
ibm.com/redbooks

Front cover

Building SOA-based
Solutions for IBM
System i Platform

Daniel Hiebert
Rolf André Klaedtke

Elena Lowery
Aleksandr Nartovich

Nitin Raut
Michael J. Sandberg

Implementing service-oriented
architecture (SOA) with Web services

Examples of Web services based on ProgramCall,
HATS, PHP, and Web Services Client for ILE

Excellent starting point for System i
developers on Web services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Building SOA-based Solutions for IBM System i
Platform

June 2007

SG24-7284-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (June 2007)

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this book . ix
Become a published author .x
Comments welcome. xi

Part 1. SOA: Understanding the big picture . 1

Chapter 1. SOA overview . 3
1.1 A simple definition of SOA . 4

1.1.1 Defining SOA . 4
1.2 Introducing services . 4

1.2.1 A coffee making machine based upon services . 5
1.2.2 A non-technical but business-related example . 5

1.3 SOA characteristics. 6
1.3.1 Implement SOA in many different ways . 6
1.3.2 Take advantage of loose coupling . 7
1.3.3 Continue to use the existing applications . 7
1.3.4 Implement quality of services . 8

1.4 SOA from a business perspective. 8
1.4.1 Reasons to consider SOA. 8
1.4.2 SOA is not always a perfect fit . 9

1.5 Further reading . 10
1.5.1 IBM Redbooks publications . 10
1.5.2 Web sites . 10

Chapter 2. SOA application design . 11
2.1 Designing an SOA solution . 12

2.1.1 Designing services . 12

Chapter 3. Web services technology stack. 17
3.1 Web services technologies in action . 18
3.2 SOAP: Web services messaging layer . 19
3.3 Web services transport . 21
3.4 Web services description: WSDL . 22
3.5 Web services discovery: UDDI . 24
3.6 Basic Profile . 24
3.7 Summary. 25

Chapter 4. Sample scenario . 27
4.1 Introducing the existing environment . 28

4.1.1 Overview of the Flight400 application . 28
4.2 Facing new challenges . 28

4.2.1 New opportunities . 28
4.2.2 Technical issues to address . 29
4.2.3 Flight400: From monolithic System i application to SOA 30

4.3 Conclusion . 32

© Copyright IBM Corp. 2007. All rights reserved. iii

Part 2. Implementing the service provider . 33

Chapter 5. ProgramCall (RPG, Cobol) Web service . 35
5.1 Project investments in developing a service . 36

5.1.1 Analyzing the existing application . 36
5.1.2 Time frame . 38
5.1.3 Development environment . 38
5.1.4 Deployment environment . 39

5.2 ProgramCall bean example. 40
5.2.1 Starting WebSphere Development Studio client for iSeries 40
5.2.2 Opening Remote System Explorer perspective . 41
5.2.3 Defining a connection to the i5/OS server. 41
5.2.4 Reviewing the RPG modules . 44
5.2.5 Creating and testing RPG Web service . 48
5.2.6 Testing the Web service Test Client . 57
5.2.7 Reviewing the generated Web service and Web service client code 59
5.2.8 Deploying your Web service to WebSphere Application Server for i5/OS 61
5.2.9 Modifying the Web service Client URI. 62
5.2.10 Exporting the Web service EAR file . 63
5.2.11 Installing Web services application on System i platform 64
5.2.12 Starting your Web service application. 68
5.2.13 Testing the Web service on System i . 68
5.2.14 Adding additional Web services: GetFlightInfo and FindCustomers 70

5.3 Exporting WSDL document (Optional) . 71
5.4 Summary. 74

Chapter 6. DB2 UDB Web service . 75
6.1 Reasons to use DB2 UDB based Web services . 76

6.1.1 Get a feeling for the technology . 76
6.1.2 If you cannot modernize the whole application . 76
6.1.3 There are strong SQL resources available . 76
6.1.4 You have invested in developing stored procedures . 76

6.2 Introducing the concepts and terminology . 77
6.2.1 DB2 Web services architecture overview . 77
6.2.2 XML-based access and Document Access Definition (DAD) 78
6.2.3 SQL-based access and Document Access Definition Extender (DADX) 78
6.2.4 Web services Object Runtime Framework (WORF) . 79
6.2.5 Additional information about DB2 Web services. 80

6.3 Developing a DB2 UDB Web service . 80
6.3.1 Creating a dynamic Web Project for the application . 80
6.3.2 Setting up the DB2 connection . 81
6.3.3 Importing the connection. 83
6.3.4 Creating an SQL statement . 84
6.3.5 Configuring the DADX Group . 86
6.3.6 Creating the DADX file . 87
6.3.7 Generating the Web service based on the DADX file . 90
6.3.8 Testing the Web service . 94

6.4 Creating a DB2 stored procedure . 95
6.4.1 Setting up the environment . 96
6.4.2 Creating and building an SQL stored procedure. 96
6.4.3 Creating the DADX file and generate the Web service based on it 104

6.5 Deploying the Web services . 104
6.5.1 Modifying the WSDL file . 105

iv Building SOA-based Solutions for IBM System i Platform

6.5.2 Exporting the EAR file . 106
6.5.3 Installing the application on WebSphere Application Server. 107
6.5.4 Testing Web services on the production server . 112

Chapter 7. HATS Web service . 115
7.1 Project investments in developing a service . 116

7.1.1 Analyzing an existing application . 116
7.1.2 Naming conventions . 126

7.2 Developing a HATS Web service . 126
7.2.1 Creating a HATS project . 126

7.3 Recording macros . 130
7.4 Setting connection properties . 155

7.4.1 Enabling pooling . 155
7.5 Creating the integration object . 158
7.6 Creating Web service support files . 160
7.7 Creating Web service . 163
7.8 Testing the Web service . 165
7.9 Next step . 169
7.10 Summary. 170

Chapter 8. PHP Web service . 171
8.1 Introducing PHP . 172
8.2 Technology overview . 172

8.2.1 How PHP works . 172
8.2.2 What is needed to use PHP . 173
8.2.3 There is more than one way to say “Hello, World” . 173

8.3 PHP on the System i platform . 177
8.3.1 Zend Core for i5/OS . 178
8.3.2 PHP version and availability . 178
8.3.3 Accessing DB2 UDB and i5/OS resources . 178
8.3.4 Support for Zend products on i5/OS . 179

8.4 The PHP Extension and Application Repository . 179
8.4.1 Why PEAR important for you . 179
8.4.2 Installing PEAR packages. 180
8.4.3 Further information on PEAR . 180

8.5 Creating a Web service with PHP . 180
8.5.1 PHP SOAP implementations. 180
8.5.2 Zend Studio for i5/OS WSDL Generator . 180
8.5.3 SOAP cache . 181
8.5.4 Creating a simple Web service from PHP. 182
8.5.5 Creating a PHP Web service to wrapper a program call. 187

Part 3. Implementing Service Consumer . 193

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 195
9.1 RPG as a Web service Client . 196

9.1.1 Development environment . 196
9.2 ProgramCall bean example. 197

9.2.1 Opening the J2EE Perspective . 198
9.2.2 Examining the WSDL document . 198
9.2.3 Moving the WSDL file to the server. 200
9.2.4 Using Web Services Client for ILE to generate WSDL artifacts 204
9.2.5 Creating an RPG program to invoke a Web service . 204
9.2.6 Compiling RPG . 216

 Contents v

9.2.7 Compiling C modules and Create service program . 217
9.2.8 Invoking the RPG application to make reservation . 218

Chapter 10. JSF Web service client . 219
10.1 Developing a JSF client . 220

10.1.1 Creating a dynamic Web project . 220
10.1.2 Creating a page template . 220
10.1.3 Creating JSF Web service client using Web Service Component 231
10.1.4 Testing the JSF Web service client. 239

10.2 Summary. 240

Chapter 11. PHP Web service client . 241
11.1 Consuming a Web service with PHP . 242

11.1.1 Using Zend Studio for i5/OS to create Web services clients. 242
11.1.2 Consuming the Repeater PHP Web service . 243

11.2 Consuming the ProgramCall PHP Web service . 245
11.2.1 Consuming the GETFLIGHTINFOServices WebSphere Web service 246

Appendix A. Setting the connection to WebSphere Application Server V6.0 249
Changing a JMX connection with a server . 250

Appendix B. URI length limit of 259 characters on Windows 255
Issue. 256
Cause. 256
Solution . 256

Appendix C. Useful tools . 267
SOAP monitoring utility . 268

Download Apache TCPMON binary . 268
TCPMON uses in debugging services problems . 273

TCPMON uses for security . 273
WebSphere Development Studio client - debugger . 274

Using the WebSphere Development Studio client debugger . 274

Appendix D. Additional material . 281
Locating the Web material . 281
Using the Web material . 281

How to use the Web material . 281

Related publications . 283
IBM Redbooks publications . 283
Other publications . 283
Online resources . 283
How to get IBM Redbooks publications . 284
Help from IBM . 284

Index . 285

vi Building SOA-based Solutions for IBM System i Platform

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
eServer™
iSeries®
i5/OS®
AIX®
AS/400®
DB2 Universal Database™

DB2®
IBM®
OS/390®
OS/400®
Rational®
Redbooks®
REXX™

RPG/400®
System i™
System i5™
WebSphere®
Workplace™

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

EJB, Java, JavaServer, JDBC, JDK, JMX, JSP, JVM, J2EE, Solaris, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Microsoft, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii Building SOA-based Solutions for IBM System i Platform

Preface

There is a strong shift in the industry toward reuse of the existing software and hardware
resources within the companies to minimize the IT cost. Instead of creating or buying a new
solutions, companies are trying to build a set of reusable software components based on the
existing applications. These components can be quickly assembled in many different ways to
satisfy the business needs of the companies. This environment is based on service-oriented
architecture (SOA) and solutions that support business process automation.

This book provides the detailed information about multiple ways for building SOA-based
solutions around the System i™ platform. The discussion in the book covers the server and
client side implementations that include:

� ProgramCall in IBM® Toolbox for Java™
� Host Access Transformation Services (HATS)
� DB2® Web services
� PHP
� IBM Web Services Client for ILE
� Java-Server Faces (JSF)

Parts of the book are appropriate for CIOs, system architects, and application developers.

The team that wrote this book
This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Rochester Center.

Daniel Hiebert is an Advisory Software Engineer with IBM Systems and Technology Group.
He works with the Web services and the SOA runtime within WebSphere® Application Server
on System i. He has also authored several articles and technical papers on application
integration through SOA and Web services. He has three years of experience with
Application Integration connecting RPG with Java, Web Clients, C#,.NET, and DB2
technologies and six years of experience with J2EE™ technologies including JSP™, JSF,
Servlets and EJB™.

Rolf André Klaedtke is an IBM Certified Application Developer and owner of RAK Software,
Consulting and Publishing in Kreuzlingen, Switzerland. He has a commercial background and
accumulated over 20 years of experience in the IT industry, initially starting as a software
developer using RPG and CL on IBM S/38. Since then, he has used a wide array of DBMS,
tools, and languages. In the recent years he concentrated on Web development, mostly using
PHP and CSS, as well as on Java and C#.NET. He has co-authored IBM Redbooks®
publications, has written for magazines such as PowerTimes, and has organized technical
conferences and user group meetings in Switzerland. He can be contacted through his
company’s Web site at http://www.raksoft.ch.

Elena Lowery is a Technical Consultant in the IBM eServer™ Solutions Enablement
organization at IBM Rochester. She helps IBM Business Partners implement various
WebSphere technologies on theSystem i platform. Her areas of expertise include WebSphere
Application Server, WebSphere Portal Server, Web services, and Java development.

© Copyright IBM Corp. 2007. All rights reserved. ix

http://www.raksoft.ch

Aleksandr Nartovich is a Senior IT Specialist in the IBM ITSO, Rochester Center. He joined
the ITSO in January 2001 after working as a developer in the IBM WebSphere Business
Components organization. During the first part of his career, Aleksandr was a developer in
AS/400® communications. Later, he shifted his focus to business components development
on WebSphere. Aleksandr holds a degree in Computer Science from the University of
Missouri-Kansas City and a degree in Electrical Engineering from Minsk Radio Engineering
Institute.

Nitin Raut is an Advisory Software Engineer at System i5™ Technology Center, e-Business
Team, located in IBM Rochester, MN. He has been involved in e-Business consulting and
education targeting the System i platform for past seven years. His expertise include
WebSphere Application Server, WebSphere Portal Server, WebSphere/Rational®
Development Studio, WebSphere Business Integration, WebSphere Host Access
Transformation Service, WebFacing, Apache, and so forth. He has 18 years of experience
which includes assignments in SAP® Basis Consulting, Enterprise Application Development
and ERP (BPCS & Mapics XA) Implementation on the System i platform.

Michael Sandberg is a technical consultant working for IBM ISV Business Strategy and
Enablement, located in Rochester, Minnesota. For the past five years, he has been involved
in supporting System i solution providers as they enhance and innovate their applications. As
part of this work, he has accumulated technical expertise in the IBM WebFacing Deployment
Tool with HATS Technology, PHP: Hypertext Preprocessor (PHP), and other technologies
that focus on application innovation for the System i platform.

Thanks to the following people for their contributions to this project:

Nadir Amra
Tony Cairns
Pat Fleming
Kent Milligan
IBM Rochester, MN

Holt Adams
IBM Boulder, CO

Grant Hutchison
IBM Toronto, Cananda

Become a published author
Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

x Building SOA-based Solutions for IBM System i Platform

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Building SOA-based Solutions for IBM System i Platform

Part 1 SOA:
Understanding the
big picture

In this part, we introduce service-oriented architecture (SOA). It includes the overview of the
architecture and its benefits, application design methodology, and Web services (which is a
major set of standards for implementing SOA).

Part 1

© Copyright IBM Corp. 2007. All rights reserved. 1

2 Building SOA-based Solutions for IBM System i Platform

Chapter 1. SOA overview

This chapter provides an introduction to service-oriented architecture (SOA) and discusses
Web services as one of the specific technologies that are associated with it. SOA is a wide
field, and it is impossible to cover all related themes herein. Therefore, we also include a list
of references that allows you to find more material on this vast topic.

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 A simple definition of SOA

With architecture, from the latin word architecture, we identify the art and science of
designing buildings and structures. This type of design generally includes the creating of
complex systems, which probably nobody would start without having a good idea about the
underlying structure or architecture. SOA is a concept that allows various approaches to
realize a system designed according to its guidelines. In this book we concentrate on a
technologies that is popular today, Web services.

1.1.1 Defining SOA

SOA is a methodology that you can use in software development. Just as the concept of an
object is central to object-oriented architecture, SOA is based on the concept of a service. In
SOA, a service is an application that can be invoked by other applications.

The concept of a service in software is similar to a concept of a service in real life. For
example, if you want to relocate, you look up available relocation services in the telephone
directory. Then you can contact the relocation company directly and work out the details of
the move. The same scenario can apply to a software interaction. A company can have
software that handles relocation procedures. The software can search a public service
registry for relocation services. Based on some selection criteria (for example price or
delivery time), the relocation application can choose one of the relocation providers and work
with them directly to schedule the move and arrange payment.

The described services scenario involves the following three participants:

� Service Requestor: An application with a business need
� Service Broker: A registry of all available services
� Service Provider: An application that implements a business function

A service provider implements a service and publishes it to the service broker. A service
requestor searches the registry to find a service of interest. Upon finding a service, the
service requestor binds to the service provider and invokes the service with the help of an
XML file that describes the Web services interface.

1.2 Introducing services

In May 2006, a search for the keyword Web services on the Internet brought back over
4 200 000 000 documents. We do not know on how many of them you can find an
explanation of Web services. Sometimes the concepts are explained in a language that is
difficult to understand. Explaining technical concepts to an unknown audience is indeed a
challenging endeavor, especially if the background of that audience varies from complete
beginner to expert.

Therefore, to introduce the concept of services and to relate that concept to your applications,
we provide an example based on a coffee-making machine. We then follow this simple
concept with a non-technical example to introduce you to the topic of Web services.

4 Building SOA-based Solutions for IBM System i Platform

1.2.1 A coffee making machine based upon services

Here, we use a coffee making machine example for some initial considerations on services in
general.

Imagine you are standing in front of a coffee making machine, ready to drop some coins into
it, select the appropriate button, and after a little while served a coffee. See this serving of
coffee as a service that the machine is providing to you. But, what type of coffee? With sugar
and milk or just black? Big or small? There are many possible variations, so let us have a look
behind the scenes.

After you drop the coin, you can select a few choices by selecting some buttons to have the
machine create exactly the coffee that you want. Each selection triggers some action inside
the machine:

� Heat water
� Prepare coffee powder
� Add milk
� Add sugar

Each action needs to be a single service because people might want to have milk and sugar
or just one or the other. (As an analogy in IT, you can influence the results that a particular
application provides by using different services.)

Now, imagine this coffee making machine is an older model, and you do not have many
choices. Either you get a big coffee with milk and sugar or you do not get anything. If this
were the case, customers would not be very happy. So, you might have to either replace or
update the machine. The same is true with some older applications that are important to your
business but that might not satisfy new needs or changing business requirements.

But just how much modernization, respectively cutting into single services do you need? Well,
you might decide that heating water and pressing it through the ground coffee could be a
single step. But what if later you would like to offer hot tea as an option from the same
machine?

The same is true with your application: good judgement and a good overview of the system
architecture and your business needs is necessary to identify the functions that should be
made ready to be called from the outside.

One more point: coffee is also called Java. Do you need to use Java to enter the world of
Web services? No, in this book, we show various other approaches to solve your business
requirements.

1.2.2 A non-technical but business-related example

The previous section provided a more general introduction to services. Now, we present an
example that is more specifically about services in the IT world.

You are the owner of a general store in town that sells all types of goods. One of your main
suppliers is located out of town. Both of you are well equipped with phone lines, Internet
access, and computers for your business administration. While you are using a
Windows®-based application, your supplier is running business software on a System i
platform with applications written in Report Program Generator (RPG), because the business
is serving many customers all over the country.

To place an order for new goods with your supplier, you can usually send a fax or an e-mail or
you place a phone call. All of these means require an employee of your supplier to enter the

Chapter 1. SOA overview 5

order into their system. This process is not only time-consuming, it is also a source for
possible errors due to wrong entries or typographical errors.

Now, if your supplier has a Web site with an order form, you can place that order yourself
directly into the system. Assuming that the Web server is running on the System i platform,
the supplier still needs to integrate the Web site frontend, possibly written in a combination of
HTML and PHP or using JavaServer™ Faces, with the backend software written in RPG.

Let us go back to your side of the business. Suppose that your business software allows you
to enter all your sales and keep your stock information up-to-date, therefore allowing you to
order new products when stock is decreasing below a certain level. However, you still have to
check your stock figures and place that order manually.

Do you see what is coming next? Right: wouldn’t it be nice if your software could—as soon as
the stock for a certain product is below a certain level—enter in direct contact with your
supplier’s system to order a specified quantity? That automated action would eliminate the
need to constantly have an eye on your stock and place an order when needed. On the
supplier’s side, it would also eliminate the time-consuming need to enter that order into the
system.

Web services can make this type of action happen. In short, a Web service is a function in an
application that can be called from a program or a system somewhere else using the Internet,
very similar to a Remote Procedure Call (RPC). Instead of a human interacting with a
computer through a Web interface, we have applications interacting directly together with the
help of Web services.

But wait... we said that one system is running Windows and the other is running i5/OS®?
What if instead of Windows, you have a Linux®-based system? The good news is that this
process still works. In fact, all big players in the IT industry have joined forces to support a
common standard—IBM, Microsoft®, and Sun, to name just a few. This standard makes it
possible to integrate systems based on different technologies using the SOA approach.

1.3 SOA characteristics

After looking at the concept of services on a general level, followed by a non-technical sample
but with some relation to service-based solutions in a business environment, we now have a
look at some characteristics that distinguish an SOA from other architectures. With the key
components and differentiating points for an SOA, you can:

� Implement SOA in many different ways.
� Take advantage of the benefits of loose coupling.
� Continue to use existing applications.
� Implement quality of services.

1.3.1 Implement SOA in many different ways

SOA is an architecture. As with any architecture, SOA defines the overall design principles for
constructing a software component. Implementation of that component, however, is a
different thing. Let us illustrate with an analogy about building a house. You can use an
excavator to dig the foundation of the house, which will make the job move along quickly and
easily, or you can do it using a simple shovel, which will make the task more difficult.
Similarly, there might be many ways to implement an SOA solution.

However, most often companies benefit from using a standard or a set of standards for
implementing an architecture. SOA is not an exception. There is a set of standards called Web

6 Building SOA-based Solutions for IBM System i Platform

services. Web services are recognized as the best way for implementing SOA solutions. Web
services are developed as an open source project, because they do not lock you into any
single vendor. This is one of the main attractive points for adopting Web services.

However, do not assume that SOA and Web services are the same. You can implement an
SOA solution using technologies, such as CORBA or .Net, but these technologies do not
realize all the possible benefits of SOA. Instead, they imply very strict requirements for
implementing a service, possibly locking you into a single vendor.

You can learn more about the Web services standards in Chapter 3, “Web services
technology stack” on page 17.

1.3.2 Take advantage of loose coupling

One of the key points of an SOA is that an applications’s different functional units, called
services, are interrelated through well-defined interfaces and contracts between these
services. The interface is defined in a neutral manner that should be independent of the
hardware platform, the operating system, and the programming language in which the service
is implemented. This independence allows services that are built on a variety of such systems
to interact with each other in a uniform and universal manner.

This feature of having a neutral interface definition that is not tied strongly to a particular
implementation is known as loose coupling between services. The benefit of a
loosely-coupled system is its agility and ability to survive evolutionary changes in the
structure and implementation of the internals of each service that make up the whole
application. Alternatively, tight-coupling means that the interfaces between the different
components of an application are tightly interrelated in function and form, thus making them
brittle when any form of change is required to parts of or the whole application.

This benefit of loosely-coupled applications requires an additional functional layer in your
solution that has to convert the platform neutral interfaces to the platform specific APIs.
However, the benefits of loosely-coupled solutions outweigh the downside of having an
additional functional layer.

1.3.3 Continue to use the existing applications

A lot of talk and promises has gone into reusing application code or business logic.
Unfortunately, as many have found out, this reuse of existing code is not always as easy as
they thought in the beginning. It certainly is more difficult with monolithic applications that
might have to be modernized, that is modularized, before reusing parts of its business logic to
integrate with other applications or systems. For many, the term reuse remains limited to
“change the underlying hardware, recompile, and continue using your applications.”

With an SOA, there is again that promise, but let us say “continue to use the existing” instead
of “reusing.” In fact, in earlier times, when two companies with different systems merged, it
was often the case that one company took over the system of the other, because integrating
them was not possible or too difficult. That type of merger could have a huge impact,
especially if the staff on site did not know the operating system and programming languages
that was used on the other system.

Now, integrating systems has become easier, because the hardware does not play such an
important role anymore. In addition, companies can integrate the software, thanks to SOA,
with other systems and, therefore, can continue to use it. Of course, this integration does not
come without a cost, but the alternative is not free either.

Chapter 1. SOA overview 7

1.3.4 Implement quality of services

When doing business with an external partner, on whose operations you have no control, you
need to define and agree to some rules, often in the form of service-level agreements and
operational policies. Understandably, security is very important in enterprise computing. It is
equally important that you can trust upon that all business processes are executed reliably
and conforming to the terms agreed. This might seem unspectacular for a simple operation
but can become very complex in transactions that span over several loosely coupled
distributed systems.

Therefore, the following services are part of what is called quality of service:

� Security
� Reliable Messaging
� Transactions

1.4 SOA from a business perspective

One of the goals of IBM is the development and adoption of open standards within its
products. SOA is the latest architecture that has received a tremendous interest among CIOs
in today’s companies. SOA is well positioned to allow business needs to drive development.
This positioning enables you to realize the value proposition of SOA within your company's IT
infrastructure. SOA promises to optimize the alignment of business needs with IT, decoupling
business process activities from service implementations, and to reduce operational costs.
You can accomplish these capacities without vendor lock-in, when technologies, targeted for
SOA implementations, are integrated seamlessly (open standards) to construct
comprehensive end-to-end solutions.

1.4.1 Reasons to consider SOA

On white boards and on paper, the concepts of SOA can be very compelling and more easily
justified when the company takes into consideration strategic business goals and initiatives.
However, the decision to implement SOA should not be taken lightly. It is similar to
committing to a lifestyle change because the IT governance to which your development and
operational teams adhere to will be quite different. Business-driven development is one of the
key components of SOA. The process involves refining business needs to IT requirements,
and then IT requirements to IT capabilities, to identify technology to address the needs. Good
reasons to consider using SOA include:

� Your company has existing business logic that needs to be accessible by other intranet
applications, strategic business partners, or external Internet applications

� Integration costs continue to grow without being offset by new business opportunities that
provide a real return on investment (ROI).

� Mergers and acquisitions are central to your company's business model for growing
market share and pursuing new opportunities.

� Solutions require the integration of business capability from disparate systems and
programming models.

� The livelihood of your business depends on your ability to adjust quickly to changes in the
marketplace or to respond immediately to competitive threats.

� The impact of the global economy necessitates that your company does more with less
and that your company relies on business partners to provide non-core business
functions.

8 Building SOA-based Solutions for IBM System i Platform

� The efficiency of working with business partners is critical for your company in driving
revenue.

� The value of your company's business assets are diminished because they are not
assessable for reuse outside their original purpose.

� The efficiency of your company's employees is in question because they do not spend the
majority of their time delivering capabilities or services that are core to your company's
business model.

� Your company's business thrives on opportunistic business endeavors.

� Your company develops new applications from scratch. Our belief is that SOA should be a
default architectural style to position new applications for the future, unless business
conditions dictate otherwise.

1.4.2 SOA is not always a perfect fit

In an ideal world where there are no budget constraints, schedule deadlines, skill gaps, and
priority differences between you and your business partners, it is safe to say that everyone
would be adopting SOA or, at least, would have plans to adopt it. However, in the real world,
our choices are often influenced and limited by past decisions (for example, investment in
technology, adoption of programming models, or commitment to contractual agreements of
services). As a result, we are not always at liberty to make what appears to be the perfect
choice for addressing a business need or technical requirement. Some indications that SOA
might not be a good fit for your company include:

� A small percentage of your company's IT budget is spent on integration activities.

� A majority of your company's processes are manual or document-centric, with little
opportunity for automation.

� A large majority of your company's application development uses the same programming
model.

� The operation of your company is managed by one or two customer relationship
management (CRM) and enterprise resource planning (ERP) applications with little
integration requirements.

� There is a significant mismatch between your company's existing skill base and that which
is needed to implement an infrastructure to support SOA.

� A clear business need or opportunity has not been identified that would benefit from the IT
capabilities offered by SOA.

� An existing revenue stream would be adversely affected due to the availability of new
business services.

� Business partners with whom your company relies upon have different priorities about
automating intercompany processes.

� Your company's primary business revolves around extremely high-volume, synchronous,
real-time transactions.

Every engagement or project brings unique requirements, so the decision about whether to
adopt SOA depends on your company's business situation. The value proposition of SOA is
hard to trump, but choosing to commit your company to embrace SOA must be balanced by
the reality of your business environment. In addition, you do not have to adopt SOA in one
large leap. Typically, adoption of SOA is done in small steps. Finding a project where you can
use the concepts and principles of SOA and then measuring its value with key performance
indicators is powerful in cultivating a community of stakeholders.

Chapter 1. SOA overview 9

1.5 Further reading

If you are interested in knowing more about SOA and the Web services Platform Architecture,
see Understanding SOA with Web services, by Eric Newcomer, Greg Lomow, ISBN
0-321-18086-0 (Pearson Education).

1.5.1 IBM Redbooks publications

The following IBM Redbooks publications also deal with the subject of SOA and Web
services:

� WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� Patterns: SOA Foundation - Business Process Management Scenario, SG24-7234

� Enabling SOA Using WebSphere Messaging, SG24-7163

� Patterns: SOA Client - Access Integration Solutions, SG24-6775

1.5.2 Web sites

There are also numerous Web sites that provide interesting material about SOA. Here are
just a few:

� SOA introduction

http://www-128.ibm.com/developerworks/architecture/roadmap/#2

� Wikipedia: Service-oriented architecture

http://en.wikipedia.org/wiki/Service-oriented_architecture

10 Building SOA-based Solutions for IBM System i Platform

http://www-128.ibm.com/developerworks/architecture/roadmap/#2
http://en.wikipedia.org/wiki/Service-oriented_architecture

Chapter 2. SOA application design

This chapter discusses the process of designing an application based on SOA. We explain
how to identify and design services, which are the building blocks of an SOA application.

2

© Copyright IBM Corp. 2007. All rights reserved. 11

2.1 Designing an SOA solution

Designing an SOA application is an art, not a science. In other words, when you understand
the key guidelines of SOA, you can design several SOA-compliant application designs. The
key architectural principal of SOA is creating loosely-coupled services that can be combined
into applications. Loosely-coupled services in an application can be used independently of
each other. Another way to understand the term loosely coupled is by looking at an electrical
appliance such as a vacuum. With a vacuum, an electrical cord is tightly coupled with the
vacuum but loosely coupled with a power outlet. Loose coupling allows services reuse. In our
vacuum example, you can plug any electrical appliance into a power outlet, not just a
vacuum, and the vacuum can be plugged in to any power outlet.

A service is a basic building block of an SOA application. The first step in designing an SOA
application is identifying and creating services.

2.1.1 Designing services

Few companies today have the luxury of starting software development from scratch. This is
especially true for System i customers and independent software vendors (ISVs) who have
applications that were developed up to 20 years ago. These applications are robust, stable,
and proven. Thus, completely rewriting these applications does not result in a significant
return on investment (ROI). At the same time, traditional applications need to be extended to
support changing business requirements. Implementing services is an example of extending
a traditional System i application.

SOA-based IT infrastructure or a product might be the end goal of any company that started
on the SOA path, and creating a service is the first step on that path. What part of your
application makes a good candidate for a service? The answer to this question is in business
requirements. Business requirements can be as informal as one of the users saying “I want to
track shipped packages from our Order Entry system” or as formal as “We need to provide
standards-based order process for our suppliers.”

Identifying business functions that make useful services
In some cases, the process of identifying a service is simplified because services creation is
specified as a requirement. For example:

� You need to expose your business functions to external companies, and SOA/Web
services was chosen as an architectural approach and a standard.

� Your company requires that all applications provide a standard business logic interface so
that applications can be easily integrated into an Enterprise Services Bus or similar
infrastructure.

If you do not have an explicit requirement to convert business functions to services, you will
need to do some analysis to identify useful services.

Services today are used for functions as simple as a spell check and as complicated as an
e-Commerce system. The similarity between these services is that they provide a business
function that can be used by multiple applications in multiple contexts.

Here is a sample list of steps for identifying feasibility of a business function as a service:

1. Identify a business requirement.

2. Identify a business task that fulfills the requirement. The business task becomes a service.

3. Verify that there could be at least two different uses (clients) for this service.

12 Building SOA-based Solutions for IBM System i Platform

Let us apply this decision process to two business requirements in a sample scenario where
a company that sells school district management software received two new business
requirements from customers. As an example, we show two possible scenarios.

Here is the first scenario:

1. Business requirement: Expose student attendance information to external users.

2. Business task: Look up student attendance in the attendance database and return it in a
standards-based format.

3. Verify that there could be at least two different uses (clients) for this service: This service
can be used by ISV software and integrated into other systems, such as School District’s
Web applications.

4. The ISV made a decision to implement this requirement as a Web service.

Here is the second scenario:

1. Business requirement: Keep track of teacher’s continuing education credits.

2. Business task: Look up and update teacher’s continuing education credits.

3. Verify that there could be at least two different uses (clients) for this service: At this time,
the only use of this service is by ISV software. There is a restricted set of users who can
access this information.

4. The ISV made a decision to implement this function as a reusable modular software
component but not as a Web service. The deciding factors were only one identified client
for this service and a limited group of users.

Why not make every business task a service
One of the things to keep in mind when designing SOA-based applications is implications of
loosely-coupled architecture on application complexity, performance, and maintenance. An
on-going challenge in software design is the trade off between the best possible architecture
and the best architecture for performance. Your task as an SOA architect is to come up with a
solution that satisfies both SOA architecture and performance requirements. If performance is
a concern, in addition to the decision criteria for identifying services that we outlined in the
previous section consider the following criteria:

� Create large-grain services versus creating many small-grain services, that is implement
an entire business task as a service versus a component of a business task.

� Provide two interfaces for business logic: the services interface and an interface for
integrating with clients written in the same programming language.

Today’s uses of services
Looking at existing services can give you additional ideas on what business functions make
good examples of services. For example, United States Postal Service offers address
standardization, zip code lookup, and city and state lookup services. Amazon.com, one of the
leading online retailers, is a pioneer in providing e-commerce Web services. Using Amazon’s
Web services, you can build your own front end to Amazon’s warehouse of products. Another
Web service offered by Amazon is a “Simple Storage Service” that provides read/write
capabilities for any amount of data over Internet. Other services examples are search and
spell check Web services provided by Google.com and services to create maps and driving
directions provided by Mapquest.com.

Chapter 2. SOA application design 13

All these examples are services that are created for use by external applications. Services
can also be created for use strictly by internal applications. In the intranet environment,
services are used to solve a variety of business problems, such as:

� Provide a single point of access to multiple back-end applications

� Integrate applications written in different programming languages

� Build flexible applications that can be easily extended and integrated

An automobile manufacturer, DaimlerChrysler, uses Web services to integrate applications
within their human resources, procurement, supply chain management, and manufacturing
organizations. Their applications reside on several platforms which include AIX®, OS/390®,
SUN Solaris™, and Windows and include Java, COBOL, Visual Basic®, and PowerBuilder
applications. Wachovia, one of the leading U. S. financial institutions, uses Web services to
integrate Microsoft .Net, the rich client with back-end applications.

You can find additional Web services case studies at:

� IBM Case Studies

http://www-306.ibm.com/software/success/cssdb.nsf/solutionareaL2VW?OpenView&Cou
nt=30&RestrictToCategory=wp_ServiceOrientedArchitecture&S_TACT=106AJ04W&S_CMP=c
ampaign

� Web Services information

http://www-306.ibm.com/software/ebusiness/jstart/casestudies/webservices.shtml

Service design considerations
After you identify a good candidate for a service, the next task is to design the service
interface. The service interface consists of input and output parameters. Your goal should be
to design an interface for maximum interoperability. Let us look at the factors that affect
interoperability between services and clients implemented in different programming
languages:

� Data type: Primitive data types (strings, integers, and so forth) are supported by all
programming languages. When designing the services interface, use primitive data types
and avoid programming language specific data types. If you are planning to use SOAP as
a messaging mechanism for services, verify that the chosen data types are supported by
SOAP. See Chapter 3, “Web services technology stack” on page 17 for more information.

� Simple or complex: A complex parameter includes many simple parameters, usually
primitives. For example, we can pass customer information in a complex Customer
parameter which contains several attributes—customer name, address, and so forth. In
Java, this parameter is implemented as a JavaBean, in RPG as a data structure. We can
also pass customer information in an XML document included in a simple String
parameter. Which approach is better for interoperability? The simple String parameter
provides the best interoperability because strings are supported by most programming
languages. The disadvantage of this approach is that the service is not self-describing,
that is the service returns a string, but it does not describe the content of the string. In
addition, the client has to parse the XML document that is included in the string. With the
complex parameter, the service is self-describing: the output is a Customer object that has
several attributes. On the client side we do not have to worry about parsing XML because
SOAP APIs parse the Customer output parameter and get information back to the client in
the form of a Customer data type. The disadvantage of this approach is that not all
programming languages (SOAP APIs of these languages) support complex objects. To
determine which parameter type to use in your application, create a Web service client
prototype in programming languages of your choice and test integration with complex

14 Building SOA-based Solutions for IBM System i Platform

http://www-306.ibm.com/software/ebusiness/jstart/casestudies/webservices.shtml
http://www-306.ibm.com/software/success/cssdb.nsf/solutionareaL2VW?OpenView&Count=30&RestrictToCategory=wp_ServiceOrientedArchitecture&S_TACT=106AJ04W&S_CMP=campaign

parameters. Also, consider designing two interfaces for the same service: one with a
complex parameter and one with a string that includes an XML document.

If you are creating services over existing code and cannot change method or procedure
interface because they are used by other applications, consider building a facade layer that
transforms services parameter types to parameters that are used by existing code.

Another decision that you have to make is whether your service is going to be stateless or
stateful. While state is usually an implementation discussion, it can have some impact on
your service interface. For example, if your service in stateless, and state is maintained on
the client side, you might need to pass state information in the input parameter.

Interaction between service clients and services can be synchronous or asynchronous.
Asynchronous communication is used when a service takes a long time to complete or when
response is not required by the client application. In some cases, you might want to get a
confirmation that your request was received by the service but you do not want to wait for
results, in other words, a combination of synchronous and asynchronous model. In this case,
implement a service that receives a request from a client and posts a message that will later
be processed by a batch program. The service can return an output parameter containing
request id. In addition, implement other services that will return request status and request
results.

You should give special security considerations to services that are created for consumption
by external applications. You need to decide if authentication and authorization should be
done on a individual service on an application level. If you decide to implement security on a
service level, you need to pass user authentication information as an input parameter. If you
are implementing security on an application level, you might still need to pass a parameter to
each service verifying that the user has been authenticated.

Creating SOA applications from services
After you create services, you need to integrate them into existing or new applications. If you
are adding services to an existing application create a services layer or an adapter that
encapsulates access to all services. Figure 2-1 illustrates a sample application architecture.

Figure 2-1 Sample application architecture

If you are building new applications based on a large number of services, consider using
Business Process Execution Language (BPEL) to define and create composite services and
process choreography to define relationships between services. Both technologies are
industry standards, WS-BPEL and WS-CDL (Choreography Description Language),

Application

Service 1

Service 2

Service 3

Service 4 Other

Java

RPG/COBOL

Database

S
er

vi
ce

s
A

da
pt

er

Service Consumer Service Provider Back-end Resources

Chapter 2. SOA application design 15

respectively. IBM provides tools and middleware for building SOA applications using BPEL
and process choreography.

See the following Web sites for more information and links about BPEL:

� Wikipedia: Business Process Execution Language

http://en.wikipedia.org/wiki/BPEL

� Web Services Choreography Description Language Version 1.0

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

16 Building SOA-based Solutions for IBM System i Platform

http://en.wikipedia.org/wiki/BPEL
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

Chapter 3. Web services technology stack

This chapter describes technologies that are used for building and invoking Web services.
We describe the following technologies in this chapter:

� SOAP
� HTTP
� WSDL
� UDDI
� Basic Profile

3

© Copyright IBM Corp. 2007. All rights reserved. 17

3.1 Web services technologies in action

Web services technologies are best explained in the context of how they are used during the
development process and at runtime. A developer implements modular code, for example an
RPG module with several procedures or a JavaBean with several method according to a
previously defined interface. At this point, no Web services-specific code has been
implemented. Next, the developer creates a Web service from modular code. Web services
creation does not add logic to implemented modular code, but creates the infrastructure
around it that allows modular code to be invoked as a Web service. Most IDEs, including
WebSphere Development Studio client for iSeries®, provide tools for creating Web services
from existing code. One of the key artifacts generated during Web services creation is Web
services Definition Language (WDSL) file. WSDL is an XML document that describes Web
service interface: methods, parameters and service location.

The last step in developing a Web service is to test it. Communication between Web service
clients and Web services is achieved with SOAP—an XML standard for the exchange of
structured information in a distributed environment. A test application, or Web services test
client, must create a SOAP message to invoke a Web service. You can create test client
manually or use tooling in WebSphere Development Studio client for iSeries to generate test
client code.

Web service client developer needs information about the Web service to implement Web
service invocation code: service location, methods, and parameters. As mentioned
previously, this information is captured in the WSDL file. Using information in the WSDL file,
the Web service client developer uses SOAP API to create a SOAP request message to
invoke the Web service. WebSphere Development Studio client for iSeries and some other
IDEs provide wizards to generate SOAP APIs based on a WSDL document. A term Web
services invocation proxy or just proxy is used usually to describe a generated code artifacts
that includes SOAP API.

Next, let us take a look at how Web services technologies are used at runtime. A Web service
client creates a SOAP message and sends it over HTTP or another transport protocol to a
known service location. If HTTP is used, the service location is specified as a Uniform Resource
Identifier (URI), for example http://myhost:9080/SampleWebService/services/SampleWS. Web
service is deployed in an application server with a special component, SOAP server, that is
responsible for processing SOAP messages. The SOAP server processes the incoming
message, invokes the Web service, and sends the response message back to the client. Some
implementations of SOAP server use WSDL to process request and response messages.

18 Building SOA-based Solutions for IBM System i Platform

Figure 3-1 shows the interaction between the Web service and the Web service client.

Figure 3-1 Web services interaction

With the right tooling, for example, WebSphere Development Studio client for iSeries or IBM
Rational tools, Web service and Web service client developers might not have to write any
Web services-specific code. However, it is still important to understand some basics about
Web services technologies.

Web services technology stack consists of industry standard technologies that can be divided
into four categories:

� Web services messaging
� Web services transport
� Web services description
� Web services discovery

3.2 SOAP: Web services messaging layer

From the client perspective, a Web service call is a remote procedure call (RPC), and one of
the main differences between Web services and other inter-program communication
mechanisms is the way that a program is invoked. SOAP is an XML dictionary that’s used to
perform a remote procedure call. A more generic definition of SOAP is a specification for the
exchange of structured information in a decentralized, distributed environment. Key
characteristics of SOAP are:

� SOAP is transport-independent protocol and can be used in combination with a variety of
protocols such as HTTP, JMS, SMTP, or FTP. Today, the most common way of exchanging
SOAP messages is through HTTP

� Because SOAP is an XML dictionary any programming language that can process XML
can create SOAP messages

� A SOAP message is an envelope that includes zero or more headers and one body.

– The envelope is the top element of the XML document, providing a container for control
information, the addressee of a message, and the message itself.

– Headers that include control information, such as quality of service attributes.

– The body includes the message identification and its parameters.

1. The Web service client creates and sends a SOAP message.
2. The SOAP server listens for SOAP messages. SOAP server is an application

running in an Application Server (for example, WebSphere Application Server).
3. The SOAP server processes the SOAP messages and passes the request to a

Web service.
4. The Web service runs the specified method and returns the result to the SOAP

server.
5. The SOAP server forwards the result back to the Web service client.
6. The Web service client parses SOAP response.

Web Service
Client

SOAP
Server

Web
Service

1

6

2

5

3

4

Internet

Chapter 3. Web services technology stack 19

Let us take a look at a simple Web service and a SOAP message that is used to invoke it.
Example 3-1 shows Java Web service code. Notice that there is no Web service specific code
in the method implementation because Web services technologies are used outside of the
business logic implementation.

Example 3-1 A business logic method

public String convertTemp(String tempIn){

Double tempFahrenheit = new Double(tempIn);
// Convert temperature
Double tempCelsius = new Double ((5/9)*(tempFahrenheit.doubleValue()-32));
// Return a String value
return tempCelsius.toString();

}

Example 3-2 shows SOAP request message from the Web service client to invoke this Web
service. Notice that the SOAP request message includes the name of the service to call
(which matches the Java method name), and the input parameter tempIn with a value of 90.

Example 3-2 Sample SOAP request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Header/>
<soapenv:Body><p831:convertTemp xmlns:p831="http://services.ibm.com">

<tempIn>90</tempIn></p831:convertTemp>
</soapenv:Body>
</soapenv:Envelope>

Example 3-3 shows the SOAP response message. The most interesting part of the message
is the return parameter, convertTempReturn, that includes the converted temperature.

Example 3-3 Sample SOAP response message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Header/>
<soapenv:Body><p831:convertTempResponse xmlns:p831="http://services.ibm.com">

<convertTempReturn>32.2</convertTempReturn></p831:convertTempResponse>
</soapenv:Body>
</soapenv:Envelope>

If you do not have any SOAP code in the Web service implementation, how are the SOAP
request and response messages created? The SOAP request message is created by the
Web service client. Web service client can use SOAP APIs of the programming language in
which the client is written. Most programming languages have a SOAP API. If they do not, it is
possible to create a SOAP message manually, but this approach can be tedious and
error-prone. If the programming language does not have a SOAP API, consider building a
SOAP client proxy in a programming language that has a SOAP API. Many IDEs, including

Note: For more information about SOAP specifications, see Web Services Handbook for
WebSphere Application Server 6.1, SG24-7257.

20 Building SOA-based Solutions for IBM System i Platform

WebSphere Development Studio client for iSeries, can generate Web service client code that
includes SOAP APIs based on a WSDL file.

Web services response message can be generated by the SOAP engine or created manually
with the SOAP API. The SOAP engine also handles SOAP request messages. WebSphere
Application Server comes with a built-in SOAP engine. In addition, you can use the open
source Axis SOAP engine in WebSphere Application Server. WebSphere Web services
engine is based on Axis principles but extended for performance and for enterprise Web
services (support for session EJB as Web services and for SOAP over JMS).

3.3 Web services transport

SOAP messages can be sent over several protocols, including HTTP, JMS, FTP, and SMTP.
HTTP and messaging protocols, for example JMS (Java Messaging Service), are currently
the most popular choices for Web services transport. HTTP provides synchronous
communication between a Web service client and a Web service. HTTP is the most used
protocol for several reasons:

� HTTP is mature: It has been used for Web applications for several years.

� HTTP requests can travel through firewalls. (HTTP ports are already configured for Web
applications.)

� HTTP can be secured with SSL.

� HTTP is the only protocol supported by the basic profile standard (which we explain in 3.6,
“Basic Profile” on page 24).

� Most IDEs, including WebSphere Development Studio client for iSeries Web services
wizard, generate Web services infrastructure for HTTP communication.

JMS provides asynchronous communication between a Web service client and a Web
service:

1. The client request to the Java proxy is handled by the SOAP client and is placed into a
JMS queue through a JMS sender.

2. In the server, a message-driven EJB (MDB) listens to the JMS queue and routes the
message to the WebSphere SOAP engine.

3. The WebSphere Web services engine invokes an EJB Web service.

4. Optionally, the server replies to the client using a dynamic queue.

WebSphere Development Studio client for iSeries does not yet provide tooling to generate
Web services infrastructure for JMS transport. This functionality has to be implemented
manually. For more information about JMS implementation, see Web Services Handbook for
WebSphere Application Server 6.1, SG24-7257.

Chapter 3. Web services technology stack 21

3.4 Web services description: WSDL

A WSDL document describes a Web service: Web service location, methods, and method
parameters. Example 3-4 shows a sample JavaBean implementation. Notice that this Web
service has one method convertTemp that has an input String parameter and output String
parameter.

Example 3-4 Sample JavaBean implementation

public class TempConversionService {

public String convertTemp(String tempIn){

Double tempFahrenheit = new Double(tempIn);
// Convert temperature
Double tempCelsius = new Double ((5/9)*(tempFahrenheit.doubleValue()-32));
// Return a String value
return tempCelsius.toString();

}
}

Example 3-5 shows a WSDL file that the WebSphere Development Studio client for iSeries
Web services wizard generated for this JavaBean. While the document can seem
complicated at a first glance, you can still see familiar elements from the Web service
implementation: Web service method name and parameter definitions. At the end of the
document you find the following Web services location:

<wsdlsoap:address location=
"http://localhost:9080/SimpleWS/services/TempConversionService"/>

Notice that the generated URL points to localhost. This URL is the only part of the WSDL
document that you need to change before deploying the Web service to the server and
sending WSDL to the Web service client developer. You need to replace localhost and the
default port with the host name of your server and WebSphere Application Server port.

Example 3-5 Sample WSDL file

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://services.ibm.com"
xmlns:impl="http://services.ibm.com" xmlns:intf="http://services.ibm.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://services.ibm.com"
xmlns="http://www.w3.org/2001/XMLSchema" xmlns:impl="http://services.ibm.com"
xmlns:intf="http://services.ibm.com" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <element name="convertTempResponse">
 <complexType>
 <sequence>
 <element name="convertTempReturn" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>

22 Building SOA-based Solutions for IBM System i Platform

 <element name="convertTemp">
 <complexType>
 <sequence>
 <element name="tempIn" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <wsdl:message name="convertTempRequest">
 <wsdl:part element="impl:convertTemp" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="convertTempResponse">
 <wsdl:part element="impl:convertTempResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="TempConversionService">
 <wsdl:operation name="convertTemp">
 <wsdl:input message="impl:convertTempRequest" name="convertTempRequest"/>
 <wsdl:output message="impl:convertTempResponse"
name="convertTempResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="TempConversionServiceSoapBinding"
type="impl:TempConversionService">
 <wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="convertTemp">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="convertTempRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="convertTempResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="TempConversionServiceService">
 <wsdl:port binding="impl:TempConversionServiceSoapBinding"
name="TempConversionService">
<wsdlsoap:address
location="http://localhost:9080/SimpleWS/services/TempConversionService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

The WSDL file is sometimes called a contract between a Web service and a Web service
client. After you create a contract, your goal should be not to introduce any changes to it.
Otherwise, the communication between a Web service client and a Web service will be
broken. You can change Web service implementation (for example, change the way you
calculate temperature conversion). However, if you change your method of signature (method
name or parameter types), you will break the contract. Changing Web service location will not
break the contract. Just remember to notify the Web service client of Web service URI
change.

Chapter 3. Web services technology stack 23

Some developers prefer to start Web services development by manually creating the WSDL
file and then generating a programmatic interface (JavaBean or another code artifact usually
called a skeleton or a stub) based on the WSDL file. This approach requires advanced XML
and WSDL skills. You can learn more about WSDL in Web Services Handbook for
WebSphere Application Server 6.1, SG24-7257.

3.5 Web services discovery: UDDI

In general, SOA overview Web services discovery is often described as a part of interaction
between a Web service client and a Web service. Universal Description, Discovery, and
Integration (UDDI) is the component used for Web services discovery. UDDI is also called
yellow pages or a broker, because it includes information about Web services. Web service
developers publish information about their Web services to UDDI (usually a WSDL file). A
Web service client can lookup this information at either design or run time.

Figure 3-2 shows interaction between a Web service client, a Web service and UDDI.

Figure 3-2 UDDI interaction

While UDDI has been introduced in the very early descriptions of SOA, it is not widely used in
Web services implementations today. Most Web service client and Web services developers
exchange Web service description information without UDDI. UDDI might become more
popular when many vendors deploy similar services (for example, a credit card check), and a
UDDI provider decides to become a broker of these services.

Another way to describe a set of Web services is Web services Inspection Language (WSIL).
WSIL is not a repository like UDDI, but an XML file that describes how to find Web service.

3.6 Basic Profile

One of the main goals of Web services is to provide interoperability between applications
written in different programming languages using different IDEs and running on different
middleware. However, using Web services does not mean that your application is going to
integrate seamlessly with any Web service client. The key to interoperability is using the
same version of core Web services technologies: SOAP, WSDL, HTTP, and others. That is
why the Web services Interoperability Organization created Basic Profile, which is a set of
guidelines for creating interoperable services.

RequesterProvider

Broker

UDDI

Web Service
Web Service

Client

24 Building SOA-based Solutions for IBM System i Platform

Basic Profile V1.0 specifications include:

� SOAP V1.1

� WSDL V1.1

� UDDI V2.0

� XML V1.0 (Second Edition)

� XML Schema Part 1: Structures

� XML Schema Part 2: Datatypes

� RFC2246: The Transport Layer Security (TLS) Protocol V1.0

� RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile

� RFC2616: HyperText Transfer Protocol V1.1

� RFC2818: HTTP over TLS

� RFC2965: HTTP State Management Mechanism

� The Secure Sockets Layer (SSL) Protocol V3.0

The profile adds constraints and clarifications to those base specifications with the intent to
promote interoperability. Some of the key constraints include:

� Precludes the use of SOAP encoding (document/literal or RPC/literal must be used)

� Requires the use of SOAP/HTTP binding

� Requires the use of HTTP 500 status response for SOAP fault messages

� Requires the use of HTTP POST method

� Requires the use of WSDL V1.1 to describe the interface

� Precludes the use of solicit-response and notification-style operations

� Requires the use of WSDL V1.1 descriptions

Basic Profile specification is used mostly by tool and middleware developers. They need to
make sure that their products comply with the Basic Profile specification so that Web services
can interoperate. As a Web service or a Web service client developer, you need to be aware
of the Basic Profile version supported by technologies that you use. WebSphere
Development Studio client for iSeries V6.0 and later and WebSphere Application Server V6
and later support Basic Profile V1.0. To ensure interoperability between a Web service and a
Web service client, make sure that they support the same version of the Basic Profile.

3.7 Summary

In this chapter we highlighted the most important Web services technology standards. For a
full description of Web services standards, see Web Services Handbook for WebSphere
Application Server 6.1, SG24-7257.

Chapter 3. Web services technology stack 25

26 Building SOA-based Solutions for IBM System i Platform

Chapter 4. Sample scenario

In this chapter we introduce the sample scenario used throughout this book to provide a
common basis of understanding. We describe a fictitious travel agency and its current
system. From there we provide ideas to solve some of the issues the company is facing. Later
on in this book we show several solutions to these issues.

4

© Copyright IBM Corp. 2007. All rights reserved. 27

4.1 Introducing the existing environment

In our scenario, we use the sample application called Flight400 that has been used in other
IBM Redbooks and presentations. The Flight Reservation System application is
representative of a commercial application. Though the application does not include all of the
necessary error handling that a typical business application requires, it has the logic that we
use to demonstrate how we can modernize applications and make parts of it available
through Web services.

4.1.1 Overview of the Flight400 application

The Flight Reservation System application is used by the agents to create, query, modify, and
print reservations. For example, in a case of a reservation received, an agent is required to
manually enter necessary data into the system.

For more information about the Flight400 application and articles on various topics around
that sample application, check out the following Web site:

http://www-03.ibm.com/servers/enable/site/ideveloper_j2ee/etoe/index.html

4.2 Facing new challenges

As everywhere, a business is changing and customers are expecting more or better service
(or actually both). To stay ahead of the competition, we constantly have to think about ways to
improve our offer.

4.2.1 New opportunities

Currently, creating a new reservation requires a lot of manual work. But let us step back and
look at the business process that triggers this action.

An employee of one of our partner companies, a travel agency, desires to make a new
reservation on behalf of one of their clients. She picks up the phone and calls our office. We
get the call, start the Flight400 application, select the option to make a new reservation and
then enter all the necessary data that we get from our partner over the phone.

Problems might arise if we misunderstand our business partner or mistype the information
received. If the information is received by letter, fax or by e-mail, we still have to transfer that
information into the system in a manual process, which is both time-consuming and
error-prone. But the most time-consuming part is to provide information about flights and
customer data over the phone.

Therefore, we identify these business cases as the first ones that we want to modernize and
possibly automate. The idea being that our business partners can query information about
flights or customers themselves without interaction from our part and enter their reservations
directly into our system.

28 Building SOA-based Solutions for IBM System i Platform

http://www-03.ibm.com/servers/enable/site/ideveloper_j2ee/etoe/index.html

4.2.2 Technical issues to address

However, there are some important points that we need to consider:

� Some of our partners are running on different platforms and are possibly using different
Database Management Systems (DBMS).

The solution to this possible issue in our case is to implement the identified functions as
Web services and therefore allow their functionality to be exposed to the outside world,
which in this case are our business partners.

But this brings up another important point that needs to be considered even before
thinking about connecting to the outside world:

� Our application might have to be modularized, respectively modernized before we can
re-use its functions in the form of Web services.

In fact, RPG programs can be converted to Web services by building a Java Web service
wrapper around them, either automatically or manually. But before that step, you need to
make sure that the RPG program implementation is suitable for a Web service. The
following two main requirements must be met:

� Separation of business logic and presentation logic. The RPG program must be a callable
program that does not contain any display logic.

� Thread safety. By default RPG programs are not thread safe. If two or more Java threads
call the same RPG program at the same time, you might get unexpected results.

For more information about RPG application modernization, read Modernizing Flight400
white paper at:

http://www-03.ibm.com/servers/enable/site/education/wp/40d2/40d2.pdf

Implementing thread safety in an RPG program
Programs or routines need to be thread-safe in order to avoid the risk that one thread
interferes or even modifies data elements used by another thread. In a Web service context
that could be the same RPG program which is being called from two or more different
processes where each process generates a thread calling the same RPG program. It could
be fatal if this program modifies some global data or the heap.

� RPG IV has a thread safety option that can be specified on the H spec:
THREAD(*SERIALIZE). When the program is compiled with this option only one thread
will be active in one module at one point in time. However, you still have to make sure that
shared storage (such as IMPORT/EXPORT fields) is handled in a thread-safe way.

� The RPG IV runtime is thread-safe, RPG II and RPG III are not thread-safe.

� It is not possible to have thread-scoped files using RPG file support. If the file is left open,
the next thread will get the old file state. On the other hand, it is possible to have some of
the storage thread-scoped by using allocated storage or userspaces. The program will
have to know which thread is active (using a parameter from the caller) to know which
basing pointer or userspace to use.

� C runtime I/O functions should be used to do thread-scoped I/O, if necessary.

We highly recommend to read the text on thread-safety on Wikipedia, as it provides some
basic but important definitions and outlines ways to achieve thread-safety in programs. There
are also links to articles on how to write thread-safe programs:

http://en.wikipedia.org/wiki/Thread_safety

Chapter 4. Sample scenario 29

http://en.wikipedia.org/wiki/Thread_safety
http://www-03.ibm.com/servers/enable/site/education/wp/40d2/40d2.pdf

4.2.3 Flight400: From monolithic System i application to SOA

In the previous sections we demonstrated the valid justifications for creating Web services. In
this section we elaborate on the previous example to identify other parts of the application
that are the good candidates for Web services.

The original version of Flight400 application is a flight reservations system written in RPG III
application. Our business requirement is to allow other applications (internal or external)
place reservations in the Flight400 reservation system.

We started the design process with identifying tasks in our typical daily use of the application:

1. Lookup flights based on a search criteria

2. Lookup to/from cities

3. Lookup airlines

4. Get detailed flight information

5. Place reservation

6. Update reservation

7. Delete reservation

8. Add customer

9. Lookup customer

Each task might or might not be a good candidate for a service. For example, services 2 and
3 (cities lookup and airline lookup) could be considered too granular and useful only within the
application, and not as an external services. We decide not to implement these services. You
should do these analysis for all tasks.

Next, we defined input and output parameters and parameter types for each valid service. For
example, the flight lookup service has four input parameters: from city, to city, departure date,
and return date. The output of the lookup service is a list of flights that match the search
criteria. We decide to use both simple and complex parameters for services. Flight lookup
service has four string input parameters and returns multiple occurrences of the Flight data
structure. All of our services are stateless and synchronous, state is maintained on the client.

The next step is to review existing RPG code and to find pieces of the code that can be used
in the service. We create a new RPG ILE prototype and a module that contains a procedure
with input and output parameters identified in the previous step.

Tip: If you’re just starting with Web services, pick one task that is self-contained. It will be
the prototype to understand time and effort involved in developing Web services.

30 Building SOA-based Solutions for IBM System i Platform

Example 4-1 shows the prototype of RPG procedure. The prototype describes input and
output parameters for three RPG procedures and a data structure that represents flight
information.

Example 4-1 RPG procedure prototypes

 d FlightInfo ds qualified
 d Airline 3
 d Flight 7
 d DoW 2
 d DepartCity 3
 d ArriveCity 3
 d DepartTime 8
 d ArriveTime 8
 d Price 3

 d FindFlightsDoW pr

 d FromCity 16 const
 d ToCity 16 const
 d DeptDoW 16 const
 d ReturnDoW 16 const
 d FlightCount 10i 0
 d Flights likeds(FlightInfo) dim(50)

 d FindFlights pr

 d FromCity 16 const
 d ToCity 16 const
 d DeptDate 8 const
 d ReturnDate 8 const
 d FlightCount 10i 0
 d Flights likeds(FlightInfo) dim(50)

 d GetFlightInfo pr

 d FlightNumber 7 const
 d FlightInfo likeds(FlightInfo)

Chapter 4. Sample scenario 31

After designing services interfaces, we identified workflow between the client and services. In
our scenario services are used independently of each other, but they need to be executed in
a particular order. Figure 4-1 shows Flight400 application workflow.

Figure 4-1 Application workflow

4.3 Conclusion

As the result of this design effort, we have identified the services that we want to build. We
have prototyped the procedure calls in RPG. The procedure calls should match our Web
services interface.

The next step is to change, if needed, the business logic that implements the services. In our
scenario the original RPG application requires additional effort to make it modular (according
to the ILE concepts). You can find the detailed instructions for modernizing the Flight400
application at:

http://www-03.ibm.com/servers/enable/site/education/wp/40d2/40d2.pdf

After we have the callable interface to the RPG application that matches the Web services
interface, we need to implement a Web service itself. This includes:

� Implementing a Web service. It will act as a “glue” layer between platform independent
SOAP messages and platform specific business logic. The Web service is responsible for:

– Receiving and unpacking the SOAP request message

– Invoking the business logic with the correct arguments

– Returning a result of the business logic execution, if appropriate, in a SOAP response
message

� Creating a client for testing a Web service

� Deploying a Web service along with modified business logic on a production server

All these steps are discussed in the next chapters.

Find an existing reservation

Place a new reservation Update an existing reservation

Update an existing reservation

Lookup to/from cities

Lookup flights

Select flight

Select customer

Place reservation5

1

2

3

4

32 Building SOA-based Solutions for IBM System i Platform

http://www-03.ibm.com/servers/enable/site/education/wp/40d2/40d2.pdf

Part 2 Implementing the
service provider

SOA defines two major participants in its architecture: a service provider and a service
consumer. In this part of the book, we demonstrate several technologies that you can use to
create a service provider participant. This service provider builds Web services around i5/OS
applications.

Part 2

Note: We developed all examples in this book using WebSphere Development Studio
Client for iSeries V6.0.1.

We use Flight400 RPG application for most examples in this book. You can download this
application using the instructions in Appendix D, “Additional material” on page 281.

© Copyright IBM Corp. 2007. All rights reserved. 33

34 Building SOA-based Solutions for IBM System i Platform

Chapter 5. ProgramCall (RPG, Cobol) Web
service

Our first example of building a Web service is based on the ProgramCall capability in IBM
Toolbox for Java (5722-JC1). In this chapter we discuss the typical method for generating a
Web service that invokes an RPG procedure.

5

© Copyright IBM Corp. 2007. All rights reserved. 35

5.1 Project investments in developing a service

In externalizing existing business logic as a Program Call Web service, you should consider
the following items:

� Analysis of the current state of a business application

� Time frame for prototyping and deploying a services application

� Application development and deployment expenses

5.1.1 Analyzing the existing application

How do you determine whether your business logic needs modernization? The term
monolithic has been used to describe an application that requires modernization. In a
monolithic application, there are two primary areas for analysis:

� Display logic
� Essentially stateless procedure

Displaying logic nested within business logic
Many System i applications are written as a monolithic application where display and
business logic are intermixed. As the result, there are no callable interfaces to such
applications.

Consider a company with a monolithic application. Can you still take advantage of the Web
services framework without a complete rewrite of the application? The answer is yes.
Because a business task was described as service, you can extract and create a procedure
that does not include display logic but still includes the business logic with the required input
and output parameters.

The whole process involves several steps. Start with a single business task that is
self-contained (that is, it does not depend on other tasks). Extract the business logic into an
RPG procedure and create a service program. Use WebSphere Development Studio client
for iSeries to generate a Web service.

Essentially stateless procedure
Essentially stateless procedure is the term for a procedure or a set of procedures that can be
used in stateless environments such as Web applications. While some state might be kept
between procedure calls (for things like list processing) within a transaction, the procedures
should not maintain state between transactions.

Application modernization
Traditional (green screen) applications are often written as monolithic programs with a display
and business logic intermixed. While there are tools and wizards that you can use to
generate Web services from callable routines, a process of converting a monolithic
application to a set of callable routines requires a significant amount of design and
programming effort.

The steps required to create a set of callable routines from an existing application include:

1. Determine what functions are required. The functions should implement business
operations that are required by the Web service interfaces.

Important: You do not have to rewrite an entire RPG business application to take
advantage and demonstrate the power of Web services for the RPG business logic.

36 Building SOA-based Solutions for IBM System i Platform

2. Design interfaces for the required functions. The interfaces should be essentially stateless.

3. Determine where those functions are currently implemented.

4. Decide how much of the current implementation should be used as a base for the new
functions.

5. Develop the new functions.

6. Determine whether the new functions should be used in the existing (green screen)
application.

The callable functions should be essentially stateless because the application state is
controlled by the calling applications and to allow the use of techniques like connection
pooling which are critical for scalable Web applications. This requirement drives several new
considerations for the function developer, particularly in list handling and record locking.

Traditional applications handle lists using the display file subfile support. Because a subfile
can handle multiple records, the application programmer does not have to be particularly
concerned about the number of records in a list. Because the application maintains the data
file cursor position between user interactions, the application programmer does not have to
be particularly concerned about cursor positioning as the user scrolls through a list. The
introduction of essentially stateless functional interfaces requires that a programmer handle
these considerations in the function code (on the service requestor side).

There are several techniques that can be used to handle a variable length list as set of
callable functions. The most flexible technique is to use multiple functions, the first function
sets up the request, the second function returns the next record in the list, and the third (and
optional) function closes the request. Because this technique can potentially result in a large
number of functions calls, you should not use it in cases where there is a large call overhead.
Another technique is to return a set of records as a parameter of the function call. The main
disadvantage of this technique is that the parameter has to be defined large enough to handle
the maximum expected number of records. A practical approach is to use the first approach
as the lowest level interface and use those functions in a second level function that can be
used where call overhead is a concern. There are also techniques using SQL result sets or
messaging interfaces that can provide more flexibility in distributed applications.

The second consideration in list handling is list continuation between user interactions. List
continuation is not usually a problem if the data includes unique keys. However, it does
require application support, which can be difficult in data without such keys.

The stateless nature of Web interaction can make record locking a concern. Because a user
can leave the application or shut down the browser without notifying the application, locking a
record between user interactions can cause problems. One approach is to use some type of
optimistic locking, where the application sends both the before and after record images to a
function, which does the update only if the before image matches the data currently in the
record. While this can work when the amount of data being updated is relatively small, it can
also result in problems if the amount of data is large and a user is told that all the changes
must be entered again.

While converting a monolithic application into a modular set of callable functions can be a
major effort, it can extend the life of the application and make it available through a wide
variety of interfaces. In addition, it can result in an application that is more easily maintained
and expanded.

Chapter 5. ProgramCall (RPG, Cobol) Web service 37

5.1.2 Time frame

In this section, we analyze how much time should be allocated to use the program call beans
interface into an RPG business logic.

Prototype
Identify a single business task and ensure that an RPG procedure is modularized as
described in 5.1.1, “Analyzing the existing application” on page 36.

Using WebSphere Development Studio client for iSeries, the Web service and Web service
client can be prototyped within a few hours. Using the example in this chapter as a reference,
any exported RPG procedure can be prototyped rather quickly. WebSphere Development
Studio Client generates everything from Web service to JSP and Web service Test Client,
directly from RPG source code.

Production
After prototyping is done, is the service production ready? There are additional
considerations to keep in mind. Additional testing of a service is essential for the business
logic and business application to continue to run smoothly.

In addition to testing the application with a variety of clients that might interface with your
service, it is also advisable to ramp up the number of users that might be accessing this
business logic to test the throughput. There are products such as Rational Performance
Tester or Mercury LoadRunner that would simulate multiple users accessing your application.

Security is a very big concern if you need to pass sensitive information, such as a credit card
number. Web services provides several standards that deal with this issue. There is a
specification called WS-Security built into the Web services framework. WS-Security
describes enhancements to SOAP messaging to provide quality of protection through
message integrity, message confidentiality, and single message authentication. You can use
these mechanisms to accommodate a wide variety of security models and encryption
technologies.

5.1.3 Development environment

To develop a Web service based on ProgramCall successfully, ensure that your environment
meets the requirements that we provide in this section.

Prerequisites

Important: You should not have to rewrite the entire RPG business application to take
advantage and demonstrate the power of Web services for the RPG business logic.

Note: We did the testing in this chapter on i5/OS Version V5R4, V5R3, and V5R2. Other
versions of the operating system should work too.

38 Building SOA-based Solutions for IBM System i Platform

Ensure that the following products and optoins are already present in the environment:

� Qshell, 5722SS1 Option 30

� Host Servers, 5722SS1 Option 12

� IBM Developer Kit for Java, 5722JV1 Options 5 and 6

� IBM Toolbox for Java, 5722JC1

� 5722WDS Option 31 Compiler - ILE RPG IV

� 5722WDS Option 34 Compiler - RPG/400®

� The latest Group PTFs are installed on the target System i:

– Cumulative Group PTF SF99540
– WebSphere Group PTF SF99312

� The Host Servers are running on the target System i:

STRHOSTSVR *ALL

The following products are installed on the development machine (such as a desktop PC):

� WebSphere Development Studio Client for iSeries V6.0.1. Use Rational Product Updater
to install the latest fixes for V6.0.1

� Firefox 1.0.7 or higher (or equivalent browser).

Skills assumptions
This technical reference assumes the following technical skills and knowledge:

� Experience with and basic working knowledge of tools such as Rational Web Developer or
WebSphere Development Studio client for iSeries

� Basic knowledge of i5/OS administration

� Familiarity with the behavior and operation of the existing application that you want to
modernize

5.1.4 Deployment environment

The deployment environment should include:

� WebSphere Application Server - Express, Base, or Network Deployment running on one
of the supported platforms. We run it on i5/OS.

� Server on which the RPG application is deployed.

In addition, you should have the following skills:

� System i administrator

� WebSphere Application Server administrator

Chapter 5. ProgramCall (RPG, Cobol) Web service 39

5.2 ProgramCall bean example

In this example we demonstrate the RPG business task in Flight400 called ReserveFlight. We
use WebSphere Development Studio client for iSeries Advanced Edition to create a Web
service from RPG source code using single wizard and publish it to i5/OS using WebSphere
Administrative Console, as illustrated in Figure 5-1.

Figure 5-1 Web service diagram

5.2.1 Starting WebSphere Development Studio client for iSeries

Open WebSphere Development Studio client for iSeries and set up the workspace by
following these steps:

1. Go to Start → All Programs → IBM Rational → IBM WebSphere Development Studio
Client for iSeries V6.0 → WebSphere Development Studio Client for iSeries.

2. In the Workplace™ Launcher window, in the Workspace field, enter c:\temp\redbook and
click OK as shown in Figure 5-2.

Figure 5-2 Start WebSphere Development Studio Client for new workspace

Service ProviderService Requester

Web Service
Client

WSDL

Web Service RPGPCB

DB2
Program Call Bean (PCB)

Toolbox
Connection

40 Building SOA-based Solutions for IBM System i Platform

3. If you did not use WebSphere Development Studio client for iSeries before, you see a
Welcome page. Click X to close the Welcome page, as shown in Figure 5-3.

Figure 5-3 Close the Welcome Page

5.2.2 Opening Remote System Explorer perspective

Open the perspective for System i development:

1. Click Open perspective icon on the right-hand side or select Window → Open
Perspective and select Other (see Figure 5-4).

Figure 5-4 Open Remote System Explorer Perspective

2. In the Select Perspective window, select Remote System Explorer and click OK.

5.2.3 Defining a connection to the i5/OS server

Create a connection to your i5/OS server:

1. Click the plus sign (+) next to iSeries under New connection in Remote Systems view.

2. If you have not used WebSphere Development Studio client for iSeries before, you see
name personal profile screen. Enter redbook as the Profile and click Next.

Note: There are two known issues with running WebSphere Development Studio client for
iSeries. If you encounter any problem, see Appendix A, “Setting the connection to
WebSphere Application Server V6.0” on page 249 and Appendix B, “URI length limit of
259 characters on Windows” on page 255 for possible solutions.

Chapter 5. ProgramCall (RPG, Cobol) Web service 41

3. On the Define connection information screen, enter the following information (as shown in
Figure 5-5):

a. Host name as <iSeries_Server>.

b. Enter Connection name as <iSeries_Server>.

Figure 5-5 Define connection to System i

4. Click Finish.

42 Building SOA-based Solutions for IBM System i Platform

5. Right-click iSeries Objects under itso and select Connect to connect to the i5/OS server,
as shown in Figure 5-6.

Figure 5-6 Connect to System i

6. In the Enter Password window, enter the following information and click OK (see
Figure 5-7):

a. User ID as your user profile on the system.
b. Password as password for the user profile entered in the previous step.
c. Select Save user ID.
d. Select Save password.

Figure 5-7 Connection settings

Chapter 5. ProgramCall (RPG, Cobol) Web service 43

7. After successful connection you should see an arrow next to iSeries connection as well as
the iSeries Objects and other subsystems .

5.2.4 Reviewing the RPG modules

Examine the RPG code to understand exported procedures:

1. Expand your System i connection.

2. Right-click iSeries Objects and select Properties.

3. In the Properties window, click Initial Library List.

4. Enter FLGHT400 in the Library field and click Add(B) as shown in Figure 5-8.

Figure 5-8 Add Library

44 Building SOA-based Solutions for IBM System i Platform

5. Add the FLGHT400M library in the same way. Your library list should look similar to that
shown in Figure 5-9.

Figure 5-9 Library list

6. Click OK. Now every time you reconnect to your System i platform, both libraries are listed
under iSeries Objects → Library list. You might need to disconnect and connect again to
see these libraries in the list.

Chapter 5. ProgramCall (RPG, Cobol) Web service 45

7. Expand iSeries Objects → Library list → FLGHT400M.*lib.prod-usr → QRPGLESRC
and double-click NFS001.rpgle, as shown in Figure 5-10.

Figure 5-10 Open RPG Source for ReserveFlight

8. The procedure that we are interested in is ReserveFlight. Click the refresh button in the
outline frame as shown in Figure 5-11.

Figure 5-11 Refresh RPG Code

46 Building SOA-based Solutions for IBM System i Platform

9. Select ReserveFlight from the outline view as displayed in Figure 5-12.

Figure 5-12 ReserveFlight Procedure

10.Review program code for the ReserveFlight procedure as shown in Figure 5-13.

Figure 5-13 RPG ReserveFlight

Chapter 5. ProgramCall (RPG, Cobol) Web service 47

The ReserveFlight procedure inputs OrderInfo, which is a data structure of ReserveInfo.
The ReserveFlight returns a confirmation number with OrderNumber displayed (see
Figure 5-14).

Figure 5-14 OrderInfo is data structure with following declarations

11.Click X in the NFS001.RPGLE tab at the top of the window to close the window.

5.2.5 Creating and testing RPG Web service

In the previous section, you examined the RPG procedures. Now, you create a Web service
directly from the RPG source code that externalizes the RPG procedure:

1. Under QRPGLESRC, right-click NFS001.rpgle and select Web services → Create Web
service as shown in Figure 5-15.

Figure 5-15 Create Web service from RPG code

48 Building SOA-based Solutions for IBM System i Platform

2. In the Web service dialog box, make sure that the following options are selected as shown
in Figure 5-16:

– Web service Type: iSeries Program Web service
– Check Start Web service in Web Project
– Check Generate a Proxy
– Check Test the Web service

3. Click Next.

Figure 5-16 Web service Wizard

Chapter 5. ProgramCall (RPG, Cobol) Web service 49

4. On the Object Selection Page, do the following (see Figure 5-17):

– Select COMPUTEPRICE in Program Call Definition and change the value of Program
Object to NFS001

– Select FINDORDERCUST in Program Call Definition and change the value of Program
Object to NFS001.

– Select FINDORDERDATE in Program Call Definition and change the value of Program
Object to NFS001.

– Select GETORDERINFO in Program Call Definition and change the value of Program
Object to NFS001.

– Select RESERVEFLIGHT in Program Call Definition and change the value of Program
Object to NFS001.

– Select UPDATEORDER in Program Call Definition and change the value of Program
Object to NFS001.

Figure 5-17 Setting Service Program for Program Object

50 Building SOA-based Solutions for IBM System i Platform

5. Expand RESERVEFLIGHT and select the ORDERNUMBER and change the usage value
from input & output to output as shown in Figure 5-18.

Figure 5-18 Setting ReserveFlight Parameter

Chapter 5. ProgramCall (RPG, Cobol) Web service 51

6. Click Edit as in Figure 5-19.

Figure 5-19 System i Connection Information

52 Building SOA-based Solutions for IBM System i Platform

7. Ensure all the System i information is correct (see Figure 5-20) and click Next. Remember
that you might have a different system name and user ID.

Figure 5-20 System i Connection Values

Chapter 5. ProgramCall (RPG, Cobol) Web service 53

8. Ensure FLGHT400 and FLGHT400M are on the library list as in Figure 5-21. If they are
not, enter FLIGHT400 in the LIbrary field and click Add button. Repeat this step for the
FLGHT400M library.

Figure 5-21 System i Library information

9. Click Finish.

54 Building SOA-based Solutions for IBM System i Platform

10.Ensure that RESERVEFLIGHT is highlighted or selected and click Next (see Figure 5-22).

Figure 5-22 Reserve Flight is selected

11.On Service Deployment Configuration frame click Next. This step might take some time to
complete.

12.On Service Endpoint Interface frame click Next.

Chapter 5. ProgramCall (RPG, Cobol) Web service 55

13.On Web service Java Bean Identity frame:

a. Click Deselect All.

b. Select reserveflight(iseries.wsbeans.reserveflight.RESERVEFLIGHTInput).

c. Scroll down and select
reserveflight_XML(iseries.wsbeans.reserveflight.RESERVEFLIGHTInput) as
shown in Figure 5-23.

Figure 5-23 Select RPG Procedures to externalize as Web service

14.Click Finish. At this time the wizard generates a lot of code, so this operation can take a
while.

Note: Alternatively, you can click Next if you want to see the rest of the Web service
Wizards. In our example, we accept the default values for the rest of the wizard.

56 Building SOA-based Solutions for IBM System i Platform

Figure 5-24 Warning message

5.2.6 Testing the Web service Test Client

The wizard from the previous section generated a Web service and a JSP based Web service
Test Client. Now we are ready to test the generated code:

1. After the wizard generates all the required artifacts, you see a Web Browser window. The
wizard generates a Web service Test Client as a JSP based Web application. Click
reserveflight_XML(iseries.wsbeans.updateorder.RESERVEFLIGHTInput) as shown
in Figure 5-25.

Figure 5-25 Web service Test Client

Important: If this is your first time using the wizard, click Yes or Yes to All in the
information messages window, as in the example shown in Figure 5-24.

Note: You can copy the URL into any Web browser, including Firefox or Internet
Explorer®.

Chapter 5. ProgramCall (RPG, Cobol) Web service 57

2. In the Inputs frame of the Web Browser window, enter the following values and click
Invoke (see Figure 5-26):

– cUSTNUMBER: 500
– dEPARTDATE: 12/11/08
– aGENTNUMBER: 4
– dEPARTTIME: 7:12 AM
– fLIGHTNUMBER: 5191135
– tICKETS: 2
– sERVICECLASS: 2

Figure 5-26 Values for Inputs Frame

The Web service Client has demonstrated a successful Web service invocation because you
receive the order number as the result.

Note: The values for dEPARTDATE and dEPARTTIME are specific to this sample. You
must enter them as we note here. You can use Alternative Date mechanisms if you change
the RPG program or Web service code to handle unique formats.

Note: If you want to check whether the FLGHT400 Database was updated with the
ReserveInfo, issue the following command on 5250 SQL session and scroll to the bottom
of the file:

SELECT * FROM FLGHT400/ORDERS

58 Building SOA-based Solutions for IBM System i Platform

5.2.7 Reviewing the generated Web service and Web service client code

At this point, WebSphere Development Studio client for iSeries has generated the Web
service code, which in time might need some modifications. Thus, you might want to examine
the code and begin to build a general understanding of the Web service implementation.

Reviewing the generated Web service code
Review the Web service and Web service generated client code using WebSphere
Development Studio Client for iSeries:

1. Open Web Perspective by going to Window → Open Perspective → Web.

2. In Project Explorer expand Dynamic Web Projects → WebServiceProject → Java
Resources → JavaSource → iseries.wsbeans.reserveflight. Spend some time
reviewing the generated Web service Source files (see Figure 5-27).

Figure 5-27 Generated source files

3. The Web services Wizard generated various Java classes and two properties files:

– RESERVEINFO.java: This class captures information that is stored in FLIGHTINFO
data structure defined in the nfs001 RPG service program.

– RESERVEFLIGHTInput.java: This class encapsulates input parameters to pass to the
RPG service program.

– RESERVEFLIGHTResult.java: This class encapsulates output parameters that are
returned from the RPG service program.

– RESERVEFLIGHTServices.java: This class performs RPG service program call using
Toolbox classes.

Let us take a closer look at RESERVELIGHTSServices.java.

Double-click RESERVE FLIGHTServices.java. Two methods in this Java Bean invoke
nfs001 RPG program, the difference is in the method’s return parameters:

– reserveflight(…): returns RESERVEFLIGHTResult object
– reserveflight_XML(…): returns a String object that includes an XML document, which

is shown in Figure 5-28

Chapter 5. ProgramCall (RPG, Cobol) Web service 59

Figure 5-28 Generate source code for RESERVEFLIGHT

The Web services Wizard generates two methods to give developers flexibility in using the
Program Call bean. For example, in a Web services integration scenario, developers might
want to use the method that returns an XML document. In addition, for the Java integration
scenario, the method that returns a Java object is preferred.

Reviewing the generated JSP Web service client code
Now review the generated test code. This code helps you to test the Web service without
writing the client’s part of the Web services invocation model. In addition, you can reuse the
generated code in your own client’s application. To review the code, follow these steps:

1. In Project Navigator frame expand Dynamic Web Projects →
WebServiceProjectClient → Java Resources → JavaSource →
iseries.wsbeans.reserveflight. Spend some time reviewing the generated Web service
Source files.

2. Expand Dynamic Web Projects → WebServiceProjectClient → WebContent →
sampleRESERVEFLIGHTServicesProxy folder to look at the test clients JSPs.

Important: If you lose the URL for the Web service Test client, the following steps open
the Web Browser with the correct URL:

1. Expand Dynamic Web Projects → WebServiceProjectClient → WebContent →
sampleRESERVEFLIGHTServicesProxy.

2. Right-click TestClient and select Run → Run on Server.

3. Click Finish.

60 Building SOA-based Solutions for IBM System i Platform

5.2.8 Deploying your Web service to WebSphere Application Server for i5/OS

When deploying the Web service, you need to update the WSDL for your production system.
The wizard generates this file for testing in the WebSphere Test environment using localhost
as the host name.

Modifying the WSDL document

To modify the WSDL document, follow these steps:

1. Make sure you are in Web Perspective.

2. In Project Explorer view expand Dynamic Web Projects → WebServiceProject →
WebContent → wsdl → iseries → wsbeans → reserveflight folder.

3. Double-click RESERVEFLIGHTServices.wsdl to open in editor window. Graph view
shows various elements of WSDL document in graphical format as shown in Figure 5-29.

Figure 5-29 ReserveFlight WSDL

Note: This step is not required to run the Web service. This step is required for Web
service Clients to locate the Web service based on the WSDL document. The WSDL
document should have the correct URI location specified.

Chapter 5. ProgramCall (RPG, Cobol) Web service 61

4. In the Services section of the file, expand RESERVEFLIGHTServicesService →
RESERVEFLIGHTServices and click the wsdlsoap:address element. The actual
property and its value is shown and edited in the properties view as shown in Figure 5-30.

Figure 5-30 Change the URL destination

5. Edit the location property and replace localhost with <iSeries_Server> and 9080 port
with <http_port> (HTTP server port).

6. Save the RESERVEFLIGHTServices.wsdl document by going to File → Save from the
menu bar or by pressing CTRL+S on the keyboard.

7. Close RERSERVEFLIGHTServices.wsdl.

5.2.9 Modifying the Web service Client URI

Change Web service URI in Web service Client project. We need to change Web service
URI, because the Web services wizard has generated a URI that points to the local host. This
step is not required for Web services deployment, but it is a good practice to complete this
step because it allows you to test the Web service with Web service client code that is

Note: These values are unique to your system and the WebSphere Application Server
profile that you have created on your server. See the WebSphere Application Server for
i5/OS Information Center for additional information about profiles.

If you are using the default profile created in i5/OS, the port is 9080; however, you must
change the value for localhost to your system’s fully qualified host name.

62 Building SOA-based Solutions for IBM System i Platform

generated by the Web services wizard after the Web service has been deployed on a server.
To modify the Web service Client URI, follow these steps:

1. In Project Explorer view expand Dynamic Web Projects → WebServiceProjectClient →
Java Resources → JavaSource → iseries.wsbeans.reserveflight.

2. Double-click the RESERVEFLIGHTServicesServiceLocator.java file.

3. Modify RESERVEFLIGHTServices_address value (see Figure 5-31):

– Replace localhost with your System i host name.
– Replace 9080 port with the WebSphere profile port number (listen port for accessing

WebSphere applications).

Figure 5-31 Updating the location URI of the Web service

4. Save GETFLIGHTINFOServicesServiceLocator.java by going to File → Save from the
menu bar or by pressing CTRL+S on the keyboard.

5. Close GETFLIGHTINFOServicesServiceLocator.java.

5.2.10 Exporting the Web service EAR file

The Web Applications have been updated with correct values, so this section explains how to
export the application so that you can install it on the production system. Typically, you export
the Web applications in the form of an Enterprise Archive (EAR) file.

Chapter 5. ProgramCall (RPG, Cobol) Web service 63

Follow these instructions to export the EAR file from WebSphere Development Studio client
for iSeries:

1. In the Project Explorer view expand Enterprise Applications and right-click
WebServiceEAR.

2. Select Export → EAR file.

3. On the EAR Export windows enter a destination: C:\temp\WebService.ear. Select the
“Export source files” and “Overwrite existing file” options and click Finish as shown in
Figure 5-32.

Figure 5-32 Export the EAR file

4. You can export the Web services client EAR file in the same way. However, we use
WebSphere Test environment in WebSphere Development Studio client for iSeries for
testing our service.

5.2.11 Installing Web services application on System i platform

The application is located currently on the desktop of the client machine. Now, you will install
it into i5/OS system using a Web Browser and the WebSphere Application Server
administrative console.

Important: By selecting the “Export source files” option, the entire application is
encapsulated into a single EAR file. However, if you are going to redistribute this
application to external customers, you should consider carefully whether to export the
source.

Note: In our example, we use the default WebSphere profile. The administrative console
for this profile runs on port 9060. If you use a different profile, use the administrative
console port specific to your profile.

64 Building SOA-based Solutions for IBM System i Platform

To install the Web service application into the WebSphere profile, follow these steps:

1. Open a browser, enter the administrative console URL:

http://<iSeries_Server>:<was_admin_port>/ibm/console

2. In the Wecome panel, enter your user ID (if your profile is not secured, you can enter any
string as your ID) and click Log in (see Figure 5-33).

Figure 5-33 WebSphere Application Server Welcome window

Chapter 5. ProgramCall (RPG, Cobol) Web service 65

3. Expand Applications in the left navigation bar and click Enterprise Applications. Then,
Click Install as shown in Figure 5-34.

Figure 5-34 Install Enterprise Application

4. Select the Local file system radio button and specify C:\temp\WebService.ear or click
Browse to locate the file. Then, click Next (see Figure 5-35).

Figure 5-35 Ear file to install

66 Building SOA-based Solutions for IBM System i Platform

5. On the “Choose to generate default bindings and mapping” panel click Next.

6. On the “Step1: Select installation options” panel click Next.

7. On the “Step 2: Map modules to servers” panel:

a. In the “Clusters and Servers” section, select both servers: WebSphere server and your
HTTP server. (You can hold the Ctrl key and click both servers to select them.)

b. Click Apply. This allows users to access your application through the external HTTP
server.

c. Click Next.

8. On the next panel click Step 4: Summary.

9. On the “Step 4: Summary” panel click Finish.

10.You should see a confirmation message similar to that shown in Figure 5-36 that the
application was installed.

Figure 5-36 Installation of Web service EAR file

11.Click Save to Master Configuration to save changes to the WebSphere Application
Server configuration.

12.Confirm your choice by clicking Save on the next panel.

Chapter 5. ProgramCall (RPG, Cobol) Web service 67

5.2.12 Starting your Web service application

You have successfully installed the Web application. However, by default the application is in
the Stopped status. You need to start the application to access the Web service:

1. Expand Applications and click Enterprise Application.

2. Select WebServiceEAR and click Start (see Figure 5-37).

Figure 5-37 Start Web service application

5.2.13 Testing the Web service on System i

The last step is to verify that the Web service works correctly. For this step we use
WebSphere Development Studio client for iSeries:

1. Switch to the WebSphere Development Studio client for iSeries window.

2. Expand Dynamic Web Projects → WebServiceProjectClient → WebContent →
sampleRESERVEFLIGHTServicesProxy.

3. Right-click TestClient and select Run → Run on Server.

4. Click Finish.

5. The WebSphere Test environment is started (if needed), and you should see the
TestClient.jsp page in the browser window (see Figure 5-25 on page 57).

6. Click the getEndpoint() link.

68 Building SOA-based Solutions for IBM System i Platform

7. Click Invoke (see Figure 5-38). This method returns the URL for your Web service. Verify
that the returned value includes the correct host name and port number.

Figure 5-38 Verifying the endpoint

8. In the Method frame click
reserveflight_XML(iseries.wsbeans.updateorder.RESERVEFLIGHTInput) as shown
in Figure 5-39.

Figure 5-39 Web service Test Client

Chapter 5. ProgramCall (RPG, Cobol) Web service 69

9. In the Inputs frame of the Web Browser window, enter the following values and click
Invoke (see Figure 5-40):

– cUSTNUMBER: 500
– dEPARTDATE: 12/25/08
– aGENTNUMBER: 4
– dEPARTTIME: 7:12 AM
– fLIGHTNUMBER: 5191135
– tICKETS: 2
– sERVICECLASS: 1

Figure 5-40 Input values

The Result frame shows a confirmation number similar to Figure 5-40.

5.2.14 Adding additional Web services: GetFlightInfo and FindCustomers

In the previous sections, we demonstrated how to build the Web service for the flight
reservation part of the application. For this service to work properly, you need to provide the
departure time and flight number. These values cannot be received from a person calling to
reserve a ticket. Thus, you need to add an additional Web service that allows you to search
for this information based on customer data, such as the date, destination city, and preferred
time of the day for departure.

70 Building SOA-based Solutions for IBM System i Platform

To implement these services, you need to apply the same process (using the Web services
wizard in WebSphere Development Studio client for iSeries) to other RPG procedures.
Namely:

� NFS404.RPGLE: We use the FindFlightInfo or FindFlights procedures to get flight
information.

� NFS405.RPGLE: We use the FindCustomers or GetCustNumber procedures for getting
customer information.

FindFlightInfo, FindFlights, FindCustomers, or GetCustNumber RPG procedures are
compiled into NFS400.SRVPGM.

To generate additional Web services, follow the instructions in 5.2.4, “Reviewing the RPG
modules” on page 44, 5.2.5, “Creating and testing RPG Web service” on page 48, and 5.2.6,
“Testing the Web service Test Client” on page 57.

When you are done with this work, deploy the new Web services on the production server.
Now your business partners can create an application that uses FindFlights, FindCustomer,
and ReserveFlight procedures to look up and reserve a flight on behalf of their customer.

5.3 Exporting WSDL document (Optional)

The WSDL document includes several parameters that are required by the Web services
clients to find and invoke this Web service over the Web. Thus, you should publish the WSDL
document to the UDDI registry, e-mail it to your business partners, or place it on some HTTP
server for other clients to access it. In this section, we show how to export this WSDL
document from your project in WebSphere Development Studio client for iSeries.

In “Modifying the WSDL document” on page 61, we demonstrate how to modify the WSDL file
before deploying your Web service application to the production server. After you have
modified your WSDL file, follow the instructions here to export the modified WSDL file:

1. Start WebSphere Development Studio client for iSeries and open the Web perspective by
selecting Window → Open Perspective → Other → Web and clicking OK.

Important: Make sure that you replace NFS001 with NFS400 in these instructions.

Chapter 5. ProgramCall (RPG, Cobol) Web service 71

2. In the Project Explorer view select RERSERVEFLIGHTServices.wsdl as shown in
Figure 5-41.

Figure 5-41 Select WSDL file

3. On the WebSphere Development Studio client for iSeries menu, select File → Export →
File system and then click Next (see Figure 5-42).

Figure 5-42 File System Export

72 Building SOA-based Solutions for IBM System i Platform

4. Ensure that RESERVEFLIGHTServices.wsdl is selected in the next panel and click
Browse (see Figure 5-43).

Figure 5-43 Export File

5. Select Desktop and click OK as shown in Figure 5-44.

Figure 5-44 Export to the desktop

Chapter 5. ProgramCall (RPG, Cobol) Web service 73

6. Click Finish as shown in Figure 5-45.

Figure 5-45 Export WSDL to Desktop

You have now exported the WSDL document to the desktop, and you can forward it through
e-mail or some other means to the various client developer teams for generating Web service
Client to invoke the RPG Web service. The Web service Client that can consume the Web
service include, but are not limited to, Java, RPG, C, C++, PHP, COBOL, and .NET.

5.4 Summary

In this Web service example, you extranlized an RPG procedure as a Web service. This Web
service is accessible by any application that has access to your System i platform through
port 9080 (default profile) and can communicate with a SOAP/HTTP protocol that adheres to
the WS-I basic profile, including applications such as Java, J2EE Web Clients, JSF, JSP,
.NET, and PHP.

In addition, you can build services to let your Web service clients explore even more business
logic within your environment as we describe in 5.2.14, “Adding additional Web services:
GetFlightInfo and FindCustomers” on page 70.

74 Building SOA-based Solutions for IBM System i Platform

Chapter 6. DB2 UDB Web service

One of the simplest ways to build a Web service for your i5/OS applications is to use the DB2
Web services framework. This chapter list several scenarios for starting with DB2 Web
services and illustrates some of these scenarios with the sample applications.

6

© Copyright IBM Corp. 2007. All rights reserved. 75

6.1 Reasons to use DB2 UDB based Web services

Why would you want to use DB2 UDB based Web services? There are certainly a few
reasons and you might find even more. This section elaborates on just a few of the reasons
why you would want to use DB2 UDB based Web services.

6.1.1 Get a feeling for the technology

This book, or any other book for that matter, could be the best technical publication ever
written by human beings. Even if that were true, reading this book will not give you the same
feeling for the technology as trying it out for yourself. A picture might be worth a thousand
words, but some hands-on experience is worth even more!

“Playing around” with a small sample application can provide with a better feeling for the
technology than pages of explanations and figures or graphics. Of course, this is not always
possible, because it might be difficult for you to set up the environment. However, in this
case, setting up the environment, at least if you have WebSphere Application Server and
SQL installed on your system, should be fairly easy to do.

6.1.2 If you cannot modernize the whole application

By now you are probably aware of the fact that depending on the architecture of your current
application or applications, you might have to envisage some modernization steps, such as
converting your RPG OPM programs to the ILE architecture. Otherwise, it might be
impossible to continue using them with the solutions that we introduce in this book, such as
Web services based upon RPG programs.

However, this type of modernization might not be possible or might not even make sense in
all cases. If the application in question is not functionally adequate, it probably does not make
sense to modernize it. You would probably rather rewrite or re-engineer it.

If, nevertheless, you need to provide access to certain information in your database,
information that continues to be maintained through your existing application, then you could
create DB2 UDB based Web services to give access to that information without having to go
through a potentially time and cost intensive modernization process.

6.1.3 There are strong SQL resources available

If in your team you have good SQL knowledge available, even developers without RPG
knowledge at all, or if your RPG developers are not available because of other tasks, you
might want to have your SLQ-savvy person create SQL stored procedures and create Web
services based on them. These Web services could then be used in other applications or to
give external partners access to certain information through them.

6.1.4 You have invested in developing stored procedures

There are two types of the stored procedures in i5/OS: SQL and external (any system or
service program or REXX™ procedure). Many companies develop host application using
stored procedures. If your company has invested in stored procedures, there is a quick and
easy way to externalize these stored procedures as Web services.

You can take advantage of DB2 Web services invoking stored procedures. In 6.4, “Creating a
DB2 stored procedure” on page 95, we show an example of how to build an SQL store

76 Building SOA-based Solutions for IBM System i Platform

procedure in WebSphere Development Studio client for iSeries and how to generate DB2
Web services to invoke this stored procedure.

6.2 Introducing the concepts and terminology

In this chapter, we use the terms that are typical in the context of DB2 UDB Web services
discussion. To better understand the concepts described in this chapter, we define and
explain these terms in this section.

6.2.1 DB2 Web services architecture overview

In the previous sections, we listed several business reasons for investigating and developing
DB2 Web services solutions. There are also technical reasons for adopting this approach.
IBM provides tooling and runtime support for DB2 Web services. Tooling and runtime support
considerably simplifies the development and deployment effort for building DB2 Web
services.

The runtime architecture of DB2 Web services is based on Web services Object Runtime
Framework (WORF). WORF supports two paths for accessing DB2 UDB:

� Through DB2 XML Extender product
� Through a direct JDBC™ connection

Figure 6-1 shows the high-level architecture of WORF.

Figure 6-1 WORF runtime architecture

In the following sections, we explain all the components that are shown in Figure 6-1.

WebSphere Application Server

Stored
procedures

calls

SQL
statements DAD and

XML documents

WORF
(DADX processor)

DB2 UDB for i5/OS

DB2 XML Extender

Stored
Procedures

for XML

User-defined
functions
for XML

Chapter 6. DB2 UDB Web service 77

6.2.2 XML-based access and Document Access Definition (DAD)

This approach is based on the DB2 XML Extender functionality. DB2 XML Extender provides
a mapping between elements in the XML documents and columns in the relational database.
A special XML file, called Document Access Definition or DAD file, is used by DB2 XML
Extender to specify:

� The operations that needs to be performed
� The mapping between XML document structure and DB2 UDB table columns

The syntax of a DAD file is unique to DB2 XML Extender. The following XML-based
operations are supported by DB2 XML Extender:

� Query: An XML-based query enables you to compose XML documents from relational
data

� Storage: An XML document is broken down into its component parts and stored in
relational tables

6.2.3 SQL-based access and Document Access Definition Extender (DADX)

A Document Access Definition Extender, or DADX, file is the extension of a DAD file. A
DADX files specifies a Web service using a set of operations that are defined by SQL
statements or DAD file. Effectively, a DADX file allows you to combine two distinct paths to
access DB2 UDB for i5/OS in a single framework.

DADX approach is architected in the following way:

� First, you define a DADX group. This group is represented in a form of the directory. This
directory includes several files, one of which is group.properties. This file defines the
connection properties for the group. Example 6-1 shows a sample properties file. The
most important properties are highlighted. As you can see, it includes the JDBC driver
class, database URL, user ID, and password.

Example 6-1 group.properties file

#Tue Sep 19 11:31:36 CDT 2006
namespaceTable=namespacetable.nst
groupNamespaceUri=
reloadIntervalSeconds=5
dbDriver=com.ibm.as400.access.AS400JDBCDriver
dbURL=jdbc\:as400\:rchas10
enableXmlClob=true
useDocumentStyle=true
password=encoded\:AQACAgQEBgYKCwgJDA0MDxQVEhMQFRYTGBEaExwVHhcwITIjNCUmJwgJCgsMDQ4PcHFyczR1dnc4OT
o7PD0+Pw\=\=
datasourceJNDI=
initialContextFactory=
userID=test
autoReload=true

78 Building SOA-based Solutions for IBM System i Platform

� Second, you need to create one or more DADX files. All DADX files are placed in the
group’s directory. Each DADX file includes one or more operations. Remember that the
operations can be SQL or XML based. Each DADX file is mapped to a single Web service.
Example 6-2 shows the example of the DADX file with SQL based operation.

Example 6-2 Example of the DADX file

<?xml version="1.0" encoding="UTF-8"?>
<dadx:DADX xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://schemas.ibm.com/db2/dxx/dadx dadx.xsd">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 <![CDATA[
 Query Customers
]]>
 </dadx:documentation>
 <dadx:operation name="QueryCustomer">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 <![CDATA[

]]>
 </dadx:documentation>
 <dadx:query>
 <dadx:SQL_query>
 <![CDATA[
 SELECT * FROM FLGHT400.CUSTOMERS WHERE FLGHT400.CUSTOMERS.CUSTOMER_NAME LIKE :CustName
]]>
 </dadx:SQL_query>
 <dadx:parameter name="CustName" type="xsd:string"/>
 </dadx:query>
 </dadx:operation>
</dadx:DADX>

The following SQL based operations are supported in the DADX file:

� call to a stored procedure
� insert
� update
� delete
� query

An SQL-based query allows you to send SQL statements, including stored procedure calls, to
DB2 and to return the results with a default tagging. Data is returned using only a simple
mapping of SQL data types, using column names as elements.

6.2.4 Web services Object Runtime Framework (WORF)

The Web services Object Runtime Framework (WORF) enables you to define easily a basic
Web service using standard SQL statements stored in an XML file to access local DB2 data.
WORF provides an environment to create easily simple XML based Web services that access
DB2 using the SOAP and the DADX.

Important: SQL-based operations do not require DB2 XML Extender because there is no
need for user-defined mapping of SQL data to XML elements and attributes.

Chapter 6. DB2 UDB Web service 79

WORF supports resource-based deployment of Web services, which means that you define
your Web service in a resource file (DADX file) that you place in a directory of your Web
application. When you request that resource file, WORF loads it and makes it available as a
Web service.

If you edit the DADX file and request it again, WORF detects the change and loads the new
version automatically. This process of automatically reloading the resource file makes Web
service development more productive.

6.2.5 Additional information about DB2 Web services

The following list provides links to additional information about DB2 Web services:

� DB2 UDB for iSeries and Web services at:

http://www.ibm.com/servers/enable/site/education/wp/db2web/db2web.pdf

� DB2 Web services for DB2 Practitioners (examples are given for DB2 UDB for Windows):

http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0405brown/db2we
bservices.pdf

6.3 Developing a DB2 UDB Web service

You can use the WebSphere Development Studio client for iSeries development tools, to
develop a DB2 Web service. In this section, we show you how to create a DB2 UDB Web
service based on a DADX file.

These are the steps to follow:

� Create a dynamic Web Project for the application
� Setup the DB2 connection
� Create an SQL Statement
� Configure the DADX Group
� Create the DADX file
� Generate the Web service based on the DADX file

We explain the steps in more detail on the following pages.

In 6.4, “Creating a DB2 stored procedure” on page 95, we provide a quick overview of how to
create a DB2 stored procedure and then a Web service that uses the stored procedure.

6.3.1 Creating a dynamic Web Project for the application

First we need to create a dynamic Web Project in WebSphere Development Studio client for
iSeries. Follow these steps:

1. Open WebSphere Development Studio client for iSeries.

2. Select File → New → Project from the menu.

3. In the pop-up window, select Dynamic Web Project and click Next.

Note: With WORF you achieve dramatic decrease in the number of lines of code that you
need to develop. Besides, you rely on well architected and tested framework. If there are
any improvements in the framework, you get them without rewriting your applications.

80 Building SOA-based Solutions for IBM System i Platform

http://www.ibm.com/servers/enable/site/education/wp/db2web/db2web.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0405brown/db2webservices.pdf

4. Enter a name for the project, such as db2dadxws in our example in Figure 6-2 and click
Finish.

Figure 6-2 Create and name a dynamic Web project

6.3.2 Setting up the DB2 connection

Next, you define a connection to the database that you use with your Web service:

1. In WebSphere Development Studio client for iSeries, switch to the J2EE perspective by
clicking the window icon in the upper-right corner of the window and selecting J2EE (see
Figure 6-3).

Figure 6-3 Switch to the J2EE perspective

2. In Project Explorer, right-click the Database Servers folder and select New Connection.

3. Input a name for the connection you are creating, such as connDB2DADXWS, and click Next.

Note: If you do not see J2EE in the list, select Other. A window opens. Select J2EE
and click OK.

Chapter 6. DB2 UDB Web service 81

4. In the “Select a database manager” list box:

a. Expand the DB2 Universal Database™ subheading (Figure 6-4).

b. Select DB2 for iSeries V5R3.

Figure 6-4 Select the DBMS

c. In the “Host” field, input the host name of the database system.

d. In the “Specify user information” group, enter the iSeries User ID and iSeries Password
for the system that you entered in the previous step.

e. Click Test Connection to verify that the setup is correct (see Figure 6-5). If the
connection is successful, you should see a window. Click OK. Then, click Next.

Figure 6-5 Connection window

82 Building SOA-based Solutions for IBM System i Platform

5. In the “Include schemas that match the following conditions” group, click Add.

6. Enter FLGHT400% into the Filter text box as shown in Figure 6-6 and click OK.

Figure 6-6 Add Schema filter

7. Click Finish.

6.3.3 Importing the connection

When the DB2 connection setup is completed, you see your connection listed underneath the
Database Servers folder in the Project Explorer. Next, you need to import it into your current
project to make it available there:

1. Right-click the connection and select Copy to project.

2. Click Browse and select the name of the Dynamic Web Project. In our example, that is
db2dadxws (see Figure 6-7).

Figure 6-7 Import the connection into the dynamic Web project

3. Click Finish.

Chapter 6. DB2 UDB Web service 83

6.3.4 Creating an SQL statement

Next, you create the SQL statement that you want to use as the basis for your Web service.
WebSphere Development Studio client for iSeries provides the wizard that guides you
through SQL statement creation. In our example, we choose to manually enter a SQL
statement. To create an SQL statement, follow these steps:

1. Select File → New → Other.

2. Expand the Data folder.

3. Select SQL statement and click Next.

4. For the drop-down box SQL statement, leave the default value SELECT. Select Manually
type an SQL statement.

5. Deselect Create new database connection. Then click Next (see Figure 6-8).

Figure 6-8 Create a new SQL statement

6. Select Browse in the Choose an Existing Database Model panel. In the Data resource
selection panel, expand the folder named the same as the Dynamic Web Project
(db2dadxws in our example) until you find the database that was created under the
Databases folder in the Project Explorer (see Figure 6-9). Click OK.

Figure 6-9 Select a database

84 Building SOA-based Solutions for IBM System i Platform

7. Click Next.

8. In the next panel, enter a name for your query. In our example, we enter QueryCustomer.
Click Next.

9. Enter the following SQL statement:

SELECT *
FROM
 FLGHT400.CUSTOMERS
WHERE
 FLGHT400.CUSTOMERS.CUSTOMER_NAME LIKE :CustName

10.When the statement is entered, click Parse.

11.Next, verify that the query is correct by clicking Execute. Click Execute again in the next
window.

12.Double-click the first cell in the Value column and enter Ba% (see Figure 6-10). Click
elsewhere in the table to deselect the current cell and click Finish.

Figure 6-10 Specify the host variable value

The output of the query should look like that shown in Figure 6-11.

Figure 6-11 SQL Query output

13.After you have verified the output, click Close. Then click Finish to complete the SQL
Wizard.

14.Close the SQL statement editor window by clicking X on the tab.

Chapter 6. DB2 UDB Web service 85

6.3.5 Configuring the DADX Group

This section explains how to configure the DADX group. Using the DADX approach, you save
time and effort in building DB2 Web services. IBM provides excellent development tools and
runtime support for this architecture.

The DADX group is a group that can include one or more DADX files. All files in the group
share the same set of the properties, namely: JDBC driver, DB2 system, and user ID and
password.

These are the steps to follow:

1. In WebSphere Development Studio client for iSeries, select File → New → Other.

2. Expand the Web services folder and select Web services DADX Group configuration.
Click Next.

3. Select the folder named the same as the Dynamic Web Project, which is db2dadxws in our
example. Click Add group.

4. Enter the name for the group. We use db2DADXgroup in our example (see Figure 6-12).
Click OK.

Figure 6-12 Name the DADX group

5. Select the newly created group folder and click Group properties (see Figure 6-13).

Figure 6-13 Select Group properties

86 Building SOA-based Solutions for IBM System i Platform

6. In the Group property window (Figure 6-14), replace the following:

– DB driver: com.ibm.as400.access.AS400JDBCDriver

– DB URL: jdbc:as400:<your host name>

(replace <your host name> in this line with your system’s host name)

– User ID: enter your user ID

– Password: Click Edit. Enter the password for the user ID. Select the box labeled Store
encoded and click OK.

Figure 6-14 Set DADX Group properties

7. Click Finish.

6.3.6 Creating the DADX file

Next, you create the DADX file that you use in the next section to generate the Web service:

1. In WebSphere Development Studio client for iSeries, select File → New → Other.

2. Expand the Web services folder and select DADX File.

3. Click Next.

Chapter 6. DB2 UDB Web service 87

4. In the Project frame select your project name, db2dadxws in our example (see
Figure 6-15).

5. Enter a name for the DADX file and add a description.

6. Select Generate a DADX file from the list of SQL queries or Stored Procedures. Then
click Next.

Figure 6-15 Enter a name and description for the DADX file

88 Building SOA-based Solutions for IBM System i Platform

7. Expand the folder with the same name as the Dynamic Web Project (db2dadxws in our
example) until you find the query that was created in the previous section. Select the
query and click Next (see Figure 6-16).

Figure 6-16 Selecting the SQL statement

8. Click Next again and then click Finish.

9. The wizard now creates the DADX file and opens it in the editor’s view. The file should
look similar to the code shown in Example 6-3.

Example 6-3 DADX file

<?xml version="1.0" encoding="UTF-8"?>
<dadx:DADX xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://schemas.ibm.com/db2/dxx/dadx dadx.xsd">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 <![CDATA[
 Query Customers
]]>
 </dadx:documentation>
 <dadx:operation name="QueryCustomer">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 <![CDATA[

]]>
 </dadx:documentation>
 <dadx:query>
 <dadx:SQL_query>
 <![CDATA[
 SELECT * FROM FLGHT400.CUSTOMERS WHERE FLGHT400.CUSTOMERS.CUSTOMER_NAME LIKE :CustName
]]>

Chapter 6. DB2 UDB Web service 89

 </dadx:SQL_query>
 <dadx:parameter name="CustName" type="xsd:string"/>
 </dadx:query>
 </dadx:operation>
</dadx:DADX>

10.Review the file and close it by clicking X on the editor’s view tab.

11.If you want to open the file later, you can find it by expanding the Dynamic Web Projects
folder in the Project Explorer as follows:

– Expand your project in the Dynamic Web Projects folder. In our case it is db2dadxws.
– Expand Java Resources → JavaSource → groups.db2DADXgroup.
– There you find the file db2SQL.dadx.

6.3.7 Generating the Web service based on the DADX file

This section explains how to create a Web service based on the DADX file created in the
previous section. Before generating the Web service, you need to specify the iSeries Web
Tools Runtime configuration:

1. In the Project Explorer view expand Dynamic Web Projects folder.

2. Right-click the project name, which is db2dadxws in our example. Select Specify iSeries
Web Tools Runtime Configuration.

Figure 6-17 Specify iSeries Web Tools Runtime configuration

90 Building SOA-based Solutions for IBM System i Platform

3. In the next panel (see Figure 6-18), enter the host name, user ID, and password. Make
sure the “Encode password encoding” option is selected. Then, click Finish.

Figure 6-18 Set the host name, user ID, and password to configure the authentication

4. In the Project Explorer view expand db2dadxws → Java Resources → JavaSource →
groups.db2DADXgroup.

5. Right-click the DB2sql.dadx DADX file.

6. Select New → Other.

Chapter 6. DB2 UDB Web service 91

7. Expand Web services and select Web service (Figure 6-19). Then, click Next.

Figure 6-19 Selecting Web service

92 Building SOA-based Solutions for IBM System i Platform

8. Make sure the options are selected as shown in Figure 6-20 then click Finish.

Figure 6-20 Create the Web service

The Web services wizard starts the WebSphere Test Environment and generates all artifacts
for the Web service. This operation takes a while.

Attention: You might see a warning message pertaining to the fact that the Web
service does not comply with the WS-I SOAP Basic Profile. This is OK. Click Ignore
All.

Chapter 6. DB2 UDB Web service 93

6.3.8 Testing the Web service

Next, test the Web service:

1. Expand the Dynamic Web Project folder (Figure 6-21).

Figure 6-21 Location of the WSDL file

2. Right-click the WSDL file and select Web service → Test With Web services Explorer.

3. In the Web services Explorer expand theService → theSoapBinding and click
QueryCustomer (see Figure 6-22).

4. In the CustName string field enter Babc% and click Go . You should have three names
returned.

94 Building SOA-based Solutions for IBM System i Platform

Figure 6-22 Testing the Web service in the Web services Explorer

6.4 Creating a DB2 stored procedure

This section explains how to first create a DB2 stored procedure and then how to create a
Web service using this procedure. As you will see, this is pretty easy and most of the steps
are almost identical to the previous example with an SQL statement.

Note: In this example, we assume that you have done the first example from this chapter
that we describe in 6.3, “Developing a DB2 UDB Web service” on page 80. We reuse some
of the objects that created from that example in the SQL statement example here.

Chapter 6. DB2 UDB Web service 95

6.4.1 Setting up the environment

Before you can begin developing stored procedures in WebSphere Development Studio client
for iSeries, you must enable the database development capabilities. These capabilities are
groups of functions that can be disabled or enabled as you need them. When you start the
workbench for the first time, the database development capabilities are disabled.

Follow these steps to enable the database development capabilities:

1. Start WebSphere Development Studio client for iSeries.

2. From the menu bar select Window → Preferences.

3. Expand the Workbench node, and click Capabilities.

4. Expand the Database Developer node in the Capabilities list.

5. Select Core Database Development and Stored Procedure and User-Defined
Function Development as shown in Figure 6-23.

6. Click OK.

Figure 6-23 Enabling database capabilities

6.4.2 Creating and building an SQL stored procedure

In the previous example, you created a dynamic Web project and a database connection. So
you can skip these steps and move forward to the steps to create a stored procedure.

This section explains how to use a wizard to create a DB2 SQL stored procedure. This simple
procedure receives two parameters and returns a result set.

96 Building SOA-based Solutions for IBM System i Platform

Follow these steps to create the stored procedure:

1. If you followed the steps in the previous example, your workbench should display the
J2EE perspective. Now, select Window → Open Perspective → Data to switch to the
Data perspective.

2. In the Data Definition view navigate to the Stored Procedures folder: expand
db2dadxws → WebContent → db2dadxws → <connection name> → FLGHT400 (see
Figure 6-24).

Figure 6-24 Data Definition view

3. Right-click the Stored Procedure folder and select New → SQL Stored Procedure.

4. The new window displays. In the name field, enter a name for the stored procedure, such
as spSelectFlights in our example. Select the “Build” and “Enable for use in DADX Web
services” check boxes. Click Next.

Figure 6-25 Creating a new SQL stored procedure

Chapter 6. DB2 UDB Web service 97

5. On the New SQL stored procedure panel, select One in the Result set drop-down
selection list. Then click SQL Assist as shown in Figure 6-26.

Figure 6-26 Select Result set and SQL Assist

6. In the Create A New SQL Statement panel, select the value SELECT in the SQL
statement drop-down list and select the “Be guided through creating an SQL statement”
option (see Figure 6-27). Click Next.

Figure 6-27 Specify SQL statement information

98 Building SOA-based Solutions for IBM System i Platform

7. In the next panel, we compose the actual SQL statement. On the Tables tab, drill down in
the FLGHT400 database until you can select the FLGHT400.FLIGHTS table. Click the >
button to add it to the selected tables window (see Figure 6-28).

Figure 6-28 Select the FLIGHTS table on the Tables tab page

Chapter 6. DB2 UDB Web service 99

8. You do not need to select individual columns, and you do not need to create table joins.
So, click the Conditions tab page and perform the following actions on this tab:

a. Enter these values on the first line (see Figure 6-29):

i. In the Column field, double-click the first cell and select
FLIGHTS.DEPARTURE_INITIALS from the drop-down list.

ii. Double-click in the first cell of the Operator column. Select the equal sign (=) from
the drop-down list.

iii. Double-click the first cell in the Value column and enter :dept in the Value column.

iv. Double-click the first cell in the And/Or column and select AND.

Figure 6-29 Adding the conditions

100 Building SOA-based Solutions for IBM System i Platform

b. In the second line, enter the following values (see Figure 6-30):

i. In the Column column, select FLIGHTS.ARRIVAL_INITIALS.

ii. In the Operator column, select the equal sign (=).

iii. In the Value column type :arr.

Figure 6-30 Set the conditions for the SQL stored procedure

9. Click the Order tab.

10.Expand FLGHT400.FLIGHTS, select FLIGHT_NUMBER, and click the > button. Now the
results in the result set are ordered by flight number. Click Next.

Chapter 6. DB2 UDB Web service 101

11.The wizard displays the created SQL statement in an editor window where you could edit
it (see Figure 6-31). You can click Parse, to parse the statement, but if you don’t edit it, this
is not necessary. Click Execute to test the stored procedure. Click Execute again.

Figure 6-31 Created SQL statement

12.In the Specify Variable Values, enter the values CHG for the host variable :dept, and ATL for
:arr (see Figure 6-32). Click in any other cell of the table. Then, click Finish. The result set
is displayed in a separate window.

Figure 6-32 Specify host variable values

102 Building SOA-based Solutions for IBM System i Platform

13.Click Close and then click Finish. The generated SQL statement is displayed in the New
SQL Stored Procedure panel (Figure 6-33). Click Next.

Figure 6-33 The created SQL statement

14.The Parameters panel displays (see Figure 6-34). There is no need to change anything
here. Click Finish.

Figure 6-34 The specify parameters for the stored procedure panel

Chapter 6. DB2 UDB Web service 103

When you are done with these steps, the SQL stored procedure is created and displayed in
the editor’s view. The code should look similar to the one in Example 6-4.

Example 6-4 SQL stored procedure code

CREATE PROCEDURE FLGHT400.SPSelectFlights (IN dept VARCHAR(16),
 IN arr VARCHAR(16))
 RESULT SETS 1
 LANGUAGE SQL
--
-- SQL Stored Procedure
 -- dept
 -- arr
--
P1: BEGIN
 -- Declare cursor
 DECLARE cursor1 CURSOR FOR
 SELECT *
 FROM
 FLGHT400.FLIGHTS
 WHERE
 FLGHT400.FLIGHTS.DEPARTURE_INITIALS = dept
 AND FLGHT400.FLIGHTS.ARRIVAL_INITIALS = arr
 ORDER BY
 DEPARTURE ASC,
 FLIGHT_NUMBER ASC;

 -- Cursor left open for client application
 OPEN cursor1;
END P1

6.4.3 Creating the DADX file and generate the Web service based on it

Now, that you have created the SQL stored procedure, you need to create the DADX file.
This step is almost identical to the one described in 6.3.6, “Creating the DADX file” on
page 87. Instead of repeating all these steps here again, we refer you to that section. Just
remember to give the DADX file a different name than the one used in the previous sample.

When you have created the DADX file, you can follow the steps in 6.3.7, “Generating the Web
service based on the DADX file” on page 90 to generate and test a Web service based on the
DADX file.

6.5 Deploying the Web services

Before the Web services created in this chapter can be consumed, you must deploy them on
the WebSphere Application Server. The whole process of deploying a Web service to
WebSphere Applicatoin Server is described in detail in 5.2.8, “Deploying your Web service to
WebSphere Application Server for i5/OS” on page 61. Therefore, we provide just an overview
of the necessary steps in this section.

104 Building SOA-based Solutions for IBM System i Platform

6.5.1 Modifying the WSDL file

The WSDL file is one of the main components of any Web service. It contains the URI of the
Web service (its location on the Web), the methods that can be invoked, and so on. Any Web
service client needs to read this file to learn how to use a Web service.

In our examples, we generated two WSDL files: db2SQLService.wsdl and
spSelectFlightsService.wsdl (see Figure 6-35).

Figure 6-35 Generated WSDL files

To modify the WSDL file, follow these steps:

1. Double-click the db2SQLService.wsdl file. It opens in the WSDL Editor view.

2. Click the Source tab (at the bottom of the view). At the bottom of the source file, you
should see the Service section, similar to Example 6-5.

Example 6-5 WSDL file segment

<service name="theService">
 <port binding="tns:theSoapBinding" name="theSoapPort">
 <soap:address location="http://localhost:9080/db2dadxws/db2DADXgroup/db2SQL.dadx/SOAP"/>
 </port>
 <port binding="tns:theGetBinding" name="theGetPort">
 <http:address location="http://localhost:9080/db2dadxws/db2DADXgroup/db2SQL.dadx/"/>
 </port>
 <port binding="tns:thePostBinding" name="thePostPort">
 <http:address location="http://localhost:9080/db2dadxws/db2DADXgroup/db2SQL.dadx/"/>
 </port>
 </service>

3. Replace localhost with the host name of the system where you run WebSphere
Application Server. Replace 9080 (the default port for the WebSphere Test Environment)
with the port number of your WebSphere Application Server profile. Save the file.

4. Repeat this step for the second WSDL file.

Now your WSDL files reflect the correct information about the future location of your Web
services. Any client that can connect to your WebSphere Application Server will be able to
access these WSDL files, download them, and build the Web service client code to invoke
these Web services.

Chapter 6. DB2 UDB Web service 105

6.5.2 Exporting the EAR file

Now when your application is ready for the production environment, you need to export it in a
form of EAR file. Follow these steps:

1. Open WebSphere Development Studio client for iSeries.

2. Switch to the J2EE perspective.

3. Expand Enterprise Applications.

4. Right-click db2dadxwsEAR and select Export → EAR file (see Figure 6-36).

Figure 6-36 Selecting Export option

5. In the window that displays, specify the fully qualified path to the EAR file that will be
created by the wizard. In our example, we enter c:\temp\db2dadxwsEAR.ear and click
Finish (see Figure 6-37).

Figure 6-37 Exporting the EAR file

6. Open Windows Explorer and verify that the EAR file has been created in c:\temp.

106 Building SOA-based Solutions for IBM System i Platform

6.5.3 Installing the application on WebSphere Application Server

To install the exported application on WebSphere Application Server profile, perform the
following steps:

1. Start your WebSphere Application Server profile.

2. Open a browser and enter the WebSphere Application Server Admin Console URL, in the
form:

http://<iSeries_Server>:<was_admin_port>/ibm/console

In our example this would be:

http://rchas10:9060/ibm/console

3. On the administrative console login screen, enter your user ID (you can enter any ID you
want) and click Log in (see Figure 6-38).

Figure 6-38 Admin console login window

4. On the WebSphere Administrative Console, expand Applications and click Install New
Application in the navigation menu on the left hand side (see Figure 6-39).

Figure 6-39 Administrative Console navigation menu

Chapter 6. DB2 UDB Web service 107

5. On the Preparing for the application installation panel, select Local file system and
browse to the previously exported EAR file and select it and click Open. In our example,
that location was C:\Temp\db2dadxwsEAR.ear (see Figure 6-40). Then, click Next. This
step can take a little while, depending on network speed.

Figure 6-40 Select the previously exported EAR file

6. On the “Choose to generate default bindings and mappings” panel, click Next.

7. On the “Step 1: select installation options” panel, click Step 4 Summary (see
Figure 6-41).

Figure 6-41 From Step 1 we immediately jump to Step 4

108 Building SOA-based Solutions for IBM System i Platform

8. On the “Step 4: Summary” panel, click Finish (see Figure 6-42).

Figure 6-42 Summary of installation options

If the application is installed correctly, you should see a confirmation message (see
Figure 6-43).

Figure 6-43 Installation confirmation

Chapter 6. DB2 UDB Web service 109

9. Click Save to Master Configuration to save the changes to the WebSphere Application
Server configuration.

10.On the Save panel, click Save (see Figure 6-44).

Figure 6-44 Save the configuration

11.In the Administrative Console navigation, expand Applications and click Enterprise
Applications. Locate the installed application (db2dadxwsEAR in our example), select
the check box next to it, and click Start to start the application (see Figure 6-45).

Figure 6-45 Start the application

12.The next steps are additional (and not typical for other applications) steps for the DB2
Web services based on WORF and DADX. First, you need to create the classes folder
under your profile’s directory in IFS. For our default server the directory is:

/QIBM/UserData/WebSphere/AppServer/V6/Base/profiles/default/classes

110 Building SOA-based Solutions for IBM System i Platform

13.Copy the following three JAR files that are bundled with your DB2 Web services
applications to the new directory:

– worf.jar
– worf-servlet.jar
– jt400.jar

For example, copy the files from:

/QIBM/UserData/WebSphere/AppServer/V6/Base/profiles/default/installedApps/
<systemName>/db2dadxwsEAR.ear/db2dadxws.war/WEB-INF/lib/

to

/QIBM/UserData/WebSphere/AppServer/V6/Base/profiles/default/classes

Now you should have three JAR files in your classes folder as shown in Figure 6-46.

Figure 6-46 JAR files

14.Restart your WebSphere Application Server profile.

Note: You need to copy three JAR files because of the way class loaders work in
i5/OS. This step is not required if you install the DB2 Web services application to
WebSphere Application Server on other platforms.

Chapter 6. DB2 UDB Web service 111

6.5.4 Testing Web services on the production server

After you deploy the Web services application on the production server, you can test them
with Web services Explorer in WebSphere Development Studio client for iSeries:

1. Start WebSphere Development Studio client for iSeries and open the J2EE perspective.

2. Click the Launch Web service Explorer button on the toolbar (see Figure 6-47).

Figure 6-47 Launching Web services Explorer

3. In the WSDL URL, enter the location of the WSDL file on your server. In our example
running the application in the default profile the URL is:

http://rchas10:9080/db2dadxws/wsdl/db2DADXgroup/db2SQLService.wsdl

4. Click Go (see Figure 6-48).

Figure 6-48 Accessing the WSDL file

112 Building SOA-based Solutions for IBM System i Platform

5. In the Navigator view of the Web services Explorer expand theService →
theSoapBinding and click QueryCustomer.

6. Enter Babc% in the CustName field and click Go (see Figure 6-49).

You should see the results of your query in the Status frame of the view.

Figure 6-49 Testing Web service on the WebSphere Application Server profile

Chapter 6. DB2 UDB Web service 113

114 Building SOA-based Solutions for IBM System i Platform

Chapter 7. HATS Web service

This chapter describes a method to expose RPG application as a Web service using Host
Access Transformation Services (HATS). It discusses the project considerations and
investments for developing a Web service from traditional RPG application. Finally, the
chapter demonstrates typical development steps in building such a Web service.

7

© Copyright IBM Corp. 2007. All rights reserved. 115

7.1 Project investments in developing a service

In wrappering existing business logic as a HATS Web service, you need to consider the
following items for using SOA:

� Analyze the current state of the business application.
� Consider the time frame for the prototyping and production of a services application.

You need to consider also the application development, expense, and deployment for
developing a Web service based application.

7.1.1 Analyzing an existing application

HATS Web service is a good solution where the existing applications can be driven using
macros. With some applications, where it is not possible to drive the application using a
macros, HATS Web service might not be a simple solution. You might require some
modifications to the existing application flow to automate it using a macro.

Consider the following scenarios in our Flight Reservation System sample application:

1. Flight Reservation Inquiry

This is a very simple scenario. The application window has only one input parameter and
based on the input, it retrieves data from the database table. This application transaction
can be driven easily with macro.

Let us look at the transaction details and the navigation required in completing the
transaction.

a. Start personal communication session to your System i5.

b. Run this command to add a library to the library list:

ADDLIBLE FLGHT400

c. Call the Flight Reservation System application:

GO FLGHT400/FRSMAIN

116 Building SOA-based Solutions for IBM System i Platform

d. Enter 3 - Inquire on an Existing Reservation on the Flight Reservation main menu
panel and press Enter (see Figure 7-1).

Figure 7-1 Flight Reservation System main menu

e. You should see a logon panel. Enter Alex as agent name and mercury as the
password. Press F10.

f. Enter the order number 005530217 and press F10 to work with selection (see
Figure 7-2).

Figure 7-2 Order Selection panel

 FRSMAINX 16:27:57 Flight Reservation System 7/29/06 SYSTEMI5

 Select one of the following:

 1. Create a New Reservation
 2. Update an existing Reservation
 3. Inquire on an existing Reservation
 4. Delete an existing Reservation
 5. Fax Reservation Information

 10. Flight Reservation System Maintenance

 20. Reservation System Reports

 90. Signoff
 Selection or command
 ===> 3

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=Information Assistant F16=AS/400 main menu

 Flight Reservation System - Order Selection Panel System: SYSTEMI5

 Type choices, press F10 to continue

 Customer Name Name (F4 to Select)

 Date of Departure 0000 00 00 Date (F5 to Select)

 Order Number 005530217 Order Number

 F2=Refresh F3=Exit F10=Work with Selection

Chapter 7. HATS Web service 117

g. Review the order and press F3 or F12 to exit the Display Order panel (see Figure 7-3).

h. Press F3 to exit from Order Selection Panel.

Figure 7-3 Display Order panel

2. Flight Selection Search and Flight Reservation Transaction

First let us look at the Flight Reservation Transaction and learn about the data entry fields
and flow of the transaction:

a. Make sure that you are on Flight Reservation System main menu panel.

b. Enter 1 - Create a new Reservation on the Flight Reservation System main menu
panel.

c. You should see a logon panel. Enter Alex as agent name and mercury as the
password. Press F10.

 Flights Reservation System - Display Order 16:44:46 7/29/06 SYSTEMI5

 FLIGHT INFORMATION TICKET ORDER INFORMATION

 Airline: DLT Flight: 5117009 Order Number...............: 005530217

 Date of Flight..: 03 12 2004 Customer....: Aaronson, Linda

 Class of Service - First...........:
 From City: Little Rock Business........:
 Economy.........: X
 Depart Time.......: 07:54 AM
 Number of Tickets..................: 01

 To City...: Norfolk Price $.....................: 169.00
 Tax $.......................: 6.76
 Arrival Time......: 09:54 AM Total Due w/ Tax $..........: 175.76

F3/F12=Exit

118 Building SOA-based Solutions for IBM System i Platform

d. Enter the date of the flight (Figure 7-4) for example:

09 12 2006

Figure 7-4 Create order: Date of flight

 Flights Reservation System - Create Order 17:01:58 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 Airline: Flight: 0000000 Order Number...............: PENDING

 Date of Flight..: 09 12 2006 Customer...:

 Class of Service - First...........:
 From City.: Business........:
 Economy.........: X
 Depart Time.......:
 Number of Tickets..................: 01

 To City...: Price $.....................:
 Tax $.......................:
 Arrival Time......: Total Due w/ Tax $..........:

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

Chapter 7. HATS Web service 119

e. Press F4 to select From City. Enter 1 to select the city and press Enter (see
Figure 7-5).

Figure 7-5 Create order: From City selection

 Flights Reservation System - Create Order 17:01:58 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 CITY SELECTION WINDOW
 Airline: Flight: 0000000
 Position To:
 Date of Flight..: 09 12 2006
 1=Select

 From City.: 1 City Name Initials
 1 Albany ABY
 Depart Time.......: Albuquerque ALB
 Anchorage ANC
 Atlanta ATL
 To City...: More...

 Arrival Time......: F3=Exit

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

120 Building SOA-based Solutions for IBM System i Platform

f. Press F5 to select To City. Enter 1 to select a city and press Enter (see Figure 7-6).

Figure 7-6 Create order: To City selection

 Flights Reservation System - Create Order 17:09:46 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 CITY SELECTION WINDOW
 Airline: Flight: 0000000
 Position To:
 Date of Flight..: 09 12 2006
 1=Select

 From City.: Albany 1 City Name Initials
 Albany ABY
 Depart Time.......: Albuquerque ALB
 Anchorage ANC
 1 Atlanta ATL
 To City...: More...

 Arrival Time......: F3=Exit

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

Chapter 7. HATS Web service 121

g. Press F6 to see all flights based on the date, from city, and to city that you entered
earlier. Press Page Down to look at more flights. Enter 1 to select flight and press Enter
(see Figure 7-7).

Figure 7-7 Create order: Flight selection

 Flights Reservation System - Create Order 17:13:56 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 FLIGHT SELECTION WINDOW
 Airline: Flight: 0000000
 1=Select
 Date of Flight..: 09 12 2006
 1 ARL Flight# Day Departs Arrives $$$
 AMA 2700142 Tu 02:33 PM 04:33 PM 299
 From City.: Albany 1 AMA 2800143 Tu 04:34 PM 06:34 PM 269
 AMA 2900144 Tu 06:22 PM 08:22 PM 199
 Depart Time.......:

 To City...: Atlanta Bottom

 Arrival Time......: F3=Exit

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

122 Building SOA-based Solutions for IBM System i Platform

h. Press F7 to select Customer. Enter 1 to select a customer and press Enter (see
Figure 7-8).

Figure 7-8 Create order: Customer selection

 Flights Reservation System - Create Order 17:17:01 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 CUSTOMER SELECTION WINDOW
 Airline: AMA Flight: 2800143
 Position To:
 Date of Flight..: 09 12 2006
 1=Select

 From City.: Albany 1 Cust # Customer Name
 010014 Aaronson, Linda
 Depart Time.......: 04:34 PM 1 003618 Aaronson, Lynn
 010019 Aaronson,Linda
 000030 Aasgaard, Blanche
 To City...: Atlanta More...

 Arrival Time......: 06:34 PM F3=Exit

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

Chapter 7. HATS Web service 123

i. Enter class of service and the number of tickets (see Figure 7-9).

Figure 7-9 Create order: Class of service and number of tickets

 Flights Reservation System - Create Order 17:19:01 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 Airline: AMA Flight: 2800143 Order Number...............: PENDING

 Date of Flight..: 09 12 2006 Customer...: Aaronson, Lynn

 Class of Service - First...........:
 From City.: Albany Business........:
 Economy.........: X
 Depart Time.......: 04:34 PM
 Number of Tickets..................: 01

 To City...: Atlanta Price $.....................: 269.00
 Tax $.......................: 10.76
 Arrival Time......: 06:34 PM Total Due w/ Tax $..........: 279.76

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

124 Building SOA-based Solutions for IBM System i Platform

j. Press F10 to Make Reservation (see Figure 7-10).

k. Press F3 to exit the transaction.

Figure 7-10 Create order: Make reservation

Analyzing a transaction
We can divide the transaction that we describe in this section into two parts:

1. Flight selection

Flight selection can be recorded as a macro which requires three input parameters:

– Fligtht date
– From city
– To city

These are input fields in the reservation transaction and allow you to add prompt action.
Based on the three input parameters, the subfile displays for the flight selection. The rows
in the subfile can be extracted as a table, because this part of application can be driven by
macro and can be published as a Web service. We look at implementing this macro in
detail in the Chapter 7.2, “Developing a HATS Web service” on page 126.

2. Complete Flight Reservation Transaction

This transaction cannot be driven by a macro completely. As shown in this transaction,
airline and flight numbers are not input fields, because they are display fields based on the
flight subfile selection. Thus, display fields prompt action cannot be added. To enable
prompt action, you must convert these fields to input fields, which requires some
modifications to the existing flow of the transaction.

 Flights Reservation System - Create Order 17:19:01 7/29/06 SYSTEMI5

 Type choices, press F10 to Make Reservation
 FLIGHT INFORMATION TICKET ORDER INFORMATION

 TICKET CONFIRMATION WINDOW
 Order Number...............: PENDING

 Ticket Number 005671343 Customer...: Aaronson, Lynn
 has been added to the
 order file. To make Class of Service - First...........:
 additional flight Business........:
 reservations press ENTER Economy.........: X
 Otherwise, press F3 to
 exit from Ticket Order Number of Tickets..................: 01
 Entry.
 Price $.....................: 269.00
 Tax $.......................: 10.76
 F3=Exit Total Due w/ Tax $..........: 279.76

 F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers

Chapter 7. HATS Web service 125

7.1.2 Naming conventions

When using HATS to create Web services, you need to follow these naming conventions:

� Macro names can begin with either an uppercase or a lowercase letter.

� Integration Object names become class names and must begin with an uppercase letter.
Integration Object names are derived from macro names. So if the macro starts with a
lowercase letter, then HATS converts the lowercase letter to uppercase when creating the
Integration Object name.

� Macro prompt and extract names become method names and must begin with a
lowercase letter.

� For any of the names mentioned here, a letter following an underscore (_)or a number
must be in uppercase.

7.2 Developing a HATS Web service

You can use WebSphere Development Studio client for iSeries with HATS plug-in to develop
a HATS Web service. This section explains how to create a HATS Web service based on a
traditional RPG Applications.

These are the steps to follow:

1. Create a HATS project
2. Record a HATS macros that will be used to:

– Connect
– Navigate through the host application
– Extract data
– Disconnect

3. Set Connection Properties
4. Create a HATS Integration Object
5. Create Web service support files
6. Create a Web service from the Integration Object.
7. Finally, test the Web service using the Web services Explorer

We will explain the steps in more detail in the following pages.

7.2.1 Creating a HATS project

The first step is to create a HATS project that includes all source code:

1. Open HATS Perspective.

a. Click Start → Programs → IBM WebSphere HATS 6.0 → HATS Studio 6.0.

b. In the workspace launcher window, for workspace enter c:\temp\redbook and click
OK.

c. If you see a HATS Tip window, click OK.

d. You should see HATS Perspective opened already. If you do not see it, select from the
menu Window → Open Perspective → Other → Host Access Transformation
Services.

Note: For installation requirements and instructions, see IBM System i Application
Modernization: Building a New Interface to Legacy Applications, SG24-6671.

126 Building SOA-based Solutions for IBM System i Platform

2. Go through the New HATS project wizard:

a. Launch the New HATS Project Wizard by clicking File → New → Project. Scroll down,
expand HATS node, select HATS Project and click Next (Figure 7-11).

Figure 7-11 New Project wizard

b. In Create a Project window in the Name field, enter HATSWebService.

c. In the Target server field, select WebSphere Application Server v6.0.

Chapter 7. HATS Web service 127

d. Deselect the Use default Enterprise Application project check box and enter
HATSWebServiceEAR as the name of the Enterprise Application (EAR) project name and
click Next (see Figure 7-12).

Figure 7-12 Create a project: Project details

128 Building SOA-based Solutions for IBM System i Platform

e. In the connection settings window, enter the host name or IP address of the System i5
that is running the Flight Reservation application. For example, in the Host name field,
enter systemi5.ibm.com. Select 5250 in the Type field (see Figure 7-13). Then, click
Next.

Figure 7-13 Create a project - Connection settings

f. Because you are not planning to use this HATS application to perform screen
transformation, accept the default template and click Finish.

g. Click OK in the HATS Tip window.

Note: Starting with HATS 6.0.4, the product is repackaged as WebFacing
Deployment Tool with HATS Technology (WDHT). The new product has HATS
features but no OLTP capacity requirement for System i platform running i5/OS
V5R4. In HATS studio the new connection type is shown as 5250W. To learn more
about this product, see the following Web site:

http://www-306.ibm.com/software/awdtools/wdht/about/faq.html

Chapter 7. HATS Web service 129

http://www-306.ibm.com/software/awdtools/wdht/about/faq.html

The HATS Project view shows all HATS projects in the workspace. Notice it now includes the
project we just created (see Figure 7-14 on page 130).

Figure 7-14 Project settings

7.3 Recording macros

Next, you record a macro. A macro is a script that navigates through screens in an
application. As you record the macro, you can identify which fields should be part of the input
message of the eventual Web service and which fields should be part of the output message.

In general, it is recommended that you record three macros:

� A connect macro, which is responsible for logging onto the system and navigating to a
start point

� A data macro, which performs the actual work of the transaction

� A disconnect macro which is responsible for signing off the system

Having separate macros allows for connection pooling. Pooling is a function in HATS that
allows for a specified number of connections to be started and signed in. This specified
number of connections allows for quicker transactions when a Web service request is made.
Connection pooling is also more efficient because backend connections are reused, and
socket connections are not being continually started to the backend system.

130 Building SOA-based Solutions for IBM System i Platform

Recording a connect macro
Before recording your macro, use a terminal emulator, for example IBM Personal
Communications (see Figure 7-15) or iSeries Access to sign on to the system using the same
user profile as the one you intend to use with the macro. This forces the appearance of the
Display Program Messages panel as you record your macro. Later in this section, we explain
how to edit your macro to handle the case when the Display Program Messages panel does
not appear.

Figure 7-15 OS/400® Main Menu

 MAIN OS/400 Main Menu
 System: SYSTEMI5
 Select one of the following:

 1. User tasks
 2. Office tasks
 3. General system tasks
 4. Files, libraries, and folders
 5. Programming
 6. Communications
 7. Define or change the system
 8. Problem handling
 9. Display a menu
 10. Information Assistant options
 11. iSeries Access tasks

 90. Sign off

 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu
 (C) COPYRIGHT IBM CORP. 1980, 2003.

Chapter 7. HATS Web service 131

Perform the following instructions to record the macro:

1. From the HATS Project view, right-click your project’s folder and select Open Host
Terminal → main (see Figure 7-16).

Figure 7-16 Open host terminal

2. You might see a HATS Tip window. To keep this window from opening, select Do not
show any tips and click OK.

132 Building SOA-based Solutions for IBM System i Platform

3. Here you see the Sign On window from the host system. From here you start recording
the macro. To start recording your Connect macro, click the Record Macro button on the
toolbar (see Figure 7-17).

Figure 7-17 Record macro

4. On the Record Macro panel enter SignOn as the name. Click Finish.

Chapter 7. HATS Web service 133

5. For the first panel in the macro, HATS prompts you to supply the criteria to use for
recognizing the screen. On the Define the starting screen panel, enter SignOn for the
screen name (see Figure 7-18).

6. Select the criteria within a rectangular region (notice HATS has already selected an area
in the upper, middle part of the screen). You can change this area if necessary. Click
Finish.

Figure 7-18 Define screen recognition criteria

7. On the Sign On panel, enter your i5/OS user name and password and press Enter.

134 Building SOA-based Solutions for IBM System i Platform

8. Next, you see the Previous sign on information window.This window displays if the system
value QDSPSGNINF (sign-on display information control) is set to 1. If you do not see this
window, skip to step 12 on page 136.

From the toolbar of the host terminal window, click Define screen Recognition Criteria
button (see Figure 7-19).

Figure 7-19 Screen Recognition Criteria

Chapter 7. HATS Web service 135

9. On the Select screen Recognition Criteria panel, enter SignOnInformation.

10.Notice this panel has a date and time on it. You should never include a date or time in a
screen recognition if the date or time will change each time the screen is displayed. So, for
this screen, drag your mouse around just the screen title, Sign-on Information, at the top.
Select At a specified position and click Finish (see Figure 7-20).

Figure 7-20 Define Screen Recognition Criteria

11.On the Sign-on Information panel, press Enter.

12.Next, you see the Display Program Messages window. This window displays if there is
already a session started using the same user name. If you do not see this window, skip to
step 17 on page 137.

13.From the toolbar of the host terminal window, click Define screen Recognition Criteria.

14.On the Select screen Recognition Criteria panel, enter SignOnInformation.

136 Building SOA-based Solutions for IBM System i Platform

15.Notice that this screen has a date and time on it. You should never include a date or time
in a screen recognition if the date or time will change each time the screen is displayed.
So, for this screen, you can either resize the existing dotted box by grabbing its corner
with your left mouse button (the mouse pointer should change to double arrow), or you
can drag your mouse around just the screen title, Display Program Messages, at the top.
Select At a specified position and click Finish (see Figure 7-21).

Figure 7-21 Define Screen Recognition Criteria

16.On the Display Program Messages panel, press Enter.

17.Next, you see the i5/OS Main Menu screen. Click Stop Macro to stop recording the macro
(see Figure 7-22).

Figure 7-22 Stop recording

18.You see the Define the exit screen of the macro window. Enter i5OSMainMenu.

Chapter 7. HATS Web service 137

19.Select the criteria within a rectangular region (notice HATS has already selected an area
in the upper middle part of the screen). You can change this area if necessary. Click
Finish (see Figure 7-23).

Figure 7-23 Define exit window

138 Building SOA-based Solutions for IBM System i Platform

20.Click the Save macro button to save the macro (see Figure 7-24).

21.Next you test the macro that you just recorded. First, you need to sign off by entering 90 in
the host terminal window. Then, execute the macro by pressing the Play macro button
(Figure 7-24).

Figure 7-24 Play macro

You should see the macro is being executed, and finally you see the i5/OS Main Menu. You
recorded the connect macro to connect to System i5. Next, you record a data macro.

Save macro button

Chapter 7. HATS Web service 139

Recording a data macro
In the data macro, you record the actual work of a transaction. This macro executes the
application, defines the prompt actions for input fields, and defines the extract action for the
output fields. To record a data macro, follow these steps:

1. Make sure that you are on i5/OS Main Menu in the host terminal window (see
Figure 7-22).

2. To start recording your Data macro, click the Record Macro button on the toolbar.

Figure 7-25 Record data macro

3. Select New.

4. On the Record Macro panel for Name enter FlightSearchData. Click Finish.

5. For the first screen in the macro, HATS prompts you to supply the criteria to use for
recognizing the screen. On the Define the starting screen panel, enter i5OSMainMenu for
the screen name.

6. Select the criteria within a rectangular region (notice that HATS has already selected an
area in the upper, middle part of the screen). You can change this area if necessary. Click
Finish.

7. On the i5/OS Main Menu Screen, enter following command:

GO FLGHT400/FRSMAIN

8. Next, you see the Flight Reservation System main menu panel.

9. From the toolbar of the host terminal window, click the Define screen Recognition
Criteria button.

140 Building SOA-based Solutions for IBM System i Platform

10.On the Select screen Recognition Criteria panel, enter FlightReservationSytemMainMenu
(see Figure 7-26).

11.Notice that this screen has no specific criteria selected. So for this screen, drag your
mouse around just the screen title, Flight Reservation System, at the top. Select At a
specified position and click Finish.

Figure 7-26 Flight Reservation System main menu screen recognition criteria

Chapter 7. HATS Web service 141

12.Type 1 on the command line to Create a new reservation and press Enter (see
Figure 7-27).

Figure 7-27 Create a reservation

13.You see the Flights LOGON panel. From the toolbar of the host terminal window, click the
Define screen Recognition Criteria button.

142 Building SOA-based Solutions for IBM System i Platform

14.On the Select screen Recognition Criteria panel, enter FlightsLogon (see Figure 7-28).

15.Drag your mouse around just the screen title, Flights LOGON display, at the top. Select
At a specified position and click Finish.

Figure 7-28 Flights LOGON panel recognition criteria

16.In the Flight LOGON dialog box:

a. Enter Alex as Agent Name.

b. Enter mercury as the Password.

c. Press F10 to log on.

Chapter 7. HATS Web service 143

17.On the Flight Reservation System - Create Order panel, click the Define Screen
Recognition Criteria button and enter CreateOrder as the screen name. Use your mouse
to select the text Flights Reservation System - Create Order. Click Finish (see
Figure 7-29).

Figure 7-29 Defining a recognition criteria for order window

18.Up to this point, all input into the macro has been supplied by the developer. You now tell
HATS that the Date of flight, from city and to city, will be supplied when the macro is run.
You do this by adding a macro prompt. To add a prompt, click the Add Prompt Action
from the Host Terminal toolbar (see Figure 7-31 on page 146).

144 Building SOA-based Solutions for IBM System i Platform

19.In the Add Prompt Action dialog box, enter flightDateMM as the prompt name (eventually,
this parameter is the input into the Web service) and click OK (see Figure 7-30).

Figure 7-30 Define prompt action

20.HATS prompts you to supply a value for the flight month, which allows you to continue
recording the macro. Enter 09 into the field and click OK. You notice that this value is
inserted into the month field and that the cursor moves to the day field.

21.Click the Add Prompt Action button from the Host Terminal toolbar.

22.In the Add Prompt Action dialog box, enter flightDateDD as the prompt name (eventually,
this parameter is the input into the Web service) and click OK.

23.HATS prompts you to supply a value for the flight day, which allows you to continue
recording the macro. Enter 12 into the field and click OK. You notice that this value is
inserted into the day field and that the cursor moves to the year field.

24.Click the Add Prompt Action button from the Host Terminal toolbar.

25.In the Add Prompt Action dialog box, enter flightDateYY as the prompt name (eventually,
this parameter is the input into the Web service) and click OK.

26.HATS prompts you to supply a value for the flight year, which allows you to continue
recording the macro. Enter 2007 into the field and click OK. You notice that this value is
inserted into the year field and that the cursor moves to the next field.

Note: Make sure the prompt name starts with a lowercase letter.

Note: Make sure the prompt name starts with a lowercase letter.

Note: Make sure the prompt name starts with a lowercase letter.

Chapter 7. HATS Web service 145

27.Click the Add Prompt Action button from the Host Terminal toolbar.

28.In the Add Prompt Action dialog box, enter fromCity as the prompt name (eventually, this
parameter is the input into the Web service) and click OK.

29.HATS prompts you to supply a city name, which allows you to continue recording the
macro. Enter Albany into the field and click OK. You notice that this value is inserted into
the From City field and that the cursor moves to the next field.

30.Click the Add Prompt Action button from the Host Terminal toolbar.

31.In the Add Prompt Action dialog box, enter toCity as the prompt name (eventually, this
parameter is the input into the Web service) and click OK.

32.HATS prompts you to supply a city name, which allows you to continue recording the
macro. Enter Atlanta into the field and click OK. You notice that this value is inserted into
the To City field (see Figure 7-31).

Figure 7-31 Flight Search

33.In Flights Reservation System - Create Order Screen, press F6 to display flights.

Note: Make sure the prompt name starts with a lowercase letter.

Note: Make sure the prompt name starts with a lowercase letter.

Add Prompt Action

146 Building SOA-based Solutions for IBM System i Platform

34.On the Flight Reservation System - Flight Selection window panel, click the Define
Screen Recognition Criteria button and enter FlightSelectionWindow as the screen
name. Use your mouse to select the text FLIGHT SELECTION WINDOW. Click Finish.

35.On the toolbar click the Record a loop button (see Figure 7-32).

Figure 7-32 Record a loop

36.While recording your loop, pay very close attention to the instructions in the panel below
the host screen.

37.You are already at the screen where the loop starts, so click Next at the bottom, right side
of the window.

38.First, define the starting screen for the loop. Enter FlightSelectionWindowLoop as the
screen name. Use your mouse to select the text FLIGHT SELECTION WINDOW. Click
Finish.

Record a Loop

Chapter 7. HATS Web service 147

39.Next, perform the actions that will be executed during each cycle of the loop. In the
terminal window, drag your mouse around the data that you want to extract from the
screen and click the Add Extract Action button (see Figure 7-33).

Figure 7-33 Selecting the region with data

148 Building SOA-based Solutions for IBM System i Platform

40.On the Add Extract Action panel, type flightSearchData as the name and select Extract
this region as a table. Click Next (see Figure 7-34).

Figure 7-34 Add Extract Action - Settings

41.You see the Table Extract Configuration window. In this window, you rename the column
names to match the names on the host screen. Notice that some of the columns are
extracted as two fields. You use this dialog box to merge those two fields into one field.
Highlight each column name and change the name in the Column name field:

a. Rename column1 to ARL.

b. Rename column 2 to Flight.
c. Rename column 3 to Day.
d. Select Column4. Hold the Ctrl key and select Column5. Click the Merge button to

merge these two fields into one (see Figure 7-35).

Chapter 7. HATS Web service 149

Figure 7-35 Table Extract Configuration - Merge fields

e. Now rename column 4 to Departs.

f. Select Column6. Hold the Ctrl key and select Column7. Click the Merge button to
merge these two fields into one.

g. Now rename Column6 to Arrives.

150 Building SOA-based Solutions for IBM System i Platform

h. Rename Column7 to Price (see Figure 7-36)

Also, notice that it allows you to expand or reduce the size of column to capture
complete field from the screen.

i. Click Finish after you are done with all the changes.

Figure 7-36 Table Extract Configuration

j. Back at the terminal window, you need to add other actions that will be executed during
each cycle of the loop. In this case, press the PgDnkey just once.

42.Click Next in the instructions panel (bottom, right side of the window).

43.For how to end the loop, select End when a unique screen is recognized and click
Next.

44.Select Extract data from the last screen.

Figure 7-37 Extract data from the last window

45.Next, you must navigate to the last screen. Press the PgDnkey until you get to the last
panel. In this example the last panel has the text Bottom at the bottom of the screen.

46.Click Next.

47.On the Define the final screen of the loop panel, enter FlightSelectionWindowBottom as
the name.

Chapter 7. HATS Web service 151

48.Drag your mouse around the text FLIGHT SELECTION WINDOW and select At a
specified position (see Figure 7-38).

49.Click Next.

Figure 7-38 Flight Selection Window Bottom

50.On the Recognition Criteria for Screen panel, click Add to define additional screen
recognition criteria.

51.On the String Criterion panel, drag your mouse around the text Bottom. Select At a
specified position and click OK (see Figure 7-39).

Figure 7-39 Additional Screen Recognition Criteria

152 Building SOA-based Solutions for IBM System i Platform

52.On the Recognition Criteria for Screen panel, click Finish.

53.In the terminal window instruction panel, click Finish to complete the loop and continue
recording the macro.

54.Now finish recording your macro by either pressing F3 or clicking the PF3 button.

55.Back in Flights Reservation System - Create Order panel, click the Define Screen
Recognition Criteria button and enter FlightsReservationSystemCreateOrder as the
screen name. Use your mouse to select the text Flights Reservation System - Create
Order. Click Finish.

56.Press F3 to go back to Flight Reservation System main menu.

57.Back in Flights Reservation System - main menu panel, click the Define Screen
Recognition Criteria button and enter FlightReservationSystemMain as the screen
name. Use your mouse to select the text Flights Reservation System. Click Finish.

58.Press F3 to go back to i5/OS Main Menu.

59.Back in the i5/OS main menu screen, click the Define Screen Recognition Criteria
button and enter i5OSMain as the screen name. Use your mouse to select the text i5/OS
Main Menu. Click Finish.

60.Click the Stop Macro button to stop recording the macro.

61.Next, you see the Define the exit screen of the macro window. Enter i5OSMain.

62.Use your mouse to select the text i5/OS Main Menu. Click Finish.

63.Click the Save macro button to save the macro.

64.Next, test the macro that you just recorded. Make sure that you are at the i5/OS main
menu screen and execute the macro by pressing the Play macro button.

65.You are prompted to supply prompt values. Enter following values (see Figure 7-40):

a. flightDateMM: 09

b. flightDateDD: 12

c. flightdateYY: 2007

d. fromCity: Albany

e. toCity: Atlanta

66.Click OK.

Figure 7-40 Supply Prompt Values

Chapter 7. HATS Web service 153

67.You should see the results extracted in the Extract Result window (see Figure 7-41).

Figure 7-41 Extract Results

Recording a disconnect macro
The final step is to record a disconnect macro:

1. Make sure that you are on the i5/OS Main Menu before recording the disconnect macro.

2. To start recording your Disconnect macro, click the Record Macro button on the toolbar.

3. On the Record new macro or Insert window, select New.

4. On the Record Macro panel, for Name enter SignOff. Click Finish.

5. For the first screen in the macro, HATS prompts you to supply the criteria to use for
recognizing the screen. On the Define the starting screen panel, enter i5OSMainMenu for
the screen name.

6. Select the criteria within a rectangular region (notice HATS has already selected an area
in the upper, middle part of the screen). You can change this area if necessary. Click
Finish.

7. On the i5/OS Main Menu panel, type 90 and press Enter.

8. Click the Stop Macro button to stop recording the macro.

9. Next, you see the Define the exit screen of the macro window. Enter SignOn.

10.Use your mouse to select the text Sign On. Click Finish.

11.Click the Save macro button to save the macro.

154 Building SOA-based Solutions for IBM System i Platform

12.Next, you test the macro that you just recorded. First, sign on by selecting SignOn from
the Play button drop-down menu (Figure 7-42).

Figure 7-42 Execute sign on screen

13.Execute the sign off macro by selecting SignOff from the Play button drop-down menu.

14.Close the Host terminal window.

7.4 Setting connection properties

When you deploy your Web service, it uses a connection (a 5250 session) to access your
System i system. You set up the basic configuration parameters for your connection when
you first built your project. Now you need to define connection pooling parameters and link
the macros you just built to the connection.

7.4.1 Enabling pooling

To improve performance for your Web service, it is recommended that you implement
connection pooling for the connection that is used by the Web service. Connection pooling
allows you to specify a number of connections (5250 sessions) that HATS maintains in a
pool. Connection pooling avoids constant connecting and disconnecting from the host system
in order to service multiple Web service requests.

Chapter 7. HATS Web service 155

The connections defined in your project are found in the Connections folder. HATS can
support multiple connections for the purpose of collecting and combining data from multiple
back end host sites. In this project you have defined just one connection, which by default is
named main:

1. Double-click main under Connections (see Figure 7-43). Look through each of the tabs (at
the bottom of the view) to see the different configuration settings. Click the Pooling tab.

Figure 7-43 Connection Properties - pooling

156 Building SOA-based Solutions for IBM System i Platform

2. On the Pooling tab, click Enable Pooling and set the Connection Limits. For testing
purpose set the limits to a Minimum of 1 and a Maximum of 2 (see Figure 7-44). For
production use, you can set the limits to higher number based on the concurrent
connection being used. Then click the Macros tab.

Figure 7-44 Pooling - number of connections

Chapter 7. HATS Web service 157

3. On the Macros tab (see Figure 7-45):

a. For the Connect macro use the drop-down and select your Connect macro: SignOn

b. For the Disconnect macro, select your Disconnect macro: SignOff.

Figure 7-45 Connection Pooling - Macros

4. Save main connection properties by selecting File → Save. Close the editor for your main
connection by clicking the X on the main.hco editor tab.

7.5 Creating the integration object

A HATS Integration Object is a JavaBean that encapsulates a programmed interaction with a
host application. Integration Objects can be used in multiple ways to integrate interaction with
a host application into new Java or Web based programs. One use of an Integration Object is
to provide the interaction with a host application for a Web service. HATS macros also
provide a programmed interaction with a host application. In fact, creating a HATS macro is
the first step in creating an Integration Object.

The Web service you are building in this example is intended to gather flights information
from the host system based on flight date, from city and to city submitted by the Web service
client. You have just finished creating the HATS FlightSearchData macro that does just that.
Now all you need to do is tell HATS to create an Integration Object from your Data macro and
then create a Web service from the Integration Object.

158 Building SOA-based Solutions for IBM System i Platform

Follow these steps:

1. To create an Integration Object from your Data macro, in the HATS Project View expand
the Macros folder, right-click FlightSearchData and select Create Integration Object
(see Figure 7-46).

Figure 7-46 Create Integration Object

2. After HATS finishes creating the Integration Object, you find it in the Source
Integration → Object folder. Notice it has the same name as the macro used to create it.
Your Integration Object name is FlightSearchData. Due to the required naming
conventions, if your macro had started with a lower case letter, HATS converts it to upper
case in the Integration Object name.

Chapter 7. HATS Web service 159

7.6 Creating Web service support files

Before you create your Web service, you must first create HATS Web service support files:

1. In the HATS Project View, right-click your Integration Object FlightSearchData and select
Create Web service Support Files (see Figure 7-47).

Figure 7-47 Create Web service Support Files

2. By default, the current Web project (HATSWebService) should be selected in the Project
field. If it is not, select it. Enter FlightSearchDataWS into the Class name field. Click Next.

160 Building SOA-based Solutions for IBM System i Platform

3. Place a check next to your Integration Object (FlightSearchData) to include it in the Web
service class. Click Finish (see Figure 7-48).

Figure 7-48 Select Integration Objects

Chapter 7. HATS Web service 161

4. In the HATS Project View under Source notice the webserviceclasses folder. There are
three classes created (see Figure 7-49):

– FlightSearchData_Input_Properties
– FlightSearchData_Output_Properties
– FlightSeachDataWS

Figure 7-49 Web service Classes created

162 Building SOA-based Solutions for IBM System i Platform

7.7 Creating Web service

Now that you have created your Web service support files, you can create your Web service
and deploy it to the WebSphere Test Environment. Follow these steps:

1. Click the Navigator tab (see Figure 7-49).

2. In the Navigator view, right-click your Web service class file (FlightSearchDataWS.java) in
the Java Source\webServiceClasses folder and select Web services → Create Web
service (see Figure 7-50).

Figure 7-50 Create Web service

Chapter 7. HATS Web service 163

3. The first panel of the wizard displays basic settings for the Web service (Figure 7-51). At
this point you, could click Finish to take all of the defaults, but select Next to view the
different options that are available when creating a Web service.

Figure 7-51 Web service Settings

4. On the Object Selection Page panel, notice the bean name and click Next.

164 Building SOA-based Solutions for IBM System i Platform

5. On the Service Deployment Configuration panel, notice that by default the server to which
your Web service is deployed is WebSphere V6.0. Also notice your project name. Click
Next (see Figure 7-52). This step can take some time; be patient.

Figure 7-52 Service Deployment Configuration

6. On the Service Endpoint Interface Selection panel, click Next.

7. On the Web service Java Bean Identity panel, notice all of the Web service settings. The
methods correspond to the Integration Objects you included in the Web service class file.
Do not change any setting on this page and click Next.

8. At this point, your HATS application, including the Web service, is published to the
WebSphere Test Environment, and the WebSphere server is started. This operation might
take a few moments. After the test server is started, the Web service Publication panel
appears. Click Finish.

HATS Web service is now deployed, and you can test it.

7.8 Testing the Web service

One output of creating your Web service is a WSDL file. You can find this file in the Navigator
view in the Web Content\wsdl\webserviceslasses folder. You can use this WSDL file to test
your Web service. Follow these steps:

1. Navigate to Web Content → wsdl → webserviceslasses folder under HATSWebService
project.

Note: If the Web service runtime is not IBM WebSphere, click Edit and change the
runtime.

Chapter 7. HATS Web service 165

2. Right-click the WDSL file, FlightSearchDataWS.wsdl, then select Web services → Test
with Web services Explorer (see Figure 7-53).

Figure 7-53 Test with Web services Explorer

Note: Alternatively, when you created the Web service, you could have selected the
option Test the Web service in the first page of the wizard (see Figure 7-51 on
page 164). This would have launched the Web services Explorer after creating and
publishing the Web service.

166 Building SOA-based Solutions for IBM System i Platform

3. The Web services Explorer displays in a Web browser. In the Actions area under
Operations, click the flightSearchDataProcessWS link (see Figure 7-54).

Figure 7-54 Invoking a Web service

4. In the input field, s enter the following values and click Go (see Figure 7-55):

a. flightDateYY: 2007
b. flightDateDD: 12
c. flightDateMM: 09
d. fromCity: Albany
e. toCity: Atlanta

Note: At this point a new connection is started to your backend system. Your Integration
Object is instantiated and then navigates through the host application using the
supplied data. If you notice that an error has occurred, then restart the server on the
Server tab by right-clicking the server and selecting Restart.

Chapter 7. HATS Web service 167

Figure 7-55 Entering sample input data

168 Building SOA-based Solutions for IBM System i Platform

5. Now you should see the result of the Web service in the Status pane of the window (see
Figure 7-56).

Figure 7-56 Web services output

7.9 Next step

We demonstrated just one example of building a Web service. In real life, you need to create
more than one Web service. Let us give you just one example using the Flight Reservation
System application:

1. The Web service that we built returns the list of flights for certain date between two
selected cities. However, your final goal is to be able to make a reservation. With HATS,
your next step is to build another macro, MakeReservation.

Note: You can use the other tools within the Rational Software Development Platform to
create a Java proxy, publish, or create a GUI front end for your Web service.

Chapter 7. HATS Web service 169

2. The MakeReservation macro starts with exactly the same sequence of steps as the
FlightSearchData macro (see “Recording a data macro” on page 140). However, you
continue with the Flight Reservation System application further (as described in 7.1.1,
“Analyzing an existing application” on page 116) but adding prompts for other input fields,
including:

– Flight number (select from the list)
– Customer name
– Class of service
– Number of tickets

Your final step would be to submit a reservation and return a confirmation number.

3. Next, you create an IntegrationObject and Web service from your new macro,
MakeReservation.

Now you have two Web services that you can combine in the client application:

1. Your client application displays a Web page with the same input fields that are required for
the FlightSearchData macro: date of the flight (day, month, and year), to and from cities.
When a user submit this page, your client application invokes the FlightSearchDataWS
Web service.

2. The client application returns the list of available flights and let a user to select one.

3. After that your client application show a page with additional input field: customer name,
class of service, and number of tickets.

4. When a user enters all data, you client application invokes the second Web service,
MakeReservationWS, and pass input data for all fields:

– Date
– To city
– From city
– Flight number
– Customer name
– Class of service
– Number of tickets

5. After executing the MakeReservationWS Web service, your client application returns a
confirmation number.

By applying this technique, you can enable many host applications through HATS Web
services.

7.10 Summary

In this Web service example, a 5250 application has been externalized as a Web service. As
we saw in most of the cases, there will not be any modifications required to the 5250
applications. However, in some cases you might have to modify certain application flow so
that it can be driven by a macro. This Web service is accessible by any application that has
access to your System i server and can communicate with SOAP/HTTP adhering to the WS-I
basic profile, including applications such as Java, J2EE Web Clients, JSF, JSP, .NET, PHP,
and others.

170 Building SOA-based Solutions for IBM System i Platform

Chapter 8. PHP Web service

In this chapter, we describe how to create Web services using the scripting language PHP.
Before diving into the samples, we provide a short overview of PHP to help you familiarize
with it, should you not already know it.

In the second part of the chapter, we build Web services.

8

© Copyright IBM Corp. 2007. All rights reserved. 171

8.1 Introducing PHP

PHP is a scripting programming language that you can use to create Web sites. The PHP
acronym stands for PHP: Hypertext preprocessor. The open-source language is used mainly
for developing Web applications, and more recently, a broader range of modern software
applications, such as the production and consumption of Web services.

PHP is very popular and used on over 22 million internet domains. Zend, the company behind
the Zend Engine, estimates that there are approximately 2.5 million PHP developers in the
world.

The founders of Zend, Zeev Suraski and Andi Gutmans, have been key contributors to the
PHP language since 1997. PHP itself was invented in 1995 by Rasmus Lerdorf. Zend invests
in the development of PHP itself, as well as in significant open source projects such as the
Zend PHP framework and the Eclipse PHP plug-in. In addition, Zend delivers commercial
products and services that enable developers and IT personnel to deliver and operate
business-critical PHP applications.

8.2 Technology overview

In this section, we first have a look at how PHP works in a typical environment to provide a
general idea about how the different components of a Web server work together. Then,
based on the traditional “Hello, World” sample, we show you how PHP can be used. With
these short samples, we hope to demonstrate one of the strengths of PHP—its flexibility.

8.2.1 How PHP works

Figure 8-1 on page 173 shows a simple diagram of how PHP works in a Web environment.
Here are the steps in this process:

1. A site visitor requests a URL in his browser, and the request is transmitted over the
Internet to the Web server.

2. The server parses the document. If there are PHP instructions (either embedded in HTML
or in a pure PHP file), the code is transmitted to the PHP module. The PHP module
processes the PHP functions.

3. In this sample, PHP accesses:

– A database to read some data
– Other i5/OS resource, such as data queue, host program, and so on

4. The data is returned from:

– The database to PHP
– Other i5/OS resource

5. PHP module returns it to the Web server as simple HTML output. The server embeds the
result received in the document requested.

6. Finally, the requested document is sent back to the Web site visitor.

172 Building SOA-based Solutions for IBM System i Platform

Figure 8-1 How PHP works

Of course, i5/OS access is not necessary in every case. Therefore steps 3 and 4 in Figure 8-1
might not be necessary.

8.2.2 What is needed to use PHP

There are not many requirements to start working with PHP as a Web development language.
In fact, because PHP is a server-side scripting language, you only need a PHP-enabled
server. PHP works with most Web server software, such as Apache or Microsoft’s Internet
Information Server. The source code of the PHP parser engine is the same on all operating
systems, so there are no code changes required for a specific platform.

If you are interested in trying PHP for yourself on a smaller system than System i without
spending to much time on installation and configuration tasks, you can search for the terms
LAMP or WAMP using your favorite Internet search engine that are the abbreviations for
Linux - Apache - mySQL - PHP or Windows - Apache - mySQL - PHP. Sometimes the P
stands for Perl or Python, but these scripting languages are not the topic of this chapter. In a
Macintosh environment, the terms can be DAMP or MAMP (Darwin or Macintosh,
respectively). There are Web sites that offer combinations of these software packages for
download. You might want to have a look at XAMPP
(http://www.apachefriends.org/en/xampp.html), which is easy to install and quickly
available to start working.

Alternatively, you can of course download the appropriate version of PHP from the site
http://www.php.net and install it yourself. Because PHP is open source software, you can
even download the source code and compile it yourself on the system of your choice.

8.2.3 There is more than one way to say “Hello, World”

Often, there is more than one way to do something, especially when it comes to
programming. The sample of five programmers implementing five completely different
programs to solve the very same problem has been cited often enough. PHP is no different.
There probably is not the best or the worst solution. Depending on the context, one solution
might be better than the other. Here we show some approaches to say “Hello, World.”

We assume that you have seen an HTML page before, and for the sake of clarity we only
show the relevant code in our codes examples in this chapter, leaving off everything which is
not necessary, such as DOCTYPEs. So the pages do not look very nice when displayed in a
browser, but they should include everything for you to see the differences. Purists might
argue that this is enough anyway for a Web page.

Server SystemClient System

Client Web
Server

i5/OS
Resource

6

1

25

4b

3b

DB2

PHP
Module

4a3a

Chapter 8. PHP Web service 173

http://www.apachefriends.org/en/xampp.html
http://www.php.net

All of the following code samples should do nothing else than display a title and the text
“Hello, World” underneath. The remarks might state the obvious, but it is our goal to show the
various possibilities how PHP can be used in a Web-based environment. The code is not
sophisticated at all, but all samples have been tested and should work as is.

Just plain HTML
Just to be complete, Example 8-1 shows a page using static HTML.

Example 8-1 Static HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<TITLE>IBM Redbook: Hello World</TITLE>
</HEAD>
<BODY>
<H3>Plain HTML</H3>
<p> Hello, World </p>
</BODY>
</HTML>

HTML with embedded PHP
Example 8-2 shows PHP code that is embedded in the HTML page. Copying and pasting the
PHP code is a valid approach for smaller Web sites.

Example 8-2 HTML with embedded PHP

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<TITLE>IBM Redbook: Hello World</TITLE>
</HEAD>
<BODY>
<H3>PHP embedded in HTML</H3>
<?php echo "Hello, World" ?></p>
</BODY>
</HTML>

174 Building SOA-based Solutions for IBM System i Platform

HTML with embedded PHP, calling a self-written function
Example 8-3 shows an HTML document that includes embedded PHP. The PHP function is
defined in an external PHP file (see Example 8-4 on page 175). Note that you need to
reference the PHP file that includes the function using the include_once statement.

This approach allows you reuse the same function in many documents. If the function
includes an error or needs to be modified, the change is done in one place and all documents
using the function are immediately updated.

Example 8-3 HTML with embedded PHP function call

<?php
// Include the PHPFunctions file
include_once("phpfunctions.php");

?>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>IBM Redbook: Hello World</title>
</head>
<body>
<h3>HTML calling an externally defined PHP function</h3>
<p>
<?php HelloWorld(); ?></p>
</body>
</html>

The file phpfunctions.php could of course include more than one function. In this example, we
included a second function called Hello10, which displays the text Hello, World 10 times and
then outputs the text Done. Note that the functions printf and echo are used to output the
text.

Furthermore, the text Hello, World is followed by the HTML code for a break line
. This
shows that you can perfectly use PHP to output HTML code that is interpreted correctly by the
browser. In fact, you could create a very basic HTML page that is only calling one PHP
function which then outputs massive amounts of HTML. The function is not used in the HTML
file in Example 8-3, but you could easily exchange the name of the function to call it.

Example 8-4 The PHP function definition (file phpfunctions.php)

<?php
function HelloWorld ()
{

// Display "Hello, World"
echo "Hello, World";

}

function Hello10 ()
{

// Display "Hello, World" 10 times
for ($i = 1; $i < 11; $i++)
{

printf("Hello, World
");
}
echo "Done.";

}
?>

Chapter 8. PHP Web service 175

PHP using HTML templates
The last example aims to show how to separate display from application logic by using PHP
with an HTML template. The first step consists in creating a class Template with the
appropriate functions (see Example 8-5). Our main method, show($doc), receives the name
of a document to be displayed as an argument. It sets the path, which is empty in our
example, and then executes the template by using the PHP function include().

After that it calls the function showFooter(), which prints a line with the current date and the
current working directory.

Example 8-5 Definition of class Template (TemplateClass.php)

<?php
class Template {

public $template_dir;

function show($doc) {
$template = $this;
include($this->template_dir.$doc);
$this->showFooter();

}

function showFooter() {
printf("

Today's date: %s | Current directory: %s", date('d. M

Y'), getcwd());}
}
?>

Example 8-6 defines the template file that we named Template.tpl. This file includes the
display logic for the sample program.

Example 8-6 HTML Template file

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title><?php echo $template->doctitle ?></title>
</head>
<body>
<?php echo $template->contentTitle; ?>
<?php echo $template->content; ?>
</body>
</html>

176 Building SOA-based Solutions for IBM System i Platform

Now, all that is needed is the main document (see Example 8-7), which first includes the PHP
template class file. Then, it creates a new instance of the class Template and assigns values
to the class attributes. Finally, the show(‘Template.tpl’) function displays the template file
(the display logic in the HTML template file), parsing and replacing the values according to
what has been set in the created instance of TemplateClass.

Example 8-7 TemplateMain.php, our main file

<?php
include('TemplateClass.php');

$template = new Template;
$template->doctitle = 'PHP using an HTML template';
$template->template_dir = '';
$template->contentTitle = '<h3>PHP using an HTML template</h3>';
$template->content = 'Hello, World';
$template->show('Template.tpl');

?>

Using the techniques in Example 8-7, you get cleaner code and more agile applications,
because display and application logic are separated. This separation allows you to change
either the application logic or the look-and-feel of the application without affecting the other.
As always, using templates might not be the best solution for everybody. As you can see with
these simple examples, a template-based solution includes more code than one without
templates. We do not use templates to write less code but to keep the display and application
logic separate.These techniques follow Model-View-Controller (MVC) methodology. You can
learn more about MVC at:

http://en.wikipedia.org/wiki/Model-view-controller

If you are interested in templates but do not want to write a solution yourself, then you are
lucky. There are dozens of free template solutions available, Smarty being one of the better
known template engines. Check out the following sites for template solutions:

http://framework.zend.com/

This site is the home of Smarty. The site includes interesting information, and we recommend
reading the documentation that is available online:

http://smarty.php.net

Sitepoint is a publishing company in Australia that provides information for Web developers.
The following Web site points to a thread in a discussion forum where site visitors have
started building up a list with all PHP template engines:

http://www.sitepoint.com/forums/showthread.php?threadid=123769

At last count there were over 70 solutions in the list.

8.3 PHP on the System i platform
On 03 April 2006, IBM and Zend announced a multi-year agreement to deliver selected Zend
PHP products and solutions for i5/OS. IBM and Zend have worked together to enable Zend
Core and Zend Platform for i5/OS. For development, Zend Studio provides an integrated
development environment (IDE) for building and debugging PHP applications. Zend Guard
provides code protection and license management tools for independent software vendors
(ISVs).

Chapter 8. PHP Web service 177

http://smarty.php.net
http://www.sitepoint.com/forums/showthread.php?threadid=123769
http://en.wikipedia.org/wiki/Model-view-controller
http://framework.zend.com/

8.3.1 Zend Core for i5/OS
Zend Core is a fully tested and enhanced version of the open source PHP. It provides the
PHP runtime and is packaged to make the software installation easier and faster with instant
PHP setup.

The Zend Core for IBM has been enhanced to take advantage of i5/OS specific resources
and capabilities and provides a seamless as it is shipped PHP development and runtime
environment product supported by Zend and offering tight integration with DB2. The product
includes native support for XML and Web services in support of increased adoption of
service-oriented architectures (SOA).

More information about the Zend Core for i5/OS is available on the following Web site:

http://www.zend.com/products/zend_core/zend_for_i5_os

In addition to the software, you can also find information such as datasheets and white
papers on the Zend Core for IBM. For developers it is worth having a look at the Developer
Zone which features tutorials, documentation, discussion forums, and much more:

http://www.zend.com/developers.php

There is a specific forum for the i5/OS developers, Zend for i5/OS - Zend products for i5/OS,
which is available at:

http://www.zend.com/forums/index.php

8.3.2 PHP version and availability
The Zend Core and Platform for i5/OS support PHP 5.0. Zend Studio for i5/OS is available
today for i5/OS customers to start developing PHP applications. You can download Zend
Studio for i5/OS at no cost from:

http://www.zend.com/products/zend_studio

Zend Core for i5/OS is available today at no cost. You can download it from the following Web
site:

https://www.zend.com/core/oem_registration.php?access_code=IBMi5OS

For the i5/OS version, Zend provides three years of e-mail based support. Additional support
options are available for purchase.

Required i5/OS release
Zend and IBM have delivered Zend Core and Zend Platform for i5/OS V5R3 and V5R4.

8.3.3 Accessing DB2 UDB and i5/OS resources
IBM and Zend are have worked together to deliver the i5/OS toolkit enabling PHP
applications to access and use data easily in DB2 UDB for i5/OS. For more information about
DB2 access read PHP: Zend for i5/OS, SG24-7327.

Furthermore, PHP applications can access easily and use:

� RPG and COBOL OPM and ILE applications in i5/OS
� Data Queue
� User Spaces
� Spooled File
� Active Jobs

178 Building SOA-based Solutions for IBM System i Platform

http://www.zend.com/products/zend_core/zend_for_i5_os
http://www.zend.com/developers.php
http://www.zend.com/products/zend_studio
https://www.zend.com/core/oem_registration.php?access_code=IBMi5OS
http://www.zend.com/forums/index.php

� Job Logs
� Data Area
� Object Listing
� System Value

This support is available in Zend Core for i5/OS.

8.3.4 Support for Zend products on i5/OS
Zend provides no cost e-mail based support for Zend Core for i5/OS and Zend Studio for
i5/OS for three years. Zend also offers a variety of professional Support Programs for all of
their products, ranging from software updates (delivery of major and minor updates, as well
as bug and security hot fixes), Web-based support, business hours support, and premium
24x7 phone support.

8.4 The PHP Extension and Application Repository
The PHP Extension and Application Repository (PEAR) is a community-driven collection of
open source classes that you can use to generate HTML code, make SOAP requests, create,
validate and process HTML forms, send MIME mail, and much more. It was founded by Stig
S. Bakken in 1999 and, since then, many people have joined the project.

8.4.1 Why PEAR important for you
PHP and the Zend Core for i5/OS provide many features, but you might find yourself in a
situation where the needed functionality is not part of the core system. In general, that is the
time when you start developing the missing features yourself.

Instead of doing so, you might first have a look at the PEAR Web site and browse the
available categories. Every category includes one or more packages, each with a short
description so that you can quickly browse through and eventually find the topic that you
need. To give you just a small idea, here is a list of the top-level categories of the available
PEAR modules:

� Authentication
� Date and Time
� Database
� Encryption
� Internationalization
� Logging
� Mail
� Networking
� Payment
� Web services
� XML

Again, even if this list already looks interesting, check out the PEAR Web site, because this is
just an extract of the available categories. To directly access the list of available packages go
to the following Web site:

http://pear.php.net/packages.php

Chapter 8. PHP Web service 179

http://pear.php.net/packages.php

8.4.2 Installing PEAR packages
One part of PEAR is a program that is called pear also is the PEAR package manager, which
helps to download and install additional PEAR packages. i5/OS users can work with PEAR
using the command line in PASE from /usr/local/Zend/Core/bin/pear.

8.4.3 Further information on PEAR
Further information on PEAR, its history, the available packages, and more is available at the
following URL:

http://pear.php.net

If you do not know PEAR yet, we recommend that you read the About PEAR section at:

http://pear.php.net/manual/en/about-pear.php

8.5 Creating a Web service with PHP

In this section, we discuss SOAP implementations in PHP, how to create PHP Web services,
and what is available in Zend Studio for i5/OS to help facilitate Web services development.
The first PHP Web service example is a simple service taking a string and integer as input
and returning a string as output. The second example is more complex, wrappering an i5/OS
program call and returning a complex data type.

8.5.1 PHP SOAP implementations

There is more than one SOAP implementation available for PHP 5. One is NuSOAP.
NuSOAP is provided by NuSphere and Dietrich Ayala. It is a set of PHP classes. No PHP
extensions are required that allow developers to create and consume Web services. We will
not discuss NuSOAP here for two reasons:

� It is not part of PEAR
� It is not part of Zend Core for i5/OS

The SOAP implementation that we focus on is the PEAR SOAP Extension. PHP 5's SOAP
extension is the first attempt to implement the SOAP protocol for PHP in C. It has some
advantages over the existing implementations written in PHP itself, the main one being
speed. The extension is currently beta but should become more stable and reliable as time
progresses. The SOAP extension implements a large subset of SOAP 1.1, SOAP 1.2, and
WSDL 1.1 specifications. The key goal is to use the RPC feature of the SOAP protocol.
WSDL is used where possible in order to make the implementation of Web Services more
straightforward. Limited documentation is available at:

http://us2.php.net/manual/en/ref.soap.php

8.5.2 Zend Studio for i5/OS WSDL Generator

Zend Studio for i5/OS includes a WSDL Generator tool (see Figure 8-2). This tool is useful in
the creation of WSDL files for a Web service, but it does have its limitations. The greatest
limitation is that for the WSDL Generator to create the WSDL for a given PHP Web service, it
needs more information than a PHP file normally includes because of the nature of PHP
being a weakly-typed language. The additional needed information can be added to the code
in the form of comments and additional classes with the appropriate comments.

180 Building SOA-based Solutions for IBM System i Platform

http://pear.php.net
http://pear.php.net/manual/en/about-pear.php
http://us2.php.net/manual/en/ref.soap.php

Unfortunately, the WSDL Generator tool and the PHP syntax needed to support it are poorly
documented. The PHP Web services examples in this chapter provide working examples of
the format and syntax.

Figure 8-2 Zend Studio for i5/OS WSDL Generator is available from the Tools menu

8.5.3 SOAP cache

Before developing a PHP Web service with the SOAP extension, it is important to disable the
WSDL cache. If the SOAP WSLD cache is not disabled, the WSLD is cached for a period of
time, even if the WSDL file is updated during development.

Go to the Zend Core Web Administration Console at (using default port number) and log in:

http://<host_name>:89/ZendCore

Note: Use i5 toolkit templates (Web Service wrapper template) that are included in Zend
Studio 5.5 for i5/OS to overcome limitations described in this section.

Chapter 8. PHP Web service 181

Click the Configuration tab and then the Extensions tab (see Figure 8-3). Find and expand the
SOAP extension. Disabling the cache is shown in Figure 8-3 by setting soap.wsdl_cache = 0
and soap.wsdl_cache_enabled = off. When development of the Web services is complete
and the WSDL fill will no longer be altered, you need to re-enable the cache for better
performance.

Figure 8-3 Configuration for SOAP Extension in Zend Core for i5/OS console

8.5.4 Creating a simple Web service from PHP

We created this example using Zend Core Version 1.6.0, PHP Version 5.1.6. In this example,
you create a simple PHP Web service using the SOAP extension in Zend Core for i5/OS that
takes a string and an integer as input and returns a string. The Repeater Web service has two
functions. The first repeats a string of text a number of times, and the second reverses a
string and repeats it a number of times. Notice the syntax of the comment blocks in the
repeat and reverseRepeat functions in Example 8-8. It is these comments in this specific
format that the WSDL Generator needs to generate the WSDL for the Repeater Web service.

Example 8-8 repeatServer.php Web service source code

<?php
class Repeater{

/**
 * Repeats a string of text a number of times
 *
 * @param string $text
 * @param integer $times
 * @return string
 */
function repeat($text, $times){

return str_repeat($text,$times);

182 Building SOA-based Solutions for IBM System i Platform

}

/**
 * Reverses a string of text and repeats it a number of times
 *
 * @param string $text
 * @param integer $times
 * @return string
 */
function reverseRepeat($text,$times){

return $this->repeat(strrev($text),$times);
}

}

//Expose as a web service
$server = new SoapServer("repeater.wsdl");
$server->setClass('Repeater');
$server->handle();
?>

To use file in the WSDL Generator Wizard, they must first be part of a Zend Studio for i5/OS
project. You can add these files when creating a new project:

1. Select Project → New Project from the menu in Zend Studio for i5/OS (see Figure 8-4).

Figure 8-4 Project menu in Zend Studio for i5/OS

Chapter 8. PHP Web service 183

2. In the Editor window, enter the source code for the repeatServer.php file as shown in
Example 8-8 on page 182.

3. Save this file on a server where you installed Zend Core for i5/OS. When you have written
the Web service and added the files to a project, you can use the WSDL Generator in
Zend Studio for i5/OS to create the associated WSDL file.

4. To launch the WSDL Generator Wizard select Tools → WSDL Generator from the Zend
Core for i5/OS menu (see Figure 8-5).

Figure 8-5 WSDL Generator on the Zend Studio for i5/OS Tools menu

184 Building SOA-based Solutions for IBM System i Platform

5. In the first panel of the WSDL Generator Wizard, set the configuration name and the
WSDL file name. For this example, we left the configuration name as the default and set
the WSDL file name to repeater.wsdl (as shown in Figure 8-6), the same as in
repeatServer.php. Click Next.

Figure 8-6 WSDL Generator Wizard, setting the configuration name and the WSDL file name

6. The next window in the WSDL Generator Wizard requires that you to point it to the PHP
files that include the functions and classes that you want incorporated into the WSDL file
(Figure 8-7). In this example, click the plus (+) button and select repeaterServer.php.
Then, select the Repeater class.

7. Now, you need to add the URL Location. This is the URL where the PHP file is hosted by
Zend Core for i5/OS. Then, click Finish.

Figure 8-7 WSDL Generator Wizard, adding the files and classes to be exported to the WSDL

Chapter 8. PHP Web service 185

The WSDL Generator Wizard saves the WSDL file that it creates to the local drive. In these
examples, the WSDL file is referenced by a relative location, assuming that it is in the same
directory as the Web service and the Web service client. So, you need to save the file to the
same directory as the other PHP files on the System i server, /www/zendcore/htdocs by
default. In subsequent runs of the WSDL Generator Wizard the existing WSDL file can be
pointed at in the WSDL file name field, in which case the new WSDL is created in the correct
directory.

When you click Finish (see Figure 8-7), the generated WSDL file is opened in the editor
window. See listing in Example 8-9. Notice that the information included in the comments of
repeaterServer.php is incorporated into the WSDL. You should not have to edit the WSDL file
directly. If you change your PHP file, just rerun the WSDL Generator Wizard to update the
WSDL file.

The generated WSDL file also points to the location of the Web service (highlighted). This is
the URL that you typed in Figure 8-7.

Example 8-9 The repeater.wsdl file

<?xml version='1.0' encoding='UTF-8'?>

<!-- WSDL file generated by Zend Studio. -->

<definitions name="repeater.wsdl" targetNamespace="urn:repeater.wsdl"
xmlns:typens="urn:repeater.wsdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="repeat">
<part name="text" type="xsd:string"/>
<part name="times" type="xsd:integer"/>

</message>
<message name="repeatResponse">

<part name="repeatReturn" type="xsd:string"/>
</message>
<message name="reverseRepeat">

<part name="text1" type="xsd:string"/>
<part name="times1" type="xsd:integer"/>

</message>
<message name="reverseRepeatResponse">

<part name="reverseRepeatReturn" type="xsd:string"/>
</message>
<portType name="RepeaterPortType">

<operation name="repeat">
<documentation>

Repeats a string of text a number of times
</documentation>
<input message="typens:repeat"/>
<output message="typens:repeatResponse"/>

</operation>
<operation name="reverseRepeat">

<documentation>
Reverses a string of text and repeats it a number of times

</documentation>
<input message="typens:reverseRepeat"/>
<output message="typens:reverseRepeatResponse"/>

186 Building SOA-based Solutions for IBM System i Platform

</operation>
</portType>
<binding name="RepeaterBinding" type="typens:RepeaterPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="repeat">

<soap:operation soapAction="urn:RepeaterAction"/>
<input>

<soap:body namespace="urn:repeater.wsdl" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body namespace="urn:repeater.wsdl" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="reverseRepeat">

<soap:operation soapAction="urn:RepeaterAction"/>
<input>

<soap:body namespace="urn:repeater.wsdl" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body namespace="urn:repeater.wsdl" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="repeater.wsdlService">

<port name="RepeaterPort" binding="typens:RepeaterBinding">
<soap:address location="http://myServer:89/WSRedbook/repeatServer.php"/>

</port>
</service>

</definitions>

We explain the client code that uses the generated WSDL in 11.1.2, “Consuming the
Repeater PHP Web service” on page 243.

8.5.5 Creating a PHP Web service to wrapper a program call

We created this example using Zend Core Version 1.6.0, PHP Version 5.1.6. In this example,
you create a PHP Web service using the SOAP extension in Zend Core for i5/OS that takes
three strings as input and returns a Complex Data Type. The ProgramCall Web service has
one function. The function takes four parameters (first and last name, account number, and
amount) as input, connects to the i5, uses i5_program_call to invoke INCRAMT (CL
program). Example 8-10 shows the declaration part of the INCRAMT program.

Example 8-10 Declaration section of the INCRAMT program

0001.00 PGM PARM(&FIRST &LAST &ACCOUNT &AMOUNT)
0002.00 DCL VAR(&FIRST) TYPE(*CHAR) LEN(15)
0003.00 DCL VAR(&LAST) TYPE(*CHAR) LEN(15)
0004.00 DCL VAR(&ACCOUNT) TYPE(*CHAR) LEN(15)
0005.00 DCL VAR(&AMOUNT) TYPE(*DEC) LEN(5 2)

Chapter 8. PHP Web service 187

To return the results of INCRAMT, you need to use a complex data type, which is
accomplished with the creation of the MyComplexDataType {} class (see listing in
Example 8-11). Notice the syntax of the comment blocks above the variables in the
MyComplexDataType class. Also notice that MyComplexDataType is referenced in the comments
of the function callINCRAMT. It is these comments in this specific format that the WSDL
Generator need to generate the WSDL for the ProgramCall Web service.

The most important parts of the PHP file are highlighted in Example 8-11.

Example 8-11 programCallServer.php source code for ProgramCall Web service

<?php
class MyComplexDataType {

/**
 *
 * @var string
 */
public $first;
/**
 *
 * @var string
 */
public $last;
/**
 *
 * @var string
 */
public $account;
/**
 *
 * @var string
 */
public $ammount;

}

class ProgramCall{
/**
 * Returns a complex data type
 *
 * @param string $firstNameInput
 * @param string $lastNameInput
 * @param string $ammountInput
 * @return MyComplexDataType
 */
function callINCRAMT($firstNameInput,$lastNameInput,$ammountInput){

/**/
/* Connect to server */
$conn = i5_connect("localhost", "PHPUSER", "SNAPPLE");
if (!$conn) die("
Connection failed. Error number =".i5_errno()." msg=".i5_errormsg());

$description = array(
array("Name"=>"FIRST", "IO"=>I5_IN, "Type"=>I5_TYPE_CHAR, "Length"=>"15"),
array("Name"=>"LAST", "IO"=>I5_IN, "Type"=>I5_TYPE_CHAR, "Length"=>"15"),
array("Name"=>"ACCOUNT", "IO"=>I5_OUT, "Type"=>I5_TYPE_CHAR, "Length"=>"15"),
array("Name"=>"AMOUNT", "IO"=>I5_INOUT, "Type"=>I5_TYPE_PACKED, "Length"=>"5.2")

188 Building SOA-based Solutions for IBM System i Platform

);

$pgm = i5_program_prepare("I5SCHEMA/INCRAMT", $description);
if (!$pgm) die("
Program prepare error. Error number =".i5_errno()."

msg=".i5_errormsg());
$parmIn = array(
"FIRST"=>$firstNameInput,
"LAST"=>$lastNameInput,
"AMOUNT"=>$ammountInput
);
$parmOut = array(
"FIRST"=>"FIRST",
"LAST"=>"LAST",
"ACCOUNT"=>"ACCOUNT",
"AMOUNT"=>"AMMOUNT"
);

$ret = i5_program_call($pgm, $parmIn, $parmOut);
if (!$ret) die("
Program call error. Error number=".i5_errno()." msg=".i5_errormsg());

/* Close program call */
i5_program_close($pgm);

/* Close connection */
i5_close($conn);
/**/

$results = new MyComplexDataType();
$results->first = $FIRST;
$results->last = $LAST;
$results->account = $ACCOUNT;
$results->ammount = $AMMOUNT;
return $results;

}
}

//Expose as a web service
$server = new SoapServer("programCall.wsdl");
$server->setClass('ProgramCall');
$server->handle();
?>

Chapter 8. PHP Web service 189

After creating the programCallServer.php the WSDL Generator Wizard, you need to create
the WSDL:

1. Select Tools → WSDL Generator. For this example we use programCall for the WSDL
file name (see Figure 8-8). Click Next.

Figure 8-8 WSDL Generator Wizard, setting the configuration name and the WSDL file name

190 Building SOA-based Solutions for IBM System i Platform

2. When programCallServer.php is selected, two classes are available. MyComplexDataType
was created as an object to return complex data types, not a Web service in itself. So, you
should not select it. You need to select ProgramCall and enter the URL Location with the
location of the Zend Core for i5/OS host (see Figure 8-9). The URL should point to the
location of this PHP file on your Web server. Click Finish.

Figure 8-9 WSDL Generator Wizard, adding the files and classes to be exported to the WSDL

The WSDL created in programCall.wdsl is worth looking at (see Example 8-12). Notice that
MyComplexDataType is defined in the WSDL. This is possible because of several different
things. First, the class MyComplexDataType was created, then it was commented in the right
format for the WSDL Generator Wizard to parse, and finally MyComplexDataType is referenced
as @return MyComplexDataType in function callINCRAMT (see Example 8-11 on page 188).

Example 8-12 The programCall.wsdl file

<?xml version='1.0' encoding='UTF-8'?>

<!-- WSDL file generated by Zend Studio. -->

<definitions name="programCall.wsdl" targetNamespace="urn:programCall.wsdl"
xmlns:typens="urn:programCall.wsdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:programCall.wsdl">
<xsd:complexType name="MyComplexDataType">

<xsd:all>
<xsd:element name="account" type="xsd:string"/>
<xsd:element name="ammount" type="xsd:string"/>
<xsd:element name="first" type="xsd:string"/>
<xsd:element name="last" type="xsd:string"/>

Chapter 8. PHP Web service 191

</xsd:all>
</xsd:complexType>

</xsd:schema>
</types>
<message name="callINCRAMT">

<part name="firstNameInput" type="xsd:string"/>
<part name="lastNameInput" type="xsd:string"/>
<part name="ammountInput" type="xsd:string"/>

</message>
<message name="callINCRAMTResponse">

<part name="callINCRAMTReturn" type="typens:MyComplexDataType"/>
</message>
<portType name="ProgramCallPortType">

<operation name="callINCRAMT">
<documentation>

Returns a complex data type
</documentation>
<input message="typens:callINCRAMT"/>
<output message="typens:callINCRAMTResponse"/>

</operation>
</portType>
<binding name="ProgramCallBinding" type="typens:ProgramCallPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="callINCRAMT">

<soap:operation soapAction="urn:ProgramCallAction"/>
<input>

<soap:body namespace="urn:programCall.wsdl" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body namespace="urn:programCall.wsdl" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="programCall.wsdlService">

<port name="ProgramCallPort" binding="typens:ProgramCallBinding">
<soap:address

location="http://myServer:89/WSRedbook/programCallServer.php"/>
</port>

</service>
</definitions>

Note: The Zend Studio 5.5.0 for i5/OS includes Web Service wrapper templates enabling
calls to any i5/OS program.

192 Building SOA-based Solutions for IBM System i Platform

Part 3 Implementing Service
Consumer

This part demonstrates several examples of how to create a Web service consumer. A
service consumer invokes a Web service over the Web. A big advantage of Web services is
platform independence, which allows you to build a service consumer using many different
technologies.

Part 3

© Copyright IBM Corp. 2007. All rights reserved. 193

194 Building SOA-based Solutions for IBM System i Platform

Chapter 9. IBM Web Services Client for ILE
(RPG, C, C++, COBOL)

In i5/OS V5R3, IBM introduced IBM Web Services Client for ILE, which is part of XML Toolkit
for iSeries. Web Services Client for ILE provides a set of libraries and Java tools that enable
you to build C++ Web service client applications from existing Web Service Description
Language (WSDL) files.

In this chapter, we demonstrate an example of creating an RPG program that invokes the
ReserveFlight Program Call Web service using Web Services Client for ILE. Using Web
Services Client for ILE is one way to enable an RPG program to participate in the SOA.

9

© Copyright IBM Corp. 2007. All rights reserved. 195

9.1 RPG as a Web service Client

The opportunity to invoke Web services from ILE applications (RPG or COBOL) has provided
a consumable interface with IBM Web Services Client for ILE. In this chapter, we
demonstrate an RPG program acting as a Web service client using Web Services Client for
ILE.

The Web service that we demonstrate in this chapter is the ReserveFlight Web service, which
you developed in Chapter 5, “ProgramCall (RPG, Cobol) Web service” on page 35. In this
example one of the artifacts of the Web service is a WSDL document. This document is used
to create a C++ stub to enable an RPG client code to invoke a Web service as shown in
Figure 9-1.

Figure 9-1 RPG as a Web service Client

9.1.1 Development environment

There are several products and PTFs that you need to install prior to running this example.
Ensure that the following products are installed and running at latest PTF level.

Prerequisites
This example assumes the following products and options with the latest group PTFs are
already present in the environment:

� Qshell, 5722SS1 Option 30
� Host Servers, 5722SS1 Option 12
� IBM Developer Kit for Java, 5722JV1 Options 5 and 6
� IBM Toolbox for Java, 5722JC1
� 5722WDS Option 31 Compiler - ILE RPG IV
� 5722WDS Option 34 Compiler - RPG/400
� 5722WDS, option 52 can be used to compile C and C++ stubs
� 5722WDS, option 51 can be used to compile C only
� 5733XT1, option 9 XML Parser
� 5733XT1, option 12 XML Toolkit - Web services Client for C/C++

Service ProducerService Consumer

RPG Program
(Client)

WSDL

DB2
UDB

RPG Program
(Implements

business logic)

PCB
(Program Call Bean)

Web ServiceWSCI

Note: PTF’s SI2445 and SI24421 for license program 5733XT1 must be installed to
correctly generate the Web services C and C++ client.

196 Building SOA-based Solutions for IBM System i Platform

In addition to the installed software, the Host Servers must be running on the target System i
system.

The following products must also be installed on a development machine:

� WebSphere Development Studio Client for iSeries V6.0.1 (use Rational Product Updater
to install latest fixes for V6.0.1)

� Firefox 1.0.7 or higher (or equivalent browser)

Skills assumptions
This technical reference assumes the following technical skills and knowledge:

� Experience with and basic knowledge of tools such as Rational Web Developer or
WebSphere Development Studio Client

� Basic knowledge of i5/OS operating system administration

� Familiarity with the behavior and operation of the existing application that you want to
modernize

� To deploy a Web service client you should possess the System i administrator skills.

Deployment environment
When you have developed an application, you need to have the following prerequisites in
your deployment environment:

� You have installed and configured WebSphere Application Server - Express, Base, or
Network Deployment (on any platform)

� System i platform on which the RPG application is deployed

9.2 ProgramCall bean example

In this example, we demonstrate Web service Client for C and C++ called from RPG and
invoking the Web service ReserveFlight that you created in Chapter 5, “ProgramCall (RPG,
Cobol) Web service” on page 35.

Follow these steps:

1. Go to Start → All Programs → IBM Rational → IBM WebSphere Development Studio
Client for iSeries V6.0 → WebSphere Development Studio Client for iSeries.

2. In the Workplace Launcher window in the Workspace field, enter c:\temp\redbook and
click OK as shown in Figure 9-2.

Figure 9-2 Start WebSphere Development Studio client for workspace

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 197

9.2.1 Opening the J2EE Perspective

Prepare the WebSphere Development Studio client for iSeries workspace by opening the
J2EE perspective:

1. Click Open perspective icon on the right hand side or Go to Window → Open
Perspective and select Other as shown in Figure 9-3.

Figure 9-3 Open J2EE Perspective

2. In the Select Perspective window, select J2EE and click OK.

9.2.2 Examining the WSDL document

Review the WSDL document before exporting the document:

1. In Project explorer view, expand Dynamic web projects → WebServiceProject →
WebContent → wsdl → iseries → wsbeans → reserveflight folder.

2. Double click RESERVEFLIGHTServices.wsdl to open in editor window. Graph view
shows various elements of WSDL document in graphical format (see Figure 9-4).

Important:

When reviewing the WSDL document, you have two options:

� You can complete the instructions in 5.2.13, “Testing the Web service on System i” on
page 68 and then you will have the same structure as described beginning with the
steps that we list here.

� Alternatively, you can follow the instructions in 5.2.13, “Testing the Web service on
System i” on page 68 but for your own application. In this case, the name and structure
of the project will be different.

198 Building SOA-based Solutions for IBM System i Platform

Figure 9-4 ReserveFlight WSDL

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 199

3. The WSDL document can be edited in the source view or the graph view. Under services
go to RESERVEFLIGHTServicesService → RESERVEFLIGHTServices and select the
wsdlsoap:address element. The actual property and its value is shown in the properties
view (see Figure 9-5).

Figure 9-5 Web service URL

4. If you follow the steps in 5.2.8, “Deploying your Web service to WebSphere Application
Server for i5/OS” on page 61, the Web service location property should display URL for
your Web service deployed on the server as it’s shown in our example in Figure 9-5.

If you have not done the deployment yet, complete all steps in 5.2.8, “Deploying your Web
service to WebSphere Application Server for i5/OS” on page 61 before continuing with the
remainder of the instructions in this chapter.

9.2.3 Moving the WSDL file to the server

You need to move the WSDL document to System i platform to generate the C stubs and
headers. You can copy the WSDL document, or you can open the Remote System Explorer
perspective to move the document.

200 Building SOA-based Solutions for IBM System i Platform

Copying the WSDL document
To copy the WSDL document, follow these steps:

1. In Project explorer view, expand Dynamic web projects → WebServiceProject →
WebContent → wsdl → iseries → wsbeans → reserveflight folder.

2. Right-click RESERVEFLIGHTServices.wsdl and select Copy as shown in Figure 9-6.

Figure 9-6 Copy WSDL document

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 201

Opening the Remote System Explorer perspective
To move the WSDL document using the Remote System Explorer perspective, follow these
steps:

1. Click Open perspective icon on the right hand side or go to Window → Open
Perspective and select Other as shown in Figure 9-7.

Figure 9-7 Open Remote System Explorer Perspective

2. In the Select Perspective window, select Remote System Explorer and click OK.

3. In Remote Systems view, expand <iSeries_Server> → IFS Files → Home.

4. Right-click Home and select New → Folder shown in Figure 13-8.

Figure 9-8 New Folder for WSDL file

202 Building SOA-based Solutions for IBM System i Platform

5. In the Folder Name field enter itso and click Finish as shown in Figure 9-9.

Figure 9-9 Folder Name

6. Right-click itso and click Paste as shown in Figure 9-10.

Figure 9-10 Paste WSDL document

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 203

9.2.4 Using Web Services Client for ILE to generate WSDL artifacts

The WSDL document is now located in the IFS directory /home/itso of System i server. The
Web service Client for C and C++ needs to generate the stubs and headers. These files are
used by an RPG program to consume a Web service:

1. Open 5250 client session to System i platform.

2. At the command prompt, enter QSH.

3. Run the cd /home/itso command.

4. Run the following command:

/QIBM/ProdData/xmltoolkit/WSCI-1.0-OS400/bin/wsdl2ws.sh RESERVEFLIGHTServices.wsdl -lc

5. You should see some output in the terminal window. At the end, you should see the
following message:

Code generation completed.

6. Run the ls command. You should see generated files.

9.2.5 Creating an RPG program to invoke a Web service

Using WebSphere Development Studio client for iSeries, you can now generate an RPG
program that consumes the RESERVEFLIGHTServices Web service. The RPG program
makes a single reservation:

1. Click Open perspective icon on the right hand side or go to Window → Open
Perspective and select Other as shown in Figure 9-11.

Figure 9-11 Open Remote System Explorer Perspective

2. In the Select Perspective window, select Remote System Explorer and click OK.

3. In Remote Systems view, expand <iSeries_Server> → iSeries Objects.

Note: You can examine the generated code more closely by refreshing the Remote
System Explorer view in WebSphere Development Studio client for iSeries, File →
Refresh.

204 Building SOA-based Solutions for IBM System i Platform

4. Right-click iSeries Objects and select New → Library (see Figure 9-12).

Figure 9-12 New Library

5. On the iSeries Library wizards enter the following:

a. In Library field, enter RPGTEST.
b. Select Test.
c. In Text field, enter RPG Web service Client Test.
d. Click Finish as shown in Figure 9-13.

Figure 9-13 Create a New Library

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 205

6. Right-click RPGTEST.*lib.test and select New → Source Physical File as shown in
Figure 9-14.

Figure 9-14 New Source Physical File...

7. On iSeries Source Physical File wizard enter the following values and click Finish as
shown in Figure 9-15:

– File: QRPGLESRC
– Record Length: 500

Figure 9-15 New source file

206 Building SOA-based Solutions for IBM System i Platform

8. Right-click QRPGLESRC.*file.pf-src and select New → Member as shown in
Figure 9-16.

Figure 9-16 Create New Member

9. In the iSeries Source Member enter the following values and click Finish (see
Figure 9-17):

– Member: RPGTEST
– Member Type: RPGLE
– Text: RPG Web service Client Test

Figure 9-17 Create RPG Source Member

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 207

10.RPGTEST.RPGLE opens in the Editor’s window (see Figure 9-18).

Figure 9-18 RPG Source Editor open in WebSphere Development Studio Client for System i

11.In Remote Systems view, expand <iSeries_Server> → IFS Files → Home → itso.

12.Double-click RESERVEFLIGHTServices.h.

208 Building SOA-based Solutions for IBM System i Platform

13.Examine the generate code and note C externalized functions (see Figure 9-19):

– Functions relating to Web service client proxy
– Functions relating to Web service methods

These functions will be used by an RPG program to invoke the Web service.

Figure 9-19 Generated C code for RERSERVEFLIGHTServices.h

14.Click the RPGTEST.RPGLE tab and copy the source code from Example 9-1. Note how
the C stubs are externalized and used throughout the RPG code.

Example 9-1 RPG Source code to invoke Web Services Client for ILE

H DFTNAME(GETCINFORP)
 /INCLUDE RPGINCLUDE

 D RFLInput DS

 D AgentNumber1 *
 D CustNumber1 *
 D FlightNumber1 *
 D DepartDate1 *
 D DepartTime1 *
 D Tickets1 *
 D ServiceClass1 *
 D
 *
 D AgentNumber 9B 0
 D CustNumber 9B 0
 D FlightNumber 8
 D DepartDate 9
 D DepartTime 9
 D Tickets 4F
 D ServiceClass 2
 *
 DgetStub PR * ExtProc('get_RESERVEFLIGHTServices_+
 D stub')

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 209

 D pEndpoint * Value
 *
 *
 DgetRFlight PR * ExtProc('reserveflight_XML')
 D pRFLWS * Value
 D pRFLInput * Value
 *
 *
 DdestroyStub PR ExtProc('destroy_RESERVEFLIGHTServi+
 D ces_stub')
 D pCityInfoWS * Value
 *
 DdestroyParm PR ExtProc('axiscAxisDelete')
 D value * Value
 D description 9B 0 Value
 *
 *
 *
 D RFLWS S *
 D RFLInput1 S *
 D Endpoint S 100A
 D pOrderXML S *
 D OrderXML S 120A
 D Output S 52A
 *
 C eval AgentNumber = 5
 C eval CustNumber = 500
 C eval FlightNumber = '5191135' + X'00'
 C eval DepartDate = '12/11/08' + X'00'

 C eval DepartTime = '7:12 AM' + X'00'
 C eval Tickets = 3
 C
 C eval ServiceClass = '1' + X'00'
 *
 C eval AgentNumber1 = %addr(AgentNumber)
 C eval CustNumber1 = %addr(CustNumber)
 C eval FlightNumber1 = %addr(FlightNumber)
 C eval DepartDate1 = %addr(DepartDate)
 C eval DepartTime1 = %addr(DepartTime)
 C eval Tickets1 = %addr(Tickets)
 C eval ServiceClass1 = %addr(ServiceClass)
 *
 C eval Endpoint = 'http://itso:9080' +
 C '/WebServiceProject/services'+
 C '/RESERVEFLIGHTServices' + X'00'
 C eval RFLWS = getStub(%Addr(Endpoint))
 C eval RFLInput1 = %Addr(RFLInput)
 C eval pOrderXML = getRFlight(
 C RFLWS :
 C %addr(RFLInput1))
 C eval OrderXML = %str(pOrderXML)
 C if (OrderXML <> *blanks)
 C movel *blanks field 52
 C eval Output = 'The order information: '

210 Building SOA-based Solutions for IBM System i Platform

 C eval field = %subst(OrderXML:61:7)
 C*
 C Output dsply
 C field dsply
 C else
 C eval Output = 'There is no order information '
 C Output dsply
 C endif
 C callp axiscAxisDelete(pOrderXML:XSDC_STRING)
 C eval pOrderXML=*NULL
 C callp destroyStub(RFLWS)
 C seton lr

Web Services Client for ILE INCLUDE file for RPG
The RPGINCLUDE file has been created to import some RPG constants and RPG functions
that is common to running Web service Client in RPG Service Programs (see Example 9-2).

Example 9-2 RPGINCLUDE

* LICENSE AND DISCLAIMER
 * ----------------------
 * This material contains IBM copyrighted sample programming
 * source code (Sample Code).
 * IBM grants you a nonexclusive license to compile, link,
 * execute, display, reproduce, distribute and prepare derivative
 * works of this Sample Code. The Sample Code has not been
 * thoroughly tested under all conditions. IBM, therefore, does
 * not guarantee or imply its reliability, serviceability, or
 * function. IBM provides no program services for the Sample Code.
 *
 * All Sample Code contained herein is provided to you "AS IS"
 * without any warranties of any kind. THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED.
 * SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 * WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN
 * NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT,
 * INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF
 * THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION, ANY LOST
 * PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA
 * ON YOUR INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE
 * ARE EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Important: You need to adjust the value of itso:9080 for the correct values for your
System i platform and WebSphere Application Server profile values.

Note: In our example source code, we used the RPGINCLUDE file for
axiscAxisDelete(pOrderXML:XSDC_STRING) function. The function deletes the return
values after they have been processed so as not to create a memory leak for the RPG
program.

Review the WSCI-1.0.pdf for memory considerations. The file is located at
/QIBM/ProdData/xmltoolkit/WSCI-1.0-OS400/docs/WSCI-1.0.pdf and can be access
using a mapped drive or FTP.

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 211

 *
 * COPYRIGHT
 * ---------
 * (C) Copyright IBM CORP. 2006
 * All rights reserved.
 * US Government Users Restricted Rights -
 * Use, duplication or disclosure restricted
 * by GSA ADP Schedule Contract with IBM Corp.
 * Licensed Material - Property of IBM
 *
 * These samples contain code covered by the following Apache
 * license.
 *
 * Copyright 2003,2004 The Apache Software Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the
 * License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied.
 * See the License for the specific language governing
 * permissions and limitations under the License.
 *
 * ==
 *
 * The following interfaces define the IBM Web Services Client for ILE
 * C-stub (partial) APIs.
 *

 * ===
 * Prototypes and definitions from axis/Axis.h (partial)
 * ===

 D* ---
 D* Delete datatype storage, required to free memory resources
 D* returned by deserializer.
 D* ---
 D axiscAxisDelete...
 D PR 10I 0 EXTPROC('axiscAxisDelete')
 D* Returns return code 0=success
 D XSDPTR * VALUE
 D* xsd type to delete
 D XSDTYPE 10I 0 VALUE
 D* xsd type

 D* ---
 D* Allocate storage for dataype.
 D* ---
 D axiscAxisNew...
 D PR * EXTPROC('axiscAxisNew')

212 Building SOA-based Solutions for IBM System i Platform

 D* Returns pointer to storage
 D XSDTYPE 10I 0 VALUE
 D* Object type
 D LENGTH 10I 0 VALUE
 D* Length (0 for non-char buffers)

 D* ---
 D* Register exception handler routine.
 D* ---
 D axiscAxisRegisterExceptionHandler...
 D PR EXTPROC('axiscAxisRegisterException+
 D Handler')
 D FUNCPTR * VALUE
 D* Function pointer

 * ===
 * Prototypes and definitions from axis/GDefine.h (partial)
 * ===

 D* ---
 D* Error codes.
 D* ---

 D AXISC_SUCCESS...
 D C 0
 D* AXISC_FAIL...
 D* C -1
 D AXISC_OBJECT_ALREADY_EXISTS...
 D C 1
 D AXISC_NO_SUCH_HANDLER...
 D C 2
 D AXISC_NO_SUCH_SERVICE...
 D C 3
 D AXISC_NO_REMAINING_SOAP_HEADERS...
 D C 4

 * ===
 * Prototypes and definitions from axis/TypeMapping.h (partial)
 * ===

 D* ---
 D* xsd types.
 D* ---

 D XSDC_UNKNOWN...
 D C 1
 D XSDC_INT...
 D C 2
 D XSDC_FLOAT...
 D C 3
 D XSDC_STRING...
 D C 4
 D XSDC_LONG...
 D C 5

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 213

 D XSDC_SHORT...
 D C 6
 D XSDC_BYTE...
 D C 7
 D XSDC_UNSIGNEDLONG...
 D C 8
 D XSDC_BOOLEAN...
 D C 9
 D XSDC_UNSIGNEDINT...
 D C 10
 D XSDC_UNSIGNEDSHORT...
 D C 11
 D XSDC_UNSIGNEDBYTE...
 D C 12
 D XSDC_DOUBLE...
 D C 13
 D XSDC_DECIMAL...
 D C 14
 D XSDC_DURATION...
 D C 15
 D XSDC_DATETIME...
 D C 16
 D XSDC_TIME...
 D C 17
 D XSDC_DATE...
 D C 18
 D XSDC_GYEARMONTH...
 D C 19
 D XSDC_GYEAR...
 D C 20
 D XSDC_GMONTHDAY...
 D C 21
 D XSDC_GDAY...
 D C 22
 D XSDC_GMONTH...
 D C 23
 D XSDC_HEXBINARY...
 D C 24
 D XSDC_BASE64BINARY...
 D C 25
 D XSDC_ANYURI...
 D C 26
 D XSDC_QNAME...
 D C 27
 D XSDC_NOTATION...
 D C 28
 D XSDC_INTEGER...
 D C 29
 D XSDC_ARRAY...
 D C 30
 D C_USER_TYPE...
 D C 31
 D XSDC_NMTOKEN...
 D C 32
 D XSDC_ANY...

214 Building SOA-based Solutions for IBM System i Platform

 D C 33
 D XSDC_NONNEGATIVEINTEGER...
 D C 34
 D XSDC_POSITIVEINTEGER...
 D C 35
 D XSDC_NONPOSITIVEINTEGER...
 D C 36
 D XSDC_NEGATIVEINTEGER...
 D C 37
 D XSDC_NORMALIZEDSTRING...
 D C 38
 D XSDC_TOKEN...
 D C 39
 D XSDC_LANGUAGE...
 D C 40
 D XSDC_NAME...
 D C 41
 D XSDC_NCNAME...
 D C 42
 D XSDC_ID...
 D C 43
 D XSDC_IDREF...
 D C 44
 D XSDC_IDREFS...
 D C 45
 D XSDC_ENTITY...
 D C 46
 D XSDC_ENTITIES...
 D C 47
 D XSDC_NMTOKENS...
 D C 48
 D C_ATTACHMENT...
 D C 49

 * ===
 * Prototypes and definitions from axis/ISoapFault.h (partial)
 * ===

 D* ---
 D* Get complex fault object name
 D* ---
 D axiscSoapFaultGetCmplxFaultObjectName...
 D PR * EXTPROC('axiscSoapFaultGetCmplxFaul+
 D tObjectName')
 D* Returns character string
 D SOAPFAULT * VALUE
 D* ptr to soap fault object

 D* ---
 D* Get simple fault detail
 D* ---
 D axiscSoapFaultGetSimpleFaultDetail...
 D PR * EXTPROC('axiscSoapFaultGetSimpleFau+

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 215

 D ltDetail')
 D* Returns character string
 D SOAPFAULT * VALUE
 D* ptr to soap fault object

 D* ---
 D* Get fault code
 D* ---
 D axiscSoapFaultGetFaultcode...
 D PR * EXTPROC('axiscSoapFaultGetFaultcode'
 D)
 D* Returns character string
 D SOAPFAULT * VALUE
 D* ptr to soap fault object

 D* ---
 D* Get fault string
 D* ---
 D axiscSoapFaultGetFaultstring...
 D PR * EXTPROC('axiscSoapFaultGetFaultstri+
 D ng')
 D* Returns character string
 D SOAPFAULT * VALUE
 D* ptr to soap fault object

 D* ---
 D* Get fault actor
 D* ---
 D axiscSoapFaultGetFaultactor...
 D PR * EXTPROC('axiscSoapFaultGetFaultacto+
 D r')
 D* Returns character string
 D SOAPFAULT * VALUE
 D* ptr to soap fault object

9.2.6 Compiling RPG

Compile the RPG code from WebSphere Development Studio client for iSeries:

1. Expand <your System i connection> → iSeries Objects, right-click Library list and
select Add Library List Entry.

2. In the window, enter RPGTEST in the Additional library field and click OK. This adds the
RPG test library to the library list so that the compiler can access RPGINCLUDE during
compilation.

216 Building SOA-based Solutions for IBM System i Platform

3. Right-click RPGTEST.RPGLE and select Compile → CRTRPGMOD as shown in
Figure 9-20.

Figure 9-20 Compile RPG module

9.2.7 Compiling C modules and Create service program

On the 5250 session, issue the following command to create the C modules and to add all
modules to a single service program:

1. On the 5250 command line issue the following commands to create the C modules:

CRTCMOD MODULE(RPGTEST/RPGWSC) SRCSTMF('/home/itso/RESERVEFLIGHTServices.c')
INCDIR('/qibm/proddata/xmltoolkit/WSCI-1.0-os400/include')

CRTCMOD MODULE(RPGTEST/RPGWSC1) SRCSTMF('/home/itso/RESERVEINFO.c')
INCDIR('/qibm/proddata/xmltoolkit/WSCI-1.0-os400/include')

CRTCMOD MODULE(RPGTEST/RPGWSC2) SRCSTMF('/home/itso/RESERVEFLIGHTInput.c')
INCDIR('/qibm/proddata/xmltoolkit/WSCI-1.0-os400/include')

CRTCMOD MODULE(RPGTEST/RPGWSC3) SRCSTMF('/home/itso/RESERVEFLIGHTResult.c')
INCDIR('/qibm/proddata/xmltoolkit/WSCI-1.0-os400/include')

Note: Errors encountered in the compile process display in the iSeries Error List.
Double-clicking an error takes you to the exact position of the error in the source code.

Important: You can ignore all informational messages with a severity of zero (0).

Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL) 217

2. Issue the following command on the 5250 command line to create the Service program:

CRTPGM PGM(RPGTEST/RPGTEST) MODULE(RPGTEST/RPGTEST RPGTEST/RPGWSC
RPGTEST/RPGWSC1 RPGTEST/RPGWSC2 RPGTEST/RPGWSC3) BNDSRVPGM(QXMLTOOLS/QAXIS10CC)

9.2.8 Invoking the RPG application to make reservation

The RPG program calls Web Services Client for ILE Axis framework, which in turn calls the
J2EE RPG Web service created in Chapter 5, “ProgramCall (RPG, Cobol) Web service” on
page 35. To invoke the RPG program, run the following command from the 5250 command
line:

CALL RPGTEST/RPGTEST

It should return results as shown in Figure 9-21.

Figure 9-21 CAll RPG program

Summary
In the example, we demonstrated an RPG program that uses generated code from the Web
Services Client for ILE to invoke a Web service that happened to be a J2EE Web service
application, which encapsulates an RPG program.

Note: If you have more C programs in your /home/itso directory, it means that you
selected more methods while creating a Web service (see Figure 5-23 on page 56). In
this case, you need to create a C module for each C program.

In addition, you need to list all C module in the CRTPGM command in the next step.

 Command Entry ITSO
 Request level: 1
 All previous commands and messages:
 > call RPGTEST/RPGTEST
 DSPLY The order information:
 DSPLY 5671316
 > call RPGTEST/RPGTEST
 DSPLY The order information:
 DSPLY 5671317
 > call RPGTEST/RPGTEST
 DSPLY The order information:
 DSPLY 5671318
 Bottom
 Type command, press Enter.
 ===> call RPGTEST/RPGTEST

 F3=Exit F4=Prompt F9=Retrieve F10=Exclude detailed messages
 F11=Display full F12=Cancel F13=Information Assistant F24=More keys

218 Building SOA-based Solutions for IBM System i Platform

Chapter 10. JSF Web service client

JavaServer Faces (JSF) technology simplifies building user interfaces for Java Web-based
applications. Developers of various skill levels can quickly build Web applications by:

� Assembling reusable UI components in a page
� Connecting these components to an application data source
� Enabling Web service and wiring client-generated events to server-side event handlers

This chapter describes how to create JSF Web services client to consume existing Web
services. The JSF Web service components can go out to the Internet and search existing
UDDI registries, then use the WSDL file to generate the appropriate controls. The controls
use the standard JAX-RPC API to invoke the Web services.

10

© Copyright IBM Corp. 2007. All rights reserved. 219

10.1 Developing a JSF client

You can use WebSphere Development Studio client for iSeries to develop a JSF client
consuming the Web service. In this section, we show you how to build a sample JSF Web
service client.

These are the high-level steps to follow:

1. Create a Dynamic Web Project
2. Create Page Template
3. Create JSF Web service client using Web service Component
4. Test the JSF Web service client
5. Create Web services Proxy
6. Integrate Web services Proxy with JSF page
7. Test the JSF Web service client

We explain the steps in more detail in the following sections.

10.1.1 Creating a dynamic Web project

The first step in the development process is to create a Web project that holds all artifacts of
the Web service client:

1. Open Web Perspective in WebSphere Development Studio client for iSeries:

a. Click Start → All Programs → IBM Rational → IBM WebSphere Development
Studio client Advanced Edition for iSeries V6.0 → WebSphere Development
Studio client Advanced Edition for iSeries.

b. In the workspace launcher window, for workspace enter c:\temp\redbook and click
OK.

c. To open Web perspective, select Window → Open Perspective → Other, select Web
and click OK.

2. Create a Dynamic Web Project:

a. Launch the New Dynamic Web Project Wizard by clicking File → New → Dynamic
Web Project.

b. Enter the Project Name: JSFWSclient.

c. Click the Show Advanced button and make sure that the EAR project name is
JSFWSclientEAR and that the context root is the same as the project name.

d. Click Finish.

3. In the Project Explorer view, expand Dynamic Web Projects → JSFWSclient project →
WebContent.

Before you create any Faces JSP pages, you create page template that you will use for the
JavaServer Faces.

10.1.2 Creating a page template

In this section, we explore how to create a page template that you can used for the JSF
pages. Before you create the page template, you need to create or import the necessary
images. WebSphere Development Studio client has a built-in Web art designer tool that you
can use to create the images and banner. Let us look at how to create an image file.

220 Building SOA-based Solutions for IBM System i Platform

Creating an image file
To create image file using the Web Art Designer tool:

1. From menu select File → New → Image file.

2. Enter the filename flight400banner and click Finish.

3. Double-click flight400banner under WebContent folder to open it in WebArt designer tool.

4. In WebArt designer tool window, select Edit → Canvas settings.

5. Enter the following values:

– Enter Width: 640
– Enter Height: 79

6. Click OK.

7. In WebArt designer tool, click the Gallery tab (see Figure 10-1).

Figure 10-1 Image creation - Gallery tab

Chapter 10. JSF Web service client 221

8. Click Banners to see the banner list. Double-click the desired banner image from the
banner list view (see Figure 10-2).

Figure 10-2 Image creation - Select banner image

222 Building SOA-based Solutions for IBM System i Platform

9. Next, you create a logo and place it on the banner. Click the WebArt Gallery tab. Enter the
desired text in the Text input box as shown in Figure 10-3.

Figure 10-3 Image creation - banner text

10.Double-click desired text format.

11.Resize the logo text as desired.

Figure 10-4 Image creation - text format

12.Select File → Save Canvas or press CTRL+S to save the JPG.

13.On the Save Canvas panel, click Save.

14.On the JPEG attribute settings window, click OK.

15.Select File → Exit to exit the WebArt Designer tool.

Chapter 10. JSF Web service client 223

Importing required images
You can add additional images to your page template. Follow these steps:

1. Make sure WebContent → Theme folder is selected.

2. Select File → Import from menu. In the Import window, select File System and click
Next.

3. Navigate to the location of your image files.

4. Select the desired files. (We select plane.jpg in this example.) Make sure that the Into
folder points to the JSFWSclient/WebContent/theme folder.

5. Click Finish.

Creating page template
Now you have all art artifacts to create a page template. Follow these steps:

1. Make sure that the WebContent\theme folder is selected under the JSFWSclient Project.

2. Select File → New → Page Template File.

3. In the New Page Template File window, enter Flight400PageTemplate as the File Name
and select Template Containing Faces Components in the Model drop-down box.

4. Click Finish.

5. Click OK on any informational window that displays.

6. In Page Template editor view, delete the default text Place content here.

7. In Page Template editor view, select Free Layout mode (see Figure 10-5).

Figure 10-5 Page template - Layout mode

8. Open the HTML tags drawer in the palette view and drop Free Layout Table (see
Figure 10-6). Free Layout tables create tables and cells for you automatically so that you
can freely place objects on the page.

Figure 10-6 Page template - free layout table

224 Building SOA-based Solutions for IBM System i Platform

9. Drag the corners of free layout table and increase the size.

10.Select File → Save or press CTRL+S to save your work.

11.Select plane.jpg from the WebContent → theme folder and drag-and-drop it in the first
row of the free layout table as shown in Figure 10-7.

Figure 10-7 Page template - insert image

12.Open the Web Site Navigation drawer under Palette. Drag Navigation Trail and drop it in
the second row on the right-hand side as shown in Figure 10-8.

Figure 10-8 Page template - navigation trail

13.In Select a navigation specification file, select trail_horizontal.jsp and click Finish.

Chapter 10. JSF Web service client 225

14.Select the cell where navigation trail is placed. Use the guides to expand the cell across
the layout area (see Figure 10-9).

Figure 10-9 Page template - expand navigation trail

15.Drag Vertical Tabs from the Web Site Navigation drawer under Palette and drop it below
the plane image (see Figure 10-10).

Figure 10-10 Page template - vertical tabs

16.In Select a Navigation Specification file window click Next.

17.In Select Links Destination window:

a. Select Children of top page so that your navigation bar has links to the child pages of
the home page.

b. Then select Sibling pages to create navigation links between pages at the same level
in the site hierarchy.

c. Click Finish.

226 Building SOA-based Solutions for IBM System i Platform

18.Select the cell where Vertical Tabs is placed. Use the guides to expand the cell across the
next column and rows below as shown in Figure 10-11.

Figure 10-11 Page Template - Vertical Tabs expanded

19.Open Page template drawer. Drag Content Area and drop it below the navigation trail
(see Figure 10-12).

20.In the Insert Content Area pop-up click OK.

Figure 10-12 Page Template - Content Area

Chapter 10. JSF Web service client 227

21.Expand the content area using guides to occupy next column and row below as shown in
Figure 10-13.

Figure 10-13 Page Template - Content Area Expanded

22.Select File → Save or press CTRL+S to save your work.

228 Building SOA-based Solutions for IBM System i Platform

23.Select flight400banner.jpg from the WebContent folder in Project Explorer. Drag and
drop it in the first row next to plane.jpg (see Figure 10-14).

Figure 10-14 Page Template - banner image

24.Select File → Save or press CTRL+S to save your work.

Chapter 10. JSF Web service client 229

25.Change the background color. Select the left navigation pane in the page template.
Choose the desired color in the Color field in the properties view (see Figure 10-15).

Figure 10-15 Page Template - background color

26.Select File → Save or press CTRL+S to save your work.

230 Building SOA-based Solutions for IBM System i Platform

27.Preview your page template by selecting the Preview tab (see Figure 10-16).

Figure 10-16 Page Template - preview

28.Select File → Close to close the page template editor window.

10.1.3 Creating JSF Web service client using Web Service Component

In this section, you use the page template and existing Web service that you created earlier to
create a JavaServer Faces Web service client. You use some of the JSF editing features to
drag-and-drop components.

Reviewing a WSDL document
Verify that you still can access a Web service:

1. Type the path for the WSDL document URL in an Internet Explorer window and press
Enter. In our example, the URL is:

http://<System_i>:<port>/WebServiceProject/wsdl/com/ibm/flight400/beans/GETFLIG
HTINFOServices.wsdl

You should see the content of the WSDL file.

2. The file shows different methods implemented within the Web service with the input and
output parameters. In our example, we have two methods: findFlights and
findFlights_XML. The methods have three input parameters (FROMCITY, TOCITY, and
FLIGHTDATE) and two output parameters (FLIGHTCOUNT and FLIGHTS data
structure).

3. We use this WSDL document to build the JSF Web service client to consume the Web
service.

Chapter 10. JSF Web service client 231

Creating a Faces JSP page
It is time to build a JSF based on the page template that you developed earlier in this chapter.
Follow these steps:

1. Expand Dynamic Web Projects → JSFWSclient → WebContent.

2. From the menu bar select File → New → Faces JSP file.

3. Enter the filename findFlightsJSFclient.

4. Select Create from page template and click Next (see Figure 10-17).

Figure 10-17 Faces JSP properties

232 Building SOA-based Solutions for IBM System i Platform

5. On Page template file selection panel, select User-defined page template, select the
previously created Flight400PageTemplate, and click Finish (see Figure 10-18).

Figure 10-18 User-defined page template

6. Select the default text Default content of bodyarea and replace it with Flight Search Web
service client.

7. Press Enter next to Flight Search Web service client.

8. Select Flight Search Web service client and click the Properties tab at the bottom of the
window.

Chapter 10. JSF Web service client 233

9. The properties view shows the properties for the selected component in the edit window.
Select Heading 1 in paragraph field (see Figure 10-19). You can also change the color
and the font. Press the down arrow to keep the cursor below the heading.

Figure 10-19 Page Heading

10.Save you work by selecting File → Save from the menu bar or by pressing CTRL+S on
the keyboard.

11.Make sure your cursor is just below the heading. In the Palette view (on the right-hand
side), expand Data drawer.

234 Building SOA-based Solutions for IBM System i Platform

12.From Data drawer, select Web service and drop it onto the JSF page at the cursor
position (see Figure 10-20).

Figure 10-20 Drop Web service component

13.The Web services discovery dialog box displays. Click the Web services from a known
URL link. Also, you can search Web services deployed and running in your current
workspace.

14.Enter the WSDL URL (see step 1 on page 231) and click Go.

15.You should see Web services details with port information. To explore the Web service
click Details. This launches Web Services Explorer in the browser. You should see the
methods and endpoint information. Click findFlights to test that method. On Invoke a
WSDL operation screen, enter following inputs:

– FROMCITY: Albany
– TOCITY: Atlanta
– FLIGHTDATE: 09122006

Chapter 10. JSF Web service client 235

16.Click Go. It shows the result in the Status pane (Figure 10-21).

Figure 10-21 Web services Explorer

17.You can also test the findFlights_XML method to see the output in XML document form.
Close the Web services Explorer browser window.

18.Back in Web Services Discovery dialog box, click Add to Project.

19.Click the Yes All button on the Warning dialog box.

20.Select the findflights() method on the Web services wizard page. Make sure that
Create input form and result display selected. Click Next (see Figure 10-22).

Figure 10-22 Select a method

236 Building SOA-based Solutions for IBM System i Platform

21.On the Input form page, it shows the input fields that are placed on the Input form. Click
Options. Enter Search Flights in the Submit button field and click OK (see Figure 10-23).
The options dialog lets you select input field properties for the Input form.

Figure 10-23 Input Form - options

22.Back in Input Form dialog box, click Next.

23.The Result form shows the output fields. Click Finish.

Chapter 10. JSF Web service client 237

24.JSF Web services wizard generates input and output fields on the JSF page as shown in
Figure 10-24.

Figure 10-24 Input and Output Components

25.Save you work by selecting File → Save in the menu bar or by pressing CTRL+S on the
keyboard.

238 Building SOA-based Solutions for IBM System i Platform

26.Update labels next to the input fields to make them readable. You can also select the text
and change the properties like format, font, color, and so on in the Properties view.

Update the labels on the output table. Select the column heading and change the value in
the properties view. The updated page is shown in Figure 10-25.

Figure 10-25 Input and Output fields

27.Save you work by selecting File → Save from the menu bar or by pressing CTRL+S on
the keyboard.

Now you are ready to the test the Web service client in WebSphere Application Server Test
environment in WebSphere Development Studio client for iSeries.

10.1.4 Testing the JSF Web service client

To test the JSF Web service client:

1. Right-click findFlightsJSFclient.jsp in the Project Explorer view under JSFWSclient →
WebContent folder and select Run → Run on Server option.

2. In the Server selection window, click Choose an existing server and select WebSphere
Application Server V6.0 under localhost and click Finish.

3. After a while, you should see a browser displaying the findFlights page with input form.
Enter following inputs:

– From City: Albany
– To City: Atlanta
– Date: 09122006
– Click Search Flights

Chapter 10. JSF Web service client 239

4. Double-click a Web browser window title to expand the window (see Figure 10-26).

Figure 10-26 Test the JSF Web service client

10.2 Summary

In this chapter, we demonstrated an example of building a JSF Web service client.
WebSphere Development Studio client for iSeries provides a great deal of tools to make this
task as easy as possible. You can now design, build, and test a JSF client without leaving the
WebSphere Development Studio client for iSeries environment.

240 Building SOA-based Solutions for IBM System i Platform

Chapter 11. PHP Web service client

In this chapter, we describe how to consume Web services using the scripting language PHP.
The three examples demonstrate Web services clients from simple to more complex. The first
two examples are the clients for the Web services created in Chapter 8, “PHP Web service”
on page 171, and the third is a client that is designed to consume the
GETFLIGHTINFOServices Web service that you built in 5.2.14, “Adding additional Web
services: GetFlightInfo and FindCustomers” on page 70.

11

© Copyright IBM Corp. 2007. All rights reserved. 241

11.1 Consuming a Web service with PHP

This section explains how to consume the following Web services:

� The first Web service, Repeater, is a PHP Web service with two functions. It takes in a
string and an integer. The function repeat repeats a string of text a number of times and
the function reverseRepeat reverses a string of text and repeats it a number of times (see
Example 8-8 on page 182).

� The second Web service, ProgramCall, uses a PHP Web service with one function. It
takes first name, last name, and an initial amount as input. The Web Service wrappers an
i5_program_call to the INCRAMT CL program that sets the account name to the last name,
increments the balance by specified amount, and returns the results (see Example 8-11
on page 188).

� The third Web service GETFLIGHTINFOServices is a WebSphere Web service that
wrappers FLGHT400M/NSF404(FINDFLIGHTS). It takes the departure and destination
cities and the date of the flight as input. It returns the number of available flights and
available flight information.

11.1.1 Using Zend Studio for i5/OS to create Web services clients

Zend Studio for i5/OS can simplify the task of writing PHP Web services clients. For the
examples in this chapter, we use the PHP SOAP extension to create the Web services client.
To create the SOAP Client, you need the WSDL file. It can reside on a system where you run
a PHP client, you can specify it as a URL.

After you create the SOAP client, two useful features become available in Zend Studio for
i5/OS. The first is the Inspectors view of available SOAP clients. The new SOAP Client is
visible in the File and Project Inspector view. With this view, you can expand the SOAP client
to reveal the name of the WSDL, the class it extends, the available functions, what they take
for input, and what they return for output. The second feature that is available in Zend Studio
for i5/OS after you create the SOAP client is the code completion feature. It analyzes
dynamically the WSDL file that is associated with the SOAP client and displays information
that is relevant to the function as you type.

242 Building SOA-based Solutions for IBM System i Platform

Figure 11-1 illustrates both features.

Figure 11-1 Zend Studio for i5/OS Web services client features

The technique for creating a PHP client code in Zend Studio for i5/OS is the same as for
creating a PHP server code. You need to have a project to which you add your PHP files. Use
the File → New File menu option to create a new PHP file.

11.1.2 Consuming the Repeater PHP Web service

Example 11-1 was created using Zend Core Version 1.6.0, PHP Version 5.1.6. In this first
example, we show you how to consume the PHP Repeater Web service (see Example 8-8 on
page 182). Notice that near the bottom of repeaterClient.php, there is the optional code to
print the last SOAP request and response. It is not commented out so when the code is run in
addition to the Web service reply, the actual last SOAP request and response is displayed
also.

Example 11-1 repeaterClient.php source code

<?php
try {

/* Create New Soap Client */
$client = new SoapClient("repeater.wsdl",array(
"trace" => 1,
"exceptions" => 0));

Chapter 11. PHP Web service client 243

/** Values are hardcoded in this example but they could easily be input from
the user **/

/* Call repeat function*/
echo $client->repeat("Hello ",7)."
\n";

/* Call reverse repeat function*/
echo $client->reverseRepeat("My name is Michael",3);

}catch (SoapFault $exception) {
echo $exception;

}

/** Optional Code to print the last SOAP Request & Response **/
print "<p>";
print "Request :\n".htmlspecialchars($client->__getLastRequest()) ."\n";
print "</p><p>";
print "Response :\n".htmlspecialchars($client->__getLastResponse())."\n";
print "</p>";
?>

Figure 11-2 shows a sample output from the repeaterServer Web service.

Figure 11-2 The repeaterClient.php run in Web browser

244 Building SOA-based Solutions for IBM System i Platform

11.2 Consuming the ProgramCall PHP Web service

Example 11-2 was created using Zend Core Version 1.6.0, PHP Version 5.1.6. This example
shows how to consume the PHP ProgramCall Web service (see Example 8-11 on page 188).
This Web service client is more complex than Example 11-1 in that it works with the complex
data type returned by the Web service, working with it as an object.

Example 11-2 programCallClient.php source code

<?php
/** Values are hardcoded in this example but they could easily be input from the
user **/
$first = "Michael";
$last = "Sandberg";
$amount = "10";

/** Create SOAP Client **/
try {

$client = new SoapClient("programCall.wsdl",array(
"trace" => 1,
"exceptions" => 0));

print "<p>";
$results = $client->callINCRAMT($first,$last,$amount);
/** Optional Code to print the $results object **/
//var_dump($results);
print "</p>";

}catch (SoapFault $exception) {
echo $exception;

}

echo "<p>First and last name and an initial amount are passed into the Web
Service. The Web Service wrappers the
i5_program_call to the INCRAMT CL program that sets the account name to the last
name, increments the amount
entered by 42.22, and returns the results. The Web Service then passess the
results back to the Web Service Client.</p>";
echo "Input
";
echo "First Name: ".$first."
";
echo "Last Name: ".$last."
";
echo "Inital Amount: $".$amount."

";

echo "Results from Web Service call:";
print("<table width='50%' border='0' cellpadding='2' cellspacing='2'>");
print("<tr bgcolor='#CCCCCC'><th>First Name</th><th>Last Name</th><th>Account
Balance</th><th>Account Name</th></tr>");
print("<tr>");
printf("<td>%s</td>",$results->first);
printf("<td>%s</td>",$results->last);
printf("<td>$%s</td>",$results->amount);
printf("<td>%s</td>",$results->account);
print("</tr>");

/** Optional Code to print the last SOAP Request & Response **/
//print "<p>";
//print "Request :\n".htmlspecialchars($client->__getLastRequest()) ."\n";

Chapter 11. PHP Web service client 245

//print "</p><p>";
//print "Response :\n".htmlspecialchars($client->__getLastResponse())."\n";
//print "</p>";
?>

Figure 11-3 shows a sample output from the programCall PHP Web service.

Figure 11-3 The programCallClient.php run in Web browser

11.2.1 Consuming the GETFLIGHTINFOServices WebSphere Web service

Example 11-3 was created using Zend Core Version 1.5.0, PHP Version 5.1.6. It shows how
to consume the GETFLIGHTINFOServices WebSphere Web service (see 5.2.14, “Adding
additional Web services: GetFlightInfo and FindCustomers” on page 70). This example is the
most complex of the three examples in this chapter. The Web service client passes in a
complex data type and also receives back another complex data type. To pass in the required
parameters to the Web service, an object is created that matches the design of the expected
complex data type. The results are passed back as an object with a variable number of
flights. This is handled by retrieving the number of flights value from the results object and
then using it in a for loop to walk through the results object printing the values.

Also notice that this example points to the WSDL file that is located on a remote server (the
highlighted text in the example). We use the file’s URL. Another way of using remote WSDL
file is to copy it to the system where you run your PHP client code. In the latter case, you
would point to the WSDL file in the same way as we show in the Example 11-1 and
Example 11-2.

Example 11-3 WSClient.php source code

<?php
 /**
 * WSClient is a PHP Web services client designed to consume the Web service described
 * by GETFLIGHTINFOServices.wsdl
 **/

/** Build the Object that will be passed in the call to the Web service
* Values are hardcoded in this example but they could easily be input from the user
**/
$params -> inputData -> FROMCITY = 'Chicago';
$params -> inputData -> TOCITY = 'Atlanta';

246 Building SOA-based Solutions for IBM System i Platform

$params -> inputData -> FLIGHTDATE = '07122007';

/** Create SOAP Client **/
try {

$client = new
SoapClient("http://remoteServer:9080/WebSvc/wsdl/com/ibm/flight400/beans/GETFLIGHTINFOServices.w
sdl",array(

"trace" => 1,
"exceptions" => 0,));

}catch (SoapFault $exception) {
echo $exception;

}

/** Call Web service described in GETFLIGHTINFOServices.wsdl passing $params **/
try {

$results = $client->findflights($params);
/** Optional Code to print the $results object **/
//print "<p>";
//var_dump($results);
//print "</p>";

}catch (SoapFault $exception) {
echo $exception;

}

echo "Input
";
echo "From City: ".$params -> inputData -> FROMCITY."
";
echo "To City: ".$params -> inputData -> TOCITY."
";
echo "Date of Flight: ".$params -> inputData -> FLIGHTDATE."

";

echo "Available flights results from Web Service call:";

/** Retrieve number of flights returned by the Web service **/
$re = $results->findflightsReturn->FLIGHTCOUNT;

/** Create table and then print flight information **/
print("<table width='50%' border='0' cellpadding='2' cellspacing='2'>");
print("<tr bgcolor='#CCCCCC'><th>Airline</th><th>Flight</th><th>Departure Time</th><th>Arrival
Time</th><th>Ticket Price</th></tr>");
for ($i = 0; $i < $re; $i += 1){

print("<tr>");
printf("<td><div

align='right'>%s</div></td>",$results->findflightsReturn->FLIGHTS->FLIGHTINFO[$i]->AIRLINE);
printf("<td>%s</td>",$results->findflightsReturn->FLIGHTS->FLIGHTINFO[$i]->FLIGHT);
printf("<td>%s</td>",$results->findflightsReturn->FLIGHTS->FLIGHTINFO[$i]->DEPARTTIME);
printf("<td>%s</td>",$results->findflightsReturn->FLIGHTS->FLIGHTINFO[$i]->ARRIVETIME);
printf("<td>$%s</td>",$results->findflightsReturn->FLIGHTS->FLIGHTINFO[$i]->PRICE);
print("</tr>");

}

/** Optional Code to print the SOAP Request & Response **/
//print "<p>";
//print "Request :\n".htmlspecialchars($client->__getLastRequest()) ."\n";
//print "</p><p>";
//print "Response :\n".htmlspecialchars($client->__getLastResponse())."\n";
//print "</p>";
?>

Chapter 11. PHP Web service client 247

Before attempting to execute the PHP client code, make sure that your Web service on the
remote system has been started. Figure 11-4 shows sample output from the PHP Web
service client.

Figure 11-4 WSClient.php run in browser

248 Building SOA-based Solutions for IBM System i Platform

Appendix A. Setting the connection to
WebSphere Application
Server V6.0

You can use the SOAP connector or remote method invocation (RMI) to make JMX™
connections with the server. These ports are used for communication between the
development environment and the server. The RMI (ORB bootstrap) port is designed to
improve performance and communication with the server. The SOAP connector port is
designed to be more firewall compatible. It is used by an HTTP transport for incoming SOAP
requests.

This chapter explains how to set the connection to WebSphere Application Server V6.0 using
a JMX option.

A

Important: If there is a firewall between the development environment and the server, use
the SOAP connector port rather than the ORB bootstrap port.

Important: In a lab environment where a single image is ghosted to multiple PCs, the
master image host name is ghosted to the WebSphere Application Server - Test
Environment runtime configuration files. To resolve the TCP issue, use SOAP.

© Copyright IBM Corp. 2007. All rights reserved. 249

Changing a JMX connection with a server
Follow these steps to view and change, if needed, a JMX connection to your server in
WebSphere Development Studio client for iSeries:

1. In your Windows workstation go to Start → All Programs → IBM Rational → IBM
WebSphere Development Studio Client Advanced Edition for iSeries V6.0 →
WebSphere Development Studio Client Advanced Edition for iSeries.

2. In the workplace launcher window, enter c:\temp\redbook in the workspace field and
press OK as shown in Figure A-1. (Make sure that you deselect the check box Use this as
a default and do not ask again.)

Figure A-1 Specifying a workspace location

3. If the WebSphere Development Studio client for iSeries workspace was not used before,
you see a Welcome page. Click X to close the Welcome page (see Figure A-2).

Figure A-2 Closing a Welcome page

Note: In the event that WebSphere Development Studio client for iSeries is already
started, proceed to step 4 on page 251.

250 Building SOA-based Solutions for IBM System i Platform

4. Click the Open perspective icon on the right-hand side (see Figure A-3) or go to
Window → Open Perspective.

Figure A-3

5. Select Other.

6. In the Select Perspective window, select Web and click OK.

7. In Web Perspective, select the Servers view as shown in Figure A-4.

Figure A-4 Selecting the Servers view

Appendix A. Setting the connection to WebSphere Application Server V6.0 251

8. In the Servers view, double-click WebSphere Application Server v6.x to open the server
editor (see Figure A-5).

Figure A-5 Double-clicking your server

9. Click the Overview tab. Expand the Server section if it is not expanded already.

10.Under the Server connection type and admin port, select SOAP (more firewall
compatible) (see Figure A-6). For a SOAP connection, in the SOAP connector port field,
we use the default port number 8880.

Figure A-6 Selecting the SOAP connector

11.Select File → Save from the menu bar or press CTRL+S to save the configuration
changes.

252 Building SOA-based Solutions for IBM System i Platform

12.Click X to close the WebSphere 6.0 Server Configuration view (see Figure A-7).

Figure A-7 Closing the server properties file

13.In the Servers view, right-click the WebSphere 6.0 server (you might see a different
name in your environment) and select Start (see Figure A-8).

Figure A-8 Starting the server

Appendix A. Setting the connection to WebSphere Application Server V6.0 253

14.In the Servers view, you should see the Starting message for 3 to 5 minutes as shown in
Figure A-9.

Figure A-9 The server is starting

15.After the WebSphere Application Server is started, you should see the Started status in
the Servers view as shown in Figure A-10.

Figure A-10 The server is started

254 Building SOA-based Solutions for IBM System i Platform

Appendix B. URI length limit of 259 characters
on Windows

This appendix describes the details of the workaround for WebSphere Development Studio
client for iSeries in a case when a path to a resource in WebSphere Development Studio
client for iSeries exceeds 259 characters.

B

© Copyright IBM Corp. 2007. All rights reserved. 255

Issue
An error such as that shown in Example B-1can occur when you are deploying an application
to the WebSphere Test Environment using WebSphere Application Server V6.0.

Example: B-1 Error message

[11/14/05 13:04:26:114 EST] 00000042 SystemErr R java.io.IOException:
URI length is greater than Windows limit of 259 characters. C:\Program
Files\IBM\Rational\SDP\6.0\runtimes\base_v6\profiles\default1\wstemp\1079040961d\w
orkspace\cells\sandygmobNode05Cell\applications\MyProjectWithaLongPathNameEAR.ear\
deployments\MyProjectWithaLongPathNameEAR\MyProjectWithaLongPathNameWeb.war\wsdl\a
\very\exceptionallylong\nameusedforthepackagename\MyTestForWS.wsdl

Cause
The length limit on Windows is imposed by the Java SDK 1.4.

Solution
Here are a few different suggestions to try for resolving this issue:

� Shorten the names of the Enterprise Application Project (EAR) and Web Project
� Shorten the length of the package used
� Shorten the temp directory used by WebSphere Application Server by following the steps

we describe in this section.

Follow these steps to resolve the issues with a path length:

1. Create a directory with a short name, for example C:\A, on the C drive. Using Windows
Explorer select File → New Folder as shown in Figure B-1.

Figure B-1 Creating a new directory

2. Start WebSphere Development Studio client for iSeries by going to Start → All
Programs → IBM Rational → IBM WebSphere Development Studio Client Advanced
Edition for iSeries V6.0 → WebSphere Development Studio Client Advanced Edition
for iSeries.

Important: In this section, the solution to shorten the temp directory is shown in detail for
WebSphere Development Studio client for iSeries, because this is the most complete
resolution to the problem.

256 Building SOA-based Solutions for IBM System i Platform

3. In the workplace launcher window, enter c:\temp\redbook in the workspace field and click
OK (see Figure B-2).

Figure B-2 Specifying a workspace location

4. If you have not used WebSphere Development Studio client for iSeries before, you should
see a Welcome page. Click X to close the Welcome page as shown in Figure B-3.

Figure B-3 Closing a Welcome page

5. Click the Open perspective icon on the right-hand side (see Figure B-4) or go to
Window → Open Perspective.

Figure B-4

6. Select Other.

7. In the Select Perspective window, select Web and click OK.

Note: In the event that WebSphere Development Studio client for iSeries is already
started, proceed to step 5 on page 257.

Appendix B. URI length limit of 259 characters on Windows 257

8. In the Servers view, right-click the WebSphere 6.0 server (you might have a different
name in your environment) and select Start as shown in Figure B-5.

Figure B-5 Starting the server

9. In the Servers view, you should see the Starting message for 3 to 5 minutes (see
Figure B-6).

Figure B-6 The server is starting

258 Building SOA-based Solutions for IBM System i Platform

10.After the WebSphere 6.0 Server is started, you should see the Started status in the server
view (see Figure B-7).

Figure B-7 The server is started

11.In the Server view, right-click the WebSphere 6.0 server and select Run administrative
console (see Figure B-8).

Figure B-8 Opening the administrative console

Appendix B. URI length limit of 259 characters on Windows 259

12.Double-click Admin Console window to expand it (see Figure B-9).

Figure B-9 Expanding the window

13.In the Admin Console window, enter a user name (any name will work) and click Log in
(see Figure B-10).

Figure B-10 Logging in

260 Building SOA-based Solutions for IBM System i Platform

14.Expand Servers by clicking the plus (+) sign and select Application Servers (see
Figure B-11).

Figure B-11 Accessing your server configuration

15.Select server1 under Application Servers as shown in Figure B-12.

Figure B-12 Selecting server1

Appendix B. URI length limit of 259 characters on Windows 261

16.Expand Java and Process Management by clicking the plus sigh (+) under Server
Infrastructure. Click Process Definition (see Figure B-13).

Figure B-13 Opening Process Definition

262 Building SOA-based Solutions for IBM System i Platform

17.Select Java Virtual Machine under Additional Properties as shown in Figure B-14.

Figure B-14 Opening JVM™ properties

Appendix B. URI length limit of 259 characters on Windows 263

18.In the Generic JVM arguments, enter -Dworkspace.user.root=C:/a and click Apply as
shown in Figure B-15. The directory you specify must match the directory that you created
in step 1 on page 256.

Figure B-15 Changing JVM arguments

19.Click Save on the next window to save the changes (see Figure B-16).

Figure B-16 Saving WebSphere profile configuration

264 Building SOA-based Solutions for IBM System i Platform

20.Click Save on the next panel (see Figure B-17).

Figure B-17

21.Click Logout to exit the Admin Console window as shown in Figure B-18.

Figure B-18 Logging out

22.Click X to close the Admin Console window (see Figure B-19).

Figure B-19 Closing the window

Appendix B. URI length limit of 259 characters on Windows 265

23.In the Servers view, right-click WebSphere 6.0 server and select Restart → Start (see
Figure B-20).

Figure B-20 Restarting the server

24.Wait until the server status changes to Started (see Figure B-21).

Figure B-21 The server is restarted

266 Building SOA-based Solutions for IBM System i Platform

Appendix C. Useful tools

This chapter examines some of the advanced topics for application debugging on System i. It
includes the following topics:

� SOAP monitoring utility
� Security testing for Web services
� WebSphere Development Studio client for iSeries debugger

C

© Copyright IBM Corp. 2007. All rights reserved. 267

SOAP monitoring utility
In the previous chapters, we showed how to generate the Service Provider or Service
Consumer. While testing the interaction, nothing happens between the services or, worse yet,
you get exceptions or Web services faults. In this section, we articulate a sequence of steps
to help with problem determination of the service interaction. This problem determination
should prove helpful for both the Service Consumer or Service Provider scenarios.

In the course of the development of Web services, it became apparent that seeing the
messages exchanged between the Service Provider and Service Consumer is necessary to
assist in debugging technical problems.

There are several SOAP utilities that you can use to monitor the messages between service
provider and service consumer. In the next sections, we focus on the TCPMON utility offered
as a free download from:

http://www.apache.org

You can use the TCPMON utility for the following issues:

� Response timeout
� Web service faults that seem network related
� Service end-point interface that seems incorrect
� Examine the SOAP message being exchanged between the Consumer/Provider
� Determine if encryption of messages are occurring within the SOAP packet

Download Apache TCPMON binary
TCPMON is a java based utility that can be downloaded from the following location:

http://ws.apache.org/commons/tcpmon/download.cgi

You do not need to run the utility on the Consumer or the Provider. You can run it on any
GUI-based client and use it as mediator to examine the exchanging of the messages.
TCPMON requires a version of JDK™ to run the utility. Follow these steps:

1. Extract the contents of the compressed file to a temporary directory.

268 Building SOA-based Solutions for IBM System i Platform

http://ws.apache.org/commons/tcpmon/download.cgi
http://www.apache.org

2. Select to execute ..\tcpmon-1.0-bin\build\tcpmon.bat (see Figure C-1).

Figure C-1 TCPMON Utility

3. Click the Admin tab. Enter the values Target Hostname and Target Port # which can be
determined from the WSDL file (For further information about Service Endpoint review
5.2.9, “Modifying the Web service Client URI” on page 62). Click Add (see Figure C-2).

Figure C-2 TCPMON Admin tab

Appendix C. Useful tools 269

4. Select the new listener tab (see Figure C-3) that was created to monitor SOAP packets as
they are routed through the TCPMON SOAP utility.

Figure C-3 TCPMON SOAP Listener

5. Adjust any Web service client service endpoint interface to point at the listener port and
server that you defined in the previous step. (You should use the host name of the system
where you run TCPMON and the port number that you specify on the Admin tab. In our
example, it is 10480.)

– JSP test client - 10.1.3, “Creating JSF Web service client using Web Service
Component” on page 231

– RPG Client - 9.2.2, “Examining the WSDL document” on page 198
– Web Services Explorer on WebSphere Development Studio client for iSeries as shown

in the next steps

270 Building SOA-based Solutions for IBM System i Platform

6. Using WebSphere Development Studio client, right click any WSDL document and select
Web services → Test with Web services Explorer (see Figure C-4).

Figure C-4 Web services Explorer

7. On Web services Explorer select Add (see Figure C-5).

Figure C-5 Web services Explorer

Appendix C. Useful tools 271

8. Enter the URL to route though TCPMON Listener and click Go (see Figure C-6).

Figure C-6 Configure TCPMON as EndPoint for Web service

9. Select the Web service operation in the Operations tab as shown in Figure C-7.

Figure C-7 Service Operations

10.Enter the appropriate values as required for your Web service operation and click Go (see
Figure C-8).

Figure C-8 Invoking Web service

272 Building SOA-based Solutions for IBM System i Platform

11.Examine the TCPMON Trace for details (see Figure C-9).

Figure C-9 TCPMON SOAP Listener Information

TCPMON uses in debugging services problems
A TCPMON trace information is actually hitting the wire, and this is helpful if you are unsure
whether the service client is getting to the provider. It also responds back through the
TCPMON utility indicating the complete flow of Web service interaction.

TCPMON can also be used in a case where some Service Clients are working and other
Service Clients are not working. For example, say a new RPG Web service Consumer was
generated with the IBM Web Services Client for ILE and the generated code is not working.
However, the JSP or Web services Explorer client is working successfully. Capturing
TCPMON packets for both clients might indicate why one service is working and the other
service is failing.

TCPMON uses for security
Security is a concern in an SOA implementation. Many times message and information within
the message might need to be encrypted or authenticated. Much the security discussions are
beyond the scope of this book. However, if you need to verify that your message has been
encrypted, use the same steps as described in “TCPMON uses in debugging services

Appendix C. Useful tools 273

problems” on page 273. You can view the packets to determine whether the information was
indeed encrypted.

WebSphere Development Studio client - debugger
In the development of existing applications including RPG and COBOL acting as service
provider or service consumer a useful tool is the debugger built into WebSphere
Development Studio client. The debugger allows you to step line by line through the RPG
code as it is interacted within a services model.

Using the WebSphere Development Studio client debugger
In this section, we demonstrate how to use the host application debugger. We show this using
the Web services client RPG application that we described in Chapter 9, “IBM Web Services
Client for ILE (RPG, C, C++, COBOL)” on page 195, a service client written in RPG was
demonstrated in detail. Follow these steps:

1. Open the Remote Systems Explorer perspective with Window → Open Perspective →
Other (see Figure C-10).

Figure C-10 Switch perspective

Note: In this section we use RPGCODE/RPGTEST program to demonstrate debugging
technique. You need to replace this name with your program’s name as you perform
debugging activity.

274 Building SOA-based Solutions for IBM System i Platform

2. Select Remote System Explorer and click OK (see Figure C-11).

Figure C-11 Remote System Explorer

3. Expand System i → iSeries Objects, right-click Library list, and select Add Library List
Entry (see Figure C-12).

Figure C-12 Add Library List

Appendix C. Useful tools 275

4. On the Add Library List Entry frame, enter the library of source code in the Additional
Library field (see Figure C-13) and click OK.

Figure C-13 Library List Entry

5. In Remote Systems Explorer frame expand into the library that contains, in our example,
the QRPGLESRC source file. This file includes the RPG source code member.

6. Right-click the RPG source member and select Compile (Prompt) → CRTRPGMOD (see
Figure C-14).

Figure C-14 Compile RPG

276 Building SOA-based Solutions for IBM System i Platform

7. Select *ALL in the Debugging views field and click OK (see Figure C-15).

Figure C-15 Include Debug Code

8. Repeat the steps 9.2.7, “Compiling C modules and Create service program” on page 217
to complete the generating the client code.

9. Using WebSphere Development Studio client, right-click the source code library and
select Refresh.

Appendix C. Useful tools 277

10.Right-click RPGTEST → Debug (Service Entry) → Set Service Entry Point (see
Figure C-16).

Figure C-16 Set Service Entry Point

Figure C-17 STRDBGSVR

11.On the 5250 panel in which the debug server is running, issue the command CALL
RPGTEST/RPGTEST.

Attention: A warning might appear indicating that you need to start the debug server
on the System i host (Figure C-17). Open a 5250 session your System i platform and
issue the command STRDBGSVR. After Debug Server starts repeat the previous step.

278 Building SOA-based Solutions for IBM System i Platform

12.Immediately switch back to WebSphere Development Studio client. The application will
switch to the debugger perspective after the application is called from 5250 (see
Figure C-18).

Figure C-18 Debugger for System i - RPG

13.Use the buttons shown in Figure C-19 to debug the application (there are Play, Terminate,
Step Into, Step Over, and Step Return buttons).

Figure C-19 Debugger buttons

Appendix C. Useful tools 279

280 Building SOA-based Solutions for IBM System i Platform

Appendix D. Additional material

In this appendix, we describe the additional material that we refer to in this book which you
can download from the Internet.

Locating the Web material
The Web material that is associated with this book is available in softcopy on the Internet
from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247284

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG247284.

Using the Web material
The additional Web material that accompanies this book includes the following files:

File name Description
flght400.zip zipped 2 SAVF files

How to use the Web material
Create a subdirectory (folder) on your workstation, and decompress the contents of the Web
material zipped file into this folder. FTP the two SAVF files to your i5/OS server, using binary
transfer.

Use RSTLIB commands on your i5/OS server to create two libraries:

RSTLIB SAVLIB(FLGHT400) DEV(*SAVF) SAVF(<your LIB name>/FLGHT400)
RSTLIB SAVLIB(FLGHT400M) DEV(*SAVF) SAVF(<your LIB name>/FLGHT400M)

D

© Copyright IBM Corp. 2007. All rights reserved. 281

ftp://www.redbooks.ibm.com/redbooks/SG247284
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

282 Building SOA-based Solutions for IBM System i Platform

Related publications

We consider the publications that we list in this section particularly suitable for a more
detailed discussion of the topics that we cover in this book.

IBM Redbooks publications
For information about ordering these publications, see “How to get IBM Redbooks
publications” on page 284. Note that some of the documents that we reference here might be
available in softcopy only.

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� Patterns: SOA Foundation - Business Process Management Scenario, SG24-7234

� Enabling SOA Using WebSphere Messaging, SG24-7163

� Patterns: SOA Client - Access Integration Solutions, SG24-6775

Other publications
These publications are also relevant as further information sources:

� Web services Platform Architecture, by Sanjiva Weerawarana, Francisco Curbera, Frank
Leymann, Tony Storey, Donald F. Ferguson, ISBN 0-13-148874-0 (Pearson Education)

� Real World Web services, by Will Iverson, ISBN 0-596-00642-X (O’Reilly Media)

� Understanding SOA with Web services, by Eric Newcomer, Greg Lomow, ISBN
0-321-18086-0 (Pearson Education)

Online resources
These Web sites and URLs are also relevant as further information sources:

� SOA introduction

http://www-128.ibm.com/developerworks/architecture/roadmap/#2

� developerWorks: SOA and Web services

http://www-128.ibm.com/developerworks/webservices

� Wikipedia: Service-oriented architecture

http://en.wikipedia.org/wiki/Service-oriented_architecture

� System i Developer Roadmap: End to End Demo

http://www-03.ibm.com/servers/enable/site/ideveloper_j2ee/etoe/index.html

© Copyright IBM Corp. 2007. All rights reserved. 283

http://www-128.ibm.com/developerworks/architecture/roadmap/#2
http://www-128.ibm.com/developerworks/webservices
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www-03.ibm.com/servers/enable/site/ideveloper_j2ee/etoe/index.html

� WebFacing Deployment Tool with HATS Technology

http://www-306.ibm.com/software/awdtools/wdht/about/faq.html

� Web Services Client for ILE introduction

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzamj/rz
amjwebservicesintro.htm

� PHP Web site

http://www.php.net/

� i5/OS PHP Enabling Technology

http://www.zend.com/products/zend_core/zend_for_i5_os

How to get IBM Redbooks publications
You can search for, view, or download IBM Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

284 Building SOA-based Solutions for IBM System i Platform

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-306.ibm.com/software/awdtools/wdht/about/faq.html
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzamj/rzamjwebservicesintro.htm
http://www.php.net/
http://www.zend.com/products/zend_core/zend_for_i5_os

Index

Symbols
.Net 7

Numerics
5250 session 155
5250W 129
5722-JC1 35
5722JC1 39
5722JV1 39
5722SS1 39
5722WDS 39
5733XT1 196

A
adapter 15
Analyze the existing application 36
Apache 173
Application Modernization 36
architecture 4
asynchronous communication 21
asynchronous Web service 15
Axis SOAP engine 21

B
Basic Profile 24
Basic Profile standard 21
BPEL 15
broker 24
Business driven reasons to consider SOA 8
business needs 8
Business Process Execution Language 15
business requirement 12
business task 12

C
callable functions 37
Changing a JMX connection with a server 250
Choreography Description Language 15
COBOL 196
com.ibm.as400.access.AS400JDBCDriver 87
complex data type 188
connect macro 130
connection pooling 130
Consuming the GETFLIGHTINFOServices WebSphere
Web service 246
Consuming the ProgramCall PHP Web service 245
CORBA 7
Creating a DB2 stored procedure 95
Creating a dynamic Web Project 80
Creating a Faces JSP page 232
Creating a HATS project 126
Creating a PHP Web service to wrapper a program call

© Copyright IBM Corp. 2007. All rights reserved.
187
Creating a simple Web service from PHP 182
Creating a Web service with PHP 180
Creating an SQL statement 84
Creating and building an SQL stored procedure 96
Creating DB2 UDB Web services 75
Creating page template 224
Creating the DADX file 87
Creating the DADX file and generate the Web service
104
Creating the integration object 158
CRTCMOD 217
Cumulative Group PTF 39

D
DAD 78
DADX 78
DADX approach 78
DADX file 79–80

call to a stored procedure 79
delete 79
insert 79
query 79
update 79

DADX group 78
DAMP 173
data macro 130
Database Server 81
DB2 connection setup 83
DB2 system 86
DB2 Web services architecture 77
DB2 Web services solution 77
DB2 XML Extender 77–78

Query 78
Storage 78

Defining a connection to the i5/OS server 41
Deploying a Web service to WebSphere Application Serv-
er for i5/OS 61
Deploying the Web services 104
Designing an SOA solution 12
Developing a DB2 UDB Web service 80
Developing a HATS Web service 126
Developing a JSF client 220
direct JDBC™ connection 77
disconnect macro 130
Display logic 36
DOCTYPEs 173
Document Access Definition 78
Document Access Definition Extender 78

E
EAR 256
EJB Web service 21
Enterprise Application Project 256
 285

essentially stateless procedure 36
Exporting an EAR file 63
Exporting WSDL document 71
external stored procedure 76

F
FindCustomers 70
firewalls 21
Flight400

From legacy to SOA 30
Flight400 application 28
FTP 19, 21

G
Generating the Web service based on the DADX file 90
GetFlightInfo 70
Group PTFs 39

H
HATS 115

Connection pooling 155
Creating the integration object 158
Creating Web service 163
Creating Web service support files 160
Enabling pooling 155
Setting Connection Properties 155
Testing Web service 165

HATS Web service 116
Host Servers 39
How PHP works 172
HTML template 176
HTTP 21
HTTP over TLS 25
HTTP ports 21
HTTP State Management Mechanism 25
HTTP transport protocol 18

I
IBM Developer Kit for Java 39
IBM Personal Communications 131
IBM Toolbox for Java 35, 39
IBM Web Services Client for ILE 195, 273
IDE 18
ILE architecture 76
Importing the DB2 connection 83
Installing PEAR packages 180
Installing Web services application on System i platform
64
Integration Object names 126
Internet X.509 Public Key Infrastructure Certificate and
CRL Profile 25

J
Java Messaging Service 21
Java proxy 21
Java SDK 1.4 256
JavaBean 14, 158

JavaServer Faces 219
JAX-RPC API 219
JDBC driver 86
JMS 19, 21
JMS queue 21
JMS sender 21
JMX™ connection 249
JSF 219
JSF Web service 219
JSP Web service client 60

K
Key characteristics of SOAP 19

L
LAMP 173
locking a record 37
loose coupling 7

M
Macro names 126
Macro prompt and extract names 126
MAMP 173
manual creation of WSDL file 24
MDB 21
message confidentiality 38
message integrity 38
message-driven EJB 21
Model-View-Controller 177
Modifying the Web service Client URI 62
Modifying the WSDL document 61
modular code 18
monolithic application 36
Moving WSDL file to the server 200
MVC 177
mySQL 173

N
NFS400.SRVPGM 71
NuSOAP 180

O
Opening Remote System Explorer perspective 41
open-source language 172
optimistic locking 37
ORB bootstrap port 249

P
PEAR 179
PEAR SOAP Extension 180
PHP 172

Accessing DB2 UDB and i5/OS resources 178
Hypertext preprocessor 172

PHP Extension and Application Repository 179
PHP file 172
PHP function 176

286 Building SOA-based Solutions for IBM System i Platform

PHP module 172
PHP SOAP implementations 180
PHP Web services client 242
process choreography 15
ProgramCall 35
ProgramCall bean example 40
programmatic interface 24
Project Explorer 81
Project investments in developing a service 36

Q
QDSPSGNINF 135
Qshell 39

R
Rational Product Updater 197
Recording a connect macro 131
Recording a data macro 140
Recording a disconnect macro 154
Recording macros 130
Redbooks Web site 284

Contact us xi
remote method invocation 249
remote procedure call 19
response message 21
Reviewing the Generated Web service and Web service
client code 59
REXX procedure 76
RMI 249
RPC 19
RPG 196
RPG as a Web service Client 196
RPG OPM 76

S
Sample scenario 27
Screen Recognition Criteria 142
Secure Sockets Layer 25
server-side scripting language 173
Service Broker 4
Service Consumer 268
Service Provider 4, 268
Service Requestor 4
Service-Oriented Architecture 4

Business-related example 5
Complex parameter 14
Creating SOA applications from services 15
Data type 14
Identifying business function 12
Implementation 6
Interaction 15
Introduction 4
Loose coupling 7
primitive data types 14
programming language specific data types 14
Quality of services 8
Reuse 7
security considerations 15

Service design considerations 14
service-level agreement 8
Simple parameter 14
String parameter 14
Today’s uses of services 13

Setting up the DB2 connection 81
single message authentication 38
Sitepoint 177
skeleton 24
Smarty 177
SMTP 19, 21
SOA characteristics 6
SOA from a business perspective 8
SOA-compliant application design 12
SOAP 19

protocol-independent 19
Web services messaging layer 19

SOAP API 14, 20
SOAP body 19
SOAP client 21
SOAP client proxy 20
SOAP connector port 249
SOAP envelope 19
SOAP Headers 19
SOAP message 18–19
SOAP messaging 38
SOAP monitoring utility 267
SOAP request 20
SOAP server 18
SQL result set 37
SQL statement 79
SQL stored procedure 76
SQL-based access 78
SQL-based operation 79
SQL-based query 79
SSL 21, 25
Starting a Web service application 68
Starting WebSphere Development Studio Client for iSer-
ies 40
stateful Web service 15
stateless Web service 15
stored procedure 76
stub 24
synchronous Web service 15

T
TCPMON 268
TCPMON binary 268
TCPMON uses for security 273
TCPMON uses in debugging services problems 273
Template 176
Testing RPG Web service 48
Testing the JSF Web service client 239
text format 223
TLS 25
Transport Layer Security 25

U
UDDI 24

 Index 287

Universal Description, Discovery, and Integration 24
URI 18
URI length limit of 259 characters on Windows 255
Using Zend Studio for i5/OS to create Web services cli-
ents 242

V
variable length list 37

W
WAMP 173
WDHT 129
WDSL 18
Web service client 21
Web service implementation 22
Web service location 22
Web service Test Client 57
Web services 6

Development Environment 38
Web Services Client for ILE 195–196, 204, 209, 211,
218, 273

Compiling RPG 216
Creating an RPG program to invoke a Web service
204
Creating service program 217
Development Environment 196
Generate WSDL artifacts 204
ProgramCall bean example 197

Web services contract 23
Web services Definition Language 18
Web services description 22
Web services discovery - UDDI 24
Web services in production 38
Web services Inspection Language 24
Web services Object Runtime Framework 77, 79
Web services prototype 38
Web services response 21
Web services technologies 18
Web services transport 21
Web services URL 22
Web services wizard 21
Web Site Navigation 225
WebFacing Deployment Tool with HATS Technology
129
WebSphere Administrative Console 40
WebSphere Application Server 256
WebSphere Application Server port 22
WebSphere Development Studio client debugger 274
WebSphere Development Studio client for iSeries
18–19, 21–22, 25, 38, 40–41, 59, 64, 68, 71–72, 77,
80–81, 84, 86–87, 96, 106, 112, 126, 198, 204, 216, 220,
239–240, 250, 255–257, 267, 270
WebSphere profile 64
WebSphere SOAP engine 21
WebSphere Test Environment 256
WebSphere Web services engine 21
WORF 77, 79

SQL-based access 78
WS-BPEL 15

WS-CDL 15
WSDL 22
WSDL file 23
WS-I SOAP Basic Profile 93
WSIL 24
WS-Security 38

X
XAMPP 173
XML document 14
XML Schema 25
XML Toolkit for iSeries 195
XML-based access to DB2 78

Y
yellow pages 24

Z
Zend 172
Zend Core 177

SOAP Cache 181
Zend Engine 172
Zend Guard 177
Zend Platform for i5/OS 177
Zend Studio 177
Zend Studio for i5/OS

Inspectors 242
Zend Studio for i5/OS WSDL Generator 180

288 Building SOA-based Solutions for IBM System i Platform

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Building SOA-based Solutions for IBM
 System

 i Platform

Building SOA-based Solutions for IBM

System
 i Platform

Building SOA-based Solutions for
IBM

 System
 i Platform

Building SOA-based Solutions for IBM
 System

 i Platform

Building SOA-based Solutions for
IBM

 System
 i Platform

Building SOA-based Solutions for
IBM

 System
 i Platform

®

SG24-7284-00 ISBN 0738486485

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Building SOA-based Solutions
for IBM System i Platform
Implementing
service-oriented
architecture (SOA)
with Web services

Examples of Web
services based on
ProgramCall, HATS,
PHP, and Web
Services Client for ILE

Excellent starting
point for System i
developers on Web
services

There is a strong shift in the industry toward reuse of the existing
software and hardware resources within the companies to minimize
the IT cost. Instead of creating or buying a new solutions, companies
are trying to build a set of reusable software components based on the
existing applications. These components can be quickly assembled in
many different ways to satisfy the business needs of the companies.

This environment is based on service-oriented architecture (SOA) and
solutions that support business process automation.

This book provides the detailed information about multiple ways for
building SOA-based solutions around the System i platform. The
discussion in the book covers the server and client side
implementations that include:

� ProgramCall in IBM Toolbox for Java
� Host Access Transformation Services (HATS)
� DB2 Web services
� PHP
� IBM Web Services Client for ILE
� Java-Server Faces (JSF)

Parts of the book are appropriate for CIOs, system architects, and
application developers.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 SOA: Understanding the big picture
	Chapter 1. SOA overview
	1.1 A simple definition of SOA
	1.1.1 Defining SOA

	1.2 Introducing services
	1.2.1 A coffee making machine based upon services
	1.2.2 A non-technical but business-related example

	1.3 SOA characteristics
	1.3.1 Implement SOA in many different ways
	1.3.2 Take advantage of loose coupling
	1.3.3 Continue to use the existing applications
	1.3.4 Implement quality of services

	1.4 SOA from a business perspective
	1.4.1 Reasons to consider SOA
	1.4.2 SOA is not always a perfect fit

	1.5 Further reading
	1.5.1 IBM Redbooks publications
	1.5.2 Web sites

	Chapter 2. SOA application design
	2.1 Designing an SOA solution
	2.1.1 Designing services

	Chapter 3. Web services technology stack
	3.1 Web services technologies in action
	3.2 SOAP: Web services messaging layer
	3.3 Web services transport
	3.4 Web services description: WSDL
	3.5 Web services discovery: UDDI
	3.6 Basic Profile
	3.7 Summary

	Chapter 4. Sample scenario
	4.1 Introducing the existing environment
	4.1.1 Overview of the Flight400 application

	4.2 Facing new challenges
	4.2.1 New opportunities
	4.2.2 Technical issues to address
	4.2.3 Flight400: From monolithic System i application to SOA

	4.3 Conclusion

	Part 2 Implementing the service provider
	Chapter 5. ProgramCall (RPG, Cobol) Web service
	5.1 Project investments in developing a service
	5.1.1 Analyzing the existing application
	5.1.2 Time frame
	5.1.3 Development environment
	5.1.4 Deployment environment

	5.2 ProgramCall bean example
	5.2.1 Starting WebSphere Development Studio client for iSeries
	5.2.2 Opening Remote System Explorer perspective
	5.2.3 Defining a connection to the i5/OS server
	5.2.4 Reviewing the RPG modules
	5.2.5 Creating and testing RPG Web service
	5.2.6 Testing the Web service Test Client
	5.2.7 Reviewing the generated Web service and Web service client code
	5.2.8 Deploying your Web service to WebSphere Application Server for i5/OS
	5.2.9 Modifying the Web service Client URI
	5.2.10 Exporting the Web service EAR file
	5.2.11 Installing Web services application on System i platform
	5.2.12 Starting your Web service application
	5.2.13 Testing the Web service on System i
	5.2.14 Adding additional Web services: GetFlightInfo and FindCustomers

	5.3 Exporting WSDL document (Optional)
	5.4 Summary

	Chapter 6. DB2 UDB Web service
	6.1 Reasons to use DB2 UDB based Web services
	6.1.1 Get a feeling for the technology
	6.1.2 If you cannot modernize the whole application
	6.1.3 There are strong SQL resources available
	6.1.4 You have invested in developing stored procedures

	6.2 Introducing the concepts and terminology
	6.2.1 DB2 Web services architecture overview
	6.2.2 XML-based access and Document Access Definition (DAD)
	6.2.3 SQL-based access and Document Access Definition Extender (DADX)
	6.2.4 Web services Object Runtime Framework (WORF)
	6.2.5 Additional information about DB2 Web services

	6.3 Developing a DB2 UDB Web service
	6.3.1 Creating a dynamic Web Project for the application
	6.3.2 Setting up the DB2 connection
	6.3.3 Importing the connection
	6.3.4 Creating an SQL statement
	6.3.5 Configuring the DADX Group
	6.3.6 Creating the DADX file
	6.3.7 Generating the Web service based on the DADX file
	6.3.8 Testing the Web service

	6.4 Creating a DB2 stored procedure
	6.4.1 Setting up the environment
	6.4.2 Creating and building an SQL stored procedure
	6.4.3 Creating the DADX file and generate the Web service based on it

	6.5 Deploying the Web services
	6.5.1 Modifying the WSDL file
	6.5.2 Exporting the EAR file
	6.5.3 Installing the application on WebSphere Application Server
	6.5.4 Testing Web services on the production server

	Chapter 7. HATS Web service
	7.1 Project investments in developing a service
	7.1.1 Analyzing an existing application
	7.1.2 Naming conventions

	7.2 Developing a HATS Web service
	7.2.1 Creating a HATS project

	7.3 Recording macros
	7.4 Setting connection properties
	7.4.1 Enabling pooling

	7.5 Creating the integration object
	7.6 Creating Web service support files
	7.7 Creating Web service
	7.8 Testing the Web service
	7.9 Next step
	7.10 Summary

	Chapter 8. PHP Web service
	8.1 Introducing PHP
	8.2 Technology overview
	8.2.1 How PHP works
	8.2.2 What is needed to use PHP
	8.2.3 There is more than one way to say “Hello, World”

	8.3 PHP on the System i platform
	8.3.1 Zend Core for i5/OS
	8.3.2 PHP version and availability
	8.3.3 Accessing DB2 UDB and i5/OS resources
	8.3.4 Support for Zend products on i5/OS

	8.4 The PHP Extension and Application Repository
	8.4.1 Why PEAR important for you
	8.4.2 Installing PEAR packages
	8.4.3 Further information on PEAR

	8.5 Creating a Web service with PHP
	8.5.1 PHP SOAP implementations
	8.5.2 Zend Studio for i5/OS WSDL Generator
	8.5.3 SOAP cache
	8.5.4 Creating a simple Web service from PHP
	8.5.5 Creating a PHP Web service to wrapper a program call

	Part 3 Implementing Service Consumer
	Chapter 9. IBM Web Services Client for ILE (RPG, C, C++, COBOL)
	9.1 RPG as a Web service Client
	9.1.1 Development environment

	9.2 ProgramCall bean example
	9.2.1 Opening the J2EE Perspective
	9.2.2 Examining the WSDL document
	9.2.3 Moving the WSDL file to the server
	9.2.4 Using Web Services Client for ILE to generate WSDL artifacts
	9.2.5 Creating an RPG program to invoke a Web service
	9.2.6 Compiling RPG
	9.2.7 Compiling C modules and Create service program
	9.2.8 Invoking the RPG application to make reservation

	Chapter 10. JSF Web service client
	10.1 Developing a JSF client
	10.1.1 Creating a dynamic Web project
	10.1.2 Creating a page template
	10.1.3 Creating JSF Web service client using Web Service Component
	10.1.4 Testing the JSF Web service client

	10.2 Summary

	Chapter 11. PHP Web service client
	11.1 Consuming a Web service with PHP
	11.1.1 Using Zend Studio for i5/OS to create Web services clients
	11.1.2 Consuming the Repeater PHP Web service

	11.2 Consuming the ProgramCall PHP Web service
	11.2.1 Consuming the GETFLIGHTINFOServices WebSphere Web service

	Appendix A. Setting the connection to WebSphere Application Server V6.0
	Changing a JMX connection with a server

	Appendix B. URI length limit of 259 characters on Windows
	Issue
	Cause
	Solution

	Appendix C. Useful tools
	SOAP monitoring utility
	Download Apache TCPMON binary
	TCPMON uses in debugging services problems

	TCPMON uses for security
	WebSphere Development Studio client - debugger
	Using the WebSphere Development Studio client debugger

	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

