

ibm.com/redbooks

Portal Application
Development Using
WebSphere Portlet Factory

David Bowley
Emily Chan

Thulsi Krishnan
Jason Lee

Devang Patel
Alfredo Navarro

Features and techniques for rapidly
developing portlets

Step-by-step guidance for
building a sample application

Best practices, hints, tips
and troubleshooting

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Portal Application Development Using
WebSphere Portlet Factory

January 2008

International Technical Support Organization

SG24-7525-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2008)

This edition applies to WebSphere Portlet Factory, version 6.0.1

Note: Before using this information and the product it supports, read the information in
“Notices” on page iii.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. iii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
Cloudscape™
Domino®
DB2®

Freelance Graphics®
IBM®
Lotus®
Rational®

Redbooks®
WebSphere®
Workplace™
Workplace Forms™

The following terms are trademarks of other companies:

BAPI, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several
other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

EJB, Java, Javadoc, JavaScript, JDBC, JRE, JSP, J2EE, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Expression, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

iv Portal Application Development Using WebSphere Portlet Factory

Contents

Notices . iii
Trademarks . iv

Preface . xiii
The team that wrote this book . xiii

Special acknowledgement . xv
Become a published author . xvii
Comments welcome. xviii

Chapter 1. Introduction . 1
1.1 Overview of WebSphere Portlet Factory . 2
1.2 Capabilities of WebSphere Portlet Factory . 2
1.3 Development with WebSphere Portlet Factory . 3

1.3.1 Builders . 4
1.3.2 Models. 5
1.3.3 Profiles . 7

1.4 Architecture . 8
1.4.1 Builders . 9
1.4.2 Models. 9
1.4.3 Generation . 9
1.4.4 WebApp . 11
1.4.5 Generation, Part 2: Profiling . 11

Chapter 2. Scenario introduction. 15
2.1 Overview of the sample scenario . 16

2.1.1 Scenario background . 16
2.1.2 Roles specific to the sample application scenario. 16

2.2 Preview of the sample application. 17
2.2.1 Overview of the application functionality . 17
2.2.2 Use cases applicable to the CSR . 19
2.2.3 Use cases applicable to an external customer 20

2.3 Review of specific portlets - CSR perspective. 21
2.3.1 Reviewing customer information . 21
2.3.2 Reviewing customer order information . 24
2.3.3 Creating a new order on behalf of a customer 26

2.4 Review of specific portlets - Customer perspective. 27
2.4.1 Customer information based on authentication credentials 27
2.4.2 Customer perspective - Reviewing orders . 30
2.4.3 Customer perspective - Creating a new order 31

© Copyright IBM Corp. 2008. All rights reserved. v

2.5 Mapping functional areas of sample application
and capabilities of Portlet Factory . 32

2.5.1 Data Services . 32
2.5.2 Basic user interface portlets . 34
2.5.3 Advanced user interface portlets. 35
2.5.4 Portlet communication and profiling . 36

Chapter 3. Creating projects . 39
3.1 Overview . 40
3.2 Creating a project . 40
3.3 Project structure . 46
3.4 Deployment . 49

3.4.1 WAR files . 49
3.4.2 Deployment configurations . 50

3.5 Testing. 57
3.6 Adding a feature set . 63
3.7 Conclusion. 66

Chapter 4. Data Services: Overview and interface definition 67
4.1 Overview of the technical goals. 68

4.1.1 Value to the Portlet Factory developer . 68
4.2 Data Services in Portlet Factory . 69

4.2.1 Architecture overview . 70
4.2.2 Supported back-end systems . 71
4.2.3 General concepts . 72

4.3 Developing Data Services in the sample application 73
4.3.1 Role of Data Services in ITSO Renovations 74
4.3.2 Architecture and design . 76
4.3.3 Development steps and guidelines . 84

4.4 Design and implementation of data structures and
Application Data Service Interfaces . 87

4.4.1 Data structures . 87
4.4.2 Application Data Service Interface: Definition and operations 92

4.5 Summary and best practices. 102

Chapter 5. Creating Data Services: Access to back-end systems 105
5.1 Custom Data Service: Local XML access sample. 106

5.1.1 Overview of accessing a custom data service 106
5.1.2 Implementing the service . 107
5.1.3 Testing and debugging the service . 115

5.2 SQL Data Services . 118
5.2.1 Overview and available SQL builders . 118
5.2.2 Design for ITSO Renovations - Customer and order information . . 120
5.2.3 Implementing the service and operations . 122

vi Portal Application Development Using WebSphere Portlet Factory

5.2.4 Data transformations: Use of IXml API . 140
5.2.5 Customize data column access in SQL builders:

Working with binary data . 145
5.2.6 Implementation of transactions . 161
5.2.7 Testing and debugging the service . 165

5.3 Domino Data Access Service . 167
5.3.1 Overview and how to use Domino Access builders 167
5.3.2 Design for ITSO Renovations: Product information 171
5.3.3 Implementing the service . 174
5.3.4 Data transformations: Use of Transform builders 185
5.3.5 Testing the service . 189

5.4 Data Service for external web services access. 190
5.4.1 Overview . 190
5.4.2 Design for ITSO Renovations: External product information 192
5.4.3 Implementing the service . 193
5.4.4 Testing the service . 206
5.4.5 Creating a Stub Service for testing . 207

5.5 High-level Data Services: Wrapping access to back-end systems 208
5.5.1 Design for ITSO Renovations: Product information 209
5.5.2 Implementing the service . 210
5.5.3 Testing the service . 214

5.6 Accessing other back-end systems. 214
5.6.1 SAP access. 215
5.6.2 J2EE Data Integration: EJB access and JMS support 216
5.6.3 Accessing back-end systems without Portlet Factory builders 217

5.7 Summary and best practices. 218

Chapter 6. Creating portlets: Making it work . 221
6.1 Overview . 222
6.2 Portlet design overview . 223

6.2.1 The context of this chapter . 225
6.3 Development the WebSphere Portlet Factory way 226

6.3.1 High-level overview of building portlets. 227
6.3.2 Key builders for consumer models . 228
6.3.3 Best practices for designing large applications 231

6.4 Building the web application . 234
6.4.1 Customer information . 234
6.4.2 Order List model . 255
6.4.3 Order Details model . 258

6.5 Converting the web application into portlets . 264
6.6 Configuring pages and portlets in WebSphere Portal 266
6.7 Accessing the Portal Credential Vault . 268

6.7.1 WPS Credential builder. 268

 Contents vii

6.7.2 Using WPS Credential builder in our application 269
6.8 Summary . 272

Chapter 7. Creating portlets: Designing the UI . 275
7.1 Introduction . 276

7.1.1 What you will learn . 281
7.2 Using a Rich Data Definition file . 283

7.2.1 Why use an RDD? . 283
7.2.2 RDD in ITSO Renovations . 283
7.2.3 Adding RDD to the Customer Information portlet 284
7.2.4 Adding RDD to the Order List portlet . 286
7.2.5 Adding RDD to the Order Details and Product Details model 287
7.2.6 How an RDD file works . 288
7.2.7 When to use individual modifiers or builders instead of RDD 290
7.2.8 Referencing and extending RDD files . 290
7.2.9 Examples of modifiers in the RDD Files . 294
7.2.10 Formatting the output . 303
7.2.11 How to create an RDD . 308
7.2.12 RDD summary. 311

7.3 Paging your data . 312
7.3.1 Adding pagination in the Order List portlet 315

7.4 Using the Ajax type-ahead builder . 322
7.5 Using the Dojo builders . 324

7.5.1 Creating a Dojo tooltip in the Product Details portlet 324
7.5.2 Adding Dojo Inline Edit in the Order Details portlet 334

7.6 Dojo drag and drop . 336
7.7 Using other Dojo features . 341
7.8 Customizing the UI . 346

7.8.1 UI elements of a Portlet Factory page. 347
7.9 HTML templates in Portlet Factory . 354
7.10 Other UI builders . 356
7.11 Conclusion. 358

Chapter 8. Enabling portlet communication . 361
8.1 Overview . 362
8.2 Types of inter-portlet communication . 363

8.2.1 Types of inter-portlet events . 365
8.3 Inter-portlet communication for CSA . 366

8.3.1 CustomerInfo Model to OrderList Model . 367
8.3.2 OrderList Model to OrderDetails Model. 395
8.3.3 CustomerCredentials Model to CustomerInfo Model 413

viii Portal Application Development Using WebSphere Portlet Factory

8.4 Best practices . 418
8.5 Conclusion. 419

Chapter 9. Customizing the application using profiling 421
9.1 Overview . 422

9.1.1 Value to developers . 423
9.1.2 Value to users . 423

9.2 Profiling defined. 423
9.3 Terms and definitions . 425
9.4 Types of profiling . 428

9.4.1 Profile selection. 429
9.4.2 Profile value customization . 429

9.5 Selection handlers. 430
9.5.1 Profile selection handlers . 431
9.5.2 Value setter . 436

9.6 Profiling in our sample application. 437
9.6.1 Different entry paths for customers and CSRs 438
9.6.2 Different field properties for customers and CSRs 462
9.6.3 Different visibility of components for customers and CSRs 468
9.6.4 Runtime customization profiling . 472

9.7 Best practices . 497
9.8 Conclusion. 500

Chapter 10. Creating the Go Shopping portlet . 501
10.1 Preview of the portlet you will build in this chapter 502
10.2 Components within the portlet . 504
10.3 A sample wizard model . 511
10.4 Building the Go Shopping portlet. 517
10.5 Go Shopping portlet model . 520
10.6 Shopping Page model . 540

10.6.1 Cart model. 550
10.6.2 Shopping Product Catalog model . 575

10.7 Order Page model . 584
10.8 Confirmation model . 594
10.9 Conclusion. 612

Chapter 11. Production deployment . 613
11.1 J2EE production deployment WAR

(standalone non-portal applications) . 614
11.1.1 Building the Production War from the Designer 614
11.1.2 Deploying the production WAR to your application server 614
11.1.3 Portlet production deployment War. 615
11.1.4 Deploying the Portlet WAR to your portal server 617

 Contents ix

11.2 Excluding files from your application . 618
11.3 General deployment concepts. 618

Chapter 12. Troubleshooting, debugging, and error handling 619
12.1 Troubleshooting. 620

12.1.1 Fixing compilation errors at design time . 620
12.1.2 Diagnosing, resolving, and reporting runtime errors 622

12.2 Debugging . 623
12.2.1 Debugging back end connectivity issues 624

12.3 Error handling . 624
12.4 Other troubleshooting information . 629

12.4.1 Known limitations and issues . 629
12.4.2 WebSphere Portlet Factory TechNotes . 629
12.4.3 WebSphere Portlet Factory Forums . 629

Appendix A. Setting up the environment . 631
Deploying the Domino database . 632

Creating the groups in Portal . 633
Customer Self-Service Application details . 634

Creating the application schema and data . 635
Import and deploy the web service . 642
Import and deploy the project . 643
Installing the application theme. 643
Creating the pages for the CSA application . 643

x Portal Application Development Using WebSphere Portlet Factory

Appendix B. Creating a Web service using WebSphere Portlet Factory 645
WebSphere Portlet Factory exposes Data Services

as external Web Services. 646
Implementation of the Product Web Service in

ITSO Renovations application . 648
Deploying and using the Web Service . 651
Testing the Web Service . 654
Conclusion . 655

Appendix C. Remote deployment . 657
Overview . 658
Remote deployment procedure . 658
Advantages and disadvantages . 672

Appendix D. Configuring the RAD Unified Test Environment 673
Setting up deployment configurations using RAD with an Embedded Test

Environment . 674

Appendix E. Considerations for WAS CE . 681
Adding a database pool to the WAS CE server . 682
Modifying the development environment when deploying to WAS CE 683

Modifying the project configuration files . 683

Appendix F. Execution processing . 687
Execution processing . 688
Execution: Portal action/render phases . 691

Appendix G. Additional material . 693
Locating the Web material . 693
Using the Web material . 694

Related publications . 695
Online resources . 695
How to get Redbooks . 695
Help from IBM . 695

Index . 697

 Contents xi

xii Portal Application Development Using WebSphere Portlet Factory

Preface

WebSphere® Portlet Factory is a powerful and flexible tool for rapidly building
portlets on top of a service-oriented architecture. It enables developers to quickly
and easily leverage their company's core assets, automatically assembling them
into custom, high-value portlets.

In this book, we show you specific techniques and a best practices approach for
developing portlets using WebSphere Portlet Factory. Using a fictitious company
scenario, we discuss how to build a Customer Self Service and Customer
Representative application. Within this context, we cover the following topics:

� Installing and configuring the Portlet Factory development environment

� How to create and consume data services from SQL, Domino® and a Web
service

� Step-by-step guidance for creating the portlets and enabling inter-portlet
communication

� Advanced UI design techniques, including the use of AJAX for type ahead
functionality and working with the Dojo Builders

� Enabling the use of profiling

� Deployment production considerations

� Troubleshooting and debugging techniques

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Cambridge, Massachusetts,
USA Center.

David Bowley is a consultant with e-Centric Innovations in
Melbourne Australia, and has been working with IBM®
technologies since 1999. David specializes in the WebSphere
Portal and Lotus® Domino product range, and is a regular
contributor to several IT publications. David was also a
co-author of the Redpaper for Portal Express Version 6.

© Copyright IBM Corp. 2008. All rights reserved. xiii

Emily Chan is a Technical Consultant in IBM Global Business
Services based out of Sydney, Australia. She has 3 years of
experience in various projects focusing on products based on
the WebSphere Portal framework. She holds a Bachelor
degree of Computer System Engineering from the University of
New South Wales. Her area of expertise is Portal Content
Management focusing on Portal framework design, build and
performance testing.

Thulsi Krishnan is a IT Specialist in IBM India Software Labs
based out of Bangalore, India. He has over 10 years of IT
experience and has been focussing on portal projects for the
past 2 years. He is currently pursuing a Masters degree in
Computer science from VTU, Belagaum India part time. His
area of expertise include J2EE™ application development and
designing user interfaces. He also instructs on portal
technologies for partners. Thulsi enjoys travelling, reading

about new technologies and enjoying time with the family and friends.

Jason Lee is a Portal Technical Leader for IBM Lotus Software
Group ASEAN and leads the pre-sales engagements in the
region. He has over 8 years of development and management
experience and has been involved in many intranet and
extranet portal projects which include development of the
Singapore Government's e-business portal. He holds a
masters in computer science and business administration from
the National University of Singapore and Bradford University

respectively. His experiences include development in ASP/DCOM, J2EE
Frameworks and other web technologies.

Devang Patel is a Team Lead in WebSphere Portlet Factory
Technical Support Organization based out of Research
Triangle Park, NC, US. He has 5 years of experience in various
products based on the WebSphere Portal framework. He holds
a Masters degree in Computer Science from North Carolina
State University. His areas of expertise include rapid J2EE
application development, designing complex user interfaces,
and Sarbanes-Oxley compliance framework. He has written

extensively on serviceability related topics.

xiv Portal Application Development Using WebSphere Portlet Factory

Alfredo Navarro is a Senior Software Engineer in Lotus
Workforce Management based on the Dublin Software Lab,
Ireland. He has 7 years of experience in Enterprise Application
Integration, Web Services and Portal applications. He holds a
degree in Computer Science from the University of Zaragoza,
Spain. He has spent more than 5 years working as Architect in
Germany and developing skills in integration technologies,
workflow engines and back-end connectors. His areas of
expertise include J2EE application development, software

architecture and design patterns. He has written extensively on data integration
topics. He likes to travel, learn other cultures, sports, read about new
technologies and enjoy the time with the family and friends.

John Bergland is a project leader at the ITSO, Cambridge
Center. He manages projects that produce IBM Redbooks®
about IBM and Lotus Software products. Before joining the
ITSO in 2003, John worked as an Advisory IT Specialist with
IBM Software Services for Lotus (ISSL), specializing in Notes
and Domino messaging and collaborative solutions.

Special acknowledgement

This Redbook effort was successful in large part due to the strong commitment
and direct involvement of the WebSphere Portlet Factory Development Team.

We wish to thank the following members for their support and their efforts during
this residency.

Dee Zepf is the Product Manager for WebSphere Portlet
Factory. Dee returned to IBM in 2006 as part of the Bowstreet
acquisition and she brings over 15 years of software experience
to her role at IBM. Previously, at Bowstreet, she was the
Director of Product Management responsible for driving product
requirements and design. Prior to joining Bowstreet Dee spent
nine years at Lotus\IBM where she held various engineering
and product management positions.

 Preface xv

Jonathan Booth is lead architect for the IBM WebSphere
Portlet Factory products. These products came through the
IBM acquisition of Bowstreet, where Jonathan was lead
architect for seven years. Across a series of releases, the
Portlet Factory products have pioneered the use of software
automation techniques to address difficult software
development problems, such as developing custom
applications and portlets that access complex back end

systems. Prior to Bowstreet, Jonathan was a senior architect at Lotus and
IBM, where he was lead architect for Freelance Graphics® and related
products.

Martin Romano is a software architect for the WebSphere
Portlet Factory products, who returned to IBM as part of the
Bowstreet acquisition. Prior to his tenure at Bowstreet,
Martin worked on portal and presentation graphics products
at IBM/Lotus, and wrote operating systems and digital
imaging software at companies including AT&T and Kodak.

 Louise Simonds is the development manager for
WebSphere Portlet Factory. She joined IBM as part of the
Bowstreet acquisition. Prior to assuming a management
role, Louise enjoyed a long career as a developer on a wide
variety of software products including Portlet Factory,
on-line travel booking, and CAD/CAM/simulation tools for

printed circuit and chip packaging technologies.

Ruth Seltzer has developed and managed software
products for more than 20 years and is currently Senior
Engineering Manager for the IBM WebSphere Portlet
Factory Products. These products came to IBM through the
acquisition of Bowstreet, where Ruth was variously Director
of Engineering and Director of Product Management for 5
years. Prior to Bowstreet Ruth was the Director of

Engineering at Framework Technologies, a provider of collaboration and
information management software for mechanical engineering projects.
Before joining Framework Technologies Ruth was Director of Development at
Lotus and IBM where she managed the Graphics Product Group, creators of
Freelance Graphics and related products.

xvi Portal Application Development Using WebSphere Portlet Factory

David Gawron is an IBM product architect in the WebSphere
Portlet Factory group. He joined IBM at the end of 2005 as part of
the Bowstreet Software acquisition. Over the last eight years
Dave has been involved in many aspects of Portlet Factory’s
development and is the architect responsible for the product's
integration with several IBM products and various back-ends
including relational databases and ERP systems. Dave's current

focus is on helping customers and internal IBM groups effectively utilize Portlet
Factory in their Portal development efforts. Prior to joining Bowstreet, Dave was
a senior principal consultant specializing in software development for integrated
call centers.

Additional thanks to the following members who reviewed the material and
provided extremely valuable technical guidance and direction for the team.

� Michael Burati - Senior Software Engineer - WebSphere Portlet Factory. He
is a member of original founding development team at Bowstreet, acquired by
IBM Dec2005/January 2006. Prior to working at Bowstreet, Michael was a
Senior Consulting Engineer at Hewlett Packard on OSF DCE technology, and
Technical Marketing Consultant at Apollo Computer, acquired by HP.

� Michael Bourgeois is a software engineer for the WebSphere Portlet Factory
team. He joined Bowstreet in January 2000 as a QA Manager for the Factory.
He moved into Development Management of offshore solutions and was
promoted to Director of Engineering for the Work Force Management and
Executive Dashboards products. While in this role, he traveled to India to
work with the team and Holland for the first installation and deployment.
When Bowstreet was acquired by IBM in 2005, Michael returned to a
Software Engineering position on the Designer team. He currently works on
Installation, Project Creation and Deployment, and has been certified in
advanced SWT.

� Thomas Dolan was the Quality Engineering Team Lead for Websphere
Portlet Factory. Special thanks to Tom for his contributions to writing about
Considerations for WebSphere Application Server CE.

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

 Preface xvii

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xviii Portal Application Development Using WebSphere Portlet Factory

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

This chapter presents an overview of the capabilities, benefits, and use of the
WebSphere Portlet Factory.

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Overview of WebSphere Portlet Factory

WebSphere Portlet Factory is a powerful and flexible tool for rapidly building
portlets on top of a service-oriented architecture. Developers are able to quickly
and easily leverage their company's core assets, automatically assembling them
into custom, high-value portlets. Portlets created with WebSphere Portlet Factory
are dynamic, robust Java™ 2 Enterprise Edition (J2EE) applications that react
automatically to change. They can be further modified by business users in real
time to meet changing business requirements, without requiring any coding, or
duplicating and versioning of assets. By eliminating the need to code all of these
implementations and their variations, WebSphere Portlet Factory simplifies the
development, deployment, and change management process, saving companies
time and money.

1.2 Capabilities of WebSphere Portlet Factory

The primary features and capabilities of WebSphere Portlet Factory are as
follows:

� Multi-page custom portlets without coding

The WebSphere Portlet Factory rapid application development (RAD)
capabilities and ease of use enable developers of all skill sets to create
multi-page, complex portlets. Developers build portlets by defining a
sequence of highly adaptive software components, called builders, which
have an easy-to-use interface. Developers assemble builders into models,
which then generate the application code. In this way, developers can capture
and automate the process of building dynamic portlets, instead of explicitly
coding each portlet.

� Robust integration capabilities with enterprise applications and data

WebSphere Portlet Factory provides automatic integration with existing
applications and data, including SAP®, Lotus Domino, PeopleSoft®, Siebel®,
Web Services, relational databases, and Excel®. Developers can quickly
create composite, high-value portlets that leverage existing investment in
your existing applications and data.

� Automatic integration with WebSphere Portal

With WebSphere Portlet Factory, you have direct integration with IBM
WebSphere Portal features such as portlet wiring, Click-to-Action, business
user configuration, people awareness, WebSphere Portal groups, and the
credential vault. Portlets are deployed automatically to WebSphere Portal
software.

2 Portal Application Development Using WebSphere Portlet Factory

� Support for SOA development

WebSphere Portlet Factory provides powerful technology for speeding the
creation of service-oriented applications and portlets. It includes data services
builders along with data integration builders, which together automate the
process of creating services from systems such as SAP and Lotus Domino.
This services approach provides a clean way to separate the back end
services of an application from the presentation layer. It also automatically
creates testing support for back end services, and it enables front end
presentation development and testing without requiring a back end
connection.

� Many portlet variations from a single code base

With the profiling capability of WebSphere Portlet Factory, developers can
easily create multiple portlet variations from one code base, without requiring
any additional code changes or redeployment.

� Automation of frequently occurring development tasks

By creating new builders, developers and architects can capture commonly
used design patterns and company-specific business processes as reusable
components for all developers, enforcing application architecture and
development best practices.

1.3 Development with WebSphere Portlet Factory

With WebSphere Portlet Factory, developers build portlets by snapping together
a sequence of components called builders. Each builder has a simple wizard-like
user interface and does the work of automatically generating or modifying part of
an application. A builder implements an application design pattern. Users
assemble builders into models, which WebSphere Portlet Factory software then
executes to dynamically generate the application code, including Java Server
Pages (JSPs), Java classes, and XML documents, as well as the low-level
artifacts that make up the portlet application. In this way, developers can capture
and automate the process of building dynamic portlets, instead of explicitly
coding each portlet. Developers can quickly and easily create multiple highly
customized portlets from one code base, without requiring additional code
changes or redeployment.

WebSphere Portlet Factory software includes an easy-to-use graphical tool,
called IBM WebSphere Portlet Factory Designer, for creating, viewing, and
running portlets (see Figure 1-1). The WebSphere Portlet Factory Designer tool
plugs seamlessly into IBM Rational® Application Developer software and the
open source Eclipse integrated development environment (IDE).

 Chapter 1. Introduction 3

Figure 1-1 Portlet Factory Designer

As highlighted in Figure 1-1, there are three key concepts—builders, models, and
profiles—that are used when developing applications with Portlet Factory. We
take a closer look at each of those concepts in the following sections.

1.3.1 Builders

A builder is the core building block that automates design and development
tasks performed by developers. Builders free the developer from having to deal
with the low-level complexities of developing portlets and integrating with
external data sources.

For example, to access any enterprise data source such as a relational database
management system (RDBMS), SAP installation, IBM Lotus Domino server,
Oracle® installation, or a Web service, developers can simply use one of the
provided data access builders such as a SAP function call or structured query
language (SQL) call. The developer simply specifies inputs for connecting to the
external system and then selects the specific function he or she wants to access.
Builder inputs can be populated easily using the builder’s graphical, wizard-like
interface, with drop-down lists for selecting functions and options.

After the developer populates the inputs and clicks OK, Portlet Factory software
constructs the code for accessing the data and generates a schema defining all
the data structures used. The developer can then use the service operation

Model
A container of Builders

Profile
A set of parameters
that vary Builder
inputs to dynamically
generate unique
versions of the portlet

Builder
An adaptive, reusable
component that
generates Java, XML
and JSP for specific
portlet functionality

4 Portal Application Development Using WebSphere Portlet Factory

builder to create a service interface for the function. Then, a single view and form
builder can be used to create pages for searching, viewing results, or updating
data from that service. The user does not need to create a single line of code for
all of this functionality.

Portlet Factory builders are similar to the “wizards” found in many development
tools in that they present a set of simple options to the user, and then generate a
set of code artifacts based on the responses, thereby speeding initial
development. However, builders go far beyond traditional wizards in that builders
are designed to re-execute on every change of the application. Because Portlet
Factory builders generate a metadata representation of the code they generate,
other builders can introspect the application and adapt to changes made in other
builders. In this way, builders empower a greatly enhanced iterative development
approach: as builders are added or changed, previously added builders
re-execute and adapt to the changing application. Traditional wizard-based code
generation, in contrast, is typically a “one-shot deal” because once the code has
been generated, the user must resort to low-level hand coding to make further
changes.

In addition to the capabilities provided by out-of-the-box builders, Java
developers can easily create new builders that encapsulate desired design
patterns and development standards. By creating builders, developers can
automate common development tasks and enable true reuse of code. In
addition, through builders, architects and senior developers can enforce
compliance to company architectural and code standards. And builders can save
developers time and effort by helping to ensure the consistency and quality of
code. One of the keys to the power of WebSphere Portlet Factory software is that
new builders can easily include any functionality of existing builders. They can
also automatically include portions of the design-time UI of other builders. This
enables the easy creation of high-level builders. These high-level builders can
encapsulate any high-level application design pattern, whether vertical or
horizontal, customer-specific or general.

1.3.2 Models

A model is a sequenced collection of builders that generates the application
components that implement the behavior, structure, data, and presentation of the
application.

Internally, a model is simply an XML file containing a series of calls to builders.

Application development with Portlet Factory is typically divided into two main
parts: the service layer, which provides data access using a service-oriented
architecture, and the presentation or portlet layer, which provides the application

 Chapter 1. Introduction 5

user interface. Some models will typically contain data-oriented builders to
implement the service layer while other models will contain presentation-oriented
builders to implement the user interface. A presentation model can automatically
be run as a portlet or as a standalone J2EE application.

Figure 1-2 illustrates a simple model for Portlet Factory based on four builders.

Figure 1-2 Simple model example

Figure 1-2 illustrates how four builders can be used to create a 3-page
application.

1. First, a Service Consumer builder is used to select a service and make it
available in the application. The builder creates metadata describing the
service and its operations, with the schemas for the inputs and outputs, and it
generates code for calling the service.

2. The second builder is the View & Form builder. This builder uses the
schema information for the service and generates pages with fields based on

2. This View & Form builder uses
schema information to create pages
for list, details, and update, along
with navigation and supporting code

employeesGetEmployeesByDept()

employeesGetEmployeeRecord()

employeesUpdateEmployeeRecord()

1. This Service Consumer builder
adds service metadata and
schemas, along with code for calling
the service

3. This Data Column Modifier builder
hides and reorders columns and
adds sorting

4. This Rich Data Definition builder
controls all the formatting, validation,
display, and editing of fields on all
the pages

6 Portal Application Development Using WebSphere Portlet Factory

the schema fields. In this case it generates three pages: a table page showing
a list of employees, a page for viewing the details about an employee, and a
page for updating employee information. The builder also generates some
initial navigation between the pages.

3. The third builder in this application is the Data Column Modifier. This builder
modifies the employee list table, doing things like hiding some columns,
rearranging columns, and adding sorting support.

4. The fourth and last builder in this simple example is Rich Data Definition.
This builder is used to control all the formatting, validation, data display, and
editing of all the fields on all three pages. It does this by associating those UI
characteristics with the schema, then the page elements are in turn
generated from the schema using this supplemental information.

1.3.3 Profiles

A profile contains a set of inputs that varies the way a portlet behaves. A profile
feeds values into builders based on user identity or other contextual information
(such as the day of the week). Using profiles, you can automatically generate
different variations of a generic portlet (from the same model) for different users
or situations. Configured profiles are extremely easy to implement with
WebSphere Portlet Factory.

 Chapter 1. Introduction 7

Figure 1-3 One model, many applications

The profiling capabilities in Portlet Factory can also be used to implement
runtime customization of an application by business users or administrators.
This runtime customization is done in a browser interface, for example, using the
configure functionality of WebSphere Portal.

1.4 Architecture

In this section we provide a closer look at the architecture of the Portlet Factory
and the key concepts described previously. We begin with more details about the
key Portlet Factory concepts and how they function together.

Note for those who have not yet worked with Portlet Factory: Depending
on your learning style (top-down or bottom-up), we recommend that you take
the time here to run through the Portlet Factory product tutorial or skip ahead
to Chapter 3, “Creating projects” on page 39 to get a better feel for the basic
concepts of Portlet Factory development before diving into the following
description of Portlet Factory architecture.

WebApp A
• JSP pages
• Controller logic
• Services and

business objects
• XML and data

Applications

A single model can
generate a family of
WebApps using
different profiles

Model Profiles+ Users

Regeneration

B
A C

WebApp B
• JSP pages
• Controller logic
• Services and

business objects
• XML and data

WebApp C
• JSP pages
• Controller logic
• Services and

business objects
• XML and data

Profiled builder
calls

8 Portal Application Development Using WebSphere Portlet Factory

1.4.1 Builders

As discussed previously, builders are the foundation of the Portlet Factory
automation technology. The basic structure of a builder is actually quite simple. A
builder is defined by an XML file (a “builder definition” or BuilderDef) that
describes three main pieces of information:

� Implementation Java class: The code that performs the builder’s automation
task, run during application generation. In this class, developers implement a
method (typically called doBuilderCall) to add or modify elements in the
application under construction. Builders can also programmatically invoke
other builders in this class, enabling the combination and aggregation of
builders into powerful high-level builders.

� Inputs this builder expects: A builder can accept any number of parameters or
“builder inputs.” The builder definition enumerates the inputs to the builder
and the widgets to use when displaying these inputs in the designer tool.
There are a wide variety of widgets available to use, from simple text input to
tree pickers to a Java method editor. These input definitions are used by the
designer to auto-generate a user interface for the builder.

� Display metadata: Controls how this builder shows up in the designer,
including the builder’s user-visible name, its description, and its builder
palette category.

1.4.2 Models

A Portlet Factory model is the fundamental object that developers use to build a
Portlet Factory application. A model is an XML file that contains a list of builder
calls, or invocations of Portlet Factory builders with specified inputs. As such, a
Portlet Factory model acts as a blueprint for a Web application or portlet: a
sequence of instructions showing how to generate the application. Given a
model, the application can be constructed by sequentially executing the
contained builder calls. This process is known as generation; it is sometimes
also called regeneration or regen.

1.4.3 Generation

The Portlet Factory generation engine is responsible for evaluating a model's
builder calls, thereby creating the specified application artifacts. Generation
happens both in the designer and on the server. In the designer, a generation is
triggered each time a model is opened or a modified builder call is saved or
applied. On the server, generation happens only when a request is made for a
model/profile combination that has not yet been evaluated, and the results of
generation are cached. In order to perform a generation, the Portlet Factory

 Chapter 1. Introduction 9

generation engine loops over the builder calls in the model. Each builder call
contains the ID of the associated builder, along with the inputs for this call. The
generation engine looks up the builder using the specified ID, yielding a builder
implementation Java class. This implementation class is loaded and executed,
passing in the inputs from the builder call. These builders create application
artifacts by making calls on the Portlet Factory WebApp API. These API calls
create an in-memory representation of a Web application or portlet which is
known as the WebApp.

Figure 1-4 The Generation Process in Designer

The generation process includes multiple phases to avoid builder order
dependencies. For example, a builder call (for instance, Data Page) could
reference an object created by a builder call that is lower down in the model (for
example, Imported Page). The multiple phases of generation ensure that errors
will not typically occur when a builder call (like Data Page) is processed that
references an object not yet in the WebApp (like a page). Builders that create
objects do so in the first phase, called “Construction,” while those that modify
previously created objects do their work in the“Post-Construction” phase.

Generated WebApp
• Pages and controls

• Variables/Beans

• Schemas and metadata

• Actions & Methods

• Properties

SAP Function Builder

Variable Builder

Imported Page Builder

Regeneration
Engine

Model XML File
• BuilderCall 1 – SAP Function

- builder inputs
• BuilderCall 2 – Imported Page
- builder inputs

• BuilderCall 3 – Data Page
- builder inputs

• Etc.

Action List

2. During regeneration, for
each Builder in the model
XML, the appropriate
Builder’s regeneration
method is invoked. All the
the Builder inputs specified
by the user in the editor are
passed to the Builder.

3. From their regen methods, Builders can introspect,
create, and modify any parts of the generated
application. They can also invoke any other Builders.

Data Page Builder

Variable

Imported Page

Data Page

SAP Function

Action List Builder

Builder Definition XML Files

•Builder Regen Classes

Portlet Factory
Designer

1. Portlet Factory Designer
uses BuilderDef files to
construct UI for editing
Builders in the Model.

10 Portal Application Development Using WebSphere Portlet Factory

There is actually one level of indirection between the generation engine itself and
execution of the builder: the “GenHandler” class. A GenHandler specifies how to
call the builder implementation code, defining the interface that a particular class
of builders needs to have. Each builder defines in its BuilderDef the name of the
GenHandler class it expects to call it. In theory this allows sets of builders to be
created that operate on customer-defined domain objects (for example, Invoice,
Customer); in practice, the Portlet Factory builders use GenHandlers that
operate on the more generic WebApp abstraction.

1.4.4 WebApp

Builders create a collection of objects, collectively known as the WebApp, which
act as an abstract representation of the application under construction. The
WebApp consists of the following types of objects:

� Page - A container for JSP™ code used as a piece of the presentation of the
application

� Variable - Holds a piece of data, such as a string, an XML structure or a Java
bean

� Schema - Description of the structure of a type of XML data used by the
application

� Method/Action List - Generated Java code used to implement application
actions

� Data Service - Metadata about services that may be defined or consumed by
this application

� Linked Java Object - Reference to an instance of an external Java class
whose methods become available as application actions

� Linked Model - connection to another model with which this application can
collaborate

Portlet Factory has a complete API for creating and manipulating these objects.
This API is used directly by low-level builders, and indirectly by higher-level
builders, which invoke other builders programmatically.

1.4.5 Generation, Part 2: Profiling

The prior discussion of what happens during generation left out a key piece:
profiling. Portlet Factory’s profiling mechanism enables you to inject variability
into the generation process by providing an external way to specify values for
any builder input. One way of looking at the influence of profiling on generation is
that with profiling, generation becomes a “configure application variant” request,

 Chapter 1. Introduction 11

where the description of what changes in each application variant is stored or
managed separately from code.

As the generation engine loops over each builder call in a model and prepares to
invoke the associated builder, it first examines the builder inputs contained in the
builder call. If any of these inputs has been marked as being “profile enabled,”
the value for this input does not come from the saved builder inputs in the builder
call: instead, the specified profile set is consulted to provide the current input
value to be passed to the builder. The profile set defines the names and types of
the elements under its control as well as specifying how to compute the
appropriate profile values.

Figure 1-5 High-level view of a profiled builder call

Figure 1-5 is a simplified view of a model with a profiled builder call. Three of this
builder call’s inputs are shown being profile enabled, each against a different
profile set.

A profile set can contain multiple “profiles,” each of which is a named set of
values corresponding to the named elements defined by the profile set. In

Platinum

Gold

Silver

Customers

Default

BAName
ServiceLevel

China

France

Mexico

USA

Default

BAName
Region

Chinese

Spanish

French

English

Default

BAName
Language

Indirect reference: ${Variables/VariableName}

Typed-in value: http://www.bowstreet.com

Builder Input:

Builder Input:

Builder Input:

Builder Input:

Builder Input:

Builder

Builder

Builder

Builder

Builder

Model Builder

Profile Sets

Look at the value in column "B" for the current "ServiceLevel" profile

Look at the value in column "A" for the current "Region" profile

Look at the value in column "B" for the current "Language" profile

12 Portal Application Development Using WebSphere Portlet Factory

Figure 1-3 on page 8 there is one profile set with three profiles, named “A,” “B,”
and “C”. Depending on which profile is selected, a different set of application
artifacts will be generated. A profile set can specify, by using a set of Java
classes, what mechanism should be used to determine which profile to use for a
given request. The choice of which profile to apply can be made based on a wide
variety of factors, such as:

� User ID

� J2EE role

� Client device type

� Request parameter values

� Portlet configuration or preference data

� Application-specific data, for example, product type

This list is not exhaustive: the rules for profile determination are fully extensible, if
necessary, via the use of custom Java code.

Note that because the entire application is created by builders, and any builder
input can be profiled, there are no limits on what can be modified by profiling.
Presentation, workflow, logic, services, and so forth, can all be varied by profile
as much as you want. The Portlet Factory, however, will only generate new
artifacts (such as a JSP page, or a Java class) for a given profile if the artifact in
question has different contents than the corresponding artifact in the default
(base) profile. This helps protect against unnecessary proliferation of application
artifacts in the presence of multiple profiles.

 Chapter 1. Introduction 13

14 Portal Application Development Using WebSphere Portlet Factory

Chapter 2. Scenario introduction

This book discusses the techniques and best practices for developing portlets
using WebSphere Portlet Factory within the context of a realistic business
scenario, highlighting a specific sample application. The sample application is
based on a fictitious company, ITSO Renovations, a home building materials
supplier and distribution company.

This chapter introduces the scenario and provides an overview of the application
functionality. It shows the application portlets from the end user perspectives of a
Customer Service Representative (CSR) and an external customer.

This chapter also provides a reference table for specific Portlet Factory
functionality, showing where in this book, and in the sample application, this
functionality is discussed in detail.

2

© Copyright IBM Corp. 2008. All rights reserved. 15

2.1 Overview of the sample scenario

For the purpose of providing a realistic business context throughout this book, we
designed a sample scenario, which we then built using WebSphere Portlet
Factory. The scenario includes two applications, a Customer Service Self Help
application and a Customer Service Representative application, for an imaginary
company, ITSO Renovations.

2.1.1 Scenario background

ITSO Renovations is a fictitious home building materials supplier and distribution
company. They have used WebSphere Portlet Factory to develop a portal-based
application for better servicing customer needs. The service portal application is
designed to improve customer service in the following ways:

� It provides a single unified interface for customer service representatives to
retrieve and update customer information, and report on the status of existing
orders.

� It allows customers to access the system directly and check on the status of
their orders, thereby enabling a customer self-service capability.

� It provides a new “Go Shopping” portlet, allowing a user of the system to
create a new order and add items to or remove items from the order.

2.1.2 Roles specific to the sample application scenario

For the sake of this scenario, we are interested in two specific end user roles:

� A customer service representative (also referred to as a CSR, an internal
employee of ITSO Renovations), who focuses on taking inquiries from
customers about an existing order, or taking new orders on behalf of a
customer. Additionally, the customer service representative can look up
customer information and edit the information as needed. These capabilities,
now made more efficient and easier to perform via a more intuitive user
interface, enable ITSO Renovations to provide improved customer service.

� An external customer, who can access the system directly to check on the
status of an existing order, or to place a new order. Additionally, the customer
can edit and update their customer information if necessary, such as updating
the shipping address or entering the name of a new contact person.

16 Portal Application Development Using WebSphere Portlet Factory

2.2 Preview of the sample application

This section provides a preview of the application you will build using the
techniques and approaches described throughout this book.

2.2.1 Overview of the application functionality

The service portal application provides the following functionality:

� Customer service representatives can retrieve and update customer
information, and report on the status of existing orders. A customer service
representative can also create a new order for a customer using the Go
Shopping portlet.

� Customers can access the system directly and check on the status of their
orders.

� A user can create a new order and add items to or remove items from the
order using the Go Shopping portlet.

Figure 2-1 on page 18 shows a high-level flow of the functionality from the
perspective of a customer services representative. Each of the specific portlets is
discussed in greater detail in subsequent sections.

Note: The sample code used in developing this application is available for
download. Refer to Appendix G, “Additional material” on page 693 for the URL
and specific instructions on how to download the code.

The following chapters provide detailed steps to build the portlets:

� Chapter 5, “Creating Data Services: Access to back-end systems” on
page 105

� Chapter 6, “Creating portlets: Making it work” on page 221

� Chapter 7, “Creating portlets: Designing the UI” on page 275

� Chapter 8, “Enabling portlet communication” on page 361

� Chapter 9, “Customizing the application using profiling” on page 421

� Chapter 10, “Creating the Go Shopping portlet” on page 501

 Chapter 2. Scenario introduction 17

Figure 2-1 Application functionality from a customer service representative perspective

List of Customers

Details of Customer Information
CSR has ability to edit information

V
iew

ing C
ustom

er Inform
ation

Reviewing details of specific order

O
rder Inform

ation, and

P
roduct Inform

ation

CSR can select specific customer to drill down and
get order specific information

Adding items to shopping cart

18 Portal Application Development Using WebSphere Portlet Factory

2.2.2 Use cases applicable to the CSR

Upon logging in to the system as a customer service representative, the user can
perform the following functions:

� Create a customer
� Search for a customer
� View customer details
� Edit customer details
� View orders
� View details and status of orders placed
� Add an order via the Go Shopping tab

Figure 2-2 illustrates the specific options and decision points within each of the
functions available to a CSR.

Figure 2-2 Functional choices for a customer service representative

Login
Customer

List
Click Add
CustomerAdd?

New
Customer
Input Form

Submit?Yes

Search?
Enter first
letter of

Customer
Name

Select
Customer
from Ajax
filtered list

YesYes Click Go
Filtered

Customer
List

View
Details? Yes

Customer
Details

No

View
Customer
Orders?

Click
Customer

ID

Customer
DetailsYes

View
Orders?

Click
Customer

ID

Customer
Details

Click
Orders

Tab

Orders
List &

Details
Yes

Edit
Customer

Details
Submit?

Yes

Click Back

No

End

Edit?

Yes

No

Click Edit

G
o

Sh
op

pi
ng

Ed
it

C
us

to
m

er

D
et

ai
ls

V
ie

w
 O

rd
er

s
Vi

ew
 C

us
to

m
er

D

et
ai

ls
S

ea
rc

h
fo

r
C

us
to

m
er

C
re

at
e

C
us

to
m

er

ITSO Renovations Customer Self Service Application – Customer Information Portlet (for CSR)

View
Details?Available?

No

Click View
All

Customers

Click
Customer

ID

Yes

Edit?

Yes

Click
Cancel

Go
Shopping

?

Click Go
Shopping

Tab

ItemList &
Details Add

Items? End

Actions
Available to the

CSR

Calculate Total Submit?

 Chapter 2. Scenario introduction 19

2.2.3 Use cases applicable to an external customer

Upon logging in to the system as an external customer, the user can perform the
following functions:

� View details about their customer account information

� Edit customer account information

� View orders placed

� View details and status of orders placed

� Add an order via the Go Shopping tab

Figure 2-3 illustrates the specific options and decision points within each of the
functions available to an external customer logging in to the system.

Figure 2-3 Functional choices for an external customer

G
o

S
ho

pp
in

g
E

di
t C

us
to

m
er

D

et
ai

ls

ITSO Renovations Customer Self Service Application – Customer Information Portlet (for Customer)

Actions Available
to the CSR

Login
Customer

Details Edit? Yes

View
Orders?

Click
Orders

Tab

Orders
List &

Details

No

Edit
Customer

Details
Submit? Click

CancelNo

Yes

End

Click Edit

No Change in Customer Data

V
ie

w
 O

rd
er

s

Go
Shopping

?

Click Go
Shopping

Tab

ItemList &
Details Add

Items? End

E
di

t C
us

to
m

er

D
et

ai
ls

V
ie

w
 O

rd
er

s

EndCalculate Total Submit?

20 Portal Application Development Using WebSphere Portlet Factory

2.3 Review of specific portlets - CSR perspective

This section discusses each of the specific portlets and its functions in greater
detail. We begin by discussing the portlets specific to the role of the customer
service representative.

2.3.1 Reviewing customer information

Upon first logging in to the system, the CSR is presented with a list of existing
customers. The CSR can navigate to a specific customer to view the detailed
customer information and the orders that customer has placed, or the CSR can
enter information for a new customer. Figure 2-4 on page 22 illustrates how a
CSR can view the list of customers.

 Chapter 2. Scenario introduction 21

Figure 2-4 Viewing a list of customers

Listing of customers
Ability to search for customers

Enter new customer information

22 Portal Application Development Using WebSphere Portlet Factory

Upon selecting the specific customer, the CSR is presented with detailed
information about that customer (Figure 2-5). From within this portlet, the CSR
has the ability edit and modify customer information if necessary.

Figure 2-5 Details of customer information

Figure 2-6 on page 24 illustrates how a Customer Service Representative can
edit specific customer information on a record.

 Chapter 2. Scenario introduction 23

Figure 2-6 Editing customer information

2.3.2 Reviewing customer order information

Once a specific customer has been selected, the CSR has the ability to view an
overall listing of their orders placed, and to view the specific details of a particular
order. Figure 2-7 on page 25 illustrates the details of a specific order.

Ability to edit customer information

24 Portal Application Development Using WebSphere Portlet Factory

Figure 2-7 Reviewing the details of a specific order

Reviewing details of customer order

 Chapter 2. Scenario introduction 25

2.3.3 Creating a new order on behalf of a customer

The customer service representative has the ability to create a new order on
behalf of the customer, as shown in Figure 2-8. The CSR must simply drag items
from the list of items on the right side of the portlet into the shopping cart.

Figure 2-8 Creating a new order for a customer

Creating a new order

Drag and drop to the shopping cart

26 Portal Application Development Using WebSphere Portlet Factory

2.4 Review of specific portlets - Customer perspective

This section highlights the functionality of the portlets for an external customer
logging into the application.

2.4.1 Customer information based on authentication credentials

The functionality for an external customer is similar to that of the customer
service representative, with one key exception: the customer logging in will only
see information for their own account.

For example, as shown in Figure 2-9 on page 28, the customer Retro Restoration
has logged into the system and is presented with their account information.

 Chapter 2. Scenario introduction 27

Figure 2-9 Upon logging in, a customer is presented with their customer information

Reviewing customer account information

28 Portal Application Development Using WebSphere Portlet Factory

The customer has the ability to edit and update their own account information if
necessary. Once the customer clicks the edit button, they can edit the fields, as
shown in Figure 2-10.

h

Figure 2-10 Customer has the ability to edit their account information

Ability to edit customer account information

 Chapter 2. Scenario introduction 29

2.4.2 Customer perspective - Reviewing orders

Once logged into the system, the customer has the ability to review each of their
orders. Clicking an order results in display of the specific details of the order
(Figure 2-11).

Figure 2-11 Reviewing the details of an order

Reviewing details of customer order

30 Portal Application Development Using WebSphere Portlet Factory

2.4.3 Customer perspective - Creating a new order

The customer can place a new order by clicking the Go Shopping tab. From
within the Go Shopping portlet, a customer adds new items to their shopping cart
by simply dragging and dropping items from the list on the right.

Figure 2-12 Creating a new order and adding items to the shopping cart

Complete information about these functional portlets, and details on how to build
each one, are provided in subsequent chapters. The next section identifies in
which chapter each Portlet Factory function is covered.

Adding items to the shopping cart

Drag and drop to the shopping cart

 Chapter 2. Scenario introduction 31

2.5 Mapping functional areas of sample application
and capabilities of Portlet Factory

The following tables describe specific features and the builders and techniques
used to implement them.

2.5.1 Data Services

Table 2-1 highlights features implemented and functionality relating to the Data
Services portion of the application.

Table 2-1 Data Services features implemented and builders used

Feature and description Builders and techniques used Reference

Data Structures

Definition of data structures for the Application
Data Service Interface. Import the structure from
a XSD file or as input of the builder

Definitions models
Models under \redbook\cs\data\def

Builders: Schema builder

Chapter 4

Data Service Definition

Definition of the data service and operations. It
defines the Application Data Service Interface
using the XML file based implementation.

XML file models
Models under \redbook\cs\data\file

Builders: Service Definition
Service Operation

Chapter 4

Local XML access sample

Implementation of a data service to access local
XML files.

XML file models
Models under \redbook\cs\data\file

Builders: Import to XML
Linked Java Object

Chapter 5

SQL Data Services

Implementation of a data service to access
relational databases.

Database models
Models under \redbook\cs\data\db

Builders: SQL DataSource
SQL Call

Chapter 5

SQL Data Services - Data Transformations
using IXml API

Data transformations using IXml API
implemented in a Java class.

Java class OrderDBProviderHelper
Method: transformOrderItems()

Chapter 5

32 Portal Application Development Using WebSphere Portlet Factory

SQL Data Services - Customize data column
access to work with binary data: read and write

How to customize the data column access in
SQL builders to select and update/insert in a
table that contains a binary column (BLOB).

Database models
CustomerDBProvider
ProductDBProvider
Builders: SQL Statement
DBProviderHelper.model
Builders: Action List

Linked Java Object
Java class DBProviderHelper

Chapter 5

SQL Data Services - implementation of
transactions

Implementation of user defined transactions that
involves the execution of several SQL
Statements.

Database models OrderDBProvider
Builders: SQL Statement

SQL Transaction
Java class OrderDBProviderHelper
Methods: createOrderWithItems()

updateOrderItemsList()

Chapter 5

Domino Data Access Service

Implementation of a data service to access a
Domino database.

Domino models
ProductDetailsProvider
Builders: Domino Data Access

SQL Transaction
Java class ProductDetailsProvider
Helper

Chapter 5

Domino Data Access Service - Data
Transformation using Transform builders

Data transformations for Domino data using
builders.

Domino models
ProductDetailsProvider
Builders: Transform

Chapter 5

Data Service for external Web Service access

Implementation of a data service to access an
external web service.

Web Service models
ProductWSProvider
Builders: WebServiceCall

Chapter 5

Data Service for external Web Service access -
accessing static content

How to access static content provided by the
web service (images, PDF files, and so forth).

Web Service models
ProductWSProvider
Builders: Method

Variable

Chapter 5

Data Service for external Web Service access -
Profiling the Web Service URL using a
properties file

Profile the Web Service URL using a properties
file.

Profile Set Configurations
Java class PropertyFileValueSetter

Chapter 5

Feature and description Builders and techniques used Reference

 Chapter 2. Scenario introduction 33

2.5.2 Basic user interface portlets

Table 2-2 highlights features implemented and functionality relating to creating
the basic User Interface portlets. These topics are covered in detail in Chapter 6,
“Creating portlets: Making it work” on page 221.

Table 2-2 Basic user interface portlet features implemented and builders used

Creating stub service for data services
Auto generation of Stub Services to work
disconnected from the real back-end system.

Data access models
Builders: Service Definition

Chapter 5

Creation of a Web Service using WebSphere
Portlet Factory
How to create expose a Data Service as a Web
Service.

ProductWebService
Builders: Service Definition

Appendix B

Feature and description Builders and techniques used Reference

Feature and description Builders and techniques used

Creating Basic User Interface/Portlets

Consumes the Data Services and creates a basic user interface
using high level builders. Uses the Portlet Adapter builder to
execute models as portlets. Also utilizes the WPS Credential
builder to access the WebSphere Portal Credential Vault.

CustomerInfo Model
Service Consumer
View & Form
Imported Page
Portlet Adapter
WPS Credential

Creating Basic User Interface/Portlets

Uses the fundamental Data Page builder to create a portlet
capable of displaying a list of orders.

OrderList Model
Service Consumer
Imported Page
Data Page
Portlet Adapter

Creating Basic User Interface/Portlets

Uses multiple Data Page builders to create a Order Details
portlet. Also utilizes the Linked Java Object builder to conduct
Order calculations, etc.

OrderDetails Model
Service Consumer
Imported Page
Data Page
Linked Java Object
Portlet Adapter.

34 Portal Application Development Using WebSphere Portlet Factory

2.5.3 Advanced user interface portlets

Table 2-3 highlights features implemented and functionality relating to advanced
development with the user interface. These topics are covered in detail in
Chapter 7, “Creating portlets: Designing the UI” on page 275.

Table 2-3 Advanced user interface portlet features implemented and builders used

Feature and description Builders and techniques used

Rich Data Definition

Consistently format the output of the dataset views as well as the
input forms.

CustomerInfo Model
Rich Data Definition

UI Manipulation

Formats the output of the dataset views as well as the input
forms.
Controls UI down to the field level in terms of sorting, alignment,
color, data input type (e.g. via a text area or a calendar input
control) as well as validation.

CustomerInfo Model
Rich Data Definition
Highlighter
Data Column Modifier

Paging

Paginates the data set returned and provides paging buttons (to
navigate across pages) and paging links (to navigate directly to
a page) for navigation.

OrderList Model
Paging Assistant
Paging Buttons
Paging Links

Radio Button Selection

Provides radio buttons for setting the page size.

OrderList Model
Radio Buttons Group
HTML Event Action

Dojo Tooltip and Ajax Inline Edit

Implements the dojo inline editing dojo tooltip pop up for product
details.
Implements inline editing of the quantity of a product ordered
without refreshing the entire page.

OrderDetails Model
Dojo Tooltip
Dojo Inline Edit
Client Event Handler
Event Handler
Event Declaration

Dojo Drag and Drop

Implements the dojo drag and drop feature of a product from a
product catalog to a shopping cart.

ShoppingCart Model
Dojo Drag Source
Dojo Drag Target

Enabling a model with the Dojo toolkit

Importing the dojo library and implementing the dojo rich text
editor for the order page of the shopping module.

OrderPage Model
Dojo Enable
Text Area
Attribute Setter

 Chapter 2. Scenario introduction 35

2.5.4 Portlet communication and profiling

Table 2-4 highlights features implemented and functionality relating to portlet
communication and profiling.

Table 2-4 Portlet communication and profiling features implemented and builders used

Feature and description Builders and techniques used Reference

Portlet Communication

Enables the CustomerInfo model to
communicate with the OrderList model via a
shared variable and for the CSR scenario, a
Portlet Factory Event is required whereas for the
Customer scenario, only the shared variable is
sufficient.

UIEvent Model
Variable
Shared Variable
Event Declaration

CustomerInfo Model
Imported Model
Action List

OrderList Model
Imported Model
Event Handler
Action List

Chapter 8

Portlet Communication

Enables the OrderList model to communicate
with the OrderDetails model via a shared
variable and a Portlet Factory Event.

UIEvent Model
Variable
Shared Variable
Event Declaration

OrderList Model
Imported Model
Link
Action List

OrderDetails Model
Imported Model
Event Handler
Action List

Chapter 8

Portlet Communication

Enables the CustomerCredentials model to
communicate with the CustomerInfo model
using a Portlet Factory Event.

UIEvent Model
Event Declaration

CustomerCredentials Model
Imported Model

CustomerInfo Model
Imported Model
Event Handler

Chapter 8

36 Portal Application Development Using WebSphere Portlet Factory

Profiling for Different Entry Paths

Enables the CustomerGroup and CSRGroup
entering the application via two different paths.

CustomerInfo Model
Page
WPS Credential
Action List

Profile Set
com.ibm.redbook.cs.psets.wpsgroup

Profile Set Selection Handler
WPS Group Segment Handler

Profile-enabled Builder
main (CustomerInfo - Action List)

Chapter 9

Profiling for Different Data Field Properties

Enables the data field properties varying based
on the user group using two RDD files.
Customers are not supposed to allowed to
modify the PIN and IMAGE fields of their details.

Profile Set
com.ibm.redbook.cs.psets.wpsgroup

Profile Set Selection Handler
WPS Group Segment Handler

Profile-enabled Builder
CustomerService (CustomerInfo -
Service Consumer)

Chapter 9

Profiling for Different Component Visibility
Properties

Enables the application to hide/show different
components based on the user group.
Customers are not supposed to see the Back
button on the Customer Details View Page.

CustomerInfo Model
Visibility Setter

Profile Set
com.ibm.redbook.cs.psets.wpsgroup

Profile Set Selection Handler
WPS Group Segment Handler

Profile-enabled Builder
back_button (CustomerInfo - Visibility
Setter)

Chapter 9

Runtime Customization

Enables users to personalize the OrderDetails
portlet during runtime. They are given the
options to hide/show the Product ID, Thumbnail
and Source columns.

OrderDetails Model
Data Column Modifier

OrderDetailsCustomiser Model
Portlet Customizer

Profile-enabled Builder
ITEM (OrderDetails - Data Column
Modifier)

Chapter 9

Feature and description Builders and techniques used Reference

 Chapter 2. Scenario introduction 37

38 Portal Application Development Using WebSphere Portlet Factory

Chapter 3. Creating projects

In this chapter we describe the process of setting up a new WebSphere Portlet
Factory project in the WebSphere Portlet Factory Designer. A brief introduction
to deployment is given, then we step through the process of creating a project for
the Customer Service application and deploying it to a WebSphere Portal 6.0
server. Deployment is covered in more detail in Chapter 11, “Production
deployment” on page 613 of this book.

Also in this chapter, we outline the file structure of WebSphere Portlet Factory
projects, as well as the process of setting up the folder structure for the Customer
Service application. The different types of WAR files that you can produce from
the WebSphere Portlet Factory Designer are discussed and we walk you through
the process of creating a sample portlet, which you can use to test your project
settings.

Finally, we take you through the process of adding feature sets into your project
that are required in this book. A brief outline of how to preview and run your
WebSphere Portlet Factory applications is also given.

3

Important: This chapter focuses on how to set up your local development
environment for development, testing, and local machine deployment. Refer to
Appendix A, “Setting up the environment” on page 631 for details on how to
set up the complete development environment to run the sample application.

© Copyright IBM Corp. 2008. All rights reserved. 39

3.1 Overview

In this chapter we demonstrate how to create and configure your WebSphere
Portlet Factory projects using the WebSphere Portlet Factory Designer. At the
end of this chapter, you should have a working WebSphere Portlet Factory
project (with an appropriate folder structure), which you can use as a basis for
developing the Customer Service application that you will build in subsequent
chapters of this book.

This chapter contains the following sections:

� Creating a project

� Project structure

� Deployment

� Testing

� Adding a feature set

3.2 Creating a project

All development artifacts in WebSphere Portlet Factory are stored in a
WebSphere Portlet Factory project in the WebSphere Portlet Factory Designer.
A single WebSphere Portlet Factory project can contain multiple portlets or Web
applications, but you must create one of these projects before you can begin
development in WebSphere Portlet Factory.

To create a WebSphere Portlet Factory project, follow these steps:

1. Select New → WebSphere Portlet Factory Project from the File menu. If
the WebSphere Portlet Factory Project option does not appear, select File →
New → Other..., then select WebSphere Portlet Factory → WebSphere
Portlet Factory Project from the dialog that follows (see Figure 3-1). Click
Next when finished.

Note: If you will be setting up a new WebSphere Portlet Factory project in the
WebSphere Portlet Factory Designer using the RAD UTE (Unified Testing
Environment), use this chapter together with Appendix D, “Configuring the
RAD Unified Test Environment” on page 673, which describes special
considerations.

40 Portal Application Development Using WebSphere Portlet Factory

Figure 3-1 Create a WebSphere Portlet Factory Project wizard

 Chapter 3. Creating projects 41

2. Give your project a name. Because we are creating a project for the
Customer Service sample application, which is used throughout this book, we
named the project RedbookCS, as shown in Figure 3-2.

Figure 3-2 Naming the project

3. The next screen (Figure 3-3) allows you to specify which feature sets your
project will use. Feature sets are collections of functionality that can be
plugged into your WebSphere Portlet Factory project. For example, selecting
the Lotus Collaboration Extension feature set under the Integration
Extensions heading gives you access to a series of builders to integrate your
application with Lotus Domino databases. Click Next to proceed to the next
stage of the project creation wizard.

42 Portal Application Development Using WebSphere Portlet Factory

Figure 3-3 Adding Feature Sets

Note: Once you have created a project, you can configure it at any time by
opening the project properties dialog. To open the dialog, select
Properties from the Project menu, or click the project folder in the Project
Explorer or Navigator view and press Alt+Enter. You can use the settings
on this dialog to specify everything from the Java build path to the project’s
Javadoc™ location. Once the dialog has opened, click the WebSphere
Portlet Factory heading to view a list of options related specifically to
WebSphere Portlet Factory.

Configuring your project after it has been created is particularly useful
when adding feature sets, or when changing deployment configurations.

 Chapter 3. Creating projects 43

4. The next screen (Figure 3-4) allows you to specify your Java build settings.
You don’t need to make any adjustments to these settings, so click Next to
proceed.

Figure 3-4 Specifying the Java Build Settings

5. The final screen (Figure 3-5) allows you to specify your deployment
configurations. Later in this section, we discuss how to set up your
deployment configurations; but for now, just leave this page blank and click
Finish. The WebSphere Portlet Factory Designer will create all of the artifacts
for your project and return you to the IDE.

44 Portal Application Development Using WebSphere Portlet Factory

Figure 3-5 Specify your deployment configurations

You have now successfully created a WebSphere Portlet Factory project. You
should see a new project opened up in the Project Explorer view (Figure 3-6).
Note that you will not actually be able to test or run your application until you set
up a deployment profile because the deployment profile will specify the servers
you would like to run your application on.

The next section covers the file structure of WebSphere Portlet Factory projects.
Towards the end of this chapter, we return to the project setup to outline how you
can use deployment profiles to deploy your applications in WebSphere Portlet
Factory. Finally, we create a basic portlet to test your configuration.

 Chapter 3. Creating projects 45

3.3 Project structure

Each WebSphere Portlet Factory project is structured into several main folders,
as shown in Figure 3-6.

Figure 3-6 Example of project structure

Models
The models directory houses all of the models in your project. All models need to
go into this directory, although you should store them in subdirectories that more
clearly delineate their purpose. (Note that the models directory shown at this top
level is actually just a link to the models directory contained under the
WebContent folder, so you can use either folder.)

For the Customer Service application, add the following subfolders to the models
directory. You can add folders to the models directory by right-clicking the
models directory in the Project Explorer view and selecting New → Folder from
the pop-up context menu. We gave the folders the following names and
purposes:

� models/redbook/cs/data/db: Provider models for DB

� models/redbook/cs/data/def: Models containing data definitions

� models/redbook/cs/data/domino: Provider models for Domino access

� models/redbook/cs/data/file: Provider models for plain file implementation

� models/redbook/cs/data/migrate: Models used for migrating data

� models/redbook/cs/data/test: Models used for test or administration purposes

� models/redbook/cs/data/ws: Provider models for Web services

� models/redbook/cs/ui/common: Model holding Portlet Factory events and
shared variables

� models/redbook/cs/ui/customer: UI models for customer portlets

� models/redbook/cs/ui/order: UI models for order portlets

� models/redbook/cs/ui/shopping: UI models for shopping portlets

46 Portal Application Development Using WebSphere Portlet Factory

Profiles
The profiles directory stores all of your profile sets, which in turn house your
profiles and profile entries (as with the models directory, note that the profiles
directory is actually just a link to the profiles directory contained under the
WebContent folder, so you can use either folder).

WebContent/WEB-INF/work/source
This directory contains all of your Java source files. Code in this directory will be
automatically compiled to the WebContent/WEB-IN/work/classes folder when it
is saved in the WebSphere Portlet Factory Designer.

JRE System Library
This folder contains all of the libraries in your Java runtime environment. You do
not normally need to change anything in this folder.

WebContent
The WebContent folder contains all of the artifacts directly servable to the client
(minus the contents of the WEB-INF folder). It consists of the following
subdirectories:

� Factory
All the servable resources pertaining to the WebSphere Portlet Factory core
reside in this directory. HTML pages for the applications that comprise the
Factory and images are all in this directory.

� WEB-INF
The WEB-INF folder is the main folder used in WebSphere Portlet Factory
projects, and contains all of the design elements that are not directly servable
to the client. These directories are listed in Table 3-1.

Table 3-1 Subdirectories under WEB_INF

Directory Description

WEB-INF/bin Contains various batch files and scripts.

WEB-INF/builders Contains all of the builder definition files used in the
Factory.

WEB-INF/classes Part of Factory's class path. Contains the deployable
Java classes used by your Web applications.

WEB-INF/clientLibs Part of Factory's class path. Stores the deployable
JAR files used by your Web applications.

WEB-INF/config Contains the property files used by the Factory.

WEB-INF/factory Contains non servable Factory core elements.

 Chapter 3. Creating projects 47

� Subfolders specific to the Customer Service application

For the Customer Service application, you should also add the following
subfolders to the WebContent directory. You can add folders to the
WebContent directory by right-clicking the WebContent directory in the
Project Explorer view and selecting New → Folder from the pop-up context
menu. The folders and their contents are:

– WEB-INF/resources/redbook/cs/data_definitions: Xml data definition files
for displayed data

– WEB-INF/resources/redbook/cs/properties: Service and server properties
files

– WEB-INF/resources/redbook/cs/sqlscripts: Sql scripts

– WEB-INF/resources/redbook/cs/xml/data: Xml data sample files

– WEB-INF/resources/redbook/cs/xsd: Xml schemas for data

– redbook/cs/html: Html templates

– redbook/cs/images/customers: Images used on the customer portlets

– redbook/cs/images/products: Images used on the products portlets

– redbook/cs/tmp: Temp files

WEB-INF/lib Part of the Factory's class path. Contains all the JAR
files used by the Factory.

WEB-INF/logs Contains log files from the Factory.

WEB-INF/manifests Contains a manifest of all the files in your project.

WEB-INF/models Contains all the models installed as part of the
Factory, as well as models you create.

WEB-INF/profiles Contains all of your profile sets.

WEB-INF/script_templates Contains .jst templates.

WEB-INF/work Contains sample Java source files and classes.

WEB-INF/work/classes The work/classes directory is also part of Factory's
class path. All classes in this directory get
dynamically loaded by the Factory.

WEB-INF/work/source Contains sample code and serves as a convenient
place to store Java source files for your Web
applications.

Directory Description

48 Portal Application Development Using WebSphere Portlet Factory

3.4 Deployment

A WebSphere Portlet Factory project is a collection of artifacts available to your
application at design time. Before you can test or run your application, you need
to deploy the application as a WAR file to an application server or portal server.

In this section we discuss some of the basic concepts used in deployment, and
describe how to deploy your application as a WAR file to a locally installed
WebSphere Portal 6.0 server. For a more detailed discussion of deployment, see
Chapter 11, “Production deployment” on page 613.

3.4.1 WAR files

A WAR file is an archive consisting of application artifacts, which can be
deployed to an application server or portal server. Once deployed, applications
can be automatically refreshed from your IDE, so that they do not need to be
completely rebuilt every time you want to make changes (although there are
scenarios where you have to rebuild your application in order to update it).
Automatic refresh of WAR files is discussed in more detail in Chapter 11.

There are three types of WAR files that you can deploy from WebSphere Portlet
Factory:

� Development WAR

� Portlet WAR

� Deployment WAR

These WAR files are discussed in the following sections.

Development WAR
Your project will create a development WAR whenever you use an application
server deployment configuration. This WAR is deployed to an application server,
and contains certain developer-friendly artifacts (such as an index page that lets
you browse all of the models in your project). These artifacts help developers
achieve faster development cycles, although you would not usually deploy these
artifacts into production. (Do you really want end users to be able to cycle
through all of the models in your project?) The development WAR is created at

Note: Earlier versions of WebSphere Portlet Factory do not use the same
terminology to refer to their WAR files. Consult your specific version’s product
documentation if you are using a version of WebSphere Portlet Factory earlier
than 6.0.1.

 Chapter 3. Creating projects 49

project creation time and is continually refreshed during development. When you
preview your application directly from your IDE, you will always use the
development WAR.

Portlet WAR
Portlet application developers can create a portlet WAR to see their applications
running in a portal container. There is only one portlet WAR and it is used for
both development and production deployment. This WAR is created at project
creation time and is continually refreshed during development (although note that
certain changes will require the project to be re-deployed). This is the only WAR
type which will let you view your application as one or more portlets, and thereby
take advantage of functionality offered by the portlet container (such as wiring,
portlet security, and so forth).

Deployment WAR
Standalone application developers can create a deployment WAR, which may be
deployed on any supported application server (such as WebSphere Application
Server 6). This WAR is built by executing an Ant script. The deployment WAR is
used to deploy non portlet applications, and does not contain any of the
development-only artifacts included in the development WAR. You might use this
option to, for example, deploy a Web service provider.

You can deploy WAR files by right-clicking your project's root folder (that is, the
RedbookCS folder) and then selecting Build Portlet Factory WAR. This will open
a context menu listing the three possible WAR files that you can deploy. You will
only be able to deploy WAR files that are supported by the deployment profiles
you have configured; WAR files that are not supported will be greyed out.
Deployment profiles are discussed in the next section.

3.4.2 Deployment configurations

There are two types of deployment configurations you can set up in WebSphere
Portlet Factory, as follows:

Application Server deployment configuration
This configuration covers the development and deployment WAR files. You can
use either an ordinary application server or a portal server for this configuration

Note: Deploying a WAR file directly from your IDE is not always possible (for
example, when deploying to remote portal servers that you cannot access
through the file system). In these scenarios, you need to build the WAR file,
and then manually deploy it through the server’s administration interface.
Manual deployment is discussed in Chapter 11.

50 Portal Application Development Using WebSphere Portlet Factory

(although, if you are using a portal server, you will be running your applications
as servlets rather than portlets). Whenever you preview an application from your
IDE, you will automatically be using the application server deployment
configuration.

In order to use the automatic refresh option with this configuration, the server
must be either local (that is, on the same machine as the WebSphere Portlet
Factory Designer) or on a remote machine mapped to the local machine through
the file system (so that it is possible to access files on the portal server from your
local machine).

Portal Server deployment configuration
This configuration covers the portlet WAR file, and must be set to use a portal
server. You cannot configure your portal server deployment configuration to point
to an ordinary application server (that is, one without a portlet container).
Whenever you run an application on a portal server, you will be using the portal
server deployment configuration.

As with the previous configuration, in order to use the automatic refresh option,
the server must be either local (meaning on the same machine as the
WebSphere Portlet Factory Designer) or on a remote machine mapped to the
local machine through the file system (so that it is possible to access files on the
portal server from your local machine).

In the next section, we demonstrate how to configure the RedbookCS project
created earlier to deploy and automatically refresh a WAR file on a locally
installed WebSphere Application Server 6.0 server.

Setting up deployment configurations
To deploy and automatically refresh a WAR file on a locally installed WebSphere
Application Server 6.0 server, follow these steps:

1. Open up the project properties dialog by left-clicking the root folder in your
WebSphere Portlet Factory project (RedbookCS) and selecting Properties
from the Project menu.

2. Select Deployment Info from the WebSphere Portlet Factory section, as
shown in Figure 3-7 on page 52.

3. The first deployment configuration you will add is for the application server,
which will be used to preview your application before it is deployed to the
portal server. Click Add under the Application Server Deployment
Configuration section (shown also in Figure 3-7).

 Chapter 3. Creating projects 51

Figure 3-7 Select Deployment Info and prepare to add an application server

4. Enter the appropriate information in the New Deployment Configuration
dialog box. Our entries and selections are shown in Figure 3-8 on page 53.

a. Configuration name (do not use spaces). We entered ApplicationServer.

b. Write a description for the configuration, such as Server used for
previewing portlets.

c. In the Server Type field, choose the appropriate option for your application
server. WebSphere Portlet Factory supports several types of application
servers, including WebSphere Application Server and Tomcat. Because
we are using WebSphere Portal Server 6.0 as our application server, we
selected WebSphere Application Server 6.x from the drop-down list.
Choosing an option from this drop-down list will display a number of
additional options at the bottom of the dialog.

d. Type your installed applications directory into the Installed Applications Dir
field. Your installed applications directory is a directory called

52 Portal Application Development Using WebSphere Portlet Factory

installedApps under the application server. You also need to specify a
cell name into which to install; this should be an immediate subdirectory of
the installedApps directory. We used:

c:\ibm\WebSphere\profiles\wp_profile\installedApps\ITSO

e. Enter the hostname for the server. We used localhost because we are
connecting to a local WebSphere Portal 6.0 server.

f. Enter a port to use when connecting to the server. Note that this port will
be different depending on the type and version of the server you are using.
The default port for WebSphere Portal 6.0 is 10038.

g. Make sure the Auto Deploy check box is selected. This ensures that your
application is automatically deployed to the target server.

h. Specify the name of the application server you would like to deploy to. We
used WebSphere_Portal.

i. Enter a username and password to connect to the server. This user must
have administrator access to the server (which is why you would usually
not use the Auto Deploy option with production servers). We used the
wpadmin account that we used to set up the Portal Server.

j. You should now see a screen similar to that shown in Figure 3-8, although
the exact settings may differ depending on your environment.

Figure 3-8 Deployment configuration settings

 Chapter 3. Creating projects 53

5. Before proceeding, test the connection to make sure these settings are
correct. To test the connection, click the Test Server Connection button at
the bottom of the dialog. This may take up to a few minutes, depending on the
speed of your machine. Once the test has completed, you should see a
success dialog (Figure 3-9) or an error message with which you can
troubleshoot the problem. The most common mistakes are related to an
invalid username or password, or an incorrectly specified hostname.

Figure 3-9 Verifying a successful test connection

6. Click OK when you have successfully tested your application server
deployment configuration.

The process for specifying the portal server deployment configuration is
essentially the same. The portal server is where you deploy your portlets to. In
this book, we are using the same WebSphere Portal 6.0 server we used earlier.

7. Click Add under the Portal Server Deployment Configuration section, as
shown in Figure 3-10.

54 Portal Application Development Using WebSphere Portlet Factory

Figure 3-10 Portal Server Deployment Configuration

8. Enter the appropriate information in the Portal Server Configuration dialog
box. Our entries and selections are shown in Figure 3-11 on page 56.

a. When the Portal Server Configuration dialog appears, give your
configuration a name (don’t use spaces). We used PortalServer.

b. Write a description for the configuration. We used Server used to run
portlets in a portlet container.

c. In the Server Type field, choose the appropriate option for your portal
server. Because we are using WebSphere Portal Server 6.0, we selected
WebSphere Portal 6.x from the drop-down list. Choosing an option from
this list will display a number of additional options at the bottom of the
dialog.

d. Choose a Portlet API for your portlet. WebSphere Portlet Factory supports
both Java Standard Portlets (JSR-168 compliant portlets) and WebSphere

 Chapter 3. Creating projects 55

Native Portlets (WebSphere Portlet API portlets). Make sure Java
Standard is selected.

e. Type in the root directory for your portal server installation. Ours is
C:\Program Files\IBM\WebSphere6\PortalServer.

f. Make sure the Auto Deploy check box is selected.

g. Type in the JRE™ Home directory; the default directory should be fine.
We used C:\Program Files\eclipseWDF\jre\bin.

h. Type in the Admin URL for your portal server. We used
http://localhost:10038/wps/config. Note that the port number will be
different depending on the portal server and version you are using.

i. Enter a username and password to connect to the portal server. This
username must have administrator access to the portal server. We used
the wpadmin user that we used to set up the portal server.

j. The deployment configuration dialog should now appear similar to
Figure 3-11.

Figure 3-11 Deployment configuration dialog

9. Click OK when finished. This will automatically test your configuration. You
should see a success dialog upon completion, as shown in Figure 3-12.

56 Portal Application Development Using WebSphere Portlet Factory

Figure 3-12 Verifying test connection

10.Click OK on the Deployment Info dialog to finish updating the deployment
configurations. A dialog will appear (Figure 3-13) asking whether you would
like to re-deploy your application. Click OK.

Figure 3-13 Re-deploying your application

You have now set up your deployment configurations and deployed your
application to a WebSphere Portal 6.0 server. To test your configurations, follow
the steps in the next section.

3.5 Testing

Before you can test your deployment configurations, you must create a test
model. Follow these steps to create a basic test model in WebSphere Portlet
Factory:

1. Select New → WebSphere Portlet Factory Model from the File menu. If the
WebSphere Portlet Factory Model option does not appear, select File →
New → Other..., then select WebSphere Portlet Factory → WebSphere
Portlet Factory Model from the dialog that follows (see Figure 3-14). Click
OK when finished.

 Chapter 3. Creating projects 57

Figure 3-14 Select a WebSphere Portlet Factory Model wizard

2. Select the RedbookCS project and click Next.

3. Select the type of model you would like to create. You can select from a
number of pre-defined model templates, or just create an empty model.
Select Main and Page under the Factory Starter Models heading, as shown
in Figure 3-15. This will start a wizard to let you create a simple model with a
test page.

58 Portal Application Development Using WebSphere Portlet Factory

Figure 3-15 Select a model type

4. On the next panel, specify Simple Page and click Next.

5. Specify the name and location of your model in the project file structure on the
next panel. We typed the following entries:

Model name: TestPortlet
Folder: WebContent/WEB-INF/models/redbook/cs/data/test/

Click Finish.

6. A model called TestPortlet will now be added to your project, and will be
opened in both the Outline view in the bottom left of the screen and the
Builder Editor in the top right quadrant of the screen. The TestPortlet should
contain two builders (an Action List and a Page builder), and will appear in the
Outline view as shown in Figure 3-16.

 Chapter 3. Creating projects 59

Figure 3-16 Outline view of TestPortlet

7. The TestPortlet model is presently not designated as a portlet. To designate
the model as a portlet, you need to add a Portlet Adapter builder to the model.
To do this, click the cog icon (Figure 3-17) to open the Builder Palette dialog.

Figure 3-17 The cog icon

8. Select Portlet Adapter in the Builder Palette (Figure 3-18) and click OK.

Figure 3-18 Select the Portlet Adapter

9. The Portlet Adapter builder will open in the Builder Editor. Enter a name, title,
and description for the portlet as shown in Figure 3-19.

60 Portal Application Development Using WebSphere Portlet Factory

Figure 3-19 Portlet Adapter builder

10.Save the model by pressing Ctrl+S.

11.Your model will now be made available to the portal server as a portlet once
the application is deployed. To deploy your application, right-click the root
folder of your project in the IDE (RedbookCS) and select Build Portlet
Factory WAR → Build Portlet WAR.

You are now ready to test your deployment configurations. To test your
Application Server deployment configuration, complete these steps:

1. With the TestPortlet model still open in the Outline view, click the play button
on the toolbar at the top of the screen (Figure 3-20). This will open the Run
profile dialog.

Figure 3-20 The play button

2. Double-click the WebSphere Portlet Factory category to open a new
WebSphere Portlet Factory run profile.

3. Give the new profile a name; we used WPFProfile.

 Chapter 3. Creating projects 61

4. Accept the remaining settings by clicking Run.

Once you press the Run button, your portlet should open as a Web application in
your default browser, as shown in Figure 3-21.

Figure 3-21 Portlet opened as a Web application

For future tests, you will not need to create additional run profiles. You can
simply select the profile from the drop-down menu next to the play button on the
toolbar, or if the WPFProfile was the last profile you used, then you can simply
click the play button.

Previewing your portlets
Previewing your portlets in this way is fast and easy, although note that your
portlet doesn’t have any of the functionality provided by the portlet container (you
can’t see any other portlets, for example). To see what your portlet will look like
inside the portlet container (and to thereby test your Portal Server deployment
configuration), complete these steps:

1. Log in to your portal server using an internet browser.

2. Navigate to the page you would like to use as a test page for your portlet. We
used the Welcome page, which is the first page displayed when logging into
the portal.

3. Add the Test Portlet portlet to the page. In WebSphere Portal 6.0, you can do
this by clicking the + icon.

Figure 3-22 The + icon

4. When the Portlet palette window appears, type Test Portlet in the search
box and press the magnifying glass icon to begin searching. The Test Portlet
should appear in the Portlet palette as shown in Figure 3-23.

62 Portal Application Development Using WebSphere Portlet Factory

Figure 3-23 The Portlet palette with the Test Portlet displayed

5. Click and drag the Test Portlet icon onto the portal page and drop it where
you would like the portlet displayed.

6. Press the + icon again to hide the Portlet palette window.

7. Once you have added the Test Portlet to the page, the portlet should appear
as shown in Figure 3-24.

Figure 3-24 The test portlet on the portal page

8. Once you are satisfied that the portlet appears correctly, log out of the portal.

3.6 Adding a feature set

Once it is up and running, your project already has a fairly comprehensive set of
builders for you to create an application. However, if you would like to extend the
application with back-end integration with systems such as Domino, SAP, or
PeopleSoft, or if you would like to enhance the UI using the Dojo toolkit, or create
charts, you have to add the feature sets into your project.

 Chapter 3. Creating projects 63

Adding the feature sets to your project entails including the relevant libraries and
jar files, and setting the appropriate class paths into your project. These are not
included by default to avoid adding unnecessary libraries into your project.

The Domino and Dojo feature sets are required to build the application described
in this book. Follow these steps to include these feature sets in your project:

1. Right-click your project and select Properties from the pop-up menu
(Figure 3-25).

Figure 3-25 Selecting Properties

2. In the dialog that follows, click the to expand the options of WebSphere
Portlet Factory, then select Feature Info.

3. In the list of features shown on the right panel, select the Dojo Ajax feature
and select the Integration Extensions → Lotus Collaboration Extension
feature to include in your project as shown in Figure 3-26 on page 65.

64 Portal Application Development Using WebSphere Portlet Factory

Figure 3-26 Selecting specific features

4. Click OK to confirm your selection and Portlet Factory will begin to include the
necessary files for the feature sets selected.

5. A dialog box will appear to confirm whether you would like to include the jar
files that are required for the feature sets that you have selected
(Figure 3-27). Click Yes to continue.

Figure 3-27 Jar file confirmation

 Chapter 3. Creating projects 65

6. Upon confirmation, Portlet Factory will include the jar files stated and a dialog
box will appear to confirm whether you would like to deploy your project
(Figure 3-28). Click Yes to continue.

Figure 3-28 Confirmation to deploy the project

3.7 Conclusion

In this chapter we discussed how to create and configure projects using the
WebSphere Portlet Factory Designer. We also outlined the structure of these
projects, the different types of WAR files used in WebSphere Portlet Factory, and
the basics of deploying WebSphere Portlet Factory projects.

If you have followed through the steps in this section, you should have a working
WebSphere Portlet Factory project, which you will be able to use as a basis for
building the Customer Service application. In the next chapter we will further
develop the Customer Service application created in this chapter, with particular
attention paid to data services in WebSphere Portlet Factory.

Important: This chapter has focused on how to set up your local development
environment for development, testing, and local machine deployment. Refer to
Appendix A, “Setting up the environment” on page 631 for details on how to
set up the complete development environment to run the sample application.

66 Portal Application Development Using WebSphere Portlet Factory

Chapter 4. Data Services: Overview and
interface definition

This chapter discusses the key concepts and interface definitions for the Data
Services layer. The purpose of the Data Services layer is to access data that is
used by the application in the business logic and presentation layers. In the case
of either a 2-tier or 3-tier architecture model, the data access is always a
separate layer that provides connectivity with back-end data systems.

WebSphere Portlet Factory provides support to clearly define a separated data
access layer in accordance with a service provider and service consumer
architecture. It offers connectivity with back-end systems that is easy to
implement and transparent to the developer.

This chapter starts with an overview of the Data Services capabilities of
WebSphere Portlet Factory, and continues with the definition of the service
interface as the first step in the creation of the Data Services layer.

To clearly illustrate all concepts within the context of a real scenario, we describe
the development of the Service Interface in the example application ITSO
Renovations. We have followed a progressive development process from the
architecture to the final implementation.

4

© Copyright IBM Corp. 2008. All rights reserved. 67

4.1 Overview of the technical goals

The data access layer is one of the most important development components in
any enterprise application. It is responsible for providing access to data
contained in the back-end systems that will be used by the business logic and
presentation layers within the application. It is very important to provide a clear
architecture and design to avoid unnecessary dependencies and interactions
with other parts of the application.

WebSphere Portlet Factory offers a simple approach to develop the data access
based on services, and moving in the direction of an SOA architecture. All data
access is represented as a service to other layers of the application. Moving
forward with the service concept, it can easily be enabled as a Web service, so
that other external applications can access it. We denote the data access layer
as the Data Service layer because it accesses back-end data and exposes it as
a service.

The main technical goal of this chapter is to explain the definition of a Data
Service interface that fulfills the requirement of separation between back-end
data and the rest of the layers, meaning business logic and presentation. The
goal for the next chapter is the development of specific back-end access once
the interface is well defined. These goals are reached by using WebSphere
Portlet Factory in the best possible way.

4.1.1 Value to the Portlet Factory developer

WebSphere Portlet Factory provides powerful technology for speeding the
creation of service-oriented applications and portlets. It includes data services
builders along with data integration builders, which automate the process of
connecting to systems such as SAP and Lotus Domino systems. This services
approach provides a clean way to separate the back-end services of an
application from the business logic and presentation layer.

It also includes some robust lower-level builders, such as a Linked Java object
and Web Service Call builder, that make it easy to integrate with any system via

Note: This chapter is closely related to Chapter 5, “Creating Data Services:
Access to back-end systems” on page 105. This chapter covers the concepts
and interface definitions, while the next chapter focuses on the steps for
building and implementing the data services.

68 Portal Application Development Using WebSphere Portlet Factory

Web services or Java APIs. For example, a Web Service Call builder can be
used to quickly integrate with systems that have a Web Service interface.

In this chapter and the next one, using the ITSO Renovations application for a
background, we explore and implement the following Portlet Factory concepts:

� Separation of the Data Service layer from business logic and presentation
layers.

� Support for a well defined and comprehensive architecture and design of
Data Services.

� Flexibility in the definition of the Service Interface.

� Data transformations – from simple visual mappings to complex Java code to
transform XML content.

� Use of a large range of builders for SQL, Domino, Web Services and other
back-end systems. They are easy to use and highly configurable.

� Testing support for each service as well as additional debug and logging
features in some specific back-end builders. Each service can be
independently tested and the builder generates automatically a user interface
to execute each operation, display results, or provide input values.

� Support for the creation of Stub Services that allow you to continue the
development of the application even if the back-end system is not accessible.

� Profiling support, for example to allow swapping between service
implementations or provide access configuration properties.

� Ability to expose any service as an external Web Service with just one click.
The WSDL is generated automatically, and other applications can retrieve it
to discover the functionality and invoke the service operations.

4.2 Data Services in Portlet Factory

WebSphere Portlet Factory features a Data Services layer providing full support
for the service provider-consumer paradigm required in an SOA environment. It
enables the definition of clean, well-defined service interface that separates the
user interface from back-end data.

The key benefits are to:

� Enable reuse of existing assets across projects and departments

� Automate back end connectivity

� Speed creation of new applications

� Promote application flexibility

 Chapter 4. Data Services: Overview and interface definition 69

4.2.1 Architecture overview

Data Services builders in WebSphere Portlet Factory provide an entry point to
SOA for your application. These builders provide a flexible data services layer
that allows a developer to create the interface that separates the user interface
from the back-end data.

Service-oriented architecture provides a number of benefits, including:

� Customers can encapsulate their back-end data access into a set of
well-defined services, which can then be reused across their portal or
dashboard projects. If they already have some applications exposed as
services, WebSphere Portlet Factory can readily consume those services. If
not, they can create the services, including the Integration Builders that make
application connectivity fast and easy. For example, using WebSphere Portlet
Factory’s SAP capabilities, you can quickly connect to SAP and expose one
or more of its APIs or BAPIs as services.

� Customers can speed the creation of new applications and new portlets by
reusing data services.

� It promotes application flexibility. Customers can reuse the same portlet user
interface with different data services. For example, they can easily swap out
the data service that drives these portlets. SOA promotes flexibility by
enabling you to dynamically swap out different services without having to
change the rest of the layers of the application.

The main concept is summarized in Figure 4-1.

70 Portal Application Development Using WebSphere Portlet Factory

Figure 4-1 The WebSphere Portlet Factory’s service-oriented architecture

4.2.2 Supported back-end systems

WebSphere Portlet Factory provides support to connect with the most commonly
used back-end systems in current applications. It provides a set of builders for
each one that makes access simple, with almost no need to write any additional
Java code, except to implement some special functionality.

The back-end builders that conform to the data integration capabilities of
WebSphere Portlet Factory can be categorized in these groups:

� Core Data Integration builders: Exist in each project and are used to integrate
with core back-end systems:

– Relational databases: SQL builders

– J2EE integration: EJB™ and JMS builders

� Extended Data Integration builders: Used for specific back-end systems. The
project must add the Integration Extension feature set to have the builders
available. The supported back-end systems using the extensions are:

– Excel files

– Domino databases using Lotus Collaboration Extension

Web Application

Enterprise
Apps.

Data Services

Data
Providers

Ap
pl

ic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rfa

ce

Portlets

DATA
BUSINESS LOGIC /

PRESENTATION

Databases

Web
Services

D
at

a
C

on
su

m
er

s

Users

 Chapter 4. Data Services: Overview and interface definition 71

– PeopleSoft

– SAP

– Siebel

– Workplace™ Forms

– Documents in Portal Document Manager using the Content Model
Extension

� Web Service builders: Provide access to external Web Services and are part
of each project.

Some applications require access to other back-end systems that are currently
not supported, like legacy applications or custom data sources. If the back end
provides a Web Service interface you can use the existing builders and treat it
like an external Web Service; otherwise, you can implement the access following
the Java API of the back end and using the low-level Linked Java Object builder.
Another possibility is to implement a custom builder that can be reused across
different projects.

4.2.3 General concepts

Be certain you understand the following concepts and definitions before getting
into the details of creating Data Services:

� Data Domain: The set of data that the application is accessing. It can be
divided in different domains depending on the application (for example,
Customer Data Domain, Order Data Domain, and so forth).

� Application Data Service Interface: The interface of the data access layer in
the context of the application. It is completely dependent on the requirements
of the application and should provide only the expected functionality. This
interface is visible to the business logic and presentation layers and could be
published as a Web Service. It can be divided into different interfaces
depending on the application (for example, Customer Data Service Interface,
Order Data Service Interface, and so forth).

In relation to the interface, Data Structures define the format of the input and
output message of the operation. The interface is XML based, so the Data
Structure is defined in XSD.

� Data Provider: The model that is responsible to access a back-end system. It
implements one of the Application Data Service Interfaces. This is the real
implementation of the Data Service and it contains specific builders for the
back-end system that it is connecting to.

One model (for example, a running XML file-based implementation) can be
defined as the interface that it is implemented by the other Data Provider models.

72 Portal Application Development Using WebSphere Portlet Factory

There is currently no possibility in WebSphere Portlet Factory to define an
interface without implementation. On the other hand, providing this simple
file-based implementation, provides your application with additional testing
support features and allows you to continue the development of other layers
without having implemented the final access to the real back-end systems.
Having an interface to real back-end systems is obviously required for large
applications, but during the internal development cycle, you are not forced
always to build an interface for your providers. When working with small projects
or defining internal services to the application, you can create a service without
an interface and this will decrease development efforts.

The following builders are provided to create the service definition and build a
Data Provider model:

– Service Definition: Operations will reference this definition.

– Service Operation: Operation to execute. It consists of Operation Inputs
(input message) and Operation Results (output message), both of which
must have a schema (Data Structure) assigned.

They define the service and operations that actually work with the Application
Data Service Interface.

The Data Provider can contain only one public and several private Service
Definitions. The public one can be exposed additionally as an external Web
Service, so other applications can retrieve the WSDL and invoke the
operations.

� Data Consumer: The consumer of the Data Provider. All models can act as
data consumers of services defined in the same project, even Data Provider
models. The Service Consumer builder is used to invoke a local service
defined by a Data Provider model.

� Data Transformation: Transformation of the data between the Service
Operation and the actual implementation provided by the specific back-end
builder. Sometimes the Data Structure (XSD) of the Inputs/Results does not
match the structure of the back-end operation; in such cases it is necessary
to apply an XML transformation of the data.

4.3 Developing Data Services in the sample application

This section describes the role of Data Services within the ITSO Renovations
sample application and presents details about the architecture and design.
Finally, it outlines the steps we followed during the development and testing of
the sample application.

 Chapter 4. Data Services: Overview and interface definition 73

4.3.1 Role of Data Services in ITSO Renovations

The role of Data Services in the ITSO Renovations project is to provide access to
the data in the back-end systems following an SOA architecture. All data sources
are defined as services that are accessed by the business and presentation
layers of the application.

It must provide a common way of accessing the data separating the real
back-end implementation from the interface of the service. The most important
step is the definition of the Application Data Service Interface for the different
data domains. In our sample application we distinguish the following data
domains:

� Customer data

� Order and order items data

� Product data

The role of the data services within the architecture is illustrated in Figure 4-2.

74 Portal Application Development Using WebSphere Portlet Factory

Figure 4-2 Data Services in the application architecture

The application follows a two-tier architecture in which the data services layer
provides access to the back-end systems that expose the data to the layers
above: namely the business logic and the presentation layers. Both layers are
implemented using WebSphere Portlet Factory and following the SOA
architecture allows you to decouple them by providing a well-defined data
services interface.

WebSphere Portal
Customer Service Application

Local XML
documents

Business logic and UI models

External
Web

Services
Databases

Data Service models

Data Service Consumers

Data Service Providers

External
product data

Customer data
Order order
Internal product data

All data (test)

 CSRs Customers

Application Data Service Interface

 Chapter 4. Data Services: Overview and interface definition 75

4.3.2 Architecture and design

The architecture of data services in the ITSO Renovations project is based on
SOA. Each data access to the back-end system is provided as a service with a
well-defined interface.

The sample application is accessing data from different back-end systems.
Table 4-1 shows which systems are involved in each data domain.

Table 4-1 Data domains and related back-end systems

Additionally, the application contains a full functional implementation accessing
data from local XML files. This allows you to test all data services without
connectivity to the real back-end system.

ITSO Renovations data model
The data model for ITSO Renovations consists of two parts:

� Customer and order data as a relational data model

� Product data as a single view in Domino or retrieved from an external Web
service

The relational data model consists of four main tables:

� CUSTOMER: Contains customer data.

� ORDER: Contains order data and is related with the CUSTOMER table using
the CUSTOMER_ID foreign key to reflect the orders that the customer has
placed.

� PRODUCT: Contains a simplified view of the products list in order to establish
the foreign key relationship with the ORDER_ITEM table. This information is
redundant, with all products existing in Domino and external systems. The
column SOURCE defines where the product details are placed:

– INT: Internal product for ITSO Renovations. The product details are saved
in the Domino database.

Data domain Back-end system

Customer data Relational database

Order data Relational database

Product data (list available products) Relational database

Internal products data (details) Domino database

External products data (details) External Web service

76 Portal Application Development Using WebSphere Portlet Factory

– ENT: External product provided by an external company to ITSO
Renovations. The product details are accessed using a Web service
provided by the external company.

� ORDER_ITEM: Reflects the relationship between ORDER and PRODUCT
using the foreign keys ORDER_ID and PRODUCT_ID respectively. It defines
which products are part of the order and in what quantity.

Figure 4-3 shows the relational data model and the previous relationships.

Figure 4-3 Relational data model

The external data model contains one table, PRODUCT, that contains all product
details: long description, technical details, images, and so forth. Table 4-2
identifies the data provided for each product.

The Domino database and the external Web services are responsible to return
the data following this structure.

 Chapter 4. Data Services: Overview and interface definition 77

Table 4-2 Definition of the PRODUCT table

Architecture details
The Data Services architecture for ITSO Renovations must follow the previous
data model. From a high-level point of view it contains two types of interfaces:

� Application Data Services interfaces: The public interfaces that are visible to
the consumers of the data services layer

� Back-end interfaces: Specific for each back-end access

This model provides some benefits to the whole architecture, including:

� Separation between the service definition of the application and the specific
back-end implementation.

Column name Data type

ID (key) * String

NAME * String

DESCRIPTION * String

LONGDESCRIPTION String

THUMBNAIL * Binary

PICTURE Binary

PICTUREPOSITION String

KEYWORD String

WEIGHT Double

Size Double

AUNDIENCECODE Integer

SUPPLIERINFO String

MANUFACTURER String

SKU String

PRICE * Double

CATEGORY String

Table 4-2 note: All columns marked with * are duplicated
in the available products table in the relational database.

78 Portal Application Development Using WebSphere Portlet Factory

� Modular structure: Different logical modules and providers for each back-end
system. This allows the addition of other back ends in an isolated way. It
could be necessary to provide data transformations to match the application
data service interface, but in this case they are back end specific and inside of
each module.

� Flexibility: The interface of the application data services is flexible and allows
the addition of more functionality, like new data domains, without impacts in
the existing functionality. It will be necessary to extends the specific
implementations to access the new data.

Considering the previous requirements, Figure 4-4 shows the high-level
architecture for ITSO Renovations.

Figure 4-4 High-level architecture of ITSO Renovations Data Services

Business Logic and Presentation

Data Service Consumers

Data Service
Providers

Application Data Domains

ProductOrderCustomer

Application Data
Service Interfaces

Database
Provider

Local XML
File

Provider

Domino
Provider

Web
Service

Invocation
Provider

Customer
Service

Database

Domino
Internal

Products
Database

XML Test
Data
Files

External
Products

Web
Service

 Chapter 4. Data Services: Overview and interface definition 79

The Application Data Service Interface contains the public interface that the data
consumers are accessing, in our case the business logic and user interface
models. This interface does not necessarily match the low-level back-end data
services interfaces. It should be generic, and operations must follow the
functional requirements of the application for each data domain.

The specific interfaces—databases, Domino, and Web services in our
scenario—will be specific to the back-end implementation, with all the necessary
custom code to access the data.

Data transformations might be required to match the Application Data Service
Interface and the specific interfaces of the implementations.

Data Services design in WebSphere Portlet Factory
The architecture described is generally valid regardless of the implementation
details and the nature of the application (rich client, web, or another kind of
application). In our scenario we are implementing a web application using
WebSphere Portlet Factory; the design details that follow are specific to this
environment.

Before we get into the design details, we need to point out the following
considerations for designing data services in WebSphere Portlet Factory:

� Data Services builders are contained in WebSphere Portlet Factory Models
like any other kind of builder. The design should cover a good structure of
models and avoid duplication of builders across them.

� Group all models for one specific back-end system in one folder (for example,
different folders for database, Domino, and so forth).

� Extract common builders used by several models in a common model that is
imported where it is needed.

� Consider using private services where you need to isolate, in a more granular
way, specific functionality when accessing a back-end.

� Create different models for each data domain or group (for example,
customer, order, or product). This is a good practice in order to avoid models
with a large number of builders.

� Define a wrapper service that can access different back-end systems. In this
case the client is transparent to the back-end system, so it can access one or
gather data from several.

Figure 4-5 shows a proposed design for the ITSO Renovations data service
providers that incorporates these considerations and architectural details.

80 Portal Application Development Using WebSphere Portlet Factory

Figure 4-5 Draft design for ITSO Renovations Data Services

It consists of four main data providers:

� DB: Provides access to the relational database

� Domino: Provides access to the Domino database

� XML File: Provides access to local XML files with test data

� Web Service Invocation: Provides access to invoke external Web Services

Each of them is implementing an Application Data Service Interface for the data
domain it is covering and the specific interface and implementation to connect
with the back-end system. Additionally, they each contain data structure

Back-end Data Providers

Database Provider

CustomerDBProvider.model

OrderDBProvider.model

Customer
Interface

XML File Provider

Domino Provider

Web Service Invocation Provider

ProductDBProvider.model

IdDBProvider.model

Customer
Service

Database

Domino
Internal

Products
Database

XML Test
Data
Files

External
Products

Web Service

CustomerFileProvider.model

OrderFileProvider.model

ProductFileProvider.model

ProductDetailsProvider.model

ProductWSProvider.model

Order
Interface

Product
Interface

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

 Chapter 4. Data Services: Overview and interface definition 81

definitions, data transformations, and custom implementations as needed for
special data access in the back-end (for example, binary columns in a database).

The described design is valid, but it can be improved with the following
modifications:

� Group all data structure definitions in a model and import it where required.
This avoids duplication across models, thereby reducing maintenance and
making future upgrades or changes easier.

� Group the custom implementation for special data access in one model that
can be imported by all models that are accessing the same back-end system.
This action increases maintainability, reduces redundancy, and lowers the
possibility of failures.

� Add a private service definition in the Domino case to isolate the specific
implementation from the application interface. This level of indirection allows
you to perform low level tests with Domino to analyze the returned data. It
also allows additional logic to exist between the private and public services.

� Create a wrapper data provider to access product details. This hides the
source of the back-end data from the data consumer.

The final design for ITSO Renovations incorporates these improvements and is
illustrated in Figure 4-6.

82 Portal Application Development Using WebSphere Portlet Factory

Figure 4-6 Final design of ITSO Renovations Data Services

Back-end Data Providers

Database Provider

CustomerDBProvider.model

OrderDBProvider.model

Customer
Interface

XML File Provider

Domino Provider

Web Service invocation Provider

ProductDBProvider.model

IdDBProvider.model

Customer
Service

Database

Domino
Internal

Products
Database

XML Test
Data
Files

External
Products

Web Service

CustomerFileProvider.model

OrderFileProvider.model

ProductFileProvider.model

ProductDetailsProvider.model

ProductWSProvider.model

Order
Interface

Product
Interface

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

Common Data Provider Definitions

P
ro

du
ct

D
at

aP
ro

vi
de

r.m
od

el

CustomerDefinitions.model

OrderDefinitions.model

ProductDefinitions.model

DBProviderHelper.model

 Chapter 4. Data Services: Overview and interface definition 83

When development is complete, the folders and models structure for data
services in WebSphere Portlet Factory will look like Figure 4-7.

Figure 4-7 Folders and models structure for Data Services

At this point it is not necessary to create all the models shown in the figure. Other
chapters guide you in the development of the data services; the figure is included
here to give you a preview of where your development efforts are headed.

Now that you have a high-level view of the architecture and design decisions,
you are ready to look at the low-level design and implementation details.

4.3.3 Development steps and guidelines

Our development of data services in the ITSO Renovations application followed
a structured procedure that is recommended for all WebSphere Portlet Factory
applications that require access to data from different back-end systems.

84 Portal Application Development Using WebSphere Portlet Factory

This section provides a brief overview of the development steps we followed to
create the ITSO Renovations application. Our project consisted of the following
phases: architecture, design, implementation, review, and testing.

Architecture
Define the architecture, from high to low level. Determine the role of data
services in relationship to the whole application, and where to locate them in the
application architecture. Analyze which systems are accessed and to which
category they belong:

� Internal implementations: XML or plain text file, or memory based

� Relational databases

� External web services

� Domino databases

� ERP systems: SAP, PeopleSoft or similar

� External legacy systems: accessed using Java API, JCA, EJB, or JMS

Define the application data service interface independently of the back-end
system and how it is related to the specific implementation. At this stage it is
important to find out if there are special systems that cannot be covered by the
application interface; define the architecture accordingly to this special case.

Design
1. High level design of the solution. Determine which WebSphere Portlet

Factory models are necessary based on the previous architecture. Define the
relationships between them and any common functionality in base models
that can be imported.

2. Design the application data service interface depending on the domain of the
application. Divide the whole functionality into different data domains if
possible (for example, customer, order, product data) to enable you to
distribute the implementation efforts and decrease the complexity of the
models.

The definition of the interface for each data domain consists of the following
steps:

a. Define the main data structures and entities that will be involved in the
data domain (for example, customer, order, order item, product data
structure).

b. Define the service operations. What operations must be performed with
the data: read, write, delete, update, and so forth. Define the input and
output messages for each operation.

 Chapter 4. Data Services: Overview and interface definition 85

c. Complete the set of data structures with simple ones that are required by
the operations in the input or output messages (for example, input filter
parameters, returned confirmation code, and so forth).

The definition of the interface must be done in conjunction with the
requirements of the business logic and presentation layer that actually will
access this interface.

Implementation
1. Implement XSD files for each main data structure or entity used in the

application interface.

2. Implement the Application Data Service Interfaces by creating operations and
using the previous data structures. Create additional simple structures
required by some operations as input or output messages. These services
will be populated to each model that is connected to a back-end system. At
this point it is not possible to provide the actual implementation of each
operation.

3. Implement each back-end access: databases, Domino, web services, and so
forth.

4. Link the specific back-end implementations with the operations created
according to the application service interface. At this point, some operations
might need data transformations to adjust the input and output messages of
the specific implementation.

5. Add additional functionality that is back end specific to access special data
types (for example, binary columns in databases). Add any special back-end
logic that is not covered by core builders provided by WebSphere Portlet
Factory.

Review
Review the design to determine if there are some parts of the functionality
that can be extracted and shared in common models.

Test
1. Perform development tests of the data services. This step can include tests of

specific back-end access; in some cases it might be necessary to create
private services to decouple them from the application service operations.

2. Test data services using the application data service interface. If the same
data can be retrieved from different data sources, try to switch between
different back-end data providers using profiling.

86 Portal Application Development Using WebSphere Portlet Factory

The project phases presented here are guidelines that are useful during the
development of data services in a typical scenario but they may not apply to all
projects. In every case, the goals of good architecture and design should be:

� Modularity: Define modules and split the interface to allow the distribution of
development efforts and increase maintenance.

� Flexibility and extensibility: The interface should be open and flexible to allow
future extensions.

� Reusability: Common functionality and definitions should be reusable.

� Transparency of the back-end implementations and ease of use by the
application layers that are consuming data services.

� Easy test support when possible, and if this does not require big impacts in
the whole design.

4.4 Design and implementation of data structures and
Application Data Service Interfaces

The first step, before starting the actual development of the back-end Data
Providers, is the design and implementation of the main data structures and
interfaces of the Application Data Service Interface. This section shows how to
work with data structures, service definitions, and operations in WebSphere
Portlet Factory by providing step by step instructions for implementing the ITSO
Renovations application. It contains some best practices and hints that can be
applied to other applications as well.

4.4.1 Data structures

ITSO Renovations contains several data structures for the main entities of the
application. Since all data service interfaces are XML based (that is, all data
exchanged between providers and provider-consumers is within XML
documents), it is necessary to create XSD files (XML Schema Definitions) for
each main entity involved in the operations. These are the data structures that
are public to the Data Consumers.

Table 4-3 identifies the main entities in the application and the location of the
XSD files in the project folder.

 Chapter 4. Data Services: Overview and interface definition 87

Table 4-3 Entities and paths of the XSD files

These data structures define a single record and a list of records. Using this
approach, the same schema can be reused by different operations by pointing to
the right element or type.

Once data structures are created, they can be imported into the project. To do
this in a structured way, we include them in common models that will be reused
later by the Data Provider models. Perform the following steps to make the data
structures (schemas) accessible in the project.

1. Create a folder that will contain the models for common definitions:

<Project Root>\models\redbook\cs\data\def

2. Create a new WebSphere Portlet Factory Model under the previous folder
that will contain the common definitions. It is recommended to create different
models for each data domain to avoid having extra builders included when
importing the model. Create the model for Customer:

CustomerDefinitions.model

3. Add a Schema builder to the previous model to import the XSD file of the
customer data domain. This builder is under the Variables category in the
Builder Palette.

Entity name XSD path

Customer \WEB-INF\resources\redbook\cd\xsd\customer.xsd

Order \WEB-INF\resources\redbook\cd\xsd\order.xsd

Order Item \WEB-INF\resources\redbook\cd\xsd\order_items.xsd

Order Status \WEB-INF\resources\redbook\cd\xsd\order_status.xsd

Product \WEB-INF\resources\redbook\cd\xsd\product.xsd

88 Portal Application Development Using WebSphere Portlet Factory

Figure 4-8 Variables category in the Builder Palette

4. Configure the builder to provide the path of the XSD file for customer.

Figure 4-9 Schema builder when using existing URL/File

It is also possible to define the complete XSD as builder input. (This option is
covered later, when we create simple data structures for some input/output
messages of operations.)

5. Repeat steps 2 through 4 to import the schemas of Order and Product
domains.

 Chapter 4. Data Services: Overview and interface definition 89

Table 4-4 Proposed names for models and schemas for all entities

These are the main data structures used by the operations; we will come back to
these models to define simple data structures that are common and used as
input and output messages of the operations. They will be defined as input
builder content, but it is possible to create them as external XSD files and use the
previous mechanism to import them into the model.

These are the steps for defining the schema as input of the builder:

1. Add a new Schema builder in the model.

2. Configure the builder by selecting Specify explicitly as builder input in
the Schema Source Type field. A text box will be opened where you can type
the schema (Figure 4-10).

Model name Schema builder name Entity name

CustomerDefinitions.model customer Customer

OrderDefinitions.model order Order

orderItems Order Items

orderStatus Order Status

ProductDefinitions.model product Product

90 Portal Application Development Using WebSphere Portlet Factory

Figure 4-10 Schema builder when Specify explicitly as builder input is selected

In this case the schema is included as content of the builder (inside of the model
XML file).

Some recommendations regarding data structure definitions follow.

� Use external XSD files when the structures are provided externally or for main
entities in your application.

� Use content within the builder for simple data structures used for parameters
or simple results of operations.

� It is very important to use different target namespaces for each structure,
especially if the operation will be exposed as a web service. Follow a
convention for the creation of the namespace. For ITSO Renovations the
pattern of the namespace is:

http://com.ibm.redbook.cs.data/2007/schema/<schema_builder_name>

 Chapter 4. Data Services: Overview and interface definition 91

Here, <schema_builder_name> is the name of the builder used when adding
the schema to the model (for example, customer, order, and so forth).

If the schema is generated by WebSphere Portlet Factory, it will use a default
namespace; we recommend that this be changed.

� You can use the Simple Schema Generator builder if you have some sample
data and you want to generate the schema automatically. The sample data is
provided from an existing Variable within the current WebApp for the model.
Consider providing your own target namespace URI.

Once the Schema builders are created, they will be part of the WebApp tree
under the Schema leaf and they are accessible by other builders using the
builder name.

Figure 4-11 WebApp tree for schemas

4.4.2 Application Data Service Interface: Definition and operations

The application data service definition provides the public interface that will be
visible to data consumers in the business logic and presentation layers. Before
starting with the actual implementation of the service it is important to analyze
the functional requirements of the data service and find out what should be public
and accessible by data consumers. At this point we define the main interface of
the data service providers using the data structures imported in the previous
section.

First we describe the required functionality in each data domain and the public
operations that will be available. The following tables describe the services and
operations for ITSO Renovations. This information is used later for the creation
of the Service Definition and Service Operations that will conform the application
data service interface of the Data Providers.

92 Portal Application Development Using WebSphere Portlet Factory

Table 4-5 Customer Service definition

Table 4-6 Order Service definition

Operation name Inputs Results Description

getCustomers No inputs List of Customer
entities

Returns the list of all customers data

getCustomersList No inputs List of Customer ID
and Name

Returns the list of all customers, but only
providing ID and Name

getCustomer Customer ID Customer entity Returns the customer data for the given ID

findCustomers Customer name List of complete
Customer entities

Returns the list of all customers data
matching the given pattern for the Name

createCustomer Customer entity No results Creates a new customer

updateCustomer Customer entity No results Updates an existing customer

validateCustomerAccount Customer ID
PIN

True or False Validates the customer account using the
given PIN, returning True if valid or False
otherwise

getNextCustomerId No inputs Customer ID Returns the next available customer ID to
create a new one

Operation name Inputs Results Description

getOrders No inputs List of Order entities Returns the list of all orders data (without
items, only order details)

getOrdersList No inputs List of Order ID, Data
Ordered, and Status

Returns the list of all orders but only the ID,
Data Ordered, and Status

getCustomerOrders Customer ID List of Order entities Returns the list of all orders data (without
items, only order details) for a given
Customer ID

getCustomerOrdersList Customer ID List of Order ID, Data
Ordered, and Status

Returns the list of all orders for a given
Customer ID. Only the ID, Data Ordered
and Status

getOrder Order ID Order entity Returns the order details (without items) for
the given Order ID

getOrderItems Order ID List of Order Item
entities

Return the list of all order items for the
given Order ID

createOrder Order entity No results Creates a new order (without items, only
order details)

createOrderWithItems List of Order
Item entities

No results Creates a new order with items in one
transaction

 Chapter 4. Data Services: Overview and interface definition 93

Table 4-7 Product Service definition

At this point it is important to notice that WebSphere Portlet Factory does not
allow you to implement an interface that does not contain implementation
because each Service Operation requires an action/method to call. This has the
advantage that you can bind the interface with a real test implementation and be
ready to check whether your interface is correct and follows your design. On the
other hand, it is not possible to define an abstract interface that is not bound to a
specific implementation. Each interface must be bound to a specific
implementation and when necessary, duplicated in all actual implementations.

Considering this limitation, in our example we bind the interface to the XML
file-based implementation. (This is described in the next chapter when
implementing a Data Provider for local XML files.) At this point, we create the
Service Definition and Operation in the File model without any action to invoke
(without a real implementation). This results in some errors in WebSphere Portlet
Factory, which will disappear when the operations are bound to the file-based
implementation as described in the next chapter.

createOrderItem Order Item
entity

No results Creates a single order item

updateOrder Order entity No results Updates an existing order (without items,
only order details)

updateOrderItem Order Item
entity

No results Updates a single order item

updateOrderItemsList List of Order
Item entities

No results Update a list of order items for the same
order in one transaction

getOrderStatusList No Inputs List of Order Status
entities

Returns the list of all possible order states

getNextOrderId No Inputs Order ID Returns the next available order ID to
create a new one

Operation name Inputs Results Description

getProducts No inputs List of Product entities Returns the list of all products data

getProduct Product ID Product entity Returns the product details for the given
Product ID

Operation name Inputs Results Description

94 Portal Application Development Using WebSphere Portlet Factory

WebSphere Portlet Factory provides two builders to create the service with
operations:

� Service Definition builder

� Service Operation builder

They are located under the Services category of the Builder Palette
(Figure 4-12).

Figure 4-12 Services category in the Builder Palette

Creation of Data Services
The first step is the creation of the Application Data Service Interfaces for each
data domain. Table 4-8 shows the data domains, model names, and service
names for ITSO Renovations. Follow the steps to create all File Data Providers
that will contain the interfaces.

Table 4-8 Data domains, model and service names

1. Create a File Data Provider model using a name from the previous table. This
model should be empty, without any default builder.

Data domain Model name Service name

Customer CustomerFileProvider.model customers

Order OrderFileProvider.model orders

Product ProductFileProvider.model products

 Chapter 4. Data Services: Overview and interface definition 95

2. Add a Service Definition builder with the name from previous table. Make sure
that the service is public by checking the option in the configuration of the
builder.

Figure 4-13 Service Definition builder: Customers

3. Repeat these steps for each data domain, using the names in the table.

Creation of Data Operations
The services are ready to include the public operations using the values provided
in the next three tables.

96 Portal Application Development Using WebSphere Portlet Factory

Table 4-9 Operations for Data Service: Customers

Table 4-10 Operations for Data Service: Orders

Operation Inputs schema Results schema

getCustomers No inputs customer/Customers

getCustomersList No inputs customerList/Customers (*)

getCustomer getCustomerInput/Inputs (*) customer/Customer

findCustomers findCustomersInput/Inputs (*) customer/Customers

createCustomers customer/Customer No results

updateCustomer customer/Customer No results

validateCustomerAccount validateCustomerAccountInput/Inputs No inputs (later will be replaced by
the structure of the called action)

getNextCustomerId No inputs No inputs (later will be replaced by
the structure of the called action)

Operation Inputs schema Results schema

getOrders No inputs order/Orders

getOrdersList No inputs orderList/Orders (*)

getCustomerOrders getCustomerOrdersInput/Inputs (*) order/Orders

getCustomerOrdersList getCustomerOrdersInput/Inputs orderList/Orders

getOrder getOrderInput/Inputs (*) order/Order

getOrderItems getOrderInput/Inputs orderItems/Order

createOrder order/Order No results

createOrderWithItems orderItems/Order No results

createOrderItem createOrderItemInput/ITEM (*) No results

updateOrder order/Order No results

updateOrderItem createOrderItemInput/ITEM No results

updateOrderItemsList orderItems/Order No results

getOrderStatusList No inputs orderStatus/OrderStatus

getNextOrderId No inputs No inputs (later will be replaced by
the structure of the called action)

 Chapter 4. Data Services: Overview and interface definition 97

Table 4-11 Operations for Data Service: Products

In the preceding tables, (*) means that the Schema must be created under the
definitions model of the data domain. The Schema can be created providing the
input to the builder and getting the contents from the files under the folder:

\<project_root\WebContent\WEB-INF\resources\
redbook\cs\xsd\explicity_input

with the name of the builder (for example, getProductInput.xsd). See 4.4.1, “Data
structures” on page 87 for details.

The names and inputs/result schemas are obtained as a result of the design of
the interfaces that we introduced at the beginning of the section. The operations
can be added to the service using the following steps:

1. Open a File Data Provider for the data domain.

2. Add a Service Operation builder and configure it (Figure 4-14)>

Operation Inputs schema Results schema

getProducts No inputs product/Products

getProduct getProductInput/Inputs (*) product/Product

98 Portal Application Development Using WebSphere Portlet Factory

Figure 4-14 Example of Service Operation builder: getCustomerOrders

 Chapter 4. Data Services: Overview and interface definition 99

Make the appropriate entries and selections:

– Data Service: The public service definition associated with the data
domain that this operation belongs to.

– The operation name as provided in the previous tables.

– Do not provide a value in the Action to Call. This will be filled later when
creating the XML Data Provider.

– Specify the Operation Inputs and Results schemas using the values from
the previous tables. The corresponding definitions model must be
imported to have access to the Schemas.

In most cases, it is recommended to specify schemas for the input and results
to provide clear element names in the input and output messages.
WebSphere Portlet Factory provides support to automatically generate
structures when the called action is provided. You should use the auto
generation mechanism for inputs and results of simple types like boolean,
integer, or string. It is also recommended to use the auto generation
mechanism when the called action is an operation of another data service.
There are some other mechanisms to bring the schema into the operations,
for example, the usage of variable and simple schema generation. Depending
on your application you can use the most adequate mechanism to define the
schemas for operations.

In ITSO Renovations there are few cases where auto generation is used:

– customers.validateCustomerAccount

– customers.getNextCustomerId

– orders.getNextOrderId

In these cases select the No results option and when the action to call is
provided, switch to Use the structure from called action and define the
operation completely.

After creating all operations you will see some errors that the action is not
provided. For the moment, ignore them; later we provide the XML file
implementation to complete the interface.

3. Repeat the previous steps for all data domains and operations of the sample
application following the descriptions provided in the previous tables.

Figure 4-15 shows the builders for each model when all interfaces are defined.

100 Portal Application Development Using WebSphere Portlet Factory

Figure 4-15 Service Definition and Operation builders for customers, orders and products

After the development of data structures and application data service interfaces,
we defined the public interface for the data services layer. Service Consumers
can already use it to continue the development of the business logic and
presentation layers.

The procedures outlined in this section illustrate some best practices that can be
applied to any application that requires data access:

� Determine the entities in the application and create XSD files for each one. All
data service interfaces in WebSphere Portlet Factory are XML based.

� Create base definition models that include the XSD files and some additional
schemas for the input and output messages of the operations.

� Design the interfaces of the data service access: which services are required
based on the data domains, public operations and required additional
schemas.

� Create the Service Definition and Operations in WebSphere Portlet Factory
based on the interface design. This interface is bound to a real
implementation (for example, a test XML file based implementation) and
future data providers will be required to implement the interface defined at this
point.

 Chapter 4. Data Services: Overview and interface definition 101

4.5 Summary and best practices

One of the most important parts of enterprise applications is accessing data from
back-end systems. WebSphere Portlet Factory provides a powerful technology to
implement this data access following an SOA architecture. In this chapter we
have provided an introduction to the capabilities of WebSphere Portlet Factory in
data integration, specifically:

� Clear separation of the data access layer from the business logic and
presentation layers.

� Definition of the data access layer as services that can easily be exposed as
web services if this is required.

� Integration with the most common back-end data systems: relational
databases, Domino, SAP, Siebel, and so forth.

We have introduced architecture and design guidelines that can be easily applied
to any kind of web application developed with WebSphere Portlet Factory. Finally,
we have illustrated how to create data structures and application data service
interfaces using our sample application ITSO Renovations.

The most important best practices when defining the architecture and design of
Data Services are summarized as follows:

� Discover the role of accessing data from back-end systems in your specific
application.

� List the back-end systems you are going to access and categorize them
based on these rules:

– Core (SQL, J2EE, and so forth) or extended (SAP, Siebel, and so forth).

– Web Service enabled or not.

Obtain the data models for the data you need to access in each back-end
system. This will give you an idea of the existing data domain entities.

� Create the architecture of the data access layer, keeping in mind that it should
be separated from other layers of the application and should provide a clear
and well-defined interface.

� Design the data access layer based on architecture decisions and diagrams.
Since you are using WebSphere Portlet Factory, you can include required
foundation models, leverage the relationships between them, and identify
common functionality between similar models.

� Define the data service interfaces of your application based on the functional
requirements and involved data domains.

102 Portal Application Development Using WebSphere Portlet Factory

� Create data structures for the main data entities and import them into the
definition models.

� Create Data Services and Operations following the previous design of the
application data service interface. Do not worry if you cannot provide an
implementation at this time; the main goal is the definition of the interface.

All best practices and concepts we have highlighted in this chapter are applicable
to all projects, especially to big ones. The definition of the application data
service interface is a good practice that will increase the quality of your
application but it is not a mandatory requirement when building data services. If
you are building small and simple applications, you can create data services
without defining this interface and speed up your development and decrease
efforts. It is also not necessary when creating private or internal services within
the application. Again, this depends of the complexity and size of the application
you are building, but in every case WebSphere Portlet Factory provides the right
technology and tools to cover all types of projects.

 Chapter 4. Data Services: Overview and interface definition 103

104 Portal Application Development Using WebSphere Portlet Factory

Chapter 5. Creating Data Services:
Access to back-end systems

This chapter continues the discussion regarding how to create Data Services to
access back-end systems. It provides design and implementation details for the
following scenarios:

� Custom Data Service: Exemplified by a local XML access sample, this is how
to integrate with back ends for which WebSphere Portlet Factory does not
offer builders.

� SQL Data Service: This is the most common case when accessing relational
databases.

� Domino Data Service: One of the integration extensions that WebSphere
Portlet Factory provides to access back-end systems.

� Data Service to access an external web service: The most generic
mechanism to access a back-end system is the web service interface.

This chapter also introduces integration with other back-end systems like SAP
and J2EE data integration: JMS and EJB.

In summary, the chapter should give a good overview of the capabilities of
WebSphere Portlet Factory for data integration. It illustrates all concepts via the
sample application ITSO Renovations, but the ideas presented can be applied to
any other web application.

5

© Copyright IBM Corp. 2008. All rights reserved. 105

5.1 Custom Data Service: Local XML access sample

WebSphere Portlet Factory provides builders to access a number of commonly
used back-end systems; however, in some applications you might need to
access a back-end system that is currently not supported. In this situation you
must provide the implementation for connecting and accessing the data.

The implementation is Java based and uses the capability of WebSphere Portlet
Factory to include Java classes within the model using the Linked Java Object
builder. Service operations will invoke the methods implemented in the Java
objects via this builder.

To illustrate accessing a custom Data Provider, ITSO Renovations includes a
local XML file based data source used for testing purposes. It also helps in the
definition of the application data service interface we discussed in the previous
chapter, providing the actions to call by Service Operations. In this section, we
describe how to design, implement, and test a custom data service to connect
with this file based back-end system. We highlight best practices throughout,
which can be applied to your specific application.

5.1.1 Overview of accessing a custom data service

Custom data services are responsible to access back-end systems that are not
supported by builders in WebSphere Portlet Factory. In that situation the
implementation is provided using Java classes that uses the specific back-end
Java API.

The Linked Java Object (LJO) builder is used to have Java classes available
within a model. Once the Java class is linked, the other builders have access to
its public methods; Service Operations can invoke the available methods in the
LJO. Figure 5-1 illustrates this design principle.

Figure 5-1 Common design for a custom Data Service implemented in Java

Back-end Service Provider model

Service Operation 1
Back-end Specific Class

operation1()
operation2()

…
operationN()

Back-end
System

Back-end Library

Service Operation N

...

Service Operation 2

B
ac

k-
en

d
LJ

O

106 Portal Application Development Using WebSphere Portlet Factory

For each service, there is an LJO that is responsible to access the XML files. The
interface of the Java class contains a set of public methods that fits with the
operations of the services. This is not required but it clarifies which method is
handling each service operation. Additionally, the Java class can access any
other public or private methods within the class or other Java classes and
external libraries available in the classpath of the application.

The LJO represents an object of the Java class that it is linking. Depending on
the configuration of the builder, this object can have a different scope in the web
application: request, session, session with failover, and application (read-only).
We cover all possibilities in the next section. If you need to keep connection
pools or objects that are shared across all users, you can use a singleton design
pattern.

It is recommended that public methods, visible via the LJO builder, follow this
rule for the signature:

public <return_type> <method_name> (WebAppAccess webAppAccess,
,<additional_parameters>, ...) {
...

}

You have full access to the Web Application context inside of the Java class by
using the parameter WebAppAccess. Using this object you can access all of the
application entities such as methods, variables, linked models, and so forth.

If you need to work with XML content, IXml provides you convenient methods to
parse, serialize, and navigate through XML documents.

The complete API of WebAppAccess and IXml is provided as part of the
Reference section of WebSphere Portlet Factory Help.

5.1.2 Implementing the service

The implementation for accessing a custom back-end system can be done using
Java code and linked using the LJO builders as discussed in the previous
section. ITSO Renovations provides a local XML file based implementation for
testing purposes and to help in the completion of the Application Data Service
Interface. The following diagram (Figure 5-2) displays the implementation details
for the local XML access.

 Chapter 5. Creating Data Services: Access to back-end systems 107

Figure 5-2 Design of local XML access

There is an LJO for each data service that is responsible to access the XML
documents related to the data domain. The XML documents are imported as
XML variables in WebSphere Portlet Factory and they are kept during the current
user session.

The following steps describe how we have implemented the XML access for
ITSO Renovations.

CustomerFileProvider.model
Customer
Interface

CustomerDefinitions.model

imports CustomerData.java

LJO builderOperation builders

OrderFileProvider.model

OrderDefinitions.model

imports OrderData.java

LJO builderOperation builders

ProductFileProvider.model

ProductDefinitions.model

imports ProductData.java

LJO builderOperation builders

customers.xml

order_items.xml

orders.xml

order_status.xml

products.xml

Order
Interface

Product
Interface

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

consumes

108 Portal Application Development Using WebSphere Portlet Factory

Import XML content in the models
Import the XML files in the models to keep the data along with the session.
Table 5-1 identifies the XML files used by each model.

Table 5-1 Import XML files details

Follow these steps to import the XML data:

1. Open the model for the File Provider and add a new Import to XML builder.
This builder can be found under the Data Integration category of the Builder
Palette (Figure 5-3).

Figure 5-3 Data Integration category in the Builder Palette

2. Configure the builder, providing the relative path of the XML file and the
variable schema used to validate the content. The definitions model where
the schemas are defined must have been imported prior to this. All XML files
are located under the following folder:

\WEB-INF\resources\redbook\cs\xml\data

Model name Import to XML
builder name

XML file name Variable schema

CustomerFileProvider customers customers.xml customers/Customer

OrderFileProvider orders orders.xml orders/Orders

orderItems order_items.xml orderItems/Order

orderStatus order_status.xml orderStatus/OrderStatus

ProductFileProvider products products.xml product/Products

 Chapter 5. Creating Data Services: Access to back-end systems 109

Figure 5-4 Import to XML builder: Products

3. Repeat the previous steps for each XML file, using the details provided in
Table 5-1.

Importing an XML file will create in the model a variable with the contents of the
XML file and using as a name the builder name. This mechanism can be used by
any kind of model when reading XML files and making the content accessible in
the model.

Implementation of LJO to access XML content
The Java classes with the local XML file based implementation are already
provided in the code of ITSO Renovations at \WEB-INF\work\source. The
package name is com.ibm.redbook.cs.data.file. We access these classes from
the models by using the Linked Java Object builder. Table 5-2 shows details
about the classes and LJO builders required in each File Provider model.

Table 5-2 LJO details

Model name Linked Java Object
builder name

Class name

CustomerFileProvider customerData com.ibm.redbook.cs.data.file.CustomerData

OrderFileProvider orderData com.ibm.redbook.cs.data.file.OrderData

ProductFileProvider productData com.ibm.redbook.cs.data.file.ProductData

110 Portal Application Development Using WebSphere Portlet Factory

Follow these steps to create a Linked Java Object builder for each class:

1. Open the model for the File Provider and add a new Linked Java Object
builder. The builder is under the Variables category of the Builder Palette.

2. Configure the builder and select the builder name and class name provided in
Table 5-2.

Figure 5-5 Linked Java Object builder: orderData linked with OrderData.java class

The scope is set to Read-write, so the same instance of the object is valid for
the complete session.

3. Repeat the previous steps for each LJO builder defined in the table.

An LJO can have one of several scopes. Selected in the Advanced section of the
builder, the available scopes have the following meanings:

� Read-write: Session scope and serializable fields are persistent for failover if
the web application server allows persistence of the session.

� Read-write but not persisted for failover: Session scope but not persistence.

� Read-only: Shared across all users, application scope but only for read only.

� Request scoped: The object is only valid on a per request basis.

 Chapter 5. Creating Data Services: Access to back-end systems 111

To complete the implementation, two variables (Variable builder) are defined to
keep the last used IDs for customers and orders:

� CustomerFileProvider model: lastCustomerId (Integer)

� OrderFileProvider model: lastOrderId (Integer)

Invoking the methods of LJO from a Service Operation
The Service Operation builders can now be modified to specify the Action To Call
when the operation is executed. In this case they will execute the methods in the
Linked Java Object.

1. Open the File Provider model and open each Service Operation builder that
was created previously (4.4.2, “Application Data Service Interface: Definition
and operations” on page 92). Complete the builder configuration by providing
the Action To Call input with the method of the LJO to invoke.

Figure 5-6 Service Operation builder: specify Action To Call to invoke LJO method

We used the same names of the service operations for the methods in the
Java classes.

2. Repeat the previous step for each File Provider model.

3. The interface can be completed by using the structure of the called action for
the Results schemas in these cases:

– customers.validateCustomerAccount

– customers.getNextCustomerId

– orders.getNextOrderId

The service is completed and the interface defined at this point will be used
for the implementation of the other Data Services. Since the interface is

112 Portal Application Development Using WebSphere Portlet Factory

bound to the XML-based implementation, it is possible to do the first
functional tests to determine whether it fulfills the design described in the
previous chapter.

4. The implementation of the XML File access requires our application to keep
the service stateful to ensure that data is maintained in memory during the
session. To do this, change the Service State in the Service Definition
builders for customers, orders, and products (Figure 5-7).

Figure 5-7 Service Definition builder: Set service state

When the service is used by the Service Consumer, it creates an instance of
the Service Provider model that can be disposed of after each operation or
kept across operation invocations within the user session. Because it is an
instance of the complete model, all variables and LJO are involved; even if
variables are defined in the session scope they can be disposed of if the
service that contains them is stateless.

The XML file-based implementation is provided for testing purposes and there
are some limitations to consider:

� The data is read from the files and kept during the current user session.

� Any changes in the data are only reflected in memory. Customer information
is shared across users and orders data is valid for each user session.

After implementing the XML file-based Data Provider you should have the
models and builders shown in Figure 5-8.

 Chapter 5. Creating Data Services: Access to back-end systems 113

Figure 5-8 Models and builders for local XML access: Customers, orders and products

In this section we have covered the use of Linked Java Object builders and how
to import XML content into the model. We recommend the following best
practices when using Java classes inside the models:

� Use Linked Java Object builders to connect with Java classes that can
implement access to custom back-end systems.

� Define an LJO per service to provide the implementation. If possible, define
the same method names as the service operation names to make the
implementation more clear and readable.

� Think about the scope of LJO based on the application-specific scenario and
use of the builder.

� Look in the API for WebAppAccess and IXml to discover what is available
when implementing the code of the LJO.

� Use the Import to XML builder to import XML content and make it accessible
in the model.

� Consider the Service State in the Service Definition builder because it can
change the behavior when it is used by the service consumers.

114 Portal Application Development Using WebSphere Portlet Factory

5.1.3 Testing and debugging the service

WebSphere Portlet Factory offers a mechanism to test the Data Service by
checking the options Add Testing Support and Generate Main in the Service
Definition builder (Figure 5-9).

Figure 5-9 Service Definition: Adding testing support

With these actions, the model will have an internal main action list that will be
used when running the model from inside of WebSphere Portlet Factory
Designer. You could have conflicts if you have your own main action list or more
than one service with testing support; therefore, ensure that only one main is
available at one time. In addition, the testing support internally generates pages,
data pages, forms, and so forth to test all methods.

The following three figures show some examples of running the testing support
for the model CustomerFileProvider.

 Chapter 5. Creating Data Services: Access to back-end systems 115

Figure 5-10 Testing support: List of customers service operations

Figure 5-11 Testing support: Result of executing the operation getCustomers

116 Portal Application Development Using WebSphere Portlet Factory

Figure 5-12 Testing support: Input form for the operation createCustomer

You can test each operation of the interface independently without any additional
builder in the model.

WebSphere Portlet Factory uses the standard debug capabilities provided by the
Eclipse infrastructure. Within the designer you can connect remotely to your
application server running in debug mode and start debugging sessions for your
Java code.There is currently no direct support for debugging models and
builders from the designer, but it is possible to debug the Java classes that are
being generating.

 Chapter 5. Creating Data Services: Access to back-end systems 117

5.2 SQL Data Services

SQL Data Services provide access to relational database back-end systems like
DB2®, Cloudscape™, Oracle, and similar applications. WebSphere Portlet
Factory offers a set of builders that enable you to perform database integration in
an easy and graphical way. There is no need to write Java code except when
your application requires some customized data transformation or special
functionality that is not covered directly by the builders.

The SQL builders offer a simple mechanism to define the statements, and they
hide the implementation details to connect to and access databases.

This section describes the available SQL builders, the functionality they provide,
and how we used them in the ITSO Renovations application. These procedures
can be applied to web application that requires access to relational databases.

5.2.1 Overview and available SQL builders

A group of builders in WebSphere Portlet Factory enable you to easily connect to
and access databases. They are part of the Data Integration category in the
Builder Palette (Figure 5-13).

Figure 5-13 Data Integration category in Builder Palette: SQL builders

We can distinguish two groups of builders depending on what level of abstraction
they are reflecting:

� Top-level builders cover high-level functionality and usually require more
configuration but less implementation in Java code or action lists. They are
useful when the requirements are simple and the builder can hold all
necessary functionality (for example, SQL calls in a single transaction).

118 Portal Application Development Using WebSphere Portlet Factory

� Modifier builders contain basic and low-level database operations and
definitions. They can be used to override configuration of top-level builders
when this is required. They also help to define common configuration like
SQL Data Sources, SQL Statements, and so forth.

The data exchanged with the database is in XML format for those builders that
are executing SQL statements. Input and result sets are XML documents, so it is
possible that additional transformations or configuration of element names are
required to accommodate the associated Application Data Service Interface.

The available SQL builders in WebSphere Portlet Factory, presented in this list
from high- to low-level, are:

� SQL Call: This is a top-level builder for calling SQL statements without writing
any Java code. The SQL statement (select, insert, update, delete) can be
easily created even if it requires parameters. The main features of the builder
are:

– Database Explorer to query the database, discover, and select the
metadata automatically: List of available tables and stored procedures,
definition of tables including column names, data types, and so forth.

– Configuration of result set handling: Concurrency options, paging support,
customize element names for the XML that contains results, and so forth.

– The names of generated methods can be customized.

– Switch on events, statistics, and logging.

– Some configurations can be overridden by modifier builders: Data Source,
Statement, and Transformation.

� SQL Data Source: This builder accesses the JNDI resident Data Source and
uses it as a JDBC™ connection factory. It provides a common place to define
the data source, then reuse this same data source in other builders.

� SQL Statement: This builder creates JDBC statements that are ready for
execution. They can be Prepared Statements (SQL statements) or Callable
Statements (for calling stored procedures in the database). The main features
of the builder are:

– Configuration for special handling of parameters and result sets, more
advanced and detailed than in the SQL Call builder.

– Definition of result set performance parameters.

– Definition of execution throttles.

– Switch on events, statistics, and logging.

It is a modifier builder that can override the SQL statement configuration of
the SQL call builder when more flexibility is required. SQL statements can be

 Chapter 5. Creating Data Services: Access to back-end systems 119

invoked directly from Java code or action lists because they represent
ready-for-execution JDBC statements.

� SQL Transaction: Top-level builder for creating a list of Statements that are
ready for execution as a transaction. It does not define a transaction by itself,
but it defines which SQL Statement builders can participate inside of one
transaction. The boundaries of the transaction and the execution of the
statements must be done programatically in Java code or action lists.

� SQL Transform: These builders allow you to customize the transformation
that turns SQL result sets into XML variables.

– To XML: Transformation from SQL result set into XML variable. It can be
used to override existing transformation in the SQL Call builders. It
provides a more advanced and configurable transformation and it can be
reused by different builders.

– To XML Schema: Generates XML schemas from the execution of SQL
statements.

The following sections explain in detail some functionality of the builders within
the ITSO Renovations application.

5.2.2 Design for ITSO Renovations - Customer and order information

SQL Data Services are used by ITSO Renovations to access data about
customers and orders saved in a relational database. This section describes the
design of the required models, relationships between them, and how they
implement the Application Data Service Interface. Our example is implemented
using a DB2 database but it does not have any specific SQL statement for this
database, so other relational databases, like Cloudscape, Oracle, or similar, can
be used.

Following the relational model defined in 4.3.2, “Architecture and design” on
page 76, create models for accessing data in the following domains:

� Customer: Access information about customers following the interface of
customer information.

� Order: Access information about customer orders following the interface of
order information.

� Product: Access information about available products, but without details that
will be accessed by the Domino and Web Services Data Services.

� ID: Access the ID table that provides help to get a new unique identifier for
new orders and customers.

120 Portal Application Development Using WebSphere Portlet Factory

All data is kept in the database following the data model described in the
previous chapter. The goal is to design a SQL Data Provider Service that
accesses the data of the previous domains and is linked with the service
definitions and operations defined in the Application Data Service Interface.
Figure 5-14 shows the initial design for SQL Data Services.

Figure 5-14 Design SQL Data Services

This design will be updated during the implementation to cover special treatment
of data (for example, CLOB columns in database), implementation of
transactions, and some other special custom behavior to fulfill the requirements
of the application.

It is a good practice to provide a high-level design of the Data Service at this
stage. It will be extended during the implementation with all the specific
WebSphere Portlet Factory functionality. The next section covers the details for
implementing the service and operations.

CustomerDBProvider.model

OrderDBProvider.model

Customer
Interface

ProductDBProvider.model

IdDBProvider.model Customer Service
Database

Order
Interface

Product
Interface

imports

consumes

consumes

DBProviderHelper.model

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

CustomerDefinitions.model

OrderDefinitions.model

ProductDefinitions.model

imports

imports

imports

ID

CUSTOMER

ORDER

ORDER_ITEM

ORDER_STATUS

PRODUCT

consumes

 Chapter 5. Creating Data Services: Access to back-end systems 121

5.2.3 Implementing the service and operations

During the implementation of SQL Data Services it is important to identify which
SQL builders will be necessary. It is a best practice to start using top-level
builders like SQL Call, then use modifier builders in cases when special
functionality is required, such as:

� Custom data column access, for example, working with binary data (BLOB
columns in database) or, in generic terms, the non standard data types that
require specific casting, even in some cases specific to a database provider.

� Implementation of transactions that involve the execution of more than one
SQL statement, for example, several insert/update/delete operations in one
transaction.

� To add pre and post processing of data when executing a SQL statement.
This is the typical case when a customized data transformation is required or
some additional data processing is necessary before the service operation
returns results. This requires wrapping the execution of the SQL builder within
a Linked Java Object or an Action List.

� When using modifier builders (for example, a SQL statement) it is necessary
to initialize the inputs manually and perform the execution of the builder
programatically. In this case an Action List can be used, or for more complex
processing, a Linked Java Object.

From a high-level point of view, the tasks performed to implement SQL Data
Services are:

1. Create WebSphere Portlet Factory models for the SQL Data Service. One per
data domain provides a clear organization of the models in your application.

2. Import definition builders with the data structures. Add Service Consumers to
access data required by the implementation of the SQL operations.

3. Add the service definition and operations from the models where they were
defined: XML access file Data Provider.

4. Add SQL Call builders for the implementation of SQL operations and set them
as Action to Call in the service operations.

5. Review the implementation and add Linked Java Object method calls and
Action List builders in these operations that require additional data
processing. Define data transformations to match the inputs and results
schemas of the interfaces using the Transformation builder or programatically
using the IXml API.

6. Determine whether customized data column access is required. (For
example, this will be required if you need to work with binary columns or data
types requiring special casting mechanisms.)

122 Portal Application Development Using WebSphere Portlet Factory

7. Implement transactions involving several SQL statement executions.

To implement the SQL Data Service in ITSO Renovations as we did in our lab,
perform the following steps:

1. Create DB Service Provider models. You can create an empty model or get a
basic set of builders by selecting the Database Service provider model type.
In our example, we create an empty model to illustrate the creation of all
necessary builders. Using the details provided in Table 5-3, create the DB
Provider models under the folder \WEB-INF\models\redbook\cs\data\db.

Table 5-3 SQL Data Provider models

2. Import the models and add the related Service Consumers as identified in
Table 5-4.

Table 5-4 Imported and Service Consumer models

The imported models contain the schema definitions of the interface. The
Service Consumer builders access data of another data domain (for example,
the Customer model must get the next available ID from the IdDBProvider
model). It is possible to add a Service Consumer of another type (for
example, File or Web Service) if the scenario requires it; in our example all
DB Providers are using other DB Providers.

3. Add the service definition and operations that the DB Data Service must
implement. The interface was defined previously, during the creation of the
XML access file Data provider. There are several ways to bring the interface
into the model: copy or re-type the builders, use a profiled imported model,
add a custom builder, and so forth. The most convenient and simple way is to

Data domain Model

Customer CustomerDBProvider

Order OrderDBProvider

Product ProductDBProvider

Id IdDBProvider

Model Imported model Service Consumer
(builder name)

CustomerDBProvider data.def.CustomerDefinitions
data.db.DBProviderHelper

data.db.IdDBProvider (ids)

OrderDBProvider data.def.OrderDefinitions data.db.IdDBProvider (ids)

ProductDBProvider data.def.ProductDefinitions
data.db.DBProviderHelper

 Chapter 5. Creating Data Services: Access to back-end systems 123

copy and paste the builders into the DB Service models. This is the approach
we followed in ITSO Renovations:

a. Open the File Provider model, select the Service Definition and all Service
Operations.

b. Copy the selection and paste it into the DB Provider model.

c. After this operation you will receive several errors that the Action to Call is
not found. This will be fixed when you add the real SQL builder to be
invoked when executing the operation.

d. To validate the implementation against the service interface, modify the
Service Definition in the DB Provider model to use the interface of the File
Provider model. This action will ensure that all the operations of the
service are implementing the expected interface.

Figure 5-15 Service Definition builder: Set Interface Model

e. Repeat the previous steps for each DB Provider model using the
specifications from Table 5-5.

124 Portal Application Development Using WebSphere Portlet Factory

Table 5-5 Copy and set interfaces for DB Provider Models

Create the new IdDBProvider.model that will provide access to the ID table to
get the next available identifier for new orders and customers. In this case
you create a new Service Definition that will be consumed by the Customer
and Order DB Provider models and that is not part of the Application Data
Service interface. Create the Service Definition and Operation builders
following the inputs from Table 5-6 and Table 5-7.

Table 5-6 Id Service Definition

Table 5-7 Operations for Data Service: ids

Use the implementation of the service provided as part of the final application.
This is not covered in detail here, but it is a simple exercise that can help you
to understand the implementation of the other services.

4. Create the SQL Data Source that will be used by the rest of SQL builders
(Figure 5-16.

Copy from (set as interface to implement) Copy to (DB Provider model)

data.file.CustomerFileProvider data.db.CustomerDBProvider

data.file.OrderFileProvider data.db.OrderDBProvider

data.fileProductFileProvider data.db.ProductDBProvider

Operation name Inputs Results Description

getNextId TABLE_NAME
ID_SIZE

Next available
ID as String

Returns the next ID as String for the Table
given as an argument and formatted with
leading zeros until reaching the size
provided as the argument

Operation Inputs schema Results schema

getNextId Automatic Automatic

Define an Action List: getNextIdAL (TABLE_NAME: String, ID_SIZE: int) return String

This is the Action to Call by the previous operation. Notice that the schemas are
generated automatically from the interface of the Action List.

 Chapter 5. Creating Data Services: Access to back-end systems 125

Figure 5-16 SQL DataSource builder

During the creation of the SQL Data Source you provide the JNDI name of the
Data Source registered in your application server. By default it is assumed
that this is the same server where the web application is running. If this is not
the case you can define a remote JNDI server. The data source can already
contain authentication information for the back-end system; if this is not the
case the user name and password can be defined in the builder under the
DataSource Authentication section.

5. Add SQL Call builders with the statements to execute. Override the SQL Data
Source in the Builder Override Definition section to use the previously defined
SQL DataSource builder (Figure 5-17). It is possible to provide the JNDI
name in the SQL Call builder but it is more maintainable to define it once and
reuse it in all SQL builders.

Figure 5-17 SQL Call builder: Override definitions

126 Portal Application Development Using WebSphere Portlet Factory

Provide a name for the SQL Call builder. Do not use the same name used in
the service operation because you could have some conflicts with the
generated resources. The builder contains a Database Explorer to help you
build the SQL statement that will be executed:

– List entities (tables or stored procedures) from the database. You can filter
the result using schemas and catalog patterns.

– Generate a sample SQL statement: Select, insert, update, delete. You can
modify the statement or provide one of your own. The syntax is standard
SQL. Parameter use is the same as when creating Java Prepared SQL
statements: each parameter is represented with ? as a place holder.

 Chapter 5. Creating Data Services: Access to back-end systems 127

Figure 5-18 SQL Call builder: Database Explorer makes it easy to build the SQL statement

128 Portal Application Development Using WebSphere Portlet Factory

Apply the sample SQL statement and it will be copied into the SQL Statement
input builder together with the parameters. You can modify the statement and
parameters to adjust them to your requirements. This will be the actual
statement that will be executed by the builder.

The SQL Call builder offers several configuration options to define input
parameters and handle the result set (Figure 5-19).

Figure 5-19 SQL Call builder: Statement, parameters and result set handling

 Chapter 5. Creating Data Services: Access to back-end systems 129

Brief descriptions of the main builder inputs follow; consult the WebSphere
Portlet Factory documentation for complete details. The main builder inputs
are:

– SQL Statement: This is the final statement that will be executed in the
database.

– Parameters: Represented with ? in the SQL statement and indexed by
position starting with 1. Each time a new parameter is included in the
statement, a new row is added to the Parameters table. The parameter
binding defines how to obtain the value:

• Manual: You provide the binding between an existing variable and the
parameter.

• Automatic (Create Distinct Variables): Automatically creates a variable
for each parameter.

• Automatic (Create XML Variable): Automatically creates one XML
variable with elements for each parameter.

By default, each parameter is mapped to a variable and the JDBC Type
Cast is automatic. In some special cases you can provide your own
method to set the value in the parameter. We cover this case in detail in
5.2.5, “Customize data column access in SQL builders:
Working with binary data” on page 145.

– ResultSet Handling: There are several configuration options to define the
characteristics of the result set returned by the SQL call and the
translation requirements for result set data to XML:

• Concurrency: The concurrency mode for the result set.

• Scroll type: Type of result set.

• Transform Result: Type of transform result to create when the query is
executed:

Complete XML Document means that the complete result set is
transformed into an XML Document.

Paged XML DataRetriever means that it is possible to retrieve the
results in pages and control this behavior. This option is especially
useful when a large amount of data is returned.

• Top Element Name and Row Element Name: you can customize the
names of the root and the element that represent each row in the XML
document. If no names are provided, the builder uses the default
names: RowSet for the root and Row for each row element. These
options are only available if a Transform Result is defined.

130 Portal Application Development Using WebSphere Portlet Factory

• Schema Generation: How to generate the XML schema for the results
of the SQL operation. There are four possibilities:

Omit Generation Step: Does not generate the schema automatically.
This is the case when transformation of the result set into an XML
document is not required.

From SQL Statement: This is the default option. It uses the SQL
statement from the input of the builder to generate the schema, the one
that is actually executed during execution of the operation in runtime. If
the previous top and row element names are provided, this is reflected
in the generated schema.

From Alternate SQL Statement: you can provide an additional SQL
statement only for generation of the schema. This is useful when the
builder cannot generate the schema automatically from the statement
provided in the builder. This is the typical case when the statement is
too complex and the builder cannot retrieve the metadata properly.

Figure 5-20 SQL Call Builder: generation of schema from an alternate SQL statement

For example, when retrieving data from a table with a BLOB column,
the builder cannot retrieve the data type automatically, so you need to
provide an alternate statement to generate a schema and force specific
columns with the desired data types. In the previous example, the
THUMBNAIL column is a BLOB, but we want to have an element of
type string to return the path of the file with the binary content.

Use Existing URL/File/Variable: You manually provide the schema to
use, from a URL, local file, or value of a variable.

• Regen Time: This option defines when the schema is regenerated. By
default is only when SQL Builder changes are detected, but you can
set to generate it on every regeneration of the model or only when it
happens in the designer. This option is only possible when the schema
generation is from the SQL Statement.

We provide one SQL Call as example; you can implement the rest based on
the requirements of the operation and expected structure for input/results.
The name of the builder should be different from the name of the Service

 Chapter 5. Creating Data Services: Access to back-end systems 131

Operation. Do not use the same name in two or more builders to avoid
conflicts with the generated methods, resources, and so forth.

Once all SQL Call builders are created, set them as the Action To Call in each
Service Operation. It might be necessary to specify the input and result fields
mapping between the action to call and the service operation. The automatic
field mapping only works if the names of the fields are identical in the SQL
Call and the Service Operation schemas.

132 Portal Application Development Using WebSphere Portlet Factory

Figure 5-21 Service Operation builder: action to call is a SQL Call builder

 Chapter 5. Creating Data Services: Access to back-end systems 133

Set all actions to call using the details provided in the following three tables.

Table 5-8 Customers service definition: Actions to call by Service Operation builders

Table 5-9 Orders service definition: Actions to call by Service Operation builders

Service operation Action to call

getCustomers DataServices/getCustomersQuery/execute

getCustomersList DataServices/getCustomersListQuery/execute

findCustomers findCustomersAL
(Using an Action List for special functionality)

getCustomer getCustomerAL
(Using an Action List for special functionality)

createCustomer DataServices/createCustomerInsert/execute

updateCustomer DataServices/updateCustomerSql/execute

validateCustomerAccount validateCustomerAccountAL
(Using an Action List for special functionality)

getNextCustomerId DataServices/ids/getNextId
(Notice that it is using the Service Consumer ids)

Service operation Action to call

getOrders DataServices/getOrdersQuery/execute

getOrdersList DataServices/getOrdersListQuery/execute

getCustomerOrders DataServices/getCustomerOrdersQuery/execute

getCustomerOrdersList DataServices/getCustomerOrdersListQuery/execute

getOrder DataServices/getOrderQuery/execute

getOrderItems getOrderItemsAL (Using an Action List for special
transformation of results)

createOrder DataServices/createOrderInsert/execute

createOrderWithItems orderDBProviderHelper.createOrderWithItems
(Using a LJO method to control the transaction)

createOrderItem orderDBProviderHelper.createOrderItem
(Using a LJO method for special functionality)

updateOrder DataServices/updateOrderSql/execute

updateOrderItem DataServices/updateOrderItemSql/execute

134 Portal Application Development Using WebSphere Portlet Factory

Table 5-10 Products service definition: Actions to call by Service Operation builders

6. Some operations require additional data processing, pre or post the execution
of the operation. In these situations, the execution of the SQL Call builder will
not be done directly unless else a new Action List is provided to add the
required functionality:

– customers.findCustomers

– customers.validateCustomerAccount

– orders.createOrderItem

Notice the previous cases we have in ITSO Renovations and how the SQL
Call builder is invoked programatically. Details about how to invoke the SQL
builders programatically are provided in a later section.

There are some cases where the mapping of top and row elements is not
enough to match the target schema. In this case you need to provide a data
transformation using the Transformation builder, or IXml API for more
complex transformations. ITSO Renovations requires special data
transformations using IXml API in the following case:

– orders.getOrderItems

See 5.2.4, “Data transformations: Use of IXml API” on page 140 for details
about implementing complex transformations using the IXml API.

7. Some scenarios require additional customized data column access. This is
the case of images (binary data) in the ITSO Renovations application. In
order to apply custom data transformations to the result set it is necessary to
create an additional SQL Statement builder and override it in the SQL Call.
We have following cases in our application:

– customers.getCustomers

updateOrderItemsList orderDBProviderHelper.updateOrderItemsList
(Using a LJO method to control the transaction)

getOrderStatusList DataServices/getOrderStatusListQuery/execute

getNextOrderId DataServices/ids/getNextId
(Notice that it is using the Service Consumer ids)

Service operation Action to call

getProducts DataServices/getProductsQuery/execute

getProduct DataServices/getProductQuery/execute

Service operation Action to call

 Chapter 5. Creating Data Services: Access to back-end systems 135

– customers.getCustomer

– products.getProducts

Section 5.2.5, “Customize data column access in SQL builders:
Working with binary data” on page 145 provides detailed information about
how to access binary data in these specific cases. It describes the
implementation pattern, required builders, and the code that must be
implemented.

8. SQL Call builders are simple executions of one SQL statement in one
transaction. There are some scenarios where it is required to execute several
statements within one transaction. In this case the SQL Call builder cannot be
used and separate SQL Statement builders must be created. The SQL
Transaction builder is used to define which statements can take part in the
transaction. We have several of these cases in ITSO Renovations:

– orders.createOrderWithItems

– orders.updateOrderItemsList

See 5.2.6, “Implementation of transactions” on page 161 for details about how
to implement these transactions that involve more than one SQL statement.

Code generated by SQL builders
SQL builders, like other WebSphere Portlet Factory builders, generate code and
some other resources at execution time. The designer offers the possibility to
visualize what is generated using the WebApp Tree view of the model. It is
interesting to walk through the helper LJOs, methods, and schemas that are
generated. They can be accessed programatically in these cases:

� Java code using the WebAppAccess object

� Action List or Method builders

� Reference to generated structures

This section shows what is generated by the two main builders: SQL Call builder
and SQL Statement builder.

SQL Call builder
The builder metadata appears as a child of the Data Service leaf in the WebApp
tree (Figure 5-22). In the right window you see a short summary with the SQL
statement, the generated operation with parameters, and the internal variables
that are used to keep the data. The builder uses some internal Linked Java
Objects to work with the Statement and perform the result set to XML
transformation.

136 Portal Application Development Using WebSphere Portlet Factory

Figure 5-22 SQL Call builder: Generated Data Service and internal LJO

Two methods are generated to execute the SQL call (Figure 5-23). They can be
programatically invoked using the callMethod() from the WebAppAccess object.

The generated code (right window) contains a base method that is invoked by
either of the methods <builder_name>Invoke() or
<builder_name>InvokeWithParams(). The difference between these methods is
the use of parameters. If your SQL statement contains parameters, use
InvokeWithParams, otherwise, use null values.

 Chapter 5. Creating Data Services: Access to back-end systems 137

Figure 5-23 SQL Call builder: Generated Methods

138 Portal Application Development Using WebSphere Portlet Factory

Finally, the builder generates the schemas for the inputs and results and the
variables that contain the data when the statement is executed (Figure 5-24).

Figure 5-24 SQL Call builder: generated schemas and variables

� <builder_name>Inputs

<builder_name>Inputs contains the input value for parameters of the SQL
statement. The schema is <builder_name>Inputs.

� <builder_name>TransformXml

<builder_name>TransformXml contains the XML document with the results
after the transformation of the result set into the XML. The schema is
<builder_name>TransformXml.

The generated code and resources can be different depending on whether the
SQL Call contains parameters, results, or both. We have provided an example
that covers both cases.

 Chapter 5. Creating Data Services: Access to back-end systems 139

SQL Statement builder
This builder generates only an internal Linked Java Object with convenient
methods to create a Prepared SQL Statement (Figure 5-25).

Figure 5-25 SQL Statement builder: Generated LJO

All these methods of the Linked Java Object can be invoked in Action List and
Java code to create prepared SQL statements.

Some of the generated methods are used in the following sections to manually
implement the functionality of the service operation. In our example they are
accessed from LJOs and Action List builders.

5.2.4 Data transformations: Use of IXml API

In most cases it is enough to provide the mapping to the target structure using
the result set handling of the SQL Call or SQL Statement builders. This is the
case when we transform from one plain data structure to another plain data
structure (Figure 5-26).

140 Portal Application Development Using WebSphere Portlet Factory

Figure 5-26 Plain-to-plain data structure mapping

We are only interested in renaming the top and row element names. In this case
the column names of the database must be the same as the element names in
the target XML file. If this is not the case, a Transformation builder can be used to
apply the corresponding renaming and filtering of necessary elements.

There are some other cases where we transform from a plain to a hierarchical
structure. In this case the transformation can be implemented manually within a
method of a Linked Java Object. In this scenario, you need to know the IXml API
that allows you to access and create XML content.

<RowSet>
 <Row>
 <ID>001</ID>
 <NAME>Retro Restoration</NAME>
 <ADDRESS>4025 Smith Ave</ADDRESS>
 <CITY>Beach Haven</CITY>
 <STATE>PA</STATE>
 <ZIP>18601</ZIP>
 <PHONE>697-538-9335</PHONE>
 <FAX>969-520-3847</FAX>
 <CONTACT>Jeremy Weeks</CONTACT>
 <EMAIL>...</EMAIL>
 <IMAGE>...</IMAGE>
 <PIN>...</PIN>
 </Row>
 <Row>
 <ID>002</ID>
 <NAME>Modern Design</NAME>
 <ADDRESS>5 Orchard Way</ADDRESS>
 <CITY>Washington</CITY>
 <STATE>DC</STATE>
 <ZIP>20406</ZIP>
 <PHONE>964-530-3330</PHONE>
 <FAX>965-569-1541</FAX>
 <CONTACT>Allison Peterson</CONTACT>
 <EMAIL>...</EMAIL>
 <IMAGE>...</IMAGE>
 <PIN>...</PIN>
 </Row>
 ...
</RowSet>

<Customers>
 <Customer>
 <ID>001</ID>
 <NAME>Retro Restoration</NAME>
 <ADDRESS>4025 Smith Ave</ADDRESS>
 <CITY>Beach Haven</CITY>
 <STATE>PA</STATE>
 <ZIP>18601</ZIP>
 <PHONE>697-538-9335</PHONE>
 <FAX>969-520-3847</FAX>
 <CONTACT>Jeremy Weeks</CONTACT>
 <EMAIL>...</EMAIL>
 <IMAGE>...</IMAGE>
 <PIN>...</PIN>
 </Customer>
 <Customer>
 <ID>002</ID>
 <NAME>Modern Design</NAME>
 <ADDRESS>5 Orchard Way</ADDRESS>
 <CITY>Washington</CITY>
 <STATE>DC</STATE>
 <ZIP>20406</ZIP>
 <PHONE>964-530-3330</PHONE>
 <FAX>965-569-1541</FAX>
 <CONTACT>Allison Peterson</CONTACT>
 <EMAIL>...</EMAIL>
 <IMAGE>...</IMAGE>
 <PIN>...</PIN>
 </Customer>
 ...
</Customers>

 Chapter 5. Creating Data Services: Access to back-end systems 141

Figure 5-27 Example plain-to-hierarchical data structure mapping

ITSO Renovations provides examples of all kind of transformations. Previously
we described how to use the result set handling. In 5.3.4, “Data transformations:
Use of Transform builders” on page 185 we cover the Transform builder when
working with Domino data. In this section we analyze how to implement a Java-
based transformation using the IXml API for the hierarchical case.

Example 5-1 shows the code we used to transform the data returned by the SQL
Call builder (already with top and row elements renamed) into the hierarchical
data structure expected by the service operation (Figure 5-27). In this example,
notice the use of IXml API to navigate and work with the XML elements.

<Orders>
 <Order>
 <ORDER_ID>0001</ORDER_ID>
 <ITEMS>
 <ITEM>
 <PRODUCT_ID>16</PRODUCT_ID>
 <NAME>32" Casement Window</NAME>
 <DESCRIPTION>...</DESCRIPTION>
 <THUMBNAIL>...</THUMBNAIL>
 <UNIT_PRICE>429.00</UNIT_PRICE>
 <QUANTITY>9</QUANTITY>

 </ITEM>
 <ITEM>
 <PRODUCT_ID>2</PRODUCT_ID>
 <NAME>24" Pine Door</NAME>
 <DESCRIPTION>...</DESCRIPTION>
 <THUMBNAIL>...</THUMBNAIL>
 <UNIT_PRICE>199.00</UNIT_PRICE>
 <QUANTITY>8</QUANTITY>

 </ITEM>
 ...
 </ITEMS>
 </Order>
 <Order>
 <ORDER_ID>0002</ORDER_ID>
 <ITEMS>
 <ITEM>
 <PRODUCT_ID>15</PRODUCT_ID>
 <NAME>42" Casement Window</NAME>
 <DESCRIPTION>...</DESCRIPTION>
 <THUMBNAIL>...</THUMBNAIL>
 <UNIT_PRICE>499.00</UNIT_PRICE>
 <QUANTITY>4</QUANTITY>

 </ITEM>
 ...
 </ITEMS>
 </Order>
 ...
</Orders>

<Orders>
 <Order>
 <ORDER_ID>0001</ORDER_ID>
 <PRODUCT_ID>16</PRODUCT_ID>
 <NAME>32" Casement Window</NAME>
 <DESCRIPTION>...</DESCRIPTION>
 <THUMBNAIL>...</THUMBNAIL>
 <PRICE>429.00</PRICE>
 <SOURCE>EXT</SOURCE>
 <QUANTITY>9</QUANTITY>
 </Order>
 <Order>
 <ORDER_ID>001</ORDER_ID>
 <PRODUCT_ID>2</PRODUCT_ID>
 <NAME>24" Pine Door</NAME>
 <DESCRIPTION>...</DESCRIPTION>
 <THUMBNAIL>...</THUMBNAIL>
 <PRICE>199.00</PRICE>
 <SOURCE>INT</SOURCE>
 <QUANTITY>8</QUANTITY>
 </Order>
 ...
 <Order>
 <ORDER_ID>0002</ORDER_ID>
 <PRODUCT_ID>15</PRODUCT_ID>
 <NAME>42" Casement Window</NAME>
 <DESCRIPTION>...</DESCRIPTION>
 <THUMBNAIL>...</THUMBNAIL>
 <PRICE>499.00</PRICE>
 <SOURCE>EXT</SOURCE>
 <QUANTITY>4</QUANTITY>

 </Order>
 ...
</Orders>

142 Portal Application Development Using WebSphere Portlet Factory

Example 5-1 Code for tranformOrderItems() in OrderDBProviderHelper Java class

public IXml transformOrderItems(WebAppAccess webAppAccess, String orderID, IXml sqlOrderItems) {
// create the top level elements for order and items
IXml resultOrderElement = XmlUtil.create(DataConstants.ELEM_ORDER);
resultOrderElement.addChildWithText(DataConstants.ELEM_ORDER_ID, orderID);

 IXml resultItemsElement = resultOrderElement.addChildElement(DataConstants.ELEM_ITEMS);

// get the list of all order items and transformed in the required
// target structure

 List sqlOrderItemsList = sqlOrderItems.getChildren(DataConstants.ELEM_ORDER);
 for (int i = 0; i < sqlOrderItemsList.size(); i++) {
 IXml sqlOrderItem = (IXml) sqlOrderItemsList.get(i);
 IXml resultItemElement = resultItemsElement.addChildElement(DataConstants.ELEM_ITEM);
 resultItemElement.addChildElement(

sqlOrderItem.findElement(DataConstants.ELEM_PRODUCT_ID).cloneElement());
 resultItemElement.addChildElement(

sqlOrderItem.findElement(DataConstants.ELEM_NAME).cloneElement());
 resultItemElement.addChildElement(

sqlOrderItem.findElement(DataConstants.ELEM_DESCRIPTION).cloneElement());
resultItemElement.addChildElement(

sqlOrderItem.findElement("THUMBNAIL").cloneElement());
 resultItemElement.addChildElement(DataConstants.ELEM_UNIT_PRICE).

copyContent(sqlOrderItem.findElement(DataConstants.ELEM_PRICE));
 resultItemElement.addChildElement(

sqlOrderItem.findElement(DataConstants.ELEM_QUANTITY).cloneElement());
 resultItemElement.addChildElement(

sqlOrderItem.findElement(DataConstants.ELEM_SOURCE).cloneElement());
 }
 return resultOrderElement;
}

This example shows how to transform the items of one order as required by the
application. Figure 5-27 shows the general concept to transform all items for all
orders that could be easily implemented with minor changes in the previous
code.

All XML content in WebSphere Portlet Factory is represented as an IXml object:
documents and elements. Refer to the API for more information about this class.
The most useful methods extracted from the API are defined in Table 5-11.

Table 5-11 Useful methods when transforming XML with IXml API

Method summary

void addChildElement(IXml xml)
Moves the specified element in the argument from its original parent to become the new
last child of this element

IXml addChildElement(java.lang.String name)
Creates a new element with a name of the argument.

IXml addChildWithText(java.lang.String name, java.lang.String text)
Similar to addChildElement.

 Chapter 5. Creating Data Services: Access to back-end systems 143

void addText(java.lang.String value)
Creates a text node having the text of the first argument and makes it the new last child
of this.

IXml cloneElement()
Creates a new unparented node whose attributes are the same as this node's
attributes.

void copyContent(IXml xml)
Copy all the children of the xml argument (text and elements) and add them as children
of this.

IXml findElement(java.lang.String path)
Finds the specified element under this using an xpath like notation.

java.util.List getChildren()
Returns a list of all of the children elements of this element.

java.util.List getChildren(java.lang.String name)
Returns a list of all of the element children of this element whose name matches the
specified name.

IXml getFirstChildElement()
Returns the first child of this element.

IXml getNextSiblingElement()
Returns the next sibling of this element or null if this is the last child of its parent.

java.lang.String getText()
Returns the text from the first child text node of this element.

java.lang.String getText(java.lang.String path)
Finds the specified element and gets its first text value using an xpath like notation.

void removeChildElement(IXml child)
Removes the specified immediate child and makes it parentless.

void removeChildElement(java.lang.String child)
Removes the named immediate child from this element and makes the removed child
parentless.

void removeChildren()
Removes all of the children from this element.

void setName(java.lang.String name)
Renames this element with the specified name.

void setText(java.lang.String value)
Sets the first text node value for this element.

Method summary

144 Portal Application Development Using WebSphere Portlet Factory

Another useful class of the XML API is com.bowstreet.util.XmlUtil, which
provides methods to parse and create XML documents.

These methods are very useful when implementing XML data transformations,
but all methods of IXml API can be used in any context when working with XML
content inside of WebSphere Portlet Factory.

Finally, we note some best practices and considerations when working with IXml:

� IXml objects can represent variables in the WepApp tree. For example, in a
Service Operation, inputs and results are stored in variables of IXml type. You
can set the values directly for the input variable but it is not recommended to
modify the results variable for operations accessing the back-end systems. It
is possible to do transformations directly in the results variable to improve
efficiency, but it should be done carefully because these are the actual results
from the back-end operation and some service operations could expect them
unchanged.

� Consider the use of clone IXml objects instead of modifying the object directly
if you want to keep the original data. For example, when SQL Call builder
returns data in a variable, create a new one for the result of the transformation
and clone those elements that must be copied to the target or create new
ones. If you assign the element, you will have a reference and both variables
will share the objects and produce some side effects. Consider the specific
application scenario when selecting the best approach.

� Consider memory usage. You can create variables in the model that will be
valid during the user session and therefore the memory footprint per session
could increase. When possible, use temporary variables in the Java methods
that do not keep the data in the session.

5.2.5 Customize data column access in SQL builders:
Working with binary data

SQL builders in WebSphere Portlet Factory provide automatic JDBC type cast
for parameter and result values for simple data types. There are some cases for
which this is not possible because of binary data or database dependent types.
The builders support high configurability in data casting and allow the developer
to provide customized methods.

Before getting into the details of the implementation, you should understand what
is happening with the data when a SQL Call is invoked. This is illustrated in
Figure 5-28.

 Chapter 5. Creating Data Services: Access to back-end systems 145

Figure 5-28 SQL Call Builder: XML flow and execution details

Since the result set handling in the SQL Call builder does not offer custom JDBC
type casting, it is necessary to create a SQL Statement builder to define the new
data type casting. The statement in the SQL Call builder must be overridden with
the new SQL Statement builder just created.

ITSO Renovations provides examples of inserting and retrieving binary data
(BLOB database columns). In this section we analyze in detail the scenario of
inserting and selecting a record with an image in one of the columns.

Insert record with an image column: Create customer
Create customer requires inserting of a record that contains a BLOB column:
IMAGE. It it necessary to customize the method to set the input parameter for
that column instead of using the JDBC automatic type cast.

Database

TABLE

Service Operation Builder

XML Inputs XML
Results

XML DB
Results

DB ResultSetPrepared SQL
Statement

SQL Call Builder

XML DB
Parameters

Possible XML data
transformations to match
the XML schemas of the

Service Operation

XML DB parameters TO
Prepared SQL Statement

Possible custom JDBC
type cast for special data

types in parameters of the
prepared SQL statement

DB ResultSet TO XML
DB Results

Possible custom JDBC
type cast for special data
types in resultset of the
prepared SQL statement

146 Portal Application Development Using WebSphere Portlet Factory

You can provide your own method to perform a custom type cast and value
definition. It must take the parameters described in Table 5-12 and return void.

Table 5-12 Parameters of the custom set method for SQL Input Parameters

You can create a Method builder like the one shown in Figure 5-29.

Parameter Description

BuilderName This string parameter will contain the name of the SQL Statement
Builder that is calling the method to perform a custom type cast and
value definition. You can define one method for each custom type cast
you have defined or you can bundle all of your type casts together and
use this input to identify which specific type cast to apply when called
by the Builder.

Statement This object parameter is the actual JDBC PreparedStatement or
CallableStatement that was created by the Builder and is being
prepared for execution. The method is responsible for setting the input
type of the positional parameter. It is also responsible for defining the
input value to be used by the statement when it is executed.

position This integer parameter identifies the positional parameter in the SQL
statement for which the type cast is to be performed.

action This new string parameter is used to specify whether the method is
being called to cast an output parameter of a stored procedure call, or
to set the output parameter’s value.

 Chapter 5. Creating Data Services: Access to back-end systems 147

Figure 5-29 Method builder for custom JDBC type cast

148 Portal Application Development Using WebSphere Portlet Factory

The problem with this solution is that you are not able to debug this code in the
designer. You can implement the method in a Java class and access it using the
LJO builder, but you cannot invoke it as part of the set/cast method of the input
parameter because only Method or Action List builders with the previous
interface are allowed.

We implemented the following solution:

1. Implement the logic to set the binary content in a helper Java class and
access it via LJO builder. In our example, the code of the method is in
com.ibm.redbook.cs.data.db.DBProviderHelper.java.

Example 5-2

public void setBinaryFileContent(WebAppAccess webAppAccess, String builderName,
java.sql.PreparedStatement statement, int position, String action, String filePath) {
try {

if ("cast".equalsIgnoreCase(action)) {
// "cast" is only called when the SQL is a callable statement
// and you need to set a parameter's type.
// You can return null in this case.

} else if ("set".equalsIgnoreCase(action)) {
// "set" is called when the SQL builder needs you to set the
// value of a custom-typed parameter. In this sample
// we're setting a BLOB. Many DB drivers have special classes to
// efficiently handle LOB types so you'll need to
// consult the docs for your DB / driver to see what they
// recommend. The code below uses the JDBC standard
// for setting a BLOB.
File file = null;
if (!"".equals(filePath)) {

file = new File(BSConfig.getHtmlRootDir() + filePath);
}

if ((file != null) && (file.exists())) {
InputStream inputStream = new FileInputStream(file);
statement.setBinaryStream(position, inputStream, inputStream.available());

}
else {

statement.setNull(position, Types.BLOB);
}

}
} catch (Exception e) {

try {
statement.setNull(position, Types.BLOB);

} catch (SQLException e1) {
}
throw new WebAppRuntimeException(e);

}
}

 Chapter 5. Creating Data Services: Access to back-end systems 149

Notice the marked area where the binary content is set in the parameter by
position.

2. Create an Action List to invoke the previous LJO method (Figure 5-30).

Figure 5-30 Action List builder: setBinaryContent in DBProviderHelper.model

150 Portal Application Development Using WebSphere Portlet Factory

3. Set the previous Action List as Set/Cast Method in the Parameters of the SQL
Call builder: createCustomerInsert builder in CustomerDBProvider.model
(Figure 5-31).

Figure 5-31 SQL Call builder: Set custom type cast method

4. In order to reuse this functionality in several models, the Action List is defined
in a separate helper model that is imported where needed:

DBProviderHelper.model

 Chapter 5. Creating Data Services: Access to back-end systems 151

Figure 5-32 shows the implementation details and what is happening when
inserting the record.

Figure 5-32 Setting binary content as an input parameter in SQL Prepared Statements

The path of the file that contains the binary data is also parameterized in the
Java method and the value is provided from a temporary model variable. The
caller of the operation must set first the path of the input file. In our scenario, the

DBProviderHelper.model

Database

TABLE

Service Operation Builder

XML Inputs

Prepared SQL
Statement

SQL Call Builder

XML DB
Parameters

Pre-execute
method

Method Builder:
assignTmpContentPath

Variable Builder:
tmpContentPath

Parameters
Cast

Action List Builder:
setBinaryContent

DBProviderHelper.java
setBinaryFileContent()

LJO Builder:
DBProviderHelper

1) Execute Service
Operation

2) Get XML inputs
where tmp content
path defined and
execute method

3) assign variable
tmpContentPath

4) Execute
SQL Call

5) Custom cast
of binary type

6) Execute LJO method to
set binary parameter in

Prepared SQL Statement

8) Execute of SQL
Prepared Statement

Pass tmpContentPath
as argument

Pass builder,
position, etc as

arguments

Pass Prepared SQL
statement as argument

7) Read file with binary content and
set it in the Prepared SQL Statement

152 Portal Application Development Using WebSphere Portlet Factory

Service Operation has a pre-execution action that sets the value of this variable
before executing the SQL Call builder (Figure 5-33).

Figure 5-33 Service Operation builder: Set pre-execution method

 Chapter 5. Creating Data Services: Access to back-end systems 153

This is the method that is invoked pre-execution of the operation. It assigns the
temporary variable with the path of the file that contains the binary data. The
variable value is used by the previous Action List to give the information about
the file location to the custom type cast method (Figure 5-34).

Figure 5-34 Method builder: Assigning temporary variable with the path of the file

The described mechanism is valid for any column with binary data. This solution
has some issues that must be considered when used in a real environment:

� The path of the binary content is a temporary path part of the serveable
content of the web application. It is not user specific, so to avoid interactions
in a multiuser concurrent environment, the path should be session
dependent. We have not covered the complete implementation to make the
example easy to understand.

� The current solution supports one binary parameter per statement because
we have only one variable for the path of the file with binary data. It is possible
to provide an array of strings with the paths for all the binary parameters.

The main concept is illustrated in this example and with a little effort it is possible
to adjust it to any specific application requirements.

154 Portal Application Development Using WebSphere Portlet Factory

Select record with an image column: Get customer
Get customer requires getting a complete record from the CUSTOMER table that
contains a BLOB column: IMAGE. It is necessary to transform the result data
from the SQL statement. The SQL Call builder does not provide the possibility to
customize data transformations in the result set; for this reason it is necessary to
create a SQL Statement builder that provides more configureability. The
complete procedure is described later in the implementation steps.

In a similar way to inserting a record with an image, it is possible to provide a
custom transform method for the result columns. This method must take the
parameters described in Table 5-13 and return void.

Table 5-13 Parameters of the custom transform method for SQL result set columns

Parameter Description

BuilderName A string parameter that contains the name of the SQL
Statement Builder that is calling the method to perform a
custom transform on a result set column.

columnNumber An integer parameter that identifies either the SQL statement
result set column or the output parameter that is to be
transformed by the method. You can define one method for
each column or output parameter that you will transform
manually or you can bundle all of your transforms together and
use this input to identify which column or output parameter is
being transformed by the Builder.

columnValue This object parameter is the actual result set column value or
output parameter that this custom method is to transform into
XML. Note that the value will be null if the column or output
parameter contains a null value.

elementName A string parameter that provides the name of the XML element
containing the transformed data.

createVerboseXml A boolean parameter that tells the method whether or not it is
allowed to create XML that includes any special element
attributes meaningful to this particular transformation. In most
cases this parameter can be safely ignored.

 Chapter 5. Creating Data Services: Access to back-end systems 155

As previously discussed, it is only possible to provide Method or Action List
builder calls as Transform Method. Following the same design we introduced for
inserting a record with an image, the implementation steps for selecting binary
content are as follows:

1. Implement the logic to extract the binary content in the DB helper Java class:
com.ibm.redbook.cs.data.db.DBProviderHelper.java.

Example 5-3

public IXml extractBinaryContent(WebAppAccess webAppAccess, String builderName, int columnNumber,
Object columnValue, String elementName, boolean createVerboseXML) {
final IXml result = XmlUtil.create(elementName);

try {
switch (columnNumber) {

case 1:
webAppAccess.getVariables().setString("tmpContentPath",

builderName + "_" + Integer.toString(columnNumber)
+ "_" + columnValue.toString() + ".tmp");

result.setText(columnValue.toString());
break;

case 4:
case 11:

final String filePath = webAppAccess.getVariables().getString("tmpContentPath");

// Extract the blob content and write it into the file.
final Blob blobContent = (Blob) columnValue;
if (blobContent != null) {

final InputStream inputStream = blobContent.getBinaryStream();
final byte[] buffer = new byte[4096];
int bytesRead = 0;

try {
final File file = new File(BSConfig.getHtmlRootDir() +

BINARY_TMP_PATH + "\\" + filePath);
final FileOutputStream outputStream = new FileOutputStream(file);

while ((bytesRead = inputStream.read(buffer)) > -1) {
outputStream.write(buffer, 0, bytesRead);

}
outputStream.close();

// Return a relative URL for the file just written.
result.setText(BINARY_TMP_URL + "/" + filePath);

}
catch (FileNotFoundException ex) {

// ignore if the file is not found, go on without binary content
}

}
break;

}
} catch (Exception e) {

throw new WebAppRuntimeException(e);
}

return result;
}

156 Portal Application Development Using WebSphere Portlet Factory

2. Create an Action List to invoke the previous LJO method (Figure 5-35).

Figure 5-35 Action List builder: extractBinaryContent in DBProviderHelper.model

 Chapter 5. Creating Data Services: Access to back-end systems 157

3. Create a new SQL Statement builder that will override the statement in the
SQL Call builder for get customer and set the previous Action List as
Transform Method in the Result Set Custom Data Transforms. You specify by
index which columns will apply the transformation (Figure 5-36).

Figure 5-36 SQL Statement builder: custom data transform for extracting binary content

Notice that we provide custom transforms for the column with the ID.
Basically we use a visitor pattern in the way that first we apply the
transformation method to this column to build a unique path for the binary
content based on the primary key of the table. We save the path in a
temporary variable that will be used during the transformation of the BLOB
column to save the binary content in the file system under this path. This
content will be part of the shareable content and the path now can be
returned as content of the column and be displayed in the user interface
layer.

158 Portal Application Development Using WebSphere Portlet Factory

4. Override the SQL statement with the new SQL Statement builder in the SQL
Call builder for get customer (Figure 5-37).

Figure 5-37 SQL Call builder: Override SQL Statement

 Chapter 5. Creating Data Services: Access to back-end systems 159

Figure 5-38 shows the implementation details and what is happening when
selecting the record.

Figure 5-38 Extracting binary content from SQL result sets

This is a generic mechanism that can be used to retrieve any binary content. You
should consider some issues before using it in a real environment:

� The servable content is not session dependent. This could give some side
effects when working in a concurrent multiuser environment. One solution is

Service Operation Builder

XML
Results

XML DB
Results

DB ResultSet

SQL Call Builder

DBProviderHelper.model

Variable Builder:
tmpContentPath

DBProviderHelper.java
extractBinaryContent()

5) Save file with binary
content from the

column value using
the path in the tmp

variable

ResultSet Custom
Data Transforms

Database

TABLE

1) Result of the
SQL operation

2) Custom data
transforms of

selected columns

3) Execute LJO
method with columns

that determine the
path to save the

binary content. Set it
in tmp variable

4) Execute LJO
method with
binary data

column

Action List Builder:
extractBinaryContent

6) Return the value of
the path as value in
the binary column

7) Paths of the files
with binary content
are the contents of
the binary elements

LJO Builder:
DBProviderHelper

160 Portal Application Development Using WebSphere Portlet Factory

to provide a path for the binary content that is session dependent, probably
using the session ID as part of the path.

� The current solution only allows one column with binary content. The custom
transformation can be extended to support multiple columns and build some
advanced mechanism during building of the paths for saving the binary
content. For this problem it is interesting to use the visitor pattern as
previously described.

Previous examples showed the main concept when inserting and getting data
from the database. It is possible to extend it to be more generic or to fulfill the
requirements of your application environment. We can extract some best
practices from this example:

� Binary data should not be delivered as bytes as part of the input or result XML
of the service operation. This could make the variable in memory very large
and cause issues with session memory footprints.

� The recommended approach is to save the binary data in the file system
under the servable folder of the web application; this content is known as
static in this context. The service operation will contain the path to this
location in input or result XML documents.

� The user interface is responsible to work with the path of the file that contains
the binary data to upload and download the contents.

5.2.6 Implementation of transactions

WebSphere Portlet Factory offers transaction support to execute more than one
SQL statement in one transaction. SQL Call builder does not provide transaction
behavior by itself, it executes one statement in one transaction. All statements
involved in a transaction must be defined using the SQL Statement builder and
the control of the transaction scope is done manually in Java code or Action
Lists.

The SQL Transaction builder defines a set of steps that can be involved in one
transaction. Each step is bound to one SQL Statement builder that defines the
statement to be executed. Programatically you start the transaction, invoke the
SQL Statement builders that are part of the transaction, and commit/rollback at
the end. The SQL Transaction builder creates an internal LJO that provides a set
of methods to control the transaction (Figure 5-39).

 Chapter 5. Creating Data Services: Access to back-end systems 161

Figure 5-39 Internal LJO generated by the SQL Transaction builder

The implementation pattern can be summarize as follows:

1. Implement the statements to be executed as SQL Statement builders.

2. Add a SQL Transaction builder with a set of steps for the SQL statements that
can be part of one transaction.

3. Implement the operation that must be executed in a transaction in a Java
class available in WebSphere Portlet Factory via an LJO builder. This
implementation is responsible to control the transaction and the execution of
the steps bound with the SQL statements.

4. The Service Operation invokes the method defined in the LJO builder.

ITSO Renovations contains operations that require the execution of several SQL
statements in one transaction. This section covers one of these operations:
createOrderWithItems. This operation is responsible to create one order with all
associated items. It requires executing the create order and create order item
SQL statements in one single transaction. Considering the previous pattern, we
follow these steps to implement this operation in one transaction:

1. Implementation of SQL Statement builders (Figure 5-40).

162 Portal Application Development Using WebSphere Portlet Factory

Figure 5-40 SQL Statement builder

The insert statements are taken from the related SQL Call builders. We have
created two temporary variables to hold the input content of both statements.
This allows us to assign a structure to the variable that matches with the
Order and OrderItem structures and avoid additional transformations when
setting the input values for the invocation of the operations in the Java code
(see Example 5-4 on page 164).

2. Add a SQL Transaction builder defining the required steps that creates the
order with items (Figure 5-41).

 Chapter 5. Creating Data Services: Access to back-end systems 163

Figure 5-41 SQL Transaction builder

The Isolation Level input provides the isolation for all transactions created
with this builder.

3. Implement the operation in the Java class OrderDBProviderHelper.

Example 5-4 Code for createOrderWithItems() in a transaction

public void createOrderWithItems(WebAppAccess webAppAccess, IXml orders) {
IXml order = orders.findElement(DataConstants.ELEM_ORDER);
String orderID = order.getText(DataConstants.ELEM_ORDER_ID);

try {
// creation of the order
webAppAccess.getVariables().setXml("tmpOrderVar", order);
webAppAccess.callMethod("createOrderTransaction.execute", "createOrder");

// creation of order items
IXml items = order.findElement(DataConstants.ELEM_ITEMS);
for (IXml item = items.getFirstChildElement(); item != null; item =

item.getNextSiblingElement()) {
webAppAccess.getVariables().setXml("tmpOrderItemVar", item);
webAppAccess.getVariables().getXml("tmpOrderItemVar").

setText(DataConstants.ELEM_ORDER_ID, orderID);
webAppAccess.callMethod("createOrderTransaction.execute", "createOrderItem");

}

164 Portal Application Development Using WebSphere Portlet Factory

//commit transaction
webAppAccess.callMethod("createOrderTransaction.commit");

}
catch (Exception ex) {

// any exception that occurs during the creation of orders or order items
// will roll back the transaction
webAppAccess.callMethod("createOrderTransaction.rollback");
throw new WebAppRuntimeException(ex);

}
}

The input document contains a complete order with details and the
associated items. The idea is to invoke the SQL Transaction builder steps
with the data order and order items data from the input document. It is not
necessary to explicitly start the transaction; there is an active transaction from
the last commit/rollback. At the end, in a successful case the commit is done
over the SQL Transaction builder; rollback is done in an error case.

4. Set the Action to Call in the Service Operation to execute the method of the
previous LJO (Figure 5-42).

Figure 5-42 Service Operation builder: Set action to call to the LJO method with the transaction
implementation

The previous mechanism provides high flexibility in definition of transactions. It is
not required that one LJO method executes one transaction: it is possible to have
several transactions within one operation, even over different data sources.

5.2.7 Testing and debugging the service

SQL Data Services provide the same set of testing support we have seen in the
XML access Data Service case (see 5.1.3, “Testing and debugging the service”

 Chapter 5. Creating Data Services: Access to back-end systems 165

on page 115). You can enable testing support in the Service Definition and run
debug sessions for your Java classes.

Additionally, SQL builders provide events, statistics, and logging support
(Figure 5-43).

Figure 5-43 Example of enabling logging: SQL Call builder

If you enable logging, you can analyze statistics, warnings, and the final SQL
statements executed by the builders in the database. All this information is saved
in the following log files under the logs directory \WEB-INF\logs of the deployed
web application in the server:

� Log SQL Statements: Log all of the SQL statements prepared for execution
by the Builder. The log message will include the actual values used for each
positional parameter in the SQL. Output is in the file general.txt.

� Log SQL Warnings: Log any SQL warnings that are generated as a result of
preparing the SQL statement for execution. Output is in the file general.txt.

� Log Server Stats: Generate builder statistics for this builder instance. Output
is in the file serverStats.txt.

166 Portal Application Development Using WebSphere Portlet Factory

You can also configure to trigger events when connections are acquired,
transactions are committed or rolled back, statements are created, and so forth.
It is possible to define event handlers (Event Handler builder) that listen for these
events and perform some special actions.

SQL builders provide good mechanisms to debug and keep track of the activity in
the database because they can:

� Track which SQL statements have been executed in the database.

� Define events to react under some database actions.

� Create statistics to analyze the performance of your database actions.

5.3 Domino Data Access Service

WebSphere Portlet Factory offers integration extensions to access third party
products and back-end systems. In this book we cover in detail how to access
Domino databases, and in 5.6.1, “SAP access” we discuss how to integrate with
SAP systems.

Domino is provided as part of a feature set called Lotus Collaboration Extension;
it features WebSphere Portlet Factory with a set of builders that allow you to
access views and documents in Domino databases, as well as some other
artifacts like agents, attachments, and so forth. It provides an easy way to
connect to the server and access a database to retrieve views and documents. It
is not necessary to write any Java code unless some special functionality is
required.

ITSO Renovations contains an example of accessing an internal products
database. It illustrates how to get a list of products (view access), and how to get
the details about one product, (document access). This section demonstrates the
capabilities of the Domino builders by describing the design we followed in our
sample application and providing implementation details. At the end you will be
able to test the service and discover how easy it is to access Domino with
WebSphere Portlet Factory.

5.3.1 Overview and how to use Domino Access builders

In our Customer Self Service application, half of the product data is stored in a
Lotus Domino database. This section describes how we created a Service
Provider model to retrieve customer order information from Domino.

In this scenario, we use the Portlet Factory’s Domino Data Access builder to
access the Domino database and views. Then we create the service definition,

 Chapter 5. Creating Data Services: Access to back-end systems 167

followed by a service operation that will retrieve the list of products from the
Domino database and another service operation that retrieves the selected
product given the document UNID. To demonstrate the ease of creating this
model, we use the Domino Service Provider Wizard of Portlet Factory to create
all the builders described.

Since the selected product will only return the product ID, we are not able to
retrieve the Domino UNID of the document when the user clicks the selected
product. To do this, we use a Linked Java Object that will return the UNID when
given the product ID.

The LJO and its respective operations will be added to the model after it is
created using the wizard. A high-level overview of the Domino Service Provider
model is shown in Figure 5-44.

Figure 5-44 High-level overview of the Domino Service Provider model

Using the Domino builders
In Chapter 3, when we added the Integration Extension → Lotus Collaboration
Extension feature into the project, a set of builders and libraries was added to our
project to enable the integration and access of Domino data. The builders added
were Domino Attachment, Domino Data Access, Domino Formula, Domino
Keyword Lookup, and Domino View & Form.

Domino
Database

Domino Data Access

Read View

Read Document

Linked Java Object

Get Product UNID

Get Product Image
Url

168 Portal Application Development Using WebSphere Portlet Factory

To provide access to Domino data, we use the Domino Data Access builder,
which provides not only access to views within Domino, but also to document
data. Enabling document support in this builder results in the builder creating five
actions in the Data Service object in the WebApp:

� readTable: Reads the Domino view

� readDocument: Reads a single document given the document UNID as input

� updateDocument: Updates a document using an input structure containing all
the form fields plus the document UNID

� createDocument: Creates a new document using an input structure
containing all the form fields

� deleteDocument: Deletes the document given the document UNID as input

These operations can be seen when a Domino Data Access builder is added to a
model by clicking the WebAppTree when the builder is selected, as shown in
Figure 5-45.

Figure 5-45 Operations and properties of the Domino Data Access builder

In the WebApp Tree view, you can also find the Linked Java Objects that are
generated by the Domino Data Access builders and the methods for each of the
objects, as shown in Figure 5-46 on page 170. In addition to the methods
provided for accessing the Domino database, note that a getProperty method

Domino
Server
Properties

Domino
Data
Access
Methods

 Chapter 5. Creating Data Services: Access to back-end systems 169

(circled) is also provided to read the credentials set in the config file, which is
discussed later.

Figure 5-46 Linked Java Objects generated by the Domino Data Access builder

Furthermore, since the Domino Data Access builder is specific to a view of a
Domino database, it also automatically creates the schema of the view that is
being retrieved (Figure 5-47).

170 Portal Application Development Using WebSphere Portlet Factory

Figure 5-47 Schema generated by the Domino Data Access builder

As you might have noticed when you included the Lotus Collaboration Extension
feature set into your project, the Domino NCSO.jar is also included in the project,
which allows you to write Java code/methods to extend any other functionality
that you might not be able to accomplish with the builders described in the next
few sections.

5.3.2 Design for ITSO Renovations: Product information

ITSO Renovations is accessing a Domino database to retrieve a list of all
available internal products of the organization and to get the details about one
specific product.

The service must follow the common product interface defined in 4.4.2,
“Application Data Service Interface: Definition and operations” on page 92. The
interface to access Domino is different from the common one, therefore a data
transformation will be required to match them. To test the Domino access
independently we defined a private service within the model that isolated the
common from the specific back-end interface. The transformation stays between
them to adjust the XML and follow the Product schema.

 Chapter 5. Creating Data Services: Access to back-end systems 171

The design of the Product information in terms of the Domino Form input and the
Domino View that will be used is shown in Figure 5-48 and Figure 5-49.

Figure 5-48 Form view of the product details in Domino

As shown in Figure 5-48, the user attaches the image of the product in the
Product Picture (Big) field. This is stored as an attachment to the Notes
document and can be retrieved in a document using the @AttachmentNames
formula.

172 Portal Application Development Using WebSphere Portlet Factory

Figure 5-49 All Products view of the ProductD.nsf Domino database

The private service contains all specific functions for Domino access, including
usage of the DominoDataAccess builder. Additionally, we have created a helper
Java class with special functionality that is not provided by the builder. The
definitions of the private service operations are in Table 5-14.

Table 5-14 Domino Service definition

Note that the Service definition will be automatically added when creating the
Domino Data Provider and must not be visible by data consumers. This is done
by unselecting the Make Service Public option in the builder (Figure 5-50).

Service operation Description

ProductDetailsProviderReadView Added when creating the Domino Data
Provider. It access the database to read a
view.

ProductDetailsProviderReadDocument Added when creating the Domino Data
Provider. It access the database to read a
document.

getProductUnid Helper operation to retrieve the UNID for a
given product ID.

getProductImageUrl Helper operation to retrieve the absolute
URL of the image. It will be returned in the
corresponding field of the image.

 Chapter 5. Creating Data Services: Access to back-end systems 173

Figure 5-50 Service Definition builder for Domino access: Private service

Following are some recommendations for Domino access design:

� Use builders provided by the Domino - Lotus Collaboration Extension when it
is possible. If the provided functionality is not enough for your specific
requirements, provide an implementation in a Java class that will be
accessed via an LJO builder.

� Define a private service definition to access Domino and retrieve all data
without any transformation. This is very useful for testing purposes because
you can test the Domino builders independently of your application interface.
However, depending on the application, this is not always possible because
this action adds overhead to the current model due to:

– Additional builders for the Service Definition and Operations.

– Generation of additional internal variables to keep the data for each
operation (input/results), which increases the memory footprint for the
session.

In our example we have implemented a private data service to access
Domino; it is invoked by the service operations that follow the application
interface.

� Data transformations could be required to match the schemas of the
input/results between the common and Domino interface. Consider using the
Transformation builder if the transformation is simple, or a method in the Java
class manipulating the XML documents following the IXml API.

5.3.3 Implementing the service

To implement the server, both the Domino and Portlet Factory must be
configured to make sure the Domino Access builders will work.

174 Portal Application Development Using WebSphere Portlet Factory

Setting up DIIOP on Domino
The Domino integration builders use the Domino Java APIs, which communicate
with Domino via CORBA. Therefore, your Domino server must be running the
DIIOP task. Also, the connecting user must have ACL permissions to the
database. To verify that DIIOP is running, try accessing:

http://<server_name>/diiop_ior.txt

If you are able to see a text string, the DIIOP task is running. If not, use the steps
in the following article to set up your Domino server to support DIIOP
(“NotesException: Could not get IOR from Domino Server”
http://wpf1.cam.itso.ibm.com/diiop_ior.txt). For additional information on
configuration, see the help file for the Domino Data Access and Domino View &
Form builders.

Configuring the Domino connection and credentials
Before you create the provider model, the Domino server information and the
credential information has to be set. This information can be supplied in several
ways, which are described in the builder help. For this application, we created a
properties file based on the example provided in
WEB-INF\config\domino_config\redbook_domino_server.properties. Example
3-1 provides the contents of our properties file.

Example 5-5 Properties file

servername. Replace localhost with the fully qualified
server name of your domino server.
ServerName=localhost:63148

Username and Password are required
UserName=administrator
Password=admin

For the ServerName property, specify the fully qualified hostname of the
machine where Domino is running. We also appended the DIIOP port number so
that the IOR (Interoperable Object Reference) can be retrieved. We then
specified a username and password for accessing the database.

With the Domino service running and the configurations in Portlet Factory
completed, you can now proceed to create a Domino Provider.

 Chapter 5. Creating Data Services: Access to back-end systems 175

Creating a Domino Provider model
To create the Domino Service Provider, use the Domino Service Provider Wizard
to create an initial set of builders that provide you with access to the database.
Perform the following steps to do this:

1. Create a new model by selecting the redbook → cs → data → domino
folder.

2. Select Domino Service Provider from the Select Model screen.

Figure 5-51 Creation of the Domino Service Provider

176 Portal Application Development Using WebSphere Portlet Factory

3. Provide the name of the service and select the properties file containing the
Domino server name and credentials as highlighted in the previous section
(Figure 5-52).

Figure 5-52 Details of the Domino Service Provider

 Chapter 5. Creating Data Services: Access to back-end systems 177

4. Select the Domino database to be accessed (Figure 5-53).

Figure 5-53 Selection of the Notes database

178 Portal Application Development Using WebSphere Portlet Factory

5. Select the view of the database to be accessed (Figure 5-54).

Figure 5-54 Selection of the View from the database

 Chapter 5. Creating Data Services: Access to back-end systems 179

6. Enable the operation for reading a Domino document and provide the names
for the respective service operations of reading the Domino View and Domino
document (Figure 5-55).

Figure 5-55 Definition of the main operations

180 Portal Application Development Using WebSphere Portlet Factory

7. Provide a Model name (Figure 5-56).

Figure 5-56 Set the Provider name and finish the creation of the model

8. Click Finish. The wizard generates the list of builders necessary to create a
Domino Data Provider model. Upon completion, you should see the list of
builders created, as shown in Figure 5-57.

 Chapter 5. Creating Data Services: Access to back-end systems 181

Figure 5-57 List of Builders generated by the Domino Provider Wizard

9. To verify the Domino Data provider, run the model and the results will appear
as shown.

Figure 5-58 Service Operations created

Figure 5-59 ProductDetailsProviderReadView results

Figure 5-60 Input required for ProductDetailsProviderReadDocument

182 Portal Application Development Using WebSphere Portlet Factory

Figure 5-61 ProductDetailsProviderReadDocument Results

10.Once Domino Service Operations is created, you must create two more
service operations to complete the provider model that will enable you to get
the UNID of the Domino document and the attachment image URL given the
product ID that is selected. Add an Linked Java Object referring to the
ProductDetailsProviderHelper class (Figure 5-62).

 Chapter 5. Creating Data Services: Access to back-end systems 183

Figure 5-62 Linked Java Object builder: helper object for Domino Data Provider

11.Using the methods exposed through the Linked Java Object, create two
service operations that can be invoked by the service consumer (Figure 5-63
and Figure 5-64).

Figure 5-63 Adding the getProductUnid Service Operation

184 Portal Application Development Using WebSphere Portlet Factory

Figure 5-64 Adding the getProductImageUrl Service Operation

12.After creating the service operations that invoke the Linked Java Object
methods, the Domino Data Provider would have two additional operations
that would retrieve the UNID and Image URL given the product ID.

5.3.4 Data transformations: Use of Transform builders

The data transformation that is required in the scenario is simple and can be
done using the Transform builder. It is a transformation from a plain XML
(Domino document) into a plain XML (Product) schema. The documents in both
cases contain a root element and a list of children without any additional
hierarchy.

Perform the following steps to create the transformation between the results of
the operation ProductDetailsProviderReadDocument and getProduct:

1. Add a Transform builder with the name transformProduct to the model
ProductDetailsProvider (under models\redbook\cs\data\domino). The builder
is located under the Variables category in the Builder Palette.

 Chapter 5. Creating Data Services: Access to back-end systems 185

Figure 5-65 Variables category in Builder Palette: Transform builders

There are some other builders related to transformations that can be used for
other simple operations: filter, rename, and sort of data.

2. The source variable is pointing to the result variable of the operation
ProductDetailsProviderReadDocument; the target variable to the result of the
operation getProduct. The XPaths for source and target in this case are the
root elements of both documents. We select to clean up the target value to
ensure that previous executions are not appending values.

Figure 5-66 Transform builder: Defining source and target

186 Portal Application Development Using WebSphere Portlet Factory

3. Define the child node mappings. These are the mappings between the
children of the root elements. Some values in the target do not have a
mapping, so they are not provided by the source. Also, some values of the
source do not have a corresponding mapping in the target; they are not used
or filtered.

The parent node mappings can remain by default since we have only a root
element and no complex hierarchy. The builder provides additional options to
control the mapping of parent nodes (refer the documentation of the builder
for more details).

 Chapter 5. Creating Data Services: Access to back-end systems 187

Figure 5-67 Transform builder: child node and parent mappings

188 Portal Application Development Using WebSphere Portlet Factory

4. The mapping is ready and can be used by other builders or programatically in
a Java class. In both cases the method to invoke is the same. In our scenario
we execute the transformation after calling the Domino data service operation
and we implement it using an Action List called getProductAL.

Figure 5-68 Action List builder: Invoking Domino and executing the transformation

This Action List is invoked by the Service Operation getProduct, which is part
of the Product interface and should already exist in the model. Notice that the
implementation contains two calls to the private service that accesses
Domino. This behavior is transparent to the consumer of the operation, which
is only able to invoke getProduct, and it hides all the complexity of accessing
Domino.

Transform builder can be used by any service that requires simple data
transformations. It can be used in a completely different context when you need
to transform XML documents contained in variables inside of the model.

5.3.5 Testing the service

Domino Data Services provides the same testing support we showed in the XML
access Data Service case (5.1.3, “Testing and debugging the service” on
page 115). You can enable testing support in the Service Definition and run
debug sessions for your Java classes.

 Chapter 5. Creating Data Services: Access to back-end systems 189

By separating the Domino access from the common service, you can test both
independently. Ensure that you do not have testing support enabled in both
cases, otherwise you will have a compilation error because it generates two Main
methods in the model. You can enable and disable the testing support in Service
Definition without any impact on the normal functionality.

5.4 Data Service for external web services access

WebSphere Portlet Factory provides support to access external web services
with a set of builders that make this task easy to implement without writing
additional code. The builders are able to analyze WSDL files, discover the
available operations, and make them accessible to other builders within a model.

In this section we identify the available builders, describe how to use them, and
provide an example to access an external web service to retrieve product
information from organizations that are external to ITSO Renovations. We show
how to configure the builder and profile the URL of the service in a way that is
easy to change. Finally, we introduce the testing capabilities and how to define a
Service Stub to access local test data when the real service is not available.

In our example we provide the external web service that the builders are
accessing. This service was developed with WebSphere Portlet Factory and is
explained in detail in Appendix B, “Creating a Web service using WebSphere
Portlet Factory” on page 645.

We can conclude that WebSphere Portlet Factory offers web service capabilities
in two areas:

� Invocation of web services from the builders, acting like a client (covered in
this section).

� Exposing a Service Definition and Operation builders as a web service that
other applications can access (covered in the appendix).

5.4.1 Overview

The Web Service Call builder allows you to call an external operation of a web
service. Using the WSDL definition of the web service, the builder discovers
which operations are available, and can be configured to execute one of them.
The service URL can be overridden in the builder or using the one defined in the
service port of the WSDL file. Also it allows you to define additional SOAP and
HTTP headers, authentication mechanisms, and proxy configuration.

190 Portal Application Development Using WebSphere Portlet Factory

The design of an application with Data Services that access external web
services is summarized in Figure 5-69.

Figure 5-69 Common design for external web service access

The Application Data Service Interface is the one we described previously in this
chapter; it offers the interface that data providers are exposing to the business
logic and presentation layers. The Service Operation builders are responsible to
execute the Web Service Call builder that is invoking the operation in the
external service. It is possible that a data transformation is necessary to match
the schemas of the input/results between the application and the web service
operation interfaces. The same mechanisms we covered previously for Data
Services can be used to perform the transformation.

Considerations and best practices when working with the Web Service Call
builder include:

� The Web Service Call builder is connected with exactly one operation of one
service. If you need to execute other operations from the same service and
WSDL, create additional builders that retrieve the operation definitions from
the same WSDL content.

� Data transformations could be necessary to match the interfaces of the
service operation and the external web service operation.

� The WSDL file is only accessed during design time to retrieve the definition of
the web service operation. Once the builder is configured and bound to one
operation, it contains the schemas, request parameters, and service
information from the WSDL. It will not be used during execution in runtime.

Web Service Provider Model

Service Operation 1

Web
Service 1

Service Operation N

...

Service Operation 2

Web Service Call 1

Service Operation 3

Web Service Call 2

Web Service Call N

Web Service Call 3

Web
Service 2

Web
Service N

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

 Chapter 5. Creating Data Services: Access to back-end systems 191

� All other builder inputs (service URL, proxy settings, authentication, and so
forth) can be profiled to retrieve the values dynamically from a properties file
or configured to get the values from other builders.

5.4.2 Design for ITSO Renovations: External product information

ITSO Renovations accesses product information from external organizations via
web services. The interface of the external web service is not fixed and is
provided by the external organization in the form of a WSDL file. The Data
Service is responsible to transform the data to the Product interface of the ITSO
Renovations application.

The design of the solution for our sample application is illustrated in Figure 5-70.

Figure 5-70 Design for external Web Service access

The same design can be followed for connectivity with additional external web
services without changing the product interface that is visible to the other layers
of the application. This solution allows plug-in access to various external web
services in a transparent way to the complete web application.

In our sample application, we followed the product interface in the external Web
Service. It is not necessary to apply any additional transformation in this case,
but this is not the most common scenario because you are not able to influence
the web service interface of external organizations. This is enough for the current
discussion because we covered the transformation capabilities in great detail in
previous sections of this chapter.

ProductWSProvider.model

ProductDefinitions.model

imports

Operation Builders
Product
Interface

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

External Products
Web Service

Web Service
Call Builders

WebSphere Portlet
Factory Designer

Products
WSDL

192 Portal Application Development Using WebSphere Portlet Factory

5.4.3 Implementing the service

This section describes how to implement access to an external web service that
provides product information, following the design shown previously. From a
high-level point of view, the implementation goals can be summarized as:

� Create the Data Provider model.

� Add the Web Service Call builders for the operations to execute in the
external web service.

� Link the Service Operation builders with the Web Service Call builders via the
Action to Call input.

These steps are similar to those presented previously for the Data Service
implementation. In detail the implementation steps are:

1. Create the Data Provider Web Service model ProductWSProvider.model
under the folder \WEB-INF\models\redbook\cs\data\ws. It should be created
empty because you will add the Service Definition and Operations from the
common interface.

2. Add the Service Definition and Operations for the Product interface. Copy
these builders from the ProductFileProvider.model into the new model.

Figure 5-71 Builders to copy from ProductFileProvider

3. In order to validate the implementation against the service interface, modify
the Service Definition to use the interface of the File Provider model. This
action will ensure that all the operations of the service are implementing the
expected interface.

4. Add a new Web Service Call builder for the operation getProducts() as shown
in Figure 5-72. Provide the URL/path of the WSDL of the external web service
to connect to. In our example we used a local web service for product
information. This is described in detail in Appendix B, “Creating a Web service
using WebSphere Portlet Factory” on page 645.

 Chapter 5. Creating Data Services: Access to back-end systems 193

Figure 5-72 Web Service Call builder: Before fetching WSDL

There is nothing else to configure in the builder, so click Fetch WSDL. Once
the WSDL is retrieved from the previous location, the builder is populated with
the list of available operations in the WSDL (Figure 5-73).

194 Portal Application Development Using WebSphere Portlet Factory

Figure 5-73 Web Service Call builder: After fetching WSDL

Select the desired operation, in our case the getProducts SOAP document.
The rest of the information is filled in automatically from the WSDL file. The
option AutoCreate Input Vars will create all necessary variables to hold the
input values of the operation. Select this option unless you have your own
variable to hold the data and that follows the schema of the inputs.

By default the service URL is retrieved from the port information of the WSDL
file. Later in this section we discuss how to override this value to obtain the
value from a properties file without regenerating and redeploying the
complete application.

 Chapter 5. Creating Data Services: Access to back-end systems 195

5. Link the Service Operation with the Web Service Call. Open the Service
Operation builder for getProducts and set Action To Call to the Web Service
Call builder you created in the previous step.

Figure 5-74 Service Operation builder: Set Action To Call to the Web Service Call

In this case, the interfaces of both operations match. If this it not the case, you
need to implement a data transformation of the XML content using the
Transform builder or a Java method and IXml API. In this case the Action to
Call must be an Action List or a LJO method that performs the necessary pre
and post processing of the data around the execution of the Web Service Call
builder.

6. Repeat the same steps for the second operation: getProduct. The final
situation of the builders will be similar to Figure 5-75.

Figure 5-75 Builders for product external Web Service access: ProductFileProvider

The previous implementation pattern can be applied for all external web service
operations you need to execute in the model. The following sections cover some
advanced concepts related to the execution of external Web Service operations.

196 Portal Application Development Using WebSphere Portlet Factory

Accessing static content from the external web server
Some content is not retrieved as part of the XML document returned by the web
service operation because it is too large: images, PDF documents, and so forth.
We denote this as static content because it will be accessed directly in the web
application using the URL of the web server that contains the service.

Assuming that the web service operation returns the relative URL to the resource
in the server, the Data Service is responsible to append the location of the
servable content to build the absolute URL.

We have an example of this technique in the ITSO Renovations application. As
part of the product information, there is an image located in the web service that
can be displayed by the web application. The web service operation returns the
relative location in the server, and the Service Operation of the Data Service
builds the absolute URL appending the location of the servable content with the
relative path. This location is provided as configuration of the web application in a
similar way to that of the web service end point (see “Profiling the Web Service
URL using a properties file” on page 200 to learn how to access configuration
properties).

Perform the following steps to retrieve the absolute URL of the product image:

1. Add a Variable builder that contains the URL with the location of static content
in the web service (Figure 5-76).

Figure 5-76 Variable builder: Contains service static URL

At the moment we use a default value of the variable; in the next section we
describe how to use profiling to get the value from a properties file and avoid
regeneration and redeployment of the application.

2. Add a Method builder that receives as parameter the relative URL of the
resource and appends it to the value of the previous variable. The result is the

 Chapter 5. Creating Data Services: Access to back-end systems 197

absolute URL of the resource that can be used to access the resource:
download the document, display the image, and so forth.

Figure 5-77 Method builder: Creates the absolute URL of the service static content

3. Use the previous method to modify the returned values for images in the
getProduct() operation. This requires you to modify the operation results in
the Service Operation builder to invoke the previous method using as
parameter the value from the Web Service call. The result is set as the result
of the service operation.

198 Portal Application Development Using WebSphere Portlet Factory

Figure 5-78 Service Operation builder: Invoke the creation of the absolute URL for static content

We specify manually the mapping of the result field values, customizing the
fields THUMBNAIL and PICTURE to invoke the method to set the value of the
field as result of the Service Operation.

The pattern described in this section can be applied to access any servable
content of the web service. If the operation already provides the absolute path of
the resource, it is not necessary to do any additional work, but this will add the
limitation of moving the web service between different machines.

 Chapter 5. Creating Data Services: Access to back-end systems 199

The example has shown also how to specify the result field values manually.
This gives the possibility of intercepting the result of the web service, modifying it
in a method, and returning it as a result of the Service Operation. More complex
logic can be applied for each field if it is required, such as executing logic in a
LJO method, executing a lookup by an additional operation, and so forth.

Profiling the Web Service URL using a properties file
The service URL is retrieved by default from the WSDL when configuring the
Web Service Call builder. This solution does not offer flexibility to provide a
different location of the web service if this changes, since the WSDL is only used
at design time to populate the builder inputs.

The Web Service Call builder provides a mechanism to override some inputs
related to the service location: URL, host name, port, and timeout (Figure 5-79).

200 Portal Application Development Using WebSphere Portlet Factory

Figure 5-79 Web Service Call builder: Advanced configuration

The Advanced section also contains some settings for the proxy, authentication
mechanism, and so forth.

 Chapter 5. Creating Data Services: Access to back-end systems 201

In our scenario we override the value of the Service URL to be able to customize
it. It is possible to provide the value directly or fetch it from a variable. The
problem of this approach is that if the value changes, it will be available only after
regeneration of the model, adding a limitation in configureability.

The solution we provide in our sample application is to profile the value and set it
from a properties file. If the value changes, it will be available the next time the
server is restarted (cache of the builders must be cleaned up) without
regeneration and redeployment of the application.

These are the steps we followed to implement the solution:

1. Create a profile set with the entries you need to profile. In our example we
profiled the URL for static content we mentioned in the previous section.
Under the profiles folder of the project, select:

File → New → WebSphere Portlet Factory Profile Set

Add the profile entry ServiceCallURL (Figure 5-80).

Figure 5-80 Profile Set for configuration properties: redbook.cs.data.Configurationps

The other entries are created in the same way:

– ServiceStaticURL: Provides the URL for static servable content of the web
service.

– JNDIName: provides the JNDI name for database data sources
(described in Appendix B, “Creating a Web service using WebSphere
Portlet Factory” on page 645).

2. Provide a value setter class that will be applied when setting the value of each
profile entry. This Java class contains a method, with a specific interface, that
sets the profile entry values from a properties file. Use the provided Java
class under the source directory
com.ibm.redbook.cs.profiles.PropertyFileValueSetter and analyze the code.
The interface of the method is like Example 5-6.

202 Portal Application Development Using WebSphere Portlet Factory

Example 5-6

public void updateProfileValues(HttpServletRequest request, Profile profile, String modelName,
String explicitProfile, ModelInstanceCreator modelInstanceCreator) {
...
// set those profile values defined in the properties file
Iterator iter = profile.getValues();
while (iter.hasNext()) {

ProfileValue profileValue = (ProfileValue) iter.next();
String propertyFileValue = properties.getProperty(profileValue.getName());
if (propertyFileValue != null) {

profileValue.setData(propertyFileValue);
}

}
}

You have access to the current profile to decide which profile values must be
set within the method (see the previous code for a snapshot of working with
the profile object).

The Java class for the value setter is part of the Select Handler configuration
of the Profile Set.

Figure 5-81 Profile Set: Specify the value setter class

Notice that we have used property names like the entries in order to simplify
the solution. The value setter method implementation can be as complex as
required by the application: values can be retrieved from a different source,
logic can be more advanced, and so forth.

3. Profile the Service URL input in the Web Service Call. Open the Web Service
Call builder and profile the input for the Service URL. Select the ProfileSet
created previously and the entry name ServiceCallURL.

 Chapter 5. Creating Data Services: Access to back-end systems 203

Figure 5-82 Web Service Call builder: Set profile input for Service URL

Now the builder input is profiled and it is getting the value from the profile
entry ServiceCallURL that is set by the previous Java class. In our scenario,
values are defined in the following properties file:

\WEB-INF\resources\redbook\cs\properties\csapp.properties

URL of the web service end point for products data
ServiceCallURL=http://localhost:10038/RedbookCSProductsWS/servlet/AxisServlet

URL for static content for the web service
ServiceStaticURL=http://localhost:10038/RedbookCSProductsWS

After profiling the input, you should have the same situation shown in
Figure 5-79 on page 201.

You can use the same mechanism for the service static URL. The value of the
variable is profiled with a new entry and therefore a new property.

This mechanism is generic and can be applied in any other scenario. The Java
class setter value can be used by any profile set and is a highly configurable
solution to set the values from other resources (such as properties file) instead of
provide them as part of the profile set. More information about profiling is in
Chapter 9, “Customizing the application using profiling” on page 421.

204 Portal Application Development Using WebSphere Portlet Factory

Generated code by external Web Service access builders
This section provides an introduction to the resources that are generated when
adding a Web Service Call builder: internal LJO, schemas from the WSDL,
variables for input/result values, and so forth. Figure 5-83 shows what is
generated in the case of the getProduct() web service operation.

Figure 5-83 Web Service Call builder: Generated resources

 Chapter 5. Creating Data Services: Access to back-end systems 205

The generated variables (_arguments, _reply) contain the values for the
inputs/results for the invocation of the web service operation. The schemas are
retrieved from the WSDL and can be used to define additional temporary
variables or apply data transformations.

The LJO can be used to access low-level functionality of the builder and
implement some special low-level functionality (Figure 5-84).

Figure 5-84 Web Service Call builder: generated internal LJO

All these resources can be accessed by other builders or programatically in Java
code via the WebAppAccess object.

5.4.4 Testing the service

Data Services accessing external web services provide the same set of testing
support we described in the XML access Data Service case (5.1.3, “Testing and
debugging the service” on page 115); you can enable testing support in the
Service Definition and run debug sessions for your Java classes.

Additionally it is possible to enable a logging mechanism in the Web Service call
in the Advance section of the Web Service Call builder. The Logging drop-down
list enables you to select from the following logging levels:

� None: Do not produce any logging information.

� Inputs and outputs only: Log the input and output SOAP messages (no
envelopes).

206 Portal Application Development Using WebSphere Portlet Factory

� Envelopes only: Log only the envelopes of the input and output SOAP
messages.

� All: Log complete input and output SOAP messages.

Increasing the log level provides a debug mechanism for each Web Service call
and makes it possible to analyze input and output messages. The log is written in
a file located in the log folder of the deployed web application in the server,
\WEB-INF\logs\debugTracing.txt.

5.4.5 Creating a Stub Service for testing

The external web service might not be accessible during development of the
application. In this situation it is interesting to provide a Stub Service that
simulates the behavior of the real web service but without connection to the
back-end system.

Perform the following steps to create the Stub Service for the Product Web
Service Data Provider:

1. Open the product Service Definition from the ProductWSProvider model.

2. Provide a path and model name for the Stub Service and click Generate
Stub.

Figure 5-85 Service Definition builder: Generate Stub models

 Chapter 5. Creating Data Services: Access to back-end systems 207

We placed all of our Stub models under the path redbook/cs/data/stub with
different subfolders for each Data Service.

3. The Stub Service is generated and can be used during generation time in
design time. To enable this, update the following file:

\WEB-INF\config\service_mappings\mappings.xml

If the file does not exist, copy the example mappings.xml.example into a new
one with the name mappings.xml.

Ensure that you have the following entry under the <ServiceMappings>
element:

<ForAllServices when="regen-time" where="designer">
<UseStub />

</ForAllServices>

This action will enable the use of Stub Services (when defined) for all the
services of the application. You can enable the Stub on a per service basis
using the <ForService> element. For more information about this file refer to
the WebSphere Portlet Factory documentation.

After creating the Stub Service, you can continue developing the application
without having access to the back-end system. You should not see any error
regarding connectivity.

This mechanism is applicable to any Data Service we have seen in this chapter,
specifically SQL and Domino. The creation of Stub Services can be applied to
any Service Definition created in your application.

5.5 High-level Data Services: Wrapping access to
back-end systems

There are some applications that access the same type of data from different
back-end systems. In the previous chapter, we introduced an architecture that
makes this possible because all data access is implementing the same interface
independent of what back-end system is behind it. If we have two or more
implementations of one interface covering the same data domain, we can define
a high-level Data Service that, while consuming different implementations, will
hide which is the actual back-end system you are accessing. The determination
of which system to access can be based on some input parameters of the
operation, the configuration, or complex business logic in the new wrapper Data
Service.

208 Portal Application Development Using WebSphere Portlet Factory

This section covers this situation as it applies to the ITSO Renovations
application. The concept of providing high-level interfaces could be extended to
create a hierarchy. WebSphere Portlet Factory allows one Service Provider to
access others by using Service Consumer builders. In every case, it is
recommended to keep the main architecture simple and to not build complex
relationships between Data Services. Each Data Service should be defined
within a data domain following the requirements of the application.

5.5.1 Design for ITSO Renovations: Product information

ITSO Renovations accesses product details from two data sources: Domino and
external web services. The business logic and presentation layers should be
able to access this information without special interfaces and configurations for
each back-end system. The design of this solution is shown in Figure 5-86.

Figure 5-86 Design of the high-level Product Data Provider

The ProductDataProvider is acting like a wrapper of Domino and Web Service
providers. The business logic and presentation layers should access this service
if they need to access all product information independent of which back-end it is
located in. In this scenario, the new model is consuming data from different

ProductDataProvider.model

ProductDefinitions.model

imports
Operation Builders

Product
Interface

A
pp

lic
at

io
n

D
at

a
Se

rv
ic

e
In

te
rf

ac
e

External Products
Web Service

Action List
Builders

ProductWSProvider.model

imports

imports

Product
Interface

ProductDetailsProvider.model

Application Data Service
Interface

Domino
Database

 Chapter 5. Creating Data Services: Access to back-end systems 209

back-end systems that use the same interface, so no data transformation is
required; only merging will be necessary to return all data from both back-end
systems.

The decision of which back end is accessed is made in the Service Operation
implementation of the ProductDataProvider and can be based on some input
parameters of the operation. In our specific case we have two operations in the
interface with different requirements:

� getProducts: Accesses all service consumers to retrieve the existing products
and return the result of merging all data. This should be an easy operation
because the product interface is the same in all Data Services.

� getProduct: Contains a parameter, source, that determines whether the
product is from Domino or Web Service. Once the source is determined, this
information is used to inform the new model so that the model will access the
correct consumer.

5.5.2 Implementing the service

The implementation is similar to that described previously in this chapter. The
main difference is that in this case the model will contain Service Consumer
builders to access the different Data Services.

Perform the following steps to implement the Product Data Provider:

1. Create a new empty WebSphere Portlet Factory model called
ProductDataProvider. The location, logically outside of the specific folders
where you created your previous services because it is not back-end specific,
is \models\redbook\cs\data\ProductDataProvider.model.

2. Add the product service interface as you did for the Domino and external Web
Service cases:

a. Import the ProductDefinitions.model using the Imported Model builder.

b. Copy the Service Definition and Operations from the
ProductFileProvider.model into the new one.

c. Add as Interface Model the ProductFileProvider.model.

3. Add the data consumers for Domino and Web Services. Create two Service
Consumer builders as identified in Table 5-15.

Table 5-15 Service consumers and provider models

Service Consumer Provider model

productsDomino redbook/cs/data/domino/ProductDetailsProvider

productsWS redbook/cs/data/ws/ProductWSProvider

210 Portal Application Development Using WebSphere Portlet Factory

Figure 5-87 is an example of one of the Service Consumer builders. Ensure
that you select Add All Provider Operations; the builder allows you to select
which operations are visible if this setting is not checked.

Figure 5-87 Service Consumer builder: accessing Web Service provider

4. Implement the logic for each Service Operation based on application
requirements.

5. In the Service Operation builders, set as Action to Call the Action List or
Linked Java Object method that implements the logic.

The following sections show the details of the implementation of both operations.
Some concepts discussed are the same as we have seen throughout this
chapter: programatic invocation of service operations, usage of IXml API, and so
forth.

Implementing getProducts
This operation needs to access both consumers, merge the data, and return the
result of the operation. We implemented the logic in an Action List builder with
the help of a Method builder to merge XML documents.

 Chapter 5. Creating Data Services: Access to back-end systems 211

Figure 5-88 Action List builder: getProductsAL

Figure 5-89 Method builder: mergeProducts

The Service Operation invokes the Action List getProductsAL that is invoking the
getProducts operation in both Data Services. The result of these invocations is

212 Portal Application Development Using WebSphere Portlet Factory

provided to the Method mergeProducts that is merging both documents using the
IXml API. The merged result is returned by the Service Operation.

Implementing getProduct
This operation accesses Domino or Web Service based on the input parameter
SOURCE. The logic is implemented in an Action List that makes the decision
which Data Service to access:

� INT: Access Domino database

� EXT: Access external Web Service

Figure 5-90 Action List builder: getProduct

Notice how Action List can implement simple decision branches. If you need
more complex logic (loops, Java API access, and so forth) it is recommended
that you delegate the call to a method in a Java class using a Linked Java Object
builder.

In the end, the ProductDataProvider model will contain the builders listed in
Figure 5-91.

 Chapter 5. Creating Data Services: Access to back-end systems 213

Figure 5-91 Builders after development of ProductDataProvider model

5.5.3 Testing the service

This data service provides the same testing support we described in the XML
access Data Service case (see 5.1.3, “Testing and debugging the service” on
page 115). You can enable testing support in the Service Definition and run
debug sessions for your Java classes. It is also possible to generate Service
Stubs because from the WebSphere Portlet Factory point of view this is a normal
Service Definition.

5.6 Accessing other back-end systems

In this chapter we have seen how to access the most common back-end
systems:

� Standard back ends, meaning relational databases and web services

� Non standard back ends, specifically Domino, using integration extensions

� Custom back-end systems for which there are no builders

We have illustrated each of these cases using the ITSO Renovations example
application. In this section we provide a brief introduction to other common
back-end systems used by many web applications. We also present guidelines
for accessing back-end systems for which WebSphere Portlet Factory does not
provide builders.

In most situations, we recommend using the design we described in the previous
and current chapters and these development phases:

� Define an Application Data Service Interface based on the application
requirements. It should be independent of the back-ends.

214 Portal Application Development Using WebSphere Portlet Factory

� Implement specific back-end access using existing available builders. Apply
required transformations to match the Application Data Service interface.

5.6.1 SAP access

WebSphere Portlet Factory provides a set of builders to access an SAP system.
To use these builders in your WebSphere Portlet Factory project you need to add
the feature set called “Integration Extensions - SAP Extension.” This action will
add all builders, libraries, and resources necessary to develop SAP access.

SAP builders use the SAP JCo library to access and interact with SAP. This
library must be present in the classpath of the web application. It is not provided
as part of the feature set because it is a decision of the user to choose the right
library version depending on the SAP back-end version. The library JAR file,
must be located in the \WEB-INF\lib directory of the WebSphere Portlet Factory
project. It also should be added as part of the classpath of the project. Finally, it
must be copied under the following location where WebSphere Portlet Factory is
installed:

<Installation_directory>\WPFDesigner\eclipse\plugins\
com.bowstreet.designer.core_6.0.1\lib\

This is required by the builders so that they have access to the JCo library,
during design time, for browsing of BAPI® functions and metadata access.

The next step is to configure SAP access using a properties file:

\WEB-INF\config\sap_config\default_sap_server.properties

You can use the default or create a new one that will be referenced by the SAP
builders. We recommend creating a new one so you can access different
systems depending on the environment: development, test, or production. The
file that is used in the builders can be profiled easily to switch between
environments. (The mechanism for doing this is the same one used for Domino
Data Service and described in detail in 5.3.3, “Implementing the service” on
page 174.)

The SAP extension provides top and modifier builders that cover all standard
access to SAP. The main builders are:

� SAP View & Form: Top level builder that provides support for calling SAP
remote-enabled functions or BAPI and displaying the results on a page. If the
function requires input values, optionally it creates an input page for the
function Import values. This is the fastest mechanism to create a user
interface to invoke a BAPI in SAP. It does not provide the separation between
presentation and data access, everything is contained in one unique builder.

 Chapter 5. Creating Data Services: Access to back-end systems 215

� SAP Function Call: Top level builder that provides support for calling a BAPI.
It provides mechanisms to browse in the list of available functions in SAP.
Once a function is selected, the metadata (that is, all schemas for
input/results of the BAPI) is retrieved automatically. The builder generates all
necessary internal variables to access all values from/to the BAPI call.

� SAP Transaction: Top level builder to group several SAP Function Calls in
one transaction. It is important to use it when updating data because SAP
requires locking the records during an update.

� SAP Properties: Modifier builder to retrieve a specific properties file that
provides the connection settings.

There are other builders to perform more detailed operations in the SAP system.
Refer to the help provided by WebSphere Portlet Factory to get complete details
about the builders.

5.6.2 J2EE Data Integration: EJB access and JMS support

WebSphere Portlet Factory provides a set of standard builders for J2EE data
integration: EJB and JMS support. This section briefly describes the available
builders and their functionality.

EJB access
The EJB Call builder can be used to link with an EJB, providing access to
methods defined in the home and remote interfaces. The builder is configured
with the access to the JNDI server where the EJB is registered and the EJB
name to call. The main information from the ejb-jar.xml is retrieved: name, JNDI
name, and home/remote interfaces. There are additional settings to generate the
constructor method.

Once the builder is created and configured, the EJB methods from the home and
remote interfaces are available to other builders and Java classes in the model.

JMS support
There are two builders that allow sending of messages to a queue/topic from a
model. First a JMS Session builder must be added to define the JMS session
settings: JNDI server where the JMS destination is registered, connection
factory, name/type of the destination, and optionally some JMS advance options
like message priority, expiration, or authentication data. Now it is possible to add
JMS Message builders to create and send messages to a JMS destination:
queue or topic. The JMS Message builder requires a JMS Session builder to
perform the actual send operation; when the JMS Message builder is executed
the message is sent over the destination defined in the JMS Session.

216 Portal Application Development Using WebSphere Portlet Factory

Once the previous builders are created and configured, all builders and Java
classes of the model will be able to send JMS messages to the associated
destinations (JMS Session linked to the JMS Message).

5.6.3 Accessing back-end systems without Portlet Factory builders

There are some application scenarios where it is required to access back-end
systems like legacy applications or custom data sources. If WebSphere Portlet
Factory does not provide builders, the application architecture and design must
reflect the custom access to these back-end systems.

There are at least two possibilities to implement access to these special
back-end systems:

� Implementation with customized builders. This is the most elegant solution
because these builders can be reused by other applications. On the other
hand, it requires more development effort. The design of the builders should
be considered carefully in order to allow them to be reusable. This solution is
not covered in this book.

� Implementation using Java code. This is the straightforward solution and valid
for each specific application. The implementation is provided using Java
classes that are available in the models via the Linked Java Object builders. It
is possible to create a Java library with all complexity confined to accessing
the back end, and simple Java classes in the WebSphere Portlet Factory
project that delegate the calls to the library. You can apply design patterns
like facade or proxy in your solution. In every case, if you need to reuse the
functionality in other web applications, you will need to repeat the creation of
the Linked Java Object builders. This is the solution we covered in 5.1,
“Custom Data Service: Local XML access sample” on page 106.

The decision to use of one of these solutions is an architecture and design
decision. Some factors to consider are:

� Complexity of the back-end system.

� Whether this back-end system can be accessed by other web applications
developed with WebSphere Portlet Factory.

� Implementation efforts.

� Role of the special back-end system within the whole application. For
example, if the application is simple it may not make sense to implement a
customized builder.

� How the chosen solution fits into the complete architecture of the application.

 Chapter 5. Creating Data Services: Access to back-end systems 217

There are other possibilities to access custom back-end systems, but in this
section we have covered these solutions that best fit in with the whole idea of
WebSphere Portlet Factory.

5.7 Summary and best practices

WebSphere Portlet Factory provides powerful mechanisms to connect with
various back-end systems with limited requirements for Java code
implementation. Configuring the builders properly will give you almost 80 percent
of the final implementation and hides from you all the complexity caused by
accessing the back-end systems. Assuming that you need special functionality in
your application, the other 20 percent of implementation effort should cover
those cases where you need to provide Java code for custom transformation and
special data access.

In this chapter we have covered the most important back-end systems; you
should now have a good overview as well as practical details that can be applied
to your specific application. We have illustrated all concepts by following the
implementation of our sample application: ITSO Renovations.

In this and the previous chapter, we have tried to present the best possible
architecture and design when implementing data services in WebSphere Portlet
Factory. You should notice that we have adhered to the basic concept of always
separating the data access from the business logic and presentation. This has
been possible because we established a clear and well defined Application Data
Service Interface that is public to the rest of the layers in the application. The
whole idea is a best practice that can be applied to many real-life scenarios. By
following this pattern, you will have a clean and modular architecture that will
allow you to distribute development tasks and the final application will be easy to
test, extend, and maintain.

We conclude by summarizing the most important best practices and
recommendations when accessing back-end systems:

� Use top level builders when possible. If this is not the case, use low level and
modifier builders in the most structured way possible.

� Extract common functionality in helper models that can be imported by
others. With a little bit more effort it may be possible to provide a generic
solution for a problem, which can then be reused it in other places. A good
example was the access of binary content in Database Data Providers.

� Keep in mind the Application Data Service Interface, including how the back
end specific data services will be linked with it and which data transformations

218 Portal Application Development Using WebSphere Portlet Factory

will be required. Decide which transformation mechanisms to use depending
on the complexity of the structures.

� Accessing special back-end systems, like Domino, SAP, Siebel, and so forth,
requires adding a feature set of data integration to make all builders and
resources available.

� Consider the use of Stub Services to develop the rest of the application even
if the back-end systems are not available.

� Consider providing a simple local implementation (for example, XML file
based) of the Application Data Service Interface as soon as possible. This will
give you a proof of concept that the interface is correct and will allow you to
continue the development in the business logic and presentation layers. The
implementation of specific back-end systems can be done in parallel and
without dependencies between development teams (distribution of tasks and
modularity).

� The development of one specific back-end system should be able to run
independently. It can execute isolated tests and the development integration
steps are minimal if it has followed the Application Interface.

The final recommendation when developing data services in WebSphere Portlet
Factory is:

Do not start creating modules and builders immediately. Begin by considering
the architecture from a high- to low-level perspective, specifically:

– The role of data access in the complete application

– Which back-end systems you need to integrate with

– What application interface your data services must provide

Start painting high-level diagrams, then go step by step into details to the
low-level back-end access. When you have identified which systems you
need to access, find out what builders WebSphere Portlet Factory offers.
Implement custom access when you have no available builders.

Design your specific data services while keeping in mind the data domains
you need to cover. Implement and test each back-end data service
independently. Integrate all data services at the end and perform application
tests.

Keep these keywords in mind: top-down view, clear architecture and design,
simple implementation, isolation tests, modularity.

 Chapter 5. Creating Data Services: Access to back-end systems 219

220 Portal Application Development Using WebSphere Portlet Factory

Chapter 6. Creating portlets:
Making it work

This chapter describes the process to connect to some of the data services that
we created in Chapter 4 and 5 to build the basic user interface and consumer
models for our ITSO Renovation - Customer Self-Service application.

6

© Copyright IBM Corp. 2008. All rights reserved. 221

6.1 Overview

In this chapter, we describe how to create “consumer” models that use the
services we exposed in chapter 4 and 5. The previous chapter introduced us to
the methodology for building back-end “services” models; this chapter introduces
the methodology for building front-end “consumer” models. Taken together,
these chapters illustrate the basic development strategy for building complete
applications with WebSphere Portlet Factory; further chapters build on relevant
issues within this overall context.

Here, we build models that employ Data Services to feed some sophisticated
front-end builders, which generate a presentation for the data returned by the
service. In later chapters, this presentation are tweaked with “modifier” builder
calls – a deliberate and ubiquitous part of the development strategy.

Think of a WebSphere Portlet Factory model as a code generator. (The Factory
itself has been called a code generator; this is not true. It is an environment for
making code generators.) So, when you build a model using builder calls, you
are in effect building a customized code generator. Adding builder calls simply
adds “stations” to this assembly line; by adding enough builder calls (out of the
box ones, ones that call in your own custom methods and helper objects, and
even calls to your own custom builders themselves) you can get exactly the code
generator you want.

222 Portal Application Development Using WebSphere Portlet Factory

6.2 Portlet design overview

In this and the next three chapters, we iteratively develop three separate portlets
for our ITSO Renovations - Customer Self Service application. The portlets and
their key features are as follows:

� Customer Information portlet

This is the primary portlet in our application. The Customer Information portlet
is profiled such that there are two separate runtime entry paths into the
portlet, one for the Customer Service Representative (CSR) and the other for
the Customer. This profiling is based on which WebSphere Portal Server
group each user is part of (CSRGroup or CustomerGroup).

– The CSR will be able to:

• Display a list of all customers and drill down to get details about any
customer

• Edit any customer details

• Search for any customer

• Add new customers

– The Customer will be able to:

• Personalize the Customer Information portlet and save their account
access information in the portal credential vault

• View the details of just their own account once the portlet is
personalized.

• Edit their account information

� Order List portlet

The Order List portlet is responsible for displaying the list of orders placed by
a customer. Using portlet to portlet communication and event handling, this
portlet will be populated automatically based in the customer selected in the
Customer Information portlet.

� Order Details portlet

The Order Details portlet is geared to display the details about a specific
order and the list of items included in the order. This portlet also is populated
automatically based on the selected order in the Order List portlet. Other
functions of this portlet include the ability to:

– Fetch and display additional product details from a Domino database as
well as from a external remote web service

– Alter the item quantity on the fly

 Chapter 6. Creating portlets: Making it work 223

– Personalize the portlets and configure (show/hide) the display columns at
runtime

Since we are developing our ITSO Renovations - Customer Self Service
application as a portal-based application (that is, portlets), we will have portal
elements such as labels, pages, and so forth. on which our portlets will be
housed. The creation of these portal-specific elements will be discussed later in
this chapter.

The following two figures provide a glimpse of the solution that is our ultimate
goal.

Figure 6-1 Customer Information page with the Customer Information portlet

224 Portal Application Development Using WebSphere Portlet Factory

Figure 6-2 Orders page showing the Order List and Order Details portlets

6.2.1 The context of this chapter

In this chapter, we introduce the basic process to construct front-end consumer
models. We use this process to build the first of the three portlets mentioned
previously. Our goal for this chapter is to create three standalone portlets that
verify that we have connectivity to the back-end services models and can
generate the basic user interface. Since the first iteration of the three portlets
would be standalone (that is, no inter-portlet communication), we hard wire some
of the inputs in the portlets so that we can visualize the basic layout and structure
of the portlets. The last section of this chapter explains the linkage and use of
portal-specific elements (credential vault and so forth).

 Chapter 6. Creating portlets: Making it work 225

In chapter 7, we discuss UI design and add more functionality to the application
by using rich data definitions and some of the newer Web 2.0 builders (Ajax,
Dojo, and so forth). The Order Details portlet will be able to access additional
product details by tapping into a Domino database or an external web service at
runtime.

In chapter 8, we discuss portlet to portlet communication. This is when we
remove all the hard wires and establish true portlet to portlet communication and
event handling. In this chapter, the Customer Information, Order List, and Order
Details portlets are hooked or wired together such that actions in one portlet
would cause events in another.

In chapter 9, we discuss profiling. We then profile our application and create two
separate runtime entry paths to our application, one for the CSR and the other for
the customer. We also customize and profile several other items in the
application so that our two user sets have different runtime experiences.

Additional topics are discussed in other chapters when appropriate.

6.3 Development the WebSphere Portlet Factory way

With WebSphere Portlet Factory, developers build portlets by snapping together
a sequence of components called builders. Each builder has a simple wizard-like
user interface and does the work of automatically generating or modifying part of
an application. A builder implements an application design pattern.

Builders are assembled into models, which are like application production lines.
Each time a change is made to any of the builders in a model, the application
code is regenerated, allowing the developer to iteratively develop a custom
portlet application. The builders generate all the application code, including
JSPs, Java classes, and XML documents.

Development continues by adding builders to your model until you have the
desired functionality. Along the way, you can test the model by running it from the
Designer tool, using any application server to see the intermediate results. You
do not need to deploy to the portal unless you need to test portal-specific
features such as portlet-to-portlet communication.

Development with WebSphere Portlet Factory is an iterative process. If you do
not like what a builder has created, you can go back, change the builder’s input
values, and have the entire portlet application update instantly. Or, you can add
additional builders to your model that modify what other builders have created.
You can also import your own Java code, HTML, style sheets, and JSPs to get
the exact functionality desired. In short, WebSphere Portlet Factory supports

226 Portal Application Development Using WebSphere Portlet Factory

rapid prototyping, and it also includes all the necessary capabilities for you to
turn your quick prototype into a production-ready portlet.

6.3.1 High-level overview of building portlets

This section describes the high-level steps for building data-driven consumer
portlets with WebSphere Portlet Factory.

1. Create a service consumer model.

Create a new service consumer model, to which you will add all of the
builders necessary to call the appropriate data services and generate the
user interface. Add a Service Consumer builder to this model; this is used to
provide access to a public service created by the builders in a service
provider model. Note that we may add multiple service consumer builders to
our model to access multiple service providers.

2. Create the initial presentation interface.

After a service is available, the next step is to build the user interface. The
most common builder to use for this is View & Form. This builder is a
high-level builder that automatically generates pages for viewing and editing
data from data services. This builder is explained in further detail later in this
chapter.

Alternatively, in some cases, you may need to create the initial presentation
for a model by using a combination of other builders such as Data Page, Input
Form, or any lower level UI builders. These will also be discussed in detail
later in this chapter.

3. Add builders to achieve the exact functionality required.

After we have created our initial presentation page or pages, the next step is
usually to add additional modifier builders that add new features to the model.
For example, if we use View & Form builder to create a page with a table of
service results, we can then add a Data Column Modifier builder to rearrange
or hide columns, or to add column sorting functionality. Or, if we want to add a
navigation link, we can use a Link builder.

The development process then continues by iteratively making changes to
the model and testing them out. At any time we can open any of the builders
in the model and change any of the values. We can also temporarily disable
any builders, by using the right-click menu on the builder in the Outline view.

As we continue to customize our application by adding and editing builders,
the number of builders in the model will increase.

 Chapter 6. Creating portlets: Making it work 227

To keep the number of builders small, you can use builders such as Imported
Model, Linked Model, and Model Container to make your application more
modular.

4. Add the portlet wrapper to the model.

The final step in creating the user interface model is to add a Portlet Adapter
builder to the model. This builder adds the portlet wrapper to your model and
enables it to be executable within the portal container.

6.3.2 Key builders for consumer models

This section describes the functionality of some of the key builders that we are
going to use to develop the portlets for our ITSO Renovations - Customer Self
Service application.

� Service Consumer builder

The Service Consumer builder makes all the operations defined in a Service
Provider model available for use. It enables other builders to reference all the
information provided by the service, including the input and output schemas,
the operations and the associated variables. With the Service Consumer
builder making the data available to the Page Automation system, you can
use the entire array of Page Automation builders to generate pages. For
example, the View & Form builder can reference service information,
including the input and result schemas, and automatically generate complex
presentation elements such as forms and list views.

� UI generating/Page Automation builders

WebSphere Portlet Factory provides us with a vast collection of UI builders
that can be used for generating and modifying our application. Before we get
into the details, it is important to understand the fundamentals of high-level
builders and low-level builders in WebSphere Portlet Factory.

High-level builders are builders that encapsulate the functionality of many of
the lower level builders into a simple user interface. High-level builders are
themselves implemented by using multiple lower level builders.

For example, a View & Form builder is a high-level builder because it wraps
the functionality of many lower level builders such as a Data Page, Paging
Buttons, and so forth. Another example of a high-level builder is the Domino

Tip: As a best practice, we recommend keeping the number of builders in
a model to under 50 since models larger than that tend to be more difficult
to work with.

228 Portal Application Development Using WebSphere Portlet Factory

View and Form builder. Under the covers, it is implemented by using Domino
Data Access, and so forth.

Some of the key UI builders are:

– View & Form builder

The View & Form builder is a high-level builder that can be used to create
a portlet with a view page that displays the results from a service
operation, with optional pages for input, details, and update. As with other
builders, you can selectively add the functionality that you require. For
example, you can have this builder just create the view page and not the
input, details, and update pages. Here are a few examples of portlet use
cases ideally suited to the View & Form builder:

• A portlet displays a list of expenses, and allows users to click to see the
details of an expense, and then update that expense.

• An employee directory portlet enables users to search for an employee
and view a table of results for the selected employee.

• A “Personal Information” portlet in an HR employee self-service
application allows users to view and edit their own personal data.

The View & Form builder automates the creation of:

• A view page that displays a table or single record of data.

• An optional input page for the specified view operation, with optional
validation.

• An optional detail page that displays either data from the selected row
in the view page or data from another data service or method.

• An optional update page for editing details or results data.

• Navigation between the pages (buttons).

Important: As a rule of thumb, use the highest level builder available for
the job.

It is more efficient to use the high-level builder because it reduces the
number of builders in the model, which in turn eliminates the need to hook
up multiple lower level builders needed to derive the same functionality.
Having fewer builders in the model makes it more easily readable.

Also, if granular control is needed during development time, it is a lot easier
to decompose a high-level builder call into multiple lower level constituents
than to group together a number of low-level builders into a high-level call.

 Chapter 6. Creating portlets: Making it work 229

– Data Page builder

The Data Page builder, as the name suggests, provides you with the
ability to display data resulting from a service call, SQL statement, or any
other builder call that provides data. The data does need to be defined by
a schema for the Data Page builder to work. Most service calls and SQL
statement builder calls add a schema to the model that defines the data
being returned.

While working with data page or any other high-level builder that uses the
data page functionality under the covers, there are two basic ways for
generating the UI with datapage: using HTML Templates, or using an
existing presentation and then gluing the elements to the named tag on
the page. These are discussed further in Chapter 7.

– Input Form builder

The Input Form builder creates an input page for a data service operation
or a method. It is much like View & Form input page support, but the next
action after submitting the input form is a user-specified action. This
builder is suitable for operations that do not have result data to display. If
you do want to display result data from the operation, you should consider
using the View & Form builder instead because that builder generates a
results page.

We utilize the Input Form builder later in this chapter when we build the
Customer Information model to implement the functionality to add new
customers.

� Application Logic and Flow control builders

Three builders (Action List, Methods, and Linked Java Objects) available in
WebSphere Portlet Factory can help regulate application logic and flow.

– Action List builder

• An Action List is a simple list of model actions that can help in loading
pages, calling methods, making variable assignments, and in creating
simple branching statements. (If/Then/Else)

• The builder allows the use of indirect referencing.

• It generates a method in the WebApp’s methods class.

– Method builder

• Method builder provides us with a mechanism to write standard Java
code directly in the builder’s input.

• It provides a means to make simple calls to pages, and execute
methods and service calls.

230 Portal Application Development Using WebSphere Portlet Factory

• It can be used to formulate more sophisticated branching statements
than those allowed by the Action List builder.

• It adds a Java method to the WebApp’s runtime methods class.

– Linked Java Object builder

• The Linked Java Object (LJO) builder points to a Java object in the
classpath and it makes the object’s public methods available to the
model. These methods become model actions and can be triggered
from any other builder in the model.

• LJO is the best option to consume existing code and can be used to
formulate complex business logic in the methods in the Java class.

• LJO method can get a handle on the running WebApp by specifying
the WebAppAccess as the first argument in the method’s signature.

6.3.3 Best practices for designing large applications

When building large applications with WebSphere Portlet Factory, it is a good

idea to break out functionality into separate models. This may achieve one or

more of these goals:

� Number of builders in the model becomes fewer, which makes the model
more “readable.”

� Functionality can be developed simultaneously by developers working on
separate models at the same time.

� A single model can be imported into multiple other models, keeping the
administration of the imported model’s functionality centralized.

There are a number of builders that can help you achieve modularity in your
application. These include the Imported Model builder, the Linked Model builder
and the Model Container builder.

� Imported Model builder

The Imported Model builder can be used to import a model (target model) and
its complete builder call set into another model (host model). When you
import a model into another, all the attributes of the target model are imported
into the host model at generation time. The target model has read-only status.
This means that the host model can invoke all the builder calls of the target
model, but cannot change any of the builder inputs of those builder calls.

By using the Imported Model technique to pull target models into a host
model, only one WebApp is generated. Hence both the host’s and target’s
artifacts are ultimately local. One key point to note here is that there could be

 Chapter 6. Creating portlets: Making it work 231

naming conflicts resulting in regeneration errors if the artifacts (such as
Builder Names) of the host and the target model have the same names.

For our ITSO Renovations - Customer Self Service application, we will use
the Imported Model builder described in detail in Chapter 9.

� Linked Model builder

The Linked Model builder can be used to link a model (linked model) and its
artifacts in another model (host model). Linked models are the primary unit of
modularity for an application. They are roughly analogous to classes in Java.
They contain methods and state data, and support the distinction between
public and private access. From a host model, you can directly access any
public methods, Linked Java Objects (LJOs), and action lists in a linked
model.

Using the Linked Model technique, the host model simply points to another
WebApp (linked model), which remains independent of host. This approach
can be very useful if many models need to link to a common utility
functionality module.

The key difference between the Imported Model approach and the Linked
Model approach in achieving modularity is that in the case of Linked Model,
two separate WebApps exist (host and linked). And since there are two
separate WebApps, the Linked Model approach is ideally suited to be used
when you want to retrieve data or functionality from another model but not the
user interface (UI).

For our ITSO Renovations - Customer Self Service application, we will use
the Linked Model builder, which is discussed in detail in Chapter 7.

� Model Container builder

The Model Container builder allows a model to host another model at a
named page location. Under the covers, the hosted model is partially
implemented using the Linked Model functionality.

Important: Linked Model builder is best suited for linking to data and logic

that resides in another model. It is not suited for linking to any user inter-

face elements (pages, buttons, forms, and so forth) that may reside in

another model. The Model Container builder is ideal for retrieving user

interface components from another model.

232 Portal Application Development Using WebSphere Portlet Factory

You can use a Model Container approach to make a model self-contained
and allow it to be inserted into a web page. Using multiple models, with model
containers, provides two main advantages:

– For developers: Using Model containers makes shared development
easier. Multiple developers can collaborate on page content and creation.
Each developer can work independently and contribute a model that
provides specific content to the same page.

– For web users: Model Container builders provide a consistent page
context. A web page incorporating contained models enables users to
remain in that page’s context, even as they drill down into a model in
search of additional content. This keeps users oriented, and it also
facilitates users’ access to content in other models on the page.

Here is a typical example of how modular development might be used: Let us
assume that a news site is supported by several developers. Each developer
is responsible for the creation and maintenance of a certain type of news
section (weather, sports, international, business, society, education, and so
forth) on the page. Using container builders, each developer can develop a
portion of this overall page’s content and then plug his or her model into the
page.

From the point of view of someone accessing the page, the page is displayed
as a seamless whole, offering a mosaic of news content. However, as a user
clicks down into the news model to view details about international events, for
instance, the overall context of the page remains constant, with only the
international news model segment of the page changing.

Each model is assigned to a container, which is a placeholder for the model to
be displayed. Models can also contain containers.

A container can have more than one model assigned to it, but only one model
can be displayed (active) in the container at a time. You may want to think of
a container as an electrical outlet. You can have only one item (your models)
plugged into an outlet at a time, but you can change the model displayed in
the container. Models can have containers. Think of a power strip as a model
that has three containers. In each container only one model can be displayed
at a time, even though more than one model might be assigned to the
container. Those models can also have containers, and so forth. You can
have an unlimited nesting of models within containers.

For our ITSO Renovations - Customer Self Service application, we will use
the Model Container builder described in detail in Chapter 10 when we design
the Shopping portlet.

 Chapter 6. Creating portlets: Making it work 233

6.4 Building the web application

This section describes the process of building the three primary models for our
ITSO Renovations - Customer Self Service application.

6.4.1 Customer information

In this section, we create the first iteration of the Customer Information model,
which will enable users to do the following:

� Display a list of customers and get detailed information about any customer

� Edit customer information

� Search for a customer

� Add a new customer

Creating the base HTML pages
First, we are going to create a base HTML pages that will host static content and
named Tags that will be used as anchors in our UI model for inserting dynamic
content structures and other page elements such as buttons, text fields, and so
forth.

The process of creating the base HTML pages is optional but it is very useful in
creating portlets with the desired UI layout. Think of these as “shell pages” that
our high-level builders (View and Form, Data Page, and so forth) will start with to
generate their presentation.

Do the following to create the base HTML files:

1. Click File → New → Other to launch the wizard.

2. Select General → File and click Next.

3. Type or select the parent folder as RedbookCS/WebContent/redbook/cs/html,
enter the file name as CustomerListLayout.html and click Finish to create
an empty HTML file.

234 Portal Application Development Using WebSphere Portlet Factory

Figure 6-3 Creating the CustomerListLayout.html file

4. Right-click the newly created CustomerListLayout.html file and select Open
With → Text Editor. This will allow you to edit the file and create a basic
layout of Customer List page. Copy and paste the HTML in Example 6-1 into
this file.

Example 6-1

<html>
<body>
<form name="ITSO_REDBOOK_FORM_CustomerListLayout" method="post">
<TABLE>

<TR>
<TD align="left" valign="top">Customer Search: </TD>
<TD align="left" valign="top"></TD>
<TD align="left" valign="top">

</TD>
<TD align="left" valign="top">

</TD>

 Chapter 6. Creating portlets: Making it work 235

<TD align="left" valign="top">

</TD>
</TR>
<TR>

<TD colspan=3 align="center" valign="top">

</TD>
</TR>

</TABLE>
</form>
</body>
</html>

Pay attention to the tags on the HTML page that have the name= attribute. We
call these named elements and there are six of them in our HTML file:

– searchBox

– searchButton

– viewAllCustomers

– addNewCustomer

– data

– paging_buttons

All six of the tags happen to be tags, but the type of tag does not
matter as long as it has a name= attribute on it. A little later, we place a text
field, buttons, and other UI elements on the named tags.

By creating our own shell HTML page like this one, with all the named
elements that our model builders require, we can adjust the look and feel of
how and where these components are laid out.

5. Save and close the CustomerListLayout.html file.

6. Create another base HTML file to use for the Customer Details page. Repeat
Steps 1 through 3 to create a new HTML file and name it
CustomerDetailsLayout.html

7. Right-click the CustomerDetailsLayout.html file and select Open With →
Text Editor. Copy and paste the HTML in Example 6-2 into the file.

Example 6-2

<html>
<body>
<form name="ITSO_REDBOOK_FORM_CustomerDetailsLayout" method="post">
<TABLE>

236 Portal Application Development Using WebSphere Portlet Factory

<TR>
<TD colspan=3 align="center" valign="top">

</TD>

</TR>
<TR>

<TD colspan=3 align="center" valign="top">

</TD>
</TR>

</TABLE>
</form>
</body>
</html>

8. Save and close the HTML file.

Creating the CustomerInfo model
In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by performing the following steps:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

Figure 6-4 Creating a new model

 Chapter 6. Creating portlets: Making it work 237

2. In the Choose Project pane, select RedbookCS as the project and then click
Next.

3. In the Select Model pane, select the Model Type as Factory Starter
Models → Empty and click Next.

Figure 6-5 Selecting the Empty Factory Starter Model

4. In the Save New Model pane, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/customer as
the folder and CustomerInfo as the model name.

5. Click Finish to save the model.

238 Portal Application Development Using WebSphere Portlet Factory

Figure 6-6 Saving the CustomerInfo model

Binding to the Service Provider model
Now that we have an empty CustomerInfo.model, we need to add a Service
Consumer builder so that we can connect to the customer data service provider
model that we built in Chapters 4 and 5. The Service Consumer builder is an
integral part of creating SOA-based applications. It provides a binding
mechanism to couple the UI model with the data service model.

1. From the builder palette, select the Service Consumer builder and click OK
to add it to the CustomerInfo model.

2. Name the builder CustomerService.

3. To select the Provider Model, click the ellipsis and select the
redbook/cs/data/db/CustomerDBProvider model.

 Chapter 6. Creating portlets: Making it work 239

Figure 6-7 Service Consumer model

4. For our CustomerService Service Consumer builder, leave the Add All
Provider Operations checked. Click OK and save the model.

5. Review the CustomerInfo model’s WebApp Tree showing all the operations
that have been exposed by the ServiceConsumer builder.

Attention: When we choose a Provider Model, the builder editor inspects
the model, looks for Service Definition and Operation builder calls, and
pulls the service interface into the consumer model. Notice that by default
the Service Consumer will add all discovered service operations to your
consumer model. You can, however, limit the number of operations that
are visible by unchecking the Add All Provider Operations checkbox and
then enabling the operations individually.

240 Portal Application Development Using WebSphere Portlet Factory

Figure 6-8 WebApp tree showing the operations provided by the CustomerService

Displaying data in View and Form builder
Perform the following steps to add the View and Form builder for displaying the
Customer List:

1. Open the CustomerInfo model if it is not already open.

2. From the builder palette, select View & Form Builder and click OK to add it
to the CustomerInfo model.

3. Set the following values for the View and Form builder:

Name: CustomerList

View Data Operation: DataServices/CustomerService/getCustomersList

 Chapter 6. Creating portlets: Making it work 241

View Page HTML: /redbook/cs/html/CustomerListLayout.html
This is the file we created earlier in this section.

Paged Data Display: (checked)

Rows Per Page: 10

Advance > Generate Main: (checked)

4. Click OK and save the model.

Figure 6-9 View & Form builder

5. Execute the CustomerInfo.model in WebSphere Portlet Factory to verify that
it can connect to the CustomerDBProvider.model and run the service
operation to get the customer list. Upon running the model, the browser
should display the list shown in Figure 6-10.

Tip: While creating the UI models, it is a good practice to execute a model
after making small changes to ensure that the desired changes are indeed
taking effect.

242 Portal Application Development Using WebSphere Portlet Factory

Figure 6-10 Customer List view

6. Add another View & Form builder to display the customer details. Open the
CustomerInfo.model if it not already open. Select View & Form Builder from
the builder palette and add it to the CustomerInfo.model

7. Set the following values for the View and Form builder:

Name: CustomerDetails

In the View Page Options section of the builder:

View Data Operation: DataServices/CustomerService/getCustomer

View Page HTML: /redbook/cs/html/CustomerDetailsLayout.html

Figure 6-11 Customer Details View & Form builder

In the Update Page Support section of the builder:

Create Update Page: (checked)

Update Method: DataServices/CustomerService/updateCustomer

 Chapter 6. Creating portlets: Making it work 243

Update Next Action: CustomerDetails_ViewPage

This input value determines the page to display after the update form has
been submitted. In our case, we would like to go back to the customer
details view page.

Figure 6-12 Customer Details View & Form builder showing update page support

Advance > Generate Main: (unchecked)

We are doing this because the first View & Form builder [CustomerList]
that we added to the model is already generating the main method for the
model.

8. In this step, we link the two View and Form builders so that the users will be
allowed to click the Customer ID on the CustomerList and be able to view the
details for that customer in the CustomerDetails View.

a. Open the CustomerList View and Form builder in the Builder Call Editor.

Important: If multiple View & Form Builders in the model are generating
the main method, you will see the following error in the WebSphere Portlet
Factory Designer when the model is saved:

This Builder Call caused the following exception: Attempt to
create duplicate action main in model.

244 Portal Application Development Using WebSphere Portlet Factory

b. In the Row Details Support section, make the following entries and
selections:

Create Link To Details:(checked)

Link Details Column: ID

Details Action Type: Specify an action to call for showing
details.

Link Action: CustomerDetails_ShowResults

This is the method that generates the Customer Details view.

Figure 6-13 Customer List View & Form builder showing the Row Details Support

Overriding the input in Service Consumer
Now that we have basic View & Form builders set up in our CustomerInfo.model,
we need do one more thing before they are truly connected.

1. Open the CustomerService Service Consumer builder in the Builder Call
Editor.

2. Check the option to Override Inputs. Once checked, a list of operations
provided by the CustomerDBProvider.model will be visible. Here we can
override the inputs for any individual operations.

3. Click the getCustomer operation to view its inputs.

4. In the inputs section, set the Inputs.CUSTOMER_ID to
${Variables/CustomerList_SelectedRowData/Customer/ID}. We are
overriding this input so that when the getCustomer operation is run by the
CustomerDetails View & Form builder, it fetches the Customer ID from the
selected (clicked) row of the CustomerList View and Form builder.

 Chapter 6. Creating portlets: Making it work 245

Figure 6-14 Service Consumer builder inputs being overridden

5. Execute the CustomerInfo.model. You should now be able to click any
Customer ID on the customer list to view the details. In the customer details
view, you should also be able to click the Edit button to change the customer
details information.

Important: The CustomerList_SelectedRowData is a variable (also known
as an artifact) produced by the high-level View and Form builder (in our
case the CustomerList View and Form builder). This variable holds the
value of the selected row when we click the Customer ID on the customer
list. We used this variable while overriding the inputs in the service
consumer builder to channel in the selected customer ID to the
getCustomer operation.

246 Portal Application Development Using WebSphere Portlet Factory

Figure 6-15 Execution of the CustomerInfo model showing the list, details, and edit
functionality

Adding image and back button to the Customer Details view
1. From the builder palette, select and add an Image builder to the model and

configure it with the following values.

Page Location:

Page: CustomerDetails_ViewPage

Tag: image_holder

Image Source:
${DataServices/CustomerService/getCustomer/results/Customer/IMAGE}

 Chapter 6. Creating portlets: Making it work 247

Figure 6-16 Image builder

2. Click OK and save the model.

3. From the builder palette, select and add a Button builder to the model and
configure it with the following values:

Page location:

Page: CustomerDetails_ViewPage

Tag: back_button

Label: back

Action Type: Submit form and invoke action

Action: CustomerList_ViewPage

Figure 6-17 Button builder

248 Portal Application Development Using WebSphere Portlet Factory

4. Click OK and save the model.

5. Execute the model. Click any Customer ID to view the details page. You
should see the company image and also the back button on this page.

Figure 6-18 CustomerInfo model showing customer details

Adding the search functionality
In this section, we add the ability to search for customers. To do this, we add the
following builders to the model:

� Text Field: For allowing users to type in the search string

� Button: For triggering the search process

� Action List: For conducting the search process

Perform the following steps to implementing this functionality:

1. From the builder palette, select and add a Text Field builder to the
CustomerInfo.model. Populate it with the following inputs:

Name: customerSearchField

Page Location:

Page: CustomerList_ViewPage

Tag: searchBox

 Chapter 6. Creating portlets: Making it work 249

In the HTML attributes section, set the Size to 30.

Figure 6-19 Text Input builder for search functionality

2. Click OK and save the model.

3. Next we implement the search process in an Action List builder. This Action
List will have one input parameter, which will be the search string. From the
builder palette, add an Action List builder to the CustomerInfo model and set
the following values:

Name: executeSearch

Expand the Arguments section to specify the name and datatype of the
arguments. Here we need to specify just one argument for the search text.

Name: searchText

Data Type: String

Specify these actions in the Action List:

CustomerServiceFindCustomersWithArgs(${Arguments/searchText})

This action executes the findCustomer operation of the
CustomerService and channels in the search argument.

250 Portal Application Development Using WebSphere Portlet Factory

Assignment!DataServices/CustomerService/getCustomersList/results=
${DataServices/CustomerService/findCustomers/results}

This assignment statement sets the data in the CustomerList with the
results obtained upon running the findCustomer operation.

CustomerList_ViewPage

This action simply refreshes the CustomerList_ViewPage.

Figure 6-20 Action List builder showing the search execution process

4. Click OK and save the model.

5. We need a button for triggering our search action. Add a new Button builder
to the model and set the following inputs values:

Page Location:

Page: CustomerList_ViewPage

Tag: searchButton

Label: Go

Action: executeSearch

 Chapter 6. Creating portlets: Making it work 251

In the Arguments section, set the input mappings for the argument:
executeSearch_Arg1 to value: ${Inputs/SearchBox}

6. Click OK and save the model.

7. Add a new Button builder to the model and configure it with the following
inputs:

Page Location:

Page: CustomerList_ViewPage

Tag: viewAllCustomers

Label: View All Customers

Action: CustomerList_ShowResults

8. Click OK and save the model.

9. Execute the model.

Figure 6-21 CustomerInfo model

Implementing the functionality to add a new customer
In this section, we utilize an Input Form builder along with Action List and Buttons
to implement the functionality to add a new customer.

1. Add an Input Form builder to the model and configure it with the following
values:

Name: addCustomer

Input Submit Operation: DataServices/CustomerService/createCustomer

252 Portal Application Development Using WebSphere Portlet Factory

Input Next Action: CustomerList_ShowResults

Advanced > Generate Main: (unchecked)

Figure 6-22 Input Form builder for adding new customers.

2. Click OK and save the model.

3. Add an Action List builder to the model and configure it with the following:

Name: addCustomer

Specify the actions below in the Action List:

DataServices/CustomerService/getNextCustomerId

This action calls the getNextCustomerId method exposed by the
Customer Service to get a unique Customer ID from the database.

Assignment!DataServices/CustomerService/createCustomer/inputs/Cus
tomer/ID=${DataServices/CustomerService/getNextCustomerId/results
/arguments/returnValue}

The above statement assigns the result of the getNextCustomerId
operation to the input of the createCustomer operation.

 Chapter 6. Creating portlets: Making it work 253

addCustomerForm_InputPage

This action renders the input page for adding new customer.

4. Click OK and save the model.

5. Add a Button builder to trigger the addCustomer process. Configure it with the
following values:

Page Location:

Page: CustomerList_ViewPage

Tag: addNewCustomer

Label: Add New Customer

Action: addCustomer

6. Click OK and save the model.

7. Add another Button builder to the model. This is a cancel button that we place
on the Input Form in case the user decides not to add a customer. Configure
it with the following values:

Page Location:

Page: addCustomerForm_InputPage

Tag: cancel_button

Label: Cancel

Action: main

8. Click OK and save the model.

9. Execute the model. Click the Add New Customer button. Note that the ID is
automatically populated.

254 Portal Application Development Using WebSphere Portlet Factory

Figure 6-23 Customer Info model showing the input form to add new customer

This completes the construction of our Customer Info model.

6.4.2 Order List model

In this section we create a bare bones version of the Order List model. The Order
List model will be able to consume the Order Service and to execute an
operation to get a list of orders for a customer. In this version of the model, we
hard wire the default inputs (Customer ID) for the Order Service Consumer so
that we can view and test the basic execution of the Order List model.

In Chapter 8, when we introduce and discuss event handling and portlet to portlet
communication, we remove all the hard wires and default inputs from the Order
Service Consumer because we will be able to execute and render the Order List
based on the selected customer in the Customer Information portlet.

 Chapter 6. Creating portlets: Making it work 255

Creating the base HTML page
This procedure is similar to the one we used to create the Customer Info model,
beginning with creating the base HTML layout page for the Order List model.

1. Create a new HTML file in the RedbookCS/WebContent/redbook/cs/html
directory and name it OrderListLayout.html

2. Open it for editing and copy and paste the HTML from Example 6-3 into the
file.

Example 6-3

<HTML>
<BODY>
<FORM name="ITSO_REDBOOK_FORM_OrderDetailsLayout" method="post">

<TABLE>
<TR>

<TD colspan="3" align="left" valign="top">

</TD>
</TR>

</TABLE>

Max no of rows to be displayed on

each page:

</FORM>
</BODY>
</HTML>

3. Save and close the file.

Developing the OrderList model
1. Create a new empty model in the

RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/order directory and
name it OrderList.model.

2. Our order list needs to connect to the Order service provider model that we
built in Chapter 4 and 5. For this we need a Service Consumer Builder. From
the builder palette, add a Service Consumer builder to the OrderList model
and configure it with the following values:

Name: OrderService

Provider Model: redbook/cs/data/db/OrderDBProvider

256 Portal Application Development Using WebSphere Portlet Factory

Override Inputs: (checked)

Then set the default input for the getCustomerOrdersList operation:

Input Name: Inputs.CUSTOMER_ID

Input Value: 001

3. Click OK and save the model.

4. Add an Imported Page Builder to the OrderList model to import the base
HTML page that we created previously. Configure it with the following values:

Name: orderList

Page to Import: /redbook/cs/html/OrderListLayout.html

5. Click OK and save the model.

6. Add an Action List builder to the model. This will be our “main” method and
the entry point for the execution of the model. Configure it with the following
values:

Name: main

Actions:

DataServices/OrderService/getCustomerOrdersList

This method makes the call to the getCustomerOrderList operation of
the OrderService to get a list of all Orders for customer
[Customer_ID=001] that we had set as the default input.

orderList

This action renders the orderList page.

7. We need a mechanism to display the data (that is, the List of Orders) on the
orderList page. For this, we will use a Data Page builder. From the builder
palette, add a Data Page builder to the OrderList model and configure it with
the following values:

Variable: DataServices/OrderService/getCustomerOrdersList/results

Page in Model: orderList

Location for New Tags: OrderList

8. Click OK and save the model.

9. Execute the OrderList.model. You should see a table with a list of orders
showing the ID, DATE_ORDERED, and STATUS of orders, like the one in
Figure 6-24.

 Chapter 6. Creating portlets: Making it work 257

Figure 6-24 Order List model showing the list of orders

6.4.3 Order Details model

The last of the three models that we are going to create in this chapter is the
OrderDetails model. Just like the OrderList model, for the first iteration of this
model we are going to channel in the default inputs for the Order Service
Operations to test the basic functionality. In Chapter 8 we remove these default
inputs and establish true portlet to portlet communication.

Creating the base HTML page
Similar to what we did previously to create the CustomerInfo and OrderList
models, we begin by creating the base HTML layout page for the OrderDetails
model.

1. Create a new HTML file in the RedbookCS/WebContent/redbook/cs/html
directory and name it OrderDetailsLayout.html

2. Open it for editing and copy and paste the following HTML into the file.

<HTML>
<BODY>
<FORM name="ITSO_REDBOOK_FORM_OrderDetailsLayout" method="post">
<TABLE>

<TR>
<TD colspan="3" align="left" valign="top">

</TD>

 </TR>
</table>
<table>
<TR>

<TD align="left" valign="top"></TD>
</TR>
</TABLE>

258 Portal Application Development Using WebSphere Portlet Factory

</FORM>
</BODY>
</HTML>

3. Save and close the file.

Developing the Order Details model
1. Create a new empty model in the

RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/order directory and
name it OrderDetails.model.

2. We need a Service Consumer builder in the Order Details model for
connecting to the Order Details Provider. From the builder palette, add a
Service Consumer builder to the OrderDetails model and configure the
following values:

Name: OrderService

Provider Model: redbook/cs/data/db/OrderDBProvider

Override Inputs: (checked).

Then set the default inputs for the following operations:

3. Click OK and save the model.

4. Add an Imported Page builder to the OrderDetails model to import the base
HTML page that we created earlier. Configure it with the following values:

Name: orderDetails

Page to Import: /redbook/cs/html/OrderDetailsLayout.html

5. Click OK and save the model.

6. For the OrderDetails.model, we need two data pages: one to display the
Order Information (Order_ID, Customer_ID, Billing, Date_Ordered, Status,
Date_Shipped, Comments), and another to display the list of Items
(Product_ID, Name, Description, Thumbnail, Unit_Price, Quantity,
Order_Price, Source) in the Order.

a. From the builder palette, add a Data Page builder to the
OrderDetails.model and configure it with the following values:

Variable: DataServices/OrderService/getOrder/results

Operation Input name Input value

getOrder Inputs.ORDER_ID 0001

getOrderItems Inputs.ORDER_ID 0001

 Chapter 6. Creating portlets: Making it work 259

Page in Model: orderDetails

Location for New Tags: OrderDetails

b. Click OK and save the model.

c. Add another Data Page builder to the OrderDetails.model and configure it
with the following values:

Name: orderItems

Variable: DataServices/OrderService/getOrderItems/results/
Orders/Order/ITEMS

Page in Model: orderDetails

Location for New Tags: orderItems

d. Click OK and save the model.

7. Add an Action List builder to the model. This will be our “main” method and
the entry point for the execution of the model. Configure it with the following
values:

Name: main

Actions:

DataServices/OrderService/getOrder

This method makes a call to the getOrder operation of the
OrderService to get the data for Order [Order_ID=0001] that we had
set as the default input in the Service Consumer.

DataServices/OrderService/getOrderItems

This method makes a call to the getOrderItems operation of the
OrderService to get a list of all items in the Order [Order_ID=0001]

orderDetails

This action renders the orderDetails page.

8. Click OK and save the model.

9. Execute the OrderDetails.model. You should see the Order Details page
showing two separate datapages, one displaying the order information and
the other displaying the list of items in the order in a tabular format.

260 Portal Application Development Using WebSphere Portlet Factory

Figure 6-25 OrderDetails model showing the details about an order

10.If you look closely at the second datapage (orderItems) in Figure 6-25, you
will see that the ORDER_PRICE column is empty. This is because the order
price is not stored in the database but can be computed on the client side by
multiplying the UNIT_PRICE and QUANTITY. We are going to do this calculation
in a method in a Java class and then utilize a Linked Java Object Builder to
execute the method.

First we need to create a Java file and create a method that does the
calculation. To create the Java file, click File → New → Class. This will
launch the dialog box to create a new Java class. Configure it with the
following values:

Package: com.ibm.redbook.cs.ui

Name: UIOperations

 Chapter 6. Creating portlets: Making it work 261

Figure 6-26 LJO creation dialog box

11.Click Finish. This will create the UIOperations.java file in the
Redbook/WebContent/WEB-INF/work/source/com/ibm/redbook/cs/ui
directory.

12.Open the UIOperations.java file in a editor and add the following
updateQuanity method to it. This updateQuantity method basically iterates
through the itemList, gets the unit price and quantity, multiples them and sets
that value in the order price.

public void updateQuantity(WebAppAccess webAppAccess, IXml itemList)
{

IXml item=itemList.getFirstChildElement();
while(item!=null)
{

double unitPrice= Double.parseDouble(
item.getText("UNIT_PRICE"));

int quantity=Integer.parseInt(item.getText("QUANTITY"));
item.setText("ORDER_PRICE","" +(unitPrice*quantity));

262 Portal Application Development Using WebSphere Portlet Factory

item=item.getNextSiblingElement();
}

}

13.Save and close the UIOperations.java file.

14.From the builder palette, add a Linked Java Object builder to the
OrderDetails.model, configure it with the following values, and save the
model:

Name: UIOperations

Class Name: com.ibm.redbook.cs.ui.UIOperations

15.Execute this method in the main Action List prior to display the orderDetails
page. Open the main Action List and insert the following statement:

UIOperations.updateQuantity(
${Variables/OrderServiceGetOrderItemsResults/Orders/Order/ITEMS})

Figure 6-27 main Action List with the LJO UpdateQuantity method

16.Save and execute the OrderDetails.model. You should now see the
ORDER_PRICE column populated.

 Chapter 6. Creating portlets: Making it work 263

Figure 6-28 OrderDetails model showing the computed order price

6.5 Converting the web application into portlets

Once we have finished building the basic WebSphere Portlet Factory models, we
can deploy them to WebSphere Portal. To do this, we need to simply add one
additional builder, the Portlet Adapter builder, to our models. This builder will
create a portlet wrapper for the model and enable it to run within the WebSphere
Portal container.

Each model with the Portlet Adapter builder will be an individual portlet in the
portlet war file. The key thing to remember here is that even when we have the
portlet adapter in our models, we can still run the models standalone as well as in
a portlet.

Do the following for each of the three models (CustomerInfo, OrderList,
OrderDetails) that we built in this chapter:

1. Open the model in the WebSphere Portlet Factory Designer.

2. From the builder palette, add the Portlet Adapter builder to the model.

3. Specify a Name and Portlet Title in the Portlet Adapter builder for each of the
models:

– Model: CustomerInfo

Name: PA Customer Information
Portlet Title: CSA - Customer Information

264 Portal Application Development Using WebSphere Portlet Factory

– Model: OrderList

Name: PA Order List
Portlet Title: CSA - Order List

– Model: OrderDetails

Name: PA Order Details
Portlet Title: CSA - Order Details

Figure 6-29 Portlet Adapter builder for the Customer Info model

4. Click OK.

5. Save and close each of the models.

6. Right-click the RedbookCS project and select Build Portlet Factory War →
Build Portlet war. This will build the portlet war file in the
<WP_Home>/installableApps directory. If auto deploy is enabled, it will also
install the portlet war file in WebSphere Portal.

Tip: It is a good practice to prefix the Portlet Title with the name of the
application that the portlet is a part of. In large portal environments, this
helps identify portlets quickly and aids the portlet administration process.

In our case, all the portlets belong to the Customer Service Application,
thus the prefix CSA.

Note: The portlet adapter builder also provides a mechanism to specify the
edit and configure modes for the portlet. We discuss this in further detail
later in this chapter and also in Chapter 9 when we discuss profiling.

 Chapter 6. Creating portlets: Making it work 265

If you make other changes to the model, such as adding or editing other builder
calls, these changes will automatically propagate out to the deployed directory
on the application or portal server upon each project build (which, by default in
Eclipse, is with each resource save). In other words save your model, and the
model file is updated automatically:

� In the project contents folder (workspace)

� On the application server under the deployed app folder

� On the portal server under the deployed app folder

For iterative development, this is a very nice convenience. As you might imagine,
then, once a related group of portlets (WebApp project) is completed, you will
often elect to rebuild the Portlet WAR, so that the installable .WAR file is in
perfect sync with the deployed WAR directory. During iterative development and
testing, though, this is not necessary because of how Designer automates the
migration of files and code onto the application or portal server.

6.6 Configuring pages and portlets in WebSphere Portal

In this section, we create labels and pages in WebSphere Portal for our ITSO
Customer Self Service Application and add the three portlets we created to these
pages.

1. Bring up a browser window and access the WebSphere Portal Server. The
URL will be something like http://<hostname>:10038/wps/portal

2. Log into the portal as the portal administrative user. (Typically this user is the
wpsadmin)

3. Click the Administration link to go to the portal administration section.

Important: The only time you need to rebuild Portlet WARs is:

1. When you are making changes to Portlet Adapter builder calls in the
models that will become portlets, that is, when you add a Portlet Adapter
builder call to a model, when you remove a Portlet Adapter builder call from
a model (or delete the model itself), or when you make changes to name,
title, or description inside an existing Portlet Adapter builder call.

2. When you add, remove, or edit any Cooperative Portlet (Source/Target)
builders in your model.

Either of these actions modifies the portlet.xml file, which is why a rebuild of
the Portlet WAR file is required.

266 Portal Application Development Using WebSphere Portlet Factory

4. On the left side, click Portal User Interface → Manage Pages.

5. Under Content Root, create a new label and call it ITSO Customer Self
Service.

6. Click the newly created label and create 2 pages, Customer Information and
Orders.

7. Edit the Customer Information page and choose a single column layout. Add
the CSA - Customer Information portlet to the page.

Figure 6-30 Customer Information page layout

8. Edit the Orders page and choose a two column layout. Add the CSA - Order
List portlet in the left column and the CSA - Order Details portlet in the right
column.

 Chapter 6. Creating portlets: Making it work 267

Figure 6-31 Orders page layout

6.7 Accessing the Portal Credential Vault

The WebSphere Portal Credential Vault mechanism is useful for portlets that
require credentials different from the credentials used by the WebSphere Portal.
This might occur when a portlet needs to submit unique credentials to a
back-end system such as a database, Lotus Domino server, web service, and so
forth.

6.7.1 WPS Credential builder

WebSphere Portlet Factory allows models to tap into the WebSphere Portal
Credential Vault with the aid of the WPS Credential Builder. It encapsulates the
functionality of the Credential Vault for accessing user credentials from within a
portlet model. This builder adds a Linked Java Object and related instantiate
method to the model. The LJO class will be an implementation of a
CredentialVault interface. This builder can be used to access credentials (user
names, passwords, and so forth) stored in the WebSphere Portal credential
vault.

268 Portal Application Development Using WebSphere Portlet Factory

There are four types of credentials that you can configure for the vault:

� Portlet private: To access in Credential Vault user credentials that are not
shared among portlets

� Shared: To access in Credential Vault user credentials that are shared
among the user's portlets

� Administrative: To access in Credential Vault user credentials that can be
shared among all portlets in that user's session

� System: To access in Credential Vault system credentials shared among all
users and all portlets

6.7.2 Using WPS Credential builder in our application

For our ITSO Customer Self Service Application, we are going to use the
Credential Vault to store the customer account number and pin. This information
is unique to each customer and it needs to be shared among all the user’s
portlets.

In this section we are not going to build any model from scratch; instead, we
review the usage of the WPS Credential builder in the
CustomerCredentials.model that is included in the redbook code.

We are then going to use this CustomerCredentials.model as the Custom Edit
Type for our CSA - Customer Information portlet. In later chapters, we profile the
application such that there will be two separate entry paths: one for the CSRs
and one for the Customers.

1. Download the source code from the redbook ftp site: Import the WebSphere
Portlet Factory archive file named Chapter6.zip into your project.

2. Right-click the RedbookCS project and select Import. Select Other →
WebSphere Portlet Factory archive, then click Next. Select Chapter6.zip
and click Finish to import the CustomerCredentials.model into the project.

3. Open the CustomerCredentials.model in the
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/customer folder for
review. The basic user interface of this model looks like that shown in
Figure 6-32.

 Chapter 6. Creating portlets: Making it work 269

Figure 6-32 User interface of the CustomerCredential model

This is a simple model with Service Consumer, Imported Page, Action Lists,
and Buttons, which enables users to save their CustomerID and Pin in the
WebSphere Portal Credential vault via the WPS Credential builder.

4. Open the WPS Credential builder named customerAccount in
CustomerCredentials.model in the Builder Call Editor.

Figure 6-33 WPS Credentials builder

Note that the WPS Credential Type is Shared. This is because we want the
user credentials to be visible across all users’ portlets.

The Resource Name is the reference by which the credentials are stored
inside the WebSphere Portal Credential vault. In our case we are referencing
the vault that stores the Customer Account Number and PIN by alias
CustomerSelfServiceAccount. Any model in our ITSO Renovations Customer
Self Service application can access this credential vault by referencing the
Resource Name and can obtain the customer account number and pin.

5. That’s all the information we need to review at the moment. Close the
CustomerCredentials.model

270 Portal Application Development Using WebSphere Portlet Factory

6. Expose this CustomerCredentials.model as the Custom Edit Type for the
CSA Customer Information portlet. To do this, open the CustomerInfo.model
and open the portlet adapter builder named PA Customer Information in the
builder call editor.

7. Expand the Edit and Configure Settings section of the Portlet Adapter
builder. For Custom Edit Type, select Custom Model and point to the
redbook/cs/ui/customer/CustomerCredentials model. This specifies the
model to execute when the user chooses to Personalize the CSA - Customer
Information portlet.

Figure 6-34 Edit and Configure Settings of the Portlet Adapter Builder

8. Save and close the CustomerInfo.model

9. Rebuild the portlet war.

10.Log in to the portal and render the Customer Information page on which the
Customer Information portlet is housed. Click the top right corner of the portlet
and click the option Personalize. The portlet will enter the edit mode and
render the CustomerCredentials.model. In Chapter 9, when we discuss
profiling, we describe how to build additional business logic around the
credentials element.

 Chapter 6. Creating portlets: Making it work 271

Figure 6-35 Customer Information portlet with the option to personalize

6.8 Summary

In this chapter we have covered the creation of a basic user interface for our
ITSO Renovations - Customer Service application. We created three portlets
(CustomerInformation, OrderList, and OrderDetails) with the WebSphere Portlet
Factory Designer, tested them on the application server outside the portal
framework, and then snapped them into the portal framework using the Portlet
Adapter builder.

This chapter introduced a number of concepts, including the methodology and
technique of building a “front-end” or “consumer” model that employs simplified
data service calls to a separate “back-end” model. This involves three basic
steps:

� Connect to your services.

� Lay down a “starting point” with high-level Page Automation builder calls,
such as View & Form and Data Page.

� Refine this starting point with Page Automation “modifier” builder calls.

272 Portal Application Development Using WebSphere Portlet Factory

Further development of application models that consume data services will be
refinements on these basic steps. In later chapters we undertake these
refinements to illustrate architectural best practices, to reinforce the concept of
regeneration, and to illustrate the value of profile-enabling your models.

This chapter also introduced several sophisticated builder editors. By now you
are developing an array of skills for navigating among the full range of builder
editors available in the out-of-the-box WebSphere Portlet Factory.

You were introduced to the concept of “shell pages,” whereby a “base” HTML
page is imported into the model to build up a JSP, on which other builder calls
place, or locate, their work. These files live within the project, and are editable
outside the model either by Eclipse or a more robust HTML editor.

You are ready to move on to the chapters where we describe how to customize
the UI for our application, introduce profiling, and establish communication
among portlets.

 Chapter 6. Creating portlets: Making it work 273

274 Portal Application Development Using WebSphere Portlet Factory

Chapter 7. Creating portlets:
Designing the UI

This chapter describes the tools and techniques for designing the User Interface
(UI) using the Portlet Factory.

The tools and techniques include:

� Using the Rich Data Definition builder to control field-level presentation and
validation of data

� Using the Paging Assistant builder to control how much data is displayed

� Using Ajax to implement the type ahead feature in the application

� Using Dojo Inline Edit to perform inline editing of information

� Using the Dojo Tooltip builder to display dynamic tooltips

� Using the Dojo Enable builder to implement other Dojo features

� Using other Portlet Factory builders to extend your UI

� Editing your HTML pages to extend the UI

7

© Copyright IBM Corp. 2008. All rights reserved. 275

7.1 Introduction

In the previous chapter, when creating the Customer Information, Order List, and
Order Details portlets, we were mainly focused on techniques for displaying
information using the View and Form and Input Form builders with the back-end
data. By now, you should be familiar with creating data services, using data
consumers, and rapidly creating views and forms from these services.

However, user applications often involve more than just presenting the data.
Acceptance of a system is often dependent on the usability of the application or
product. Users tend to be IT savvy and have high expectations of applications in
terms of usability, efficiency in performing their tasks, and aesthetic aspects (for
example, whether the colors and overall look of the system are in line with the
corporate colors and image).

Having a web application behave like a traditional desktop application seems to
be more of a requirement nowadays. Rich Internet Applications (RIA) are
becoming common, and being able to rapidly develop such applications without
the need to handle complex DHTML code is essential for all developers who want
to keep up with the trends.

In this chapter, we describe how to enrich the UI of the customer service
application to illustrate how this can be done for other applications. By way of
introduction, the following seven figures show how the portlets will appear after
adding the UI features covered in this chapter.

276 Portal Application Development Using WebSphere Portlet Factory

Figure 7-1 Customer Information Portlet: Customer List

 Chapter 7. Creating portlets: Designing the UI 277

Figure 7-2 Customer Information Portlet: Customer Details

278 Portal Application Development Using WebSphere Portlet Factory

Figure 7-3 Customer Information Portlet: Edit Customer Details

Figure 7-4 Customer Information Portlet: Add New Customer

 Chapter 7. Creating portlets: Designing the UI 279

Figure 7-5 Order List and Details Portlet after applying the UI elements

Figure 7-6 Shopping Portlet with the drag and drop functionality

280 Portal Application Development Using WebSphere Portlet Factory

Figure 7-7 Shopping Portlet confirmation window with the Dojo rich text editor

7.1.1 What you will learn

This chapter demonstrates how to implement a UI as illustrated in the previous
figures. The use of the builders is demonstrated in discrete examples for each
portlet. Different builders are used to achieve different UI features; an overview of
the portlets modified, the builders used, and the features implemented is
provided in Table 7-1.

 Chapter 7. Creating portlets: Designing the UI 281

Table 7-1 Summary of features implemented and builders used

Portlet Features and key UI
builders used

Summary of features

All Generic UI builders
Highlighter

Enables the highlighting of rows when
the user moves their mouse over the
items. Helps to highlight the current
selection.

Customer Information
(redbook → cs → ui →
customer →
CustomerInfo.model)

UI elements
Rich Data Definition
Highlighter
Data Column Modifier

Formats the output of the dataset views
as well as the input forms.

Controls UI down to the field level in
terms of sorting, alignment, color, data
input type (for example. via a text area or
a calendar input control) as well as
validation.

Order List
(redbook → cs → ui → order →
OrderList.model)

Paging
Paging Assistant
Paging Buttons
Paging Links

Radio button selection
Radio Buttons Group
HTML Event Action

UI enhancement
HTML

Paginates the data set returned and
provides paging buttons (to navigate
across pages) and paging links (to
navigate directly to a page) for
navigation.

Provides radio buttons for setting the
page size.

Order Details
(redbook → cs → ui → order →
OrderDetails.model)

Dojo tooltip
Dojo Tooltip
Dojo Inline Edit
Client Event Handler
Event Handler
Event Declaration

Implements the Dojo inline editing Dojo
tooltip pop up for product details.

Implements inline editing of the quantity
of a product ordered without refreshing
the entire page.

Shopping
(redbook → cs → ui → order →
ShoppingProductCatalog.model
and ShoppingCart.model)

Dojo drag and drop
Dojo Drag Source
Dojo Drag Target

UI enhancement
Visibility Setter

Implements the Dojo drag and drop
feature of a product from a product
catalog to a shopping cart.

Shopping
(redbook → cs → ui →
shopping → OrderPage.model)

Dojo enablement
Dojo Enable
Text Area
Attribute Setter

Implements the Dojo rich text editor for
the order page of the shopping module.

282 Portal Application Development Using WebSphere Portlet Factory

7.2 Using a Rich Data Definition file

The Rich Data Definition file (RDD) is a file that enables control of the UI at the
field level in a centralized and automated way. Besides controlling the UI, the
RDD file also allows the addition of UI “data definition” information into the fields
of a schema. This information includes most settings found in the Data Field
Modifier and Data Column Modifier builders.

7.2.1 Why use an RDD?

An RDD file allows you to control how data is displayed within a project or an
organization from a centralized location. For example, a company might mandate
that all revenue displayed should be up to 2 decimal places. Or you might simply
want to standardize the table width whenever a table of the company’s products
is displayed. If all project teams work with a common RDD file when coding data
service consumers, any data rendered by the service consumers will be
displayed in the same way, ensuring consistency across the project.

Such a feature is especially useful for teams working on different modules of an
application because conflicts can often arise when one team labels a field such
as CUSTOMER_ID as Customer ID while another team names it User ID. Using
an RDD will ensure consistency in information display, minimize conflicts in
application development, and increase the user friendliness of your application.

7.2.2 RDD in ITSO Renovations

The ITSO Renovations application includes several examples of how an RDD
can be used to customize the output. The features demonstrated in our sample
portlets are identified in Table 7-2.

Table 7-2 RDD features demonstrated

Portlet Feature demonstrated

Customer
Information

Table column sizing and alignment
Table column sorting
Label assignment to database fields
Resizing the customer input and edit form
Defining the type of HTML input element for each field of input form
Allowing validation on the customer input and edit form
Formatting customer phone numbers

 Chapter 7. Creating portlets: Designing the UI 283

7.2.3 Adding RDD to the Customer Information portlet

Before we begin to examine the details of an RDD, we first assign relevant RDDs
to the various portlets.

In this scenario, the Customer Information portlet is modified to achieve the
following:

� Make the Customer Name column sortable and change the color of the Order
ID from black to red.

� Change the field names of the customer information portlet to user friendly
text that also applies to the Add Customer and Edit Customer input form.

� Change the input form for the Add/Edit Customer to display a drop-down list
of US states.

� Perform validation for the Add/Edit customer input form.

Open the project that you have created in the previous chapter and open the
CustomerInfo model by selecting Project → models → redbook → cs → ui →
customer.

1. Open the CustomerService service consumer builder.

2. Click the ellipsis button beside the Rich Data Definition File field and
select WEB-INF → resources → redbook → cs → data_definitions →
cs_customer_info.xml file.

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button. The changes in the
Customer List view that result from applying the RDD are shown in
Figure 7-8.

Order List Table column sizing and alignment
Table column sorting
Label assignment to database fields
Changing font color of Order ID
LookupTable builder call

Order Details - Formatting the display (for example, Unit and Total Price)

Go Shopping - Reordering the display of the table fields
- Hiding the fields from display
- Setting a field to be non-editable

Portlet Feature demonstrated

284 Portal Application Development Using WebSphere Portlet Factory

Figure 7-8 Customer List View before and after applying the RDD

Note that the column names have been changed from the database field
names to user friendly names. Also, try sorting the columns based on the
Customer Name or Customer ID. The spacing has also changed. Note that all
this is done without writing a single line of code.

5. To see the changes made in the input form, click the Add Customer button.
The changes in the Add Customer View that result from applying the RDD are
shown in Figure 7-9.

AfterBefore

 Chapter 7. Creating portlets: Designing the UI 285

Figure 7-9 Add Customer before and after applying the RDD

Note that the field names for ID and NAME are consistent with the
reformatted view page. The ID has now become read only because the
Customer ID is system generated. Also, the input text boxes now have the
field size as well as the maxlength defined. Mandatory fields are prefixed by a
red asterisk (*) next to the field label. Finally, the States input field is now a
drop-down list of all available US states.

7.2.4 Adding RDD to the Order List portlet

In this scenario, the Order List portlet is modified to achieve the following:

� Change the column behavior of the Order List portlet in terms of sorting,
width, and alignment.

� Make a call to the LookupTable builder to get the order status based on the
order status code.

Open the project that you created in the previous chapter and open the
CustomerInfo model by selecting RedbookCS → models → redbook → cs →
ui → order folder.

1. Open the Orderlist service consumer builder.

Change in label names

Changed to read only

Changed to drop-down list

Changed to password input

AfterBefore

286 Portal Application Development Using WebSphere Portlet Factory

2. Click the ellipsis button beside the Rich Data Definition File field and
select WEB-INF → resources → redbook → cs → data_definitions →
cs_order_def.xml file.

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button. The changes in the
Customer List view that result from applying the RDD are shown in
Figure 7-10.

Figure 7-10 Order List before and after applying the RDD

In addition to the changes that are also seen in the Customer Information
portlet, note that the Order Status is no longer represented by the status code
but by its logical name (for example Shipped, In Process, and so forth). Also,
the Order ID is now displayed in red.

7.2.5 Adding RDD to the Order Details and Product Details model

By now you probably know how to assign an RDD file to a service consumer
model, so we do not go through any additional examples here. Before proceeding
to the discussion about how RDD works, assign the RDD files identified in
Table 7-3 to the appropriate service consumers of the models listed.

To identify what has changed in the user interface, refer to the figures in the
previous chapter or simply run the model after you have removed the reference
to the RDD file in the respective service consumer.

Status
Lookup

Color change

AfterBefore

 Chapter 7. Creating portlets: Designing the UI 287

Table 7-3 RDD file assignments for the Customer Self Service Application

7.2.6 How an RDD file works

As shown in the previous examples, assigning an RDD to a service consumer
modifies the fields of the dataset returned. When an RDD file is assigned to the
service consumer, any invocation of the services provided by the service
consumer builder will go through a data transformation before it is returned to the
calling method/builder.

In order to determine the type of transformation to be applied, the service
consumer matches the returned schema against the corresponding definition in
the RDD file. For example, when the getCustomerList service is invoked, the
elements of the result set will be matched against the definitions in the RDD. In
this case, the ID value of the CUSTOMER element returned by the service is
matched against the ID data definition of the RDD file as shown in Figure 7-11.

Portlet Model Service consumer RDD file to assign

Customer
Information

CustomerInfo CustomerService cs_customer_info.xml

Order List OrderList OrderService cs_order_def.xml

Order Details OrderDetails OrderService cs_order_details_def.
xml

Order Details
(Dojo Tooltip)

ProductTooltip ProductService cs_product_def.xml

Go Shopping ShoppingUIImports scOrdersService cs_shopping_details_
def.xml

scProductService cs_product_def.xml

scCustomerService cs_customer_info.xml

288 Portal Application Development Using WebSphere Portlet Factory

Figure 7-11 How the result set is matched to the RDD data definitions

Upon obtaining a match, the RDD changes the ID label to Customer ID as
defined and applies the other transformations for format and display as stated
within the <DataDefinition> tag (for example, Column Alignment and Column
Width).

Thus, as long as the builders in your models invoke the service consumers with
an RDD specified, all data rendered will go through the same transformation to
produce the same labels, validation, and any other behavior that is specified in
the RDD. The process of data transformation is as shown in Figure 7-12.

Matching resultset to data definition in RDD file

Transformations to apply
for NAME

 Chapter 7. Creating portlets: Designing the UI 289

Figure 7-12 How Data is transformed using RDD, Data Column and Field Modifier

While you could achieve the same effect by using a combination of Data Column
Modifiers, Data Field Modifiers, and LookupTable builders, ensuring that every
model uses or creates the same data column modifiers or lookup tables to render
the same data would not be efficient. Assigning an RDD file in the service
consumer is much more effective and ensures that the data retrieved by the
invocation of services exposed by the service consumer will be rendered and
modified consistently without the need for any other builders.

7.2.7 When to use individual modifiers or builders instead of RDD

Given the power of an RDD file (or an RDD builder), why should we use the data
column modifier (or related) builders? The reason is simple: while RDD files can
control the behavior of the UI, there are times when you might want to override
the default RDD settings and impose your own definition.

For example, while everyone in the company might view monetary information up
to 2 decimal places, departments such as accounting and finance or ERP
system often view information up to 4 decimal places. In this case, rather than
writing an RDD file specifically for this purpose, you can simple add a data
column modifier to override the existing behavior of an RDD.

RDD files thus provide baseline definitions to automate the generation of your
data, while builders such as the data column modifier or data field modifier give
you the flexibility to override the definitions when required.

7.2.8 Referencing and extending RDD files

In some instances, when you use an RDD file, you might want to change a few
definitions for a set of models that you are using. Rather than copying and
changing the existing file, you can reference an existing RDD file, inherit its
definitions, and extend or override them with your own.

Service
Consumer

Service
Provider

Data Store

Rich Data
Definition

Data
Column/

Field
Modifier

View &
Form/ Input
Form/ Data

Page

Referencing a
data definition found
in base_datadef.xml

290 Portal Application Development Using WebSphere Portlet Factory

To inherit the definitions and reference an existing RDD file, simply define a base
definition file from which the current RDD file will read and include it in the
existing list of RDD definitions as shown in Example 7-1. Note that it does not
matter if you define a base definition file at the beginning or at the end of the file.

Example 7-1 Extending an RDD File in cs_customer_info.xml

<BaseDefinitions>
<!-- you can include more than one base definition here -->
<BaseDefinition>/WEB-INF/resources/redbook/cs/data_definitions/

base_datadef.xml</BaseDefinition>
</BaseDefinitions>

Once you have specified the base definition files, you can inherit or extend the
definitions in that file. Simply specify the base definition that you would like to
inherit by using the base attribute in the data definition tag. To override the
existing behavior, define the same children in your data definition with the new
values and these values will take precedence over the base definition.

As shown in Example 7-2, the DATE_ORDERED field references another
definition labelled base_Date. The Label, Column Sorting and Column Width will
take precedence if the same attributes are specified in the base definition file.

Example 7-2 Extending a existing date definition

<DataDefinition name="DATE_ORDERED" base="base_Date">
 <Label>Date Ordered</Label>
 <ColumnSorting>date</ColumnSorting>
 <ColumnWidth>50</ColumnWidth>
</DataDefinition>

RDD structure in the Customer Self Service application
The structure of the RDD files for the Customer Information portlet is shown in
Figure 7-13 on page 293. As shown in the diagram, the RDD files in this
application have been logically separated into four tiers.

On the bottom tier are the RDD files that consist of the primary lookup values
such as the list of countries and the US states. They can be included or excluded
from the libraries as required. This level will consist of generic lookup libraries
that span across applications. The standard base definitions that comes shipped
with Portlet Factory are the us_states.xml and country_code.xml files, which can
be found in the /WEB-INF/resources/redbook/cs/data_definitions directory.

The next level is the generic definitions, which contain the data definitions of the
the basic types such as integer, decimal, string and date, and so forth, and thus

 Chapter 7. Creating portlets: Designing the UI 291

can span across multiple applications. These definitions normally define the sort
order (if applicable) as well as any formatting that is required. The standard base
definition in Portlet Factory is the base_datadef.xml.

Next comes the application-specific libraries. The definitions you specify here
should be application-wide definitions and are generated with reference to the
schema of your application. These are normally generated and modified by the
data integration developer, which is covered in greater detail in “How to create an
RDD” on page 308.

Finally, we have the module-, model-, profile-specific RDD files. At this level,
RDDs mainly extend existing RDDs and overwrite definitions specific to the
module or user role (profiling of RDD is covered in the next chapter).

Through the use of such an architecture we have created a highly extensible and
reusable structure in which any new module or profile that is created can simply
extend existing definitions and add definitions for the fields whose behavior is
different from the default.

292 Portal Application Development Using WebSphere Portlet Factory

Figure 7-13 The Customer Information portlet RDD file structure

Based on this structure, you might realize that referencing can happen at multiple
levels. You can reference a field from a base data definition, which in turn
references a field from another base data definition, and so on.

In Example 7-3 the field STATE (found in cs_customer_info.xml) references the
field base_US_States (found in base_datadef.xml). Upon inspecting the
definition in base_datadef.xml (Example 7-4) you will find that base_US_States
actually refers to a base_US_StatesLookup field (found in us_states.xml). Finally,

cs_customer_def.xml
Contains the column

definitions required for the
customer service application

base_datadef.xml
Contains base type

definitions (such as string,
int, date etc.)

country_code.xml
Creates a LookupTable
builder call for the list of
countries of the world

us_states.xml
Creates a LookupTable
builder call for the list of

US States

cs_customer_def_csr.xml
Contains the column

definitions specific to the
CSR profile

cs_customer_def_customer.
xml

Contains the column
definitions specific to the

customer profile

Generic Libraries and
Lookups

Generic Definitions

Application Level
Specific Definitions

Profile or Module
Specific Definitions

 Chapter 7. Creating portlets: Designing the UI 293

when you inspect the us_states.xml file, you will find that the file consists of a
key-value pair lookup table of all the US states.

Example 7-3 STATE definition in cs_customer_info.xml

<DataDefinition name="STATE" base="base_US_States">
 <Label>State</Label>
 <Required>false</Required>
 <DataType>string</DataType>

</DataDefinition>

Example 7-4 Base_US_States refering to the base_US_StatesLookup definition in the
us_states.xml file

<!-- lookup table with US states -->
 <DataDefinition name="base_US_States" base="base_US_StatesLookup">
 <!-- The list is in separate XML file -->
 </DataDefinition>

In the next chapter, we further extend the cs_customer_info.xml to allow users
with different profiles to use different RDD files and thus have different field
behavior (for example, view only or read only) depending on the login profile.

Next we discuss some examples of field-level control in the RDD files and how
they work.

7.2.9 Examples of modifiers in the RDD Files

In this section, we discuss the data definitions that did the transformations in the
previous scenarios. The examples that we cover are:

� Changing the column behavior in terms of sorting, alignment, and table width,
and table contents attributes such as color

� Performing a lookup table call

� Adding a calendar picker to a date field

� Performing output formatting and translation of data

� Performing validation for input forms

Changing column behavior (All portlets)
RDD works by specifying the field-level attributes within the field tags in an RDD
file. For instance, Example 7-5 shows the data definition for the ID field of the

294 Portal Application Development Using WebSphere Portlet Factory

Order List Portlet. The values inside the <ColumnSorting>, <ColumnAlignment>
and <ColumnWidth> tags determine how the values are treated within the table.

By adding an <Attributes> tag in the definition, you can also determine the font,
style, color, and various other HTML attributes of the data within the column.

Also, the <Label> tag converts the schema field name to a user friendly label that
will be used in all input forms or views showing the schema.

Example 7-5 Data definition for the ID field in the Order List portlet

<DataDefinition name="ORDER_ID">
<Label>Order ID</Label>

 <ColumnSorting>Number</ColumnSorting>
 <ColumnAlignment>center</ColumnAlignment>
 <ColumnWidth>30</ColumnWidth>
 <Attributes>

 <Attribute>
 <Name>style</Name>
 <Value>color:blue</Value>
 </Attribute>

 <Attribute>
 <Name>style</Name>

 <Value>color:red</Value>
 </Attribute>
 </Attributes>

</DataDefinition>

Performing a LookupTable call (Order List portlet)
In addition to affecting the column display behavior, a builder call can be made at
the field level. As shown in Example 7-6, a call to the LookupTable builder is
made. This call maps the Status ID to the Status Name for the order. This is done
within the <LookupTable> tag. The original order status (1, 2, 3, 4) has been
converted to the logical representation (Shipped, Order pending, and so forth).

You might have noticed that below the <LookupTable> tag, there is actually a
<ServiceInfo> tag that makes a ServiceConsumer2Builder call. The reason for
this is that the LookupTable builder call is getting the lookup from a service
consumer builder that does not create a lookup.

To convert this service consumer call into a lookup, a ServiceInfo child element
needs to be added as an child element of the LookupTable element, which
creates an additional builder that supports getting lookup data, which is then
reference by the LookupTable.

 Chapter 7. Creating portlets: Designing the UI 295

Example 7-6 Data definition for the ID field in the Order List portlet

<DataDefinition name="STATUS">
<Label>Status</Label>
<ColumnSorting>string</ColumnSorting>
<ColumnWidth>150</ColumnWidth>

<LookupTable>
<Name>orderStatus</Name>

<BuilderID>com.bowstreet.builders.webapp.LookupTableBuilder</BuilderID>
<Inputs>

<Input name = "DataType">XmlData</Input>
<Input name = "VariableType">ValueTagLabelTag</Input>
<Input name = "GetDataFrom">BuilderInput</Input>
<Input name = "TablePosition">InFront</Input>
<Input name = "Name">orderStatus</Input>
<Input name =

"XmlData">${MethodCall/ordersGetOrderStatusList}</Input>
<Input name = "ValueElementName">ID</Input>
<Input name = "LabelElementName">NAME</Input>

</Inputs>
 <ServiceInfo>

<BuilderID>com.bowstreet.builders.webapp.ServiceConsumer2Builder</BuilderID>
<Inputs>

<Input name = "UseAllOperations">true</Input>
<Input name = "OverrideInputs">false</Input>
<Input name = "Name">orders</Input>
<Input name =

"ProviderModel">redbook/cs/data/db/OrderDBProvider</Input>
<Input name = "OperationName">getOrderStatusList</Input>

</Inputs>
 </ServiceInfo>

</LookupTable>
</DataDefinition>

While Example 7-6 shows one method of creating a lookup table call within the
RDD via a data service, Example 7-7 shows you an alternate way of creating a
lookup via a SQL call. Here, we create the SQL call directly to retrieve the lookup
values.

Example 7-7 Alternate method for calling the LookupTable builder via SQL

<DataDefinition name="STATUS">
 <LookupTable>

<BuilderID>com.bowstreet.builders.webapp.LookupTableBuilder</BuilderID>
<Name>STATUS</Name>
<Inputs>

<Input name = "BuilderCallEnabled">true</Input>

296 Portal Application Development Using WebSphere Portlet Factory

<Input name = "BuilderCallCategory">General</Input>
<Input name = "DataType">DatabaseQuery</Input>
<Input name = "VariableType">ValueTagLabelTag</Input>
<Input name = "GetDataFrom">BuilderInput</Input>
<Input name = "TablePosition">InFront</Input>
<Input name = "Name">STATUS</Input>
<Input name = "SqlDataSource">jdbc/csdb</Input>
<Input name = "SqlStatement">SELECT * FROM CSAPP.ORDER_STATUS</Input>
<Input name = "ValueElementName">ID</Input>
<Input name = "LabelElementName">NAME</Input>
<Input name = "Concurrency">ReadOnly</Input>
<Input name = "ScrollType">Insensitive</Input>

</Inputs>
</LookupTable>

<Label>Status1</Label>
<ColumnWidth>150</ColumnWidth>

</DataDefinition>

Note that in this example the lookup table is the result of a SQL call with the
returned fields being defined as the values for the value-label pair. This in turn
translates the order status value into the corresponding status text.

Any lookup call can be embedded into an RDD file. The reason for doing so is to
pre-define the behavior of the field to ensure standardization and avoid
confusion. For example, defining a text area builder call for a field ensures that
developers will not use a text box builder to represent that form instead.

Details about how to obtain the builder call XML for a field to place in the RDD file
are in “Using the RDD to make builder calls” on page 298.

Adding a calendar picker for a date field (Go Shopping)
Another common functionality is the use of a calendar UI to allow the user to
select the input date. Traditionally, this has been done using javascript libraries.
Instead, after applying the RDD file for the OrderPage model of the Go Shopping
portlet, the field now has a calendar picker available.

In your list of builders, there is actually a Calendar Picker builder. What the RDD
has done, as with the Lookup Table example presented previously, is make a
builder call to the Calendar Picker builder and associate it with the field in which it
is defined.

In our example, the data definition of the DATE_ORDERED field in
cs_shopping_details_def.xml does not make any call to the Calendar Picker
builder, but references the base_Date definition that is found in the

 Chapter 7. Creating portlets: Designing the UI 297

base_datadef.xml file instead (see “Referencing and extending RDD files” on
page 290). Example 7-9 shows the call made to the Calendar Picker builder.

Example 7-8 Data definition of DATE_ORDERED field in cs_shopping_details_def.xml

<DataDefinition name="DATE_ORDERED" base="base_Date">
 <Label>Date Ordered</Label>
 <ColumnSorting>date</ColumnSorting>
 <ColumnWidth>50</ColumnWidth>
</DataDefinition>

Example 7-9 Data definition of base_Date in base_datadef.xml

<!-- date - this assumes internal date format is yyyy/MM/dd -->
<DataDefinition name="base_Date">
<DataEntryControl>com.bowstreet.builders.webapp.CalendarPickerBuilder</DataEntr
yControl>

<DataEntryInputs>
<Inputs>

<Input name="ButtonType">Image</Input>
<Input name="Label">...</Input>
<Input

name="ButtonImage">/factory/images/calendar/calendar_picker.gif</Input>
<Input name="Format"

resource_key="BaseDate_DisplayFormat">MM/dd/yyyy</Input>
<Input name="Theme">blue</Input>
<Input name="SingleClick">true</Input>
<Input name="DefaultLanguage">en</Input>

</Inputs>
</DataEntryInputs>
<FormatExpr

resource_key="BaseDate_FormatExpr">Format(yyyy-MM-dd$MM/dd/yyyy)</FormatExpr>
<TranslateExpr

resource_key="BaseDate_TranslateExpr">Translate(yyyy-MM-dd$MM/dd/yyyy)</Transla
teExpr>

<ValidateExpr>Date(yyyy-MM-dd)</ValidateExpr>
</DataDefinition>

Using the RDD to make builder calls
In the previous examples, we have shown how you can use your RDD to call and
bind the fields to builders such as a lookup table for display or a calendar picker
for input. However, because RDD files are basically text files, the challenge is
figuring out the builder call library and attributes code that you need to place in
the <DataDefinition> tag.

There is actually a simple way to do this. Instead of looking at the libraries, add
the builder and fill in the information required for your model. Upon completion,

298 Portal Application Development Using WebSphere Portlet Factory

click the Model XML tab found on the left of the Builder Call Editor tab. The
builder call XML snippet will be displayed and you can copy and modify the
generated builder call definition and place it in the field’s <DataDefinition> tag in
the RDD file to bind the field to the builder. With the definition set in the RDD file,
you can now delete your builder from your model.

To demonstrate this, we convert the ADDRESS field in the Add Customer input
form from a text input field to a text area within the RDD as follows:

Open the project that was created previously and select Redbook → models →
redbook → ui → customer → CustomerInfo model.

1. Add the Text Area builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Text Area builder and provide the following
values:

Name: address
Location: On Named Tag
Page: addCustomerForm_InputPage
Tag: ADDRESS
Default Text: “The default address of where you want to..”

c. Expand the Attributes section and provide the following values:

Cols: 100
Rows: 25
Wrap: No wrapping

d. Click OK to add your builder into the model (Figure 7-14).

Note: It is recommended practice to disable a builder to test your changes
before deleting it. To do this, simply right-click the builder in the model and
select Disable. The model will now run without executing the builder in the
model.

 Chapter 7. Creating portlets: Designing the UI 299

Figure 7-14 Input for the Text Area Input Builder

2. Click the Model XML Table and the builder call XML code will appear,
highlighted as shown in Figure 7-15.

300 Portal Application Development Using WebSphere Portlet Factory

Figure 7-15 Generated XML code for the Text Area builder

3. Copy the values of the <BuilderDefID> and <Inputs> tags into the
<DataEntryControl> and <DataEntryInputs> tag of the ADDRESS field in the
cs_customer_info.xml RDD file as shown in Figure 7-16.

 Chapter 7. Creating portlets: Designing the UI 301

Figure 7-16 New inputs for the RDD file

4. Disable your builder by right-clicking it and select Disable. (Note that you can
delete it, but we recommend that you test the result before deleting it.)

5. Save the model by clicking the Save icon.

6. Run and test the model by clicking the Run button. The Add Customer
screen will have a text area input box as shown in Figure 7-17.

302 Portal Application Development Using WebSphere Portlet Factory

Figure 7-17 Text area input builder call from an RDD

7.2.10 Formatting the output

RDD files can also help in formatting the output before it is displayed to the user
or after the user has entered information into your system. This is useful when
the data representation in your database is different from the data presentation in
your system.

RDD files can actually support simple formatting natively. This includes
formatting dates and currency to the desired formats. An example of this in the
Customer Self Service application is in the Order Details portlet, where the dates
have been changed from YYYY-MM-DD to DD/MM/YYYY and the unit price has
been changed from its native number format (for example, 123) to the currency
format ($123.00) as shown in Figure 7-18.

By having separate RDD files for different profiles or locales, you can define
different date, currency, and time formats, thereby internationalizing or profiling
your application without the need to code.

 Chapter 7. Creating portlets: Designing the UI 303

Figure 7-18 Order Details portlet before and after applying the RDD files

To change the format of the unit price, we placed the expression within the
<FormatExpr> tag, which changes the format of the input string to transform it
from its native form to the desired application-specific form.

Order and Unit Price
Formatted

Date Formatted

After

Before

304 Portal Application Development Using WebSphere Portlet Factory

Example 7-10 shows the data definition of the item unit price in the order details
item list that formats the price from 123.00 to $123.00.

Example 7-10 Formatting unit price in the Order Details portlet in cs_order_details_def.xml

<DataDefinition name="UNIT_PRICE" base="base_Currency">
<Label>Unit Price</Label>
<ColumnWidth>50</ColumnWidth>
<!-- takes the input number and adds a dollar sign in front -->
<FormatExpr>NumberFormat($#,###.00)</FormatExpr>

</DataDefinition>

While Portlet Factory supports the simple formatting of dates and numbers, there
might be cases where you want to perform customized formatting. For example,
the Customer Self Service application stores the phone number of a customer as
<Area Code>-<3 Digits>-<4 Digits>. However, to ensure consistency in display,
the display should be formatted to add the parenthesis to the area code and
replace the dash after the area code with a white space. This has to apply to all
pages displaying the phone number.

To apply the formatting to the output, we created a formatter class that does the
formatting of not just the output, but also the input that we use later for validation.
This class implements the com.bowstreet.methods.IInputFieldFormatter
interface, which provides the following services:

� Formatting any value: Changes the format of the value provided to make it
more readable or fulfill some other display requirement

� Translating any value: Changes the format of the field value as it is entered by
the user to one that complies with the schema or some other data storage
requirement (for example, currency to decimal)

� Validating any value: Validates an input string to ensure that it is valid

� Setting error messages: Sets the error message when validation fails

To invoke this class, define the fully qualified class name in a <FormatterClass>
tag within the field’s data definition. This will invoke the format method of the
class with the field’s data and format expression type defined in the
<FormatExpr> tag. By using the FormatExpr tag, you can define different styles
of formatting, which is especially useful for customizing the output for localization
and profiling.

Example 7-11 shows the formatting class that is called and the format expression
that is being invoked.

 Chapter 7. Creating portlets: Designing the UI 305

Example 7-11 Tags used to invoke the format method of the formatter class

<DataDefinition name="PHONE">
<Label>Phone</Label>
...
<FormatterClass>com.ibm.cs.properties.csValidation</FormatterClass>
<FormatExpr>Phone Format</FormatExpr>
...

</DataDefinition>

Once invoked, the format method of the csValidation class is invoked, as shown
in Example 7-12. Notice that the method will take the phone number as the input
and string “Phone Format” as the strFormatExpr. This would then invoke the
formatUSPhoneNumber subroutine to format the input as required.

If you have defined other formats (for example, worldwide phone formats), you
would have to include the code to match the appropriate strFormatExpr passed
in and invoke the necessary subroutine to handle it.

Example 7-12 Methods for formatting the phone number

public String format (String strInput, String strFormatExpr) {
//check if there is no error with the validation

 if (getErrorMessage() ==null) {
 if (strInput!=null && !strInput.equals("")) {
 if (strFormatExpr.equals(PHONE_FORMATEXPR)) {
 return (formatUSPhoneNumber(strInput, strFormatExpr));
 }

}
 }
 return ""; //if there is no format expression return empty str
}

//formats the phone number to the format of (xxx)<space>xxx-xxxx
private String formatUSPhoneNumber (String strInput, String
strFormatExpr) {
 String strResult = strInput;

 //check if the phone number is at least 10.
 if (!(strInput.length() < PHONE_MIN_LENGTH)) {

 System.out.println ("In formatUSPhoneNumber");
 strResult = "(" + strInput.substring(0,3)+ ") " +

strInput.substring(4,7) +
 "-" + strInput.substring(8,strInput.length());

 }

306 Portal Application Development Using WebSphere Portlet Factory

 return strResult;
 }

Performing validation
Besides controlling how the data is displayed, RDD can also control how input is
received. Out of the box, RDD supports validation of mandatory fields, displaying
the message "This field is required" whenever an input is not provided.

To ensure this, simply include the <Required>true</Required> tag into the
<DataDefinition> tag of the field. Adding this to the data field will make the
following changes to your input form:

� Make Portlet Factory insert an asterisk (*) into an Input or Edit form using the
schema that is defined.

� Performs mandatory field checking to ensure that the input field has an input.

However, validation is often more complex than that. For example, credit card
numbers requires an exact 16 digit sequence, US phone numbers require an
area code followed by 7 other digits, and e-mail addresses should be in the
format of <name>@<domain>.<subdomain>.

Such validation can be easily done by writing a simple java class with a validation
method that validates the input string with the appropriate subroutine. As with the
previous section, the formatter class is invoked, except this time, the validate
method of the class takes the validation type string from the <ValidateExpr> tag
as shown in Example 7-13.

Example 7-13 Tags used in invoke the validate method of the formatter class

<DataDefinition name="EMAIL">
<Label>Phone</Label>
...
<FormatterClass>com.ibm.cs.properties.csValidation</FormatterClass>
<FormatExpr>Phone Format</FormatExpr>
<ValidateExpr>Email Validation</ValidateExpr>
...

</DataDefinition>

The validate method then decides on the subroutine used to verify the input
based on the ValidateExpr string.

To set the error message when the validation fails, use the setErrorMessage
method. This error message will then be retrieved by the input form when the
validation fails.

 Chapter 7. Creating portlets: Designing the UI 307

7.2.11 How to create an RDD

In the previous example we created the RDD file from scratch; however, this
need not be the case. A base RDD file of the schema can be easily created using
the Rich Data Definition builder.

The steps are as follows:

1. Add the services to your model using the Service Consumer builder.
(Note that you can do the same in the service provider model after all your
service operations have been added.)

2. Add the Rich Data Definition builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Rich Data Definition builder and provide the
following values:

• In the schema drop-down list, select the schema for which you would
like to generate an RDD.

• Once the schema is selected, the list of fields available in the service
appears in the Data Definition as shown in Figure 7-19 on page 310.

c. Base Data Definition File: Click the ellipsis button and select
WEB-INF → factory → data_definitions → base_datadef.xml file.

d. Container Element: Select Order from the drop-down list.

e. For each field in the list, provide the appropriate input:

Label: The display name for the field.

Note: In the service provider model, the schema name is
represented by the service operation name, while in the service
consumer model, the schema name is represented in the form of
<Service Consumer Name><Service Operation Schemas>.
Therefore, the service operation getOrderItems, which returns the
OrderItems schema from the OrderService service consumer, would
generate an OrderServiceOrderItems schema.

Note: As a form of good practice, RDD files should extend from a base
file that contains the basic type definitions and the commonly used
builder calls (for example, Lookup Tables and Calendar Picker) so as to
maintain modularity and reduce duplication. A good start would be to
extend the base_datadef.xml found in the
/WEB-INF/factory/data_definitions/ directory.

308 Portal Application Development Using WebSphere Portlet Factory

Base Data Definition: Select the appropriate data type.
Required: Check if the field is a mandatory field for the input

form.
Data Type: Select the appropriate data type.
Enumeration Values: Enter comma-separated values if the field takes the

information from the list of values. If you have a
lookup table for the values, leave this blank and use
the lookup table method instead.

Hidden: Check if the field is not to be displayed.
Read Only: Check if the field is not to be edited but just

displayed in the input form.
Formatting Expression®: Select the type of formatting appropriate for your

data.
Validate Expression: Select the type of validation appropriate for your

data.
Translate Expression: Select the type of translation appropriate for your

data.

f. Once completed, in the Save Sample Data Definition File section, click the
Create Data Definition File button and save your file into the project as
shown in Figure 7-19.

 Chapter 7. Creating portlets: Designing the UI 309

Figure 7-19 The Rich Data Definition builder

3. Once saved, delete the builder from the model.

4. Open the Service Consumer builder of the model and select the newly
created RDD file in the Rich Data Definition File field.

310 Portal Application Development Using WebSphere Portlet Factory

7.2.12 RDD summary

While the examples presented here illustrate a number of the features RDD can
implement, it is capable of doing much more. The RDD builder only creates a
basic RDD file that controls field-level sorting, display, formatting, and validation.
Features such as making a call to the LookupTable builder and controlling the
HTML input form values are not provided in the RDD builder.

The WebSphere Portlet Factory builder call help is useful in providing more ideas
for extending the RDD file. However, sometimes both of these resources might
not be enough.

RDD is a powerful builder that you will use in most, if not all, of your models. This
builder lets you select a schema in your model. For each field in the selected
schema, you can specify labels, control types, lookup tables, formatting,
validation, and much more—just by using a single instance of this builder—and
ensure consistency across all your models and pages by changing just one file.

Table 7-4 identifies the column modifiers and the file for which each is used.

Table 7-4 Summary of RDD features and references

Property Description References

<ColumnAlignment> Use the <ColumnAlignment> tag to determine if the
column is right, center or left aligned.

cs_order_def.xml
cs_customer_info.xml

<ColumnWidth> Sets the width of the column in the table. Accepts
absolute value and relative size as well (for
example, 20%).

<ColumnSorting> Allows the column to be sorted in the order based on the
data type specified. The data types include Case
Insensitive String, Case Sensitive String, Number, Date,
Not Sortable.

<Attribute> Allows the HTML attributes of the field to be set.
Attributes include text color, font, size, and so forth.

<DisplayMode> Allows the hiding of fields.

<Label> Changes the schema field name to a user friendly label.

<Required> Determines if the field is a mandatory field within the
data input form.

<BaseDefinitions> Allows the current RDD file to reference other RDD files
and definitions.

cs_customer_def.xml

 Chapter 7. Creating portlets: Designing the UI 311

7.3 Paging your data

When working with large datasets, it is often necessary to paginate the data
display by specifying the number of rows of data shown at one time. While the
View and Form builder provides such functionality automatically, this feature is
not available when using lower level builders such as the Data Page builder.

In such cases, the Paging Assistant builder is used to provide the ability to
navigate through the dataset. When the builder is added, an LJO is added to the
WebApp, which wraps the specified data source in an IXml object and provides
methods to access records one “page” at a time or one record at a time. As with
the other builders shown in this book, you can view the LJO that is created, the
variable storing the paged data, and the methods that are provided in the
WebApp Tree tab as shown in Figure 7-20.

<LookupTable> Makes a call to the LookupTable builder and converts the
code value to the string value.

<FormatterClass> Used to include a class that is to be invoked for
formatting and validation.

<FormatExpr> Used for formatting the output.

<ValidateExpr> Expression used for validation of the input. cs_product_def.xml

Property Description References

312 Portal Application Development Using WebSphere Portlet Factory

Figure 7-20 The LJO, variable, and methods created by the Paging Assistant builder

However, the Paging Assistant builder only paginates the data; it does not
provide any navigation controls to your page. To achieve that, use either the
Paging Links or the Paging Buttons builder, or both, to add the data navigation
controls to the page. Figure 7-21 shows how the Paging Assistant, Buttons and
Links work together.

orderPage LJO

orderPageData
variable

Methods generated

 Chapter 7. Creating portlets: Designing the UI 313

Figure 7-21 Using the Paging Assistant, Buttons and Links builders

DataSet
This would be the dataset that is returned from

executing a data retrieval operation

Data Page
Consumes the dataset and is displayed in the
selected tag of the page selected in the builder

Page or Imported Page
The page in the application that will be rendered

Paging Assistant
Paginates the dataset retrieved into n records

per page

Maps Data to the Page/Imported Page

Paging Buttons
Adds a set of buttons to the page for navigating

through the data set specified in the Paging
Assistant

Paging Links
Adds a set of page links to the page for

navigating through the data set specified in the
Paging Assistant

Paginates

Displays in selected tag

Adds buttons and links to navigate through the data set

314 Portal Application Development Using WebSphere Portlet Factory

7.3.1 Adding pagination in the Order List portlet

In the Order List portlet, the list of orders is displayed using the orderList Data
Page builder. The Data Page builder is a lower level builder and does not have
the ability to paginate by default.

Open the project created previously and select Redbook → models →
redbook → ui → order → OrdersList model.

1. Add the Paging Assistant builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Paging Assistant builder and provide the
following values:

Name: orderPage
Source Data Type: Variable
Source Data: Select OrderServiceGetCustomerOrdersListResults

from the drop-down list.
Page Size: 3
All other fields: Leave as default

c. Click OK to add your builder into the model.

Figure 7-22 Paging Assistant builder inputs

 Chapter 7. Creating portlets: Designing the UI 315

2. Add the Paging Button builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Paging Buttons builder and provide the following
values:

Name: orderPageButton
Location Technique: On Named Tag
Page: orderList
Tag: PagingBtns
Assistant Name: Select orderPage from the drop-down list.
All other fields: Leave as default

c. Click OK to add your builder into the model.

Figure 7-23 Paging Buttons builder inputs

3. Change the data page variable to consume the paged data from the paging
assistant instead of the data service.

a. Click the orderList Data Page builder in the Outline view (lower left).

b. Click the ellipsis button besides the Variable field and select
Variables → orderPageData.

316 Portal Application Development Using WebSphere Portlet Factory

c. Click OK to close the builder.

4. Save the model by clicking the Save icon.

5. Run and test the model by clicking the Run button. The data will be
displayed in pages of three rows each, with the paging buttons placed below
the displayed dataset (Figure 7-24).

Figure 7-24 Result of using the Paging Assistant and Paging Buttons builder

Adding paging links
At this point your data will be paginated. When you run your model the display
will show the first 3 rows of data, along with the paging buttons to move through
the entire dataset. However, if the dataset is large, and the number of rows per
page small, the paging buttons are not an efficient way of moving to a particular
data item, such as to record 100 out of 200. To do this, we might want the default
page size to be 20 rows per page instead of 3, and a set of page links that can
bring us directly to the required page.

Use the following steps to add page links for easier access to specific records:

1. Add the Paging Links builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Paging Links builder and provide the following
values:

Name: orderPageLinks
Location Technique: On Named Tag
Page: orderList
Tag: PageLinks
Assistant Name: Select orderPage from the drop-down list.
All other fields: Leave as default

c. Click OK to add your builder into the model.

2. Save the model by clicking the Save icon.

3. Run and test the model by clicking the Run button. The data will be
displayed in pages of three rows each, with the paging buttons placed below
the displayed dataset as shown in Figure 7-24.

 Chapter 7. Creating portlets: Designing the UI 317

Figure 7-25 Result of using the Paging Links builder

Controlling rows per page using the Radio Button Group
In this scenario, we use the Radio Button Group to allow the user to control the
number of rows per page that is to be displayed. Often, when using the Radio
Button Group builder, three other builders are included to process the inputs:

1. HTML Event Action builder: This builder allows the model to “catch” the
OnClick (or any other HTML event) action for the Radio Button Group
selection on the page. Once invoked, the builder can invoke other actions
such as submitting the form or calling an action list.

2. Action List: Often called by the HTML Event Action builder to process the
Radio Button Group input and redirect to another page.

3. Method: To capture the value of the input of the Radio Button Group.

Figure 7-26 shows how the builders work together in processing a Radio Button
Group onClick event.

318 Portal Application Development Using WebSphere Portlet Factory

Figure 7-26 Processing a Radio Button Group input

Perform the following steps to enhance the paging ability created in the previous
steps:

1. Add the Radio Button Group builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Radio Button Group builder and provide the
following values:

Name: DisplayRows
Location Technique: On Named Tag
Page: orderList
Tag: DisplayRows
Lookup Table Used: None
Radio Group Data: 3, 5, 10, 15
Selected Value: ${MethodCall/orderPage.getRowsPerPage}
Orientation: Horizontal
All other fields: Leave as default

c. Click OK to add the builder into the model.

Page
Refreshes the target

page as required

Method
Gets the input value of the

radio button group

Variable
Stores the value of the
input extracted by the

method

HTML Event Action
The builder that listens for

HTML Events on controls on
the pages specified

Action List
Called by HTML Event

Action when the event is
triggered to process

the input

Calls the Action List when invoked

Performs the following
actions in sequence

Radio Button Group
The radio buttons to be
displayed on the page

Listens for HTML Events on the Radio Button Group

 Chapter 7. Creating portlets: Designing the UI 319

2. Add the Variable builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Variable builder and provide the following values:

Name: rowsDisplayed
Type: Integer
Initial Value: 3

c. Click OK to add the builder into the model.

3. Add the Method builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Method builder and provide the following values:

Name: getRadioButtonInput
Method Body: Type in the code shown in Example 7-14.

Example 7-14 Code for the getRadioInput builder

{
//get the input selected by the user in the radio button group
String rowDisplayed= webAppAccess.getRequestInputs().getInputValue(“DisplayRows”);

//set the rowsDisplayed variable to the value that was entered
webAppAccess.getVariables().setString (“rowsDisplayed”, rowDisplayed);

}

c. Click OK to add the builder into the model.

4. Add the Action List builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and select the following
actions to perform in sequence:

Name: radioButtonChange

Actions: Add the following actions to the Action List:

• Click the ellipsis button beside the first empty row of the Actions
list and select Methods → getRadioButtonInput method.

• Click the ellipsis button beside the next empty row of the Actions
list and select Methods → orderPage → setRowsPerPage.

• The method call arguments dialog box will pop up. Click the ellipsis
 button beside the input text box and select the Variables →

rowsDisplayed.

320 Portal Application Development Using WebSphere Portlet Factory

• Click the ellipsis button beside the next empty row of the Actions
list and select Pages → orderList.

Tag: PagingBtns

5. Add the HTML Event Action builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the HTML Event Action builder and provide the
following values:

Name: DisplayRows
Location Technique: On Named Tag
Page: orderList
Tag: DisplayRows
Event Name: onClick
Action Type: Submit form and invoke action
Action: Click the ellipsis button beside the input text box

and select Methods → radioButtonChange
All other fields: Leave as default

c. Click OK to add your builder into the model.

d. Save the model by clicking the Save icon.

e. Run and test the model by clicking the Run button. Select the number
of rows per page to be displayed as 10. The number of paging links will
become 2 and the number of rows per page will be refreshed to 10 as
shown in Figure 7-27.

Figure 7-27 Adding the Radio Buttons Group to control the rows per page

 Chapter 7. Creating portlets: Designing the UI 321

7.4 Using the Ajax type-ahead builder

With the recent spread of Ajax (Asynchronous JavaScript™) on the Web, many
application developers have started to explore different ways to take advantage
of having interactions with the server without needing to reload the whole page.

One feature that exploits the use of Ajax is the type-ahead feature. Type-ahead
occurs when the user enters text into a field and the system displays fully formed
guesses based on the letters the user has already entered. The lookup is based
entirely on a server and does not require caching on the client side.

To use the Ajax Type-Ahead builder in the portlet factory, you first define which
text input element will be providing the input string for matching. After that, define
the data service that the builder will call and the XML element (or field name) for
which the lookup will be performed when the user provides an input.

Once the input is keyed in, a call is made to the server to invoke the data service
specified with the list of matching values returned and displayed on the text input
element selected. The type of matching performed is defined in the Filter Mode
option, where matching could be done on the start of the string or as a substring.
Note that in this builder, the matching done is case-sensitive.

Perform the following steps to add the Ajax type-ahead feature to the Customer
Information portlet.

1. Open the project created previously and open the CustomerInfo model by
selecting Project → redbook → cs → ui → customer folder.

2. Click the Builder Palette icon in the Outline view (lower left).

3. Scroll to and select the Ajax Type-Ahead builder and provide the following
values (Figure 7-28):

Name: searchTypeAhead

Location Technique: On Named Tag

Page Location: CustomerList_ViewPage

Tag: searchBox

Lookup Table Used: None

Values: Click the ellipsis and select DataServices →
CustomerService → getCustomersList → results to select
${DataServices/CustomerService/
getCustomersList/results}

XML Element: NAME

Filter Mode: Show values containing data anywhere

322 Portal Application Development Using WebSphere Portlet Factory

Figure 7-28 Ajax Type-Ahead builder inputs

4. Save the model by clicking the Save icon.

5. Run and test the model by clicking the Run button. Give an initial input of
a customer name and a drop-down list of matching values will appear as
shown in Figure 7-29.

Figure 7-29 Ajax Type-Ahead on the Customer Information portlet

 Chapter 7. Creating portlets: Designing the UI 323

7.5 Using the Dojo builders

The Dojo toolkit is a modular Open Source DHTML toolkit written in Javascript.
Traditionally, DHTML has been complex and cumbersome to code, which
prevented the mass adoption of dynamic web application development.

Dojo allows you to easily and quickly build dynamic capabilities into web pages
and other Ajax-based applications. Among the features that can be implemented
using Dojo are drag and drop, inline editing of data, and tooltips. Combined with
Ajax calls, Dojo enables data to be refreshed dynamically, which makes web
sites more user friendly, responsive, and functional.

The Dojo Ajax feature set must be deployed before the Dojo builders will appear
on your builder list and be available for use. If you do not see any of the Dojo
builders in your builder list (for example, Dojo Inline Edit), you have to add them
into your project.

7.5.1 Creating a Dojo tooltip in the Product Details portlet

When creating a web application, using tooltips to provide users with hints or
guidance can increase the user-friendliness greatly. Tooltips allow users to
access this information while still staying within the current page and context, and
at the same time avoid the hassle of having the page refresh and possibly losing
some data when the they go back to the original page.

In this scenario, the order details portlet will display a Dojo tooltip showing the
product details and the product image when the user moves the mouse over the
specific product within the order. This is done via a data service call to the server
dynamically, according to the item selected.

Because this tooltip is also be used in later chapters by other models, build the
tooltip as a separate model and link it into the OrderDetails model.

Create the ProductTooltip model
Open the project created previously and create a product folder by selecting
Redbook → models → redbook → ui → order folder.

1. Add the Product folder to the model.

a. Right-click the ui folder in the Project Explorer view (top left).

b. Select New → Folder and provide the following value:

Folder Name: product

324 Portal Application Development Using WebSphere Portlet Factory

2. Add the ProductTooltip model to the folder.

a. Right-click the newly created product folder in the Project Explorer view
(top left).

b. Select New → WebSphere Portlet Factory Model and provide the
following values:

Choose Project: RedbookCS
Select Model: Factory Starter Models → Empty
Model Name: ProductTooltip

3. Add the Service Consumer builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Service Consumer builder and provide the
following values:

Name: ProductService
Provider Model: Click the ellipsis button and select the redbook →

cs → data → ProductDataProvider model.
Rich Data Definition File:Click the ellipsis button and select the

WEB-INF → resources → redbook → cs →
data_definitions → cs_product_def.xml file.

c. Click OK to add the builder into your model.

4. Add the Variable builder to the model to store the image URL for the product
detail.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Variable builder and provide the following values:

Name: productImageUrl
Type: Click the ellipsis button and select the String datatype.

c. Click OK to add the builder into your model.

5. Add the Page builder as the tooltip page that is to be displayed.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Page builder and provide the following values:

Name: tooltipPage
Page Contents HTML: Replace the existing content inside the <div> tags

with the following code:

<table border=”0”>
<tr>

<td></td>
<td></td>

</tr>

 Chapter 7. Creating portlets: Designing the UI 325

</table>

c. Click OK to add the model into your builder.

6. Add the Data Page builder to the model to get the product data.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Data Page builder and provide the following
values:

Name: tooltipPage
Variable: Click the ellipsis button and select

DataServices → ProductService →
getProduct → results

Page in Model: Select the tooltip page from the drop-down list.
Upon selecting the page, more fields will appear
below.

Location for New Tags:Select namedTag from the drop-down list.
All other fields: Leave as default

c. Click OK to add the builder into your model.

7. Add the Action List builder to the model to store the image URL for the
product detail.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and provide the following
values:

Name: generateTooltip
Actions: Add the following actions to the Action List.

• Click the ellipsis button beside the first empty row of the Actions
list and select Special → Assignment to bring up the Make
Assignment dialog box as shown in Figure 7-30.

Figure 7-30 Make Assignment dialog box

326 Portal Application Development Using WebSphere Portlet Factory

• Click the ellipsis button beside the Target field and select
DataServices → ProductService → getProduct → inputs →
arguments → PRODUCT_ID as the target variable to set.

• Click the ellipsis button beside the Source field and select
Arguments → ProductId.

• Click the ellipsis button on the next empty row of the Actions list
and select Special → Assignment to bring up the Make
Assignment dialog box.

• Click the ellipsis button beside the Target field and select
DataServices → ProductService → getProduct → inputs →
arguments → SOURCE as the target variable to set.

• Click the ellipsis button beside the Source field and select
Arguments → ProductSource.

• Click the ellipsis button on the next empty row of the Actions list
and select Data Services → ProductService → getProduct to call
the data service to get the product details based on the arguments
set in the previous step.

• Click the ellipsis button on the next empty row of the Actions list
and select Special → Assignment to bring up the Make
Assignment dialog box.

• Click the ellipsis button beside the Target field and select
Variables → productImageUrl as the target variable to set.

• Click the ellipsis button beside the Source field and select
Variables → ProductServiceGetProductResults → Product →
PICTURE as the source variable (this is the product detail field
obtained from calling the getProduct service in the previous step).

• Click the ellipsis button on the next empty row of the Actions list
and select Pages → tooltipPage to display the product details
page.

c. The inputs for the generateTooltip action list builder are shown in
Figure 7-31.

 Chapter 7. Creating portlets: Designing the UI 327

Figure 7-31 GenerateTooltip Action List builder inputs

8. Add the Image builder to the model to store the image URL for the product
detail.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Image builder and provide the following values:

Name: productImage
Location Technique: On Named Tag
Page: tooltipPage

328 Portal Application Development Using WebSphere Portlet Factory

Tag: imageTag
Image Source: Click the ellipsis button and select Variables →

productImageUrl.

c. Click OK to add the builder into your model.

At this point, your model is ready to render the product details when a specific
product is selected. However, since there is no product selected and no main
action defined, running the model will result in an error.

Testing the ProductTooltip model
One of the ways to test a model is to create a main action list that will set any
required arguments and then call the corresponding starting builder of the model.
Once the testing is complete, you can either disable the builder (so that you can
test it again in the future by enabling it) or delete the builder (if you would like to
ship the product). In this builder, we create a main action list and disable it after
testing is complete.

Use the following steps to add the Action List builder to the model to store the
image URL for the product detail.

1. Click the Builder Palette icon in the Outline view (lower left).

2. Scroll to and select the Action List builder and provide the following values.

Name: main
(Note that this is case sensitive. If you typed in Main, your
model will not run.)

Actions: In the action list, add the following action to invoke the
generateTooltip action list with the ProductId and
ProductSource values that it requires:

generateTooltip (1, INT)
Note that the arguments passed are not being encased in
quotes even though a string variable is expected.

 Chapter 7. Creating portlets: Designing the UI 329

Figure 7-32 Main Action List builder inputs

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button. The product details
together with the image of the product are shown in Figure 7-33.

Figure 7-33 Product Details Tooltip page

330 Portal Application Development Using WebSphere Portlet Factory

Create the ProductTooltip model
With the Dojo tooltip created, we can now link it to the OrderDetails model and
generate a tooltip whenever the user moves their mouse over a product listed in
the product details.

1. Add the Linked Model builder to include the ProductTooltip model created
from the previous step.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Linked Model builder and provide the following
values:

Name: productTooltip
Model: Click the ellipsis button and select redbook →

cs → ui → product → ProductTooltip model.
Instance Rule: Always use same instance and state data for a

session.

c. Click OK to add the builder to your model.

2. Add the Dojo Tooltip builder to pop up a Dojo tooltip whenever the user
places the mouse over a specific product.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Dojo Tooltip builder and provide the following
values:

Name: dojoTooltip
Location Technique: On Named Tag
Tag: ColumnData

(The ColumnData tag covers the entire row.)
Tooltip Type: Action
Tooltip Action: Click the ellipsis button and select redbook →

cs → ui → product → ProductTooltip model.
Input Mappings: Enter the values shown in Table 7-5.

Table 7-5 Input mappings for the Dojo Tooltip builder

c. Click OK to add the builder to the model.

3. Save the model by clicking the Save icon.

Name (Type in) Value (Can be selected using the ellipsis icon)

ProductId ${Variables/ITEMLoopVar/PRODUCT_ID}

ProductSource ${Variables/ITEMLoopVar/SOURCE}

 Chapter 7. Creating portlets: Designing the UI 331

4. Run and test the model by clicking the Run button. Place your mouse
over any of the products listed in the order and the tooltip will appear as
shown in Figure 7-34.

Figure 7-34 Order Details portlet with Dojo tooltip enabled

332 Portal Application Development Using WebSphere Portlet Factory

Linked versus imported models

In the following section, we describe how to add the ProductTooltip model as a
Linked model to the OrdersDetails model.

Using Linked and Imported model builders is very useful in modularizing your
application. They also encourage better system organization and code reuse.
In our case of the Product Tooltip model that you have just created, the model
is actually used both in the Order Details portlet (to display the purchased
product details) as well as in the Go Shopping portlet (to display the product
details in the product catalog).

Besides the obvious code reuse, another rule of thumb to start using these
builders is when you find your models overloaded with too many builders.

How do we decide whether to use a Linked Model or an Imported Model? The
following considerations should help you to decide:

Linked Model: This is the primary unit of modularity for an application. As the
name implies, using this builder will only link you to the model and thus the
builders of the model can only be referenced, but not used directly as part of
your model.

For example, if you link to a model that has a page builder in it, you will not be
able to access that page directly; if you use a text builder, you will not find the
linked model pages in the list of pages to place your text in. This is because
those builders are not native to the existing model. They can only be
referenced or invoked via method calls or other builder calls.

Imported Model: As the name implies, using an imported model builder will
import all related builders of the selected builder into your existing builder. One
use of this is to store all generic data definitions and schemas in a model and
to import it using an Imported Model builder. Using the Linked Model builder in
this example will not work since the schema builders are not part of your
model.

Because imported models do not have their own namespaces, importing
another model can cause name conflicts, and you should always watch for
errors encountered during generation time when importing a model. One
simple practice to avoid naming conflicts is to provide distinct model prefixes
to builders for the respective models.

An imported model has “read only” status, which means that the host model
invokes all the builder calls in the imported model, but cannot change any of
the builder inputs of those builder calls.

 Chapter 7. Creating portlets: Designing the UI 333

7.5.2 Adding Dojo Inline Edit in the Order Details portlet

Inline editing is an important feature that makes it possible for users to edit
information without the need for a screen refresh. The removal of a screen
refresh gives the user a richer and more convenient experience, especially when
the user is modifying sets of data in the same page and would like to see the
effect of the changes without having to submit the page.

One example of this is HTML editing, where users would like to see the behavior
of the changes made to the text without the need for a submit because they might
only be exploring the effect of the change.

In the following example, the Dojo Inline Edit feature is implemented on the Order
Details portlet. The user is given the choice to edit the quantity of the product that
is purchased, then submit the changes to display the new price of purchase
without the need for a page submit. The user could then continue to change the
quantity of other products purchased based on preference or budget.

Open the OrderDetails model and perform the following steps:

1. Add the Action List builder to process the change when the user does an
inline edit.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and provide the following
values:

Name: updateItemQuantityAndPrice
Return Type: void
Actions: Add the following actions to the Action List:

• Click the ellipsis button and select Methods → UIOperations →
updateQuantity to call the Link Java Object method to recompute
the total price of purchase after the quantity has been changed.

• When the method is selected, the Define Method Call Arguments
dialog box is displayed to request the argument value. Click the
ellipsis button and select
OrderServiceGetOrderItemsResults → Orders → Order →
ITEMS. This will pass in the list of items for the order being displayed
as the argument.

• Click the ellipsis button of the Actions list and select Pages →
orderDetails. This will bring the user back to the orderDetails page
after the prices have been recomputed.

334 Portal Application Development Using WebSphere Portlet Factory

2. Add the Dojo Inline Edit builder to include the inline editing function on a field
within the list of order items.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Dojo Inline Edit builder and provide the following
values:

Name: dojoInlineEdit
Fields: Click the ellipsis button and select the

[orderDetails]orderItems → ITEMS → ITEM →
QUANTITY field. This will cause the quantity of each
item in the order items list to be inline editable.

Submit Form: Check
Action: Click the ellipsis button and select the Methods →

updateItemQuantityAndPrice method. This will fire the
action list defined in the previous step to recompute the
total price for each item.

c. Click OK to add the builder to your model.

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button. Try to change the
quantity of the items ordered and check that the corresponding Order Price is
updated (Figure 7-35 on page 336).

 Chapter 7. Creating portlets: Designing the UI 335

Figure 7-35 Dojo Inline Edit

7.6 Dojo drag and drop

A “drag and drop” feature has long been considered by developers as good to
have but difficult to implement. Handling complex DHTML code has made
adoption of this feature very slow even though the feature has existed for a long
time.

In this section we demonstrate a drag and drop feature using the scenario of
adding items from a product catalog into a shopping cart. Because the full
implementation is covered later, we only illustrate the creation of the source and
target models and the use of the Dojo builders that enable it here.

The model used to run both models, enable the drag and drop functionality, and
demonstrate the entire shopping flow is covered in Chapter 10, “Creating the Go
Shopping portlet” on page 501.

Quantity and
Order Price Updated

336 Portal Application Development Using WebSphere Portlet Factory

Create the shopping cart (drag and drop target)
This model creates an image to which the customer can drag and drop a product
from the product catalog. When the product is dropped onto the image, the
shopping cart is refreshed to show the selections made so far.

Open the project and open the Redbook → models → redbook → ui →
shopping → ShoppingCart model.

1. Add the Image builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Image builder and provide the following values:

Name: cart
Location Technique: Relative to Named Tag
Page: Select cartLayoutPage from the drop-down list.
Tag: Select OrderInformation from the drop-down list.
Placement: After
New Tag Name: cartImage
Image Source: Click the ellipsis button followed by the Choose

File tab and select the redbook → cs →
images → cart.gif image.

c. Click OK to add the builder to the model.

2. Add to the model the Action List builder that is invoked when a product is
dragged and dropped onto the Dojo target (the image we added).

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and provide the following
values:

Name: addProduct
Arguments: Enter the following argument:

Name: productID
Data Type: String

Actions: Add the following actions to the Action List:

• Click the ellipsis button beside the first empty row of the Actions
list and select Method → scProductServiceGetProductWithArgs
to invoke the method to retrieve the details of the selected product
that has been dropped onto the cart. This will bring up the Define
Method Call Arguments dialog box.

 Chapter 7. Creating portlets: Designing the UI 337

Figure 7-36 Define Method Call Arguments dialog box

• Click the ellipsis button beside the String field and select
Arguments/productID as the parameter to pass to the method as
shown in Figure 7-36.

c. Click OK to continue to the next action.

• Click the ellipsis button on the next empty row of the Actions list
and select Methods → UIOperations → addItem method to call the
data service to add the dropped product to a variable containing the
current set of products in the cart. This will again bring up the Define
Method Call Arguments dialog box.

• Click the ellipsis button beside the com.bowstreet.util.IXml field and
select Variables → varNewOrderItems → ITEMS as the variable to
which the selected item will be added.

• Click the ellipsis button beside the second com.bowstreet.util.IXml
and select Data Services → scProductService → getProduct →
results → Products → Product to obtain the product that retrieves
the result (product selected) from the previous action.

d. Click OK to continue to the next action.

• Click the ellipsis button on the next empty row of the Actions list
and select Pages → cartLayoutPage to define the image as the target
for users to drop the items selected to.

e. Click OK to add the builder to your model.

3. Add the Dojo Drop Target builder to display the items that have been added to
the cart.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Dojo Drop Target builder and provide the
following values:

Name: dropTarget
Variable: On Named Tag
Page in Model: Select cartLayoutPage from the drop-down list.

338 Portal Application Development Using WebSphere Portlet Factory

Tag: Select cartImage from the drop-down list.
Drop Action: Click the ellipsis button and select Methods →

addProduct to invoke the action list created in the
previous step.

Drop Type: *

c. Click OK to add the builder to your model.

4. Add the Data Page builder to display the items that have been added to the
cart.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Data Page builder and provide the following
values:

Name: orderItems
Variable: Click the ellipsis button and select

Variables → varNewOrderItems → ITEMS to
display the ITEMS variable containing all the
items in the shopping cart.

Location for New Tags: Select OrderDetails from the drop-down list.

c. Click OK to add the builder to your model.

Create the product catalog (drag and drop source)
This model generates the product catalog for the application and creates a Dojo
Drag Source to allow you to drag the product selected to a region.

1. Add the Data Page builder to the model to display the list of products
available.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Data Page builder and provide the following
values:

Name: products
Variable: Click the ellipsis button and select

DataServices → scProductService →
getProducts → results to display the products.

Page in Model: Select pageProductCatalog from the drop-down
list.

Location for New Tag: Select ProductCatalog from the drop-down list.

c. Click OK to add the builder into your model.

2. Add the Image builder to display the product image when the list of products
is displayed.

a. Click the Builder Palette icon in the Outline view (lower left).

 Chapter 7. Creating portlets: Designing the UI 339

b. Scroll to and select the Image builder and provide the following values:

Name: thumbnail
Location Technique: On Named Tag
Page: Select pageProductCatalog from the drop-down

list.
Tag: Select THUMBNAIL from the drop-down list.
Image Source: Click the ellipsis button and select Variables →

ProductLoopVar → Product → THUMBNAIL to
obtain the thumbnail image file name from the list
of products retrieved by the data page.

c. Click OK to add the model into your builder.

3. Add the Dojo Drag Source builder to the model to get the product data.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Dojo Drag Source builder and provide the
following values:

Name: dragSource
Location Technique: On Named Tag
Page: Select pageProductCatalog from the drop-down

list.
Tag: Select THUMBNAIL from the drop-down list.
Drag Source Data: Click the ellipsis button and select Variables →

ProductLoopVar → Product → ID to select the
product ID as the value that is being passed to the
shopping cart when the product is dropped.

c. Click OK to add the model into your builder.

4. Save the model by clicking the Save icon.

5. Run and test the model by clicking the Run button. Drag a product from
the list of products displayed to the shopping cart image and you should get
results similar to those shown in Figure 7-37.

340 Portal Application Development Using WebSphere Portlet Factory

Figure 7-37 Implementing Dojo Drag and Drop

7.7 Using other Dojo features

In the previous sections, the Dojo examples were created using builders that
were provided by Portlet Factory. However, does not mean that other Dojo
features cannot be implemented.

In this scenario, we implement the Dojo editor for a textarea input for which
Portlet Factory does not have a builder. To do this, we first Dojo-enable the page,
then set the attribute of the HTML element that we would like to convert to, as
shown in the following steps.

Note that this example references the OrderPage model that is described in
Chapter 10, “Creating the Go Shopping portlet” on page 501. However, the
model can be modified and run on its own, and thus does not require you to read
Chapter 10 before trying the example.

Creating a Dojo Rich Text Editor
Open the project that has been created and open the Redbook → models →
redbook → ui → shopping → OrderPage model.

1. Add the Imported Model builder to the model to include the ShoppingUI
services and events to your model.

a. Click the Builder Palette icon in the Outline view (lower left).

 Chapter 7. Creating portlets: Designing the UI 341

b. Scroll to and select the Imported Model builder and provide the following
values:

Name: ShoppingUIImports
Model: Click the ellipsis button and select the redbook → cs →

ui → Shopping → ShoppingUIImports model.

c. Click OK to add the builder into your model.

2. Add the Action List builder to the model to add the steps for running the
model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and provide the following
values:

Name: main
Actions: Add the following actions to the Action List:

• Click the ellipsis button and select DataServices →
scOrdersService → getNextOrderId to get the next order ID for the
order that is to be created.

• Click the ellipsis button on the next empty row of the Actions list
and select Special → Assignment to bring up the Make
Assignment dialog box.

• Click the ellipsis button beside the Target field and select
Variables → varnewOrder → Order as the target variable to set.

• Click the ellipsis button beside the Source field and select
DataServices → scOrdersService → getNextOrderId →
results → arguments → returnValue to get the return value of the
getNextOrderId method that you called at the start of this action list.

• Click the ellipsis button on the next empty row of the Actions list
and select Page → shoppingDetails_InputPage to refresh the
page when the variables have been loaded.

c. Click OK to add the builder into your model.

3. Add to the model the Action List builder that the input form will call. This action
list does not perform any actions but is necessary because it is required by
the input form builder.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and provide the following
values:

Name: noop
Return Type: void

c. Click OK to add the builder into your model.

342 Portal Application Development Using WebSphere Portlet Factory

4. Add the Input Form builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Input Form builder and provide the following
values:

Name: shoppingDetails
Input Submit Operation: noop
Input Next Action: noop
Input Page HTML: Leave as default
Input Variable: Click the ellipsis button and select the

Variables → varNewOrder → Order variable for
the builder.

All other fields: Leave as default

• Click the ellipsis button on the next empty row of the Actions list and
select Page → shoppingDetails_InputPage to refresh the page when
the variables have been loaded.

5. Add the Action List builder to the model to add the steps for running the
model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Action List builder and provide the following
values:

Name: main
Actions: Add the following actions to the Action List:

• Click the ellipsis button on the next empty row of the Actions list
and select Special → Assignment to bring up the Make
Assignment dialog box.

• Click the ellipsis button beside the Target field and select
Variables → varCustomerID as the target variable to set.

• Click the ellipsis button beside the Source field and select Inputs →
CUSTOMER_ID.

• Click the ellipsis button on the next empty row of the Actions list
and select Methods → fireevtReloadPrimaryContainer to invoke the
event.

• The Define Method Call Arguments dialog box will appear, requesting
the arguments to be passed to this method. For this field, type in
redbook/cs/ui/shopping/ConfirmationPage.

c. Click OK to add the action to the list.

d. Click OK to add the builder into your model.

6. Add the Button builder to the model.

 Chapter 7. Creating portlets: Designing the UI 343

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Button builder and provide the following values:

Name: back
Location Technique: Relative to Named Tag
Page: Select shoppingDetails_InputPage from the

drop-down list.
Tag: Select submit_button from the drop-down list.
Placement: Select Before from the drop-down list.
New Tag name: Back
Label: <-- Back
Action Type: Submit form and invoke action
Action: Click the ellipsis button and select Methods →

fireevtReloadPrimaryContainer (This is
discussed in detail in Chapter 10).

c. Click OK to add the builder into your model.

7. Add the Button builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Button builder and provide the following values:

Name: submitOverride
Location Technique: On Named Tag
Page: Select shoppingDetails_InputPage from the

drop-down list.
Tag: Select submit_button from the drop-down list.
New Tag name: Next -->
Label: Next -->
Action Type: Submit form and invoke action
Action: Click the ellipsis button and select Methods →

submitShoppingDetails to invoke the action list
that you created.

c. Click OK to add the builder into your model.

8. Add the Dojo Enable builder to the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Dojo Enable builder and provide the following
values:

Name: dojoEnable
Select Page: shoppingDetails_InputPage
Requires Package List: dojo.widget.Editor2

dojo.widget.ColorPalette

c. Click OK to add the builder into your model.

344 Portal Application Development Using WebSphere Portlet Factory

Figure 7-38 Dojo Enable Builder inputs

9. To convert the field into a text area input, add the Text Area builder to the
model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Text Area builder and provide the following
values:

Name: comments
Location Technique: On Named Tag
Page: Select shoppingDetails_InputPage from the

drop-down list.
Tag: Select COMMENTS from the drop-down list.

c. Click OK to add the builder into your model.

10.To convert the text area into a Dojo Rich Text Editor, the attributes of the text
area field have to be set. This is done by add the Attribute Setting builder to
the model.

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the Attribute Setter builder and provide the following
values:

 Chapter 7. Creating portlets: Designing the UI 345

Name: comments
Location Technique: On Named Tag
Page: Select shoppingDetails_InputPage from the

drop-down list.
Tag: Select COMMENTS from the drop-down list.

c. Save the model by clicking the Save icon.

11.Run and test the model by clicking the Run button. The input text area of
the model should now appear as a Rich Text Editor as shown in Figure 7-39.

Figure 7-39 Applying the Dojo Rich Text Editor to a input text area field

Note that if your model has already defined a field to be an input text area in the
RDD file, then there is no need to use the text area builder to convert the text
input field to a input text area field. The purpose of doing so in this example is to
explicitly demonstrate how an attribute setter can add or modify the attributes of
another builder.

7.8 Customizing the UI

So far, we have presented the features that you can implement using the builders
in the portlet factory. This should give you a sense of just how quickly you can
implement UI features to enrich an application greatly.

However, besides these features, there is still the issue of handling the layout. As
you probably have noticed by now, when you want to manipulate the way the
fields are displayed, the RDD, Data Column Modifiers, and Data Field Modifiers
would probably do the trick, but they do not allow you to specify if you want the
data grid to be displayed in a horizontal or vertical fashion.

346 Portal Application Development Using WebSphere Portlet Factory

For example, in our Order Details portlet, you probably noticed that the Order
Details placed at the top of the Order Items list has a fair amount of white space
to the right of it which makes the UI slightly unbalanced, as shown in Figure 7-40.

Figure 7-40 Order Details UI

In addition to the obvious unused white space, there is also the issue of layout in
terms of the portlet look and feel. In the portlet in Figure 7-40, there is a lack of
styling and no instructions to inform the customers that the product details would
be displayed by a tooltip if they moved their mouse over it, or that clicking on the
pencil icon () would enable them to edit the quantity ordered. Without those
elements, all that we have built would be useless to the user.

This section explains the components in the UI of a portlet factory page and the
general techniques in user interface development.

7.8.1 UI elements of a Portlet Factory page

In handling the user interface of a portlet factory page, you must first understand
the elements involved in creating a portlet factory page.

So far, the models that generate data have been using mainly the View & Form
builder or the combination of Imported Page and Data Page builders to create
your page.

In most cases, a page generated by portlet factory is broken down into two
components:

Unused white space

 Chapter 7. Creating portlets: Designing the UI 347

� Static content: The content is coded via HTML, as specified in the View Page
HTML field of the View & Form builder inputs or the Page to Import field in the
Imported Page builder.

� Dynamic content: The content is rendered automatically by Portlet Factory via
an HTML template, which by default is the gridtable.html found in the HTML
Template field of both the View & Form builder, Input Form and Data Page
builders. More details on HTML templates are covered in the next section.

Figure 7-41 shows the static and dynamic content of the Orders List portlet of the
application.

Figure 7-41 Static and dynamic content of a portlet factory page

To see the HTML code for this portlet, perform the following steps with the
orderDetails portlet that you have built so far.

1. Open the orderList Imported Page builder and set the following value:

Page to Import: Click the ellipsis button and select redbook → cs →
html → OrderListLayout_Revised.html to use this as
the HTML template instead.

2. Click the Edit Page button to see the HTML source code of the imported
page.

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button.

Dynamic content
(rendered by Portlet Factory)

Static content
(generated by HTML Code)

348 Portal Application Development Using WebSphere Portlet Factory

Besides the HTML templates that render your data dynamically, don’t forget that
you have also added UI builders that latch themselves onto the tags specified in
the static HTML pages. These tags allow you to “place” your UI elements onto a
page. To shift them around the page, all you need to do is to move the
corresponding tags.

To provide you with a better understanding of which are the dynamic contents of
your model, Figure 7-42 shows the tags in the HTML source code that match the
elements and the builders that automate the output in the rendered HTML.

Figure 7-42 Matching the imported HTML page to the output

With the difference between static and dynamic content established, we can
begin to modify the static UI of our application.

Customizing the static content
Most applications and portlets normally would have a set of standard
instructions, headers, or footers that you would like to include. In this scenario,
we edit the HTML of an imported page to insert the instructions for the order list
portlets and include an HTML builder to store an HTML block that will be inserted
as a footer to the order list page.

While you can directly edit the HTML code to insert the footer, using HTML
builders to store blocks of reusable HTML code allows you to create a model that
can be imported into other models. By doing so, you will be able to update your
headers or footers from a single location and effect the change to all other pages
of your application.

(Using the Paging Buttons builder)

(Using the Paging Links builder)

(Using the Radio Button Group builder)

(Using the Data Page builder)

 Chapter 7. Creating portlets: Designing the UI 349

To begin, open the Redbook → models → redbook → ui → order →
OrderList model.

1. Edit the existing orderList imported page to include the instructions and the
footer.

a. Click the orderList imported page builder in the Outline view (lower left).

b. Click the Edit Page.

c. Scroll down to the bottom of Page Contents (HTML) and add the following
lines to the HTML.

<!-- insert this line into your code -->

</form>
</body>
</html>

d. Click OK to save your changes.

2. Add an HTML builder to the model. (Note, we have not created a separate
model for you to import. This is left as an exercise for the reader.)

a. Click the Builder Palette icon in the Outline view (lower left).

b. Scroll to and select the HTML builder and provide the following values:

Name: footer
Location Technique: On Named Tag
Page: orderList
Tag: footer

c. Add the following code in the HTML field.

<table width="100%" border="0" cellspacing="0" cellpadding="2">
 <tr bgcolor="#E46E74">
 <td height="1%">
 <table width="100%" border="0" cellspacing="0" cellpadding="2">

<tr>
 <td width='100%' align="left" class="indexMenu">

© 2007, Developed by ITSO Renovations. All Rights Reserved
</td>

 </tr>
 </table>
 </td>
 </tr>

350 Portal Application Development Using WebSphere Portlet Factory

</table>

d. Click OK to add your builder into the model.

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button. Your portlet should
now have the footer shown in Figure 7-43.

Figure 7-43 Result of applying the HTML builder into Order List portlet

To customize the static content, simply edit the corresponding HTML page that is
referenced in the builders you are using to render the content. The default HTML
differs with the builder that you use. For the View & Form builder, the HTML to
edit would be the view_and_form_view.html form that is found in the <Project
Root>/WebContent/factory/pages directory. For the Input Form builder, the HTML
used would be view_and_form_inputform.html found in the same directory.

Note: Always rename the HTML file that you are going to use if you intend to
make changes in the static HTML file and store it in a separate directory for
reference. Editing a default HTML file such as view_and_form_view.html might
result in errors because it is the default HTML referenced by all the other
builders in your project.

 Chapter 7. Creating portlets: Designing the UI 351

Customizing the dynamic content
While Portlet Factory can fully automate the presentation of your data, there
could be instances when you would like to have full control over display of your
data. In this case, you would not use HTML templates; instead, you would hard
code all of the display named tags in the static html file that you defined earlier.

In this example, we modify the Order Details layout to remove the white space on
the screen as shown in Figure 7-40 on page 347.

To change the look and feel of the Order Details portlet and see the changes in
the HTML code, perform the following steps with the orderDetails portlet that you
have built so far.

1. Open the orderDetails Imported Page builder and set the following value:

Page to Import: Click the ellipsis button and select redbook → cs →
html → OrderDetailsLayout_Revised.html to use this
as the HTML template instead.

2. Click the Edit Page button to see the HTML source code of the imported
page.

3. Save the model by clicking the Save icon.

4. Run and test the model by clicking the Run button. You will see the order
details now laid out in a horizontal format as shown in Figure 7-44.

352 Portal Application Development Using WebSphere Portlet Factory

Figure 7-44 Order Details UI after changing the imported HTML page

On viewing the HTML code, you will notice that the fields corresponding to the
order details have been hard coded within the
tag with the layout of the order details coded exactly as you would have done in a
normal JSP page. What has happened here is that the tag names in the table
correspond exactly to the field name of the data set and when they are rendered,
the data automatically latches itself to its corresponding tag as shown in
Figure 7-45 on page 354.

 Chapter 7. Creating portlets: Designing the UI 353

Figure 7-45 How the customized HTML is tied to the display

7.9 HTML templates in Portlet Factory

The goal of using HTML Templates is to enable the Page Automation code of
Portlet Factory to build HTML that looks handcrafted but is instead generated
from a description of the data.

With HTML Templates, you handle your data at a fairly high level of presentation
abstraction, unlike the traditional way of coding. Traditionally, when creating a
simple HTML page, you know the exact values you want to display, and you only
need to be concerned with how to lay them out. When you are creating a JSP
page, you think of the data more abstractly, by field name or by some other
reference technique. You also have to consider how to render sections of
repeated elements, such as the rows from a database query. You know the
structure of your data, not the actual values, in terms of the fields that you have in

Note: While this technique provides full control over the layout of the pages, it
does cause tight coupling between the data and the code. This means that
any changes in the data schema would also require changes to the front-end
code. Changes in your RDD would also not be reflected because the table has
already been hard coded. This method should be used only when you are
unable to customize your layout using the existing builders.

Note: This is an advanced topic for the purpose of understanding page
generation. If you would like to carry on with the building of the application,
you can skip this section.

354 Portal Application Development Using WebSphere Portlet Factory

the result set, the number of rows, and possibly even the field order if you are
doing low level coding.

With just a few templates, you can define the overall look for an entire application
with hundreds of pages in it. In addition, by changing the templates (with
Profiling), you can change the overall look dramatically, without sacrificing the
quality of the appearance at all.

In general, you should not be creating HTML Templates from scratch. The
existing set of HTML Templates provided by Portlet Factory should be sufficient
to render most datasets. If there is a need to modify the data format or layout, the
use of RDD files, Form Layout builder, Style Sheets, and other builders should be
sufficient. Using the methods highlighted in “UI elements of a Portlet Factory
page” on page 347 should also be considered.

However, if there is still a requirement to customize the HTML template, it would
be more effective to modify an existing HTML template (for example,
gridtable.html) rather than creating one from scratch. To modify one that almost
suits your requirements, we recommend the following steps:

1. Run your model.

2. Compare the generated HTML with the HTML template that is used to
generate it.

3. Remove the sections of code that are not required.

4. Run the model and ensure that the changes do not affect the application.

5. Modify the HTML template to meet your requirements.

6. Run the model again.

Note that these steps should be performed incrementally. Carefully sculpting out
pieces and modifying them would enable you to control the changes and
understand the HTML templates better.

For more information on HTML templates, refer to the article “Introducing
WebSphere Portlet Factory HTML Templates” found at
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_o
donnell/0607_odonnell.html.

 Chapter 7. Creating portlets: Designing the UI 355

http://www.ibm.com/developerworks/websphere/library/techarticles/0607_odonnell/0607_odonnell.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_odonnell/0607_odonnell.html

7.10 Other UI builders

Besides the concepts covered so far, there are many additional builders that can
manipulate the UI that cannot be exhaustively covered in this book. This section
describes some of the more commonly used builders in the Portlet Factory and
mentions some other builders for the user to explore.

Data Column Modifier
In the case of customizing the UI at the model or individual page level, besides
using the RDD, the Data Column Modifier is a highly useful builder that allows
you to manipulate the selected schema of the page.

In addition to column sorting, hiding, alignment and width setting, one of the key
features often used by developers is the addition of a counter column for the rows
in a table.

Clicking the Add Counter Column checkbox will add a counter column to the
table, uncheck the Manage Columns checkbox since the RDD will do that, and
define the counter label in the Counter Column Head field as shown in
Figure 7-46.

356 Portal Application Development Using WebSphere Portlet Factory

Figure 7-46 Adding a Counter Column and Highlighter in the Customer Information portlet

 Chapter 7. Creating portlets: Designing the UI 357

Highlighter
Highlighting a selected row when the user performs a mouse over is a good way
to indicate the current selection. To include this in your model, add a Highlighter
builder and in the Fields field, select the row element that you wish to highlight (in
the case of the customer self-service application, the row element is customer
since each row represents a customer. The result is as shown in Figure 7-46.

Some other builders that are not covered in this book but that might be of interest
to the reader are identified in Table 7-6.

Table 7-6 Some additional UI builders

7.11 Conclusion

This chapter has shown many examples to both control and augment your UI.
RDD files are very effective for centralizing control and managing the UI in a
consistent fashion. They are also highly extensible and thus allow a structured
way of building up the UI control.

Other UI builders, such as the Paging Assistant, Data Column Modifier, and
Highlighter builders, have also been highlighted as the common builders that you
would typically use to handle the UI elements in controlling your data. These
builders allow you to quickly and easily control data without the need for back end
or javascript coding as it is traditionally done.

Ajax and Dojo builders have also been covered; these tools enable you to build
Rich Internet Applications (RIA) in keeping up with latest developments of web
programming.

Builder Description

Form Layout Allows a section of data to be formatted to multiple columns.

Visibility Setter Hides/Displays data within the selected tag. Useful for
displaying messages when there is no data set or hiding
sections of data in response to user actions.

Print Page Contents Allows you to set a block of content to printer-friendly format.
Often used together with Excel Export builder (requires the
Excel Extension feature to be included).

Attribute Setter Allows you to set the attribute of any HTML element in a page.
Particularly useful to manage styles and colors of HTML
elements in response to events without using scripts.

358 Portal Application Development Using WebSphere Portlet Factory

Last but not least, we demonstrated the way to perform low-level control of your
UI through the editing of the HTML files.

The examples presented here should enable you to create a user-friendly and
highly functional user interface for your application.

 Chapter 7. Creating portlets: Designing the UI 359

360 Portal Application Development Using WebSphere Portlet Factory

Chapter 8. Enabling portlet
communication

In this chapter we describe the types of inter-portlet communication supported by
Portlet Factory and demonstrate how to create the communication links for our
CustomerInfo Model, Order List Model, Order Details Model, and
CustomerCredentials Model.

There are a few ways to implement inter-portlet communication in Portlet
Factory, each with certain advantages over the others. With our Customer Self
Service Application (CSA), we have chosen to use a combination of Portlet
Factory events and shared variables as the mechanism for communication,
mainly due to the ease of implementation.

To complete the steps in this chapter, you need to have installed copies of
WebSphere Portal and WebSphere Portlet Factory 6.0.1. You also need to have
set up the data service providers described in previous chapters, and to have
built and deployed the CustomerInfo, Order List, Order Details, and
CustomerCredentials models described in Chapter 6, “Creating portlets:
Making it work” on page 221. The UI components described in Chapter 7,
“Creating portlets: Designing the UI” on page 275 are preferred but not essential.

8

Note: The sample code (Chapter8.zip) that shipped with this chapter cannot
be run in standalone mode. The project must be deployed in WebSphere
Portal for it to work.

© Copyright IBM Corp. 2008. All rights reserved. 361

8.1 Overview

In the previous chapters, we built the data services for the CSA and most of the
functionality of its portlets in standalone mode. In this chapter, we discuss how to
build the communication links among the CustomerInfo, OrderList, OrderDetails
and CustomerCredentials models for the CSA.

We will be using a combination of Portlet Factory events and shared variables to
build the communication links for our application. We have chosen this type of
inter-portlet communication mainly due to the ease of implementation, but in
general, the major advantage of the Portlet Factory events over the other
mechanisms is its ability to support standalone J2EE application, meaning
WebSphere Portal is not required for building the communication links.

Briefly, the Portlet Factory events and shared variables work together by causing
an event to be broadcast to all models whenever a shared variable is changed.
Any model that is listening to that event will retrieve the updated value of the
shared variable to carry out its tasks.

By the end of this chapter, we will have the four models communicating with each
other and they will no longer work as standalone portlet applications.

Table 8-1 summarizes the features of CSA covered in this chapter and the
techniques or builders used to implement these features.

Table 8-1 Summary of features implemented and builders/techniques used

Feature Description Builders or techniques used

Portlet
communication

Enables the CustomerInfo
model to communicate with the
OrderList model via a shared
variable. For the CSR scenario,
a Portlet Factory event is
required; for the Customer
scenario, the shared variable is
sufficient.

UIEvent Model
Variable
Shared Variable
Event Declaration

CustomerInfo Model
Imported Model
Action List

OrderList Model
Imported Model
Event Handler
Action List

362 Portal Application Development Using WebSphere Portlet Factory

Value to end users
Inter-portlet communication allows end users to have a more dynamic application
because user behavior in one portlet may invoke another portlet to perform
automatically. This saves end users time by proactively displaying related data or
carrying out tasks that end users may wish to proceed to next. This
communication capability also provides more flexibility in terms of presenting the
application to the end users. It is now possible to divide the application into
different components (portlets) that can reside on different portal pages.

8.2 Types of inter-portlet communication

There are three general types of inter-portlet communication supported by Portlet
Factory builders:

� Portlet Factory events

These events are a simple way to implement inter-model communication,
both in Portal and when running standalone. These events work in both IBM
Portlet API mode and Standard portlet API mode. When an event is fired, it is
broadcast to all models in the same user session, and any models that are
listening for the event will have their event handler called. Events can have
any number of arguments, of simple or complex types. These events are fired

Portlet
communication

Enables the OrderList model to
communicate with the
OrderDetails model via a shared
variable and a Portlet Factory
event.

UIEvent Model
Variable
Shared Variable
Event Declaration

OrderList Model
Imported Model
Link
Action List

OrderDetails Model
Imported Model
Event Handler
Action List

Portlet
communication

Enables the
CustomerCredentials model to
communicate with the
CustomerInfo model using a
Portlet Factory event.

UIEvent Model
Event Declaration

CustomerCredentials Model
Imported Model

CustomerInfo Model
Imported Model
Event Handler

Feature Description Builders or techniques used

 Chapter 8. Enabling portlet communication 363

explicitly and don’t have any user interface of their own. The builders used for
Portlet Factory events are Event Declaration and Event Handler.

� Cooperative Portlet events: Click-to-Action and Property Broker

These are mechanisms defined by WebSphere Portal for inter-portlet
communication, and are only available when running in Portal. Click-to-Action
is a Portal mechanism that uses drop-down menus to control portlet
interaction; it is available only when running a project in IBM Portlet mode. In
Standard portlet mode, Cooperative Portlets must be configured using the
“Wires” tool. The builders used for Cooperative Portlet events are
Cooperative Portlet Source, Cooperative Portlet Target, and Event Handler.

Using this type of inter-portlet communication enables portlets developed
using different tools to be used together in composite applications. It
encourages reuse of components, and allows developers to build
customizable portlet applications that can be plugged into other portlet
applications via the WebSphere Property Broker.

IBM WebSphere Portal Express Version 6 - Customizing Portal Express for
Small to Medium Business, REDP-4316 provides a detail example showing
how two portlets developed using different tools can communicate with each
other using this technique. See the following Web site for details:
http://www.redbooks.ibm.com/redpieces/abstracts/redp4316.html?Open

� Shared variables

This is a Portlet Factory feature that lets you share a variable across all the
models in a user session. This feature works both in Portal (either portlet
mode) and when running standalone. The models do not have to be on the
same portal page. The builder used for this is Shared Variable. This feature is
often coupled with one of the event mechanisms described previously, so that
when a portlet modifies a shared variable it can notify other portlets that a

Note: Portlet Factory Events provide a convenient way of linking portlets
because they do not require external wiring in Portal like the Cooperative
Portlet Events do. However, some major advantages of using Cooperative
Portlet Events are:

� The ability to send events across deployment WARs

� Communication between non-Portlet Factory portlets

� Support of wiring across portal pages

� The ability to react to events that are triggered before instantiation

Portlet Factory Events have a dependency on the rendering order of the
portlets.

364 Portal Application Development Using WebSphere Portlet Factory

http://www.redbooks.ibm.com/redpieces/abstracts/redp4316.html?Open

value has changed. In the CSA, shared variables are used together with the
Portlet Factory events mechanism to enable inter-portlet communication.

Figure 8-1 How shared variables work when coupled with an event mechanism

8.2.1 Types of inter-portlet events

There are four types of inter-portlet events available in Portlet Factory:
Click-to-Action (C2A), Property Broker Link, Property Broker Action, and Portlet
Factory events. The key differences between these event types are summarized
in Table 8-2. There are also differences in behavior depending on whether
portlets are using IBM Portlet mode or Standard mode (JSR 168).

Shared Variable

Target Model

Step 2. The Source Model modifies
the shared variable

Step 4. The Target Model retrieves the
 updated value of the shared variable

Step 1. The Target Model listens

 to the Source Model for the event
Step 3. The Source M

odel

fires the event

Source Model

Target Model’s
Action List:

…
…
...Step 5. The Target Model carries

out its tasks using
the shared variable.

 Chapter 8. Enabling portlet communication 365

Table 8-2 Summary of key features of the event mechanisms

8.3 Inter-portlet communication for CSA

In this section we provide step-by-step instructions for building the following
three portlet communication links for our CSA:

1. CustomerInfo Model to OrderList Model (across Portal pages)

When a CSR logs into the application, he is presented with a list of customers
in the CustomerInfo portlet. When the CSR clicks on any ID link of a
customer, the customer details are displayed in the current portlet and the
OrderList portlet on the Order portal page retrieves the orders that the
customer has previously placed and displays them when the CSR browses to

Click-to-Action Property Broker
Link

Property Broker
Action

Portlet Factory
Events

Platform
support

Portal only, IBM
Portlet mode only*

Portal only (either
mode)

Portal only (either
mode)

Portal (either
mode) and
standalone J2EE
supported

User interface C2A drop-down
menu

Link in standard
portlet mode; C2A
drop-down menu in
IBM Portlet mode

No UI (event must
be explicitly fired by
application)

No UI (event must
be explicitly fired by
application)

Arguments
supported

Simple argument
value

Simple argument
value or single
complex argument
value

Simple argument
value or single
complex argument
value

Multiple complex
argument types

Event
configuration

No wiring required -
matches event
names and types

Requires explicit
Portlet wiring in
standard portlet
mode

Requires explicit
Portlet wiring in
standard portlet
mode

No wiring required -
matches event
names and types

* Click-to-Action menus are displayed only in IBM Portlet mode, but the same models can be
configured with Portlet Wiring in Standard portlet mode and will display a simple link UI instead
of a drop-down menu.

Note: For detailed sample code for different types of inter-portlet
communication, see http://www-128.ibm.com/developerworks/websphere/
zones/portal/portletfactory/samples/misc.html

366 Portal Application Development Using WebSphere Portlet Factory

http://www-128.ibm.com/developerworks/websphere/zones/portal/portletfactory/samples/misc.html
http://www-128.ibm.com/developerworks/websphere/zones/portal/portletfactory/samples/misc.html

that page. The variable that is used to invoke the action of the OrderList
model is the ID value of the customer.

The customer scenario works in a manner similar to that of the CSR, except
when a customer logs into the application the CustomerInfo portlet displays
the details about that customer by default. (This is based on the assumption
that the customer has already set up his credential details.)

2. OrderList Model to OrderDetails Model

When a customer or CSR clicks the Order ID link in the OrderList portlet, the
details about that order are displayed in the OrderDetails portlet on the same
page. The variable that is used to invoke the action of the OrderDetails model
is the ID value of the order selected.

3. CustomerCredentials Model to CustomerInfo Model

In Chapter 6, “Creating portlets: Making it work” on page 221, we created a
CustomerCredentials model to set up customers’ credential details when the
customers log in for the first time. The CustomerInfo portlet should refresh
itself automatically, showing the details for the customer when he returns
from the credential details personalize page (provided that the data he enters
is valid).

8.3.1 CustomerInfo Model to OrderList Model

At a high level, the steps to enable communications between the CustomerInfo
and Orderlist models are:

1. Create an event declaration and shared variable. The event is fired from the
CustomerInfo model when a new customer has been selected. The shared
variable holds the customer ID, which is communicated between the models.

2. The CustomerInfo model sets the customerID variable and fires the event
when the customer is selected.

3. The OrderList model catches the event and updates the customer orders
based on the customerID value.

The details about these steps are provided in the following sections.

 Chapter 8. Enabling portlet communication 367

Creating and importing the UIEvent model
This model is used as the common model that declares the Portlet Factory
Events as well as the shared variables. This will be imported into both the
CustomerInfo Model and OrderList Model.

1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
common and right-click the common folder. Click New → WebSphere
Portlet Factory Model.

Figure 8-2 Creating a new WebSphere Portlet Factory Model

Note: As mentioned before, there are two possible use cases for the
CustomerInfo Model to OrderList Model inter-portlet communication: the CSR
use scenario and the customer use scenario. In this chapter, we only cover the
CSR scenario. Details about the customer scenario are included in Chapter 9,
“Customizing the application using profiling” after we customize the
application for the customer use cases using profiling.

Nevertheless, it is worth mentioning here that there is a difference between
the two scenarios in terms of creating the communication link between the
CustomerInfo model and the OrderList model; we explain the difference in
9.6.1, “Different entry paths for customers and CSRs” on page 438

368 Portal Application Development Using WebSphere Portlet Factory

2. In the Choose Project window, choose RedbookCS and click Next.

3. In the Select Model window, choose Empty under Factory Starter Models
and click Next.

Figure 8-3 Selecting an Empty model to begin with for the UIEvent Model

4. In the Save New Model window, make sure the two inputs are as follows:

Enter or select the folder:

RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/common

Model name:

UIEvent

5. Click Finish.

 Chapter 8. Enabling portlet communication 369

Figure 8-4 Save the new UIEvent model

Declaring the event and shared variable in the UIEvent model
First, we create the customerID shared variable. The shared variable customerID
declared in the UIEvent model is used to store the ID of the customer that is
currently logged in or the ID of the customer that a CSR has selected.

Perform the following steps to create a normal variable and then turn it into a
shared variable:

1. In the UIEvent model, click the button to add a Variable builder.

2. Make the following entries and selections; leave other values as default:

Name: customerID
Type: String

Click Apply.

370 Portal Application Development Using WebSphere Portlet Factory

Figure 8-5 Create the customerID variable

3. Click the button to add a Shared Variable builder.

4. Make the following entries and selections; leave the other values as default.

Name: sharedCustomerID
Variable: customerID
Scope: Session
Unique ID: com.ibm.redbook.cs.sharedvariables.customerID

Click Apply.

 Chapter 8. Enabling portlet communication 371

Figure 8-6 Turn the customerID variable into a shared variable

5. Save the UIEvent model by clicking the Save icon ().

Next, we create the getCustomerOrders event. The getCustomerOrders event
declared in the UIEvent model is to be fired by the CustomerInfo model to let the
OrderList model know that the customerID shared variable has just been
changed. The OrderList model will then proceed to carry out its tasks based on
the new customerID value.

1. In the UIEvent model, click the button to add an Event Declaration
builder.

2. Name the Event Declaration builder getCustomerOrders and leave all the
other options as default. Click Apply.

Note: You do not need to specify any arguments to pass with this event
because you will be passing the information via the sharedCustomerID
shared variable.

372 Portal Application Development Using WebSphere Portlet Factory

Figure 8-7 Create the getCustomerOrders Event in the UIEvent Model

3. Save the UIEvent model by clicking Save ().

Firing the event from the CustomerInfo model
In the CustomerInfo model, we need to set the value of the customerID shared
variable whenever a CSR views the details of a customer by clicking the
customer’s ID link. Then an event will be fired to notify the OrderList model of the
change in the customerID value.

1. In Project Explorer, select RedbookCS → models → redbook → cs → ui →
customer → CustomerInfo.model. Double click CustomerInfo.model to
open it.

 Chapter 8. Enabling portlet communication 373

Figure 8-8 Open up the CustomerInfo Model

2. Import the UIEvent model, which contains the definition for the event and the
shared variable. In the CustomerInfo model, click the button to add an
Imported Model builder.

3. Name the Imported Model builder UIEvent and make sure that path to the
model reads redbook/cs/ui/common/UIEvent. Leave the rest as default and
click Apply.

At this point, the CustomerInfo model should be able to see the event and
shared variable declared in the UIEvent model.

374 Portal Application Development Using WebSphere Portlet Factory

Figure 8-9 Import the UIEvent Model into the CustomerInfo Model

4. Create an Action List in the CustomerInfo model and name it
getCustomerDetails. In the CustomerInfo model, click the button to add
an Action List builder.

5. The getCustomerDetails action list should carry out three tasks when a CSR
clicks a customer’s ID link.

a. Set the value of the customerID shared variable to the Customer ID value
selected.

i. Click the button on the first empty row of the Action List Table.

ii. In the Select Action window, expand Special and click Assignment.
The Make Assignment dialog pops up (Figure 8-10).

 Chapter 8. Enabling portlet communication 375

Figure 8-10 Make Assignment in an Action List

iii. Click the ellipsis button next to the Source input field. In the
Choose Reference window choose the ID value Variables →
CustomerList_SelectedRowData → Customer → ID. Click OK.

iv. Click the button next to the Target input field. In the Variables
window choose the value Variables → customerID. Click OK.

v. Leave the Assignment Type in the Make Assignment window as
Replace. Click OK.

Figure 8-11 Setting the customerID shared variable

b. Fire the getCustomerOrders event.

i. Click the button on the next empty row of the Action List table.

ii. In the Select Action window, expand Methods and click
firegetCustomerOrders. Click OK.

376 Portal Application Development Using WebSphere Portlet Factory

c. Display the details of the customer selected.

i. Click the button on the next empty row of the Action List table.

ii. In the Select Action window, expand Methods and click
CustomerDetails_ShowResults. Click OK.

6. Click Apply on the getCustomerDetails Action List builder.

Figure 8-12 Click Apply to save the getCustomersDetails action list

7. Call this getCustomerDetails Action List when a CSR clicks on a customer’s
ID link to view the details. In the Outline pane, double-click the View & Form
builder named CustomerList. The CustomerList builder is opened in the Edit
pane.

 Chapter 8. Enabling portlet communication 377

Figure 8-13 Open the CustomerList View & Form builder

8. Scroll down to the Row Details Support section in the CustomerList builder
and click the button next to the Link Action input field.

378 Portal Application Development Using WebSphere Portlet Factory

Figure 8-14 Modify the Link Action under the Row Details Support section

9. In the Selection Action without Arguments window, choose Methods →
getCustomerDetails and click OK.

10.Click Apply on the CustomerList View & Form builder.

11.Change the hard-wired input parameter for the getCustomer method entered
earlier (described in Chapter 6) in the Service Consumer builder. In the
Outline pane, double-click the Service Consumer builder named
CustomerService. The CustomerService builder is opened in the Edit pane.

 Chapter 8. Enabling portlet communication 379

Figure 8-15 Open up the CustomerService builder

12.In the CustomerService builder, scroll down to the Overridden Inputs section.
Under the Operation Table, click the getCustomer method. The names and
values of its inputs should appear in the Inputs table (Figure 8-16).

380 Portal Application Development Using WebSphere Portlet Factory

Figure 8-16 Inputs of the getCustomer method are shown in the Inputs table

13.Click the ellipsis button on the Inputs.CUSTOMER_ID row, then select
Variables → customerID.

Figure 8-17 The modified value of the CUSTOMER_ID input

14.Click Apply to save the CustomerService builder.

 Chapter 8. Enabling portlet communication 381

15.Save the CustomerInfo model by clicking the button.

Handling event in the OrderList Model
By now, you should have the CustomerInfo model firing the getCustomerOrders
event whenever the customerID shared variable is updated. Perform the
following steps to set up the OrderList model to react to this event.

1. In Project Explorer, select RedbookCS → models → redbook → cs → ui →
order → OrderList.model. Double-click OrderList.model to open it.

Figure 8-18 Open the OrderList model

2. Import the UIEvent model. In the OrderList model, click to add an
Imported Model builder.

Note: The original hard-wired input value source is from the data of the
selected customer row (that is, the customer that the CSR clicks on to view
his details). However, this input value will not work for the customer
scenario because when a customer logs in to view his details, he will not
have to select from the list of customers. Therefore, we use the
customerID shared variable as the input instead. (It will work for both
scenarios because we have the customerID value set before invoking the
method to display the details of the customer).

382 Portal Application Development Using WebSphere Portlet Factory

3. Name the Imported Model builder UIEvent and make sure the path to the
model is redbook/cs/ui/common/UIEvent. Leave the rest as default and click
Apply.

At this point, the OrderList model should be able to see the event and shared
variable declared in the UIEvent model.

Figure 8-19 Import the UIEvent Model into the OrderList Model

4. Create a new action list in the OrderList model to carry out the tasks when the
OrderList model reacts to the getCustomerOrders event. In the OrderList
model, click to add an Action List builder.

5. Name the action list getCustomerOrders. It should do the following:

a. Check whether the customerID shared variable is NULL. If it is not null,
call the DataServices method getCustomerOrdersList to retrieve the list of
orders that the customer (with the customerID) has previously purchased.

 Chapter 8. Enabling portlet communication 383

i. Click the button on the first row of the Action List table. In the
Select Action window, choose Special → Conditional → if. The
Define Conditional Action dialog box opens (Figure 8-20).

Figure 8-20 Set up the conditional action

ii. Create a conditional statement to check if the customerID is not NULL.
Click the button next to the Value input field. In the Choose
Reference window, choose Variables → customerID. Click OK.

iii. Leave everything else in the Define Conditional Action box as default
and click OK.

iv. The getCustomerOrders Action List builder should appear as shown in
Figure 8-21. Ignore the Missing ENDIF error for now.

384 Portal Application Development Using WebSphere Portlet Factory

Figure 8-21 Ignore the Missing ENDIF error

v. Click the button on the second row of the Action List Table. In the
Select Action window, choose Methods →
OrderServiceGetCustomerOrderListWithArgs. The Define Method
Call Arguments dialog box opens (Figure 8-22).

 Chapter 8. Enabling portlet communication 385

Figure 8-22 Call the DataServices Method to get the list of orders

vi. Click the button next to the String input field. In the Choose
Preference window, choose Variables → customerID. Click OK to
close the Choose Preference window, then click OK again to close the
Define Method Call Arguments window.

vii. Click the button on the next empty row of the Action List table. In
the Select Action window, choose Special → Conditional → endif.
Click OK.

b. Display the OrderList page.

i. Click the button on the next empty row of the Action List table. In
the Select Action window, choose Pages → orderList. Click OK.

6. Click Apply to save the changes made in the getCustomerOrders Action List
builder.

Note: The reason we have chosen to use the
OrderServiceGetCustomerOrderListWithArgs method here is to
demonstrate alternative ways of invoking a method.

386 Portal Application Development Using WebSphere Portlet Factory

Figure 8-23 The new Action List builder - getCustomerOrders

7. Create an Event Handler that will listen to the getCustomerOrders event. In
the OrderList model, click to add an Event Handler builder.

8. Complete the form as follows, then click Apply.

Name: Enter getCustomerOrders
Event Name: Select getCustomerOrders from the drop-down list
Handle Type: Select Use existing action
Action: Click the button next to the Action input field, then

select Methods → getCustomerOrders from the
Select Action window. Click OK in that window.

 Chapter 8. Enabling portlet communication 387

Figure 8-24 Create the getCustomerOrders Event Handler builder in the OrderList
model

9. Modify the main Action List of the OrderList model. In the Outline pane,
double-click the Action List builder named main. The main builder will open in
the Edit pane.

388 Portal Application Development Using WebSphere Portlet Factory

Figure 8-25 Open up the main Action List in the OrderList model

10.In the main Action List table, right-click the icon next to the first row of the
table. Click Delete All Rows to remove all the existing actions.

 Chapter 8. Enabling portlet communication 389

Figure 8-26 Delete the existing actions in the main Action List

11.Make main call the new action list that you just created, getCustomerOrders.
Click the button on the first row of the Action List table and select
Methods → getCustomerOrders from the Select Action window. Click OK to
close that window.

12.Click Apply on the main Action List builder (Figure 8-27).

Note: The reason that the main action list has to call the
getCustomerOrders action list here is to handle the situation that when a
CSR clicks on a customer’s ID link before the OrderList portlet has been
instantiated, the OrderList portlet will not be able to respond to events fired
by the CustomerInfo model. Having the main method call the same action
list here enforces that the OrderList portlet will still display the order list
details as expected even when the event is fired before its instantiation.

390 Portal Application Development Using WebSphere Portlet Factory

Figure 8-27 Click Apply to save the main action list

13.Before we can test this link, we need to remove the hard-coded input value
entered in the OrderService Service Consumer builder (described in
Chapter 6). In the Outline pane, double-click the Service Consumer builder
named OrderService. The OrderService builder will open in the Edit pane.

14.Uncheck the box for Override Inputs option. Click Apply.

 Chapter 8. Enabling portlet communication 391

Figure 8-28 Disable the Override Inputs option

15.Save the OrderList model by clicking the button.

392 Portal Application Development Using WebSphere Portlet Factory

Testing the inter-portlet communication link
You can now test the link that you just created.

1. Log into Portal. The CustomerInfo portlet on the Customer page will resemble
Figure 8-28 after logging in.

Figure 8-29 CustomerInfo portlet after logging in

2. Go to the Order portal page. The OrderList portlet should be empty, as shown
in Figure 8-30.

Figure 8-30 OrderList Portlet should be empty

3. Go back to the Customer portal page and click the ID link of the first
customer.

Important: Do not click any links in the CustomerInfo portlet.

 Chapter 8. Enabling portlet communication 393

Figure 8-31 Click the ID link of the first customer

4. The CustomerInfo portlet now displays the details about that customer.

Figure 8-32 Customer details

394 Portal Application Development Using WebSphere Portlet Factory

5. Go to the Order portal page. The OrderList portlet now displays the list of
orders that the selected customer has previously placed.

Figure 8-33 Orders placed by the selected customer

6. Switch back to the Customer portal page and select another customer. The
content in the OrderList portlet will change each time you select another
customer’s details in the CustomerInfo portlet.

8.3.2 OrderList Model to OrderDetails Model

At a high level, the steps to enable communications between the OrderList and
OrderDetails models are:

1. Create an event declaration and shared variable. The event will be fired from
the OrderList model when a new order has been selected. The shared
variable will hold the order ID that needs to be communicated between the
models.

2. The OrderList model sets the selectedOrderID variable and fires the event
when the order is selected.

3. The OrderDetails model catches the event and updates the order details
based on the selectedOrderID value.

This inter-portlet communication link basically follows the same flow as the link
between the CustomerInfo model and the OrderList model that we described in
the previous section.

Declaring the event and share variable in the UIEvent model
First, we create the selectedOrderID shared variable. The shared variable
selectedOrderID declared in the UIEvent model is used to store the ID of the
selected order.

 Chapter 8. Enabling portlet communication 395

In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
common → UIEvent.model. Double-click the UIEvent.model to open it.

Perform the following steps to create a normal variable and then turn it into a
shared variable:

1. In the UIEvent model, click to add a Variable builder.

2. Enter the name for the Variable builder as selectedOrderID and select String
as the Type. Leave everything else as default. Click Apply.

3. To make the selectedOrderID variable that we just created a shared variable
in the UIEvent model, click to add a Shared Variable builder.

4. Make the following entries and selections; leave other values as default:

Name: sharedSelectedOrderID
Variable: selectedOrderID
Scope: Session
Unique ID: com.ibm.redbook.cs.sharedvariables.selectedOrderID

Click Apply.

Figure 8-34 Turn the selectedOrderID variable into a shared variable

5. You have now finished creating the shared variable. Save the UIEvent model
by clicking the button.

396 Portal Application Development Using WebSphere Portlet Factory

Create the getOrderDetails event
The getOrderDetails event declared in the UIEvent model is to be fired by the
OrderList model to let the OrderDetails model know that the selectedOrderID
shared variable has just been changed. The OrderDetails model will then
proceed to carry out its tasks based on the new selectedOrderID value.

1. In the UIEvent model, click to add an Event Declaration builder.

2. Name the Event Declaration builder getOrderDetails and leave all the other
options as default. Click Apply.

Figure 8-35 The getOrderDetails Event Declaration builder in the UIEvent Model

3. You have now finished creating the event. Save the UIEvent model by
clicking the button.

Firing the event from the OrderList Model
In the OrderList model, we need to set the value of the selectedOrderList shared
variable whenever a CSR or a customer clicks an ID link of the order that he
wishes to view the details for. Then an event will be fired to notify the
OrderDetails model of the change in the selectedOrderList value.

Unlike the previous case, where the customer ID links are created using the
Views & Form’s Row Details Support option, with the OrderList model we need to
turn the order ID fields into links with the help of a Link builder.

 Chapter 8. Enabling portlet communication 397

1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
order → OrderList.model. Double-click the OrderList.model to open it.

2. Since the UIEvent model has already been imported, create a new action list
that will set the selectedOrderID shared variable as well as firing the
getOrderDetails event. In the OrderList model, click to add an Action List
builder. Name this action list builder getOrderDetails.

3. The getOrderDetails action list should carry out the following three tasks
when a CSR/customer clicks on an order ID link.

a. Take the order ID as an input argument.

i. Expand the Arguments section by clicking on the word Argument.

Figure 8-36 Expand the Arguments section in the Action List builder

ii. Create a new argument with the following details:

Name: orderID
Data Type: String

Figure 8-37 Create an argument for the getOrderDetails Action List

398 Portal Application Development Using WebSphere Portlet Factory

b. Set the value of the selectedOrderID shared variable equal to the
argument of the action list.

i. Click the button on the first empty row of the Action List table.

ii. In the Select Action window, expand Special and click Assignment.

iii. Click the button next to the Source input field. In the Choose
Reference window choose the ID value Arguments → orderID. Click
OK.

iv. Click the button next to the Target input field. In the Variables
window choose the value Variables → selectedOrderID. Click OK.

v. Leave the Assignment Type in the Make Assignment window as
Replace. Click OK.

Figure 8-38 Setting the selectedOrderID shared variable

c. Fire the getOrderDetails event.

i. Click the button on the next empty row of the Action List table.

ii. In the Select Action window, expand Methods and click
firegetOrderDetails. Click OK.

4. Click Apply on the getOrderDetails Action List builder.

5. We have to turn the order ID fields into links such that when a customer or
CSR clicks on one of these, the getOrderDetails event will be fired. In the
OrderList model, click to add a Link builder.

6. Leave the name of this builder blank so that it will take the HTML tag name as
its name. Complete the form as follows and leave everything else as default.

Location Technique: On Named Tag
Page: orderList
Tag: ORDER_ID
Action Type: Link to an action
Action: Click next the Action input field. Choose

Methods → getOrderDetails. Click OK.

 Chapter 8. Enabling portlet communication 399

Evaluate arguments: Select As the page is rendered (You must not get
this part wrong or the inter-portlet communication link
will not work properly.)

Input Mappings Name: Replace getOrderDetails_Arg1 with orderID.

Input Mappings Value: Click next to the Value input field. Choose
Variables → OrderLoopVar → Order →
ORDER_ID. Click OK to close the Choose
Reference window.

Figure 8-39 Create the ID Link builder

400 Portal Application Development Using WebSphere Portlet Factory

Note: Two other components are generated behind the scenes when the
Link builder is created:

� Order ID Links on JSP page

The Link builder generates a set of order ID links in the OrderList
portlet. In order to identify each individual ID link, the Link builder uses
the unique orderID value as a parameter of the href property of each
link. For example, the first order may have

whereas the second one may have

Looking at the WebAppTree, here is the exact code generated for the
set of ID links:

<a name="ID" ...

href='<%= JSPSupport.getActionURL(webAppAccess,"_gen_call_getOrderDetails",
new String[] {"orderID", ""+ webAppAccess.getVariables().getXmlText(
"OrderLoopVar","Order/ORDER_ID") }) %>'>

...

Basically, it uses the orderID value of each order to generate a unique
link; to identify which link is selected, we need to parse through the
HTTP request parameters to retrieve the “orderID” value.

� Wrapper method (_gen_call_getOrderDetails)

A wrapper method is generated automatically when the Link builder is
created. Its basic function is to use the OrderLoopVar variable as a
reference to retrieve the orderID parameter from the HTTP request. It
then passes this orderID value to the Link builder Action (which is
getOrderDetails in this case). The getOrderDetails action then carries
out its tasks based on the input value.

The time to evaluate the input argument is crucial because it may result
in passing an incorrect value to the getOrderDetails action. To examine
the differences between the two options of when the argument should
be evaluated, we look at the codes generated in the WebApp Tree.

 Chapter 8. Enabling portlet communication 401

7. Click Apply to save the ID link builder.

8. Save the OrderList model by clicking the button.

If the As the page is rendered option is chosen, the wrapper method
looks like this:

public Object _gen_call_getOrderDetails(WebAppAccess webAppAccess){

...

returnValue = webAppAccess.callMethod("getOrderDetails", new Object[] {
webAppAccess.getRequestInputs().getInputValue("orderID") });

...

}

Notice that it actually parses through the input parameters of the HTTP
request to retrieve the “orderID” value and then passes it to the
getOrderDetails function.

Now, we look at the codes generated if the When the action is run
option is chosen:

public Object _gen_call_getOrderDetails(WebAppAccess webAppAccess){

...

returnValue = webAppAccess.callMethod("getOrderDetails", new Object[] {
webAppAccess.getVariables().getXmlText("OrderLoopVar", "Order/ORDER_ID")
});

...

}

Notice that with this option, the actual value of the Order/ORDER_ID of
the OrderLoopVar variable is being passed to getOrderDetails, instead
of the input parameter in the HTTP request. As the OrderLoopVar
variable loops through the entire result set, it will always have the last
result as the last instance (that is, choosing this option implies that no
matter which order ID link you click, you will always only be able to see
the order details of the last order).

Tip: You will find that in most cases when a LoopVar variable is involved,
the “As the page is rendered” option is mostly likely the choice, whereas
when a form is being submitted, the “When the action is run” option is most
likely chosen.

402 Portal Application Development Using WebSphere Portlet Factory

Handling event in the OrderDetails model
By now, you should have the OrderList model firing the getOrderDetails event
whenever the selectedOrderID shared variable is updated. We will now set up
the OrderDetails model to react to this event.

1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
order → OrderDetails.model. Double-click the OrderDetails.model to open
it.

2. Import the UIEvent model. In the OrderList model, click to add an
Imported Model builder.

3. Name the Imported Model builder UIEvent and make sure the path to the
model reads redbook/cs/ui/common/UIEvent. Leave the rest as default and
click Apply.

At this point, the OrderDetails model should be able to see the event and
shared variable declared in the UIEvent model.

Figure 8-40 Import the UIEvent model into the OrderList model

 Chapter 8. Enabling portlet communication 403

4. Create a new action list in the OrderDetails model to carry out the tasks when
the OrderDetails model reacts to the getOrderDetails event. In the
OrderDetails model, click to add an Action List builder.

5. Name the action list getOrderDetails. It should do the following:

a. Check whether the selectedOrderID shared variable is NULL or not. If it is
not null, call the Dataservices method: getOrder and getOrderItems to
retrieve the details of the order.

i. Click the button on the first row of the Action List table. In the
Select Action window, choose Special → Conditional → if. The
Define Conditional Action dialog box is displayed.

ii. Create a conditional statement to check if the selectedOrderID is not
NULL. Click the button next to the Value input field. In the Choose
Reference window, choose Variables → selectedOrderID. Click OK.

iii. Leave everything else on the Define Conditional Action as default and
click OK.

iv. Assign the input value for the getOrder Dataservices method. Click the
 button on the next empty row of the Action List table. In the Select

Action window, expand Special and click Assignment.

v. Click the button next to the Source input field. In the Choose
Reference window choose the ID value Variables →
selectedOrderID. Click OK.

vi. Click the button next to the Target input field. In the Variables
window choose the value Variables →
OrderServiceGetOrderInputs → Inputs → ORDER_ID. Click OK.

vii. Leave the Assignment Type in the Make Assignment window as
Replace. Click OK.

Figure 8-41 Set the input value for the getOrders Dataservices method

viii.Click the button on the next empty row of the Action List table. In
the Select Action window, choose DataServices → OrderService →
getOrder. Click OK.

404 Portal Application Development Using WebSphere Portlet Factory

ix. Assign the input value for the getOrderItems Dataservices method.
Click the button on the next empty row of the Action List table. In
the Select Action window, expand Special and click Assignment.

x. Click the button next to the Source input field. In the Choose
Reference window choose the ID value Variables →
selectedOrderID. Click OK.

xi. Click the button next to the Target input field. In the Variables
window choose the value Variables →
OrderServiceGetOrderItemsInputs → Inputs → ORDER_ID. Click
OK.

xii. Leave the Assignment Type in the Make Assignment window as
Replace. Click OK.

Figure 8-42 Set the input value of the getOrderItems Dataservices method

xiii.Click the button on the next empty row of the Action List table. In
the Select Action window, choose DataServices → OrderService →
getOrderItems. Click OK.

xiv.Since our CSA will calculate the order price for each item on the
presentation layer, we have to call a Linked Java Object function to
perform the calculation. Note that the LJO has previously been added
to the model (described in Chapter 6). Click the button on the next
empty row of the Action List table. In the Select Action window, choose
Methods → UIOperations → updateQuantity.

xv. The Define Method Call Arguments window is displayed. Click the
button next to the com.bowstreet.util.IXml Argument field. Choose
Variables → OrderServiceGetOrderItemsResults → Orders →
Order → ITEMS. Click OK.

Note: We have demonstrated another way of invoking a method
here by first assigning the inputs of a DataServices method and then
invoking it.

 Chapter 8. Enabling portlet communication 405

Figure 8-43 Assign the Input Argument for the updateQuantity LJO method

xvi.Click the button on the next empty row of the Action List table. In
the Select Action window, choose Special → Conditional → endif.
Click OK.

b. Display the OrderDetails page.

Click the button on the next empty row of the Action List table. In the
Select Action window, choose Pages → orderDetails. Click OK.

6. Click Apply to save the changes made in the getOrderDetails Action List
builder.

Figure 8-44 The completed getOrderDetails Action List builder

7. Create an Event Handler that will listen to the getOrderDetails event. In the
OrderDetails model, click to add an Event Handler builder.

406 Portal Application Development Using WebSphere Portlet Factory

8. Make the following entries and selections.

Name: getOrderDetails

Event Name: getOrderDetails (select from the drop-down list)

Handle Type: Use existing action

Action: Click the button next to the Action input field, then
select Methods → getOrderDetails from the Select
Action window. Click OK in that window.

Figure 8-45 Create the getOrderDetails Event Handler in the OrderDetails model

9. Modify the main Action List of the OrderDetails model. In the Outline pane,
double-click the Action List builder named main. The main builder will open in
the Edit pane.

 Chapter 8. Enabling portlet communication 407

Figure 8-46 Open up the main Action List builder in the OrderDetails model

10.In this main Action List table, right-click the icon next the first row of the
table. Click Delete All Rows to remove all the existing actions.

11.To make main call the new action list that we just created, getOrderDetails,
click the button on the first row of the Action List table. Select Methods →
getOrderDetails from the Select Action window. Click OK to close that
window.

12.Click Apply on the main Action List builder.

Note: We have deliberately made the main method to call the
getOrderDetails action, which might seems unnecessary here when the
getOrderDetails Event Handler is already calling that action. We discuss
the reason behind it in 9.6.4, “Runtime customization profiling” on
page 472 when we demonstrate how to implement portlet runtime
customization.

408 Portal Application Development Using WebSphere Portlet Factory

13.Before you can test this link, you need to remove the hard-coded input value
entered in the OrderService Service Consumer builder (described in Chapter
6). In the Outline pane, double-click the Service Consumer builder named
OrderService. The OrderService builder will be opened in the Edit pane.

14.Uncheck the Override Inputs box. Click Apply.

Figure 8-47 Disable the Override Inputs option

15.Save the OrderList model by clicking the button.

Testing the inter-portlet communication link

We are now ready to test the link that we just created.

1. Log into Portal. The CustomerInfo portlet on the Customer page will appear
as shown in Figure 8-48.

 Chapter 8. Enabling portlet communication 409

Figure 8-48 CustomerInfo Portlet after logging-in

2. Go to the Order portal page. The OrderList portlet and the OrderDetails
portlet should be empty, as shown in Figure 8-49.

Figure 8-49 The OrderList portlet and the OrderDetails portlet should be empty

3. Go back to the Customer portal page and click the ID link of the first
customer.

Important: Do not click any links in the CustomerInfo portlet.

410 Portal Application Development Using WebSphere Portlet Factory

Figure 8-50 Click the ID Link of the First Customer

4. The CustomerInfo portlet should now display the details about that customer.

Figure 8-51 Customer details

 Chapter 8. Enabling portlet communication 411

5. Go to the Order portal page. The OrderList portlet should now display the list
of orders that the selected customer has previously placed; the OrderDetails
portlet should still be empty.

6. Click the first order ID link in the OrderList portlet.

Figure 8-52 Click the first Order ID link in the OrderList portlet

7. The OrderDetails portlet should now display the details of the order just
selected.

Figure 8-53 Order details for the order selected

8. Click other order ID links; the OrderDetails portlet will reflect the changes
accordingly.

412 Portal Application Development Using WebSphere Portlet Factory

8.3.3 CustomerCredentials Model to CustomerInfo Model

The very first time a customer logs in, she will be prompted to enter her
credential details before she can proceed further with the application. She will
need to go to the Personalize page of the CustomerInfo portlet to set up
credential details; by returning from the Personalize mode to the normal mode,
the user should be able to see her details right away in the CustomerInfo Portlet.
To ensure the CustomerInfo portlet refreshes itself automatically to meet this
requirement, we need to fire an event from the CustomerCredential model to the
CustomerInfo model letting it know that the credential details of the customer
have now been set up correctly. The CustomerInfo model can then refresh itself
by retrieving data from the credential vault.

At a high level, the following three steps are used to enable communications
between the CustomerCredentials and CustomerInfo models.

1. Create an event declaration. The event will be fired from the
CustomerCredentials model when a customer has correctly set up his or her
credential details.

2. The CustomerCredentials model will fire the event when the customer is
selected.

3. The CustomerInfo model will catch the event and update the customer details
based on the credential values in the credentials vault.

Declaring the event in UIEvent model

We will create the saveCredentials event first. The saveCredentials event
declared in the UIEvent model is to be fired by the CustomerCredentials model to
let the CustomerInfo model know that the credential details have been set up
correctly by the customer. The CustomerInfo model will then proceed to carry out
its tasks based on the data stored in the Credential Vault.

1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
common → UIEvent.model. Double-click the UIEvent.model to open it.

Note: To test this link, we first need to complete the WPS Credential
component of the application as described in 9.6.1, “Different entry paths for
customers and CSRs” on page 438. We will only implement the link here and
defer the testing to section 9.6.1.

Note: In this case, we will not need a shared variable between the models
because the data that is passed around is stored in the Credential Vault. We
will be calling the LJO methods to set and get that data.

 Chapter 8. Enabling portlet communication 413

2. In the UIEvent model, click to add an Event Declaration builder.

3. Name the Event Declaration builder saveCredentials and leave all the other
options as default. Click Apply.

Figure 8-54 Declare the saveCredentials event in the UIEvent model

4. You have now finished creating the event. Save the UIEvent model by
clicking the button.

Firing the event from the CustomerCredentials model
In the CustomerCredentials model, when a customer saves her credential details
correctly, an event will be fired to notify the CustomerInfo model.

1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
customer → CustomerCredentails.model. Double-click the
CustomerCredentails.model to open it.

2. Import the UIEvent model. In the CustomerCredentials model, click to
add an Imported Model builder.

3. Name the Imported Model builder UIEvent and make sure the path to the
model reads redbook/cs/ui/common/UIEvent. Leave the rest as default and
click Apply.

At this point, the CustomerCredentials model should be able to see the event
declared in the UIEvent model.

414 Portal Application Development Using WebSphere Portlet Factory

Figure 8-55 Import the UIEvent model into the CustomerInfo model

4. Verify that the saveCredentials Action List in the CustomerCredentials model
does fire the saveCredentials event when a customer saves her valid
credential details. In the Outline pane, double-click the Action List builder
named saveCredentials. The saveCredentials builder will open in the Edit
pane.

 Chapter 8. Enabling portlet communication 415

Figure 8-56 Open the saveCredentials Action List builder

5. In the Action List table, you should be able to see the firesaveCredentials
method being called as shown in Figure 8-57.

416 Portal Application Development Using WebSphere Portlet Factory

Figure 8-57 Verify that the firesaveCredentials method is called

6. Save the CustomerCredentials model by clicking the button.

Handling the event in the CustomerInfo model
The CustomerInfo model should be listening to the saveCredentials event. When
it receives one, it should call its main method to refresh its portlet page.

1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →
customer → CustomerInfo.model. Double-click CustomerInfo.model to
open it.

2. In the CustomerInfo model, click to add an Event Handler builder.

3. Make the following entries and selections in the Event Handler builder form:

Name: saveCredentials
Event Name: saveCredentials
Handler Type: Use existing action
Action: Click the button and select Methods → main

Note: This saveCredentials action list was created previously (described in
Chapter 6). If you do not see the firesaveCredentials method being called
in this action list, simply insert an empty row above the ELSE statement and
call the method in the empty row. If the name of this method appears to be
different, simply replace the existing one with this firesaveCredentials
method.

 Chapter 8. Enabling portlet communication 417

Figure 8-58 Create the saveCredentials Event Handler

4. Click Apply to save the saveCredentials builder.

5. Save the CustomerInfo model by clicking the button.

8.4 Best practices

1. Using imported model for event declaration and shared variables

It is generally a good practice to declare events and shared variables in a
common model and then import the model into the event firing and event
listening models. However, you should avoid using the common model as a
dumping area for all the events and shared variables across many different
models because it will become very hard to manage. Moreover, every time
you import that common model, it will bring along lots of unrelated data and
make the importing models unnecessarily large.

2. Using inter-portlet communication

Whenever you think you need to implement inter-portlet communication, you
should check whether that same behavior can be implemented by using a
high-level builder. For instance, a View & Form builder allows you to view the

418 Portal Application Development Using WebSphere Portlet Factory

details of a selected result set in the same portlet by enabling the Row Details
Support option.

8.5 Conclusion

In this chapter, we have demonstrated how to create the inter-portlet
communication links for our CSA. We have also discussed other possible ways
of implementing inter-portlet communication. If you have followed the steps in
this chapter, you should now have the three portlets working together as one
application in WebSphere Portal.

 Chapter 8. Enabling portlet communication 419

420 Portal Application Development Using WebSphere Portlet Factory

Chapter 9. Customizing the application
using profiling

In this chapter we describe the basic concept of “profiling” in Portlet Factory. We
also demonstrate how to apply various profiling techniques to our Customer Self
Service Application.

To complete the steps in this chapter, you will need installed copies of
WebSphere Portal and WebSphere Portlet Factory 6.0.1. We assume that you
have followed the set up and configuration steps for the data service providers as
described in chapters 4 and 5, and that you have built and deployed the
CustomerInfo, OrderList, and OrderDetails portlets according to the procedures
given in the previous three chapters.

9

Note: The sample code (Chapter9.zip) available with this chapter cannot be
run in standalone mode. You must deploy the project into WebSphere Portal
for it to work.

© Copyright IBM Corp. 2008. All rights reserved. 421

9.1 Overview

In the previous chapters, we built the data services for the Customer Self Service
application and built the portlets such that they are now working together as one
application. To complete the Customer and Order components of our application,
we now have to apply profiling to them.

Profiling in Portlet Factory is a very powerful and useful feature; it allows
applications to have a high degree of flexibility to cater to different user cases
and reduces the time and effort required to implement such applications.
Therefore, it is important to understand the concept of profiling and to apply it in a
manageable manner. In this chapter, we discuss what profiling means in Portlet
Factory and the different types of profiling that can be done with Portlet Factory.

In the context of our Customer Self Service Application, we demonstrate the use
of several profiling techniques. By the end of this chapter, we will have the
Customer Self Service Application fully functioning as described in Chapter
Chapter 2, “Scenario introduction” on page 15, except for the Go Shopping
component.

Table 9-1 summarizes the features of CSA covered in this chapter as well as the
builders and techniques used to implement these features.

Table 9-1 Summary of features implemented and builders and techniques used

Feature Description of feature Builders and techniques used

Profiling for different
entry paths

Enables the CustomerGroup
and CSRGroup to enter the
application via two different
paths.

CustomerInfo model
Page
WPS Credential
Action List

Profile set selection handler
WPS Group Segment Handler

Profile-enabled builder
main (CustomerInfo - Action List)

Profiling for different
data field properties

Enables the data field properties
to vary based on the user group
using two RDD files. Customers
are not allowed to modify the
PIN and IMAGE fields of their
details.

Profile set
com.ibm.redbook.cs.psets.wpsgroup

Profile set selection handler
WPS Group Segment Handler

Profile-enabled builder
CustomerService (CustomerInfo -
Service Consumer)

422 Portal Application Development Using WebSphere Portlet Factory

9.1.1 Value to developers

Profiling allows developers to implement applications with a high degree of
flexibility to fulfill various complicated real-life scenarios. Profiling can easily be
applied from a high level down to very granular details of an application using
Portlet Factory.

9.1.2 Value to users

Profiling adjusts an application’s behaviors according to the end users’ identities
as well as other contextual information. End users receive only relevant
components of the application, allowing the application to behave in a more
personalized manner. End users also have the ability to further customize the
user interface of the application to fit their own needs.

9.2 Profiling defined

Profiling in Portlet Factory allows automated generation of various versions of an
application for different users. Depending on the type of profiling used, the
behavior of the application is based on either pre-defined logic or

Profiling for different
component visibility
properties

Enables the application to hide
or show different components
based on the user group.
Customers are not supposed to
see the Back button on the
Customer Details View page.

CustomerInfo model
Visibility Setter

Profile Set
com.ibm.redbook.cs.psets.wpsgroup

Profile Set Selection handler
WPS Group Segment Handler

Profile-enabled builder
back_button (CustomerInfo - Visibility
Setter)

Runtime customization Enables users to personalize the
OrderDetails portlet during
runtime. They are given the
option to hide or show the
Product ID, Thumbnail and
Source columns.

OrderDetails model
Data Column Modifier

OrderDetailsCustomizer model
Portlet Customizer

Profile set
com.ibm.redbook.cs.psets.orderdetails
customiser

Profile-enabled builder
ITEM (OrderDetails - Data Column
Modifier)

Feature Description of feature Builders and techniques used

 Chapter 9. Customizing the application using profiling 423

end-user-specific inputs. For example, a manager can view the details of all the
employees that he manages, while a normal employee can only view his own
details in an HR system. In this case, the pre-defined logic takes care of the
generation process; hence, neither user is aware of what happens behind the
scene when the application is presented to him or her. On the other hand, when
the manager personalizes a portlet application by hiding certain fields on a page,
he is actively involved in creating his own profile for the portlet application to best
fit his needs.

At a very high level, this is how profiling works in Portlet Factory: A
profile-enabled application takes in values from different profiles during the
regeneration phase and presents the users with different variations of the
application based on their identities or other contextual information. The
generation process of a profile-enabled application is shown in Figure 9-1.

Figure 9-1 Generation process of a profile-enabled application in Portlet Factory

Portlet Factory Model

Regeneration
Engine

Builders

UsersProfiles/Profile Values Application with Variations

A

B C
WebApp {Version A}
• JSP pages
• Controller logic
• Services and

business objects
• XML and other data

WebApp {Version B}
• JSP pages
• Controller logic
• Services and

business objects
• XML and other data

WebApp {Version C}
• JSP pages
• Controller logic
• Services and

business objects
• XML and other data

424 Portal Application Development Using WebSphere Portlet Factory

There are two basic steps to create a profile-enabled application in Portlet
Factory:

1. Create or manage a profile set, profiles, profile entries, and profile values
(defined in the next section).

2. Apply the profiles into appropriate builders.

In 9.4, “Types of profiling” on page 428, we explore how different types of profiling
are implemented in the Customer Self Service Application.

9.3 Terms and definitions

Some important profiling terms are defined in the following list.

Profile set A profile set is a collection of profiles. This acts like an
interface that defines what values are stored in the
profiles and how these values are to be accessed by the
Regeneration Engine.

Profile A profile is a collection of name value pairs that an
application takes in during the regeneration process to
create various behaviors for different users.

Profile entry One or more profile entry items (name, UI type, and so
forth) are used to describe the structure of the profile set.

Profile entry value A profile value is associated with a profile entry in a profile
and each value represents a possible variation in the
behavior of an application.

For instance, a profile set named “Pet” contains profiles for a few popular kinds of
animals that people like to keep as pets. These profiles might include Dog, Cat,
Fish, and so forth. Each of these profiles contains a group of name and value
pairs (in Portlet Factory terms, these are pairs of profile entry and profile value).
For example, in the Dog profile, we might have a group of pairs like {(“name”,
“dog”),(“favorite food”, “bone”)}; whereas for the Cat profile, we might have
{(“name”, “cat”),(“favorite food”, “fish”)}. By encapsulating these profiles in the
“Pet” profile set, Portlet Factory allows you to view different information based on
the profile you selected using one user interface (that is, on the same fields of the
same page).

This does not necessarily imply that all profiles will always have exactly the same
elements displayed on the same page. This is because in addition to the ability to
control the content behavior via profiling, Portlet Factory also allows you to set
the visibility of certain elements (content or functions) on a page based on the
profiles. For example, under the Dog and the Cat profiles, there might be a

 Chapter 9. Customizing the application using profiling 425

“Listen to its voice” button that plays an audio clip of a dog barking or a cat
meowing respectively. However, with the Fish profile, such a button might not be
displayed at all.

From a technical point of view, Portlet Factory allows a clear separation between
the presentation layer and the application logic. A developer will only have to
develop one single user interface, but with the ability to easily modify the
outcomes of an application by applying different profiles into the builders.
Another benefit demonstrated in this example is that Portlet Factory allows
developers to profile-enable an application down to a very granule level (that is,
individual fields on a page or individual parameters of the application) without
going through a lot of grief.

Figure 9-2 Separation between the presentation layer and the application logic in Portlet Factory

My Pet Homepage

"Bird" Profile

Name = Bird
Favorite Food = Seeds

Show Listen to its voice

"Fish" Profile

Name = Fish
Favorite Food = Bread

Hide Listen to its voice

"Cat" Profile

Name = Cat
Favorite Food = Fish

Show Listen to its voice

"Dog" Profile

Name = Dog
Favorite Food = Bone

Show Listen to its voice

Pet Profile Set

Select the appropriate profile
based on some pre-defined

logic or user request.

User

I want to view information
about my dog.

Listen to its voice

Dog

Bone

Name of Animal:

Favorite Food:
"Dog" Profile Selected

Single Presentation
Layer

426 Portal Application Development Using WebSphere Portlet Factory

The definition of a profile set in a Portlet Factory project is in the format of an
XML file with .pset as its suffix. These profile set files are stored in the
/WEB-INF/profiles directory of the project.

Example 9-1 A subset of Pet.pset for the scenario described previously

<ProfileSet name="Pet" useQualifiedProfileNames="true">
<Description>Generated profile set for model Pet</Description>
<LastModifiedBy>wschan</LastModifiedBy>
<ProfileSelectionClass>Explicit Handler</ProfileSelectionClass>
<Models />
<ProfileDef>

<Entries>
<Entry name="FavouriteFood" isRuntime="false">

<UI type="TextInput">
<Prompt>FavouriteFood</Prompt>
<ExtraData>60</ExtraData>

</UI>
</Entry>

</ProfileDef>
<Profiles>

<Profile name="Cat" last_modified="1186605057891"
isContainer="false" parent="Default">

<Values>
<Value name="FavouriteFood">Fish</Value>

</Values>
<Roles />

</Profile>
<Profile name="Dog" last_modified="1186605057891"
isContainer="false" parent="Default">

<Values>
<Value name="FavouriteFood">Bone</Value>

</Values>
<Roles />

</Profile>
</Profiles>

</ProfileSet>

There is no need to modify the profile set XML file directly because Portlet
Factory provides a tool called Profile Manager to assist in managing all the
profile sets. You can also create or modify the profile set during the profile
enablement of a builder input. To access that, when the Designer is running in
the WebSphere Portlet Factory perspective, go to YourProject → profiles and
simply double-click any profile sets that you want to modify. The Profile Manager
brings up the profile set that you selected in the Editor area. (Figure 9-3).

 Chapter 9. Customizing the application using profiling 427

Figure 9-3 Profile Manager

9.4 Types of profiling

Portlet Factory provides two options of profiling techniques: Profile selection and
Profile value customization. These techniques are discussed in detail in the
following sections.

428 Portal Application Development Using WebSphere Portlet Factory

9.4.1 Profile selection

Profile selection can be implemented in either of two ways:

1. The application decides which profile to apply during regeneration based on
some pre-defined profile selection logic. The selection process is carried out
programmatically behind the scene using a profile selection handler. The first
example in Section 9.2, where the manager and his employees get to see
different information on the application, is a frequently used profiling selection
technique. This example is based on the user groups defined in a group/user
directory. Portlet Factory provides easy mechanisms (via the default Profile
Selection Handlers) to integrate profiling with WebSphere Portal Group
Directory as well as LDAP Group Directory. Another popular profile selection
implementation is based on locale information. With Portlet Factory,
developers can easily develop a multi-version application with different
languages, date and currency formats, and so forth.

Section 9.5.1, “Profile selection handlers” provides details on the default
profile selection handlers that ship with Portlet Factory. It is not uncommon for
developers to find that the default profile selection handlers do not completely
cover the requirements of the application. Portlet Factory gives developers the
flexibility to create their own selection logic; this is covered in Section 9.5.1 as
well.

2. The profile selection process is exposed to end users using the Portlet
Customizer mechanism, meaning exposing the options to the Portlet
Edit/Config mode in Portal. This is not used as commonly as the previous
technique.

9.4.2 Profile value customization

Similar to the profile selection technique, there are two ways that you can
implement profile value customization:

1. The most common use case of profile value customization is to enable an end
user to explicitly set profile values during runtime; these values are then used
to regenerate the application. The concept behind this is the same as portlet
customization in Edit and Config modes in WebSphere Portal. Portlet Factory
allows you to create the Edit and Config pages without worrying about
creating any portlet preference variables and matching these preferences
with the corresponding properties of the portlet.

Very often, the properties that a non portal administrator end user can modify
have to do with the user interface. The user must have been granted the
required security level in order to carry out the customization. In WebSphere
Portal terms, the end user must have at least privileged access.

 Chapter 9. Customizing the application using profiling 429

The three types of portlet value customization provided by Portlet Factory
correspond to the three portlet customization modes in WebSphere Portal
and have the following characteristics:

a. Custom edit type

This is intended for end users with privileged access to customize the
portlet application. The updates made here will only affect the individual
user who made the modification and subsequently views the portlet on this
page. It is known as the Personalize mode on WebSphere Portal 6. This
technique is demonstrated in the Customer Service Application in
Section 9.6.4.

b. Custom edit defaults type

This is intended for portal administrators or users with sufficient access
rights to change the default portlet application for all users. The updates
made here affect all users who view the portlet on this page. However,
these default values will be overridden if an individual user modifies them
in the personalize mode. This technique is known as the Edit Shared
Settings mode on WebSphere Portal 6.

c. Custom configure type

This is intended for portal administrators or users with sufficient access
rights to modify the default portlet application for all users across all
pages. In other words, the updates made here will affect all users who
view this portlet on any page. This option is known as the Configure mode
on WebSphere Portal 6.

For each of these customization techniques, you can choose either to import
a page or import a custom model to implement the portlet customizer.

2. Portlet Factory also provides a mechanism called Value Setter to enable
profile value customization to be carried out programmatically. Value setter
works in a manner similar to that of the profile selection handler, allowing
developers to set some predefined logic to set individual profile values during
the regeneration phase. There are also a few default value setters shipped
with the Portlet Factory. We take a more detailed look at them in 9.5.2, “Value
setter”.

9.5 Selection handlers

So far, we have mentioned that a profile-enabled application takes in values from
different profiles during the regeneration phase to create variations in the
application’s behavior. However, what is actually doing the work of selecting the
“right” profile or setting the “right” values behind the scene? Portlet Factory has a
mechanism called selection handler, and each selection handler can be either

430 Portal Application Development Using WebSphere Portlet Factory

profile-based or profile-value-based. A selection handler is used to define the
logic for choosing a profile or setting profile values during the regeneration phase
of the application. Every profile set defined in Portlet Factory must be associated
with one of these handlers.

Figure 9-4 Profile selection settings

9.5.1 Profile selection handlers

Portlet Factory provides a number of default profile selection handlers. In most
cases, these are sufficient for developers to profile-enable their applications.
However, developers can also define their own custom profile selection handlers
when necessary. In this section we explore the default profile selection handlers
and describe how to create a new profile selection handler.

Default profile selection handlers
The selection handlers provided by Portlet Factory by default are defined in
Table 9-2.

 Chapter 9. Customizing the application using profiling 431

Table 9-2 Default profile selection handlers provided by Portlet Factory

Handler name Description

Explicit handler Typically used during development so that you can
preview models with different profiles applied.

File Segment handler Associates a hard-coded user with a profile based on the
user/profile mappings in an XML file.

J2EE Role handler Associates the user with a J2EE role and returns the
profile associated with that role.

LDAP Group Based
Selection handler

Associates the user with an LDAP Group segment and
queries the profile set to return the profile associated
with the given LDAP Group.

Locale Selection handler Associates the user with a language locale segment and
returns the profile associated with the locale name. Use
this handler with a WebSphere portlet or with a
standalone Web application.
Localization, however, is more commonly implemented
using the other profiling technique, profile value
customization via a value setter. This is covered in the
next section.

Portal Execution Mode
handler

Associates the request with a profile associated with a
“standalone” mode or “running within a portal” mode.
Use this selection handler to execute different code
based on the execution mode. The deprecated name for
this handler is “WPS Execution Mode Handler.”

User Attribute handler Selects a profile based on the value of a user attribute,
where the name of the user attribute to use is configured
in the selection handler’s XML configuration file:
<project>/WebContent/WEB-INF/config/selection_han
dlers/userattributehandler.xml
One example is to select the profile based on the value
of the jobTitle user attribute for each user (for example,
Data Entry, or Manager, or CEO).

432 Portal Application Development Using WebSphere Portlet Factory

How to create a selection handler
Another important concept related to developing customized profile selection
handlers is that of segments.

The segments act as a binding between a user (or a use case scenario) and the
corresponding profile. A selection handler will use one or more attributes of the
user (or the use case scenario) to match it with a profile by comparing with the
segment values of each profile in a profile set.

WP Composite Application
Role Selection handler

Selects a profile based on the WebSphere Portal
Composite Application Role that the user is in. This
handler is only appropriate for portlets that are part of a
composite application, not portlets just placed on a
portal page outside of the WebSphere Portal
template-based composite application framework.

The definition file for this handler is located in:
WEB-INF/config/selection_handlers/wpcairolehandle
r.xml

This selection handler compares the composite
application roles of which the user is a member with the
external associations for the profiles in the associated
profile set (under the Advanced section of the New or
Edit profile dialog in the profile set editor). For example,
for the profile privilegedUsers in a profile set, you could
set external associations for “manager” and “executive”
to correspond to roles created with those same names
in the composite application in which the portlet will be
used.

WPS Group Segment
handler

Associates the request with the WebSphere Group to
which the user belongs and returns the profile
associated with that group. It can only be used with
WebSphere Portal.

Note: The source code for many of the selection handlers ships with the
Portlet Factory. You can find the source code in the selectionhandlers.zip file
under the WEB-INF\work directory of your project.

Handler name Description

 Chapter 9. Customizing the application using profiling 433

Figure 9-5 The concept of segments

In the example shown in Figure 9-5, Big John’s occupation is Waiter, so the
Profile Selection Handler of the Occupation Profile Set should match Big John
with the Customer Service Profile when it finds the matching segment value in
that profile. Similarly, the Profile Selection Handler of the Animal Profile Set
should match Little John with the Mammals Profile, with the segment value being
Dog.

A number of observations can be made from this example, including:

1. A segment can be anything that you wish to define as long as it is pertinent to
the application. Even though in many cases a segment represents the user
group of an user (like the WPS Group Segment handler uses the WebSphere
Portal groups as its segments), a segment does not necessarily have to be
tied to a “group/role based” mechanism. It can literally be any entity that
developers wish to define it as.

2. There should be a 1-to-N relationship between profiles and segments. A
profile can be associated with zero-to-N segments. (The most common case
of a profile with no segments associated with it is the Default profile of a
profile set.) A segment is typically associated with one profile in the profile
set. The profile manager does not verify segment associations; therefore,
developers should take care of this situation within the Profile Selection
handler. The default Profile Selection handlers that ship with the Portlet

XML Code

<Profiles>

<Profile name="Mammals"
last_modified="1187807215631"
isContainer="true"
parent="Default">

<Values>
<Value name="Living

area">On land</Value>
<Value name="Can walk

">Yes</Value>
</Values>
<Roles>
<Role>Dog</Role>
<Role>Cat</Role>
<Role>Horse</Role>
</Roles>

</Profile>

<Profile name="Fish"
last_modified="1187807215631"
isContainer="true"
parent="Default">

<Values>
<Value name="Living

area">In water</Value>
<Value name="Can

walk">No</Value>
</Values>
<Roles>
<Role>Gold Fish</Role>
<Role>Salmon</Role>
<Role>Shark</Role>
</Roles>

</Profile>

</Profiles>

Living area=
On land

Can walk =
Yes

Segments

Pet = Dog
Pet = Cat

Pet = Horse

Profile:
Mammals

Living
area = In

water
Can walk

= No

Segments

Pet = Gold
Fish
Pet =

Salmon
Pet =
Shark

Profile:
Fish

Animal Profile Set

User
Attributes

Name = Little
John

Age = 17
Sex = Male

Occupation =
High School

Student
Pet = Dog

Profile
Selection
Handler

(for Animal
Profile Set)

Profile
Selection

Handler (for
Occupation
Profile Set)

XML Code

<Profiles>

<Profile name="Student"
last_modified="1187807215631"
isContainer="true"
parent="Default">

<Values>
<Value name="Av

Salary">pp</Value>
</Values>
<Roles>

<Role>High School
Student</Role>

<Role>College
Student</Role>

</Roles>
</Profile>

<Profile name="Customer
Service"
last_modified="1187807215631"
isContainer="true"
parent="Default">

<Values>
<Value name="Av

Salary">uu</Value>
</Values>
<Roles>

<Role>Waiter</Role>
<Role>Receptionist</Role>

</Roles>
</Profile>

</Profiles>

Av Salary =
uu

Segments

Occupation =
Waiter

Occupation =
Receptionist

Profile:
Customer
Service

Av Salary
= pp

Segments

Occupation =
High School

Student
Occupation =

College
Student

Profile:
Student

Occupation Profile Set

User
Attributes

Name = Big
John

Age = 26
Sex = Male

Occupation =
Waiter

Pet = Gold
Fish

434 Portal Application Development Using WebSphere Portlet Factory

Factory will simply stop at the first matching profile.In the case of hierarchal
profiles, the one that matches at the greatest depth will be selected.

3. In the XML file of the profile set, the segments actually appear under the
<Roles> element, but keep in mind that a segment does not necessarily have
to be tied to a “group/role based” mechanism.

Example 9-2 XML File of the profile set

<Profile name="Mammals" last_modified="1187807215631"
isContainer="true" parent="Default">
 <Values>
 <Value name="Living area">On land</Value>
 <Value name="Can walk ">Yes</Value>
 </Values>
 <Roles>
 <Role>Dog</Role>
 <Role>Cat</Role>
 <Role>Horse</Role>
 </Roles>
 </Profile>

Developers can use a mechanism called SegmentList Interface to allow the
profile manager to show the available segments for a given selection handler.
This makes the association between the segments and the profiles a lot easier
because the developers do not have to enter the segments explicitly as external
segments. However, in many cases, like the WPS Group Segment Handler, this
SegmentList Interface mechanism will not work because it requires the group
information from the WebSphere Portal.

From an implementation point of view, there are three steps to develop a
customized profile selection handler:

1. Create a handler definition file. The handler definition file is an XML format file
that lists the Java classes used to implement the profile selection handler and
any properties of the profile selection handler. The handler file resides in the
WEB-INF\config\selection_handlers directory of your project.

Example 9-3 The handler definition file for WPS Group Segment Handler

<Handler name="WPS Group Segment Handler">
<Description>Handler that maps users to a segment using WPS group
membership.
</Description>
<Selection
class="com.bowstreet.profiles.ProxyProfileSelectionHandler">

<Properties>
<Property name="SelectionClass">

 Chapter 9. Customizing the application using profiling 435

com.bowstreet.ibmportal.profiles.WPSGroupProfileSelection
</Property>

</Properties>
</Selection>

</Handler>

2. Extend the SelectionHandlerBase Class. This Java class associates the
request with one or more segments and returns a profile based on your
selection algorithm.

3. Implement the SegmentList Interface (optional). This Java class determines
and returns a list of segments to be used by the Profile Manager when
customizing profile entries. If you want to list all your segments in Profile
Manager while managing the profiles, you need to implement the
SegmentList Interface. If a Selection handler does not implement the
SegmentList Interface, you have to add external segments for profiles in the
Profile Manager. For example, WPS Group Segment handler does not
implement the SegmentList Interface, so all the portal user group names
cannot be listed in Profile Manager. Instead, you can specify the portal user
group names for a profile by using the Add External button in the Profile
Manager. (This WPS Group Segment handler example will be demonstrated
in the Customer Self Service Application customer self service application.)

For a tutorial to create a simple customized selection handler, see Developing
portlets with the profiling capability of WebSphere Portlet Factory at
http://www.ibm.com/developerworks/websphere/library/tutorials/0703_wang
/0703_wang.html

9.5.2 Value setter

Value setter is a mechanism for specifying the appropriate profile values during
the application regeneration phase. When a value setter is defined for a profile
set, the value setter option will override the profile selection handler option. The
major difference between a value setter and a profile selection handler is that a
value setter allows you to programmatically create profile values, as opposed to
selecting a predefined profile containing static values.

Portlet Customizer uses this type of technique behind the scenes to implement
end user personalization in Portal Edit/Config mode. Another common use of
value setter is for localization of an application. For a detailed example of how to
localize an application, see the Localizing Portlets tutorial at:
http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory
/samples/misc.html

436 Portal Application Development Using WebSphere Portlet Factory

http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory/samples/misc.html
http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory/samples/misc.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0703_wang/0703_wang.html

Default value setters
There are a number of default value setters provided by Portlet Factory, including
the following:

� com.bowstreet.profiles.LocaleCustomValueClass

This value setter is used in the com.bowstreet.profileset.SimpleLocaleValues
default profile set. It relies on the user’s locale preference to determine the
correct language and country codes to apply to the Localized Resource
builder call. It is essential that the Language and Country inputs of the
Localized Resource builder call are associated with the LanguageCode and
CountryCode Profile Entries in the SimpleLocaleValues profile set in order for
this profile values handler to work properly.

The benefit of using a value setter over a profile selection handler for
localization is the ability to manage and store the locale data in a Resource
Bundle instead of individual profile values.

� com.bowstreet.profiles.ProfileUpdateValueFromRequest

This value setter is not tied to any default profile set. It gets profile values from
correspondingly named request parameters (query string or post
parameters). It is potentially useful in standalone Web applications, but
probably not in portlets.

9.6 Profiling in our sample application

In this section we illustrate how various profiling techniques can be applied by
implementing them in our Customer Self Service Application to efficiently create
the following variations in the application’s behavior:

1. Different entry paths for customers and CSRs

When a CSR logs in, a list of all customers is displayed on the Customer Info
Portlet, and if the CSR clicks any ID link of a customer, the details about that
customer will be displayed in the same portlet.

As for a customer, there are two possible scenarios:

– First log-in ever (Credential details have not been set)
When a customer logs into the Customer Self Service Application for the
very first time, a message in the Customer Info Portlet advises him to set
up his credential details. The customer will have to go to the Edit page of
the portlet to set up an account using the access details that the CSR has
previously provided to him. Providing that the credential details are valid,
the customer will then be presented with his details in the Customer Info
Portlet. From this point on, the customer will always see his details in the
Customer Info Portlet when he logs in.

 Chapter 9. Customizing the application using profiling 437

– Subsequent log-in (Credential details have been set correctly)
If a customer has previously set up his credential details correctly, when
he logs in he is presented with his details in the Customer Info Portlet.

2. Different field properties for customers and CSRs

When a customer edits his details, he should not be allowed to modify the
Image and PIN fields; when a CSR is editing a customer’s details, the CSR
will be given the permission to modify those two fields.

3. Different visibility of application components for customers and CSRs

When a CSR selects to view the details about a customer, there should be a
Back button that allows the CSR to go back to the list of customers that he
sees when he first logs in. This enables the CSR to view details of another
customer. However, this Back button should not be presented to any
customers.

4. End users runtime customization

In the Order Details Portlet, end users (both CSRs and customers) have the
ability to specify whether or not to display any of the following columns:
Product ID, Thumbnail, and Source. The customization is carried out during
runtime on the Edit Page of the portlet.

9.6.1 Different entry paths for customers and CSRs

Our implementation of this application feature demonstrates the profile selection
technique. To create the different entry paths for the Customer Group and the
CSR Group, we apply profiles to the action lists being called by the main method
in the Customer Info Model. Since this profiling is based on the user groups, we
will be using the default WPS Group Segment Handler as the profile selection
handler.

At a high level, the procedures to create the two different entry paths are:

1. Create the two user groups (CSRGroup and CustomerGroup) in Portal and
assign privileged security access to the CSA for these groups.

2. Create the Profile Set and the two Profiles using the Profiling Manager.
Associate a Selection Handler with the Profile Set created.

3. Set up the WPS Credential component of the CSA.

4. Create the entry path for the CSRGroup.

5. Create the entry path for the CustomerGroup.

6. Apply profiling to the main method of the CustomerInfo model to enable the
two different entry paths based on the user group.

438 Portal Application Development Using WebSphere Portlet Factory

The following sections provide step by step instructions for these tasks along
with the steps to test that profiling has been successfully implemented.

Create user groups in portal
1. Create the two user groups for the Customer Self Service Application. Log

into portal as a portal administrator and go to the Users and Groups page by
selecting Administration → WebSphere Portal → Access → Users and
Groups. Create the following groups:

– CSRGroup for all the customer sales representatives
– CustomerGroup for all the customers

2. Under these group, create the following users:

– CSRGroup Users:

• csr1
• csr2

– CustomerGroup User:

• customer1
• customer2
• customer3

Use their user names as their passwords as well.

Create the profile set and profiles
Begin by creating the profile set needed for this WPS Group-based profiling.

1. In Project Explore, right-click RedbookCS. Select New → WebSphere
Portlet Factory Profile Set.

Note: Make sure these users all have privileged access to all the pages
and portlets of the Customer Self Service Application. Consult WebSphere
Portal help documentation if you are unsure how to create users or assign
security access.

 Chapter 9. Customizing the application using profiling 439

Figure 9-6 Create a new Profile Set

440 Portal Application Development Using WebSphere Portlet Factory

2. In the New Profile Set window, make the following entries and selections;
leave everything else as default.

Project: RedbookCS
Name: com.ibm.redbook.cs.psets.wpsgroup
Description: A profile set based on the WPS Group

Click Finish.

Figure 9-7 The New Profile Set is Based on the WPS Groups

 Chapter 9. Customizing the application using profiling 441

3. The Profile Manager shown in Figure 9-8 opens once the profile set is
created. To create the two profiles, select the Manage Profiles tab. The
resulting window is shown in Figure 9-9.

Figure 9-8 Profile Manger of the com.ibm.redbook.cs.psets.wpsgroup profile set

442 Portal Application Development Using WebSphere Portlet Factory

Figure 9-9 The Manage Profiles tab

4. Click the Add new profile button () to create a new profile. When the
New Profile window opens, name this profile CSR.

Figure 9-10 Create the CSR profile

 Chapter 9. Customizing the application using profiling 443

5. To associate the CSRGroup created previously in portal with this profile,
expand the Advanced section. Click Add External.

Figure 9-11 Associate the CSRGroup with this profile

6. In the Add External Association window, enter CSRGroup and click OK.

Figure 9-12 Specify the WPS Group name

7. Click OK on the New Profile window.

Now click the button to create the second profile. In the New Profile
window, name this profile Customer.

Note: It is very important that the group you enter here exactly matches the
group name that you created in portal.

444 Portal Application Development Using WebSphere Portlet Factory

8. To associate the CustomerGroup created previously in portal with this profile,
expand the Advanced section. Click Add External.

9. In the Add External Association window, enter CustomerGroup and click OK.

10.Click OK in the New Profile window. The Manage Profiles tab shown in
Figure 9-13 is returned.

Figure 9-13 The Manage Profiles tab after creating the two profiles

11.To associate a Selection Handler with this profile set, click the Select
Handler tab.

Note: It is very important that the group you enter here exactly matches the
group name that you created in portal.

 Chapter 9. Customizing the application using profiling 445

Figure 9-14 The Select Handler tab

12.Select WPS Group Segment Handler as the Profile Selection Handler. Click
OK in the confirmation box that pops up (Figure 9-15).

Figure 9-15 Profile selection handler confirmation box

13.Click the Save button () to save the wpsgroup profile set.

446 Portal Application Development Using WebSphere Portlet Factory

Set up the WPS Credential component

When the customer logs in for the first time, he will be prompted to set up his
credential details. Otherwise, the customer will not be able to use the Customer
Self Service Application. The credential details are to be provided by a CSR
external to this application.

We previously built and imported the CustomerCredentials model into the
CustomerInfo model. Now, we use that to build the entry path for the customers.

1. Create a page with a message asking the customer to set up his credential
details. In the CustomerInfo model, click the button to add a Page
builder.

2. Name the page SetUpCredentialMsgPage and paste the following HTML
sample content into the Page Contents box:

<html>
<body>

Please click Personalize on the portlet
drop down menu to configure your credential details.

</body>
</html>

3. Click Apply to save the Page builder.

Note: The fact that we introduce the WPS Credential builder here may have
made profiling seem a bit more complicated; however, the concept of applying
profiling to the action lists to allow alternative page flows in a model should
remain the same even without the WPS Credential component.

 Chapter 9. Customizing the application using profiling 447

Figure 9-16 A page with a static message notifying customers to set up their credential details

4. To access the details stored in the Portal Credential Vault, add a WPS
Credential builder. In the CustomerInfo model, click the button to add a
WPS Credential builder.

5. Make the following entries and selections:

Name: customerAccount
Type: Shared
Resource Name: CustomerSelfServiceAccount

448 Portal Application Development Using WebSphere Portlet Factory

6. Click Apply to save the customerAccount WPS Credential builder.

Set up an Action List for CSRs
1. In the CustomerInfo model, click the button to add an Action List builder

and name it showCustomersList.

2. To make the showCustomersList action list display the list of all customers,
do the following:

a. Click the button on the first empty row of the Action List Table.

b. In the Select Action window, choose Methods →
CustomerList_ShowResults.

c. Click Apply to save the showCustomersList builder.

Set up an Action List for customers
1. In the CustomerInfo model, click the button to add an Action List builder

and name it checkCredentials.

2. Perform the steps to make the checkCredentials action list do the following
tasks:

a. Check whether the logged in customer’s credential details exist in the
credential vault.

i. Click the button on the first empty row of the Action List Table.

ii. In the Select Action window, choose Special → Conditional → if. The
Define Conditional Action window pops up.

iii. Click the button next to the Value Input Field in the Define
Conditional Action window. Choose MethodCall →
Credential_customerAccount → doesCredentialExist.

iv. Click OK on the Define Conditional Action window.

b. If the details exist, set the customerID shared variable (declared in the
UIEvent model) equal to the user ID retrieved from the credential vault and
then show the customer details.

i. Click the button on the next empty row of the Action List Table.

ii. In the Select Action window, choose Special → Assignment. The
Make Assignment window pops up.

Note: The details entered here must exactly match the details in the
customerAccount WPS Credential builder of the CustomerCredentials
model.

 Chapter 9. Customizing the application using profiling 449

iii. Click the button next to the Source Input Field in the Make
Assignment window. Choose MethodCall →
Credential_customerAccount → getUserID.

iv. Click the button next to the Target Input Field in the Make
Assignment window. Choose Variables → customerID.

v. Leave the Assignment Type as Replace.

vi. Click OK.

vii. Click the button on the next empty row of the Action List Table.

viii.In the Select Action window, choose Methods →
CustomerDetails_ShowResults.

c. If the credential details do not exist, display the SetUpCredentialMsgPage.

i. Click the button on the next empty row of the Action List Table.

ii. In the Select Action window, choose Special → Conditional → else.

iii. Click the button on the next empty row of the Action List Table.

iv. In the Select Action window, choose Pages →
SetUpCredentialMsgPage.

v. Click the button on the next empty row of the Action List Table.

vi. In the Select Action window, choose Special → Conditional → endif.

3. Click Apply to save the checkCredentials builder.

450 Portal Application Development Using WebSphere Portlet Factory

Apply profiling to the main method
1. Remove the main method generated by the CustomerList View & Form

builder. In the Outline pane, double-click the View & Form builder named
CustomerList. It will open up the CustomerList builder in the Edit pane.

Note: In Section 8.3.1, “CustomerInfo Model to OrderList Model” on
page 367, we briefly mentioned that there is a difference in the inter-portlet
communication link between the customer scenario and the CSR scenario.
With the customer case here, note that we have only set the shared
variable in the checkCredentials action to make this communication link
between the two models work without firing any event. The reasons for this
are as follows:

1. When a customer logs into the application, he will be presented with his
own details in the CustomerInfo portlet on the Customer portal page
and his orders will also be listed in the OrderList portlet on the Order
portal page. Unlike the CSR’s scenario, the content of the OrderList
portlet of this customer will not be changing due to any actions in the
CustomerInfo model (because the customer will only be able to view his
own details, whereas a CSR can click the customer ID links of all
customers to view their details). As a result, the OrderList portlet will not
be expecting any events fired by the customer.

2. The second reason has to do with the order of the two portlets being
rendered. The Customer ID shared variable has already been set when
the CustomerInfo portlet is first being rendered and the fact that the
OrderList portlet is residing on the second page eliminates the need for
firing an event at all. When the customer browses to the Order portal
page, the main method of the OrderList portlet will be called during its
instantiation. The main method will see the shared variable has already
been set and will use it to retrieve and display the list of orders that the
customer has placed previously.

This scenario demonstrates a way to use shared variables only to allow
different models to communicate. However, there is a strong dependency
on the order in which the portlets are rendered and whether or not data
displayed in the second portlet is expected to be changed.

 Chapter 9. Customizing the application using profiling 451

Figure 9-17 Open the CustomerList View & Form builder

2. Expand the Advanced section in the CustomerList builder and uncheck the
Generate Main checkbox.

452 Portal Application Development Using WebSphere Portlet Factory

Figure 9-18 Disable the generating main method option in the CustomerList builder

3. In the CustomerInfo model, click the button to add an Action List builder
and name it main.

4. Click the Profiling icon next to the Action List Table.

 Chapter 9. Customizing the application using profiling 453

Figure 9-19 The Profile icon next to the Action List Table

5. In the Profile Input window, choose the profile set that you created previously:
com.ibm.redbook.cs.psets.wpsgroup as the Profile Set Name.

6. Click the Create Entry button to create a profile entry.

454 Portal Application Development Using WebSphere Portlet Factory

Figure 9-20 Click the Create Entry button to create a profile entry

7. In the New Profile Entry window, make the following entries and leave
everything else as default:

Name: CustomerList_main_ActionList
Prompt: CustomerList_main_ActionList

Click OK to close the window.

Figure 9-21 Create a new profile entry for the main action list

 Chapter 9. Customizing the application using profiling 455

8. In the Profiles section in the Profile Input window, the two profiles you created
previously (CSR and Customer) should be visible.

Figure 9-22 The two profiles created previously

9. Click the button next to the Profile Values Input on the CSR row.

10.In the Modify Profile Value window, click the button and select
Methods → showCustomersList. Click OK.

Figure 9-23 Set the main action list for the CSR profile

11.Click the button next to the Profile Values Input on the Customer row.

12.In the Modify Profile Value window, click the button and select
Methods → checkCredentials. Click OK.

456 Portal Application Development Using WebSphere Portlet Factory

Figure 9-24 Set the main action list for the customer profile

13.Click the button next to the Profile Values Input on the Default row.

14.In the Modify Profile Value window, click the button and select
Methods → showCustomersList. Click OK.

15.The Profile Entry window should appear as in Figure 9-25. Click OK.

Figure 9-25 The profiled action list for the main method

16.The main action list builder should look like Figure 9-26.

 Chapter 9. Customizing the application using profiling 457

Figure 9-26 The profile-enabled main action list builder

17.Click OK to save the main action list.

18.Save the CustomerInfo model by clicking the button.

Note: The blue profiling icon next to the Action List Table indicates
that the action list element has been profile enabled. To modify the profiled
values, you must click the icon because the Action List Table has been
greyed out.

The long text appearing below the Action List Table is composed of two
parts: the profile set name and the profile entry name for this element.

458 Portal Application Development Using WebSphere Portlet Factory

Testing for different entry points
1. Log into the portal as csr1. As a CSR, you should be able to see the list of

customers on the Customer portal page (Figure 9-28).

Note: A quick way to tell whether profiling has been applied to a builder is
to look at the Outline pane. If there is a blue profiling icon next to the
builder name, it indicates that profiling has been applied to this builder.

Figure 9-27 The blue profiling icon implies that builder has been profile enabled

 Chapter 9. Customizing the application using profiling 459

Figure 9-28 csr1 should see the list of customers

2. Log into the portal as customer1. Because this is the first time customer1 logs
in, you should see the page prompting you to enter credential details
(Figure 9-29).

Figure 9-29 Credential details request to customer1

3. Click the down arrow in the top right corner of the Customer Information
portlet and select Personalize from the drop-down menu. Enter the credential
details as follow:

Account Number: 001
PIN: 123

4. If you have entered invalid credential details, an error message will appear
next to the Save Information button when you try to save the details
(Figure 9-30).

460 Portal Application Development Using WebSphere Portlet Factory

Figure 9-30 Error message when invalid account details are entered

5. Click the Save Information button. If your inputs are valid the message in
Figure 9-31 is returned.

Figure 9-31 Confirmation message

6. Click the button in the top right corner of the Customer Information portlet
and select Back from the drop-down menu. If you have set up the inter-portlet
communication link between the CustomerCredentials model and the
CustomerInfo model correctly (Section 8.3.3, “CustomerCredentials Model to
CustomerInfo Model” on page 413), you should be able to view the details of
customer 001 as shown in Figure 9-32.

 Chapter 9. Customizing the application using profiling 461

Figure 9-32 Customer 001 details

9.6.2 Different field properties for customers and CSRs

Our implementation of this application feature demonstrates the profile selection
technique. To vary the field properties on the Customer Details Edit Page in the
Customer Info portlet, we apply profiles to the Rich Data Definition (RDD) file
referenced in the Service Consumer builder. CSRs should be able to modify the
IMAGE and the PIN fields on the Customer Details Edit Page, but customers
should not be granted such permission.

Note: After returning from the credential setup page, if you see the customer
details page contains no data, one possible reason is that the inter-portlet
communication between the CustomerCredentials model and the
CustomerInfo model was not set up correctly.

462 Portal Application Development Using WebSphere Portlet Factory

Figure 9-33 Customer Details Edit page highlighting fields uneditable for customers

For details of how RDD files work, refer to Chapter 7. Since this profiling works
on the same basis as the previous example, which implemented different entry
points, we reuse the profile set and profiles created in the previous section.

At a high level, the steps to display different field properties for CSRs and
customers are as follows:

1. Apply profiling to the RDD entry of Service Consumer builder of the
CustomerInfo model to enable the variations in field properties based on the
user group.

2. Test whether profiling has been successfully implemented.

Note: We have chosen to apply profiling to the RDD file in this sample to
demonstrate various Portlet Factory profiling capabilities. Developers could
have chosen to apply profiles at a much lower level (that is, to individual
fields). However, we recommend that developers use RDD files to configure
the properties of the data fields to avoid using an excessive number of
builders.

 Chapter 9. Customizing the application using profiling 463

Applying profiling to RDD file
There are two RDD files created for the CustomerInfo model based on the WPS
Group. The CSRGroup uses the RDD file at
/WEB-INF/resources/redbook/cs/data_definitions/cs_customer_info_csr.xml,
while the CustomerGroup use the file
/WEB-INF/resources/redbook/cs/data_definitions/cs_customer_info_customer.x
ml.

1. In Project Explorer, select RedbookCS → models → redbook → cs → ui →
customer → CustomerInfo.model. Double-click the CustomerInfo.model
to open it.

2. In the Outline pane, double-click the Service Consumer builder named
CustomerService. The CustomerService builder will open in the Edit pane.

Figure 9-34 Selecting the CustomerService builder

3. Scroll to the Rich Data Definition File field.

464 Portal Application Development Using WebSphere Portlet Factory

Figure 9-35 The Service Consumer builder with Rich Data Definition File field highlighted

4. Click the button next to the Rich Data Definition File text box. By default,
the Profile Set Name in the Profile input window should be

 Chapter 9. Customizing the application using profiling 465

com.ibm.redbook.cs.psets.wpsgroup. Click the Create Entry button in the
Profile Entry section.

5. In the New Profile Entry dialog bow, make the following entries and leave
other fields as default.

Name: CustomerInfo_DataDefinitionFile
Prompt: CustomerInfo_DataDefinitionFile
Default Value: /WEB-INF/resources/redbook/cs/data_definitions/

cs_customer_info_csr.xml

Click OK.

Figure 9-36 Modify the Profile Entry for the RDD file

6. In the Profiles section in the Profile Input window, the two profiles (CSR and
Customer) that we created earlier should appear, with the Profile Values
pre-populated.

7. Since this profile uses the default profile value, you may choose to skip this
step.
Click the button next to the Profile Values input on the CSR row. In the
Modify Profile Value window, enter:
/WEB-INF/resources/redbook/cs/data_definitions/cs_customer_info_csr.xml

Click OK.

Figure 9-37 Set the RDD file for the CSR profile

466 Portal Application Development Using WebSphere Portlet Factory

8. Click the button next to the Profile Values input on the CSR row. In the
Modify Profile Value window, enter:
/WEB-INF/resources/redbook/cs/data_definitions/cs_customer_info_customer.xml

Click OK.

9. Click OK to close the Profile Input window.

10.Click Apply to save the CustomerService Service Consumer builder.

11.Save the CustomerInfo model by clicking the button.

Testing for different field properties
1. Log into portal as csr1. You should see a list of customers.

a. Click any customer ID link. This should bring you to the details page of the
customer.

b. Click the Edit button at the bottom of the page.

c. On the Customer Details Edit page the Image and PIN fields should be
editable.

Figure 9-38 CSR should be able to modify the Image and PIN fields

2. Log into portal as customer1. You should see the details about customer1.

a. Click the Edit button at the bottom of the page.

b. On the Customer Details Edit page, as a customer, the Image and PIN
fields should not be editable.

 Chapter 9. Customizing the application using profiling 467

Figure 9-39 Customers should not be able to modify the Image and PIN fields

9.6.3 Different visibility of components for customers and CSRs

Our implementation of this application feature demonstrates the profile selection
technique. To hide the Back button on the Customer Details Page in the
Customer Info portlet, we apply profiles to the Visibility Setter builder for the Back
button. Since this profiling works on the same basis as the previous examples,
we reuse the profile set and profiles created in those section.

At a high level, the steps to create the different visibility of components are:

1. Add the Visibility Setter builder for the Back button on the Customer Details
View page in the CustomerInfo model.

2. Apply profiling to the Visibility Rule of the Visibility Setter to enable different
visibility settings for the application component based on the user group.

3. Test whether profiling has been successfully implemented.

Adding and profile-enabling the Visibility Setter builder
1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →

customer → CustomerInfo.model. Double-click CustomerInfo.model to
open it.

2. In the CustomerInfo model, click the button to add a Visibility Setter
builder.

a. Leave the name of this builder blank.

468 Portal Application Development Using WebSphere Portlet Factory

b. Leave Location Technique as On Named Tag.

c. Choose CustomerDetails_ViewPage as the Page.

d. Select back_button as the Tag.

3. Apply profiling on the Visibility Rule. Click the button next to the text
Visibility Rule. By default, the Profile Set Name in the Profile Input window is
com.ibm.redbook.cs.psets.wpsgroup.

Figure 9-40 Use the default profile set name

4. Click the Create Entry button in the Profile Entries section. Make the
following selections and entries, and leave the rest as default.

Name: CustomerInfo_EditBackBtn_Visibility
Prompt: CustomerInfo_EditBackBtn_Visibility
Default Value: HideNever

Click OK.

5. In the Profiles section in the Profile Input window, the two profiles (CSR and
Customer) that we created earlier should be visible, with the Profile Values
pre-populated.

6. Click the button next to the Profile Values input on the Customer row.

In the Modify Profile Value window, select Always Hide. Click OK.

7. Since the CSR profile uses the default value (Do not Hide (used for
profiling)), it may not be necessary to explicitly set the profile value for the
CSR profile. Click the button next to the Profile Values input on the CSR
row.

 Chapter 9. Customizing the application using profiling 469

In the Modify Profile Value window, select Do not Hide (used for profiling).
Click OK.

Figure 9-41 Set the visibility rule for the CSRGroup

8. The Profile Input window should appear as in Figure 9-42.

Figure 9-42 The Profile Input window for the Visibility Rule

9. Click Apply to save the back_button Visibility Setter builder.

10.Save the CustomerInfo model by clicking the button.

Testing for different visibility of application components

1. Log into portal as csr1. You should see a list of customers.

a. Click any customer ID link. The details page for the customer will be
displayed.

b. The Back button should be visible on the Customer Details page.

470 Portal Application Development Using WebSphere Portlet Factory

Figure 9-43 CSR’s view of Customer Details page

2. Log into portal as customer1. The details for customer1 will be displayed.

The Back button should not be visible at the bottom of the page.

Figure 9-44 Customer’s view of Customer Details page

 Chapter 9. Customizing the application using profiling 471

9.6.4 Runtime customization profiling

Our implementation of this application feature demonstrates the profile value
customization technique. To allow end users to customize the Order Details
Portlet, we need to create a new profile set and then profile-enable the Product
ID, Thumbnail and Source data fields (that is, create profile entries for the three
fields in the profile set just created). Because profile value customization uses
Values Setter instead of Profile Selection handler, profiles are not required.
Unlike the localization example, we do not need to define a value for the Value
Setter because Portlet Factory will take care of that for the case of runtime portlet
customization.

At a high level, the steps to implement runtime customization for the OrderDetails
portlet are:

1. Create the profile set needed for the customization. We do not need to create
any profiles in this profile set because we will be using a value-based
selection handler.

2. Add a Data Column Modifier builder to the OrderDetails model. Using that
builder, profile-enable the three data columns (Product ID, Thumbnail and
Source).

3. Create the OrderDetailsCustomizer model in which we will create a Portlet
Customizer builder that is associated with the OrderDetails portlet.

4. Associate the OrderDetailsCustomizer model as the portlet Edit mode for the
OrderDetails portlet.

5. Test whether the runtime customization has been applied successfully.

Creating the profile set
Begin by creating the profile set needed for this WPS Group based profiling.

1. In Project Explorer, right-click RedbookCS. Select New → WebSphere
Portlet Factory Profile Set.

472 Portal Application Development Using WebSphere Portlet Factory

Figure 9-45 Create a new profile set

2. In the New Profile Set window, make the following entries and selections, and
leave everything else as default.

Project: RedbookCS
Name: com.ibm.redbook.cs.psets.orderdetailscustomiser
Description: A profile set used for runtime customization of the

OrderDetails portlet.

Click Finish.

 Chapter 9. Customizing the application using profiling 473

Figure 9-46 Create the profile set for runtime customization of OrderDetails portlet

3. The Profile Manager is opened up once the profile set is created. Because we
will not need to create any profiles for runtime customization and there is no
need to explicitly specify which Selection Handler to use, we can save the
Profile Manager as it is and close it.

Profile-enabling the data columns
We need to add a Data Column Modifier builder into the OrderDetails model in
order to have the ability to manage the properties of each individual column of
the OrderDetails Data Page.

1. In Project Explorer, select RedbookCS → models → redbook → cs → ui →
order → OrderDetails.model. Double-click OrderDetails.model to open it.

2. In the OrderDetails model, click the button to add a Data Column
Modifier builder.

Leave the name blank.

474 Portal Application Development Using WebSphere Portlet Factory

Figure 9-47 Leave the name of the Data Column Modifier blank

3. In the Container Field row, click the button. Select
[orderDetails]orderItems → ITEMS → ITEM.

Figure 9-48 Choose the Container Field value for the data column modifier

4. Click OK in the Data Page Field Chooser window. The original Data Column
Modifier builder will expand and appear as shown in Figure 9-49.

 Chapter 9. Customizing the application using profiling 475

Figure 9-49 The Data Column Modifier builder

476 Portal Application Development Using WebSphere Portlet Factory

5. Scroll down to the Column Property Table, where the data columns of the
ITEM (Data Container) and their properties are displayed.

Figure 9-50 The Column Property Table

 Chapter 9. Customizing the application using profiling 477

6. Profile-enable the PRODUCT_ID column. Click the button next to
PRODUCT_ID. The Profile Row of inputs window is displayed.

Figure 9-51 The Profile Row of Inputs window for the PRODUCT_ID Column

7. Click the button on the Status row and the Profile Input window opens.
Select com.ibm.redbook.cs.psets.orderdetailscustomiser as the Profile
Set.

478 Portal Application Development Using WebSphere Portlet Factory

Figure 9-52 Choose com.ibm.redbook.cs.psets.orderdetailscustomiser as the profile set

8. Click the Create Entry button. In the Modify Profile Entry window, make the
following entries and selections, then click OK.

Name: PRODUCT_ID_Column
Prompt: Show PRODUCT_ID
UI Type: Checkbox
Label After Check Box: Show PRODUCT_ID
Checked Value: Do Not Change
Unchecked Value: Hide
Default Value: Do Not Change
Execution Time: false

 Chapter 9. Customizing the application using profiling 479

Figure 9-53 Choose a Checkbox UI for the PRODUCT_ID column

9. The Profile Input window should now have a Profile Values entry as shown in
Figure 9-54.

Figure 9-54 There should now be a profile value in the Profiles section

10.Click OK to close the Profile Input window.

11.There should now a blue profiling icon next to Status in the Profile Row of
Inputs window. Click OK to close that window.

480 Portal Application Development Using WebSphere Portlet Factory

Figure 9-55 Blue profiling icon indicates PRODUCT_ID column is profile-enabled

12.in the Data Column Modifier builder, the Status field of the PRODUCT_ID
should now be greyed out.

13.Profile-enable the THUMBNAIL column following the same flow used for
PRODUCT_ID. Click the button next to THUMBNAIL. The Profile Row of
Inputs window is displayed.

14.Click the button on the Status row and the Profile Input window opens.
Select com.ibm.redbook.cs.psets.orderdetailscustomiser as the Profile
Set.

15.Click the Create Entry button. In the Modify Profile Entry window, make the
following entries and selections. We use a different UI Type for
demonstration.

Name: THUMBNAIL_Column
Prompt: Show THUMBNAIL
UI Type: Select
Select Data: Do Not Change, Hide
Default Value: Hide

 Chapter 9. Customizing the application using profiling 481

Execution Time: false

Click OK to close the window.

Figure 9-56 Choose a Select UI for the THUMBNAIL column

16.Click OK to close the Profile Input window.

17.There should now a blue profiling icon next to Status in the Profile Row of
Inputs window. Click OK to close that window.

18.In the Data Column Modifier builder, the Status field of the THUMBNAIL
should now be greyed out as well.

19.Profile-enable the SOURCE column following the same flow as previously.
Click the button next to SOURCE. The Profile Row of Inputs window is
displayed.

20.Click the button on the Status row; the Profile Input window opens. Select
com.ibm.redbook.cs.psets.orderdetailscustomiser as the Profile Set.

21.Click the Create Entry button. In the Modify Profile Entry window, make the
following entries and selections. This time use a different UI Type for
demonstration.

Name: SOURCE_Column
Prompt: Show SOURCE
UI Type: RadioBox
Data: Do Not Change, Hide
Default Value Do Not Change
Execution Time: false

Click OK to close the window.

482 Portal Application Development Using WebSphere Portlet Factory

Figure 9-57 Choose a RadioBox UI Type for the SOURCE column

22.Click OK to close the Profile Input window.

23.There should now a blue profiling icon next to Status in the Profile Row of
Inputs window. Click OK to close that window.

24.On the Data Column Modifier builder, the Status field of the SOURCE should
now be greyed out too.

25.Click Apply to save the Data Column Modifier builder.

26.Save the OrderDetails model by clicking the button.

 Chapter 9. Customizing the application using profiling 483

Note: We have deliberately chosen to use a Data Column Modifier (DCM)
builder here as the profile-enabling tool for the three data fields to
demonstrate that with the Manage Columns option checked, the DCM
builder will override some of the formatting that the RDD file has done
previously (Described in Chapter 7, “Creating portlets: Designing the UI”
on page 275).

Here is how the OrderDetails portlet looks before the DCM builder is used.

Figure 9-58 The column headers are formatted using the RDD file before the DCM
builder is used

And here is how the OrderDetails portlet looks after the DCM builder is
used.

Figure 9-59 The column headers lost the format that the RDD file created

Notice that the formats of the column headers are overridden by the default
“Column Heading” values stated in the DCM builder. However, other
formats from the RDD file, such as the currency format and the sorting
properties of each column, appear to be preserved even with the presence
of the DCM builder.

484 Portal Application Development Using WebSphere Portlet Factory

To avoid having any of the formatting of the RDD file overridden, we should
use a Data Field Modifier (DFM) builder for each of those three fields and
profile-enable the fields from these DFM builders individually. This is a
viable approach because DFM builder works on a lower level than the
DCM builder and as a result we can explicitly specify which properties of a
field are to be overridden and which are to be preserved.

Figure 9-60 Using a DFM builder provides you with more control on the field
properties

This solution may not follow the best practice because it conflicts with the
idea of minimizing the number of builders used in a model when possible.
However, this is the only way we can ensure that all the work done by the
RDD file is preserved.

 Chapter 9. Customizing the application using profiling 485

In our CSA, instead of creating the three DFM builders, we will simply carry
out the changes directly in the Data Column Modifier builder as follows:

Figure 9-61 We will manually modify the column heading in the DCM builder for CSA

486 Portal Application Development Using WebSphere Portlet Factory

Creating OrderDetailsCustomiser model
1. In the Project Explorer, right-click Redbooks → models → redbook → cs →

ui → order. Select New → WebSphere Portlet Factory Model.

Figure 9-62 Create a new WebSphere Portlet Factory Model

2. Choose RedbookCS and click Next.

3. Choose Factory Starter Models → Empty and click Next.

4. In the next screen, make the following entries and selections:

Folder: RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/order
Model name: OrderDetailsCustomiser

 Chapter 9. Customizing the application using profiling 487

Figure 9-63 Name the model OrderDetailsCustomiser

5. Click Finish.

6. In the OrderDetailsCustomiser model, click the button to add a Portlet
Customizer builder.

7. Note that the Profile Sets and Input Values sections are empty by default.
Name the builder OrderDetailsCustomiser.

488 Portal Application Development Using WebSphere Portlet Factory

Figure 9-64 The Profile Sets and the Input Values sections are empty by default

8. To select the model that this Portlet Customizer builder is associated with,
click the button on the Portlet row. Select redbook → cs → ui →
order → OrderDetails. Click OK.

 Chapter 9. Customizing the application using profiling 489

Figure 9-65 Select the model this Portlet Customizer is associated with

9. Note that the Profile Sets and Input Values sections are populated
automatically after choosing the portlet. Ensure that the Profile Set handler is
Values. Click Apply to save this builder.

490 Portal Application Development Using WebSphere Portlet Factory

Figure 9-66 The Profile Sets and Input Values sections are populated automatically after choosing the
Portlet

10.Save the OrderDetailsCustomiser model by clicking the button.

 Chapter 9. Customizing the application using profiling 491

Setting up for OrderDetails model
1. In Project Explorer, go to RedbookCS → models → redbook → cs → ui →

order → OrderDetails.model. Double-click OrderDetails.model to open it.

2. In the Outline pane, double-click the PA Order Details Portlet Adapter
builder. The builder opens in the Edit pane.

Figure 9-67 Open the Portlet Adapter builder

3. Scroll down to Edit and Configure Settings. For the Custom Edit Type, choose
Custom Model.

4. Click the button on the Custom Edit Model row.

5. Select redbook → cs → ui → order → OrderDetails and click OK.

492 Portal Application Development Using WebSphere Portlet Factory

Figure 9-68 Associate the OrderDetailsCustomiser model as the Custom Edit model of the OrderDetails
portlet

6. Click Apply to save the changes.

 Chapter 9. Customizing the application using profiling 493

7. Save the OrderDetails model by clicking the button.

Testing for portlet runtime customization
1. Before you can test the runtime customization feature, you must refresh the

Portlet WAR because changes were made to the Portlet Adapter. Do this by
right-clicking the RedbookCS project in the Project Explorer. Then select
Refresh Portlet Factory WAR → Refresh Portlet Deployment WAR(s).

Figure 9-69 Refreshing the Portlet Deployment WAR

2. Log into portal as customer1. (Note that CSRs will have the same feature
available to them.)

3. Go to the Order portal page after the Customer Information portlet is
rendered.

494 Portal Application Development Using WebSphere Portlet Factory

4. In the Order List portlet, click any order ID. The details of that order are
displayed in the Order Details portlet. By default, you should be able to see
the two columns including the PRODUCT_ID and SOURCE columns, and the
THUMBNAIL is hidden in the Order Details portlet.

Figure 9-70 The Order Details portlet

5. Click the button on the top right corner of the Order Details portlet and
click personalize.

6. The personalize page shown in Figure 9-71 is displayed. Note that the three
columns have different types of UIs.

Figure 9-71 Portlet customization page for Order Details portlet

 Chapter 9. Customizing the application using profiling 495

7. Uncheck Show PRODUCT_ID. Click OK.

8. You should still be able to see the same set of data displayed in the Order
Details portlet (that is, portlet state is maintained when switching from
personalize mode to View mode), but the PRODUCT_ID is now hidden.

Figure 9-72 Same set of data is displayed with the PRODUCT_ID column now
hidden

Note: In Chapter 8, “Enabling portlet communication” on page 361, we briefly
mentioned that we deliberately called the getOrderDetails action in the main
method while the getOrderDetails Event Handler is already doing so. The
primary reason for this is to allow the portlet to “maintain state” after returning
from Edit/Config mode. Each time a portlet returns from Edit/Config mode, a
new instance of the portlet is created; thus it will not have the same data from
the previous instance. Having the getOrderDetails action called in the main
method again enforces the new instance portlet to re-acquire and display the
same data (using the selectedOrderID shared variable). As a result, state can
be maintained from Edit/Config mode to View mode.

496 Portal Application Development Using WebSphere Portlet Factory

9.7 Best practices

We recommend that the following simple software lifecyle be used to implement
profiling:

Analysis phase
� Identify all the variations in the application’s behavior.

� Identify what the influencing factors are for each of the variations.

Design phase
� Group the related influencing factors.

� Design the profile set/profile structures.

� Decide how the profile values are accessed by the regeneration engine (that
is, by using a profile selection handler or a value setter).

� Design for selection handlers if required.

Implementation phase
� Create profile sets, profiles, profile entry and profile values as designed.

� Implement selection handlers if required.

� Associate these profile sets with the appropriate builders.

Testing phase
� For each variation of the application, test whether it is working as expected.

Among the factors you should consider during the project cycle, particularly in
the design phase, are:

1. Creating and managing profile sets

You might find that some profile entries in a profile set are shared across
different models. In that case, separate these entries out from the
model-specific entries and then group these shared entries into different
profile sets based on their context.

2. Creating and managing profiles

If you find that two or more profiles have the same values for many of the
profile entries, create a base profile as the parent for these profiles such that
these shared entry values can be taken at the parent level. For example, the
Manager profile and the Assistant Manager profile can be built as the children
of the Employee profile.

 Chapter 9. Customizing the application using profiling 497

3. Naming conventions

For profile sets, you may find it useful to distinguish among the model-specific
profile sets as well as the shared profile sets by applying a meaningful
naming convention. Also, a consistent prefix should be used to avoid any
potential naming conflicts.

Profiles and profile entries should be named based on their context. In
particular with the profile entries, using the default names sometimes makes it
very difficult to identify them, especially when they are from different builders
of a model.

4. Default values for profile entries

Whenever it makes sense to do so (that is, not violating the application logic),
define an appropriate default value for each profile entry.

5. Testing

The Portlet Factory Designer provides an easy way to test the implemented
profiling in a standalone mode:

a. Open the model that you would like to test and make sure it is active on
the Editor Panel.

b. Switch to the Applied Profiles view (in the bottom center panel).

c. For each profile set this model uses, select a profile that you want to test
and click Apply.

d. Run the model by clicking the Run button () on the tool bar.

If more than one profile set is used in a model, the Manage Combinations
function allows you to define different combinations of profiles selected for
each profile set, then you can reuse these combinations. This eliminates the
need to re-select the profile for each profile set every time you run the model.

498 Portal Application Development Using WebSphere Portlet Factory

Figure 9-73 Using the Applied Profiles View in the Portlet Factory Designer

 Chapter 9. Customizing the application using profiling 499

9.8 Conclusion

In this chapter, we have demonstrated how to apply various profiling techniques
for our Customer Self Service Application. We have also discussed the basic
concept of profiling and some best practices to implement profiling. If you have
followed the steps in this chapter, you should now have the Customer Self
Service Application fully functioning as described in Chapter 2, except for the Go
Shopping component.

500 Portal Application Development Using WebSphere Portlet Factory

Chapter 10. Creating the Go Shopping
portlet

This chapter describes how to create the Go Shopping portlet. It also illustrates a
wizard-based design pattern used for building this portlet. This is the final portlet
you will develop within the sample application. It combines all of the techniques
learned in the previous chapters to create the complete application.

The models developed in this chapter are:

� GoShoppingPortlet

� ShoppingPage

� ShoppingCart & ShoppingProductCatalog

� OrderPage

� ConfirmationPage

10

© Copyright IBM Corp. 2008. All rights reserved. 501

10.1 Preview of the portlet you will build in this chapter

The Go Shopping portlet enables the user to select products, enter order
information and confirm their purchases. It is a step-by-step process where the
user’s final goal is to make a purchase. During the process, several decisions
must made before the final purchase can be completed.

At a high level, the steps a user takes within this portlet are:

� Select from the product catalog
� Complete the order form
� Receive order confirmation

Figure 10-1 illustrates the Go Shopping portlet.

Figure 10-1 Overview of the Go Shopping portlet

502 Portal Application Development Using WebSphere Portlet Factory

Customers use the GoShopping portlet to select products, add them to their
shopping cart, and confirm their order.

The first screen of the portlet shows the customer a list of products. (Figure 10-1)

Note that product data is paginated so that instead of viewing the complete list of
products all at once, product data is presented in a smaller, easier to read listing.
The first screen also illustrates a shopping cart, to which the customer adds their
purchases. Behind the scenes, Dojo Drag Source and Dojo Drop Target builders
are used to implement the drag and drop functionality, so customers can drag
and drop the products to the shopping cart.

Once the items have been added to the cart, the customer completes the billing
information. Figure 10-2 shows order page where the customer chooses the type
of billing, selects the date ordered, and enters comments.

Figure 10-2 Customer provides details for ordering and billing

Figure 10-3 shows the order confirmation page, which displays the order
information, a list of the items ordered and prices, and the shipping details. The
customer can confirm the order by clicking the Commit Order button.

 Chapter 10. Creating the Go Shopping portlet 503

Figure 10-3 Details and order confirmation

10.2 Components within the portlet

The GoShopping portlet is made up of the following components:

� The main portlet model, named GoShoppingPortlet

504 Portal Application Development Using WebSphere Portlet Factory

� ShoppingCart model

This model incorporates the ShoppingPage model and the
ShoppingProductCatalog model.

� OrderPage model

� ConfirmationPage model

The application has been designed to encapsulate different functionality as
separate models. For example, ShoppingCart model functionality is the
ShoppingCart. Customers use this functionality to add the products to their cart.

The other two models, OrderPage and ConfirmationPage, have been created for
ordering and confirmation respectively. Encapsulating different functionalities as
models makes implemention of the application cleaner.

Figure 10-4 shows a block diagram representation of the Go Shopping
application.

Figure 10-4 Block diagram showing the models used in the Go Shopping application

GoShoppingPortlet

ShoppingPage

OrderPage ConfirmationPage

1

2 3

Legend

•Models are highlighted in
bold text.

•The numbers indicate the
wizard steps.

•Arrows represent the
screen transition.

 Chapter 10. Creating the Go Shopping portlet 505

Value to the developer in building this portlet
This modular approach to building the portlet, which segregates different
functional pieces as separate models, provides the opportunity for you to learn
about:

� The wizard-based approach

� Multiple Container models

� How the wizard based approach overcomes the back button navigation
problem

Wizard-based approach
The key technique that you, as the developer, will learn in this implementation is
the wizard design pattern, which takes the developer through the entire task one
step at a time.

There are other approaches to building multiple screen portlets besides the
wizard-based approach. While building the screens using the wizard-based
design pattern, the models that are the wizard steps are dynamically selected
and rendered. A call to the portlet shows the rendering produced by the base
wizard model and the rendering produced by the inserted wizard step model.

One approach to building a multiple screen based portlet is to swap models in
and out of one model container. There is a chance that the customer could
trigger an “action not found” error by using the browser back button and then
clicking an action. The wizard-based approach avoids this problem because it
uses the inserted page builder, so the action URLs present in any cached HTML
will correspond to actions that can be executed, whether or not the model being
displayed to the user is the “current” one.

Once the decision is made to use models to represent different functional pieces,
the question arises: How are we going to show the page rendered by a model as
a part of the base wizard model? The answer is by using the model container in
conjunction with a page builder. The model container displays a model at a
named tag or other locations on a page or pages.

Note: The inner rectangular boxes represent the wizard screen. The outer
rectangular box is the base screen. The entire screen can be thought of as the
output generated by the base screen and the wizard screen.

506 Portal Application Development Using WebSphere Portlet Factory

Figure 10-5 The builders in a wizard-based model

Figure 10-5 illustrates the wizard technique. The diagram has been expanded so
that you can easily see how the various builders come together in this technique.

The key points in the relationship between the builders are as follows:

� The wizard can be assumed to be comprised of the main base wizard page;
the base imported page “basePage” has a span element named “wizardStep”
which is the target for the inserted page.

� The inserted page can be assumed to be the individual pages that get
changed dynamically based on the button action in the individual wizard
pages or the wizard step pages.

� The inserted page refers to the wizard screens by means of a variable
“currentStep,” which is set according to the action in the individual wizard step
pages.

� The step pages have a span element named “modelContainer,” which is the
target for the model container.

� Finally, the individual model container holds a model.

<wizardStep>

Base Imported Page

currentStep <modelContainer>

InsertedPage
Step Page

mcStep1

modelContainer model

ShoppingPage

variable

 Chapter 10. Creating the Go Shopping portlet 507

Figure 10-6 Technical elaboration of the wizard-based technique

Figure 10-6 shows the sequence of action among the various builders in the
wizard. For simplicity we assume that it is the first time the user is invoking the
portlet. The base page span element named “wizardStep” is acted upon by the
inserted page. The inserted page refers to a page by means of a variable named
“currentStep.” The default value of the variable is “step1,” which means that a
page named “step1” gets inserted into the contents of the base page at the
location “wizardStep.” The “step1” page has a span element named
“modelContainer,” which is acted upon by the model container. The model
container renders the model “ShoppingPage.” The “step1” page contents gets
populated by the contents of the model “ShoppingPage.”

<wizardStep>

basePage

<modelContainer>

Inserted page

modelContainer

“points to”

ShoppingPage

1

4 5

3
step1 currentStep 6

Legend

1:Base Page

2:Inserted Page

3:Wizard Step Page

4:Model Container

5:Model

6:CurrentStep Variable

2

508 Portal Application Development Using WebSphere Portlet Factory

Figure 10-7 Transition from screen 1 to screen 2

Figure 10-7 illustrates the transition from wizard step 1 to wizard step 2. The
transition happens when the user presses the Next button. The method called is
“firenaviagateNext” and the implementation of the method is in the
GoShoppingPortlet model. Example 10-1 shows the implementation code.

Example 10-1

{
 // get the variable that defines the wizard steps
 IXml wizardSteps =
webAppAccess.getVariables().getXml("wizardSteps");
 // determine what the current step is
 String currentStep =
webAppAccess.getVariables().getString("currentStep");

 outer: if (wizardSteps != null)
 {
 // Find the current step with the list of all steps
 IXml elem = wizardSteps.getFirstChildElement();

Next

step1

basePage

Next-->

step2

Prev <--

basePage

1

2

firenaviagateNext

firenaviagateNext

Legend

•Curved arrows indicate
triggering the action.

•firenavigateNext is
the action that gets
called when the Next
button is pressed.

 Chapter 10. Creating the Go Shopping portlet 509

 if(currentStep.equals("step3"))
 {

webAppAccess.getVariables().setString("currentStep","step1");
 break outer;
 }
 while (elem != null)
 {
 if (elem.getText().equals(currentStep))
 {
 // found a match
 // we're navigating forward - so get the next element
 IXml previousStep = elem.getNextSiblingElement();
 if (previousStep != null)
 {
 // set this as the new inserted page

webAppAccess.getVariables().setString("currentStep",
previousStep.getText());
 // quit the iteration
 break;
 }
 }

 elem = elem.getNextSiblingElement();
 }
 }//close the outer if

 // redisplay the outer page
 webAppAccess.processPage("basePage");
}

The code in Example 10-1 shows the method that gets triggered when the Next
button is pressed. The logic behind the method’s implementation is:

� Obtain the IXml object "wizardSteps" using the method
webAppAccess.getVariables().getXml("<XMLVARNAME>")

Notes:

1. The variable "wizardSteps" defines the number of steps in the wizard.

2. The variable "currentStep" points to the current step the wizard is in.

3. The "basePage" is the wizard’s main page.

510 Portal Application Development Using WebSphere Portlet Factory

� Obtain the "currentStep" variable by using the method
webAppAccess.getVariables().getStirng("<STRINGVARNAME">)

� Once you have obtained these two objects, find what step the wizard is in.
The immediate step would be to find the next step and set it in the variable
“currentStep” using the method
webAppAccess.getVariables().setString("currentStep","<STEPNAME>");

� After setting the variable, process the "basePage" using the method

webAppAccess.processPage("<BASEPAGENAME>");

10.3 A sample wizard model

Wizards are user interface elements where the user is led through a sequence of
dialogs. Conceptually the technique relies on three pieces: wizard, event
declaration, and steps in the wizard.

Note: The WebAppAccess interface, com.bowstreet.webapp.WebAppAccess
has the following characteristics:

� It represents the current, running WebApp.

� It is passed into any model method called at runtime.

� The controller looks first for a method with a signature that includes it.

� All Method builder calls generate with an instance of WebAppAccess as
the first argument.

� It allows you to access other things too, including:

– System properties

– The HttpServletRequest object

Note: The Web application (WebApp) is a profile-specific instance of a portlet
application that is dynamically created by the WebSphere PortletFactory
regeneration engine. Each builder, when called during regeneration, creates
the artifacts that make up this WebApp, or run-time portlet application, such as
pages, forms, variables, Java objects, and methods. The regeneration engine
creates the WebApp by regenerating a model with a unique instance of profile
data. The generated WebApp code is then processed by the WebSphere
Portlet Factory execution engine to instantiate the executable Java EE
application sessions.

 Chapter 10. Creating the Go Shopping portlet 511

Figure 10-8 The pieces of a wizard

Based on the conceptual diagram in Figure 10-8, we have the following models in
the sample wizard application:

� ShoppingWizard model

� ShoppingWizardCommon model

� ShoppingWizardStep model
There are as many of these models as there are steps in the wizard.

ShoppingWizard Model
The ShoppingWizard can be compared to a base page and the individual
Shopping Wizard Steps are the inserted pages that get dynamically inserted into
the base page. The event declarations “navigateBack” and “navigateNext” are
declared in the ShoppingWizardCommon model.

Figure 10-9 The base wizard model

512 Portal Application Development Using WebSphere Portlet Factory

The base model “ShoppingWizard” has 20 builders. Some of the builders that
you need to pay attention to are defined here:

� Builder 1: One of the things you should have noticed is that this builder is
named “main.” Because the execution in Java programs starts with the main,
the model execution begins with the builder named “main.” There are builders
that generate a “main” automatically.

� Builder 2: This is the imported model builder that imports the
“ShoppingWizardCommon” into the model. As discussed previously, we have
declared the common events in the “ShoppingWizardCommon” model.

� Builder 3: This is the comment builder. It is good practice to add a comment
builder, just as comments in Java or portlet code help the reader of the code
to understand it better.

� Builder 4: This is the page builder “basePage.” This is the base page of the
wizard. Notice that there is a span named “wizardStep.” As discussed
previously, the inserted page builder targets this span element.

� Builder 5: This is the comment builder “page management.”

� Builder 6: This is the variable builder “currentStep.” This is a very important
builder; recall the previous discussion about the “currentStep” variable. The
inserted page builder refers to the wizard page by means of this variable.

� Builder 7: This is the variable builder “wizardSteps.” This variable is of type
XML. This variable holds the number of wizard steps in the wizard.

� Builder 8: This is the inserted page builder “wizardStep.” As discussed
previously, the inserted page builder targets the span element named
“wizardStep” in the base page.

� Builder 9: This is the comment builder.

� Builder 10: This is the event handler builder “navigateBackHandler.” As
discussed previously, the individual wizards would have “<Back” and “Next>”
buttons depending on the screen position. For example, wizard screen1
would have the “Next>” button but not the “<Back” button. To handle the
event when the buttons gets clicked we utilize the event handler builder.

Figure 10-10 The “navigateBackHandler”

 Chapter 10. Creating the Go Shopping portlet 513

Two important inputs that must be specified for this builder are the event
name “navigateBack” and the action “navigateBack.”

� Builder 11: This is the method builder “navigateBack.” We have specified this
action “navigateBack” in the event handler builder “navigateBackHandler.”

� Builder 12: This is the event handler builder “navigateNextHandler.” As
discussed previously, the individual wizards would have “<Back” and “Next>”
buttons depending on the screen position. For example, wizard screen 1
would have the “Next>” button but not the “<Back” button. To handle the
event when the buttons gets clicked we utilize the event handler builder. This
event handler builder would indicate what action gets called when the “Next>”
button gets pressed.

Figure 10-11 The “navigateNextHandler”

Two important inputs that must be specified for this builder are the event
name “navigateNext” and the action “navigateNext.”

� Builder 13: This is the method builder “navigateNext.” We have specified this
action “navigateNext” in the event handler builder “navigateNextHandler.”

� Builder 14: This is the comment builder.

� Builder 15: This is the wizard step page builder “step1.” Notice the span
element named “modelContainer” in the page builder.

� Builder 16: This is the model container builder “mcStep1.” You can use a
model container to make a model self-contained and allow it to be inserted
into a web page. Using multiple models with model containers provides two
main advantages.

– For developers - Using model containers makes shared development
easier. Multiple developers can collaborate on page content and creation.
Each developer can work independently and contribute a model that
provides specific content to the same page.

– For web users - Model container builders provide a consistent page
context. A web page incorporating contained models enables users to
remain in that page’s context, even as they drill down into a model in
search of additional content. This keeps users oriented, and it also
facilitates their access to content in other models on the page.

514 Portal Application Development Using WebSphere Portlet Factory

Figure 10-12 The model container builder “mcStep1”

The mandatory builder inputs for this builder are the Page, Tag, and Model.

This model container builder has the following inputs:

Page step1
Tag modelContainer
Model ShoppingWizardStep1

� Builder 17: This is the page builder “step2.” Recall from the earlier discussion
that the inserted page builder refers to the wizard pages by means of the
“currentStep” variable. The “currentStep” variable holds the values “step1” or
“step2” or “step3” depending on which wizard screen is being shown.

� Builder 18: This is the model container builder “mcStep2.” This model
container builder has the following inputs:

Page step2
Tag modelContainer
Model ShoppingWizardStep2

� Builder 19: This is the page builder “step3.” This page has a span element
named “modelContainer” that is targeted by the model container builder
“mcStep3.”

� Builder 20: This is the model container builder “mcStep3.” This model
container builder has the following inputs:

Page step3
Tag modelContainer
Model ShoppingWizardStep3

 Chapter 10. Creating the Go Shopping portlet 515

ShoppingWizardCommon model
As previously discussed, the wizard technique has the event declaration in a
separate model. This model contains the event declarations “navigateBack” and
“navigateNext.”

Figure 10-13 The ShoppingWizardCommon model

ShoppingWizardStep models
These are the wizard steps that get inserted dynamically into the base wizard
page. Depending on the position of the screen they have “Next>” or “<Back”
buttons, or both. For example, the first wizard step model has only a “Next>”
button, while the third wizard step model has “<Back” and ”Next>” buttons.

Figure 10-14 The ShoppingWizardStep1 model

There are only four builders in the ShoppingWizardStep1 model. This model
imports the common event declaration model “ShoppingWizardCommon.”

516 Portal Application Development Using WebSphere Portlet Factory

10.4 Building the Go Shopping portlet

In this and the following sections we take you step-by-step through the building
of the entire application. As mentioned previously, the complete application
consists of the following:

� GoShoppingPortlet

� Shopping Page

– Shopping Cart

– Shopping Product Catalog

� Order Page

� Confirmation Page

Figure 10-15 Block diagram of the Go Shopping portlet application

The Go Shopping Portlet application utilizes the following three DB providers:

� ProductDBProvider

� OrderDBProvider

� CustomerDBProvider

The services (consumer) utilized in the GoShopping portlet are:

� OrdersService

� ProductService

� CustomerService

GO Shopping Portlet

Shopping Page

Shopping Cart Shopping Product Catalog Order Page

Confirmation Page

 Chapter 10. Creating the Go Shopping portlet 517

A service-oriented architecture, combined with Portlet Factory’s SOA support,
enables UI and back-end data access development to proceed in parallel once
the developers have agreed upon the services that will be called, their inputs,
and what the services return. UI developers can focus on creating the user
experience while calling automatically generated stubbed-out data access
services that return sample data. Back-end data access developers can
complete their services and “test as they go” using Portlet Factory’s built-in
testing harness support. In this way the development team can make progress in
parallel and have a high degree of confidence that the UI and data access
integration will be seamless. Because of Portlet Factory’s ability to dynamically
regenerate the application, it is also easier for the UI to account for changes in
the input and output of the services or take advantage of new services.

While we are building the portlet we assume that these back-end service
providers are available. We then need to focus on building the UI functionality for
the GoShoppingPortlet application.

The portlet can be divided into four parts:

� Main portlet model, named GoShoppingPortlet model, is responsible for
providing wizard support.

� ShoppingPage model is responsible for the core shopping functionality. It
uses two models (ShoppingCart model and ShoppingProductCatalog model)
for its functionality. We can consider ShoppingPage to be the base model that
“contains” ShoppingCart and ShoppingProductCatalog models. The shopping
cart model is responsible for providing the shopping cart functionality.

Figure 10-16 The ShoppingCart model

The model has a Dojo Drop target defined on the cart image, and customers
can drag the desired product image onto the cart.

Figure 10-17 The ShoppingCart model (with product added)

518 Portal Application Development Using WebSphere Portlet Factory

Figure 10-18 Customers can edit the quantity by clicking the pencil icon

The ShoppingProductCatalog model is responsible for displaying the product
catalog in a paginated fashion.

Figure 10-19 The ShoppingProductCatalog model

� The OrderPage model is responsible for ordering information. The customer
can select the mode of payment, enter date of purchase and enter comments
in the rich text editor.

Figure 10-20 The OrderPage model output

 Chapter 10. Creating the Go Shopping portlet 519

� The ConfirmationPage model lists the following in separate sections:

– Order Information: Information about the Order.

– Order Items: Information about the items purchased.

– Shipping Details: The ship to address is displayed in this section.

The customer can commit the order by clicking the “Commit Order” button.

Figure 10-21 The confirmation page model output

10.5 Go Shopping portlet model

In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by doing the following:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

520 Portal Application Development Using WebSphere Portlet Factory

Figure 10-22 Creating a new model -GoShoppingPortlet

2. In the Choose Project window, select RedbookCS as the project and click
Next.

3. In the Select Model window, select Factory Starter Models → Empty in the
Model Type field and click Next.

 Chapter 10. Creating the Go Shopping portlet 521

Figure 10-23 Selecting the Empty Factory Starter Model

4. In the Save New Model window, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/shopping as
the folder and GoShoppingPortlet as the model name.

522 Portal Application Development Using WebSphere Portlet Factory

Figure 10-24 Saving the GoShoppingPortlet model

Importing the ShoppingUIImports model
Now that we have an empty GoShoppingPortlet.model, we will import a
"ShoppingUIImports" model. For now we will assume that this model is ready
and available for import. This model is important because it contains helper
functionality for the other models. For example, it has service consumers that
consume OrderDBProvider, ProductDBProvider, and CustomerDBProvider.
Think of this model as a C language #include.

1. From the builder palette, select the Imported Model builder and click OK to
add it to the GoShoppingPortlet model.

2. Name the builder ShoppingPage.

3. To select the model, click the ellipsis button and select the
redbook/cs/ui/shopping/ShoppingUIImports model.

 Chapter 10. Creating the Go Shopping portlet 523

Figure 10-25 Imported Model ShoppingUIImports

4. From the builder palette, select ImportedPage and click OK to add it to the
GoShoppingPortlet model. Set the following values for the Imported Page
builder:

Name: basePage
Page to Import: /redbook/cs/html/ShoppingLayout.html

5. Click OK and save the model.

Figure 10-26 The Imported Page -basePage

524 Portal Application Development Using WebSphere Portlet Factory

6. We had assumed in the previous step the existence of
“ShoppingLayout.html.” In this step we go through the creation of the HTML
template ShoppingLayout. The HTML template will host static content and
named tags that will be used as anchors in our UI model for inserting dynamic
content structures and other page elements such as buttons, text fields, and
so forth.

You can use the HTML Templates feature to achieve a custom, handcrafted
appearance for your applications without coding the HTML by hand. Think of
an HTML Template as a collection of HTML snippets (constructs) that are
selected and assembled by Portlet Factory’s page automation functionality.
You make these constructs using normal HTML, and then you add some
specifically named elements to tell Portlet Factory which construct is to be
used for which purpose, and to identify the various pieces.

Do the following to create the base HTML files:

a. Click File → New → Other to launch the wizard.

b. Select General → File and click Next.

c. Type or select the parent folder as
RedbookCS/WebContent/redbook/cs/html, enter the file name as
ShoppingLayout.html and click Finish to create an empty HTML file.

 Chapter 10. Creating the Go Shopping portlet 525

Figure 10-27 Base HTML template ShoppingLayout.html file

d. right-click the newly created ShoppingLayout.html file and select Open
With → Text Editor. This will allow you to edit the file and create a basic
layout of ShoppingLayout page. Copy and paste the HTML in
Example 10-2 into this file.

Example 10-2 HTML for the basic layout of ShoppingLayout page

<HTML>
 <BODY>
 <FORM name="ITSO_REDBOOK_FORM_OrderPage1" method="post">
 <DIV align="center"> </DIV>

 <TABLE width="600">
 <TR>
 <TD width="50%" align="center" valign="top"></TD>
 <TD width="50%" align="center" valign="top"></TD>
 </TR>
 <TR>
 <TD colspan="2" align="center" valign="top"></TD>

526 Portal Application Development Using WebSphere Portlet Factory

 </TR>
 </TABLE>
 </FORM>

 </BODY>
</HTML>

Pay attention to the tags on this HTML page that have the name=attribute.
We call these “named elements” and there are seven of them in our HTML
file:

• CredentialsStatus
• wizardStep
• left
• right
• row2
• nextButton
• backButton

All of the tags happen to be tags, but the type of tag doesn’t
matter as long as it has a name= attribute on it. A little later, we will place a
text field, buttons, and other UI elements on these named tags.

By creating our own “shell” HTML page like this one, will all the named
elements that our model builders require, we can adjust the look and feel
of how and where these components are laid out.

e. Save and close the ShoppingLayout.html file.

7. From the builder palette, select the Variable builder and click OK to add it to
the GoShoppingPortlet.model. Set the following values for the Variable
builder:

Name: currentStep
Type: String
Initial Value: step1

Important: The value that the currentStep points to is very important. The
values should match the wizard step pages and these step pages will be
dynamically inserted at run time.

 Chapter 10. Creating the Go Shopping portlet 527

Figure 10-28 The variable builder “currentStep”

8. From the builder palette, select the Variable builder and click OK to add it to
the GoShoppingPortlet.model. Set the following values for the Variable
builder:

Name: wizardSteps
Type: XML
Initial Value: <steps>

<step>step1</step>
<step>step2</step>
<step>step3</step>
</steps>

Click OK and save the model.

Figure 10-29 The wizardSteps variable builder

Important: The wizardSteps builder is another important variable in the
wizard technique. The number of child elements in the <steps></steps>
indicates the total number of wizard screens.

528 Portal Application Development Using WebSphere Portlet Factory

9. From the builder palette, select the Inserted Page builder and click OK to
add it to the GoShoppingPortlet.model. Set the following values for the
Inserted Page builder:

Name: Leave this blank; it will take the name of the tag we
specify in the tag input.

Page: basePage
Tag: wizardStep
Page in Model Click the ellipses and select Variables →

currentStep

Click OK and save the model.

Figure 10-30 The inserted page builder -wizardStep

� From the builder palette, select the Method builder and click OK to add it to
the GoShoppingPortlet.model. Set the following values for the Method
builder:

Name navigateBack
Method Body Copy and paste the Java code in Example 10-3 into

box.

Example 10-3

// get the variable that defines the wizard steps IXml wizardSteps =
webAppAccess.getVariables().getXml("wizardSteps");

// determine what the current step is String currentStep =
webAppAccess.getVariables().getString("currentStep");

 Chapter 10. Creating the Go Shopping portlet 529

 if (wizardSteps != null)
 {
 // Find the current step with the list of all steps
 IXml elem = wizardSteps.getFirstChildElement();
 while (elem != null)
 {
 if (elem.getText().equals(currentStep))
 {
 // found a match
 // we're navigating backward - so get the previous element
 IXml previousStep = elem.getPreviousSiblingElement();
 if (previousStep != null)
 {
 // set this as the new inserted page
 webAppAccess.getVariables().setString("currentStep", previousStep.getText());
 // quit the iteration
 break;
 }
 }
 elem = elem.getNextSiblingElement();
 }
 }

 // redisplay the outer page
 webAppAccess.processPage("basePage");
}

f. Click OK and save the model.

530 Portal Application Development Using WebSphere Portlet Factory

Figure 10-31 The navigateBack method builder

Attention: Where did the event “navigateBack” come from? Recall that we
imported the model ShoppingUIImports model. One of the event
declarations defined in that model is “naviageBack.”

 Chapter 10. Creating the Go Shopping portlet 531

10.From the builder palette, select the Event Handler builder and click OK to
add it to the GoShoppingPortlet.model. Set the following values for the Event
Handler builder:

Name: navigateBackHandler
Event Name: navigateBack
Handler Type: Use existing action
Action: navigateBack

Click OK and save the model.

Figure 10-32 The event handler -navigateBackHandler

11.From the builder palette, select the Method builder and click OK to add it to
the GoShoppingPortlet.model. Set the following values for the Method
builder:

Name: navigateNext
Method Body: Copy and paste the Java code from Example 10-4

into the box.

Example 10-4

// get the variable that defines the wizard steps
 IXml wizardSteps = webAppAccess.getVariables().getXml("wizardSteps");
 // determine what the current step is
 String currentStep = webAppAccess.getVariables().getString("currentStep");

 outer: if (wizardSteps != null)
 {
 // Find the current step with the list of all steps
 IXml elem = wizardSteps.getFirstChildElement();

 if(currentStep.equals("step3"))
 {
 webAppAccess.getVariables().setString("currentStep","step1");
 break outer;
 }
 while (elem != null)
 {

532 Portal Application Development Using WebSphere Portlet Factory

 if (elem.getText().equals(currentStep))
 {
 // found a match
 // we're navigating forward - so get the next element
 IXml previousStep = elem.getNextSiblingElement();
 if (previousStep != null)
 {
 // set this as the new inserted page
 webAppAccess.getVariables().setString("currentStep", previousStep.getText());
 // quit the iteration
 break;
 }
 }

 elem = elem.getNextSiblingElement();
 }
 }//close the outer if

 // redisplay the outer page
 webAppAccess.processPage("basePage");
}
{

Click OK and save the model.

Figure 10-33 Method builder “navigateNext”

 Chapter 10. Creating the Go Shopping portlet 533

12.From the builder palette, select the Event Handler builder and click OK to
add it to the GoShoppingPortlet.model. Set the following values for the Event
Handler builder:

Name: navigateNexthandler
Event Name: navigateNext
Handler Type: Use existing action
Action: navigateNext

Click OK and save the model.

Figure 10-34 The event handler “navigateNext”

13.From the builder palette, select the Action List builder and click OK to add it
to the GoShoppingPortlet.model. Set the following values for the Action List
builder:

Name: main
Actions: basePage

Click OK and save the model.

534 Portal Application Development Using WebSphere Portlet Factory

Figure 10-35 The action list builder “main”

14.From the builder palette, select the Page builder and click OK to add it to the
GoShoppingPortlet.model. Set the following values for the page builder:

Name: step1
Page Contents(HTML): Copy and paste the HTML code from

Example 10-5 into the box.

Example 10-5

<html>
 <body>
 <!-- As a best practice, change the form name to a unique name -->
 <form name="ITSO_REDBOOK_FORM_STEP1" method="post">
 <div align="center">

 </div>
 </form>
 </body>
</html>

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 535

Figure 10-36 The page builder “step1”

15.From the builder palette, select the Model Container builder and click OK to
add it to the GoShoppingPortlet.model. Set the following values for the Model
Container builder:

Name: Step1
Page: step1
Tag: modelContainer
Model: redbook/cs/ui/shopping/ShoppingPage

Click OK and save the model.

Note: We get an error in the IDE because we are pointing the model
container to the non existent model
redbook/cs/ui/shopping/ShoppingPage. Ignore this problem for the
moment; we will fix it when we create the ShoppingPage model shortly.

536 Portal Application Development Using WebSphere Portlet Factory

Figure 10-37 The model container “Step1”

16.From the builder palette, select the Page builder and click OK to add it to the
GoShoppingPortlet.model. Set the following values for the page builder:

Name: step2
Page Contents (HTML): Copy and paste the HTML code from

Example 10-6 into the box.

Example 10-6

<html>
 <body>
 <!-- As a best practice, change the form name to a unique name -->
 <form name="ITSO_REDBOOK_FORM_STEP2" method="post">
 <div align="center">

 </div>
 </form>
 </body>
</html>

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 537

Figure 10-38 The page builder “step2”

17.From the builder palette, select the Model Container builder and click OK to
add it to the GoShoppingPortlet.model. Set the following values for the Model
Container builder:.

Name: Step2
Page: step2
Tag: modelContainer
Model: redbook/cs/ui/shopping/OrderPage

Click OK and save the model.

Note: We get an error in the IDE because we are pointing the model
container to the non existent model redbook/cs/ui/shopping/OrderPage.
Ignore this problem for the moment; we will fix it when we create the
OrderPage model shortly.

538 Portal Application Development Using WebSphere Portlet Factory

Figure 10-39 The model container “Step2”

18.From the builder palette, select the Page builder and click OK to add it to the
GoShoppingPortlet.model. Set the following values for the page builder:

Name: step3
Page Contents (HTML): Copy and paste the HTML code from

Example 10-7 into the box.

Example 10-7

<html>
 <body>
 <!-- As a best practice, change the form name to a unique name -->
 <form name="ITSO_REDBOOK_FORM_STEP3" method="post">
 <div align="center">

 </div>
 </form>
 </body>
</html>

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 539

19.From the builder palette, select the Model Container builder and click OK to
add it to the GoShoppingPortlet.model. Set the following values for the Model
Container builder:

Name: Step3
Page: step3
Tag: modelContainer
Model: redbook/cs/ui/shopping/ConfirmationPage

Click OK and save the model.

Figure 10-40 The model container builder “Step3”

10.6 Shopping Page model

As discussed earlier, the ShoppingPage model is responsible for the core
shopping functionality. The next three figures illustrate the functionality of the
finished ShoppingPage application.

Note: We get an error in the IDE because we are pointing to the non
existent model redbook/cs/ui/shopping/ConfirmationPage. Ignore this
problem for the moment; we will fix it when we create the
ConfirmationPage model shortly.

540 Portal Application Development Using WebSphere Portlet Factory

Figure 10-41 The ShoppingPage model when run stand alone

Figure 10-42 The shopping page application (products added to the cart)

Note: These figures were taken when the model was running in a stand-alone
environment. Just as we run Java programs, we can run the model stand
alone from the IDE.

 Chapter 10. Creating the Go Shopping portlet 541

Figure 10-43 The shopping page application (product numbers can be edited)

The ShoppingPage model houses two models: “ShoppingCart” and
“ShoppingProductCatalog.” It is like a base model that utilizes the other two
models, and is a good example of modularizing individual functional pieces as
separate models.

Figure 10-44 The ShoppingPage model

Figure 10-44 shows the builders in the ShoppingPage model. The important
builders utilized are the Model Container builders, specifically builders number 6
and 7 in the model. You must have noticed the button “nextButton,” which is
builder number 9 in the model. This button would take the user to the next wizard
screen step, the order page.

Note: It is good practice in WPF development to keep the number of builders
in a model to fewer than 50. Using model containers to contain models that
are separate functional pieces helps achieve this goal.

542 Portal Application Development Using WebSphere Portlet Factory

Creating the ShoppingPage model

In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by doing the following:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

Figure 10-45 Creating a new model -ShoppingPage

2. In the Choose Project window, select RedbookCS as the project and click
Next.

3. In the Model Type field or the Select Model window, select Factory Starter
Models → Empty and click Next.

 Chapter 10. Creating the Go Shopping portlet 543

Figure 10-46 Selecting the Empty Factory Starter Model

4. In the Save New Model window, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/shopping as
the folder and ShoppingPage as the model name.

544 Portal Application Development Using WebSphere Portlet Factory

Figure 10-47 Saving the Shoppingpage model

5. To import the ShoppingUIImports model, from the builder palette, select
Imported Model builder and click OK to add it to the ShoppingPage model.

a. Name the builder ShoppingUIImports.

b. To select the model, click the ellipsis and select the
redbook/cs/ui/shopping/ShoppingUIImports model.

 Chapter 10. Creating the Go Shopping portlet 545

Figure 10-48 The imported model - ShoppingUIImports

6. From the builder palette, select the Imported page builder and click OK to
add it to the ShoppingPage model. Set the following values for the Imported
Page builder:

Name: page1
Page to Import: /redbook/cs/html/ShoppingLayout.html

Click OK and save the model.

Figure 10-49 The imported page builder - page1

7. From the builder palette, select the Model Container builder and click OK to
add it to the ShoppingPage model. Set the following values for the Model
Container builder:

Name: Cart
Page: page1
Tag: left
Model: redbook/cs/ui/shopping/ShoppingCart

546 Portal Application Development Using WebSphere Portlet Factory

Figure 10-50 The model container - Cart

8. From the builder palette, select the Model Container builder and click OK to
add it to the ShoppingPage model. Set the following values for the Model
Container builder:

Name: ProductCatalog
Page: page1
Tag: right
Model: redbook/cs/ui/shopping/ShoppingProductCatalog

Click OK and save the model.

Note: We get an error because we are pointing a model container to the
non existent model redbook/cs/ui/shopping/ShoppingCart. Ignore this
problem for the moment; we will fix it when we create the model shortly.

Note: We get an error because we are pointing a model container to the
nonexistent model redbook/cs/ui/shopping/ProductCatalog. Ignore this
problem for the moment; we will fix it when we create the model shortly.

 Chapter 10. Creating the Go Shopping portlet 547

Figure 10-51 The Model Container -ProductCatalog

9. From the builder palette, select the Button builder and click OK to add it to
the ShoppingPage model. Set the following values for the button builder:

Name: Leave this field empty; the name defaults to the tag
name that we will be selecting for this builder.

Page: page1
Tag: nextButton
Label: Next>
Action: Click the ellipsis button and select

firenavigateNext method

Click OK and save the model.

548 Portal Application Development Using WebSphere Portlet Factory

Figure 10-52 The Button builder - nextButton

10.From the builder palette, select the Action List builder and click OK to add it
to the ShoppingPage model. Set the following values for the Action List
builder:

Name: main
Actions: page1

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 549

Figure 10-53 The Action List builder - main

10.6.1 Cart model

At a high level, there are three steps involved in creating the Cart model:

� Create the base HTML page

� Create the shopping cart model

� Import the ShoppingUIImports model

Creating the base HTML page
First, we create the base HTML page, cartLayoutPage, which will host static
content and named Tags that will be used as anchors in our UI model for
inserting dynamic content structures and other page elements such as buttons,
images, and so forth.

Do the following to create the base HTML file:

1. Click File → New → Other to launch the wizard.

2. Select General → File and click Next.

3. Enter or select parent folder RedbookCS/WebContent/redbook/cs/html, enter
the file name cartLayoutPage.html, and click Finish to create an empty
HTML file.

550 Portal Application Development Using WebSphere Portlet Factory

Figure 10-54 The CartLayout.html file

4. Right-click the newly created CartLayout.html file and select Open With →
Text Editor. This will allow you to edit the file and create a basic layout of the
CartLayout page. Copy and paste the HTML from Example 10-8 into this file.

Example 10-8

<HTML>
 <BODY>
 <FORM name="ITSO_REDBOOK_FORM_CartLayout" method="post">
 <DIV align="center"> </DIV>

 <TABLE>

 <TR>
 <TD colspan="3" align="left" valign="top">

 </TD>
 </TR>

 <TR>
 <TD align="left" valign="top"></TD>
 </TR>

 Chapter 10. Creating the Go Shopping portlet 551

 <TR>
 <TD align="center" valign="top"></TD>
 <TD align="center" valign="top"></TD>
 </TR>

 <TR>
 <TD align="center" valign="top"></TD>
 <TD align="center" valign="top"></TD>
 </TR>
 <TR>
 <TD align="center" valign="top"></TD>
 <TD align="center" valign="top"></TD>
 </TR>

 </TABLE>
 </FORM>
 </BODY>
</HTML>

5. Save and close the CartLayout.html file.

Creating the ShoppingCart model
In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by doing the following:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

Note: Pay attention to the tags on the HTML page that have the name=
attribute. We call these “named elements.”

552 Portal Application Development Using WebSphere Portlet Factory

Figure 10-55 Creating a new model - ShoppingCart

2. In the Choose Project screen, select RedbookCS as the project and click
Next.

3. In the Model Type field in the Select Model window, select Factory Starter
Models → Empty and click Next.

 Chapter 10. Creating the Go Shopping portlet 553

Figure 10-56 The Empty Factory Starter Model

4. In the Save New Model window, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/shopping as
the folder enter ShoppingCart in the Model name field.

554 Portal Application Development Using WebSphere Portlet Factory

Figure 10-57 Saving the ShoppingCart model

Importing the ShoppingUIImports model
Now that we have an empty GoShoppingPortlet.model, we will import a
“ShoppingUIImports” model. For now we will assume that this model is ready and
available for import. This model is important because it contains helper
functionality for the other models. For example, it has service consumers that
consume OrderDBProvider, ProductDBProvider, and CustomerDBProvider.
Think of this model as a “Java” import.

1. From the builder palette, select the Imported Model builder and click OK to
add it to the ShoppingCart model.

a. Name the builder ShoppingUIImports.

b. To select the model, click the ellipsis and select
redbook/cs/ui/shopping/ShoppingUIImports.

 Chapter 10. Creating the Go Shopping portlet 555

Figure 10-58 The Imported Model - ShoppingUIImports

2. From the builder palette, select the Imported Page builder and click OK to
add it to the ShoppingCart model. Set the following values for the Imported
Page builder:

Name: cartLayoutPage
Page to Import: Click the ellipsis button and select

/redbook/cs/html/CartLayout.html HTML.

c. Click OK and save the model.

Figure 10-59 The ImportedPage - cartLayoutPage

3. From the builder palette, select the Image builder and click OK to add it to
the Shoppingcart model. Set the following values for the Imported Page
builder:

Name: cartImage
Page Location: Relative to Named Tag

556 Portal Application Development Using WebSphere Portlet Factory

Page: cartLayoutPage
Tag: OrderInformation
Placement: After
New Tag Name: cartImage
Image Source: Click the ellipsis button and select

/redbook/cs/images/cart.gif

Click OK and save the model.

Figure 10-60 The Image Builder -cartImage

4. From the builder palette, select the Data Page builder and click OK to add it
to the ShoppingCart model. Set the following values for the Data Page
builder:

Name: OrderItems
Variable: Click the ellipsis button and select

Variables/varNewOrderItems
Page in Model: cartLayoutPage
Page Type: Infer from HTML
Make UI from Data: Selected
Location for New Tags: OrderDetails
HTML Template File: Click the ellipsis button and select

/factory/html_templates/gridtable.html
Generate Labels: Selected

Leave remaining sections as they are.

 Chapter 10. Creating the Go Shopping portlet 557

Click OK and save the model.

Figure 10-61 The Data Page - OrderItems

5. From the builder palette, select the Data Column Modifier builder and click
OK to add it to the ShoppingCart model. Set the following values for the Data
Column Modifier builder:

Name: dataColumnModifierOrderItems
Container Field: Click the ellipsis button and select

[cartLayoutPage]OrderItems/ITEMS/ITEM
Manage Columns: Selected

Modify the Status and Column Sort Type selections
for the columns named in Table 10-1 and
Table 10-2.

Figure 10-62 DataColumnModifier builder - dataColumnModifierOrderItems

558 Portal Application Development Using WebSphere Portlet Factory

Table 10-1 Column Sort Type selections for specified column names

Table 10-2 Column Status selections for specified column names

After making the changes to the columns, the table should look like the table
shown in Figure 10-62.

Under the section “Settings to control behavior when the table is empty” set
the followings values:

Empty Data Action: Hide entire table and optionally display a
message

Empty Data Message: To purchase items, drag and drop products to
the cart.

Figure 10-63 The DataColumnModifier setting

Column Name Column Sort Type

NAME Case Insensitive String

DESCRIPTION Case Insensitive String

UNIT_PRICE Number

QUANTITY Number

ORDER_PRICE Number

Tip: You can reorder the fields as they appear on the page by dragging
and dropping the rows in the table (below Manage Columns). Type directly
in cells to set properties.

Column Name Status

PRODUCT_ID Hide

THUMBNAIL Hide

SOURCE Hide

 Chapter 10. Creating the Go Shopping portlet 559

6. From the builder palette, select the Dojo Drop Target builder and click OK
to add it to the ShoppingCart model. Set the following values for the Dojo
Drop Target builder:

Name: dropTarget
Page: cartLayoutPage
Tag: cartImage
Drop Action: addProduct
Drop Type: Leave the input as it is.

Figure 10-64 The Dojo Drop Target builder

7. From the builder palette, select the Action List builder and click OK to add it
to the ShoppingCart model. Set the following values for the Action List
builder:

Name: addProduct
Actions: Click the ellipsis button and select the following

actions:

i. ProductServiceGetProductWithArgs(${Arguments/productID})

ii. UIOperations.addItem(${Variables/varNewOrderItems/ITEMS},${DataS
ervices/ProductService/getProduct/results/Products/Product})

iii. cartLayoutPage

Note: We get an error in the IDE because we have input a nonexistent
drop action addProduct. Disregard this for the moment; we will create an
action addProduct shortly.

560 Portal Application Development Using WebSphere Portlet Factory

Figure 10-65 The ActionList builder input setting

a. For action i, choose ProductServiceGetProductWithArgs and click OK.
In the String field of the Define Method Call Arguments dialog click the
ellipsis button and select ${Arguments/productID}.

Figure 10-66 The ActionList builder input setting

Figure 10-67 Selecting the argument reference

 Chapter 10. Creating the Go Shopping portlet 561

b. For action ii, select UIOperations → addItem and click OK.

Figure 10-68 The ActionList builder setting

You are presented with a dialog for setting the method call arguments as
shown in Figure 10-68.

For the first argument, click the ellipsis button and select
${Variables/varNewOrderItems/ITEMS}

Figure 10-69 The ActionList builder setting reference

562 Portal Application Development Using WebSphere Portlet Factory

For the second argument, click the ellipsis button and select
${DataServices/ProductService/getProduct/results/Products/Product}

Figure 10-70 The ActionList builder setting

c. For action iii, click the ellipsis button and select cartLayoutPage.

Figure 10-71 The ActionList builder setting

8. From the builder palette, select the Dojo Inline Edit builder and click OK to
add it to the ShoppingCart model.

a. Set the following values for the Dojo Inline Edit builder:

Name: editQuantity
Fields: Click the ellipsis and select

[cartLayoutPage]OrderItems/ITEMS/ITEM/QUANTITY

 Chapter 10. Creating the Go Shopping portlet 563

Figure 10-72 The Dojo Inline Edit builder input setting

b. Click the Submit Form check box.

Figure 10-73 The Dojo Inline Edit builder input setting

c. Action: Click the ellipsis button and select updateQuantity.

Figure 10-74 The Dojo Inline Edit Action input setting

d. Leave the rest of the sections in the builder as they are.

e. Click OK and save the model.

564 Portal Application Development Using WebSphere Portlet Factory

9. From the builder palette, select the Action List builder and click OK to add it
to the ShoppingPage model.

a. Set the following values for the Action List builder:

Name: updateQuantity
Actions: Click the ellipsis button and select

UIOperations.updateQuantity(${Variables/varNewOrderItems/ITEMS})

Figure 10-75 The Action List builder input setting

b. Select the updateQuantity method under Methods and click OK. The
dialog box for setting the method call arguments is returned.

Figure 10-76 The ActionList builder input setting

c. Click the ellipsis button and select
${Variables/varNewOrderItems/ITEMS}.

 Chapter 10. Creating the Go Shopping portlet 565

Figure 10-77 The ActionList builder input setting

d. Click the ellipsis button and select cartLayoutPage.

Figure 10-78 The ActionList builder input setting

e. Click OK and save the model.

10.From the builder palette, select the Action List builder and click OK to add it
to the ShoppingPage model. Set the following values for the Action List
builder:

Name: alEmptyCart
Actions: Click the ellipsis button and make the following entries and

selections.

a. Select Special → Conditional → Assignment.

566 Portal Application Development Using WebSphere Portlet Factory

Figure 10-79 The ActionList builder action setting input

b. Click OK. A dialog box is returned.

Figure 10-80

c. Click the ellipsis button by the Target field and select
Variables/varNewOrderItems.

 Chapter 10. Creating the Go Shopping portlet 567

Figure 10-81 The ActionList builder action input setting

d. For the source, type <ITEMS></ITEMS>.

Figure 10-82 The ActionList builder action input setting

e. Click the ellipsis button. Select Special → Conditional → Assignment.

Figure 10-83 The ActionList builder action input setting

f. Click OK. A dialog box is returned.

568 Portal Application Development Using WebSphere Portlet Factory

Figure 10-84 The ActionList builder action input setting

g. For Target, click the ellipsis button and select Variables/varNewOrder.

h. For the source, type <Order></Order>.

i. Click the ellipsis button and select cartLayoutPage.

Figure 10-85 The ActionList builder input setting

 Chapter 10. Creating the Go Shopping portlet 569

Figure 10-86 The ActionList builder alEmptyCart

11.From the builder palette, select the Button builder and click OK to add it to
the ShoppingPage model. Set the following values for the Button builder:

Name: buttonEmptyCart
Page: cartlayoutPage
Tag: cartImage
Placement: After
New Tag Name: emptyCartImage
Label: Empty Cart
Action Type: Submit form and invoke action
Action: alEmptyCart

Click OK and save the model.

Note: We get an error in the IDE because we are tying the button builder
action input to the nonexistent action alEmptyCart. Disregard this for the
moment; we will create the action alEmptyCart shortly.

570 Portal Application Development Using WebSphere Portlet Factory

Figure 10-87 The Button Builder Input settings

12.From the builder palette, select the Event Handler builder and click OK to
add it to the ShoppingPage model. Set the following values for the Event
Handler builder:

Name: processEmptyCart
Event Name: evtEmptyCart
Handler Type: Use existing action
Action: alEmptyCart

Figure 10-88 The Event Handler input setting

Note: We get an error in the IDE because of tying the event handler with a
nonexistent action alEmptyCart. For the moment we ignore this because
we will be creating the action shortly.

 Chapter 10. Creating the Go Shopping portlet 571

13.From the builder palette, select the Action List builder and click OK to add it
to the ShoppingPage model. Set the following values for the Action List
builder:

Name: alEmptyCart
Actions: Click the ellipsis button and make the following entries and

selections.

a. Select Special → Conditional → Assignment

Figure 10-89 The ActionList builder action setting input

b. Click OK. A dialog box is returned.

Figure 10-90 The ActionList builder action setting input

c. Click the ellipsis button next to the Target field and select
Variables/varNewOrderItems.

572 Portal Application Development Using WebSphere Portlet Factory

Figure 10-91 The ActionList builder action input setting

d. For the source, type <ITEMS></ITEMS>.

Figure 10-92 The ActionList builder action input setting

e. Click the ellipsis and select Special → Conditional → Assignment.

Figure 10-93 The ActionList builder action input setting

f. Click OK. A dialog box is returned.

 Chapter 10. Creating the Go Shopping portlet 573

Figure 10-94 The ActionList builder action input setting

g. For Target, click the ellipsis button and select Variables/varNewOrder.

h. For the source, type <Order></Order>.

i. Click the ellipsis button and select cartLayoutPage.

Figure 10-95 The ActionList builder input setting

574 Portal Application Development Using WebSphere Portlet Factory

Figure 10-96 The ActionList builder alEmptyCart

10.6.2 Shopping Product Catalog model

In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by doing the following:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

Figure 10-97 Creating a new model -ShoppingProductCatalog

 Chapter 10. Creating the Go Shopping portlet 575

2. In the Choose Project window, select RedbookCS as the project and click
Next.

3. In the Model Type field of the Select Model window, select Factory Starter
Models → Empty and click Next.

Figure 10-98 The Empty Factory Starter Model

� In the Save New Model window, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/shopping as
the folder and ShoppingProductCatalog as the model name.

576 Portal Application Development Using WebSphere Portlet Factory

Figure 10-99 Saving the ShoppingProductCatalog model

Importing the ShoppingUIImports model
Now that we have an empty ShoppingProductCatalog.model, the first thing we
will do is import a “ShoppingUIImports” model.

1. From the builder palette, select the Imported Model builder and click OK to
add it to the ShoppingProductCatalog model. Set the following values for the
Imported Model builder:

Name: ShoppingUIImports
Model: redbook/cs/ui/shopping/ShoppingUIImports

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 577

Figure 10-100 The Imported Model builder

2. From the builder palette, select the Page builder and click OK to add it to the
ShoppingProductCatalog model. Set the following values for the page builder

Name: pageProductCatalog
Page Contents (HTML):Copy and paste the HTML code fro m

Example 10-9b into the box.

Example 10-9

<html>
 <body>
 <!-- As a best practice, change the form name to a unique name -->
 <form name="ITSO_REDBOOK_FORM_ProductCatalog" method="post">
 <div align="center">

 </div>
 </form>
 </body>
</html>

Click OK and save the model.

3. From the builder palette, select the Data Page builder and click OK to add it
to the ShoppingProductCatalog model. Set the following values for the Data
Page builder:

Name: datapageProducts
Variable: Variables/productPagingData
Page in Model: pageProductCatalog
Page Type: No need to change this input.

In the Create Element Settings section:

578 Portal Application Development Using WebSphere Portlet Factory

Location for New Tags: ProductCatalog

The rest of the builder inputs are left unchanged.

Figure 10-101 The Data Page builder - dataPageProducts

4. From the builder palette, select the Dojo Drag Source builder and click OK
to add it to the ShoppingProductCatalog model. Set the following values for
the Dojo Drag Source builder:

Name: dragSource
Page: productPageCatalog
Tag: THUMBNAIL

Note: We get an error in the IDE because of tying the builder variable input
to nonexistent variable Variables/productPagingData. Ignore this problem
for now; we will create a builder (Paging Assistant) that will create this
variable shortly.

Important: Note the variable name input in the data page builder. It is
Variables/productPagingData. We mentioned that we are going to use
paging assistant to helping with the pagination functionality. For now we
assume the name of the paging assistant is productPaging, and the
variable that gets automatically created would be productPagingData (note
the suffix Data)

 Chapter 10. Creating the Go Shopping portlet 579

Drag Source Data: Click the ellipsis and select
${Variables/ProductLoopVar/Product/ID}

Figure 10-102 The Dojo Drag Source builder - dragSource

Drag Type: Leave the input at its default value.

Click OK and save the model.

Figure 10-103 The Dojo Drag Source

5. From the builder palette, select the Paging Assistant builder and click OK to
add it to the ShoppingPage model. Set the following values for the Paging
Assistant builder:

Name: productPaging
Source Data type: Varibale
Source Data: ProductServiceGetProductsResults

580 Portal Application Development Using WebSphere Portlet Factory

Page Size: 5

Leave the rest of the builder inputs as they are.

Figure 10-104 The Paging Assistant builder

6. From the builder palette, select the Paging Buttons builder and click OK to
add it to the ShoppingProductCatalog model. Set the following values for the
Paging Buttons builder:

Name: pagingbuttonsProducts
Location Technique: Relative to Named Tag
Page: pageProductCatalog
Tag: Table
Placement: Table-Wrap-Below
New Tag Name: paging_buttons
Assistant Name: productPaging

Leave the rest of the builder inputs as they are.

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 581

Figure 10-105 The Paging Buttons builder

7. From the builder palette, select the Image builder and click OK to add it to
the ShoppingProductCatalog model. Set the following values for the Image
builder:

Name: productThumb
Page: pageProductCatalog
Tag: THUMBNAIL
Image Source: ${Variables/ProductLoopVar/Product/THUMBNAIL}

Click OK and save the model.

582 Portal Application Development Using WebSphere Portlet Factory

Figure 10-106 The Image builder input

8. From the builder palette, select the Highlighter builder and click OK to add it
to the ShoppingProductCatalog model. Set the following values for the
Highlighter builder:

Name: highlightRows
Filed Selector Tool: Select by Name
Fields: [pageProductCatalog]datapageProducts/Products/Product
How to Highlight: Change element color
Color: LightBlue

Click OK and save the model.

Figure 10-107 The Highlighter builder -highlightRows

 Chapter 10. Creating the Go Shopping portlet 583

10.7 Order Page model

In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by doing the following:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

Figure 10-108 The new model creation

2. In the Choose Project window, select the RedbookCS as the project and click
Next.

3. In the Model Type field of the Select Model window, select Factory Starter
Models → Empty and then click Next.

584 Portal Application Development Using WebSphere Portlet Factory

Figure 10-109 The Empty Factory Starter model

4. In the Save New Model window, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/shopping as
the folder and OrderPage as the model name.

 Chapter 10. Creating the Go Shopping portlet 585

Figure 10-110 Saving the model OrderPage

Importing the ShoppingUIImports model
Now that we have an empty OrderPage.model, we will import a
“ShoppingUIImports” model.

1. From the builder palette, select the Imported Model builder and click OK to
add it to the OrderPage model. Set the following values for the Imported
Model builder:

Name: ShoppingUIImports
Model: redbook/cs/ui/shopping/ShoppingUIImports

Leave the rest of the builder inputs as they are.

Click OK and save the model.

586 Portal Application Development Using WebSphere Portlet Factory

Figure 10-111 The Importetd Model builder

2. From the builder palette, select the Input Form builder and click OK to add it
to the OrderPage model. Set the following values for the Input Form builder:

Name: shoppingDetails
Input Submit Operation: noop
Input Next Action: noop
Input Variable: Variables/varNewOrder/Order
Input Submit Text: Next

Click OK and save the model.

Figure 10-112 The Input Form builder inputs.

 Chapter 10. Creating the Go Shopping portlet 587

3. From the builder palette, select the Action List builder and click OK to add it
to the OrderPage model. Set the following values for the Action List builder:

Name: noop
Actions: SystemOut!SubmitOpThatDoesNothing

Figure 10-113 The ActionList builder input

Click OK. In the dialog box, type SubmitOpThatDoesNothing.

Figure 10-114 The ActionList builder input

Click OK and save the model.

588 Portal Application Development Using WebSphere Portlet Factory

Figure 10-115 The ActionList builder

4. From the builder palette, select the Button builder and click OK to add it to
the OrderPage model. Set the following values for the Button builder:

Name: next
Page: shoppingDetails_InputPage
Tag: submit_button
Label: Next >
Action Type: Submit form and invoke action
Action: NextAction

Leave the rest of the builder inputs as they are.

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 589

Figure 10-116 The Button builder

5. From the builder palette, select the Button builder and click OK to add it to
the OrderPage model. Set the following values for the Button builder:

Name: back
Location Technique: shoppingDetails_InputPage
Tag: submit_button
Placement: Before
New Tag Name: back
Label: < Back
Action Type: Submit form and invoke action
Action: firenavigateBack

Leave the rest of the builder inputs as they are.

Click OK and save the model.

Note: We get an error in the IDE because of tying the button to nonexistent
action NextAction. For the moment we can ignore this error because we
will be creating the action NextAction shortly.

590 Portal Application Development Using WebSphere Portlet Factory

Figure 10-117 The Button Builder

6. From the builder palette, select the Action List builder and click OK to add it
to the OrderPage model. Set the following values for the Action List builder:

Name: NextAction
Actions: Click the ellipsis button and make the following

entries and selections:

Assignment!Variables/varCustomerID=${Inputs/CUSTOMER_ID}

a. Click the ellipsis and select Assignment.

Figure 10-118 The ActionList builder action input

b. Click OK and set the following values for the Target and Source:

Target: Variables/varCustomerID
Source: ${Inputs/CUSTOMER_ID}

 Chapter 10. Creating the Go Shopping portlet 591

Figure 10-119 The ActionList builder action setting

c. Click the ellipsis and select the action firenavigateNext.

Click OK and save the model.

Figure 10-120 The ActionList builder input

7. From the builder palette, select the Dojo Enable builder and click OK to add
it to the OrderPage model. Set the following values for the Dojo Enable
builder:

Name: dojoEnable
Select Page: shoppingDetails_InputPage
Requires Package List: Under the Name column select

dojo.widget.Editor2 and
dojo.widget.ColorPalette

592 Portal Application Development Using WebSphere Portlet Factory

Figure 10-121 The Dojo Enable builder input

8. From the builder palette, select the Text Area builder and click OK to add it
to the OrderPage model. Set the following values for the Text Area builder:

Name: comments
Page: shoppingDetails_InputPage
Tag: COMMENTS

Click OK and save the model.

Figure 10-122 The TextArea builder input

 Chapter 10. Creating the Go Shopping portlet 593

9. From the builder palette, select the Attribute Setter builder and click OK to
add it to the OrderPage model. Set the following values for the Attribute
Setter builder:

Name: comments
Page: shoppingDetails_InputPage
Tag: COMMENTS
Attribute List: Click the columns and create the following

name/value pairs:
Name: dojoType Value: Editor2
Name: minRows Value: 50

Overwrite Rule: Append new value
Value-less Attributes: Leave as is.

Click OK and save the model.

Figure 10-123 The Attribute Setter

10.8 Confirmation model

In the WebSphere Portlet Factory Designer, create a new empty model in the
RedbookCS project by doing the following:

1. Select File → New → WebSphere Portlet Factory Model. This will launch
the model creation wizard.

594 Portal Application Development Using WebSphere Portlet Factory

Figure 10-124 The new model creation

2. In the Choose Project window, select RedbookCS as the project and click
Next.

3. In the Model Type field of the Select Model window, select Factory Starter
Models → Empty and click Next.

 Chapter 10. Creating the Go Shopping portlet 595

Figure 10-125 The Empty Factory Starter Model

4. In the Save New Model window, select
RedbookCS/WebContent/WEB-INF/models/redbook/cs/ui/shopping as
the folder and ConfirmationPage as the model name.

596 Portal Application Development Using WebSphere Portlet Factory

Figure 10-126 Saving the confirmation model

Importing the ShoppingUIImports model

Now that we have an empty ConfirmationPage.model, we will import a
“ShoppingUIImports” model.

1. From the builder palette, select the Imported Model builder and click OK to
add it to the ConfirmationPage model. Set the following values for the
Imported Model builder:

Name: ShoppingUIImports
Model: redbook/cs/ui/shopping/ShoppingUIImports

2. Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 597

Figure 10-127 The Imported Model builder -ShoppingUIImports

Creating the base HTML page: ConfirmationPageLayout
Create a base HTML page, ConfirmationPageLayout, which will host static
content and named Tags that will be used as anchors in our UI model for
inserting dynamic content structures and other page elements such as buttons,
images, and so forth.

1. Do the following to create the base HTML files:

a. Click File → New → Other to launch the wizard.

b. Select General → File and click Next.

c. Type or select the parent folder
RedbookCS/WebContent/redbook/cs/html, enter the file name as
ConfirmationPageLayout.html and click Finish to create an empty HTML
file.

598 Portal Application Development Using WebSphere Portlet Factory

Figure 10-128 ConfirmationPageLayout HTML file creation

d. Right-click the newly created ConfirmationPageLayout.html file and select
Open With → Text Editor. This will allow you to edit the file and create a
basic layout of the CartLayout page. Copy and paste the HTML from
Example 10-10 into this file.

Example 10-10

<HTML>
 <BODY>
 <FORM name="ITSO_REDBOOK_FORM_ConfirmationLayout" method="post">
 <DIV align="left"> </DIV>

 <TABLE>
 <TR>
 <TD colspan="3" align="left" valign="top">

 </TD>
 </TR>
 <TR>

 Chapter 10. Creating the Go Shopping portlet 599

 <TD align="left" valign="top">Order Information:
<SPAN
name="row2left"></TD>
 <TD align="left" valign="top"></TD>
 </TR>

 <TR>
 <TD colspan="2" align="left" valign="top">

Order Items:

 </TD>
 </TR>
 <TR>

 <TD align="left" valign="top">

Shipping Details:
<SPAN
name="row4left"></TD>
 <TD align="left" valign="top"></TD>
 </TR>
 <TR>
 <TD align="center" valign="top"></TD>
 <TD align="center" valign="top"></TD>
 </TR>

 </TABLE>

 </FORM>
 </BODY>
</HTML>

e. Save and close the ConfirmationPageLayout.html.

2. From the builder palette, select the Imported Page builder and click OK to
add it to the ConfirmationPage model. Set the following values for the
Imported Page builder:

Name: pageConfirmation
Page to Import: /redbook/cs/html/ConfirmationPageLayout.html

Click OK and save the model.

600 Portal Application Development Using WebSphere Portlet Factory

Figure 10-129 The Imported Page

3. From the builder palette, select the Data Page builder and click OK to add it
to the ConfirmationPage model.

a. Set the following values for the Data Page builder:

Name: datapageOrder
Variable: Variables/varNewOrder/Order
Page In Model: pageConfirmation
Page Type: Infer from HTML

b. Created Element Settings:

Make UI from Data: Checked.
Location for New Tags:row2left.
HTML Template File: /factory/html_templates/gridtable.html
Generate Labels: Checked.

c. Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 601

Figure 10-130 Data Page builder

4. From the builder palette, select the Data Column Modifier builder and click
OK to add it to the ConfirmationPage model. Set the following values for the
Data Column Modifier builder:

Name: datacolumnmodifierOrder
Container Field: [pageConfirmation]datapageOrder/Order
Manage Columns: Change the status of the following Column Names:

STATUS: Hide
DATE_SHIPPED: Hide

Figure 10-131 The Data Column Modifier Manage Columns

Click OK and save the model.

602 Portal Application Development Using WebSphere Portlet Factory

Figure 10-132 The Data Column Modifier Container Field Setting

5. From the builder palette, select the Data Page builder and click OK to add it
to the ConfirmationPage model.

a. Set the following values for the Data Page builder:

Name: dpOrderItems
Variable: Variables/varNewOrderItems/ITEMS
Page in Model: pageConfirmation
Page Type: Infer from HTML

b. Created Element Settings:

Make UI from Data: Checked
Location for New Tags: row3
HTML Template File: /factory/html_templates/gridtable.html
Generate Labels: Checked

c. Click OK and save the model.

Figure 10-133 The Data Page builder

 Chapter 10. Creating the Go Shopping portlet 603

6. From the builder palette, select the Data Column Modifier builder and click
OK to add it to the ConfirmationPage model. Set the following values for the
Data Column Modifier builder:

Name: dcmOrderItems
Container Field: [pageConfirmation]dpOrderItems/ITEMS/ITEM
Manage Columns: Change the Column Sort Type of the following

Column Names:
PRODUCT_ID Case Insensitive String
NAME Case Insensitive String
DESCRIPTION Case Insensitive String
THUMBNAIL Not Sortable
UNIT_PRICE Number
QUANTITY Number
ORDER_PRICE Number
SOURCE Case Insensitive String

Figure 10-134 The Data Column Modifier

7. From the builder palette, select the Data Page builder and click OK to add it
to the ConfirmationPage model.

a. Set the following values for the Data Page builder:

Name: datapageShippingAddress
Variable: DataServices/CustomerService/getCustomer/results
Page in Model: pageConfirmation

b. Created Element Settings:

Make UI from Data: Checked
Location for New Tags: row4left
HTML Template File: /factory/html_templates/gridtable.html
Generate Labels: Checked

604 Portal Application Development Using WebSphere Portlet Factory

c. Click OK and save the model.

Figure 10-135 The Data Page builder

8. From the builder palette, select the Data Column Modifier builder and click
OK to add it to the ConfirmationPage model. Set the following values for the
Data Column Modifier builder:

Name: datacolumnmodifierShippingAddress
Container Field: [pageConfirmation]datapageShippingAddress/Customer
Manage Columns: Set the Status of the following Column Names:

ID Hide
Customer_Name Do not Change
ADDRESS Do not Change
CITY Do not Change
STATE Do not Change
ZIP Do not Change
PHONE Hide
FAX Hide
CONTACT Hide
EMAIL Hide
IMAGE Hide
PIN Hide

Set the Column Heading values of the following
Column Names:

Customer_Name Name
ADDRESS Address

 Chapter 10. Creating the Go Shopping portlet 605

CITY City
STATE State
ZIP Zip

Figure 10-136 DataColumn Modifier manage columns

d. Click OK and save the model.

Figure 10-137 The DataColumn Modifier

9. From the builder palette, select the Action List builder and click OK to add it
to the ConfirmationPage model. Set the following values for the Action List
builder:

Name: CommitOrderTransaction
Actions: Click the ellipsis and select the following actions:

a. Assignment!DataServices/OrdersService/createOrderWithItems/inputs=${
MethodCall/UIOperations.createOrder(${Variables/varNewOrder},${Varia
bles/varNewOrderItems})}

Click the ellipsis and select Assignment.

606 Portal Application Development Using WebSphere Portlet Factory

Figure 10-138 The Action List builder input setting

Click OK and set the following values for the Target and Source:

Target: DataServices/OrdersService/createOrderWithItems/inputs
Souce: ${MethodCall/UIOperations.createOrder(${Variables/varNe

wOrder},${Variables/varNewOrderItems})}

Figure 10-139 The Action List builder assignment input

DataServices/OrdersService/createOrderWithItems

fireevtEmptyCart

ThankYou

Click OK and save the model.

Note: We get an error in the IDE because we have entered ThankYou
as an action. For the moment we will ignore this issue; we will be
creating the action shortly.

 Chapter 10. Creating the Go Shopping portlet 607

Figure 10-140 The ActionList builder

10.From the builder palette, select the Button builder and click OK to add it to
the ConfirmationPage model. Set the following values for the Button builder:

Name: Leave this input blank
Page: pageConfirmation
Tag: backButton
Label: < Back
Action Type: Link to an action
Action: firenavigateBack

b. Click OK and save the model.

Figure 10-141 The Button Builder

608 Portal Application Development Using WebSphere Portlet Factory

11.From the builder palette, select the Button builder and click OK to add it to
the ConfirmationPage model. Set the following values for the Button builder:

Name: buttonCommitOrder
Location Technique: Relative to Named Tag
Page: pageConfirmation
Tag: row5left
Placement: After
New Tag Name: buttonCommitOrder
Label: Commit Order
Action Type: Submit form and invoke action
Action: CommitOrderTransaction

Figure 10-142 The Button Builder

Creating the base HTML page: ThankYou
Do the following to create the base HTML files:

1. Click File → New → Other to launch the wizard.

2. Select General → File and click Next.

3. Type or select the parent folder RedbookCS/WebContent/redbook/cs/html,
enter the file name ThankYou.html and click Finish to create an empty HTML
file.

 Chapter 10. Creating the Go Shopping portlet 609

Figure 10-143 The ThankYou.html file

4. Right-click the newly created ThankYou.html file and select Open With →
Text Editor. This will allow you to edit the file and create a basic layout of
ThankYou page. Copy and paste the HTML from Example 10-11 into this file.

Example 10-11

<HTML>
 <BODY>
 <FORM name="ITSO_REDBOOK_FORM_ConfirmPage" method="post">
 <TABLE width="600">
 <TR>
 <TD width="50%" align="center" valign="top">Thank You for ordering !, your
order has been committed to database</TD>
 <TD width="50%" align="center" valign="top"><SPAN
name="right"></TD>
 </TR>
 <TR>
 <TD colspan="2" align="center" valign="top"></TD>
 </TR>

610 Portal Application Development Using WebSphere Portlet Factory

 </TABLE>
 </FORM>

 </BODY>
</HTML>

Save and close the HTML file.

5. From the builder palette, select the Imported Page builder and click OK to
add it to the ConfirmationPage model. Set the following values for the
Imported Page builder:

Name: ThankYou
Page to Import: /redbook/cs/html/ThankYou.html

Click OK and save the model.

Figure 10-144 The Imported Page builder

6. From the builder palette, select the Button builder and click OK to add it to
the ConfirmationPage model. Set the following values for the Button builder:

Name: GotoShopping
Page: ThankYou
Tag: shopButton
Label: Shop
Action Type: Submit form and invoke action
Action: firenaviagenext

Click OK and save the model.

 Chapter 10. Creating the Go Shopping portlet 611

Figure 10-145 The Button builder

10.9 Conclusion

In this chapter, we have illustrated how to use a wizard-based approach to create
the Go Shopping portlet. This chapter has also served as a comprehensive
review of many techniques discussed throughout earlier chapters of the book.

612 Portal Application Development Using WebSphere Portlet Factory

Chapter 11. Production deployment

This chapter describes the production deployment of the portlet WAR generated
either from the WebSphere Portlet Factory Designer or using ANT scripts. Once
the WAR file is generated, we discuss how to deploy it to the Portal Server. We
also discuss how to exclude files from deployed archives. Finally, we mention
several general deployment concepts of which you should be aware.

11

© Copyright IBM Corp. 2008. All rights reserved. 613

11.1 J2EE production deployment WAR
(standalone non-portal applications)

Our J2EE Production Deployment WAR is different from the development WAR.
We exclude a few models and some JSP files that are great development
options, but not so great in production. For this reason, you should build a
Production WAR and manually deploy it to your Application Server.

11.1.1 Building the Production War from the Designer

To build the Production War from the Designer, follow these steps:

1. Right-click your project and select Application Server WAR Build WAR for
a production deployment.

Figure 11-1 Select Application Server WAR

2. Set the path you want the archive to be built to, and click Finish.

Figure 11-2 Set the path

11.1.2 Deploying the production WAR to your application server

Now that you have a production WAR, manually deploy it to your Application
server using the following steps. These instructions assume WebSphere
Application Server 6.0.

1. Launch the WebSphere Administrative Console in a browser and log in. The
URL for a WebSphere Administration Server 6.0 server is
https://hostname:10003/ibm/console

2. Click Applications → Install New Application.

614 Portal Application Development Using WebSphere Portlet Factory

a. Enter the full path to the EAR file.

b. On the page about bindings and mappings, click Next. You should now
see a 5-step process for installing the application.

c. Select Installation Options and click Next.

d. Map virtual hosts for Web modules; click Next.

e. Map modules to servers: Examine the value in the Server column of the
table. By default, the application will be deployed to the server1
application server instance. If you intend to deploy to the
WebSphere_Portal instance, check the box in the Select column, select
the WebSphere_Portal instance in the Clusters and Servers field, and
click Apply. Examine the value in the Server column again to ensure that
the application is to be deployed to the correct server instance. Click Next
to continue.

f. Map security roles to users/groups: By default, the AllAuthenticated
column in the AllAuthenticatedUsers row is checked. Click Next.

g. Summary: Click Finish. Wait for deployment to finish because you have to
save these changes.

3. Configure the application; it needs certain class loading settings before it will
work properly.

a. From the WebSphere Administration Server Admin Console, click
Applications → Enterprise Applications.

b. Find the application and click its name to open the configuration page.

c. Set the classloader mode to Parent Last.

d. Set the WAR class loader policy to Module and check the box to enable
(class) reloading.

e. Click OK, then click Save at the top of the screen. Click Save again to
save these changes to the Master Configuration.

4. Start the application. If the application was deployed to the server1 instance,
it can be started from Applications → Enterprise Applications. If the
application was deployed to the WebSphere_Portal instance, the portal
server must be restarted in order to start the application. Depending upon the
security configuration, you may need the WebSphere Administration Server
Admin (not the WebSphere Portal Server Admin) credentials to stop the
WebSphere Portal Server server.

11.1.3 Portlet production deployment War

Ok, this isn't really a topic! We don't have any tricks up our sleeves when it
comes to the portlet wars we generate. There is only one type of Portlet WAR, at

 Chapter 11. Production deployment 615

least as it relates to deployment. For this reason you can use the same portlet
WAR built during your development process in production.

Build the Portlet WAR with the Designer
1. Right click your project and select Portal Server WAR → Build Portlet War.

The portlet WAR is built to the path you set in your portal deployment
configuration plus installableApps/<PROJECT_NAME>.war.

Figure 11-3 The portlet war is built to the path you set in your portal deployment
configuration

2. If you set the deployment configuration for auto-deployment, your application
will be re-deployed to your development server. If you want to turn off
deployment, adjust your deployment configuration.

Build the Portlet WAR on the command line
1. You need Ant installed and configured on your system to build the production

WAR with the command line. For more information about setting up Ant, visit
http://ant.apache.org/manual/index.html

2. Because our project structure and deployment configuration location is
configurable, you need to set a couple of properties on the command line.
You need to know where your .bowstreet file is relative to the
projectDeploy.xml file, which you can figure out by looking in your project.
You also need to know where your deployment configurations are located.
You can see or change the deployment configuration location by selecting
Window → Preferences → WebSphere Portlet Factory → Deployment.

Figure 11-4 Setting the deployment configuration location

616 Portal Application Development Using WebSphere Portlet Factory

http://ant.apache.org/manual/index.html

3. Now that you have the values you need, you can invoke the build. On the
command line, change directory (cd) to your <PROJECT>/WebContent
directory and execute the portalConfig target in your projectDeploy ant script
with the properties defined previously. For an example, see Figure 11-5.

Figure 11-5 Execute the portalConfig target in your projectDeploy ant script

4. You can build the portalConfig or standAloneConfig via the command line in
this way. Remember, this is invoking your deployment configuration set up in
the development environment, so if you are configured for auto deploy, your
application will be deployed when you call it on the command line. For more
detailed information on building your archives on the command line, refer to
“Deploying from the command line” in the WebSphere Portlet Factory help
system.

11.1.4 Deploying the Portlet WAR to your portal server

Because the Portlet War we generate is good for development or production
environments, we can use our auto-deployment options. We assume, however,
that most production environments will not allow auto-deployment, so here we
provide the steps to do it manually.

1. Log into your Portal Admin server. On WebSphere Portal 6.0 the URL is like
this: http://hostname:port/wps/portal. The default port is 100038.

2. Select the Administration option in the Product Links portlet on the right.

Figure 11-6 Product Links portlet

3. Expand Portlet Management on the left, and click Web Modules.

4. Click the Install button in the Manage Web Modules portlet.

5. Browse or type the path to your portlet WAR and click Next. This may take a
little time, depending on how many portlets you have in your WAR.

6. Review the list of Portlet Applications and Portlets in the summary page and
click Finish to deploy the WAR.

Your Portal War is now deployed!

 Chapter 11. Production deployment 617

11.2 Excluding files from your application

You can exclude files from your deployed application by simply editing the
<PROJECT>/WebContent/.excludeFromServer file in your project. Just add a
new line for each exclude with file paths that start at WEB-INF, for example,
WEB-INF/lib/myjar.jar.

� You can exclude entire directories by naming them “nodeploy.” We do not
deploy any file that has nodeploy in its path.

� This is true for both development and production deployment scenarios.

11.3 General deployment concepts

Here are a few general deployment concepts you may be interested in knowing
more about. For more information on these topics and others, refer to the
WebSphere Portlet Factory documentation.

� You may need to perform an automated task before or after your application
has been deployed. You can extend the deployment process by implementing
“pre” or “post” deployment actions. By providing an ant script in a certain
location in the project, you can perform any task that ant or java can do.

� We have a custom ant task that will add a servlet to the web.xml file. Because
our projects deploy to so many target server types, we need to generate
several web.xml files depending on the server. You could create a
pre-deployment task that adds your servlet to the appropriate web.xml files.

� Did you know that the deployment archive we generate is dependant on the
server type? For example, we built an ear file for WebSphere Application
Server development, WAR files for the Portal Server and WAS CE, and
Tomcat just likes us to copy an open directory structure. We have attempted
to insulate you from needing to know too much about the deployment process
of your server, but it’s probably good to know.

618 Portal Application Development Using WebSphere Portlet Factory

Chapter 12. Troubleshooting, debugging,
and error handling

This chapter discusses best practices for troubleshooting a portlet factory
application, triggering debug traces, and handling runtime errors. It also lists
additional online resources where you can obtain the latest release notes and
information about any known issues or limitations.

12

© Copyright IBM Corp. 2008. All rights reserved. 619

12.1 Troubleshooting

In addition to reading this chapter, we recommend that you read through the
“Debugging Web Applications” section of the help installed along with
WebSphere Portlet Factory. That documentation provides information about
debugging, performance tuning, logging and tracing configuration, tracing
specific variables and actions, and debugging the generated code.

To access this from within the help installed with Portlet Factory Designer, select
Eclipse → Help → Contents → IBM WebSphere Portlet Factory Designer →
Working with Portlet Factory → Debugging Web Applications.

12.1.1 Fixing compilation errors at design time

While working with the Method builder in the WebSphere Portlet Factory
Designer, you are adding code that will be inserted into a single Java class file
for the model at generation time. To avoid having to wait until the model is run to
find compilation errors in such generated code, the designer calls the Java
compiler to compile the model’s generated Java class each time a generation
occurs at design time. If there are any compilation errors in the model’s generate
Java class, they will show up as Errors in the Eclipse Problems view for that
model.

Figure 12-1 Problems view

If you double-click the error line in the Problems view, a dialog showing the
details of the compilation error will pop up that looks like Figure 12-2, showing
the compilation errors reported by the Java compiler.

620 Portal Application Development Using WebSphere Portlet Factory

Figure 12-2 Error details

Often the error will be obvious from this dialog and you can open the Method
builder again and fix the code syntax.

If you need more context than that displayed in the dialog, then you can either
open the Java file for the model (note the path is shown in the error dialog), or
click a Method in the WebApp Tree View to see the generated Java methods for
the model.

Another common reason for design time compilation errors with Method builder
usage, is that developers forget to add import statements for classes that they
are referencing from other Java packages. Import statements can be added to
the generated Java class for the model using the Import List input toward the
bottom of the Method builder. You do not need to add a semicolon at the end of
the packages and classes listed in the import list input because one will be added
for you automatically when the import statement is generated from the list.

Figure 12-3 Adding import statements

 Chapter 12. Troubleshooting, debugging, and error handling 621

12.1.2 Diagnosing, resolving, and reporting runtime errors

Even well designed and implemented applications may run into errors at runtime,
so it's a good idea to know where to start looking when something does go wrong
when you run your application for the first time (for example, if another developer
didn't quite have the same idea about the interfaces you are sharing), or at
runtime on deployment servers (for example, if a backend is not available or is
misconfigured).

The first sign that something went wrong is usually an error returned to the
browser following a request to the application. During development, this typically
results in the WebSphere Portlet Factory default error page being returned, with
exception information (click the show details link to see the full stack trace of
exceptions). This default error page should be customized for your application's
look and feel, and to provide only what end users should see (for example,
“Contact an administrator at ...”) before deploying your applications for actual
use. The default error page that is used when an exception is thrown that is not
caught and handled by the application, is a JSP located in your project at:
WebContent/factory/webapp/defaulterror.jsp. If the WPF runtime controller
catches the exception, it sends it to this page as configured with the property
bowstreet.webapp.errorHandler. If a J2EE servlet engine catches an unhandled
exception, it sends it to this page as configured in the WAR's web.xml file within
the <error-page> element.

Be sure to look at the entire stack trace details when investigating an exception,
Often Java (for example, InvocationTargetException when calling methods via
reflection) and application servers wrap the root cause exception in a higher level
exception (for example, ServletException), and you may see multiple stack
traces, with the outer wrapper showing up first, and the root cause exception
being displayed separately or nested within the wrapped exception.

Sometimes, an error and exception reported to a user is actually caused by an
earlier error and exception that occurred on the server. It is a good idea to look at
the error logs for the application itself, and the error and standard output logs for

Tip: If you find yourself having to diagnose syntax errors or debug
complicated Java code using Method builders, then you should consider
moving that code to a Java class built using the Eclipse Java IDE and using
the classes in your models with the Linked Java Object builder. The Eclipse
Java IDE provides a lot more tools and syntax helpers than the Method builder
can provide. The Method builder exists mainly to rapidly develop short
convenience methods that tie actions and pages together, not for manually
developing large, complex Java code.

622 Portal Application Development Using WebSphere Portlet Factory

your application server, for this additional error information. See your application
or portal server administration documentation for log configuration and locations
on those servers. The WebSphere Portlet Factory applications and portlets write
error and diagnostic logs into the deployed WAR's WEB-INF/logs folder. The
event.log file contains exceptions logged by the WPF runtime. The other logs
located in the WEB-INF/logs folder are typically used for debugging and
performance analysis, described in the next section. Be sure to look for all
exceptions in the event log that occurred at and just before when an error was
reported to the browser, because some exceptions are caused by other earlier
exceptions and you may need all of the exception information that contributed to
the problem to determine what is going wrong.

12.2 Debugging

If you run into problems that do not have obvious answers based on investigating
the exceptions as described in the previous section, then your next step may be
to troubleshoot the cause by debugging. As we will discuss, we recommend
using Error Handlers on top-level actions, but not on all actions, and not on
nested model actions, to avoid the processing after error issue.

There are various ways you can debug the runtime of a WPF application,
including using the Eclipse Java debugger to debug LJO or generated Java
methods, printing model variable values and Java variable data to the standard
output stream, and the WPF Debug Tracing facility.

In the following WPF Help pages, you will find information on configuring the
application server and designer for Java debugging, configuring debug levels for
the log4j based logging facility, using the Debug Tracing Builder to trace model
actions and variable values, interpreting the debug tracing files, and debugging
generated Java code.

To access this from within the help installed with Portlet Factory Designer, select
Eclipse → Help → Help Contents → IBM WebSphere Portlet Factory
Designer → Working with Portlet Factory → Debugging Web Applications.

In addition to the general Debug Tracing builder, which allows you to log
information about actions and variable values, some individual builders have
their own advanced inputs to turn on builder-specific tracing. For instance, in the
advanced section of the Web Service Call builder, there is a Logging input, which
when set to All, will log the HTTP headers, request inputs, and SOAP request
and response XML envelopes involved in a web service request, which can help
you track down problems encountered when making a web service call. The
most common cause of web service call failure other than network issues, is
failure to send the correct XML (for example, incorrect namespace associations

 Chapter 12. Troubleshooting, debugging, and error handling 623

in Document style web service XML input documents) such that the web service
cannot figure out which service to invoke based on the XML input being sent.
Using this Web Service Call Logging input and looking at the actual SOAP
envelope being sent is the best way to diagnose such issues.

12.2.1 Debugging back end connectivity issues

Some runtime issues are caused by connectivity or configuration problems with
respect to back end systems such as databases or an IBM Lotus Domino server.
WPF provides some utility JSPs to help you diagnose connectivity problems with
databases and Domino servers, to remove WPF from the equation. The
/factory/util/testDataSourceConnection.jsp page allows you to test JDBC
Datasource access directly, without going through a WPF model or the WPF
runtime, to determine whether a database and datasource are set up correctly.
Often it is not a WPF SQL builder issue at all causing a problem, but rather a
misconfigured JDBC Datasource on the application server itself, that causes DB
connectivity issues. If you have the Lotus Collaboration feature (Domino
Builders) added to your project, then you should also have a
/factory/util/testDominoConnection.jsp page that can be hit directly with a
browser to determine whether Domino is correctly configured to allow incoming
HTTP and DIIOP requests. This is a useful diagnostic tool to remove the WPF
runtime and builders from the equation when encountering Domino connectivity
issues from your web application and portlets.

12.3 Error handling

WebSphere Portlet Factory provides a nifty mechanism to implement runtime
error handling via the Error Handler Builder. This builder can be used to catch
and handle errors pertaining to any model actions such as a Page, Method, or an
Action List in the model. This pattern is very similar to the standard Java
language Try/Catch block error handling mechanism.

The error handler builder can be placed in any model and the corresponding “try”
and “catch” actions can be specified as builder inputs. The Try Action is the
action we want the Error Handler builder to monitor and the Catch Action is the
one we want to initiate if an exception occurs.

624 Portal Application Development Using WebSphere Portlet Factory

In order to demonstrate the use of this builder in our application, we will add an
Error Handler builder to one of the models in the CSA - Shopping portlet that we
created in Chapter 10. The ShoppingProductCatalog.model in the CSA
Shopping Portlet is responsible for displaying a list of products in the catalog that
can be bought via the shopping portlet.

Figure 12-4 CSA - Shopping Portlet

Attention: While the error handler builder can be placed in any model, we
strongly recommend that you typically only want to target the Error Handler
builder at top-level portlet model actions. You can get yourself into trouble if
you try adding them to lower-level nested actions because the higher-level
actions may then not know that an error has occurred and will continue
processing as if nothing bad has happened.

 Chapter 12. Troubleshooting, debugging, and error handling 625

We will utilize the Error Handler builder to catch two separate error handing
scenarios:

� The first is a very specific scenario where there is a failure to retrieve data (list
of products for sale) from the Product DB Provider model. This could be
caused if the database server is not running, or is inaccessible on the
network, or is unavailable to the provider models for whatever other reason.
We monitor the ProductServiceGetProducts method that is suppose to get a
list of all the products from the database. In the event of a failure to run this
method, we will display a static page with some informative message.

� The second is a more generic “catch all” scenario where we catch all the
unhandled exceptions in the model. In this case also, we will display a
separate static error page informing the user that something bad happened.

Do the following to implement these two error handling scenarios:

1. Open the redbook/cs/ui/shopping/ShoppingProductCatalog.model in
WebSphere Portlet Factory.

2. From the builder palette, add a Page builder to the model. Configure it with
the following inputs:

– Name: productServiceErrorPage

– Page Contents (HTML):

<html>
<body>

<div align="center">
Unable to access products database.

</div>
</body>

</html>

3. Click OK and save the model.

4. From the builder palette, add an Error Handler Builder to the model and
configure it with the following inputs:

– Exception: Select Catch exceptions thrown by a specific action

– Try Action: ProductServiceGetProducts

– Catch Action: productServiceErrorPage

626 Portal Application Development Using WebSphere Portlet Factory

Figure 12-5 Error Handler to handle exceptions thrown by Product DB Provider service
operations

5. Click OK and save the model.

6. Repeat these steps to add another static page and another Error Handler
builder for trapping all unhandled exceptions in the model. Add another Page
builder to the model and configure it with the following inputs:

– Name: genericErrorPage

– Page Contents (HTML):

<html>
<body>

<div align="center">
Error occurred while rendering this portlet. Please

contact your system administrator.
</div>

</body>
</html>

7. Add another Error Handler builder to the model and configure with the
following below:

– Exception: Select Catch all unhandled exceptions

– Catch Action: genericErrorPage

 Chapter 12. Troubleshooting, debugging, and error handling 627

Figure 12-6 Generic Error Handler to catch all unhandled exceptions

8. Save and close the model.

9. You can test the error handing functionality that we implemented by simply
shutting down the database server and then rendering the CSA Shopping
portlet. The Shopping Product Catalog data page on the CSA Shopping
portlet would throw an exception while fetching the products from the
database and it would be handled by our Error Handler builder, which would
then display the static productServiceErrorPage with the message Unable to
access products database.

Figure 12-7 CSA - Shopping Portlet showing static error page/message when the
database is not running.

Tip: The best practice in doing error handing is that typically you only want to
target the Error Handler builder at top-level portlet model actions. You can get
yourself into trouble if you try adding them to lower-level nested actions
because the higher-level actions may then not know that an error has
occurred and will continue processing as if nothing bad has happened

628 Portal Application Development Using WebSphere Portlet Factory

12.4 Other troubleshooting information

This section highlights additional on-line resources for current information.

12.4.1 Known limitations and issues

You can find known limitations and issues in the release notes for each WPF
release.

http://www-128.ibm.com/developerworks/websphere/zones/portal/portlet
factory/proddoc.html

It is a good idea to read through the release notes for the WPF release that you
are working with, before starting any development project.

12.4.2 WebSphere Portlet Factory TechNotes

The WebSphere Portlet Factory support and development teams create and
maintain a set of technical notes describing common complex tasks and
common mistakes or issues that developers encounter.

http://www-1.ibm.com/support/search.wss?tc=SSRUWN+SS3LP9&rs=3044&ran
k=8&dc=DB520+D800+D900+DA900+DA800&dtm

Performance
A WebSphere Portlet Factory technote with the title “How can I improve WPF
Performance?” on troubleshooting and improving performance of WPF-based
applications is in the process of being published and should also be available
from the TechNotes URL.

12.4.3 WebSphere Portlet Factory Forums

If you have debugged an issue, checked the release notes and technotes, and
still can't get past a particular problem, then the WebSphere Portlet Factory
forums are a good place to look for discussion threads on similar issues before
resorting to customer support. Try searching for similar issues first, before
posting a question that may have been answered already. If you decide to post a
question about your issue, please be as thorough as possible in describing the
details of the problem scenario, including WPF, Portal and Application Server
versions and fixpack level, and a complete traceback for any exceptions that you

 Chapter 12. Troubleshooting, debugging, and error handling 629

http://www-128.ibm.com/developerworks/websphere/zones/portal/portletfactory/proddoc.html
http://www-1.ibm.com/support/search.wss?tc=SSRUWN+SS3LP9&rs=3044&rank=8&dc=DB520+D800+D900+DA900+DA800&dtm

encountered. There are separate forums for WPF Installation and Configuration,
Best Practices, DB, Web Services, and some of the integration builders.
Choose the forum most appropriate for your scenario when posting questions.

http://www.ibm.com/developerworks/forums/wsdd_forums.jsp

630 Portal Application Development Using WebSphere Portlet Factory

http://www.ibm.com/developerworks/forums/wsdd_forums.jsp

Appendix A. Setting up the environment

In the Customer Self Service Application, several components are required for
the application in this book to run successfully. In this appendix, we describe how
to set up the development (test) environment so that you will be able to
successfully run the sample application described in this book.

A

© Copyright IBM Corp. 2008. All rights reserved. 631

Deploying the Domino database

In the application provided, one of the data sources used is a Domino database.
This database serves out the product details information, which we discuss in
detail later. This database can be found in Domino Products Database directory
with the database name productD.nsf. To ensure that the Domino database is
accessible by the application, execute the following steps.

1. For the database to be viewable by portlet factory, copy the productD.nsf into
your Domino server’s Data directory.

2. Set the server name, user name, and password for the Domino Server found
in the RedbookCS → WebContent → WEB-INF → config →
domino_config → redbook_domino_server.properties file.

3. Verify that the DIIOP is running in Domino by accessing the URL
http://<Domino Server>/diiop_ior.txt. You should see the output shown
in Figure A-1.

Figure A-1 Verifying that DIIOP is running

4. If DIIOP is not running, open the server document in the Domino Directory
(names.nsf). On the Ports → Internet Ports → DIIOP tab, specify the
TCP/IP Port Number for the DIIOP (which should be the same port number
as you specified in the redbook_domino_server.properties file in the previous
step). Also, set TCP/IP Port Status to enabled.

5. To access a database without knowing its file name (as the Portlet Factory
Domino builders do), you must allow browsing over the network. In the Server
document, go to the Internet Protocols → HTTP → R5 Basics tab. Set
“Allow HTTP clients to browse databases” to Yes as shown in Figure A-2.

632 Portal Application Development Using WebSphere Portlet Factory

Figure A-2 Server document details

6. In the Server document, go to the Ports → Internet Ports → Web tab.
Ensure that the authentication settings are set to allow Anonymous
authentication as shown in the next figure.

Figure A-3 Server document web settings

Creating the groups in Portal

In the Customer Self-Service Application, there are two groups of users that can
access the application: the Customers and the Customer Service
Representatives (CSRs). To view how Portlet Factory is able to provide different
privileges and data to different group of users, create the groups and users listed
in Figure A-1. You may assign any passwords for the users created.

 Appendix A. Setting up the environment 633

Table A-1 Groups and users to be created

Customer Self-Service Application details

Importing the application code
The application code for this redbook is available from our web site; and the
instructions for downloading all of the sample code can be found in Appendix G,
“Additional material” on page 693. To run this code, import the code into the
project that you have created.

Figure A-4 Import the Customer Self Service Application into the project

Group Name Users

CSRGroup csr1
csr2
csr3

Customer Group customer1
customer2
customer3

634 Portal Application Development Using WebSphere Portlet Factory

Deploying the portlets
After the project has been imported, build the portlet war again. To deploy the
newly imported portlets of the application, right-click the root folder of your
project and select Build Portlet Factory WAR → Build Portlet WAR as shown.

Figure A-5 Deploy portlet WAR

Creating the application schema and data

By now, you might have noticed that you have been able to run the application
without creating a database at all. The reason for this is that the application has
been running on data stored in XML files. Using XML files, the application is able
to run standalone without the need for a database setup or data migration.
Furthermore, when doing development, using XML files can allow you to modify
the schema locally for testing before committing the changes to your database.

 Appendix A. Setting up the environment 635

The application is also built to run with a standard RDBMS. To run the application
using an RDBMS, execute the following steps. (The following steps were tested
on a DB2 database).

Create the database and tables
1. Create the database CSDB.

2. Run the sql file CSAPP.sql, which is located in the Database Schema
Creation directory.

Migrate the data into the database
In the project that you have imported, there is a data migration utility that imports
the data from the flat file into the database.

1. To use the utility, select RedbookCS → models → redbook → cs → data →
migrate → DataMigration.model.

2. Run and test the model by clicking the Run button. The utility shown in
Figure A-6 will appear.

Figure A-6 Data migration utility

3. Click Migrate All.

4. The data migration will take a few minutes. Upon completion, the window
shown in Figure A-7 will appear.

Figure A-7 Migration successful message

636 Portal Application Development Using WebSphere Portlet Factory

Create the JDBC connection
With the creation of the database, tables, and data completed, we will now create
a JDBC data source in WebSphere Application Server (WAS). The general steps
for creating a data source definition in WAS is as follows:

1. Add J2C authentication data for DB2.

2. Add a JDBC Provider for DB2.

3. Add a data source for the newly created DB2 JDBC provider.

Add J2C authentication data for DB2
1. Log into your WAS Administration Console at:

https://<portal server>:10039/ibm/console

2. Select Global Security → JAAS Configuration from the left navigation
menu.

3. Select JAAS Configuration → J2C Authentication Data from the right
navigation menu under Authentication data.

4. Click the New button to create new J2C authentication data.

5. Enter the DB2 Credentials for your database as shown.

Figure A-8 J2C settings for DB2

6. Click OK. On the following screen, click the Save link at the top of the window
to save your changes.

 Appendix A. Setting up the environment 637

Add a JDBC provider for DB2
1. Select Resources → JDBC Providers from the left navigation menu.

2. The list of JDBC providers will appear on the right. Click New to create a new
JDBC provider for the application.

3. Select the database type, provider type, and implementation type as shown in
Figure A-9.

Figure A-9 Database, provider, and implementation type

4. On the following screen, accept the default inputs and click OK. The list of
JDBC Providers will be displayed.

638 Portal Application Development Using WebSphere Portlet Factory

Figure A-10 JDBC provider settings for DB2

5. Click the newly created JDBC provider; on the following screen, click the Data
Sources link under the Additional Properties section.

6. Click New. Set the JNDI Name to jdbc/csdb. For the authentication alias,
select the J2C authentication data that was created earlier.

 Appendix A. Setting up the environment 639

Figure A-11 Data source settings

Database
Parameters

J2C Authentication
Data

JNDI Name

640 Portal Application Development Using WebSphere Portlet Factory

7. Click OK. On the following screen, click the Save link at the top of the screen
and the Save button on the following screen.

8. To test whether the connection created is valid, check the box next to the data
source and click the Test Connection button. If the connection is valid, a
successful connection message will be displayed as shown Figure A-12.

Figure A-12 Connection successful

Configure the project to use the database as a data source
With the database, data, and data source created, the application can now be
configured to use the database as a data source. Rather than changing the data
sources of the models, the configuration has been changed.

1. Open the RedbookCS → WebContent → WEB-INF → config →
service_mappings → mappings.xml file.

2. Uncomment the Use Production Data Services (DB, Domino and WS) section
and comment the Use Test Data Services (File) section as shown.

Example A-1 Mapping.xml file

<!--
 Use Production Data Services (DB, Domino and WS)
-->
 <ForService name="redbook/cs/data/db/CustomerDBProvider">
 <UseService name="redbook/cs/data/db/CustomerDBProvider" />
 </ForService>
 <ForService name="redbook/cs/data/db/OrderDBProvider">
 <UseService name="redbook/cs/data/db/OrderDBProvider" />

Test Connection

Connection
Successful
Message

 Appendix A. Setting up the environment 641

 </ForService>
 <ForService name="redbook/cs/data/db/ProductDBProvider">
 <UseService name="redbook/cs/data/db/ProductDBProvider" />
 </ForService>
 <ForService name="redbook/cs/data/ProductDataProvider">
 <UseService name="redbook/cs/data/ProductDataProvider" />
 </ForService>

 <!--
 Use Test Data Services (File)

 <ForService name="redbook/cs/data/db/CustomerDBProvider">
 <UseService name="redbook/cs/data/file/CustomerFileProvider" />

 </ForService>
 <ForService name="redbook/cs/data/db/OrderDBProvider">
 <UseService name="redbook/cs/data/file/OrderFileProvider" />
 </ForService>
 <ForService name="redbook/cs/data/db/ProductDBProvider">

 <UseService name="redbook/cs/data/file/ProductFileProvider" />
 </ForService>
 <ForService name="redbook/cs/data/ProductDataProvider">

 <UseService name="redbook/cs/data/file/ProductFileProvider" />
 </ForService>-->

Upon editing the mapping.xml file, the application is now ready to be run with the
Domino database, DB2 Database, and Web Service as the backend data
services.

Import and deploy the web service

When displaying the product tooltip, the application actually uses information
from both the Domino database and a web service, depending on the product
selected. To deploy the web service for the application, perform the following
steps.

1. Create a project as shown in Chapter 3 called RedbookCSProductsWS.

2. Click Yes to “Deploy Your Project Now” when prompted.

3. After the project has been deployed, right-click the project and select
Import → WebSphere Portlet Factory Archive.

4. Click the Browse button and select the RedbookCSProductWS.zip file.

5. Refresh and save the project.

The web service is now ready to be called by the application.

642 Portal Application Development Using WebSphere Portlet Factory

Import and deploy the project

With the databases and services set up, the project can now be set up. To
deploy the code, create a project as shown in Chapter 3. Once the project is
created, perform the following steps:

1. Right-click the project and select Import → WebSphere Portlet Factory
Archive.

2. Click the Browse button and select the
ITSO_CustomerSelfServiceApplication.zip file.

3. Refresh your project.

4. Right-click the project and select Build Portlet Factory WAR → Build
Portlet War to deploy the portlets to the portal.

Installing the application theme

Included in the ITSO Theme for WebSphere Portal 6.0 directory of the
downloaded files is a theme specifically made for this book. If you would like to
use the theme for the application, perform the following steps:

1. Create a new directory, such as “ITSO,” in the <WebSphere Profile
Root>\installedApps\<node name>\wps.ear\themes\html

2. Unzip the Express_ITSO.zip files into the newly created directory (for
example, WebSphere Profile Root>\installedapps\<node
name>\wps.ear\themes\html\ITSO>)

3. Log in to the portal.

4. Select Administration → Portal User Interface → Themes and Skins.

5. Click the Add New Theme button. Enter ITSO for its name and provide the
directory name used in Step 1 for the theme directory name.

With the theme created, the pages and portlets for the application can now be
deployed.

Creating the pages for the CSA application

To complete running and deploying the application, create the labels/pages and
add the portlets to the respective pages as identified in Table A-2 to run the
application.

 Appendix A. Setting up the environment 643

Table A-2 Labels, Pages, and Portlets to Add

Page/Label/
Portlet

Location Name

Label Content Root → Home Customer Self Service
Application

(Set the Theme to the ITSO
theme created previously
and the Navigation Type to
DoubleTopNav)

Page Content Root → Home → Customer
Self Service Application

Customer Information

Page Content Root → Home → Customer
Self Service Application

Orders

Page Content Root → Home → Customer
Self Service Application

Shopping

Portlet Content Root → Home → Customer
Self Service Application →
Customer Information

CSA - Customer Information

Portlet Content Root → Home → Customer
Self Service Application → Orders

CSA - Order List

Portlet Content Root → Home → Customer
Self Service Application → Orders

CSA - Order Details

Portlet Content Root → Home → Customer
Self Service Application →
Shopping

CSA - Shopping Portlet

644 Portal Application Development Using WebSphere Portlet Factory

Appendix B. Creating a Web service
using WebSphere Portlet
Factory

WebSphere Portlet Factory offers the possibility of creating a Web Service
without adding additional development efforts. Any Data Provider in a project can
be exposed as a Web Service by creating the WSDL for any Service Definition
that contains. This action is possible because WebSphere Portlet Factory uses a
SOA architecture for the definition of Data Services: service definition,
operations, and input/output messages.

In this appendix we demonstrate how easy it is to create a Web Service using
WebSphere Portlet Factory, and deploy it, and how to access the WSDL to
invoke the service from external applications.

We illustrate the concept using our sample application, ITSO Renovations. It is
outside of the scope of the main application because it is an additional
WebSphere Portlet Factory project to hold the external web service that is
accessed by ITSO Renovations.

B

© Copyright IBM Corp. 2008. All rights reserved. 645

WebSphere Portlet Factory exposes Data Services
as external Web Services

Data Services in WebSphere Portlet Factory are defined using Service Definition
and Service Operation builders. The interface of these operations is based on
XML and the structure is defined using XSD. We can easily recognize that the
architecture is matching the main concepts of SOA, so you can imagine that the
step to expose a Service Definition as a Web Service is almost direct.

Figure B-1 shows the relation between the Web Service concepts and the
builders in WebSphere Portlet Factory.

Figure B-1 Relationship of Data Service to Web Service

We can see a clear relationship between a Data Service and a Web Service that
actually makes possible and simple to expose an existing Service Definition as
Web Service. WebSphere Portlet Factory allows you to automate generation of
the web service and WSDL via a simple configuration checkbox in the Service
Definition builder named Generate WSDL.

Figure B-2 the architectural overview for applications exposing Service
Definitions as Web Services.

Web ServiceWebSphere Portlet Factory
Data Service

Service Definition Builder

Service Operation Builder

types

message: operation input

portType

Inputs

Inputs Structure

message: operation output

input message structure

output message structure

operation

Results

Results Structure

646 Portal Application Development Using WebSphere Portlet Factory

Figure B-2 Overview of an application exposing Web Services

Since there is no special functionality to add when creating the Web Service, an
existing web application like ITSO Renovations can expose some of its data
services as a Web Service additionally to the main purpose of the web
application. This allows you to integrate other client applications with the back
ends that the web application is accessing.

The other approach is to use WebSphere Portlet Factory to only create Web
Services without writing any line of code: you can create Data Provider models
and expose them as Web Services. At the end it will be a web application without
presentation layer and containing only these services. This is the way we have
created our external web service for ITSO Renovations, because it is fast and
does not require implementation efforts.

WebSphere Portlet Factory
Application

Service Definition 1 Builder:
service1

Service Operation 1 Builder:
operation1

Service Operation N Builder:
operationN

Web Service: service1

operation1

operationN

Business logic and Data Access

Data
back-end

WSDL

Web Service: serviceN Service Definition N Builder:
serviceN

... ...

Client
Applications

 Appendix B. Creating a Web service using WebSphere Portlet Factory 647

Implementation of the Product Web Service in
ITSO Renovations application

ITSO Renovations is accessing external web services to retrieve product details
from external organizations. These services are already available and extant in
some locations; you only need to access the WSDL and discover what the
available functionality is that they offer. In our example we do not have such
external services, so we have decided to implement a simple one to illustrate
how WebSphere Portlet Factory can access external web services. (This concept
was first mentioned in 5.4, “Data Service for external web services access” on
page 190.)

We could have used any development environment or framework for the
implementation of the Web Service but we decided to use WebSphere Portlet
Factory and show the additional value that this technique offers to the developer.

The scenario we are describing is illustrated in Figure B-3.

Figure B-3 Design products external Web Service

The external organization delivers some products via ITSO Renovations and the
information is kept in internal systems of that organization. It offers a Web
Service interface that ITSO Renovations can access. The Web Service hides the
data sources in the external organization. In our simple case, we have
implemented the web service of this external organization for illustration
purposes and we have defined the following pre-conditions:

� Product information is kept in local XML files within the web application of the
new Web Service. Actually, we use the same local XML Data Service we have

Products External
Web Service

RedbookCSProductsWS

WebSphere Portlet
Factory Designer

ProductWebService.model

products.xml

ITSO Renovations
RedbookCS

ProductWSProvider.model Web Service

WSDL

design
time

SOAP

648 Portal Application Development Using WebSphere Portlet Factory

used in ITSO Renovations (copy of the implementation): only the Product
data domain ProductFileProvider.

� The interface of the web service matches the expected one in ITSO
Renovations, so we do not need additional transformations in the Data
Service that is accessing it. This is not the usual case because external
organizations have their own web services with proprietary interfaces, but for
the purpose of this example it is enough to illustrate the main concept.

Follow these steps to implement the Product Web Service:

1. Create a new WebSphere Portlet Factory project called
RedbookCSProductsWS. It will contain only the Product Web Service
accessing the local XML files.

2. Copy the following resources from the ITSO Renovations application into the
new project:

– \WebContent\redbook\cs\images\products*.jpg

– \WebContent\WEB-INF\resources\redbook\cs\xsd\product.xsd

Remove <Product> elements with Id from 1 to 10. The rest of the products
are those we want to have as external.

– \WebContent\WEB-INF\resources\redbook\cs\xml\data\products.xml

Paths are relative to the project location and the target location is the same in
RedbookCSProductsWS.

These files contain the product details and will be accessed by the Web
Service implementation. Images are part of the serveable content and will be
accessed directly by the client applications (ITSO Renovations in our case).

3. Create a new model called ProductWebService.model in the folder:

\models\redbook\cs\ws

Copy the following source code to access the products.xml file:

\WebContent\WEB-INF\work\source\com\ibm\redbook\cs\data\DataContants.java

\WebContent\WEB-INF\work\source\com\ibm\redbook\cs\data\file\ProductData.java

4. Copy the builders shown in Figure B-4 from ITSO Renovations (RedbookCS)
and paste them into the new model.

 Appendix B. Creating a Web service using WebSphere Portlet Factory 649

Figure B-4 Builders for the new ProductWebService.model

5. Activate Generate WSDL in the Service Definition. This is the most important
action that makes the service available as a Web Service.

Figure B-5 Service Definition builder: Generate WSDL to expose as Web Service

6. When this project is deployed, you have the Web Service available. In the
next section we show you how to access the WSDL.

We have seen that the implementation in our case is very simple. We have
reused the local XML File Data Service for products from the main application
and make it public as a Web Service.

The only important action that actually creates the Web Service is the selection
of the Generate WSDL input in the Service Definition builder. You can activate
this option for any Service Definition in your project regardless of whether or not
you have the presentation builders. It is required that the service is public and
generating the WSDL makes it public not only within the application, but also
externally.

\data\file\ProductFileProvider.model

\data\def\ProductDefinitions.model

650 Portal Application Development Using WebSphere Portlet Factory

Deploying and using the Web Service

There are no special requirements when deploying the application that contains
Web Services. This is a normal WebSphere Portlet Factory application like we
have seen for ITSO Renovations.

There is only an additional issue related with the classpath when building the
WAR file for the web application and installing it from the WebSphere Application
Server (WAS) Administration Console. By default it is configured to use first the
parent class loader for the application and this must be changed to use it last to
load the classes from the WAR file (especially the Axis libraries used for Web
Services). Perform the following steps to build the WAR file, deploy it and change
the class loader settings for our sample application:

1. Build the deployment WAR for the RedbookCSProductsWS project by
selecting Builder Portlet Factory WAR → Build Deployment WAR.

Save the created WAR file in your file system.

2. Open the WAS Administration Console and Install a New Application. Use as
input the previous WAR file. The context root is the name of the web
application: RedbookCSProductsWS. Accept all defaults since there are no
special requirements.

Figure B-6 Install new Application from the WAS administration console

3. The web application is installed and can be started from the list of Enterprise
Applications.

4. Change the class loader mode to Parent Last:

a. Find the application RedbookCSProductsWS from the list of Enterprise
Applications and open it (click the link).

 Appendix B. Creating a Web service using WebSphere Portlet Factory 651

Figure B-7 List of Enterprise Applications

b. Select from Web Modules the WAR file RedbookCSProductsWS.war.

Figure B-8 Select the WAR file from the Web Modules

c. Change the class loader mode to Parent Last.

Figure B-9 Class Loader mode in the configuration of the Web Module

d. Apply, save changes and restart the server.

If the application is installed from the WebSphere Portlet Factory Designer, this
issue is not a problem because when deploying the WAR the right class loader
mode is set.

For security reasons, you may want to protect access to web services via J2EE
security-constraint on the AxisServlet in web.xml and you may want to also
protect access to /webengine for running models directly from a browser via
security-constraint, if the web application will be for serving web services only
and not used directly by browsers.

Once the application is deployed, the Service Definition builders that generate
WSDL are accessible as Web Services. Any other application can use it and
invoke the operations defined in the service. If you have a WebSphere Portlet
Factory application that is accessing the Web Service, you can use the Web

652 Portal Application Development Using WebSphere Portlet Factory

Service Call builder as described in 5.4, “Data Service for external web services
access” on page 190.

The WSDL of the Web Service is available under the following address:

http://localhost:10038/<application_name>/webengine
/<path_web_service_model>/Action!getWSDL

– <application_name>: This is the application name that contains the web
service.

– <path_web_service_model>: The path where the model containing the
web service is located (without the \models folder, see our example).

In our sample application this is the URL when deployed in the localhost
machine:

http://localhost:10038/RedbookCSProductsWS/webengine
/redbook/cs/ws/ProductWebService/Action!getWSDL

The resulting WSDL where you can find the schemas, messages, and operations
defined as Service Definition of the Data Provider model is shown in Figure B-10.

 Appendix B. Creating a Web service using WebSphere Portlet Factory 653

Figure B-10 WSDL for Product Web Service

Testing the Web Service

The Data Service can be tested using the mechanisms we have seen throughout
the book, in particular in Chapter 5, “Creating Data Services: Access to back-end
systems” on page 105. There is no special test support by WebSphere Portlet
Factory to test the invocation of the Web Service; you can just create another
Service Definition that it is accessing it using the Web Service Call builder. It is

654 Portal Application Development Using WebSphere Portlet Factory

also recommended to check that the WSDL is available as described in the
previous section.

Conclusion

We have seen in this appendix how easy it is to create a Web Service using
WebSphere Portlet Factory. We can conclude that any public Service Definition
can be exposed as a Web Service selecting the option: Generate WSDL. It will
generate a WSDL of the service definition and it will be registered and accessible
in the application server where it is deployed.

 Appendix B. Creating a Web service using WebSphere Portlet Factory 655

656 Portal Application Development Using WebSphere Portlet Factory

Appendix C. Remote deployment

This appendix describes how to deploy the WebSphere Portlet Factory
Development WAR file to a remote application server.

C

© Copyright IBM Corp. 2008. All rights reserved. 657

Overview

Remote deployment of the WebSphere Portlet Factory Development WAR file is
useful when you do not have an application server instance available on the
same machine as the WebSphere Portlet Factory Designer, but you still want a
mechanism for testing models without deploying them to a portal server. When
testing models in this way, you run the models as standalone servlets via the
Development WAR file, even if the models contain a portlet adapter builder and
would normally be run as portlets inside a portlet container.

Note that in order to remotely deploy, you must be able to map a drive to the
machine that is running the application server. If you can’t do this, and you still
want to preview your models as standalone servlets, then you will need to use a
local application server. Otherwise you will need to run your models as portlets
on a portal server in order to test them.

Remote deployment procedure

To deploy the WebSphere Portlet Factory Development WAR file to a remote
server, follow these steps:

1. Map a drive to the remote server that is running the application server. To do
this, select Map Network Drive from the Tools menu of the Windows®
Explorer menu (Figure C-1).

Figure C-1 Mapping a drive

This will open the Map Network Drive dialog. Select a drive letter that you
would like to use to access the mapped drive, and then type in the path you
would like to map to (this would usually be the root of the server which is
running the application server, although you can also map to a subdirectory
on the mapped server). We will map to the ibm directory on the remote
server, as shown in Figure C-2. Press the Finish button when you are done.

658 Portal Application Development Using WebSphere Portlet Factory

Figure C-2 Completing mapping the drive

2. You should now have a mapped drive to the remote server, which you can
access through Windows explorer on your local machine. To deploy the
WebSphere Portlet Factory development WAR to the remote server, open up
a WebSphere Portlet Factory project (you can either create a new one or use
the RedbookCS project discussed in this book) and open the project
properties dialog (you can do this, for example, by right-clicking the
RedbookCS folder in your IDE and selecting Properties).

3. In the properties dialog, select Deployment Info from the WebSphere
Portlet Factory heading, and then click the Add button as shown in
Figure C-3 to add a new deployment configuration.

Note: If you are getting errors at this stage of the process, check the
physical connectivity between your local machine and the remote server,
as well as the validity of your credentials (username and password). If
access restrictions are set up on the remote machine, you may only be
able to map to certain directories.

 Appendix C. Remote deployment 659

Figure C-3 Creating a new Deployment Configuration

4. In the New Deployment Configuration dialog, enter a name and description
for your new deployment configuration. We used “remoteApplicationServer”
for the name, and “Remote application server used for development” for the
description.

5. Fill out the remaining settings to correspond to your remote application server.
The installed applications dir field will be the installedApps directory of portal
on the mapped drive (we used
X:\WebSphere\profiles\wp_profile\installedApps\shaba), and the server
host field will be the hostname used to access the remote server in a Web
browser (we used itso.ibm.com). Select “server1” for the WAS server for
deployment dropdown. Deselect the auto deploy checkbox, because this
function only works with locally deployed servers. Your settings should
appear as shown in Figure C-4.

660 Portal Application Development Using WebSphere Portlet Factory

Figure C-4 Settings for the Deployment Configuration

The newly created deployment configuration will automatically be selected in
the Application Server Deployment Configuration drop down when you return
to the Deployment Info screen.

6. Click OK on the Deployment Info screen to finalize your configuration
changes. You will be prompted whether you would like to re-deploy your
project; select Yes. This will create a deployable EAR file (which will contain
the development WAR), which you will be able to install on the remote
application server.

7. When this wizard has finished, an error will appear in the problems tab in the
IDE, stating that the Factory Dev War does not exist on the remote server and
the files could not be copied. This error is caused by the fact that the
development WAR file needs to be installed manually via the WebSphere
Admin Console.

8. To install the development WAR, first log in to the remote WebSphere
administrative console in a Web browser
(http://itso.ibm.com:10001/ibm/console in our case). If you don’t know the
URL for the administrative console, you can find it by running the
Administrative console application from the WebSphere Application Server
folder in your Start menu (see Figure C-5), and then checking the URL which
is accessed in the browser.

 Appendix C. Remote deployment 661

Figure C-5 Administrative console application from the WebSphere Application
Server

Note that when logging in to the administrative console, you must log in as an
administrator. We are using the wpsadmin account that we set up when we
installed the server.

9. Once you have logged in to the administrative console, expand the
Applications section and click on Install New Application, as shown in
Figure C-6.

Figure C-6 expand the Applications section and click on Install New Application

10.Type in the path to the development EAR file you created earlier (which
contains the development WAR), in the local file system field (see Figure B-7).
This file will have been created in the installableApps directory of the remote
server. (We used:
X:\WebSphere\profiles\wp_profile\installableApps\itso). Click Next to
continue.

662 Portal Application Development Using WebSphere Portlet Factory

f

Figure C-7 Entering path to the new application

11.The next screen allows you to generate default bindings and mappings (see
Figure C-8). Leave the default settings and click Next.

 Appendix C. Remote deployment 663

f

Figure C-8 Additional configuration settings

12.The next screen allows you to specify some basic deployment options
(Figure C-9). Accept the defaults and click Next to continue.

664 Portal Application Development Using WebSphere Portlet Factory

f

Figure C-9 Specify some basic deployment options

13.The next screen allows you to map modules to servers (Figure C-10). By
default, modules will be installed on the server from which you are using the
administrative console. Accept the defaults and click Next to continue.

 Appendix C. Remote deployment 665

f

Figure C-10 Mapping modules to servers

14.The next screen allows you to specify virtual host mappings (Figure C-11).
The virtual server default_host is used by default; accept these settings by
clicking Next.

f

Figure C-11 Specify virtual host mappings

666 Portal Application Development Using WebSphere Portlet Factory

15.The next screen allows you to map security roles to users and groups
(Figure C-12). By default, the AllAuthenticatedUsers role maps to all
authenticated users, which is sufficient for this scenario. Accept the defaults
by clicking Next to continue.

f

Figure C-12 This screen allows you to map security roles to users and groups

16.The final screen asks you to confirm all of the settings you have just entered
(Figure C-13). Click Finish to being the installation process. The installation
process could take several minutes, depending on the speed of your machine.

 Appendix C. Remote deployment 667

f

Figure C-13 Confirm all of the settings you have just entered

17.You should see a success screen similar to that shown in Figure C-14. Click
the Save to master configuration link at the bottom of the page.

668 Portal Application Development Using WebSphere Portlet Factory

f

Figure C-14 Successful installation procedure

18.A confirmation screen will appear (Figure C-15). Click Save to complete the
process.

 Appendix C. Remote deployment 669

f

Figure C-15 Confirmation screen

19.Once installed, you need to start the application on the server. To do this,
click the Enterprise Applications link as shown in Figure C-16. This will bring
up a list of installed applications on the right of the screen.

Figure C-16 Starting the application server

20.Scroll through the list of the applications to find the RedbookCS application. It
will have a red cross next to it, indicating that the application is stopped
(Figure C-17).

670 Portal Application Development Using WebSphere Portlet Factory

f

Figure C-17 RedbookCS application

21.Click the checkbox to the left of the RedbookCS application and press the
start button, as shown in Figure C-18.

f

Figure C-18 Once selected, press the start button

22.Once the application has started, a success message will appear at the top of
the screen (see Figure C-19).

f

Figure C-19 Success message

You will now be able to automatically refresh the application from your IDE.
You can do this by right-clicking your project root folder (RedbookCS) in the
IDE and selecting Refresh Portlet Factory WAR → Refresh Development
WAR, or by previewing your application by pressing the play button on the
toolbar in your IDE (Figure C-20). Note that you don’t have to install the
application again – you only have to install the application once. Once you

 Appendix C. Remote deployment 671

refresh your project, the error that was thrown after you initially set up the
deployment configuration will be removed. (Note: Depending on your
workspace settings, this might not happen right away. To ensure that your
workspace is updated, select Project → Clean from the menu bar in your
IDE, and then select the RedbookCS project.)

Figure C-20 Refreshing the application

You now have a remotely deployed WebSphere Portlet Factory development
WAR, which you can refresh directly from your IDE. You can test your application
by using the play button on the toolbar.

Advantages and disadvantages

The main advantage of using remote deployment is that you don’t need to have
an application server instance running on the same machine as the WebSphere
Portlet Factory Designer. This frees up system resources and can result in
generally faster development times, particularly on slower development
machines. Also, using a remote application server for deployment allows multiple
developers to preview their applications using the same server. This guarantees
that everyone is testing under the same conditions, and makes administering the
test environment much easier.

Unfortunately, there are disadvantages to remote deployment as well. Having
multiple developers deploy to the same server can lead to disorganized
installedApps and installableApps directories, particularly if there are no
standards in place for how projects should be deployed. Similarly, if one
developer breaks something on the server, then it will be broken for everyone
(and if the server crashes, it will also be down for everyone). Remote deployment
can also be slower in some cases, such as when connection speeds are low, the
remote server is slow, or large files are being deployed, although this is usually
not the case.

672 Portal Application Development Using WebSphere Portlet Factory

Appendix D. Configuring the RAD Unified
Test Environment

This appendix builds on the discussion in Chapter 3, “Creating projects” on
page 39 to address specific issues required for configuring the Rational
Application Developer (RAD) Unified Test Environment for Portlet Factory
Development.

D

Important: This appendix should be used in conjunction with Chapter 3,
“Creating projects” on page 39, as much of the information builds directly upon
what was included in this earlier chapter.

© Copyright IBM Corp. 2008. All rights reserved. 673

Setting up deployment configurations using RAD with
an Embedded Test Environment

If you are using RAD with an Embedded Test Environment, follow these steps:

1. Open up the project properties dialog by clicking the root folder in your
WebSphere Portlet Factory project (RedbookCS) and then selecting
Properties from the Project menu.

2. Select Deployment Info from the Websphere Portlet Factory section, as
shown Figure D-1.

Figure D-1 Properties window

3. You will need to add an Application Server Deployment Configuration or a
Portal Server Deployment Configuration, but not both. Since we will be
running portlets, we will add a Portal Server Deployment Configuration.

4. Click the Add button below the Portal Server Deployment Configuration
section as shown Figure D-2.

674 Portal Application Development Using WebSphere Portlet Factory

Figure D-2 Portal Server deployment configuration

5. When the Portal Server Configuration dialog appears, give your configuration
a name (don't use spaces). We used "PortalServer".

6. Write a description for the configuration. We used "Server used to run
portlets in a portlet container."

7. In the Server Type dialog, choose RAD Portal Unit Test Environment.
Choosing an option from this dropdown will display additional options at the
bottom of the dialog.

8. On this screen you can choose a Portlet API for your portlet. WebSphere
Portlet Factory supports both Java Standard Portlets (JSR-168 compliant
portlets) and WebSphere Native Portlets (WebSphere Portlet API portlets).
Make sure "Java Standard" is selected.

9. The deployment configuration dialog should now appear similar to Figure D-3.

 Appendix D. Configuring the RAD Unified Test Environment 675

Figure D-3 Deployment configuration dialog

10.Click OK when finished.

11.Click OK on the Deployment Info dialog to finish updating the deployment
configuration. A dialog will appear (shown Figure D-4) asking you whether
you would like to re-deploy your application. Click Yes.

Figure D-4 Dialog for re-deploying application

You now have set up your deployment configuration and deployed your
application to a WebSphere Portal Embedded Test Environment. To test your
configuration, follow the steps in 3.5, “Testing” on page 57. Once you have
completed this, note the following:

There are extra steps required to set up the project in the Embedded Test
Environment before you can run the model.

676 Portal Application Development Using WebSphere Portlet Factory

If you are using RAD with an Embedded Test Environment, you will need to
configure your project in your Embedded Test Environment. Follow these steps:

1. Right-click your project's EAR project and choose Properties.

2. Select Targeted Runtimes. Make sure your server instance is checked. Click
OK.

3. In your project's EAR project, open the Deployment Descriptor for editing. Go
to the Deployment tab and set the Classloader mode to PARENT_LAST for
your project's WAR.

Figure D-5 Deployment tab and set the Classloader mode to PARENT_LAST

4. Save your changes and close the Deployment Descriptor.

5. Right-click your project and rebuild the Portlet WAR again.

6. Right-click your project, select Run As, then select Run on Server from the
sub-menu as shown in Figure D-6.

 Appendix D. Configuring the RAD Unified Test Environment 677

Figure D-6 Specifying how to run the project

7. In the Define a New Server window, select your WebSphere Portal instance
and click Next.

8. In the next window, your project should show up in the Configured Projects
column (Figure D-7). If it doesn't, add it and click Next.

9. Click Finish in the final window. Eventually, you will get a browser window
showing your portlet. Once this is done, you will be able to run your model as
described in 3.5, “Testing” on page 57.

678 Portal Application Development Using WebSphere Portlet Factory

Figure D-7 Running the project

Why do things seem "backwards" for the Embedded Test Environment?
Because you can't successfully run the model standalone until you do at least
one Run on Server after first deploying the project.

Note: When using the Embedded Test Environment, you can skip the steps in
“Previewing your portlets” on page 62 because the Embedded Test
Environment has already allowed you to view the portlet. To see it again,
simply repeat the Run on Server steps (steps 6 through 10).

Important: It is important to republish after the re-deploy. Generally,
Embedded Test Environment users will have to republish after re-deploying
and before running the model, if the model was changed.

 Appendix D. Configuring the RAD Unified Test Environment 679

680 Portal Application Development Using WebSphere Portlet Factory

Appendix E. Considerations for WAS CE

This appendix describes the configuration of the Eclipse/WAS CE development
environment in order to examine and run the Redbook application in WAS CE
and includes the following topics:

� Adding a database pool to the WAS CE server

� Modifying the development environment when deploying to WAS CE

E

© Copyright IBM Corp. 2008. All rights reserved. 681

Adding a database pool to the WAS CE server

Just as in a WebSphere development environment, you need to configure the
application server to access the database server. In WAS CE, you do this by
creating a “Database Pool,” which defines the JDBC driver and the database
connection information. In WAS CE, the individual applications need to define
the JNDI datasource and reference the database pool defined on the WAS CE
server.

To add a database pool to the WAS CE server:

1. Open the Administrative Console for your WAS CE server instance.

2. Click on the Database Pools link in the Navigation Console panel.

3. In the resulting Database Pools panel, choose to add a new Database Pool
with the “Using the geronimo database pool wizard” link.

4. Your configuration will be similar to the one shown in the figure below:

Figure E-1 Database pool configuration

Once you have entered the database connection info, click, Next and test the
connection. If the connection succeeds, click the deploy button. If it fails, confirm
that the information you entered matches the actual server name, database

682 Portal Application Development Using WebSphere Portlet Factory

name, and port number on which the database listens for requests. Also make
sure that the JDBC driver you specify is appropriate for the database server to
which you are connecting.

Once you have the WAS CE database pool deployed, you can configure your
project to use that database pool via a JNDI datasource defined in the project’s
geronimo-web.xml and wasce.web.xml files.

Modifying the development environment when
deploying to WAS CE

Developing the Redbook project in a WAS CE development environment requires
that you configure the environment so that the application references the
database pool you created in the WAS CE Administrative Console and that
database provider models use indirect JNDI notation to that resource reference.
(“java:comp/env/jdbc/csdb” instead of “jdbc/csdb”).

Modifying the project configuration files

In order for applications deployed to WAS CE to access the database pool, they
need to define references to the database pool and declare that reference to be a
JNDI datasource.You can create these references in the Portlet Factory
Designer by modifying the following files:

� WEB-INF/geronimo-web.xml

� WEB-INF/bin/deployment/wasce.web.xml

Each of these files contains commented entries for the datasource configuration.
Each of the file listings below reflect that the database pool name is, “csdb”. If
your database pool name is something different, modify your files accordingly.

Example: E-1 Mapping of database pool to resource reference in geronimo-web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-1.1">

<environment
xmlns="http://geronimo.apache.org/xml/ns/deployment-1.1">

Note: WAS CE includes the DB2 Universal JDBC Driver for DB2 8.2 and 9.1
as part of its distribution. If you are creating a database pool to a different
RDBMS, you will need to deploy the JAR(s) for the JDBC driver as “Common
Libs” before you can create the database pool.

 Appendix E. Considerations for WAS CE 683

<moduleId>
<groupId>geronimo</groupId>
<artifactId>pf_redbook</artifactId>
<version>1</version>
<type>war</type>

</moduleId>
<dependencies>

<dependency>
<groupId>console.dbpool</groupId>
<artifactId>csdb</artifactId>

</dependency>
...

</dependencies>
<inverse-classloading />

</environment>
<context-root>/pf_redbook</context-root>
<resource-ref>

<ref-name>jdbc/csdb</ref-name>
<resource-link>csdb</resource-link>

</resource-ref>
</web-app>

Example: E-2 Mapping of resource reference to be of type DataSource in wasce.web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>WPF</display-name>
 <description>IBM WebSphere Portlet Factory</description>

<resource-ref>
<res-ref-name>jdbc/csdb</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
...

Once you have modified and saved the geronimo-web.xml and wasce.web.xml
files, re-deploy the development WAR by right-clicking on the project and
choosing: Application Server WAR > Build WAR for Dev Testing.

684 Portal Application Development Using WebSphere Portlet Factory

Modifying the csapp.properties file
The JNDI name for the datasource used by the database provider models is
driven by the JNDIName property in the project’s
WEB-INF/resources/redbook/cs/properties directory.

By default, this value is, “jdbc/csdb”. Assuming you named your resource
reference “jdbc/csdb”, modify the JNDIName property to be:
“java:comp/env/jdbc/csdb”.

Applying the profile in designer
The only task remaining before you can work with the Redbook app in a WAS CE
environment is to set Designer to use the “Development” profile when working
with the database provider models.

To apply the Development profile in Designer:

1. Open one of the database provider models.

2. In Designer, click on the Applied Profiles tab.

3. From the Profile drop down list, select “Development” and click Apply.

Any errors in the model that were due to data not being available are cleared.

 Appendix E. Considerations for WAS CE 685

686 Portal Application Development Using WebSphere Portlet Factory

Appendix F. Execution processing

This appendix discusses the steps and architectural considerations related to
execution processing.

F

© Copyright IBM Corp. 2008. All rights reserved. 687

Execution processing

The Portlet Factory runtime includes a thin controller layer that handles requests
for web applications and portlets, generating them from their underlying WebApp
abstraction prior to execution. When a request to execute a model is sent to the
server, the main steps taken are as follows.

� Profile selection

When an HTTP request is made, it is handled by the application server or
portal server, which does any necessary authentication for the security realm.
The request is then passed to the Factory controller, beginning the profile
selection process. A profile is then selected for use during the generation
process. r arbitrary piece of meta-data or logic implemented by the developer.

� WebApp creation

During the second phase, the selected profiles is applied to a specific model,
producing a WebApp. During this process, the generation Engine fetches the
appropriate profile values from the selected profile(s), and then creates and
caches the WebApp. If an instance of this WebApp already exists in cache,
this entire step is skipped; the cached WebApp instance is used instead.

� Execution

In the third phase, the WebApp is executed for the specific user. During the
first step of the execution phase, instance data is created for the user’s
session. Second, a class is generated containing all of the methods and
action lists, but only if this is the first use of this WebApp. Next, the application
executes its logic, calling out to various web services and components. And,
finally, the JSP page is compiled and delivered (Note: compilation occurs only
if it is the first time this page is executed on the server or if it is the first time
the page is executed for a given profile). Subsequent requests from the user
directly interact with the generated session, unless the application needs to
be regenerated again based on a user's actions.

688 Portal Application Development Using WebSphere Portlet Factory

Figure F-1 Execution Flow: Initial Request

In Figure F-1, we see the flow for a request for an action in a model in the case
where this model/profile combination has not yet been generated on this server.
The request first is processed by the Portlet Factory servlet for a standalone web
application or portlet adapter when running in a portal (step 1.) The processing
then moves on to the Factory controller, also known as the “WebAppRunner”.
This controller first determines the model and profile associated with the request
(step 2); it then looks for this combination in a cache. Since this is the first
request for this combination, the WebApp is not found (step 3), and the
generation process is kicked off. The generation engine executes, invoking
builders to create the in-memory WebApp objects (step 4.) Once the WebApp
has been created, application execution begins (step 5.) Since this is an initial
request, the instance data for the WebApp must be created (step 6) - the
instance data stores the runtime values of variables, and other per-session
values such as the model instance’s current page. Similarly, if the Java class that
contains the method and action list implementations specified in the WebApp is
not found, it is created at this point (step 7.) Once the instance data and methods
class are made available, control is transferred to the action specified in the
request (step 8), which presumably will result in a page being processed, either
directly or indirectly. The abstract page name in the WebApp is then translated to

WebApp

Pages (JSP)

Methods/ActionLists

Linked Models

Variables & LJO’s

Portlet Factory Servlet/Portlet
Request for
Portlet Factory
model/action

Web App
execution

Data sources
and services

WebAppRunner

WebAppGenHandler

WebApp Builders

WebApp Builders

WebApp Builders

Determine profile

JSP files

Profile selection
handler

Regen & Cache

1.

2.

3.

4.

5.
Instance data creation6.

7.

8.

Methods class generation

9.

 Appendix F. Execution processing 689

the name of a JSP file. If this JSP file is non-existent or out-of-date, the page
contents are written to this file, and then control is transferred to the JSP; if the
hosting servlet engine has not yet generated the backing servlet for this JSP file,
it will trigger a JSP compilation at this time (step 9.) The resulting markup is
either send directly to the browser in the standalone web application case, or is
aggregated into the containing portal page.

Figure F-2 Execution Flow: Subsequent Requests in Same Session

In Figure F-2, the flow is seen for a subsequent request to a model action. In this
case, the controller sees that the correct WebApp has already been created, and
skips the generation and instance data creation phases, transferring control
directly to the generated application (steps 2 and 3.) The specified action is
executed, eventually resulting in a JSP being run.

Portlet Factory Servlet/Portlet
Request for
Portlet Factory
model/action

Data sources
and services

WebAppRunner

WebAppGenHandler

WebApp Builders

WebApp Builders

WebApp Builders

Determine profile

JSP files

Profile selection
handler

Regen & Cache

1.

2.

WebApp

Pages (JSP)

Methods/ActionLists

Linked Models

Variables & LJO’s

3.

Instance data creation

Methods class generation

Web App
execution

690 Portal Application Development Using WebSphere Portlet Factory

Figure F-3 Execution flow (Request processed for model/profile generated)

Figure F-3 shows the flow when a request is processed for a model/profile which
has been generated, but which is the first request to this combination in the
current user session. In this case generation can be skipped, since the indicated
WebApp is found in the cache (steps 1-3) and control flows directly to the
execution phase (step 4.) New instance data needs to be created in this case,
since the model is not already in session (step 5.) From here, the action is
directly executed. Since requests for this model have already been processed in
another session, the methods class and JSP files are very likely in place and
ready for direct execution. It is theoretically possible that this request is asking for
a page which was not executed in any other session (e.g., an error page) - if so,
the JSP will be written and compiled as above.

Execution: Portal action/render phases

When running in a portal, request processing is broken into two main phases: an
action phase, in which a portlet action is executed without any page rendering
being done, and the render phase, which happens whenever the portal page is

Portlet Factory Servlet/Portlet
Request for
Portlet Factory
model/action

Web App
execution

Data sources
and services

WebAppRunner

WebAppGenHandler

WebApp Builders

WebApp Builders

WebApp Builders

JSP files

1.

4.

Determine profileProfile selection
handler

Find in Cache

2.

3.

5.

WebApp

Pages (JSP)

Methods/ActionLists

Linked Models

Variables & LJO’s

6.

Instance data creation

Methods class generation

 Appendix F. Execution processing 691

re-drawn, and in which each portlet is asked to refresh its generated markup.
Portlet Factory attempts to hide this detail from the developer: when you write
code to handle an action, you can include calls to process a page, just as if you
were handling a request in a standalone web application. When a Portlet Factory
action executes in a portal’s action phase, any calls to process a page do not
attempt to execute the associated JSP; instead, a piece of instance data known
as the “current page flag” is set with the name of the specified page, and
processing continues from there. When the portlet is called in render mode, the
portlet adapter transfers control to the current page for the associated model
instance (calling the “main” action if no current page has been set.)

692 Portal Application Development Using WebSphere Portlet Factory

Appendix G. Additional material

This book refers to additional material that can be downloaded from the Internet
as described here.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247525

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247525.

G

© Copyright IBM Corp. 2008. All rights reserved. 693

ftp://www.redbooks.ibm.com/redbooks/SG247525
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/SG247525

Using the Web material

The additional Web material that accompanies this book includes the following
files:

Table 12-1 The files contained as Additional Materal for this Redbook

File Name Description

Chapter Builds Code.zip Code used for each chapter

Database Schema Creation.zip SQL code for creating the database
schema

Domino Products Database.zip Domino database used for storing the
product information

ITSO Customer Self Service Application
Code.zip

Final comprehensive code for the
completed application

ITSO Theme for WebSphere Portal 6.0.zip Code and Images used for creating the
theme shown in ITSO Renovations
sample

ProductsWebService.zip Code for self contained Web Service

694 Portal Application Development Using WebSphere Portlet Factory

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

Online resources

These Web sites are also relevant as further information sources:

� Portlet Factory product documentation

http://www.ibm.com/developerworks/websphere/zones/portal/portletfact
ory/proddoc.html

� Portlet Factory Samples: Miscellaneous Techniques

http://www.ibm.com/developerworks/websphere/zones/portal/portletfact
ory/samples/misc.html

� Getting started with WebSphere Portlet Factory V6.0.1

http://www.ibm.com/developerworks/websphere/library/techarticles/070
4_wpf601/0704_wpf601.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

© Copyright IBM Corp. 2008. All rights reserved. 695

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory/proddoc.html
http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory/samples/misc.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0704_wpf601/0704_wpf601.html

696 Portal Application Development Using WebSphere Portlet Factory

Index

A
absolute URL 173, 197
Accessing other back-end systems 214
Accessing static content from the external Web
Server 197
Accessing the Portal Credential Vault 268
Action List

builder 122, 140, 230, 250, 320, 326, 329, 337,
383–384, 449, 453, 534, 549
builder assignment input 607
builder input setting 565, 607
getProductsAL 212
Table 375–376, 449–450
Table.In 404

action list 11, 33, 36, 59, 118, 120, 230–231, 318,
320, 362–363, 422, 449, 688
Action List builder 375, 377
Action Type 245, 248, 321, 344, 399, 570, 589
Actions list 320, 326
Add a J2C authentication data for DB2 637
Add a JDBC Provider for DB2 638
Adding a Calendar Picker for a Date field (Go Shop-
ping) 297
Adding a Database Pool to the WAS CE Server 682
Adding a Feature Set 63
Adding and Profile-enabling the Visibility Setter
Builder 468
Adding Dojo Inline Edit in the Order Details Portlet
334
Adding Feature Sets 43
Adding Image and back button to the Customer De-
tails view 247
Adding Pagination in the Order List Portlet 315
Adding RDD to the Customer Information Portlet
284
Adding RDD to the Order Details and Product De-
tails Model 287
Adding RDD to the Order List Portlet 286
Adding the Search Functionality 249
Additional configuration settings 664
Additional material 693
Administrative console application from the Web-
Sphere Application Server 662

© Copyright IBM Corp. 2008. All rights reserved.
Advanced User Interface portlets - Features Imple-
mented and Builders Used 35
Advantages and disadvantages 672
Analysis Phase 497
API 10–11, 106–107
application data service

definition 92
interface 32, 72–73, 86, 106–107, 119–120

Application Data Service Interface
Definition and Operations 92

application server 49, 111, 117, 226, 266, 272, 651,
655, 657–658, 682, 684, 688
Application Server Deployment Configuration 50
Applying Profiling to RDD File 464
Applying Profiling to the Main Method 451
Applying the Profile in Designer 685
Architecture 8
Architecture and design 76
Architecture details 78

B
Back End systems

Summary and best practices 218
back-end system 34, 69, 72, 105, 268

access data 84
authentication information 126
different logical modules/providers 79
specific builders 72

base definition
file 291
model 101

basic layout 225, 235
Basic User Interface portlets - Features Implement-
ed and Builders Used 34
Best Practice for Designing Large Applications 231
Best Practices 418, 497
binary content 131, 149

unique path 158
binary data 33, 122, 135–136, 145–146
Binding to the Service Provider model 239
Build the Portlet WAR on the Command Line 616
Build the Portlet WAR with the Designer 616
builder call 9, 222, 229–230, 295, 333

 697

builder inputs 333
generation engine loops 12
saved builder inputs 12

builder input 4, 9
Builder Palette 60, 88–89, 109, 111, 239, 241,
523–524

Data Integration category 109
Services category 95
Variables category 185

builder palette
Form Builder 243

Builder Palette icon 299, 308, 315
Builders for the new ProductWebService.model
650
Builders/Techniques Used 32, 34–36
Building the Go Shopping Portlet 517
Building the Web Application 234
business logic

data access 218
data consumers 92

Business logic within application 67–68, 191, 208,
271
Button builder 248, 251, 316, 343, 548–549

following values 548, 570

C
Capabilities of WebSphere Portlet Factory 2
Cart Model 550
Changing Column Behaviour (All Portlets) 294
Class Loader mode in the configuration of the Web
Module 652
Completing mapping the drive 659
Configuing the environment for WAS CE 681–682
Configure the Project to use the database as a data
source 641
Configuring pages/portlets in WebSphere Portal
266
Configuring the Domino Connection and Credentials
175
Configuring the RAD Unified Test Environment 673
Confirm all of the settings you have just entered
668
Confirmation Model 594
Confirmationg for including JAR files 66
ConfirmationPage model.Set 597, 600
Considerations for WAS CE 681
Converting the web application into portlets 264
Cooperative Portlet

event 364
Source 364
Target 364

Create a WebSphere Portlet Factory Project Wizard
41
Create the Database and Tables 636
Create the JDBC Connection 637
Creating a Dojo Rich Text Editor 341
Creating a Dojo Tooltip in the Product Details Portlet
324
Creating a Domino Provider Model 176
Creating a new Deployment Configuration 660
Creating a new order on behalf of a customer 26
Creating a project 40
Creating a Stub Service for testing 207
Creating a web service using WebSphere Portlet
Factory 645
Creating and Importing the UIEvent Model 368
Creating Data Services

access to back-end systems 105
Creating OrderDetailsCustomiser Model 487
Creating Portlets - Designing the UI 275
Creating Portlets - Making it work 221
Creating Profile Set 472
Creating Profile Set & Profiles 439
Creating Projects 39
Creating the Application Schema and Data 635
Creating the base HTML page 256, 258
Creating the base HTML pages 234
Creating the CustomerInfo model 237
Creating the Groups in Portal 633
Creating the Pages for the CSA Application 643
Creating the WebSphere Portlet Factory project 39
Creating User Groups in Portal 439
Creation of Data Operations 96
Creation of Data Services 95
Credential detail 367, 413, 437, 447
Credential vault 2, 223, 225, 413, 448–449
CSR Group 438
Custom Data Service - local XML access sample
106
Customer detail

PIN fields 462
Customer Id 93, 244–245, 283, 285, 367, 375, 451,
467
Customer Information

page layout 267
Portlet 223–224, 279, 284, 322, 460–461
Portlet RDD file 293

698 Portal Application Development Using WebSphere Portlet Factory

Customer Information based on authentication cre-
dentials 27
Customer Information model 230, 234, 269
Customer Information page 267, 271
Customer perspective - Creating a new order 31
Customer perspective - Reviewing Orders 30
Customer Self Service Application 167, 223, 288,
291, 303, 361–362, 421

designing the UI 305
how to build it 221
inter-portlet communication 361
profiling 422–423
setting up environment 634

CustomerCredentials model 36, 361–362, 447, 449
inter-portlet communication 462

CustomerCredentials Model to CustomerInfo Model
413
customerID attribute 372, 449–450
CustomerInfo Model

Action List 375
communication link 368
communication links 362
main method 438
possible use cases 368
UIEvent Model 375, 415

CustomerInfo model 34–35, 237, 239, 284, 286,
361, 413, 422–423
CustomerInfo Model to OrderList Model 367
CustomerInfo Portlet 366, 393, 451
CustomerInfo portlet

Personalize page 413
CustomerList View 244, 246, 378–379, 451–452
CustomerService builder 379–380, 464
Customize data column access in SQL builders

working with binary data 145
Customizing the application using profiling 421
Customizing the Static Content 349
Customizing the UI 346

D
Data Access

custom implementation 82
Data Column

Modifier 7, 290, 423
Modifier builder 227, 474–476, 481, 558, 602
Modifier Container Field Setting 603

Data Column Modifier 356
Data Domain

Application Data Service Interface 80
Application Data Service Interfaces 95
definitions model 98
different models 80, 88
required functionality 92

data domain
Service Consumer builders access data 123

Data Field Modifier (DFM) 283, 290, 346, 485
Data Service xiii

additional transformations 649
clear relationship 646
complex relationships 209
development tests 86
functional requirements 92
getProducts operation 212
high level design 121
models structure 84
real implementation 72
Role 73, 85
Service Operation 197

Data service
editing data 227

Data Service for external Web Services access 190
Data Services

overview and interface definition 67
Data Services - Features Implemented and Builders
Used 32
Data Services design in WebSphere Portlet Factory
80
Data Services in Portlet Factory 69
Data Structures 87
Data Transformations - usage of IXml API 140
Data Transformations - usage of Transformation
Builders 185
Database Pool 682–683

Mapping 683
Database pool configuration 682
DataDefinition name 291, 294
DCM builder 484–486

RDD file 484
Debugging 623
Debugging back end connectivity issues 624
Declaring Event and Share Variable in UIEvent
Model 395
Declaring Event in UIEvent Model 413
Declaring the Event and Shared Variable in the
UIEvent Model 370
Default Profile Selection Handlers 431
Default Value Setters 437

 Index 699

deployed web application
log folder 207

Deploying and using the Web Service 651
Deploying the Domino Database 632
Deploying the Portlet WAR to your Portal Server
617
Deploying the Production WAR to your Application
server

 614
Deploying to portal server 266
Deployment Configuration 674
deployment configuration 616
Deployment configuration dialog 56, 676
Deployment configuration settings 53
Deployment configurations 50
Deployment tab and set the Classloader mode to
PARENT_LAST 677
Deployment WAR 50
Description 694
Description of Features 32
Design and implementation of Data Structures and
Application Data Service Interfaces 87
Design for ITSO Renovations - Customer and Order
information 120
Design for ITSO Renovations - External Product in-
formation 192
Design for ITSO Renovations - Product information
171, 209
Design Phase 497
Design Products External Web Service 648
Details of customer information. 23
Developing Data Services in the sample application
73
Developing the Order Details model 259
Developing the OrderList model. 256
Development - the WebSphere Portlet Factory way
226
Development steps and guidelines 84
Development WAR 49
development War 614
Dialog box will appear to confirm if you would like to
include the jar files that are required for the feature
sets 65
Dialog for re-deploying application 676
Dialog to re-deploy your application 57
Different Entry Paths for Customers and CSRs 438
Different Field Properties for Customers and CSRs
462
Different Visibility of Application Components for

Customers and CSRs 468
DifferentEntryPointProfiling 438
Directory 47
Displaying Data in View and Form builder 241
Dojo Drag 35, 282, 336

Source 35, 282, 339, 503, 579
Source builder 340, 579–580
Target 35, 282

Dojo Drag and Drop 336
Dojo Inline 35, 275, 282, 563–564
Dojo Rich Text Editor 35, 281–282

text area 345
Dojo Tooltip 35, 275, 282

Order Details Portlet 332
Domino Data Access

builder 167, 169
Service 33

Domino Data Access Service 167
Domino Database

configuring 226
using as a back end store 85

Domino database 71, 694
Domino Provider

Model 176
Wizard 182

Double click 373, 451
drop-down list 4, 206
dropdown list

Select cartImage 339
Select Order 308
Select OrderInformation 337

E
EJB access 216
ellipsis 239, 287
ellipsis button 282, 284
empty model 58, 123, 237, 256, 259, 369, 520, 543
Enabling Portlet Communication 361
Entering path to the new application 663
Enterprise Application 2, 68, 615, 651–652, 670
enterprise application

important parts 102
entry path 422, 437
Error Handling 624
Event Declaration 35–36, 282, 362–363, 511, 516

imported Model 418
event handler 513–514
Event Name 321, 366, 514

700 Portal Application Development Using WebSphere Portlet Factory

Example of project structure 46
Examples of modifiers in the RDD Files 294
Excluding files from your application 618
execution engine (EE) 511
Execution Flow

Initial Request 689
Subsequent Requests in Same Session 690

Execution Processing 687
expand the Applications section and click on Install
New Application 662
external Web Service

Product interface 192
external web service 33, 69, 72–73, 76, 105, 190,
226, 645, 647

F
Factory 47
Factory Starter

Model 58, 238, 369, 543, 553
Features of WebSphere Portlet Factory 35
File Name 694
Firing Event from the CustomerCredentials Model
414
Firing Event from the OrderList Model 397
Firing the Event from the CustomerInfo Model 373
Fixing compilation errors at design time 620
Form builder 451
Formatting the Output 303
ForService name 641–642
From the Builder Palette, select Portlet Adapter 60

G
General concepts 72
Generated code by external Web Service access
builders 205
Generated code by SQL builders 136
Generation 9
Generation, Part 2

Profiling 11
getCustomerOrders event 372–373
getOrderDetails Action

List builder 399, 406
getOrderDetails event 397–398
given Order Id

order items 93
given Product Id

product details 94
given selection handler

available segments 435
Go Shopping Portlet Model 520

H
Handling Event in the CustomerInfo Model 417
Handling Event in the OrderList Model 382
Having added the test portlet to the page 63
High level Data Services

wrapping access to different back-end systems
208

High level overview of building portlets 227
Highlighter 358
hildElement 143
How Does a RDD File Work? 288
How to access other back-end systems without
Portlet Factory builders 217
How to Create a Selection Handler 433
How to create an RDD 308
HTML 506, 524
HTML code 535, 537
HTML Event

Action 35, 282, 318
Action builder 318, 321

HTML file 525–526
HTML page 527, 550
HTML template 48, 348, 525–526

existing set 355
Portlet Factory 348

HTML Templates in Portlet Factory 354
HTTP request

input parameter 402
input parameters 402
orderID parameter 401

I
ID link 366, 373, 437, 467
Image builder 247–248, 328, 337, 556–557

following values 582
Implementation of Linked Java Objects to access
XML content 110
Implementation of the Product Web Service in ITSO
Renovations application 648
Implementation of transactions 161
Implementation Phase 497
Implementing getProduct 213
Implementing getProducts 211
Implementing the functionality to Add New Custom-
er 252

 Index 701

Implementing the service and operations 122
Import and Deploy the Project 643
Import and Deploy the Web Service 642
Import XML content in the models 109
Imported Page 524
Importing the Application Code 634
input form 587

builder 587
mandatory field 309

Input form builder 230
Input Mappings

Name 400
Value 400

Insert record with an image column
create customer 146

Install new Application from the WAS administration
console 651
Installing the Application Theme 643
integrated development environment (IDE) 3
Interoperable Object Reference (IOR) 175
inter-portlet communication xiii, 361, 451, 461

different types 366
general types 363
Types 363, 366
WebSphere Portal 364

Inter-portlet Communication for CSA 366
Introduction to the sample scenario used in this Red-
book 16
Invoking the methods of LJO from a Service Opera-
tion 112
ITSO Renovation

data model 76
data services 74, 76
Data Services architecture 78
Design 120, 171
expected one 649
final design 82
high level architecture 79
internal employee 16
internal product 76
service names 95
SQL Data Service 123
XML access 108

ITSO Renovation (Ficticious Company) 283
ITSO Renovations Data Model 76
IXml API 32, 122, 135, 140, 142

J
J2EE Data Integration

EJB access and JMS support 216
J2EE Production Deployment War (standalone
non-portal applications)

 614
Java code 529, 532
Java Object

builder 72, 106, 110
method 122, 211

Java object 511
JDBC Provider 637–638
JMS support 216
JNDI Name 202, 639
JRE System Library 47

K
Key Builders for “consumer” models 228

L
Linked Java Object

SQL builder 122
Linked Java Object (LJO) 68, 106, 110, 312–313,
405–406
List of Enterprise Applications 652
LJO method 112, 134, 231, 413
Locating the Web material 693
Location Technique 316–317, 399, 469, 581, 590

M
Main method 190, 244, 390, 408, 438, 451

profiled action list 457
Mapping between functional areas of sample appli-
cation and capabilities of Portlet Factory 32
Mapping modules to servers 666
Mapping of database pool to resource reference in
geronimo-web.xml 683
Mapping of resource reference to be of type Data-
Source in wasce.web.xml 684
Method builder 136, 320, 511, 514
method builder

following values 529, 532
method call

argument 562, 565
arguments dialog box 320, 334

Methods class 230–231, 689
Migrate the Data into the Database 636

702 Portal Application Development Using WebSphere Portlet Factory

model builder 527
Model Container

multiple models 233
Model container 228, 231
model container 506, 508

multiple models 514
Model name 110, 522, 544
model.Set 577–578
Models 5, 9, 46
Modifying the csapp.properties File 685
Modifying the Development Environment When De-
ploying to WAS CE 683
Modifying the Project Configuration Files 683

N
Naming the project 42
New Tag

designing the UI 326

O
One model, many applications 8
one-shot deal 5
Order Detail 93, 225, 282, 303, 395

designing the UI 284
profiling 438

Order Details Portlet 34, 223, 226, 276, 304, 492,
495

Portlet Customization Page 495
Order Id 367
order item 503, 520
Order List 223, 255, 280
Order List Portlet 286, 295
Order page 35
order page 517
Order Page Model 584
OrderDetails Model

getOrderDetails Event Handler 407
main Action List 407
new action list 404

OrderDetails model 258
Data Column Modifier builder 474

OrderDetails Portlet 37, 367, 410, 423
runtime customization 472, 474

OrderDetails.mode l
Double click 492

OrderList Model 34–35, 256, 363, 367
getCustomerOrders Event Handler Builder 388
new action list 383

UIEvent Model 383, 403
OrderList Model to OrderDetails Model 395
OrderList Portlet 366, 390, 451
OrderList portlet

First Order ID Link 412
ID link 390
order ID links 401

OrderPage model.Set 586–587
Other UI Builders 356
Outline pane 459
Outline view

Builder Palette icon 299, 308
orderList data page builder 316
orderList imported page builder 350
project creation 59

Overriding the input in Service Consumer 245
Overview 422
Overview and available SQL builders 118
Overview and how to use Domino Access builders
167
Overview of accessing a custom data service 106
Overview of an application exposing Web Services
647
Overview of Builders 4, 9
Overview of the application functionality 17
Overview of the technical goals 68
Overview of WebSphere Portlet Factory 2

P
Page builder 59, 312, 315, 447, 506, 513
Page Location 232, 247, 322, 556
Paging data 312
Performance 629
Performing a LookupTable Call (Order List Portlet)
295
Performing Validation 307
Portal Server Deployment Configuration 51, 675
portlet xiii
Portlet Adapter

builder call 266
Portlet adapter

builder 60
portlet adapter

transfer 692
Portlet Adapter (PA) 34, 264
Portlet Communication 36, 361–362, 451, 461
Portlet Communication and Profiling - Features Im-
plemented and Builders Used 36

 Index 703

Portlet Factory xiii
Ajax Type-Ahead builder 322
application 9
Application development 5
architecture 8
automation technology 9
builder 3, 5, 9, 136, 217, 363
Data Services 69
Designer 3, 427
Development xiii, 8
development Environment 3
Domino builder 632
Domino Service Provider Wizard 168
event 361
events mechanism 365
feature 364
generation engine 9
generation engine loop 9
HTML Templates 354
insert 307
inter-portlet communication 361
model 9
more commonly used builders 356
Page Automation code 354
product tutorial and/or 8
profiling capabilities 8
project 427
selection handlers ship 433
simple model 6
software 3–4
term 425
War 50, 61, 265

Portlet Factory Designer 3–4, 39–40, 115, 237,
244, 498–499, 520, 543, 652, 658, 672, 683
Portlet Production Deployment War 615
Portlet WAR 50
portlet war 50, 615
portlet.xml file 266
Portlets xiii, 17, 617
Presentation Layer 426
presentation layer

clear separation 426
web application 647

Press the play button on the toolbar at the top of the
screen 61
Preview of the portlet you will build in this chapter
502
Preview of the sample application you will build for
ITSO Renovations 17

Previewing your portlets 62
previous step 110
product detail

image URL 325–326
product information 694
Production Deployment 613
ProductTooltip Model 324, 329
Profile entry

appropriate default value 498
Profile Input window 454, 456

Profile Set Name 466
Profiles section 466, 469

Profile Manager 427, 434
Profile Selection 429

Handler option 436
technique 429, 438

Profile Selection Handler 429–430
Profile Selection Handlers 431
Profile Set 203
profile set

profile entries 497
profile privilegedUsers 433
Selection Handler 438
XML file 435

Profile Value
Customization 428–429
window 456–457

profile value 203, 425
Profile Value Customization 429
Profile-enabled Builder 37, 422
Profile-enabling the Data Columns 474
Profiles 7, 47
Profiling

value to developers 423
value to end users 423

Profiling for Customer Self Service Application 437
Profiling the Web Service URL using a properties file
200
Project Explorer 45, 468
Project structure 46
Provider Model 175

R
Rapid Application Development (RAD) 2
Rational Application Developer (RAD) 673
RDD file 37, 283, 287, 294, 422, 463

field tags 294
ID data definition 288

704 Portal Application Development Using WebSphere Portlet Factory

input text area 346
Profile Entry 466

RDD in ITSO Renovations 283
RDD Structure in the Customer Self Service Appli-
cation 291
RDD Summary 311
RedbookCS application 671
RedbookCS project 51, 58, 265, 269, 494, 659, 672
Redbooks Web site 695

Contact us xviii
Referencing and Extending RDD files 290
Refreshing the application 672
Relational Database

back end store 118
Relationship Data Service and Web Service 646
Remote Deployment 657
Remote Deployment Procedure 658
Remote server

ibm directory 658
installableApps directory 662

Review of specific Portlets - Perspective from a Cus-
tomer Service Representative 21
Review of specific Portlets - Perspective from an Ex-
ternal Customer 27
Reviewing customer information 21
Reviewing customer order information 24
Rich Data Definition (RDD) 7, 35, 226, 283–284,
289, 462, 464
Role of Data Services in ITSO Renovations 74
Roles specific to the sample application scenario
16
Runtime Customization 8, 37, 423, 438

Profiling 472
Runtime errors 622

S
Sample Application

Developing Data Services 73
Sample application

ITSO Renovation 102
Preview 17
scenario 16

Sample application scenario 16
SAP access 215
Scenario

sample application 15
Scenario Background 16
Scenario Introduction 15

Select Action window 375–376, 449–450
Select Main and Page from under the Factory Start-
er Models heading 59
Select Model

screen 521, 543
Select record with an image column

get customer 155
Select the WAR file from the Web Modules 652
selectedOrderID 395, 496
Selecting Properties 64
Selecting specific features 65
Selection Handler 37, 422
Service Consumer 113, 523, 555

default input 260
simple model 270

service consumer
RDD file 290

Service Definition 32, 34, 73, 78, 82, 113–114, 121,
240, 645–646

Additional builders 174
testing support 166, 189

Service Definition builder
generate WSDL to expose as Web Service 650

Service operation
programatic invocation 211

Service-Oriented Architecture (SOA) 2
service-oriented architecture (SOA) xiii, 518
Setting up Action List for CSRs 449
Setting up Action List for Customers 449
Setting up deployment configurations 51
Setting up DIIOP on Domino 175
Setting up for OrderDetails Model 492
Setting Up The Environment 632
Setting up the Environment 631
Setting up the WPS Credential Component 447
Settings for the Deployment Configuration 661
shopping cart 503, 517
Shopping Page Model 540
Shopping Product Catalog Model 575
ShoppingCart model 35, 505, 518
ShoppingCart model.Set 556–557
ShoppingPage model 505, 518
ShoppingPage model.Set 546–547
ShoppingUIImports model 523, 531
SOA architecture 68, 74, 645
span name 526
Specify some basic deployment options 665
Specify virtual host mappings 666
Specify your deployment configurations 45

 Index 705

Specifying the Java Build Settings 44
SQL Call 32, 119, 122, 296

builder 119, 158
SQL Data Services 118
SQL Statement 119–120, 230

positional parameter 147
result data 155
short summary 136
simple execution 136

SQL statement
builder call 230
configuration 119
execution 123
result 155

SQL Transaction
builder 136, 161
builder step 165

sqlOrderItem.find Element 143
Starting the application server 670
Static content

absolute URL 199
static content 525, 550, 598
Structured query language (SQL) 4
Stub Service 34, 207

model name 207
Successful installation procedure 669

T
Tag 506, 515
TD colspan 236–237, 526, 551
td width 526
Terms and Definitions 425
Testing a back end Service 214
Testing and debugging the service 165
Testing for Different Entry Points 459
Testing for Different Field Properties 467
Testing for Portlet Runtime Customization 494
Testing Phase 497
Testing Support 165
Testing the created Portlet 62
Testing the Inter-portlet Communication Link 393
TestPortlet should contain two builders (an Action
List and a Page builder) 60
the xiii, 693
Transformation builder 185
Troubleshooting 620
Types of Inter-portlet Communication 363
Types of Inter-portlet Events 365

Types of Profiling 428

U
UI Element 282, 527
UI Elements of a Portlet Factory Page 347
UI model 234, 525, 550
UIEvent Model

saveCredentials event 414
Shared Variable 370

UIEvent model 36, 362–363, 449
Unified Testing Environment (UTE) 40
Use Cases applicable to an external customer 20
Use Cases applicable to the Customer Service Rep-
resentative 19
User Interface

advanced development 35
user interface (UI) 6, 16, 34, 46, 63, 69, 158, 161,
221, 225, 275, 287, 364, 366, 423, 425–426
UseService name 641–642
Using Other Dojo Features 341
Using Rich Data Definition (RDD) File 283
Using the Ajax Type-Ahead builder 322
Using the Dojo builders 324
Using the Domino Builders 168
Using the Web material 694
Using WPS Credential builder in the ITSO - Custom-
er Self Service Application 269

V
Value Setter 436
Value setter 203

Java class 203
Value to the developer in building this portlet 506
Value-less Attribute 594
Variable builder 325, 513, 527
variable builder

following values 527–528
Verifying test connection 57
View Page

Options section 243

W
WAR file 49, 265, 613, 618

different types 39, 66
web application 511

local XML files 648
main purpose 647

706 Portal Application Development Using WebSphere Portlet Factory

serveable folder 161
WAR file 651

Web Service xiii, 694
different location 200
external operation 190
serveable content 199
static content 197
static serveable content 202
WSDL definition 190

Web service
provider models 46

WebApp 511
existing Variable 92

WebApp tree 92, 241
Data Service leaf 136

webAppAccess.call Method 164–165, 402
webAppAccess.getV ariables 401, 509–510
WebContent/WEB-INF/work/source 47
WEB-INF 47
WebSphere Portal

Config modes 429
Configure functionality 8
Configuring pages/portlets 266
installed copies 421
portlet war file 265

WebSphere Portal 6.0
directory 643
server 39, 49

WebSphere Portlet Factory exposes Data Services
as external Web Services 646
WebSphere Portlet Factory Forums 629
WebSphere Portlet Factory Model Wizard 58
WebSphere Portlet Factory TechNotes 629
What is Profiling? 423
When to use a Data Column/Field Modifier or Field
Level builders versus a RDD file 290
Why use an RDD? 283
Wizard Based approach 506
WPS Credential

Builder 34, 268, 448
Component 413, 438, 447
Type 270

WPS Credential Builder. 268
WPS Group

name 444
Segment Handler 37, 423, 433
Segment Handler example 436

WPS group 422
WSDL 73

WSDL file 190–191
port information 195
service port 190

WSDL for Product Web Service 654

X
XML access

Data Service case 165, 189, 206, 214
XML access file

Data Provider 122–123
XML content 107

data transformation 196
XML document 107–108
XML file 287

base Data Provider 113
implementation 100
name 109
relative path 109
user/profile mappings 432

XML Schema
Definition 87

XSD file 32, 86–87

 Index 707

708 Portal Application Development Using WebSphere Portlet Factory

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Portal Application Developm
ent Using

W
ebSphere Portlet Factory

®

SG24-7525-00 ISBN0738488658

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Portal Application
Development Using
WebSphere Portlet Factory

Features and
techniques for
rapidly
developing
portlets

Step-by-step
guidance for
building a sample
application

Best practices,
hints, tips and
troubleshooting

WebSphere Portlet Factory is a powerful and flexible tool for
rapidly building portlets on top of a service-oriented
architecture. It enables developers to quickly and easily
leverage their company's core assets, automatically
assembling them into custom, high-value portlets.

In this book, we show you specific techniques and a best
practices approach for developing portlets using WebSphere
Portlet Factory. Using a fictitious company scenario, we
discuss how to build a Customer Self Service and Customer
Representative application. Within this context, we cover the
following topics:

� Installing and configuring the Portlet Factory
development environment

� How to create and consume data services from SQL,
Domino and a Web service

� Step-by-step guidance for creating the portlets and
enabling inter-portlet communication

� Advanced UI design techniques, including the use of
AJAX for type ahead functionality and working with the
Dojo Builders

� Enabling the use of profiling
� Deployment production considerations
� Troubleshooting and debugging techniques

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Notices
	Trademarks

	Contents
	Preface
	The team that wrote this book
	Special acknowledgement

	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Overview of WebSphere Portlet Factory
	1.2 Capabilities of WebSphere Portlet Factory
	1.3 Development with WebSphere Portlet Factory
	1.3.1 Builders
	1.3.2 Models
	1.3.3 Profiles

	1.4 Architecture
	1.4.1 Builders
	1.4.2 Models
	1.4.3 Generation
	1.4.4 WebApp
	1.4.5 Generation, Part 2: Profiling

	Chapter 2. Scenario introduction
	2.1 Overview of the sample scenario
	2.1.1 Scenario background
	2.1.2 Roles specific to the sample application scenario

	2.2 Preview of the sample application
	2.2.1 Overview of the application functionality
	2.2.2 Use cases applicable to the CSR
	2.2.3 Use cases applicable to an external customer

	2.3 Review of specific portlets - CSR perspective
	2.3.1 Reviewing customer information
	2.3.2 Reviewing customer order information
	2.3.3 Creating a new order on behalf of a customer

	2.4 Review of specific portlets - Customer perspective
	2.4.1 Customer information based on authentication credentials
	2.4.2 Customer perspective - Reviewing orders
	2.4.3 Customer perspective - Creating a new order

	2.5 Mapping functional areas of sample application and capabilities of Portlet Factory
	2.5.1 Data Services
	2.5.2 Basic user interface portlets
	2.5.3 Advanced user interface portlets
	2.5.4 Portlet communication and profiling

	Chapter 3. Creating projects
	3.1 Overview
	3.2 Creating a project
	3.3 Project structure
	3.4 Deployment
	3.4.1 WAR files
	3.4.2 Deployment configurations

	3.5 Testing
	3.6 Adding a feature set
	3.7 Conclusion

	Chapter 4. Data Services: Overview and interface definition
	4.1 Overview of the technical goals
	4.1.1 Value to the Portlet Factory developer

	4.2 Data Services in Portlet Factory
	4.2.1 Architecture overview
	4.2.2 Supported back-end systems
	4.2.3 General concepts

	4.3 Developing Data Services in the sample application
	4.3.1 Role of Data Services in ITSO Renovations
	4.3.2 Architecture and design
	4.3.3 Development steps and guidelines

	4.4 Design and implementation of data structures and Application Data Service Interfaces
	4.4.1 Data structures
	4.4.2 Application Data Service Interface: Definition and operations

	4.5 Summary and best practices

	Chapter 5. Creating Data Services: Access to back-end systems
	5.1 Custom Data Service: Local XML access sample
	5.1.1 Overview of accessing a custom data service
	5.1.2 Implementing the service
	5.1.3 Testing and debugging the service

	5.2 SQL Data Services
	5.2.1 Overview and available SQL builders
	5.2.2 Design for ITSO Renovations - Customer and order information
	5.2.3 Implementing the service and operations
	5.2.4 Data transformations: Use of IXml API
	5.2.5 Customize data column access in SQL builders: Working with binary data
	5.2.6 Implementation of transactions
	5.2.7 Testing and debugging the service

	5.3 Domino Data Access Service
	5.3.1 Overview and how to use Domino Access builders
	5.3.2 Design for ITSO Renovations: Product information
	5.3.3 Implementing the service
	5.3.4 Data transformations: Use of Transform builders
	5.3.5 Testing the service

	5.4 Data Service for external web services access
	5.4.1 Overview
	5.4.2 Design for ITSO Renovations: External product information
	5.4.3 Implementing the service
	5.4.4 Testing the service
	5.4.5 Creating a Stub Service for testing

	5.5 High-level Data Services: Wrapping access to back-end systems
	5.5.1 Design for ITSO Renovations: Product information
	5.5.2 Implementing the service
	5.5.3 Testing the service

	5.6 Accessing other back-end systems
	5.6.1 SAP access
	5.6.2 J2EE Data Integration: EJB access and JMS support
	5.6.3 Accessing back-end systems without Portlet Factory builders

	5.7 Summary and best practices

	Chapter 6. Creating portlets: Making it work
	6.1 Overview
	6.2 Portlet design overview
	6.2.1 The context of this chapter

	6.3 Development the WebSphere Portlet Factory way
	6.3.1 High-level overview of building portlets
	6.3.2 Key builders for consumer models
	6.3.3 Best practices for designing large applications

	6.4 Building the web application
	6.4.1 Customer information
	6.4.2 Order List model
	6.4.3 Order Details model

	6.5 Converting the web application into portlets
	6.6 Configuring pages and portlets in WebSphere Portal
	6.7 Accessing the Portal Credential Vault
	6.7.1 WPS Credential builder
	6.7.2 Using WPS Credential builder in our application

	6.8 Summary

	Chapter 7. Creating portlets: Designing the UI
	7.1 Introduction
	7.1.1 What you will learn

	7.2 Using a Rich Data Definition file
	7.2.1 Why use an RDD?
	7.2.2 RDD in ITSO Renovations
	7.2.3 Adding RDD to the Customer Information portlet
	7.2.4 Adding RDD to the Order List portlet
	7.2.5 Adding RDD to the Order Details and Product Details model
	7.2.6 How an RDD file works
	7.2.7 When to use individual modifiers or builders instead of RDD
	7.2.8 Referencing and extending RDD files
	7.2.9 Examples of modifiers in the RDD Files
	7.2.10 Formatting the output
	7.2.11 How to create an RDD
	7.2.12 RDD summary

	7.3 Paging your data
	7.3.1 Adding pagination in the Order List portlet

	7.4 Using the Ajax type-ahead builder
	7.5 Using the Dojo builders
	7.5.1 Creating a Dojo tooltip in the Product Details portlet
	7.5.2 Adding Dojo Inline Edit in the Order Details portlet

	7.6 Dojo drag and drop
	7.7 Using other Dojo features
	7.8 Customizing the UI
	7.8.1 UI elements of a Portlet Factory page

	7.9 HTML templates in Portlet Factory
	7.10 Other UI builders
	7.11 Conclusion

	Chapter 8. Enabling portlet communication
	8.1 Overview
	8.2 Types of inter-portlet communication
	8.2.1 Types of inter-portlet events

	8.3 Inter-portlet communication for CSA
	8.3.1 CustomerInfo Model to OrderList Model
	8.3.2 OrderList Model to OrderDetails Model
	8.3.3 CustomerCredentials Model to CustomerInfo Model

	8.4 Best practices
	8.5 Conclusion

	Chapter 9. Customizing the application using profiling
	9.1 Overview
	9.1.1 Value to developers
	9.1.2 Value to users

	9.2 Profiling defined
	9.3 Terms and definitions
	9.4 Types of profiling
	9.4.1 Profile selection
	9.4.2 Profile value customization

	9.5 Selection handlers
	9.5.1 Profile selection handlers
	9.5.2 Value setter

	9.6 Profiling in our sample application
	9.6.1 Different entry paths for customers and CSRs
	9.6.2 Different field properties for customers and CSRs
	9.6.3 Different visibility of components for customers and CSRs
	9.6.4 Runtime customization profiling

	9.7 Best practices
	9.8 Conclusion

	Chapter 10. Creating the Go Shopping portlet
	10.1 Preview of the portlet you will build in this chapter
	10.2 Components within the portlet
	10.3 A sample wizard model
	10.4 Building the Go Shopping portlet
	10.5 Go Shopping portlet model
	10.6 Shopping Page model
	10.6.1 Cart model
	10.6.2 Shopping Product Catalog model

	10.7 Order Page model
	10.8 Confirmation model
	10.9 Conclusion

	Chapter 11. Production deployment
	11.1 J2EE production deployment WAR (standalone non-portal applications)
	11.1.1 Building the Production War from the Designer
	11.1.2 Deploying the production WAR to your application server
	11.1.3 Portlet production deployment War
	11.1.4 Deploying the Portlet WAR to your portal server

	11.2 Excluding files from your application
	11.3 General deployment concepts

	Chapter 12. Troubleshooting, debugging, and error handling
	12.1 Troubleshooting
	12.1.1 Fixing compilation errors at design time
	12.1.2 Diagnosing, resolving, and reporting runtime errors

	12.2 Debugging
	12.2.1 Debugging back end connectivity issues

	12.3 Error handling
	12.4 Other troubleshooting information
	12.4.1 Known limitations and issues
	12.4.2 WebSphere Portlet Factory TechNotes
	12.4.3 WebSphere Portlet Factory Forums

	Appendix A. Setting up the environment
	Deploying the Domino database
	Creating the groups in Portal

	Customer Self-Service Application details
	Creating the application schema and data
	Import and deploy the web service
	Import and deploy the project
	Installing the application theme
	Creating the pages for the CSA application

	Appendix B. Creating a Web service using WebSphere Portlet Factory
	WebSphere Portlet Factory exposes Data Services as external Web Services
	Implementation of the Product Web Service in ITSO Renovations application
	Deploying and using the Web Service
	Testing the Web Service
	Conclusion

	Appendix C. Remote deployment
	Overview
	Remote deployment procedure
	Advantages and disadvantages

	Appendix D. Configuring the RAD Unified Test Environment
	Setting up deployment configurations using RAD with an Embedded Test Environment

	Appendix E. Considerations for WAS CE
	Adding a database pool to the WAS CE server
	Modifying the development environment when deploying to WAS CE
	Modifying the project configuration files

	Appendix F. Execution processing
	Execution processing
	Execution: Portal action/render phases

	Appendix G. Additional material
	Locating the Web material
	Using the Web material

	Related publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

