steps to start the Business Process
Choreographer explorer:

1. Switch to the Business Integration perspective.

2. Click the Servers view tab. Otherwise, select Windows → Show View →
Servers.

3. Select a server and start it.

4. Right-click the server and select Launch → Business Process
Choreographer Explorer.

 Chapter 4. Building business integration applications 215

The initial page of the Business Process Choreographer Explorer displays as
shown in Figure 4-67.

Figure 4-67 My To-dos page of the Business Process Choreographer Explorer

216 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Process and task templates
The process and task templates that are started are shown in Business Process
Choreographer Explorer.

My Process Templates view
This view under the process templates group lists the process templates. From
this view, you can view the information about the process template and its
structure, navigate to running process instances that are associated with a
template, and start process instances.

Figure 4-68 shows the My Process Templates view of Business Process
Choreographer Explorer.

Figure 4-68 My Process Templates view of Business Process Choreographer Explorer

My Task Templates view
This view under the task templates group lists the task templates. From this view,
you can create and start a task instance and navigate to running task instances
that are associated with a template.

4.6.5 Administering process and task instances

The various views that are available under process instances and task instances
groups on the navigation pane of the Business Process Choreographer Explorer
facilitate the administration of process and task instances.

 Chapter 4. Building business integration applications 217

Process instances
The process instances group includes the following views:

� Started By Me

This view lists the process instances that you started. From this view, you can
monitor the current state or progress of the process instance and list the
activities, processes, or tasks that are related to it.

� Administered By Me

This view lists the process instances that you are authorized to administer.
From this view, you can act on the process instance (for example, suspend
and resume a process or monitor the progress of the activities in a process
instance).

� Critical Processes

This view lists process instances in the running state that contain activities in
the stopped state. From this view, you can act on the process instances or list
the activities and then act on them.

� Terminated Processes

This view lists process instances that are in the terminated state. From this
view, you can act on these process instances.

� Failed Compensations

This view lists the compensation actions that have failed for microflows.

Task instances
The task instances group includes the following views:

� My To-dos

This view lists the task instances with which you are authorized to work. From
this view, you can work on a task instance, release a task instance that you
claimed, or transfer a task instance to another user.

� All Tasks

This view lists all of the tasks for which you are the owner, potential owner, or
editor. From this view, you can work on a task instance, release a task
instance that you claimed, or transfer a task instance to another user.

� Initiated By Me

This view lists the task instances that you initiated. From this view, you can
work on a task instance, release a task instance that you claimed, or transfer
a task instance to another user.

218 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� Administered By Me

This view lists the task instances that you are authorized to administer. From
this view, you can act on the task instance (for example, suspend and resume
a task, create work items for the task instance, or display a list of the current
work items for the task instance).

� My Escalations

This view lists all the escalations for the logged on business user.

4.6.6 Business Process Choreographer Observer

The Business Process Choreographer (BPC) Observer is a Web application that
generates reports about the execution of business processes and human tasks.
The Business Process Choreographer Observer allows you to:

� Observe state and evolution of processes.

� Observe overall duration and actual work time of activities.

� Provide customizable reports and graphical charts of historical and
accumulated data of processes.

� Retrieve statistical data on processes and activities through flexible drill
downs.

4.6.7 New, enhanced Business Process Choreographer features with
WebSphere Process Server V6.1

This section describes the new or enhanced features of Business Process
Choreographer Explorer and Business Process Choreographer Observer that
are available with WebSphere Process Server V6.1.

The new and enhanced features include:

� You can now perform the following tasks with the Business Process
Choreographer Explorer enhanced capabilities:

– Handle absence and substitution of users.

– Use the “Suspend until” option for business processes and human tasks.

In V6.1, suspending a process or task instance allows you to specify a
duration or point in time, if the process or task instance has to be resumed
automatically. Figure 4-69 shows this option.

 Chapter 4. Building business integration applications 219

Figure 4-69 Suspend process until option for a process instance in BPC explorer

– View and edit XML source data.

– Use extended custom views to sort and control the amount of data that is
presented to the application users.

– Combine filter criteria across processes and tasks with their definitions
and instances.

– Navigate between related tasks (subtasks and follow-on), as well as
administer and view information about specific ad-hoc tasks.

– Include human task priority and business category as filter criteria and list
columns.

– Edit custom properties.

– Use an improved graphical process view.

� You can now export reports in the Business Process Choreographer
Observer for further analysis in tools such as Microsoft® Excel®, and you can
save the reports for automatic generation at a later time based on schedule or
on demand.

220 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.7 Business state machines

A state machine is an event driven business application in which external
operations trigger changes that guide the state machine from one discrete mode
to another. Each mode is an individual state, and this mode determines what
activities and operations can occur. The state machines are service components
which represent business processes based on states and events instead of a
sequential business process model.

You create business state machines in IBM WebSphere Integration Developer
using the business state machine editor.

An example of a state machine
In this section, we describe a a simple example to understand business state
machine simulation and usage—purchasing a snack from a vending machine.
Figure 4-70 on page 222 shows the various interactions and activities that are
involved during this purchase process.

 Chapter 4. Building business integration applications 221

Figure 4-70 State machine use

In this example, a customer must go through a sequence of interactions to
purchase a snack from a vending machine. The vending machine does not
respond until money is deposited. Even then, the vending machine does not
proceed to the next state until a certain amount of money is deposited. In each of
the states, the actions that the customer can perform is unique from any other
state. For example, when it is in the primary state waiting for money, the
customer can press buttons, but doing so has no effect on the transaction.

The customer puts a coin in the
machine, which triggers an
event. The vending machine
evaluates the amount and
determines that it is not enough.
So. it stays in the primary state
and waits for more.

The customer deposits more
money. After evaluating the
amount, the vending machine
determines that it can move to
the next state of offering the
available choices with flashing
lights.

The customer approaches the
vending machine, which is in a
primary state waiting for an
event (money). The customer
can press buttons, but the
machine will not respond.

The customer makes a choice,
and the vending machine
dispenses it. Then the vending
machine decides if any change
is necessary.

The vending machine
dispenses the appropriate
change, and then returns to the
primary state and awaits the
next transaction.

Vending machineCustomer

Customer Vending machineWants to buy
an item

1

Deposits
one coin

Not enough
money

2

Vending machineCustomer

3

Deposits
more money

Vending machineCustomer

4

Vending machineCustomer

5

Dispenses
change

Makes a
choice

Dispenses
item

222 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

This example helps you to understand the building blocks of a state machine that
we discuss in subsequent topics. In the last topic, 4.7.7, “Vending machine
sample” on page 236, we show the implemented state machine for this vending
machine example.

4.7.1 Creating a state machine

This example assumes that a module called SampleModule and an interface for
the module called SampleMachineIF have been created as shown in
Figure 4-71.

Figure 4-71 SampleMachineIF for the state machine

 Chapter 4. Building business integration applications 223

Follow these steps to create a new state machine:

1. Select File → New → Business State Machine.

2. In the New Business State Machine window (shown in Figure 4-72):

a. Browse to an existing module (or click New to create one).
b. Specify a folder (optional).
c. Specify a name for the new state machine (for example,

SampleMachineBSM).
d. Click Next.

Figure 4-72 New Business State Machine wizard

224 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Select an appropriate interface and operation to start the state machine, and
then select the necessary operation inputs and outputs for correlation
information as shown in Figure 4-73. Click Finish.

Figure 4-73 Select an interface for new business state machine

 Chapter 4. Building business integration applications 225

The business state machine is created and opens in the business state machine
editor as shown in Figure 4-74.

Figure 4-74 Business state machine editor

226 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.7.2 Business state machine editor

You can use the business state machine editor to build and manipulate state
machines. This editor consists of several distinct areas, including the canvas,
palette, tray, Properties view, and action bar. The white space is called the
canvas. It is populated with objects pulled from the palette on the left and with
references to the objects in the tray on the right to build a state machine. The
Properties view displays pertinent details about whatever object is currently
selected on the canvas or the tray.

The only two areas whose functionality and appearance differ when compared
with those of the business process editor (as explained in the topic, 4.4.4,
“Business process editor” on page 146) are the palette and the action bar, which
we describe in the sections that follow.

The palette
The palette is the shaded area to the left of the canvas that houses the states
that you click and drag onto the canvas to build a state machine. The icons that
are available on the palette represent various states of a state machine, as
shown in Figure 4-75.

Figure 4-75 States on the palette of the business state machine editor

The action bar
The action bar is a miniature dialog box that displays beside certain objects
when you select them. It contains a series of one or more elements that can be
added to that object. For example, this dialog box, , displays
when a transition is selected.

 Chapter 4. Building business integration applications 227

4.7.3 Building blocks of a state machine

You use the following building blocks to compose a business state machine using
the business state machine editor:

� Interface: A set of operations to which the state machine accepts and
responds.

� Reference: Not an interface, but instead it tells the state machine where to find
operations that it can invoke. More specifically, it points to the interface that is
used in the invocation of another component.

� Variables: Store the data that is used within a state machine and can be
either a business object or a simple type.

� Correlation properties: Used to distinguish one instance of a state machine
from another within a runtime environment.

� State: One of several discrete individual stages that represent a business
transaction.

� Transition: The movement from one state to the next by recognizing an
appropriate triggering event. The movement is based on the evaluation of the
conditions that are necessary for control to flow through it. During the
transition, the associated actions are executed.

� Event: What (an external prompt) triggers a transition from one state to
another.

� Condition: Guards the transition and only allows processing when and if it
evaluates to true. Otherwise, the current state is maintained.

� Action: An activity that is executed when a state is entered, exited, or on a
transition within a business state machine.

We discuss interface, reference partners, and variables in detail in 4.4, “Business
processes” on page 134. The following sections provide more information about
artifacts that are either unique in state machines or that must be configured in a
different manner than in business processes.

4.7.4 Using correlation properties in a state machine

You use correlation properties to distinguish one instance of a state machine
from another within a runtime environment. For each operation (event) to which
the state machine responds, a property alias locates the input that corresponds
to each correlation property that is defined.

228 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

This correlation is done in two steps:

1. Identify a property that will be present in all operations.

2. Identify, for each operation, the part that will be used to supply the value for
the property.

Adding a correlation property to a state machine
To create a correlation property in a state machine using the business state
machine editor:

1. Click the plus icon besides the Correlation Properties section on the tray.

2. In the Add Correlation Property dialog box:

a. Specify an appropriate name.
b. Select the data type.
c. Click OK.

3. Click the Description tab in the properties area, and then:

a. Select each operation.
b. Click Add and specify property aliases.

Figure 4-76 shows the correlation property that is used by one of the sample
business state machine that we discuss in 4.7.7, “Vending machine sample” on
page 236.

Figure 4-76 Correlation property of a sample business state machine

 Chapter 4. Building business integration applications 229

4.7.5 Using states in a state machine

A state is one of several discrete individual stages that represent a business
transaction. An action is an activity that is executed when a state is entered or
exited or on a transition within a business state machine. Typically, a state has
the following life cycle:

� The state begins with the running of any existing entry actions.

� The state then waits and listens to a particular set of events.

� When an event occurs, an appropriate path through the state machine is
chosen.

� An exit action, if any is executed before the state machine transitions to
another state.

The various types of states are:

� Initial state

Initial state is the first state in which a state machine starts. When used in a
primary state machine, an initial state has one outbound transition that
defines the operation that starts the state machine. When used in a
composite state, the outbound transition must be automatic. In both cases,
there can be only one outbound transition, and it cannot be guarded.

� Simple state

Simple state is an individual discrete stage of a state machine. This state can
have an action associated with state entry and exit. These actions occur
whenever the state is entered or exited, respectively. When the state is
entered, it enables all of its outbound transitions.

� Composite state

Composite state is an aggregate of two or more states. This state is used to
decompose a complex state machine diagram into an easy to comprehend
hierarchy of state machines or to facilitate exception and error handling.
These composite states can have one or more outbound exception transitions
or a single default transition.

� Final state

Final state is the state where the state machine comes to a normal or
expected completion. When it is contained in a composite state, the
movement to final state fires the composite state’s default transition. This
state can have only an entry action not an exit action.

230 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� Terminate

Terminate is the state where the state machine comes to an abnormal or
unexpected end. When this state is reached, entire activity within the state
machine halts. This state can have only an entry action but not an exit action.

Adding a state to a state machine
To add a state to a state machine using the business state machine editor:

1. Click a state icon on the palette.

2. Drag the cursor onto the canvas. The icon beside the cursor has a plus
symbol when you are at a place where you are allowed to drop the state.
When the cursor becomes a crossed out circle, continue moving the cursor
until it becomes a plus sign again.

3. Click the area of the canvas where you want to drop the state.

Figure 4-77 shows a simple state, SimpleState1, added to a state machine.

Figure 4-77 SimpleState of a state machine

 Chapter 4. Building business integration applications 231

Adding an entry or an exit to a state
An entry is an activity which is executed when entering a state, while the exit is
executed while leaving the state. To add an entry or an exit to a state or a
composite state using the business state machine editor, follow these steps:

1. Click the state for which you want to add an entry or an exit.

2. In the action bar, click the Add an Entry or Add an Exit icons that display as
shown in Figure 4-78.

Figure 4-78 Action bar showing Entry and Exit icons

3. Click the Details tab in the Properties area.

4. Select one of the following options to implement the entry or exit:

– Visual: Choose this option to use the visual snippet editor to graphically
compose Java code.

– Java: Choose this option to write the Java code yourself.

– Invoke: Choose this option to invoke an operation on a reference.

Figure 4-79 shows a state with entry and exit actions.

Figure 4-79 A sample state with entry and exit

232 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.7.6 Using transitions in a state machine

A transition is the movement from one state to the next by recognizing an
appropriate triggering event. The movement is based on the evaluation of the
condition that is necessary for control to flow through it. During the transition, the
associated actions are executed.

Events
An event is what (an external prompt which) triggers a transition from one state to
another. There are three types of events:

� Call event: The transition is triggered when the correct operation is called.

� Timer event: The transition is triggered when the timer expires.

� Completion event: The transition is triggered when the source state is entered
and its entry action, if any, is executed.

The call events are the operations, so the events can have attributes. The
attributes are the input parameters of the operation. If the transition has an
action, these attributes are available to the action.

Conditions
A condition guards the transition and allows movement to the next state only if
the condition evaluates to true. Otherwise, the current state is maintained.

Life cycle guiding principles
A transition has a life cycle that is characterized by the following principles:

� A transition is disabled when the current state of the state machine is any
other state than the source state of the transition. While disabled, a transition
will ignore any instances of its trigger event.

� A transition is enabled when the state machine enters the source state of the
transition.

� A transition is triggered when it is enabled, and an instance of its triggering
event occurs.

� A transition is fired (followed) when it is triggered and either has no guard
condition or the condition evaluates to true.

An event can trigger more than one transition at a time, but only one of those
transitions fires. If an event triggers more than one outbound transition from a
given state, the order that the transitions are checked is undefined. In the case of
nested composite states, if an event triggers transitions in more than one
composite state, the transitions are checked from the innermost composite state
to the outermost composite state.

 Chapter 4. Building business integration applications 233

Adding a transition to a state machine
Follow these steps to add a transition to a state machine using the business state
machine editor:

1. Click a state on the canvas, which is the source state for transition.

Alternative step: Move the cursor over the state (on the canvas) until the
yellow “lollipop” appears above it.

2. Right-click the selected transition, and select Add → Transition.

Alternative step: Hold the left mouse button, and drag the cursor onto the
canvas. The cursor icon becomes a crossed-out circle.

3. Drag the cursor out over the canvas. When you hover over a valid target, the
crossed-out circle disappears.

4. Click the state that is the target state for this transition. A dark grey arrow
displays on the canvas linking the source and target states.

5. To change the visual appearance of transition on the canvas, right-click the
transition, select Layout, and choose one of the following options:

– Rectilinear: Choose this setting to have the transition drawn automatically
with the bends at 90 degree angles.

– Bendpoint: This option is the default setting and automatically chooses
the shortest and most direct path. You can adjust this path manually by
selecting the transition, clicking the tiny black box that displays at the
midpoint of the transition, and then dragging it to a new location. Two new
black boxes display at the mid-point of each half, and you can adjust these
as well until the transition displays on the canvas as you want.

Figure 4-80 shows a transition with rectilinear layout, between SimpleState1 and
SimpleState2.

Figure 4-80 A sample transition between two states

Note: You see only one of these options at a time. When one option
displays on the menu, then the other one is, by default, the active
setting that is used for the layout.

234 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Configuring transitions
You can add the following elements to a transition:

� Operation: An operation (call event) triggers the movement from one state to
another.

� Timeout: A timeout imposes a duration or an expiration on a state so that it is
not maintained indefinitely while waiting for an operation that might never
occur. When the timeout expires, the transition is triggered.

� Condition: A condition guards the transition and allows movement to the next
state only if the condition evaluates to true.

� Action: An action is an activity that is executed on a transition.

To add an operation or timeout, condition, action to a transition using the
business state machine editor, follow these steps:

1. Select and hover over the transition on the canvas.

2. In the action bar click any one of the icons with following
options:

– Add an Operation

– Add a Timeout

– Add a Condition

– Add an Action

Alternative step: Right-click the selected transition, and elect Add →
<option>.

3. Configure the operation/timeout or condition or action as necessary in the
properties area of the business state machine editor.

 Chapter 4. Building business integration applications 235

Figure 4-81 shows a transition from SimpleState1 to SimpleState2, configured
with an event (someOperation), a condition (checkInput), and an action
(doThisAction). In this case when someOperation is invoked, the state machine
moves from SimpleState1 to SimpleState2 if the checkInput evaluates to true.
During this transition, the state machine performs doThisAction.

Figure 4-81 Transition configuration

4.7.7 Vending machine sample

This sample demonstrates how a business state machine can be used to
simulate a vending machine as shown in Figure 4-82.

Figure 4-82 Business state machine implementation for a vending machine

236 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

When the state machine starts execution at the initial state, Ready, the first
operation is on, and it makes the vending machine operational by displaying a
welcome message that shows the available items list.

The state machine then enters the Idle state where it waits for an event to
happen. There are two operations to which this state can react:

� The Off operation, which shuts down the state machine and moves to the final
state, Off.

� The deposit event that signals the arrival of a coin. This event moves the state
machine to the Depositing state while checking to make sure that it is a real
coin and calculating its value.

The primary purpose of the Depositing state is to keep track of how much money
has been deposited. There are several transitions out of the state, and one that
cycles back into it. If the user enters another coin, then a transition checks the
validity of the coin, updates the total, and returns the state machine to the
Depositing state. If the user makes a selection, then another transition confirms
that the total amount of money is sufficient to dispense the item, and moves the
state machine to the Idle state after dispensing the item. Another transition has a
timeout that determines if a transaction has taken too long to complete, and
moves the state machine into the Idle state. The last transition is followed when
the user cancels the transaction.

You can access this sample, with detailed instructions to build and test it, from
WebSphere Integration Developer help menu. Select Help → Samples /
Tutorials (WebSphere Integration Developer).

4.8 Business rules

Business rules are service components that declare policy or conditions that
must be satisfied within a business process. A business rule is a representation
of how business policies or practices apply to a business activity. A rule can
enforce business policy, establish common guidelines within an organization,
make a decision, or infer new data from existing data.

Business rules externalize business policies, conditions, and values that are
used to affect the operation of a business process. These policies, conditions,
and values might change over time. They should not be embedded in code,
which makes them difficult to change. Business rules make business process
applications more flexible to respond quickly to changing business conditions.

IBM WebSphere Integration Developer provides graphical programming
environment tools to develop business rules. IBM WebSphere Process Server

 Chapter 4. Building business integration applications 237

includes the business rules manager, a Web-based runtime tool for business
analysts to update business rules as business needs dictate, without affecting
other components or SCA services.

Business rules are combination of conditions and the actions to be performed
when a specific condition is met. There are two types of implementations for
business rules:

� A rule set typically consists of a number of if-then rules, where the action is
performed when the condition evaluates to true.

� A decision table captures simple rule logic in a table format where in the
action to be performed is decided by more than one condition.

Rule sets and decision tables do not exist in isolation as a components for
module assembly. They must be contained within a rule group. It is the rule group
that exposes the interface and determines which set of rules are executed.

4.8.1 Cashback business rule sample

Consider the following example of using business rules in a “cash back” credit
card offer. A major credit card company offers cash back when a credit card
holder uses the card for purchases. This cash back offers varies depending upon
the type of card and the season. Now let us look at the following business
policies and offers for the cash back:

� A flat percentage on the amount spent from October to January:

– 3% for Silver card customers
– 5% for Gold card customers

� Varying percentages from February to September to offer incentives for larger
purchases:

– Silver

• 3% if the amount spent <= 5000
• 10% if the amount spent > 5000

– Gold

• 5% if the amount spent <=5000
• 12% if the amount spent > 5000

Business leaders of the credit card company change these offers occasionally to
compete with other credit card companies. Using business rules allows them to
make these changes easily.

238 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The first rule is implemented using a rule set. The second rule is implemented
with a decision table. The criteria selection (the season) is configured in a rule
group which holds both of these rule set and decision table.

Figure 4-83 shows the rule group that implements the interface.

Figure 4-83 Interface of a rule group

4.8.2 Rule groups

A rule group is a type of component implementation that logically groups rule
sets and decision tables. Similar to other component types, a rule group
implements one or more interfaces. The selection of which business rule to
invoke is based on date criteria that is configured in the rule group.

 Chapter 4. Building business integration applications 239

Creating a rule group
(This example assumes that a module and an interface, CalculateCashbackIF,
have been created as shown in Figure 4-83.) Follow these steps to create a new
rule group:

1. Select File → New → Rule Group.

2. In the New Rule Group window (shown in Figure 4-84):

a. Browse to an existing module (or click New to create one).
b. Specify a folder (optional).
c. Specify a name for the new rule group (for example, CashbackRG).
d. Click Next.

Figure 4-84 New Rule Group wizard

240 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. In the Select an Interface window (Figure 4-85), follow these steps:

a. Browse to an existing interface or click New to create one.
b. Click Finish.

Figure 4-85 Selecting an interface from New Rule Group wizard

Configuring rule group logic
A rule group is exposed to the caller as an interface. Rule sets or decision tables
provide the implementation for this interface. For each operation of the
associated interface, you can have different rule sets or decision tables defined.

Whenever a rule group is invoked, it selects a rule logic using the selection
criteria and date range entries. Selection criteria is either a current date, an
XPath expression that gets a date from a business object, or a Java snippet that
returns a date.

A date range entry specifies a range of dates, during which a rule logic (such as
a rule set or a decision table) is applicable. If the date returned from the selection
criteria is within the date range, then the corresponding rule logic entry is used.
The date range entries are optional. In fact, if no date range entry is specified or
if no date range matches, the default rule logic is invoked.

Note: At this point, you might see an error in the Problems view indicating that
the rule set or decision table association to an operation is missing. This error
is corrected after you configure the rule group, which can be done only after
creating the rule set or decision table.

The definition of the calculateCashback operation is missing the rule
destination.

 Chapter 4. Building business integration applications 241

To configure the rule group to implement the business rules follow these steps:

1. Select the operation (calculateCashback) that will be associated with the
rules in the rule group editor. You might need to expand the interface to select
the operation that is contained within it (Figure 4-86).

Figure 4-86 CashbackRG configuration in rule group editor

Note: This section assumes the rule set and decision table have been
created. We discuss how these are built in 4.8.3, “Rule sets” on page 244 and
4.8.4, “Decision tables” on page 252. We use these artifacts when configuring
the rule group.

Note: Remember that the first rule is implemented as a rule set, and the
second rule, as a decision table.

242 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Click Enter Rule Logic on the Default Rule Logic row under the Scheduled
Rule Logic section and select the existing decision table, CashbackDT. Make
this as the default rule logic as shown in Figure 4-87.

Figure 4-87 Using decision table as a default rule logic

3. As per the scenario, rule 1 (CashbackRS rule set) is used from October to
January.

Click the Add Date Selection Entry () icon to add a selection entry (a row
that shows rule logic with start and end dates) as shown in Figure 4-88.

Figure 4-88 Adding a date selection entry in rule group

 Chapter 4. Building business integration applications 243

4. To complete the rule group configuration, which looks similar to the one
shown in Figure 4-89, follow these steps:

a. Click the calendar icon () and select the appropriate dates under Start
Date and End Date columns.

b. Click Enter Rule Logic to select the existing rule set, CashbackRS, in the
Rule Logic column.

Figure 4-89 Adding rule sets selection criteria in a rule group

4.8.3 Rule sets

A rule set is a group of if-then statements or rules. The action specified by the
“then” clause is performed when the condition specified in the “if” clause
evaluates to true. Rule sets are best suited for those business rules that have
very few condition clauses.

If the condition is met, then the action is performed, which can result in more than
one action being performed by the rule set. The order of rule processing is
determined by the order of the rule statements in the if-then rule set. Therefore,
when you modify or add a rule, you need to make sure that it is in the correct
sequence.

244 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Creating a rule set
Follow these steps to create a new rule set:

1. Select File → New → Rule Set.

2. In the New Rule Set window (shown in Figure 4-90):

a. Browse to an existing module (or click New to create one).
b. Specify a folder (optional).
c. Specify a name for the new rule set (for example, CashbackRS).
d. Click Next.

Figure 4-90 New Rule Set wizard

3. In the Interface and Operation window (Figure 4-91):

a. Browse to an existing rule group, or click New to create a new one.

b. If necessary, use the drop-down lists to select a different interface and
operation.

c. Click Finish.

Figure 4-91 Selecting a rule group

 Chapter 4. Building business integration applications 245

The created rule set opens in the rule set editor as shown in Figure 4-92.

Figure 4-92 A rule set in a rule set editor

Rule types
A rule set can have two types of rules:

� An if-then rule determines what action is performed based on the condition of
the incoming message.

� An action rule determines what action is performed regardless of the
incoming message. This rule does not have any conditions, so it always
performs the specified action.

Templates
A rule template is a pattern for creating similar looking rules. Use a rule set
template to define the implementation and parameters for an if-then or action
rule. Then, this template can be used to create new instances of the same rule
using different parameters. The parameters in a rule instance at run time can be

246 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

modified using the Business Rules Manager (as discussed in 4.8.5, “Business
rules manager” on page 261).

There are two ways to create a template. You can create a rule and then convert
it to a rule template, or you can create a rule template directly. The presentation
field is the text that describes the rule template to an administrator or business
analyst using the business rules manager, and it specifies the parameters that
the rule template accepts. The parameters are inputs to the template and are
listed under the parameters section.

Figure 4-93 A rule template

Creating a rule set template
Follow these steps to create a template for either a if-then or an action rule:

1. Click either the Add If Then Template () or the Add Action Template ()
icon under the Templates section in the rule set editor. A new template is
created as shown in Figure 4-94.

Figure 4-94 A template in rule set editor

 Chapter 4. Building business integration applications 247

2. Create parameters in the Parameters row by following these steps:

a. Click the Add Template Parameter () icon in the Parameters row. A new
parameter is entered in the Parameters row.

b. Click the parameter name, Param1, to rename it.

c. Click Select Type in the Type column and select an appropriate data type
from the list.

d. To add a restriction on the parameter, click None under the Constraint
column to choose either Range or Enumeration.

• If Range is selected, provide an expression by clicking Enter
Expression.

• If Enumeration is selected, specify values by clicking Edit
Enumeration Items and adding values (Figure 4-95).

Figure 4-95 Edit Enumeration Items window

Figure 4-96 shows the parameters that are created to implement the example
scenario.

Figure 4-96 Template parameters view

248 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Type a sentence to describe the rule in the Presentation row.

Note that when you enter text in this field, you can click the text and an icon,
 displays below it. Click the icon to launch a list of parameters from which

you can select. The parameter is inserted into the Presentation field, allowing
users of the template to make changes to the description.

4. Click Condition in the If row and use the choices in the window that displays
to compose the condition. Figure 4-97 shows a sample of this pop-up window.

Figure 4-97 Sample pop-up window to compose a template condition

5. Click Action in the Then row and use the choices in the window that displays
to compose the action. Figure 4-98 shows a sample pop-up window.

Figure 4-98 Sample pop-up window to compose a template action

Variables
Variables within a rule set have scope across all the rules that are contained
within the rule set. Usually, you use a variable for the duration of the rules to hold

 Chapter 4. Building business integration applications 249

temporary values. This variable can be changed by an individual rule during
processing and is used to calculate the final response returned to the caller.

Variables can be primitive or business object types. When variables are defined,
they have no value and are not initialized. If you try to use them without initializing
them, you get a runtime exception. Therefore, you must first assign a new
business object instance to a business object variable before using it.

You create variables by clicking the plus icon in the Variables section of a rule set
editor. Figure 4-99 shows the variable that is created to implement the example
scenario.

Figure 4-99 Variables in a rule set

Figure 4-100 shows the template is created to implement the example scenario.

Figure 4-100 Template created for example scenario

Creating a new rule from a template
You can create rules from existing templates. In this way, you can create a similar
rule without having to redefine the implementation and by making changes to the
parameters within the constraints specified.

250 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

To use a template as the pattern to create a new rule in the rule set editor:

1. Click the Add Template Rule () icon under the Rules section in the rule set
editor.

2. Click the appropriate template from the drop-down list that shows all the
available templates. Figure 4-101 shows the new rule that gets created.

Figure 4-101 New rule created from rule template

3. Define the parameters by clicking Enter Value in the Presentation row. If
there is an enumeration constraint for this parameter, a menu displays
showing the available options, as shown in Figure 4-102, which shows
enumeration values Silver and Gold. Otherwise, you can enter a value
directly.

Figure 4-102 Enumeration values during rule creation from a template

Creating an if-then or an action rule
Follow these steps to create an if-then or an action rule without any template:

1. Click either the Add If-Then Rule icon () or the Add Action Rule () icon
under the Rules section in the rule set editor.

2. Type a sentence that describes the rule in the Presentation row.

3. Click Condition in the If row and use the choices in the window that displays
to compose the condition. Skip this step for action rule.

4. Click Action in the Then row and use the choices in the window that displays
to compose the action.

 Chapter 4. Building business integration applications 251

Completing the rules creation for the example scenario
The following steps are required to complete the example scenario:

1. Create an action rule to initialize the variable, cashbackPercentage, as shown
in Figure 4-103.

Figure 4-103 Action rule1 for scenario

2. Create two if-then rules from the template. These rules need to look similar to
those shown in Figure 4-104.

Figure 4-104 If-then rules for scenario

3. After executing the preceding rules, the cashbackPercentage variable
contains the cash back percentage for a particular customer. Add an action
rule that looks similar to that shown in Figure 4-105 to calculate the cash back
value.

Figure 4-105 Action rule to compute cashback for the scenario

4.8.4 Decision tables

A decision table captures simple rule logic in a table format that consists of
conditions, represented in the row and column headings, and actions,
represented as the intersection points of the conditional cases in the table.

252 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Decision tables are best suited for business rules that have multiple conditions.
Adding another condition is done by simply adding another row or column.

The decision table shown in Figure 4-106 represents the decision table for
example scenario.

Figure 4-106 Decision table for example scenario

The condition states that if the cardType is Silver and the amount is less than or
equal to 5000, then the cask back is 3% of the amount.

 Chapter 4. Building business integration applications 253

Creating a decision table
Follow these steps to create a new decision table:

1. Select File → New → Decision Table.

2. In the New Decision Table window (shown in Figure 4-107 on page 254):

a. Browse to an existing module (or click New to create one).
b. Specify a folder (optional).
c. Specify a name for the new decision table (for example, CashbackDT).
d. Click Next.

Figure 4-107 New Decision Table wizard

254 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. In the Interface and Operation window (Figure 4-108):

a. Browse to an existing rule group, or click New to create a new one.

b. If necessary, use the drop-down lists to select a different interface and
operation.

c. Click Next.

Figure 4-108 Create a new decision table

 Chapter 4. Building business integration applications 255

4. In the Decision Table Layout window (Figure 4-109):

a. Set the Number of row conditions, 2 in this case.

b. Optionally, you can change the layout. The Preview option allows you to
see how the table will look.

c. Click Finish.

Figure 4-109 Decision Table Layout

256 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The created decision table opens in decision table editor as shown in
Figure 4-110.

Figure 4-110 Decision Table in decision table editor

 Chapter 4. Building business integration applications 257

Configuring conditions and actions in a decision table
The following steps discuss the configuration of conditions and actions for the
decision table to implement the one required for the example scenario. The
example decision table created in the previous step looks similar to that shown in
Figure 4-111. It has two conditions and one action for each of the conditions.

Figure 4-111 Decision table before configuration

To configure conditions and actions for the decision tree:

1. Click Enter Term in the Conditions column and select the a condition variable
(cardType in this example) from the list. The table now looks similar to that
shown in Figure 4-112.

Figure 4-112 Enter the condition term

258 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Specify a value for each column in the new condition row. In the example,
click Enter Value on the cardType row and specify Silver as a string using the
pop-up window. Specify Gold in the second column of the same row. Now the
table looks similar to that shown in Figure 4-113.

Figure 4-113 Enter the condition values

3. Configure the next condition variable, amount, and its conditions as shown in
Figure 4-114.

Figure 4-114 New conditions

4. Now, configure the corresponding actions in the last row as shown in
Figure 4-115.

Figure 4-115 Configuring actions in decision table

 Chapter 4. Building business integration applications 259

Changing the layout of decision table
Some decision tables are easier to understand if you change their orientation. By
default, decision tables are created with row layout, where the conditions and
actions appear as rows as shown in Figure 4-115 on page 259.

You can change this layout to column, so that the conditions and actions appear
as columns. Follow these steps to change the layout from the decision table
editor:

1. Click any cell in the condition row of an existing decision table.

2. Click the Changes Orientation of Condition icon ().

The orientation of the decision table changes so that the actions and conditions
now display in columns instead of rows as shown in Figure 4-116.

Figure 4-116 Column layout of a decision table

Now, repeat these steps to change the layout to row and column layout and the
decision table looks similar to that shown in Figure 4-117.

Figure 4-117 Row and column layout of a decision table

260 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.8.5 Business rules manager

The business rules manager is a Web-based console that allows the business
analyst to view and modify business rules. The tool is a Web application that you
can select to install during WebSphere Process Server profile creation or later
after installing the server.

Templates are the patterns for rule sets and decision tables. They provide the
mechanism for business rule runtime authoring in the business rules manager.
Using a template, you can modify business rule values, create a new rule within a
rule set, create a new condition or action within a decision table, and publish
changes to business rule definitions at run time.

Launching business rules manager
To launch the business rules manager, follow these steps:

1. Open the business rules manager URL from a Web browser:

http://<app_server_host>:<default_host_port_no>/context_root

For example:

http://localhost:9080/br

2. If security is enabled, you must enter a user ID and password, and then click
Login.

Figure 4-118 shows the business rules manager page. It shows the installed rule
group, CashbackRG, with a decision table, CashbackDT, and a rule set,
CashbackRS.

Figure 4-118 Business rules manager

 Chapter 4. Building business integration applications 261

Launching the business rules manager from WebSphere
Integration Developer
Alternatively, you can perform the following steps to start the business rules
manager if you are using a WebSphere Integration Developer test environment:

1. Switch to the Business Integration perspective and Servers view.

2. Select a server and start it.

3. Right-click the server and select Launch → Business Rules Manager.

Figure 4-119 shows a rule set, CashbackRS, in edit mode in the business rule
manager and the options that are available to work with a rule set.

Figure 4-119 A rule set in edit mode in the business rules manager

262 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 4-120 shows the scheduled rule logic for the CashbackRG in edit mode in
the business rule manager and the options that are available to work with
scheduling of rule logic.

Figure 4-120 Scheduled rule logic of a rule group in business rule manager

Publishing and reverting business rules
When you change business rules in the business rules manager and save them,
the changes are saved locally. In order to push the changes to the data
repository that resides on the runtime server, you need to publish the changes.
Alternatively, you can cancel the changes to a business rule that has been saved
locally by reverting the rule to its original state.

 Chapter 4. Building business integration applications 263

Figure 4-121 shows the Publish and Revert page of the business rules manager
after changing a rule set values of rule set, CashbackRS.

Figure 4-121 Publish and Revert page of business rules manager

4.8.6 New, enhanced business rules features with WebSphere
Process Server V6.1

The new or enhanced business rules capabilities for business integration
applications available with WebSphere Process Server V6.1 include:

� Custom business user clients can now administer business rules with a new
business rules administration API as an alternative to using the business
rules manager. The API provides the ability to create, retrieve, update, and
delete rules.

� New custom properties can be assigned to business rule groups and
accessed from the rule logic of rule sets and decision tables to provide these
rules with access to environment information captured in the properties. The
properties can also be used for searching on business rule groups through
the business rules manager or custom administrative clients.

264 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.9 Selectors

The business integration applications that drive the business should change with
the changing business needs. Some of those changes might require that certain
applications or business processes return different results at different times. The
selector component provides the framework for that flexibility without changing
the design of the applications.

A selector is a routing component that determines dynamically which
implementation to invoke at run time based on the defined set of criteria. Similar
to a rule group, a selector has date range entries, selection criteria, and a default
destination. When a selector is invoked, it selects a destination (that is the target
component) using the selection criteria and date range entries. A destination can
be any SCA component.

Selector components provide a single interface to a service that can change
results based on certain selection criteria. This criteria evaluates to a specific
date, based on which, the selector table determines which destination or target
component processes the request. The service returns the processing result
provided by a target component to the client. What the selector does is simply
decouple the client application from a specific target implementation. So change
of implementation does not require the client to change.

Selectors allow additional flexibility beyond business rules. The major difference
between a selector and a rule group is that the destination of a selector can be
any service component, while a destination in a rule group can be only a rule set
or decision table. In other words, a selector can re-route a service call
dynamically to any other component at run time.

You can invoke selectors from any of your SCA components, because a selector
uses the dynamic information to determine which component is selected and
invoked to service the request. The set of destinations or target components is
also configurable, allowing you to provide additional destinations at run time. A
selector cannot be used in a mediation module. It can be deployed only to a
WebSphere Process Server.

4.9.1 Creating a selector

Creating a selector is similar to creating any other component. As a best practice,
design and create the interface of the selector component before proceeding with
its creation. Often, you choose the interface based on the destination (that is the
target component) implementation to which the selector routes.

 Chapter 4. Building business integration applications 265

Assume that a module named SelectorModule and an interface named
DoSomethingIF have been created. The interface is shown in Figure 4-122.

Figure 4-122 DoSomethingIF for selector

Note: The interface operations of the selector must match the interface
operations of the destinations exactly, including the parameters and their
types.

266 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Follow these steps to create a new selector:

1. Select File → New → Selector.

2. In the New Selector window (shown in Figure 4-123):

a. Browse to an existing module (for example, SelectorModule).
b. Specify a folder (optional).
c. Specify a name for the new selector (for example, SampleSelector).
d. Click Next.

Figure 4-123 New Selector wizard

 Chapter 4. Building business integration applications 267

3. In the Select an Interface window (Figure 4-124):

a. Browse to an existing interface or click New to create one.
b. Click Finish.

Figure 4-124 Choosing an interface for a selector

Note: At this point, you might see an error in the Problems view indicating that
the target component association to an operation is missing. This error is
corrected after you configure the selector.

The definition of the doSomething operation is missing the target component
destination.

268 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.9.2 Configuring the selector

You can use the selector editor, a graphical editor, to configure the selector. After
creating the selector, it opens in the selector editor as shown in Figure 4-125.
Click the doSomething operation to associate it with the components in the
selector editor. You might need to expand DoSomethingIF interface and select
the operation, doSomething, that is contained within it.

Figure 4-125 SampleSelector configuration in the selector editor

You typically follow these steps while configuring the selector:

1. Configure selection criteria.

2. Configure default destination or default component.

3. Add date selection entries and configure target components.

A selector is exposed to the caller as an interface. The actual implementation for
this interface is provided by the target components that are configured as
destinations in the selector.

Whenever a selector is invoked, it selects a target component implementation
using the selection criteria and date range entries. Selection criteria can be either
a current date, an XPath expression that gets a date from a business object, or a
Java snippet that returns a date. Click Current date link under Scheduled
Component section of the selector editor to choose one of these options.

A date selection entry specifies a range of dates, during which a target
component would be applicable. If the date that is returned from the selection
criteria is within the date range, then the corresponding component entry is used.
You can add date range entries by clicking the Add Date Selection Entry ()
icon to add a selection entry (a row showing component with start and end
dates).

 Chapter 4. Building business integration applications 269

The date selection entries are optional. In fact, if no date selection entry is
specified or if no date range matches, the component that is configured as
default component is invoked. Click Enter SCA Component next to Default
Component label under the Scheduled Component section of the selector editor
to choose a default target component. When you click this option, it displays a list
of available components. The list includes the components in the same module
and exports from other modules.

Figure 4-126 shows the configuration of a sample selector. The selector is
configured to select Component2 if the current date is within the date range of
Jan 1, 2008 to Apr 25, 2008. Otherwise it selects the default component,
Component1.

Figure 4-126 Configuration of SampleSelector

Using the WebSphere Process Server administrative console, you can alter
existing destinations to replace an existing service implementation with another
one or add new destinations of a selector and their corresponding date ranges at
run time without redeploying the original application and without requiring a
restart of the application or server.

Note: Keep in mind that if you do not specify a default destination and no date
range entry matches the selection criterion, then an exception is thrown.
Therefore, it is a good practice to always provide a default destination.

270 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.9.3 Adding selectors to the assembly diagram

Similar to all SCA components, selectors can be added to the assembly diagram,
allowing you to connect the selector to other parts of the module or connect it to
a calling module through an export.

Figure 4-127 shows the assembly diagram of a sample selector module.

Figure 4-127 Assembly diagram with SampleSelector

Unlike other SCA components on the assembly diagram, you do not wire
selectors to other components. In fact, you cannot start a wire from a selector
because they make use of dynamic wiring. Dynamic wiring means the selector
has predefined wires or target components which cannot be configured or bound
to with a simple static wiring. This dynamic wiring is taken care of internally when
you configure the selector as discussed previously. So, there is no need to wire
the selector to any components because the destinations in the selector are not
statically bound and because they might have destinations (exports from other
modules) in other modules.

4.10 Interface maps

Business integration applications often contain components that were created for
different applications. Typically, the interfaces of these components need a
bridging component to make them interact. For example, two components can
have methods that perform basically the same action but have different names,
such as getData and getInformation.

An interface map is a bridge component between two SCA components that
have interfaces with different method signatures, enabling them to communicate.
An interface map maps the operations and parameters of these methods so that
the differences are resolved and the two components can interact.

 Chapter 4. Building business integration applications 271

Interface mapping provides the context information that is required for the
maintenance of relationships. There are two levels of interface mapping:

� Operation mappings

In operation mappings, operations of the source interface are mapped to
operations of the target interface (for example, a source operation called
getData() to a target operation called getInformation()). An operation in
one interface is bound to an operation in another interface. Operation
mappings can have parameter mappings.

� Parameter mappings

Parameter mappings are one level deeper than operation mappings. They
map data from a source business object to a target business object. When a
calling operation has different parameters than the receiving operation, an
interface map reconciles the parameters.

Parameter mapping is essential in the process of moving information between
different applications and also between components within the WebSphere
Process Server system.

You can select the following types of parameter mappings:

– Map: Reconciles parameters between business objects that have different
fields (field names, number of fields, and so forth). Selecting this type of
mapping allows you to use a business object map to define the parameter
mappings. You can use an existing business object map or create a new
one.

– Extract: Extracts pertinent information from a complex parameter to
reconcile it with output parameters.

– Move: Makes a simple connection between source and target parameters
of the same type.

– Custom (Java): Calls Java code to perform the mapping.

– Assign: Rather than mapping an input parameter to an output parameter,
you can select the Assign transform option on the output parameter to
assign a value to it.

Note: You can use interface maps only in modules for business services, not
for mediation services.

272 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.10.1 Creating an interface map

Working with interface maps involves the following steps:

1. Create the interface map artifact, which requires you to select the source and
target interfaces.

2. Use the interface mapping editor to map the operations between the
interfaces.

3. Use the interface mapping editor to map the parameters between the source
and target operations.

4. Add the interface map to the assembly diagram.

Example
This example illustrates the use of an interface map that maps between two
interfaces. It assumes the following:

� A module called ITSOModule.

� The interface to the module is CustomerRequestInterface. It has one
request-response operation called customerRequest, shown in Figure 4-128.

Figure 4-128 The customerRequestion operation

 Chapter 4. Building business integration applications 273

Both the input and output for this operation are of type CustomerBG, as
shown in Figure 4-129.

Figure 4-129 customerBG business graph

� An import component represents a JDBC adapter has an interface called
JDBCOutboundInterface, as shown in Figure 4-130.

Figure 4-130 JDBCOutboundInterface

274 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The input and output type for the operation used in the example,
createItsoCustomerBG, is ItsoCustomerBG, as shown in Figure 4-131.

Figure 4-131 DBadminCustomerBG

� CustomerRequest interface will be mapped to JDBCOutboundInterface.

� A Business Object Map, CustomerBG_to_ItsoCustomerBG. We use this map
while mapping the parameters in step 5 under “Map the interface operations
and parameters” on page 278.

We discuss how to create business object maps in 3.7.2, “Creating a
business object map” on page 81.

 Chapter 4. Building business integration applications 275

Create the interface map
To create a new interface map, follow these steps:

1. In the Business Integration view, expand the library or module and select the
Mapping folder. Right-click and select New → Interface Maps. If this option is
not available, select New → Other → Business Integration → Interface
Maps.

2. In the New Interface Map dialog box (Figure 4-132), enter the name and
location for the new map. Click Next.

Figure 4-132 Create a New Interface Map wizard

276 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Use the Browse button to find and select the source and target interfaces for
the mapping, and click Finish.

Figure 4-133 Select the source and target interfaces

The map is created and opens in the interface mapping editor.

 Chapter 4. Building business integration applications 277

Map the interface operations and parameters
The next step is to define the operation bindings and parameter transformations
in the new interface map using the interface mapping editor. To do this, you
connect operations in the source interface to operations in the target interface.
Follow these steps:

1. In the Operation mappings section, select the source operation
(customerRequest in Figure 4-134). As you hover the mouse over the
operation an orange circle displays. Select the circle, and drag it to the target
operation (createItsoCustomerBG operation).

Figure 4-134 Operation mappings wizard

2. Selecting the wire between the two operations opens a new section in the
editor called Parameter mappings, which allows you to map parameters within
the interface operations (Figure 4-135). You might have to scroll past all of the
operations to view the Parameter mappings section.

Figure 4-135 Parameter mapping view

278 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Using the same method as in the previous step, connect the source
parameters to the target parameters.

4. By default, each connection has a Move parameter mapping type. To change
the mapping type, (for example to Map) select a new type from the drop-down
menu for Parameter Mapping Type in the Description tab of the Properties
view. The options and tabs in the Properties view change to accommodate
the mapping type that you select. See Figure 4-136.

Figure 4-136 Connect parameters to define mappings and Parameter Mapping

Note: You have to drag the connection for the output in the opposite
direction (from createItsoCustomerBGOutput on the right to
outputCustomerBG on the left).

 Chapter 4. Building business integration applications 279

5. In the example, Map is selected as the mapping type for both connections.
Select Map and go to the Details tab of the Properties view to define the map.
You can select an existing map from a drop-down menu or to create a new
map.

In this example, we select an existing map, CustomerBG_to_ItsoCustomerBG
map, from the Business Object Map drop-down list for the input mapping, as
shown in Figure 4-137.

Figure 4-137 Parameter mapping

6. Select the next Map connection for the output to select an existing map or to
create a new map. In this example, we created a simple map by clicking New
and defining new map connections between the two business graphs.

7. Save and close the completed interface map.

280 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4.10.2 Adding the map to the assembly diagram

To use the interface map in this module:

1. Open the assembly diagram in the assembly editor by double-clicking
Assembly Diagram for the module in the Business Integration view.

2. Drag the interface map from the Business Integration view to the assembly
editor canvas as shown in Figure 4-138.

Figure 4-138 CustomerRequest_to_JDBCOutboundInterface map in the Assembly
diagram

3. Select the interface map in the diagram, right-click, and select Generate
Export → SCA Binding.

Figure 4-139 Generated SCA binding for CustomerRequest

 Chapter 4. Building business integration applications 281

Note that the name in this case is unusually long. For usability, you can
change the name by simply typing over the Name field in the Description tab
of the Properties view. We renamed the export component to
CustomerBG_ITSOExport as shown in Figure 4-140.

Figure 4-140 Rename the Export

4. Drag and drop the interface (JDBCOutbound) from the Business Integration
view to the assembly editor. Then, follow these steps:

a. Select Import with no Binding and click OK.

Figure 4-141 Generating an SCA Binding to Export component

282 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

b. Change the name of the of the JDBCOutboundInterfaceImport component
to JDBCOutboundInterface (for usability) as shown in Figure 4-142.

Figure 4-142 Assembled ITSOModule with all the part

5. Wire the interface map to the import component.

6. Save and close the updated assembly diagram.

You can use the export for this module on the assembly diagram of another
module as an import component.

 Chapter 4. Building business integration applications 283

284 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 5. Building mediations

WebSphere Enterprise Service Bus is a product that is designed to implement an
enterprise service bus in a service-oriented architecture (SOA) solution.
WebSphere Enterprise Service Bus functionality is also integrated into
WebSphere Process Server. When we refer to WebSphere Enterprise Service
Bus in this book, we are referring to either case; however, we implemented all of
our samples with WebSphere Process Server.

This chapter discusses the architecture of WebSphere Enterprise Service Bus
and how to build mediations for WebSphere Enterprise Service Bus using
WebSphere Integration Developer. It includes the following topics:

� WebSphere Enterprise Service Bus architecture
� Service message objects
� Typical development flow
� Creating a mediation
� Service connection and invocation
� Transformation primitives
� Routing primitives
� Tracing primitives
� Error Handling primitives
� Custom Mediation primitive

5

© Copyright IBM Corp. 2008. All rights reserved. 285

5.1 WebSphere Enterprise Service Bus architecture

This section explores the structure of WebSphere Enterprise Service Bus by
working through the different layers of the product architecture in a top-down
manner.

5.1.1 Mediations, service consumers, and service providers

A service interaction in SOA defines both service consumers and service
providers. The role of WebSphere Enterprise Service Bus is to intercept the
requests of service consumers and fulfill additional tasks in mediations in order
to support loose coupling. When the mediation completes, the relevant service
providers are invoked.

The mediation tasks include:

� Centralizing the routing logic so that service providers can be exchanged
transparently

� Performing tasks such as protocol translation and transport mapping

� Acting as a facade to provide different interfaces between service consumers
and providers

� Adding logic to provide tasks such as logging

Additional material: We illustrate many of the primitives that we discuss in
this chapter through samples that are included in the additional materials. For
information about downloading the additional materials, see Appendix B,
“Additional material” on page 511. The mediation examples are included in the
MedationSamples.zip project interchange file.

286 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

As shown in Figure 5-1, mediations customize the protocol and the details of a
request and also modify the results of the reply.

Figure 5-1 WebSphere Enterprise Service Bus and mediations

WebSphere Enterprise Service Bus can interconnect a variety of different
service consumers and providers using standard protocols including:

� JMS
� SOAP over HTTP (for Web services)
� SOAP over JMS (for Web services)
� HTTP

For back-end applications (such as SAP), several IBM WebSphere Adapters are
available.

WebSphere Enterprise Service Bus supports diverse messaging interaction
models to meet your requirements, including the following models:

� One-way interactions
� Request-response
� Publish/subscribe

WebSphere
Enterprise Service Bus

Service
Consumer

Service
Consumer

Service
Consumer

Mediation

Service
Provider

Service
Provider

Service
Provider

Reply
(optional)

Request

 Chapter 5. Building mediations 287

5.1.2 Mediation modules
The mediation module is a type of SCA component that can process or mediate
service interactions. As illustrated in Figure 5-2, the mediation module is
externalized or made available through an export, which specifies the interfaces
that are exposed. These interfaces are defined in a WSDL document.
Stand-alone references provide the externalized interface only for SCA clients.
They do not define a WSDL document. Instead, they specify the interface
declaration in Java (called a reference).

The mediation module typically invokes other service providers. These providers
are declared with the creation of an import, which represents an external service
to be invoked.

Figure 5-2 Mediation modules

For each export and import, you need to specify an interface. Each interface has
multiple operations, which in turn can have multiple input and output parameters
that are associated with either simple data types or business objects. A one-way
operation has only input parameters.

Every export and import must be associated with a binding. A binding identifies a
specific type of invocation for a service consumer or provider. WebSphere
Enterprise Service Bus supports the same bindings that WebSphere Process
Server supports (for more information, see 2.1.3, “Import and export bindings” on
page 17).

Finally, data types (business objects) and interfaces can be defined on the
module level, but they can also be defined and referenced in libraries in order to
centralize them.

Library

Mediation Module

Service
Consumer

Exports

Stand-alone
References

Reference

Imports

Bindings
Data Types

Interfaces

Data Types

Interfaces

SCA
Client

Service
Provider

Service
Provider

288 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5.1.3 Mediation flow components

Inside a mediation module there can be one mediation flow component.
Mediation flow components offer one or more interfaces and use one or more
partner references. Both of these components are resolved and are assigned to
exports or imports using wires, as shown in Figure 5-3.

Figure 5-3 Mediation flow component

In addition to the mediation flow component, a mediation module can have one
or more Java components that are created using custom mediation
implementations.

Mediation Module
Mediation Flow Component

Library

Service
Consumer

Exports

Stand-alone
References

Imports

Wires

Data Types

Interfaces

SCA
Client

Service
Provider

Service
ProviderInterfaces

Partner
References

Java ComponentJava Component

Restriction: WebSphere Integration Developer does not stop you from
creating more than one mediation flow component per mediation module;
however, only one mediation flow is allowed. Therefore, there is a one-to-one
relationship between a mediation module and a mediation flow component.

 Chapter 5. Building mediations 289

5.1.4 Mediation flows

Mediation flows (Figure 5-4) contain the high-level mediation logic. Thus, in a
mediation flow, the different processing steps of a request are declared in a
graphical way. In WebSphere Enterprise Service Bus, the processing of requests
is separated from processing of responses. Therefore, we distinguish between a
request flow and a response flow. In both directions, you can apply logic or
modifications.

Figure 5-4 Mediation flows

Mediation flows consist of a sequence of processing steps that are executed
when an input message is received. A request flow begins with a single Input
node for the source operation and can have multiple Callout nodes. If a message
is to be returned to the source directly after processing, it can be wired to an
Input response node in the request flow. If fault messages are defined in the
source operation, an input fault is also created.

Note: You need to define mediation flows for every operation that gets
exposed using an export of a mediation module. For those operations that do
not need any additional functionality to the wrapped interface, you wire them
from input to input response.

Mediation Module
Mediation Flow Component

Mediation Flow
Exports

Stand-alone
References

Imports

Wires

Interfaces

Partner
References

Service Message Object
Context Headers Body

Request Flow

Input
Response

Input Callout(s)

Fault

Response Flow

Input
Response

Fault Callout
Response

290 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

A response flow begins with one or more Callout response nodes and ends with a
single input response (and optionally a callout fault). Both a request flow and a
response flow are associated with a mediation flow. The request flow can map
data to a correlation context and the transient context.

In terms of the actual data, WebSphere Enterprise Service Bus introduces the
service message object (SMO). SMO is a special kind of a service data object
that represents the content of an application message as it passes through a
mediation flow component. As well as the payload in the body, SMO contains
context and header information that can be accessed and acted upon inside the
mediation flows.

5.1.5 Mediation primitives

Mediation primitives (Figure 5-5) are the smallest building blocks in WebSphere
Enterprise Service Bus. They are wired and configured inside mediation flows.
With mediation primitives, you can change the format, content, or target of
service requests, as well as log messages, perform database lookups, and so
forth.

Figure 5-5 Mediation primitives (in the complete overview)

Mediation Module
Mediation Flow Component

Exports Imports

Wires

Interfaces

Partner
References

Mediation FlowService Message Object
Context Headers Body

Request Flow
Input
Response

Input Callout(s)

Fault

Input
Terminal

Output
Terminal

Fall
Terminal

Mediation
Primitive

Stand-alone
References

Service
Consumer

SCA
Client

SCA
Provider

SCA
Provider

Response Flow
Input
Response

Fault

Callout
Response

Mediation
Primitive

Library
Data Types

Interfaces

 Chapter 5. Building mediations 291

WebSphere Integration Developer and WebSphere Enterprise Service Bus V6.1
provides the following standard mediation primitives:

� The Message Logger primitive (V6.0) logs a copy of a message to a database
for future retrieval or audit. For example, the integration developer can
customize the primitive by naming the database.

� The Database Lookup primitive (V6.0) retrieves values from a database to
add them to a message.

� The Message Filter primitive (V6.0) compares the content of a message to
expressions that are configured by the developer and routes the message to
the next primitive based on the result.

� The XSL Transformation primitive (V6.0) transforms messages according to
transformations that are defined by an XSL style sheet.

� The Fail primitive (V6.0) throws an exception and terminates the path through
the mediation flow.

� The Stop primitive (V6.0) silently terminates the path through the mediation
flow.

� The Business Object Map primitive (V6.1) allows you to define message
transformation using a business object map.

� The Service Invoke primitive (V6.1) calls a service from inside a mediation
flow. If the service returns a fault, a retry option is available to call the same
service or a different one.

� The Fan Out primitive (V6.1) is used to create different messages from a
repeating element in the input message.

� The Fan In primitive (V6.1) is used to combine multiple messages that were
created using Fan Out mediation.

� The Endpoint Lookup primitive (V6.0.2) searches for service information in a
WebSphere Service Registry and Repository.

� The Event Emitter primitive (V6.0.2) emits events from inside a mediation
flow.

� The Message Element Setter primitive (V6.0.2) sets the content of messages.

� The Set Message Type primitive (V6.1) allows the user to overlay message
fields with more detailed structures.

� The Custom Mediation primitive allows the user to implement their own
mediate method using Java. The Custom mediation, similar to other
primitives, receives an SMO and returns an SMO. It can be used to perform
tasks that cannot be performed using the other primitives.

292 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Mediation primitives use terminals for message flow. The type and number of
terminals depends on the type of primitive. The three types of terminals are:

� In terminal: All primitives have an input terminal that can be wired to accept a
message.

� Out terminal: Most primitives have one or more output terminals that can be
wired to propagate a message (exceptions are the stop and the fail primitive).

� Fail terminal: If an exception occurs during the processing of an input
message, then the Fail terminal propagates the original message, together
with any exception information.

5.1.6 Security

In WebSphere Integration Developer, you specify security attributes for
mediation flow components in the Properties view at the boundaries and the
implementation of an component (Figure 5-6).

At the mediation flow component level, you can define the role a user must have
in order to call the interface. At the interface level, you can define the permission
for every operation.

Figure 5-6 Security permission qualifier on interfaces

 Chapter 5. Building mediations 293

5.2 Service message objects

Messages can come from a variety of sources, so the payload must be able to
carry a number of different types of messages. Mediation primitives need to be
able to operate on these messages, and SMOs represent the common
representation that is needed.

The types of messages that are handled by WebSphere Enterprise Service Bus
include:

� SDO data object
� SDO data graph
� SCA component invocation message (request, reply or exception)
� SOAP message
� JMS message
� HTTP message

The SMO model is extensible so that it can support other message types in the
future, such as COBOL structures. SMO extends SDO with additional information
to support the needs of a messaging subsystem.

5.2.1 SMO structure

All SMOs have the same basic structure, which is defined by an XML schema.
An SMO has three major sections:

� The body contains the application data (payload) of the message, particularly
the input or output values of an operation.

� The headers contain the information relevant to the protocol that is used to
send the message.

� The context covers the data specific to the logic of a flow or failure
information.

294 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 5-7 shows a sample SMO when calling the stock quote sample that is
provided with WebSphere Enterprise Service Bus.

Figure 5-7 Sample SMO

 Chapter 5. Building mediations 295

Data section
The data that is carried in the SMO body is the operation that is defined by the
interface specification and the inputs, outputs, and faults that are specified in the
message parts set in the business object definition (Figure 5-8).

Figure 5-8 Content of the SMO body

Context section
The context includes the correlation, transient, and shared context information.

Correlation context is used to maintain data across a request/response flow,
while transient context maintains data only in one direction. Both of these
contexts are used to pass application data between mediation primitives.

Shared context is a thread-based storage area that you can use to aggregate
data. There is one shared context per thread per flow. You usually have one
thread per flow. So, one shared context is valid along the flow. However if you
have a Service Invoke primitive, for example, that has an asynchronous
invocation style with a callback outside a Fan Out and Fan In aggregation
sequence, this situation creates a new thread, and the shared context will be
empty after the invocation.

So, basically, there might be different copies of an SMO along a flow, each one
having its correlation and transient contexts, while shared context will be unique
for a given thread in a flow for all of the SMO in that thread.

Contexts are described as business objects containing XML schema that are
described as data objects and that are specified on the mediation flow’s input

296 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

node properties. You need to design shared context objects that are suitable for
all of the aggregation scenarios along the flow.

The context also includes the failInfo, which is added to the SMO when a Fail
terminal flow is used. The information that is provided includes the
failureString (nature of the failure), origin (primitive in which the failure
occurred), invocationPath (the flow taken through the mediation), and
predecessor (previous failure).

Context example
This section includes a general to-do list for working with contexts in a mediation
flow. The example makes use of the Fan Out and Fan In primitives, which split
and aggregate messages in a flow. The example follows these steps:

1. Design and define business objects for the contexts that you need.

Correlation context business objects hold properties that you need to access
along both the request and response flows. See Figure 5-9.

Figure 5-9 Correlation context example Business Object

Transient business objects hold properties that you need to access along the
current flow (might be request or response). See Figure 5-10:

Figure 5-10 Transient context example Business Object

 Chapter 5. Building mediations 297

Shared business objects hold properties that you need for storing aggregated
results from service invocations. The attributes needed in the object depend
on how many services you invoke and what object they return. In this example
(Figure 5-11), we invoke two services that each return one string.

Figure 5-11 Shared context example Business Object

2. When developing the flow, you must define the context business objects in the
detail properties of the Input node (Figure 5-12).

Figure 5-12 Defining contexts at the mediation flow input node level

298 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Then, move the appropriate content from the input message body elements to
the correlation and transient context elements using a transformation
primitive, such as an XSL Transformation primitive (Figure 5-13).

Figure 5-13 Moving body elements in the contexts

Figure 5-14 illustrates a possible implementation of such a transformation.
Note how some body elements are moved to the contexts while others are
carried on in the body, because they are used as service invocations inputs.

Figure 5-14 Moving elements from the input body to the contexts

 Chapter 5. Building mediations 299

4. At a certain point in the mediation flow, you invoke your services. In this
example, the flow is split by the Fan Out primitive, and the services are
invoked with identical copies of the SMO message, with the shared context in
common. See Figure 5-15.

Figure 5-15 Flow split and service invocation

5. Next, use the Message Element Setter primitive or XSLT transformation
primitive to aggregate the responses from the shared context of each service.
In the example, the Aggregate1 and Aggregate2 XSLT Transformation
primitives are placed between the Service Invoke and the Fan In that rejoins
the flows (Figure 5-16).

Figure 5-16 Aggregating service responses and merging flows

300 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. To implement Aggregate 1:

a. Ensure that all contexts are mapped using the Map source to target
based on names and types utility.

b. Go into the Inline Maps implementation and remove the mapping for the
element that you want to take from the message body (that is the service
result). Figure 5-17 shows Aggregate1 for this example.

Figure 5-17 Shared context inline map must miss automatic mapping for what you carry from the body

c. Map the body elements to the appropriate shared context elements as
shown in Figure 5-18.

Figure 5-18 Moving service invocation response to the shared context

 Chapter 5. Building mediations 301

7. Use another transformation to get content from the transient context and to
make it available to some other primitive (in this example, Custom Mediation
primitive) as shown in Figure 5-19. This primitive can work with the service
responses from the shared context.

Figure 5-19 Getting transient data for further elaboration

a. Use the Map source to target based on names and types utility to
create the initial mapping. Remove the mapping between the transient
contexts (Figure 5-20).

Figure 5-20 Removing transient automatic mapping from the context Inline Map

302 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

b. Map the transient content to the appropriate body element (Figure 5-21).

Figure 5-21 Moving transient context in the body

8. Retrieve the correlation context and put it in the appropriate output message
body element using a last transformation (Figure 5-22).

Figure 5-22 Getting back correlation context data in the mediation flow

 Chapter 5. Building mediations 303

9. Finally, move the correlation context in the appropriate element of the body
(Figure 5-23).

Figure 5-23 Getting correlation context back to the body

Header section
The header section of an SMO includes the following supplemental information:

� SMOHeader: Information about the message (message identifier, SMO version)
� JMSHeader: Used when there is a JMS import or export binding
� SOAPHeader: Used when there is a Web services import or export binding
� SOAPFaultInfo: Includes information about SOAP faults
� Properties[]: Arbitrary list of name value pairs (for example, JMS user

properties)

5.2.2 SMO manipulation

During the execution of mediation flows, the active primitives can access and
manipulate the SMO. There are three different ways to access SMOs:

� XPath V1.0 expressions

The primary mechanism that is used by all primitives.

� XSL style sheets

Used by the XSL Transformation primitive. The common method to modify the
SMO type within a flow. You can also use an XSL style sheet to modify the
SMO without changing the type (using XSLT function and logical processing
with XSL choose statements).

304 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� Java code

Using the Custom Mediation primitive, you can access the SMO either using
the generic DataObject APIs (commonj.sdo.DataObject, which is loosely
typed) or the SMO APIs (com.ibm.websphere.sibx.smobo, strongly typed).

5.3 Typical development flow

This section provides overview information about the development process for a
business integration module.

In Chapter 3, “Basics of development” on page 29, we discussed the typical
development flow for modules and mediation modules, which is as follows:

1. Start WebSphere Integration Developer and open a workspace (as described
in 3.2.2, “Start WebSphere Integration Developer” on page 42).

2. Switch to the Business Integration perspective for development (as described
in 3.2.3, “Using the Business Integration perspective” on page 43).

3. Create a library to store artifacts, such as business objects and interfaces,
that are shared among multiple modules (as described in 3.3.1, “Libraries” on
page 44).

4. Create a new mediation module (as described in 3.3.2, “Modules and
mediation modules” on page 46).

5. Create the business objects to contain the application data, for example
customer or order data (as described in 3.4, “Business objects” on page 53).

6. Create the interface and define the interface operations for each component.
The interface determines what data can be passed from one component to
another (as described in 3.5, “Interfaces” on page 63).

7. Create and implement the service components.

8. Build the module assembly by adding the service components, imports, and
exports to the assembly diagram. Bind the imports and exports to a protocol
(as described in 3.6, “Module assembly” on page 69).

9. Test the module in the integrated test environment (as described in 3.12, “Test
tools” on page 105).

10.Deploy the module to WebSphere Process Server. This step is discussed in
Getting Started with IBM WebSphere Process Server and IBM WebSphere
Enterprise Service Bus, Part 3: Run time, SG24-7643.

11.Share the tested module with others on the team by putting it in a repository
(as described in 3.13, “Team development” on page 115).

 Chapter 5. Building mediations 305

This chapter focuses on step 7, the implementation of the service components for
a mediation module.

5.4 Creating a mediation

The common steps for building a mediation module are as follows.

1. Open WebSphere Integration Developer and open the Business Integration
perspective.

2. Select File → New → Mediation Module from the top menu bar.

3. In the first panel (Figure 5-24 on page 307):

a. Enter a name for the module.

b. Select the target run time. Mediation modules can run in WebSphere
Enterprise Service Bus or WebSphere Process Server application
servers.

c. Click Next.

306 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 5-24 New mediation module settings

 Chapter 5. Building mediations 307

4. Add any required libraries. For example, if you created a library to contain the
business objects and interfaces that this module uses, select that library here.
Click Finish. See Figure 5-25.

Figure 5-25 Select required libraries

5. The new mediation module is created. You see the structure in the Business
Integration view. The assembly diagram opens in the workspace and is
populated with one component that represents the mediation flow.

6. Add interfaces for services that you want to import to the assembly diagram.
These interfaces can come from any libraries that are specified as required
during the module creation wizard, or you can create new interfaces. These
interfaces are added to the diagram as import components.

7. Select the mediation flow component, and click Regenerate Implementation
to open a Mediation Flow Editor.

8. Define the mediation logic using the Mediation Flow Editor.

308 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5.4.1 Mediation flow editor
Generating an implementation of a mediation component opens the Mediation
Flow Editor in WebSphere Integration Developer automatically, as shown in
Figure 5-26.

Figure 5-26 Mediation flow editor

 Chapter 5. Building mediations 309

Operation connections area
The operations connections area (Figure 5-27) is where you wire interface
operations (on the left) to reference operations (on the right). Each wire implies a
separate mediation flow. You can have many interfaces and interface operations
and many references and reference operations.

Figure 5-27 Operation connections area

Mediation flow area
Clicking a wire between the interface and a reference in the operations
connections area opens the mediation flow for that connection (Figure 5-28).
Separate canvases represent the request and response flows, each with a tab at
the bottom of the mediation flow area that allows you to switch between them.
The Request flow canvas is populated automatically with Input, Callout, and
Input Response nodes. The Response flow canvas contains Callout Response
and Input Response nodes. You are not obliged to use them.

Figure 5-28 Mediation flow editor

310 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

To the left of the work area is a Palette that contains folders with mediation
primitives grouped by their functionality. There are four groups of mediation
primitives located in the Palette:

� Transformation
� Routing
� Tracing
� Error Handling

Clicking a folder opens a list of the primitives in that category.

To the right of Palette is a canvas that visually represents the mediation flow. The
visual elements of the flow are called mediation nodes and wires. When you drop
a primitive onto a canvas, it becomes a new node. You connect a node with
another node or nodes by wires.

Mediation flows
Different patterns of mediation logic are encapsulated in mediation primitives. If
there is no matching mediation primitive, you can employ a Custom Mediation
primitive that allows you to write your own Java code. One more option is to
import the third-party mediation primitives.

Figure 5-29 shows six nodes. Each node has at least one terminal that
represents the node’s ability to connect with other nodes.

Figure 5-29 Wiring nodes

Wires connect terminal nodes and represent directions of the mediation data
flow. Most often a primitive has an input, an output, and a fail terminal. There can
be more than one wire coming out or going into a node.

 Chapter 5. Building mediations 311

The data type of terminals is NULL until wired. You can also assign fixed data
types for terminals. Most Input and Output terminals can be wired only if their
data types match.

Mediation nodes
To set or change a node’s properties, select the node in the canvas and then go
to the Details tab of the primitive’s Properties view, as shown in Figure 5-30.

Figure 5-30 Details tab of the Properties view

Mediation primitives often use XPath language expressions to extract or modify
elements of XML structures. We do not discuss XPath here. However, some
basic understanding of the language is required because some mediation
samples do use simple XPath expressions.

5.5 Service connection and invocation

Service access is a basic function of a mediation:

� Service connection, in terms of protocol binding, import components, and
export components is common to both business integration and mediation
modules.

� Service invocation in a mediation module can be inline or through a Callout
node.

– When service invocation is inline, it contributes to the overall mediation
flow. The inline service invocation is performed using the Service Invoke
primitive, as discussed in 5.7.4, “Service Invoke primitive” on page 352.

– When service invocation is through a Callout, it becomes the final target of
the mediation module. This is the classic usage of service invocation, in
which the mediation module mediates access to the service to provide
message or protocol transformation, routing, and so forth. You can find
examples of this invocation throughout the mediation examples.

312 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The basic tasks to invoke a service through a Callout or a Service Invoke
primitive include:

1. Ensure that you have the service interface in your module or in a library that is
imported by the module.

2. Import the service with the appropriate binding in the assembly diagram. The
binding protocol that you use depends on the requirements of the service.
Follow these steps:

a. Create the Import component in the assembly diagram.

b. Add the service interface to the Import.

c. Generate the binding for the Import component.

d. Wire the mediation flow component to the import accepting the automatic
reference creation.

The assembly diagram looks similar to that shown in Figure 5-31.

Figure 5-31 Mediation Module Assembly Diagram importing a service

 Chapter 5. Building mediations 313

3. Regenerate the implementation for the mediation flow component.
Regeneration is the easiest way to have the implementation aligned with the
interface and references of the components. The new interfaces and
reference partners display in the Mediation Flow Editor (Figure 5-32).

Figure 5-32 Mediation editor after implementation regeneration

At this stage you can wire the NeededWorkInterface performTheJob operation to
ServiceInterfacePartner serviceJob to create a service callout, or you can leave
these unwired and have the mediation flow invoke the ServiceInterfacePartner
inline as part of the logic.

314 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

If you are mediating the message flow to the service (using a callout):

1. Wire the interface operation (performTheJob) to the Partner operation
(serviceJob in the example). This creates a Request flow with a Callout and, if
the operation is two-way, a Response flow. See Figure 5-33.

Figure 5-33 Wiring operations for mediating access

 Chapter 5. Building mediations 315

2. Develop the mediation flow and then you are finished.

Figure 5-34 Example request flow completed

316 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

To access the service as part of the mediation logic, leave the operations
unwired. Use the Service Invoke primitive (selecting the partner that you want too
invoke, such as ServiceInterfacePartner in the example) at the point that you
need in the flow, as shown in Figure 5-35.

Figure 5-35 Invoking a service as part of the mediation flow

 Chapter 5. Building mediations 317

5.6 Transformation primitives

The primitives that you find in the Mediation Flow Editor in the Transformation
category are:

� XSL Transformation primitive
� Business Object Map primitive
� Database Lookup primitive
� Message Element Setter primitive
� Set Message Type primitive
� Custom Mediation primitive

5.6.1 XSL Transformation primitive

The XSL Transformation primitive performs Extensible Stylesheet Language
(XSL) transformations on an XML serialization of the message. XSL
transformation is very common in message flows. You can find many examples of
using this primitive in the scenario that we describe in this book.

Properties
The properties to note in the Details tab of the Properties view are:

� Mapping file: Specifies the name of the XSL style sheet that the primitive
uses.

� Root: An XPath 1.0 expression that specifies the root of the transformation.
You can specify:

– / refers to the complete SMO
– /headers refers to the headers of the SMO
– /context refers to the context of the SMO
– /body refers to the body section of the SMO

This property is used for both the input message and the transformed
message.

� Validate input: If true, causes the input message to be validated before the
mediation is performed.

Using the XSL Transformation primitive
The XSL Transformation primitive has one input terminal (In), one output terminal
(Out), and one fail terminal (Fail). The service message object arrives at the In
terminal and exits through the Out terminal.

318 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

As an example, consider the mediation flow shown in Figure 5-36. The message
from the Input is of type updateCustomerRequestMsg.

Figure 5-36 Wiring primitive terminals

The message that goes to Callout needs to be of type
updateDbadminCustomerBGRequestMsg, as shown in Figure 5-37.

Figure 5-37 Wiring primitive terminals

 Chapter 5. Building mediations 319

The XSLT Transformation primitive is used to map the input message fields to the
appropriate output message fields as follows:

1. Open the mapping for this node by double-clicking it in the canvas. The XML
mapping wizard starts (Figure 5-38). Accept the defaults and click Next.

Figure 5-38 Create a new XML mapping

320 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Specify the message root, the input body, and the output body (Figure 5-39).
The input and output body fields default to the input and output message
types if the XSLT transformation is wired. If it has not been wired, you need to
select the messages that you will map. Click Finish.

Figure 5-39 Specify message types

 Chapter 5. Building mediations 321

3. The map opens with the input message fields on the left and the output on the
right. Develop the XSL transformation graphically by mapping elements from
the source SMO to the target SMO. Expand the source and target messages
in order to see all individual components (Figure 5-40).

Figure 5-40 XML Mapping

4. Perform the mapping functions.

5. Save and close the mapping file.

6. Save and close the mediation flow editor.

7. Save the assembly diagram.

When a mapping is required in the request flow, a corresponding reverse
mapping is often required in the response flow to map the response messages.

322 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Mapping functions
To map an element, drag a line between the source and target elements. The
mapping functions that are available for mapping simple message elements
include:

� Move: Moves the value from the source to the target (the default).

� Custom: Uses an XPath expression or an XSL style sheet to define the
mapping logic.

� Normalize: Normalizes the input string. For example, you can use this
function to remove multiple occurrences of white space (such as space, tab,
or return).

� Substring: Extracts elements of a source value based on an index and a
delimiter.

If the mapping takes place between two complex types, the default operation is
Move. Other mapping functions that are available for complex types are:

� Custom

� Inline map: Executes an embedded map within the same XSL style sheet.

� Submap: Calls an external XSL style sheet as part of the current
transformation.

While the mapping operations require both the input message elements and the
output message elements, you can also apply a transformation to the output
message elements only.

 Chapter 5. Building mediations 323

Transforms
To transform an output message element, right-click it and select Create
Transform as shown in Figure 5-41.

Figure 5-41 Create a transform action on an output message element

The default value is Assign for a base type (Figure 5-42) and Input map for a
complex type. Custom operation is available for all cases.

Figure 5-42 Assign transform

324 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The Assign transform action allows you to designate a value for the message
element. To supply the value, select Assign, go to the Properties view, and set
the value as shown in Figure 5-43.

Figure 5-43 Assigning a value

Mapping utilities
Mapping utilities provide a shortcut for mapping similar input message elements
to output message elements.

Select Match Mapping from the pop-up menu for the SMO or individual
message elements, or select Map source to target based on names and types
from the horizontal icon menu.

If matching names and types in the input and output messages are found, a
default Inline map action is created (Figure 5-44). To see the content of the inline
map, click the yellow arrow in the upper-right corner of the inline map rectangle.

Figure 5-44 Inline map

5.6.2 Business Object Map primitive

Business objects are containers for application data that represent business
functions or elements, such as a customer or an invoice. You can use business
object maps to assign values to the target business objects based on the values
in the source business objects.

The Business Object Map primitive is used to change the context, headers, or
body of incoming or outgoing messages. Transformations are defined by a
business object map. The Business Object Map primitive has one input terminal,
one output terminal, and one fail terminal.

The Business Object Map primitive is located under Transformation folder of the
Mediation Flow Editor.

 Chapter 5. Building mediations 325

The Business Object Mapping Editor provides following mapping actions:

� Assign: Assigns a constant value to the target element.

� Custom: Provides Java code to define mapping logic.

� Custom Assign: Provides Java code to assign a value.

� Custom Callout: Provides Java code to define mapping logic.

� Extract: Provides a convenient way to extract a substring from a string
defining a delimiter and a substring index.

� Join: Provides a method to combine two or more elements.

� Move: Copies the source element value to the target element value.

� Relationship: Creates an association between data from two or more
business objects. The source and target of a relationship transform must be
complex types (business objects).

� Relationship Lookup: Maintains a mapping between the same data that is
represented with different values in different business objects (for example,
North Carolina <=> NC or euro <=> EUR).

� Submap: Maps complex types.

The Business Object Map primitive provides a similar, but enhanced, functionality
to that of an XSL Transformation primitive.

The key difference is that the XSL Transformation primitive performs
transformations in XML, using a style sheet, where the Business Object Map
primitive performs transformations on business objects using Service Data
Objects (SDO). If you have existing XSL style sheets, you might be able to reuse
them with the XSL Transformation primitive. In addition, if you have existing
business object maps, you might be able to reuse them with the Business Object
Map primitive. Some types of transformation are easier to perform in XSL, while
others are easier using a business object map.

326 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5.6.3 Database Lookup primitive

The Database Lookup primitive modifies messages using information from a
user-supplied database.

Properties
The properties to note in the Details tab of the Properties view are:

� Data source name: JNDI name of the data source defined on the WebSphere
Enterprise Service Bus server.

� Table name: Name of the database table, including the schema name.

� Key column name: Name of the column in the table to be used for the look up.

� Key path: An XPath expression that returns a value from the message.

� Validate input option: If selected, enables input message validation to ensure
it matches its type definition at run time.

� Data elements table: Each line defines the column from which the value is
retrieved, the type of information it is, and the place in the message where the
retrieved value is to be stored.

Using the Database Lookup primitive
The Database Lookup primitive has one input terminal (In), two output terminals
(out and keyNotFound), and one fail terminal.

When a service message object arrives at the In terminal, one of the following
actions is taken:

� If the key is found, the message, updated with database values that are
associated with the key, is returned using the Out terminal.

� If the key is not found in the database, the message is unchanged and
returned using the keyNotFound terminal.

� If an exception occurs both the unchanged message and exception are
returned using the Fail terminal.

Additional materials: We include a sample mediation called TestDBLookup
in Appendix B, “Additional material” on page 511 to illustrate this primitive.

Note: The Database Lookup primitive is used commonly in conjunction with
the Message Filter primitive. Using Database Lookup, a value can be obtained
from a database and stored in the transient or correlation context. The
Message Filter can then filter messages using this value by defining an XPath
expression to the context.

 Chapter 5. Building mediations 327

The following example searches the OLDCUSTOMER table of the OLDDB
database for customer information. If a database record is found that has a
CUSTID value equal to the value of /body/retrieveCustomer/customer/custID in
the input message, the message is updated.

The message fields to be updated are listed under the Message elements
column of Data elements. Value column name is the name of the column in the
database record. In other words, a database value from Value column name is
copied into Message element of the message.

If a database record with a matching value is not found, the message exits the
primitive unchanged.

Figure 5-45 shows the property values of the primitive. Data elements list column
names of OLDCUSTOMER table, value type, and message elements to which
the values need to be copied.

Figure 5-45 Database Lookup properties

328 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 5-46 shows the Database Lookup primitive in the message flow. One of
three actions is taken:

� If the matching record is found, the updated message exits the primitive
through the Out terminal, then enters OldCustomerXSLT for further
processing.

� If no matching record is found, the unchanged messages exits the primitive
through the keyNotFound terminal, then enters WebServiceXSLT for further
processing.

� If the lookup ended with failure, the unchanged message exits the primitive
through the Fail terminal, then enters DBLookupFailure for further processing.

Figure 5-46 Database Lookup primitive in the message flow

Accessing the database in the workspace
To access a database while you are building a message flow, you must define to
the workspace.

To create a connection to the database:

1. Switch to Data perspective and create a connection to the database.

2. In the Database Explorer view, right-click Connections and select New
Connection. If the database does not exist, you can create it using this
wizard.

 Chapter 5. Building mediations 329

3. Select the database manager and version. The options on the panel change
to those appropriate for the database type. Complete the required fields
(Figure 5-47), including the location of the database, driver class location, and
the user ID and password to access the database.

Figure 5-47 New database connection properties

4. Click Finish.

330 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

You can execute SQL commands using the SQL editor to create tables, to
populate the tables with data, and to perform other actions that you might need to
take to prepare the database. To use the editor:

1. Click the Open SQL Editor icon.

Figure 5-48 Open SQL Editor icon

A window opens where you can type or copy SQL statements (Figure 5-49).

Figure 5-49 Entering SQL statements

2. Save the statements by right-clicking in the window and selecting Save.

3. Run the SQL by right-clicking in the window and selecting Run SQL. Select
the “Use an existing connection” option, and then select the connection. Click
Finish.

 Chapter 5. Building mediations 331

Figure 5-50 Select the connection

4. You can view the data in a table by navigating to the table in the connection,
as shown in Figure 5-51.

Figure 5-51 Database structure in the Connections directory

332 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Right-click the table name and select Data → Edit. The table opens in a new
view as shown in Figure 5-52.

Figure 5-52 Viewing and editing database data

6. If you are working with Derby, remember to disconnect from the connection by
selecting the connection, right-clicking, and then selecting Disconnect.

The embedded version of Derby allows only one connection at a time to a
database. When you have a connection open from the workspace, no other
application can access the database.

5.6.4 Message Element Setter primitive

The Message Element Setter primitive provides a simple mechanism for setting
the content of messages. It allows you to change, add, or delete message
elements, but it does not allow you to change the type of the message.

Additional materials: We include a sample mediation called
MessageElementSetterMediation in Appendix B, “Additional material” on
page 511 to illustrate this primitive.

 Chapter 5. Building mediations 333

Properties
The message elements to be set are defined in the Details tab of the Properties
view. Each message element in the table has the following parts defined:

� Target: An XPath 1.0 expression that describes the location of the element to
set, create or delete. You can specify:

– / to use the complete SMO
– /headers to use the headers of the SMO
– /context to use the context of the SMO
– /body to use the body of the SMO

If you want to set a target message element to a constant value, the target
XPath expression must resolve to a single leaf element. If you want to copy
from a source message element to a target message element, both the
source and target must specify an XPath expression that resolves to a single
message element (a single leaf or subtree).

If you set multiple targets, all elements are effectively set simultaneously.
Therefore, if you set element X from value 13 to value 14, and element Y to
the value of element X, the mediation sets element X to value 14 and element
Y to value 13.

If you specify the same target element more than once, the last operation
performed on the target element takes precedence.

� Type: The type of the element value.

If you want to set the target to a constant value, the type must be a Java
primitive or Java string.

If you want to set the target to a value that is copied from somewhere in the
input SMO, the Type property must be the keyword copy. When you copy a
value from somewhere in the input SMO, the target type is assumed to be the
same as the source type.

If you want to copy a value from the input SMO to a new element instance,
appended to a repeating element in the output, the Type property must be the
keyword append. You can append only to a repeating element in the output,
and the target type is assumed to be the same as the source type.

If you want to delete an element instance, the Type property must be the
keyword delete. You can delete only optional or repeating elements.

� Value: If the Type property is set to copy or append, the Value property should
be an XPath 1.0 expression that identifies the source element. The copy and
append operations always take their source value from the unmodified input
SMO.

If the Type property is set to delete, the Value property should not be set.

334 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

If the Type property is not set to copy, append, or delete, the Value and Type
properties must be compatible. For example, if the Type is int, the Value could
validly be 14, but not GoldAccount.

If the “Validate input” option is selected, the input message is validated before the
mediation is performed.

Using the Message Element Setter primitive
The Message Element Setter primitive has one input terminal (In), one output
terminal (Out), and one fail terminal.

The example shown in Figure 5-53 uses the Message Element Setter primitive to
set a return value to be equal to the customer ID. The primitive is placed between
the Callout Response and Input Response nodes of the response flow.

Figure 5-53 The Message Element Setter primitive in a mediation flow

Figure 5-54 shows the values that are used to define the message element to be
changed.

Figure 5-54 Message element definition

 Chapter 5. Building mediations 335

5.6.5 Set Message Type primitive

The Set Message Type primitive lets you do the equivalent of casting a generic
data type to a more specific data type. A field is weakly-typed if it can contain
more than one type of data. A field is strongly-typed if its type and internal
structure are known.

Typically, a weakly-typed field is declared as having an XML schema type of
anyType or anySimpleType or is an XML wildcard element (any). Less commonly
used weak-typing constructs are abstract types and substitution groups.

The Set Message Type primitive is used to overlay message fields with more
detailed structures. It can overlay both weakly-typed and strongly-typed fields,
allowing you to have more control in manipulating message content.

There are three weakly-typed fields as of WebSphere Enterprise Service Bus
V6.1:

� anyURI
� anySimpleType
� anyType

Additional materials: We include a sample mediation called
SetMessageTypeMediation in Appendix B, “Additional material” on page 511
to illustrate this primitive.

Notes:

� If no Set Message Type primitive is used in the mediation flow, the XSLT
editor and other editors display the weakly-typed attribute. Custom nodes
(that is, Custom Mediation primitive, custom XSL style sheet) are required
to access the weakly-typed field.

� The Set Message Type primitive can also overlay a strongly-typed field with
another strongly-typed attribute (if the new strongly-typed attribute is
derived from the original one).

336 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Properties
The properties to note are:

� Message field refinements: Specifies how a weakly-typed field needs to be
cast to a more specific data type. It has two parameters.

– Weakly typed field: Specify the XPath of the weakly-typed field that you
want to refine.

– Actual field type: Specify the data type that you want to use for the
refinement.

� Reset message type: If true, causes the current primitive to forget Message
field refinements information from previous Set Message Type primitives.

� Validate: If true, causes the Set Message Type primitive to perform runtime
validation.

Using the Set Message Type primitive
The Set Message Type primitive has one input terminal (In), one output terminal
(Out), and one fail terminal.

To use the Set Message Type primitive:

1. Create a business object of the weakly typed field (that is anyType). Add one
field and change the type to a weak type.

To change the type to anyType:

a. Click the field’s type.
b. In the window that opens, click Browse, and select anyType.
c. Then, click OK to set the new data type.

2. Create an interface with this object and add the interface to the mediation flow
component as an export.

3. Add a Set Message Type primitive to the canvas and wire the In and Out
terminals. The primitive is located in the Transformation folder of the Palette.

4. Cast the message type to the actual business object. In the Properties view,
select the weakly-typed field (the new business object that was created in
step 1) and set the business object to which it needs to be cast.

 Chapter 5. Building mediations 337

For example, assume that we have a weakly-typed customerData field as shown
in Figure 5-55.

Figure 5-55 Weakly typed object

To cast this object to a complex Customer data type, set the primitive properties
as shown in Figure 5-56.

Figure 5-56 Set Message Type properties

As an example of when you might use this primitive, assume that there are two
different Web services to retrieve and update customer information. The Web
services have dissimilar interfaces—different operation names (updateCustomer
and updateExtCust) and different data types (Customer and
ExternalCustomerInfoBO). A message is routed to a specific Web service
depending on a value in the message. For example, if the customer ID starts with
1, it is sent to CustomerService service. Otherwise, it is sent to
ExternalCustomerService.

The input message is defined using a unifying interface AnyCustomerIF with
updateAnyCustomer operation and AnyCustomerBO business object that has
one weakly-typed field called customerData. This field is of anyType type.

This allows a caller to pass in any data structure. In the mediation module, the
message is first cast to the Customer data type, and the custID value is checked.
If the value starts with 1, the message is sent to the CustomerService service. If

338 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

not, the message is cast to ExternalCustomerInfoBO and sent to the
ExternalCustomerService service.

Figure 5-57 illustrates the mediation flow.

Figure 5-57 Set Message Type primitive in a mediation flow

5.7 Routing primitives
The primitives that you find in the Mediation Flow Editor in the Routing category
include:

� Message Filter primitive
� Endpoint Lookup primitive
� Fan In primitive
� Fan Out primitive
� Service Invoke primitive

5.7.1 Message Filter primitive

The Message Filter primitive routes messages down different paths, based on
the message content.

Additional materials: We include a sample mediation called
MessageFilterMediation in Appendix B, “Additional material” on page 511 to
illustrate this primitive.

 Chapter 5. Building mediations 339

Properties
The properties to note are:

� Filters: A list of expressions, and associated terminal names that define the
filtering performed by the primitive. The order is significant in the list of
expressions. Expressions are evaluated in the order they appear in the table.

� Pattern: An XPath 1.0 expression against which the message is tested. The
expression is evaluated starting from the XPath expression /, which refers to
the complete SMO.

� Terminal name: The name of an output terminal. There is one terminal name
for each pattern XPath expression. The terminal name must be a valid
connection endpoint, and it must not be fail or default. The default value is
empty, which is invalid.

� Distribution mode: Determines the behavior of the primitive when an inbound
message matches multiple expressions. If the Distribution mode is set to
First, the message is propagated to the first matching output terminal. If the
Distribution mode is set to All, the message is propagated to all matching
output terminals. If there is no matching output terminal, the default terminal
is invoked.

Using the Message Filter primitive
By default, the Message Filter primitive has one input terminal (In), one output
terminal (Default), and one fail terminal (Fail). You can add any number of output
terminals and assign meaningful names to them for routing filtered messages.

340 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

To add a new output terminal, right-click the primitive icon and select Add
Output Terminal from the pop-up menu as shown in Figure 5-58.

Figure 5-58 Add an output terminal

 Chapter 5. Building mediations 341

To filter out North Carolina (state = ‘NC’) and New York (state = ‘NY’) customers
in the response flow of retrieveCustomer operation

1. Add two output terminals and call them NCcustomer and NYcustomer.

2. Then, create an XPath expression to detect an NC customer, and direct the
message to leave the primitive through the NCcustomer terminal.

3. In the same way, direct the message to leave the primitive through the
NYcustomer terminal if the customer is from NY.

Figure 5-59 shows the details of this primitive.

Figure 5-59 Message Filter properties

342 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Finally, connect the NCcustomer terminal to NorthCarolinaXSLT, the
NYcustomer terminal to the Fail1 primitive, and the Default terminal to
WebServiceResult, as shown in Figure 5-60.

Figure 5-60 Message Filter primitive in the mediation flow

5.7.2 The Endpoint Lookup primitive

The Endpoint Lookup primitive is used to route messages dynamically to
appropriate service endpoints. The Endpoint Lookup primitive searches for
service information in WebSphere Service Registry and Repository and, if found,
updates the message header (/headers/SMOHeader/Target/address) with the
appropriate dynamic endpoint information.

To use the Endpoint Lookup primitive, you need to add service endpoint
information to the WebSphere Service Registry and Repository registry. If you
want to extract service endpoint information about Web services, the WebSphere
Service Registry and Repository registry must contain either the appropriate
WSDL documents or SCA modules that contain exports using Web service
bindings. If you want to extract service endpoint information about exports that
use the default SCA binding, the WebSphere Service Registry and Repository
registry must contain the appropriate SCA modules.

Additional materials: We include a sample mediation called
CustomerServiceEndpointMediation in Appendix B, “Additional material” on
page 511 to illustrate this primitive.

 Chapter 5. Building mediations 343

The Endpoint Lookup primitive lets you retrieve service endpoint information that
relates to the following:

� Web services using SOAP/HTTP
� Web services using SOAP/JMS
� SCA module exports with Web service bindings, using SOAP/HTTP
� SCA module exports with Web service bindings, using SOAP/JMS
� SCA module exports with the default SCA binding

Properties
The properties to note are:

� Name: Search the registry for services that implement a particular portType,
the name of which is specified by Name.

� Namespace: Search the registry for services that implement a particular
portType, the namespace of which is specified by Namespace. The PortType
Namespace can be specified in any valid namespace format (for example,
URI or URN).

� Version: Search the registry for services that implement a particular portType,
the version of which is specified by Version.

� Registry Name: Identifies the WebSphere Service Registry and Repository
definition to be used by Endpoint Lookup primitive. A WebSphere Service
Registry and Repository definition is created using the server administrative
console. It provides connection information for a WebSphere Service Registry
and Repository instance. At least one WebSphere Service Registry and
Repository definition needs to exist on the server on which your mediation
module is installed. If the Registry Name is absent, then the default
WebSphere Service Registry and Repository definition is used.

� Match Policy: If the registry has more than one service that matches your
query, the Match Policy determines how many service endpoints need to be
added to the message.

Advanced properties
Advanced properties enable registry searches for services that are annotated
with user-defined properties. The properties include:

� Name: The name of the user defined property.

� Type: The type of the user defined property. If the type is String, then what
you specify as the Value is used as a literal in the search query. If the type is
XPath, then what you specify as the Value must be an XPath expression. The
XPath expression must resolve to a unique leaf node in the inbound SMO.
The value of the leaf node is used in the search query.

344 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� Value: The value of the user-defined property. This value can be either a literal
value or an XPath expression, depending upon the Type property.

� Classification: Search for objects that match a particular classification.

Using the Endpoint Lookup primitive
The Endpoint Lookup primitive has one input terminal (In), two output terminals
(Out and noMatch), and a fail terminal. If a service endpoint is found, the updated
message exits through the Out terminal. If no matching services are found, the
message exits the node through the noMatch terminal.

This example assumes that a WebSphere Service Registry and Repository
implementation called ITSO-WSRR is up and running. It contains a registered
service that implements CustomerServiceIF with the
http://OrderManagementLib/CustomerServiceIF namespace. Additionally, the
service registry has a user-defined property called CustomerID that has a value
of 1.

Figure 5-61 shows how to set the properties to retrieve endpoint information from
ITSO_WSRR for a given interface name and the namespace value.

Figure 5-61 Endpoint Lookup properties

 Chapter 5. Building mediations 345

To stipulate that this service is invoked only if the customer ID in the Input
message starts with 1, set the Advanced properties as in Figure 5-62.

Figure 5-62 Endpoint Lookup advanced properties

346 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

If the matching service is found successfully, the updated message exits the
primitive through the Out terminal to proceed with a Web service call as shown in
Figure 5-63.

Figure 5-63 Endpoint Lookup in the mediation flow

To use the dynamic endpoint information, you need to enable the “Use dynamic
endpoint if set in the message header” property for the Callout node as shown in
Figure 5-64. Otherwise, the run time uses the default endpoint if there is one, or
throws an error.

Figure 5-64 Set dynamic endpoint setting in the Callout

 Chapter 5. Building mediations 347

5.7.3 Fan Out and Fan In primitive

This section provides an overview of the Fan Out and Fan In primitives (new in
WebSphere Enterprise Service Bus V6.1). These primitives let you split and
aggregate messages and flows within mediations to provide parallel processing
over the message.

Use of the Fan Out and Fan In primitives involves the following concepts:

� Context management
� Service inline invocation through the new Service Invoke primitive
� Transformation primitives

Fan Out and Fan In primitives are used for two main objectives:

� To split a message, perform some processing, and then combine (aggregate)
the resulting messages, as illustrated in Figure 5-65. Both the Fan Out and
Fan In primitives are required to perform this type of function.

Figure 5-65 Fan Out and Fan In usage in a split and aggregate fashion

348 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

� To Broadcast messages one way to services using the Fan Out primitive, as
illustrated in Figure 5-66.

Figure 5-66 Broadcasting messaging through Fan Out

Transformation is likely to be involved in both cases, as follows:

� To map the input message to the format that the invoked service expects.

� In the split and aggregation scenario, to map the aggregated messages to the
output format.

� To move elements in and out from the body to the correlation, transient, and
shared context.

Also in both cases, you are also likely to invoke multiple services. These services
are included in the assembly diagram (Figure 5-67).

Figure 5-67 Aggregation and broadcast mediation flows wired with the used services

 Chapter 5. Building mediations 349

You do not need to connect the interface and partners in the mediation flow
editor, as illustrated in Figure 5-68.

Figure 5-68 Mediation Flow Editor while using inline service invocations in Fan Out Fan In flows

Fan Out primitive
In the Fan Out primitive configuration, you must decide how many times you want
the primitive to fire the input message.

If you specify once, Fan Out sends one identical copy of the same message
along each of the output branches. All of the copies share a shared context,
where you can store the service results after their execution.

Alternatively, you can send the same object multiple times along every output
branch. In this case, you need to specify an XPath expression, and the message
is fired as many times as the expression element occurrences.

Figure 5-69 Possible configuration of the Fan Out primitive

350 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Fan In primitive
The Fan In primitive is associated with a Fan Out primitive. You configure the
condition that makes the primitive fire out the output message (Figure 5-70). The
condition can be one of the following conditions:

� A certain number of messages has arrived to the Fan In over the incoming
branches.

� An XPath expression that is compared to the incoming messages evaluates to
true.

Optionally, you can specify a timeout that makes the primitive fire out the
message when it expires.

Figure 5-70 Fan In configuration

Note: When you insert a Fan In primitive and indicate the corresponding Fan
Out primitive, both the primitive configurations show the corresponding
primitive in read-only mode.

 Chapter 5. Building mediations 351

5.7.4 Service Invoke primitive

The Service Invoke primitive lets you call a service from inside a mediation flow,
rather than waiting until the end of the mediation flow and using the callout
mechanism. The input message is used to call the service and, if the call is
successful, the response is used to create the output message. If the call is
unsuccessful you can retry the same service, or call another service.

Properties
The properties to note are:

� Reference Name: The name of the service reference to be called. The
reference name is associated with a WSDL interface. Initially, the reference
name is set through a WebSphere Integration Developer dialog box and
cannot be changed afterwards. You have to create a new Service Invoke
primitive to change the reference name.

� Operation Name: The name of the service operation to be called. The
operation name is associated with a WSDL operation. Initially, the Operation
Name is set through a WebSphere Integration Developer dialog box and
cannot be changed afterwards. You have to create a new Service Invoke
primitive to change the operation name.

� Use Dynamic Endpoint if set in the message header: Determines whether the
SMO header field Target, if present, needs to be used to override the service
endpoint specified by the reference operation. You can use the Endpoint
Lookup primitive to set the Target field, or you can set the field yourself.

� Async Timeout: The time to wait for a response when a call is asynchronous
with a deferred response. The Async Timeout property is not used for calls
that are asynchronous with callback. If the Async Timeout is 0, there is no
wait and the response is immediate. If the Async Timeout is -1, the wait is
indefinite. When a timeout occurs the timeout terminal is fired. A timeout is
treated as an unmodeled fault, with regard to retry.

� Require mediation flow to wait for service response when the flow component
is invoked asynchronously with callback: Set to true (select the check box) to
force a service call to act in a synchronous manner. If true, an asynchronous
call causes a deferred response, rather than a callback. Set this property to
true if the whole mediation flow is to run in a single transaction. If you set this
property to false and the primitive is involved in a Fan Out/Fan In operation,

Additional materials: We include a sample mediation called
ServiceInvocationSample in Appendix B, “Additional material” on page 511 to
illustrate this primitive.

352 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

the run time overrides the setting and forces the service call to act in a
synchronous manner.

� Retry On: Determines whether, and how, fault responses cause a retry. The
following values are valid:

– Never
– Any fault
– Unmodeled fault
– Modeled fault

To enable retry, you must set the value of the Retry On property to Any fault,
Unmodeled fault, or Modeled fault.

Modeled faults are those that are explicitly listed in a WSDL file. Any other
fault is an unmodeled fault. This property is only applicable to
request-response operations.

� Retry Count: How many times a service call is retried before an output
terminal is fired. The output terminal that is fired can be modeled fault,
timeout, or fail. The value can be zero or a positive integer.

� Retry Delay: The delay (in seconds) between retry attempts. The value can
be zero or a positive integer.

� Try Alternate Endpoints: Determines whether any alternate endpoints in the
SMO need to be used on retries. Set to true (select the check box) to try to
alternate endpoints.

Using the Service Invoke primitive
The Service Invoke primitive has one input terminal (In) and multiple output
terminals. There is a fail terminal (Fail) for unmodeled faults, and one output
terminal for each modeled fault. Modeled faults are those that are explicitly listed
in a WSDL file. Any other fault is an unmodeled fault. In addition, there is an
output terminal (Out) that maps to the WSDL response message and a timeout
terminal (Timeout) that is used for some types of asynchronous calls.

 Chapter 5. Building mediations 353

Figure 5-71 shows how to set properties to call retrieveCustomer operation of
CustomerServiceIF.

Figure 5-71 Service Invoke properties

Figure 5-72 shows the retrieveCustomer Service Invoke primitive in the
mediation flow. If the service invoke is successful, the updated message exits the
primitive through the Out terminal and proceeds to CustomerInfoRetrieved
transformation primitive. If the service call failed or timed out, the flow is routed to
CustomerNotFound transformation.

Figure 5-72 Service invoke primitive in a message flow

Note: This type of mediation does not require a response flow.

354 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5.8 Tracing primitives
The primitives in the Mediation Flow Editor in the Tracing category are:

� Message Logger primitive
� Event Emitter primitive

5.8.1 Message Logger primitive

The Message Logger primitive stores messages in a relational database during a
mediation flow. The Message Logger primitive logs messages to a relational
database using an IBM-defined database schema (table structure). It does not
write to other storage mediums such as flat files.

Properties
The properties to note are:

� Data source name: The JNDI name of the data source that defines where the
data will be logged. At V6.1, the default jdbc/mediation/messageLog maps to
the Common database.

� Root: An XPath 1.0 expression representing the scope of the message to be
logged. You can specify:

– / refers to the complete SMO
– /body refers to the body section of the SMO
– /headers refers to the headers of the SMO
– Your own XPath expression

If you specify your own XPath expression, the part of the SMO you specify is
processed. The message to be logged is converted to XML from the point
specified by Root.

� Transaction mode: Defines whether to commit changes to the database, in
the flow’s transaction or in a new transaction.

If you specify Same, the message is logged in the flow’s transaction. By default,
the flow is executed under a local transaction although the mediation
component can be configured to run under a global transaction. If a global
transaction is specified and a failure occurs in the flow then the global
transaction, including the log operation, is rolled back.

If you specify New, the message is logged in its own local transaction. In this
case, if a failure occurs in the flow the message logging is not rolled back.

 Chapter 5. Building mediations 355

Using the Message Logger primitive
The Message Logger primitive has one input terminal (In), one output terminal
(Out), and one Fail terminal.

Figure 5-73 shows how to set the primitive properties to log custID value from
the Input message. Note that you do not have to type the Data source name
value unless you want to change the default.

Figure 5-73 Message Logger properties

The data source that defines that database must be defined to the application
server. The data source definition must have the JNDI name defined to match the
Data source name field specified here. The default definitions point to the
Common database.

Figure 5-74 shows how Message Logger primitive is wired in the mediation flow.

Figure 5-74 Message Logger primitive in a message flow

To view the Message Logger database, find the name and location of the
database corresponding to the data source name jdbc/mediation/messageLog
on the WebSphere Enterprise Service Bus server. To find the database:

1. Open the administrative console for WebSphere Enterprise Service Bus.

2. Select Resources → JDBC → Data Sources.

356 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Select All Scopes as the scope.

4. Match the data source name specified in the Message Logger primitive to the
JNDI name column.

5. Double-click the data source to open it, and find the database name in the
data source properties (Figure 5-75).

Figure 5-75 Derby data source properties

You can use the Database Explorer view in the Data perspective to create a
connection to the logging database and to view the logging records. By default,
the records are in the MSGLOG table of the WPRCSDB database as shown in
Figure 5-76.

Figure 5-76 Viewing data in a table

 Chapter 5. Building mediations 357

5.8.2 Event Emitter primitive

The Event Emitter primitive sends out business events during a mediation flow.
The events are generated in the form of common base events (CBE) and are
sent to a common event infrastructure (CEI) server.

Properties
The properties to note are:

� Label: Allows you to define a unique identifier for the event. The unique
identifier maps to the extension name of the CBE. WebSphere Integration
Developer provides a default label, but it is strongly recommended that you
provide a more meaningful event label for your particular event type. Events
are emitted to the CEI server, which can be accessed by many different event
consumer applications. Therefore, event names need to be unique across the
system in order to distinguish different event types. If two Event Emitter
primitives generate exactly the same event type, it might be acceptable to
have the same Label name.

� Transaction mode: Allows you to override the transaction mode set on the
emitter. (An event source, such as an Event Emitter primitive, does not
interact directly with the event server. Instead it interacts with an object called
an emitter.) The transaction mode can be configured in the CEI infrastructure
or overridden at the Event Emitter primitive level.

If you specify the Default transaction mode, events are sent to the CEI server
using the default setting in the CEI emitter.

If you specify the Existing transaction mode, events are sent to the CEI
server in the flow’s transaction.

If you specify the New transaction mode, events are sent to the CEI server
outside the flow's transaction.

� Root: An XPath 1.0 expression representing the part of the message to be
included in the CBE. You can specify:

– /
– /headers
– /context
– /body
– Your own XPath expression

Additional materials: We include a sample mediation called
EventEmitterMediation in Appendix B, “Additional material” on page 511 to
illustrate this primitive.

358 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Using the Event Emitter primitive
The Event Emitter primitive has one input terminal, one output terminal, and a fail
terminal.

Figure 5-77 shows the primitive properties for the case when custID of the Input
message is used as event value.

Figure 5-77 Event Emitter properties

 Chapter 5. Building mediations 359

In the sample mediation shown in Figure 5-78, the input message is routed to the
retrieveCustomer service call if customer ID starts with 1. Otherwise, a new event
is emitted with customer ID as its content. The MessageFilter1 primitive is
responsible for filtering, while EventEmitter1 emits the event.

Figure 5-78 Event Emitter in a message flow

To see the events that are emitted, you need to start the Common Base Event
Browser as shown in Figure 5-79.

Figure 5-79 Starting the Common Base Event Browser

360 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5.9 Error Handling primitives
The primitives in the Mediation Flow Editor in the Error Handling category are:

� Fail primitive
� Stop primitive

5.9.1 Fail primitive

The Fail primitive stops the mediation flow and raises an exception. Existing
transactions are rolled back and the module throws a FailFlowException.

The Fail mediation has the Error message property. This property is an optional,
user-supplied, error message. The Error message value is added to the
FailFlowException that is generated by the Fail primitive.

The Fail primitive has only one in terminal.
.

5.9.2 Stop primitive

The Stop primitive stops a particular path in the flow.

The primitive has no properties. The Stop primitive has only one in terminal.

You can use the Stop primitive to consume exceptions silently. If another
primitive’s Fail terminal is wired to a Stop primitive, then any messages that go to
the Fail terminal are consumed. This has the same effect as an empty catch
block in Java.

5.10 Custom Mediation primitive
A Custom Mediation primitive lets you do whatever you do not find covered in
other default Transformation primitives. The Custom Mediation primitive receives
an input SMO, manipulates it according to your definition, and fires it out.

The Custom Mediation primitive consists of Java code. You can enter the Java
code in directly or use the Visual editing tool to create it.

Note: If a transaction is in progress, when the mediation flow is stopped by a
fail primitive, the transaction is rolled back, and the FailFlowException is
stored in the transient context.

 Chapter 5. Building mediations 361

Figure 5-80 shows an example of using the Visual editor to create the code. It
shows the features that are available (for example, expression builders, iterative
constructs, choices, and so forth).

Figure 5-80 Custom mediation visual editor

You can add an extra terminal to a Custom Mediation primitive by right-clicking
the Custom Mediation primitive and selecting either Add Input Terminal or Add
Output Terminal. The name that you give to a terminal is used in code
generation and, therefore, must be a valid Java identifier.

You can define your own properties in a Custom Mediation primitive by going to
the User Properties tab of the Properties view. You can add, edit, and remove
user properties.

362 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 6. Mediation examples

This chapter includes a series of mediation examples. These examples illustrate
the use of some of the mediation primitives. It also provides information about
how to build and test mediations.

This chapter includes the following topics:

� Database Lookup example
� Message Element Setter example
� Set Message Type example
� Message Filter example
� Endpoint Lookup example
� The Event Emitter primitive

6

Additional material: The examples that we discuss in this chapter (and more)
are included in the additional materials for this book. For information about
downloading the additional materials, see Appendix B, “Additional material” on
page 511. The mediation examples are included in the MedationSamples.zip
project interchange file. Be sure to import all the projects in this project
interchange file.

© Copyright IBM Corp. 2008. All rights reserved. 363

6.1 Database Lookup example

This example illustrates the use of a Database Lookup primitive and the JDBC
adapter in a mediation flow. In this example, we assume that customer
information is stored in multiple places. Some records are in a local database
called OLDDB. Others can be retrieved through the CustomerService Web
service. The Web service is emulated by the DBMSServiceMediationApp of our
OrderManagement application.

The instructions in this section illustrate how this mediation and its database
were created.

Additional material: This example is included in the TestDbLookup and
DBMSServiceMediation projects in the additional materials.

364 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.1.1 Create the database and connection

This example assumes that the Derby database has been created. The next step
defines a connection to the database from the WebSphere Integration Developer
workspace.

Switch to the Data perspective and create a connection to the database:

1. In the Database Explorer view, right-click Connections and select New
Connection.

2. Select Derby 10.1 as the database manager and complete the required fields
as shown in Figure 6-1.

3. Click Finish.

Figure 6-1 New database connection properties

Create the table
To create the table, follow these steps:

1. Click the Open SQL Editor icon (Figure 6-2). to open a New_Statement_1 tab,
where you can type or paste SQL statements.

Figure 6-2 Open SQL Editor icon

 Chapter 6. Mediation examples 365

2. Copy the contents of OLD_CUSTOMER_TABLE.ddl.

3. Right-click anywhere in the SQL editor panel and select Run SQL from the
pop-up menu.

4. In the Connection Selection panel, select Use an existing connection and
select the OLDDB Connection.

5. Click Finish. The table is created in the database, and the Connection
structure reflects this (Figure 6-3).

Figure 6-3 New connection to OLDDB

Load the data
To load the data, follow these steps:

1. Right-click the OLDCUSTOMER table, and select Data → Load from the
pop-up menu.

2. On the Load Data panel select the OldCustomer.data file as the input file.

366 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Click Finish to load the data. The customer data displays as shown in
Figure 6-4.

Figure 6-4 Customer data

4. Disconnect from the OLDDB database.

 Chapter 6. Mediation examples 367

6.1.2 Create the mediation module

To create the mediation module, follow these steps:

1. Select File → New → Mediation Module. Name the new module
TestDBLookup.

2. Set the target run time to WebSphere ESB Server v6.1 as shown in
Figure 6-5.

Figure 6-5 Create the TestDBLookup mediation module

368 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Click Next and add OrderManagementLib as a required library (Figure 6-6).

Figure 6-6 Adding OrderManagementLib as a dependency

4. Click Finish.

 Chapter 6. Mediation examples 369

6.1.3 Complete the assembly diagram

Initially, the assembly diagram contains one component, TestDBLookup. We
need to add the import component for the CustomerService Web service.

1. In the Business Integration view, select
CustomerServiceIFExport1_CustomerServiceIFHttpPort Web service
port in OrderManagementLib (as shown in Figure 6-7).

Figure 6-7 Web service interface

2. Drag and drop it into the assembly diagram canvas. Choose Import with
Web Service Binding in the Component Creation window and click OK.
Name the import component CustomerServiceIFImport.

3. Wire TestDBLookup to CustomerServiceIFImport as shown in Figure 6-8.

Figure 6-8 Assembly diagram

370 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Select CustomerServiceIFImport and switch to its Binding tab in the
Properties view. Make sure that the port number is set to the port that is used
by the server on which you plan to test. Our test server uses port 9081. So,
we change 9080 to 9081, as shown in Figure 6-9.

Figure 6-9 Set the port number

5. Add the CustomerServiceIF interface to the TestDBLookup component.

6. Right-click TestDBLookup and choose Regenerate Implementation from
the pop-up menu. Answer Yes to replace the existing implementation to open
a Mediation Flow Editor window.

6.1.4 Wire the operation connections

Wire the retrieveCustomer operation of CustomerServiceIF to the
retrieveCustomer operation of CustomerServiceIFPartner. Select the wire that
connects the two to open the mediation flow for that connection (Figure 6-10).

Figure 6-10 Wire the operation connections

 Chapter 6. Mediation examples 371

6.1.5 Build the mediation flow

Figure 6-11 shows the mediation flow that we build for this example.

Figure 6-11 Database Lookup primitive in the message flow

The mediation attempts to find customer data based on a key value (customer
ID) in a local database. If the database lookup is successful, the information is
retrieved from the local database and the result is returned. If the database
lookup does not find a customer record, a Web service call retrieves the record. If
an error occurs during the customer information retrieval, the return code is set to
-1 and the flow is exited.

Database Lookup
The Database Lookup primitive is the first primitive that you add to the flow. To
add and configure this primitive, follow these steps:

1. Add a Database Lookup primitive to the mediation flow canvas. The primitive
is located under Transformation folder of Palette.

2. Rename the mediation to OldCustomerDBLookup and wire it into the flow.
Connecting the wire to the in terminal sets the type of the input message for
the primitive.

372 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. In the Details tab of Properties view set the values as shown in Figure 6-12.

Figure 6-12 Database Lookup primitive details

XSL Transformation primitives
Four XSL Transformation primitives are used to transform the new message to
the required format, depending on the path the message takes:

1. Drag and drop an XSL Transformation primitive to the canvas, and rename it
to OldCustomerXSLT.

2. Add another XSL Transformation primitive to the canvas, and rename it to
WebServicesXSLT.

3. Add another XSL Transformation primitive to the canvas, and rename it to
RC=-1.

4. Add another XSL Transformation primitive to the canvas, and rename it to
DBLookupFailure.

5. Wire the out terminal of OldCustomerDBLookup to the in terminal of
OldCustomerXSLT, the keyNotFound terminal to WebServiceXSLT, and the
fail terminal to DBLookupFailure.

 Chapter 6. Mediation examples 373

6. Wire the out terminal of the OldCustomerXSLT to Input Response node, and
wire the fail terminal to RC-1.

7. Wire the out terminal of the WebServiceXSLT to the Callout node, and wire
the fail terminal to RC-1.

8. Wire the out terminal of RC=-1 to the Input Response node.

9. Create the mappings for each XSL Transformation primitive.

Figure 6-13 shows the mapping for OldCustomerXSLT.

Figure 6-13 OldCustomerXSLT mapping

374 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 6-14 shows the mapping for WebServiceXSLT.

Figure 6-14 WebServiceXSLT mapping

Figure 6-15 shows the mapping for DBLookupFailure.

Figure 6-15 DBLookupFailure mapping

 Chapter 6. Mediation examples 375

Figure 6-16 shows the mapping for RC=-1.

Figure 6-16 Assign the return code value

6.1.6 Response flow

Build the response flow using the following steps:

1. Click the Response tab to open the response flow.

2. Add an XSL Transformation primitive. Name the new primitive
WebServiceResult, and wire it between the Callout Response node and the
Input Response node. See Figure 6-17.

Figure 6-17 Response Flow

376 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Complete the mapping for WebServiceResult as shown in Figure 6-18.

Figure 6-18 WebServiceResult mapping

4. Save the mediation flow component and the module.

6.1.7 Preparing the run time

The properties of the Database Lookup primitive specify a data source reference
to access the database. Before deploying the mediation module, you need to
create a corresponding data source and a corresponding J2C authentication
alias in the runtime environment.

In this case, you need to create a data source that specifies a JNDI name to
match the data source name that is specified in the primitive
(jdbc/DerbyOLDDB). Follow these steps:

1. In the administrative console, select Security → Secure administration,
applications and infrastructure → Java Authentication and
Authorization Service → J2C authentication data.

 Chapter 6. Mediation examples 377

2. Click New to create a new authentication alias. Populate it with the user ID
and password for the database (dbadmin for both, in this case, as shown in
Figure 6-19).

Figure 6-19 J2C authentication alias for the database

378 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. In the administrative console, select Resources → JDBC → Data sources.

4. Change the scope to the cell scope and click New to create a new data
source. Follow the wizard using the information shown in the summary in
Figure 6-20.

Figure 6-20 New data source

 Chapter 6. Mediation examples 379

6.1.8 Test the module

Now test the module using the Integration Test Client following these steps:

1. Deploy both the TestDBLookup and the DBMSServiceMediation modules to
the server and start them.

2. Use a Web browser to make sure the Web service is accessible using the
URL that is specified in the binding tab for the CustomerServiceIFImport
interface, as shown in Figure 6-21.

Figure 6-21 Testing the Web service from a browser

380 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Run the test using 10001 as the customer ID. Figure 6-22 shows the results.

Figure 6-22 Test results

This value causes a keyNotFound condition and results in a call to the Web
service, as shown in Figure 6-23.

Figure 6-23 List of events, including the Web service call

 Chapter 6. Mediation examples 381

4. Repeat the test using 20001 as the customer ID. Figure 6-24 shows the
results of the test.

Figure 6-24 Testing DatabaseLookupSample1Module

This time the customer is found in the OLDDB database. Note that the
sequence of calls differs from the first test (Figure 6-25).

Figure 6-25 List of events with no Web service call

382 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Repeat the test a third time using 30001 as a customer ID. This time, you see
an exception thrown by the Web service, as shown in Figure 6-26.

Figure 6-26 List of events, including an exception thrown by the Web service

 Chapter 6. Mediation examples 383

The exception displays in the component test window (Figure 6-27).

Figure 6-27 Exception data

6. When the testing is complete remove the projects from the server.

384 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.2 Message Element Setter example

This mediation illustrates the use of the Message Element Setter primitive.

6.2.1 Build the assembly diagram

To build the assembly diagram, follow these steps:

1. Create the MessageElementSetterMediaiton mediation module, and add
OrderManagementLib to its dependencies.

2. Import CustomerServiceIFExport1_CustomerServiceIFHttpService.

3. Add CustomerServiceIF interface, and wire MessageElementSetterMediation
to CustomerServiceIFImport1 as shown in Figure 6-28.

Figure 6-28 MessageElementSetterMediation

4. Right-click MessageElementSetterMediation, and select Regenerate
Implementation from the pop-up menu to open a Mediation Flow Editor.

6.2.2 Operation connections

In the Operation connections section, wire the retrieveCustomer operations
(Figure 6-29). Select the connection to open the mediation flow.

Figure 6-29 Operation connections

Additional material: This example is included in the
MessageElementSetterMediation project in the additional materials.

 Chapter 6. Mediation examples 385

6.2.3 Build the request flow

To use the Message Element Setter primitive:

1. Locate the primitive in the palette under the Transformation folder.

2. Drop it on the canvas, and name it CustomerIdSetter. Wire the in and out
terminals for the primitive. See Figure 6-30.

Figure 6-30 Message Element Setter in the mediation flow

3. Select the primitive and open the Details tab in the Properties view.

4. Click Add to define a message element.

You can enter the Target, Type, and Value fields, or you can click Edit to open
the XPath expression builder. The options shown in Figure 6-31 assign a
string value of 10001 to the /body/retrieveCustomer/customer/custID element.
Click Finish.

Figure 6-31 Message Element Setter properties

386 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Repeat the process for each target element that you want to set (Figure 6-32).

Figure 6-32 Elements to be set

6.2.4 Build the response flow

To build the response flow, follow these steps:

1. Switch to the Response:retrieveCustomer tab.

2. Add a new Message Element Setter primitive to the canvas. Name it
ReturnValueSetter.

3. Wire the new primitive between the Callout Response and Input Response
nodes, as shown in Figure 6-33.

Figure 6-33 Response flow

 Chapter 6. Mediation examples 387

4. Switch to the Details tab of the ReturnValueSetter Properties. Then:

a. Set Target to /body/retrieveCustomerResponse/returnCode/RC.

b. Select copy for the Type field.

c. Set /body/retrieveCustomerResponse/customer/custID for the Value field.

d. Click Finish.

Figure 6-34 Message Element Setter properties

The properties that you set display as shown in Figure 6-35.

Figure 6-35 Message Element Setter properties

5. Save all the changes.

388 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.2.5 Test the module

To test the module:

1. Switch to assembly diagram. Right-click the diagram and select Test Module
to open the Detailed Properties window (Figure 6-36).

You do not need to set any values in this window. The Set Message Element
primitive sets these values in the request flow.

2. Click Continue.

Figure 6-36 Test properties

 Chapter 6. Mediation examples 389

3. During the test run, the mediation flow retrieves the record for customer ID
10001, and then sets RC to the custID, which in our case is 10001 as shown
in Figure 6-37.

Figure 6-37 Test results

4. When testing is complete, remove the projects from the server.

390 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.3 Set Message Type example

This example uses two Web services that can update customer information:

� CustomerServiceIF is an internal service that retrieves and updates customer
information for customer IDs that start with 1. This Web service is an existing
service in OrderManagementLib.

� ExternalCustomerIF is an external service that processes all other customer
IDs. This Web service and its interface are built in this example.

The Set Message Type mediation is used to cast the input object to the object
type that is required by the service that is called.

6.3.1 Build the ExternalCustomerLib library

The ExternalCustomerLib library contains the Web service business objects and
interfaces so that the WSDL files can be shared easily with clients.

To build the ExternalCustomerLib library:

1. Build a new library and name it ExternalCustomerLib.

2. Create the ExternalCustomerInfoBO business object in the library with the
fields shown in Figure 6-38.

Figure 6-38 ExternalCustomerInfoBO business object

Additional material: This example is included in the
SetMessageTypeMediation, ExternalCustomerLib, and ExternalCustomerInfo
projects in the additional materials.

 Chapter 6. Mediation examples 391

3. Build the ExternalCustomerIF interface with one updateExtCust operation
that takes the inExtCust object for input and the outExtCust for output. Both
objects are of type ExternalCustomerInfoBO. The interface is shown in
Figure 6-39.

Figure 6-39 ExternalCustomerIF interface

4. Save and close the library.

6.3.2 Build the ExternalCustomerInfo Web service

Now, you can create an ExternalCustomerInfo Web service. This Web service is
actually a dummy mediation module that acts as the Web service and simply
returns the input data.

To build the ExternalCustomerInfo Web service:

1. Select File → New → Mediation Module to build the new module.

a. Name it ExternalCustomerInfo.

b. Select WebSphere ESB Server v6.1 for the Target run time.

c. Add ExternalCustomerInfoLib as a required library.

d. Click Finish to open the assembly diagram with the ExternalCustomerInfo
component.

2. Add ExternalCustomerIF to the ExternalCustomerInfo component.

3. Select Regenerate Implementation from the component’s pop-up menu to
open the Mediation Flow Editor.

392 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Build the request flow
In the mediation flow editor:

1. Drop an XSL Transformation primitive to the canvas and name it
XSLTexternalCust.

2. Wire the Input node to the XSLTexternalCust input terminal, and write the
Input Response node to the XSLTexternalCust output terminal as shown in
Figure 6-40.

Figure 6-40 Mediation flow

3. Double-click the XSLTexternalCust to create the mapping. Move each field on
the left to the corresponding field on the right to effectively configure the
module to return the input data. See Figure 6-41.

Figure 6-41 XSLTexternalCust mapping

4. Save the changes and close all open windows.

 Chapter 6. Mediation examples 393

Test the module
Test the module to ensure that it returns the input values properly. Follow these
steps:

1. Right-click in the assembly diagram and select Test Module.

2. Enter values for the test data (examples shown in Figure 6-42).

Figure 6-42 ExternalCustomerInfo Input

394 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. The results of the test should be the same data that you entered (as shown in
Figure 6-43).

Figure 6-43 ExternalCustomerInfo Output

Export the module as a Web service
Export the module as a Web service:

1. Right-click the ExternalCustomerInfo component in the assembly diagram
and select Generate Export → Web Service Binding from the pop-up menu
to add the export to the assembly diagram, as shown in Figure 6-44.

Figure 6-44 Add an export with a Web service binding

 Chapter 6. Mediation examples 395

Notice, that an ExternalCustomerIFExport1_ExternalCustomerIFHttpPort is
created and placed under Web Service Ports of ExternalCustomerLib, as
shown in Figure 6-45.

Figure 6-45 New Web service port definition

2. Double-click ExternalCustomerIFExport1_ExternalCustomerIFHttpPort to
open a plain text WSDL file.

3. Note that the port number is 9080. Change this value to the port number for
your test server. In this example, change it to 9081, as shown in Figure 6-46.
Then, save the file.

Figure 6-46 Change the port in the WSDL

396 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. To test the export, right-click ExternalCustomerIFExport1 and select Test
Component from the pop-up menu.

5. Enter any custID, custName, custAddr, and custPhone as shown in
Figure 6-47.

Figure 6-47 Test the export

 Chapter 6. Mediation examples 397

6. Click Continue and review the output (Figure 6-48) to ensure that the Web
service export works as expected.

Figure 6-48 Export test results

Figure 6-49 shows the sequence of events.

Figure 6-49 Test sequence

398 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.3.3 Build SetMessageTypeMediation module

The mediation flow sends a message to one of two Web services.

� CustomerService: An Internal Customer Service that you can use to retrieve
and update customer information for a customer with customer ID starting
with 1. The interface, CustomerServiceIF, requires a Customer object
(Figure 6-50) to be passed to updateCustomer operation.

Figure 6-50 Customer business object

 Chapter 6. Mediation examples 399

� ExternalCustomerInfo: For all other customer ID’s, you have to call an
external customer service that has a different interface.

The interface, ExternalCustomerIF, has one operation called updateExtCust.
This operation takes a inExtCust object for input and a outExtCust for output.
Both objects are of type ExternalCustomerInfoBO, as shown in Figure 6-51.

Figure 6-51 ExternalCustomerInfoBO

To start building the mediation:

1. Create a new mediation module called SetMessageTypeMediation.

2. Add both OrderManagementLib and ExternalCustomerInfoLib as required
libraries.

6.3.4 Create an anyType business object and the interface

The next step is to build a business object and interface that will work with both
Web services. Follow these steps:

1. Create a business object AnyCustomerBO with one weakly-typed field,
customerData, of anyType.

To change the type to anyType, click the field’s type to open a window that
displays data types. Click Browse to look for and choose anyType. Click OK.

Figure 6-52 Weakly-typed message field

400 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Build the interface to use the new business object. Figure 6-53 shows the
AnyCustomerIF interface, which has one operation, updateAnyCustomer. The
input parameter of this operation, custData, is of type AnyCustomerBO.

Figure 6-53 Interface

3. Locate the Web service ports in the Business Integration view. Select the port
for each of the following Web services and drag and drop it to the assembly
diagram:

– CustomerServiceIFExport1_CustomerServiceIFHttpPort
– ExternalCustomerIFExport1_ExternalCustomerIFHttpService

Leave the default names for imports.

4. Wire both imports to the SetMessageTypeMediation component.

5. Add AnyCustomerIF to the SetMessageTypeMediation component.

Figure 6-54 Assembly diagram

6. Regenerate the implementation. The Mediation Flow Editor opens.

 Chapter 6. Mediation examples 401

6.3.5 Wire the connections

The operation connections for this module are wired as shown in Figure 6-55.
Select one of the connections to open the mediation flow.

Figure 6-55 Operation connections

6.3.6 Build the request flow

Figure 6-56 on page 403 shows the mediation flow. Add the following primitives
to the mediation flow, name them, and wire them as shown in Figure 6-56.

� Two Set Message Type primitives called SetInternalType and
SetExternalType.

� One Message Filter primitive called RouteCustomer. Add one output terminal
to this primitive called internalCustomer. The default terminal is wired to
SetExternalType. The internalCustomer terminal is wired to InternalXSLT.

� Two XSL Transformation primitives called InternalXSLT and ExternalXSLT.

402 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 6-56 Set Message Type primitive in the mediation flow

SetInternalType Message Type primitive
This primitive casts AnyCustomerBO to Customer. To configure this primitive:

1. Select the primitive in the mediation flow and set the new message type:

a. In the Details tab of the Properties view, click Add to set a new message
type of the custData field.

b. Click Edit by the Weakly typed field to open an XPath Expression Builder.

c. Select /body/updateAnyCustomer/custData/customerData and click
Finish.

d. Click Browse for the Actual field type. Choose Customer.

Figure 6-57 Set Message Type properties

2. Click Finish.

 Chapter 6. Mediation examples 403

Now, you see the following weakly-typed field is treated as a strongly-typed
Customer field in the following mediation flow (as shown in Figure 6-58):

/body/updateAnyCustomer/custData/customerData

Figure 6-58 Set Message Type properties

RouteCustomer Message Filter primitive
The Message Filter primitive is used to route the message to the next primitive in
the flow. The primitive has two out terminals. The default terminal is wired to
SetExternalType. The internalCustomer terminal is wired to InternalXSLT.

Using this filter:

� If the customer ID starts with 1, the message is routed to InternalXSLT and
eventually results in a call to the updateCustomer operation.

� If it does not start with a 1, then the message is routed to ExternalXSLT and
eventually results in a message to the updateExtCust operation.

To configure the RouteCustomer primitive, perform the following steps

1. Select the primitive in the mediation flow and open the Details tab of the
Properties view.

404 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Click Add to create a the new filtering condition. This starts a wizard where
you can enter the pattern. You can enter the pattern, or you can click Edit to
the right of the Pattern field to use the xPath Expression Builder to build the
pattern, as shown in Figure 6-59. Make sure that you leave no trailing spaces
in the expression.

Figure 6-59 XPath Expression Builder

3. Select the terminal name, and click Finish to complete the wizard.
Figure 6-60 shows the results.

Figure 6-60 Filtering condition

 Chapter 6. Mediation examples 405

InternalXSLT XSL Transformation primitive
This primitive moves the values from the customerData typed as Customer.
Open the map for the InternalXSLT primitive and add the mappings shown in
Figure 6-61.

Figure 6-61 InternalXSLT mapping

SetExternalType
Update the properties for the second Set Message Type primitive called
SetExternalType as shown in Figure 6-62. This casts AnyCustomerBO to
ExternalCustomerInfoBO.

Figure 6-62 Set Message Type properties

406 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

ExternalXSLT XSL Transformation primitive
Open the mapping for ExternalXSLT and create the mappings shown in
Figure 6-63.

Note that body/updateAnyCustomer/custData/custData is now viewed as
ExternalCustomerInfoBO type.

Figure 6-63 ExternalXSLT mapping

6.3.7 Response flow

To complete the response flow:

1. Open the response flow.

2. Add two XSL Transformation primitives called InternalCustResp (for the
internal customers) and ExternalCustResp as shown in Figure 6-64.

Figure 6-64 Response flow

 Chapter 6. Mediation examples 407

3. Double-click the ExternalCustResp and use the Concat action to add all fields
on the left to the result field on the right, as shown in Figure 6-65.

Figure 6-65 ExternalCustResp mapping

4. Select the Concat action. In the Properties view, add a delimiter to this
operation to better format the result, as shown in Figure 6-66.

Figure 6-66 Add a delimiter for the Concat action

408 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Double-click the InternalCustResp primitive to open the mapping. Because
updateCustomer operation of the internal CustomerService returns only one
value, we move it the result, as shown in Figure 6-67.

Figure 6-67 InternalCustResp mapping

6. Save and close all open windows.

6.3.8 Test the flow

To test the flow, follow these steps:

1. Launch the internal, DBMSServiceMediationApp, and external,
ExternalCustomerInfoApp, Web services. See Figure 6-68.

Figure 6-68 Start the server and applications

2. Click anywhere in the white space of the assembly diagram and select Test
Module from the pop-up menu.

 Chapter 6. Mediation examples 409

3. Make sure that you are testing SetMessageTypeMediation module and
component, AnyCustomerIF interface, updateAnyCustomer operation, as
shown in Figure 6-69.

Figure 6-69 Test properties

410 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Notice that customerData field is of type anyType. To define the type for this
field:

a. Select the field, right-click, and choose Use Derived Type from the pop-up
menu, as shown in Figure 6-70.

b. Select ExternalCustomerInfoBo from the Data Type Selection window.

Figure 6-70 Use Derived Type

The field type changes; however, the field stays locked with an X sign.

c. Right-click the field again, and choose Set To → Default to make all fields
available for setting test values (as shown in Figure 6-71).

Figure 6-71 New type for customerData

 Chapter 6. Mediation examples 411

5. Enter the values of your choice, but make sure that custID does not start with
1 (see Figure 6-72). Then, click Continue.

Figure 6-72 Enter the test values

You should see results similar to that shown in Figure 6-73.

Figure 6-73 Test results

412 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. Check the sequence of components that are called to make sure that the
ExternalCustomerInfo Web service is invoked as shown in Figure 6-74.

Figure 6-74 Test component sequence

7. Now, test the CustomerService. Because you will update the customer data, it
might be worth knowing what that data is before the update.

To retrieve customer data change the test Component to
CustomerServiceIFImport1, Interface to CustomerServiceIF, Operation to
retrieveCustomer. Enter a valid customer ID, such as 10903.

Figure 6-75 Test CustomerServiceIFImport1

 Chapter 6. Mediation examples 413

8. Click Continue and check the results. Figure 6-76 shows the results.

Figure 6-76 Test results

9. Note these values so that the test can be run with a customer ID of 10903.

Note: Normally, the easiest way to update the values is to save the values for
custID=10903 in the following manner:

1. Select the customer object under the Name column, right-click, and
choose Copy Value from the pop-up menu.

2. Then, when you have invoked the new test and changed the customerData
object to Customer type, use the Paste Value option to fill in the data.

However, there seems to be a bug for this method when the type is anyType.
So we entered the values manually.

414 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Now, click Invoke again (as shown in Figure 6-77).

Figure 6-77 Invoke the test

 Chapter 6. Mediation examples 415

4. Select the SetMessageTypeMediation component to test. Set the
customerData object type to Customer as shown in Figure 6-78.

Figure 6-78 New test settings

416 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Enter the new test data values based on those that you noted previously.
Change the budget value from 99999 to 10000 by clicking the 99999 value in
the budget field. Enter a new value of 10000 as shown in Figure 6-79.

Figure 6-79 New test input

6. Click Continue to run the test.

 Chapter 6. Mediation examples 417

7. Verify the result, which should be 3 as expected from the
CustomerServiceIF:updateCustomer operation, as shown in Figure 6-80.

Figure 6-80 Test results

8. Verify the component invocation sequence. You should see that
CustomerServiceIFImport1:updateCustomer was invoked appropriately
(Figure 6-81).

Figure 6-81 Test component sequence

9. Remove the projects from the server.

418 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.4 Message Filter example

This sample demonstrates how to create a Message Filter primitive to route
messages based on message content. It builds on the TestDBLookup mediation
and adds additional processing for North Carolina customers using a message
filter on the response flow.

6.4.1 Create the module

To create the module, you need to copy the TestDBLookup mediation and paste it
in the workspace under a different name. The steps are as follows:

1. In the Business Integration view, right-click TestDBLookup, and select Copy
from the pop-up menu.

2. Right-click anywhere in the white space of the Business Integration pane and
select Paste from the pop-up menu.

3. Enter MessageFilterMediation as the new module name, and click OK.

These steps create a new MessageFilterMediation module with its own
namespace that contains all the artifacts of the original TestDBLookup mediation
module.

6.4.2 Build the response flow

To build the response flow, follow these steps:

1. Open the MessageFilterMediation assembly diagram.

2. Double-click TestDBLookup component to open it in the mediation flow editor.

3. Click the Response:retrieveCustomer tab (Figure 6-82).

Figure 6-82 Response flow

Additional material: This example is included in the MessageFilterMediation
project in the additional materials.

 Chapter 6. Mediation examples 419

The Callout Response node is wired to the Input Response node through the
WebServiceResult XSL Transformation. The transformation simply sets “success
from DBMS Web service” for the return code RC.

6.4.3 Message Filter primitive

Next, you add and configure a Message Filter primitive. Follow these steps:

1. In the Palette, expand the Routing folder. Click the Message Filter primitive,
and then drag and drop it on the canvas (as shown in Figure 6-83).

Figure 6-83 Add the Message Filter primitive

420 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Right-click the Message Filter primitive and select Add Output Terminal from
the pop-up menu. Name the terminal NCcustomer (as shown in Figure 6-84),
and click OK when prompted. Then, click OK again.

Figure 6-84 New Message Filter terminal

3. The new terminal is added to the MessageFilter1 primitive, as shown in
Figure 6-85. The primitive routes messages for North Carolina customers
through this terminal. All other messages go through the default terminal.

Figure 6-85 Message filter terminals

 Chapter 6. Mediation examples 421

4. Rename MessageFilter1 to NorthCarolinaMessageFilter.

5. Now, select and delete the wire that connects the Callout Response node with
WebServiceResult (Figure 6-86).

Figure 6-86 Delete the wire from the callout response

6. Then, connect the Callout Response node with NorthCarolinaMessageFilter
instead (Figure 6-87).

Figure 6-87 Rewire the callout response

7. Next, select NorthCarolinaMessageFilter, and click the Details tab in the
Properties view to add a new filter.

8. Leave the distribution mode field set to First, which means that the message
that satisfies the filter criterion is routed only to the first matching output
terminal. If the distribution mode is set to All, the message goes to all
matching terminals.The default terminal is used if the message meets none of
the conditions.

9. Click Add to define a new filter. Then:

a. On the Add/Edit properties window, select a matching terminal name,
NCcustomer in our case, and click Edit. The XPath Expression Builder
window opens (Figure 6-88 on page 423).

b. In the Data Types Viewer expand the message elements until you find the
state field and click it.

c. Click the equal sign (=) in Operations pane.

422 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

d. Enter NC to the right of the equal sign (=) sign.

e. Click Finish.

Figure 6-88 Using the XPath Expression Builder to build the filter

 Chapter 6. Mediation examples 423

10.The Pattern field has the new filter expression, as shown in Figure 6-89. Click
Finish.

Figure 6-89 New filter pattern

The new filter is now in the list of the Properties view as shown in Figure 6-90.

Figure 6-90 New filter

11.Save the filter pressing Ctrl+S.

424 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.4.4 NorthCarolinaXSLT XSL Transformation

Now, you add and configure the XSL Transformation primitive that transforms the
response message as follows:

1. Add a new XSL Transformation primitive to the canvas. Rename it to
NorthCarolinaXSLT. You will need this primitive for special processing of the
filtered message.

2. Connect the NCcustomer terminal of NorthCarolinaMessageFilter to
NorthCarolinaXSLT and the default terminal with the in terminal of
WebServiceResult. Connect the out terminal of NorthCarolinaXSLT to the in
terminal of CustomerServiceIF_retrieveCustomer_InputResponse. See
Figure 6-91.

Figure 6-91 Add the NorthCarolinaXSLT primitive

3. Double-click NorthCarolinaXSLT and map the similar objects together with
the exception for two fields: budget and RC.

 Chapter 6. Mediation examples 425

4. Create a custom mapping for the budget fields and set it so that 1000 is added
to the budget of a NC customer. (See the Properties view in Figure 6-92.)

5. Assign the string successfully filtered NC customer to the RC field.

Figure 6-92 NorthCarolinaXSLT mapping

6. Save the assembly diagram and mediation flow.

426 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.4.5 Test the flow

Test both cases as follows:

1. Run a component test using customer ID 10002. The result shows an
increased budget and a “successfully filtered NC customer” return code (as
shown in Figure 6-93).

Figure 6-93

 Chapter 6. Mediation examples 427

2. Now test Customer ID 10001. The response message is not changed
because that Customer ID is not a NC customer. See Figure 6-94.

Figure 6-94 Test non-North Carolina customer

It is interesting to observe that because the filter is set on the response flow and
there is no response flow from the database lookup, the filter works only for the
customer records that are retrieved through the Web service.

428 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.5 Endpoint Lookup example

This sample shows how to upload service definition to WebSphere Service
Registry and Repository, create user properties, and invoke services based on
selector criteria.

In this example, the customer information is stored in an EIS and can be
accessed through an appropriate Web service. If the customer ID starts with 1,
the CustomerService Web service is called. If the customer ID starts with 5, a
ThirdPartyCustomerInfo service is to be called.

The CustomerService Web service is taken from the Order Management System
scenario. The ThirdPartyCustomerInfo service is created here.

6.5.1 Building ThirdPartyCustomerInfo

Build the ThirdPartyCustomerInfo Web service as follows:

1. From the top menu bar select File → New → Mediation Module. Call the
mediation module ThirdPartyCustomerInfo. Add OrderManagementLib
and click Finish.

2. Right-click the component, and add the CustomerServiceIF interface from
OrderManagementLib to the assembly diagram.

3. Select ThirdPartyCustomerInfo, and regenerate the implementation
implementation. The Mediation Flow Editor opens.

We do not do any actual mediating in this example. We need just set some
default values for a ThirdPartyCustomer.

4. Add an XSL Transformation primitive to the mediation canvas, and rename it
to SetThirdPartyCustomerInfo, as shown in Figure 6-95.

Figure 6-95 ThirdPartyCustomerInfo mediation flow

Additional material: This example is included in the
CustomerServiceEndpointMediation project in the additional materials.

 Chapter 6. Mediation examples 429

5. Double-click SetThirdPartyCustomerInfo to open the mapping and use the
Assign transform to assign values (Figure 6-96).

Figure 6-96 Assign values

The values to assign are:

custName: Third Party Customer
address: 11111 Main Street
zipCode: 27514
city: Chapel Hill
state: NC

6. Select File → Save All.

430 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Test the service
Test the component to make sure the service returns these values. Follow these
steps:

1. Select ThirdPartyCustomerInfo in the Business Integration view. Right-click,
and select Test → Test Module.

2. Enter a customer ID, as shown in Figure 6-97, and click the Invoke icon.

Figure 6-97 Test values

 Chapter 6. Mediation examples 431

The results should look similar to that shown in Figure 6-98.

Figure 6-98 Test results

6.5.2 Export the service as a Web service

Export the ThirdPartyCustomerInfo mediation as a Web service as follows:

1. Right-click ThirdPartyCustomerInfo in the assembly diagram, and select
Generate Export → Web Service Binding → soap/http.

2. Rename the new Export component to ThirdPartyCustomerServiceIFExport,
and use Alt+Shift+R to refactor, as shown in Figure 6-99.

Figure 6-99 Rename the export and refactor

The wiring looks similar to that shown in Figure 6-100

Figure 6-100 Assembly diagram

432 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. By default, the port that you create is added to the library. Expand
OrderManagementLib, and then expand Web Service Ports (Figure 6-101).

Figure 6-101 New Web service port

4. Double-click
ThirdPartyCustomerServiceIFExport_CustomerServiceIFHttpPort to
open a plain text file. Change the port number to match your integrated test
environment server, as shown in Figure 6-102.

Figure 6-102 Update the Web service port URL

 Chapter 6. Mediation examples 433

5. Test the Export component using a component test (Figure 6-103).

Figure 6-103 Test export

6. Point your browser to the service URL and verify that the result is valid, as
shown in Figure 6-104.

Figure 6-104 Test service presence with a browser

6.5.3 Export the service definitions

Now, there are two services that implement the same interface. Note that we
have not implemented the updateCustomer operation, but this update is not
important for the purpose of this sample scenario.

434 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Export the service definitions by following these steps:

1. Right-click anywhere in Business Integration pane and choose Export from
the pop-up menu. Select Business Integration → WSDL/Interface.

2. Select ThirdPartyCustomerInfo_CustomerServiceIFExport1.wsdl. Then,
select Export dependent resources. Select a directory to export to (for
example, c:\itso\WSRR) as shown in Figure 6-105.

Figure 6-105 Export the service interface

3. Click Finish.

4. Repeat this operation for
CustomerServiceIFExport1_CustomerServiceIFHttpPort.

 Chapter 6. Mediation examples 435

5. Verify that the definitions export to the directory correctly as shown in
Figure 6-106.

Figure 6-106 Newly exported WSDL

6.5.4 Load the definitions to the registry

Now, you need to upload the two service definitions to the registry. Follow these
steps:

1. Make sure that WebSphere Service Registry and Repository is up and
running and access the registry. In our case the registry is at the following
URL:

http://192.168.157.132:9081/ServiceRegistry/

436 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. Click Load Documents under Service Documents (Figure 6-107).

Figure 6-107 Load documents to WebSphere Service Registry and Repository

 Chapter 6. Mediation examples 437

3. In the Load Documents dialog box (Figure 6-108):

a. Click Browse and navigate to the c:\itso\WSRR directory.

b. Select DBMSServiceMediation_CustomerServiceFExport1.wsdl and
click Open.

c. Add a document description. Then, click OK.

Figure 6-108 Identifying the WSDL to be loaded

438 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The registry discovers that CustomerServiceIF.wsdl is required
(Figure 6-109).

Figure 6-109 Required WSDL is identified

 Chapter 6. Mediation examples 439

d. Click Add to add the CustomerServiceIF.wsdl file to the list of files to be
uploaded as shown in Figure 6-110.

Figure 6-110 Load the required WSDL

440 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

e. Click OK. Figure 6-111 shows the list of files to be uploaded.

Figure 6-111 List of files to be uploaded

f. Click Finish to upload the files.

Figure 6-112 Uploaded documents

4. Repeat step 2 to load the WSDL file for
ThirdPartyCustomerServiceIFExport_CustomerServiceIFHttpPort.

 Chapter 6. Mediation examples 441

5. When all the WSDL files are uploaded, select Service Metadata → WSDL →
Ports in the navigation pane. The window shown in Figure 6-113 opens.

Figure 6-113 Ports in the registry

442 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. Now, create a new property for each of the services. The registry uses the
property value for selecting the right service. Follow these steps:

a. Click CustomerServiceIFExport1_CustomerServiceIFHttpPort to open
the Details page (Figure 6-114).

Figure 6-114 Detail properties for the port

b. Click Properties under Additional Properties.

c. Click New.

 Chapter 6. Mediation examples 443

d. Create a property called CustomerID, and set its value to 1, as shown in
Figure 6-115.

Figure 6-115 CustomerID property

e. Click OK.

444 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

The new CustomerID displays as shown in Figure 6-116.

Figure 6-116 The new CustomerID property in the port

 Chapter 6. Mediation examples 445

7. Repeat the same operation for
ThirdPartyCustomerServiceIFExport_CustomerServiceIFHttpPort. Assign 5
to its CustomerID property. See Figure 6-117.

Figure 6-117 The new CustomerID property in the port

446 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.5.5 Configure the registry to WebSphere Enterprise Service Bus

To configure access to the registry from WebSphere Enterprise Service Bus,
follow these steps:

1. Open the administrative console for the WebSphere Enterprise Service Bus
server.

2. Expand Service integration and select WSRR definitions.

3. Click New to create a new definition.

4. Set the WebSphere Service Registry and Repository definition name to
ITSO-WSRR, and increase the Timeout of cache to 600, as shown in
Figure 6-118.

5. Click Apply.

Figure 6-118 Define a new WSRR connection

 Chapter 6. Mediation examples 447

6. Click Connection properties under Additional Properties.

It is a good practice to make sure that you know the correct URL to use as a
connection to the registry by pointing to the URL with a browser as shown in
Figure 6-119.

Figure 6-119 Checking the registry port

Note that this example does not use a secured registry.

Set the Registry URL to the following address (as shown in Figure 6-120):

http://192.168.157.132:9081/WSRRCoreSDO/services/WSRRCoreSDOPort

Figure 6-120 Connection properties

448 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7. Click OK to save all the changes. You now have an ITSO-WSRR service
definition as shown in Figure 6-121.

Figure 6-121 New WSRR definition

6.5.6 Create the mediation module

Now that the services are in place, you create a mediation module that can
choose between two (or more) implementations of CustomerServiceIF interface.

To create the mediation module:

1. You create a new mediation module called
CustomerServiceEndpointMediation.

2. Then, select WebSphere Enterprise Service Bus as the target run time.

3. Finally, choose OrderManagementLib as the required library.

 Chapter 6. Mediation examples 449

6.5.7 Create the interface

Create a CustomerDataIF interface with one getCustData operation that takes a
custID string for input and returns a string of custData, as shown in Figure 6-122.

Figure 6-122 CustomerDataIF interface

6.5.8 Build the assembly diagram

Next, populate the assembly diagram as follows:

1. Add CustomerDataIF to the CustomerServiceEndpointMediation component.

2. Import CustomerServiceIFExport1_CustomerServiceIFHttpPort with a Web
service binding, as shown in Figure 6-123.

Figure 6-123 Create the Import component

450 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

3. Wire CustomerServiceEndpointMediation to
CustomerServiceIFExport1_CustomerServiceIFHttpPort (Figure 6-124).

Figure 6-124 Assembly diagram

4. Regenerate the implementation.

 Chapter 6. Mediation examples 451

6.5.9 Build the operation connections

In the Mediation Flow Editor, wire getCustData operation to retrieveCustomer
operation, as shown in Figure 6-125.

Figure 6-125 Connections and mediation flow

452 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.5.10 Build the request flow

The request flow looks similar to that shown in Figure 6-126.

Figure 6-126 Request flow

Update the Callout node
Update the Callout node to use a dynamic endpoint for the service call. Follow
these steps:

1. Click the Callout node to open its properties.

2. On the Details tab, make sure that the “Use dynamic endpoint if set in the
message header” option is selected, as shown in Figure 6-127.

Figure 6-127 Callout properties: Use dynamic endpoint

 Chapter 6. Mediation examples 453

Endpoint Lookup primitive
Add the Endpoint Lookup primitive, as follows:

1. Find the Endpoint Lookup primitive under the Routing folder in the palette and
drop it to the canvas. Name it CustomerServiceLookup.

2. Wire the Input node to CustomerServiceLookup

3. Go to the Details tab of the CustomerServiceLookup Properties
(Figure 6-128).

a. Click Browse to search for the service interface to use. Select
CustomerServiceIF.

b. Enter ITSO-WSRR as the Registry Name.

c. Set the Match Policy to Return first matching endpoint and set routing
target.

Figure 6-128 Endpoint Lookup properties

4. Click Advanced under the Details tab.

5. Click Add under User Properties.

454 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. Create the CustomerID property and set a value to it. The property name has
to match the property name that you defined previously on the WebSphere
Service Registry and Repository server. For the value, take the first digit of
the customer ID. See Figure 6-129.

Figure 6-129 Define a new property

7. Click Finish. The properties display as shown in Figure 6-130.

Figure 6-130 Endpoint Lookup properties

 Chapter 6. Mediation examples 455

XSL Transformation primitives
Add the two XSL Transformation primitives as follows:

1. Add an XSL Transformation primitive to the mediation flow, and call it
XSLTtoCustomerService. Wire the out terminal of the CustomerServiceLookup
node to the in terminal of XSLTtoCustomerService. Wire
XSLTtoCustomerService to the Callout node.

2. Add another XSL Transformation primitive to the canvas, and call it
XSLTtoServiceNotFound. Wire it between the noMatch terminal of the
CustomerServiceLookup node and Input Response node.

3. Open the XSLTtoServiceNotFound map. Use a Custom mapping between
custID and custData, as shown in Figure 6-131.

Figure 6-131 XSLTtoServiceNotFound mapping

Use the following XPath expression:

concat('Data for customerID=', /body/getCustData/custID, ' not
found')

456 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Open the XSLTtoCustomerService Map. Use a Move mapping between
custID in the source and custID field of customer on the target, as shown in
Figure 6-132.

5. Save the changes.

Figure 6-132 XSLTtoCustomerService mapping

 Chapter 6. Mediation examples 457

6.5.11 Build the response flow

To build the response flow:

1. Go to the Response:getCustData tab.

2. Add an XSL Transformation primitive to the canvas.

3. Map all fields of the source to one field of the target using the Concat
mapping action, as shown in Figure 6-133.

Figure 6-133 XSL Transformation mapping

458 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Click Concat and add delimiters and a prefix to better format the result
(Figure 6-134).

Figure 6-134 Add delimiters and a prefix to the Concat mapping action

5. Save all by selecting File → Save All.

6.5.12 Test the flow

To test the flow, follow these steps:

1. Make sure that the WebSphere Enterprise Service Bus server is up and
running and both Web services are deployed and started. See Figure 6-135.

Figure 6-135 Start the applications

 Chapter 6. Mediation examples 459

2. Run the test using custID 5555555. Figure 6-136 shows the results.

Figure 6-136 Test results

3. Run the test using custID 10001. Figure 6-137 shows the results.

Figure 6-137 Test results

460 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Run the test using custID 20001. Figure 6-138 shows the results.

Figure 6-138 Test results

6.6 The Event Emitter primitive

This sample illustrates the use of the Event Emitter primitive. In this sample, a
mediation module called EventEmitterMediation uses a message filter to
determine how to forward a message through the mediation flow.

If the customer ID in the message starts with a 1, the mediation flow calls the
retrieveCustomer operation of the DBMSServiceMediation. If the customer ID
starts with any number other than 1, the mediation flow emits an event and stops
the mediation.

To build the mediation:

1. Create a mediation module called EventEmitterMediation.

2. Import the CustomerServiceIF Web service from OrderManagementLib by
selecting CustomerServiceIFExport1_CustomerServiceIFHttpPort from
the Web Service Ports folder in OrderManagementLib and dropping it to the
assembly diagram.

By default, it is assigned a name of CustomerServiceIFImport1.

Additional material: This example is included in the EventEmitterMediation
project in the additional materials.

 Chapter 6. Mediation examples 461

3. Wire EventEmitterMediation to CustomerServiceIFImport1 and add the
CustomerServiceIF interface to EventEmitterMediation, as shown in
Figure 6-139.

Figure 6-139 EventEmitterMediation assembly diagram

4. Right-click EventEmitterMediation and select Regenerate Implementation
from the pop-up menu to open the Mediation Flow Editor with the new
mediation flow.

6.6.1 Operation connections

Wire retrieveCustomer to retrieveCustomer, as shown in Figure 6-140.

Figure 6-140 Wire the operations

462 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6.6.2 Build the mediation flow

The mediation flow looks similar to that shown in Figure 6-141.

Figure 6-141 EventEmitterMediation mediation flow

Add the following primitives to the mediation flow canvas and take the default
names:

� Message Filter
� Event Emitter
� Stop

Message Filter primitive
The Message Filter primitive is used to validate the first character of the
customerID. If the first character is not 1, the flow emits an event and stops the
mediation. Otherwise, it proceeds with a Web service call.

To build the mediation:

1. Wire the Input node to the input terminal of the MessageFilter1.

2. Right-click MessageFilter1 and select Add Output Terminal from the
pop-up menu. The new terminal is named match1.

3. Select the MessageFilter1 primitive, and go to the Details tab of the
Properties view. Click Add to add a new pattern.

 Chapter 6. Mediation examples 463

4. Set the pattern to compare the first character of custID to 1. Set the terminal
name to match1, and click Finish. See Figure 6-142.

Figure 6-142 Add a pattern to the Message Filter primitive

5. In the Details tab, set the distribution mode to First, as shown in Figure 6-143.

Figure 6-143 New pattern and distribution mode

6. Complete the wiring in the flow as follows:

– Wire the match1 terminal to EventEmitter1.
– Wire the default terminal of MessageFilter1 to the Callout node.
– Wire the output terminal of the EventEmitter1 to the Stop1 node.

464 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Event Emitter primitive
In the Details tab of the Properties view for the EventEmitter1, set the Root value
to /body/retrieveCustomer/customer/custID, as shown in Figure 6-144. Save the
mediation and assembly diagram.

Figure 6-144 Event Emitter properties

 Chapter 6. Mediation examples 465

6.6.3 Test the mediation

To test the mediation:

1. In the assembly diagram, right-click the EventEmitterMediation component
and choose Test Component from the pop-up menu.

2. Set custID to 54321 (as shown in Figure 6-145), and click Continue to run the
test.

Figure 6-145 Test input

The test run should complete without errors, as shown in Figure 6-146.

Figure 6-146 Test event sequence

466 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

To see the event, open the Common Base Event Browser:

1. Switch to the Servers tab.

2. Right-click the server and select Launch → Common Base Event Browser
from the pop-up menu.

3. Enter the user ID and password (admin/admin by default). The Common Base
Event Browser window opens (Figure 6-147). On the left, you see the number
of events.

Figure 6-147 Common Base Event Browser

 Chapter 6. Mediation examples 467

4. Click All Events under Event Views in the left navigation bar. Select the
event that you want to view, and the data for the event displays in the bottom
portion of the screen (as shown in Figure 6-148).

Figure 6-148 List of events

468 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. At the very bottom of the Event Data find the wbi:event field. Click the
<wbi:event xmlns:wbi=...> value on the right to display the event data (as
shown in Figure 6-149). The <wbi:eventPointData> and <wbi:application
Data> tags are of interest.

Figure 6-149 Event data

6. Deploy DBMSServiceMediationApp and rerun the test with custID=10001,
which should pass the MessageFilter1 and proceed with a successful Web
service call. No event is emitted.

 Chapter 6. Mediation examples 469

470 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Chapter 7. Using adapters

This chapter introduces the IBM WebSphere JCA Adapter support in IBM
WebSphere Integration Developer and illustrates how to incorporate adapters
into business integration modules and mediations.

This chapter contains the following topics:

� IBM WebSphere JCA Adapter architecture

� IBM WebSphere Adapter Toolkit

� Enterprise Metadata Discovery

� Tools for creating JCA adapters

� Example: Using the WebSphere Adapter for JDBC

7

© Copyright IBM Corp. 2008. All rights reserved. 471

7.1 IBM WebSphere JCA Adapter architecture

There are two main interfaces to a JCA adapter (Figure 7-1):

� The Service Provider Interface (SPI)
� The Common Client Interface (CCI)

The SPI is the application server’s view of the adapter. It contains the contracts
that are necessary to work with an application server, including connection
creation and matching, security, and work management.

The CCI is designed to provide a common view of data and interaction with the
adapter. The CCI defines the data model and provides a common mechanism to
interact with the adapter.

Figure 7-1 JCA adapter architecture

Import and export components with an EIS binding provide SCA components
with the uniform view of the services external to the module. This view allows
components to communicate with a variety of external EIS systems using
consistent SCA programming model.

Application Server

Outbound:
Managed Connection Factory
ConnectionSpec
InteractionSpec
Inbound:
ActivationSpec

Provided by JCA
spec

Provided by EMD
spec

Provided by
base classes

Provided by
adapter
developer

Provided by EIS

Provided by user

EIS-Specific
Subclasses
(developer-
provided)

Base
Classes

(this
specification)J2EE Component

events

requests

JCA CCI
Interfaces

Inbound-
Listener
Interface

EIS
Client
API EIS

JCA SPI
Interfaces

Management

JCA
Container

J2EE Application Resource Adapter

Users
and

External
Business
Processes

J2EE Component
Message Driven Bean

472 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

You can find all resource adapters that come with the product in the
WID_root\Resource Adapters directory.

Exports (inbound)
An EIS service export is an export component that makes a service available to
clients outside of the module. The EIS export interface defines the interface of
the exported service. See Figure 7-2.

Within the EIS export, the EISExportBinding binds the exported service to the
external EIS service to:

� Allow the service to subscribe to (listen for) EIS service requests.

� Specify the mapping between the definition of inbound events as it is
understood by the Resource Adapter (using JCA interfaces) and the SCA
operation invocation.

Figure 7-2 EIS Inbound to WebSphere Process Server

JCA CCI
interface

Service A
Impl="BPEL"

Service
Export

WebSphere
Adapter

Enterprise
Information

System Native
APIs

 Chapter 7. Using adapters 473

Imports (outbound)
The EIS service import is an import component that allows components in the
module to use an EIS service that is defined outside of the module. The
interfaces that are specified in the import, either WSDL or Java, represent the
interface of the external service available through the import. Within the EIS
import, the EISImportBinding binds external EIS services to the SCA module.
See Figure 7-3.

The binding specifies the mapping between the definition of the outbound SCA
operation invocation and the interaction information as understood by the
Resource Adapter (using JCA interfaces).

Figure 7-3 WebSphere Process Server to EIS outbound

Consult the documentation that comes with these resource adapters for more
information, such as details about their availability on platforms such as Linux.

7.1.1 Different types of WebSphere JCA Adapters

WebSphere JCA Adapters implement the Enterprise MetaData Discovery
specification to provide a simple integration experience with graphical discovery
tools without resorting to writing code.

There is a distinction between two categories of WebSphere JCA adapter:

� Application adapter
� Technology adapters

Application adapters
WebSphere Adapters V6.1 connect enterprise business application suites to IBM
Business Process Management, enterprise service bus, and application server
solutions in a service-oriented architecture (SOA).

JCA CCI
interface

Service
Import

WebSphere
Adapter

Service A
Impl="BPEL"

Enterprise
Information

SystemNative
APIs

474 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Application adapters include:

� JD Edwards EnterpriseOne

Provides bidirectional, real-time integration between JD Edwards Enterprise
One and OneWorld Xe.

� Oracle E-Business Suite

Supports real-time, bidirectional integration to all Oracle applications modules
and other systems.

� PeopleSoft Enterprise

Provides bidirectional, real-time integration between PeopleSoft and other
applications.

� SAP Exchange Infrastructure

Allows business applications to send and receive business data and events
as XML messages asynchronously.

� SAP Software

Provides bidirectional, multi-threaded, real-time integration between SAP and
other applications, using SAP’s all interfaces capabilities.

� Siebel Business Applications

Provides comprehensive bidirectional, real-time integration between Siebel
and order management, ERP, e-business, and existing systems.

Technology adapters
WebSphere Adapters V6.1 technology adapters deliver file and database
connectivity solutions for IBM Business Process Management and enterprise
service bus solutions in an SOA.

The technology adapters include:

� Email

Enables the exchange of business objects with a variety of applications.

� Flat Files

Enables the communication with an application through the exchange of text
files.

� File Transfer Protocol (FTP)

Extend ESB with business document exchange via FTP server.

� JDBC

Allows the exchange of objects with applications built on any database
supported by JDBC Driver.

 Chapter 7. Using adapters 475

7.2 IBM WebSphere Adapter Toolkit

IBM WebSphere Adapter Toolkit enables customers and business partners to
develop custom JCA adapters to meet unique business requirements. The toolkit
helps to create either a basic JCA 1.5 adapter or an adapter that takes
advantage of the additional capabilities of the Adapter Foundation Classes
utilized by WebSphere Adapters.

The Eclipse-based toolkit includes:

� A wizard to create an adapter project, including the Java code stubs for the
appropriate adapter classes.

� The Adapter Foundation Classes that provide a consistent implementation for
WebSphere Adapters based on JCA 1.5.

� A graphical Resource Adapter Deployment Descriptor Editor to ease creation
and modification of the XML deployment descriptor file.

� A sample adapter and its associated enterprise application with source. The
sample adapter takes advantage of the Adapter Foundation Classes and
implements the Enterprise Metadata Discovery (EMD) specification for
wizard-driven configuration and the Service Data Objects (SDO) specification
for exchanging data.

IBM WebSphere Adapter Toolkit is provided as a no-fee download from IBM
developerWorks® to customers and business partners who secure licenses to
WebSphere Integration Developer and Rational Application Developer. To access
WebSphere Adapter Toolkit, visit IBM developerWorks.

http://www.ibm.com/developerworks/websphere/downloads/wat/

7.3 Enterprise Metadata Discovery

To realize the benefits of an SOA, it is critical to have easy interoperability with
EIS systems.

The Enterprise Metadata Discovery specification introduces a new metadata
discovery and import model for resource adapters and the enterprise application
integration (EAI) tools framework. The model allows resource adapters to easily
plug into an integration framework and improves the usability of adapters within
the framework.Tools that support Enterprise Metadata Discovery specification
have become the standard way to implement JCA-based applications.

The external service wizard in WebSphere Integration Developer supports the
specification. The wizard browses the metadata information of an EIS system in

476 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

http://www.ibm.com/developerworks/websphere/downloads/wat/

a process called discovery. Then the artifacts that are of interest are imported
into a service description. The service description contains all the information
that is required to generate an implementation of the service that can then be
deployed to an application server.

In addition to generating a service, you might be able to edit the configuration of
the resource adapter or service after it has been created and configured. The
tools in WebSphere Integration Developer that perform this editing function, the
assembly editor and the business object editor, are demonstrated in the task
help.

7.4 Tools for creating JCA adapters

WebSphere Integration Developer provides tools that support using JCA
adapters in modules and mediation modules.

7.4.1 Using the external service wizard

WebSphere Integration Developer provides the external service wizard to
implement resource adapters in projects.

To start the wizard:

1. Create the module that will use the adapter, and open the assembly diagram.

2. Select New → External Service from the context menu of the module in the
Business Integration view.

Alternatively, you can select an adapter from the Inbound or Outbound
adapter list in the palette and drop it into the assembly diagram.

The wizard provides following capabilities:

� Allows you to select the resource adapter and to include it in the workspace,
either bundled with the module or as a separate RAR to be deployed.

� Builds the connector project to hold the files that are associated with the
module.

� Finds the application or data on the EIS system and builds the import
component (for outbound services) or export component (for inbound
services) required for the service.

An import component lets your application invoke a service on the EIS
system.

 Chapter 7. Using adapters 477

An export component lets an application on an EIS system invoke a service in
WebSphere Process Server or WebSphere Enterprise Service Bus. Exports
can only be created for EIS systems that support initiating external function
calls.

� Generates business objects representing data structures on the EIS systems.

7.4.2 Using the adapter pattern wizard

Patterns enable the creation of integrated solutions based on predefined pieces.
WebSphere Integration Developer provides a number of patterns for integrating
adapters into your solution. These patterns can be used by invoking the adapter
pattern wizard.

You first create the module that will use the adapter. Then, invoke the wizard to
populate the module with the necessary artifacts by selecting New → From
Patterns from the context menu of the module in the Business Integration view.

Figure 7-4 shows the patterns that are available.

Figure 7-4 Adapter patterns

478 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7.4.3 Adapter deployment options

When planning for implementation, you must to decide whether to bundle the
adapter within the module that uses it or to deploy it separately. You typically
bundle the adapter within the module when that module is the only application
that will use the adapter or if that module uses a unique version of the adapter.
When the Adapter is bundled with the module, it is packaged in the same EAR
file as the module, as shown in Figure 7-5.

Figure 7-5 Embedding the adapter in your module

You can also choose to deploy the adapter separately. In this case, a Resource
Adapter Archive (RAR) is deployed and is accessible to any application in the run
time.

7.5 Example: Using the WebSphere Adapter for JDBC

The JDBC resource adapter enables bidirectional connectivity for integration to
any database application. The exchange of data for such applications happens at
the database level. The JDBC resource adapter can integrate with any database,
as long as there is a JDBC driver that supports the JDBC 2.0 (or higher)
Specification, available for the database. Examples of such databases include
DB2, Oracle, Microsoft SQLServer, Sybase, and Informix.

For complete information about this adapter, see the WebSphere Adapter for
JDBC documentation, which is available at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.wsadapters.610.jca_jdbc.doc/doc/stbp_jdb_welcome.html

WebSphere Process Server and
WebSphere Enterprise Service Bus

Application

Module Module

Module

Embedded
Adapter

Enterprise Information
System

Business
Function

Files

 Chapter 7. Using adapters 479

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wsadapters.610.jca_jdbc.doc/doc/stbp_jdb_welcome.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wsadapters.610.jca_jdbc.doc/doc/stbp_jdb_welcome.html

This example demonstrates how to build a business object using the JDBC
Resource Adapter, as follows:

1. Create the database, and ensure that the system that hosts WebSphere
Integration Developer has access to this database.

2. In the WebSphere Integration Developer, switch to the Business Integration
perspective, and create a new module called ITSOModule.

3. Right-click ITSOModule in the Business Integration view, and select New →
External Service.

4. Select Adapters, and click Next (Figure 7-6).

Figure 7-6 Select Adapters as the external service type

480 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

5. Select IBM WebSphere Adapter for JDBC (IBM: 6.1), as shown in Figure 7-7,
and click Next.

Figure 7-7 External Service Adapter for JDBC

 Chapter 7. Using adapters 481

6. The archive file to be imported and the connector project name that is used
displays (Figure 7-8). You can specify a new connector project or use an
existing one. Also, select a target run time. Then, click Next. The connector
project is created, and the archive is imported to it.

Figure 7-8 External Service Adapter Import

482 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7. Next, you select the JDBC driver JAR files to be used to access the database.

For each driver, click Add, browse to the appropriate JAR files, and click
Open. Figure 7-9 shows the JAR files that we selected for IBM DB2 V9.1.

Click Next.

Figure 7-9 Required JDBC driver files for the Adapter

 Chapter 7. Using adapters 483

8. Click Outbound, and click Next (Figure 7-10).

Figure 7-10 The Adapter Style options

9. The next panel specifies the connection properties for the database server
(Figure 7-11 on page 485).

a. Use the left panel to select the database vendor, driver, and version to
which you want to connect.

b. In the right panel, enter the information that is required to connect to the
database (ITSO).

c. Then, click Next. A connection to the database opens.

The user ID and password are temporary settings that are used to access the
database during the wizard.

484 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 7-11 Connection properties for database system and connection information

 Chapter 7. Using adapters 485

10.Click Run Query to list the tables, stored procedures, views, and synonyms
for each schema in the database.

11.Select the tables for which you want the wizard to create operations and click
the > (Add) button (as shown in Figure 7-12). Click Next.

Figure 7-12 Object discovery and selection

486 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

12.Select the operations that will apply to the business objects and business
graphs that are generated.

In the Configure Composite Properties screen (Figure 7-13), leave all the
default settings and click Next.

Figure 7-13 Configure Composite Properties

 Chapter 7. Using adapters 487

13.Next, enter the database security credentials, as well as deployment options
and the JNDI name to use to access the database. Select one of the following
deployment options:

– With module for use by single application (our choice in this example)
– On server for use by multiple applications

14.Specify how you want the adapter to get the database user name and
password at run time (see Figure 7-14 on page 489).

There are three options:

– Use an authentication alias.

Select Specify a Java Authentication and Authorization Services
(JAAS) alias security credential and enter the name of the alias in the
J2C Authentication Data Entry field. The alias can be an existing alias, or it
can be created later.

– To use an existing data source on the server:

i. Clear the “Specify a Java Authentication and Authorization Services
(JAAS) alias security credential” option.

ii. Click Advanced.

iii. Expand Alternate ways to specify connection information and enter
either a data source JNDI name or an XA data source name and XA
database name.

– To specify the database user name and password to be saved in the
adapter properties:

i. Clear the “Specify a Java Authentication and Authorization Services
(JAAS) alias security credential” option.

ii. Click Advanced.

iii. Under Database system connection properties, enter the User name
and Password.

In this example, we use a data source entry. So, we enter a JNDI name
(jdbc/itsodb) for the data source. You must create this data source manually.
The wizard does not create it.

Click Next.

Note: When you specify the password here, it is saved as clear text in
an adapter property, which unauthorized users might be able to see.

488 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure 7-14 Deployment properties

 Chapter 7. Using adapters 489

15.In the Service Location Properties panel (Figure 7-15), select the new module
and click Finish.

Figure 7-15 Service Location Properties

When the wizard completes, a file listing of the newly created module and an
assembly diagram of its interface displays as shown in Figure 7-16.

Figure 7-16 Generated Artifacts in the assembly diagram

490 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7.5.1 Creating an authentication alias for the database

Next, you need to create an authentication alias that includes the credentials
required to access the database.

To set the authentication alias, you first need to start the server. You can start the
server from the Servers view by right-clicking on the server and selecting Start.

After the server is started, follow these steps:

1. When the server status is Started, right-click the server, and then select Run
administrative console. Log in to the administrative console.

2. In the console, select Security → Secure Administration, applications and
infrastructure.

3. On the right, click J2C Authentication Data under Java Authentication and
Authorization Service.

4. Create an authentication alias (Figure 7-17 on page 491):

a. In the list of J2C authentication aliases that displays, click New.

b. In the Configuration tab, type a name for the authentication alias in the
Alias field.

c. Enter the user ID and password that are required to establish a connection
to the database.

d. Optionally, type a description of the alias.

e. Click OK.

Figure 7-17 Configuration General Properties console

 Chapter 7. Using adapters 491

The newly created alias displays (Figure 7-18). Note the full name of the
alias, which includes the node name. This full name is the one that you
use in subsequent configuration windows.

f. Save the configuration.

Figure 7-18 JAAS: JCA authentication data console

7.5.2 Creating the data source for the database

Using a data source lets applications share connections to a database. For
example, if multiple applications access the same database with the same user
name and password, the applications can be deployed using the same data
source. Using a J2C authentication alias is a robust, secure way to deploy
applications. An administrator creates the authentication alias that is used by one
or more applications that need to access a system. The user name and
password are known only to that administrator.

This process assumes that you have created the authentication alias with the
credentials required to access the database. Follow these steps:

1. In the administrative console, select Resources → JDBC → JDBC
Providers.

2. Select the scope at which you want to create the JDBC provider. Because
JDBC providers point to files on a a server, the node scope is often the most
appropriate.

3. Click New at the top of the list of JDBC providers.

492 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

4. Name the new JDBC provider and select the database and provider type as
shown in Figure 7-19. Click Next.

Figure 7-19 Create new JDBC provider

 Chapter 7. Using adapters 493

5. Specify the directory location that contains the provider JAR files
(Figure 7-20). Click Next.

Figure 7-20 Enter database class path information console

6. The last panel shows a summary of your selections. Click Finish.

The driver is created and a list of providers displays, including the new driver.

494 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7. Click the driver name to open the configuration, and then click Data sources
as shown in Figure 7-21.

Figure 7-21 DB2 Universal JDBC Driver Provider

 Chapter 7. Using adapters 495

8. Click New to create a new data source. In the panel that displays
(Figure 7-22):

a. Enter a new name for the data source, the JNDI name for the data source.
This name must match the name that is specified in the external service
wizard (see Figure 7-14 on page 489).

b. Select the authentication alias that you created earlier in 7.5.1, “Creating
an authentication alias for the database” on page 491.

c. Click Next.

Figure 7-22 Enter basic data source information

496 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

9. Enter the information that is required to connect to the database as shown in
Figure 7-23. Click Next.

Figure 7-23 Enter database specific properties for the data source

10.Review the summary, and click Finish to create the data source.

11.Save the changes.

12.Click Test connection to make sure the data source is defined correctly
(Figure 7-24).

Figure 7-24 Setting data sources

 Chapter 7. Using adapters 497

7.5.3 Deploying the module to the test environment

The result of running the external service wizard is a module that contains an EIS
import or export. Install this SCA module in WebSphere Integration Developer
integration test client. Follow these steps:

1. In the Servers view in the lower-right pane, right-click the server, and then
select Start.

2. When the Server status changes to Started, add the module to the server.

a. Right-click the server, and then select Add and Remove Projects.

b. Select ITSOModuleApp and click the > (Add) button.

c. Click Finish.

3. Verify that the server and ITSOModuleApp are in the Started state, as shown
in Figure 7-25.

Figure 7-25 ITSOModuleApp started and ready for testing

Now, test the JDBCOutboundInterface component by creating and an outbound
request:

1. Open the assembly diagram for ITSOModule. Right-click the
JDBCOutboundInterface import and select Test Component from the
context menu.

498 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

2. In the test client, set the properties as shown in Figure 7-26 on page 499:

a. Make sure the Operation field is set to createItsoCustomerBG.

b. Enter test data in the Initial request parameters table as shown in
Figure 7-26.

Figure 7-26 ITSOModule_Test mod

 Chapter 7. Using adapters 499

3. Click the Continue icon .

4. Select WebSphere Process Server v6.1 as the deployment location and
click Finish.

5. If administrative security is enabled on server, log in using admin for the User
ID and Password.

The test runs. Figure 7-27 shows the results.

Figure 7-27 WebSphere Administration Console for testing

500 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

6. Using the DB2 Control Center, verify that the ITSO customer record was
created to the CUSTOMER database table, as shown in Figure 7-28.

Figure 7-28 Creation of customer record to the ITSO database

 Chapter 7. Using adapters 501

502 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Appendix A. WebSphere Integration
Developer installation

This appendix includes an example of installing WebSphere Integration
Developer on a Windows platform.

A

© Copyright IBM Corp. 2008. All rights reserved. 503

Installation of WebSphere Integration Developer

There are a number of scenarios that you can follow when installing WebSphere
Integration Developer. This scenario illustrates just one of the methods.

Hardware and software requirements

WebSphere Integration Developer can run on a Windows or Linux operating
system. You can find specific hardware and software requirements at:

http://www.ibm.com/software/integration/wid/sysreqs/

Getting started with the installation

The following steps are an example of installing WebSphere Integration
Developer on a Windows operating system:

1. Double-click launchpad.exe in the root directory of the installation media.

2. On the Launchpad (Figure A-1 on page 505), select Install IBM WebSphere
Integration Developer V6.1.

504 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

http://www.ibm.com/software/integration/wid/sysreqs/

Figure A-1 IBM WebSphere Integration Developer V6.1 launchpad

3. If IBM Installation Manager is not detected on your workstation, then it is
installed at the same time as the WebSphere Integration Developer package.

 Appendix A. WebSphere Integration Developer installation 505

4. From the IBM Installation Manager Install Packages window, select all the
options, as shown in Figure A-2.

Figure A-2 Select the packages to install

5. When you have read the terms in the license agreements, accept the license
by selecting I accept the terms in the license agreement.

6. By default, the package group installation directory is C:\Program
Files\IBM\WID61 for Windows XP and Windows Server®. In this scenario, we
shorten this to C:\IBM\WID61.

Figure A-3 IBM Installation Manager Installation Directory

506 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

7. Select the features appropriate for your installation. At minimum, we
recommend those shown in Figure A-4.

Figure A-4 IBM Installation Manager Installation Features

The minimum features shown in Figure A-4 are:

– Integrated Development Workbench

Provides tools in a comprehensive development environment to build
integrated solutions.

– IBM WebSphere Adapters

Adapters access programs and data on Enterprise Information Systems
(EISs). Installing the following adapters and their documentation, which
are included with WebSphere Integration Developer Version 6.1, is
optional:

• IBM WebSphere Adapter for Email
• IBM WebSphere Adapter for FTP
• IBM WebSphere Adapter for Flat Files
• IBM WebSphere Adapter for JDBC
• IBM WebSphere Adapter for JD Edwards EnterpriseOne
• IBM WebSphere Adapter for Oracle E-Business Suite
• IBM WebSphere Adapter for PeopleSoft Enterprise
• IBM WebSphere Adapter for SAP Software
• IBM WebSphere Adapter for Siebel Business Applications

 Appendix A. WebSphere Integration Developer installation 507

– IBM WebSphere Process Server profile

A profile is used to define a separate runtime environment, with separate
command files, configuration files, and log files. The WebSphere Process
Server profile enables you to run SCA applications, BPEL business
processes, human tasks, transition tables, business rules, selectors, and
other resources. You can also run mediation flows that are contained in
mediation modules. If you intend to eventually deploy an integration
module with one or more of these resources to a WebSphere Process
Server production server, then you need to install the WebSphere Process
Server profile.

– IBM WebSphere Enterprise Service Bus profile

A profile is used to define a separate runtime environment, with separate
command files, configuration files, and log files. The WebSphere
Enterprise Service Bus profile enables you to run mediation flows
contained in mediation modules. However, you cannot run BPEL business
processes, human tasks, business rules, selectors, and other resources. If
you intend to eventually deploy your mediation module to a WebSphere
Enterprise Service Bus production server, then you need to install the
WebSphere Enterprise Service Bus profile.

– Portal tools

Provides tools to create, customize, test, debug, and deploy portal
applications. The Portal development tools support IBM WebSphere Portal
versions 5.1 and 6.0.

8. Click Finish to start the installation.

508 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Figure A-5 IBM Installation Manager Installation Summary

9. When installation is completed, you start WebSphere Integration Developer
by clicking Start → Programs → IBM WebSphere Integration Developer →
IBM WebSphere Integration Developer 6.1 → WebSphere Integration
Developer 6.1.

 Appendix A. WebSphere Integration Developer installation 509

510 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Appendix B. Additional material

This book refers to additional material that you can download from the Internet as
described in this appendix.

Locating the Web material

The Web material that is associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247608

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247608.

B

© Copyright IBM Corp. 2008. All rights reserved. 511

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The Web material contains a zipped file with project interchange files that are
intended for use with IBM WebSphere Integration Developer V6.1. They are
provided on an “as-is” basis.

Create a subdirectory (folder) on your workstation, and decompress the contents
of the Web material zipped file into this folder.

To import these files to WebSphere Integration Developer:

1. Select File → Import → Other → Project Interchange. Click Next.

2. Navigate to the download_location\MediationSamples\MediationSamples.zip
file. Click Open.

3. Select all the files and click Finish.

– OrderManagementLib
– CWYBC_JDBC
– DBMSServiceMediation

Several of the example mediations use a Derby database. This database is also
included with this material. To use the database:

1. Create the C:\itso\sampleDB directory.

2. Copy the download_location\MediationSamples\OLDDB database to the new
directory.

512 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Related publications

We consider the publications that we list in this section particularly suitable for a
more detailed discussion of the topics that we cover in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM
Redbooks” on page 514. Note that some of the documents referenced here
might be available in softcopy only.

� Getting Started with WebSphere Process Server and WebSphere Enterprise
Service Bus Part 2: Scenario, SG24-7642

� Getting Started with WebSphere Process Server and WebSphere Enterprise
Service Bus Part 3: Runtime, SG24-7643

� Human-Centric Business Process Management with WebSphere Process
Server V6, SG24-7477

� Building SOA Solutions Using the Rational SDP, SG24-7356

� Business Process Management: Modeling through Monitoring Using
WebSphere V6.0.2 Products, SG24-7148

Online resources

The following Web sites are also relevant as further information sources:

� WebSphere Process Server V6.1 information center.

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.websphere.wps.610.doc/welcome_top_wps.htm

� WebSphere Enterprise Service Bus V6.1 information center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.websphere.wesb.61x.root.doc/info/welcome.html

� WebSphere Integration Developer V6.1 information center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.i
bm.wbit.610.help.nav.doc/topics/welcome.html

© Copyright IBM Corp. 2008. All rights reserved. 513

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/welcome_top_wps.htm
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wesb.61x.root.doc/info/welcome.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.610.help.nav.doc/topics/welcome.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.610.help.nav.doc/topics/welcome.html

� WebSphere Integration Developer V6.1 information center: Configuring and
Using Adapters

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?to
pic=/com.ibm.wbit.610.help.adapter.emd.ui.doc/topics/tcreatecmps.html

� New platform support, including support for i5/OS and 64-bit Windows and
UNIX platforms. A full list of supported platforms can be found at:

http://www-1.ibm.com/support/docview.wss?rs=2307&context=SSQH9M&uid=
swg27009829

� What’s new in WebSphere Process Server V6.1

http://www.ibm.com/developerworks/websphere/library/techarticles/071
2_fasbinder_wps/0712_fasbinder.html

� IBM WebSphere Developer Technical Journal article, A guided tour of
WebSphere Integration Developer - Part 4 Unleashing visual snippets

http://www.ibm.com/developerworks/websphere/techjournal/0606_gregory
/0606_gregory.html#VSE

How to get IBM Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

514 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-1.ibm.com/support/docview.wss?rs=2307&context=SSQH9M&uid=swg27009829
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder_wps/0712_fasbinder.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.610.help.adapter.emd.ui.doc/topics/tcreatecmps.html
http://www.ibm.com/developerworks/websphere/techjournal/0606_gregory/0606_gregory.html#VSE

Index

A
action 228, 230, 235–236, 249, 261
action bar 147, 227
action rule 251–252
action rules 246
actions 252
activation specification 76
activities 148
activityInstance 138
ActivitySessions 21
adapter 78
Adapter Foundation Classes 476
adapter pattern wizard 478
Add and Remove Projects 133, 498
add and remove projects 108
ad-hoc task 209
administration task 186–187
administrative console 109, 379, 447, 491–492
administrative security 500
administrative user ID 112
administrators role 199
aggregate 348
alternate endpoint 353
anySimpleType 336
anyType 336–337, 400, 411, 414
anyURI 336
application adapter 474
application developer 30–31
Application Server Facilities (ASF) 4
application-specific business objects (ASBOs) 26
array 60, 171
ASBO 81
assembly diagram 14, 32, 40, 50, 52, 69, 71, 73,
86, 129, 281, 370, 450, 498
assembly editor 21, 129
Assign 324–326
assign 80, 272
Assign activity 158–159
assign transform 272
async timeout 352
authorization role 198–199
autoDelete 137
automatic deletion 137

© Copyright IBM Corp. 2008. All rights reserved.
B
back link 138, 171
batch 211
bendpoint 234
binding 15, 17, 32–33, 73–74, 78
body 294
BPC Explorer 214
BPC explorer 215
BPC Observer 219
BPEL 134
BPEL capabilities 141
BPEL process 13, 24
bpws

selectionFailure 138
Broadcast messages 349
Business Flow Manager 4, 136
business graph 26, 54, 62–63, 65, 82
business integration module 46, 69
Business Integration perspective 31–32, 36, 43–44
Business Integration view 36, 43–44
business object 26, 40, 58–59, 128, 305, 391, 400
business object editor 53, 55
business object field 53
business object map 79, 81
Business Object Map primitive 6, 292, 325
Business process 130
business process 2, 23, 33, 40, 134, 139, 219
Business Process Choreographer Explorer 2, 4,
206, 212, 214, 219
Business Process Choreographer Observer 2, 212,
219–220
business process component 70
business process editor 134, 146
Business rule 13
business rule 25, 237, 253, 263
business rule manager 262–263
business rules administration API 264
Business Rules Manager 247
Business rules manager 2
business rules manager 238, 261–262, 264
business state machine 13, 22, 221
business state machine editor 226–227

 515

C
call event 233
callback 352
Callout 312
Callout node 6, 290, 310, 312, 347, 374, 453
Callout Response node 335, 376, 387, 420, 422
Callout response node 291
callout Response node 310
CalloutResponse node 422
canvas 147, 227, 311
Case element 178
case element 166
catch element 181
check in 122
check out 117, 122
Choice activity 166, 178
CICS transaction 24
claimed 207
clear console 107
COBOL structure 294
collaboration 197, 202
collaboration task 186–187, 191, 207
com.ibm.websphere.sibx.smobo 305
commit 117, 121, 125
Common Base Even 2
Common Base Event Browser 360, 467
common base events (CBE) 358
Common Client Interface (CCI) 472
Common Event Infrastructure (CEI) 27
common event infrastructure (CEI) 358
commonj.sdo.DataObject 305
compensable 169
Compensate activity 172
compensation 172, 218
Compensation activity 173
compensation handler 172, 182
completion event 233
component 12
component test 108, 434
component testing 110
composite state 230
Concat 408, 458–459
Concurrent Versions System 115
condition 228, 233, 235–236, 249, 251, 261
conditions 252
conflict 117
connector project 477, 482
Console view 106–107
context 294, 296, 348

context business objects 298
context path 21
Copy Value 414
correlation 147–148, 178
Correlation context 327
correlation context 296–297, 299, 303–304
correlation properties 179, 228
correlation set 147, 178
critical processes 218
current flow 297
Custom 326
custom 80, 272, 323
Custom Assign 326
custom assign 80
Custom Callout 326
custom callout 80
custom mapping 426
custom mediation 289
Custom Mediation primitive 305, 311, 336
Custom mediation primitive 292
Customer relationship management (CRM) 7
CVS 115, 117, 122
CVS Repositories view 122
CVS repository 117–119
Cyclic Flow activity 4, 171

D
data binding 17, 76
Data perspective 329, 357
data pool 110
data section 296
data source 327, 355–356, 377, 492, 496
data transformation 80
data type 312
data type variable 151
data types 44
database 329, 484, 492
Database Explorer view 357
Database Lookup primitive 292, 327, 364, 372, 377
database table 327
DataObject API 305
date selection entries 269
date selection entry 269
DB2 Control Center 501
decision table 238–239, 241–243, 252, 254,
260–261
default component 269–270
default destination 269

516 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

default messaging provider 19
dependencies 44, 52, 90
dependency 44
Deploy with Module 90
Derby 333
disconnect 117
discovery 477
distribution mode 340, 422
doc-lit-wrapped 20
document/literal 20
dynamic bound 171
dynamic endpoint 352, 453
Dynamic Web project 41
dynamic wiring 271

E
early exit criterion 171
editors role 199
EIS binding 21, 78
EIS service export 473
EIS service import 474
EISExportBinding 473
EISImportBinding 474
EJB 136, 157
EJB project 41
element 148
elements 177
Email 475
e-mail 208
Empty Action activity 162
Emulate event 113
emulation services 110
emulator 111, 113
encoding style 20
Endpoint Lookup primitive 6, 292, 343, 345, 454
Enterprise Application project 41
enterprise bean 24
Enterprise information systems (EIS) 7
Enterprise Metadata Discovery 476
Enterprise MetaData Discovery specification 474
Enterprise Metadata Discovery specification 7, 476
Enterprise resource planning (ERP) 7
enterprise service bus (ESB) 5
Enterprise Service Discovery tool 21
entry 232
enumeration 248, 251
error message 361
escalation 195, 197, 206–208, 210, 219

escalation receiver role 199
even 233
event 228, 233, 236
Event Emitter primitive 292, 358–359, 461, 465
event handler 183–184
exit 232
export 14
Export component 434
export component 16, 18, 20, 73–74, 78
external service discovery wizard 78
external service wizard 476–477, 496, 498
Extract 326
extract 80, 272

F
Fail 361
fail 327, 329, 337, 345
Fail primitive 292, 361
fail terminal 356, 373
failed Compensation 218
Failed event manager 2
FailFlowException 361
failInfo 297
failureString 297
Fan In primitive 6, 292, 348, 351
Fan Out primitive 6, 292, 300, 348–351
fault 153, 172–173
fault handler 162, 173–174, 180
fault handlers 179
fault terminal 293
field type 56
File Transfer Protocol (FTP) 475
final state 230
Flat Files 475
follow-on task 210
ForEach activity 4, 137, 169–170
function selector 77

G
GBO 81
generate implementation 132
generic business objects (GBOs) 26
Generic JMS 4
generic JMS 20
generic JMS binding 19
generic JMS interface 136
global transaction 355
global variable 152

 Index 517

H
handler 148
handlers 179
header 294, 304
HTM API 24
HTTP 287
HTTP 1.0 4, 20
HTTP 1.1 4, 20
HTTP binding 20
HTTP message 294
Human resource systems (HR) 7
Human task 130
human task 13, 24, 40, 185, 189, 202, 219
Human Task activity 160
human task editor 194–195
Human Task Manager 185, 210
human task manager 25
human-to-human (H2H) 25
human-to-machine (H2M) 25

I
IBM CICS ECI Resource Adapter 7
IBM CICS ECI Resource Adapter Version 7 7
IBM IMS Connector for Java 7
IBM IMS Connector for Java Version 9.1.0.2.4 7
IBM Lotus Forms client 206
IBM Lotus Forms Designer 212
IBM WebSphere Adapter for Email Version 6.1 7
IBM WebSphere Adapter for Flat Files Version 6.1
7
IBM WebSphere Adapter for FTP Version 6.1 7
IBM WebSphere Adapter for JD Edwards Enter-
priseOne Version 6.1 8
IBM WebSphere Adapter for JDBC Version 6.1 7
IBM WebSphere Adapter for Oracle E-Business
Suite Version 6.1 8
IBM WebSphere Adapter for PeopleSoft Version 6.1
8
IBM WebSphere Adapter for SAP Software Version
6.1 8
IBM WebSphere Adapter for Siebel Business Appli-
cations Version 6.1 8
if-then rule 246, 251–252
implementation 12–13, 15, 21
import 14
import component 16, 18, 20, 33, 71–74, 78, 370
in terminal 293
incoming mode 124

initial state 230
inline map 323, 325
inline task 186
Input fault node 290
Input map 324
Input node 290, 298, 310, 393, 454
Input Response node 310, 335, 374, 376, 387, 393,
420
Input response node 290
input response node 310
instance-based roles 199
integer 171
integrated test environment 41, 128, 211, 305, 433
integration developer 30
Integration Test Client 380
integration test client 110, 133–134
interaction style 14
Interface 289
interface 12, 14–15, 21, 32, 40, 63, 73, 128, 132,
228, 277, 305, 392, 400, 450
interface editor 66
Interface map 130
interface map 13, 40, 272–273, 276, 278, 280–281
interface mapping editor 273, 278
interface partner 147–149
interface variable 151, 158
interfaces 44
invocation 197, 202
invocation task 186–187, 191, 208
invocationPath 297
Invoke activity 157, 173, 182
isolated 169

J
J2C authentication alias 377, 492
J2C Authentication Data 491
J2C authentication data 76
J2EE perspective 114
Java 52, 311
Java class 157
Java code 160, 305
Java component 14, 130
Java Connector Architecture 1.5 specification 7
Java interface 16
Java object 13, 130
Java objects 40
Java type interface 14
JavaServer Pages 15

518 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

JD Edwards EnterpriseOne 475
JDBC 475
JDBC adapter 274, 364
JMS 287
JMS 1.1 4
JMS Binding 75
JMS binding 19, 75–76
JMS broadcast mode 20
JMS message 294
JMS resource 76
JMSHeader 304
Join 326
join 80
join condition 165
join failure fault 165
JSP 85
JSP component testing 114

K
key 327
key column 327
key path 327
keyNotFound 327, 329
keyNotFound condition 381
keyNotFound terminal 373

L
libraries 44, 308
library 43, 45–46, 48, 433
library project 44
Lightweight Directory Access Protocol (LDAP) 201
local correlation set 168
local transaction 355
local variable 168
long-running business processes 24
long-running process 135, 141, 212
Lotus Forms Designer 4

M
machine-to-human (M2H) 25
map 272, 280
Map source to target based on names and types
325
mapping editor 83
mapping file 318
mappings 44
Match Mapping 325

Match Policy 454
Mediation 286
mediation 3
Mediation flow

Request flow 290
Response flow 290

mediation flow 13, 35, 52, 69, 290, 311
Mediation Flow component 289

Interface 289
Partner reference 289
Wiring 289

mediation flow component 27, 289
Mediation Flow Editor 309, 371
Mediation module 288
mediation module 27, 32, 43–44, 51, 69, 289,
305–306, 368
mediation modules 46
Mediation primitive 291
mediation service application 3
Message Element Setter primitive 292, 300, 333,
385–387
Message field refinements 337
Message Filter primitive 292, 327, 339–340, 402,
404, 419–421, 463
Message Logger database 356
Message Logger primitive 355–356
message root 321
MessageLogger primitive 292
microflow 24, 135, 141, 212
module 32, 40, 43–44, 46–47, 128
module assembly 14, 69
Move 326
move 80, 83, 272, 279
Move mapping 457
MQ binding 18–19
MQ JMS 18, 20
MQ JMS binding 18–19
MSGLOG table 357
My Task portlet 4

N
noMatch 345
normalize 323

O
Object Discovery Agent (ODA) 8
OnEvent element 183
one-way 18

 Index 519

one-way interaction 287
one-way operation 66, 76, 157
operation 66, 235
operation connections 371, 385, 402, 452, 462
operation mapping 272, 278
operations connections 310
Oracle E-Business Suite 475
origin 297
Originator role 200
Otherwise element 178
otherwise element 166–167
out terminal 293
outgoing mode 124
Outline view 39
owner role 200

P
Palette 311
palette 69, 71, 227
palette, tray 227
Parallel Activities activity 164
parameter mapping 272, 278, 280
participant substitution 211
partner 148
Partner reference 289
partner reference 14, 16, 21
partner references 15
Paste Value 414
Payload 291
people assignment 195, 197–198
people assignment criteria 198, 200, 203
people directories 201
people directory 4, 211
PeopleSoft Enterprise 475
perspective 31
Physical Resources view 37, 44, 114
point-to-point 76
POJO 131
port number 371
Portal client 206
potential creators role 199
potential owners role 199
potential starters role 199
predecessor 297
process 23
process instance 212, 218
process template 150, 212–213, 217
Processes 13

profile 109
project 44
Properties 304
Properties view 147, 227
protocol translation 286
publish/subscribe 76, 287
publish-subscribe 18

Q
qualifier 21
quality of service

security 293
quality of service (QoS) 21
queue 76

R
range 248
RAR 477
Rational ClearCase 115
Rational Software Development 30
readers role 199
ready state 207
Receive activity 147, 149, 154, 156
receive case element 167
Receive Choice activity 167–168
rectilinear 234
Redbooks Web site 514

Contact us xv
Reference 288
reference 12, 14–15, 72–73, 228, 352
reference partner 72, 147–148, 150
References view 38
Regenerate Implementation 385, 392
regenerate implementation 72
Relationship 326
relationship 25, 80
Relationship Lookup 326
relationship lookup 80
Relationship manager 2
reliable messaging 21
Reply activity 156, 173
Request flow 290
request flow 310, 402
request-response 287
request-response operation 66, 76, 156–157, 173,
273
Reset message type 337
resource adapter 78

520 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

Resource Adapter Archive (RAR) 479
Resource Adapter Deployment Descriptor Editor
476
Response flow 290
response flow 310, 376, 387, 407, 428, 458
rethrow activity 174
retry 353
retry count 353
retry delay 353
root 318, 355
Routing 419
RPC-encoded 20
RPC-literal 20
Rule group 130
rule group 239–242, 244
rule groups 13, 40
rule set 238–239, 241–246, 261–262
rule set editor 246
rule set template 247
rule template 246–247
rule type 246

S
SAP 475
SAP Exchange Infrastructure 475
SCA binding 20, 281
SCA component invocation message 294
schema 327
Scope activity 168, 182
SDO 326
SDO data graph 294
SDO data object 294
SDO DataObjects 27
Security 293
security 21, 76, 293, 491
selection criteria 269
Selector 13, 130
selector 25, 265, 267, 269
selectors 40
Sequence activity 163
Servers view 106, 108, 498
service component 12–14
Service Component Architecture (SCA) 2, 12
Service Component Definition Language (SCDL)
21
Service consumers 286
Service Data Objects 476
Service Data Objects (SDOs) 26

service interface 197
service interface area 195
service invocation 312
Service Invoke primitive 6, 292, 296, 317, 348,
352–353
service message object 27, 291, 294

manipulation 304
structure 294

context section 296
header section 304

Service Provider Interface (SPI) 472
Service providers 286
Service-Oriented Architecture (SOA 12
Set Message Element primitive 389
Set Message Type primitive 6, 292, 336–337, 402,
406
share 117, 119
shared business objects 298
shared context 296, 300, 350
Show Outline mode 39
Siebel 475
simple state 230
single threaded graph 171
SMO 304
SMO. See service message object.
SMOHeader 304
snippet 24
Snippet activity 160
SOAP message 294
SOAP over HTTP 4, 287
SOAP over JMS 287
SOAP/HTTP 19–20, 344
soap/http 432
SOAP/JMS 19–20, 344
SOAPFaultInfo 304
SOAPHeader 304
split messages 348
SQL Editor 365
SQL editor 331
SSL 20
Stand-alone reference 288
stand-alone reference 15, 85
stand-alone task 186
stand-alone task template 209
starter role 200
state 228, 230–231, 234
State machine 130
state machine 13, 23, 40, 221, 223–224, 228, 231,
233–234

 Index 521

static bound 171
Stop primitive 292, 361
strongly-typed field 336
structure 153
submap 80, 83–84, 323, 326
substitution 219
Substring 323
subtasks 209
subtasks started 208
supportsSubtask attribute 210
suspend 137
synchronize 117
Synchronize view 123
SystemErr 109
SystemOut 107, 109

T
tables 331
target 334
Target Activity 173
target component 269
target component association to an operation 268
task instance 213, 218
task list queries 211
task template 212–213, 217
task template. 24
TaskSystemAdministrator 199
TaskSystemMonitor 199
team development 115
Team Synchronizing perspective 123
technology adapters 475
template 251, 261
terminate 231
Terminate activity 174
terminated processes 218
Test Component 397
test data 110
test environment 106
Test Module 389, 394
test people query 211
Throw activity 173
timeout 235
Timeout element 183
timeout element 167
timer event 233
to-do 197, 202
to-do task 186, 191, 207
topic 76

Transaction 361
transaction 21
transaction mode 355, 358
transform 324
transformation 323
transient business objects 297
transient content 303
Transient context 327
transient context 299, 302
transition 228, 233–237
transition condition 164
tray 147
Type 334
type 334
Type Message Type primitive 403

U
untyped component 14
update 117
Use Derived Type 411
Use dynamic endpoint if set in the message header
347
user interface 195, 197
user interfaces 206

V
Validate 337
validate input 318
variable 147–148, 151, 228, 249
verb 63
version control 115
virtual member manager (VMM) 201
visual snippet editor 160
VMM 211

W
Wait activity 161
wbi:event 469
weakly-typed field 336, 400, 403–404
Web project 89
Web service 157
Web service binding 370, 450
Web services binding 19
Web Services Business Process Execution Lan-
guage (WS-BPEL) 2
WebSphere Adapter for JDBC 479
WebSphere Adapter Toolkit 476

522 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

WebSphere Adapters 21, 287
WebSphere Business Integration Adapters 7–8
WebSphere Business Integration Server 9
WebSphere Integration Developer 10
WebSphere InterChange Server 9
WebSphere JCA Adapter 474
WebSphere JCA Adapters 7
WebSphere Message Broker 9
WebSphere MQ 4, 18–19
WebSphere Portal 2, 4
WebSphere Service Registry and Repository
343–345, 429, 436, 447, 455
WebSphere Transformation Extender 4
While Loop activity 168
wildcard 138
wire 16
workspace 31, 42
WPRCSDB 357
WS-BPEL 23
WSDL type interface 14
WSRR definition 447

X
XPath 312, 327, 334
XPath expression 456
XPath Expression Builder 403, 422–423
XPath expression builder 386
XPath V1.0 expression 304
XSL style sheets 304
XSL Transformation primitive 292, 318, 326,
373–374, 376, 393, 402, 406–407, 425, 429, 456,
458
XSLT primitive 304
XSLT transformation primitive 300

 Index 523

524 Getting Started with IBM WebSphere Process Server and IBM WebSphere ESB Part 1: Development

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Getting Started w
ith IBM

 W
ebSphere Process Server

and IBM
 W

ebSphere ESB Part 1: Developm
ent

®

SG24-7608-00 ISBN 0738430013

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Getting Started with IBM WebSphere
Process Server and IBM WebSphere
Enterprise Service Bus
Part 1: Development

Build business
integration
applications

Build mediations

Use adapters

This IBM Redbooks publication provides developers with
information about building and testing applications for IBM
WebSphere Process Server and IBM WebSphere Enterprise
Service Bus. It helps developers with the tasks of creating
business integration applications and mediations. It also
includes information about the use of adapters.

This is the first book of a three-part series:

Getting Started with IBM WebSphere Process Server and IBM
WebSphere Enterprise Service Bus:

� Part 1: Development, SG24-7608
� Part 2: Scenario, SG24-7642
� Part 3: Run time, SG24-7643

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Introduction to the products
	1.1 WebSphere Process Server
	1.1.1 Introduction to the product
	1.1.2 V6.1 highlights

	1.2 WebSphere Enterprise Service Bus
	1.2.1 Introduction to the product
	1.2.2 V6.1 highlights

	1.3 WebSphere Adapters
	1.3.1 WebSphere JCA Adapters
	1.3.2 WebSphere Business Integration Adapters

	1.4 WebSphere Integration Developer
	1.4.1 Introduction to the product
	1.4.2 V6.1 highlights

	Chapter 2. Concepts for development
	2.1 SCA and WebSphere Process Server
	2.1.1 Service components
	2.1.2 Service component assembly
	2.1.3 Import and export bindings
	2.1.4 Quality of service

	2.2 WebSphere Process Server components
	2.2.1 WebSphere Process Server specific components
	2.2.2 WebSphere Enterprise Service Bus specific components
	2.2.3 Common event infrastructure

	Chapter 3. Basics of development
	3.1 WebSphere Integration Developer key features
	3.1.1 Base tools and run times
	3.1.2 Developer roles
	3.1.3 Workspace and perspectives
	3.1.4 Assembly diagram
	3.1.5 Editors
	3.1.6 Business Integration view
	3.1.7 Physical Resources view
	3.1.8 Other Business Integration views

	3.2 Working with WebSphere Integration Developer
	3.2.1 Typical development flow
	3.2.2 Start WebSphere Integration Developer
	3.2.3 Using the Business Integration perspective

	3.3 Project types
	3.3.1 Libraries
	3.3.2 Modules and mediation modules

	3.4 Business objects
	3.4.1 Business object fields
	3.4.2 Business graph
	3.4.3 Creating a business object
	3.4.4 Adding fields to a business object
	3.4.5 Creating a business graph

	3.5 Interfaces
	3.5.1 Creating a new interface
	3.5.2 Adding operations

	3.6 Module assembly
	3.6.1 Module assembly diagrams
	3.6.2 Mediation module assembly diagrams
	3.6.3 Generating a binding
	3.6.4 Using adapters

	3.7 Business object maps
	3.7.1 Data transformation types
	3.7.2 Creating a business object map

	3.8 Using a stand-alone reference
	3.8.1 Invoking the reference from a JSP

	3.9 Working with databases in the workspace
	3.9.1 Derby databases
	3.9.2 Using the Database Explorer to connect to a database
	3.9.3 Using the SQL editor
	3.9.4 Loading data into tables
	3.9.5 Viewing and editing data in the tables
	3.9.6 Closing connections

	3.10 Derby ij tool
	3.10.1 Create a database
	3.10.2 Database disconnect and reconnect
	3.10.3 Drop tables
	3.10.4 Viewing a database

	3.11 Deploying modules
	3.11.1 Deploying the module for testing
	3.11.2 Deploying the module for production

	3.12 Test tools
	3.12.1 Integrated test environment
	3.12.2 Component testing
	3.12.3 JSP component testing

	3.13 Team development
	3.13.1 Sharing your integration project
	3.13.2 Using CVS
	3.13.3 Install CVS and create a repository
	3.13.4 Adding a CVS repository to the workspace
	3.13.5 Sharing a project with CVS
	3.13.6 Checking out a project from CVS
	3.13.7 Checking in changes to a project to CVS

	Chapter 4. Building business integration applications
	4.1 Typical development flow
	4.2 Service components for modules
	4.3 Using Java objects
	4.3.1 Creating a Java component
	4.3.2 Creating a “HelloWorld” sample

	4.4 Business processes
	4.4.1 Types of business processes
	4.4.2 New, enhanced business process features with WebSphere Process Server V6.1
	4.4.3 Creating a business process
	4.4.4 Business process editor
	4.4.5 Building blocks of a business process
	4.4.6 Using partners in a business process
	4.4.7 Using variables in a business process
	4.4.8 Using activities in a business process
	4.4.9 Using elements in a business process
	4.4.10 Using correlation in a business process
	4.4.11 Using handlers in a business process

	4.5 Human tasks
	4.5.1 Implementations and types of human tasks
	4.5.2 Creating a human task
	4.5.3 Human task editor
	4.5.4 Building blocks of a human task
	4.5.5 People assignments
	4.5.6 User interfaces
	4.5.7 Escalations
	4.5.8 Ad-hoc tasks
	4.5.9 New human task features in WebSphere Process Server V6.1

	4.6 Administering processes and tasks
	4.6.1 Business process templates and instances
	4.6.2 Human task templates and instances
	4.6.3 Administering process and task templates
	4.6.4 Business Process Choreographer Explorer
	4.6.5 Administering process and task instances
	4.6.6 Business Process Choreographer Observer
	4.6.7 New, enhanced Business Process Choreographer features with WebSphere Process Server V6.1

	4.7 Business state machines
	4.7.1 Creating a state machine
	4.7.2 Business state machine editor
	4.7.3 Building blocks of a state machine
	4.7.4 Using correlation properties in a state machine
	4.7.5 Using states in a state machine
	4.7.6 Using transitions in a state machine
	4.7.7 Vending machine sample

	4.8 Business rules
	4.8.1 Cashback business rule sample
	4.8.2 Rule groups
	4.8.3 Rule sets
	4.8.4 Decision tables
	4.8.5 Business rules manager
	4.8.6 New, enhanced business rules features with WebSphere Process Server V6.1

	4.9 Selectors
	4.9.1 Creating a selector
	4.9.2 Configuring the selector
	4.9.3 Adding selectors to the assembly diagram

	4.10 Interface maps
	4.10.1 Creating an interface map
	4.10.2 Adding the map to the assembly diagram

	Chapter 5. Building mediations
	5.1 WebSphere Enterprise Service Bus architecture
	5.1.1 Mediations, service consumers, and service providers
	5.1.2 Mediation modules
	5.1.3 Mediation flow components
	5.1.4 Mediation flows
	5.1.5 Mediation primitives
	5.1.6 Security

	5.2 Service message objects
	5.2.1 SMO structure
	5.2.2 SMO manipulation

	5.3 Typical development flow
	5.4 Creating a mediation
	5.4.1 Mediation flow editor

	5.5 Service connection and invocation
	5.6 Transformation primitives
	5.6.1 XSL Transformation primitive
	5.6.2 Business Object Map primitive
	5.6.3 Database Lookup primitive
	5.6.4 Message Element Setter primitive
	5.6.5 Set Message Type primitive

	5.7 Routing primitives
	5.7.1 Message Filter primitive
	5.7.2 The Endpoint Lookup primitive
	5.7.3 Fan Out and Fan In primitive
	5.7.4 Service Invoke primitive

	5.8 Tracing primitives
	5.8.1 Message Logger primitive
	5.8.2 Event Emitter primitive

	5.9 Error Handling primitives
	5.9.1 Fail primitive
	5.9.2 Stop primitive

	5.10 Custom Mediation primitive

	Chapter 6. Mediation examples
	6.1 Database Lookup example
	6.1.1 Create the database and connection
	6.1.2 Create the mediation module
	6.1.3 Complete the assembly diagram
	6.1.4 Wire the operation connections
	6.1.5 Build the mediation flow
	6.1.6 Response flow
	6.1.7 Preparing the run time
	6.1.8 Test the module

	6.2 Message Element Setter example
	6.2.1 Build the assembly diagram
	6.2.2 Operation connections
	6.2.3 Build the request flow
	6.2.4 Build the response flow
	6.2.5 Test the module

	6.3 Set Message Type example
	6.3.1 Build the ExternalCustomerLib library
	6.3.2 Build the ExternalCustomerInfo Web service
	6.3.3 Build SetMessageTypeMediation module
	6.3.4 Create an anyType business object and the interface
	6.3.5 Wire the connections
	6.3.6 Build the request flow
	6.3.7 Response flow
	6.3.8 Test the flow

	6.4 Message Filter example
	6.4.1 Create the module
	6.4.2 Build the response flow
	6.4.3 Message Filter primitive
	6.4.4 NorthCarolinaXSLT XSL Transformation
	6.4.5 Test the flow

	6.5 Endpoint Lookup example
	6.5.1 Building ThirdPartyCustomerInfo
	6.5.2 Export the service as a Web service
	6.5.3 Export the service definitions
	6.5.4 Load the definitions to the registry
	6.5.5 Configure the registry to WebSphere Enterprise Service Bus
	6.5.6 Create the mediation module
	6.5.7 Create the interface
	6.5.8 Build the assembly diagram
	6.5.9 Build the operation connections
	6.5.10 Build the request flow
	6.5.11 Build the response flow
	6.5.12 Test the flow

	6.6 The Event Emitter primitive
	6.6.1 Operation connections
	6.6.2 Build the mediation flow
	6.6.3 Test the mediation

	Chapter 7. Using adapters
	7.1 IBM WebSphere JCA Adapter architecture
	7.1.1 Different types of WebSphere JCA Adapters

	7.2 IBM WebSphere Adapter Toolkit
	7.3 Enterprise Metadata Discovery
	7.4 Tools for creating JCA adapters
	7.4.1 Using the external service wizard
	7.4.2 Using the adapter pattern wizard
	7.4.3 Adapter deployment options

	7.5 Example: Using the WebSphere Adapter for JDBC
	7.5.1 Creating an authentication alias for the database
	7.5.2 Creating the data source for the database
	7.5.3 Deploying the module to the test environment

	Appendix A. WebSphere Integration Developer installation
	Installation of WebSphere Integration Developer
	Hardware and software requirements
	Getting started with the installation

	Appendix B. Additional material
	Locating the Web material
	Using the Web material

	Related publications
	IBM Redbooks publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

