
ibm.com/redbooks

Front cover

z9-109 Crypto and TKE
V5 Update

Patrick Kappeler
Lennie Dymoke-Bradshaw

Pekka Hanninen

The enhanced CPACF functions of
System z9, with code samples

The Accelerator mode of the
Crypto Express 2 card

The new TKE Version 5

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

z9-109 Crypto and TKE V5 Update

December 2005

SG24-7123-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2005)

This edition applies to Version 5, Release 0 of the TKE Workstation and to FMID HCR7730 of the z/OS
Integrated Cryptographic Service Facility (ICSF).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author .x
Comments welcome. .x

Chapter 1. Introduction and overview . 1
1.1 Cryptographic function support in System z9 . 2
1.2 Overview of the cryptographic processors . 2

1.2.1 CP Assist for Cryptographic Function (CPACF) . 2
1.2.2 Crypto Express 2 Coprocessor (CEX2C) . 3
1.2.3 Crypto Express 2 Accelerator (CEX2A) reconfiguration . 4
1.2.4 Configuration data. 5
1.2.5 z990 cryptographic feature codes. 6
1.2.6 TKE workstation feature . 6

1.3 Cryptographic features comparison . 7
1.4 Software requirements . 8

Chapter 2. CPACF enhancements in System z9 . 13
2.1 CPACF hardware implementation. 14

2.1.1 Confirmation that CPACF is available in the system. 14
2.2 Invocation of the new CPACF functions . 15

2.2.1 What the Message-Security Assist instructions do . 17
2.3 Calling the CPACF via ICSF services . 18
2.4 The implications of using clear keys . 19

2.4.1 What about RACF protection? . 20
2.5 Some facts about AES . 20

2.5.1 Who developed AES?. 20
2.5.2 Why do we need AES? . 20

2.6 What is SHA-256?. 21
2.7 Logical partitioning considerations . 21
2.8 Performance reporting . 21
2.9 Testing the new CPACF functions . 22

2.9.1 Encryption and Decryption using KMC-AES-128 . 22
2.9.2 Encryption and Decryption using ICSF . 22
2.9.3 Generation of an SHA-256 hash value using KLMD. 22
2.9.4 Generation of an SHA-256 hash value using ICSF. 22

Chapter 3. The Crypto Express 2 Coprocessor . 25
3.1 Overview of the Crypto Express 2 Coprocessor . 26

3.1.1 The coprocessor hardware implementation . 26
3.1.2 Crypto Express 2 cryptographic functions and coprocessor software layers 29
3.1.3 Physical status of the Crypto Express 2 feature . 30

3.2 Reconfiguration of the coprocessor to accelerator . 32
3.3 Logical partitioning considerations for System z9 . 39
3.4 Crypto Express 2 performance . 42

© Copyright IBM Corp. 2005. All rights reserved. iii

Chapter 4. ICSF overview, support for CEX2A and sysplex . 45
4.1 ICSF releases . 46
4.2 Highlights of ICSF HCR7730 . 48
4.3 System z9 and Crypto hardware support . 48

4.3.1 CEX2A support . 49
4.4 Enhanced key management for clear DES and AES keys . 49
4.5 Sysplex support. 52

4.5.1 Sysplex support prior to ICSF HCR7730 . 52
4.5.2 Sysplex support with ICSF HCR7730 . 54
4.5.3 How the new CKDS sysplex sharing works . 55
4.5.4 How we tested the HCR7730 new sysplex support . 57
4.5.5 Updates to the CKDS using KGUP. 58
4.5.6 Messages during ICSF startup and shutdown . 59
4.5.7 Multiple CKDS data sets in the sysplex . 60
4.5.8 Options for sharing the CKDS data set . 61
4.5.9 Changing the Master Key in a sysplex . 62
4.5.10 Managing the PKDS data set . 62
4.5.11 Other sysplex support changes . 63

Chapter 5. User Defined Extensions (UDX) . 67
5.1 Refresher on the UDX implementation . 68

5.1.1 The UDX callable service and the stub . 69
5.2 The UDX on System z9. 71
5.3 Initial load and activation of the UDX . 71

5.3.1 Installation of the UDX . 71
5.3.2 UDX activation . 72

5.4 UDX microcode update process . 73

Chapter 6. TKE V5.0 overview and setup . 75
6.1 About the TKE workstation . 76
6.2 TKE V5.0 overview . 77

6.2.1 TKE V5.0 hardware. 77
6.2.2 TKE software levels . 78
6.2.3 TKE V5.0 installation. 79
6.2.4 TKE V5.0 use . 79
6.2.5 Migrating from previous TKE versions . 79

6.3 TKE V5.0 functions compared to TKE V4.2 . 82
6.3.1 Navigation . 82

6.4 TKE V5.0 installation and setup . 87
6.4.1 Setting TKE workstation time . 88
6.4.2 Cryptographic Adapter initialization. 89
6.4.3 Cryptographic Node Management and Smart Card Utility Program 91
6.4.4 TCP/IP setup. 91
6.4.5 3270 emulator configuration . 95

6.5 TKE V5.0 management . 96
6.5.1 TKE V5.0 application . 96
6.5.2 TKE Media management . 98
6.5.3 Backing up critical console data and customizing scheduled operations 101
6.5.4 Shutdown or Restart . 102

Appendix A. CPACF programs . 103
CPACF010 program. 104
REXCP010 program . 107
REXCP011 program . 108

iv z9-109 Crypto and TKE V5 Update

CPACF020 program. 110
REXCP020 program . 114
REXBOWH program . 115
REXBSYE program . 116
REXBSYED program . 118

Appendix B. Programs used in sysplex testing . 123
REXBKRC program . 124
REXBKRD program . 128
REXBKRR program . 130

Related publications . 133
IBM Redbooks . 133
Other publications . 133
Online resources . 133
How to get IBM Redbooks . 134
Help from IBM . 134

Index . 135

 Contents v

vi z9-109 Crypto and TKE V5 Update

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
eServer™
xSeries®
z/Architecture™
z/OS®
z/VM®
z/VSE™

zSeries®
z9™
CICS®
IBM®
OS/2®
OS/390®
PowerPC®
Redbooks™

Redbooks (logo) ™
RACF®
RMF™
S/390®
System z9™
VSE/ESA™

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii z9-109 Crypto and TKE V5 Update

Preface

This IBM® Redbook provides detailed information on the implementation of hardware
cryptography in the new System z9™, along with the new version of the Trusted Key Entry
(TKE) workstation that is required when a TKE is to manage System z9 cryptographic
coprocessors. It also addresses the CKDS sysplex support delivered in ICSF HCR7730,
which is not dependent on the use of a System z9.

It is expected that the reader is familiar with zSeries® hardware cryptography implementation
and the purpose and usage of the TKE workstation.

Other Redbooks™ that may help provide necessary background information are:

� Exploiting S/390 Hardware Cryptography with Trusted Key Entry, SG24-5455
� S/390 Crypto PCI Implementation Guide, SG24-5942
� zSeries Crypto Guide Update, SG24-6870
� IBM Eserver zSeries 990 (z990) Cryptography Implementation, SG24-7070

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, in the Montpellier Products and Solutions
Support Center (PSSC).

Patrick Kappeler led this redbook project. He joined IBM in 1970 as a diagnostic program
designer. He has held several specialist and management positions as well as international
assignments, all dealing with S/390® and zSeries Technical Support. He has been part of the
EMEA Products and Solutions Support Center in Montpellier (France) since 1996, where his
area of expertise is e-business Security on zSeries. He extensively writes and presents on
this topic.

Lennie Dymoke-Bradshaw has been an IT Specialist at IBM for nine years. He has had a
30- year career in mainframe computing after starting as a PL/1 applications programmer in
1975. He currently works in Integrated Technology Services delivering zSeries services and
consultancy. During his career he has maintained an interest in programming, but he also has
expertise in RACF® and JES3. In recent years he has become involved in cryptography, as
the demand for cryptography services is rising.

Pekka Hanninen is an IT specialist working with the Integrated Technology Services team in
Finland. He has 30 years of experience in IBM Large Systems software. He has worked at
IBM for nine years, and his areas of expertise include RACF, cryptography, and security
administration. He holds certificates for CISSP, CISA, and CISM.

Thanks to the following people for their contributions to this project:

Bill White
Chris Rayns
International Technical Support Organization, Poughkeepsie Center

Jean-Jacques Noguera
Alain Dalmier
Philippe Cochy
IBM European Products and Solutions Support Center (PSSC) in Montpellier

© Copyright IBM Corp. 2005. All rights reserved. ix

Jessica Bonner
Peggy Enichen
Steven Hart
Kenneth Kerr
Donyelle Mahler
IBM Systems & Technology Group, Development Crypto Test

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

x z9-109 Crypto and TKE V5 Update

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction and overview

System z9 implements enhanced functions of the cryptographic facilities already available in
z990 and z890, that is, the Crypto Express 2 (CEX2C) feature and the CP Assist
Cryptographic Facility (CPACF). This chapter introduces these facilities and their exploitation
environment on System z9, and provides miscellaneous general information on the hardware
cryptographic services available on System z9.

Note that the z990 CPACF and the PCIXCC card are described in IBM Eserver zSeries 990
(z990) Cryptography Implementation, SG24-7070.

As for the previous system implementations, the Integrated Cryptographic Service Facility
(ICSF) component of z/OS® provides the high-level API for invoking the hardware
cryptographic services.

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 Cryptographic function support in System z9
System z9 includes both standard cryptographic hardware and optional cryptographic
features for flexibility and growth capability. IBM has a long history of providing hardware
cryptographic solutions, from the development of Data Encryption Standard (DES) in the
1970s to delivering integrated cryptographic hardware in a server to achieve the US
Government's highest FIPS 140-2 Level 4 rating for secure cryptographic hardware.
Information on the FIPS 140-2 standard can be found at:

http://csrc.nist.gov/cryptval/140-2.htm

The System z9 cryptographic functions include the full range of cryptographic operations
needed for e-business, e-commerce, and financial institution applications. In addition, custom
cryptographic functions can be added to the set of functions that System z9 offers.

1.2 Overview of the cryptographic processors
Two types of cryptographic hardware features are available on System z9. These features
are usable only when explicitly enabled through Feature Code 3863, except for the CPACF
SHA-1 and SHA-256 functions, which are always enabled.

1.2.1 CP Assist for Cryptographic Function (CPACF)
Each system CP (Central Processor) has an assist processor on the chip in support of
cryptography. The CP Assist for Cryptographic Function offers a set of symmetric
cryptographic functions that enhance the encryption and decryption performance of clear key
operations for SSL, VPN, and data storing applications that do not require FIPS 140-2 level 4
security. The cryptographic architecture includes DES, T-DES, AES data encryption and
decryption, MAC message authentication, and SHA-1 and SHA-256 hashing. These
functions are directly available to application programs, because they are provided as
problem state z/Architecture™ instructions, reducing programming overhead. Alternatively,
these functions can also be called through the Integrated Cryptographic Service Facility
(ICSF) component of z/OS by an ICSF-aware application.

The following five problem-state instructions were introduced with the cryptographic assist
function of the z/990 and z/890:

� KMAC: Compute Message Authentic Code
� KM: Cipher Message

The KM instruction has been extended in System z9 to support the AES-128
encryption/decryption function.

� KMC: Cipher message with chaining
The KMC instruction has been extended in System z9 to support the AES-128 and PRNG
functions.

� KIMD: Compute Intermediate Message Digest
The KIMD instruction has been extended in System z9 to support the SHA-256 function.

� KLMD: Compute Last Message Digest
The KLMD instruction has been extended in System z9 to support the SHA-256 function.
The CP Assist for Cryptographic Function runs at System z9 processor speed, and since
the facility is available on every CP in the system, there are no affinity issues, as in earlier
CMOS processors.

Further information on the CPACF is provided in Chapter 2, “CPACF enhancements in
System z9” on page 13.

2 z9-109 Crypto and TKE V5 Update

http://csrc.nist.gov/cryptval/140-2.htm

1.2.2 Crypto Express 2 Coprocessor (CEX2C)
The optional Crypto Express 2 Coprocessor (CEX2C) comes as a PCI-X (Peripheral
Component Interconnect eXtended) pluggable feature that provides a high performance and
secure cryptographic environment. The CEX2C Cryptographic Coprocessor consolidates the
functions previously offered on the z900 by the Cryptographic Coprocessor feature (CCF),
the PCI Cryptographic Coprocessor (PCICC), and the PCI Cryptographic Accelerator
(PCICA) feature. These features are not available on System z9. The CEX2C feature
performs the following functions:

� Data encryption/decryption algorithms

– Data Encryption Standard (DES)
– Double length-key DES
– Triple length- key DES

� DES key generation and distribution

� PIN generation, verification, and translation functions

� Pseudo Random Number (PRN) Generator

� Public Key Algorithm (PKA) Facility

These commands are intended for application programs using public key algorithms,
including:

– Importing RSA public-private key pairs in clear and encrypted forms

– Rivest-Shamir-Adelman (RSA)

• Key generation, up to 2048-bit
• Signature Verification, up to 2048-bit
• Import and export of DES keys under an RSA key, up to 2048-bit

– Public Key Encrypt (CSNDPKE)

Public Key Encrypt service is provided for assisting the SSL/TLS handshake, and
when used with the Mod_Raised_to Power (MRP) function it can be used to offload
compute intensive portions of the Diffie-Hellman protocol onto the CEX2C features of
System z9.

– Public Key Decrypt (CSNDPKD)

Public Key Decrypt supports a zero-pad option for clear RSA private keys. PKD is used
as an accelerator for raw RSA private operations such as required by the SSL/TLS
handshake and digital signature generation. The zero-pad option is exploited on
Linux® to allow use of the CEX2C features of System z9 for improved performance of
the SSL/TLS handshake and digital signature generation.

– Derived Unique Key Per Transaction (DUKPT)

This service is provided to write applications that implement the DUKPT algorithms as
defined by the ANSI X9.24 standard. DUKPT provides additional security for
point-of-sale transactions that are standard in the retail industry. DUKPT algorithms
are supported on the CEX2C feature for triple-DES with double-length keys.

– Europay Mastercard VISA (EMV) 2000 standard

Applications may be written to comply with the EMV 2000 standard for financial
transactions between heterogeneous hardware and software. Support for EMV 2000
applies only to the CEX2C feature of System z9.

Other key functions of CEX2C serve to enhance the security of public/private key
encryption processing:

Chapter 1. Introduction and overview 3

� Retained key support (RSA private keys generated and kept stored within the secure
hardware boundary)

� Support for 4753 Network Security Processor migration

� User-Defined Extensions (UDX)

User-Defined Extensions to the Common Cryptographic Architecture (CCA) support
custom algorithms that execute within the CEX2C Cryptographic Coprocessor. The UDX
customized algorithm is added as specific coprocessor code built by IBM or by an
approved third party. Building a UDX is an IBM service offering performed under contract.
More information on UDX is given in Chapter 5, “User Defined Extensions (UDX)” on
page 67.

The coprocessors in the CEX2C
The CEX2C feature contains two coprocessors, or “cards”. These are PCIXCC coprocessors,
and as such the CEX2C provides equivalent functions to the PCIXCC with double the
throughput.

The CEX2C feature is designed for FIPS 140-2 Level 4 compliance rating for secure
cryptographic hardware modules. Among the many protective functions required by the
standard is that an unauthorized removal of the card or feature “zeroizes” its content to
preserve secrecy.

The CEX2C Cryptographic Coprocessor features on System z9 enable the user to do the
following, using application keys protected by a Master Key (“secure keys”):

� Encrypt and decrypt data utilizing secret-key algorithms. Triple-length key DES and
double-length key DES algorithms are supported.

� Generate, install, and distribute cryptographic keys securely using both public and
secret-key cryptographic methods.

� Generate, verify, and translate personal identification numbers (PINs).

� Ensure the integrity of data by using message authentication codes (MACs), hashing
algorithms, and Rivest-Shamir-Adelman (RSA) public key algorithm (PKA) digital
signatures.

The security-relevant portion of the cryptographic functions is performed inside the secure
physical boundary of a tamper-resistant card. Master keys and other security-relevant
information is also maintained inside this secure boundary.

1.2.3 Crypto Express 2 Accelerator (CEX2A) reconfiguration
The CEX2A is actually a CEX2C that has been reconfigured by the user to only provide a
subset of the CEX2C functions at enhanced speed. This reconfiguration is a manual process
performed at the System z9 Support Element and is described in 3.2, “Reconfiguration of the
coprocessor to accelerator” on page 32

Note that:

� The reconfiguration is done at the coprocessor level, that is, a CEX2C feature can host a
CEX2C coprocessor and a CEX2A accelerator, or two CEX2C coprocessors or two
CEX2A accelerators.

Attention: The IBM terminology might be somehow confusing here: a “card” is a
coprocessor; what is actually being plugged into the system is a “feature”.

4 z9-109 Crypto and TKE V5 Update

� The reconfiguration is working both ways, that is, from CEX2C to CEX2A, and from
CEX2A to CEX2C. Master keys in the CEX2C domains can be optionally preserved when
reconfiguring from CEX2C to CEX2A.

� The reconfiguration process is disruptive to the involved coprocessor/accelerator
operations. The coprocessor/accelerator must be deactivated at ICSF before engaging
the manual reconfiguration process.

� The FIPS 140-2 certification is not relevant to CEX2A because it is operating with clear
keys only.

� The function extension capability via UDX is not available to CEX2A.

Actually, the only functions that remain available when reconfigured into a CEX2A are the
former PCICA functions. These functions are used for the acceleration of modular arithmetic
operations, that is, the RSA cryptographic operations used with the SSL/TLS protocol:

� PKA Decrypt (CSNDPKD), with PKCS-1.2 formatting

� PKA Encrypt (CSNDPKE), with ZERO-PAD formatting

� Digital Signature Verify

The Encrypt and Decrypt RSA functions support key lengths of 512 to 2048-bit, in the
Modulus Exponent (ME) and Chinese Remainder Theorem (CRT) formats.

The maximum number of SSL transactions per second that can be supported on a System z9
by any combination of CPACF and CEX2A coprocessors is limited by the amount of cycles
available to perform the software portion of the SSL/TLS transactions. When both PCI-X
coprocessors on a Crypto Express2 feature are configured as accelerators, the Crypto
Express2 feature is designed to perform up to 6000 SSL handshakes per second. This
represents, approximately, a 3X performance improvement compared to z990 when using
either a PCI Cryptographic Accelerator (PCICA) feature or the current CEX2C feature.

In System z9, there can be a maximum of eight CEX2C features reconfigured as Crypto
Express 2 Accelerator (CEX2A).

More information on the Crypto Express 2 feature is given in Chapter 3, “The Crypto Express
2 Coprocessor” on page 25.

1.2.4 Configuration data
Table 1-1 summarizes support of partitions on System z9 for CEX2C and CEX2A.

Note: These figures indicate a throughput, that is, it is necessary to initiate several threads
of parallel requests to the CEX2A to achieve this performance.

Chapter 1. Introduction and overview 5

Table 1-1 PCI Cryptography features

1.2.5 z990 cryptographic feature codes
What follows is a list of the cryptographic features available with System z9.

Feature code Description

3863 Crypto enablement CD

Prerequisite to use the CPACF (except for SHA-1 and SHA-256) and of the
CEX2C/CEX2A hardware features. The Feature is installed once in the
system.

0863 Crypto Express 2 Coprocessor (CEX2C) feature - Also re-configurable as a
Crypto Express 2 Accelerator (CEX2A)

0859 TKE V5 hardware with Ethernet connection - Up to three features per
System z9.

TKE workstation hardware with Ethernet connection, DVD drive, and
17-inch flat panel monitor.

0855 TKE 5.0 LIC CD

0887 TKE Smart Card Reader

0888 TKE additional smart cards

1.2.6 TKE workstation feature
A TKE workstation is part of a customized solution for using the Integrated Cryptographic
Service Facility for z/OS program product to manage cryptographic keys of a System z9 that
has CEX2C features installed and intended for the use of Data Encryption Standard (DES)
and Public Key Algorithm (PKA) with secure cryptographic keys.

The TKE workstation provides secure control of the CEX2C features, including loading of
master keys.

If one or more logical partitions are customized for using CEX2C cards, the TKE workstation
can be used to manage DES master keys and PKA master keys for all cryptographic domains
of each CEX2C coprocessor defined to the TKE workstation.

Maximum
number
of
features
per
System
z9 server

Number of
cryptographic
coprocessors
or
accelerators
per feature

Maximum
number of
cryptographic
coprocessors
or
accelerators
per System z9
server

Number of
cryptographic
domains per
acceleratora
or
coprocessor

a. Although an accelerator is not using a cryptographic domain to protect a Master Key, the no-
tion of domain still exists and refers to a request /response queue that the device maintains with
a specific logical partition.

Number of
logical partitions
per System z9
server
(Defined/Active)

CEX2C 8 2 16 16 60/60

Important: You must use the TKE 5.0 workstations to control System z9. These may also
be used to control z990, z890, z900 and z800 servers. Previous TKE versions cannot be
upgraded to TKE V5 hardware.

6 z9-109 Crypto and TKE V5 Update

Each logical partition in the same physical system using a domain managed through a TKE
workstation connection is either a TKE host or a TKE target. A logical partition with TCP/IP
connection to the TKE is referred to as TKE host; all other partitions are TKE targets.

The cryptographic controls set for a logical partition, through the System z9 Support Element,
determine whether it can be a TKE host or TKE target.

More information on TKE V5.0 is given in Chapter 6, “TKE V5.0 overview and setup” on
page 75.

1.3 Cryptographic features comparison
Table 1-2 summarizes the functions and attributes of the cryptographic hardware features on
System z9.

Table 1-2 System z9 cryptographic features comparison

Functions or attributes CPACF CEX2C CEX2
A

Supports z/OS applications using ICSF X X X

Encryption and decryption using a secret-key algorithm X

Provides highest SSL handshake performance X (1)

Provides highest symmetric (clear key) encryption performance X

Provides highest asymmetric (clear key) encryption performance X

Provides highest asymmetric (encrypted key) encryption
performance

X

Disruptive process to enable (2) (2)

Requires IOCDS definition

Uses CHPID numbers

Is assigned PCHIDs X (4) X (4)

Physically embedded on each Central Processor (CP) X

Requires CPACF Enablement FC 3863 X(3) X(3) X(3)

Requires ICSF to be active X X

Offers user programming function support (UDX) X

Usable for data privacy - encryption and decryption processing X X

Usable for data integrity - hashing and message authentication X X

Usable for financial processes and key management operations X

Crypto performance RMF™ monitoring X X

Requires system master keys to be loaded X

System (master) key storage X

Retained key storage X

Tamper-resistant hardware packaging X

Chapter 1. Introduction and overview 7

Notes
1. Requires CPACF enablement. FC 3863

2. In order to make addition of CEX2C/CEX2A features non-disruptive, the logical partition
must be predefined with the appropriate PCI-X cryptographic processor number selected
in its candidate list in the partition image profile.

3. The CPACF enablement is not required for Linux if only the RSA clear key operations,
provided by CEX2C, are being used. Using the CPACF for DES or T-DES encryption
requires the CPACF to be enabled, even when invoked from Linux.

4. CEX2C/CEX2A is assigned two PCHIDs per feature (one per coprocessor or accelerator).

1.4 Software requirements
The CP Assist for Cryptographic Function (CPACF), Crypto Express 2 Coprocessor (CEX2C)
and Crypto Express 2 Accelerator (CEX2A) have specific software requirements.

The Integrated Cryptographic Service Facility (ICSF) is the support program for the
cryptographic features CPACF, CEX2C, and CEX2A. ICSF is integrated into z/OS.

A specific chapter is dedicated to the new functions of ICSF; see Chapter 4, “ICSF overview,
support for CEX2A and sysplex” on page 45.

Reminder on ICSF
Figure 1-1describes the overall hardware and software layout of the hardware cryptography in
System z9 and z/OS.

Designed for FIPS 140-2 Level 4 certification X

Supports SSL functions X X X

Supports Linux applications doing SSL handshakes X

RSA functions X X

High performance SHA-1, Hash function X

Clear key DES/T-DES X

AES 128-bit key X

Pseudo Random Number generator X X

Clear key RSA X X

Double length DUKPT support X

Europay Mastercard VISA (EMV) support X

Public Key Decrypt (PKD) support for Zero-Pad option for clear
RSA private keys)

X X

Public Key Encrypt (PKE) support for MRP function X X

Functions or attributes CPACF CEX2C CEX2
A

8 z9-109 Crypto and TKE V5 Update

Figure 1-1 Overall hardware and software layout

� The exploiters of the cryptographic services call the ICSF API. Some functions are
performed by the ICSF software without invoking the cryptographic coprocessor; other
functions result in ICSF going into routines containing the crypto instructions. The crypto
instructions to drive CEX2C are IBM proprietary and are not disclosed; the crypto
instructions to interface with CPACF are published in z/Architecture Principles of
Operation.

� These instructions are executed by a CPU engine and, if not addressing the CPACF
functions, result in a work request being generated for a cryptographic coprocessor.

� The crypto coprocessor is provided with the following:
– Data to encrypt or decrypt from the system memory.
– The key used to encrypt or decrypt provided by ICSF as per the exploiter’s request.

Note that these keys are represented as sealed envelopes here, the intent being to
stress the fact that these encryption/decryption keys are themselves encrypted and,
therefore, unusable when residing outside of the crypto coprocessor.

– Physically, these keys can be stored in ICSF-managed VSAM data sets and pointed to
by the application using the label they are stored under. The Cryptographic Key Data
Set (CKDS) is used to store the symmetric keys in their encrypted form, and the Public
Key Data Set (PKDS) is used to store the asymmetric keys. The application also has
the capability of providing an encrypted encryption key or a clear encryption key
directly in memory (that is, to use as is) to the coprocessor.

For high-speed access to symmetric cryptographic keys, the keys in the CKDS are duplicated
into an ICSF-owned data space.

ICSF releases
Cryptographic support for System z9 for z/OS V1.4 and later is made available as a Web
deliverable found at:

http://www.ibm.com/eserver/zseries/zos/downloads

The z990 Cryptographic Support was the initial download available to upgrade ICSF to
support the z990 CPACF, PCIXCC, and PCICA cryptographic hardware. This download is

TKE Workstation
(optional)

Encryption/Decryption
Key to use

Hardware Crypto

ICSF

Callable
Services
APIs

IBM Exploiters

Home Grown
Applications

z/OSRACF

Clear/Encrypted Data

? ? ??

...

....

TSO Terminal

Other systems

OPTIONS
DATA
SETCKDS PKDS

Applications' DES
keys encrypted under
the crypto Master Key

Applications' asymmetric
keys encrypted under
the crypto PKA Master Key

ICSF run-time
options

clear application key
in storage

Crypto
Express 2

Master KeyCPACF

System z9

Crypto instructions

or instructions
in the application

Chapter 1. Introduction and overview 9

not available any more but, if installed, can be upgraded via PTF to support the System z9
CEX2C (excluding CEX2A support). On May 28, 2004, this support was replaced by z990
and z890 Enhancements to Cryptographic Support.

z990 and z890 Enhancements to Cryptographic Support, if already installed, can be
upgraded via PTF to support the System z9 CEX2C (excluding CEX2A support). The
following ICSF functions were also provided by this Web deliverable:

� Double-length Derived Unique Key Per Translation (DUKPT) on PCIXCC

� EMV 2000 Standard on PCIXCC

� Public Key Decrypt (PKD) enhancements on PCICA and PCIXCC

� Public Key Encrypt (PKE) enhancements on PCICA and PCIXCC

A new Web deliverable, Cryptographic Support for z/OS V1R6/R7 and z/OS.e V1R6/R7, is
available since September 2005. It provides full support of the System z9 CEX2A and new
CPACF functions, and also supports the sharing of the CKDS in a sysplex configuration.
More information on the latest release of ICSF (ICSF HCR7730) is given in Chapter 4, “ICSF
overview, support for CEX2A and sysplex” on page 45.

Minimum software levels
The minimum cryptographic software requirements are:

� CP Assist for Cryptographic Function (CPACF):

– Excluding support for PRNG, SHA-256 and AES 128-bit

• z/OS V1.4 and later with z990 Cryptographic Support, or z990 and z890
Enhancements to Cryptographic Support

• z/VM® 4.4 and later

• Linux distributions with the most recent cryptographic libraries, found at:

http://www-124.ibm.com/developerworks/projects/libica

– With support for PRNG, SHA-256 and AES 128-bit

• z/OS V1.6 with Cryptographic Support for z/OS V1R6/R7 and z/OS.e V1R6/R7.

• z/VM 4.4 and later.

• As of the writing of this book, IBM is still working with the Linux Distributions
Partners (LDPs) to make these functions available in future Linux distributions.
Linux distributions with the most recent cryptographic libraries can be found at:

http://www-124.ibm.com/developerworks/projects/libica

� Crypto Express 2 Coprocessor (CEX2C)

– z/OS V1.4 and later with z990 Cryptographic Support, or z990 and z890
Enhancements to Cryptographic Support with APAR OA09157.
Note: CEX2A is ignored but requires APAR OA11946 to avoid having ICSF abend
when a CEX2C has been reconfigured as a CEX2A.

– z/VM V5.1 for z/OS and Linux guests

• Including dedicated queue support for secure-key and clear-key cryptographic
functions for z/OS guests

• Including shared queue and dedicated queue support for clear-key cryptographic
functions for Linux guests

10 z9-109 Crypto and TKE V5 Update

http://www-124.ibm.com/developerworks/projects/libica
http://www-124.ibm.com/developerworks/projects/libica

– Linux for zSeries with SUSE SLES9 (as of the writing of this book). The crypto support
is delivered as an Open Source contribution. See:

http://www10.software.ibm.com/developerworks/opensource/linux390/index.shtml

� Crypto Express 2 Coprocessor User-Defined Extensions (UDX)

– z/OS V1.4 and later with z990 Cryptographic Support, or z990 and z890
Enhancements to Cryptographic Support with APAR OA09157.
Note: CEX2A is ignored but requires APAR OA11946 to avoid an ICSF abend.

� Crypto Express 2 Accelerator (CEX2A)

– z/OS V1.6 with Cryptographic Support for z/OS V1R6/R7 and z/OS.e V1R6/R7

– z/VM V5.1 for z/OS and Linux guests

– Linux for zSeries support of the CEX2A is still being worked on as of the writing of this
book.

Table 1-3 summarizes the software support requirements by operating system.

Table 1-3 Software requirements to support cryptographic features

1. PRNG, SHA-256 and AES 128-bit not supported by ICSF

2. Toleration APAR OA11946 required if one or more CEX2A.

3. When used only for clear-key RSA modular exponentiation.

4. No support yet for the PRNG, SHA-256 and AES functions as of the writing of this book.

Operating system CPACF CEX2C CEX2
A

z/OS V1.4 and later with z990 Cryptographic Support or z990 and
z890 Enhancements to Cryptographic Support

Y(1) Y N (2)

z/OS V1.6 and z/OS V1.6 with Cryptographic Support for z/OS
V1R6/R7 and z/OS.e V1R6/R7

Y Y Y

z//VM V3.1 and V4.3 and later Y

z/VM V4.3 and later for Linux guests Y Y

z/VM V5.1 for z/OS and Linux guests Y Y Y

Linux on zSeries Y(4) Y(3)

z/VSE™ V3.1 Y(3)

VSE/ESA™ V2.7 and later Y(3)

Chapter 1. Introduction and overview 11

http://www10.software.ibm.com/developerworks/opensource/linux390/index.shtml

12 z9-109 Crypto and TKE V5 Update

Chapter 2. CPACF enhancements in
System z9

In this chapter we describe the new CPACF functions supplied with the IBM System z9 109
processor and how they can be used.

We discuss the following:

� Confirmation that CPACF facilities are available

� Description of the CPACF functions, highlighting the new functions for IBM System z9 109

� Discussion of capabilities of the CPACF instruction set

� Description of clear-key processing

� Description of the AES algorithm

� Description of SHA-256

� Considerations using CPACF with regard to LPAR

We also include details of programs we used to test some of the new CPACF functions. The
source code is provided in Appendix A, “CPACF programs” on page 103.

2

© Copyright IBM Corp. 2005. All rights reserved. 13

2.1 CPACF hardware implementation
CP Assist for Cryptographic Functions (CPACF) was first introduced on the z990 and z890.
CPACF provides for hash functions and clear key encryption and decryption functions. The
concept of clear key encryption is explained in 2.4, “The implications of using clear keys” on
page 19.

CPACF operates with a specific set of machine instructions, the Message-Security Assist
(MSA) instructions, which are problem state instructions and therefore available to all
applications. The MSA instructions are described in z/Architecture Principles of Operation,
SA22-7832.

The MSA instructions are all executed synchronously with respect to the CP instruction
stream, contrary to the operations executed on the Crypto Express 2 cards, which execute
asynchronously. The CPACF operations are therefore quite fast and can be used to support a
high volume of cryptographic requests. Because the CPACF instructions are available on
every PU within System z9, as they are for the zSeries z990 or z890, and since the CPACF
operates with clear keys only, there is no notion of logical partition sharing or cryptographic
domains with CPACF.

CPACF has been enhanced in the IBM System z9 109 processor to provide these new
functions:

� SHA-256 hashing
� Clear key AES encryption and decryption hardware support (128-bit clear key only)
� Pseudo random number generation

2.1.1 Confirmation that CPACF is available in the system
The installation of the CPACF enablement, Feature Code 3863, is required to use CPACF in
the PUs, except for SHA-1 and SHA-256. The SHA-1 and SHA-256 algorithms are always
enabled to applications even if Feature Code 3863 is not installed.

Using an HMC or the IBM System z9 Support Element, you can verify that the processor has
the feature installed, as follows:

1. From the Views area, open Groups and CPC.

2. Select the CPC icon in the CPC Work Area view and double-click to open the CPC details
window as shown in Figure 2-1.

3. In the window, verify that the CPACF enablement feature Feature Code 3863 is installed.

14 z9-109 Crypto and TKE V5 Update

Figure 2-1 Processor status with Feature Code 3863 installed

2.2 Invocation of the new CPACF functions
The new CPACF functions are not invoked with new instructions but by new options for
existing instructions. There are five instructions in the MSA set, shown in Table 2-1,
highlighting the new facilities available in the IBM System z9 109. Each line in the table shows
a different CPACF function.

Table 2-1 Message-Security Assist and CPACF functions

Instruction Description Features New for z9

KM - Query Cipher Message Query available functions. Updated
results

KM - DEA Cipher Message Provide Electronic Code Book (ECB) encryption and
decryption of data using a DEA algorithm with single length
keys.

KM - TDEA-128 Cipher Message Provide ECB encryption and decryption of data using a DEA
algorithm with double length keys.

KM - TDEA-192 Cipher Message Provide ECB encryption and decryption of data using a DEA
algorithm with triple length keys.

Chapter 2. CPACF enhancements in System z9 15

KM - AES-128 Cipher Message Provide ECB encryption and decryption of data using an AES
algorithm with 16-byte keys.

Yes

KMC - Query Cipher Message
with Chaining

Query available functions. Updated
results

KMC - DEA Cipher Message
with Chaining

Provide Cipher Block Chaining (CBC) encryption and
decryption of data using a DEA algorithm with single length
keys.

KMC - TDEA-128 Cipher Message
with Chaining

Provide CBC encryption and decryption of data using a DEA
algorithm with double length keys.

KMC - TDEA-192 Cipher Message
with Chaining

Provide CBC encryption and decryption of data using a DEA
algorithm with triple length keys.

KMC - AES-128 Cipher Message
with Chaining

Provide CBC encryption and decryption of data using an AES
algorithm with 16-byte keys.

Yes

KMC - PRNG Cipher Message
with Chaining

Pseudo Random Number Generation. Yes

KIMD - Query Compute
Intermediate
Message Digest

Query available functions. Updated
results

KIMD - SHA-1 Compute
Intermediate
Message Digest

Provide SHA-1 generation for blocks of data in multiples of 64
bytes.

KIMD - SHA-256 Compute
Intermediate
Message Digest

Provide SHA-256 generation for blocks of data in multiples of
64 bytes.

Yes

KLMD - Query Compute Last
Message Digest

Query available functions. Updated
results

KLMD - SHA-1 Compute Last
Message Digest

Provide SHA-1 generation for blocks of data that are not
multiples of 64 bytes.

KLMD - SHA-256 Compute Last
Message Digest

Provide SHA-256 generation for blocks of data that are not
multiples of 64 bytes.

Yes

KMAC - Query Compute
Message
Authentication
Code

Query available functions.

KMAC - DEA Compute
Message
Authentication
Code

Provide Message Authentication Code (MAC) generation
using a DEA algorithm with single length keys.

KMAC - TDEA-128 Compute
Message
Authentication
Code

Provide MAC generation using a DEA algorithm with double
length keys.

KMAC - TDEA-192 Compute
Message
Authentication
Code

Provide MAC generation using a DEA algorithm with double
length keys.

Instruction Description Features New for z9

16 z9-109 Crypto and TKE V5 Update

2.2.1 What the Message-Security Assist instructions do
The MSA instructions provide for four types of cryptographic operations. These are,

� Symmetric Encryption and Decryption (clear key only)

� Generation of hash values

� Generation of Message Authentication Codes (MAC)

� Pseudo Random Number Generation

In addition, each function supplies a query option so that the programmer can determine
whether a given function is available on a given processor. Attempted use of a function that is
not available will yield a program interruption with interruption code 6 (specification
exception). In z/OS this is normally presented as a 0C6 abend.

Let us now examine each of the functions in turn.

Symmetric Encryption and Decryption
This is one of the most basic functions and involves the use of a key that is used to encrypt a
string of bytes using an algorithm. Once encrypted, the string of bytes (or message) can be
restored to its former state only by decrypting using the original key and reversing the
algorithm. Thus a message could be transmitted between two individuals and as long as the
encryption key is known only to those two, the message can be considered secure.

This encryption mechanism is “symmetric” because the same key is used to encrypt and to
decrypt.

The byte string may be very long, especially in the case of the 64-bit version of the instruction.
The key can be of several different types:

� DES keys. These can be single length, double length, or triple length.

� AES keys. This is a new hardware function available with CPACF of the System z9 109
and provides support for keys of length 16 bytes (128 bits) only1.

Note that DES is an abbreviation for Data Encryption Standard (DES) and the instructions
provide processing equivalence to the Data Encryption Algorithm (DEA), which is used at the
heart of DES. Broadly speaking, you may consider these to be equivalent. The same
equivalence applies to Triple DES (TDES) and TDEA.

Generation of hash values
Hash values are generated using a specified and repeatable algorithm. No key is ever
involved in the generation process. Hash values are used for various functions, including:

� Mapping a large number of items to a smaller naming space.

� Providing a form of check pattern to detect changes to a piece of data. In this case it is
sometimes known as a Message Digest.

Due to the method used, and the size of the digest produced, it is theoretically possible that
several different data configurations will yield the same Message Digest value. Such a
possibility is called a “collision.” It is expected that hash algorithms will keep the risk of
yielding collisions as low as possible, and will keep voluntary discovery of data configurations
that would result in collisions as difficult as possible.

A commonly used hash algorithm today is Secure Hash Algorithm-1 (SHA-1), which
generates a 20-byte hash value.

1 AES defines support for keys of length 16, 24, and 32 bytes.

Chapter 2. CPACF enhancements in System z9 17

SHA-256 is an improved algorithm and generates a 32-byte hash value. SHA-256 is
considered to generate message digest values that are less likely to yield collisions.

Hashing techniques are frequently used for message integrity checking. A hash value can be
generated for a given message and it can then be encrypted using an asymmetric encryption
technique. This can then be used to confirm that a message has not been altered en route
and also to prove proper origin of the message. This technique is called “digital signature.”

On System z9 an application can request an SHA-1 or SHA-256 hash to be computed by
CPACF and then forward the hash to a Crypto Express 2 coprocessor, via ICSF services, so
that the hash can be encrypted using the RSA asymmetric algorithm.

Generation of Message Authentication Codes
Messages can be authenticated using MAC values. Message Authentication Codes or MAC
values are generated using as input a block of data and a secret symmetric key. Thus MAC
codes can be used to confirm that messages have not been altered during transmission and
are from the claimed origin. To do this it is necessary that the sender and the receiver both
know the secret key used to produce the MAC. This same key can then be used to verify the
MAC. If the message has been changed in any way, then the MAC value will no longer show
a match between the one received and the one generated at the reception.

The objective of the MAC is similar to the digital signature. However, it relies on symmetric
encryption, which is more efficient than asymmetric encryption, but involves more complex
key distribution schemes because the key to be used by both parties is a secret key.

Pseudo Random Number Generation
Random numbers are very important for cryptographic applications, and it is quite important
that the randomness be of good “quality”. The CPACF pseudo random number generator
(PRNG) uses a variation of TDEA; the algorithm is described in z/Architecture Principles of
Operation.

2.3 Calling the CPACF via ICSF services
Some CPACF functions can be called via ICSF services as opposed to calling them with MSA
machine instructions in the application.

The following ICSF services invoke the new CPACF hardware functions on System z9,
provided that ICSF is at level HCR7730 or above:

� Symmetric Key Encipher (CSNBSYE) and Symmetric Key Decipher (CSNBSYD), with a
keyword of AES in the rule array

Note that clear keys used by the CPACF can reside in the CKDS beginning with ICSF
HCR770A with SPE. The clear keys are really kept as clear values in the CKDS, that is,
they are not encrypted with the Master Key as for the other key types stored in the CKDS.
There is further discussion on clear keys in the section 2.4, “The implications of using
clear keys” on page 19.

Important: AES is performed by the CPACF hardware only when the key length is 128
bits. Other specified key lengths, 192 or 256 bits, result in the AES algorithm to be
performed by the ICSF software.

Running with an ICSF level below HCR7730 results in all AES services being provided
by ICSF software only.

18 z9-109 Crypto and TKE V5 Update

� One-Way Hash Generate (CSNBOWH), with the following keywords in the rule array:
SHA-256.

There is no ICSF service for the following CPACF functions:

� MAC - ICSF is providing the MAC services (MAC Generate, CSNBMGN, or MAC Verify,
CSNBMVR) only if at least one Crypto Express 2 Coprocessor is available in the system.

� PRNG - ICSF does not use the CPACF Pseudo Random Number Generator. ICSF is
providing the Random Number Generate service (CSNBRNG) only if at least one Crypto
Express 2 coprocessor is available in the stem.

2.4 The implications of using clear keys
The CPACF instructions are described as being “clear key” encryption instructions. Let us
examine what this means.

With the cryptographic coprocessors available on zSeries and System z9, the secret keys
used are all encrypted themselves under a Master Key. The Master Key is held in non-volatile
memory within the cryptographic module, that is, the CCF, PCICC, PCIXCC, or Crypto
Express 2 coprocessor. Such encrypted keys are called “secure keys.”

Operations requiring the use of these secret keys are performed within the crypto
coprocessor where the encrypted secret key is decrypted. This is applicable to keys held in
the cryptographic data sets (CKDS and PKDS), or kept in in-storage key tokens.

Using this mechanism, the clear value of any key is never exposed in the zSeries or System
z9 memory or any storage media associated with it.

Clear key operations are different, in that the instructions that invoke them are deliberately
pointing at a memory field where the application secret key resides in clear value. This is
self-evidently less secure; however, it yields a more efficient implementation of the
cryptographic engines circuitry and provides inherently better performance than running the
same operations using secure keys.

There is, however, a way to decrease this security exposure where clear keys can be
compromised, and this is by invoking the CPACF encryption and decryption functions via
ICSF services.

The clear key can be stored in the CKDS (still remaining in clear) and CSNBSYE and
CSNBSYD can be invoked with specifying the CKDS key token label. The clear key value is
fetched from the CKDS by ICSF and eventually forwarded to the CPACF from the ICSF
address space. That is, no application address space gets knowledge of the clear key value.

This approach is further explained in 4.4, “Enhanced key management for clear DES and
AES keys” on page 49.

Important: the SHA-256 function is only available with System z9. An attempt to invoke
this function on another system yields Return code 12 and Reason code 8 from ICSF.

Note: Invoking the CPACF functions via ICSF obviously adds instruction path length to the
execution of the involved cryptographic services. However, application developers can
benefit from some additional functions provided to ICSF, like RMF reporting for SHA
activities and the capability of using clear keys stored in the CKDS, along with RACF
protection of the keys, as discussed below.

Chapter 2. CPACF enhancements in System z9 19

Or the application, prior to invoking the CSNBSYE or CSNBSYD service, can read into its
own storage the key token with the Key Record Read (CSNBKRR) service. However,
CSNBKRR requires the requesting application to be in supervisor state to read a clear key
token, thus providing an additional level of protection. Invoking CSNBKRR without being in
supervisor state yields Return code 4 and Reason code 2078 (X’81E’).

There is another advantage to using the ICSF facilities for clear keys. IBM System z9 CPACF
only provides hardware support for AES keys of length 16 bytes (128 bits). If it is needed to
use AES keys of a longer length, such as 24 or 32 byte keys, then ICSF is to transparently
provide the function by software.

2.4.1 What about RACF protection?
If the CPACF clear key functions are invoked by the application using the MSA instructions,
then there is no access control provided to the services and keys, because the CPACF
instructions operate in problem program mode and there is no task switching involved.

However, if the clear keys are held in the CKDS and ICSF services are used to invoke
CPACF, the keys can then be protected using RACF profiles in the CSFKEYS general
resources class.

However, access to the ICSF services CSNBSYE and CSNYSYD is not protected by profiles
in the CSFSERV class.

2.5 Some facts about AES
The Advanced Encryption Standard (AES) is sometimes known as Rijndael. It is a block
cipher adopted as an encryption standard by the US government. It is considered the
successor to DES and TDES and is expected to be used worldwide. AES was adopted by the
National Institute of Standards and Technology (NIST) as US FIPS PUB 197 in November
2001 after a 5-year standardization process.

2.5.1 Who developed AES?
AES was developed as successor to DES by two Belgian cryptographers, Joan Daemen and
Vincent Rijmen. It was submitted to the AES selection process under the name “Rijndael”,
which is formed from the names of the inventors. (Rijndael is pronounced “Rhine dahl", a long
"i" and a silent "e").

2.5.2 Why do we need AES?
Until the development of AES, the Data Encryption Standard was thought to be adequate for
the protection of data using symmetric keys. However, the widespread adoption of DES and
Triple DES has lead to a great deal of mathematical examination of the DES standard. It has
been discovered that once the message size increases, the chance of the code being broken
increases (TDES is considered safe for the transmission of messages up to about 32
gigabytes, which has been adequate until recently).

Another consideration is that, with today’s technology, one can gather extremely large
computing power, which makes the finding of a DES or TDES secret key an achievable

Important: Remember that any user who is able to read the CKDS data set will have
access to these clear keys, so it is even more important to restrict READ access to the
CKDS to properly protect these keys.

20 z9-109 Crypto and TKE V5 Update

objective within a reasonable amount of time

AES uses a larger “block size” than DES and TDES. While DES uses a block size of 8 bytes
(64 bits), AES uses a block size of 16 bytes (128 bits) along with the capability of using longer
keys than DES or TDES. This should be acceptable for messages of up to 256 exabytes of
data, and the bigger length of the keys delays for quite a few years the possibility of finding
the key value using brute force.

2.6 What is SHA-256?
The Secure Hash Algorithm (SHA) family is a set of related cryptographic hash functions.

The most commonly used of these functions is SHA-1, which is employed in a large variety of
popular security applications and protocols, including TLS, SSL, PGP, SSH, S/MIME, and
IPSec.

SHA-1 is usually considered to be superior, collision- wise, to MD5, which is another
widely-used hash function. All the SHA algorithms were designed by the National Security
Agency (NSA) and have been published as U.S. government standards.

SHA-1 was not the first version of SHA, but is certainly the most widely used. Since its
introduction more variants have been proposed, each with slight variations in design. Four of
these variants are: SHA-224, SHA-256, SHA-384, and SHA-512. These are sometimes
collectively referred to as SHA-2.

Attacks have been found for both the original SHA and the SHA-1 methods, while no attacks
have been reported on the SHA-2 variants.

The new CPACF functions include the ability to generate SHA-256 hash codes. The hash
code produced by SHA-1 is 20 bytes long, whereas the hash code produced by SHA-256 is
32 bytes long.

2.7 Logical partitioning considerations
There are no LPAR sharing considerations with regard to CPACF.

The CPACF functions are available to all logical partitions dispatched on any PU in the
system (provided that Feature Code 3863 has been installed if other functions than SHA-1
and HSA-256 are required). Because there is no secret key used by CPACF, the notion of
cryptographic domain does not exist with CPACF. Actually, there is no logical partition
parameter to be set to allow use of CPACF by the applications running in a logical partition.

2.8 Performance reporting
There are no RMF records generated for the use of CPACF instructions, except for SHA-1
and SHA-256 when they are invoked via the CSNBOWH service of ICSF.

Details on the performance of hardware cryptography in zSeries or System z9 can be found
at:

http://www-03.ibm.com/servers/eserver/zseries/security/cryptography.html

Chapter 2. CPACF enhancements in System z9 21

http://www-03.ibm.com/servers/eserver/zseries/security/cryptography.html

2.9 Testing the new CPACF functions
We performed several tests on the CPACF facilities of the new IBM z9 processor. Some of
these tests were done using assembler modules that use the new options of the instructions,
while others used the ICSF API to invoke the CPACF functions. In some cases we were able
to test the results of the two methods to show that they are equal.

We performed the following tests:

1. Encryption and decryption of a data string using a CPACF KMC - AES-128 instruction

2. Encryption and decryption of the same data string using the ICSF interface using key
lengths of 16, 24 and 32

3. Generation of an SHA-256 hash value using KLMD

4. Generation of an SHA-256 hash value using the ICSF interface to CPACF

Several assembler and REXX programs were used during this testing; see Appendix A,
“CPACF programs” on page 103.

These programs can also be used to invoke some of the older CPACF functions.

2.9.1 Encryption and Decryption using KMC-AES-128
AES encryption is new on the IBM System z9 109 processor.

To test AES encryption and decryption we developed an assembler program, CPACF010,
which can be invoked using the REXX programs REXCP010 and REXCP011. (The second
program performs both encryption and decryption.)

As can be seen in these programs, we used an initial vector of zeros and a 48-byte input data
block of zeros. We used a key of X’000102030405060708090A0B0C0D0E0F’.

2.9.2 Encryption and Decryption using ICSF
To test this we used the REXX programs REXBSYE and REXBSYED to invoke the ICSF
services CSNBSYE and CSNBSYD. The first REXX program performed only encryption,
while the second performed decryption and confirmed that we obtained the original data.

REXBSYED was also modified to use key lengths of 24 and 32 bytes to test the ICSF
software facilities for AES keys.

The results we obtained from encryption using ICSF AES were consistent with those obtained
using the CPACF010 program in the previous test.

2.9.3 Generation of an SHA-256 hash value using KLMD
New on the IBM System z9 109 processor is the capability to use the KLMD instruction to
generate SHA-256 hash values.

We tested this by developing an assembler program called CPACF020. This program can be
invoked from the REXX program REXCP020.

2.9.4 Generation of an SHA-256 hash value using ICSF
We also developed a REXX program to call the ICSF service CSNBOWH to perform the
same function.

22 z9-109 Crypto and TKE V5 Update

In each case we used an input field of zeros and of length 48 bytes.

The results we obtained from the two methods (programs CPACF020 and REXBOWH) were
consistent.

Chapter 2. CPACF enhancements in System z9 23

24 z9-109 Crypto and TKE V5 Update

Chapter 3. The Crypto Express 2
Coprocessor

This chapter describes the Crypto Express 2 hardware cryptographic coprocessor
implementation and how to prepare System z9 for its exploitation.

3

© Copyright IBM Corp. 2005. All rights reserved. 25

3.1 Overview of the Crypto Express 2 Coprocessor
We now discuss the Crypto Express 2 Coprocessor.

3.1.1 The coprocessor hardware implementation
The Crypto Express 2 Coprocessor is replacing the z990/z890 PCIX Cryptographic
Coprocessor, which itself was providing a replacement for both the PCICC and the
Cryptographic Coprocessor Facility (CCF) of the previous zSeries and 9672 systems. The
Crypto Express 2 Coprocessor is also replacing the PCI Cryptographic Accelerator (the
PCICA), which is dedicated to accelerating the SSL/TLS protocol handshake.

Each Crypto Express 2 Coprocessor feature contains two PCIXCC cryptographic
coprocessor cards. System z9 allows for up to eight Crypto Express 2 Coprocessor features
(or sixteen cards) to be installed.

The Crypto Express 2 Coprocessor provides the same functions as the PCIXCC, with, in
addition, the capability of being reconfigured as an accelerator, as described in 3.2,
“Reconfiguration of the coprocessor to accelerator” on page 32.

As for the PCIXCC, the Crypto Express 2 feature to be enabled in the system requires
Feature Code 3863 to be installed.

Cryptographic accelerator
The Crypto Express 2 Coprocessor (CEX2C) can also be configured as a Crypto Express 2
Accelerator (CEX2A), providing only PCICA-equivalent functions with an expected
throughput of approximately three times the PCICA throughput. Switching from Crypto
Express 2 Coprocessor, the default mode of a coprocessor, to CEX2A mode is a manual
process and an exclusive feature of System z9. Note that the Crypto Express 2 Coprocessor
features that were running on z990 or z890 can be moved to System z9 and then be manually
reconfigured as CEX2A.

Crypto Express 2 card sharing by logical partitions
Each CEX2C card has 16 domains that can be allocated to logical partitions. Therefore, a
CEX2C feature can provide cryptographic services to up to 32 logical partitions.

See 3.3, “Logical partitioning considerations for System z9” on page 39 for further information
on the logical partition cryptographic setup on System z9.

A look inside the hardware
The card, once plugged into an I/O cage, is attached to the system by a Self Timed Interface
(STI) high-speed interface on the I/O cage board and has no other external interfaces. This is

Note: The zSeries PCIXCC cryptographic coprocessor, available first to be plugged into
the z990 and z890 systems, became an IBM product by itself, with versions that can be
plugged into other eServer™ machines than zSeries. Although we keep referring to it as
the “PCIXCC” in this book, the official name is now the IBM 4764-PCIXCC.

There is an excellent description of the PCIXCC technology in an IBM Systems Journal
article at:

http://www.research.ibm.com/journal/sj/

Once in the IBM Systems Journal site, search the archives for PCIXCC.

26 z9-109 Crypto and TKE V5 Update

http://www.research.ibm.com/journal/sj/

shown in Figure 3-1. As for the previous zSeries PCI cards, all communications with the
coprocessors are routed via message queues in the HSA over the STI cables.

Figure 3-1 CEX2C feature in the System z9 I/O cage

The internal of the Crypto Express 2 feature is shown in Figure 3-2 on page 28.

Note: In order to provide maximum availability of the cryptographic services offered by the
Crypto Express 2 feature, the IBM configuration and ordering system automatically makes
the first Crypto Express 2 order for any given system an order for two features.

OSA-Express,
FICON

STI-M

BOOK

Direct connection
from Book riser

card to STI M card

System z9 I/O Cage

 STI
1 Gb/Sec

2.7 GB/sec
 STI

CEX2C

System z9 CEC CAGE

Chapter 3. The Crypto Express 2 Coprocessor 27

Figure 3-2 Crypto Express 2 feature layout

The following system-specific data is used for coprocessor management:

� The PCIXCC has an eight-character serial number, for reference in a variety of panels and
to keep track of the retained keys. This serial number is visible when the PCIXCC status is
online/operating to the logical partition.

� Each PCIXCC has a two-digit Adjunct Processor (AP) number or ID. This number is an
index used by the system LIC and ICSF. The number of APs is limited to 16 on System z9,
and a CEX2C is therefore given an AP number between 0 and 15.

� Because of the way the crypto feature is connected in the system, both crypto
coprocessor and accelerator have a PCHID number. This PCHID number assignment is
automatic; the coprocessor does not have to be declared in the IOCDS. The PCHID
number is not known nor relevant to ICSF, but is used only for hardware management of
the coprocessor.

Important: A coprocessor can be reached from any PU in the system, because all
communications are routed through message queues in the HSA. However, this
implementation dictates that all services provided by the Crypto Express 2 appear
asynchronous to the instruction stream in ICSF. That is, ICSF execution resumes after
initiating the function at the coprocessor and a check will be made later whether the
operation completed at the coprocessor. This obviously has a performance impact, which
is further discussed in 3.4, “Crypto Express 2 performance” on page 42.

2.5V

PCI-X (64-bit,133MHz)

3.3V

24V

D
is

pl
ay

 &

R
I S

C
W

a t
c h

C
on

ne
c t

o r
s

1.8V

PCI-X
Bridge

PCI-X
Bridge

STI
Interface

1GB/s
PCI-X
Bridge

STI
1/.5 GB/s

(each direction)

STI
1/.5 GB/s
(each direction)

Ba
tt e

r y
Ba

t te
r y

PCIXCC
 Card

PCIXCC
 Card

Power (concurrent
PCI-X ops)

(concurrent
PCI-X ops)

BatteryBattery

B
at

te
ry

B a
tt e

ry
Ba

tte
ry

28 z9-109 Crypto and TKE V5 Update

3.1.2 Crypto Express 2 cryptographic functions and coprocessor software
layers

The PCIXCC coprocessor has a full set of specialized hardware circuits to provide
high-speed and secure cryptographic functions. The circuits exploited for the zSeries
z990/z890 and System z9 Crypto Express 2 feature are as follows:

� DES and TDES engine
� High performance RSA modular arithmetic
� Random Number Generation
� Secure storage for:

– The symmetric and asymmetric Master keys
– The “retained” RSA private keys
– The roles and profiles defined to the coprocessor

With the higher level of API implemented via the software layers in the coprocessor itself and
ICSF, the hardware-assisted functions available to the applications are as follows:

� DES and TDES encryption
� MAC functions that support ANSI standards X9.9 and X9.19
� TDES-based key management using control vectors
� RSA key generation
� RSA-based digital signatures
� RSA-based key management of DES keys
� SET for electronic commerce functions
� PIN processing functions
� Processing Europay-MasterCard-Visa (EMV) smartcard-based transactions

Other hardware-assisted functions are also available in the IBM 4764 PCIXCC because they
are exploited on other platforms besides zSeries and system z9.

Coprocessor software layers
The structure of the microcode executed in the PCIXCC remains similar to the
implementation already seen with the other IBM PCI coprocessors, that is, a layered
approach with code “segments.” The segments are digitally signed by IBM and are verified for
integrity when they are loaded into the coprocessor. Generally speaking, the code segments
are loaded whenever the coprocessor switches from the offline state to being online for the
first time to a logical partition.

Note that with the PCIXCC the coprocessor operating system is an open source Linux
operating system, which is executed by an embedded PowerPC® 405GPr microprocessor.

The software layer structure is shown in Figure 3-3.

Chapter 3. The Crypto Express 2 Coprocessor 29

Figure 3-3 Software layers of the PCIXCC

An explanation of the segments shown in Figure 3-3 follows.

� Segment 0 contains the generic self-test run at the coprocessor power-on and a micro
bootstrap, which are stored in read-only memory that is unalterable once the card leaves
the factory. The micro bootstrap is the lowest-level software for control of loading software
into Segments 1, 2, and 3.

� Segment 1 contains extensions to the self-test and to the micro bootstrap of Segment 0,
but Segment 1 can be securely reloaded after the card has been manufactured. This is a
provision for updating the self-test and micro bootstrap functions in the field, if needed.

� Segment 2 contains the open-source embedded Linux operating system. Special device
drivers have been written to allow the operating system and application programs to use
the unique hardware in the card.

� Segment 3 contains the coprocessor program that provides the CCA API functions seen
by ICSF. Segment 3 is also hosting the User Defined Extensions (UDXs) that customers
may want to implement. UDXs are further discussed in 5.2, “The UDX on System z9” on
page 71.

3.1.3 Physical status of the Crypto Express 2 feature
The physical status of the Crypto Express 2 feature is indicated by an “A” indicator on the
feature, as shown in Figure 3-4. The meaning of the indicator is explained in Table 3-1.

Micro bootstrap
generic self-testIn ROM

 Mini bootstrap
 Crypto self-test

Certificate

Certificate

Operating System (Linux)
and device drivers

Certificate

The IBM Common Cryptographic
Architecture (CCA) Application
and UDX

IBM
Root
Certificate

(In Flash, replaceable)
SEG 3

SEG 2

SEG 1

(In Flash, replaceable)

(In Flash, replaceable)

30 z9-109 Crypto and TKE V5 Update

Figure 3-4 Crypto Express 2 physical status

Table 3-1 lists the Crypto Express 2 status and indicator states.

Table 3-1 Crypto Express 2 indicator

Tamper detection and FIPS certification
The PCIXCC card is designed with industry-leading tamper-detection features. The
security-related electronic components are wrapped in a flexible mesh with overlapping
conductive lines that detect any attempt of physical intrusion by drilling, mechanical abrasion,
chemical etching, or other means.

Indicator “A” state Card status

On Power On
Offline
Reset Pending
Processor Frozen

Off Non-functional
No Power
Processor Frozen

Flashing Ready
Online

Battery wire
window

Serial port
(not used)

4764-PCIXCC
crypto card

RJ45
(not used)

.
o o
o o
o o
o o
o o

A0

.
o o
o o
o o
o o
o o

A0

Chapter 3. The Crypto Express 2 Coprocessor 31

If the conductive lines are damaged, it is sensed by circuits inside the module, and all
sensitive data is immediately destroyed by zeroizing the battery-backed memory it is held in.

Other special circuits sense attacks that can cause imprinting in the CMOS memory.
Imprinting is a process that can permanently burn data into CMOS circuits, so that the same
data appears each time the CMOS chip is powered on and makes the finding of secret values
by physical analysis of the chip quite easier. Imprinting can be caused by exposing the chip to
either very low temperatures or X-rays. The tamper circuitry detects these conditions and
zeroizes the memory before imprinting can occur.

Finally, there are attacks that are driven by manipulating the power-supply voltages to the
card. These conditions are also detected to prevent the attacks from succeeding by zeroizing
the sensitive data.

The security architecture of the hardware complements the secure code loading design, and
the combination of the two provides the features that support FIPS 140-2 Level 4 security.

As of the writing of this book, the IBM 4764-001 has been certified at FIPS 140-2 Level 4.

3.2 Reconfiguration of the coprocessor to accelerator
As already mentioned, the CEX2A is actually a Crypto Express 2 Coprocessor card
reconfigured as an accelerator. The reconfiguration is fully supported in Licensed Internal
Code, and therefore current Crypto Express2 features carried forward from z990 to System
z9 may take advantage of the reconfiguration capability.

A Crypto Express 2 Coprocessor feature can therefore be configured as the following:

� Two Crypto Express 2 Coprocessors, that is, CEX2C only
� One Crypto Express 2 Coprocessor and one accelerator (one CEX2C and one CEX2A)
� Two CEX2A Accelerators

As for the Crypto Express 2 Coprocessor card, a CEX2A coprocessor can be shared
between 16 logical partitions.

The only cryptographic services that are available when reconfigured into a CEX2A are the
former PCICA services. These functions are used for the acceleration of modular arithmetic
operations, that is, the RSA cryptographic operations used with the SSL/TLS protocol:

� PKA Decrypt (CSNDPKD), with PKCS-1.2 formatting

� PKA Encrypt (CSNDPKE), with ZERO-PAD formatting

� Digital Signature Verify

The Encrypt and Decrypt RSA functions support key lengths from 512 to 2048-bit, in the
Modulus Exponent (ME) and Chinese Remainder Theorem (CRT) formats.

The reconfiguration process
The CEX2C reconfiguration process is disruptive to the involved coprocessor operations. A
reconfiguration is performed as follows:

� Deactivate the target coprocessors in all logical partitions that are using the coprocessors,
using the Coprocessor Management panel of each ICSF instance.

� Configure the target coprocessors offline at the Support Element or the HMC as follows:

– Double-click Groups - CPC, then right-click the CPC icon and select Cryptos.

32 z9-109 Crypto and TKE V5 Update

a. Select the target Crypto coprocessors.

b. In the Crypto Services Operations view on the right, select the Configure On/Off
function.

c. Select Toggle All Off on the Configure Channel Path On/Off panel and select Apply
changes.

� Configure the target coprocessors to be accelerators or coprocessors in the Cryptographic
Configuration panel as follows:

a. Double-click Groups- CPC. Select the CPC icon. In the CPC configuration view on the
right select Cryptographic Configuration.

b. Double-click the target Crypto coprocessor and click Crypto Type Configuration.

c. On the Crypto Type Configuration panel select the desired type of the target Crypto
Express 2 card. If you select Accelerator, you must also choose whether the target
coprocessor will be zeroized when reconfigured as an Accelerator. A confirmation
window is displayed if the zeroizing option is selected.

� Configure the target coprocessors back to online as follows:

– Double-click the Groups icon - CPC, right-click the CPC icon and select Cryptos.

– From the Crypto Work Area view, select the target Crypto processors.

– In the Crypto Services Operations view on the right, select the Configure On/Off
function.

– Select Toggle All On on the Configure Channel Path On/Off panel and select Apply
changes. The online configuration process takes a few minutes. The status of the
coprocessors can be inspected in the Cryptographic Configuration panel.

� When the coprocessor is back to the online status, it can then be activated in the ICSF
Coprocessor Management panel.

In our residency we had two CEX2C features, that is, four coprocessor cards, installed in
System z9. They were initialized with Master Keys and enabled for TKE commands. To test
the reconfiguration process we first reconfigured three coprocessors to accelerators and then
reconfigured two of them back to coprocessors.

First, we deactivated the three coprocessors to be reconfigured in the ICSF Coprocessor
Management panel, as shown in Figure 3-5.

Caution: When reconfiguring the coprocessor to an accelerator, zeroizing is
selected by default.

Chapter 3. The Crypto Express 2 Coprocessor 33

Figure 3-5 Deactivate coprocessors to be reconfigured

Then we configured the three processors offline using the Configure Channel Path Off/On
panel at the Support Element (or HMC). You can see the configuration status of the
coprocessors in the Cryptographic Configuration panel shown in Figure 3-6.

Figure 3-6 The target coprocessors are configured offline

In the Cryptographic Configuration panel we selected the processor card Number 1 and
clicked Crypto Type Configuration. For this processor we selected the configuration type as
Accelerator and unmarked the “Zeroize the Coprocessor” option, as shown in Figure 3-7.

 ------------------------- ICSF Coprocessor Management -------- Row 1 to 4 of 4

 Select the coprocessors to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 COPROCESSOR SERIAL NUMBER STATUS
 ----------- ------------- ------
 . E00 95000224 ACTIVE
 . E01 95000225 DEACTIVATED
 . E02 95000182 DEACTIVATED
 . E03 95000180 DEACTIVATED
 ******************************* Bottom of data ********************************

34 z9-109 Crypto and TKE V5 Update

Figure 3-7 Crypto Express 2 Coprocessor re-configured to CEX2A without zeroizing

For the two remaining cards 2 and 3, we chose to zeroize the coprocessor. The zeroize
option has to be confirmed in the panel shown in Figure 3-8.

Figure 3-8 Confirming the zeroize option

Then we configured the three coprocessors back online using the Configure Channel Path
Off/On process. When configured back online, the Cryptographic Configuration panel
displayed the status shown in Figure 3-9.

Note: Reconfiguring a Crypto Express 2 Coprocessor to an accelerator with the zeroize
option selected suppresses all Master keys in all domains. Also all TKE definitions, such as
roles and profiles, are deleted and the TKE Commands enablement is set to be “denied”.

Chapter 3. The Crypto Express 2 Coprocessor 35

Figure 3-9 Three coprocessors reconfigured to accelerators and configured online

Next we activated the three processors in the ICSF Coprocessor Management panel. In the
panel the coprocessors are identified with the letter “E” in the coprocessor column and the
accelerators are identified with the letter “F”.

Figure 3-10 Activated accelerators in the ICSF Coprocessor Management panel

To further test the reconfiguration process we reconfigured the two accelerators, F01 and
F02, back to coprocessors.

First we had to deactivate these accelerators in the ICSF Coprocessor Management panel as
shown in Figure 3-11.

 ------------------------- ICSF Coprocessor Management -------- Row 1 to 4 of 4

 Select the coprocessors to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 COPROCESSOR SERIAL NUMBER STATUS
 ----------- ------------- ------
 . E00 95000224 ACTIVE
 . F01 ACTIVE
 . F02 ACTIVE
 . F03 ACTIVE
 ******************************* Bottom of data ********************************

Important: If the coprocessors that are reconfigured to be accelerators are defined in a
TKE group of coprocessors, the group should be changed by removing these accelerators
from the TKE group at the TKE workstation.

36 z9-109 Crypto and TKE V5 Update

Figure 3-11 Two accelerators to be reconfigured as coprocessors are being deactivated

Then these two accelerators are configured offline to the system with the Configure Channel
Path Off/On panel on the Support Element, (or HMC). The Crypto Type configuration panel
was again selected for these accelerators where we specified that they had to be
reconfigured as coprocessors.

After configuring them back online to the system, we ended up with the Cryptographic
Configuration shown in Figure 3-12.

Figure 3-12 Two accelerators reconfigured to coprocessors

To set TKE Commands enablement to the Permit value, we selected Coprocessor number 2
and clicked TKE Commands. We then selected Permit in the TKE Commands Configuration
panel as shown in Figure 3-13.

 ------------------------- ICSF Coprocessor Management -------- Row 1 to 4 of 4

 Select the coprocessors to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 COPROCESSOR SERIAL NUMBER STATUS
 ----------- ------------- ------
 . E00 95000224 ACTIVE
 . F01 DEACTIVATED
 . F02 DEACTIVATED
 . F03 ACTIVE
 ******************************* Bottom of data ********************************

Important: When we initially reconfigured Coprocessor 2 to an accelerator, we selected
the zeroize option. Coprocessor 2 does not have any more Master keys set and the TKE
Commands enablement is set back to the default value, that is, “denied.”

Chapter 3. The Crypto Express 2 Coprocessor 37

Figure 3-13 Permitting TKE commands to be used with the Coprocessor

After clicking OK, the panel shown was displayed and warned about the exposure of having
not yet set up proper access control to the TKE workstation.

Figure 3-14 Verification of the TKE command permission change

The last step to perform is to activate the two processors in the ICSF Coprocessor
Management panel as shown in Figure 3-15. We can also see in this panel that the
Coprocessor E02 was zeroized and is for the moment only “online”, waiting for Master keys to
be set up.

Figure 3-15 Activate Coprocessors after the reconfigure process

 ------------------------- ICSF Coprocessor Management -------- Row 1 to 4 of 4

 Select the coprocessors to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 COPROCESSOR SERIAL NUMBER STATUS
 ----------- ------------- ------
 . E00 95000224 ACTIVE
 . E01 95000225 ACTIVE
 . E02 95000182 ONLINE
 . F03 ACTIVE
 ******************************* Bottom of data ********************************

38 z9-109 Crypto and TKE V5 Update

3.3 Logical partitioning considerations for System z9
Although the cryptographic definitions to be made at the Support Element (or HMC) have not
been changed from a functional standpoint, the panel layout is new. We show in this section
the panels related to LPAR Cryptographic configuration.

To configure a logical partition for cryptographic functions, do the following:

� Double-click Groups-Images, then select the desired partition.

� Drag and drop the selected image icon to the right over the “Customize/Delete Activation
profile” icon in the CPC Operational customization view.

� Click Customize to get access to the image profile.

The Customize Iimage Profiles General view is shown in Figure 3-16.

Figure 3-16 Image profile customization main view

Chapter 3. The Crypto Express 2 Coprocessor 39

To establish the cryptographic definitions for the logical partition, select the Crypto tab, which
gives access to the panel in Figure 3-17. The definition parameters on the Crypto panel view
did not change. Here is a brief reminder of these parameters:

� The Usage Domain index

This must point to the domain number or numbers for this logical partition and it should
match the domain number that has been set in the ICSF Options data set.

� The Control Domain index

This identifies the crypto coprocessor domains that can be administered from this logical
partition when it is acting as a TKE host.

� The Cryptographic Candidate list

This identifies the cryptographic coprocessors, or accelerators, that are eligible to be
accessed by this logical partition. When a cryptographic coprocessor, or accelerator, is
installed and its number has been selected in the partition Cryptographic Candidate list, it
stays in the configured off state after the partition activation and can then be brought
dynamically to the online state via the Support Element (or HMC) to the partition. It can be
dynamically configured on to the partition.

� The Cryptographic Online list

This identifies the cryptographic coprocessor, or accelerator, numbers that are
automatically brought online during logical partition activation. The coprocessor numbers
that are selected in the Online list must also be part of the Candidate list.

Notes:

1. These parameters cannot be modified dynamically. Any change to them makes it
necessary to deactivate, then reactivate, the logical partition to be taken into
account.

2. Coprocessors specified in the cryptographic Candidate list are not required to be
physically installed in the system. The Candidate list can refer to coprocessors that
will be installed later, but can then be dynamically varied online when present in the
system.

40 z9-109 Crypto and TKE V5 Update

Figure 3-17 Customization of the LPAR Cryptographic definitions

Viewing the LPAR Cryptographic Controls
The LPAR Cryptographic Control definitions that have been set in the image profile can be
viewed without getting to the profile by selecting the LPAR Cryptographic Controls view:

� Double-click Groups and select the CPC icon.

� Drag and drop the CPC icon to the right over the View LPAR Cryptographic Controls icon.

The LPAR Cryptographic Controls panel view is displayed, as shown in Figure 3-18.

Chapter 3. The Crypto Express 2 Coprocessor 41

Figure 3-18 Viewing the LPAR Cryptographic Controls

On this window you can see what Control and Usage Domain values are assigned and what
Cryptographic Candidate and Online selections were chosen for the selected LPAR. This
window cannot be used to change any of these values.

3.4 Crypto Express 2 performance

Most cryptographic hardware in zSeries and System z9 processors can only be used through
ICSF, which shields the complexity of the hardware communication from the user.

The ICSF API call has a system path length that has to be added, from an application’s view,
to the execution time of the cryptographic hardware. For example, for symmetric key
operations, it is advisable to have the application initiate a single API call for the total block of
data, in order to limit the number of ICSF API calls.

Applications in the Internet environment will not use the cryptographic operations themselves;
instead, they will follow protocol standards as, for example, Secure Socket Layer (SSL).
Executing the SSL protocol for a server (or client) on a System z9 system will result in a
series of cryptographic operations which, under z/OS and ICSF, will either exploit available
cryptographic hardware or be executed in software.

The maximum number of SSL transactions per second that can be supported on System z9
by any combination of CPACF and Crypto Express 2 Coprocessors is limited by the amount
of cycles available to perform the software portion of the SSL/TLS transactions. When both
coprocessors on a Crypto Express2 feature are configured as accelerators, IBM has
measured a throughput of approximately 6000 SSL handshakes per second per Crypto
Express 2 feature. This represents, approximately, a 3X performance improvement
compared to z990 when using either a PCI Cryptographic Accelerator (PCICA) feature, or the
current Crypto Express 2 Coprocessor feature.

Note: Official IBM Crypto performance measurements are available at:

http://www.ibm.com/servers/eserver/zseries/security/cryptography.html

The content of this Web site is updated to address the current hardware.

42 z9-109 Crypto and TKE V5 Update

http://www.ibm.com/servers/eserver/zseries/security/cryptography.html

In the z9 there can be a maximum of eight Crypto Express 2 Coprocessor features
reconfigured as Crypto Express 2 Accelerator (CEX2A), that is, a total of 16 accelerators.

Note: These numbers indicate a throughput, that is, it is necessary to initiate several
threads of parallel requests to the CEX2A to achieve this performance.

Chapter 3. The Crypto Express 2 Coprocessor 43

44 z9-109 Crypto and TKE V5 Update

Chapter 4. ICSF overview, support for
CEX2A and sysplex

This chapter describes the new features within the HCR7730 level of ICSF with particular
notes on the new hardware support, including the ability to configure Crypto Express 2 as an
accelerator, and also the improved facilities for managing a CKDS in a sysplex environment.

This last item includes the following:

� Configuration of sysplex updating facilities

� Description of the serialization mechanisms

� Explanation of dataspace updating mechanisms

� Running multiple CKDS data sets in a sysplex

� New messages

� New abend and reason codes

4

© Copyright IBM Corp. 2005. All rights reserved. 45

4.1 ICSF releases
The decision was made circa 2003 to provide downloadable releases of ICSF from the Web
at:

http://www.ibm.com/servers/eserver/zseries/zos/downloads

When the content of a z/OS release is closed it comprises the then current level of ICSF.
Once installed at customers, the z/OS release can be updated with respect to ICSF by
downloading a more recent ICSF level from the Web site.

Table 4-1 shows what levels of ICSF have been available, what their main features are, and in
which z/OS releases they are distributed.

Table 4-1 ICSF levels.

ICSF Level Delivered
with

Highlights Require-
ments

Server
Hardware
Supported

Crypto
Hardware
Supported

Minimum
z/OS level
supported

HCR7706 z/OS 1.3,
z/OS 1.4

New ISPF
Panels

G5, G6,
z800,z900

CCF,
PCICC,
PCICA

z/OS 1.3

HCR7708 z/OS 1.5,
Web
Deliverable
#1

G5, G6,
z800, z900,
z890, z990

CCF,
PCICC,
PCICA

z/OS 1.3,
z/OS 1.4

HCR770A z/OS 1.6,
Web
Deliverable
#2

Support for
PCIXCC &
z/990, New
TSO panels

G5, G6,
z800, z900,
z890, z990

CCF,
PCICC,
PCICA,
PCIXCC

OS/390®
2.10

HCR770B Web
Deliverable
#3

Operational
Key Entry,
CSFIQF
facility

G5, G6,
z800, z900,
z890, z990

CCF,
PCICC,
PCICA,
PCIXCC

OS/390
2.10
z/OS 1.6

HCR7720 z/OS 1.7,
Web
Deliverable
#4

64-bit
interface
support,
Crypto
Express 2
Support,
Clear key
support

ESAME
hardware
required

z800, z900,
z890, z990

CCF,
PCICC,
PCICA,
PCIXCC,
Crypto
Express 2

z/OS 1.6

HCR7730 OS after
z/OS 1.7,
Web
Deliverable
#5

System z9
support,
Sysplex
support,
System z9
support

ESAME
hardware
required

z800, z900,
z890, z990,
System z9

CCF,
PCICC,
PCICA,
PCIXCC,
Crypto
Express 2

z/OS 1.6

46 z9-109 Crypto and TKE V5 Update

http://www.ibm.com/servers/eserver/zseries/zos/downloads

Table 4-2 shows the various types of server and the crypto hardware they are actually
hosting. Table 4-1 should be used along with Table 4-2 to precisely depict the status of a
particular system.

Table 4-2 Crypto hardware per server type.

Licensed Internal Code (LIC) levels
Be aware that new coprocessors were introduced by the two following releases of System
LIC previous to the availability of System z9.

The May 2004 LIC release
This LIC release brought the following enhancements to the PCIXCC and PCICA
coprocessors. All these changes were integrated into the Crypto Express 2 coprocessor.

� PCIX Cryptographic Coprocessor (PCIXCC)
– Derived Unique Key Per Transaction (DUKPT)

• The triple DES support (double length keys) was added.
– Europay Mastercard and VISA (EMV) 2000 standard support

• Enhancements to the Diversified Key Generate service
•Session keys for secure messaging for PINs
•Session keys for secure messaging for keys using SESS-XOR scheme
•Session keys for all applicable EMV key types using the EMV 2000

Annex A1.3.1 derivation scheme
• New PIN_Change_Unblock service to handle VISA 1.4 PIN

•Change/Unblock command
� PCIXCC and PCI Cryptographic Accelerator (PCICA)

– Public Key Decrypt/Public Key Encrypt (PKD/PKE) enhancements
• PKE Mod Raised to Power (MRP) support
• PKD zero pad support

The January 2005 LIC release
This LIC release brought the following enhancements to the PCICC, PCIXCC and Crypto
Express 2 coprocessors. The Crypto Express 2 enhancements were picked up in the System
z9 LIC.

� 19-digit Personal Account Numbers (PANs) for PCIXCC and Crypto Express2
– The previously supported 13-digit and 16-digit PANs have been extended to 19 digits.
– Designed to meet the industry standard for Card Validation Value (CVV) to increase

antifraud security.
� Less than 512-bit clear key RSA operations - PCIXCC, Crypto Express2

– Designed to allow clear key RSA operations using keys less than 512 bits - Digital
Signature Verify (CSNDDSV), Public Key Encrypt (CSNDPKE), and Public Key
Decrypt (CSNDPKD).

Server CCF PCICC PCICA PCIXCC Crypto
Express 2
as CEX2C

Crypto
Express 2 as
CEX2A

G5, G6 YES YES no no no no

z800, z900 YES YES YES no no no

z890, z990 no no YES YES YESa

a. PCICA and PCIXCC have been withdrawn from marketing with the arrival of
Crypto Express 2, which provides a replacement for both.

no

System z9 no no no no YES YES

Chapter 4. ICSF overview, support for CEX2A and sysplex 47

– This was dictated by the need to migrate existing applications so that they can exploit
the hardware coprocessors.

� 2048-bit key (clear and secure) RSA operations for PCICC
– This is a new parameter for the PCICC on z800 and z900, as it was previously

supporting a key length of 1024 bits at a maximum.
– Four ICSF services can use the 2048-bit key: Public Key Decrypt, Symmetric Key

Import, Export, and Generate.

4.2 Highlights of ICSF HCR7730
HCR7730 is the latest level of ICSF available as of the writing of this book. It is referred to in
the download Web site as “Cryptographic Support for z/OS V1R6/R7 and z/OS.e V1R6/R7”
and includes the following changes and components:

– System z9 and Crypto hardware support
– Enhanced key management for clear DES and AES keys
– Sysplex support for CKDS updating

We now examine these items in detail.

4.3 System z9 and Crypto hardware support
We describe here the functions that the System z9 cryptographic hardware supports that are
new with respect to the z990/z890 implementation.

IBM System z9 processors provide these new functions with the CPACF Message-Security
Assist instructions:

� Hardware execution of the AES algorithm with a 128-bit clear key
� Hardware execution of the SHA-256 algorithm
� Hardware Pseudo Random Number Generator (PRNG)

These functions can also be invoked, as described below, via ICSF services, except for the
PRNG function, which is available through the CPACF KMC instruction only.

� Hardware AES with 128-bit clear key support - The function is invoked through the
Symmetric Key Encipher (CSNBSYE) or Symmetric Key Decipher (CSNBSYD) services
with the keyword “AES” in the rule array. Note that for a key length of 192 or 256 bits ICSF
still provides the service, but via software only.

� SHA-256 - The function is provided by the One Way Hash Generate (CSNBOWH) service
with the keyword “SHA-256” in the rule array.

Examples of CPACF invocation via the Message-Security Assist instructions and ICSF
services are given in Appendix A, “CPACF programs” on page 103.

Performance reporting with CPACF
ICSF reports performance data for the CSNBOWH service with SHA-1 or SHA-256 as the
selected algorithm.

Note: A Crypto Express 2 card is required for ICSF to provide a hardware-generated
pseudo random number via the Random Number Generate (CSNBRNG) service.

48 z9-109 Crypto and TKE V5 Update

4.3.1 CEX2A support
The Crypto Express 2 feature is the only Crypto coprocessor that can be used on the IBM
System z9 109 processor. While it is possible to use the same Crypto Express 2 feature on
the z890 and z990 processors, it could only be configured as two Crypto coprocessors also
known as CEX2C cards. When installed on the IBM System Z9 109 processor, the Crypto
Express 2 cards can be configured either as Crypto accelerators (CEX2A) or Crypto
coprocessors (CEX2C). As was explained earlier, the following configurations are possible for
one CEX2C feature:

� 2 x Crypto coprocessors (2 x CEX2C)
� 2 x Crypto accelerators (2 x CEX2A)
� 1 x Crypto accelerators and 1 x Crypto processor (1 x CEX2A, 1 x CEX2C)

ICSF recognizes the CEX2A type of coprocessor beginning with HCR7730. Previous levels of
ICSF will just ignore the CEX2A cards. The coprocessor management panel for ICSF
HCR7730 shows the CEX2A card with a type prefix of “F” as shown in Figure 4-1.

Figure 4-1 - Displaying the CEX2A cards with the “F” prefix

The CEX2A cards provide only the following services:

� Digital Signature Verify (CSNDDSV)
� PKA Decrypt (CSNDPKD)
� PKA Encrypt (CSNDPKE) with ZERO-PAD and MRP only

Note that ICSF routes these requests to CEX2A cards only if available in the system,
otherwise they are routed to CEX2Cs.

4.4 Enhanced key management for clear DES and AES keys
The HCR7730 level of the KGUP utility has been enhanced to allow some new parameters in
support of clear AES keys. Clear DES keys were introduced with an SPE for the previous
ICSF levels HCR770A and HCR7720, that was also modifying the services.

� CSNBKTB (Key Token Build)
Which therefore is also a means to generate a clear key token and write it to the CKDS.

------------------------- ICSF Coprocessor Management -------- Row 1 to 4 of 4

 Select the coprocessors to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 COPROCESSOR SERIAL NUMBER STATUS
 ----------- ------------- ------
 . E00 95000224 ACTIVE
 . F01 ACTIVE
 . F02 ACTIVE
 . F03 ACTIVE

Important: Although running previous levels of ICSF on a System z9 is still expected to
provide the CEX2C cryptographic services available previously to z9, we strongly
recommend to install HCR7730 as soon as possible even if there is no current need for the
new functions.

Chapter 4. ICSF overview, support for CEX2A and sysplex 49

� CSNBKRR (Key Record Read)
� CSNBKRW (Key Record Write)
� CSNBSYD and CSNBSYE (Symmetric Key Decrypt and Symmetric Key Encrypt)

Note that CSNBSYD and CSNBSYE are the only services that use clear key tokens.

HCR7730 enhances this support to allow clear AES keys to be generated and stored into the
CKDS by KGUP.

Example 4-1shows an example of KGUP parameters to create a clear DES key, a clear AES
key, and another DES key supplied in CLEAR form.

Example 4-1 KGUP parameters to create certain keys

ADD TYPE(CLRDES),
 KEY(0000000000000000,1111111111111111),
 LAB(PEKKAS.CLEAR.DES.KEY)
ADD TYPE(CLRAES),
 KEY(0000000000000000,1111111111111111,2222222222222222,
 3333333333333333),
 LAB(PEKKAS.CLEAR.AES.KEY)
ADD TYPE(DATA),
CLEAR KEY(0000000000000000,1111111111111111),
 LAB(LENNIES.DATA.KEY)

Note the difference between the use of the keyword CLEAR and the TYPE values of
CLRDES and CLRAES.

Note that the third, with TYPE(DATA), is generating a secure data key token. The CLEAR
keyword simply says that the key value is supplied in CLEAR form by the KGUP user.

The TYPE values of CLRDES and CLRAES will cause the CKDS records to contain exactly
the values specified. There will be no control vectors used, nor will the keys be encrypted
under the ICSF master key.

Once having written these CLRDES and CLRAES keys, they can be used by the encryption
and decryption services CSNBSYE and CSNBSYD. Note that the CKDS records, that is, the
key tokens, can be listed using IDCAMS, but if an attempt is made to read them using the
ICSF Key Record Read (CSNBKRR) service, the caller receives Return Code 4 and Reason
Code X’81E’ (2078) if not in supervisor state.

Below is the output from a listing of the CKDS data set, using DITTO, after having executed
the KGUP statements of Example 4-1.

REC 4 DATA 252 CHAR LENNIES.DATA.KEY
 ZONE DCDDCCE4CCEC4DCE4444444444444444444444444444444444
 NUMR 3555952B4131B2580000000000000000000000000000000000
 01...5...10...15...20...25...30...35...40...45...50
 CHAR DATA 2005082512052825
 ZONE 44444444444444CCEC4444FFFFFFFFFFFFFFFF000000000000
 NUMR 00000000000000413100002005082512052825000000000000
 51..55...60...65...70...75...80...85...90...95.....
 CHAR b (54 E
 ZONE 0000000000C0000000008E36B64FF07A90C300000000000000

Note: KGUP allows to generate and store in the CKDS clear AES keys of length 128, 192
or 256 bits. Remember that only 128-bit long keys will be accepted for AES hardware
execution by the CPACF.

50 z9-109 Crypto and TKE V5 Update

 NUMR 00001000100000000000216542D5439BEE5300000000000000
 101...5...10...15...20...25...30...35...40...45...50
 CHAR
 ZONE 00000000000001000020000000000000000000000000000000
 NUMR 00
 151..55...60...65...70...75...80...85...90...95.....
 CHAR
 ZONE 0041
 NUMR 003D
 201...5...10...15...20...25...30...35...40...45...50
 CHAR +
 ZONE 24
 NUMR DE
 251.
REC 5 DATA 252 CHAR PEKKAS.CLEAR.AES.KEY
 ZONE DCDDCE4CDCCD4CCE4DCE444444444444444444444444444444
 NUMR 752212B33519B152B258000000000000000000000000000000
 01...5...10...15...20...25...30...35...40...45...50
 CHAR DATA 2005082512052825
 ZONE 44444444444444CCEC4444FFFFFFFFFFFFFFFF000000000000
 NUMR 00000000000000413100002005082512052825000000000000
 51..55...60...65...70...75...80...85...90...95.....
 CHAR
 ZONE 00000000000000000000000000001111111122222222333333
 NUMR 00001000400000000000000000001111111122222222333333
 101...5...10...15...20...25...30...35...40...45...50
 CHAR
 ZONE 33000000000000000020000000000000000000000000000000
 NUMR 33000000001000000000000000000000000000000000000000
 151..55...60...65...70...75...80...85...90...95.....
 CHAR
 ZONE 00DD
 NUMR 00CB
 201...5...10...15...20...25...30...35...40...45...50
 CHAR e
 ZONE 8F
 NUMR 5A
 251.
REC 6 DATA 252 CHAR PEKKAS.CLEAR.DES.KEY
 ZONE DCDDCE4CDCCD4CCE4DCE444444444444444444444444444444
 NUMR 752212B33519B452B258000000000000000000000000000000
 01...5...10...15...20...25...30...35...40...45...50
 CHAR DATA 2005082512052825
 ZONE 44444444444444CCEC4444FFFFFFFFFFFFFFFF000000000000
 NUMR 00000000000000413100002005082512052825000000000000
 51..55...60...65...70...75...80...85...90...95.....
 CHAR
 ZONE 00000000000000000000000000001111111100000000000000
 NUMR 00001000100000000000000000001111111100000000000000
 101...5...10...15...20...25...30...35...40...45...50
 CHAR
 ZONE 00000000000001000020000000000000000000000000000000
 NUMR 00
 151..55...60...65...70...75...80...85...90...95.....
 CHAR

Chapter 4. ICSF overview, support for CEX2A and sysplex 51

 ZONE 0030
 NUMR 00EE
 201...5...10...15...20...25...30...35...40...45...50
 CHAR :o
 ZONE 79
 NUMR A6
 251.

It is possible to see that the two clear keys contain the key parts shown in the KGUP control
statements. The format of the clear key internal token in the CKDS is shown in Figure 4-2.

Figure 4-2 AES clear key internal token

4.5 Sysplex support
ICSF was not, so far, providing full sysplex support, because while the CKDS data set could
be shared between different ICSF instances, but the in-storage copies of the data set were
not automatically synchronized when one ICSF instance was adding, modifying or deleting a
key in the shared data set. Synchronization had to rely on manual processes.

New functions have been added to ICSF HCR7730 to maintain the coherency of the multiple
in-storage copies of the CKDS in a sysplex configuration. Before we proceed and describe
these new functions, we give with more details about how CKDS sharing used to be achieved
before the availability of ICSF HCR7730.

4.5.1 Sysplex support prior to ICSF HCR7730
ICSF uses two key data sets: the Cryptographic Key Data Set (CKDS) and the Public Key
Data Set (PKDS). The CKDS is used to hold DES keys used in symmetric encryption and
MAC algorithms, while the PKDS is used to hold asymmetric keys (that is, RSA keys with the
Crypto Express 2 coprocessor).

Token validation value (TVV)60-63

2-byte integer specifying the length in bytes of the encrypted key value (For a clear key
AES token this value will be hex zero)

58-59
2-byte integer specifying the length in bits of the clear key value56-57
8-byte control vector. (For a clear key AES token this value will be hex zero)48-55

128-bit, 192-bit, or 256-bit key value, left-justified and padded on the right with hex
zeroes

16-47
Master key verification pattern (For a clear key AES token this value will be hex zero)8-15
1-byte Longitudinal Redundancy Check (LRC) checksum of clear key value 7

Flag byte Bit (both bits are ‘0’)
0 Encrypted key and master key verification pattern (MKVP) are present
1 Control vector (CV) value in this token has been applied to the key

6
x’00’ Reserved5
x'04' Key token version number4
Implementation-dependent bytes (x'000000' for ICSF)1-3
x’01’ (internal token only)0

DescriptionByte

Token validation value (TVV)60-63

2-byte integer specifying the length in bytes of the encrypted key value (For a clear key
AES token this value will be hex zero)

58-59
2-byte integer specifying the length in bits of the clear key value56-57
8-byte control vector. (For a clear key AES token this value will be hex zero)48-55

128-bit, 192-bit, or 256-bit key value, left-justified and padded on the right with hex
zeroes

16-47
Master key verification pattern (For a clear key AES token this value will be hex zero)8-15
1-byte Longitudinal Redundancy Check (LRC) checksum of clear key value 7

Flag byte Bit (both bits are ‘0’)
0 Encrypted key and master key verification pattern (MKVP) are present
1 Control vector (CV) value in this token has been applied to the key

6
x’00’ Reserved5
x'04' Key token version number4
Implementation-dependent bytes (x'000000' for ICSF)1-3
x’01’ (internal token only)0

DescriptionByte

52 z9-109 Crypto and TKE V5 Update

The content of CKDS is updated and accessed much more frequently, due to the relatively
ephemeral nature of the symmetric keys. On the contrary, asymmetric keys are mostly
long-living keys, and the decision was made by the ICSF laboratory to focus on developing
full sysplex support for the CKDS only in HCR7730.

The CKDS can be defined using the following IDCAMS statements:

DEFINE CLUSTER (NAME(LENNIE.CSFCKDS) -
 RECORDS(100 50) -
 RECORDSIZE(252,252) -
 KEYS(72 0) -
 FREESPACE(10,10) -
 SHAREOPTIONS(2)) -
 DATA (NAME(LENNIE.CSFCKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE -
 WRITECHECK) -
 INDEX (NAME(LENNIE.CSFCKDS.INDEX))

The SHAREOPTIONS above are those used for data sets that are shared and that are
managed by the application. ICSF makes use of system scope ENQ macros to serialize
access to the CKDS so that read integrity is maintained when the CKDS is updated by the
ICSF address space, as long as only one system is accessing the data set for updates.
However, read integrity is not maintained if KGUP updates the CKDS.

The entire CKDS is read into a dataspace named CSFDS001 when ICSF starts. This
in-storage copy of the CKDS is managed by ICSF as follows:

� Updates that are made to keys using services such as CSNBKRC (Key Record Create)
and CSNBKRW (Key Record Write), CSNBKRD (Key Record Delete) and CSNBKPI (Key
Part Import), or any service that invokes these implicitly, are made to the CKDS dataspace
and are also written to the CKDS.

� However, READ activity using the CSNBKRR (Key Record read) or any service that
invokes it implicitly, is always directed only to the dataspace.

The KGUP utility can be used to add, modify, and delete keys in the CKDS, but this is done
without updating the CKDS in-storage copy. That is, the dataspace and the CKDS can
become desynchronized because the DASD version of the CKDS is being updated by the
local KGUP.

This is also true for updates done to the shared CKDS by remote instances of ICSF or KGUP,
because none of them will be reflected in the local in-storage copy of the CKDS.

The solution to putting the CKDS data set and its in-storage copy back in synchronization
again is then to us the CSFEUTIL program or the REFRESH facility from the ICSF ISPF
panels. Either of these methods will refresh the local in-storage copy of the CKDS from the
CKDS data set.

The mode of operation when not in full sysplex support, that is, with ICSF levels previous to
HCR7730, is illustrated by Figure 4-3 and Figure 4-4.

Chapter 4. ICSF overview, support for CEX2A and sysplex 53

Figure 4-3 Pre-HCR7730 sysplex configuration - Key Record Create part 1 of 2

Figure 4-4 Pre-HCR7730 sysplex configuration - Key Record Create part 2 of 2

It is the lack of dataspace synchronization and data set cross-system serialization that is
addressed in the HCR7730 version of ICSF.

4.5.2 Sysplex support with ICSF HCR7730
ICSF HCR7730 provides a mechanism for ensuring synchronization between the CKDS data
set and in-storage copies, in a sysplex environment.

The Options data set SYSPLEXCKDS keyword
The SYSPLEXCKDS keyword is new with ICSF level HCR7730. Its syntax is:

SYSPLEXCKDS(YES|NO,FAIL(YES|NO))

ICSF Dataspace
(no keys)

ICSF Dataspace
(no keys)

ICSF Dataspace
(no keys)

ICSF Dataset
(no keys)

MVIS MVIT MVIVMVIS MVIT MVIV

Creating a new Key with
CSNBKRC
Initial configuration

ICSF Dataspace
(no keys)

ICSF Dataspace
(no keys)

Creating a new Key with CSNBKRC
After running CSNBKRC

MVIS MVIT MVIV

ICSF Dataspace
KEY=DES.KEY001
Created by CSNBKRC

ICSF Dataset
KEY=DES.KEY001
Created by CSNBKRC

54 z9-109 Crypto and TKE V5 Update

Note that the FAIL parameter is only applicable when the first parameter is YES.

SYSPLEXCKDS(NO,FAIL(NO)) is the default setting. The first NO indicates that no sysplex
sharing protocol is to be used. This is equivalent to the serialization mechanism used prior to
ICSF HCR7730.

SYSPLEXCKDS(NO,FAIL(YES)) is the same as SYSPLEXCKDS(NO,FAIL(NO)).

SYSPLEXCKDS(YES,FAIL(NO)) and SYSPLEXCKDS(NO,FAIL(YES)) will cause the new
CKDS sharing protocol to be used when accessing the CKDS within a sysplex.

The two options FAIL(YES) and FAIL(NO) indicate what action should be taken when an
attempt to join the sysplex group by ICSF fails. If FAIL(YES) is specified, the ICSF
initialization will fail if the attempt to join the sysplex group fails. If FAIL(NO) is specified, then
ICSF initialization will continue but the sysplex sharing protocol will not be used. Updates to
the CKDS will not be received from other systems and updates performed will not be notified
to other systems, just as if SYSPLEXCKDS(NO,FAIL(YES|NO)) had been coded.

Once we had established a CKDS shared across a sysplex, we wanted it to continue to be
maintained correctly, so we generally specified SYSPLEXCKDS(YES,FAIL(YES)) in our
testing.

4.5.3 How the new CKDS sysplex sharing works
All systems sharing the CKDS must be using HCR7730. Systems using lower levels of ICSF
will not be able to take part in the CKDS sharing process.

Sysplex XCF messages are sent to the sysplex members in the ICSF group. At any given
time the messages may originate from any one system, reflecting an update done to the
CKDS data set from that system. The systems receiving messages take appropriate actions
to update their CKDS in-storage copy. The XCF group name is fixed to SYSICSF by design.

The messages are sent when one system updates or creates a CKDS record using one of the
following ICSF services:

� Key Record Create (CSNBKRC)
� Key Record Delete (CSNBKRD)
� Key Record Write (CSNBKRW)
� Key Part Import (CSNBKPI)

If the CKDS is updated as a result of using the KGUP utility or by performing a CKDS
re-encipher, then the updates will not be propagated to the other systems, except if the CKDS
update is the completion step of a Load Operational Key process started at the TKE. In this
latter case the CKDS update driven either by KGUP or from the ICSF ISPF panel is
propagated to the in-storage copy of all the ICSF instances sharing the CKDS.

Access to the entire CKDS data set is serialized using ENQ macros with a Qname of
SYSZCKT and an Rname of ckdsname. This ENQ is used to ensure serialization between
the ICSF address spaces and block writers of the CKDS that write using CSNBKRC,
CSNBKRD, or CSNBKRW. But KGUP is not prevented from writing to the CKDS.

In addition to the above level of serialization, all ICSF address space I/O to the CKDS data
set and updates of in-storage copies of the CKDS are serialized using an ENQ with a Qname
of SYSZCKDS and an Rname of ckdsname. However, this ENQ is subject to a time-out to
allow for situations where one system is holding the ENQ for an excessive time. Note also
that XCF messages are broadcast requesting other ICSF address spaces to release the

Chapter 4. ICSF overview, support for CEX2A and sysplex 55

ENQ. The time-out is designed to handle software or hardware failures that may cause
WAITs.

Each of the ENQs above is issued with a scope of SYSTEMS and so will be propagated to
the whole sysplex (and potentially beyond if the GRSplex includes systems outside the
sysplex).

Internally to the ICSF address space there are 512 latches that are used to serialize access
to particular key records within the CKDS. This ensures that the same key record cannot be
updated simultaneously by requests from two independent processes making requests of
ICSF. A hashing method is used to select a particular latch to correspond with a given key
record. A latch is obtained whenever a key record is being read or written.

Creating a record
When a new record is created, via CSNBKRC, the local in-storage copy of the CKDS is
updated along with the CKDS data set itself. In the same timeframe a signal is broadcast via
the XCF links to instruct the other systems that a new record is available to be read into the
CKDS in-storage copy. The other systems will then read the record from the CKDS data set
into their local in-storage copy.

Updating a record
When a CKDS record is updated, via CSNBKRW or CSNBKPI, the local in-storage copy of
the CKDS is updated, along with the CKDS data set itself, with the new record contents. In
the same time frame a signal is sent via the sysplex XCF links to instruct the other systems to
invalidate the record in the local CKDS in-storage copy and to read the updated version from
the CKDS data set.

Deleting a record
When a CKDS record is deleted, via CSNBKRD, the local CKDS in-storage copy along with
the CKDS data set itself are updated. In the same time frame a signal is broadcast via the
XCF links to the other systems to invalidate the record in their local in-storage copy. The
other ICSF instances then delete that record from their in-storage copy.

The operation of ICSF in this new mode is shown in Figure 4-5 and Figure 4-6.

Figure 4-5 HCR7730 sysplex configuration - Key Record Create part 1 of 2

ICSF Dataspace
(no keys)

IC SF D ataspace
(no keys)

IC SF D ataspace
(no keys)

ICSF D ataset
(no keys)

XCF links

M VIS M VIT M VIV

Creating a new K ey w ith CSNBK RC
SYSPLEXCKDS(YES,FAIL(YES))
Initial configuration

56 z9-109 Crypto and TKE V5 Update

Figure 4-6 HCR7730 sysplex configuration - Key Record Create part 2 of 2

4.5.4 How we tested the HCR7730 new sysplex support
We dedicated part of the residency to exercise the CKDS sysplex support functions. In this
section we describe our setup and the test cases we used.

The environment
We started with a 3-system sysplex running z/OS 1.7 on a z990 processor. The HCR7730
level of ICSF was installed. The systems were MVIT, MVIS and MVIV. (MVIV was not needed
for these tests, but is shown in the diagrams.)

Each system has access to four crypto coprocessor CE2XC cards.

New CKDS and PKDS data sets were allocated and initialized, specifying the master key
using the PPINIT function on system MVIT. The master key was then also set on system
MVIS.

Testing methods
The testing methods involved running REXX routines that invoked various ICSF interfaces.
Three REXX routines were written and in each case the key name is hardcoded into the
routines for simplicity.

REXBKRC
This routine was used to create a new key. It uses the following routines:

� CSNBKRD to conditionally delete the key
� CSNBKGN to generate a key
� CSNBKRC to create the key name
� CSNBKRW to write the key using the key name

REXBKRD
This routine is used solely to delete the key. It calls CSNBKRD to delete the key.

IC S F D a ta sp a ce
K E Y = D E S .K E Y 0 0 1
C re a ted b y C S N B K R C

IC S F D a ta sp a ce
K E Y = D E S .K E Y 0 0 1
P ro p a g a ted b y X C F

IC S F D a ta se t
K E Y = D E S .K E Y 0 0 1
C re a ted b y C S N B K R C

X C F lin k s

M V IS M V IT M V IV

C r ea tin g a n ew K e y w ith C S N B K R C
S Y S P L E X C K D S (Y E S ,F A IL (Y E S))
A fte r ru n n in g C S N B K R C

IC S F D a ta sp a ce
K E Y = D E S .K E Y 0 0 1
P ro p a g a ted b y X C F

Chapter 4. ICSF overview, support for CEX2A and sysplex 57

REXBKRR
This routine is used to read the keyed record and uses CSNBKRR to read the hardcoded key
name.

Testing sequence
The sequence of events is shown in Table 4-3.

Table 4-3 Our testing sequence of sysplex support

Each of the REXX routines above was run as a batch job. They are provided in Appendix B,
“Programs used in sysplex testing” on page 123.

4.5.5 Updates to the CKDS using KGUP
If the KGUP utility is used to create keys, these updates will not be placed in any dataspace.
It is necessary to use CSFEUTIL or the ICSF ISPF panels to refresh the dataspace on each
system. This situation is shown in Figure 4-7 and Figure 4-8.

The Job step that one might use for CSFEUTIL is:

//STEP EXEC PGM=CSFEUTIL,PARM=‘NEW.CKDS,REFRESH’

where ‘NEW.CKDS’ is the CKDS the in-storage copy of which is to be refreshed.

Item Action MVIS MVIT

1 Ensure ICSF is not active. Yes Yes

2 List the CKDS data set using IDCAMS to show our test key does not
exist.

Yes N/A

3 Start ICSF specifying SYSPLEXCKDS(NO,FAIL(NO)) in the Options
data set on both systems.

Yes Yes

4 Run REXBKRC to create a new key. Yes N/A

5 List the CKDS data set to show the created key (using IDCAMS). Yes N/A

6 Run REXBKRR to read the key. This is expected to succeed.
Result: It does succeed.

Yes N/A

7 Run REXBKRR to read the key. This is expected to fail because the
key will not be available on this system.
Result: It does indeed fail with Return code 8 and Reason code 271C.

N/A Yes

8 Stop and then restart ICSF on both systems changing the setting to
SYSPLEXCKDS(YES,FAIL(YES)).

Yes Yes

9 Run REXBKRD to delete the key. Yes N/A

10 Run REXBKRR to read the key. This is expected to fail as the sysplex
propagation code should have logically deleted the record on MVIT.
Result: It does indeed fail with Return code 8 and Reason code 271C.

N/A Yes

11 Run REXBKRC to create a new key. Yes N/A

12 Run REXBKRR to read the key. This is expected to succeed as the
sysplex propagation code should have logically propagated the
updated record to MVIT.
Result: It does indeed succeed.

N/A Yes

13 List the CKDS data set to show the test key does indeed exist. Yes N/A

58 z9-109 Crypto and TKE V5 Update

Figure 4-7 HCR7730 sysplex configuration with KGUP update - Part 1 of 2

Figure 4-8 HCR7730 sysplex configuration with KGUP update - Part 2 of 2

4.5.6 Messages during ICSF startup and shutdown

ICSF startup
Following are the messages produced when starting ICSF on one member (MVIT) of our
sysplex. The START command is shown first. Note that there are four crypto engines
available on this processor.

S ICSF
$HASP100 ICSF ON STCINRDR
IEF695I START ICSF WITH JOBNAME ICSF IS ASSIGNED TO USER ICSF
 , GROUP OMVSGRP
$HASP373 ICSF STARTED
CSFM600I CONNECTION ESTABLISHED TO ICSF SYSPLEX GROUP SYSICSF, MEMBER
MVIT.

ICSF Dataspace
(no keys)

ICSF Dataspace
(no keys)

ICSF Dataspace
(no keys)

ICSF Dataset
(no keys)

XCF links

M VIS M VIT M VIV

Creating a new Key with KGUP
SYSPLEXCKDS(YES,FAIL(YES))
Initial configuration

IC S F D a ta set
K E Y = D E S .K E Y 0 0 1
C rea ted b y C S N B K R C

X C F lin k s

M V IS M V IT M V IV

C rea tin g a n ew K ey w ith K G U P
S Y S P L E X C K D S (Y E S ,F A IL (Y E S))
A fte r run n ing K G U P

IC S F D a ta sp a ce
(n o k e ys)

IC S F D a ta sp a ce
(n o k e ys)

IC S F D a ta sp a ce
(n o k e ys)

Chapter 4. ICSF overview, support for CEX2A and sysplex 59

CSFM441I CRYPTO EXPRESS2 COPROCESSOR E00, SERIAL NUMBER 95000051,
ACTIVE.
CSFM441I CRYPTO EXPRESS2 COPROCESSOR E01, SERIAL NUMBER 95000060,
ACTIVE.
CSFM441I CRYPTO EXPRESS2 COPROCESSOR E02, SERIAL NUMBER 95000383,
ACTIVE.
CSFM441I CRYPTO EXPRESS2 COPROCESSOR E03, SERIAL NUMBER 95000387,
ACTIVE.
CSFM431I BOTH MASTER KEYS CORRECT ON CRYPTO EXPRESS2 COPROCESSOR E00,
SERIAL NUMBER 95000051.
CSFM431I BOTH MASTER KEYS CORRECT ON CRYPTO EXPRESS2 COPROCESSOR E01,
SERIAL NUMBER 95000060.
CSFM431I BOTH MASTER KEYS CORRECT ON CRYPTO EXPRESS2 COPROCESSOR E02,
SERIAL NUMBER 95000383.
CSFM431I BOTH MASTER KEYS CORRECT ON CRYPTO EXPRESS2 COPROCESSOR E03,
SERIAL NUMBER 95000387.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.

ICSF shutdown
Following are the messages produced when shutting down ICSF on one member (MVIT) of
our sysplex.

P ICSF
IEA989I SLIP TRAP ID=X13E MATCHED. JOBNAME=ICSF , ASID=0053.
IEA989I SLIP TRAP ID=X13E MATCHED. JOBNAME=ICSF , ASID=0053.
IEA989I SLIP TRAP ID=X13E MATCHED. JOBNAME=ICSF , ASID=0053.
CSFM601I CONNECTION DISABLED TO ICSF SYSPLEX GROUP SYSICSF, MEMBER MVIT.
IEA989I SLIP TRAP ID=X13E MATCHED. JOBNAME=ICSF , ASID=0053.
IEA989I SLIP TRAP ID=X13E MATCHED. JOBNAME=ICSF , ASID=0053.
CSFM401I CRYPTOGRAPHY - SERVICES ARE NO LONGER AVAILABLE.
IEF352I ADDRESS SPACE UNAVAILABLE
$HASP395 ICSF ENDED
IEA989I SLIP TRAP ID=X33E MATCHED. JOBNAME=*UNAVAIL, ASID=0053.

4.5.7 Multiple CKDS data sets in the sysplex
The sysplex sharing protocol allows for multiple CKDS data sets to be used within a sysplex.
Updates will be propagated to the appropriate CKDS. However, all updates will be
propagated using the same sysplex XCF group name, SYSICSF.

Figure 4-9 shows a dual CKDS environment.

60 z9-109 Crypto and TKE V5 Update

Figure 4-9 Sysplex configuration with two CKDS

The CKDS data set name is included as part of the Rname referenced in each of the ENQ
macros used to serialize access. This ensures that if more than one CKDS data set is used,
they may be used concurrently.

In addition, the name of the CKDS data set is used in the process of passing XCF messages
between members of the sysplex. Each sysplex will only take actions to update its CKDS
in-storage copy if the data set name matches its own CKDS data set name.

4.5.8 Options for sharing the CKDS data set
Thus, there are three main ways of sharing the CKDS data set:

1. Independent systems accessing the CKDS with a managed update process. Systems will
specify SYSPLEXCKDS(NO,FAIL(YES|NO)).

2. Systems in the same GRS complex (but not necessarily in the same sysplex) who access
the CKDS for read and update, but with a manually managed refresh process that is not
using sysplex CKDS sharing.
Systems will have SYSPLEXCKDS(NO,FAIL(YES|NO)) specified. In addition, customers
can adjust their GRS SYSTEM inclusion RNL to include the Qname SYSZCSF. This will
convert the SYSTEM ENQ to have scope of SYSTEMS.

3. Systems within the same sysplex using SYSPLEXCKDS(YES,FAIL(YES|NO)).

Let us discuss the implications of each method.

Method 1
In this method the systems sharing the CKDS might be within sysplexes or may be other
independent systems. It would be the administrator’s responsibility to ensure that updates are
coordinated, and that they are performed from one system at a time. It is also the
administrator’s responsibility to ensure that in-storage copies are refreshed on each system
using CSFEUTIL or the ICSF ISPF panels.

Important: Users should ensure that if multiple CKDS data sets are used, they have
different data set names. Failure to do this may have implications both for CKDS
serialization and for the integrity of the CKDS in-storage copies.

X C F l in k s

S Y S 1

I C S F

S Y S 1

I C S F

S Y S 2

I C S F

S Y S 2

I C S F

S Y S 3

I C S F

S Y S 3

I C S F

S Y S 4

I C S F

S Y S 4

I C S F

C K D S 0 1C K D S 0 1 C K D S 0 2C K D S 0 2

Chapter 4. ICSF overview, support for CEX2A and sysplex 61

Access to the CKDS will not be serialized across systems. If two or more systems attempt to
update the CKDS simultaneously, then it is possible that corruptions could occur.

Method 2
In this method, all systems sharing the CKDS are part of the same GRS complex, which
could be a GRS Star within a sysplex or a GRS Ring comprising systems both within and
outside of sysplexes. As explained above, the systems would need to modify the GRS
SYSTEM inclusion RNL so that SYSZCSF Qnames are converted to have a scope of
SYSTEMS.

Because of this, the serialization mechanisms will ensure that multiple systems should be
able to update the CKDS and maintain its integrity. The CKDS in-storage copies will not
always be synchronized with the CKDS data set, but this can be corrected by using
CSFEUTIL or the ICSF ISPL panels to refresh the in-storage copies.

However, this method is a theoretical sharing mechanism, and has not been tested formally.

Method 3
This is the new sysplex sharing method. All systems sharing the CKDS need to be part of the
same sysplex. All systems will maintain accurate, timely, coherent dataspaces containing the
CKDS records.

All systems will need to be using the HCR7730 level of ICSF or later.

No manual refreshing of the dataspaces will be needed during normal operation, unless
KGUP has been used to add, update, or delete keys. Remember, however, that as part of the
Load Operational Key TKE process, the CKDS update by KGUP is to be propagated to the
in-storage copies of the ICSF instances sharing the CKDS in the sysplex.

To use this type of sharing, specify SYSPLEXCKDS(YES,FAIL(YES|NO)) on all sharing
systems.

4.5.9 Changing the Master Key in a sysplex
The recommended procedure is as follows:

1. Disable CKDS dynamic access via panels for all systems sharing the CKDS.

2. Load the new symmetric-keys master key for all systems.

3. Reencipher the CKDS on one system.

4. Change master keys on all systems.

5. Enable CKDS dynamic access for all systems.

6. Update the CSFPRMnn member to point to the correct CKDS.

4.5.10 Managing the PKDS data set
The PKDS data set does not have a dataspace into which keys are loaded. Instead, it has a
cache of the most recently used keys. By default this is set at 64 keys but can be set as high
as 256 keys, or can be eliminated entirely by specifying PKDSCACHE(0) in the Options data
set.

Note: It is IBM’s recommendation to share the CKDS using Method 3.

62 z9-109 Crypto and TKE V5 Update

There is no mechanism to ensure synchronization of the multiple PKDS caches within a
sysplex. However, the life of RSA keys is normally far longer than DES keys’ life and it is
expected that the number of keys to maintain will be relatively small. Consequently, it is not
envisioned that this lack of automatic synchronization will be an issue to sysplex users.

If the number of keys maintained is 256 or less, they can all be kept in the cache.

If the cache is used, any changes to the keys will need to be handled manually using the
CSFPUTIL utility or the ICSF ISPF panels to refresh the cache on all systems sharing the
PKDS.

If it is essential to always have the correct version of all PKDS records immediately on all
systems accessing the PKDS, then you should specify PKDSCACHE(0).

4.5.11 Other sysplex support changes

SMF Record Type 82 (Subtype 21)
This SMF record is written when

� A system joins the ICSF sysplex group.

� A system leaves the ICSF sysplex group.

� If a system left the ICSF group, the record also indicates whether the reason was normal
ICSF termination processing or error recovery processing, that is, not a termination of
ICSF.

The record contains the name of the sysplex group, the name of the sysplex member, the
time of join/leave, and the name of the active CKDS.

Component Trace
The following are new ICSF Component Trace Entries:

� Entry type 13 ‘Send of XCF message’ Trace sending of an XCF message

� Entry type 14 ‘Receipt of XCF message’ Trace receipt of an XCF message

� Entry type 15 ‘Exclusive CKDS ENQ’ Trace return of control to CKDS I/O subtask
following a request for exclusive ENQ on the SYSZCKDS.ckdsdsn resource

New console messages - 1
CSFM301A FAILURE UPDATING CKT AFTER CKDS UPDATE, RET=return_code, RSN=reason_code.
MANUAL REFRESH OF CKDS REQUIRED, MEMBER member_name.
CSFM303E CKT UPDATE FAILED,LABEL label.

These messages are issued together when a DASD copy of a CKDS has been updated
successfully, but a member of the ICSF sysplex group has not been able to update its
in-storage copy. The CKDS dataspace is now out of sync with the CKDS data set.

New console messages - 2
CSFM302A TIMED OUT WAITING FOR RESOURCE SYSZCKDS.ckdsdsn. CKDS UPDATE FAILED.

This message is issued when the CKDS I/O subtask timed out waiting for an exclusive ENQ
on SYSZCKDS.ckdsdsn. At least one member of the sysplex group has not relinquished its
ENQ on the resource.

ICSF processing continues. The CKDS update operation is failed with C/BBD

Chapter 4. ICSF overview, support for CEX2A and sysplex 63

The operator should issue D GRS,RES=(qname,rname) to determine who is holding the ENQ
and why it has not been released.

New console messages - 3
CSFM600I CONNECTION ESTABLISHED TO ICSF SYSPLEX GROUP group_name, MEMBER
member_name.

This message is issued during ICSF initialization processing when ICSF has successfully
joined the XCF group. This system will now participate in sysplex-wide coherency for the
CKDS data set.

New console messages - 4

CSFM601I CONNECTION DISABLED TO ICSF SYSPLEX GROUP group_name, MEMBER member_name.

This message is issued during ICSF termination processing when ICSF has successfully left
the XCF group. This system will no longer participate in sysplex-wide coherency for the
CKDS data set.

New console messages - 5

CSFM602E CONNECTION BROKEN TO ICSF SYSPLEX GROUP group_name, MEMBER member_name.

This message is issued during ICSF recovery processing when the Cross-System Services
environment is terminated. This system will no longer participate in sysplex-wide coherency
for the CKDS data set.

New console messages - 5

CSFM603E FAILURE IN XCF SERVICE xcf_service FOR MEMBER member_name, GROUP
group_name. RETURN CODE = return_code, REASON CODE = reason_code.

This message is issued when a failure is encountered while attempting to join or leave the
XCF group or while processing an inter-system message.

The system action for an IXCJOIN failure depends upon the specification of the FAIL keyword
in the SYSPLEXCKDS installation option. For an IXCMSGI failure, the ICSF Cross-System
Services environment is terminated.

New console messages - 6

CSFM604E FAILURE INITIALIZING ICSF CROSS-SYSTEM SERVICES ENVIRONMENT, FUNCTION =
code, RETURN CODE = return_code, REASON CODE = reason_code.

This message is issued when a failure is encountered while setting up the ICSF
Cross-System Services environment.

� Code = 1: Error occurred in IXCJOIN processing

� Code = 2: Error occurred when creating CKDS latch set

The system action depends upon the specification of the FAIL keyword in the
SYSPLEXCKDS installation option.

New abend codes
Table 4-1 shows the new abend codes that can be produced by ICSF, and the circumstances
under which they are produced.

64 z9-109 Crypto and TKE V5 Update

Table 4-4 ICSF HCR7730 new abend codes

New reason codes for return code x’C’
Table 4-5 shows new reason codes for return code x’C’ from the various ICSF calls.

Table 4-5 ICSF HCR7730 new reason codes

Abend - Reason Code Description

18F - 54 SYSPLEX(YES,FAIL(YES)) specified and failure occurred during the
IXCJOIN request

18F - 55 SYSPLEX(YES,FAIL(YES)) specified and failure occurred while
creating the CKDS latch set

18F - 56 Program error issuing ISGENQ

18F - 57 Error establishing ESTAE for ICSF Cross-System Services task

18F - 58 Program error invoking IXCQUERY

18F - BD Bad entry code passed to CSFMXCFC

18F - BE Error in ATTACH processing in CSFMXCFC

18F - BF Error in DETACH processing in CSFMXCFC

Reason Code Meaning

3005 (x’BBD’) The CKDS I/O Subtask timed out waiting for an exclusive ENQ on
SYSZCKDS.ckdsdsn. The operator should issue D
GRS,RES=(qname,rname). (See message CSFM302A)

3006 (x’BBE’) XCMSGO issued from the CKDS I/O Subtask failed after exhausting
the maximum retry attempts.

3007 (x’BBF’) CKDS service failed due to unexpected termination of the ICSF
Cross-System Services environment.

Chapter 4. ICSF overview, support for CEX2A and sysplex 65

66 z9-109 Crypto and TKE V5 Update

Chapter 5. User Defined Extensions (UDX)

The UDX is the facility offered by the S/390, zSeries and System z9 PCI coprocessors, to
have users designing and implementing their own cryptographic services to be executed in
the PCI or PCI-X card itself. This gives a high level of flexibility to the coprocessor user along
with the performance and the protection that the card can provide for the customized
algorithm. More detailed information on the UDX development and implementation can be
found in zSeries Crypto Guide Update, SG24-6870.

This chapter provides information on how to install the UDX code and apply changes to it, in
the Crypto Express 2 coprocessor of System z9. It is not intended to give a complete
information on UDX management. For the latter topic, refer to z/OS Cryptographic Services
Integrated Cryptographic Service Facility Administrator’s Guide, SA22-7521.

5

© Copyright IBM Corp. 2005. All rights reserved. 67

5.1 Refresher on the UDX implementation
UDX has been an option since the availability of the PCICC Cryptographic Coprocessor on
S/390. The UDX code developed for the PCICC does not operate in the PCIXCC or Crypto
Express 2 card. The UDX code developed for the PCIXCC can be used with the Crypto
Express 2 card without any changes. If a UDX developed for the PCICC is still needed to
execute in the Crypto Express 2 card, then the UDX must be recoded to run in PCIXCC or
Crypto Express 2.

A UDX implementation on zSeries and System z9 requires three parts:

� An ICSF callable service, which when called by a user application will invoke the UDX
code being executed in Crypto Express 2. This is a user-defined host service that matches
the specific UDX code running in the card. Applications call the service using a designated
number.

� The Crypto Express 2 UDX code. This is the coprocessor piece installed by the user into
the Crypto Express 2 code itself, and intended to be invoked by the ICSF service above. A
UDX is designated by a specific two-character identity.

� A service “stub”, to be link-edited with the application calling the user-defined service for
proper dispatching of the service by ICSF.

Additionally, the specific UDX service can be enabled or disabled using access control points
managed from the TKE workstation. This makes it necessary to design and install an exit to
the CSFPCI (TKE communication) ICSF callable service.

For the Crypto Express 2 card, the set of functions and API at the card level have to be the
IBM CCA services and are implemented as a set of “CCA command processors” in the
Crypto Express 2 code.

The UDX code to be installed in a Crypto Express 2 card consists of a user-designed
command processor that is link-edited into the original coprocessor code during the UDX
generation process. When loaded into the coprocessor, a UDX is checked for origin and
integrity using a digital signature scheme. That is, the new coprocessor code version, with the
UDX integrated, should have been signed by an IBM-approved key.

Note that a customer may elect to have more than one UDX in a single coprocessor. Each
UDX will be uniquely referred to using its function identifier.

UDX Function code identifier
The UDX is in essence another command processor in the coprocessor, like the already
existing CCA command processors, which has its own function identifier (the following range
of identifiers is reserved for UDX: XA-XZ, X0-X9, YA-YZ, Y0-Y9, WA-WZ, W0-W9).

The function identifier corresponding to an installed UDX is known to the coprocessor after a
coprocessor reset. For ICSF, an existing UDX is indicated in the Options Data Set, once the
UDX has been installed in Crypto Express 2, by a UDX statement as follows:

Note: The UDX customized algorithm is added as specific coprocessor code built by IBM
or an approved third party. Building a UDX is an IBM service offering performed under
contract. The resulting product of the UDX development process is a customized CD to be
loaded into the customer system.

As of the writing of this book there is no plan to provide a means for a customer to build a
Crypto Express 2 UDX by himself/herself.

68 z9-109 Crypto and TKE V5 Update

UDX(UDX-id,service-number,load-module-name,’comment_text’,FAIL(failoption))

Where UDX-id is the function code that identifies the UDX command processor according to
the function code specified during the UDX generation process, service-number is to be
used internally to refer to this callable service (see the “stub” in 5.1.1, “The UDX callable
service and the stub” on page 69), and load-module-name is the name of the user-defined
callable service that is eventually calling the UDX in the Crypto Express 2 card (refer to the
ICSF System Programmer’s Guide for a complete description of the statement).

5.1.1 The UDX callable service and the stub
A UDX, not being a base CCA “verb”, requires a specific additional routine in ICSF to provide
the service at the application API level. This ICSF callable service in turn manages to call the
UDX in Crypto Express 2.

The capability of creating customized services in ICSF (the “installation-defined services”)
has been available since the early releases of ICSF. These services are customer-written
modules link-edited with ICSF, and identified in the Options Data Set (refer to the ICSF
System Programmer's Guide) by the SERVICE statement where a unique number (from 1 to
32767, inclusive) is associated to the service load module.

After you write the callable service, you need to link-edit it into a load module, and install the
load module into an APF-authorized library. ICSF uses the following normal search order to
locate the service:

� Job pack area
� Steplib (if one exists)
� Link pack area (LPA)
� Link list (SYS1.LINKLIB concatenation)

During ICSF startup, ICSF loads the load module that contains the service into the ICSF
address space with the ICSF callable services. ICSF binds the service with the service
number that you specified in the installation Options Data Set. To call such an
installation-defined service, the application has to actually call an intermediary piece of code
called the “stub”. This is depicted in Figure 5-1.

Chapter 5. User Defined Extensions (UDX) 69

Figure 5-1 UDX implementation in the Crypto Express 2 coprocessor and ICSF

The service stub is also designed and installed by the user and must do the following:

� Check that ICSF is active.

� Place the service number for the installation-defined callable service into register 0.

� Call the IBM-supplied processing routine, CSFAPRPC, which is internally used by ICSF to
access the callable services. The stub has to first retrieve the location of CSFAPRPC from
the ICSF cryptographic communication vector table (CCVT).

A stub example is given in the ICSF System Programmer’s Guide.

Any application program that calls a service stub must be link-edited with the service stub. To
call an installation-defined service from an application program, use the following statement:

CALL <service-stub-name><service-parameters>

The service-stub-name is the name of the service stub for the installation-defined callable
service. The service-parameters are the parameters you want to pass to the
installation-defined service. You supply the parameters according to the syntax of the
programming language that you use to write the application program.

This capability is extended to allow interaction with the UDX in Crypto Express 2 by installing
a user-defined ICSF module that will request Crypto Express 2 to run the UDX integrated in
its code. This “UDX Callable Service” must also have a unique number that is not shared with
another UDX or non-UDX installation-defined service, the service number being specified in
the UDX statement of the Options Data Set as indicated above. As for a regular
installation-defined service, the service invocation is performed via the stub.

Note again that with a UDX callable service the actual service is performed by the UDX code
running in the card, whereas with a regular user-defined service the service is provided by the
code running in the ICSF address space.

Control Program

Command Dispatcher

UDX

ICSF

CCA API

UDX Callable
Service

CCA
verb

CCA
verb

ApplicationStub

Service
Number

UDX
functionID

base CCA
verbs

Crypto Express 2
coprocessor

70 z9-109 Crypto and TKE V5 Update

More information can be found in the publication IBM Eserver zSeries CCA User Defined
Extensions Reference and Guide, available on the cryptocards Web site at:

http://www.ibm.com/security/cryptocards

The Web site will direct your request to an IBM Global Services (IGS) location appropriate for
your geographic location. A special contract will be negotiated between IGS and you,
covering development of the UDX by IGS per your specifications, as well as an agreed-upon
level of the UDX.

5.2 The UDX on System z9
We now discuss the installation and activation of UDX.

5.3 Initial load and activation of the UDX
This procedure describes how to install and activate UDX functions in the System z9
environment. The installation process is concurrent to the system operations and is divided
into two parts:

� The UDX installation in the Crypto Express 2 coprocessors and the Master Keys (SYMMK
and ASYMMK) initialization.

� The UDX activation, which enables applications to access the UDX code.

5.3.1 Installation of the UDX
We assume here that there is at least one Crypto Express 2 feature installed in System z9
and the coprocessors have already been initialized, that is, the Master Keys are loaded and
the TKE settings properly done.

The installation is done as follows:

1. Deactivate the target Crypto Express 2 coprocessor on all logical partitions in the system
where the target coprocessor is active:

– In the ICSF ISPF main panel, select option 1 Coprocessor Management.

– In the ICSF Coprocessor Management panel, select the target coprocessor using the
action character D (Deactivate). The status of the coprocessor should become
DEACTIVATED.

2. From the HMC Console or the Support Element (SE) configure the target coprocessor
offline (that is, in “standby” status).

3. From the HMC/SE import the UDX code CD via the Cryptographic Configuration panel.

4. From the HMC/SE configure the target coprocessor back on line. It will take approximately
between five and ten minutes for the coprocessor to unitize.

5. From the HMC/SE enable the TKE Commands for the target coprocessor.

6. Activate the target Crypto Express 2 coprocessor on all logical partitions that require it:

Important: The initial UDX installation deletes all Master Keys in each domain of the
coprocessor. All TKE settings, roles, authorities, etc. stored in the target coprocessor
are also cleared. The TKE commands enablement setting is also set back to “deny”.

Chapter 5. User Defined Extensions (UDX) 71

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards

– In the ICSF ISPF main panel, select option 1 Coprocessor Management.

– In the ICSF Coprocessor Management panel, select the target coprocessor using the
action character A (Activate). The status of the coprocessor should switch to ONLINE.

7. Recreate the TKE authorities settings:

a. On TKE, log on as TKEUSER.

b. Open the host where the UDX was just installed. You will be prompted to authenticate
the Crypto module.

c. Open the target Crypto module (not the group of Cryptos).

d. Use the authority 0 default signature key to recreate roles and authorities for the target
Crypto module. Usually this should be the same authorities and keys as for the other
coprocessors in the system.

e. If you are reloading the coprocessor Master Keys from the TKE, make sure that you
have an authority enabled for loading Master Keys parts.

f. Load the Master Keys parts.

g. Set the asymmetric Master Key from the TKE.

h. Set the symmetric Master Key in the Crypto Express 2 coprocessor from the ICSF
panel. The status of the coprocessor in the Coprocessor Management panel should
become ACTIVE.

i. If needed, add the target Crypto module to a group by doing a TKE group change.

8. Repeat Step 7, substeps e-h, for each domain being used in the coprocessor.

9. Repeat the same process for the other coprocessors in the system that were receiving a
new UDX.

5.3.2 UDX activation
There are several steps in the UDX activation process. No specific sequence is required.

� Enable the UDX access point from TKE - On the TKE, open the target Crypto module,
select domains, controls and mark the UDX enabled.

� The UDX host modules, the ICSF stub, and the service module must be installed and the
ICSF Installation Options Data Set must be customized in order to specify the available
UDX. The following steps have to be performed:

a. Link-edit the OBJ file for the UDX callable service into a load module and install it into
an APF-authorized library (for example, CSF.SCSFMOD0).

b. Link-edit the OBJ file for the service stub into a load module and install it into an
APF-authorized library (for example, CSF.SCSFMOD0). Any application program that
calls the UDX must be link-edited with the service stub.

c. Identify the UDX service in the ICSF Installation Options Data Set by using the UDX
keyword. For information about the specification of the UDX keyword, refer to the z/OS

Note: If you have more than one target Crypto module, load the key parts in all
Crypto modules before setting the master keys.

Important: If a new ICSF level is installed and a new CSF.SCSFMOD0 is created,
you should remember to reinstall the UDX callable service and the service stub load
modules.

72 z9-109 Crypto and TKE V5 Update

z/OS ICSF System Programmer’s Guide, SA22-7520. You must specify information
including the UDX subfunction code, a service number, and a load module name. For
example, the following line could specify the new UDX service:

UDX(XA,50,UDXSVC,’ITSO TEST UDX’,FAIL(NO))

� If the UDX will be invoked by a CICS® transaction, you must update the ICSF CICS Wait
List used by the CICS-ICSF Attachment Facility.

For information on how to install the CICS-ICSF Attachment Facility and how to add your
UDX to ICSF’s CICS Wait List, refer to the z/OS ICSF System Programmer’s Guide,
SA22-7520.

After all above steps are completed, stop and restart ICSF in order for all changes to take
effect.

5.4 UDX microcode update process
This procedure describes how to load a new version of a UDX and microcode package into
the Crypto Express 2 coprocessor. We explain here how to proceed to make the loading
concurrent with other coprocessors, if any, still providing services to the applications.

These microcode updates of the UDX package will not clear any Master Keys or TKE
authorities settings and there is no need to deactivate and reactivate the logical partition.

The installation of the new microcode level together with a UDX into coprocessors is usually
done by an IBM Customer Engineer. The update process usually takes about 30 minutes.

Here are the steps we recommend so that there are always cryptographic services available
to the applications:

1. Deactivate one target coprocessor through the ICSF ISPF COPROCESSOR
MANAGEMENT. If there are several logical partitions using this coprocessor, it must be
deactivated in every logical partition.

2. The target coprocessor is configured offline (that is, put in the “standby” status from the
SE or the HMC). The microcode combined with a UDX will replace the current code in the
coprocessor. This is done through the Cryptographic Configuration panel on the SE.
When the UDX status becomes active, the target coprocessor can be configured back to
online. This triggers the loading process of the new microcode, which takes about five to
ten minutes. The coprocessor actually switches to the online status at the completion of
this loading.

3. When the loading process above is completed and the coprocessor is online, then the
next step is to activate the target coprocessor in the ICSF Coprocessor Management
panel. The status of the target coprocessor should become ACTIVE in the ICSF panel.
This is also a proof that all Master Keys are valid and the coprocessor operates correctly.

Important: The loading process that we are describing here requires that all logical
partitions in the system that need cryptographic services have access to at least two
coprocessors.

Note: If the Master keys have been cleared, the microcode update process should be
stopped and an investigation should be carried out to find the error and to correct the
situation.

Chapter 5. User Defined Extensions (UDX) 73

4. When the first target coprocessor with the new microcode containing a UDX is available, a
verification test should be run against the UDX to verify that the UDX still works as
expected.

5. When the previous steps have been completed successfully for the target coprocessor,
the same process can be executed against the next coprocessor to receive the change.

Important: Special considerations should be given to the following:

� The scheduling of the microcode update, so that the cryptographic capacity available
while updating each coprocessor fits the running applications’ requirements.

� The time allowed to the execution of the UDX verification test so that only a verified
UDX can be switched to production.

74 z9-109 Crypto and TKE V5 Update

Chapter 6. TKE V5.0 overview and setup

In this chapter we provide an overview of the Trusted Key Entry (TKE) workstation
version 5.0. V5.0 is the follow-on to the TKE V4.2 level.

V5.0 is the level required to support System z9 coprocessors. TKE V5.0 also differentiates
itself from previous versions by implementing a new IBM proprietary operating system in
place of the IBM OS/2® Operating System, and by using a new cryptographic adapter.

Several other IBM Redbooks address, from a broader perspective, cryptographic services
implementation in the S/390 and zSeries systems, as well as the use of the Trusted Key Entry
(TKE) workstation in this context. We recommend that readers who are unfamiliar with the
TKE concept and implementation refer to zSeries TKE V4.2 Update, SG24-6499, for further
background information.

For further information about TKE V5.0, refer to z/OS Cryptographic Services ICSF Trusted
Key Entry PCIX Workstation User’s Guide, SA23-2211, and Maintenance Information for
Desktop Consoles, GC28-6847.

6

© Copyright IBM Corp. 2005. All rights reserved. 75

6.1 About the TKE workstation
The TKE workstation is a priced optional feature used for management of zSeries and
System z9 secure coprocessors in an installation. Secure coprocessors operate with a
Master Key that resides inside the coprocessor itself.

These secure coprocessors use application keys that are protected by being encrypted with
the Master Key. The application keys are only decrypted inside the coprocessor secure
enclosure.

TKE provides secure remote key management capabilities for the coprocessors’ Master Keys
and operational keys by communicating directly with the coprocessors, using encrypted and
digitally signed communications. The coprocessors execute commands entered at the
workstation by security officers who have been authenticated using RSA public cryptography,
and who are authorized to issue TKE commands.

The TKE workstation communicates, via TCP/IP, with one or several ICSF instances known
as the “TKE hosts”. These ICSF instances act just like a TCP/IP listener, and they relay the
communication to the coprocessors themselves. A single TKE can be used to manage secure
coprocessors in the systems it has TCP/IP connectivity to. Secure coprocessors can also be
logically grouped at the TKE level so that the TKE application will automatically propagate a
single command to all coprocessor members of the group.

Figure 6-1 shows a schematic view of TKE workstation implementation.

Figure 6-1 TKE workstation implementation

CCA
APIs

Crypto
Instructions

z/OS

RACF

TSO/E TCP/IP

ICSF

Crypto secure
Coprocessors

Master Key

Encrypted and signed communications

TKE workstation
(with Cryptographic
Adapter)ICSF ISPF panels

Authenticated and
authorized
Security Officers

Crypto secure
Coprocessors

Master Key

Crypto secure
Coprocessors

Master Key

Crypto secure
Coprocessors

Master Key

Other TKE host(s)

Coprocessors « group »

76 z9-109 Crypto and TKE V5 Update

The following coprocessors are used in zSeries and System z9:

� The CP Assist for Cryptographic Functions (CPACF) - z990, z890 and System z9 only

Note that this is not an actual coprocessor, but rather a hardware facility imbedded in the
system’s processing units (PUs). The CPACF does not use a Master Key.

� The PCI Cryptographic Accelerator (PCICA) - all zSeries models (FC 0862)

One PCICA feature contains two coprocessors. The PCICA does not use a Master Key.

� The PCI Cryptographic Coprocessor (PCICC) - secure coprocessor, on z900 and z800
and 9672 G5/G6 (FC 0860/0861)

One PCICC feature on z900 and z800 contains two coprocessors at 16 domains each.

� The Cryptographic Coprocessor Facility (CCF) - secure coprocessor, on z900 and z800
and 9672 (FC 0800)

There are two CCFs available (except for uniprocessor models). One CCF has 16
domains.

� The PCIX Cryptographic Coprocessor (PCIXCC) - secure coprocessor, on z990 and z890
only (FC 0868)

One PCIXCC feature contains one coprocessor with 16 domains.

� The Crypto Express2 coprocessor (CEX2C) - secure coprocessor, z990, z890 and
System z9 only (FC 0863)

The Crypto Express2 feature contains two coprocessors at 16 domains each.
With System z9, the Crypto Express 2 coprocessor can be manually configured into an
accelerator (CEX2A). A CEX2A does not use a Master key.

The term “crypto modules” is also used to designate the coprocessors, in TKE terminology.

6.2 TKE V5.0 overview
The Trusted Key Entry (TKE) V5.0 workstation is the follow-on to the TKE V4.2 workstation. It
is functionally equivalent to TKE V4.2. However, its implementation differs in two ways:

� TKE V5.0 uses a 4764 Cryptographic adapter—replacing the 4758-2 cryptographic
adapter of TKE V4.2.

� The OS/2 operating system has been replaced by an IBM proprietary operating system.

As with TKE V4.2, V5.0 supports two smart card readers.

6.2.1 TKE V5.0 hardware
The basic workstation hardware consists of the following elements:

� The TKE workstation itself, with FC 0859.

The workstation we used for this residency was an IBM eserver xSeries® 206, model
8482.

� The IBM 4764 Cryptographic Adapter, which is delivered separately from the workstation
itself but is included in the workstation order.

Important: The TKE workstation is not supported on systems with CPACF only, or with
CPACF and PCICA only, or with CPACF and CEX2A only, because these configurations
do not include at least one secure coprocessor.

Chapter 6. TKE V5.0 overview and setup 77

The IBM 4764 Cryptographic Adapter supports a broad range of DES and public-key
cryptographic processes. It is the TKE workstation engine and has key storage for DES
and PKA keys. The IBM 4764 implements the same concepts as its IBM 4758
predecessor regarding user roles and profiles and TKE access control points.

� The TKE workstation supports connectivity to an Ethernet Local Area Network (LAN)
operating at 10, 100, or 1000 Mbps.

Optional features
The TKE 5.0 workstation allows for the attachment and use of two smart card readers, with
smart cards that contain an embedded microprocessor and associated memory for data
storage that can hold secret keys values. Access to and the use of confidential data on the
smart cards is protected by a user-defined Personal Identification Number (PIN).

� TKE Smart Card Reader (FC 0887) - contains two card readers and 20 smart cards.

� TKE additional smart cards (FC 0888) - contains 10 additional smart cards.

� The Smart Card Reader, which can be attached to a TKE workstation with the 5.0 level of
LIC, is available on System z9, z990, z890, z900, and z800.

6.2.2 TKE software levels

ICSF host software
� z/OS V1R3 and OS/390 Release 10 require APAR OW44816 and APAR OW46381 to be

installed.

� z/OS V1R3 and higher and OS/390 Release 10 without the z990 Cryptographic Support
Web deliverable require APAR OW53666 to be installed.

� The z990 Cryptographic CP Assist support requires FMID HCR7708 or later.

� The z990 PCI X Cryptographic Coprocessor support requires FMID HCR770A or later.

� The z990 and z890 Crypto Express2 Coprocessor support requires FMID HCR7720 or
toleration APAR OA09157 on FMID HCR770A and HCR770B.

� Systems with FMID HCR770A and below require APAR OA07393.

� To use TKE 4.1 or higher to load operational keys, you must be running HCR770B or
higher.

Host data sets required by TKE
When TKE connects for the first time, ICSF allocates (if it does not already exist) a
hlq.TKECM data set that the TKE application uses to keep the crypto module descriptions,
domain descriptions, and authority information for a host.

Notes:

� There is no hardware upgrade path from TKE versions previous to 5.0. Upgrading to
V5.0 implies that you need to obtain a new TKE workstation.

� A TKE V5.x order for a System z9 can comprise up to three workstations (in contrast to
one TKE only for the other systems).

Note: If the TKE host is at z/OS 1.7 or above, then the TKE user can log on to the ICSF
host using mixed-case passwords. (This assumes that RACF, or an equivalent product,
has been set up in the host to not fold passwords to upper case.)

78 z9-109 Crypto and TKE V5 Update

If the TKECM data set becomes unusable (for example, by becoming deleted or corrupted), it
will be necessary to redefine the crypto module and authority information to continue using
TKE. Additionally, certain upgrades in the TKE code or the host system may require a new
TKECM data set to be generated. Under these conditions, refer to the Migration section
instructions in the z/OS Cryptographic Services ICSF Trusted Key Entry PCIX Workstation
User’s Guide, SA23-2211 for detailed information.

TKE workstation software
The following software is preinstalled on the TKE workstation:

� IBM Cryptographic Coprocessor Support Program Release 3.10SC, is used to drive and
manage the IBM 4764 Cryptographic Adapter.

� Trusted Key Entry version LIC V5.0, which is the TKE “application”, running above the
operating system.

� The new TKE V5.0 operating system.

6.2.3 TKE V5.0 installation
For the information you need to install and maintain the TKE workstation and the 4764
Cryptographic Adapter, refer to Maintenance Information for Desktop Consoles, GC28-6847.

6.2.4 TKE V5.0 use
For detailed information about using TKE V5.0, as compared to the previous version, refer to
6.3, “TKE V5.0 functions compared to TKE V4.2” on page 82.

TKE enablement at the Support Element for z990, z890 and System z9
If you have a z890 or z990 system with May 2004 or a later version of Licensed Internal Code
(LIC) installed—or a System z9 with MCL 029 Stream J12220 or later installed—TKE
commands must be permitted on the Support Element before any commands issued by the
TKE workstation can be executed.

This is a requirement beginning with the May 2004 Licensed Internal Code. The default
setting for TKE commands is Denied.

Systems supported by TKE V5.0
The TKE V5.0 is available on systems z800, z900, z890, z990, and System z9.

6.2.5 Migrating from previous TKE versions
The steps needed to migrate from previous TKE versions are detailed in z/OS Cryptographic
Services ICSF Trusted Key Entry PCIX Workstation User’s Guide, SA23-2211. In the
following section we list the main considerations to keep in mind when migrating to TKE V5.0.

Migration from TKE V2 to TKE V5.0
� TKE V2 Personal Security Cards (PSC) are not compatible with the TKE V5.0 smart card

readers.

� TKE V2 uses APPC connections, which must be replaced by TCP/IP connectivity.

Note: TKE software should not be changed without instructions from IBM service.

Chapter 6. TKE V5.0 overview and setup 79

� The TKECM data set at TKE V2 is not compatible with TKE V5.0. TKE V2 uses a
TKEFLAGS data set, which is not needed by later versions.

� TKE V2 authority signature keys are handled in different ways, as described here.

– If they are in the PSCs, and you do not intend to use smart card with TKE V5.0:

On TKE V2, change the signature keys, load the new public keys to the host and save
the new private keys to diskettes for use with the TKE V5.0.

– If they are in the PSCs, and you do intend to use smart cards with TKE V5.0:

On TKE V2, change the signature requirements in the host so that authorities with
signatures in the PSCs are not used anymore. When on TKE V5.0, generate new
signature keys and save them on smart cards.

– If they are in the workstation PKA Key Storage:

No migration is possible from the TKE V2 IBM 4755 Cryptographic Adapter. Proceed
as described, generating new signature keys.

� The Master and Operational Key Parts are also handled in different ways, as described
here.

– In binary files on the TKE V2 hard disk:

Transfer the key parts to the TKE V5.0 via diskettes.

– Entered via the keyboard:

Reenter on the TKE V5.0 keyboard.

– Saved on PSCs:

On TKE V2, the data block in the PSCs has to be copied to a binary file by using the
HIKM utility. Transfer the binary files to TKE V5.0.

Migrating from TKE V3 or TKE V4 to TKE V5.0
Follow these steps to migrate from TKE V3 or TKE V4 to TKE V5.0.

� On the TKE V3, back up the TKE configuration data.

This includes the user-defined 4758 roles and profiles, Authority Signature Keys, Master
key parts (host and/or 4758) and Operational Key parts (if saved onto the TKE hard drive),
TKE Host and Group Definitions, DES and PKA Key storages, 3270 emulator data and
TCP/IP information.

� On the TKE V5.0, the “Migrate previous TKE version to TKE 5.0 Task” is used to restore
this information.

TKECM data set
The TKECM data set at V3.x or V4.x is no longer compatible with TKE V5.0 if the system is
also being migrated from z900 to z990 or System z9, or from z800 to z890.

Other migration considerations
There are additional considerations to keep in mind when migrating to TKE V5.0, as
described here.

In order to be able to use migrated DES and PKA Key Storages, you must load the
cryptographic adapter master key parts from your previous TKE workstation to the TKE 5.0
workstation.

If you do not know the Master Key parts that were used for the previous TKE, then the
migrated DES and PKS storages will not be usable. You will need to reinitialize both key

80 z9-109 Crypto and TKE V5 Update

storages. Any keys in DES Key Storage and the Authority Signature Key in PKA Key Storage
will need to be recreated, as appropriate, using TKE 5.0.

TKE access control points
Note the following version-specific information regarding TKE access control points.

TKE services access control points to be added to roles
For TKE V4.1 customers only:

� If you have any user-defined profiles that you want to continue to use to log on to the
cryptographic adapter to use TKE, you must add several new access control points to the
roles that the profiles are mapped to. The new access control points are:
– X'8002' - TKE Logon
– X'0250' - Load Diffie-Hellman key mod/gen
– X'0251' - Combine Diffie-Hellman key parts
– X'0252' - Clear Diffie-Hellman key values
– X'027A' - Unrestricted Combine key parts

� If you have defined roles for TKE administrator functions, you must add new access
control points:
– X'030B' - Reset battery low indicator
– X'0107' - One-Way Hash SHA-1

For TKE V4.2 customers only:

� If you have defined roles for TKE administrator functions, you must add new access
control points:
– X'0107' - One-Way Hash SHA-1

ICSF callable services access control points
For TKE V3.0 customers only:

� This section is only applicable to customers whose workstation was at TKE V3.0 prior to
the upgrade to TKE V5.0, and whose configuration includes PCI cryptographic
coprocessors.

An authorized TKE Authority must enable all applicable access control points for ICSF
callable services. APAR OW46381 must be installed on z/OS V1R1 and OS/390 V2R10
systems; otherwise, access control failures could occur.

For z890 or z990 TKE V4.X customers only:

� This section is only applicable to z890 or z990 customers whose workstation was at
TKEV4.x prior to the upgrade to TKE V5.0. If you are upgrading your ICSF level, an
authorized TKE Authority must enable all applicable new access control points.

For IBM System z9 109 customers only:

� An authorized TKE authority must enable or disable access control points, as appropriate.

Smart card readers and smart cards
Smart card readers attached to TKE V4.2 can be moved to TKE V5.0. A CA card built on TKE
V4.2 can be used on TKE V5.0 to enroll the cryptographic adapter in the same zone as the
cryptographic adapter in TKE V4.2. This will allow the TKE smart card created on the TKE
V4.2 to be usable on the TKE V5.0. TKE smart cards can contain authority keys, master key
parts, operational key parts, and so on.

Chapter 6. TKE V5.0 overview and setup 81

6.3 TKE V5.0 functions compared to TKE V4.2
There are no functional differences between TKE V5.0 and TKE V4.2 from the perspective of
TKE application and host coprocessor management. However, the user operating framework
has been changed and all processes are panel-driven. The main changes, as perceived by
the user, pertain to the use interface and are related to the following areas:

� Framework presentation
� Invocation of TKE-related tasks
� Backing up TKE-related data
� File Chooser
� No command line support
� Editing TKE files
� Handling media devices

In the following section we provide an overview of the principles of operation of TKE V5.0.
Refer to z/OS Cryptographic Services ICSF Trusted Key Entry PCIX Workstation User’s
Guide, SA23-2211, for more detailed information.

6.3.1 Navigation
On startup, the TKE Console is automatically started with the Welcome panel shown in
Figure 6-2.

Figure 6-2 Welcome page

The TKE Console displays a tree view on the left side of the Welcome page, which is used for
navigation between tasks (Trusted Key Entry, System Management). The right side of the
page displays a brief description of the Framework in the tree view, as well as a link to TKE

82 z9-109 Crypto and TKE V5 Update

Documentation. Expanding the Trusted Key Entry and System Management tasks displays
subtasks where you can access the various TKE Applications, Utilities, and support tasks.

Trusted Key Entry tasks
The Trusted Key Entry task is subdivided into the Applications and the Utilities subtasks.

The Applications subtask in the Trusted Key Entry task
The Applications subtask contains the primary TKE applications, as shown in Figure 6-3.

Figure 6-3 Applications Tasks view

The TKE Applications Tasks view displays several options which, on previous TKE versions,
were executed by issuing commands in the OS/2 command window.

Following are commonly used options:

� Begin Zone Remote Process and Complete Zone Remote Enroll Process are related to
the enrolling of remote or offsite TKE workstations when using the Smart Card option.

These options were achieved on TKE4.2 by using ENROLL_REQ.CMD and
ENROLL_INST.CMD from the OS/2 command prompt.

� Cryptographic Node Management Utility is used to manage Crypto adapter issues such
as TKE workstation profiles and roles.

This process is the same as the task which was started in TKE V4.2 by clicking the CNM
icon in the Trusted Key Entry folder.

� Smart Card Utility Program is used for maintenance operations, such as the creation,
initialization, and personalization of CA and TKE smart cards.

This process is the same as the task which was started in TKE V4.2 by clicking the SCUP
icon in the Trusted Key Entry folder.

Chapter 6. TKE V5.0 overview and setup 83

� TKE Media Manager is a new feature which is used to activate and deactivate media drives
(floppy or CD/DVD) to be used by TKE Applications and Utilities.

� TKE’s IBM Crypto Adapter Initialization is used to initialize the IBM 4764 Crypto
adapter in the TKE workstation.

This function was performed for the 4758 of TKE V4.2 by issuing the CSUECNI command
in an OS/2 window; refer to “Cryptographic Adapter initialization” on page 89 for more
information.

� Trusted Key Entry 5.0 is used to start the actual TKE application.

This function remains the same as for TKE4.2

The TKE Utilities subtask in the Trusted Key Entry task
The TKE Utilities subtask contains common utilities to support TKE, as shown in Figure 6-4.

Figure 6-4 Utilities tasks view

Following are commonly used options:

� Edit TKE files utilities provide the only way to create and view files on TKE V5.0.

� TKE File Management Utility is a new function to copy and manage files stored into local
hard drive, floppy drive and CD/DVD drive.

� TKE Media Manager is a new feature which is used to activate and deactivate media drives
(floppy and CD/DVD) to be used by TKE Applications and Utilities.

System Managements task
The System Management task is subdivided into the Service Applications, Configuration, and
Maintenance subtasks.

84 z9-109 Crypto and TKE V5 Update

The Service Applications subtask in the System Management task
The Service Applications tasks are selected in the view shown in Figure 6-5.

Figure 6-5 Service Applications tasks view

Following are commonly used options:

� Format Media is a new function used to format either floppy disk or DVD-RAM, which can
then be used copy files to and from the TKE workstation.

This function was performed in TKE V4.2 by issuing commands in the OS/2 command
prompt window.

� Network Diagnostic Information is a new function used to diagnose connection
problems. Refer to “Diagnosing network problems” on page 94 for further information.

The Configuration subtask in the System Management task
The configuration tasks can be selected from the view shown in Figure 6-6.

Chapter 6. TKE V5.0 overview and setup 85

Figure 6-6 Configuration tasks view

Following are the options presented in this view:

� Configure 3270 Emulators is used to define the 3270 emulator definitions.

This function was performed on TKE V4.2 by double-clicking the TKE 3270 Emulator icon
on the OS/2 desktop.

� Customize Console Date/Time is a new function used to set up date and time.

This function was performed on TKE V4.2 by issuing the time command in the OS/2
command prompt window.

� Customize Network Settings is a new function used to define TCP/IP settings for the TKE
workstation.

This function was started in the TKE V4.2 by double-clicking the TCP/IP Configuration
icon on the OS/2 desktop.

� Customize Scheduled Operations allows you to schedule automatic backups of critical
console data, including patches applied and changes to TKE-related information.

The Maintenance subtask in the System Management task
The Maintenance tasks can be selected from the view shown in Figure 6-7.

86 z9-109 Crypto and TKE V5 Update

Figure 6-7 Maintenance tasks view

Following are commonly used options:

� Format Media is the same option as on the Service Applications view.

� Save Upgrade Data allows you to save information, including TKE-related data, TCP/IP
data, and emulator session data, to the hard drive or DVD for use during an upgrade to a
new level of TKE code.

� Shutdown or Restart allows you to shut down the TKE workstation or restart the TKE
Console.

6.4 TKE V5.0 installation and setup
During TKE installation, the IBM CE installs the TKE cryptographic adapter into the TKE
workstation and then powers it up. Refer to Maintenance Information for Desktop Consoles,
GC28-6847, for more information about this topic.

Note the following constraints regarding the operation and storage environment:

� For reliable TKE operation, the installation area ambient temperature must be in the range
of 10 degrees Celsius to 40 degrees Celsius, plus or minus 5 degrees Celsius.

Important: Although both options (save to the hard drive, and save to DVD) are
available for saving the upgrade data, data can only be restored from the hard drive.
Therefore, save to DVD should not be used.

Chapter 6. TKE V5.0 overview and setup 87

� For TKE storage, the storage area ambient temperature must be in the range of 1 degree
Celsius to 60 degrees Celsius, plus or minus 5 degrees Celsius. In addition, the ambient
relative humidity must not exceed 80 percent.

The TKE administrator is responsible for setting up other TKE definitions (such as setting up
the time, TCP/IP definitions, and Cryptographic Adapter initialization) before TKE workstation
customization can begin.

6.4.1 Setting TKE workstation time
To set the system clock on your TKE workstation, open the Customize Console Date/Time
task under System Management, Configuration.

Setting the clock to Local or UTC:

� Local sets the time to the current time of the time zone that you selected. Choose a city
from the list that has the same time as the one you need. Although the TKE workstation
works on the local time zone, the Cryptographic adapter uses UTC internally.

� UTC sets the time to the Greenwich Mean Time (GMT) regardless of which time zone you
have chosen.

A time is required for your local system operation. Enter either the local time or the UTC time.
Specify the new time using the same format as shown in the Time field (for example,
11:40:45 AM).

Specify the new date using the same format as shown in the Date field (for example, Aug 28,
2005). Press Customize when finished.

Figure 6-8 Setting the time for TKE workstation hardware

88 z9-109 Crypto and TKE V5 Update

6.4.2 Cryptographic Adapter initialization
To initialize the Cryptographic Adapter, open the task under Trusted Key Entry -
Applications- TKE’s IBM Crypto Adapter initialization. You must select whether the
initialization is done for Passphrase or Smart Card usage. The resulting display for
Passphrase initialization is shown in Figure 6-9.

Figure 6-9 Initializing Cryptographic Adapter using default CNI with Passphrase option

The Cryptographic Adapter can be initialized by using the Cryptographic Node Management
batch interface. Open the task under Trusted Key Entry- Applications- Cryptographic
Node Management batch interface. Then select which script is to be executed, as shown in
Figure 6-10.

Notes:

� If the time on the workstation and the time on the Cryptographic Adapter card are
different by more than 5 minutes, an error will be seen when you attempt to log on to
the Cryptographic Adapter.

You can correct this situation by using CNM to read the time on the Cryptographic
Adapter (it is not necessary to log on to the adapter to read the time), and then set the
clock on the workstation within the 5-minute time difference, allowing for GMT if
applicable.

� Another option is to set the clock on the workstation and then reinitialize the
Cryptographic Adapter. However, this option will return all settings to the default and
any customer changes that had been performed will be lost.

Chapter 6. TKE V5.0 overview and setup 89

Figure 6-10 Initializing Cryptographic card with Passphrase option

We selected 4764initialize.cni to initialize the Cryptographic Adapter using Passphrase
option, and then clicked Open. The result is shown in Figure 6-11.

Figure 6-11 TKE workstation Cryptographic Adapter is initialized

90 z9-109 Crypto and TKE V5 Update

6.4.3 Cryptographic Node Management and Smart Card Utility Program
The Cryptographic Node Management (CNM) utility is a Java™ application that provides a
graphical user interface to initialize and manage the TKE cryptographic adapter. It is part of
the IBM Cryptographic Coprocessor CCA Support Program.

The CNM utility works functionally on TKE V5.0 the same way as on TKE V4.2. CNM is used
to define—among other options—roles and profiles to access CNM and the TKE application
using Passphrase or Smart Cards, with the possibility of using the group logon feature.

The TKE Smart Card Utility Program (SCUP) support to the smart card system works
functionally on TKE V5.0 the same way as on TKE V4.2. The SCUP supports following
functions:

� Initialize and personalize the CA smart card
� Backup the CA smart card
� Initialize and enroll TKE smart cards
� Personalize TKE smart cards
� Display smart card information
� Enroll the TKE cryptographic adapter
� Unblock a TKE smart card
� Change PIN number

6.4.4 TCP/IP setup
To configure TCP/IP for the TKE workstation, open the task under System Management →
Configuration. In the right frame of the Trusted Key Entry Console, click Customize
Network Settings; a window will open, as shown in Figure 6-12.

The default host name is TKE.

Note: Smart Card and Smart Card Group options in the CNM panels will only be available
if the smart card option has been previously chosen when invoking the Cryptographic
Adapter initialization process.

Smart Card support is enabled in CNM under the File option: Enable Smart Card Readers.
In order for the change to become effective, you must close CNM and then reopen it.

Chapter 6. TKE V5.0 overview and setup 91

Figure 6-12 TKE workstation TCP/IP settings

To define the Local Area Network Information, select the tab LAN Adapters, as shown in
Figure 6-13.

Figure 6-13 LAN adapter on the TCP/IP

Click Details to specify the DHCP Client/IP address information for your network, as shown in
Figure 6-14. Click OK to store the specified values.

92 z9-109 Crypto and TKE V5 Update

Figure 6-14 Defining TCP/IP address of the TKE workstation

To select whether DNS is enabled or disabled, select the Name Services tab for the
configuration and define the DNS Server Search Order and the Domain Suffix Search Order
for your network. In our case we only had DNS enabled, as shown in Figure 6-15.

Chapter 6. TKE V5.0 overview and setup 93

Figure 6-15 Defining name services under the TCP/IP configuration

When done, click OK to update the network settings. The Console application will also be
restarted, to complete the changes to the TCP/IP settings.

Diagnosing network problems
Problems associated with networking can be diagnosed with the Network Diagnostic
Information task. To open this task, select System Management → Service Applications →
Network Diagnostic Information.

You can enter a target TCP/IP address and click Ping to perform a ping function, as shown in
Figure 6-16. There are also several other tabs that you can use to analyze network problems.

94 z9-109 Crypto and TKE V5 Update

Figure 6-16 Pinging the network address

6.4.5 3270 emulator configuration
To set up the 3270 emulator session, open the configuration task by selecting System
Management → Configuration → Configure 3270 Emulators.

On the window, click New, enter the host TCP/IP address in the Host address field, and click
OK. The 3270 emulator configuration uses port 23 as a default, but this can be overwritten by
specifying a port number after the Host address separated by a colon (:), as shown in
Figure 6-17.

If the Enabled option is selected under the Start at Console startup, then the two defined
3270 sessions shown in Figure 6-17 will be started automatically every time the TKE
workstation is started or the Console is restarted. With the Disabled option, select the desired
3270 session and click Start.

Chapter 6. TKE V5.0 overview and setup 95

Figure 6-17 Defining 3270 emulators

6.5 TKE V5.0 management
Trusted Key Entry V5.0 offers new daily management options. TKE customization options
controlled by the TKE.INI file in TKE V4.2 are now controlled by a new Preference menu in
the TKE Application. In some cases, new Preferences have been added for TKE V5.0. In the
following section, we discuss all Preferences options in more detail.

6.5.1 TKE V5.0 application
To start the TKE V5.0 application, open the task by selecting Trusted Key Entry →
Applications → Trusted Key Entry 5.0.

For TKE V4.2, when the TKE application is started, a logon prompt is displayed. Select the
profile ID to be used for the logon and enter the password for this profile (if using Passphrase)
or insert the appropriate TKE Smart Card and enter the PIN (if using smart cards). The TKE
main window will be displayed.

The main purpose of this window is to allow you to select a crypto module or a group of crypto
modules. From the main window, you also create host definitions and group definitions.

To customize the TKE workstation, update TKE Preferences using the Preferences menu in
TKE. Click Preferences on the toolbar, as shown in Figure 6-18. Preference options are
enabled or disabled by clicking the check box. A check indicates that the preference option is
enabled. By default, only the Blind Key Entry option is enabled.

� Blind Key Entry controls whether key values entered at the TKE keyboard are displayed
or hidden.

With hidden entry, an asterisk (*) is displayed for each entered hexadecimal character.
Ensure the menu item is checked if you want hidden entry; otherwise uncheck the menu
item.

On TKE V4.2, this information is defined in the TKE.INI file.

� Enable Tracing activates the trace facility in TKE. The output can be used to help debug
problems with TKE.

Note: Do not check this menu item unless an IBM service representative instructs you to
do so. When checked, TKE produces a trace file named trace.txt in the TKE Data

96 z9-109 Crypto and TKE V5 Update

Directory. Every time TKE is restarted, the trace.txt file is overwritten and a new file is
created. This is a new feature on TKE.

� Enable Smart Card Readers enables the smart card option for TKE. If the option is
unchecked, TKE will hide all smart card options from the user.

Compliance to the ZKA standard requires specific settings in TKE preferences, as described
here:

� Floppy Drive Only specifies where files can be retrieved and stored. Ensure this option is
checked if you want to restrict access to the floppy drive only; otherwise, uncheck the
menu item. For ZKA compliance, this check box must be checked.

On TKE V4.2, this information is defined in the TKE.INI file.

� Show ZKA ECM Bits controls whether or not to display two additional CCF Environment
Control Mask (ECM) bits when working with the CCF Domain Controls task:

– Reset Domain
– Load Clear Master Key

For ZKA compliance, this check box must be selected. Furthermore, for the CCF Domain
Controls, the only ECM bit that should remain enabled is Cryptographic functions. All other
ECM selections must be disabled.

Note: The TKE application must be closed and reopened in order for a change to the
Enable Smart Card Readers Preference option to become effective.

Chapter 6. TKE V5.0 overview and setup 97

Figure 6-18 TKE V5.0 application preferences

6.5.2 TKE Media management
The TKE V5.0 Workstation provides a new way to operate and manage media, as compared
to the OS/2 commands used with TKE V4.2.

The TKE Media management has three tasks:

� TKE Media Manager
� Format Media
� TKE File Management utility

TKE Media Manager
Before accessing or updating an inserted floppy or DVD-RAM/CD-ROM media from any of
the Trusted Key Entry (Applications and Utilities) tasks, the media must first be activated
using TKE Media Manager.

To activate media, open Trusted Key Entry → Applications, or Utilities, and TKE Media
manager. From the drop-down menu, you can activate the media that is currently
deactivated, or deactivate the media that is currently active. After the operation is finished,
the TKE Media Manager will update the status of the corresponding drive. Select Cancel to
exit TKE Media Manager.

98 z9-109 Crypto and TKE V5 Update

Figure 6-19 Activation and deactivation options of external media used in the TKE workstation

Important information when using TKE Media Manager
� Only DVD-RAM and CD-ROM disks are supported. The DVD-RAM is R/W, while the

CD-ROM is R/O. DVD-RAM format is single-sided Type II (4.7 GB).

� Activation/Deactivation is required only for Trusted Key Entry (Applications and Utilities)
tasks. This action locks the media for TKE tasks; therefore, System Management tasks
cannot be performed until the media is deactivated.

� When the TKE tasks have been completed, the media must be deactivated before the
media is removed from the drive. If the media is not deactivated properly, updates may be
lost.

� If a media device is inserted but not activated and the device is selected to use with a TKE
application, the application will attempt to activate the device. Even though the media was
not activated directly with the TKE Media Manager, the media must still be deactivated
using the TKE Media Manager before it is removed.

� Any media activated in the DVD-RAM/CD-ROM drive will not eject until the drive is
deactivated. TKE Media Manager must be used to deactivate a drive.

� If a floppy disk is ejected without deactivating the drive, your disk may not retain output
written to it and may become corrupted. You must deactivate the floppy drive before
ejecting your floppy disk.

Important: Even if you are using the media for input only, the media must be deactivated
before it is removed.

If the media is not deactivated before it is removed, new media inserted may not be
handled correctly.

Chapter 6. TKE V5.0 overview and setup 99

Format media

To format the media, open System Management → Service Applications → Format
media. The view shown in Figure 6-20will be displayed.

Note: The Format Media task is used to format DVD-RAMs and diskettes only.

Figure 6-20 Formatting DVD-RAM or a diskette

If Format DVD-RAM is selected, the DVD-RAM label is automatically written to the DVD
depending on the intended use of the DVD-RAM, as shown in Figure 6-21.

Figure 6-21 Select DVD-RAM usage

TKE File Management utility
The TKE File Management utility task allows you to manage files on diskette, CD/DVD, or
within TKE Data directories. It allows you to Delete, Rename, and Copy files.

To activate the task, open Trusted Key Entry → Utilities → TKE File management utility.
The window shown in Figure 6-22 will be presented.

Attention: Prior to formatting any media, ensure that the applicable Floppy or DVD-RAM
drive is deactivated using TKE Media Manager.

If the media is not deactivated, the format will fail.

100 z9-109 Crypto and TKE V5 Update

Selecting the hard drive for either Source or Target will allow you to select one out of four
data directories:

� TKE Data Directory

� Migration Utility Data Directory

� CNM Data Directory

� SCUP Data Directory

From the displayed list you can select a single file, numerous files, blocks of files, or the entire
display for copy, delete, or rename processes.

Figure 6-22 TKE file management options

6.5.3 Backing up critical console data and customizing scheduled operations

Because of time constraints, we could not cover this important topic when developing this
redbook. (For complete information on this subject, refer to z/OS Cryptographic Services
ICSF Trusted Key Entry PCIX Workstation User’s Guide, SA23-2211.)

However, within this context it is vital to stress that data which is backed up for TKE V5.0 is
very different from TKE V4.2 backup. Since MCLs can now be installed to fix the Operating
System, Framework and TKE code problem, it is imperative that a backup be performed
either every time an MCL is installed, or at least on a scheduled basis.

Important: If updates are done to the floppy drive or DVD-RAM, the media must be
deactivated before it is removed. Otherwise, the updates may be lost.

Chapter 6. TKE V5.0 overview and setup 101

In addition to backing up MCL changes, all TCP/IP definitions, 3270 emulator sessions,
default roles and profiles, and any data changed in the TKE-related data directory is also
saved.

6.5.4 Shutdown or Restart
If you need to restart the application or console, or to power off, open System Management-
Maintenance-Shutdown or Restart. The panel shown in Figure 6-23 will be displayed.

From here you can perform the following tasks:

� Close the Trusted Key Entry workstation and restart the application.

� Close the Trusted Key Entry workstation, perform a system Power-on Reset, and restart
the console.

� Close the Trusted Key Entry workstation, shut down the operating system, and power off
the hardware.

Figure 6-23 Shutting down or restarting the TKE workstation

Selecting any of these options will present you with a confirmation window, where you can
enter yes or no to accept or reject the action.

102 z9-109 Crypto and TKE V5 Update

Appendix A. CPACF programs

This appendix provides the source of the assembler and REXX programs used to test the
new CPACF functions.

A

Note: The code supplied here has not been subjected to any formal IBM test and is
distributed on an “AS IS” basis without any warranty either express or implied. The
implementation of any of the techniques described or used herein is a customer
responsibility and depends on the customer’s operational environment. While each item
may have been reviewed for accuracy in a specific situation and may run in a specific
environment, there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own environments do
so at their own risk.

© Copyright IBM Corp. 2005. All rights reserved. 103

CPACF010 program
Example A-1 is an assembler program that can be used to invoke the KMC instruction to
perform clear key encryption and decryption.

Example: A-1 Program to invoke KMC instructions

CPACF010 CSECT 00000100
CPACF010 AMODE 31 00000200
CPACF010 RMODE ANY 00000300
* --- * 00000400
* * 00000500
* C P A C F 0 1 0 - Encrypt test block using KMC * 00000600
* --- * 00000700
* * 00000800
* Last Updated 29/08/2005 * 00000900
* * 00001000
* Module : CPACF010 * 00001100
* Date written : 29th August 2005 * 00001200
* Function : Encrypt a text block * 00001300
* * 00001400
* HISTORY : 29/08/2005 - Initial Version * 00001500
* * 00001600
* Module attributes: RENT,REUS,AMODE(31),RMODE(31) * 00001700
* * 00001800
* --- * 00001900
* 00002000
* --- * 00002100
* * 00002200
* Parameters: 1 - Return Code * 00002300
* 2 - Option Block * 00002400
* 3 - Data to Encrypt or Decrypt (INPUT) * 00002500
* 4 - Encrypted or Decrypted Data (OUTPUT) * 00002600
* 5 - Key * 00002700
* * 00002800
* Option Block format * 00002900
* Byte 1-1 Function Code * 00003000
* Byte 2-2 E = Encrypt, D = Decrypt * 00003100
* Byte 3-4 Length of Data * 00003200
* * 00003300
* * 00003400
* --- * 00003500
 SAVE (14,12),,CPACF010-&SYSDATE-&SYSTIME 00003600
* 00003700
 LR R12,R15 00003800
* 00003900
 USING CPACF010,R12 Module addressability 00004000
* 00004100
 LR R10,R1 Save param address 00004200
* 00004300
 LA R0,WkEnd-WkStart Length of work area 00004400
 XR R15,R15 Subpool 0 00004500
* 00004600
 STORAGE OBTAIN,SP=(15),ADDR=(1),LENGTH=(0) 00004700
* 00004800
 USING #Work,R1 Workarea addressability 00004900
* 00005000
 ST R0,WkLen Save length 00005100
 ST R15,WkSpl Save subpool 00005200
* 00005300

104 z9-109 Crypto and TKE V5 Update

Main000 DS 0H 00005400
 ST R1,8(,R13) Link save areas 00005500
 ST R13,4(,R1) for os 00005600
* 00005700
 LR R13,R1 Set work/save area address 00005800
 LR R1,R10 Reinstate parameter register 00005900
* 00006000
 DROP R1 #Work 00006100
 USING #Work,R13 Workarea addressability 00006200
* 00006300
 BAS R14,Encr000 Do Encrypt processing 00006400
* 00006500
Main900 DS 0H 00006600
* 00006700
 L R10,WkRetcde Save return code 00006800
 L R0,WkLen Length work area 00006900
 L R15,WkSpl Subpool 00007000
 LR R1,R13 Point to my save area 00007100
 L R13,4(R1) Rescue pointer to high save area 00007200
* 00007300
 STORAGE RELEASE,SP=(15),ADDR=(1),LENGTH=(0) 00007400
* 00007500
 LR R15,R10 Reinstate return code 00007600
 RETURN (14,12),RC=(15) Return 00007700
* 00007800
Encr DC CL4’Encr’ 00007900
Encr000 DS 0H 00008000
 STM R0,R15,WkSaveA Store registers 00008100
 MVC WkPhase,Encr Set phase name 00008200
 XC WkRetcde,WkRetcde Clear return code 00008300
* 00008400
 LM R7,R11,0(R1) R7 to R11 point to my parameters 00008500
 STM R7,R11,WkParms Store parms for debugging etc. 00008600
* 00008700
 XR R5,R5 Clear Length 00008800
 ICM R5,B’0011’,2(R8) Insert length from Option Block 00008900
 BZ Encr720 Too short, error 00009000
* 00009100
 C R5,=F’32767’ Test Data Length 00009200
 BH Encr720 Too Long, error 00009300
* 00009400
 LR R2,R10 Set target address 00009500
 LR R4,R9 Set source address 00009600
* 00009700
 XC WkReg0,WkReg0 Clear Reg0 field 00009800
 CLI 1(R8),C’E’ Is this Encrypt? 00009900
 BE Encr020 Yes, continue 00010000
* 00010100
 OC WkReg0,=X’00000080’ Turn on Decipher bit 00010200
 CLI 1(R8),C’D’ Is this Decrypt 00010300
 BNE Encr700 No, invalid 00010400
* 00010500
Encr020 DS 0H 00010600
 LA R3,8 Assume DEA(DES) operation 00010700
 LA R6,8 Assume Single length Key 00010800
 CLI 0(R8),X’01’ Is this Single DES 00010900
 BE Encr050 Yes, proceed. 00011000
* 00011100
 LA R6,16 Assume Double length Key 00011200
 CLI 0(R8),X’02’ Is this Triple DES, Double Len Key 00011300

Appendix A. CPACF programs 105

 BE Encr050 Yes, proceed. 00011400
* 00011500
 LA R6,24 Assume Triple length Key 00011600
 CLI 0(R8),X’03’ Is this Triple DES, Triple Len Key 00011700
 BE Encr050 Yes, proceed. 00011800
* 00011900
 LA R3,16 Assume AES operation 00012000
 LA R6,16 Assume AES-128 00012100
 CLI 0(R8),X’12’ Is this AES-128 ? 00012200
 BE Encr050 Yes, proceed. 00012300
* 00012400
* LA R6,24 Assume AES-192 00012500
* CLI 0(R8),X’13’ Is this AES-192 ? 00012600
* BE Encr050 Yes, proceed. 00012700
* 00012800
* LA R6,32 Assume AES-256 00012900
* CLI 0(R8),X’14’ Is this AES-256 ? 00013000
 BNE Encr710 No, bad retcode 00013100
* 00013200
Encr050 DS 0H 00013300
 OC WkReg0+3(1),0(R8) Insert 7-bit Function code 00013400
 L R0,WkReg0 Load Function Code 00013500
* 00013600
 XC WkKMCPrm,WkKMCPrm Clear parameter block 00013700
 LA R1,WkKMCPrm(R3) Point to Key Area 00013800
* 00013900
 BCTR R6,R0 Reduce length by 1 00014000
 MVC 0(1,R1),0(R11) Move Key 00014100
 EX R6,*-6 Move Key 00014200
* 00014300
Encr100 DS 0H 00014400
 LA R1,WkKMCPrm Set Parm Block Address 00014500
 KMC R2,R4 Perform operation 00014600
* 00014700
 BNZ Encr100 Loop back if partial completion 00014800
 BZ Encr900 00014900
* 00015000
Encr700 DS 0H 00015100
 MVC WkRetcde+1(1),1(R8) Save failing byte 00015200
 MVI WkRetcde+2,1 Set reason 00015300
 B Encr800 00015400
* 00015500
Encr710 DS 0H 00015600
 MVC WkRetcde+1(1),0(R8) Save failing option code 00015700
 MVI WkRetcde+2,2 Set reason 00015800
 B Encr800 00015900
* 00016000
Encr720 DS 0H 00016100
 STCM R5,B’0011’,WkRetcde Save failing length 00016200
 MVI WkRetcde+2,3 Set reason 00016300
 B Encr800 00016400
* 00016500
Encr800 DS 0H 00016600
 MVI WkRetcde+3,12 Set retcode 12 00016700
* 00016800
Encr900 DS 0H 00016900
 MVC 0(4,R7),WkRetcde Store RC into callers parmlist 00017000
 LM R0,R15,WkSaveA Reload registers 00017100
 BR R14 Return to caller 00017200
* 00017300

106 z9-109 Crypto and TKE V5 Update

 DROP R12 CPACF010 00017400
 DROP R13 #Work 00017500
 LTORG 00017600
* 00017700
 TITLE ‘***** CPACF010 : EQUATES *****’ 00017800
* 00017900
R0 EQU 0 00018000
R1 EQU 1 00018100
R2 EQU 2 00018200
R3 EQU 3 00018300
R4 EQU 4 00018400
R5 EQU 5 00018500
R6 EQU 6 00018600
R7 EQU 7 00018700
R8 EQU 8 00018800
R9 EQU 9 00018900
R10 EQU 10 00019000
R11 EQU 11 00019100
R12 EQU 12 00019200
R13 EQU 13 00019300
R14 EQU 14 00019400
R15 EQU 15 00019500
 TITLE ‘***** CPACF010 : WORK AREA *****’ 00019600
#Work DSECT 00019700
WkStart EQU * 00019800
WkOsSave DS 18F OS save area 00019900
WkLen DS F Length 00020000
WkSpl DS F Subpool 00020100
* 00020200
WkPhase DS CL4 Phase name 00020300
WkSaveA DS 16F Subroutine save area 1 00020400
* 00020500
WkParms DS 5F Parm addresses 00020600
* 00020700
WkRetcde DS F Return Code 00020800
* 00020900
WkReg0 DS F Work area 00021000
* 00021100
WkKMCPrm DS XL48 Max length of KMC parameter block 00021200
* 00021300
WkEnd EQU * 00021400
* 00021500
 END 00021600

REXCP010 program
Example A-2 is a REXX program that can be used to invoke the program CPACF010 in
Example A-1.

Example: A-2 REXX program to invoke CPACF010

/* Rexx */ 00000100
/*--*/ 00000200
/* */ 00000300
/* Invoke CPACF010 */ 00000400
/* */ 00000500
/*--*/ 00000600
 00000700

Appendix A. CPACF programs 107

/* trace i */ 00000800
say ‘ ‘; 00000900
say ‘ ‘; 00001000
say ‘ ‘; 00001100
say ‘ ‘; 00001200
say ‘---’; 00001300
say ‘ ‘; 00001400
say ‘ Running CPACF010 to perform AES encryption’ 00001500
say ‘ ‘; 00001600
 00001700
parm1 = ‘00000000’X 00001800
parm2 = ‘12’X||’E’||’0030’X 00001900
parm3 = COPIES(‘00’X,50) 00002000
parm4 = COPIES(‘00’X,50) 00002100
parm5 = ‘000102030405060708090A0B0C0D0E0F’X 00002200
parm5 = parm5||’1011121314151617181910111A1B1C1D1E1F’X 00002300
 00002400
address linkpgm ‘CPACF010’, 00002500
 ‘parm1’, 00002600
 ‘parm2’, 00002700
 ‘parm3’, 00002800
 ‘parm4’, 00002900
 ‘parm5’, 00003000
 00003100
/* check the return and reason codes */ 00003200
 00003300
if (parm1 <> ‘00000000’X) then do 00003400
 say ‘CPACF010 FAILed : RC =’ c2x(parm1); 00003500
 say ‘ ‘ ; 00003600
 say c2X(parm1) 00003700
 say c2X(parm2) 00003800
 say c2X(parm5) 00003900
 end ; 00004000
else do ; 00004100
 say ‘CPACF010 OK ‘ 00004200
 say ‘Clear_Text (part1)...’||c2x(SUBSTR(parm3,01,16)) 00004300
 say ‘Cipher_Text (part1)...’||c2x(SUBSTR(parm4,01,16)) 00004400
 say ‘ ‘ ; 00004500
 say ‘Clear_Text (part2)...’||c2x(SUBSTR(parm3,17,16)) 00004600
 say ‘Cipher_Text (part2)...’||c2x(SUBSTR(parm4,17,16)) 00004700
 say ‘ ‘ ; 00004800
 say ‘Clear_Text (part3)...’||c2x(SUBSTR(parm3,33,16)) 00004900
 say ‘Cipher_Text (part3)...’||c2x(SUBSTR(parm4,33,16)) 00005000
 say ‘ ‘ ; 00005100
 say ‘CPACF010 completed’ 00005200
 end ; 00005300
 00005400
exit 00005500

REXCP011 program
Example A-3 is a REXX program that can be used to encrypt and decrypt data using
CPACF010.

Example: A-3 Program to use CPACF010

/* Rexx */ 00000100
/*--*/ 00000200

108 z9-109 Crypto and TKE V5 Update

/* */ 00000300
/* Invoke CPACF010 */ 00000400
/* */ 00000500
/*--*/ 00000600
 00000700
/* trace i */ 00000800
say ‘ ‘; 00000900
say ‘ ‘; 00001000
say ‘ ‘; 00001100
say ‘ ‘; 00001200
say ‘---’; 00001300
say ‘ ‘; 00001400
say ‘ Running CPACF010 to perform AES Encryption’ 00001500
say ‘ ‘; 00001600
 00001700
parm1 = ‘00000000’X 00001800
parm2 = ‘12’X||’E’||’0030’X 00001900
parm3 = COPIES(‘00’X,48) 00002000
parm4 = COPIES(‘00’X,48) 00002100
parm5 = ‘000102030405060708090A0B0C0D0E0F’X 00002200
 00002300
address linkpgm ‘CPACF010’, 00002400
 ‘parm1’, 00002500
 ‘parm2’, 00002600
 ‘parm3’, 00002700
 ‘parm4’, 00002800
 ‘parm5’, 00002900
 00003000
/* check the return and reason codes */ 00003100
 00003200
if (parm1 <> ‘00000000’X) then do 00003300
 say ‘CPACF010 FAILed : RC =’ c2x(parm1); 00003400
 say ‘ ‘ ; 00003500
 say c2X(parm1) 00003600
 say c2X(parm2) 00003700
 say c2X(parm5) 00003800
 end ; 00003900
else do ; 00004000
 say ‘CPACF010 OK ‘ 00004100
 say ‘Clear_Text (part1)...’||c2x(SUBSTR(parm3,01,16)) 00004200
 say ‘Cipher_Text (part1)...’||c2x(SUBSTR(parm4,01,16)) 00004300
 say ‘ ‘ ; 00004400
 say ‘Clear_Text (part2)...’||c2x(SUBSTR(parm3,17,16)) 00004500
 say ‘Cipher_Text (part2)...’||c2x(SUBSTR(parm4,17,16)) 00004600
 say ‘ ‘ ; 00004700
 say ‘Clear_Text (part3)...’||c2x(SUBSTR(parm3,33,16)) 00004800
 say ‘Cipher_Text (part3)...’||c2x(SUBSTR(parm4,33,16)) 00004900
 say ‘ ‘ ; 00005000
 say ‘CPACF010 completed’ 00005100
 end ; 00005200
 00005300
say ‘ ‘; 00005400
say ‘ ‘; 00005500
say ‘ ‘; 00005600
say ‘ ‘; 00005700
say ‘---’; 00005800
say ‘ ‘; 00005900
say ‘ Running CPACF010 to perform AES Decryption’ 00006000
say ‘ ‘; 00006100
 00006200

Appendix A. CPACF programs 109

parm1 = ‘00000000’X 00006300
parm2 = ‘12’X||’D’||’0030’X 00006400
 00006500
address linkpgm ‘CPACF010’, 00006600
 ‘parm1’, 00006700
 ‘parm2’, 00006800
 ‘parm4’, /* Reversed */ 00006900
 ‘parm3’, /* Reversed */ 00007000
 ‘parm5’, 00007100
 00007200
/* check the return and reason codes */ 00007300
 00007400
if (parm1 <> ‘00000000’X) then do 00007500
 say ‘CPACF010 FAILed : RC =’ c2x(parm1); 00007600
 say ‘ ‘ ; 00007700
 say c2X(parm1) 00007800
 say c2X(parm2) 00007900
 say c2X(parm5) 00008000
 end ; 00008100
else do ; 00008200
 say ‘CPACF010 OK ‘ 00008300
 say ‘Cipher_Text (part1)...’||c2x(SUBSTR(parm4,01,16)) 00008400
 say ‘Clear_text (part1)...’||c2x(SUBSTR(parm3,01,16)) 00008500
 say ‘ ‘ ; 00008600
 say ‘Cipher_Text (part2)...’||c2x(SUBSTR(parm4,17,16)) 00008700
 say ‘Clear_text (part2)...’||c2x(SUBSTR(parm3,17,16)) 00008800
 say ‘ ‘ ; 00008900
 say ‘Cipher_Text (part3)...’||c2x(SUBSTR(parm4,33,16)) 00009000
 say ‘Clear_text (part3)...’||c2x(SUBSTR(parm3,33,16)) 00009100
 say ‘ ‘ ; 00009200
 say ‘CPACF010 completed’ 00009300
 end ; 00009400
 00009500
exit 00009600

CPACF020 program
Example A-4 is an assembler program that can be used to invoke the KLMD instruction to
produce SHA-256 hash values.

Example: A-4 Program to invoke KLMD instructions

CPACF020 CSECT 00010000
CPACF020 AMODE 31 00020000
CPACF020 RMODE ANY 00030000
* --- * 00040000
* * 00050000
* C P A C F 0 2 0 - Generate SHA-256 or SHA-1 Hash * 00060000
* --- * 00070000
* * 00080000
* Last Updated 01/09/2005 * 00090000
* * 00100000
* Module : CPACF020 * 00110000
* Date written : 31st August 2005 * 00120000
* Function : Generate SHA Hash * 00130000
* * 00140000
* HISTORY : 31/08/2005 - Initial Version * 00150000
* * 00160000

110 z9-109 Crypto and TKE V5 Update

* Module attributes: RENT,REUS,AMODE(31),RMODE(31) * 00170000
* * 00180000
* --- * 00190000
* 00200000
* --- * 00210000
* * 00220000
* Parameters: 1 - Return Code * 00230000
* 2 - Option Block * 00240000
* 3 - Data to Hash (INPUT) * 00250000
* 4 - Hash Code (OUTPUT) * 00260000
* * 00270000
* Option Block format * 00280000
* Byte 1-1 Function Code, 1=SHA-1, 2=SHA-256 * 00290000
* Byte 2-2 Not used * 00300000
* Byte 3-4 Length of Data (Max 32767) * 00310000
* * 00320000
* * 00330000
* --- * 00340000
 SAVE (14,12),,CPACF020-&SYSDATE-&SYSTIME 00350000
* 00360000
 LR R12,R15 00370000
* 00380000
 USING CPACF020,R12 Module addressability 00390000
* 00400000
 LR R10,R1 Save param address 00410000
* 00420000
 LA R0,WkEnd-WkStart Length of work area 00430000
 XR R15,R15 Subpool 0 00440000
* 00450000
 STORAGE OBTAIN,SP=(15),ADDR=(1),LENGTH=(0) 00460000
* 00470000
 USING #Work,R1 Workarea addressability 00480000
* 00490000
 ST R0,WkLen Save length 00500000
 ST R15,WkSpl Save subpool 00510000
* 00520000
Main000 DS 0H 00530000
 ST R1,8(,R13) Link save areas 00540000
 ST R13,4(,R1) for os 00550000
* 00560000
 LR R13,R1 Set work/save area address 00570000
 LR R1,R10 Reinstate parameter register 00580000
* 00590000
 DROP R1 #Work 00600000
 USING #Work,R13 Workarea addressability 00610000
* 00620000
 BAS R14,Sha000 Do SHA processing 00630000
* 00640000
Main900 DS 0H 00650000
* 00660000
 L R10,WkRetcde Save return code 00670000
 L R0,WkLen Length work area 00680000
 L R15,WkSpl Subpool 00690000
 LR R1,R13 Point to my save area 00700000
 L R13,4(R1) Rescue pointer to high save area 00710000
* 00720000
 STORAGE RELEASE,SP=(15),ADDR=(1),LENGTH=(0) 00730000
* 00740000
 LR R15,R10 Reinstate return code 00750000
 RETURN (14,12),RC=(15) Return 00760000

Appendix A. CPACF programs 111

* 00770000
Sha DC CL4’Sha’ 00780000
Sha000 DS 0H 00790000
 STM R0,R15,WkSaveA Store registers 00800000
 MVC WkPhase,Sha Set phase name 00810000
 XC WkRetcde,WkRetcde Clear return code 00820000
* 00830000
 LM R8,R11,0(R1) R8 to R11 point to my parameters 00840000
 STM R8,R11,WkParms Store parms for debugging etc. 00850000
* 00860000
 XR R5,R5 Clear Length 00870000
 ICM R5,B’0011’,2(R9) Insert length from Option Block 00880000
 BZ Sha720 Too short, error 00890000
* 00900000
 C R5,=F’32767’ Test Data Length 00910000
 BH Sha720 Too Long, error 00920000
* 00930000
Sha020 DS 0H *** Which SHA *** 00940000
 LA R2,20 Assume SHA-1 length 00950000
 LA R3,WkKLMDPm+24 Point to SHA-1 bit len (last half) 00960000
 MVC WkKLMDPm,SHA1 Assume SHA-1 00970000
 CLI 0(R9),X’01’ Is this SHA-1 ? 00980000
 BE Sha050 Yes, proceed. 00990000
* 01000000
 LA R2,32 Assume SHA-256 length 01010000
 LA R3,WkKLMDPm+36 Point to SHA-256 bit len (last half) 01020000
 MVC WkKLMDPm,SHA256 Assume SHA-256 01030000
 CLI 0(R9),X’02’ Is this SHA-256? 01040000
 BE Sha050 Yes, proceed. 01050000
* 01060000
 B Sha710 No, bad retcode 01070000
* 01080000
Sha050 DS 0H 01090000
 XR R0,R0 Clear Reg 0 01100000
 IC R0,0(R9) Insert 7-bit Function code 01110000
* 01120000
Sha100 DS 0H 01130000
 SLL R5,3 Convert length to bits 01140000
 ST R5,0(,R3) Store length in parm block 01150000
 SRL R5,3 Length back to bytes 01160000
 LR R4,R10 Point to Input data 01170000
 LA R1,WkKLMDPm Set Parm Block Address 01180000
* 01190000
Sha120 DS 0H 01200000
 KLMD R2,R4 Perform operation 01210000
 BNZ Sha120 Loop back for partial completion 01220000
* 01230000
 BCTR R2,R0 reduce length for move 01240000
 MVC 0(1,R11),WkKLMDPm Move hash code to callers parm 01250000
 EX R3,*-6 Move hash code to callers parm 01260000
 BZ Sha900 Finished 01270000
* 01280000
Sha710 DS 0H 01290000
 MVC WkRetcde+1(1),0(R9) Save failing option code 01300000
 MVI WkRetcde+2,2 Set reason 01310000
 B Sha800 01320000
* 01330000
Sha720 DS 0H 01340000
 STCM R5,B’0011’,WkRetcde 01350000
 MVI WkRetcde+2,3 Set reason 01360000

112 z9-109 Crypto and TKE V5 Update

 B Sha800 01370000
* 01380000
Sha800 DS 0H 01390000
 MVI WkRetcde+3,12 Set retcode 12 01400000
* 01410000
Sha900 DS 0H 01420000
 MVC 0(4,R8),WkRetcde Store RC into callers parmlist 01430000
 LM R0,R15,WkSaveA Reload registers 01440000
 BR R14 Return to caller 01450000
* 01460000
 DROP R12 CPACF020 01470000
 DROP R13 #Work 01480000
 LTORG 01490000
* 01500000
 TITLE ‘***** CPACF020 : EQUATES *****’ 01510000
 DS 0F 01520000
SHA1 DS 0XL(SHA1END-SHA1ST) 01530000
SHA1ST DC XL4’67452301’ 01540000
 DC XL4’EFCDAB89’ 01550000
 DC XL4’98BADCFE’ 01560000
 DC XL4’10325476’ 01570000
 DC XL4’C3D2E1F0’ 01580000
 DC XL4’00000000’ 01590000
 DC XL4’00000000’ 01600000
 DC XL4’00000000’ 01610000
 DC XL4’00000000’ 01620000
 DC XL4’00000000’ 01630000
SHA1END EQU * 01640000
* 01650000
SHA256 DS 0XL(SHA256EN-SHA256ST) 01660000
SHA256ST DC XL4’6A09E667’ 01670000
 DC XL4’BB67AE85’ 01680000
 DC XL4’3C6EF372’ 01690000
 DC XL4’A54FF53A’ 01700000
 DC XL4’510E527F’ 01710000
 DC XL4’9B05688C’ 01720000
 DC XL4’1F83D9AB’ 01730000
 DC XL4’5BE0CD19’ 01740000
 DC XL4’00000000’ 01750000
 DC XL4’00000000’ 01760000
SHA256EN EQU * 01770000
* 01780000
R0 EQU 0 01790000
R1 EQU 1 01800000
R2 EQU 2 01810000
R3 EQU 3 01820000
R4 EQU 4 01830000
R5 EQU 5 01840000
R6 EQU 6 01850000
R7 EQU 7 01860000
R8 EQU 8 01870000
R9 EQU 9 01880000
R10 EQU 10 01890000
R11 EQU 11 01900000
R12 EQU 12 01910000
R13 EQU 13 01920000
R14 EQU 14 01930000
R15 EQU 15 01940000
* 01950000
 PRINT NOGEN 01960000

Appendix A. CPACF programs 113

 EJECT 01970000
 TITLE ‘***** CPACF020 : WORK AREA *****’ 01980000
#Work DSECT 01990000
WkStart EQU * 02000000
WkOsSave DS 18F OS save area 02010000
WkLen DS F Length 02020000
WkSpl DS F Subpool 02030000
* 02040000
WkPhase DS CL4 Phase name 02050000
WkSaveA DS 16F Subroutine save area 1 02060000
* 02070000
WkParms DS 5F Parm addresses 02080000
* 02090000
WkRetcde DS F Return Code 02100000
* 02110000
WkKLMDPM DS XL40 Max length of KLMD parameter block 02120000
* 02130000
WkEnd EQU * 02140000
* 02150000
 END 02160000

REXCP020 program
Example A-5 is a REXX program that can be used to invoke the CPACF020 program in
Example A-4.

Example: A-5 Program to invoke CPACF020

/* Rexx */ 00010000
/*--*/ 00020000
/* */ 00030000
/* Invoke CPACF020 */ 00040000
/* */ 00050000
/*--*/ 00060000
 00070000
/* trace i */ 00080000
say ‘ ‘; 00090000
say ‘ ‘; 00100000
say ‘ ‘; 00110000
say ‘ ‘; 00120000
say ‘---’; 00130000
say ‘ ‘; 00140000
say ‘Running CPACF020 to generate HASH values’ 00150000
say ‘ ‘; 00160000
 00170000
parm1 = ‘00000000’X 00180000
parm2 = ‘02’X||’ ‘||’0030’X 00190000
parm3 = COPIES(‘00’X,48) 00200000
parm4 = COPIES(‘00’X,32) 00210000
 00220000
address linkpgm ‘CPACF020’, 00230000
 ‘parm1’, 00240000
 ‘parm2’, 00250000
 ‘parm3’, 00260000
 ‘parm4’ 00270000
 00280000
/* check the return and reason codes */ 00290000
 00300000

114 z9-109 Crypto and TKE V5 Update

if (parm1 <> ‘00000000’X) then do 00310000
 say ‘CPACF020 FAILed : RC =’ c2x(parm1); 00320000
 say ‘ ‘ ; 00330000
 say c2X(parm1) 00340000
 say c2X(parm2) 00350000
 end ; 00360000
else do ; 00370000
 say ‘CPACF020 OK ‘ 00380000
 say ‘Text (part1)...’||c2x(SUBSTR(parm3,01,16)) 00390000
 say ‘Text (part2)...’||c2x(SUBSTR(parm3,17,16)) 00400000
 say ‘Text (part3)...’||c2x(SUBSTR(parm3,33,16)) 00410000
 say ‘ ‘ 00420000
 if SUBSTR(parm2,1,1) = ‘01’X then , 00430000
 say ‘HASH value (SHA-1)....’||c2X(SUBSTR(parm4,01,20)) 00440000
 if SUBSTR(parm2,1,1) = ‘02’X then do 00450000
 say ‘HASH value (SHA-256)..’||c2X(SUBSTR(parm4,01,16)) 00460000
 say ‘ ‘||c2X(SUBSTR(parm4,17,16)) 00461000
 end 00462000
 say ‘CPACF020 completed’ 00470000
 end ; 00480000
 00490000
exit 00500000

REXBOWH program
Example A-6 is a REXX program that can be used to invoke the CSNBOWH (One Way Hash)
functions of ICSF.

Example: A-6 Program to invoke CSNBOWH

/* Rexx */ 00000100
/*--*/ 00000200
/* */ 00000300
/* Invoke CSNBOWH */ 00000400
/* */ 00000500
/*--*/ 00000600
 00000700
/* *** */ 00000800
/* initialize parameters for common use */ 00000900
/* */ 00001000
 00001100
/* trace i */ 00001200
say ‘ ‘; 00001300
say ‘ ‘; 00001400
say ‘ ‘; 00001500
say ‘ ‘; 00001600
say ‘---’; 00001700
say ‘ ‘; 00001800
say ‘Running CSNBOWH to generate hash value’ 00001900
say ‘ ‘; 00002000
 00002100
ex_rc = ‘00000000’X 00002200
ex_rs = ‘00000000’X 00002300
exit_data_length = ‘00000000’X 00002400
exit_data = ‘ ‘ 00002500
rule_array_count = ‘00000002’x 00002600
rule_array = ‘SHA-1 ONLY ‘ 00002700
text_length = ‘00000030’x 00002800

Appendix A. CPACF programs 115

text = COPIES(‘00’X,48) 00002900
chain_vect_len = ‘00000080’x 00003000
chain_vect = COPIES(‘00’X,128) 00003100
if SUBSTR(rule_array,1,8) = ‘SHA-1 ‘ then hash_len = ‘00000014’X 00003200
if SUBSTR(rule_array,1,8) = ‘SHA-256 ‘ then hash_len = ‘00000020’X 00003300
hash = COPIES(‘00’X,32) 00003400
 00003500
address linkpgm ‘CSNBOWH’, 00003600
 ‘ex_rc’, 00003700
 ‘ex_rs’, 00003800
 ‘exit_data_length’, 00003900
 ‘exit_data’, 00004000
 ‘rule_array_count’, 00004100
 ‘rule_array’, 00004200
 ‘text_length’, 00004300
 ‘text’, 00004400
 ‘chain_vect_len’, 00004500
 ‘chain_vect’, 00004600
 ‘hash_len’, 00004700
 ‘hash’ 00004800
/* check the return code */ 00004900
 00005000
if (ex_rc <> ‘00000000’X) | (ex_rs <> ‘00000000’X) then do 00005100
 say ‘CSNBOWH FAILed : RC =’ c2x(ex_rc); 00005200
 say ‘ RS =’ c2x(ex_rs); 00005300
 say ‘ ‘ ; 00005400
 end ; 00005500
else do ; 00005600
 say ‘CSNBOWH OK ‘ 00005700
 say ‘Text (part1)...’||c2x(SUBSTR(text,01,16)) 00005800
 say ‘Text (part2)...’||c2x(SUBSTR(text,17,16)) 00005900
 say ‘Text (part3)...’||c2x(SUBSTR(text,33,16)) 00006000
 say ‘ ‘ ; 00006100
 if SUBSTR(rule_array,1,8) = ‘SHA-1 ‘ then , 00006200
 say ‘HASH value (SHA-1)....’||c2X(SUBSTR(hash,01,20)) 00006300
 if SUBSTR(rule_array,1,8) = ‘SHA-256 ‘ then do 00006400
 say ‘HASH value (SHA-256)..’||c2X(SUBSTR(hash,01,16)) 00006500
 say ‘ ‘||c2X(SUBSTR(hash,17,16)) 00006600
 end 00006700
 say ‘ ‘ ; 00006800
 say ‘CSNBOWH completed’ 00006900
 end ; 00007000
 00007100
exit 00007200

REXBSYE program
Example A-7 is a REXX program that can be used to invoke the CSNBSYE function of ICSF
to perform clear key encryption.

Example: A-7 Program to invoke CSNBSYE

/* Rexx */ 00000100
/*--*/ 00000200
/* */ 00000300
/* Invoke CSNBSYE */ 00000400
/* */ 00000500
/*--*/ 00000600

116 z9-109 Crypto and TKE V5 Update

 00000700
/* *** */ 00000800
/* initialize parameters for common use */ 00000900
/* */ 00001000
 00001100
/* trace i */ 00001200
say ‘ ‘; 00001300
say ‘ ‘; 00001400
say ‘ ‘; 00001500
say ‘ ‘; 00001600
say ‘---’; 00001700
say ‘ ‘; 00001800
say ‘Running CSNBSYE to perform AES encryption’ 00001900
say ‘ ‘; 00002000
 00002100
ex_rc = ‘00000000’X 00002200
ex_rs = ‘00000000’X 00002300
exit_data_length = ‘00000000’X 00002400
exit_data = ‘ ‘ 00002500
rule_array_count = ‘00000004’x 00002600
rule_array = ‘AES CBC KEY-CLR INITIAL ‘ 00002700
key_length = ‘00000018’x 00002800
key_identifier = ‘000102030405060708090A0B0C0D0E0F’X 00002900
key_identifier = key_identifier||’101112131415161718191A1B1C1D1E1F’X 00003000
key_parms_len = ‘00000004’x 00003100
key_parms = ‘ ‘ 00003200
block_size = ‘00000010’x 00003300
init_vector_len = ‘00000010’x 00003400
init_vector = ‘00000000000000000000000000000000’X 00003500
chain_data_len = ‘00000020’x 00003600
chain_data = COPIES(‘00’X,32) 00003700
clear_text_len = ‘00000030’x 00003800
clear_text = COPIES(‘00’X,48) 00003900
cipher_text_len = ‘00000030’x 00004000
cipher_text = COPIES(‘00’X,48) 00004100
opt_data_len = ‘00000004’x 00004200
opt_data = ‘00000000’X 00004300
 00004400
address linkpgm ‘CSNBSYE’, 00004500
 ‘ex_rc’, 00004600
 ‘ex_rs’, 00004700
 ‘exit_data_length’, 00004800
 ‘exit_data’, 00004900
 ‘rule_array_count’, 00005000
 ‘rule_array’, 00005100
 ‘key_length’, 00005200
 ‘key_identifier’, 00005300
 ‘key_parms_len’, 00005400
 ‘key_parms’, 00005500
 ‘block_size’, 00005600
 ‘init_vector_len’, 00005700
 ‘init_vector’, 00005800
 ‘chain_data_len’, 00005900
 ‘chain_data’, 00006000
 ‘clear_text_len’, 00006100
 ‘clear_text’, 00006200
 ‘cipher_text_len’, 00006300
 ‘cipher_text’, 00006400
 ‘opt_data_len’, 00006500
 ‘opt_data’ 00006600

Appendix A. CPACF programs 117

/* check the return code */ 00006700
 00006800
if (ex_rc <> ‘00000000’X) | (ex_rs <> ‘00000000’X) then do 00006900
 say ‘CSNBSYE FAILed : RC =’ c2x(ex_rc); 00007000
 say ‘ RS =’ c2x(ex_rs); 00007100
 say ‘ ‘ ; 00007200
 end ; 00007300
else do ; 00007400
 say ‘CSNBSYE OK ‘ 00007500
 say ‘Clear_Text (part1)...’||c2x(SUBSTR(clear_text,01,16)) 00007600
 say ‘Cipher_Text (part1)...’||c2x(SUBSTR(cipher_text,01,16)) 00007700
 say ‘ ‘ ; 00007800
 say ‘Clear_Text (part2)...’||c2x(SUBSTR(clear_text,17,16)) 00007900
 say ‘Cipher_Text (part2)...’||c2x(SUBSTR(cipher_text,17,16)) 00008000
 say ‘ ‘ ; 00008100
 say ‘Clear_Text (part3)...’||c2x(SUBSTR(clear_text,33,16)) 00008200
 say ‘Cipher_Text (part3)...’||c2x(SUBSTR(cipher_text,33,16)) 00008300
 say ‘ ‘ ; 00008400
 say ‘CSNBSYE completed’ 00008500
 end ; 00008600
 00008700
exit 00008800

REXBSYED program
Example A-8 is a REXX program that invokes CSNBSYE and CSNBSYD services of ICSF to
encrypt and decrypt a string of data.

Example: A-8 Program to invke CSNBSYE and CSNBSYD

/* Rexx */ 00000100
/*--*/ 00000200
/* */ 00000300
/* Invoke CSNBSYE */ 00000400
/* */ 00000500
/*--*/ 00000600
 00000700
/* *** */ 00000800
/* initialize parameters for common use */ 00000900
/* */ 00001000
 00001100
/* trace i */ 00001200
say ‘ ‘; 00001300
say ‘ ‘; 00001400
say ‘ ‘; 00001500
say ‘ ‘; 00001600
say ‘---’; 00001700
say ‘ ‘; 00001800
say ‘Running CSNBSYE to perform AES Encryption’ 00001900
say ‘ ‘; 00002000
 00002100
ex_rc = ‘00000000’X 00002200
ex_rs = ‘00000000’X 00002300
exit_data_length = ‘00000000’X 00002400
exit_data = ‘ ‘ 00002500
rule_array_count = ‘00000004’x 00002600
rule_array = ‘AES CBC KEY-CLR INITIAL ‘ 00002700
key_length = ‘00000010’x 00002800

118 z9-109 Crypto and TKE V5 Update

key_identifier = ‘000102030405060708090A0B0C0D0E0F’X 00002900
key_parms_len = ‘00000004’x 00003000
key_parms = ‘ ‘ 00003100
block_size = ‘00000010’x 00003200
init_vector_len = ‘00000010’x 00003300
init_vector = ‘00000000000000000000000000000000’X 00003400
chain_data_len = ‘00000020’x 00003500
chain_data = COPIES(‘00’X,32) 00003600
clear_text_len = ‘00000030’x 00003700
clear_text = COPIES(‘00’X,48) 00003800
cipher_text_len = ‘00000030’x 00003900
cipher_text = COPIES(‘00’X,48) 00004000
opt_data_len = ‘00000004’x 00004100
opt_data = ‘00000000’X 00004200
 00004300
address linkpgm ‘CSNBSYE’, 00004400
 ‘ex_rc’, 00004500
 ‘ex_rs’, 00004600
 ‘exit_data_length’, 00004700
 ‘exit_data’, 00004800
 ‘rule_array_count’, 00004900
 ‘rule_array’, 00005000
 ‘key_length’, 00005100
 ‘key_identifier’, 00005200
 ‘key_parms_len’, 00005300
 ‘key_parms’, 00005400
 ‘block_size’, 00005500
 ‘init_vector_len’, 00005600
 ‘init_vector’, 00005700
 ‘chain_data_len’, 00005800
 ‘chain_data’, 00005900
 ‘clear_text_len’, 00006000
 ‘clear_text’, 00006100
 ‘cipher_text_len’, 00006200
 ‘cipher_text’, 00006300
 ‘opt_data_len’, 00006400
 ‘opt_data’ 00006500
/* check the return code */ 00006600
 00006700
if (ex_rc <> ‘00000000’X) | (ex_rs <> ‘00000000’X) then do 00006800
 say ‘CSNBSYE FAILed : RC =’ c2x(ex_rc); 00006900
 say ‘ RS =’ c2x(ex_rs); 00007000
 say ‘ ‘ ; 00007100
 end ; 00007200
else do ; 00007300
 say ‘CSNBSYE OK ‘ 00007400
 say ‘Clear_Text (part1)...’||c2x(SUBSTR(clear_text,01,16)) 00007500
 say ‘Cipher_Text (part1)...’||c2x(SUBSTR(cipher_text,01,16)) 00007600
 say ‘ ‘ ; 00007700
 say ‘Clear_Text (part2)...’||c2x(SUBSTR(clear_text,17,16)) 00007800
 say ‘Cipher_Text (part2)...’||c2x(SUBSTR(cipher_text,17,16)) 00007900
 say ‘ ‘ ; 00008000
 say ‘Clear_Text (part3)...’||c2x(SUBSTR(clear_text,33,16)) 00008100
 say ‘Cipher_Text (part3)...’||c2x(SUBSTR(cipher_text,33,16)) 00008200
 say ‘ ‘ ; 00008300
 say ‘CSNBSYE completed’ 00008400
 end ; 00008500
 00008600
/*--*/ 00008700
/* */ 00008800

Appendix A. CPACF programs 119

/* Invoke CSNBSYD */ 00008900
/* */ 00009000
/*--*/ 00009100
 00009200
/* *** */ 00009300
/* initialize parameters for common use */ 00009400
/* */ 00009500
 00009600
/* trace i */ 00009700
say ‘ ‘; 00009800
say ‘ ‘; 00009900
say ‘ ‘; 00010000
say ‘ ‘; 00010100
say ‘---’; 00010200
say ‘ ‘; 00010300
say ‘Running CSNBSYD to perform AES Decryption’ 00010400
say ‘ ‘; 00010500
 00010600
ex_rc = ‘00000000’X 00010700
ex_rs = ‘00000000’X 00010800
exit_data_length = ‘00000000’X 00010900
exit_data = ‘ ‘ 00011000
rule_array_count = ‘00000004’x 00011100
rule_array = ‘AES CBC KEY-CLR INITIAL ‘ 00011200
key_length = ‘00000010’x 00011300
key_identifier = ‘000102030405060708090A0B0C0D0E0F’X 00011400
key_parms_len = ‘00000004’x 00011500
key_parms = ‘ ‘ 00011600
block_size = ‘00000010’x 00011700
init_vector_len = ‘00000010’x 00011800
init_vector = ‘00000000000000000000000000000000’X 00011900
chain_data_len = ‘00000020’x 00012000
chain_data = COPIES(‘00’X,32) 00012100
/* clear_text_len = ‘00000030’x */ 00012200
/* clear_text = COPIES(‘00’X,48) */ 00012300
/* cipher_text_len = ‘00000030’x */ 00012400
/* cipher_text = COPIES(‘00’X,48) */ 00012500
opt_data_len = ‘00000004’x 00012600
opt_data = ‘00000000’X 00012700
 00012800
address linkpgm ‘CSNBSYD’, 00012900
 ‘ex_rc’, 00013000
 ‘ex_rs’, 00013100
 ‘exit_data_length’, 00013200
 ‘exit_data’, 00013300
 ‘rule_array_count’, 00013400
 ‘rule_array’, 00013500
 ‘key_length’, 00013600
 ‘key_identifier’, 00013700
 ‘key_parms_len’, 00013800
 ‘key_parms’, 00013900
 ‘block_size’, 00014000
 ‘init_vector_len’, 00014100
 ‘init_vector’, 00014200
 ‘chain_data_len’, 00014300
 ‘chain_data’, 00014400
 ‘cipher_text_len’, 00014500
 ‘cipher_text’, 00014600
 ‘clear_text_len’, 00014700
 ‘clear_text’, 00014800

120 z9-109 Crypto and TKE V5 Update

 ‘opt_data_len’, 00014900
 ‘opt_data’ 00015000
/* check the return code */ 00015100
 00015200
if (ex_rc <> ‘00000000’X) | (ex_rs <> ‘00000000’X) then do 00015300
 say ‘CSNBSYD FAILed : RC =’ c2x(ex_rc); 00015400
 say ‘ RS =’ c2x(ex_rs); 00015500
 say ‘ ‘ ; 00015600
 end ; 00015700
else do ; 00015800
 say ‘CSNBSYD OK ‘ 00015900
 say ‘Cipher_Text (part1)...’||c2x(SUBSTR(cipher_text,01,16)) 00016000
 say ‘Clear_Text (part1)...’||c2x(SUBSTR(clear_text,01,16)) 00016100
 say ‘ ‘ ; 00016200
 say ‘Cipher_Text (part2)...’||c2x(SUBSTR(cipher_text,17,16)) 00016300
 say ‘Clear_Text (part2)...’||c2x(SUBSTR(clear_text,17,16)) 00016400
 say ‘ ‘ ; 00016500
 say ‘Cipher_Text (part3)...’||c2x(SUBSTR(cipher_text,33,16)) 00016600
 say ‘Clear_Text (part3)...’||c2x(SUBSTR(clear_text,33,16)) 00016700
 say ‘ ‘ ; 00016800
 say ‘CSNBSYD completed’ 00016900
 end ; 00017000
 00017100
exit 00017200

Appendix A. CPACF programs 121

122 z9-109 Crypto and TKE V5 Update

Appendix B. Programs used in sysplex
testing

This appendix provides the source of the REXX programs used to test the new sysplex
support functions.

B

Note: The code supplied here has not been subjected to any formal IBM test and is
distributed on an “AS IS” basis without any warranty either express or implied. The
implementation of any of the techniques described or used herein is a customer
responsibility and depends on the customers operational environment. While each item
may have been reviewed for accuracy in a specific situation and may run in a specific
environment, there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own environments do
so at their own risk.

© Copyright IBM Corp. 2005. All rights reserved. 123

REXBKRC program
Example B-1 is a REXX program that we used to generate a single DES key and write it into
the CKDS using the Key Record Create and Key Record Write functions of ICSF. The key was
then used to test the Key Record Read function from different z/OS images in the Sysplex.

Example: B-1 Program to generate a single DES key and write it into the CKDS

/* Rexx */ 00000100
/*--*/ 00000200
/* Create key for test */ 00000300
/* */ 00000400
/* */ 00000500
/* */ 00000600
/*--*/ 00000700
 00000800
/* *** */ 00000900
/* initialize parameters for common use */ 00001000
/* */ 00001100
 00001200
/* trace i */ 00001300
say ‘---’; 00001400
say ‘ ‘; 00001500
say ‘ (Re)Creating key LENNIE.SYSPLEX.TEST002’ 00001600
say ‘ ‘; 00001700
 00001800
zero = ‘00000000’x; 00001900
 00002000
/* *** */ 00002100
/* Key Record Delete (CSNBKRD) */ 00002200
/* */ 00002300
/* */ 00002400
/* *** */ 00002500
 00002600
say ‘ ‘; 00002700
say ‘Key Record Delete (CSNBKRD) ‘; 00002800
say ‘ (Conditional) - delete if found ‘ 00002900
say ‘ ‘; 00003000
 00003100
ex_rc = ‘FFFFFFFF’x; 00003200
ex_rs = ‘FFFFFFFF’x; 00003300
exit_data_length = ‘00000000’x; 00003400
exit_data = ‘’; 00003500
/* Set Key Label */ 00003600
 00003700
key_label = LEFT(‘LENNIE.SYSPLEX.TEST002’,64,’ ‘) 00003800
 00003900
rule_array_count = ‘00000001’x; 00004000
rule_array = LEFT(‘LABEL-DL’,8,’ ‘); 00004100
 00004200
/*** Delete key using CSNBKRD */ 00004300
 00004400
address linkpgm ‘CSNBKRD’, 00004500
 ‘ex_rc’, 00004600
 ‘ex_rs’, 00004700
 ‘exit_data_length’, 00004800
 ‘exit_data’, 00004900
 ‘rule_array_count’, 00005000
 ‘rule_array’, 00005100
 ‘key_label’; 00005200

124 z9-109 Crypto and TKE V5 Update

 00005300
/* check the return and reason codes */ 00005400
 00005500
if (ex_rc <> zero | ex_rs <> zero) then do 00005600
 say ‘Key record delete FAILed : RC =’ c2x(ex_rc); 00005700
 say ‘ : RS =’ c2x(ex_rs); 00005800
 say ‘ ‘ ; 00005900
 end ; 00006000
else do ; 00006100
 say ‘Key record delete is OK : RC =’ c2x(ex_rc) 00006200
 say ‘ : RS =’ c2x(ex_rs); 00006300
 say ‘ ‘ ; 00006400
 end ; 00006500
 00006600
/* *** */ 00006700
/* Keyed Record Generate (CSNBKGN) */ 00006800
/* */ 00006900
 00007000
say ‘---’; 00007100
say ‘Keyed Record Generate (CSNBKGN)’; 00007200
say ‘ ‘; 00007300
 00007400
ex_rc = ‘FFFFFFFF’x; 00007500
ex_rs = ‘FFFFFFFF’x; 00007600
 00007700
exit_data_length = ‘00000000’x; 00007800
exit_data = ‘’; 00007900
key_form = LEFT(‘OPOP’,4,’ ‘) 00008000
key_length = LEFT(‘SINGLE’,8,’ ‘) 00008100
key_type1 = LEFT(‘MAC’,8,’ ‘) 00008200
key_type2 = LEFT(‘MACVER’,8,’ ‘) 00008300
kek_key_ident1 = LEFT(‘00’X,64,’00’X) 00008400
kek_key_ident2 = LEFT(‘00’X,64,’00’X) 00008500
generated_key1 = LEFT(‘00’X,64,’00’X) 00008600
generated_key2 = LEFT(‘00’X,64,’00’X) 00008700
 00008800
 00008900
address linkpgm ‘CSNBKGN’, 00009000
 ‘ex_rc’, 00009100
 ‘ex_rs’, 00009200
 ‘exit_data_length’, 00009300
 ‘exit_data’, 00009400
 ‘key_form’, 00009500
 ‘key_length’, 00009600
 ‘key_type1’, 00009700
 ‘key_type2’, 00009800
 ‘kek_key_ident1’, 00009900
 ‘kek_key_ident2’, 00010000
 ‘generated_key1’, 00010100
 ‘generated_key2’; 00010200
 00010300
say ‘ ‘ ; 00010400
key_token = generated_key1 00010500
 00010600
/* check the return and reason codes */ 00010700
 00010800
if (ex_rc <> zero | ex_rs <> zero) then do 00010900
 say ‘Key generate(KGN) FAILed : RC =’ c2x(ex_rc); 00011000
 say ‘ : RS =’ c2x(ex_rs); 00011100
 say ‘ ‘ ; 00011200

Appendix B. Programs used in sysplex testing 125

 exit; 00011300
 end ; 00011400
else do ; 00011500
 say ‘Key generate(KGN) OK : RC =’ c2x(ex_rc); 00011600
 say ‘ : RS =’ c2x(ex_rs); 00011700
 say ‘ ‘ ; 00011800
 say ‘Generated key token in hex:’ ; 00011900
 hexkt = c2x(key_token) ; 00012000
 p1kt = substr(hexkt,1,16) ; 00012100
 mkvp = substr(hexkt,17,16) ; 00012200
 crgrm1 = substr(hexkt,33,16) ; 00012300
 crgrm2 = substr(hexkt,49,16) ; 00012400
 icv = substr(hexkt,65,32) ; 00012500
 crgrm3 = substr(hexkt,97,16) ; 00012600
 p2kt = substr(hexkt,113) 00012700
 say ‘ first bytes :’ p1kt ‘ Master Key VP :’ mkvp ; 00012800
 say ‘ cryptogram Key1 :’ crgrm1 ‘ cryptogram Key2 :’ crgrm2 ; 00012900
 say ‘ Control Vector :’ icv ; 00013000
 say ‘ cryptogram Key3 :’ crgrm3 ‘ last bytes :’ p2kt ; 00013100
 say ‘ ‘ ; 00013200
 end ; 00013300
 00013400
 00013500
/* *** */ 00013600
/* Key record Create (CSNBKRC) */ 00013700
/* */ 00013800
 00013900
say ‘---’; 00014000
say ‘Key Record Create (CSNBKRC)’; 00014100
say ‘ ‘; 00014200
 00014300
ex_rc2 = ‘FFFFFFFF’x; 00014400
ex_rs2 = ‘FFFFFFFF’x; 00014500
 00014600
exit_data_length = ‘00000000’x; 00014700
exit_data = ‘’; 00014800
 00014900
address linkpgm ‘CSNBKRC’, 00015000
 ‘ex_rc2’, 00015100
 ‘ex_rs2’, 00015200
 ‘exit_data_length’, 00015300
 ‘exit_data’, 00015400
 ‘key_label’; 00015500
 00015600
say ‘ ‘ ; 00015700
 00015800
/* check the return and reason codes */ 00015900
 00016000
if (ex_rc2 <> zero | ex_rs2 <> zero) then do; 00016100
 say ‘Key Record Create (KRR) fail : RC =’ c2x(ex_rc2); 00016200
 say ‘ : RS =’ c2x(ex_rs); 00016300
 say ‘ ‘ ; 00016400
 exit; 00016500
 end ; 00016600
else do ; 00016700
 say ‘Key Record Create (KRR) OK : RC =’ c2x(ex_rc2); 00016800
 say ‘ : RS =’ c2x(ex_rs); 00016900
 end ; 00017000
 00017100
 00017200

126 z9-109 Crypto and TKE V5 Update

/* *** */ 00017300
/* Key Record Write (CSNBKRW) */ 00017400
/* */ 00017500
/* */ 00017600
/* *** */ 00017700
 00017800
say ‘---’; 00017900
say ‘Key Record Write (CSNBKRW)’; 00018000
say ‘ ‘; 00018100
 00018200
ex_rc = ‘FFFFFFFF’x; 00018300
ex_rs = ‘FFFFFFFF’x; 00018400
exit_data_length = ‘00000000’x; 00018500
exit_data = ‘’; 00018600
 00018700
 00018800
/*** Export key by CSNBKRW */ 00018900
 00019000
address linkpgm ‘CSNBKRW’, 00019100
 ‘ex_rc’, 00019200
 ‘ex_rs’, 00019300
 ‘exit_data_length’, 00019400
 ‘exit_data’, 00019500
 ‘key_token’, 00019600
 ‘key_label’; 00019700
 00019800
/* check the return and reason codes */ 00019900
 00020000
say ‘ ‘ ; 00020100
 00020200
if (ex_rc <> zero | ex_rs <> zero) then do 00020300
 say ‘Key record Write (KRW) FAILed : RC =’ c2x(ex_rc); 00020400
 say ‘ : RS =’ c2x(ex_rs); 00020500
 say ‘ ‘ ; 00020600
 exit; 00020700
 end ; 00020800
else do ; 00020900
 say ‘Key record Write (KRW) is OK : RC =’ c2x(ex_rc); 00021000
 say ‘ : RS =’ c2x(ex_rs); 00021100
 say ‘ ‘ ; 00021200
 end ; 00021300
 00021400
exit 00021500

Appendix B. Programs used in sysplex testing 127

REXBKRD program
Example B-2 is a REXX program that can be used to delete the single DES key from the
CKDS. The different z/OS images in the sysplex will later check if they find the key that is
missing in the in-storage copy of the CKDS.

Example: B-2 Program to delete the single DES key from the CKDS

/* Rexx */ 00000100
/*--*/ 00000200
/* Delete key for test */ 00000300
/* */ 00000400
/* */ 00000500
/* */ 00000600
/*--*/ 00000700
 00000800
/* *** */ 00000900
/* initialize parameters for common use */ 00001000
/* */ 00001100
 00001200
say ‘---’; 00001300
say ‘ ‘; 00001400
say ‘ Deleting key LENNIE.SYSPLEX.TEST002’ 00001500
say ‘ ‘; 00001600
 00001700
zero = ‘00000000’x; 00001800
 00001900
/* *** */ 00002000
/* Key Record Delete (CSNBKRD) */ 00002100
/* */ 00002200
/* */ 00002300
/* *** */ 00002400
 00002500
say ‘ ‘; 00002600
say ‘Key Record Delete (CSNBKRD) ‘; 00002700
say ‘ (Conditional) - delete if found ‘ 00002800
say ‘ ‘; 00002900
 00003000
ex_rc = ‘FFFFFFFF’x; 00003100
ex_rs = ‘FFFFFFFF’x; 00003200
exit_data_length = ‘00000000’x; 00003300
exit_data = ‘’; 00003400
/* Set Key Label */ 00003500
 00003600
key_label = LEFT(‘LENNIE.SYSPLEX.TEST002’,64,’ ‘) 00003700
 00003800
rule_array_count = ‘00000001’x; 00003900
rule_array = LEFT(‘LABEL-DL’,8,’ ‘); 00004000
 00004100
/*** Delete key using CSNBKRD */ 00004200
 00004300
address linkpgm ‘CSNBKRD’, 00004400
 ‘ex_rc’, 00004500
 ‘ex_rs’, 00004600
 ‘exit_data_length’, 00004700
 ‘exit_data’, 00004800
 ‘rule_array_count’, 00004900
 ‘rule_array’, 00005000
 ‘key_label’; 00005100
 00005200

128 z9-109 Crypto and TKE V5 Update

/* check the return and reason codes */ 00005300
 00005400
if (ex_rc <> zero | ex_rs <> zero) then do 00005500
 say ‘Key record delete FAILed : RC =’ c2x(ex_rc); 00005600
 say ‘ : RS =’ c2x(ex_rs); 00005700
 say ‘ ‘ ; 00005800
 end ; 00005900
else do ; 00006000
 say ‘Key record delete is OK : RC =’ c2x(ex_rc) 00006100
 say ‘ : RS =’ c2x(ex_rs); 00006200
 say ‘ ‘ ; 00006300
 end ; 00006400
 00006500
exit 00006600

Appendix B. Programs used in sysplex testing 129

REXBKRR program
Example B-3 is a REXX program that can be used to check if the z/OS images have access
to the latest version of the key record.

Example: B-3 Program to read the key record

/* Rexx */ 00000100
/*--*/ 00000200
/* Read key token */ 00000300
/* */ 00000400
/* */ 00000500
/* */ 00000600
/*--*/ 00000700
 00000800
/* *** */ 00000900
/* initialize parameters for common use */ 00001000
/* */ 00001100
 00001200
/* trace i */ 00001300
say ‘---’; 00001400
say ‘ ‘; 00001500
say ‘ Read key LENNIE.SYSPLEX.TEST002’ 00001600
say ‘ ‘; 00001700
 00001800
zero = ‘00000000’x; 00001900
 00002000
/* *** */ 00002100
/* Key Record Read (CSNBKRR) */ 00002200
/* */ 00002300
/* */ 00002400
/* *** */ 00002500
 00002600
say ‘ ‘; 00002700
say ‘Key Record Display (using CSNBKRR) ‘; 00002800
say ‘ ‘; 00002900
 00003000
ex_rc = ‘FFFFFFFF’x; 00003100
ex_rs = ‘FFFFFFFF’x; 00003200
exit_data_length = ‘00000000’x; 00003300
exit_data = ‘’; 00003400
/* Set Key Label */ 00003500
 00003600
key_label = LEFT(‘LENNIE.SYSPLEX.TEST002’,64,’ ‘) 00003700
key_token = LEFT(‘00’x,64,’00’x) 00003800
 00003900
/*** Read key using CSNBKRR */ 00004000
 00004100
address linkpgm ‘CSNBKRR’, 00004200
 ‘ex_rc’, 00004300
 ‘ex_rs’, 00004400
 ‘exit_data_length’, 00004500
 ‘exit_data’, 00004600
 ‘key_label’, 00004700
 ‘key_token’; 00004800
 00004900
/* check the return and reason codes */ 00005000
 00005100
say ‘ ‘ ; 00005200
 00005300

130 z9-109 Crypto and TKE V5 Update

if (ex_rc <> zero | ex_rs <> zero) then do 00005400
 say ‘Key record read FAILed : RC =’ c2x(ex_rc); 00005500
 say ‘ : RS =’ c2x(ex_rs); 00005600
 say ‘ ‘ ; 00005700
 end ; 00005800
else do ; 00005900
 say ‘Key record read is OK : RC =’ c2x(ex_rc) 00006000
 say ‘ : RS =’ c2x(ex_rs); 00006100
 say ‘ ‘ ; 00006200
 hexkt = c2x(key_token) ; 00006300
 p1kt = substr(hexkt,1,16) ; 00006400
 mkvp = substr(hexkt,17,16) ; 00006500
 crgrm1 = substr(hexkt,33,16) ; 00006600
 crgrm2 = substr(hexkt,49,16) ; 00006700
 icv = substr(hexkt,65,32) ; 00006800
 crgrm3 = substr(hexkt,97,16) ; 00006900
 p2kt = substr(hexkt,113) ; 00007000
 say ‘ first bytes :’ p1kt ‘ Master Key VP :’ mkvp ; 00007100
 say ‘ cryptogram Key1 :’ crgrm1 ‘ cryptogram Key2 :’ crgrm2 ; 00007200
 say ‘ Control Vector :’ icv ; 00007300
 say ‘ cryptogram Key3 :’ crgrm3 ‘ last bytes :’ p2kt ; 00007400
 say ‘ ‘ ; 00007500
 end ; 00007600
 00007700
exit 00007800

Appendix B. Programs used in sysplex testing 131

132 z9-109 Crypto and TKE V5 Update

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 134.
Note that some of the documents referenced here may be available in softcopy only.

� Exploiting S/390 Hardware Cryptography with Trusted Key Entry, SG24-5455

� S/390 Crypto PCI Implementation Guide, SG24-5942

� zSeries Crypto Guide Update, SG24-6870

� IBM Eserver zSeries 990 (z990) Cryptography Implementation, SG24-7070

� zSeries TKE V4.2 Update, SG24-6499

Other publications
These publications are also relevant as further information sources:

� z/OS Cryptographic Services ICSF Trusted Key Entry PCIX Workstation User’s Guide,
SA23-2211

� z/OS ICSF Overview, SA22-7519

� z/OS ICSF System Programmer’s Guide, SA22-7520

� z/OS Cryptographic Services Integrated Facility Administrator’s Guide, SA22-7521

� z/OS ICSF Application programmer’s Guide, SA22-7522

� z/OS ICSF TKE PCIX Workstation - User’s Guide, SA23-3211

� Maintenance Information for Desktop Consoles, GC28-6847

� z/Architecture Principles of Operation, SA22-7832

� zSeries 990 Service Guide, G229-9039

� System z9 Processor Resource/Systems Manager Planning Guide, SB10-7041

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Systems Journal article

http://domino.research.ibm.com/tchjr/journalindex.nsf/

� System z9 Cryptographic Coprocessors Performance

http://www.ibm.com/servers/eserver/zseries/security/cryptography.html

© Copyright IBM Corp. 2005. All rights reserved. 133

http://domino.research.ibm.com/tchjr/journalindex.nsf/
http://www.ibm.com/servers/eserver/zseries/security/cryptography.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

134 z9-109 Crypto and TKE V5 Update

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
abend codes 64
accelerator 32
access control points 81
Adjunct Processor 28
AES 10

C
CCA Command Processors 68
CCF 77
CEX2A 26, 49
CICS Wait List 73
CKDS 9
clear key internal token 52
clear keys 19
code segments 29
component trace 63
Control Domain Index 40
CP Assist for Cryptographic function 2
CPACF 2, 77
CPACF020 22
Crypto Express2 77
Crypto modules 77
Cryptographic

candidate List 40
coprocessors 77
domains 26
function support 2
processors 2
throughput 43

Cryptographic Key Data Set 9
Cryptographic Online List 40
CSFEUTIL 53, 58
CSFKEYS 20
CSFPCI 68
CSFPUTIL 63
CSFSERV 20
CSNBOWH 48
CSNBRNG 19, 48
CSNBSYD 18
CSNBSYE 18–19
CSNDPKD 3, 5
CSNDPKE 3, 5

D
DES 2

E
EMV 2000 3
Ethernet LAN 78

© Copyright IBM Corp. 2005. All rights reserved.
F
FC0800 77
FC0855 6
FC0859 6
FC0860 77
FC0861 77
FC0863 6, 77
FC0868 77
FC0887 6
FC0888 6
Feature Code 3863 2, 14
FIPS 140-2 2, 32

H
hash 17
HCR7706 46
HCR7708 46
HCR770A 46
HCR770B 46
HCR7720 46
HCR7730 18, 46
HSA 27

I
IBM 4753 4
IBM 4758-2 Cryptographic Adapter 77
IBM 4764 Cryptographic Adapter 77
IBM 4764-PCIXCC 26
IBM Systems Journal 26
ICSF 9
IDCAMS 50
Image Profile 39

J
Joan Daemen 20

K
Key Part Import 55
Key Record

Create 55
Delete 55
Read 20, 50
Write 50, 55

Key Token Build 49
KGUP 50

TYPE(CLRAES) 50
TYPE(CLRDES) 50

KLMD 2, 16
KM 2, 15
KMAC 2, 16
KMC 2, 16
KMID 2
 135

L
LIC Release 47

January 2005 47
May 2004 47

Linux 11, 30
Load Operational Key 55

M
MAC 18–19
May 2004 LIC Release 47
Message-Security Assist 14, 17
MRP 49
multiple CKDS 60

O
OS/390 V2R9 32

P
PCHID 28
PCICA 26, 77
PCICC 32
PCI-X 3
PCIXCC 26, 77
PKA Key Storage 80
PKDS 9
PKDSCACHE 62
PowerPC 405 GPr 29
Private Key Data Set 9
PRNG 10, 18–19
PSC 80
Public Key Algorithm 3

Q
Query 16

R
Reconfiguration 32

zeroize 33–34
Redbooks Web site 134

Contact us x
Retained key support 4
REXBKRC 57
REXBKRD 57
REXBKRR 58
REXBSYE 22
REXBSYED 22
REXCP020 22
RMF records 21
RSA 3

S
SHA-1 17
SHA-256 10, 18, 21
SHAREOPTIONS 53
SMF Type 82 63
SSL 2

STI 27
Stub 70
stub 69, 72
SYSICSF 55
sysplex support 52
SYSPLEXCKDS 54, 61
SYSZCKDS 55
SYSZCKT 55

T
tamper detection 31

imprinting 32
zeroizing 32

TKE
4764initialize.cni 90
applications tasks 83
configuration tasks 85
Cryptographic Adapter initialization 89
DNS 93
enablement 79
group 36
host 76
maintenance tasks 85
service applications tasks 85
Smart Card Utility Program 91
system clock 88
system management tasks 84
TCP/IP setup 91
trusted key entry tasks 83
utilities tasks 84
welcome panel 82

TKE Smart Card readers 78
TKE V2 79
TKE V3 80
TKE V4 80
TKE V5.0 75
TKECM 78, 80

U
UDX 4, 67

activation 72
callable service 69
function code identifier 68

Usage Domain Index 40

V
Vincent Rijmen 20
VPN 2

Z
z/VM V5.1 10–11
z800 32
ZERO-PAD 49

136 z9-109 Crypto and TKE V5 Update

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

z9-109 Crypto and TKE V5 Update

z9-109 Crypto and TKE V5 Update

z9-109 Crypto and TKE V5 Update

z9-109 Crypto and TKE V5 Update

z9-109 Crypto and TKE V5 Update

z9-109 Crypto and TKE V5 Update

®

SG24-7123-00 ISBN 0738494178

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

z9-109 Crypto and TKE V5
Update

The enhanced CPACF
functions of System
z9, with code samples

The Accelerator mode
of the Crypto Express
2 card

The new TKE Version
5

This IBM Redbook provides detailed information on the
implementation of hardware cryptography in the new System z9,
along with the new version of the Trusted Key Entry (TKE)
workstation that is required when a TKE is to manage System z9
cryptographic coprocessors. It also addresses the CKDS sysplex
support delivered in ICSF HCR7730, which is not dependent on
the use of a System z9.

It is expected that the reader is familiar with zSeries hardware
cryptography implementation and the purpose and usage of the
TKE workstation.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction and overview
	1.1 Cryptographic function support in System z9
	1.2 Overview of the cryptographic processors
	1.2.1 CP Assist for Cryptographic Function (CPACF)
	1.2.2 Crypto Express 2 Coprocessor (CEX2C)
	1.2.3 Crypto Express 2 Accelerator (CEX2A) reconfiguration
	1.2.4 Configuration data
	1.2.5 z990 cryptographic feature codes
	1.2.6 TKE workstation feature

	1.3 Cryptographic features comparison
	1.4 Software requirements

	Chapter 2. CPACF enhancements in System z9
	2.1 CPACF hardware implementation
	2.1.1 Confirmation that CPACF is available in the system

	2.2 Invocation of the new CPACF functions
	2.2.1 What the Message-Security Assist instructions do

	2.3 Calling the CPACF via ICSF services
	2.4 The implications of using clear keys
	2.4.1 What about RACF protection?

	2.5 Some facts about AES
	2.5.1 Who developed AES?
	2.5.2 Why do we need AES?

	2.6 What is SHA-256?
	2.7 Logical partitioning considerations
	2.8 Performance reporting
	2.9 Testing the new CPACF functions
	2.9.1 Encryption and Decryption using KMC-AES-128
	2.9.2 Encryption and Decryption using ICSF
	2.9.3 Generation of an SHA-256 hash value using KLMD
	2.9.4 Generation of an SHA-256 hash value using ICSF

	Chapter 3. The Crypto Express 2 Coprocessor
	3.1 Overview of the Crypto Express 2 Coprocessor
	3.1.1 The coprocessor hardware implementation
	3.1.2 Crypto Express 2 cryptographic functions and coprocessor software layers
	3.1.3 Physical status of the Crypto Express 2 feature

	3.2 Reconfiguration of the coprocessor to accelerator
	3.3 Logical partitioning considerations for System z9
	3.4 Crypto Express 2 performance

	Chapter 4. ICSF overview, support for CEX2A and sysplex
	4.1 ICSF releases
	4.2 Highlights of ICSF HCR7730
	4.3 System z9 and Crypto hardware support
	4.3.1 CEX2A support

	4.4 Enhanced key management for clear DES and AES keys
	4.5 Sysplex support
	4.5.1 Sysplex support prior to ICSF HCR7730
	4.5.2 Sysplex support with ICSF HCR7730
	4.5.3 How the new CKDS sysplex sharing works
	4.5.4 How we tested the HCR7730 new sysplex support
	4.5.5 Updates to the CKDS using KGUP
	4.5.6 Messages during ICSF startup and shutdown
	4.5.7 Multiple CKDS data sets in the sysplex
	4.5.8 Options for sharing the CKDS data set
	4.5.9 Changing the Master Key in a sysplex
	4.5.10 Managing the PKDS data set
	4.5.11 Other sysplex support changes

	Chapter 5. User Defined Extensions (UDX)
	5.1 Refresher on the UDX implementation
	5.1.1 The UDX callable service and the stub

	5.2 The UDX on System z9
	5.3 Initial load and activation of the UDX
	5.3.1 Installation of the UDX
	5.3.2 UDX activation

	5.4 UDX microcode update process

	Chapter 6. TKE V5.0 overview and setup
	6.1 About the TKE workstation
	6.2 TKE V5.0 overview
	6.2.1 TKE V5.0 hardware
	6.2.2 TKE software levels
	6.2.3 TKE V5.0 installation
	6.2.4 TKE V5.0 use
	6.2.5 Migrating from previous TKE versions

	6.3 TKE V5.0 functions compared to TKE V4.2
	6.3.1 Navigation

	6.4 TKE V5.0 installation and setup
	6.4.1 Setting TKE workstation time
	6.4.2 Cryptographic Adapter initialization
	6.4.3 Cryptographic Node Management and Smart Card Utility Program
	6.4.4 TCP/IP setup
	6.4.5 3270 emulator configuration

	6.5 TKE V5.0 management
	6.5.1 TKE V5.0 application
	6.5.2 TKE Media management
	6.5.3 Backing up critical console data and customizing scheduled operations
	6.5.4 Shutdown or Restart

	Appendix A. CPACF programs
	CPACF010 program
	REXCP010 program
	REXCP011 program
	CPACF020 program
	REXCP020 program
	REXBOWH program
	REXBSYE program
	REXBSYED program

	Appendix B. Programs used in sysplex testing
	REXBKRC program
	REXBKRD program
	REXBKRR program

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

