
ibm.com/redbooks

 Front cover

Moving Data Across cross
the DB2 Familyamily

Paolo Bruni
Michael Ho

Marko Milek
Arne Nilsen

Jose Mari Michael Sanchez

Explore the usability and performance
of the DB2 Family’s functions

Try out the High Performance
Unload on several platforms

Experience the new Load
from Cursor utility option

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Moving Data Across the DB2 Family

February 2003

SG24-6905-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (February 2003)

This edition applies to DB2 UDB for z/OS Version 7 (Program Number 5675-DB2), DB2 Version 7
Utilities Suite (Program Number 5697-E98), DB2 UDB V7.2 for Linux, UNIX, and Windows (Program Number
5648-D37) and the pre-GA (beta) DB2 UDB V8.1 for Linux, UNIX, and Windows (Program Number 5765-F34),
High Performance Unload for z/OS Version 2 Release 1 (Program Number 5655-I19) and High Performance
Unload for Multiplatforms Version 2 Release 1 Modification 2 and 3 (Program Number 5724-B90.)

Note: Before using this information and the product it supports, read the information in “Notices” on
page xvii.

Note: This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on versions of
this redbook for more current information.

Contents

Figures . ix

Examples . xi

Tables .xv

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xix
Become a published author .xx
Comments welcome. .xx

Part 1. Introduction . 1

Chapter 1. Introduction. 3
1.0.1 Platforms and configurations . 4
1.0.2 Terminology . 5

1.1 Contents of this redbook . 6

Chapter 2. Overview of data movers . 7
2.1 Preliminary considerations . 8
2.2 DB2 UDB for z/OS . 8

2.2.1 DB2 DSN1COPY utility . 8
2.2.2 DB2 sample program DSNTIAUL . 9
2.2.3 DB2 Reorg utility . 10
2.2.4 DB2 Unload utility . 10
2.2.5 DB2 Load utility . 11
2.2.6 DB2 Cross Loader option . 12

2.3 DB2 UDB for UNIX and Windows . 13
2.3.1 DB2 Backup and Restore utilities . 13
2.3.2 DB2 Export utility . 14
2.3.3 DB2 db2batch . 14
2.3.4 DB2 Import utility. 16
2.3.5 DB2 Load utility . 16
2.3.6 DB2 Cross Loader option . 17
2.3.7 DB2 db2move . 19
2.3.8 DB2 db2look . 20

2.4 Tools for z/OS and multiplatforms. 20
2.4.1 DB2 Administration Tool for z/OS . 20
2.4.2 DB2 Data Export Facility tool for z/OS . 22
2.4.3 DB2 High Performance Unload tool for z/OS . 23
2.4.4 DB2 Data Replication tools for z/OS and Multiplatform . 24
2.4.5 DB2 Web Query tool for z/OS and Multiplatform . 26
2.4.6 DB2 High Performance Unload tool for Multiplatforms . 26
2.4.7 DB2 UDB Warehouse Manager for UNIX and Windows. 27

2.5 Data movers summary . 28

Part 2. Product functions and utilities . 31
© Copyright IBM Corp. 2003. All rights reserved. iii

Chapter 3. Unload with DB2 for z/OS . 33
3.1 Overview of the Unload utility . 34

3.1.1 Extra functionality of the Unload utility . 34
3.1.2 Privilege and authority required . 35
3.1.3 Phases of the Unload utility . 35

3.2 Input and output data sets. 36
3.2.1 Output data sets from Unload . 36
3.2.2 Input of Unload from image copy . 37

3.3 Unload syntax and examples . 38
3.3.1 Examples of using the Unload utility . 38
3.3.2 Terminating or restarting Unload. 48

Chapter 4. Load with DB2 for z/OS . 51
4.1 The Load utility for DB2 for z/OS . 52

4.1.1 Input data for Load . 52
4.1.2 Sample Load JCL . 53
4.1.3 Some tips on using the Load . 57

4.2 Cross Loader option . 58
4.2.1 INCURSOR Load option . 59
4.2.2 EXEC SQL utility control statement . 59
4.2.3 Using the Cross Loader . 65

4.3 Conclusions and recommendations . 77

Chapter 5. Export and Import with DB2 distributed. 79
5.1 Export utility overview . 80
5.2 Using Export utility . 80

5.2.1 Invoking the Export utility . 81
5.3 Import utility overview . 84
5.4 Using the Import utility. 85

5.4.1 Invoking the Import utility . 86

Chapter 6. Load with DB2 Distributed . 91
6.1 Load utility overview . 92

6.1.1 Per-partition Load operation . 92
6.1.2 Load Recovery . 94

6.2 AutoLoader utility . 95
6.3 New features in DB2 distributed V8 . 95

6.3.1 Increased table space access during Load. 96
6.3.2 Load with read access . 96
6.3.3 Load into partitioned databases . 96
6.3.4 Cross Loader option . 98
6.3.5 Generated column support . 98
6.3.6 Multi-dimensional clustering support. 99

6.4 Using the Load utility . 99
6.4.1 Invoking the Load utility . 100

6.5 Comparing Load and Import . 112
6.5.1 LOAD and Import performance comparison . 112
6.5.2 Load and Import functional comparison . 113
6.5.3 When to use Load or Import utilities . 114

Part 3. High Performance Unload . 117

Chapter 7. IBM DB2 High Performance Unload for z/OS . 119
7.1 An overview of HPU for z/OS . 120
iv Moving Data Across the DB2 Family

7.1.1 Applicability of HPU . 120
7.1.2 Strong points of HPU . 121

7.2 Installing HPU for z/OS . 121
7.2.1 Installation requirements . 121
7.2.2 Step-by-step installation procedures. 123
7.2.3 Customization procedures for HPU. 126

7.3 Data formats used by the HPU . 150
7.3.1 Sources of input data that can be used by HPU . 150
7.3.2 Output data formats . 150

7.4 Using HPU . 154
7.4.1 Using the HPU in batch mode. 154

7.5 Components of the HPU statement . 158
7.5.1 HPU blocks . 158
7.5.2 Descriptions of the HPU blocks. 159

7.6 Examples on using HPU in batch . 172
7.7 Using the HPU interactively . 177

7.7.1 Using the DB2 Administration tool to start HPU . 177
7.8 HPU performance measurements. 190
7.9 Considerations . 191

Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 193
8.1 An overview of HPU for Multiplatforms . 194
8.2 Installing and configuring HPU for MP . 195

8.2.1 System requirements . 195
8.2.2 Installation considerations and prerequisites . 195
8.2.3 Installing HPU for MP . 196
8.2.4 Installation directories and files . 199

8.3 Using HPU for MP. 201
8.3.1 Invoking HPU for MP . 202

8.4 Comparing HPU for MP and Export . 208
8.4.1 When to use HPU for MP tool or the Export utility . 210

Part 4. Scenarios. 211

Chapter 9. Getting ready for moving data. 213
9.1 Before moving data . 214

9.1.1 Choosing a tool or utility . 214
9.1.2 Disk space considerations . 216
9.1.3 Software considerations . 216
9.1.4 File format considerations. 217
9.1.5 Encoding scheme and code pages. 218
9.1.6 Moving data with DB2 Connect. 219

9.2 Extracting the data definition language . 220
9.2.1 Using DB2 Administration Tool for z/OS to extract DDL. 220
9.2.2 Using db2look to extract DDL . 228
9.2.3 Considerations . 241

Chapter 10. Moving data to DB2 for z/OS . 243
10.1 Overview of moving data to DB2 for z/OS . 244
10.2 Moving data from DB2 distributed. 247

10.2.1 Using Cross Loader to move data from DB2 distributed to DB2 for z/OS. 247
10.2.2 Data Propagator . 249
10.2.3 Export and Import . 249
10.2.4 SQL Insert with subselect in a Federated Database. 250
 Contents v

10.3 Moving data between two DB2 for z/OS databases . 251
10.3.1 Using Cross Loader to move data from/to DB2 for z/OS 251
10.3.2 Data Propagator . 252
10.3.3 Unload and Load. 252
10.3.4 HPU for z/OS and Load . 255
10.3.5 SQL Insert with subselect in a Federated Database. 264

10.4 Summary and conclusions . 265
10.4.1 From distributed . 265
10.4.2 From mainframe . 266
10.4.3 Miscellaneous . 266

Chapter 11. Moving data to DB2 Distributed . 267
11.1 An overview. 268

11.1.1 File format considerations. 269
11.1.2 Index considerations . 271
11.1.3 Environment used for data movement examples . 271
11.1.4 Graphical representation of the environment used in the examples 274

11.2 Cross loading . 274
11.3 Export followed by Load or Import . 276
11.4 SQL insert containing a SELECT clause . 278
11.5 Data Propagator . 279
11.6 HPU for z/OS followed by Load or Import . 281
11.7 Unload utility followed by Load or Import . 288
11.8 HPU for MP followed by Import or Load . 293

Part 5. Appendixes . 297

Appendix A. Defining a Federated Database . 299
A.1 Examples of creating Federated Databases. 300

A.1.1 Federated database setup with DB2 V7. 300
A.1.2 Federated Database setup with DB2 V8 . 302

A.2 Server and wrapper type . 304

Appendix B. DB2 connectivity . 307
B.1 Communication database on DB2 for z/OS . 309

B.1.1 Populate the communication database . 309
B.1.2 CDB tables with contents . 311
B.1.3 Test the connectivity . 312

B.2 Cataloging the databases on DB2 distributed . 313

Appendix C. Migrating to DB2 distributed V8. 319
C.1 Migration restrictions . 320
C.2 Pre- and post-migration tasks. 320

Appendix D. DB2 UDB for z/OS Unload options. 323

Abbreviations and acronyms . 331

Related publications . 333
IBM Redbooks . 333

Other resources . 333
Referenced Web sites . 334
How to get IBM Redbooks . 334

IBM Redbooks collections. 334
vi Moving Data Across the DB2 Family

Index . 335
 Contents vii

viii Moving Data Across the DB2 Family

Figures

1-1 The platforms used in this project . 5
3-1 Enhanced functions . 35
3-2 The execution phase of the Unload utility . 36
3-3 UNLOAD — Syntax diagram, main part . 38
3-4 Summary of Unloading from copy data sets . 41
3-5 Unload from table space . 42
4-1 DB2 Family Cross Loader . 58
5-1 The expanded table view in the Control Center. 82
5-2 The Target tab of the Export Notebook . 83
5-3 The Columns tab of the Export Notebook . 83
5-4 The Schedule tab of the Export Notebook. 84
5-5 The File tab of the Import Notebook . 88
5-6 The Columns tab of the Import Notebook . 88
5-7 The Graphical Column Mapper . 89
6-1 The four phases of the per-partition Load process . 94
6-2 Type page of the Load Wizard. 102
6-3 Files page of the Load Wizard . 103
6-4 Columns page of the Load Wizard. 104
6-5 Performance page of the Load Wizard . 105
6-6 Recovery page of the Load Wizard . 106
6-7 Options page of the Load Wizard . 107
6-8 Schedule page of the Load Wizard . 107
6-9 Summary page of the Load Wizard . 108
7-1 Sample data set information for allocating the INZRSAVE library 127
7-2 Executing the INZT01 REXX program. 128
7-3 Executing the INZT02 REXX program. 146
7-4 Add an entry panel. 147
7-5 Executing the INZDB21X CLIST program . 148
7-6 The HPU blocks. 158
7-7 Connection diagram of the blocks of HPU. 159
7-8 The ISPF main menu panel . 178
7-9 The ISPF Active DB2 Systems panel . 178
7-10 The DB2 Administration menu — Option 1 . 179
7-11 The DB2 system catalog panel — Option S . 180
7-12 The DB2 system catalog panel — Option T. 181
7-13 The DB2 Administration tables, views, and aliases panel — Option HPU. 182
7-14 The DB2 Administration table spaces panel — Option HPU 182
7-15 Choosing the output format of the unload file . 183
7-16 Select panel of HPU. 184
7-17 Choosing the format of the output of your unload . 185
7-18 The HPU OUTddn command panel . 185
7-19 Panel for output data set attributes . 186
7-20 Viewing the JCL. 186
7-21 Display of JCL and final revisions . 187
7-22 SDSF panel — Unload execution results. 188
7-23 Outlist of HPU on the SDSF panel. 189
7-24 Output data set of HPU . 189
8-1 The Process Options tab of the Fast Unload Notebook. 205
© Copyright IBM Corp. 2003. All rights reserved. ix

8-2 The Output Options tab of the Fast Unload Notebook. 205
8-3 The Large Objects tab of the Fast Unload Notebook. 206
8-4 The Unload tab of the Fast Unload Notebook . 206
8-5 The Change Select Block window . 207
8-6 The Format Options window . 207
8-7 The Add Column Format window. 208
8-8 DB2 Export and HPU TPC-C measurements . 209
8-9 Chart of DB2 Export vs. HPU performance . 210
9-1 The ISPF main menu panel . 221
9-2 The ISPF Active DB2 Systems panel . 221
9-3 The DB2 Administration menu — Option 1 . 222
9-4 The DB2 system catalog panel — Option S . 223
9-5 The DB2 system catalog panel . 224
9-6 The DB2 Generate SQL panel. 225
9-7 The DB2 Generate SQL options panel . 226
9-8 This JCL panel will be displayed if you chose the BATCH execution mode. 227
9-9 The DDL statement of the database object in the DSNDB04 database 227
9-10 DB2 Control Center in Windows . 235
9-11 Option to generate DDL. 236
9-12 Generating DDL for a table . 237
9-13 Generate DDL option box from the control panel. 237
9-14 db2look command being executed in the background. 238
9-15 Message box stating the job number. . 238
9-16 Journal window . 239
9-17 Chose the ‘Show Results’ option . 240
9-18 Generated DDL . 240
10-1 Diagram of moving data from DB2 on distributed to DB2 for z/OS 245
10-2 This is a diagram of the examples used in this chapter . 246
11-1 Moving data to distributed . 268
11-2 Moving data using a Federated System . 269
11-3 Environment for our examples . 274
11-4 Data Propagator environment . 280
A-1 Federated database setup examples. 300
B-1 A distributed data environment . 308
B-2 Client Configuration Assistant — Available DB2 databases 314
B-3 Client Configuration Assistant 1 — Source . 314
B-4 Client Configuration Assistant 2 — Source . 315
B-5 Client Configuration Assistant 3 — TCP/IP . 315
B-6 Client Configuration Assistant 4 — Database . 316
B-7 Client Configuration Assistant — Test connection. 317
x Moving Data Across the DB2 Family

Examples

2-1 Simple cross loading . 12
3-1 Unload from an image copy data set . 38
3-2 Contents of SYSPUNCH data set . 39
3-3 Unload using FROMCOPY and FROM TABLE options. 39
3-4 Unload list of table spaces with LISTDEF . 43
3-5 Sample Unload job for partition table space and parallelism. 43
3-6 Sample Unload output by partition and parallelism . 43
3-7 Unload selective tables from SYSDBASE using FROM TABLE 45
3-8 Sample database, table space, table, and subset of DSNHDECP 47
3-9 Unload with character conversion to ASCII . 47
3-10 Unload with character conversion to UNICODE . 48
4-1 Load JCL with RESUME YES . 54
4-2 DFSORT dynamic allocation . 54
4-3 RESUME with selected columns . 55
4-4 Loading from a data set . 55
4-5 Loading into two tables . 56
4-6 Loading ASCII input data. 56
4-7 Loading selected input records . 57
4-8 Introductory Cross Loader example. 58
4-9 Creating a new table using LIKE . 60
4-10 Comment and grant in two separate EXEC SQL steps . 60
4-11 Declare a cursor for the Cross Loader. 60
4-12 Usage of a cursor in the LOAD statement . 61
4-13 Restartability of the EXEC SQL statement . 62
4-14 JCL for testing the thread behavior of EXEC SQL. 62
4-15 Testing the thread behavior of EXEC SQL . 63
4-16 JCL for verifying the commit scope of EXEC SQL . 63
4-17 Verifying the commit scope of EXEC SQL. 64
4-18 Local Cross Loader to verify DSNUGSQL package . 65
4-19 Local bind of DSNUGSQL package. 65
4-20 Successful local bind of DSNUGSQL with options . 66
4-21 Remote bind of DSNUGSQL package. 66
4-22 Successful remote bind of DSNUGSQL . 66
4-23 Cross Loader example with no columns referred . 69
4-24 Cross Loader example with column names . 69
4-25 Cross Loader example with columns in different order . 69
4-26 Cross Loader example with non-default columns . 70
4-27 Cross Loader example with AS clause in the column list . 70
4-28 Cross Loader example with IGNOREFIELDS . 70
4-29 The test tables used in Example 4-30 . 71
4-30 Cross Loader conversion within the mainframe. 71
4-31 Cross Loader example of populating a table with UDT column. 71
4-32 Cross Loader example using a table with UDTs as source . 72
4-33 Cross Loader example with a LOB column . 72
4-34 Cross Loader example loading from one remote location . 73
4-35 Cross Loader example loading from two remote locations . 74
4-36 Cross Loader example loading from two remote locations and one EXEC SQL. . . . 74
4-37 Cross Loader example of populating a partitioned table space. 75
© Copyright IBM Corp. 2003. All rights reserved. xi

4-38 Coss Loader example of partition parallelism . 75
4-39 Job report from the parallel loading . 76
4-40 Cross Loader conversion when loading from distributed to mainframe. 77
6-1 Embedded SQL — Example of Cross Loader usage . 108
7-1 JCL to unload the sample jobs to install HPU . 123
7-2 The SMP/E APPLY / APPLYCHECK JCL . 126
7-3 INZTDSN JCL — Replace the ‘??hlq??’ with your high level qualifier. 129
7-4 INZTVAR JCL — Parameter VIM101 to VIM105 . 130
7-5 INZTVAR JCL — HPU libraries . 130
7-6 INZTVAR JCL — Defining the DB2 libraries and subsystem name. 132
7-7 JCL portion where the HPU parameters are set . 135
7-8 JCL portion from the INZTVAR member. . 138
7-9 JCL parameters in INZTVAR . 144
7-10 JCL to bind the internal plan of HPU . 148
7-11 The INZEXECU JCL sample for using the HPU . 154
7-12 Complete options available in the Unload block . 159
7-13 Global block . 161
7-14 Select block . 161
7-15 Format block . 163
7-16 Format USER options . 163
7-17 Options block . 169
7-18 Sample JCL to unload to an ASCII file with variable format 172
7-19 Sample JCL to unload to a delimited ASCII file . 173
7-20 Unloading non-partitioned table space . 174
7-21 Unloading all partitions in a partitioned table space. 174
7-22 Selectively unloading partitions 1,2 and 4 in a partitioned table space 174
7-23 Unloading partitions to different files . 174
7-24 Unloading a DB2 table to a variable-length file . 175
7-25 Unloading the table to a USER TYPE format . 175
7-26 Unloading limited number of rows and calling a user exit . 175
7-27 Image copy information from SYSIBM.SYSCOPY . 176
7-28 How to refer to the last full image copy . 176
7-29 How to refer to an earlier full image copy . 177
7-30 How to refer to an incremental image copy . 177
7-31 JCL generated by the HPU interactive tool . 187
8-1 db2hpu.cfg with default values. 200
9-1 Sample output of db2look command . 231
9-2 db2look with the mimic option . 232
9-3 db2look for DDL and mimic option. 233
10-1 Cross Loader example of moving data from DB2 distributed to z/OS 248
10-2 Cross Loader sample JCL moving from z/OS to z/OS. 252
10-3 JCL to Unload and Load data to and from DB2 for z/OS tables 253
10-4 JCL for HPU and Load. 257
10-5 HPU and Load using a full image copy of the back-up . 259
10-6 JCL to HPU two DB2 for z/OS tables to one target table. 261
10-7 HPU job to extract data from DB2G subsystem. 263
10-8 Load utility to write data to the D7F1 subsystem . 264
11-1 JCL HPU delimited format . 282
11-2 HPU job report . 283
11-3 FTP the file of Example 11-1 from DOS window . 284
11-4 The delimited file to be loaded on the distributed . 284
11-5 JCL HPU positional format. 285
11-6 Load statements positional format generated of HPU . 286
xii Moving Data Across the DB2 Family

11-7 FTP from a DOS window . 287
11-8 Positioned output file from HPU. 287
11-9 JCL Unload utility positional format . 288
11-10 Unload utility job report . 289
11-11 FTP the file of Example 11-9 from a DOS window . 290
11-12 The positional file to be loaded on the distributed . 290
11-13 The Unload utility JCL . 291
11-14 LOAD statement from PUNCHDDN. 292
11-15 FTP file of Example 11-13 from a DOS window . 292
B-1 Insert into LOCATIONS table. 310
B-2 Insert into IPNAMES table . 310
B-3 Insert into USERNAMES table. 311
B-4 Rows in CDB tables . 311
B-5 Rows in LUNAMES table . 311
B-6 SQL -805 in SPUFI . 312
B-7 Bind SPUFI cursor stability plan . 312
B-8 Result from the bind. 312
B-9 The location name of the remote site is not defined in the CDB 312
B-10 Result set from the DEPARTMENT table on AIX in SPUFI 313
B-11 Test connection CLP script . 317
 Examples xiii

xiv Moving Data Across the DB2 Family

Tables

2-1 Overview of data movers . 28
4-1 Data sets used by Load . 52
6-1 Comparison of Import and Load execution times on Windows platform 112
6-2 Comparison of Import and Load execution times on UNIX platform 112
6-3 Summary of important differences between the DB2 Load and Import utilities. . . . 113
7-1 SMP/E CSI sub-entry values . 123
7-2 Sample JCL: Edit and submit. 124
7-3 Description of libraries used by HPU . 128
7-4 JCL parameters to be defined . 130
7-5 Data set parameters of the HPU library . 131
7-6 Common DB2 parameters: . 133
7-7 Parameters for the HPU. 134
7-8 HPU general parameters (INZTVAR member) . 136
7-9 HPU parameters . 139
7-10 Data type conversions allowed in DB2 . 153
7-11 Reserved DDNAMES allocated dynamically by HPU . 156
7-12 DDNAMES that the user provides . 157
7-13 HPU vs. Unload — Table with 1 index. 190
8-1 Memory and disk requirements . 195
8-2 Default installation directories . 197
8-3 Directory description . 199
8-4 Comparison of Export and Unload execution times on Windows platform 209
10-1 Cross reference function to section in this chapter . 247
10-2 Database objects for Example 10-1. 248
10-3 Options used in Load. 248
10-4 Database objects in moving data across DB2 for z/OS databases 251
10-5 Options used in Load. 252
10-6 Options used in Example 10-3. 253
10-7 Options used in Example 10-4. 256
10-8 Options used in Example 10-5. 258
10-9 Options used in Example 10-6. 260
A-1 IBM DB2 Universal Database . 304
A-2 IBM DB2 Universal Database for AS/400 . 304
A-3 IBM DB2 Universal Database for OS/390 . 304
A-4 IBM DB2 Server for VM and VSE . 305
A-5 Oracle data sources supported by Oracle SQL*Net V1 or V2 client software 305
A-6 Oracle data sources supported by Oracle Net8 client software. 305
© Copyright IBM Corp. 2003. All rights reserved. xv

xvi Moving Data Across the DB2 Family

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
CICS®
COBOL/2™
DataJoiner®
DB2®
DB2 Connect™
DB2 Universal Database™
DFS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSORT™
Distributed Relational Database
Architecture™
DRDA®
eServer™
Enterprise Storage Server™
IBM®

IMS™
Infoprint®
Informix®
IP PrintWay™
iSeries™
Lotus®
MQSeries®
MVS™
NetView®
Notes®
NUMA-Q®
OS/2®
OS/390®
OS/400®
Perform™
PrintWay™
PTX®
QMF™
QBIC®

RACF®
RAMAC®
Redbooks™
RETAIN®
S/390®
S/390®
Sequent®
SOM®
SQL/DS™
System/390®
Tivoli®
TME®
WebSphere®
Word Pro®
z/OS™
zSeries™
1-2-3®Redbooks(logo)™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xviii Moving Data Across the DB2 Family

Preface

Moving data across different databases and even different platforms has been a common
task in IT shops for quite some time. Applications may have been developed independently
and over time, using packages and different technology; and data might reside on different
platforms exploiting the specific platform strong points. However, there still is a growing need
for applications that need to access all of this data for overall processing.

While new Web related technologies are emerging with the intent to provide functions to
collect and integrate information across multiple databases and applications for access in real
time, moving data to one location for overall processing is still a very common requirement.

This IBM Redbook provides an overview of what is currently available within the DB2 Family
of products (specifically DB2 for z/OS, and DB2 for UNIX and Windows) in terms of functions,
tools, and utilities to satisfy the need for moving data. We focus on discussing High
Performance Unload and Cross Loader; the first one is a tool, the second one is a new option
of the Load utility, since they are the latest functions that IBM has released. We also introduce
the concepts and some examples of using the Federated Database support.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Paolo Bruni has been a Project Leader since 1998 at the International Technical Support
Organization, San Jose Center, where he conducts projects on all areas of Data
Management. During his many years with IBM, in development and in the field, Paolo’s work
has been mainly related to database systems.

Michael Ho is a Software Engineer at the IBM Toronto Laboratory in Canada. He has four
years of experience in database development. Michael holds a BS degree from the University
of Toronto. His areas of expertise include the Load, Import, and Export utilities for DB2 UDB
on distributed platforms.

Marko Milek is a Software Engineer at the IBM Toronto Laboratory in Canada. He has two
years of experience in database development. Marko holds a bachelor's degree from the
California Institute of Technology, and a Ph.D. from McGill University. His areas of expertise
include utilities and tools for DB2 UDB on distributed platforms.

Arne Nilsen is a Database Administrator in ErgoSolutions in Oslo, Norway. He has more than
15 years of experience in data management. Arne has an extensive knowledge in most areas
of DB2 gained through his wide experience in the field. During the last several years he has
been involved in system design, integration, and security.

Jose Mari Michael Sanchez is an IT Specialist for IBM Global Services in the Philippines. He
has 6 years of experience in the data management field. He started as an application
developer and then became a DB2 technical support and system programmer for OS/390.
Michael holds a BS in Applied Physics from the University of the Philippines. He is an IBM
Certified Solution Expert for DB2 UDB V7 Database Administration.

Thanks to the following people for their contributions to this project:
© Copyright IBM Corp. 2003. All rights reserved. xix

Nagraj Alur
Corinne Baragoin
Emma Jacobs
Bart Steegmans
Maritza Marie Dubec
International Technical Support Organization, San Jose Center

Rich Conway
International Technical Support Organization, Poughkeepsie Center

Dinesh Nirmal
Jim Ruddy
Dave Schwartz
Randy Spalten
Don Weil
IBM Silicon Valley Laboratory

Mark Leitch
IBM Toronto Laboratory

Norbert Thiebaud
Infotel

Become a published author
Join us for a two- to seven-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You will team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
xx Moving Data Across the DB2 Family

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

650 Harry Road
San Jose, California 95120-6099
 Preface xxi

xxii Moving Data Across the DB2 Family

Part 1 Introduction

In this part we introduce the possible reasons for moving data across the DB2 subsystems
and the different platforms, the objectives of our project, and the contents of this redbook, as
well as provide a summary of the functions and tools that can help in this area.

This part is structured in the following two chapters:

� Introduction
� Overview of data movers

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 Moving Data Across the DB2 Family

Chapter 1. Introduction

Moving data across different databases and different platforms has been a common task in IT
shops for quite some time. By moving data we mainly refer to the task of copying data from a
source system to a target system, not necessarily removing it at the source location. While
relational databases, and especially the DB2 Family of products, might have the same look
and feel, each platform has its own strengths and advantages. So, data in a typical database
shop will most probably reside in different platforms. There are also many instances of
companies merging for business reasons, each one with an IT shop with its own
characteristics, where the applications need to access all of this data even if they reside in
different databases on different platforms. Currently, you can then either process them
remotely, which is a valid solution for infrequent processing and reasonable amounts of data,
or you need to move the data to the most suitable place for the overall processing.

IBM has been at the forefront of Data Management for a long time and is now starting to offer
solutions in the area of information integration. Information integration is a collection of
technologies comprising DBMS, Web services, replication, federated systems, warehouse
functions, programming interfaces, and data models into a common platform, which provides
an end-to-end solution for transparently managing the high volume and the diversity of today’s
enterprise data. A good description of the foundation for this effort, which is likely to greatly
reduce the need for moving data, is reported in a series of articles contained in the recent
issue of the IBM Systems Journal - Vol. 41, No. 4, 2002, G321-0147.

In this IBM Redbook we concentrate on the instances where DB2 data has to be moved, or
copied, sporadically or periodically, across different database instances and different
platforms.

Each member of the DB2 Family (DB2 UDB for z/OS, DB2 UDB for Linux, UNIX and
Windows, and DB2 for iSeries) supports several functions and utilities to move data across
and within platforms.

Starting in the year 2001, IBM has also been delivering new tools. They are new competitive
products, or function-rich new versions, which provide tool integration for your DB2 and IMS
installations. These tools will:

� Maximize the availability of your systems
� Keep your operating environment running at peak performance
� Meet requirements for additional recovery and replication capabilities

1

© Copyright IBM Corp. 2003. All rights reserved. 3

� Effectively create and operate your application subsystems

Besides focussing on the database tools to complement your DB2 UDB for z/OS and IMS
database engines, IBM is now also providing tools for the distributed platforms by releasing
new tools and versions at a fast rate.

This book provides an overview of what is currently available for DB2 for z/OS and DB2 for
Linux, UNIX, and Windows in terms of functions, utilities, and tools. We also discuss in detail
the two latest functions and interesting functionalities in the area of moving data: the High
Performance Unload and the Cross Loader. The first one is a tool, the second one is a new
option of the Load utility.

Since it is unrealistic to include all possible permutations of functions, tools, and
environments, we have made some choices and defined some boundaries for our activities
based on what we considered more critical or what is not already documented.

1.0.1 Platforms and configurations
We have classified the platforms into two environments as depicted in Figure 1-1:

� The mainframe platform

The mainframe environment is represented by:

– z/OS or OS/390 on zSeries or S/390

In our project for the mainframe environment, we have used DB2 for z/OS and OS/390
Version 7, on a zSeries with z/OS V1R3.

� The distributed platform

The distributed environment is represented by Intel-based and the RISC-based operating
systems which include:

– Window NT or 2000 and Linux
– AIX, SunOS, and HP

In our project for the distributed environment, the examples shown in this redbook were
tested on AIX and Windows. Since DB2 UDB is a product with very consistent capabilities
across all distributed platforms, the functionalities are expected to be equivalent for all
systems mentioned. In our project we have used DB2 UDB for UNIX and Windows Version
7.2, and a beta level of Version 8. Version 8 was required for the DB2 Cross Loader (or
Load from cursor) function.

In terms of permutations on moving data, we have considered the cases of moving data
within the same environment, mainframe or distributed, and across the two platforms.

The objectives of this project are to:

� Try out the different functions available to DB2 UDB for moving data. We explore the
strengths and advantages of each when moving data.

� Show the circumstances where each tool or utility is most suitable for the need.

� Present a comparative analysis in terms of performance and functions whenever possible.
4 Moving Data Across the DB2 Family

Figure 1-1 The platforms used in this project

1.0.2 Terminology
Throughout this redbook we have tried to be meaningful and consistent with the terminology
related to the DB2 Family of products, and the platforms where they run, but every
generalization and abbreviation tends to be arbitrary and sometimes wrong, so we
summarize here our definitions for reference purposes.

DB2 for z/OS means DB2 UDB for z/OS and OS/390. All our tests were at DB2 UDB for z/OS
and OS/390 Version 7 level.

DB2 distributed means DB2 UDB for Linux, UNIX, and Windows. Our tests were done with
DB2 UDB Version 7.2 and 8 on AIX and Windows. The term DB2 UDB is commonly used as
a way of differentiating DB2 distributed from DB2 for OS/390, but it is incorrect since DB2 for
OS/390 also became UDB with Version 6.

Mainframe platform is the zSeries with z/OS platform.

Distributed platform is any UNIX or Intel based platform (Windows or Linux).

A few times multiplatform has been used interchangeably with distributed platform (like in the
name of products), while crossplatform has been used to include both the mainframe and the
distributed environments.

z/OS
z/OS

UNIX

z/OS
z/OS

Windows

Mainframe platform

z/OS
z/OS
z/OS

Distributed platform

DB2

DB2 DB2
Chapter 1. Introduction 5

1.1 Contents of this redbook
These are the parts and chapters contained in this book:

� Part 1: Introduction

We briefly discuss the different DB2 data movement functions and utilities in the first part
of this book. We then present an overview of the capabilities and functions of most IBM
tools available for this purpose.

� Part 2: Product functions and utilities

In the second part, we analyze in more detail the functionalities of the DB2 subsystems
and related utilities. We present the advantages and disadvantages of the following
functions:

– Unload with DB2 for z/OS
– Load with DB2 for z/OS
– Export and Import with DB2 distributed
– Load with DB2 Distributed

� Part 3: High Performance Unload

In this part we examine functions and performance of the recent new releases of the two
flavors of the IBM High Performance Unload tool:

– High Performance Unload for z/OS
– High Performance Unload for Multiplatforms

� Part 4: Scenarios

In this part we consider how to become prepared to execute sample scenarios of moving
data within and across the host and distributed platforms:

– Getting ready for moving data
– Moving data to DB2 for z/OS
– Moving data to DB2 Distributed
6 Moving Data Across the DB2 Family

Chapter 2. Overview of data movers

In this chapter we provide an overview and a summary of the functions, utilities, and tools that
can be considered useful when dealing with the task of moving data.

We have associated these data movers to three areas as follows:

� DB2 UDB for z/OS:

– DB2 DSN1COPY utility
– DB2 sample program DSNTIAUL
– DB2 Reorg utility
– DB2 Unload utility
– DB2 Load utility
– DB2 Cross Loader option

� DB2 UDB for UNIX and Windows:

– DB2 Backup and Restore utilities
– DB2 Export utility
– DB2 Import utility
– DB2 Load utility
– DB2 Cross Loader option
– DB2 db2move
– DB2 db2look

� Tools for z/OS and multiplatforms:

– DB2 Administration Tool for z/OS
– DB2 Data Export Facility tool for z/OS
– DB2 High Performance Unload tool for z/OS
– DB2 Data Replication tools for z/OS and Multiplatform
– DB2 Web Query tool for z/OS and Multiplatform
– DB2 High Performance Unload tool for Multiplatforms
– DB2 UDB Warehouse Manager for UNIX and Windows

2

© Copyright IBM Corp. 2003. All rights reserved. 7

2.1 Preliminary considerations
There are some basic concepts to consider and decisions to be made before you start
moving data:

� Verify that you are copying only clean, consistent, and well defined data.

Before copying any DB2 data, you must resolve all situations where data is in an
inconsistent state. On DB2 for z/OS use the DISPLAY DATABASE command to determine
whether any inconsistent state exists, and the RECOVER INDOUBT command or the
RECOVER utility to resolve the inconsistency.

Furthermore, copying or moving the data is not enough. These operations have as a
prerequisite the copying of DB2 object definitions. And when copying from one DB2 for
z/OS subsystem to another, you must consider internal values that appear in the DB2
catalog and the log; for example, the DB2 object identifiers (OBIDs) and log relative byte
addresses (RBAs). If you are copying across different platforms you must verify and
possibly adjust the data definition language statements to best fit with the characteristics
of the platform you are moving to.

� Be careful when copying DB2 data with non-DB2 functions.

Although DB2 for z/OS data sets are created using VSAM access method services, they
are specially formatted for DB2 and cannot be processed by standard VSAM services that
use record processing. They can be processed by VSAM utilities that use control-interval
(CI) processing, and since they are linear data sets (LDSs), also processed by utilities that
recognize the LDS type.

You can use DFSMSdss to copy data between disk devices. In this redbook we do not
cover functional components in DFSMS that merely copy data set like the Data Set
Services (DFSMSdss).

Data Facility Product (DFSMSdfp) is a prerequisite for DB2. You can use access method
services EXPORT and IMPORT commands with DB2 data sets when control interval
processing (CIMODE) is used.

Hierarchical Storage Manager (DFSMShsm) provides support for the MIGRATE,
HMIGRATE, or HRECALL commands. By specifying the data set names, you can move
data sets from one disk device type to another within the same DB2 subsystem.

For more details, see DB2 UDB for OS/390 and z/OS V7 Administration Guide,
SC26-9931-03.

Similar considerations are applicable to DB2 distributed.

� More preliminary considerations are listed in Chapter 9, “Getting ready for moving data”
on page 213.

2.2 DB2 UDB for z/OS
In this section we provide an overview of the functions and utilities available for moving data
with DB2 UDB for z/OS.

2.2.1 DB2 DSN1COPY utility
DSN1COPY is a DB2 for z/OS stand-alone utility that does not need DB2 active to execute. It
provides function for copying table spaces from the DB2 VSAM data sets or from the DB2
image copy data sets.

All tables in the table space will be copied.
8 Moving Data Across the DB2 Family

You can translate database object identifiers (OBIDs) to enable moving data sets between
objects with different object identifiers in the same or between different subsystems and reset
the log RBAs in the target data set.

The following steps should be followed:

1. Start the table space as read-only.

2. Run the QUIESCE utility with the WRITE (YES) option to externalize all data pages and
index pages.

DSN1COPY does not require DB2 authorization. However, usually the data set is protected
by Resource Access Control Facility (RACF); if so, you need sufficient RACF authorization.

For more details, see: DB2 UDB for OS/390 and z/OS V7 Utility Guide and Reference,
SC26-9945-03.

DSN1COPY should only be used when you need to access the data outside DB2 or you need
to do an OBID translation. All other needs can be solved with utilities and tools mentioned in
the following sections.

2.2.2 DB2 sample program DSNTIAUL
DSNTIAUL is a dynamic sample SQL unload program included in the DB2 for z/OS product
as a sample program.

DSNTIAUL unloads some or all rows from up to 100 DB2 tables. With DSNTIAUL, you can
unload data of any DB2 built-in data type or distinct type. DSNTIAUL unloads the rows in a
form that is compatible with the Load utility and generates control statements for the Load
utility.

DSNTIAUL is written in assembler language and is shipped only as source code, so you must
precompile, assemble, link, and bind it before you can use it.

If you choose to specify the SQL parameter, your input must contain one or more complete
SQL statements. Each of them must end with a semi-colon. You can include any SQL select
statement that can be executed dynamically in your input data set.

If you do not specify the SQL parameter, your input data set must contain one or more
single-line statements (without a semi-colon) that use the following syntax:

table or view name [WHERE conditions] [ORDER BY columns]

Each input statement must be a valid SQL SELECT statement with the clause SELECT *
FROM omitted and with no ending semi-colon. DSNTIAUL generates a SELECT statement
by appending SELECT * FROM for each input statement. For this input format, the text for
each table specification can be a maximum of 72 bytes and must not span multiple lines.

DSNTIAUL offers two types of output:

� The result set from the SQL will be written to the output file (SYSRECnn) specified.

� The Load utility control statements for loading rows into a corresponding table will be
written to the output file (SYSPUNCH) specified.

For more details, see DB2 UDB for OS/390 and z/OS V7 Administration Guide,
SC26-9931-03, and DB2 UDB for OS/390 and z/OS Version 7 Application Programming and
SQL Guide, SC26-9933.
Chapter 2. Overview of data movers 9

For years DSNTIAUL has been an obvious choice for unloading data or for generating LOAD
control statements. You have to use the DB2 Load utility for loading the data into an existing
table.

DSNTIAUL cannot unload data from an image copy, only from a table.

The SQL parameter gives you the possibility to include delimiters in the result set through
constants in the select list.

Currently, there are several alternatives to DSNTIAUL, each one with its characteristics
described in more detail in the corresponding sections:

� DB2 Reorg utility with the UNLOAD EXTERNAL option provides faster unloading than the
DSNTIAUL, but it does not have the SQL option and it requires Reorg utility authorization.

� DB2 Unload utility provides faster unloading than the DSNTIAUL, but it does not have the
SQL option. The authorization requires SELECT authorization, like DSNIAUL.

� DB2 High Performance Unload tool provides performance similar to or better than the
Unload utility and SQL flexibility. It offers the DSNTIAUL format option on output. If you
want better performance than with your old DSNTIAUL solutions, you should consider this
tool.

2.2.3 DB2 Reorg utility
With DB2 for z/OS V6 the Reorg utility has been enhanced with an unload capability activated
through the REORG UNLOAD EXTERNAL optional statement.

This option results in a format usable by the Load utility. It also generates utility control
statements for the Load if requested.

With use of the WHEN clause you can also restrict the data being unloaded.

Reorg authorization is needed to run the Reorg utility.

For more details, see DB2 UDB for OS/390 and z/OS V7 Utility Guide and Reference,
SC26-9945-03.

The REORG UNLOAD EXTERNAL is an alternative or a supplement to DSNTIAUL. It can
only unload data from a table, not an image copy. You have to use the DB2 Load utility for
loading the data into an existing table.

DB2 V7 offers a new utility, DB2 Unload, which can be considered a replacement to REORG
UNLOAD EXTERNAL. DB2 Unload provides faster unloading than the Reorg utility and only
the SELECT authorization is needed

2.2.4 DB2 Unload utility
The Unload utility, introduced with DB2 for z/OS V7, can be used to unload DB2 data to
sequential data sets.

Unload can be used to unload data from one or more source objects to one or more
sequential data sets in external formats. The sources can be:

� DB2 table spaces

� DB2 Image Copy data sets, including inline copies taken during Reorg and Load utility.
The table space of which the image copy is being unloaded must exist. Image Copies of
dropped table spaces cannot be used.
10 Moving Data Across the DB2 Family

Major options available with Unload are:

� Unload of data from DB2 tables with SHRLEVEL CHANGE, which ensures availability
� Conversion between formats as EBCDIC, ASCII, UNICODE and CCSID
� Sampling, limiting of rows
� Partition parallelism

The Unload utility requires SELECT authorization on the table or tables in the table space.

For more details, see Chapter 3, “Unload with DB2 for z/OS” on page 33, and DB2 UDB for
OS/390 and z/OS V7 Utility Guide and Reference, SC26-9945-03. DB2 V7 offers new
possibilities. The recently announced DB2 for z/OS Version 8 offers the possibility of
unloading data into a delimited file. See DB2 UDB for z/OS Version 8 What's New?, available
from the Web site:
http://www.ibm.com/software/data/db2/os390/db2zosv8.html

For performance considerations see the Redbooks DB2 for z/OS and OS/390 Version 7 Using
the Utilities Suite, SG24-6289, and DB2 UDB for OS/390 and z/OS Performance Topics,
SG24-6129.

You should consider DB2 High Performance Unload tool as alternative to the DB2 Unload
utility:

� Performance tests shows a slightly better performance than the Unload utility, and
considerable less CPU time in execution. To gain these figures it is an absolute condition
that it does not use the DB2 engine to perform the SQL.

� It provides you with more versatility because you can use the SQL Select statement to
select the rows and columns that you want to be unloaded.

� If you want to unload from an incremental image copy

� It also provides you with more flexibility regarding customizing the output through the
USER DEFINED format.

� The DELIMTED format is compatible with the DEL format on a distributed platform.

2.2.5 DB2 Load utility
The Load utility populates DB2 tables with data from a sequential data set. The data can also
be loaded from a user defined cursor with the new capability, called Cross Loader, which has
been introduced with DB2 for z/OS Version 7. Input to the Load can therefore be a:

� Sequential data set
� Result set from SQL query against a DB2 table or view (see 2.2.6, “DB2 Cross Loader

option” on page 12)

With the Load utility you can:

� Load rows into an empty table
� Add new rows into a table that is not empty
� Empty a table space before loading the table(s)
� Build or extend any index defined on the table
� Convert between encoding schemes as EBCDIC, ASCII, UNICODE, and CCSID
� Filter the input data
� Discard input data that does satisfy defined uniqueness, referential integrity or other

constraints

Other functions worth mentioning:

� Inline COPY of the table being loaded
Chapter 2. Overview of data movers 11

http://www.ibm.com/software/data/db2/os390/db2zosv8.html

� Inline RUNSTATS of the table being loaded
� ONLINE RESUME option to ensure availability

If you do not have the ownership of the table to be loaded, you need Load authorization on
the table. You also need SELECT authorization on the DB2 table or view if you are reading
the result set from. The recently announced DB2 for z/OS Version 8 offers the possibility of
loading data from a delimited file. See DB2 UDB for z/OS Version 8 What's New?, available
from the Web site:
http://www.ibm.com/software/data/db2/os390/db2zosv8.html

For more details, see Chapter 4, “Load with DB2 for z/OS” on page 51 and DB2 UDB for
OS/390 and z/OS V7 Utility Guide and Reference, SC26-9945-03.

In regards to the performance of loading, the Load utility is currently superior to all other
functions and tools.

2.2.6 DB2 Cross Loader option
The Cross Loader is not a new separate utility, but a new statement or option for the Load
utility. It has a corresponding and equivalent function in the new cursor load capability of the
Load utility of the DB2 for Linux, UNIX, and Windows Version 8. This option allows you to
transfer data from one location for loading a DB2 table to another location within a single
utility job.

Cross loading is done using the new DB2 V7 option INCURSOR in the DB2 Load utility. With
this option you tell the Load to read the data from the result set of a cursor instead of reading
it from an input sequential data set.

The data is read from the source location with a dynamic SQL statement (enclosed between
EXEC SQL and ENDEXEC statements) and loaded into a table at the target location by the
Load utility. The source data can be on the local system, on a remote DRDA server. The input
source can also be on any system accessible via a Federated Database (see Appendix A,
“Defining a Federated Database” on page 299.)

EXEC SQL is a new DB2 V7 utility statement that can be placed anywhere in the utility input
stream. It can be used for two purposes:

� Executing a non-select dynamic SQL statement before, between or after the actual utility
statements

� Declaring a cursor with a SQL select statement for use with the Load utility (Cross
Loader). The declare cursor produces a result set.

A typical Cross Loader example therefore consists of the definition of the dynamic SQL
statement via the EXEC SQL DECLARE CURSOR utility statement, followed by a LOAD
utility statement referring to this cursor. This is illustrated in Example 2-1 where we load an
existing summary table called EMPSUMMARY with data coming from the local sample table
DSN8710.EMP. The aggregation is done in the SQL statement of the CURSOR definition.

Example 2-1 Simple cross loading

EXEC SQL
DECLARE C1 CURSOR FOR

Note: EXEC SQL can simplify the JCL coding by eliminating dynamic SQL applications
like DSNTIAD or DSNTEP2 from the JCL stream. It can merge different utility steps,
separated by dynamic SQL applications, into one single utility step.
12 Moving Data Across the DB2 Family

http://www.ibm.com/software/data/db2/os390/db2zosv8.html

SELECT JOB,MAX(SALARY)AS MAX_SAL,MIN(SALARY)AS MIN_SAL
FROM DSN8710.EMP
GROUP BY JOB
ENDEXEC

LOAD DATA REPLACE
INCURSOR C1
INTO TABLE EMPSUMMARY

As you can see, it is a single job process that replaces the typical sequence of jobs of
unloading, file transfer, and loading the data, locally or remotely.

For more details, see Chapter 4, “Load with DB2 for z/OS” on page 51 and DB2 UDB for
OS/390 and z/OS V7 Utility Guide and Reference, SC26-9945-03.

The Cross Loader with its EXEC SQL statement, is a very flexible and handy function of the
Load utility. It combines the flexibility of the SQL statement and the performance of the Load
utility. The source can either be on the mainframe, in a distributed system, or in any system
accessible via a Federated Database.

2.3 DB2 UDB for UNIX and Windows
In this section we look at product functions, commands, and utilities for DB2 for UNIX and
Windows.

2.3.1 DB2 Backup and Restore utilities
The DB2 UDB Backup and Restore utilities allow you to create a backup copy and then
restore a table space or database from that copy within the UNIX, Windows, and Linux
platforms, as well as converting from 32 bits to 64 bits. In more detail:

� BACKUP DATABASE

It creates a backup copy of a database or a table space.

� RESTORE DATABASE

It restores a possibly damaged or corrupted database that had previously been backed up
using the DB2 backup utility. The restored database is in the same state it was in, when
the backup copy was made. You have to consider ROLL FORWARD PENDING situations
where you want to apply some of the log.

This utility can also use the backup to create a new copy of the database. You can give a
new name to the database. This has to be on the same platform where the backup was
taken.

Either SYSADM, SYSCTRL or SYSMAINT authorization is needed when using backup or
restore commands.

With reference to moving data, the DB2 UDB Backup and Restore utilities greatly facilitate the
way to clone a table space or database within the same platform.

For details, see IBM DB2 UDB Command Reference Version 8, SC09-2951-01.
Chapter 2. Overview of data movers 13

2.3.2 DB2 Export utility
The DB2 Export utility is used to extract data from a DB2 database. The exported data can
then be imported or loaded into another DB2 database, using the DB2 Import or the DB2
Load utility.

The Export utility exports data from a database to an operating system file or named pipe,
which can be in one of several external file formats. This file with the extracted data can be
moved to a different server.

The following information is required when exporting data:

� An SQL SELECT statement specifying the data to be exported.
� The path and name of the operating system file that will store the exported data.
� The format (IXF, DEL or WSF) of the data in the input file.

The IXF file format results in an extract file consiting of both metadata and data. The source
table (including its indexes) can be recreated in the target environment if the CREATE mode
of the Import utility is specified. The recreation can only be done if the query supplied to the
Export utility is a simple SELECT *

The following is an IXF example of the export command specifying a message file and the
select statement:

export to stafftab.ixf of ixf messages expstaffmsgs.txt select * from staff

At least SELECT authorization is needed on the tables you export from.

The Export utility can be invoked through:

� The command line processor (CLP)
� The Export notebook in the Control Centre
� An application programming interface (API)

See Chapter 5., “Export and Import with DB2 distributed” on page 79 for restrictions that
apply to the Export utility. For details, see Chapter 1 of IBM DB2 UDB Data Movement Utilities
Guide and Reference, SC09-4830.

The Export utility can be used to unload data to a file or a named pipe from a table residing in
the following:

� Distributed database
� Mainframe database through DB2 Connect (only IXF format)
� Nickname representing a remote source table (see Appendix A, “Defining a Federated

Database” on page 299, for details).

2.3.3 DB2 db2batch
Exporting data in parallel into a partitioned database reduces data transfer execution time,
and distributes the writing of the result set, as well as the generation of the formatted output,
across nodes in a more effective manner than would otherwise be the case. When data is
exported in parallel (by invoking multiple export operations, one for each partition of a table) it

Note: If performance is an issue, the DEL format covers your needs, and all rows are to
be unloaded, then you should consider High Performance Unload tool for Multiplatforms.
See 2.4.6, “DB2 High Performance Unload tool for Multiplatforms” on page 26 for a brief
description. The tool must be executed from the machine where the source table
resides.
14 Moving Data Across the DB2 Family

is extracted, converted on the local nodes, and then written to the local file system. In
contrast, when exporting data serially (exporting through a single invocation of the Export
utility) it is extracted in parallel and then shipped to the client, where a single process
performs conversion and writes the result set to a local file system.

The db2batch command is used to monitor the performance characteristics and execution
duration of SQL statements. This utility also has a parallel export function in partitioned
database environments that:

� Runs queries to define the data to be exported
� On each partition, creates a file containing the exported data that resides on that partition

A query is ran in parallel on each partition to retrieve the data on that partition. In the case of
db2batch -p s, the original SELECT query is run in parallel. In the case of db2batch -p t
and db2batch -p d, a staging table is loaded with the export data, using the specified query,
and a SELECT * query is run on the staging table in parallel on each partition to export the
data. To export only the data that resides on a given partition, db2batch adds the predicate
NODENUMBER(colname) = CURRENT NODE to the WHERE clause of the query that is run
on that partition. The colname parameter must be set to the qualified or the unqualified name
of a table column. The first column name in the original query is used to set this parameter.

It is important to understand that db2batch runs an SQL query and sends the output to the
target file, it does not use the Export utility. The Export utility options are not applicable to
parallel export. You cannot export LOB columns using the db2batch command.

Run db2batch -h from the command window to see a complete description of command
options.

The db2batch command executes a parallel SQL query and sends the output to a specified
file. Note that the command is executing a select statement, not the Export utility. LOB
columns, regardless of data length, cannot be exported using this method.

To export contents of the staff table in parallel:

db2batch -p s -d sample -f staff.batch -r /home/userid/staff.asc -q on

In this example:

� The query is ran in parallel on a single table (-p s option)

� Connection is made to the sample database (-d sample option)

� The control file staff.batch contains the SQL select statement (select * from staff)

� Output is stored to staff.asc file, default output format is positional ASCII (remember that
db2batch is not using the Export utility)

� Only the output of the query will be sent to the file (-q on option)

To export into a delimited ASCII file:

db2batch -p s -d sample -f emp_resume.batch -r /home/userid/emp_resume.del,
/home/mmilek/userid/emp_resume.out -q del

In this example:

� Only non-LOB columns from emp_resume table are selected
(select empno,resume_format from emp_resume)

� emp_resume.del file contains the query output in delimited ASCII format (-q del option),
, is the default column delimiter and | is the default char delimiter

� emp_resume.out contains the query statistics
Chapter 2. Overview of data movers 15

2.3.4 DB2 Import utility
The Import utility inserts data from an input file or a named pipe into a table or updatable view.
The Import utility uses the SQL INSERT statement to write data from an input file into a
specific table or view. If the target table or view already contains data, you can either replace
or append to the existing data.

The following authorization is needed when using the Import utility to:

� Create a new table you must at least have CREATETAB for the database
� Replace data you must have SYSADM, DBADM or CONTROL
� Append data you must have SELECT and INSERT

The Import utility can be invoked through:

� The command line processor (CLP)
� The Import notebook in the Control Center
� An application programming interface (API)

The following information is required when importing data:

� The path and the name of the source file
� The name or alias of the target table or view
� The format of the data (IXF, DEL, ASC or WSF) in the source file
� Mode:

– Insert
– Replace
– Update, if primary key matches are found
– create

Among other options you can also specify:

� Commit frequency
� Number of records to skip from input file before starting to Import

The following is an example of the IMPORT command issued through the CLP window:

import from stafftab.ixf of ixf insert messages impstaffmsgs.txt into userid.staff

See Chapter 5., “Export and Import with DB2 distributed” on page 79 for restrictions that
applies to the Import utility. For more details, see Chapter 2 of IBM DB2 UDB Data Movement
Utilities Guide and Reference, SC09-4830.

The import utility can be used to insert data from a file or a named pipe to a table in a

� Distributed database
� Mainframe database through DB2 Connect (only IXF format)

2.3.5 DB2 Load utility
The Load utility loads data into an existing DB2 table from a file residing on the same server
as the database, or on a remotely connected client. The data can also be loaded from a user

Attention: When creating a table from an IXF file, not all attributes of the original table are
preserved. For example, referential constraints, foreign key definitions, and user-defined
data types are not retained.

Note: For performance, use the Load utility on distributed wherever it is possible,
except for small amounts of data.
16 Moving Data Across the DB2 Family

defined cursor. This capability, a new Load option with DB2 V8, is often referred to as Cross
Loader.

The following information is required when loading data:

� The name of the source file
� The name of the target table
� The format (DEL, ASC, IXF or CURSOR) of the source file
� If the input data is to be appended or to replace the contents of the table

The following is an example of Load from a file. The command specifies a message file, that
tempfiles are to be used, the path, replace option, and the table to be loaded:

load from stafftab.ixf of ixf messages loastaff.msgs
tempfiles path /u/myuser replace into staff

The following authorization is needed when using the Load utility:

� SYSADM, DBADM or Load on the database
� Privileges needed depending on the Load mode:

– insert: INSERT on the table
– replace: INSERT and DELETE on the table

The Load utility can be invoked through:

� The command line processor (CLP)
� The Load notebook in the Control Centre
� An application programming interface (API)

See Chapter 6, “Load with DB2 Distributed” on page 91 for restrictions that apply to the Load
utility. For more details, see Chapter 3 of IBM DB2 UDB Data Movement Utilities Guide and
Reference, SC09-4830.

The Load utility loads data from a file or a named pipe into a table a:

� Local distributed database where the load runs
� Remote distributed database through a locally cataloged version using the CLIENT option

The Load utility is faster than the Import utility, because it writes formatted pages directly into
the database, while the Import utility performs SQL INSERTs.

2.3.6 DB2 Cross Loader option
The Cross Loader is another name for the new cursor load capability in the Load utility in DB2
UDB V8. This option allows you to transfer data from one location for loading it into a DB2
table in the same or other location within a single utility job execution.

By specifying the CURSOR file type when using the Load utility, you can load the results of an
SQL query directly into a target table without creating an intermediate exported file.

Important: The Load utility does not fire triggers, and does not perform referential or table
constraints checking. It does validate the uniqueness of the indexes.

Attention: Data Propagator does not capture changes in data done through the Load
utility.
Chapter 2. Overview of data movers 17

By referencing a nickname within the SQL query, the Load utility can also load data from
another database in a single step. Examples are listed in Appendix A, “Defining a Federated
Database” on page 299.

To execute a load from cursor operation from the CLP, a cursor must first be declared against
an SQL query. Once this is done, you can issue the LOAD command using the declared
cursor’s name as the cursorname and CURSOR as the file type. The following CLP
commands will load all the data from your.TABLE1 into my.TABLE1:

DECLARE mycurs CURSOR FOR SELECT * FROM your.table1
LOAD FROM mycurs OF cursor INSERT INTO my.table1
18 Moving Data Across the DB2 Family

The Cross Loader function can be invoked through:

� The command line processor (CLP)
� An application programming interface (API)
� The Control Center

See Chapter 5., “Export and Import with DB2 distributed” on page 79 for restrictions that
apply to the Import utility. For more details, see Chapter 3 of the IBM DB2 UDB Data
Movement Utilities Guide and Reference, SC09-4830.

The Cross Loader can read data from a table residing in a:

� Distributed database
� Nickname representing a connected source table

The target table has to be in the same database as the source table or the source nickname.

This is a very flexible way of moving data within the distributed platforms.

2.3.7 DB2 db2move
This command facilitates the movement of large numbers of tables between DB2 databases
located on the distributed platforms.

The tool queries the system catalog tables for a particular database and compiles a list of all
user tables. It then exports these tables in IXF format. The IXF files can be imported or loaded
to another local DB2 database on the same system, or can be transferred to another platform
and imported or loaded into a DB2 database on that platform.

This tool calls the DB2 Export, Import, and Load APIs, depending on the action requested by
the user. Therefore, the requesting user ID must have the correct authorization required by
those APIs, or the request will fail.

This tool exports, imports, or loads user-created tables. If a database is to be duplicated from
one operating system to another operating system, db2move facilitates the movement of the
tables. It is also necessary to move all other objects associated with the tables, such as:
aliases, views, triggers, user-defined functions, and so on.

The load action must be run locally on the machine where the database and the data file
reside. A full database backup, or a table space backup, is required to take the table space
out of backup pending state.

For details about the Export, Import and the Load utility, see:

� Chapter 5, “Export and Import with DB2 distributed” on page 79
� Chapter 6, “Load with DB2 Distributed” on page 91

For details about the db2move command; see IBM DB2 Universal Database Command
Reference, SC09-2951-01.

DB2 UDB db2move is a common command and option interface to invoke the three utilities
mentioned above.
Chapter 2. Overview of data movers 19

2.3.8 DB2 db2look
Based on the information in the DB2 system catalog, db2look generates the required DDL
statements to reproduce the database objects of a distributed database. It can also generate
DDL customized for distributed databases for some of the objects (tables, views, and indexes)
in a mainframe database.

db2look can also generate update statement for the catalog statistics and the configuration
parameters for the system.

This tool can also generate the required UPDATE statements to replicate the statistics on the
objects in a test database, as well as statements for the update of the database configuration
and database manager configuration parameters.

We show two simple examples:

� The first one is a command that generates the DDL statements for objects created by user
walid in database DEPARTMENT. The db2look output is sent to file db2look.sql:

db2look -d department -u walid -e -o db2look.sql

� The second one is a command that generates the UPDATE statements for the database
and database manager configuration parameters, as well as the db2set statements for the
registry variables in database DEPARTMENT. The db2look output is sent to file
db2look.sql:

db2look -d department -f -o db2look.sql

To execute these commands you need SELECT authorization on the system catalogs.

The db2look function can be invoked through:

� The command line processor (CLP)
� The Control Center

For details, see Chapter 9, “Getting ready for moving data” on page 213, and IBM DB2
Universal Database Command Reference, SC09-2951-01.

db2look is not a tool for moving data, but we highly recommend it for moving complete or
partial data definitions when this is needed.

2.4 Tools for z/OS and multiplatforms
In this section we provide a brief overview of IBM tools that can be used to move DB2 data.

2.4.1 DB2 Administration Tool for z/OS
IBM DB2 Administration Tool for z/OS (DB2 Admin for short) offers a comprehensive set of
database administration functions that helps in efficiently managing DB2 UDB for z/OS and
OS/390 subsystems. Designed with intuitive, interactive functionality, DB2 Admin relieves the
DBAs from time consuming tasks.

DB2 Admin helps you with:

� Security management

You can display authorizations that have been granted on any type of DB2 object, and
REVOKE these authorizations or GRANT new ones. The tool also provides REVOKE
20 Moving Data Across the DB2 Family

impact analysis to thwart inadvertent data loss when dropping tables. You can display the
list of secondary auth IDs, as well as to change your SQLID.

� Performance management

DB2 Admin has a built-in EXPLAIN function, which allows you to EXPLAIN a query and
provides an interpretation of the PLAN_TABLE output into English sentences. A set of
performance health check catalog queries is also provided.

� System management

DB2 Admin provides in-depth DB2 catalog navigation: objects in the catalog are displayed
and interpreted, and relevant catalog information is presented logically.

DB2 Admin allows you to display and cancel threads; display and alter buffer pools; and
display, start and stop DB2 traces. It also provides a very convenient way to administer
RLF and DDF tables. You can also display the current DSNZPARMs, change parameters,
generate new DSNZPARM modules with changes, and activate those changes in DB2.

DB2 Admin is integrated with DB2 utilities to simplify the creation of DB2 utility jobs. This
includes TEMPLATE and LISTDEF support, even for customers that are not yet on DB2
Version 7, where DB2 Admin emulates these functions.

� Application management

Admin allows you to work with a copy of the actual DB2 catalog to avoid contention on the
real DB2 catalog. You can also access a remote DB2 catalog, via a DDF connection,
enabling centralized management of all your DB2 subsystem through a single DB2 Admin
session.

From DB2 Admin you can execute dynamic SQL statements, or invoke SPUFI.

Its integration with other DB2 tools creates additional functionality with product-specific
line commands for table editing, SQL cost analysis, and path check analysis. Through its
DB2 tools launch pad, DB2 Admin is the central access point for any tool with an ISPF
interface.

You can issue any DB2 command including BIND, REBIND, and FREE selected plans and
packages.

The DB2 Admin ALTER and MIGRATE functions can simplify administration tasks. After using
the ALTER function to specify desired changes, the tool generates the jobs required to
implement these changes. These jobs unload the data, recreate the table, and reload the
data. The tool handles all object dependencies during ALTER and MIGRATE. And, after the
MIGRATE function has defined the target DB2 subsystem, DB2 Admin creates the jobs
needed to copy definitions and data to the target:

� The ALTER function lets you change the name and attributes of a table or column, insert
new columns, and drop existing columns. The ALTER of primary key characteristics can
be propagated to foreign keys.

� The MIGRATE function facilitates the copying of all the objects and data in one or more
databases or table spaces to another DB2 subsystem.

Prompt options can be activated for five types of statements: definition, authorization, and
update SQL, DB2 commands, and DSN commands. These options enable you to edit or
execute the statements, put them in work statements or run them in batch jobs.

Using DB2 Admin to move data
If you are moving DB2 data to another subsystem, you have to make sure that you can
access the DDL files, as well as unload files from the other subsystem, so that you are able to
use them in the new subsystem.
Chapter 2. Overview of data movers 21

You can use the DROP and REVOKE impact analysis, and the disk space estimation
provided by DB2 Admin for the preparation and understanding of the needs for the objects to
be recreated at the target system.

When dealing with the need to move DB2 data, the MIGRATE function of the DB2 Admin tool
facilitates the copying of all the object definitions and data in one or more databases or table
spaces to the same or another DB2 subsystem. Admin’s cloning capability allows one to
extract the DDL (and data) from a source DB2 system, move the definitions to a target
system, and change the DB2 identifiers (such as owner, name, or dbname) tailoring them to
the naming standards of the target system.

For instance, you can use MIG to copy a whole DB2 database. Migrate is done in three steps:

1. Fill in the migrate panels to generate jobs.
2. Run jobs on source system.
3. Run jobs on target system.

For the general use of panels and for migration examples, see DB2 for z/OS DM Tools for
Database Administration and Change Management, SG24-6420-00.

When using the MIGrate command, you can use the ADD command to add new database, or
tables from another database, to be migrated at the same time. You can change the database
name, as well as the owner and storage group for indexes and table spaces. You can choose
whether you want to migrate only the DDL, the data, or both.

If you are dealing with several databases and several objects, make sure to have PTF
UQ72062 for APAR PQ68028 applied. It provides enhancements to MIGRATE by allowing the
creation of work statement lists, the cloning of these statements, and the masking of names.

MIGRATE generates jobs to perform the requested tasks. It can drop the existing target
database at your request, as image copies and run check data and runstats. When the target
database is in the same subsystem as the source database, you can submit the jobs locally.

For more details on using MIGRATE locally or remotely, see DB2 Administration Tool for z/OS
User's Guide, SC27-1601-02.

We have used this tool for the task of generating DDL, see Chapter 9, “Getting ready for
moving data” on page 213.

2.4.2 DB2 Data Export Facility tool for z/OS
Data Export Facility tool captures a subset of your DB2 production data on z/OS to be moved
to your development and test environments.

DB2 Data Export Facility provides an interface for extracting data based either on referential
structures defined in DB2 or on a simple table.

When operating on referential structures you can start anywhere in a referential set and
navigate anywhere throughout the set. The tool allows easy selection of the desired scope of
data among the referential set. This can be a table, a table and all its dependencies, or only
certain dependencies.The result will be referentially intact sets of data.

When operating on one single table, the tool can:

� Select only certain columns and rows
� Reorder columns according to the target table
� Select only partial set of rows
� Transform data values
22 Moving Data Across the DB2 Family

� Masking sensitive data

When you tell DEF that you want to export data it will build a file with SQL in it to extract the
data. The extracted data is placed in a file (or files). The data is written to these files in a
format that could be used as input to the DB2 Load utility. It also optionally builds the LOAD
control card for each table in the RI set. It generates a job to do all of this.

For details, see DB2 Data Export Facility for z/OS User’s Guide, SC27-1466-00.

2.4.3 DB2 High Performance Unload tool for z/OS
IBM DB2 High Performance Unload (HPU) works primarily outside DB2 when unloading DB2
tables from either a table space or an image copy.

The basic part of HPU is an UNLOAD command and an optional SELECT statement,
compatible with the syntax of the DB2 SELECT statement.

Partitioned table spaces can be unloaded in parallel by partition to multiple output files.

HPU can:

� Do multiple unloads of the same table space or image copy
� Help you to manage and control the unload activity
� Work outside DB2 and access the:

– VSAM files that contain the table space
– Sequential files that contains the image copy data set

HPU can use the following sources for input data:

� Partitioned and non partitioned table spaces
� Full or incremental image copies

HPU scans a table space and creates the output file in the format you specify. The output
format can be:

� DSNTIAUL compatible
� VARIABLE, variable length records
� DELIMITED, a delimited file
� USER, choice free conversion of the output

Example of unloading all rows from table myTable:

UNLOAD TABLESPACE mydb.myTS
SELECT * FROM me.myTable
OUTDDN (DDNTBL02)
FORMAT DSNTIAUL

HPU can do the following:

� Parallel execution of several unloads accessing the same table space
� Unload selected rows and columns
� Unload every n rows and a maximum number of rows
� Generate Load control statements for subsequent reload
� Using the HPU user exit, you can inspect, modify, or discard DB2 rows
� Translate between EBCDIC, ASCII, UNICODE, and CCSID.

Note: DB2 Data Export Facility does not create the DDL for the target subsystem. You
must use another product such as DB2 Automation tool to prepare the target environment
to receive the data exported by DB2 Data Export Facility.
Chapter 2. Overview of data movers 23

You can code as many SELECT statements as necessary for tables belonging to the same
table space. Different output files can be created during the same unload process.

HPU can also be used either in batch or interactive mode via panels from the DB2
Administration tool.

The following authorization is needed:

� At least SELECT on the actual table
� RACF read on actual image copy data set

For details, see Chapter 7, “IBM DB2 High Performance Unload for z/OS” on page 119, and
IBM DB2 High Performance Unload for z/OS Version 2, Release 1 User’s Guide,
SC27-1602-00.

DB2 High Performance Unload tool is a valid alternative to the DB2 Unload utility:

� Performance tests shows a slightly better performance than the Unload utility and a
considerable less CPU time in execution. To gain this performance advantage it is
necessary to use the native HPU, that is it should be executed without using the standard
SQL via the DB2 engine.

� HPU provides you with more versatility than Unload because you can use the SQL select
statement to select the rows and columns that you want to be unloaded.

� HPU can unload from an incremental image copy.

� HPU also provides you with more flexibility regarding customizing the output through the
USER DEFINED format.

� The DELIMTED format of HPU is compatible with the DEL format on distributed platform

For recent technical information on HPU, and also comparisons with Unload, specify High
Performance Unload in the search field at the Web site:

http://www.ibm.com/support/search

2.4.4 DB2 Data Replication tools for z/OS and Multiplatform
The IBM Replication tools are a set of DB2 Data Propagator programs and DB2 UDB
Replication tools that copy data between DB2 databases.

The tool replicates changes in data across the enterprise motivated by the need of:

� Distributing data to other systems or locations
� Consolidating data from other systems or locations
� Auditing changes to sensitive data

It can be used in the following situations:

� Between DB2s on distributed platforms
� Between DBs on hosts that support DRDA connectivity
� Between DB2s on distributed platforms and DBs on host supporting Distributed Relational

Database Architecture (DRDA) connectivity

Note: The translation from EBCDIC to ASCII and from ASCII to EBCDIC is supported via
the translation values provided in SYSIBM.SYSSTRINGS table.

Note: Data can also be replicated from non-IBM relational database management systems
by use of a Federated Database.
24 Moving Data Across the DB2 Family

http://www.ibm.com/support/search

Replication allows users and applications access to production data without putting extra load
on the production database. The replication tools allow you to customize the copy table
structure. You can include the execution of SQL statements in the copying to the target
database to customize the data being copied.

Data Propagator has a set of control tables with information about which source tables to
capture changes from; information about subscribers on changes; and where to deliver the
changes is also needed. Status about capturing and delivering is continuously updated.

The pre-replicating process consists of the following:

� Change the option DATA CAPTURE to YES with a ALTER DDL on the relevant source
table

� Populate the control tables and create tables where to store the changes.

The Replication Center can be used to do this. The Replication Center is a graphical interface
that runs on Windows and UNIX systems and it must have connectivity to both the source and
the target servers.

The replicating process consists of the following sequence of events:

1. DB2 writes complete log records for all updates, inserts and deletes to the log

2. Capture program continuously:

– Reads the logs for relevant log records for tables registered

– Inserts before and after images of the changed data in a clone of the source table
(CD-table) and extends them with log information (RBA and timestamp)

– Updates the Capture control tables

3. Apply program activated by event or on demand:

– Reads the changes in the CD-table
– Inserts committed changes in a target table (CCD-table)
– Updates the Apply control tables

4. Pruning program:

– Deletes from the CD-table changes that have already been delivered through the apply
program

– Updates relevant control tables

5. The changed data is available for the subscriber in the target table.

For details, see IBM DB2 Replication Guide and Reference, SC26-9920-00, and the recent
redbook A Practical Guide to DB2 UDB Data Replication V8, SG24-6828.

If you need to move data on a regular basis, Data Propagator is a very efficient tool whenever
you are updating the target with only the changes to the source. This reduces processing and
transmission. Data Propagator administers the process and the schedules of the job runs.
Compared to other function and tools, Data Propagator is not suitable for a one time only data
movement. It is a tool that helps you keeping your databases in sync continuously or making
captured changes available. To facilitate this, a substantial preparation and customizing effort
is necessary.
Chapter 2. Overview of data movers 25

2.4.5 DB2 Web Query tool for z/OS and Multiplatform
DB2 Web Query tool is a Data Management tool that allows you to create and run SQL
queries against your DB2 databases, through a Web browser.

DB2 Web Query tool uses Java technology to provide server platform independence, and it is
running in a Java servlet application server environment.

DB2 Web Query tool allows you to run SQL queries against DB2 databases and view the
results, or export them for use in other applications, such as:

� Create and run SQL queries
� Save queries and results for later use
� View query results through your web browser
� E-mail query results
� Export query results to a new or existing table
� Export query results to the following formats:

– XML
– HTML
– CSV (comma separated value)
– text files
– Microsoft Excel

� Connect to Informix Version 9.3 databases

For details, see IBM DB2 Web Query Tool User’s Guide, SC27-0971-05, and the recent
redbook DB2 Web Query Tool Version 1.2, SG24-6832.

2.4.6 DB2 High Performance Unload tool for Multiplatforms
IBM High Performance Unload for Multiplatforms is a tool that works outside DB2 and unloads
data. It normally runs while the DB2 database manager is running and accesses the same
physical files as the DB2 database manager, but it can also unload data from a backup copy.

HPU can use the following sources for input data:

� DB2 partitioned and non partitioned table spaces
� DB2 full backup of an SMS table space

With HPU, you can:

� Unload data to flat files, tape devices or named pipes in DEL format
� Unload summary tables and ALIAS tables
� Use SELECT syntax to specify the columns and rows to unload
� Use of SELECT eliminates the need for special applications to convert data
� Limit the output by using the MAXROWS, SKIP and INTERVAL keywords
� Provides parallel processing

You can unload table data to multiple targets.

You can unload larger volumes of data than the operating system file system limit through
unloading into several smaller output files.

HPU creates messages that contain detailed summaries of unload operations, including
unload process statistics, results, and error descriptions.

Note: The DB2 Web Query tool is product that can access DB2 data on z/OS, distributed
platforms, and iSeries.
26 Moving Data Across the DB2 Family

The following example shows how to invoke the HPU; in this case we use HPU to unload data
from table mytable to file myoutputfile:

db2hpu -d mybase -t mytable -o myoutputfile

The following examples show how to invoke HPU with the use of a control file containing the
unload instructions for two situations:

db2hpu -f sampleN.cntl

� The sample1.ctl control file unloads a table:

GLOBAL CONNECT TO SAMPLE;
UNLOAD TABLESPACE SAMPLE.USERSPACE1
SELECT *FROM Administrator.EMPLOYEE;
OUTPUT("c:\gasample \sample01.out");

� The sample2.ctl control file unloads a table space from a backup:

GLOBAL CONNECT TO SAMPLE;
UNLOAD TABLESPACE USERSPACE1
backup "C:\TEMP \SAMPLE.0 \DB2 \NODE0000 \CATN0000 \20020715 \133912.001"
OUTPUT ("c:\gasample \sample2.out"REPLACE)FORMAT DEL;

For details, see Chapter 8, “IBM DB2 High Performance Unload for Multiplatforms” on
page 193, and IBM DB2 High Performance Unload for Multiplatforms User’s Guide,
SC27-1623-01.

When HPU does not access the data via the DB2 engine, it is significantly faster than the DB2
EXPORT utility.

However, the use of the DB2 Export utility is recommended in the following cases:

� When you are doing selections on rows (WHERE conditions.)

� When you need to run a SELECT statement that HPU does not support, which includes
SELECT statements that contain joins of multiple DB2 tables, recursive queries, or views.

� When the SELECT statement you are running could use an index (HPU does not use all
indexes to access data in the table that you want to unload.)

� When you need to unload a table in a single-partition environment that is not physically
located on the machine where HPU is running.

2.4.7 DB2 UDB Warehouse Manager for UNIX and Windows
The Data Warehouse Center (DWC) can be used to move data from operational databases to
a warehouse database.

You can use the DWC to define the structure of the operational databases, called sources.
You can then specify how the operational data is to be moved and transformed for the
warehouse. You can model the structure of the tables in the warehouse database, called
targets, or build the tables automatically as part of the process of defining the data movement
operations. The DWC uses the following DB2 functions to move data:

� SQL to select data from sources and insert the data into targets.
� DB2 utilities to export data from a source and then use DB2 Load the target
� Replication to copy large quantities of data from

See the Data Warehouse Center Administration Guide, SC26-9993-01, and also DB2
Warehouse Management: High Availability and Problem Determination Guide, SG24-6544.
We have not used this tool during this project.
Chapter 2. Overview of data movers 27

2.5 Data movers summary
Table 2-1 lists all the products presented in this chapter and summarizes their scope of
applicability.

Table 2-1 Overview of data movers

Platform M = mainframe / D = distributed / MD = both

Paragraph Refers to the sub-chapters in chapter 3

Enc. Sch. E = EBCDIC / A=ASCII / U=UNICODE / C=CCSID / S=ASIS

Format A = ASC (positional) / D=DEL (delimited) / I=PC/IXF / V=VARIABLE /
U=USER / T=DSNTIAUL

SQL stmt Tells if you can use SQL select to express what to be unloaded

Backup Tells if you can unload from a image copy or a backup

FUNCTION
Plat-
form

Para-
grap

h

“Unload” “Load” Enc.
sch.

For-
mat

SQL-
stmts

Back-
up

Detail

z/OS Distr. z/OS Distr.

DSN1COPY M 2.2.1 X X

DSNTIAUL M 2.2.2 X X

Reorg utility M 2.2.3 X

Unload utility M 2.2.4 X E,A,U X 3

Load utility M 2.2.5 X E,A,U 4

Cross Loader M 2.2.6 X X X E,A,U X 4.2

Administration tool M 2.4.1 X

Data Export facility M 2.4.2 X X

HPU M 2.4.3 X E,A,U
,S,C

D,V,U
,T

X X 7

Replication tools MD 2.4.4 X X X X X

Web Query tool MD 2.4.5 X X X

BACKUP &
RESTORE

D 2.3.1 X X X

Export utility D 2.3.2 X X D,I X 5.1
5.2

IMPORT UTILITY D 2.3.4 X X A,D,I 5.3
5.4

LOAD UTILITY D 2.3.5 X A,D,I 6

CROSS LOADER D 2.3.6 X X X X 6.3.4

HPU D 2.4.3 X A,S,C D X X 8

db2move command D 2.3.7 X X I

db2look command D 2.3.8

Warehouse
Manager

D 2.4.7 X X X X
28 Moving Data Across the DB2 Family

Detail Refers to chapter or sub-chapter where the function is discussed in
more details than Chapter 3
Chapter 2. Overview of data movers 29

30 Moving Data Across the DB2 Family

Part 2 Product functions
and utilities

In this part we introduce the main functions offered by the members of the DB2 Family in the
area of data movement.

This part is structured in the following chapters:

� Unload with DB2 for z/OS
� Load with DB2 for z/OS
� Export and Import with DB2 distributed
� Load with DB2 Distributed

Load and Unload utilities for DB2 for z/OS and OS/390 Version 7 are made available through
the DB2 Version 7 Utilities Suite.

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 31

32 Moving Data Across the DB2 Family

Chapter 3. Unload with DB2 for z/OS

In this chapter, we discuss the Unload utility made available with the DB2 for z/OS Utilities
Suite Version 7.

We show you:

� A brief overview of the Unload utility
� The advantages it has over its predecessors
� Syntax and rules in using the Unload
� The possible options when using Unload
� Some examples on using the Unload utility

3

© Copyright IBM Corp. 2003. All rights reserved. 33

3.1 Overview of the Unload utility
The Unload utility is an alternative and a replacement offered with DB2 for z/OS V7 to the
REORG UNLOAD EXTERNAL function. With Unload, you can unload rows from an entire
table space or select specific partitions or tables to unload. You can also select columns by
using the field specification list. If a table space is partitioned, you can unload all of the
selected partitions into a single data set, or you can unload each partition in parallel into
physically distinct data sets.

Unload can be used to unload data from one or more source objects to one or more BSAM
sequential data sets in external formats. The source can be DB2 table spaces, DB2 Image
Copy data sets.

When comparing to previous methods, the Unload utility provides:

� Enhanced functionality
� Better performance
� Improved concurrency
� Higher availability
� Low cost of operation

The online functions of Unload allow the unload of data from DB2 tables with SHRLEVEL
CHANGE, which enhances the continuous availability of DB2 subsystems.

The Unload utility requires SELECT authority on the table or tables in the table space. This is
similar to the DSNTIAUL unload programs, but differs from REORG UNLOAD EXTERNAL,
which requires REORG utility authority.

The DISCARD option of REORG UNLOAD EXTERNAL, which can be used to discard data
with the WHEN clause, is not supported in the Unload utility.

With the current versions of DB2, you cannot load a delimited input file into DB2. A delimited
file is a sequential file that contains row and column delimiters often used to move data
across the distributed platforms. With the recently announced DB2 for z/OS Version 8, you
will be able to use the Load utility to load into DB2 a delimited input file from another relational
database. Even more important, you will not need to write a program that converts the data
into the correct format, or use INSERT processing and give up the performance advantages
of the Load utility. See the following Web site for more information on DB2 for z/OS Version 8:

http://www.ibm.com/software/data/db2/os390/db2zosv8.html

3.1.1 Extra functionality of the Unload utility
Figure 3-1 summarizes all the functions of the Unload utility. On the left of the diagram you
see listed the REORG UNLOAD EXTERNAL functions which Unload includes as a subset. In
addition to the options provided by REORG UNLOAD EXTERNAL, the UNLOAD statement
provides:

� Unload from image copy data sets created by Copy utility, both full and incremental
� Unload from inline COPY data sets created by Reorg and Load utility
� Unload from data sets created by stand-alone DSN1COPY utility
� Encoding scheme, ASCII and UNICODE
� SHRLEVEL REFERENCE and SHRLEVEL CHANGE
� Sampling, limiting of rows
� Partition parallelism
34 Moving Data Across the DB2 Family

http://www.ibm.com/software/data/db2/os390/db2zosv8.html

Figure 3-1 Enhanced functions

3.1.2 Privilege and authority required
To execute the Unload utility, the user needs any one of the following:

� Ownership of the tables
� SELECT privilege on the tables
� DBADM authority on the databases
� SYSADM authority
� SYSCNTL authority for catalog tables only

3.1.3 Phases of the Unload utility
There are three phases of the Unload operation.

� UTILINIT

In this phase the Unload utility is initialized and set-up.

� UNLOAD

In this phase, records are read from the DB2 table. Unloading records to sequential data
sets. If UNLOAD is processing a table or partition, DB2 takes internal commits to provide
commit points at which to restart in case of operation should halt in this phase

� UTILTERM

In this phase, clean-up of temporary files is made

Figure 3-2 shows a diagram of the phases of the Unload operation.

table
space

FROM TABLE selection
Row selection
External format

numeric
date / time

Formatting
NOPAD for VARCHAR
length, null field

created by:
COPY
MERGECOPY
DSN1COPY

UNLOAD

single
data set

copy
data set

data set
for part2

data set
for part1

SHRLEVEL REFERENCE / CHANGE
Sampling, limitation of rows
General conversion options:

encoding scheme, format
Field list:

selecting, ordering, positioning, formatting

Partition parallelism
Chapter 3. Unload with DB2 for z/OS 35

Figure 3-2 The execution phase of the Unload utility

3.2 Input and output data sets
The Unload utility can accept in input directly the table space, or the output of the different
flavors of a Copy utility execution on the table space. It produces in output two data sets: one
for the data, with the option of several formats, and one for the data definition. In this section
we describe Unload input and output data sets.

3.2.1 Output data sets from Unload
Unload outputs two data sets, which can be used for reload with the Load utility:

� The SYSREC data set is associated with the UNLDDN option of UNLOAD. The data set
contains the output data from the Unload utility, which is input to a subsequent Load utility
for loading data into another table space. This data set can be defined in the JCL, and the
DDNAME is provided on the UNLDDN option. A TEMPLATE command can also be used
to define the data set characteristics and the template name is input in UNLDDN. The data
set is dynamically created by the Unload utility with the TEMPLATE option. The
TEMPLATE command is required when unloading multiple table spaces, either with
multiple UNLOAD statements, or by using the LISTDEF command to supply a list of table
spaces to a single UNLOAD utility statement.

� The SYSPUNCH data set is associated to the PUNCHDDN option of UNLOAD. The data
set is used by the Unload utility to store the table definition (see Example 3-2 on page 39),
which is used by the Load utility to load data into another table. When the punch data set
is required, its allocation is similar to SYSREC either via DDNAME in the JCL or via
TEMPLATE.

Execution phases of the Unload utility

Initialization
and set-up

Unloading records to
sequential data sets.
 If UNLOAD is processing
a table or partition, DB2
takes internal commits to
provide commit points at
 which to restart in case of
operation should halt in
this phase

Clean-up

DB2 table

Sequential
dataset

UTILTERM

UNLOAD

UTILINIT The records in the DB2 table
will be read in one pass.

Sequential dataset
is written as output
36 Moving Data Across the DB2 Family

In this chapter we discuss each function in detail and show examples of JCL and job outputs.

3.2.2 Input of Unload from image copy
The Unload utility can be used to unload from data sets that are created by the following
utilities:

� COPY
� LOAD inline image copy
� MERGECOPY
� REORG TABLESPACE inline image copy
� DSN1COPY

Image copy created by concurrent copy is not supported by Unload. Unloading data from
image copy is not supported by REORG UNLOAD EXTERNAL utility and the DSNTIAUL
program.

The syntax for the Unload utility from image copy is shown in Figure 3-3. Here are some
additional considerations when using the FROMCOPY option:

� Only a single copy data set name can be specified using the FROMCOPY option. Use
FROMCOPYDDN if multiple image copies are concatenated to a DD statement.

� The table space must exist when Unload is run.

� The table space should not have been dropped and recreated since the image copy was
taken (unless the OBID has been kept identical).

� If the table was altered with ALTER ADD COLUMN after the image copy was taken,
Unload will set system or user defined defaults for the added column when the data is
unloaded from such an image copy.

� Image copy created by Inline COPY operation (LOAD or REORG TABLESPACE) can
contain duplicate pages. If duplicate pages exist, the Unload utility issues a warning
message, and all the qualified rows in the duplicate pages will be unloaded into the output
data set.

� If incremental copy is specified as the source, only the rows in the data set are unloaded.

FROMCOPYDDN can be used in place of FROMCOPY when multiple copies need to be
specified to Unload. The copies may consist of:

� Full image copy and incremental copies. Consider using the MERGECOPY utility to
merge the image copies to a single copy and input to Unload.

� Image copy created with the DSNUM option, which can be a copy of a partition or a piece
of a non-partitioned table space. These pieces can be concatenated under a DDNAME to
form a single input data set image.

� The order of data sets in DDNAME concatenation is important. Unload might output
unpredictable results if the most recent image copy data sets and older image copies are
intermixed.

Note: The table space of the image copy must exist in the host DB2 subsystem for
unloading from copy data sets. Copies of dropped table spaces are not supported.

Note: TEMPLATE can be used for the SYSPUNCH and SYSREC data set definitions
identified as PUNCHDDN and UNLDDN options in the UNLOAD syntax respectively.
LISTDEF cannot be used to pass a list to the LIST option to specify image copy data
sets.
Chapter 3. Unload with DB2 for z/OS 37

3.3 Unload syntax and examples
The Unload statement allows a multitude of options, Figure 3-3 shows just the main part of
the syntax diagram. For a list of each parameter you can refer to Appendix D, “DB2 UDB for
z/OS Unload options” on page 323, or for more details see DB2 UDB for OS/390 and z/OS
Version 7 Utility Guide and Reference, SC26-9945-03.

Figure 3-3 UNLOAD — Syntax diagram, main part

3.3.1 Examples of using the Unload utility
The examples shown in this section illustrate the new function of the Unload utility.

Unload from an image copy
This an example of an Unload from an image copy of CUSTOMER data. The image copy data
set was created by the COPY utility with SHRLEVEL CHANGE. The job produces two data
sets associated to SYSPUNCH and SYSREC respectively. The FROMCOPY points to an
image copy data set. See Example 3-1.

Example 3-1 Unload from an image copy data set

//STEP1 EXEC DSNUPROC,SYSTEM=DB2G,UID=UNLOAD
//SYSIN DD *
 TEMPLATE ULDDDN
 DSN(DB2V710G.&DB..&TS..UNLOAD)
 UNIT(SYSDA) SPACE(45,45) CYL DISP(NEW,CATLG,CATLG)
 VOLUMES(SBOX57,SBOX60)
 TEMPLATE PNHDDN
 DSN(DB2V710G.&DB..&TS..PUNCH)

 ERROR 1 SHRLEVEL CHANGE ISOLATION CS
format-spec
 ERROR integer ISOLATION CS
 SHRLEVEL CHANGE
 ISOLATION UR
 REFERENCE

source-spec:

unload-spec:

UNLOAD DATA from-table-spec unload-spec
 from-table-spec
 source-spec
 from-table-spec
 LIST listdef-name

TABLESPACE db-name.ts-name
 ts-name PART integer
 int1:int2

 FROMCOPY data-set-name
 FROMVOLUME CATALOG
 vol-ser
 FROMCOPYDDN dd-name

 PUNCHDDN SYSPUNCH UNLDDN SYSREC

 PUNCHDDN dd-name UNLDDN dd-name
 template-name template-name

UNLOAD - Syntax diagram
38 Moving Data Across the DB2 Family

 UNIT(SYSDA) SPACE(45,45) CYL DISP(NEW,CATLG,CATLG)
 VOLUMES(SBOX57,SBOX60)
 UNLOAD TABLESPACE U7G01T11.TSCUST
 FROMCOPY DB2V710G.U7G01T11.TSCUST.D2001145.T022853L
 PUNCHDDN PNHDDN UNLDDN ULDDDN

The contents of the data set associated with PUNCHDDN (SYSPUNCH) is displayed in
Example 3-2. If the space allocation is not specified in the TEMPLATE statement (refer back
to Example 3-1), then DB2 calculates the space requirements using the formulas:

SYSPUNCH = ((#tables * 10) + (#cols * 2)) * 80 bytes
SYSREC = ((high used RBA) + (#records * (12 + length of longest clustering key)) bytes

Example 3-2 Contents of SYSPUNCH data set

TEMPLATE U4851714
 DSN(DB2V710G.&DB..&TS..UNLOAD1)
 DISP(OLD,CATLG,CATLG)
LOAD DATA INDDN U4851714 LOG NO RESUME YES
 EBCDIC CCSID(01140,00000,00000)
 INTO TABLE "PAOLOR1 "."CUSTOMER "
 WHEN(00001:00002 = X'0011')
 ("C_CUSTKEY " POSITION(00003:00006) INTEGER
 , "C_NAME " POSITION(00007:00033) VARCHAR
 , "C_ADDRESS " POSITION(00034:00075) VARCHAR
 , "C_NATIONKEY " POSITION(00076:00079) INTEGER
 , "C_PHONE " POSITION(00080:00094) CHAR(015)
 , "C_ACCTBAL " POSITION(00095:00098) FLOAT(21)
 , "C_MKTSEGMENT " POSITION(00099:00108) CHAR(010)
 , "C_COMMENT " POSITION(00109:00227) VARCHAR
)

UNLOAD using FROMCOPY and FROM TABLE
The FROMCOPY option unloads all tables belonging to a table space. In cases where a table
space contains more than one table, and the requirement is to unload only a single table, then
the FROM TABLE can be used to unload only the selected table. Example 3-3 shows the
syntax for unloading from image copy for only a single table. The example also highlights the
options to unload only three columns out of the eight columns defined on the table
(Example 3-2) with the WHEN clause, which can be used to reduce the number of rows to
unload.

A further filter on the volume of unloaded data can be achieved with the SAMPLE option.
SAMPLE indicates the percentage of data to be unloaded. If the WHEN clause is used to
unload selective rows, then SAMPLE is applied only on rows qualified by the WHEN selection
condition.

Example 3-3 Unload using FROMCOPY and FROM TABLE options

//STEP1 EXEC DSNUPROC,SYSTEM=DB2G,UID=UNLOAD
//SYSIN DD *
 TEMPLATE ULDDDN
 DSN(DB2V710G.&DB..&TS..UNLOAD)
 UNIT(SYSDA) SPACE(45,45) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)

Note: The sampling is applied per individual table. If the rows from multiple tables are
unloaded with sampling enabled, the referential integrity between the tables might be lost
Chapter 3. Unload with DB2 for z/OS 39

 TEMPLATE PNHDDN
 DSN(DB2V710G.&DB..&TS..PUNCH)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 UNLOAD TABLESPACE U7G01T11.TSCUST
 FROMCOPY DB2V710G.U7G01T11.TSCUST.D2001145.T022853L
 PUNCHDDN PNHDDN UNLDDN ULDDDN
 FROM TABLE PAOLOR1.CUSTOMER SAMPLE 50.0
 (C_CUSTKEY,C_NAME,C_ADDRESS)
 WHEN (C_CUSTKEY > 1000)

Image copy from compressed table space
Compressed rows from image copy data set can be unloaded only when the dictionary for
decompression has been retrieved. Unload ignores a compressed row with a warning
message if the dictionary pages have not been read when the compressed row is
encountered. An error counter is incremented, and Unload terminates with an error message
if the error count exceeds MAXERR.

If the image copy is an incremental copy, or a copy of a partition or partitions, then the
compression dictionary pages must exist in the same data set, otherwise Unload will fail and
DB2 will issue an error message.

Advantages of Unload using image copy
Figure 3-4 summarizes the advantages of unloading from image copies:

� Unloading from image copy does not interfere with the host table space and table. No
locks are taken on table space and index spaces, thus avoiding lock contentions. The only
reference is to the DB2 catalog for table definitions.

� The status of the table space does not affect the Unload utility when unloaded from an
image copy. The table space may be in STOP status or other restrict status.

� Either all columns of a table or a subset of columns of table can be unloaded using the
FROM TABLE option. Data selection can be further qualified by the WHEN option and the
the SAMPLE option.
40 Moving Data Across the DB2 Family

Figure 3-4 Summary of Unloading from copy data sets

Unload data from table space
In this section we discuss the Unload utility to unload data directly from a table space with
SHRLEVEL CHANGE and SHRLEVEL REFERENCE. The SHRLEVEL option improves
concurrency when compared to REORG UNLOAD EXTERNAL. Figure 3-5 summarizes all
the functions of Unload from tables space. We explain each function in detail with examples.

Unloading from copy data sets

Advantages:
No interference with SQL accesses
Unload data when table space is stopped
Selection of rows and columns as for table spaces -
rather than processing entire copies with DSN1COPY

Supported copy types:
Copies created by COPY, MERGECOPY, DSN1COPY
Concatenated copy data sets
Full and incremental copies
Inline copies from LOAD or REORG

Prerequisite:
Table space must exist

Not supported:
Separate output data sets per partition
Concurrent copies
Copies of dropped tables
Copy data sets of multiple table spaces
Unload of LOB columns
Chapter 3. Unload with DB2 for z/OS 41

Figure 3-5 Unload from table space

Unloading from a list of table spaces
Unloading a list of table spaces and the related tables can be done using the LISTDEF
command as in Example 3-4. Here we are unloading all tables in table spaces beginning with
TS* in database U7G01T11. The LISTDEF will expand the wildcard U7G01T11.TS* to the
appropriate table space names and group them under the label UNLIST. This list is then
passed to Unload utility as UNLOAD LIST list-name. All the SYSPUNCH and SYSREC data
sets are dynamically allocated using the TEMPLATE command. At the end of the Unload
utility, two data sets of the form DB2V710G.RAMA.TS*.PUNCH and
DB2V710G.RAMA.TS*.UNLOAD are created for each table space that is processed by the
Unload utility. A sample content of the SYSPUNCH data set is displayed in Example 3-2 on
page 39.

When unloading multiple table spaces with a LISTDEF, you must also define a data set
TEMPLATE that corresponds to all the table spaces and specify the template-name in the
UNLDDN option.

Restrictions
Index spaces, LOB table spaces and directory objects must not be included in the LISTDEF
definition. The FROM TABLE-spec of Unload is not supported with the LIST option.

Note: Unloading from a list of table spaces is fully supported by REORG UNLOAD
EXTERNAL.

Unloading from table spaces
A list of table spaces

LISTDEF

An entire table space

Specific partitions
PART keyword or
LISTDEF

Certain tables only
FROM TABLE option

Certain rows only
WHEN clause
SAMPLE, LIMIT

Certain columns only

Not supported:
FROM TABLE option for lists
Following source objects:

Auxiliary (LOB) table spaces
Table spaces in DSNDB01
Index spaces
Dropped tables
Views
Global temporary tables

Granularity

SHRLEVEL
CHANGE

ISOLATION CS (default)
ISOLATION UR

REFERENCE
42 Moving Data Across the DB2 Family

Example 3-4 Unload list of table spaces with LISTDEF

//STEP1 EXEC DSNUPROC,SYSTEM=DB2G,UID=UNLOAD,
// UTSTATS=''
//SYSIN DD *
 TEMPLATE ULDDDN
 DSN(DB2V710G.RAMA.&TS..UNLOAD)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 TEMPLATE PNHDDN
 DSN(DB2V710G.RAMA.&TS..PUNCH)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 LISTDEF UNLIST
 INCLUDE TABLESPACE U7G01T11.TS*
 UNLOAD LIST UNLIST
 PUNCHDDN PNHDDN UNLDDN ULDDDN

Unload by partition and parallelism
Data can be unloaded by partition by specifying the PART option in the UNLOAD statement.
When using the LISTDEF command, specify PARTLEVEL. An output data set must be
allocated for each partition for the UNLOAD to use parallel tasks to unload the data by
partition. The number of parallel tasks is limited by the number of CPUs in the LPAR and the
number of partitions.

UNLOAD does not activate parallel unloads if only a single output data set is allocated to
each table space even though the PART or PARTLEVEL option is coded in the UNLOAD
utility statement or LISTDEF command respectively. TEMPLATE can be used to dynamically
allocate an output data set per partition by using the &PA key word.

Example 3-5 Sample Unload job for partition table space and parallelism

TEMPLATE ULDDDN
 DSN(DB2V710G.RAMA.&TS..P&PA..UNLOAD)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 TEMPLATE PNHDDN
 DSN(DB2V710G.RAMA.&TS..PUNCH)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 LISTDEF UNLIST
 INCLUDE TABLESPACE U7G01T11.TS* PARTLEVEL
 UNLOAD LIST UNLIST
 PUNCHDDN PNHDDN UNLDDN ULDDDN

In Example 3-5 we unloaded a list of table spaces using the LISTDEF wildcard specification
and PARTLEVEL. We also allocated the output data sets using TEMPLATE with &PA in the
DSN definitions. It can be seen in the output of Example 3-6 that DB2 has used two parallel
tasks to unload the data by partition. UNLOAD has also created three data sets via
TEMPLATE definitions as output data sets, one for each partition. If the &PA key word was not
allocated to the DSN of TEMPLATE ULDDDN, then DB2 would have allocated only a single
output data set, and the unload of data from partitions would be done in sequence.

Example 3-6 Sample Unload output by partition and parallelism

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = UNLOAD
DSNU050I DSNUGUTC - TEMPLATE ULDDDN DSN(DB2V710G.RAMA.&TS..P&PA..UNLOAD) UNIT(SYSDA)
CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 DSNU1035I DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
Chapter 3. Unload with DB2 for z/OS 43

DSNU050I DSNUGUTC - TEMPLATE PNHDDN DSN(DB2V710G.RAMA.&TS..PUNCH) UNIT(SYSDA) CYL
DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 DSNU1035I DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I DSNUGUTC - LISTDEF UNLIST INCLUDE TABLESPACE U7G01T11.TS* PARTLEVEL
DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU050I DSNUGUTC - UNLOAD LIST UNLIST PUNCHDDN PNHDDN UNLDDN ULDDDN
DSNU1039I DSNUGULM - PROCESSING LIST ITEM: TABLESPACE U7G01T11.TSPSUPP1 PARTITION 1
DSNU1039I DSNUGULM - PROCESSING LIST ITEM: TABLESPACE U7G01T11.TSPSUPP1 PARTITION 2
DSNU1039I DSNUGULM - PROCESSING LIST ITEM: TABLESPACE U7G01T11.TSPSUPP1 PARTITION 3
DSNU1201I DSNUUNLD - PARTITIONS WILL BE UNLOADED IN PARALLEL, NUMBER OF TASKS = 2
DSNU397I DSNUUNLD - NUMBER OF TASKS CONSTRAINED BY CPUS
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=PNHDDN
 DDNAME=SYS00003
 DSN=DB2V710G.RAMA.TSPSUPP1.PUNCH
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=ULDDDN
 DDNAME=SYS00004
 DSN=DB2V710G.RAMA.TSPSUPP1.P00001.UNLOAD
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=ULDDDN
 DDNAME=SYS00005
 DSN=DB2V710G.RAMA.TSPSUPP1.P00002.UNLOAD
DSNU251I DSNUULQB - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=108000 FOR
TABLESPACE U7G01T11.TSPSUPP1
PART 1
DSNU1038I DSNUGDYN - DATASET ALLOCATED. TEMPLATE=ULDDDN
 DDNAME=SYS00006
 DSN=DB2V710G.RAMA.TSPSUPP1.P00003.UNLOAD
DSNU251I DSNUULQB - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=108000 FOR
TABLESPACE U7G01T11.TSPSUPP1
 PART 2
 DSNU251I DSNUULQB - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=446421 FOR
TABLESPACE U7G01T11.TSPSUPP1
 PART 3
 DSNU253I DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=662421 FOR
TABLE PAOLOR4.PARTSUPP1
 DSNU252I DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=662421 FOR
TABLESPACE U7G01T11.TSPSUPP1
 DSNU250I DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:18

UNLOAD with SHRLEVEL
One of the interesting features of Unload utility is the ability to unload data from table spaces
with SHRLEVEL CHANGE or REFERENCE. This feature is not available with REORG
UNLOAD EXTERNAL. Users require SELECT authority on the tables in the table space.

SHRLEVEL CHANGE
SHRLEVEL CHANGE allows users to update the tables in the table space while data is being
unloaded. When data is fetched from the table space with ISOLATION CS, the Unload utility
assumes CURRENTDATA(NO). This ensures that uncommitted data is not unloaded and
retains data currency. Data can also be unloaded with ISOLATION UR, where any
uncommitted data will be unloaded. No locks are taken on the objects; this allows other DB2
operations to continue on the objects from which the data is being unloaded.

SHRLEVEL REFERENCE
This operation allows users to read the data during the unload. All writers are drained from
the table space before commencement of the unload. When data is unloaded from multiple
partitions, the drain lock will be obtained for all of the selected partitions in the UTILINIT
phase.
44 Moving Data Across the DB2 Family

Unload from table space using the FROM TABLE option
When data is unloaded from a single table space or partitioned table space, the FROM
TABLE can be used to selectively unload data for a particular table from the table space. This
is particularly useful when a table space contains multiple tables and the user is interested in
one or more tables only. In Example 3-7 we unload three of the fourteen tables defined in
SYSDBASE table space. Only a single set of SYSPUNCH and SYSREC data sets are
created by the UNLOAD. The first two bytes of each record in the output data set identifies the
OBID of the table. The Load utility uses the WHEN option to identify the output data related to
each table. Please refer back to Example 3-2 on page 39 for sample contents of the
SYSPUNCH data set and the WHEN option of the Load utility.

Using the WHEN option
The WHEN option can be used in association with FROM TABLE to unload data from the
table that satisfies the selection-condition that follows the WHEN option. The
selection-condition specifies a condition that is true, false, or unknown about a given row.
When the condition is true, the row qualifies for Unload. When the condition is false or
unknown, the row does not qualify. The WHEN condition can be used to unload both
FROMCOPY of an image copy and from a table space. For a complete description of the
selection condition, please refer to DB2 UDB for OS/390 and z/OS V7 Utility Guide and
Reference, SC26-9945-00.

In Example 3-7 we also show the usage of the WHEN option with selection criteria.
Each WHEN option applies to the FROM TABLE option only. Here we unload rows from
SYSTABLEPART, SYSTABLES and SYSTABLESPACE where the WHEN option explicitly
qualifies the data selection criteria for each table respectively.

Using the SAMPLE option
The SAMPLE option may be used to unload a sample percentage of rows from the table
specified by FROM TABLE option. When SAMPLE is used in association with WHEN option,
the sampling is applied to rows that qualify the selection criteria of the WHEN option. The
user may specify explicitly a sample value for each table; the default is 100%.

Using the LIMIT option

The LIMIT option can be used to limit the total number of records unloaded from a table. If the
number of unloaded rows reaches the specified limit, message DSNU1202 is issued for the
table, and no more rows are unloaded from the table. The process continues to unload
qualified rows from the other tables.

When partition parallelism is activated, the LIMIT option is applied to each partition instead of
the entire table.

In Example 3-7 we show an example of using SAMPLE and LIMIT options.

Example 3-7 Unload selective tables from SYSDBASE using FROM TABLE

//STEP1 EXEC DSNUPROC,SYSTEM=DB2G,UID=UNLOAD,
// UTSTATS=''
//SYSIN DD *

Note: If the rows from multiple tables are unloaded with sampling enabled, the referential
integrity between the tables may be lost.

Note: If multiple tables are unloaded from with the LIMIT option, the referential integrity
between the tables may be lost.
Chapter 3. Unload with DB2 for z/OS 45

 TEMPLATE PNHDDN
 DSN(DB2V710G.RAMA.&TS..PUNCH)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 TEMPLATE ULDDDN
 DSN(DB2V710G.RAMA.&TS..UNLOAD)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 UNLOAD TABLESPACE DSNDB06.SYSDBASE
 PUNCHDDN PNHDDN UNLDDN ULDDDN
 SHRLEVEL CHANGE ISOLATION CS
 FROM TABLE SYSIBM.SYSTABLEPART SAMPLE 50.0
 (PARTITION,
 TSNAME,
 DBNAME,
 IXNAME VARCHAR 10 STRIP BOTH TRUNCATE) WHEN
 (PARTITION=0)
 FROM TABLE SYSIBM.SYSTABLES LIMIT 100 WHEN
 (CREATOR='SYSIBM')
 FROM TABLE SYSIBM.SYSTABLESPACE WHEN
 (DBNAME='U7G01T11')

The job outputs two data sets that contain the SYSPUNCH and SYSREC information.
DB2V710G.RAMA.SYSDBASE.PUNCH
DB2V710G.RAMA.SYSDBASE.UNLOAD

Unload table with field selection list
Data can be unload from a table by specifying only selective fields. The default is to select all
fields in the table. In Example 3-7 we select only four fields from SYSTABLEPART and all
fields from SYSTABLES and SYSTABLESPACE.

Apply column functions to output field
Column functions such as STRIP, TRUNCATE, packed, ZONED and others can be applied to
the output value of data fields. In Example 3-7 on page 45, we applied the STRIP function to
remove all leading and trailing blanks from the VARCHAR field. We also specified the output
length of the VARCHAR field as 10 bytes, which will ensure that the output data set is a fixed
length.

If the length parameter is omitted, the default is the smaller of 255 and the maximum length
defined on the source table column.

For a complete list and description of column functions on data types, please refer to Chapter
29 of DB2 UDB for OS/390 and z/OS V7 Utility Guide and Reference, SC26-9945-00.

Converting the character output data to other internal code
When a table space or table is created with default character set, the SCCSID value from
DSNHDECP is used as the default character representation. Example 3-8 has sample
CREATE statements to create database, table space, and table with CCSID EBCDIC as the
default character set. Since SCCSID in DSNHDECP (macro DSNHDECM) is 37, the table
DEPT will be created with the US English character set.

Tables can also be created with the European English character set of 1140 (Euro support) by
changing the CCSID EBCDIC to CCSID 1140.
46 Moving Data Across the DB2 Family

Example 3-8 Sample database, table space, table, and subset of DSNHDECP

CREATE DATABASE DSN8D71A
 STOGROUP DSN8G710
 BUFFERPOOL BP0
 CCSID EBCDIC;
CREATE TABLESPACE DSN8S71E
 IN DSN8D71A
 USING STOGROUP DSN8G710
 PRIQTY 20
 SECQTY 20
 ERASE NO
 NUMPARTS 4
 (PART 1 USING STOGROUP DSN8G710
 PRIQTY 12
 SECQTY 12,
 PART 3 USING STOGROUP DSN8G710
 PRIQTY 12
 SECQTY 12)
 LOCKSIZE PAGE LOCKMAX SYSTEM
 BUFFERPOOL BP0
 CLOSE NO
 COMPRESS YES
 CCSID EBCDIC;
CREATE TABLE DSN8710.DEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16) ,
 PRIMARY KEY(DEPTNO))
 IN DSN8D71A.DSN8S71D
 CCSID EBCDIC;
COMMIT;

DSNHDECP sample definition
DSNHDECM CHARSET=ALPHANUM, X
 ASCCSID=1252, X
 AMCCSID=65534, X
 AGCCSID=65534, X
 SCCSID=37, X
 MCCSID=65534, X
 GCCSID=65534, X
 USCCSID=367, X
 UMCCSID=1208, X
 UGCCSID=1200, X
 ENSCHEME=EBCDIC, X
 APPENSCH=EBCDIC, X

All character type data can be converted from the host internal code, predominantly from
EBCDIC to other data types, such as ASCII and UNICODE on the S/390 DB2 databases. The
UNLOAD statement in Example 3-9 converts all the character fields on table REGION into
ASCII.

Example 3-9 Unload with character conversion to ASCII

//STEP1 EXEC DSNUPROC,SYSTEM=DB2G,UID=UNLOAD,
// UTSTATS=''
//SYSIN DD *
 TEMPLATE PNHDDN
Chapter 3. Unload with DB2 for z/OS 47

 DSN(DB2V710G.RAMA.&TS..PUNCH)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 TEMPLATE ULDDDN
 DSN(DB2V710G.RAMA.&TS..UNLOAD)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 UNLOAD TABLESPACE U7G01T11.TSREGION
 PUNCHDDN PNHDDN UNLDDN ULDDDN ASCII NOPAD

The alternate way to convert to ASCII is to use the CCSID option in the UNLOAD, as follows:

UNLOAD TABLESPACE U7G01T11.TSREGION PUNCHDDN PNHDDN UNLDDN ULDDDN
CCSID(01252,00000,00000)

In Example 3-10, table PART in table space TSPART was created with CCSID 1140, Euro
English code page. The table space TSPART was unloaded and CCSID was converted to
UNICODE. Unload converted all character data from CCSID 1140 to 367.

Example 3-10 Unload with character conversion to UNICODE

//STEP1 EXEC DSNUPROC,SYSTEM=DB2G,UID=UNLOAD,
// UTSTATS=''
//SYSIN DD *
 TEMPLATE PNHDDN
 DSN(DB2V710G.RAMA.&TS..PUNCH)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 TEMPLATE ULDDDN
 DSN(DB2V710G.RAMA.&TS..UNLOAD)
 UNIT(SYSDA) CYL DISP(NEW,CATLG,DELETE)
 VOLUMES(SBOX57,SBOX60)
 UNLOAD TABLESPACE U7G01T11.TSPART
 PUNCHDDN PNHDDN UNLDDN ULDDDN UNICODE

Restrictions
� Unload is not supported for table spaces in DSNDB01.

� The FROM TABLE option cannot be used when the LIST option is already specified.

� The following table spaces and image copy source objects are not supported:

– Auxiliary (LOB) table spaces
– Index spaces
– Dropped tables
– Views
– Global temporary tables

3.3.2 Terminating or restarting Unload
In this section we discuss terminating or restarting the Unload utility.

Note: Unload utilizes OS/390 services for CCSID conversion from 1140 to 367. There is no direct
translation from 1140 to 367. Please refer to DB2 for z/OS and OS/390 Version 7 Using the Utilities
Suite, SG24-6289 for examples of generating the translation table and installation of OS/390
UNICODE support.
48 Moving Data Across the DB2 Family

Terminating Unload
The Unload utility can be terminated with TERM UTILITY command during the Unload phase.
The output records in SYSREC are not erased, but the data set remains incomplete until the
data set is deleted or the Unload utility is restarted.

Restarting Unload
When restarting a terminated Unload utility, the following occurs:

� Processing starts with the table spaces or partitions that had not yet been completed.

� For a table space or partitions that were being processed at termination, Unload resets the
output data sets and processes those table spaces or partitions again.

� When the source is one or more image copy data sets (FROMCOPY or
FROMCOPYDDN), Unload always starts processing from the beginning.

Note: Verify that the PTF for APAR PQ50223 is applied to avoid a problem generated
when a partitioned table space with PARTLEVEL in LISTDEF is unloaded with the
Unload utility and loaded with the Load utility.
Chapter 3. Unload with DB2 for z/OS 49

50 Moving Data Across the DB2 Family

Chapter 4. Load with DB2 for z/OS

In this chapter, we mainly discuss the new Cross Loader function, but only after giving a
general description of the Load utility, of which Cross Loader is an option, as introduction.

These are the topics contained in this chapter:

� General description of the Load utility
� Sample JCL for the Load utility
� Some tips on using the Load utility
� General description of the Cross Loader function:

– The INCURSOR option
– EXEC SQL
– Error behavior
– Thread behavior

� Using the Cross Loader
� Cross Loader examples

4

© Copyright IBM Corp. 2003. All rights reserved. 51

4.1 The Load utility for DB2 for z/OS
In this section, we use the DB2 for z/OS Version 7 Load utility. This Load utility can load data
into one or more DB2 tables. You can add data into an existing table or replace all existing
data with new ones.

The authority needed to use the Load is any of the following:

� Ownership of the table
� Load privilege for the database
� DBADM or DBCTRL authority for the database
� SYSCTRL or SYSADM authority

Load will produce these outputs after its run:

� A loaded table space or partition

� A file containing rejected records

� A summary report of errors encountered during processing. This is generated only if you
specify ENFORCE CONSTRAINTS or if the LOAD involves unique indexes.

With the current versions of DB2, you cannot Unload DB2 data into a delimited input file. A
delimited file is a sequential file that contains row and column delimiters often used to move
data across the distributed platforms. With the recently announced DB2 for z/OS Version 8,
you will be able to use the Unload utility to unload DB2 data to one or more delimited output
files. You can then load the data into another DB2 database in a z/OS environment or a
distributed platform, or import the data into an application in another relational database. See
the following Web site for more information on DB2 for z/OS Version 8:
http://www.ibm.com/software/data/db2/os390/db2zosv8.html

4.1.1 Input data for Load
There is some preparation you should do on your input data before performing the Load:

� Sort your data before doing the Load. Data will be loaded with the same sequence as it is
found in the input file.

� Inspect the input and ensure that there are no duplicate keys for unique index.

� Correct check constraint violations and referential constraint violations in the input data
set.

� When loading into a segmented table space, sort your data by table to ensure that the
data is loaded in the best physical organization.

Table 4-1 summarizes the data sets used by the Load utility.

Table 4-1 Data sets used by Load

Data set Description Required

SYSIN Input data set containing the
utility control statement.

Yes

SYSPRINT Output data set for messages Yes

Input data set (INDD) The input data set containing
the data to be loaded. It must be
a sequential data set readable
by BSAM.

Yes
52 Moving Data Across the DB2 Family

http://www.ibm.com/software/data/db2/os390/db2zosv8.html

For more information please refer to Chapter 2 of the DB2 UDB for OS/390 and z/OS V7
Utility Guide and Reference, SC26-9945-03.

4.1.2 Sample Load JCL
These are some sample JCL that you can use to perform load operations. For more
information on the options of the Load utility, please refer to DB2 UDB for OS/390 and z/OS
V7 Utility Guide and Reference, SC26-9945-03.

Sort data sets
(SYSUT1)
(SORTOUT)

These are temporary work data
sets needed for the sort input
and sort output. Their DD name
is specified by the WORKDD
option. The default DD name for
the input is:
SYSUT1 for the input and
SORTOUT for the output.

Yes (required if referential
constraints exist and
ENFORCE (CONSTRAINTS) is
specified
or
if the table has indexes.)

Mapping data set Work data set for mapping the
identifier of a table row back to
the input record that caused an
error. The default DD name is
SYSMAP.

Yes (required if referential
constraints exist and
ENFORCE (CONSTRAINTS) is
specified
or
when you request discard
processing in loading tables
with unique index.)

UTPRINT Contains messages from
DFSORT (usually, SYSOUT or
DUMMY.)

No (required if SORT is done)

Discard data set A work data set to hold copies
of records not loaded. It must
be a sequential data set that is
readable by BSAM. Its DD or
template name is specified with
the DISCARDDN option of the
utility control statement. If you
omit this, Load creates the data
set with the same record
format, record length, and block
size as the input data set. The
default DD name is SYSDISC.

Yes (required if requested
through the Discard options of
the utility control statement.)

Error data set Work data set for error
processing. Its DD name is
specified with the ERRDDN
parameter of the utility control
statement. The default DD or
template name is SYSERR.

Yes

Copy data sets 1 to 4 output data sets to
contain image copy data sets.
Their DD or template names
are specified with the
COPYDDN and
RECOVERYDDN options of the
utility control statement.

No

Data set Description Required
Chapter 4. Load with DB2 for z/OS 53

Example 1
Example 4-1 shows the JCL for loading a table with the RESUME YES. This job will place the
table in the CHECK-pending status. The referential constraint will be enforced because this is
the default unless you specify the ENFORCE NO option. See Example 4-1.

Example 4-1 Load JCL with RESUME YES

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',
// UTPROC='',
// SYSTEM='V72'
//SYSREC DD DSN=PAOLOR7.LOAD.DATA,DISP=SHR,VOL=SER=DB2G7,
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSIN DD *
LOAD DATA INDDN(SYSREC) RESUME YES
INTO TABLE PAOLOR7.DEPT

(DEPTNO POSITION(1) INTEGER EXTERNAL(4),
MGRNME POSITION(6) CHAR(7),
DEPTDESC POSITION(14) VARCHAR)

//*

Example 2
Example 4-2 specifies dynamic allocation of the required data sets by DFSORT, using the
SORTDEVT and SORTNUM keywords. If sufficient virtual storage resources are available,
one utility subtask pair will be started to build each index. This example does not require
UTPRINnn DD statements, because it uses DSNUPROC to invoke utility processing, which
includes a DD statement that allocates UTPRINT to SYSOUT. See Example 4-2.

Example 4-2 DFSORT dynamic allocation

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',UTPROC='',SYSTEM='DB2G7'
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT, DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSERR DD DSN=PAOLOR7.LOAD.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSMAP DD DSN=PAOLOR7.LOAD.SYSMAP,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSREC DSN=PAOLOR7.TEMP.DATA,DISP=SHR,UNIT=SYSDA
//SYSIN DD *

LOAD DATA REPLACE INDDN SYSREC CONTINUEIF(79:80)='++'
SORTKEYS 66000 SORTDEVT SYSDA SORTNUM 3
INTO TABLE PAOLOR7.DEPT

//*

Example 3
Example 4-3 shows how to load selected columns into a non-empty table space. The input
sequential data file is in SYSREC DD.
54 Moving Data Across the DB2 Family

Example 4-3 RESUME with selected columns

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',
// UTPROC='',
// SYSTEM='V72'
//SYSREC DD DSN=PAOLOR7.LOAD.DATA,DISP=SHR,VOL=SER=DB2G7,
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSIN DD *

LOAD DATA
RESUME YES
INTO TABLE PAOLOR7.DEPT WHEN (1:3)='LKA'
(DEPTNO POSITION (7:9) CHAR,
DEPTNAME POSITION (10:35) CHAR,
MGRNM POSITION (36:41) CHAR,
ADMRDEPT POSITION (42:44) CHAR)

//*

For each source record that has LKA in its first three positions:

� The characters in positions 7 through 9 are loaded into the DEPTNO column.
� The characters in positions 10 through 35 are loaded into the DEPTNAME VARCHAR

column.
� The characters in positions 36 through 41 are loaded into the MGRNO column.
� Characters in positions 42 through 44 are loaded into the ADMRDEPT column.

Example 4
Example 4-4 shows how to load data into table PAOLOR7.DEPT from the data set specified
by the DEPTDS DD statement.

Example 4-4 Loading from a data set

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',
// UTPROC='',
// SYSTEM='DB2G7'
//DEPTDS DD DSN=PAOLOR7.LOAD.DATA,DISP=SHR,VOL=SER=DB2G7,
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSIN DD *

LOAD DATA INDDN DEPTDS
INTO TABLE PAOLOR7.DEPT

//*

Example 5
Example 4-5 shows how to load data into two tables. Load data from the data set specified by
the DEPTDS DD statement into the PAOLOR7.DEPT and SANCHEZ.TESTDEPT tables.
Chapter 4. Load with DB2 for z/OS 55

Example 4-5 Loading into two tables

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',
// UTPROC='',
// SYSTEM='V72'
//DEPTDS DD DSN=PAOLOR7.LOAD.DATA,DISP=SHR,VOL=SER=DB2G7,
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSIN DD *

LOAD DATA INDDN DEPTDS
INTO TABLE PAOLOR7.DEPT
INTO TABLE SANCHEZ.TESTDEPT

//*

Example 6
Example 4-6 shows how to load ASCII input data. Use the ASCII option to load ASCII input
data into a table named DEPT that was created with the CCSID ASCII clause.

Example 4-6 Loading ASCII input data

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',
// UTPROC='',
// SYSTEM='V72'
//DEPTDS DD DSN=PAOLOR7.LOAD.DATA,DISP=SHR,VOL=SER=DB2G7,
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSIN DD *

LOAD REPLACE LOG NO ASCII INTO TABLE DEPT
 (EMPNAME POSITION(1) CHAR(40),
 ADDRESS POSITON(41) CHAR(40),

SALARAY POSITION(81) DECIMAL EXTERNAL(9),
 DEPARTMENT POSITION(90) CHAR(3),
 TITLE POSITION(93) GRAPHIC(20))

/*

The CCSID keyword is not specified in this example; therefore, the CCSIDs of the ASCII input
data are assumed to be the ASCII CCSIDs specified at installation. Conversions are done
only if the CCSIDs of the target table differ from the ASCII CCSIDs specified at installation.

Example 7
Example 4-7 shows how to load selected records into a table. Load data from the data set
specified by the DEPTDS DD statement into the TESTDEPT table. Load only from source
input records that begin with LKA.
56 Moving Data Across the DB2 Family

Example 4-7 Loading selected input records

//JOBCARD JOB ...
//STEP1 EXEC DSNUPROC,UID='PAOLOR7.LOAD',
// UTPROC='',
// SYSTEM='V72'
//DEPTDS DD DSN=PAOLOR7.LOAD.DATA,DISP=SHR,VOL=SER=DB2G7,
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSUT1 DD DSN=PAOLOR7.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SORTOUT DD DSN=PAOLOR7.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(3500,(10,10),,,ROUND)
//SYSIN DD *
LOAD DATA INDDN DEPTDS
INTO TABLE SANCHEZ.TESTDEPT
WHEN (1:3)='LKA'
//

4.1.3 Some tips on using the Load
The Load utility from the DB2 Version 7 has a lot of new functions. Major new usability
features include the use of TEMPLATE and EXEC SQL. Major new functionality features
include the Cross Loader and Online LOAD RESUME. Major performance improvements can
be achieved by using Partition Parallelism, Inline COPY, Inline RUNSTATS and Parallel Index
Build (PIB) by means of the SORTKEYS option.

Here are some recommendations:

� Always sort the input data in clustering sequence before loading. Do this with an ORDER
BY clause when using the Cross Loader.

� Use templates whenever possible to allocate the Load work data sets dynamically.

� Use EXEC SQL to execute dynamic SQL statements before, between, or after utility
statements; and to simplify the JCL of the utility jobs. Bear in mind that the use of EXEC
SQL is not limited to the Load utility, but can be used with any utility.

� Use the Cross Loader to load data from any DRDA source, eliminating unloading and file
transfers.

� Use Online LOAD RESUME to load data if concurrent access from applications is needed.

� Use LOAD REPLACE with LOG NO and Inline COPY and inline statistics.

� Use LOAD RESUME NO with inline statistics.

� Use PIB by specifying SORTKEYS n to have your indexes built in parallel; n being an
estimation of the number of keys to be sorted.

� Use multiple input data sets to load partitions in parallel, reducing elapsed load times and
NPI contention.
Chapter 4. Load with DB2 for z/OS 57

4.2 Cross Loader option
The Cross Loader is a new capability in DB2 V7 that allows you to transfer data from one
location to another location within a single utility job. Refer to Figure 4-1.

Figure 4-1 DB2 Family Cross Loader

The data is read from the source location with a dynamic SQL statement and loaded in a
table at the target location by the Load utility. It is a single job process that replaces the typical
sequence of jobs of unloading, file transfer, and loading the data. The source data can be on
the local system or on a remote DRDA server.

A typical Cross Loader example consists of the definition of the dynamic SQL statement via
the EXEC SQL DECLARE CURSOR utility statement, followed by a Load utility statement
referring to this cursor. This is illustrated in Example 4-8. In this example we load an existing
PAOLOR2.DEPT table with data from the local sample PAOLOR7.DEPT.

Example 4-8 Introductory Cross Loader example

EXEC SQL
DECLARE C1 CURSOR FOR
 SELECT *
 FROM PAOLOR7.DEPT
ENDEXEC

LOAD DATA
INCURSOR C1

Note: The source can be on any system accessible via a Federated Database, however
this book will focus only on the DB2 Family.

DB2 Family Cross Loader

SELECTLOADLOAD
LOCAL DB2,LOCAL DB2,

DRDA, orDRDA, or
Federated Federated

DataData
DataData

ConversionConversion

DB2 forDB2 for
OS/390OS/390
and z/OSand z/OS

DB2 familyDB2 family
OracleOracle
SybaseSybase
InformixInformix
IMSIMS
VSAMVSAM
SQL ServerSQL Server
NCR TeradataNCR Teradata
58 Moving Data Across the DB2 Family

INTO TABLE
PAOLOR2.DEPT

EXEC SQL is a new DB2 V7 utility statement explained in more detail in 4.2.2, “EXEC SQL
utility control statement” on page 59.

INCURSOR is a new DB2 V7 LOAD option explained in more detail in 4.2.1, “INCURSOR
Load option” on page 59.

The Cross Loader is being made available to all members of the DB2 Family. Once
implemented it allows the source data to reside on any remote system that can act as a
DRDA server.

The following aspects is discussed about the Cross Loader:

� “INCURSOR Load option” on page 59
� “EXEC SQL utility control statement” on page 59
� “Using the Cross Loader” on page 65

4.2.1 INCURSOR Load option
Instead of INDDN ddname you can specify the INCURSOR cursor-name for the input data to
the Load utility:

� Use the EXEC SQL to define the cursor for the Cross Loader function.
� The cursor must be declared before it is used by the Load utility.
� The column names in the SELECT statement must be identical to the column names in

the table being loaded.
� You cannot load into the same table where you defined the cursor.
� You can use the same cursor to load multiple tables.
� The INCURSOR option is incompatible with the SHRLEVEL CHANGE Load option.

To match the column names in the table being loaded, you can use the AS clause in the
select list to change the columns names returned by the SELECT statement.

4.2.2 EXEC SQL utility control statement
DB2 V7 gives you the ability to execute dynamic SQL statements within the utility input
stream. This is done via the new EXEC SQL utility control statement.

The purpose of using SQL statements in a utility input stream
EXEC SQL can be placed anywhere in the utility input stream. It can be used for two
purposes:

� Executing a non-select dynamic SQL statement before, between or after the actual utility
statements

� Declaring a cursor with a SQL select statement for use with the Load utility (Cross
Loader). The declare cursor must be declared before the LOAD statement and it produces
a result set to be loaded.

Important: The Cross Loader was introduced in DB2 V7 after GA with PTF UQ55541 for
APAR PQ45268 and PTF UQ55542 for APAR PQ46759. Therefore, you should check if
these PTFs, and all their prerequisites, are applied to your DB2 system before trying to use
the Cross Loader.
Chapter 4. Load with DB2 for z/OS 59

The EXEC SQL statement requires no extra privileges other than the ones required by the
SQL statements itself.

Executing a non-select dynamic SQL statement
Executing a non-select dynamic SQL statement is done by putting it between the EXEC SQL
and ENDEXEC keywords in the utility input stream:

EXEC SQL non-select dynamic SQL statement ENDEXEC

You can only put one SQL statement between the EXEC SQL and ENDEXEC keywords. The
SQL statement can be any dynamic SQL statement that can be used as input for the
EXECUTE IMMEDIATE statement:

� CREATE, ALTER, DROP a DB2 object
� RENAME a DB2 table
� COMMENT ON, LABEL ON a DB2 table, view, or column
� GRANT, REVOKE a DB2 authority
� DELETE, INSERT, UPDATE SQL operation
� LOCK TABLE operation
� EXPLAIN a SQL statement
� SET CURRENT register
� COMMIT, ROLLBACK operation

(see “Thread behavior and commit scope of the EXEC SQL utility statement” on page 62)

In Example 4-9 we create a new table in the default database DSNDB04 with the same layout
as PAOLOR7.DEPT.

Example 4-9 Creating a new table using LIKE

EXEC SQL
 CREATE TABLE PAOLOR2.DEPT LIKE PAOLOR7.DEPT
ENDEXEC

In Example 4-10 we give this table a comment and allow everybody read access. Note the
two separate steps.

Example 4-10 Comment and grant in two separate EXEC SQL steps

EXEC SQL
 COMMENT ON TABLE PAOLOR2.DEPT IS 'Copy of Paolor7 DEPT'
ENDEXEC
EXEC SQL
 GRANT SELECT ON PAOLOR2.SYSTABLES TO PUBLIC
ENDEXEC

In the same way, we are able to create indexes on this table, create views on it, and so on. All
this is done in the utility input stream.

Declaring a cursor for use with the Cross Loader
The cursor definition has to be put between the EXEC SQL and ENDEXEC keywords in the
utility input stream:

EXEC SQL DECLARE cursor-name CURSOR FOR select statement ENDEXEC

In Example 4-11 we declare a cursor for extracting rows with ADMRDEPT = ‘A00’ from
PAOLOR7.DEPT.

Example 4-11 Declare a cursor for the Cross Loader

EXEC SQL
 DECLARE C1 CURSOR FOR
60 Moving Data Across the DB2 Family

 SELECT * FROM PAOLOR7.DEPT
 WHERE ADMRDEPT = 'A00'
 ORDER BY 1 ASC
ENDEXEC

In Example 4-12 we show how this cursor can now be used in a LOAD statement (Cross
Loader.)

Example 4-12 Usage of a cursor in the LOAD statement

LOAD DATA
INCURSOR C1
INTO TABLE PAOLOR2.DEPT

The SQL statement in the declare cursor definition can be any valid SQL statement including
joins, unions, data conversions, aggregations, special registers, and UDFs. The source data
can be on a local server or remote server using DRDA access. See 4.2.3, “Using the Cross
Loader” on page 65 for more details.

Error behavior and restartability of the EXEC SQL utility statement
The EXEC SQL utility statements are executed in a new utility phase called the EXEC phase.

The SQL statement placed after the EXEC SQL keyword is parsed and checked for errors
during its execution. It is not checked during the UTILINIT phase of the utility. If an invalid SQL
statement is found during the execution of the EXEC SQL, the utility job immediately ends
with return code 8. If the SQL statement is valid, but fails during execution (with a negative
SQL code), the utility also immediately ends with return code 8 as well. So be aware that if
you have syntax errors in an EXEC SQL statement and the utility job gets started, the
previous EXEC SQL statements and utility statements are already executed before the utility
ends. You might have to remove these from the input stream before rerunning the job.

Normally, a utility that encounters an SQL error during the EXEC SQL statement execution
always ends with return code 8 and never abends with ABEND04E. So the utility is not in a
stopped state; the utility is not restartable with the RESTART option and a TERMINATE
UTILITY command is NOT necessary. But be aware that all previous EXEC SQL and utility
statements are executed successfully and might have to be removed first before rerunning the
job.

Currently, it is impossible to influence the behavior of the utility job after a failing EXEC SQL
statement. The OPTION to allow to discard the failing EXEC SQL, and to continue the utility
step when the EXEC SQL failed, is currently not available in DB2 V7.

If the utility input stream contains both EXEC SQL statements and other utility statements,
and a utility statement failed so that DB2 put the utility in the stopped state, the utility step is
restartable with the RESTART keyword. During restart, all the non-select dynamic SQL
statements from EXEC SQL statements already executed, are skipped, except the ones with
SQL SET statements. All the declare cursor definitions within EXEC SQL statements already
executed, are reactivated so that they can be used in the following LOAD statements.

This can be illustrated with Example 4-13. This job contains one non-select dynamic SQL
statement (CREATE TABLE), one cursor definition, and one utility LOAD statement. If the
CREATE TABLE fails with a negative SQL code, the utility will immediately end with return
code 8 and the utility will not be restartable with the RESTART keyword. If the CREATE
TABLE executes successfully, but the DECLARE CURSOR fails, the utility will also end with
return code 8, but the table will have been created. If both CREATE TABLE and DECLARE
Chapter 4. Load with DB2 for z/OS 61

CURSOR execute successfully, but the LOAD statement fails so that DB2 puts the utility in
the stopped state (for example, because of a resource unavailable condition) the utility will be
restartable. During restart the CREATE TABLE statement will be skipped, but the DECLARE
CURSOR statement will be re-executed so that it can be used in the LOAD statement.

Example 4-13 Restartability of the EXEC SQL statement

EXEC SQL
 CREATE TABLE DEPTCOPY LIKE DEPT
ENDEXEC
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 INTO TABLE DEPTCOPY

Thread behavior and commit scope of the EXEC SQL utility statement
The EXEC SQL statement runs in a thread that is separate from the utility thread. This implies
that the EXEC SQL SET CURRENT register operations do influence all following EXEC SQL
statements in the utility stream input, but they do not influence the real utility statements like
LOAD, REORG, and so on.

We can illustrate this with the utility job in Example 4-14. This job runs with USER=PAOLOR2.
So, the DB2 primary AUTHID is PAOLOR2. We change the current SQLID with EXEC SQL to
PAOLOR7 and try to see what table creator is used if we do not prefix our tables in the
following EXEC SQL statements and other utility statements. We only want to load the 100
most recently created tables. In V7 we can do this using the new SQL fetch-first-clause.

Example 4-14 JCL for testing the thread behavior of EXEC SQL

//PAOLOR2A JOB (ACCOUNT),'PAOLOR2',NOTIFY=PAOLOR2,USER=PAOLOR2
//*
// EXEC PGM=DSNUTILB,PARM='DB2G,CRLOAD'
//STEPLIB DD DSN=DSN710.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 EXEC SQL
 SET CURRENT SQLID = 'PAOLOR7'
 ENDEXEC
 EXEC SQL
 CREATE TABLE MYTABLE LIKE SYSIBM.SYSTABLES
 ENDEXEC
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM SYSIBM.SYSTABLES
 WHERE TYPE = 'T'
 ORDER BY CREATEDTS DESC
 FETCH FIRST 100 ROWS ONLY
 ENDEXEC
 LOAD DATA
 INCURSOR C1
 INTO TABLE PAOLOR7.MYTABLE
 LOAD DATA RESUME(YES)
 INCURSOR C1
 INTO TABLE MYTABLE

The resulting job output is shown in Example 4-15.
62 Moving Data Across the DB2 Family

In the first EXEC SQL, the current SQLID is set to PAOLOR7. In the following EXEC SQL,
the table MYTABLE is created without specifying a table creator. We verified in the DB2
catalog that this table is created with CREATOR = PAOLOR7, which proves that the previous
current SQLID was used in this EXEC SQL. If we try to load this table with the Cross Loader,
we have to specify PAOLOR7.MYTABLE, otherwise, the load fails because the Load utility
thread does not use the current SQLID set in the previous EXEC SQL. Instead, its current
SQLID is still equal to the primary AUTHID, PAOLOR2, which it inherited from the USER
keyword in the JCL.

Example 4-15 Testing the thread behavior of EXEC SQL

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = CRLOAD
DSNU050I DSNUGUTC - EXEC SQL SET CURRENT SQLID='PAOLOR7' ENDEXEC
DSNU1180I DSNUGSQL - SQLCODE = 000, SUCCESSFUL EXECUTION
DSNU050I DSNUGUTC - EXEC SQL CREATE TABLE MYTABLE LIKE SYSIBM.SYSTABLES ENDEXEC
DSNU1180I DSNUGSQL - SQLCODE = 000, SUCCESSFUL EXECUTION
DSNU050I DSNUGUTC - EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM SYSIBM.SYSTABLES WHERE TYPE='T' ORDER BY
CREATEDTS DESC FETCH FIRST 100 ROWS ONLY ENDEXEC
DSNU050I DSNUGUTC - LOAD DATA INCURSOR C1
DSNU650I -DB2G DSNURWI - INTO TABLE PAOLOR7.MYTABLE
DSNU304I -DB2G DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=100 FOR TABLE PAOLOR7.MYTABLE
DSNU302I DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=100
DSNU300I DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU050I DSNUGUTC - LOAD DATA RESUME(YES) INCURSOR C1
DSNU650I -DB2G DSNURWI - INTO TABLE MYTABLE
DSNU056I -DB2G DSNUGMAP - TABLE 'PAOLOR2.MYTABLE' NOT FOUND
DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

Each block of EXEC SQL and ENDEXEC is a separate unit-of-work. Each block can only
contain a single SQL statement. The unit-of-work is always committed when the SQL
statement is executed successfully. Although the COMMIT and ROLLBACK statements are
accepted, these statements do not perform any function.

So, it is impossible to create your own unit-of-work consisting of multiple EXEC SQL
statements, and end that unit-of-work with EXEC SQL COMMIT ENDEXEC. It is also
impossible to have an EXEC SQL statement executed and undo its work by a following EXEC
SQL ROLLBACK ENDEXEC command.

We verified the above behavior with the utility job shown in Example 4-16. In the first EXEC
SQL we create a new table. This is followed by an EXEC SQL ROLLBACK to try to undo the
CREATE statement. In the third EXEC SQL we populate this table with an INSERT statement
and try to undo the INSERT in the fourth EXEC SQL. If the ROLLBACK statement in the
second EXEC SQL would undo the CREATE, we expect the third EXEC SQL to fail.

Example 4-16 JCL for verifying the commit scope of EXEC SQL

//PAOLOR2A JOB (ACCOUNT),'PAOLOR2',NOTIFY=PAOLOR2,USER=PAOLOR2
// EXEC PGM=DSNUTILB,PARM='DB2G,CRLOAD'
//STEPLIB DD DSN=DSN710.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 EXEC SQL
 CREATE TABLE PAOLOR2.SYSTABLESR LIKE SYSIBM.SYSTABLES
 ENDEXEC
 EXEC SQL
 ROLLBACK
 ENDEXEC
 EXEC SQL
 INSERT INTO PAOLOR2.SYSTABLESR
 SELECT * FROM SYSIBM.SYSTABLES
 WHERE TYPE = 'T'
 AND CREATOR LIKE 'PAOLOR%'
 ENDEXEC
 EXEC SQL
Chapter 4. Load with DB2 for z/OS 63

 ROLLBACK
 ENDEXEC

The result of this job is shown in Example 4-17. As you can see, all four EXEC SQL
statements executed successfully. We verified with SPUFI that the table
PAOLOR2.SYSTABLESR was successfully created and populated with 35 rows. So, the
EXEC SQL ROLLBACK statements did not influence the previous EXEC SQL statements.

Example 4-17 Verifying the commit scope of EXEC SQL

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = CRLOAD
DSNU050I DSNUGUTC - EXEC SQL CREATE TABLE PAOLOR2.SYSTABLESR LIKE SYSIBM.SYSTABLES ENDEXEC
DSNU1180I DSNUGSQL - SQLCODE = 000, SUCCESSFUL EXECUTION
DSNU050I DSNUGUTC - EXEC SQL ROLLBACK ENDEXEC
DSNU1180I DSNUGSQL - SQLCODE = 000, SUCCESSFUL EXECUTION
DSNU050I DSNUGUTC - EXEC SQL INSERT INTO PAOLOR2.SYSTABLESR SELECT * FROM SYSIBM.SYSTABLES WHERE TYPE='T' AND
CREATOR LIKE 'PAOLOR%' ENDEXEC
DSNU1180I DSNUGSQL - SQLCODE = 000, SUCCESSFUL EXECUTION
DSNU1196I DSNUGSQL - SQLERRD = 0 0 35 1127790002 0 0 SQL DIAGNOSTIC INFORMATION
DSNU1196I DSNUGSQL - SQLERRD = X'00000000' X'00000000' X'00000023' X'4338B5B2' X'00000000' X'00000000' SQL
 DIAGNOSTIC INFORMATION
DSNU050I DSNUGUTC - EXEC SQL ROLLBACK ENDEXEC
DSNU1180I DSNUGSQL - SQLCODE = 000, SUCCESSFUL EXECUTION
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

So, although you can code COMMIT and ROLLBACK statements, after the EXEC SQL
keyword, they do not influence the behavior of previous EXEC SQL commands.

Possible usage of the EXEC SQL utility statement
The primary use of the EXEC SQL utility statement is meant for declaring cursors for use with
the Load utility (Cross Loader). But it can also be used to execute any non-select dynamic
SQL statement before, between or after regular utility statements. Examples are:

� DDL creation of the target table for the Load utility (and its related objects like database,
table space, indexes, views)

� DDL creation of the mapping table and index before a REORG table space SHRLEVEL
CHANGE

� Dropping of the mapping table after a successful REORG table space SHRLEVEL
CHANGE

� DDL alter of space related values like PRIQTY, SECQTY, FREEPAGE and PCTFREE
values before a Reorg or Load utility

� DDL alter of INDEX partitions before Reorg (for partitioning key changes)

� GRANT statements (example: grant select authorities after successful load)

� SQL delete of old records before LOAD RESUME YES

� SQL update of an application related control table or SQL insert into an application related
control table after successful LOAD (with the current timestamp)

The benefits of EXEC SQL are:

� You can execute any non-select dynamically prepared SQL statement within the utility
input stream.

� You can declare cursors for use with the Load utility, including joins, unions, conversions,
aggregations, and remote DRDA access.

� Successfully executed SQL statements are skipped during restart of the utility.

� In many cases, the need for extra dynamic SQL programs in the utility job stream is
eliminated.
64 Moving Data Across the DB2 Family

� Considerable simplification of JCL is possible.

Be aware that there are restrictions imposed by the EXEC SQL statement:

� There are no select statements.
� There is no control after error; the whole utility step stops after the first SQL error.
� There is no concept of unit-of-work consisting of multiple SQL statements.
� There are no comments possible between SQL statements.

4.2.3 Using the Cross Loader
As mentioned, two steps are necessary to use the Cross Loader:

1. Declare a cursor with the EXEC SQL statement.
2. Load the data into the target table using above cursor.

However, some customizing steps have to be completed before you can use Cross Loader to
load data.

Binding the Cross Loader package
The Cross Loader uses package DSNUGSQL in collection DSNUTIL that must be bound
local and at the remote DRDA servers you want to transfer data from. Locally, it must be
bound with the option DBPROTOCOL(DRDA) to allow the DRDA protocol to use
three-part-names. It uses the default system utility plan DSNUTIL. The bind command on the
local system is done in installation job DSNTIJSG.

Cross Loader package on local system
You can verify the existence of a valid and operative DSNUGSQL; see Example 4-18.

Example 4-18 Local Cross Loader to verify DSNUGSQL package

EXEC SQL
 CREATE TABLE MY.SYSTABLES LIKE SYSIBM.SYSTABLES
ENDEXEC
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM SYSIBM.SYSTABLES
ENDEXEC
LOAD DATA
INCURSOR C1
INTO TABLE MY.SYSTABLES

If the package for any reason is not available, you have to bind the package, as shown in
Example 4-19.

Example 4-19 Local bind of DSNUGSQL package

BIND PACKAGE(DSNUTIL) MEMBER(DSNUGSQL) -
 ACTION(REPLACE) ISOLATION(CS) ENCODING(EBCDIC) -
 VALIDATE(BIND) CURRENTDATA(NO) KEEPDYNAMIC(NO) -
 LIBRARY('DB2G7.SDSNDBRM')
Chapter 4. Load with DB2 for z/OS 65

The result of the bind, see Example 4-20.

Example 4-20 Successful local bind of DSNUGSQL with options

DSNT254I -DB2G DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = DB2G.DSNUTIL.DSNUGSQL.(V7R1)
 ACTION REPLACE
 OWNER PAOLOR2
 QUALIFIER PAOLOR2
 VALIDATE BIND
 EXPLAIN NO
 ISOLATION CS
 RELEASE
 COPY
DSNT255I -DB2G DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = DB2G.DSNUTIL.DSNUGSQL.(V7R1)
 SQLERROR NOPACKAGE
 CURRENTDATA NO
 DEGREE 1
 DYNAMICRULES
 DEFER
 NOREOPT VARS
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(00037)
 PATH
DSNT232I -DB2G SUCCESSFUL BIND FOR
 PACKAGE = DB2G.DSNUTIL.DSNUGSQL.(V7R1)

Remember to grant privileges on the Cross Loader package:

GRANT EXECUTE ON PACKAGE DSNUTIL.DSNUGSQL TO PUBLIC

Cross Loader package on remote system
You have to bind the package on the remote DRDA system, as shown in Example 4-21.

Example 4-21 Remote bind of DSNUGSQL package

BIND PACKAGE (SAMPAIX.DSNUTIL) -
 COPY(DSNUTIL.DSNUGSQL) COPYVER(V7R1) -
 CURRENTDATA(NO) ISOLATION(CS) -
 ACTION(REPLACE) OPTIONS(COMMAND)

See the result of the bind in Example 4-22. Make sure that CURRENTDATA is set to NO. If
not, it will have a negative influence on the data transmission between the remote and the
local server.

Example 4-22 Successful remote bind of DSNUGSQL

BIND PACKAGE (SAMPAIX.DSNUTIL) COPY(DSNUTIL.DSNUGSQL) COPYVER(V7R1)
CURRENTDATA(NO) ISOLATION(CS) ACTION(REPLACE) OPTIONS(COMMAND)

WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"
WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"
WARNING, ONLY IBM-SUPPLIED PACKAGE-IDS SHOULD BEGIN WITH "DSN"
DSNT232I -DB2G SUCCESSFUL BIND FOR
 PACKAGE = SAMPAIX.DSNUTIL.DSNUGSQL.(V7R1)
66 Moving Data Across the DB2 Family

You have to do a remote bind on all remote servers involved in the cross loading. In this
redbook project this means both SAMPAIX and SAMPWIN. See appendix B.

Rules for declaring a cursor for use with the Cross Loader
The following rules apply to the cursor you DECLARE in the EXEC SQL statement:

� You must always declare the cursor before the LOAD statement. Otherwise, you get the
message DSNU1190I CURSOR NOT DECLARED.

� The cursor name can only be declared once within the whole utility input stream. It can be
referred in multiple LOAD statements for LOADING different target tables with the same
data. If you declare an existing cursor, you get the error message: DSNU1189I CURSOR
ALREADY DECLARED.

� The cursor name can only have up to eight characters.

� The table being loaded cannot be part of the select statement. So you cannot LOAD into
the same table where you defined the cursor.

� The column names in the result set of the select statement must be identical to the
column names in the table being loaded. This can be achieved by using the AS clause in
the SQL statement. If you have column names in the result set which do not match any
column name in the target table you get the error message: DSNU053I FIELD 'colname' NOT
FOUND or the error message: DSNU329I FIELD 'colnumber' IS NOT DEFAULTABLE.
Pay special attention to derived column names, which are the result of column functions
such as SUM or AVG.

� You are able to skip unwanted columns in the result set with the LOAD IGNOREFIELDS
YES option, which skips any columns in the cursor result set that are not present in the
target table being loaded. However, use this IGNOREFIELDS option with care, as it also
skips misspelled columns you wanted to LOAD.

� The sequence of the columns in the result set may differ from the sequence of the
columns in the table being loaded. DB2 matches the columns by their names and not by
their sequence.

� The number of columns in the cursor can be less than the number of columns in the target
table. All missing columns are loaded with their default values. If the missing columns are
defined in the target table as NOT NULL without default, the LOAD fails with this message:
DSNU323I COLUMN 'colname' IS OMITTED.

� If the data types in the target table do not match with the data types in the cursor, DB2
tries to convert as much as possible between compatible data types. Examples are from
CHAR to VARCHAR or from INTEGER to FLOAT. If the conversion fails, you get
messages like: DSNU390I INVALID CONVERSION FOR FIELD ‘columnname’ (conversion error
detected before the actual LOAD during the matching process) or DSNU334I INPUT FIELD
'columnname' INVALID FOR 'tablename', ERROR CODE cc (conversion error detected during the
LOAD). You might use DB2 supplied built-in functions or own developed UDFs in the SQL
statement to force more sophisticated conversions. An example is the CHAR function
which allows you to convert from INTEGER to CHARACTER.

� If the encoding scheme of the source data in the cursor and the target table differ, DB2
automatically converts the encoding schemes. An example may be conversion from
EBCDIC to UNICODE or from ASCII to EBCDIC. Remember that referencing tables with

Important: If you get the following error when loading from a cursor declared on a table
residing on an UNIX server:

UTILITY BATCH MEMORY EXECUTION ABENDED, REASON=X'00E4D5D2'

make sure that PTFs for PQ67037 and PQ62837 are applied to your DB2 system.
Chapter 4. Load with DB2 for z/OS 67

more than one encoding scheme (ASCII,EBCDIC or UNICODE) in a single SQL
statement is not supported and finishes with SQLCODE -873.

� If the target table contains UDTs, you do not have to specify the appropriate casting
functions in the cursor SQL statement to LOAD the table. If the source data in the cursor
contains UDTs, you also do not have to specify casting functions in the select list of the
cursor SQL statement. But additional WHERE clauses in the cursor SQL statement might
require casting functions, or you could end up with SQLCODE -401.

� If your table contains LOB columns, the maximum length is 32 KB. You cannot use the
Cross Loader if you want to transfer LOB columns larger than 32 KB. Instead you should
use a program with embedded SQL. If a table contains LOB columns, there is at least one
ROWID column. If this ROWID column is created with the GENERATED ALWAYS clause
(the recommended default) you cannot specify this column in the select list of the cursor.
Instead DB2 generates the target ROWID value during loading. If you do specify the
ROWID column in the select list you get message: DSNU269I FIELD columnname IS NOT
ALLOWED. If the ROWID column is created with the GENERATED BY DEFAULT clause, you
may specify this column in the select list. In this case the source ROWID value is copied.
Do not forget to create a unique index on the ROWID column if you specified
GENERATED BY DEFAULT or you fail with error message: DSNU309I NOT ALL REQUIRED
UNIQUE INDEXES HAVE BEEN DEFINED FOR TABLE tablename.

� Apart from the aforementioned rules, the SQL statement in the declare cursor definition
can be any valid SQL statement including joins, unions, conversions, aggregations,
special registers, UDFs. The source data can be local or remote or a nickname in a
Federated Database using DRDA access. Remote tables are always referred by their
three-part-name LOCATION.CREATOR.NAME or by an ALIAS name CREATOR.NAME.
You cannot use an explicit CONNECT statement to connect to the remote location.

Load the data into the target table using a cursor
Cross loading is done using the new option INCURSOR cursor. With this option you tell the
Load to get the data from the result set of the cursor instead of getting it from a sequential
data set referred by the DD statement or template INDDN (with default SYSREC.)

You can use any option of the Load utility except the following:

� SHRLEVEL CHANGE: There is no support for online Load in the Cross Loader. If you
specify SHRLEVEL CHANGE, you get the message: DSNU070I KEYWORD OR OPERAND
'SHRLEVEL CHANGE' INVALID WITH INCURSOR.

� FORMAT: You cannot specify the UNLOAD or SQL/DS formats.

� FLOAT(IEEE): The cursor always returns FLOAT(S390.)

� EBCDIC, ASCII, UNICODE: The Cross Loader always automatically converts the
encoding schemes. The target table must be created with the correct CCSID.

� NOSUBS: You must accept substitution characters in a string.

� CONTINUEIF: You cannot treat each input record as a part of a larger record.

� WHEN: You cannot use the WHEN option to filter the result set of the cursor. Instead, filter
the result set by using the appropriate WHERE clauses in the select statement.

� Field specifications: You cannot specify field specifications in the LOAD Statement. If
you specify field specifications, you get the message: DSNU331I FIELD LISTS ARE NOT ALLOWED
WITH INCURSOR KEYWORD.

The same cursor can be reused multiple times in the utility job step. It can be referenced in
different LOAD statements to load the same data in different target tables. It can also be
reused in one LOAD statement containing multiple INTO TABLE clauses to LOAD the same
data in different target tables (in the same table space.)
68 Moving Data Across the DB2 Family

If a cursor is used more than once in the utility job step, the data is transferred more than
once as well. Each time you refer to a cursor name in a LOAD statement, the SQL statement
is re-executed. There is no buffering nor reuse of the previous transferred data. So the result
sets can differ if the source data is being updated or if you use time dependent functions like
CURRENT TIMESTAMP.

It is recommended that you load your data in clustering sequence. If loading from a sequential
data set this can be done by first sorting the sequential data set in clustering sequence. With
the Cross Loader this can be achieved by sorting the result set of the cursor by using an
ORDER BY statement on the clustering columns.

You can load partitions in parallel by specifying a different cursor for each partition.

Cross Loader examples with local source and local target
The following examples is based on the tables PAOLOR2.DEPT and PAOLOR7.DEPT. The
columns, their attributes and the order are the same:

DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16))

Example 4-23 is a simple example of using the Cross Loader, where the columns in the
cursor match exactly the columns in the target table (same column names, same column
types, same order.)

Example 4-23 Cross Loader example with no columns referred

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM PAOLOR7.DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT

Instead of *, in Example 4-24, we are using the column names in the select list.

Example 4-24 Cross Loader example with column names

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION
 FROM PAOLOR7.DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT

In Example 4-25 we are loading with the same column names, but in a different order.

Example 4-25 Cross Loader example with columns in different order

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, ADMRDEPT, LOCATION, MGRNO
 FROM PAOLOR7.DEPT
Chapter 4. Load with DB2 for z/OS 69

ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT

In Example 4-26 we are loading only with columns that are not defined as default. If you omit
non-defaultable columns, the Load will terminate with:

COLUMN column name IS OMITTED

Example 4-26 Cross Loader example with non-default columns

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, ADMRDEPT
 FROM PAOLOR7.DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT

In Example 4-27 we show how the SQL AS clause can be used to match the column names
in the cursor with the column names in the target table. You should use the SQL AS clause for
every derived column name that is the result of columns functions (SUM,MAX,..) or UDFs.

Example 4-27 Cross Loader example with AS clause in the column list

EXEC SQL
 CREATE TABLE PAOLOR2.XDEPT
 (XDEPTNO CHAR(3) NOT NULL,
 XDEPTNAME VARCHAR(36) NOT NULL,
 XMGRNO CHAR(6),
 XADMRDEPT CHAR(3) NOT NULL,
 XLOCATION CHAR(16))
ENDEXEC
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT DEPTNO AS XDEPTNO,
 DEPTNAME AS XDEPTNAME,
 MGRNO AS XMGRNO,
 ADMRDEPT AS XADMRDEPT,
 LOCATION AS XLOCATION
 FROM PAOLOR7.DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.XDEPT

In Example 4-28 we show the use of the IGNOREFIELDS YES LOAD option to ignore
columns in the cursor that are not present in the target table.

Example 4-28 Cross Loader example with IGNOREFIELDS

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT DEPTNO,
 DEPTNAME,
 MGRNO,
70 Moving Data Across the DB2 Family

 ADMRDEPT,
 LOCATION,
 CURRENT DATE AS DATE
 FROM PAOLOR7.DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT
 IGNOREFIELDS YES

To test automatic conversion between encoding schemes, we declared three different tables
on the mainframe, see Example 4-29.

Example 4-29 The test tables used in Example 4-30

TS TS ENCODING SBCS DBCS MIXED TB TB ENCODING
NAME CREATOR SCHEME CCSID CCSID CCSID CREATOR NAME SCHEME
------ -------- -------- -------- -------- -------- -------- -------- --------
EMP PAOLOR7 E 37 0 0 PAOLOR7 EMP E
TSEMPA PAOLOR2 A 1252 0 0 PAOLOR2 EMPA A
TSEMPE PAOLOR2 E 37 0 0 PAOLOR2 EMPE E
TSEMPU PAOLOR2 U 367 1200 1208 PAOLOR2 EMPU U

Example 4-30 shows the Cross Loading from one local EBCDIC table (PAOLOR7.EMP) to
the tables in Example 4-29.

Example 4-30 Cross Loader conversion within the mainframe

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM PAOLOR7.EMP
 ORDER BY 1 DESC
ENDEXEC
LOAD DATA
 INCURSOR C1 REPLACE
 INTO TABLE PAOLOR2.EMPE
LOAD DATA
 INCURSOR C1 REPLACE
 INTO TABLE PAOLOR2.EMPA
LOAD DATA
 INCURSOR C1 REPLACE
 INTO TABLE PAOLOR2.EMPU

We will now LOAD a table containing UDT columns. In Example 4-31 we first create and
populate a table containing a UDT column. This UDT is defined as CHAR(3) WITH
COMPARISONS. We do not have to specify the appropriate casting function in the select list
of the cursor SQL statement to load the table.

Example 4-31 Cross Loader example of populating a table with UDT column

EXEC SQL
 CREATE DISTINCT TYPE PAOLOR2.DEPT_OWNER AS CHAR(3) WITH COMPARISONS
ENDEXEC
EXEC SQL

Note: Make sure that the UNICODE translation table is activated with the necessary
translation combinations on the mainframe.
Chapter 4. Load with DB2 for z/OS 71

 CREATE TABLE PAOLOR2.YDEPT
 (DEPTNO PAOLOR2.DEPT_OWNER,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16))
ENDEXEC
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM PAOLOR7.DEPT
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.YDEPT

In Example 4-32 we copy a subset of this table back to PAOLOR3.EXAMP3 with the Cross
Loader, converting the UDT back to the standard CHAR data type. We do not have to specify
any casting function in the select list of the cursor but we have to specify it in the WHERE
clause to create the subset. We only want to copy the rows corresponding with COL1 equals
to ‘SYSIBM’ and rename the CREATOR value to ‘SYSIBMX’ to prevent duplicate values in
PAOLOR3.EXAMP3. As we cannot use an Inline COPY with LOAD RESUME(YES), we have
to take the image copy with an additional COPY statement.

Example 4-32 Cross Loader example using a table with UDTs as source

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT
 'A00' AS DEPTNO,
 DEPTNAME,
 MGRNO,
 ADMRDEPT,
 LOCATION
 FROM PAOLOR2.YDEPT
 WHERE DEPTNO = PAOLOR2.DEPT_OWNER('A00')
ENDEXEC
LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT

In Example 4-33 we populate a table containing a LOB column with the Cross Loader.
Remember that the maximum LOB size that can be transferred by the Cross Loader is 32 KB.
We first create the target base table, auxiliary table, and corresponding table spaces and
indexes with the EXEC SQL statement. We declare the ROWID as NOT NULL GENERATED
ALWAYS and do not copy the ROWID value from the source table. After the LOAD we collect
STATISTICS on all table spaces using a LISTDEF with the ALL LOB indicator keyword to
include both base and LOB table spaces.

Example 4-33 Cross Loader example with a LOB column

EXEC SQL
 CREATE DATABASE PAOLOR3L
 ENDEXEC
 EXEC SQL
 CREATE TABLESPACE DSN8S71B IN PAOLOR3L
 USING STOGROUP DSN8G710
 ENDEXEC
72 Moving Data Across the DB2 Family

 EXEC SQL
 CREATE TABLE PAOLOR3.EXAMP6
 (EMPNO CHAR(06) NOT NULL,
 EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
 RESUME CLOB(5K),
 PRIMARY KEY (EMPNO))
 IN PAOLOR3L.DSN8S71B
 ENDEXEC
 EXEC SQL
 CREATE UNIQUE INDEX PAOLOR3.XEXAMP6
 ON PAOLOR3.EXAMP6
 (EMPNO ASC)
 USING STOGROUP DSN8G710
 ENDEXEC
 EXEC SQL
 CREATE LOB TABLESPACE DSN8S71N
 IN PAOLOR3L
 LOG NO
 ENDEXEC
 EXEC SQL
 CREATE AUX TABLE PAOLOR3.AUX_EMP_RESUME
 IN PAOLOR3L.DSN8S71N
 STORES PAOLOR3.EXAMP6
 COLUMN RESUME
 ENDEXEC
 EXEC SQL
 CREATE UNIQUE INDEX PAOLOR3.XAUX_EMP_RESUME
 ON PAOLOR3.AUX_EMP_RESUME
 ENDEXEC
 EXEC SQL
 DECLARE C6 CURSOR FOR
 SELECT EMPNO,
 RESUME
 FROM DSN8710.EMP_PHOTO_RESUME
 ENDEXEC
 LISTDEF LISTLOB INCLUDE TABLESPACE PAOLOR3L.* ALL
 TEMPLATE TSYSUT1 DSN(PAOLOR3.&DB..&TS..SYSUT1) SPACE(10,10) CYL
 TEMPLATE TSORTOUT DSN(PAOLOR3.&DB..&TS..SORTOUT) SPACE(10,10) CYL
 LOAD DATA
 INCURSOR C6
 INTO TABLE PAOLOR3.EXAMP6 WORKDDN(TSYSUT1,TSORTOUT)
 RUNSTATS TABLESPACE LIST LISTLOB INDEX(ALL)

Cross Loader examples with remote source table and local target table
Cross Loader can transparently load data from a remote location connected through DRDA
definitions. Appendix B, “DB2 connectivity” on page 307 contains details on setting up the
necessary connectivity functions.

In Example 4-34 we use the Cross Loader to transfer data from a DB2 UDB database on a
UNIX server to DB2 for z/OS. The table in the UDB UNIX database is reached through DRDA
using its three part name.

Example 4-34 Cross Loader example loading from one remote location

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.DEPARTMENT
 ORDER BY 1 DESC
Chapter 4. Load with DB2 for z/OS 73

ENDEXEC
LOAD DATA
 REPLACE
 INCURSOR C1
 INTO TABLE PAOLOR2.DEPT

In Example 4-35 we use the Cross Loader to transfer data from both a DB2 UDB database on
a UNIX server and from a Windows NT server to DB2 for z/OS.

Example 4-35 Cross Loader example loading from two remote locations

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.DEPARTMENT
 ORDER BY 1 DESC
ENDEXEC
EXEC SQL
 DECLARE C2 CURSOR FOR
 SELECT *
 FROM SAMPWIN.DB2INST1.DEPARTMENT
 ORDER BY 1 DESC
ENDEXEC
LOAD DATA
 REPLACE
 INCURSOR C1
 INTO TABLE PAOLOR2.DEPT
LOAD DATA
 RESUME YES
 INCURSOR C2
 INTO TABLE PAOLOR2.DEPT

In Example 4-36 we try to use the Cross Loader to transfer the same data as in
Example 4-35, but we are using UNION ALL within one EXEC SQL. Referencing object from
two different locations is not allowed:

SQLCODE = -512, ERROR: STATEMENT REFERENCE TO REMOTE OBJECT IS INVALID

Example 4-36 Cross Loader example loading from two remote locations and one EXEC SQL

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.DEPARTMENT
 UNION ALL
 SELECT *
 FROM SAMPWIN.DB2INST1.DEPARTMENT
 ORDER BY 1 DESC
ENDEXEC
LOAD DATA
 REPLACE
 INCURSOR C1
 INTO TABLE PAOLOR2.DEPT

In Example 4-37 we Load a partitioned table space with the Cross Loader. In this case we
only use one cursor. The source and target tables are identical.
74 Moving Data Across the DB2 Family

Example 4-37 Cross Loader example of populating a partitioned table space

EXEC SQL
 CREATE TABLESPACE TSSTAFFP
 USING STOGROUP SGLP0002
 PRIQTY 4000 SECQTY 1000
 BUFFERPOOL BP0
 NUMPARTS 4
ENDEXEC
EXEC SQL
 CREATE TABLE PAOLOR2.STAFFP
 (ID SMALLINT NOT NULL,
 NAME VARCHAR(9),
 DEPT SMALLINT,
 JOB CHAR(5),
 YEARS SMALLINT,
 SALARY DECIMAL(7, 2),
 COMM DECIMAL(7, 2))
 IN TSSTAFFP
ENDEXEC
EXEC SQL
 CREATE UNIQUE INDEX PAOLOR2.XSTAFFP0
 ON PAOLOR2.STAFFP
 (ID ASC)
 USING STOGROUP SGLP0002
 PRIQTY 800 SECQTY 200
 CLUSTER
 (PART 1 VALUES(00100) ,
 PART 2 VALUES(00200) ,
 PART 3 VALUES(00300) ,
 PART 4 VALUES(00400))
 BUFFERPOOL BP2
ENDEXEC
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.STAFF
 ORDER BY 1
ENDEXEC
LOAD DATA
 RESUME NO
 INCURSOR C1
 INTO TABLE PAOLOR2.STAFFP

In Example 4-38 we Load the same partitioned table space using partition parallelism.
Therefore, we declare one different cursor per partition, transferring the data belonging to that
particular partition.

Example 4-38 Coss Loader example of partition parallelism

EXEC SQL
 DECLARE 1A CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.STAFF
 WHERE ID <= 100
 ORDER BY 1
ENDEXEC
EXEC SQL
 DECLARE 1B CURSOR FOR
 SELECT *
Chapter 4. Load with DB2 for z/OS 75

 FROM SAMPAIX.DB2INST1.STAFF
 WHERE ID BETWEEN 101 AND 200
 ORDER BY 1
ENDEXEC
EXEC SQL
 DECLARE 1C CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.STAFF
 WHERE ID BETWEEN 201 AND 300
 ORDER BY 1
ENDEXEC
EXEC SQL
 DECLARE 1D CURSOR FOR
 SELECT *
 FROM SAMPAIX.DB2INST1.STAFF
 WHERE ID >= 301
 ORDER BY 1
ENDEXEC
LOAD DATA
 REPLACE
 INTO TABLE PAOLOR2.STAFFP PART 1 INCURSOR 1A
 INTO TABLE PAOLOR2.STAFFP PART 2 INCURSOR 1B
 INTO TABLE PAOLOR2.STAFFP PART 3 INCURSOR 1C
 INTO TABLE PAOLOR2.STAFFP PART 4 INCURSOR 1D

Example 4-39 verifies that the partitions was loaded in parallel.

Example 4-39 Job report from the parallel loading

DSNUGUTC - LOAD DATA REPLACE
DB2G DSNURWI - INTO TABLE PAOLOR2.STAFFP PART 1 INCURSOR 1A
DB2G DSNURWI - INTO TABLE PAOLOR2.STAFFP PART 2 INCURSOR 1B
DB2G DSNURWI - INTO TABLE PAOLOR2.STAFFP PART 3 INCURSOR 1C
DB2G DSNURWI - INTO TABLE PAOLOR2.STAFFP PART 4 INCURSOR 1D
DB2G DSNURRST - EXISTING RECORDS DELETED FROM TABLESPACE
 DSNURPPL - PARTITIONS WILL BE LOADED IN PARALLEL, NUMBER OF TASKS = 4
DB2G DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=10 FOR TABLE PAOLOR2.STAFFP PART=1
DB2G DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=10 FOR TABLE PAOLOR2.STAFFP PART=2
DB2G DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=10 FOR TABLE PAOLOR2.STAFFP PART=3
DB2G DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=5 FOR TABLE PAOLOR2.STAFFP PART=4
 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=35
 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:15
 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=35
 ELAPSED TIME=00:00:00
DB2G DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=10 FOR INDEX PAOLOR2.XSTAFFP0 PART 1
DB2G DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=10 FOR INDEX PAOLOR2.XSTAFFP0 PART 2
DB2G DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=10 FOR INDEX PAOLOR2.XSTAFFP0 PART 3
DB2G DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5 FOR INDEX PAOLOR2.XSTAFFP0 PART 4
 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 4-40 shows loading from a cursor declared on a distributed ASCII table to three
different tables on the mainframe:

� PAOLOR2.EMPE is EBCDIC
� PAOLOR2.EMPA is ASCII
� PAOLOR2.EMPU is UNICODE
76 Moving Data Across the DB2 Family

See Example 4-29 for more details about the tables.

Example 4-40 Cross Loader conversion when loading from distributed to mainframe

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT * FROM SAMPAIX8.DB2INST2.EMPLOYEE
 ORDER BY 1 DESC
ENDEXEC
LOAD DATA
 INCURSOR C1 REPLACE
 INTO TABLE PAOLOR2.EMPE
LOAD DATA
 INCURSOR C1 REPLACE
 INTO TABLE PAOLOR2.EMPA
LOAD DATA
 INCURSOR C1 REPLACE
 INTO TABLE PAOLOR2.EMPU

4.3 Conclusions and recommendations
The Cross Loader function combines the flexibilty of the SQL statement and the performance
of the Load utility. The source can either be on the mainframe, in a distributed system or in
any system accessible via a Federated Database. It eliminates the need for file transfers.

Cross loading is done using the new DB2 V7 option INCURSOR in the DB2 Load utility. With
this option you tell the Load to read the data from the result set of a cursor instead of reading
it from a sequential file. The data is read from the source location with a dynamic SQL
statement (enclosed between EXEC SQL and ENDEXEC statements) and loaded in a table
at the target location where the the Load utility runs.

The same cursor can be reused multiple times in the utility job step. It can be referenced in
different LOAD statements to load the same data in different target tables. It can also be
reused in one LOAD statement containing multiple INTO TABLE clauses to LOAD the same
data in different target tables (in the same table space.)

If the encoding scheme of the source data in the cursor and the target table differ, DB2
automatically converts the encoding schemes. An example may be conversion from EBCDIC
to UNICODE or from ASCII to EBCDIC.

Always sort the input data in clustering sequence before loading. Do this with an ORDER BY
clause when using the Cross Loader.

In addition to define a cursor, use EXEC SQL to execute dynamic SQL statements before,
between or after utility statements. It can simplify the JCL coding by eliminating dynamic SQL
applications like DSNTIAD or DSNTEP2 from the JCL stream and it enables to merge
different utility steps, separated by dynamic SQL applications, into one single utility step.
Chapter 4. Load with DB2 for z/OS 77

78 Moving Data Across the DB2 Family

Chapter 5. Export and Import with DB2
distributed

This chapter provides a description of Export and Import utilities within the DB2 UDB on
distributed platforms (UNIX and Windows.)

The following topics will be discussed in this chapter:

� General description of Export utility
� Export examples
� General description of Import utility
� Import examples

Some cross-platform examples are reported in Chapter 11, “Moving data to DB2 Distributed”
on page 267, and Chapter 10, “Moving data to DB2 for z/OS” on page 243.

5

© Copyright IBM Corp. 2003. All rights reserved. 79

5.1 Export utility overview
The Export utility exports data from a database to an operating system file, or pipe, which can
be in one of several external file formats. This operating system file can then be used to move
the table data to a different server.

Export utility runs on the client node, hence the output file will be created on the client node
as well. Version of the utility being executed depends on the version of DB2 installed on the
client machine.

The following information is required when exporting data:

� An SQL SELECT statement specifying the data to be exported.

� The path, name and format of the operating system file that will store the exported data.
This format can be IXF, WSF, or DEL.

� When exporting typed tables, you may need to provide the subtable traverse order within
the hierarchy. If the IXF format is to be used, the default order is recommended. When
specifying the order, recall that the subtables must be traversed in the PRE-ORDER
fashion. When exporting typed tables, you cannot provide a SELECT statement directly.
Instead, you must specify the target subtable name, and optionally a WHERE clause. The
Export utility uses this information, along with the traverse order, to generate and execute
the required SELECT statement.

The maximum size of a single LOB value that can be inlined in the export file is 32 KB. If the
source table contains larger LOB columns LOB data should be exported into separate a file
(or multiple files) by specifying the LOBSINFILE modifier. This is the only way to avoid data
truncation.

If you want to use the export data from a partitioned database, you can use db2batch to
complete the task at each database partition (see 2.3.3, “DB2 db2batch” on page 14, for
more information). The SELECT statement must be able to return only the data found locally.

A table can be saved by using the Export utility and specifying the IXF file format. The saved
table (including its indexes) can then be recreated using the Import utility.

For further information consult Chapter 1 of DB2 UDB Data Movement Utilities Guide and
Reference Version 8, SC09-4830.

5.2 Using Export utility
This section describes the use of the DB2 UDB Export utility for distributed platforms. We
discus how to prepare your database before using the Export, the restrictions on the utility,
and some examples on its use.

Preparing for the Export
� You must be connected to (or be able to implicitly connect to) the database from which the

data will be exported.

� You must have SYSADM or DBADM authority, or CONTROL or SELECT privilege for each
table participating in the export operation.

� Since the utility will issue a COMMIT statement, you should complete all transactions and
release all locks by performing either a COMMIT or a ROLLBACK before invoking Export.

� Note that this utility does not support tables with structured type columns.
80 Moving Data Across the DB2 Family

5.2.1 Invoking the Export utility
There are three ways you can call the Export utility:

� Command Line Processor (CLP)
� Export Notebook in the Control Center
� Application Programming Interface (API) - sqluexpr

Using the Command Line Processor
From the CLP issue the following command:

export to staff.ixf of ixf messages staff.msg select * from userid.staff

In this simple example:

� ‘staff.ixf’ is the output file, its format is specified as PC/IXF
� All messages returned by the utility will be placed in file ‘staff.msg’
� Select statement indicates that all source table columns be included in the output

Large object data should be exported as following:

export to emp_photo.del of del lobs to lobs/ lobfile emp_photo modified by lobsinfile
messages emp_photo.msg select empno, picture from emp_photo

In this example:

� Only two columns (empno and picture) are exported
� Non LOB data is exported to a delimited ASCII file ‘emp_photo.del’
� Utility messages are placed in file ‘emp_photo.msg’
� As LOBSINFILE modifier is used, LOB data stored in an external file
� LOB data is stored in the lobs directory, and the base name used is emp_photo (if multiple

lob files need to be used, a three digit sequence number will be appended to this base
name.)

Prior to DB2 UDB V7.2 FixPak 7, Export utility creates a single file for each LOB object (in
later releases a lob file contains multiple LOB objects, as limited by the file system file size
restrictions.) If a large number of records containing LOB data needs to be exported both
‘lobs to’ and ‘lobfile’ can be specified. The utility can export up to 1000 lob objects for each
basename specified by the lobfile parameter. Multiple lob paths can be used to circumvent file
system space limitations:

export to emp_resume.ixf of ixf
lobs to lobs1/, lobs2/
lobfile e_r1.lob, e_r2.lob, e_r3.lob, e_r4.lob, e_r5.lob, e_r6.lob, e_r7.lob, e_r8.lob,
e_r9.lob, e_r10.lob, e_r11.lob, e_r12.lob, e_r13.lob, e_r14.lob, e_r15.lob, e_r16.lob,
e_r17.lob, e_r18.lob, e_r19.lob, e_r20.lob
modified by lobsinfile messages emp_resume.msg select * from emp_resume

In this example:

� A maximum of 20000 records can be exported because 20 basenames for LOB files are
specified.

� LOB data is exported to lobs1 directory, lobs2 directory is used only if the file system
hosting lobs1 fills up.

Using the Export Notebook of the Control Center
Screen shots in this chapter show the Control Center in DB2 UDB V8. If you run a different
version of DB2 UDB, graphical interfaces may not be exactly as shown:

1. From the Control Center, expand the object tree until you find the Tables folder.
Chapter 5. Export and Import with DB2 distributed 81

2. Click on the Tables folder. Any existing tables are displayed in the pane on the right side of
the window (the contents pane). See Figure 5-1 on page 82.

3. Right-click the table you want in the contents pane, and select Export from the pop-up
menu. The Export notebook opens.

4. Use the Target tab to input the target and message file names, select the file type and
choose the select statement to be used by the Export utility. DEL file modifiers can be
specified by clicking the Options button. Figure 5-2 on page 83.

5. Use the Columns tab to select and reorder the output columns (this feature is available
only for IXF files) and to specify LOB options. Figure 5-3 on page 83.

6. Use the Schedule tab to create a scheduled task in the Task Center. Figure 5-4 on
page 84.

7. Click the Show Command button at any time to display the syntax of the prepared export.

.

Figure 5-1 The expanded table view in the Control Center
82 Moving Data Across the DB2 Family

Figure 5-2 The Target tab of the Export Notebook

Figure 5-3 The Columns tab of the Export Notebook
Chapter 5. Export and Import with DB2 distributed 83

Figure 5-4 The Schedule tab of the Export Notebook

If you need more information on the operation of the Control Center you can view the online
Help facility inside the control center.

Export API - sqluexpr
Export utility can be invoked through the Application Programming Interface. A database
connection needs to exist before the export is performed (alternatively, implicit connection
needs to be enabled.)

Examples of the export API invocation exist in the samples directory, inside the sqllib
directory. The files of interest are samples/c/expsamp.sqc, samples/c/impexp.sqc and
samples/c/tload.sqc (DB2 UDB V7), and samples/c/tbload.sqc, samples/c/tbmove.sqc and
samples/cpp/tbmove.sqC (DB2 UDB V8.)

The parameters for the Export utility API can be found in the IBM DB2 UDB Administrative
API Reference, SC09-4824.

5.3 Import utility overview
The Import utility uses SQL insert statements to insert data from an input file into a table or
updatable view. If the table or view receiving the imported data already contains data, you can
either replace or append to the existing data.

Import utility runs on the client node, hence the source file has to be located on the client
node as well. Version of the utility being executed depends on the version of DB2 installed on
the client machine.

When invoking the Import utility you need to specify the following:

� The path, name, and type of the input file. Import utility supports DEL, ASC, PC/IXF, and
WSF file formats.
84 Moving Data Across the DB2 Family

� Name or alias of target table or a view. If the table already exists, data can be appended or
replaced. If the target table does not exist, it can be created by the Import utility provided
that the source file type is PC/IXF.

� When working with typed tables, you may need to provide the method or order by which to
progress through all of the structured types. The order of proceeding top-to-bottom,
left-to-right through all of the supertables and subtables in the hierarchy is called the
traverse order. This order is important when moving data between table hierarchies,
because it determines where the data is moved in relation to other data.

You can use the Import utility to recreate a table that was saved through the Export utility. The
table must have been exported to an IXF file, and the SELECT statement used during the
export operation must have met certain conditions (for example, no column names can be
used in the SELECT clause; only select * is permitted). When creating a table from an IXF
file, not all attributes of the original table are preserved. For example, referential constraints,
foreign key definitions, and user-defined data types are not retained.

By default, the Import utility is bound to the database with isolation level RR (repeatable
read). If a large number of rows is being imported into a table, the existing lock may escalate
to an exclusive lock. If another application working on the same table is holding some row
locks, a deadlock will occur if the lock escalates to an exclusive lock. To avoid this, the Import
utility requests an exclusive lock on the table at the beginning of its operation. Holding a lock
on the table has two implications. First, if there are other applications holding a table lock, or
row locks on the Import target table, the Import utility will wait until all of those applications
commit or roll back their changes. Second, while Import is running, any other application
requesting locks will wait until the Import operation has completed.

In a partitioned database environment, the Import utility can be enabled to use buffered
inserts. This reduces the messaging that occurs when data is imported, resulting in better
performance; however, since details about a failed buffered insert are not returned, this option
should only be enabled if you are not concerned about error reporting.

For further information consult Chapter 2 of DB2 UDB Data Movement Utilities Guide and
Reference Version 8, SC09-4830.

5.4 Using the Import utility
This section describes the use of the DB2 UDB Import utility for distributed platforms. We
discus how to prepare your database before using the Import, the restrictions on the utility,
and some examples on its use.

Preparing for the Import
� You must be connected to (or be able to implicitly connect to) the database into which the

data will be imported.

� The authority needed to perform Import:

– To create a new table, you must have SYSADM authority, DBADM authority, or
CREATETAB privilege for the database

– To replace data in an existing table or view, you must have SYSADM authority, DBADM
authority, or CONTROL privilege for the table or view

– To append data to an existing table or view, you must have SELECT and INSERT
privileges for the table or view.
Chapter 5. Export and Import with DB2 distributed 85

� Since the utility will issue a COMMIT or a ROLLBACK statement, you should complete all
transactions and release all locks by performing either a COMMIT or a ROLLBACK before
invoking Import.

Restrictions
� This utility does not support the use of nicknames.

� If the existing table is a parent table containing a primary key that is referenced by a
foreign key in a dependent table, its data cannot be replaced, only appended to.

� You cannot perform an Import replace operation into an underlying table of a materialized
query table defined in refresh immediate mode.

� You cannot Import data into a system table, a summary table, or a table with a structured
type column.

� You cannot Import data into declared temporary tables.

� Views cannot be created through the Import utility.

� Referential constraints and foreign key definitions are not preserved when creating tables
from PC/IXF files. (Primary key definitions are preserved if the data was previously
exported using SELECT *.)

� Because the Import utility generates its own SQL statements, the maximum statement
size of 64KB may, in some cases, be exceeded.

� Import utlity logs all record inserts. If log space is scarce specify a commitcount option to
have the utility periodically issue commit statements to empty the logs and release locks.

� Import utility holds an exclusive lock on the target table. If concurrency is an issue, use
Load with ALLOW READ ACCESS option to give other applications concurrent (read only)
access to the target table.

5.4.1 Invoking the Import utility
There are three ways you can call the Import utility:

� Command Line Processor (CLP)
� Import Notebook in the Control Center
� Application Programming Interface (API) - sqluimpr

Using the Command Line Processor
To create a copy of the staff table using the Import utility:

import from staff.ixf of ixf commitcount 100 messages staff.msg replace_create into
staff2

In this example:

– Data is imported from a PC/IXF file staff.ixf, create option is only supported for this file
type.

– If the target table staff2 exists its data will be replaced by the records from the input file;
if the target table does not exist it will be created using the DDL information contained
in the PC/IXF file.

Note: If an error occurs during an IMPORT REPLACE operation, the original data in the
table is lost. If COMMITCOUNT was specified, data already committed will be available
immediately after the failure. Retain a copy of the input data to allow the Import
operation to be restarted.
86 Moving Data Across the DB2 Family

– A commit statement will be executed after every 100 records are imported.

– Utility messages will be placed into file ‘staff.msg’.

To Import data from a positional ASCII file, with LOB data saved in an external file:

import from emp_photo.asc of asc lobs from lobs/ modified by lobsinfile reclen= 31
method l (1 6, 8 17, 19 30) null indicators (7, 18, 31) messages emp_photo.msg insert
into emp_photo

In this example:

– The target table is truncated before any new data is inserted, note that rows may still
be rejected if there are unique index violations.

– Since the input data is ASC a method parameter must specify columns’ positions
inside the fixed length records.

– Positions of null indicators are also specified.

– LOB data is read from the lobs directory.

If an unique index is defined on the target table insert_update mode can be used:

import from emp_resume.ixf of ixf messages emp_resume.msg insert_update into emp_resume

In this example records from the input file will be inserted if there is no primary key match,
if a primary key match is found table record will be updated with new data.

To improve performance in partitioned environments:

connect to sample
bind db2uimpm.bnd insert buf
import from staff.del of del modified by compound=20 messages staff.msg insert into
staff

In this example the Import packages were rebound to use buffered inserts. Compound
inserts are used to improve performance, instead of a single statement, a set of 20 insert
statements is passed from the client to the server in a single request.

Using the Import Notebook of the Control Center

Screen shots in this chapter show the Control Center in DB2 UDB V8. If you run a different
version of DB2 UDB, graphical interfaces may not be exactly as shown:

� From the Control Center, expand the object tree until you find the Tables folder.

� Click the Tables folder. Any existing tables are displayed in the pane on the right side of
the window (the contents pane.)

� Right-click the table you want in the contents pane, and select Import from the pop-up
menu. The Import notebook opens.

� Use the File tab to input the output and message file names, select the output file type and
import mode, and choose ASCII file modifiers (the Options button). See Figure 5-5 on
page 88.

� Use the Columns tab to define the mapping between input data and target columns;
choose identity and generated column behavior and set LOB options. See Figure 5-6 on
page 88.

� A graphical column mapper is available when ASC file is used. See Figure 5-7 on
page 89.
Chapter 5. Export and Import with DB2 distributed 87

Figure 5-5 The File tab of the Import Notebook

Figure 5-6 The Columns tab of the Import Notebook
88 Moving Data Across the DB2 Family

Figure 5-7 The Graphical Column Mapper

If you need more information on the operation of the Control Center you can view the online
Help facility inside the control center.

Import API - sqluimpr
Import utility can be invoked through the Application Programming Interface. A database
connection needs to exist before the Import is performed (alternatively, implicit connection
needs to be enabled.)

Examples of the Import API invocation exist in the samples directory, inside the sqllib
directory. The files of interest are samples/c/expsamp.sqc and samples/c/impexp.sqc (DB2
UDB V7), and samples/c/dtformat.sqc, samples/c/tbmove.sqc and samples/cpp/tbmove.sqC
(DB2 UDB V8.)

The parameters for the Import utility API can be found in the IBM DB2 UDB Administrative
API Reference, SC09-4824.
Chapter 5. Export and Import with DB2 distributed 89

90 Moving Data Across the DB2 Family

Chapter 6. Load with DB2 Distributed

In this chapter, we discuss the DB2 UDB Load utility for distributed platforms, and the new
features introduced in DB2 UDB V8. The advantages and disadvantages of using this utility
are also analyzed.

These are the topics contained in this chapter:

� Load utility overview
� AutoLoader utility
� Using the Load utility
� Comparing Load and Import
� Load and Import functional comparison
� When to use Load or Import utilities

6

© Copyright IBM Corp. 2003. All rights reserved. 91

6.1 Load utility overview
The Load utility moves data from files, named pipes, or cursors into a DB2 table. Input data
sources can reside either on one of the database nodes, or on a remotely connected client.
The table being loaded must exist. If the target table already contains data, you can replace or
append to the existing data.

The Load utility is capable of efficiently moving large quantities of data into empty tables, or
into tables that already contain data. It can handle most data types, including large objects
(LOBs), user-defined types (UDTs), and DATALINKs. It is much faster than the import utility,
because it writes formatted pages directly into the database, while the import utility performs
SQL INSERTs. It does not fire triggers, and does not perform referential or table constraints
checking (other than validating the uniqueness of the indexes.)

The Load utility runs on the server. The version of the utility being executed depends on the
version of DB2 installed on the server machine. There are restrictions on the Load options
available if Load is invoked through a down level client.

There are several processes that happen internally to ensure the integrity of the data and the
efficient performance of the database. On each partition where the target table resides, the
work performed by the Load utility can be categorized into different phases. In this section, we
will discuss these per-partition phases.

6.1.1 Per-partition Load operation
There are four distinct phases of the Load operation for each partition where the target table
resides. Of the four phases, only the Load phase is guaranteed to take place. Execution of
any of the other three phases depends on the characteristics of the table, the data being
loaded, and the Load options specified. All of the phases are executed automatically by the
Load utility once the Load request is made.

Phase 1: Load phase
During the Load phase, data is loaded into the table, and index keys and table statistics are
collected, if necessary. Consistency points are established at intervals specified through the
SAVECOUNT parameter in the LOAD command. For each consistency point reached, a Load
message is generated, indicating how many input rows were successfully loaded up to that
time. For DATALINK columns defined with FILE LINK CONTROL, link operations are
performed for non-NULL column values, and violations are recorded so that the rows that
caused them can be removed in the delete phase.

Messages about rejected rows are written to the Load message file. Following the completion
of the Load process, review these messages and correct problems appropriately.

If a failure occurs during the Load phase, you can restart the Load operation; the RESTART
option automatically restarts the Load operation from the last successful consistency point.
The TERMINATE option rolls back the failed Load operation. Note that REPLACE option
requires a table truncation before new data is inserted. This truncation is irreversible.

Phase 2: Build phase
If index key processing was performed during the Load phase, the build phase will follow.
During this phase, indexes are built based on the index keys collected during the Load phase.
The index keys are sorted during the build phase, and index statistics are collected (if the
STATISTICS YES with INDEXES option was specified). The statistics are similar to those
collected through the RUNSTATS command. Additionally, while unique indexes are being
92 Moving Data Across the DB2 Family

built, unique key violations are recorded. Rows that cause these violations will be removed in
the delete phase.

If a failure occurs during the build phase, the RESTART option automatically restarts the Load
operation at the appropriate point.

Phase 3: Delete phase
Rows that caused violations (whether through unique key violations or violations through
DATALINK columns defined with FILE LINK CONTROL) will be deleted in the delete phase.
Unique key violations are placed into the exception table, if one was specified. Following the
completion of the Load process, review these messages, resolve any problems, and insert
corrected rows into the table.

If a failure occurs during the delete phase, the RESTART option automatically restarts the
Load operation at the appropriate point.

Phase 4: Index copy phase
If a Load was invoked with the ALLOW READ ACCESS option in conjunction with the USE
option, index data was temporarily written to a table space specified by the USE option. The
index copy phase will take place at the end of Load to copy the index data from that table
space to the proper table space where the index was defined.

If a failure occurs during the index copy phase, the RESTART option automatically restarts
the Load operation at the appropriate point.

Note: Each deletion event is logged. If you have a large number of records that violate the
uniqueness condition, the log could fill up during the delete phase. Load utility also logs
splits done on index object pages.
Chapter 6. Load with DB2 Distributed 93

Figure 6-1 The four phases of the per-partition Load process

6.1.2 Load Recovery
If the target table’s database is retaining logs for recovery purposes (in other words, its
logretain configuration parameter set to on), it is possible to specify whether a Load should
keep a copy of the changes made. This is done to enable roll forward recovery of the
database. This option is not supported if forward log recovery is disabled for the database;
that is, if the database configuration parameters logretain and userexit are disabled. If no
copy is made, and forward log recovery is enabled, the tablespace is left in a backup pending
state at the completion of the Load operation.

When logretain is on, loads are run with one of the following recovery options:

� COPY YES
– A copy of the loaded data is generated as the Load takes place (COPY YES.)

Subsequent roll forward processing will process the copy and update the table
accordingly.

� COPY NO
– No copy is taken (which will speed up processing), however, the tablespaces where the

loaded table is defined are placed in backup pending. This means that the only
allowable updates to those tablespaces will be through running the Load utility.
Performing reads to tables in those table spaces is still permitted, however. The backup
pending state persists until a backup of those tablespaces (or the entire database) is
taken.

� NONRECOVERABLE
– No copy is taken, however, the tablespaces where the loaded table is defined are not

placed in backup pending. This is meant as a convenience so that access to table
spaces will not be restricted after loads are performed. However, there is risk
associated with this convenience. If roll forward processing encounters a

Load Build Delete Index
copy

- Data is loaded
on tables

- Index keys
and statistics
are collected

- Index keys are
sorted

- DATALINK
violations are
recorded

- Indexes are
produced based
on the index
keys collected
during the Load
phase

- Unique key
violations are
recorded

- Index data is
copied from a
user specified
table space to
the index’s table
space

- Rows that
cause a unique
key violation or a
DATALINK
violation are
deleted

- Unique key
violations are
placed in the
exception table
94 Moving Data Across the DB2 Family

nonrecoverable Load to a table, it will place that table in a drop pending state, so that
after the roll forward completes, the only operation allowed to that table will be to drop
it.

6.2 AutoLoader utility
If the target table resides in a partitioned database, each row of data needs to be partitioned
to the correct partition before being loaded. Starting with DB2 UDB V7, the AutoLoader
executable db2atld is used to load data into a table in a partitioned database environment. It
can be used in one of the following modes:

SPLIT_AND_LOAD

Data is partitioned (perhaps in parallel) and loaded simultaneously on the corresponding
database partitions.

SPLIT_ONLY

Data is partitioned (perhaps in parallel) and the output is written to files, one file for each
partition that the table is defined on. Each output file contains header information that
includes the partition number that it is associated to, and the table’s partitioning map. This
is done so that db2atld can later be run in the LOAD_ONLY mode to load the output files.
No loading takes place.

LOAD_ONLY

Output files generated by a previous run of db2atld in the SPLIT_ONLY mode are loaded
simultaneously on the corresponding database partitions. No partitioning takes place.

ANALYZE

An optimal partitioning map with even distribution across all database partitions is
generated, according to the provided data. This map can be used to redefine a table’s
partitioning scheme to prevent a skewed distribution.

In its most common mode, SPLIT_AND_LOAD, db2atld partitions input data into as many
output sockets as there are database partitions in which the target table is defined. While
doing this, it performs a Load operation (see 6.1.1, “Per-partition Load operation” on page 92
for details) concurrently on each of these partitions, where each Load reads partitioned data
from its designated output socket. A key feature of db2atld is that it uses direct TCP/IP
communication using sockets for all data transfer required during both the partitioning and
loading processes. It is also capable of running multiple processes to parallelize the
partitioning of data, thereby significantly improving performance.

db2atld supports delimited (DEL) and positional (ASC) ASCII files. It is not possible to use
this utility to load PC/IXF files.

Input parameters for db2atld are set in the AutoLoader configuration file. An example is
shown in Section 6.4, “Using the Load utility” on page 99.

For further information on the AutoLoader executable please refer to Chapter 4 of the DB2
UDB Data Movement Utilities Guide and Reference Version 7, SC09-4830.

6.3 New features in DB2 distributed V8
In this section we provide a brief introduction to the new feature available with DB2 UDB V8.
Detailed descriptions can be found in Chapters 3 and 4 of the DB2 UDB Data Movement
Utilities Guide and Reference Version 8, SC09-4830.
Chapter 6. Load with DB2 Distributed 95

6.3.1 Increased table space access during Load
Starting with Version 8, the Load utility no longer quiesces the tablespaces that the table to be
loaded are defined on. It also no longer places those table spaces in Load pending for the
duration of the Load. This means that all other tables in those table spaces are fully
accessible (both reading and writing). The only table space state that can be set as a result of
a Load is the backup pending state (see “COPY NO” on page 94 for details). Access to the
table being loaded is disallowed unless the newly introduced “ALLOW READ ACCESS”
option of Load is specified (see 6.3.2, “Load with read access” on page 96 for details.)

6.3.2 Load with read access
In most cases, the Load utility uses table level locking to restrict access to tables. The level of
locking depends on whether or not the Load operation allows read access. A Load operation
in ALLOW NO ACCESS mode will use an exclusive lock (Z-lock) on the table for the duration
of the Load. An Load operation in ALLOW READ ACCESS mode acquires and maintains a
share lock (S-lock) for the duration of the Load operation, and upgrades the lock to an
exclusive lock (Z-lock) when data is being committed.

Before a Load operation in ALLOW READ ACCESS mode begins, the Load utility will wait for
all applications that began before the Load operation to release locks on the target table.
Since locks are not persistent, they are supplemented by table states that will remain even if a
Load operation is aborted. These states can be checked by using the LOAD QUERY
command. By using the LOCK WITH FORCE option, the Load utility will force applications
holding conflicting locks off the table that it is trying to load into.

At the beginning of a Load operation in ALLOW READ ACCESS mode, the Load utility
acquires a share lock (S-lock) on the table. It holds this lock until the data is being committed.
The share lock allows applications with compatible locks to access the table during the Load
operation. For example, applications that use read only queries will be able to access the
table, while applications that try to insert data into the table will be denied. When the Load
utility acquires the share lock on the table, it will wait for all applications that hold locks on the
table prior to the start of the Load operation to release them, even if they have compatible
locks. Since the Load utility upgrades the share lock to an exclusive (Z-lock) when the data is
being committed, there may be some delay in commit time while the Load utility waits for
applications with conflicting locks to finish.

6.3.3 Load into partitioned databases
Starting with DB2 UDB V8, all the functionality of the db2atld executable (autoloader) has
been incorporated into the Load utility. Some of the new features of the Load utility in a
partitioned database environment (also known as partitioned load) include:

� Partitioned load can now be performed from the Command Line Processor (CLP) or
invoked through an calling the db2Load() API from an application program.

� Partitioning of the input data is possible even if the target table’s partitioning key includes
generated columns or column default values.

� The CLIENT option of Load is supported for a partitioned load.

� Cross Loader functionality is supported for a partitioned load (see 6.3.4, “Cross Loader
option” on page 98 for details.)

The db2atld executable is no longer needed, since all of the modes and options supported by
the AutoLoader can now be used with the Load utility to achieve the same results. To
preserve backward compatibility, however, a db2atld executable is included in DB2 UDB V8. It
96 Moving Data Across the DB2 Family

reads the AutoLoader configuration file and invokes the new db2Load() API to perform a
partitioned load. This new implementation is transparent to the user.

It is recommended that the messages option be specified for a partitioned load. If it is not
specified, Load will only display the final sqlcode reported by each of the loading and
partitioning processes, and other warnings and errors encountered during processing will not
be made available to the user.

Available modes for Version 8 partitioned database Load
The supported modes of the Load utility in a partitioned database environment are as follows:

� PARTITION_AND_LOAD

Equivalent to the SPLIT_AND_LOAD mode for db2atld (see “SPLIT_AND_LOAD” on
page 95 for more details.)

� PARTITION_ONLY

Equivalent to the SPLIT_ONLY mode for db2atld (see “SPLIT_ONLY” on page 95 for more
details.)

� LOAD_ONLY

Same as the LOAD_ONLY mode for db2atld (see “LOAD_ONLY” on page 95 for more
details.)

� LOAD_ONLY_VERIFY_PART

This is a newly introduced mode. The LOAD_ONLY_VERIFY_PART mode is similar to the
LOAD_ONLY mode, in that one file is loaded for each partition that the target table is
defined on. However, each file must not contain the header information that is normally
present in an output file generated by the PARTITION_ONLY mode. For each partition
where a Load operation is taking place, extra work will be performed during the Load
phase (see , “Phase 1: Load phase” on page 92 for more details) to verify that each row
read actually belongs to the partition it is being read on. Rows that are found to be on the
wrong partition are rejected.

� ANALYZE

Same as the ANALYZE mode for db2atld (see “ANALYZE” on page 95 for more details.)

Loading IXF files in a Version 8 partitioned database environment
Partitioning is not supported for PC/IXF files. However, starting Version 8, it is possible to load
PC/IXF files into a partitioned database environment using the LOAD_ONLY_VERIFY_PART
mode. The following is an example of how to accomplish this:

Suppose a user wishes to load a PC/IXF datafile “myfile.ixf” into a table “mytable” that is
defined on three partitions -- 0, 1, and 2. A directory “/mypath” exists and is writable by the
user on all three partitions. The user must:

– On each partition, make a complete copy of myfile.ixf, whose name is myfile.ixf.nnn,
where nnn is the partition number which must be 3 digits (padded with zeroes if
necessary). The copy should be placed in a directory that exists on all partitions. Since
/mypath is one such directory, the copy can be placed there.

– Issue a Load command that is similar to the following:

Load from myfile.ixf of ixf replace into mytable partitioned db config mode
LOAD_ONLY_VERIFY_PART part_file_location /mypath

Note that each partition will be attempting to load a complete copy of the PC/IXF datafile. This
means that many rows will be rejected in each partition. The number of rows read will be n*r ,
where n is the number of partitions where the target table is defined on, and r is the number of
Chapter 6. Load with DB2 Distributed 97

rows in the PC/IXF datafile. The number of rows rejected will be at least r*(n-1), which
represents the total number of rows that were found to be on the wrong partition.

6.3.4 Cross Loader option
The Cross Loader, also known as “Load From Cursor”, allows data resulting from an SQL
query to be directly loaded into a target table without the need to create an intermediate
exported file. The SQL query used by Cross Loader operates under a connection to the
database in which the target table resides. This does not mean, however, that if a cross
loading from a source table to a target table is being performed, the source and target table
must reside in the same database. Through Federated Databases a nickname for the source
table can be created in the target table’s database, so that the SQL query used by the
crossload (into the target table) can perform a select out of the nickname. For details on
setting up a federated database, see Appendix A, “Defining a Federated Database” on
page 299.

To execute a crossload through CLP, a cursor must first be declared against an SQL query.
Once this is done, simply execute the Load specifying the cursoriness as the source, and
CURSOR as the source type. Please refer to 6.4.1, “Invoking the Load utility” on page 100 for
an example.

The same result can be achieved through calling the db2Load API in an embedded SQL
application. For an example, see Example 6-1 on page 108.

6.3.5 Generated column support
The Load utility can be used to load data into a table containing an identity column. If no
identity-related file type modifiers are used, the utility works according to the following rules:

� If the identity column is GENERATED ALWAYS, an identity value is generated for a table
row whenever the corresponding row in the input file is missing a value for the identity
column, or a NULL value is explicitly given. If a non-NULL value is specified for the identity
column, the row is rejected (SQL3550W).

� If the identity column is GENERATED BY DEFAULT, the Load utility makes use of
user-supplied values, if they are provided; if the data is missing or explicitly NULL, a value
is generated.

The Load utility does not perform any extra validation of user-supplied identity values beyond
what is normally done for values of the identity column's data type (that is, SMALLINT, INT,
BIGINT, or DECIMAL). Duplicate values will not be reported.

The Load utility can be used to load data into a table containing (non-identity) generated
columns. The column values will be generated by this utility. If no generated column-related
file type modifiers are used, the Load utility works according to the following rules:

� Values will be created for generated columns when the corresponding row of the data file
is missing a value for the column or a NULL value is supplied. If a non-NULL value is
supplied for a generated column, the row is rejected (SQL3550W).

� If a NULL value is created for a generated column that is not nullable, the entire row of
data will be rejected (SQL0407N). This could occur if, for example, a non-nullable
generated column is defined as the sum of two table columns that include NULL values in
the data file.
98 Moving Data Across the DB2 Family

6.3.6 Multi-dimensional clustering support
Starting with DB2 UDB V8, table data can be clustered along multiple dimensions. Loading
into clustered tables is fully supported. The following restrictions apply to multi-dimensional
clustering (MDC) tables:

� The SAVECOUNT option of the LOAD command is not supported.

� The TOTALFREESPACE file type modifier is not supported since these tables manage
their own free space.

When using the LOAD command with MDC, violations of unique constraints will be handled
as follows:

� If the table included a unique key prior to the load operation and duplicate records are
loaded into the table, the original record will remain and the new records will be deleted
during the delete phase.

� If the table did not include a unique key prior to the load operation and both a unique key
and duplicate records are loaded into the table, only one of the records with the unique key
will be loaded and the others will be deleted during the delete phase.

Performance considerations
To improve the performance of the Load utility when loading MDC tables, the UTIL_HEAP_SZ
database configuration parameter should be set to a value that is 10-15% higher than usual.
This will reduce disk I/O during the clustering of data that is performed during the load phase.
When the DATA BUFFER option of LOAD command is specified, its value should also be
increased by 10-15%. If the LOAD command is being used to load several MDC tables
concurrently, the UTIL_HEAP_SZ configuration parameter should be increased accordingly.

MDC load operations will always have a build phase since all MDC tables have block indexes.

During the load phase, extra logging for the maintenance of the block map will be performed.
There are approximately two extra log records per extent allocated. To ensure good
performance, the LOGBUFSZ database configuration parameter should be set to a value that
takes this into account.

A system temporary table with an index is used to load data into MDC tables. The size of the
table is proportional to the number of distinct cells loaded. The size of each row in the table is
proportional to the size of the MDC dimension key. To minimize disk I/O caused by the
manipulation of this table during a load operation, ensure that the buffer pool for the
temporary table space is large enough.

6.4 Using the Load utility
This section describes the use of the DB2 UDB Load utility for distributed platforms. We
discuss how to prepare your database before using the Load, the restrictions on the utility,
and some examples on its use.

Preparing for the Load
� You must be able to connect to the target database.

� The authority needed to perform the Load is any of the following:

Note: There is no explicit technique for determining which record will be loaded and
which will be deleted.
Chapter 6. Load with DB2 Distributed 99

– sysadm

– dbadm

– Load authority on the database and insert privilege on the table. Delete privilege on the
table would needed if the REPLACE mode, TERMINATE mode or REPLACE mode is
invoked in the Load utility.

� There should be no locks existing on the target table.

� All transactions or unit of work must be complete. If there are some unfinished
transactions a COMMIT or a ROLLBACK must first be performed.

� Source data should be sorted in the way that you intend it to be loaded on the target
database. This is an optional step to perform if you intend to load your data in a particular
sequence.

� If your table is not using Multi-Dimensional Clustering(MDC) and clustering is required,
you should sort the data with respect to the clustering index before loading it.

Restrictions
The Load utility cannot perform the following operations:

� Load data into a declared temporary table

� Load data into nicknames

� Load data into hierarchical tables

� Load data into typed tables, or tables with structured type columns

� Create tables before loading into them

� Load data into a database accessed through DB2 Connect or a server level that is not
supported

� Activate triggers on newly loaded rows, business rules associated with triggers are not
enforced by the Load utility.

6.4.1 Invoking the Load utility
There are three ways you can call the Load utility:

� Command Line Processor (CLP)
� Load Wizard in the Control Center
� Application Programming Interface (API) - db2Load() in DB2 UDB V8 or sqluload() in DB2

UDB V7

Using the Command Line Processor
For the following Load command:

load from inputtab.ixf of ixf messages inputerr.msgs insert into userid.staff copy yes use
tsm data buffer 4000

In this example:

– ‘inputtab.ixf’ is the source PC/IXF file.

– ‘inputerr.msgs’ is the file where warning and error messages are placed. While loading
into a single partition database, if the messages option is not specified, messages will
be sent to the standard output, which can affect performance.

Note: If an error occurs during a LOAD REPLACE operation, the original data in the table
is lost. Retain a copy of the input data to allow the Load operation to be restarted.
100 Moving Data Across the DB2 Family

– A copy of the inserted data is stored in Tivoli Storage Manager. A copy target can only
be specified for databases with either the LOGRETAIN or USEREXIT database
configuration parameters set.

– 4,000 4 KB pages of buffer space from the utility heap are to be used during the Load
operation.

Another example of using Load in the CLP is:

load from inputtab.ixf of ixf messages inputerr.msgs tempfiles path /u/myuser replace into
staff

In this example:

– Table data is being replaced, as specified by the ‘replace into’ option.

– The TEMPFILES PATH parameter is used to specify /u/myuser as the server path into
which temporary files will be written.

The following example performs an “online” Load, allowing other applications read access to
table data. The example is specific to DB2 UDB V8:

load from inputtab.ixf of ixf messages inputerr.msgs
insert into staff indexing mode rebuild allow read access use tmpspace

In this example:

– Load is online, as ‘allow read access’ is specified.

– Table indices are temporarily rebuilt in a table space named tmpspace before the index
table space data is copied over to its defined location.

The following example loads a delimited ASCII file into a table residing in a partitioned
database. Therefore, the example is specific to DB2 UDB V8:

load from inputtab.del of del messages inputerr.msgs
replace into staff partitioned db config mode partition_and_load
partitioning_dbpartnums(0,1) output_dbpartnums(1,2,3)

In this example:

– Options specific to partitioned database environments are specified after the
‘partitioned db config’ parameter.

– As the PARTITION_AND_LOAD mode is used, data is both partitioned and loaded
simultaneously.

– Data partitioning is performed on partitions 0 and 1.

– Load operations are being performed on partitions 1, 2 and 3.

The following example, which is specific to DB2 UDB V8, performs a cross load, loading the
contents from one table into another.

connect to mydb
DECLARE mycurs CURSOR FOR SELECT TWO,ONE,THREE FROM abc.table1
LOAD FROM mycurs OF cursor messages messages.txt INSERT INTO abc.table2
connect reset

In this example:

Note: These examples use relative path names for the Load input file. Relative path names
are only allowed on Load requests from a locally connected client. The use of fully qualified
path names is recommended.
Chapter 6. Load with DB2 Distributed 101

– Tables abc.table1 and abc.table2 in database mydb exist with the following column
definitions:

abc.table1:
ONE INT
TWO CHAR(10)
THREE DATE

abc.table2:
ONE VARCHAR(20)
TWO INT
THREE DATE

– All the data contained inside abc.table1 was loaded into abc.table2, saving Load
messages to the file messages.txt:

The complete syntax for the Load command can be interactively checked from the online
Command Reference or by issuing ‘db2 ? load’ command from the command window.

Using the Load Notebook of the Control Center
Screen shots in this chapter show the Control Center in DB2 UDB V8. If you run a different
version of DB2 UDB, graphical interfaces may not be exactly as shown.

1. From the Control Center, expand the object tree until you find the Tables folder.

2. Click on the Tables folder. Any existing tables are displayed in the pane on the right side of
the window (the contents pane.)

3. Click the right mouse button on the table you want in the contents pane, and select Load
from the pop-up menu. The Load Wizard opens.

4. Use the Type page to choose load mode and read access options. See Figure 6-2.

Figure 6-2 Type page of the Load Wizard
102 Moving Data Across the DB2 Family

5. Use the File page to select file type and location and to choose source file and message
file names. See Figure 6-3.

Figure 6-3 Files page of the Load Wizard

6. Use the Columns page to define the mapping between input data and target columns,
choose identity and generated column behavior and set LOB options. See Figure 6-4.
Chapter 6. Load with DB2 Distributed 103

Figure 6-4 Columns page of the Load Wizard

7. As in the Import Notebook, A graphical column mapper is available when ASC file is used.
Figure 5-7 on page 89.

8. Use the Performance page to choose minimal checking (FASTPARSE modifier), check
pending option and force option, to set the index build mode and statistics mode, and to
select free page options. See Figure 6-5.
104 Moving Data Across the DB2 Family

Figure 6-5 Performance page of the Load Wizard

9. Use the Recovery page to set the crash recovery options and the forward recovery options
(Load copy options). See Figure 6-6.
Chapter 6. Load with DB2 Distributed 105

Figure 6-6 Recovery page of the Load Wizard

10.Use the Options page to set more advanced Load options. Hint section gives the
explanation of the selected option. See Figure 6-7.

11.Use the Schedule page to create a scheduled task in the Task Center. See Figure 6-8.

12.Before executing the command, Review the selected Load task shown on the Summary
page. Figure 6-9.
106 Moving Data Across the DB2 Family

Figure 6-7 Options page of the Load Wizard

Figure 6-8 Schedule page of the Load Wizard
Chapter 6. Load with DB2 Distributed 107

Figure 6-9 Summary page of the Load Wizard

If you need more information on the operation of the Control Center you can view the online
Help facility inside the control center.

Load API
The Load utility can be invoked through the Application Programming Interface. A database
connection needs to exist before the Load is performed.

As of DB2 UDB V8, the recommended Load API is db2Load(). For previous versions,
sqluload() is used.

Examples of the Load API invocation exist in the samples directory, inside the sqllib directory.
The files of interest are samples/c/tload.sqc and samples/cobol/tload.sqb (DB2 UDB V7), and
samples/c/tbload.sqc, samples/c/tbmove.sqc and samples/c/dtformat.sqc (DB2 UDB V8.)

Example 6-1 demonstrates how the db2Load() API can be used to perform a cross load.

Example 6-1 Embedded SQL — Example of Cross Loader usage

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <db2ApiDf.h>
#include <sqlutil.h>

int loadAndDisplayResults
(
 db2LoadStruct *pLoadStruct,
 struct sqlca *pSqlca
)
{

108 Moving Data Across the DB2 Family

 int rc = 0;

 rc = db2Load(db2Version810, pLoadStruct, pSqlca);

 printf("rc from load : %d\n", rc);
 printf("Sqlcode from load : %d\n", pSqlca->sqlcode);
 if (pSqlca->sqlcode == 0)
 {
 db2LoadOut *pLoadOut = pLoadStruct->poLoadInfoOut;
 int iRowsRead = 0;
 int iRowsSkipped = 0;
 int iRowsLoaded = 0;
 int iRowsRejected = 0;
 int iRowsDeleted = 0;
 int iRowsCommitted = 0;

 printf("\n");
 iRowsRead = pLoadOut->oRowsRead;
 printf("Number of rows read : %d\n", iRowsRead);
 iRowsSkipped = pLoadOut->oRowsSkipped;
 printf("Number of rows skipped : %d\n", iRowsSkipped);
 iRowsLoaded = pLoadOut->oRowsLoaded;
 printf("Number of rows loaded : %d\n", iRowsLoaded);
 iRowsRejected = pLoadOut->oRowsRejected;
 printf("Number of rows rejected : %d\n", iRowsRejected);
 iRowsDeleted = pLoadOut->oRowsDeleted;
 printf("Number of rows deleted : %d\n", iRowsDeleted);
 iRowsCommitted = pLoadOut->oRowsCommitted;
 printf("Number of rows committed : %d\n", iRowsCommitted);
 }
 else
 {
 char sqlcaString[1024];
 sqlaintp(sqlcaString, 1024, 70, pSqlca);
 printf("%s", sqlcaString);
 }

exit:

 return rc;
}

int main(int argc, char *argv[])
{
 int rc = 0;
 char *pBuffer = NULL;

 struct sqlchar *pActionString = NULL;
 short CallerAction;
 db2LoadIn loadIn;
 db2LoadOut loadOut;
 db2LoadStruct loadStruct;
 char * pLocalMsgFileName;
 sqlu_media_list * pCopyTargetList = NULL;
 sqlu_media_list CopyTargetList;
 sqlu_media_entry MediaEntry;
 sqlu_media_list DataFileList;
 sqlu_statement_entry StatementEntry;
 struct sqldcol DataDescriptor;
 char tempChar[256];
Chapter 6. Load with DB2 Distributed 109

 char xloadQuery[256];

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

 char sqlStmt[1024];

EXEC SQL END DECLARE SECTION;

 memset(&CopyTargetList, 0, sizeof(CopyTargetList));
 memset(&MediaEntry, 0, sizeof(MediaEntry));
 memset(&DataFileList, 0, sizeof(DataFileList));
 memset(&StatementEntry, 0, sizeof(StatementEntry));
 memset(&DataDescriptor, 0, sizeof(DataDescriptor));

 memset(&loadIn, 0, sizeof(loadIn));
 memset(&loadOut, 0, sizeof(loadOut));
 memset(&loadStruct, 0, sizeof(loadStruct));

 loadStruct.piSourceList = &DataFileList;
 loadStruct.piLobPathList = NULL;
 loadStruct.piDataDescriptor = &DataDescriptor;
 loadStruct.piFileTypeMod = NULL;
 loadStruct.piTempFilesPath = NULL;
 loadStruct.piVendorSortWorkPaths = NULL;
 loadStruct.piCopyTargetList = NULL;
 loadStruct.piNullIndicators = NULL;
 loadStruct.piLoadInfoIn = &loadIn;
 loadStruct.poLoadInfoOut = &loadOut;

 pLocalMsgFileName = "messages.txt";
 loadStruct.piLocalMsgFileName = pLocalMsgFileName;

 EXEC SQL CONNECT TO mydb;
 printf("[%s] : sqlcode %d\n", "connect to mydb", sqlca.sqlcode);
 printf("\n");

 DataFileList.media_type = SQLU_SQL_STMT;
 DataFileList.sessions = 1;
 DataFileList.target.pStatement = &StatementEntry;
 DataFileList.target.pStatement->pEntry = xloadQuery;
 DataDescriptor.dcolmeth = SQL_METH_D;
 sprintf(tempChar, "INSERT INTO abc.table2");

 pActionString = (sqlchar *)malloc(strlen(tempChar) +
 sizeof(struct sqlchar));

 if (pActionString == NULL)
 {
 printf("Error allocating action string!\n");
 rc = -1;
 goto exit;
 }

 strncpy(pActionString->data, tempChar, strlen(tempChar));
 pActionString->length = strlen((char *)tempChar);
 CallerAction = SQLU_INITIAL;

 loadIn.iRestartphase = ' ';
110 Moving Data Across the DB2 Family

 loadIn.iNonrecoverable = SQLU_NON_RECOVERABLE_LOAD;
 loadIn.iStatsOpt = SQLU_STATS_NONE;
 loadStruct.piActionString = pActionString;
 loadStruct.piFileType = SQL_CURSOR;
 loadStruct.iCallerAction = CallerAction;

 sprintf(xloadQuery, "SELECT TWO,ONE,THREE FROM abc.table1");
 DataFileList.target.pStatement->length = strlen(xloadQuery);

 printf("
==\n");
 printf(" CROSSLOAD STARTING.\n");
 printf("
==\n");

 loadAndDisplayResults(&loadStruct, &sqlca);

 printf("
==\n");
 printf(" CROSSLOAD FINISHED.\n");
 printf("
==\n");

 EXEC SQL CONNECT RESET;
 printf("\n");
 printf("[%s] : sqlcode %d\n", "connect reset", sqlca.sqlcode);

 if (pActionString != NULL)
 {
 free(pActionString);
 }

exit:

 return rc;
}

The parameters for the Load utility APIs can be found in the appropriate versions of the IBM
DB2 UDB Administrative API Reference, SC09-4824.

Sort capability
Data is loaded in the sequence that appears in the input file. If a particular sequence is
desired, the data should be sorted before a Load is attempted. The Load utility builds indexes
based on existing definitions. Exception tables can be used as a repository for unique key
violations.

Referential Integrity
The Load utility does not enforce referential integrity, perform constraints checking, or update
summary tables that are dependent on the tables being loaded. Tables that include referential
or check constraints are placed in a check pending state. Summary tables that are defined
with REFRESH IMMEDIATE, and that are dependent on tables being loaded, are also placed
in a check pending state. Issue the SET INTEGRITY statement to take the tables out of check
pending state. Load operations cannot be carried out on replicated summary tables. For
clustering indexes, the data should be sorted on the clustering index prior to loading. The
data need not be sorted when loading into an multi-dimensionally clustered (MDC) table.
Chapter 6. Load with DB2 Distributed 111

6.5 Comparing Load and Import
In this section we compare Load to Import in terms of performance and functionality.

6.5.1 LOAD and Import performance comparison
In this section we present performance comparisons between Load and Import utilities. In the
analysis we used tables from the sample database (created by the db2sampl utility.)
Measurements were done on DB2 UDB V7 and V8 for UNIX and Windows platforms.

Utilities were executed in replace mode, with messages parameter specified. Tables from the
sample database were populated with randomly generated data.

These results should not be used to compare performance of DB2 UDB V8 to V7 because
tests were ran on different physical setups. By repeating some measurement we estimate a
5% error on the ratios of execution times in non-partitioned environments. Because of
necessary network traffic and more complex processing model, this uncertainty is larger in
partitioned environments. Our estimate here is 10%.

Non-partitioned sample database on Windows platform was used for the analysis
summarized in Table 6-1. Target table (staff) does not contain any LOB or LONG columns. No
indices are defined on the table. All reported times are in seconds.

Table 6-1 Comparison of Import and Load execution times on Windows platform

Load utility outperformed import by roughly a factor of 10. Differences between different
formats (PC/IXF, delimited ASCII, fixed length positional ASCII) are on the 10% level.

Partitioned and non-partitioned sample databases on UNIX platform were used for the
analysis summarized in Table 6-2. Target table (emp_photo) does contain a LOB column. Two
dimensional primary key is defined on the table. All reported times are in seconds.

Table 6-2 Comparison of Import and Load execution times on UNIX platform

DB2 Rows Format Import (s) Load (s) Ratio

V7 1 M ASC 620.5 59.6 10.4

V7 1 M DEL 568.5 51.5 11.0

V7 1 M IXF 526.9 48.4 10.9

V8 1 M ASC 113.5 12.7 9.0

V8 1 M DEL 95.5 12.1 7.9

V8 1 M IXF 90.4 11.2 8.0

DB2 Partitions Rows Format Import (s) Load (s) Ratio

V7 1 100 K ASC 200.1 10.2 19.5

V7 1 2 M ASC - -

V7 1 100 K DEL 198.3 10.0 19.9

V7 1 100 K DEL, LOBSINFILE 234.5 15.7 14.9

V8 1 100 K ASC 104.2 18.6 5.6

V8 1 2 M ASC - -
112 Moving Data Across the DB2 Family

Load outperforms Import in all scenarios. The ratio of import execution time to Load execution
time in non-partitioned DB2 UDB V8 (a factor of 6) is considerably smaller than in partitioned
DB2 UDB V8 and in non-partitioned DB2 UDB V7 (a factor of 12 and 18 respectively.)

Apparent degradation in Load performance in V8 is caused by increased one time cost of
starting a Load. For a larger Load (2 million rows into the emp_photo table) execution times
measured with V7 and V8 are comparable. Since emp_photo table has a unique index Load
goes through the delete phase to remove duplicate rows, which is why execution time does
not scale linearly with the number of rows. Consistency of V7 and V8 Load performance was
further confirmed by loading 50000000 rows into the projects table of the sample database.
The difference between V7 (354 seconds) and V8 (355 seconds) execution times was well
within the expected errors.

In a partitioned database environment an additional cost is incurred because data records
need to be hashed and send to the right partition. This overhead is more considerable for the
Import utility (a factor of 6) than for the Load utility (a factor of 3.)

6.5.2 Load and Import functional comparison
In Table 6-3 we provide a summarized comparison of functions.

Table 6-3 Summary of important differences between the DB2 Load and Import utilities.

V8 1 100 K DEL 109.6 18.7 5.9

V8 1 100 K DEL, LOBSINFILE 159.0 25.5 6.2

V8 4 MLN 100 K ASC 719.2 60.3 11.9

V8 4 MLN 100 K DEL 712.6 59.1 12.1

V8 4 MLN 100 K DEL, LOBSINFILE 827.0 64.5 12.8

DB2 Partitions Rows Format Import (s) Load (s) Ratio

Import utility Load utility

Slow when moving large amounts of data. Faster than the import utility when moving large
amounts of data, because the Load utility writes
formatted pages directly into the database.

Limited exploitation of intra-partition parallelism. Exploitation of intra-partition parallelism.
Typically, this requires symmetric multiprocessor
(SMP) machines.

No FASTPARSE support. FASTPARSE support, providing reduced data
checking of user-supplied data.

No CODEPAGE support (unless DRDA is
utilized.)

CODEPAGE support, converting character data
(and numeric data specified in characters) from
this code page to the database code page during
the Load operation.

Supports hierarchical data. Does not support hierarchical data.

Creation of tables, hierarchies, and indexes
supported with PC/IXF format.

Tables and indexes must exist.

No support for importing into materialized query
tables.

Support for loading into materialized query
tables.

WSF format is supported. WSF format is not supported.
Chapter 6. Load with DB2 Distributed 113

6.5.3 When to use Load or Import utilities
This section summarizes strengths and weaknesses of the two utilities used for inserting data
from external sources into the database. These results should help your make an informed
decision so as to which utility to use in a given scenario.

No BINARYNUMERICS support. BINARYNUMERICS support.

No PACKEDDECIMAL support. PACKEDDECIMAL support.

No ZONEDDECIMAL support. ZONEDDECIMAL support.

Cannot override columns defined as
GENERATED ALWAYS.

Can override GENERATED ALWAYS columns,
by using the GENERATEDIGNORE and
IDENTITYIGNORE file type modifiers.

Supports import into tables and views. Supports loading into tables only.

All rows are logged. Minimal logging is performed.

Trigger support. No trigger support.

If an import operation is interrupted, and a
commitcount was specified, the table is usable
and will contain the rows that were loaded up to
the last COMMIT. The user can resume the
import operation, or accept the table as is.

If a Load operation is interrupted, and a
savecount was specified, the table remains in
Load pending state and cannot be used until the
Load operation is restarted, a Load terminate
operation is invoked, a Load replace operation is
invoked, or until the table space is restored from
a backup image created some time before the
attempted Load operation.

Temporary space required is approximately
equivalent to the size of the largest index plus
10%. This space is obtained from the temporary
table spaces within the database.

Temporary space required is approximately
equivalent to the sum of the size of all indexes
defined on the table, and can be as much as twice
this size. This space is obtained from temporary
space within the database.

All constraints are validated during an import
operation.

The Load utility checks for uniqueness and
computes generated column values, but all other
constraints must be checked using SET
INTEGRITY.

The key values are inserted into the index one at
a time during an import operation.

The key values are sorted and the index is built
after the data has been loaded.

If updated statistics are required, the runstats
utility must be run after an import operation.

Statistics can be gathered during the Load
operation if all the data in the table is being
replaced.

You can import into a host database through DB2
Connect.

You cannot load into a host database.

Input data must reside on the same machine that
the import utility is invoked.

Input data can reside on the server, or on the
remotely connected client from which the Load
utility is invoked.

A backup image is not required. Because the
import utility uses SQL inserts, DB2 logs the
activity, and no backups are required to recover
these operations in case of failure.

A backup image can be created during the Load
operation.
114 Moving Data Across the DB2 Family

Use Load when:
� Performance is critical. As shown, Load outperforms Import in all scenarios, sometimes by

as much as a factor of 10.

Use Import when:
� Target table resides on a DB2 UDB V7 server and contains generated columns. Load’s

generated column support in DB2 UDB V7 is limited. For further details consult the
appropriate DB2 UDB Data Movement Utilities Guide and Reference Version 8,
SC09-4830.

� Target table needs to be created from the input file (applicable to PC/IXF files only.)

� Target database is accessed through DB2 Connect, or it resides on a down-level server
that is not supported by client’s version of the Load utility.

� Target table is a hierarchical table or a typed table.

� Logging of every inserted record is necessary.
Chapter 6. Load with DB2 Distributed 115

116 Moving Data Across the DB2 Family

Part 3 High Performance
Unload

This part is dedicated to the IBM High Performance Unload tool, which is available as
separate products for the host and distributed platforms.

We will describe these products in the following chapters:

� IBM DB2 High Performance Unload for z/OS
� IBM DB2 High Performance Unload for Multiplatforms

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 117

118 Moving Data Across the DB2 Family

Chapter 7. IBM DB2 High Performance
Unload for z/OS

In this chapter we discuss the DB2 High Performance Unload for z/OS (HPU for z/OS). We
evaluate its functions, the operating instructions, explore the advantages and disadvantages
of using the tool. We are using DB2 UDB for z/OS Version 7 and the HPU Version 2.1.

This chapter is structured in:

� An overview of the HPU tool
� The prerequisites of HPU
� Installation and customization
� Data formats used
� Using HPU in batch job
� Using HPU in interactive mode

7

© Copyright IBM Corp. 2003. All rights reserved. 119

7.1 An overview of HPU for z/OS
IBM HPU is a DB2 tool for unloading DB2 tables. It can unload DB2 data from a tablespace or
an image copy. And it can unload a DB2 table in different file formats.

The HPU provides efficient use of CPU processing power by working down to the VSAM level
instead of using SQL and going through DB2. The utility directly accesses the VSAM clusters
that DB2 uses to store its tables spaces. This direct use of VSAM takes maximum advantage
of VSAM’s buffering capability, which lets an entire cylinder be read with a single I/O.

Some other advantages of HPU is its ability to perform parallel unloads of different tables
under one tablespace by using multiple SQL statements. It can also unload from image
copies, hence lessening the interference with the DB2 production database. It can do
selective unload of rows and columns. With the use of HPU user exit, it can inspect, modify, or
discard DB2 rows.

7.1.1 Applicability of HPU
Database shops nowadays have ever increasing demand for efficiency. The amount of data
that needs to be backed-up increases exponentially and the available time to perform it is
constantly bound by the continually shrinking batch window. High availability of data demands
high performance in the software and hardware used in database shops.

Reading large amount of data in a sequential manner substantially increases the amount of
time needed to complete the unload task. Hence, making this task fit in the 10 to 12 hour
batch window that you usually have is becoming harder as time goes by. Efficiency becomes
a primary criterion in selecting tools and utilities to be used in the database shop.

HPU helps to increase productivity and task efficiency by performing the data unload in
parallel manner. Reading the different tables at the same time and performing several
unloads concurrently using an image copy significantly increase the amount of work that can
be done in a given time.

The HPU provides an extremely fast way to sequentially read and share a DB2 tablespace
among multiple tasks. This is needed to avoid the potential problem in the DB2 buffer pool
management when multiple programs compete for the same data. It avoids writing over
buffers that may be serving several unloads and potential channel conflicts. By optimizing
sequential reads of the table space, HPU will reduce both the elapsed and CPU time needed
to execute the unloads.

HPU provides different options for the output file format.

The HPU output format can be:

� VARIABLE, which lets you quickly create variable-length records

� DELIMITED, which lets you quickly create a delimited file that can be exported to another
platform

� DSNTIAUL compatible, for movement within mainframe databases

� USER, which lets you specify virtually any type of conversion so that your output appears
as you want it
120 Moving Data Across the DB2 Family

7.1.2 Strong points of HPU
There are the things HPU does to make it stand up to its name. To maximize performance,
HPU uses buffering and synchronization techniques:

Buffering When reading data rows, HPU directly accesses the VSAM clusters
containing the table space.This direct use of VSAM takes maximum
advantage of VSAM’s buffering capability, which lets an entire cylinder
be read with a single I/O.

Synchronization HPU permits the parallel execution of several unloads that are
accessing the same table space; it does this by synchronizing the
unloads. Each row extracted from a table space is offered
successively to each of the unloads executed under HPU control, so
that a single read satisfies several requests.

7.2 Installing HPU for z/OS
This section contains information on how to install HPU in a z/OS environment.

7.2.1 Installation requirements
In a z/OS environment there are two systems involved in the installation of a program: the
driving system, which is the system that contains the jobs that will be used to install the
program; and the target system, which is the system where the program will be installed.

In most cases, you can use the same system to install the HPU. However, there are cases
where it is necessary to use a different driving system and target system. One reason for
using a separate installation system is if you want one program having different versions to
run in parallel with each other. This is done when you want the older and more stable version
to run in the production LPAR (logical partition) and the new and untested version to run in the
test LPAR. Another case where it is necessary to use a separate installation system is when
the program you are installing shares a program library or load modules with other products
running in your system. And you want the installation not to disrupt the programs running in
the production LPAR.

Driving system requirements
The software required to install HPU are any of the following:

� OS/390 SMP/E Version 2 Release 8 or higher (includes SMP/E) - 5647-A01
� z/OS Version 1 Release 1 or higher (includes SMP/E) - 5694-A01
� IBM SMP/E for z/OS and OS/390 Version 3 Release 1 or higher - 5655-G44

The hardware requirement is any mainframe hardware (such as machine type 9672, 2066,
2064) that can run the software requirement.

Target system requirements
Mandatory requisites (PREREQ/REQ)
The mandatory requisites are modules needed by the program for it to be installed and to
function properly in the system where it is installed. These are known as the REQs or
PREREQs. The mandatory requisite for HPU is:

� DB2 for OS/390 Version 5 (minimum).
Chapter 7. IBM DB2 High Performance Unload for z/OS 121

Functional requisites (IFREQ)
Functional requisites are products not required during the installation of the program, but it
would be needed during run-time for a specific function of this product to work properly. They
are known as the IFREQs.

� HPU has no functional prerequisites.

Toleration/coexistence requisites (COREQ)
Toleration/coexistence requisites are products needed by the program so that it can coexist
with other programs in a shared environment. Such environments are parallel sysplex, shared
DASD, or a system that reuse DASD at different time intervals. These requisites are known as
COREQs.

� HPU has no toleration/coexistence requisites.

Negative requisites
Negative or incompatibility requisites are products that cannot exist on the same system with
the one being installed. A given product is mutually exclusive with its negative requisite.

� HPU has no negative requisites.

Storage requirements
HPU requires:

� 1470 blocks for the target system
� 1470 blocks for the distribution system

All target and distribution libraries listed have the following attributes:

� The default name of the data set may be changed.
� The default block size of the data set may be changed.
� The data set may be merged with another data set that has equivalent characteristics.
� The data set may be either a PDS or a PDSE.

All target libraries listed have the following attributes:

� The data set may be SMS managed.

� It is not required for the data set to be SMS managed.

� It is not required for the data set to reside on the IPL volume.

� The values in the Member Type column are not necessarily the actual SMP/E element
types identified in the SMPMCS.

All target libraries listed which contain load modules have the following attributes:

� The data set may be in the LPA.
� It is not required for the data set to be in the LPA.
� The data set may be in the LNKLST.
� It is not required for the data set to be APF authorized.

Notes: IBM recommends use of system determined block sizes for efficient disk utilization
for all non-RECFM U data sets. For RECFM U data sets, IBM recommends a block size of
32760, which is the most efficient from a performance and DASD utilization perspective.
122 Moving Data Across the DB2 Family

7.2.2 Step-by-step installation procedures
The HPU Version 2.1 is installed in the z/OS or OS/390 using the System Modification
Program / Extended (SMP/E). It is installed using the usual RECEIVE, APPLY, ACCEPT
commands. The SMP/E dialogs may used to do the entire SMP/E installation part.

Step 1: Set SMP/E CSI sub-entries
IBM recommends these values in the CSI sub-entries. If the value is lower than these it will
result in failure in the installation steps. See table Table 7-1 for the values recommended.
DSSPACE is a subentry in the GLOBAL options entry. PEMAX is a subentry of the GENERAL
entry in the GLOBAL options entry. Refer to the SMP/E manuals for instructions on updating
the global zone.

Table 7-1 SMP/E CSI sub-entry values

Step 2: Modify and submit JCL to download installation jobs
You can download the installation jobs by submitting the JCL in Example 7-1. You can copy
the jobs from tape or from disk. You need to modify the TAPEIN DD or the FILEIN DD
statement depending on the installation program vehicle you use.

Example 7-1 JCL to unload the sample jobs to install HPU

//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=
//**
//* If you wish to create a new global zone do not run the
//* RCVPDO job supplied with CBPDO..RCVPDO assumes that
//* you will be installing into an existing global zone.
//* Make the ///TAPEIN DD statement below active if you install
//* from a CBPDO tape by uncommenting the DD statement below.
//**
//TAPEIN DD DSN=IBM.HINZ21.F2,UNIT=tunit,
// VOL==SER=volser,LABEL=(X,SL),
// DISP==(OLD,KEEP)
//**
//* Make the ///TAPEIN DD statement below active if you install
//* from a product tape received outside the CBPDO process
//* (using the optional SMP/E RECEIVE job) by uncommenting
//* the DD statement below.
//**
//*TAPEIN DD DSN=IBM.HINZ21.F2,UNIT=tunit,
//* VOL==SER=INZ21,LABEL=(3,SL),
//* DISP==(OLD,KEEP)
//**

Important: Some FMIDs are deleted by the installation.

There are FMIDs that could be deleted when you install the HPU. You should check the
++VER part of the SMPMCS. If you find some FMIDs that you do not want to be deleted
you should install the HPU in a different SMP/E target and distribution zone.

SUB-ENTRY Value Comment

DSSPACE (200,200,500) 3390 DASD tracks

PEMAX SMP/E Default IBM recommends using the
SMP/E default for PEMAX.
Chapter 7. IBM DB2 High Performance Unload for z/OS 123

//* Make the ///FILEIN DD statement below active for
//* downloaded DASD files.
//**
//FILEIN DD DSN=IBM.HINZ21.F2,UNIT=SYSALLDA,DISP=SHR,
// VOL=SER= filevol
//OUT DD DSNAME=jcl-library-name,
// DISP=(NEW,CATLG,DELETE),
// VOL=SER= dasdvol,UNIT=SYSALLDA,
// SPACE=(88,(15,5,5))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSIN DD
COPY INDD= indd, OUTDD=OUT
SELECT MEMBER=(INZALA,INZALB,INZALLOC,INZDDDEF,INZRECEV)
SELECT MEMBER=(INZAPPLY,INZACCEP)
//

In the download JCL, tunit is the unit value matching the product tape, volser is the volume
serial which is described in the CBPDO documentation, X is the tape file number where the
data set name is on the CBPDO tape (refer to the documentation provided by CBPDO to see
where IBM.HINZ210.F2 is located on the CBPDO tape), filevol is the volume serial of the
DASD device where the downloaded files reside, jcl-library-name is the name of the output
data set where the sample jobs will be stored, dasdvol is the volume serial of the DASD
device where the output data set will reside, and indd is either TAPEIN or FILEIN depending
on your input DD statement.

Step 3: Modify sample JCL
These are the sample JCL that will be on your driving system. See Table 7-2 for the list. You
can copy these JCL on you own library. Then modify them to fit your system settings.

Table 7-2 Sample JCL: Edit and submit

Job Name Job Type Description RELFILE

INZALA SMP/E Sample job to allocate
and initialize a new
SMP/E CSI data set
(Optional)

IBM.HINZ210.F2

INZALB SMP/E Sample job to allocate
SMP/E data sets
(Optional)

IBM.HINZ210.F2

INZRECEV RECEIVE Sample RECEIVE job IBM.HINZ210.F2

INZALLOC ALLOCATE Sample job to allocate
target and distribution
libraries

IBM.HINZ210.F2

INZDDDEF DDDEF Sample job to define
SMP/E DDEFs

IBM.HINZ210.F2

INZAPPLY APPLY Sample APPLY job IBM.HINZ210.F2

INZACCEP ACCEPT Sample ACCEPT job IBM.HINZ210.F2
124 Moving Data Across the DB2 Family

Step 4: Allocate SMP/E CSI (optional)
If you are using an existing CSI, do not execute this job. If you are allocating a new SMP/E
data set for this install, edit, and submit sample job INZALA to allocate the SMP/E data set for
HPU.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs
correctly.

Step 5: Initialize CSI zones (optional)
Edit and submit sample job INZALB to initialize SMP/E zones for HPU. Consult the
instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs
correctly.

Step 6: Perform SMP/E RECEIVE
NOTE: If you obtained HPU as part of a CBPDO, use the RCVPDO job found in the CBPDO
RIMLIB data set to RECEIVE the HPU FMIDs as well as any service, HOLDDATA, or
preventive service planning (PSP) information included on the CBPDO tape. For more
information, refer to the documentation included with the CBPDO.

Edit and submit sample job INZRECEV to perform the SMP/E RECEIVE for HPU. Consult the
instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code 0 if this job runs
correctly.

Step 7: Allocate SMP/E target and distribution libraries and paths
Edit and submit sample job INZALLOC to allocate the SMP/E target and distribution libraries
for HPU. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code 0 if this job runs
correctly.

Step 8: Create DDDEF entries
Edit and submit sample job INZDDDEF to create DDDEF entries for the SMP/E target and
distribution libraries for HPU. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code 0 if this job runs
correctly.

Step 9: Perform SMP/E APPLY
When you perform an SMP/E apply, you are adding the source code of the program module in
the target library. The distribution library will not be changed at this point. This would allow
you to assess the impact done by the installation on your system without making permanent
changes in our system.

But before you run the SMP/E accept job you must first do a requisite check-up on the
system. So you should first do an APPLYCHECK before you do your SMP/E APPLY. The
APPLY CHECK is done with the same job just that the CHECK parameter is present in the
JCL. When this JCL is run with this parameter there will be no changes done but you will see
the HOLDDATA or errors that prevented you from having a successful execution.
Chapter 7. IBM DB2 High Performance Unload for z/OS 125

Edit and submit sample job INZAPPLY to perform an SMP/E APPLY CHECK for HPU. Consult
the instructions in the sample job for more information. To receive the full benefit of the
SMP/E Causer SYSMOD Summary Report, do not bypass the following on the APPLY
CHECK: PRE, ID, REQ, and IFREQ. This is because the SMP/E root cause analysis
identifies the cause only of ERRORS and not of WARNINGS (SYSMODs that are bypassed
are treated as warnings, not errors, by SMP/E).

Once you have taken any actions indicated by the APPLY CHECK, remove the CHECK
operand and run the job again to perform the APPLY, see Example 7-2.

Note: The GROUPEXTEND operand indicates that SMP/E apply all requisite SYSMODs.
The requisite SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from APPLY CHECK: You will receive a return
code 0 if this job runs correctly.

Expected Return Codes and Messages from APPLY: You will receive a return code 0 if this
job runs correctly.

Example 7-2 The SMP/E APPLY / APPLYCHECK JCL

//**/
//* INVOKE SMP/E */
//**/
//SMP EXEC PGM=GIMSMP,PARM='DATE=U',REGION=4M
//SMPCSI DD DSN=#globalcsi,DISP=SHR
//SMPHOLD DD DUMMY
//SMPCNTL DD *
 SET BDY(targlib). /* Set to TARGET zone */
 APPLY SELECT(/* APPLY for this FMID */
 HINZ210
)
 CHECK /* Do not update libraries */
 GROUPEXTEND /* APPLY all requis. PTFs */
 FORFMID(HINZ210)
 BYPASS(HOLDSYS,HOLDUSER, /* Bypass options */
 HOLDCLASS(UCLREL,ERREL,HIPER)).
//*
/*

7.2.3 Customization procedures for HPU
After you finish installing the HPU, you need to customize some files to fit your system. The
customization will allow you to recover values of variables from a previously installation. It
also allows you to set the values of the variables of the JCL and data sets that will be used by
the HPU for execution.

Step 1: Allocating the INZRSAVE library

Go to the ISPF panel P.3.2. Allocate a PDS for use by the INZT02 procedure, which stores a
backup of the configuration data set (member INZTVAR).

This data set should have:

Important: This step is required only for first time users of HPU.
126 Moving Data Across the DB2 Family

� RECFM=FB
� LRECL=80

Any value of BLKSIZE that is a multiple of the LRECL, SPACE=(TRK,(1,1,5)). The name of
this library must be entered in member INZTDSN. See “Step 3: Editing the INZTDSN
member” on page 128.

Figure 7-1 Sample data set information for allocating the INZRSAVE library

Step 2: Executing the INZT01 procedure
The INZT01 is a REXX procedure that lets you retrieve customized values from a previous
installation (from a previous INZRSAVE member) and then generate member INZTVAR in the
SINZSAMP library.

You can execute this REXX procedure by going to the P.3.4 ISPF panel and typing ‘exec’ on
the line beside it. See Figure 7-2

First time installation
For a first time installation, do the following:

1. Execute the INZT01 procedure located in the SINZSAMP library.
2. Do not enter anything in any fields on the displayed panel.
3. Put the cursor on the highlighted GENER field and press Enter, o type GENER

in the command field and press Enter.The generation process creates a member called
INZTVAR in the SINZSAMP library.The response “Generation was OK” will be returned.

Reinstallation
If you have already customized a previous version of the product, do the following:

1. Execute the INZT01 procedure located in the SINZSAMP library.

2. Enter the name of the previous INZRSAVE data set in the field “Old file of variables to be
retrieved” in the format dsname(member).

 Data Set Information
 Command ===>

 Data Set Name . . . : INZ.V2R1M0.SINZRSAV

 General Data Current Allocation
 Volume serial . . . : SBOX38 Allocated tracks . : 4
 Device type : 3390 Allocated extents . : 4
 Organization . . . : PO Maximum dir. blocks : 5
 Record format . . . : FB
 Record length . . . : 80
 Block size : 27920 Current Utilization
 1st extent tracks . : 1 Used tracks : 4
 Secondary tracks . : 1 Used extents . . . : 4
 Used dir. blocks . : 1
 Creation date . . . : 2002/10/08 Number of members . : 1
 Referenced date . . : 2002/10/09
 Expiration date . . : ***None***

Chapter 7. IBM DB2 High Performance Unload for z/OS 127

3. Press Enter. Wait until “Select other files or start the generation” is displayed before doing
the next step.

4. Put the cursor on the highlighted GENER field and press Enter, o type GENER in the
command field and press Enter. The generation process creates a member called
INZTVAR in the SINZSAMP library.The response “Generation was OK” will be returned.

Some of the variables in this member will already contain values retrieved from the
INZRSAVE member of the previous installation.

Figure 7-2 Executing the INZT01 REXX program

To verify if your job ran successfully go to the SINZAMP library and look for the INZTVAR.
This member appears after the successful run of the INZT01.

Step 3: Editing the INZTDSN member
Edit member INZTDSN from the SINZSAMP library. Enter the names of the libraries that will
contain the customized members generated by the INZT02 procedure. Replace ??HLQ?? in
Example 7-3 with the prefix of the library where HPU has been installed. A description of the
libraries is listed in Table 7-3.

Table 7-3 Description of libraries used by HPU

Variables in INZTDSN Description

INZRSAVE Specifies the dsname of the library that will
contain the backup of the variables data set.This
library was created in “Step 1.Allocating the
INZRSAVE library

INZSAMP Specifies the dsname of the library that will
contain the customized installation JCL.Usually
the SINZSAMP library is used.

 Menu Functions Confirm Utilities Help
__
 EDIT INZ.V2R1M0.SINZSAMP Row 00022 of 00033
 Command ===> __ Scroll ===> CSR
 Name Prompt Size Created Changed ID
 _________ INZP01
 _________ INZRECEV
 _________ INZRSAVE
 _________ INZRSKEL
 _________ INZSWORK
 _________ INZTDSN 23 2002/10/08 2002/10/08 20:05:28 PAOLOR2
 _________ INZTTBL
 _________ INZTVAR 333 2002/10/08 2002/10/09 12:24:24 PAOLOR2
 __exec___ INZT01
 _________ INZT02 724 2002/10/08 2002/10/08 19:08:31 PAOLOR2
 _________ INZUTIL 169 2002/10/09 2002/10/09 12:24:46 PAOLOR2
 _________ INZUTISK
 End

128 Moving Data Across the DB2 Family

Example 7-3 INZTDSN JCL — Replace the ‘??hlq??’ with your high level qualifier

//**
//**
//*ENTER BELOW THE DSNAMES OF THE FILES THAT WILL CONTAIN THE *
//*CUSTOMIZEDMEMBERS *
//**
//**
//*
//*LIBRARY THAT CONTAINS THE BACKUP OF THE VARIABLES FILE
//INZRSAVE ??HLQ??.SINZRSAVE
//*
//*SAMPLE LIBRARY
//INZSAMP ??HLQ??.SINZSAMP
//*
//*LIBRARY FOR DB2 UNLOAD PARMLIB
//*NOTE:IT CAN BE THE SAME LIBRARY AS THE SAMPLE LIBRARY ABOVE
//INZPLIB ??HLQ??.SINZSAMP
//*
//*CLIST LIBRARY
//INZCLST ??HLQ??.SINZCLST
//*ISPF SKELETONS LIBRARY
//INZSLIB ??HLQ??.SINZSLIB

Step 4: Editing the INZTVAR member
Member INZTVAR in the SINZSAMP library contains the list of variables that are to be
customized. You may need to refresh the list of members in the SINZSAMP library to see the
INZTVAR member. INZTVAR was created when the INZT01 procedure was executed.

This member contains the definition of the variables used to create the installation JCL and
the INZUTIL member that contains the product parmlib.

This member is the input of the INZ02 job that has to be run after this member is edited.

If you encounter any error in the parameters of the installation JCL generated by these
members, you should not change the variables in the JCL directly. You must go back to the
INZTVAR or INZTDSN and change the values there then rerun the INZ02 or INZ01 job.

Any manual modification on the installation JCL generated by the INZ02 will be lost once the
INZ02 is rerun.

In our example, ‘INZ.V2R1M0’ is the high level qualifier of the installation data sets. a sample
of the JCL portion that needs to be modified is in Example 7-6 on page 132. The JCL

INZPLIB Specifies the dsname of the library that will
contain the customized PARMLIB member(s).

INZCLST Specifies the dsname of the library that will
contain the customized CLIST procedures.

INZSLIB Specifies the dsname of the library that will
contain the customized ISPF skeletons.

Note: Depending on your installation’s standards, this library can be the SINZSAMP library
or any library chosen to contain HPU’s PARMLIB members. The same library should be
used to set variable VIZ007 in the INZTVAR member.

Variables in INZTDSN Description
Chapter 7. IBM DB2 High Performance Unload for z/OS 129

example below is the portion of the INZTVAR where the DB2 parameters are coded. The JCL
that was generated has some default values in it. It is optional to change these values.
However, the parameters that point to the DB2 libraries are required to be filled up.

A description of the default JCL parameters
These JCL parameters are the ones that will be used as input by the INZ02 REXX procedure
which you will execute in the next step. These parameters allow you to define your job card
that will be used by all of the installation JCL, see Example 7-4.

Example 7-4 INZTVAR JCL — Parameter VIM101 to VIM105

**
*
******************* DEFAULT JCL PARAMETERS *****************************
*
* JOB CARDS FOR JCL
* (UP TO 5 LINES, BETWEEN THE COL=19 AND THE COL=72)
* **
 VIM101 //PAOLOHPU JOB PAOLOR21,'DB2 UNLOAD',
 VIM102 // MSGCLASS=A,CLASS=A,NOTIFY=&SYSUID,
 VIM103 // REGION=0M
 VIM104 //*
 VIM105 //*
* **

Table 7-4 describes the JCL parameters to be defined by the user.

Table 7-4 JCL parameters to be defined

Dsnames of HPU libraries
Example 7-5 shows a listing of the libraries that HPU uses. These data sets names are
specified in the INZTVAR module and it will be used as input by the INZ02 REXX procedure.

Example 7-5 INZTVAR JCL — HPU libraries

******************* DSNAMES OF THE PRODUCT'S LIBRARIES *****************
*
* LOAD MODULES LIBRARY (SINZLOAD)
 VIZ003 INZ.V2R1M0.SINZLOAD
*

Tip: If you ned to know the high level qualifiers of the DB2 libraries that you are using, you
can see them in the job that started DB2 Master address space. You can view this in the
SDSF panel Active Users (DA option). Look for the jobname with MSTR suffix. You can do
this by typing ‘pre *MSTR’ inside the DA panel command line. Then open the job that has
your subsystem name on as the prefix.

Parameters Description

VIM101 to VIM105 Enter your job card. Ensure that you include a
region size on the job card; failure to do so can
result in abend s106 when running HPU
interactively.

VIM111 Specifies the name of the default unit to be used
to allocate temporary data sets.

VIM112 Specifies the name of the default SYSOUT
CLASS to be used in the customization JCL.
130 Moving Data Across the DB2 Family

* APF LOAD MODULES LIBRARY (SINZLINK)
 VIZ004 LIBUTIL INZ.V2R1M0.SINZLINK
*
* PARMLIB LIBRARY (INZPLIB)
* BY DEFAULT USE THE SINZSAMP LIBRARY
* SHOULD BE THE SAME AS THE LIBRARY DESCRIBED IN THE INZTDSN MEMBER
 VIZ007 INZ.V2R1M0.SINZSAMP
*
* PRODUCT'S DBRM LIBRARY (SINZDBRM)
 VIZ012 INZ.V2R1M0.SINZDBRM
*
* ISPF LOAD MODULES LIBRARY (SINZLLIB)
 VIZ013 INZ.V2R1M0.SINZLLIB
*
* ISPF MESSAGES LIBRARY (SINZMLIB)
 VIZ015 INZ.V2R1M0.SINZMLIB
*
* ISPF PANELS LIBRARY (SINZPANL)
 VIZ016 INZ.V2R1M0.SINZPANL
*
* ISPF SKELETONS LIBRARY (SINZSLIB)
 VIZ017 INZ.V2R1M0.SINZSLIB
*
* ISPF TABLES LIBRARY (SINZTLIB)
 VIZ018 INZ.V2R1M0.SINZTLIB

Table 7-5 describes the parameters pointing to the HPU libraries.

Table 7-5 Data set parameters of the HPU library

Parameters Description

VIZ003 Specifies the dsname of the LOAD MODULES
LIBRARY (SINZLOAD).

VIZ004 Specifies the dsname of the APF MODULES
LIBRARY (SINZLINK).

VIZ007 Specifies the dsname of the PARMLIB LIBRARY
(INZPLIB).
Note: This library should be the same as the one
specified in the INZTDSN member (see “Step 3.
Editing the INZTDSN member”).

VIZ012 Specifies the dsname of the DBRM LIBRARY
(SINZDBRM).

VIZ013 Specifies the dsname of the ISPF load module
library (SINZLLIB), which contains the load
modules for the interactive application.

VIZ015 Specifies the dsname of the ISPF messages
library (SINZMLIB), which contains the
messages for the interactive application.

VIZ016 Specifies the dsname of the ISPF panels library
(SINZPLIB), which contains the panels for the
interactive application.

VIZ017 Specifies the dsname of the ISPF skeletons
library (SINZSLIB), which contains the skeletons
for the interactive application.
Chapter 7. IBM DB2 High Performance Unload for z/OS 131

Example 7-6 shows how to define the DB2 libraries and subsystem name. These values are
required to be edited. The values in italics are the ones that needs to be supplied by the user.
These values depend on the DB2 set-up where HPU is being installed.

Example 7-6 INZTVAR JCL — Defining the DB2 libraries and subsystem name.

******************* COMMON DB2 PARAMETERS ******************************
*
* NOTE: IF YOU WANT TO INSTALL THE PRODUCT ON SEVERAL DB2 SYBSYSTEMS
* YOU SHOULD DUPLICATE THE DEFINITION OF SOME VARIABLES,
* ONE FOR EACH SUBSYSTEM.
* BE CAREFUL TO CODE THE VARIABLES THAT CORRESPOND TO THE
* DIFFERENT SUBSYSTEMS IN THE SAME ORDER FOR EACH VARIABLE.
*
* DB2 SUBSYSTEMS
 VZD001 DB2G
* VZD001 LINE TO DUPLICATE TO SPECIFY OTHER DB2 SUBSYSTEM
*
* LIBRARY WHICH CONTAINS DB2 LOAD-MODULES (DSNLOAD)
 VZD003 DB2G7.SDSNLOAD
* VZD003 LINE TO DUPLICATE FOR DSNLOAD OF OTHER DB2 SUBSYSTEM
*
* LIBRARY WHICH CONTAINS DB2 RUNLIB LOAD-MODULES (DSNTIAD)
 VZD004 DB2V710G.RUNLIB.LOAD
* VZD004 LINE TO DUPLICATE FOR RUNLIB OF OTHER DB2 SUBSYSTEM
*
* PLANS CORRESPONDING TO DSNTIAD PROGRAM
 VZD005 DSNTIA71
* VZD005 LINE TO DUPLICATE FOR DSNTIAD PLAN OF OTHER DB2
*
*
* DB2 DSNEXIT LIBRARY
 VZD007 DB2V710G.SDSNEXIT
* VZD007 LINE TO DUPLICATE FOR DSNEXIT OF OTHER DB2 SUBSYSTEM
*
*
* IBM CONVERSION SERVICE LOAD LIBRARY
* LOAD LIB THAT CONTAINS CUNLCVN (IBM DOCNUM GI10-9760)
* (OPTIONAL)
 VZM006 SCUNMOD
*

Table 7-6 describes the most common DB2 parameters.

VIZ018 Specifies the dsname of the ISPF tables library
(SINZTLIB), which contains the tables for the
interactive application.

Parameters Description
132 Moving Data Across the DB2 Family

Table 7-6 Common DB2 parameters:

Parameters Description

VZD001 Specifies the names of all DB2 subsystems on
which the product is to be installed, or the DB2
group attachment name when processing inside
a SYSPLEX data sharing environment.The name
you specify should correspond to the value you
specify for system/group in the PARM field of the
EXEC statement.
Note: You can specify several DB2
subsystems.To define more than one DB2
subsystem, blank out the asterisk (“*”)in column
1,and specify the DB2 name in column 19.

VZD003 Specifies the name of the library that contains the
DB2 Load modules.
Specify one value for each DB2 subsystem
defined with variable VZD001.

VZD004 Specifies the name of the DB2 RUNLIB library
that contains DSNTIAD.
Specify one value for each DB2 subsystem
defined with variable VZD001.

VZD005 Specifies the name of the plan that corresponds
to the DSNTIAD program.
Specify one value for each DB2 subsystem
defined with variable VZD001.

VZD007 Specifies the name of the DB2 DSNEXIT
LIBRARY.You should specify one value for each
DB2 subsystem defined with variable(s)VZD001.

VZM006/SCUNMOD Optional, it specifies the name of the IBM
Conversion Service Load Library. If you want to
perform conversions that imply CCSIDs that are
non-SBCS or pairs of CCSID SBCS that are not
supported by the SYSSTRINGS catalog table
you must first install IBM OS/390 Support for
Unicode. For more information on this program,
see OS/390 Support for Unicode Program
Directory and OS/390 Support for Unicode: Using
Conversion Services

VUX004/LOWMEM Specifies the maximum number of active sorts
running in the same step.The IBM Sort product
supports a MAXSORT value of 1 through 9,as all
of its modules are reusable. Most of the non-IBM
sort products contain modules that require
MAXSORT=1; this is because not all of these
modules are reusable.

VUX005/MAXSORT Specifies the memory size (below the 16
megabyte line) used by the sort program.
Chapter 7. IBM DB2 High Performance Unload for z/OS 133

HPU parameters
Table 7-7 describes the most common HPU parameters.

Table 7-7 Parameters for the HPU

VUX006/WRKSPACE Specifies an allocation percent for the sort input
file, which can be one of the following:
PARTIAL
Corresponds to a primary allocation that is equal
to 67 percent of the estimated size of the file to be
sorted, and to a secondary allocation of 33
percent.
FULL
Corresponds to a primary allocation that is equal
to 100 percent of the estimated size of the file to
be sorted, and to a secondary allocation of 33
percent.
HPU uses asynchronous DB2 STOP commands
and checks whether they executed without error
using DISPLAY commands. The following three
variables are used to handle this process:
WAITUNIT, WAITQTY, and WAITQTYM

VUX007/WAITUNIT Specifies the wait time (1 unit = .01 second)
between two unsuccessful tests of the STOP
commands. The default value is 100 (1 second).

VUX008/WAITQTY Specifies the number of times an unsuccessful
STOP command will be tested before sending a
WTOR to the console.If the operator answers
CANCEL (“C”), HPU will stop with return code 8.If
the operator answers WAIT (“W”), the wait
process starts again. The default value is 20
times.

VUX009/WAITQTYM Specifies the maximum wait time (in seconds)
before sending an answer to the WTOR
message. Utility execution will stop beyond this
limit (return code 8).

VUX010/LIMUNIT Specifies the maximum number of disk units to be
used for allocation of a temporary work file. The
default value is 9.

VUX019/WRKMXPR Specifies the maximum size for the primary
allocation of a work data set on DASD. When
using very large work data sets, the primary
allocation might be extended on several volumes
according to the limit that was specified in the
VUX010/LIMUNIT variable.In any case, the value
that is provided for theVUX019/WRKMXPR
variable must be lower than the capacity of the
units that are used for these work data sets
(VUM013),and the splitting up on these units
must be taken into account.

Parameters Description

VUM011/PLANOBJT Specifies the plan name for the application.

Parameters Description
134 Moving Data Across the DB2 Family

Specify one value for each DB2 subsystem defined with variable VZD001.

You can control the internal function parameters of the HPU by entering the values on the
INZTVAR member. The JCL portion appears in Example 7-7.

Example 7-7 JCL portion where the HPU parameters are set

*
*APPLICATION PLAN FOR THE PRODUCT
VUM011 PLANOBJT ????????
*
*OWNER OF THE PLAN CREATEDFOR THE PRODUCT
VUM012 ????????
*VUM012 LINE TO DUPLICATE FOR PLAN OWNER IN OTHER DB2
*
*PUBLIC OR USER (GRANT ON THE PLAN CREATEDFOR THE PRODUCT)
VUX011 ??????
*VUX011 LINE TO DUPLICATE FOR OTHER DB2 SUBSYSTEM
*
*UNIT NAME FOR ALLOCATION OF TEMPORARY DATASETS
/VUM013 WRKUNIT &VIM111
*
*VOLUME(S)FOR ALLOCATION OF TEMPORARY DATA SETS
*(OPTIONAL)
VUM018 WRKVOL
*
*TAPE UNIT WHERE THE WORK DATASETS MUST BE ALLOCATED
*(OPTIONAL)
VUA007 WRKTUNIT
*
*MAXIMUM SIZE FOR WORK DATASET ON DASD (IN KILOBYTES)
VUX016 WRKUNTSW
*
*MAXIMUM NUMBER OF UNIT FOR TAPE TEMPORARY DATASET
VUX017 MAXTUNIT
*
*LIMIT NUMBER OF MESSAGES THAT ARE ISSUEDIF ANY ERROR
*CONCERNING THE STRUCTURE IS ENCOUNTEREDWHILE READING THE
*ROWS OF A TABLESPACE
*(OPTIONAL)
*VUX018 LDSERRLM
*
*QUIESCE OF SYSDBASE AND DBD01 FOR THE BATCH UTILITIES
*(YES/NO/OFF/FORCE)
VUM014 QUIESCAT YES
*
*USER USEDTO QUIESCE THE CATALOG TABLESPACES
*(INSTALL_SYSOPR/CURRENT_USER/USER)
VUM020 QUIESUSR INSTALL_SYSOPR
*VUM020 LINE TO DUPLICATE FOR OTHER DB2 SUBSYSTEMS

VUM012 Specifies the name of the owner of the plan
created for the product.
Specify one value for each DB2 subsystem
defined with variable VZD001.

VUX011 Specifies whether GRANT TO PUBLIC or TO
USER (plan for the product) is to be done.

Parameters Description
Chapter 7. IBM DB2 High Performance Unload for z/OS 135

Table 7-8 shows the description of the most important parameter for HPU

Table 7-8 HPU general parameters (INZTVAR member)

Parameters Description

VUM013/WRKUNIT Specifies the name of the unit used to allocate
temporary data sets.

VUM018/WRKVOL Specifies the name of the volume where
temporary data sets will reside.

VUA007/WRKTUNIT Specifies the name of the tape unit that is used to
allocate temporary files. When using temporary
files on tape, specify a tape unit here.If no value
is specified, the utility allocates its temporary files
on the unit specified in the WRKUNIT parameter.

VUX016/WRKUNTSW Specifies a threshold size (in kilobytes) for work
data sets.All work data sets that exceed this
threshold size will be allocated on the unit
specified within the VUA007/WRKTUNIT
parameter.

VUX017/MAXTUNIT Specifies the maximum number of tape units that
are provided for work data sets being used by a
HPU job.

VUX018/LDSERRLM Specifies the maximum number of messages that
are issued if any error concerning the row
structure is encountered while reading the rows
of a table space thus allowing a limitation of the
number of messages that are written into the
spool.
136 Moving Data Across the DB2 Family

VUM014/QUIESCAT Specifies whether a quiesce point is to be taken
on the following table spaces before running the
utility:
DSNDB06.SYSDBASE
DSNDB01.DBD01
DSNDB06.SYSGROUP
DSNDB06.SYSDBAUT
DSNDB06.SYSUSER
DSNDB06.SYSCOPY
DSNDB06.SYSVIEWS
DSNDB06.SYSSTATS

YES
A quiesce point is to be taken at execution time
unless keyword QUIESCECAT NO was specified
in the SYSIN of HPU.

NO
A quiesce point is NOT to be taken at execution
time unless keyword QUIESCECAT YES was
specified in the SYSIN of HPU.

FORCE
A quiesce point is ALWAYS to be taken at
execution time, even if keyword QUIESCECAT
NO was specified in the SYSIN of HPU.

OFF
A quiesce point is NEVER to be taken at
execution time, even if keyword QUIESCECAT
YES was specified in the SYSIN of HPU.
Default: NO if this variable is blanked out

VUM020/QUIESUSR Specifies the user who will run QUIESCE on the
DB2 catalog table spaces.

INSTALL_SYSOPR The user defined as SYSOPR when the product
was installed will be used to run QUIESCE on the
DB2 catalog table spaces.

CURRENT_USER The user submitting the job will be used to run
QUIESCE on the DB2 catalog table spaces.

USER name The user name specified (up to 7 characters) will
be used to run QUIESCE on the DB2 catalog
table spaces.
Default: INSTALL_SYSOPR

VUM022/QSBUFNO Specifies the BUFNO for sequential QSAM
(parameter BUFNO of the DCB for QSAM).

VUM023/VSBUFND Specifies the BUFND for sequential VSAM
(parameter BUFND of the ACB for VSAM).

VUM024/SRTVNBRE Specifies the number of records in the sort work
areas.

VUM025/SRTVSMIN Specifies the minimum size (in bytes) of the sort
work areas.

Parameters Description
Chapter 7. IBM DB2 High Performance Unload for z/OS 137

You can leave the HPU parameters as they are in Table 7-9, or you can customize them
based on your installation’s requirements. The JCL portion is reported in Example 7-8.

Example 7-8 JCL portion from the INZTVAR member.

*------------------PARAMETERS FOR DB2 UNLOAD -------------
*
*OPTION TO PERFORM "SELECT"STATEMENTS VIA DB2 WHEN THEY ARE
*NOT SUPPORTEDBY DB2 UNLOAD
VUU011 ULSEDB2 YES
*
*OPTION TO LOCK THE TABLESPACE
VUU012 ULLOCK NO
*
*OPTION TO QUIESCE THE TABLESPACE
VUU013 ULQSCE NO
*
*VALUE OF THE NULL INDICATOR
VUU014 ULNULL FF00
*
*CONVERSION OF DATE TYPE COLUMNS
VUU015 ULDATE DATE_C
*
*CONVERSION OF TIME TYPE COLUMNS
VUU016 ULTIME TIME_A
*
*CONVERSION OF TIMESTAMP TYPE COLUMNS
VUU017 ULTMSTP TIMESTAMP_B
*
*DISPLAY,POSITION OF THE SIGN AND DECIMAL SEPARATOR
VUU018 ULPIC
*
*OPTIONS OF THE GENERATEDLOADSTATEMENT AT THE TABLESPACE LEVEL
VUU019 ULOPTLDT (LOG(NO),NOTIFY(YES),ENFORCE(NO),SORTKEYS(&SORTKEYS))
*VUU119
*VUU219
*VUU319
*VUU419
*
*OPTIONS OF THE GENERATEDLOADSTATEMENT AT THE PARTITION LEVEL
VUU020 ULOPTLDP (RESUME(YES))
*VUU120
*VUU220
*VUU320
*VUU420
*
*DEGREE OF PARALLEL PROCESSING
VUU021 ULDEGREE ANY
*
*POSITION FOR NULL INDICATOR
VUU022 NULLPOS BEFORE
*
*DEFAULT SCHEME FOR UNLOAD TABLESPACE
*(EBCDIC/ASCII/UNICODE/ASIS)
VUU023 UNLSCHEM EBCDIC

VUM026/SRTVSMAX Specifies the maximum size (in bytes) of the sort
work areas.

Parameters Description
138 Moving Data Across the DB2 Family

*
*RETURN CODE IF ZERO LINE IS UNLOADED
VUU024 UNLZLRC 4
*HIGH LEVEL QUALIFIER OF DB2 Admin DATASETS
*EXAMPLE:DBTOOL
VUU025 ADB
*
*LIBRARY WHICH CONTAINS DB2 Admin COMMANDS TABLES
*EXAMPLE :DBTOOL.SADBTLIB
VUU026 ADB.V4R1M0.SADBTLIB
*
*LIBRARY WHICH CONTAINS THE ADBDMTI EXEC
*EXAMPLE :DBTOOL.SADBEXEC
VUU027 ADB.V4R1M0.SADBEXEC

Table 7-9 HPU parameters

Parameters Description

VUU011/ULSEDB2 Specifies whether to process SELECT
statements using DB2 when the statements are
not supported by HPU.

NO
SELECT statements not supported by HPU will
not be processed by DB2.

YES
SELECT statements not supported by HPU will
be processed by DB2.

Default: YES

VUU012/ULLOCK Specifies whether to LOCK the tables of the table
space.

NO
Tables of the table space are not to be locked.

YES
Tables of the table space are to be locked.

Default: NO

VUU013/ULQSCE Specifies whether to QUIESCE the table space.

NO
The table space is not to be quiesced.

YES
The table space is to be quiesced.

Default: NO
Chapter 7. IBM DB2 High Performance Unload for z/OS 139

VUU014/ULNULL Lets you modify the null or not null indicator in
USER FORMAT.

OFF
The null indicator is not present in the output data
set.hhhh
The first two digits (one hexadecimal character)
represent the null indicator for a null column. The
last two digits (one hexadecimal character)
represent the null indicator for a not null column.

VUU015/ULDATE Specifies the default conversion type for a date
column when using FORMAT USER. For
information about conversion types and FORMAT
USER

VUU016/ULTIME Specifies the DEFAULT conversion type for a time
column when using FORMAT USER. For
information about conversion types and FORMAT
USER

VUU017/ULTMSTP Specifies the default conversion type for a
timestamp column when using FORMAT USER.
For information about conversion types and
FORMAT USER

Parameters Description
140 Moving Data Across the DB2 Family

VUU018/ULPIC Defines the numeric data display format.The
ULPIC parameter has three subparameters.All
three must be specified.

The first subparameter specifies the rules to print
the sign.
’+’Specifies that ’+’is used for positive values and
’-’is used for negative values.
’-’Specifies that ’-’ is used for negative values and
’blank’ is used for positive values.
’P’
Specifies that the padding character is used for
positive values and ’-’ is used for negative values.
Default: ’-’

The second subparameter specifies the rules to
position the sign. LEAD (default value)
The sign will be placed in front of the numeric
value.(LEAD is ignored for floating point
numbers).

TRAIL
The sign will be placed after the numeric
value.(TRAIL is ignored for
floating point numbers.)

The third subparameter specifies the decimal
separator.
’.’Default. Write a point as the decimal separator.
’,’Write a comma as the decimal separator.

Default: The default value is (’-’,LEAD,’.’),meaning
that the sign will be printed in front of the numeric
value, the sign will only be shown for negative
values, and the decimal separator will be a point.

Parameters Description
Chapter 7. IBM DB2 High Performance Unload for z/OS 141

VUU019/ULOPTLDT Defines the parameters of the LOAD statement
generated at the table space level. All
subparameters must be enclosed in parenthesis
as shown:
SORTDEVT(SYSDA)SORTNUM(32)
To code the Load options on several lines, use
the following rules:
1.Remove the “*”(asterisk) in column 1 for the
added lines that are used.
2.Enter the additional data starting in column 19.
3.The first string must begin with a left
parenthesis, and the corresponding right
parenthesis MUST be coded only on the last line
used.
For example:
VUU019 ULOPTLDT
(INDDN(SYSREC0),RESUME(NO),
VUU119 REPLACE,KEEPDICTIONARY,
VUU219 LOG(NO),ENFORCE(NO))
*VUU319
A list of parameters that are accepted follows:
COPYDDN
DISCARDDN
DISCARDS
ENFORCE(CONSTRAINTS/NO)
INDDN
KEEPDICTIONARY
LOG(YES/NO)
RECOVERYDDN
REPLACE
RESUME(YES/NO)
SORTDEVT
SORTKEYS (see note below)
SORTNUM

Note: If you specify the SORTKEYS keyword, the
value you specify for the &SORTKEYS variable
will be substituted with a value calculated
according to the number of unloaded records.

VUU020/ULOPTLDP Defines the parameters of the LOAD statement
generated at the partition level.
To code the Load options on several lines, use
the following rules:
1.Remove the “*”(asterisk) in column 1 for the
added lines that are used.
2.Enter the additional data starting in column 19.
3.The first string must begin with a left
parenthesis, and the corresponding
right parenthesis MUST be coded only on the last
line used.
A list of parameters that are accepted follows:
RESUME(YES/NO)
REPLACE
KEEPDICTIONARY

Parameters Description
142 Moving Data Across the DB2 Family

VUU021/ULDEGREE Defines the degree of parallelism, that is, the
number of parallel tasks or I/O operations that
DB2 can use to extract data from a partitioned
table space.
1
Parallelism is not to be used.

ANY
The product is to decide whether parallelism will
be used.

Default: ANY

VUU022/NULLPOS Specifies the position of the NULL indicator within
the HPU output data sets:
AFTER
The NULL indicator will be set after the column
data.
BEFORE
The NULL indicator will be set before the column
data.

Default: BEFORE

VUU023/UNLSCHEM Defines the unload format for the data.

ASCII
Indicates that the unloaded data must be in ASCII
format.HPU uses the subsystem’s ASCII CCSID,
unless overridden by specifying the CCSID
option.

ASIS
Indicates that the data is unloaded in its original
format.If the specification for the underlying table
space cannot be determined (for example, if the
data is processed by DB2), the CCSID returned
by a standard prepare statement in SQLDA is
used. You can also override ASIS by specifying
the CCSID keyword.
Specifying ASIS does not mean that no
conversion is necessary. Conversion may still be
required in some situations.

EBCDIC
Indicates that the data is unloaded in EBCDIC
format.HPU uses the subsystem’s EBCDIC
CCSID, unless you override it by specifying the
CCSID keyword.

UNICODE
Indicates that the data is unloaded in UNICODE
format.HPU uses the subsystem’s UNICODE
CCSID, unless you override it by specifying the
CCSID option.

Default: EBCDIC

Parameters Description
Chapter 7. IBM DB2 High Performance Unload for z/OS 143

See Example 7-9 for more JCL parameters.

Example 7-9 JCL parameters in INZTVAR

*********************JCL PARAMETERS ***********************************
*
*THE CUSTOMIZATION OF THE FOLLOWING VARIABLES CAN BE SKIPPEDIF
*YOU WANT TO USE THE SAME JOB CARDANDSYSOUT CLASS FOR ALL THE
*GENERATEDJCL.IN THIS CASE THE VALUES USEDWILL DEFAULT TO THE
*CONTENT OF THE VARIABLES VIM101 TO VIM112 DEFINED AT THE BEGINNING
*OF THIS MEMBER
*
*
*JOB PARAMETERS FOR THE JCL WHICH CREATE THE PLAN FOR UTILITIES
*(INZBINDJCL)
*JCL CARD
**
/VUX101 &VIM101

VUU024/UNLZLRC Specifies the return code that is issued by HPU if
zero rows are unloaded by at least one of the
SELECT statements of the UNLOAD command.

Default:4

VUU025 Specifies the high-level qualifier of the DB2
Administration tool libraries. This information is
used by the sample programs INZADBI and
INZDB2IX (in the SINZSAMP library) to update
the DB2 Admin tool and the Data Management
tools Launchpad tables.

VUU026 Specifies the name of the library that contains the
DB2 Administration tool command tables. This
information is used by the sample programs
INZADBI and INZDB2IX (in the SINZSAMP
library) to update the DB2 Administration tool and
the DB2 tools Launchpad tables.

VUU027 Specifies the name of the library that contains the
ADBMTI EXEC. This information is used by the
sample programs INZADBI and INZDB2IX (in the
SINZSAMP library) to update the DB2
Administration tool and the DB2 tools
Launchpad tables.JCL parameters: You can
leave all variables as they are if you want to use
the same job card and SYSOUT class for all
generated JCL. Or you can change
specifications on each job card.

VUX101 to VUX105,VUX111,VUX112 Specify the job parameters for the JCL that
creates the plan for the utilities (INZBIND JCL) as
well as the SYSOUT CLASSes of SYSTSPRT
and SYSPRINT.

VUX141 to VUX145,VUX151 Specify the job parameters for the JCL that
customizes the Load modules with the name of
the HPU PARMLIB as well as the SYSOUT
CLASS of SYSPRINT.

Parameters Description
144 Moving Data Across the DB2 Family

/VUX102 &VIM102
/VUX103 &VIM103
/VUX104 &VIM104
/VUX105 &VIM105

*SYSOUT CLASS OF SYSTSPRT
/VUX111 &VIM112
*SYSOUT CLASS OF SYSPRINT
/VUX112 &VIM112
*
*
*JOB PARAMETERS FOR THE JCL WHICH CUSTOMIZE THE LOADMODULES
*WITH THE NAME OF THE PARMLIB
*(INZPARM JCL)
*JCL CARD

/VUX141 &VIM101
/VUX142 &VIM102
/VUX143 &VIM103
/VUX144 &VIM104
/VUX145 &VIM105

*SYSOUT CLASS OF SYSPRINT
/VUX151 &VIM112

Note that you do not have to input all the parameters that appear in the job, you only need to
change those values which the default is different from the value that you want. After you
finish inputting the parameters, record the changes you made and then save the data.

Step 5: Executing the INZT02 procedure
After filling up the parameters in the INZTVAR member, you proceed in the customization by
running the INZT02 REXX procedure. The INZT02 procedure lets you generate all JCL and
data sets for HPU. This procedure creates or replaces members in the libraries that are
defined in member INZTDSN. You execute this procedure by typing exec on the line that
correspond to the INZT02 member inside the SINZAMP library. See Figure 7-3. This is inside
the P.3.4 panel.
Chapter 7. IBM DB2 High Performance Unload for z/OS 145

Figure 7-3 Executing the INZT02 REXX program

The INZT02 procedure also creates a backup of member INZTVAR in member.

INZRSAVE in the library created in “Step 1: Allocating the INZRSAVE library” on page 126.
This member is used by the installation process when installing a new version of the product.

The list of members created by the INZT02 procedure is as follows:

In the SINZSAMP library:

� INZBIND
� INZPARM
� INZADBI
� INZDB21X

In the INZPLIB library or other library name assigned during customization.

� INZUTIL

For more information, see “Step 3: Editing the INZTDSN member” on page 128.

Step 6: Integrating HPU into DB2 tools Launchpad
You have the option to use the DB2 tools Launchpad to start the HPU. To do this you have to
run the CLIST INZADBI. The parameters in the INZTVAR member (VUU025 and VUU027)
will be used by the CLIST for this.

The display panel in Figure 7-4 will appear when you run the INZADZBI. Press Enter to
confirm the new command HPU.

Note: Be aware that execution of the INZT02 procedure will override any manually
customized member that is supposed to be created by this procedure.

 Menu Functions Confirm Utilities Help
__
 EDIT INZ.V2R1M0.SINZSAMP Row 00022 of 00033
 Command ===> __ Scroll ===> CSR
 Name Prompt Size Created Changed ID
 _________ INZP01
 _________ INZRECEV
 _________ INZRSAVE
 _________ INZRSKEL
 _________ INZSWORK
 _________ INZTDSN 23 2002/10/08 2002/10/08 20:05:28 PAOLOR2
 _________ INZTTBL
 _________ INZTVAR 333 2002/10/08 2002/10/09 12:24:24 PAOLOR2
 _________ INZT01
 __exec___ INZT02 724 2002/10/08 2002/10/08 19:08:31 PAOLOR2
 _________ INZUTIL 169 2002/10/09 2002/10/09 12:24:46 PAOLOR2
 _________ INZUTISK
 End

146 Moving Data Across the DB2 Family

Figure 7-4 Add an entry panel

When INZADBI completes successfully, a new line - HPU, will be added to the DB2 tools
Launchpad.

Step 7: Integrating HPU into DB2 Admin tool
You can customize your system to run HPU interactively using the DB2 Administration tool. To
do this, run the CLIST INZDB21X. The CLIST uses the value for VUU026 that you set
previously in the INTZVAR member.

Messages will be displayed to inform you about the progress of the CLIST run. There will be
requested actions along the duration of the run. These actions needs to be performed to
continue the installation. After the successful completion of the CLIST run you start HPU
interactively using the DB2 Admin tool. An example to run a CLIST program is in Figure 7-5.
This is inside the P.3.4 panel

------------------DB2 Tools Table -ADD An Entry ---------------------14:30 ~
Command ===>

Prog No.:5655-I19 Release :210

Tool Name:HPU High Performance Unload

Code :HPU Group :200 Installed:Y

Command :SELECT CMD(INZHPU D LP)
Chapter 7. IBM DB2 High Performance Unload for z/OS 147

Figure 7-5 Executing the INZDB21X CLIST program

Step 8: Binding and granting the plan
Go to the SINZASMP library and look for the INZBIND member. This member was generated
during the installation process. It contains JCL that should be used to bind and grant the plan
for HPU. The generated JCL is customized to bind and grant the HPU plan on each DB2
subsystem defined by variable VZD001 in the INZTVAR member. The INZBIND JCL is shown
in Example 7-10.

Proceed as follows:

1. Review the contents of member INZBIND in the SINZSAMP library to verify that the JCL
reflects your environment.If you need to make changes, proceed to step 4.

2. Submit member INZBIND.

3. Check for correct execution.

4. If you have a problem with the BIND command or the GRANT statement, do not directly
modify this member; instead, correct the invalid values in the INZTVAR member and
re-execute the INZT02 procedure (see “Step 4.Editing the INZTVAR member” and “Step 5.
Executing the INZT02 procedure’.)

Example 7-10 JCL to bind the internal plan of HPU

//PAOLOHPU JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=X,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//*
//***
//* BIND THE INTERNAL PLAN OF THE PRODUCT *
//***
//EXECUTE EXEC PGM=IKJEFT01
//STEPLIB DD DSN=DB2G7.SDSNLOAD,
// DISP=SHR

 Menu Functions Confirm Utilities Help
 __
 EDIT INZ.V2R1M0.SINZSAMP Row 00001 of 00033
 Command ===> __ Scroll ===> CSR
 Name Prompt Size Created Changed ID
 _________ INZACCEP
 _________ INZADBI 133 2002/10/09 2002/10/09 12:24:46 PAOLOR2
 _________ INZADBSK
 _________ INZALA
 _________ INZALB
 _________ INZALLOC
 _________ INZAPPLY
 _________ INZBIND 31 2002/10/09 2002/10/09 13:00:03 PAOLOR2
 _________ INZBNDSK
 _________ INZDB2SK
 __exec___ INZDB21X 387 2002/10/09 2002/10/09 12:24:46 PAOLOR2
 _________ INZDDDEF
 _________ INZEXECU 56 2002/10/09 2002/10/09 13:57:28 PAOLOR2
 _________ INZEXIT
 _________ INZHPJSK
 _________ INZHPUSK
 _________ INZI00
 _________ INZI01
148 Moving Data Across the DB2 Family

//DBRMLIB DD DSN=INZ.V2R1M0.SINZDBRM,
// DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB2G)
 BIND PLAN(DSNHPUL) DYNAMICRULES(RUN) -
 OWNER(MICHAEL) -
 MEMBER(-
 INZQUERY -
 INZXPR2 -
 INZACDB2 -
) -
 ACQUIRE(USE) RELEASE(COMMIT) ISOLATION(CS) VALIDATE(RUN)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA71) -
 LIB('DB2V710G.RUNLIB.LOAD')
 END
//SYSIN DD *
SET CURRENT SQLID = 'MICHAEL';
GRANT EXECUTE ON PLAN DSNHPUL TO PUBLIC;
/*

Step 9: Submitting the INZPARM member
The INZPARM member was generated in the SINZSAMP library by the installation process. It
contains JCL that should be submitted to insert the dsname of the HPU PARMLIB in the
product’s load modules.

Proceed as follows:

1. Review the contents of member INZPARM in the SINZSAMP library to verify that the JCL
reflects your environment. If you need to make changes, proceed to step 4.

2. Submit member INZPARM.

3. Check for correct execution.

4. If you have a problem with execution of this job, do not directly modify this member;
instead, correct the invalid values in the INZTVAR member and re-execute the INZT02
procedure (see “Step 4: Editing the INZTVAR member” on page 129 and “Step 5:
Executing the INZT02 procedure” on page 145.)

Important: If you encounter an error in the INZBIND jcl (RC > 0). Do not edit this member
directly. Instead change the INZTVAR member then rerun the INZT02.

Important: The HPU PARMLIB consists of member INZUTIL. INZUTIL is located in the
library whose dsname is specified in variable INZPLIB in the INZTDSN member and in
variable VIZ007 in the INZTVAR member.

Member INZUTIL, which was generated by the INZT02 procedure, should not be
modified directly; instead, you should modify the INZTVAR member and re-execute the
INZT02 procedure (see “Step 4.Editing the INZTVAR member” and “Step 5.Executing
the INZT02 procedure”.)

To see which variable of member INZTVAR corresponds to a specific PARMLIB variable,
enter a FIND command on the PARMLIB variable’s name in the INZTVAR member.
Chapter 7. IBM DB2 High Performance Unload for z/OS 149

7.3 Data formats used by the HPU
In this section we describe the data formats in input and output supported by HPU.

7.3.1 Sources of input data that can be used by HPU
HPU can use the following sources for input data:

� Non partitioned table spaces
� Partitioned table spaces
� Full image copies
� Last full image copies
� Incremental image copies

Different input data will require different syntax to process.

Non-partitioned table space
HPU can use a non-partitioned table space as source of data. You can unload several tables
at the same time as long as they belong to one non-partitioned table space. The unload
requests are processed in parallel with each other.

Partitioned table space
A partitioned table space can contain only one table. It usually stores portions of a table that
has more than 1 GB of data. HPU can work on all partitions or on a subset of partitions. The
partitions can be processed by HPU concurrently.

Full image copy (FIC)
A full image copy is an exact reproduction of all or part of a table space. HPU can get its input
data from a full image copy. In this case, the rules for processing are the same as those that
apply to a table space:

� If the FIC is of the whole table space, HPU will process every partition

� If the FIC is of only one partition of the table space, then HPU will process the specific
partitions contained in the FIC.

Last full image copy
You can also ask HPU to do the unload against the last FIC data set taken for a tablespace.
DB2 keeps a record of the FIC data sets created in the SYSIBM.SYSCOPY system table. It
automatically refers to this table to determine the last full image copy taken from the table.

7.3.2 Output data formats
There are two kinds of data unload: the physical unload and the logical unload. The physical
unload involves unloading the entire table space. A table space is mapped to a physical entity
such as a device or a file. Hence, the name ‘physical’ unload. The logical unload involves
unloading data base objects like tables and views. Tables and views are logical entities in a
data base. HPU has five types of data formats. The physical unload has one kind of output
format white the logical unload has four kinds of output formats.

Physical unload
In doing a physical unload, you just have to specify the table space name. You do not have to
code any SQL in the unload statement:

� Reorg unload-only
150 Moving Data Across the DB2 Family

HPU lets you unload a table space in the same format as the IBM DB2 Reorg utility. In this
case, the table space is unloaded regardless of the tables it contains.To do this, specify the
UNLDDN parameter in the UNLOAD command. You cannot select the rows to unload or
change the format of these rows except by using an exit. You can limit the number of rows
unloaded and do some sampling on the unloaded rows. Be aware that the sampling is done
before the call to the exit. Even if you use this output format alone, you can still code the
SELECT statements.These SELECT statements will be processed in parallel, but you can
have only one UNLDDN statement per execution.

Logical unload
A logical unload is done by coding one or more SELECT statements. Each SELECT
statement needs to have its own OUTDDN data set to handle the result set. Logical unload
enables you to filter the rows and columns to be unloaded, and specify the output format.
These are the file formats that can be created in a logical unload:

DSNTIAUL
HPU provides a simplified way to produce output identical to that produced by the
DSNTIAUL program. In this case, the SELECT statement can contain only a column
name, and no format conversion is available. As an option, you can generate output based
on a table other than the one you are unloading. This is done using the keyword LIKE.
When using LIKE, the selected column must be compatible with the like table.If any
conversion is required, it follows HPU format rules.

DELIMITED
A delimited file is characterized by delimited rows and character strings. To create this type
of output just specify what kind of character you want to be used as a delimiter. The output
can be ASCII or EBCDIC file.

VARIABLE
Specify FORMAT VARIABLE to indicate that the output data set must be compatible with
the DB2 LOAD data set. The default output data set is variable blocked (VB), but you can
specify another format (F, FB, or V) in the JCL. HPU determines the LRECL at run time
using the following rules:

a. Fixed and fixed blocked: the LRECL must be larger than or equal to the sum of the
lengths of the fields.

b. Variable: the LRECL must be larger than or equal to the sum of the lengths of the fields
plus 4.

Variable-length fields are counted using their maximum length, plus 2 bytes for the length
of the field.

You can specify the following options for formatting the variable columns:

– END

The characteristics and the sequence of fields in the generated data set correspond to
those in the SELECT statement. The fields generated in the data set are also typical of
those in DSNTIAUL format; the only differences are:

Columns in DATE, TIME, or TIMESTAMP have the format ISO, which means:

– DATE corresponds to format YYYY-MM-DD
– TIME corresponds to HH.MM.SS
– TIMESTAMP corresponds to YYYY-MM-DD-HH.MM.SS.NNNNNN

If a column accepts the nulls, the null indicator is generated in front of the field. This
indicator contains the value X ’FF’ if the field is null and X ’00’ if the value is usable. If the
last selected column is variable, the type of the default generated data set will be VB, and
Chapter 7. IBM DB2 High Performance Unload for z/OS 151

this last column will be written only on its effective length; the two length bytes are placed
before the column.

You can override the default DATE/TIME/TIMESTAMP format by specifying an
options_block at the SELECT level.Only a SELECT level options_block will be taken into
consideration for this format:

– ALL

The only difference between this format and the END format is that all the variable
columns are written using their actual length.

– LIKE table-name

The use of FORMAT VARIABLE with a table name is the same as for FORMAT DSNTIAUL
and the differences described above are still valid.

USER
Specify FORMAT USER to indicate that you want the unloaded data to be formatted
according to the keywords specified in the user_block. You can change field attributes for
all selected columns, which means you can specify several keywords for each column,
according to the type of data the column contains.

The default values are determined by the values set in the options_block.

If all the fields unloaded are fixed, then the default RECFM is FB.If at least one output field
is variable, then the default RECFM is VB.

If the LRECL is not specified, HPU determines it at run time using the following rules:

– Fixed

The LRECL of the data set is equal to the sum of the maximum length of fields,
regardless of what was specified as the LRECL in the JCL.The output data set will be
in FB format.

– Variable and variable blocked

The LRECL of the data set is equal to the sum of the maximum length of fields plus
4,regardless of what was specified as the LRECL in the JCL.The output data set will be
in VB format.

You can customize every output column however you want.You can force the conversion
between type, change the date or time format, add or remove a length field, add or remove
a null indicator, justify the content left or right, select a padding character, select a delimiter
character for date and/or time, and so on.

Data type conversion in FORMAT USER
HPU allows you to get unload data into several data types. You can change them or retain
their original data type. The TYPE keyword of the SELECT statement (option block for
FORMAT USER) lets you create several types of data in the output.These types are
declared in the keyword TYPE.The use of this keyword implies that data is to be converted
from the original column type to the type declared in the TYPE keyword.

The following subsections describe the output data types that are allowed.

– Numeric data

• INTEGER or INT

Whole numbers in a binary word of 31 bits plus the sign.

• SMALLINT

Whole numbers in a binary halfword of 15 bits plus the sign.

• DECIMAL(n,m) or DEC(n,m)
152 Moving Data Across the DB2 Family

Standard decimal value contained in (n/2+1)bytes.The default value is DECIMAL or
DEC and is equivalent to DECIMAL (5,0).

• FLOAT(n)

Number is simple floating point precision if (0<n<22)in a fullword.Number is double
floating point precision if (21<n<54).

Default: double precision

– Nonnumeric data

• CHARACTER(n)or CHAR(n)

Character string of length n (0<n<255)bytes

• VARCHAR(n)

A two-byte length field followed by n characters.The size equals n+2 bytes.The DB2
type LONG VARCHAR is not used in a sequential data set.

• GRAPHIC(n)

Graphic character string coded on 2n bytes.One character equals two bytes.

• VARGRAPHIC(n)

Variable-length graphic character string coded on 2n+2 bytes.The DB2 type

• LONG VARGRAPHIC is not used in a sequential data set.

Authorized conversions in FORMAT USER output
Table 7-10 shows all conversions allowed between DB2 data types and HPU data types.

Table 7-10 Data type conversions allowed in DB2

Output encoding scheme
For the DSNTIAUL, DELIMITED, VARIABLE, and USER output formats, the translations from
EBCDIC to ASCII and from ASCII to EBCDIC are supported only for single byte character set
(SBCS) character strings. Translations are done using the translation tables in the
SYSIBM.SYSSTRINGS table. Other types of translation can be done using Unicode Conver-
sion Services.

DB2 data type Output data types

INTEGER SMALLINT, DECIMAL, FLOAT, CHAR

SMALLINT SMALLINT, INTEGER, CHAR, DECIMAL(p,q),
FLOAT

DECIMAL(m,n) SMALLINT, INTEGER, CHAR, DECIMAL(p,q),
FLOAT

FLOAT SMALLINT, INTEGER, CHAR, DECIMAL,
FLOAT

CHAR(n) CHAR(m), VARCHAR(m)

VARCHAR(n) CHAR(m), VARCHAR(m)

LONG VARCHAR(n) CHAR(m), VARCHAR(m)

GRAPHIC(n) GRAPHIC(m), VARGRAPHIC(m), CHAR(m)

VARGRAPHIC(n) GRAPHIC(m), VARGRAPHIC(m)

LONG VARGRAPHIC(n) GRAPHIC(m), VARGRAPHIC(m)
Chapter 7. IBM DB2 High Performance Unload for z/OS 153

7.4 Using HPU
The HPU is a powerful tool which is relatively easy to use. It is versatile in the sense that it
can be used interactively and in batch mode. THe HPU for z/OS can unload data from a
mainframe environment and make the output file in ASCII which makes it readable by
distributed platforms (Windows, UNIX, and Linux.)

You can use the HPU either by running a TSO batch job or by running it interactively using the
DB2 Administration tool or DB2 tools Launchpad. The data input can come from table spaces
or image copies. The output can be in different formats such as delimited, variable or
DSNTIAUL compatible. The HPU can also do the EBCDIC to ASCII conversion and
vice-versa.

The authority and privilege needed for HPU are:

� If the unload is performed from an image copy, RACF READ authority is required on the
image copy data set.

� DB2 SELECT privilege on the unloaded table or view, and DISPLAY privilege on the
database.

� If QUIESCE=YES is specified:

– IMAGECOPY privilege is required on the database.

– If the table space is in copy pending, the user must be able to issue START and STOP
on the database.

� If LOCK=YES is specified, the user must have SELECT privilege on all tables of the
unloaded table space.

7.4.1 Using the HPU in batch mode
The syntax in using the HPU is similar to the syntax of the DB2 Unload utility. HPU can
selectively unload rows by coding the SQL select statement in the UNLOAD statement. The
full syntax of the SQL SELECT can be specified in the UNLOAD statement, however, for the
statements that require more than one scan of the table space, HPU cannot directly process
the SQL, and gives the user the option of invoking DB2 to process it; HPU will then take over
to provide the specified output formatting. For statements that cannot be executed by HPU,
standard DB2 SQL performance is expected.

Any SQL statement that requires more than one pass on the data to be processed will be
passed to the DB2 engine. One example is table joins. HPU opens the data set and reads
from the first page to the last page. If it needs to loop back in order to satisfy a query it will
pass the control to the DB2 engine for processing.

A sample job to run the HPU
Example 7-11 is a HPU batch job in the INZEXECU member of the SINZSAMP library. This
JCL can also be used as a template for other HPU jobs.

Example 7-11 The INZEXECU JCL sample for using the HPU

//PAOLOHPU JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* *
//* DB2 UNLOAD JCL *
//* *
//* IN THIS SAMPLE : *
154 Moving Data Across the DB2 Family

//* *
//* - THE DB2 SUBSYSTEM IS DB2G *
//* - THE DB2 UNLOAD LOAD MODULES ARE *
//* IN THE LOADLIB INZ.V2R1M0 *
//* - THE EXECUTION REPORT WILL BE *
//* WRITTEN ON THE DDNAME SYSPRINT *
//* *
//***
//STEP1 EXEC PGM=INZUTILB, PARM='DB2G,DB2UNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//*
//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT
 DB2 YES
 QUIESCE YES QUIESCECAT YES
 OPTIONS DATE DATE_A
 SELECT 1, 2, 3 FROM PAOLOR7.EMP
 ORDER BY 1, 2 DESC
 OUTDDN (UNLDDN1)
 FORMAT VARIABLE ALL

 SELECT 1, 4, 5 FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN2)
 FORMAT DSNTIAUL
 LOADDDN LOADDDN1 LOADOPT (RESUME NO REPLACE)

/*
//SYSPRINT DD SYSOUT=*
//*
//********* DDNAMES USED BY THE SELECT STATEMENTS **********
//*
//UNLDDN1 DD DSN=PAOLOR2.MD.UNLD1,
// DISP=(NEW,DELETE,DELETE),
// UNIT=SYSDA,
// SPACE=(CYL,(10,20),RLSE)
//UNLDDN2 DD DSN=PAOLOR2.MS.UNLD2,
// DISP=(NEW,DELETE,DELETE),
// UNIT=SYSDA,
// SPACE=(CYL,(10,20),RLSE)
//LOADDDN1 DD DSN=PAOLOR2.MD.LOADA,
// DISP=(NEW,DELETE,DELETE),
// UNIT=SYSDA,
// SPACE=(CYL,(10,20),RLSE)

In the batch job shown in Example 7-11, HPU executes the unload of two different tables
inside one tables space. There are two select statements here, one for each table, while the
unload is issued at table space level. In this example, the data is unloaded from the
DSNDB04.DEPT table space. This table space contains the EMP and DEPT tables. Two
different tables can be unloaded at the same time if they belong to the same tablespace. The
unloaded data is located in the specified OUTDDN. The OUTDDN points to another data set
specified by the UNLDDN1 and UNLDDN2. The UNLDDN1 and UNLDDN2 specify the data
set names where the table space is unloaded. They will contain the result set of the select
statement that corresponds to them. As shown, each select statement needs its own
OUTDDN. In this case, PAOLOR2.MD.UNLD1 and PAOLOR2.MS.UNLD2 are the data sets
that will receive the unloaded data from the EMP and DEPT table correspondingly. We have
chosen to have PAOLOR2.UNLD1 in variable format, and PAOLOR2.UNLD2 in DSNTIAUL
format.
Chapter 7. IBM DB2 High Performance Unload for z/OS 155

The EXEC statement
In the EXEC statement in our example HPU job example:

//STEP1 EXEC PGM=INZUTILB, PARM='DB2G,DB2UNLOAD'

The control program being executed by the job is the INZUTILB. The library where the
INZUTILB is in should be APF authorized. In our case, it is in INZ.V2R1M0.SINZLINK library
which we specified in the STEPLIB.

The PARM statement contains the DB2 subsystem name. The name can be either the name
of a DB2 subsystem inside a non data sharing environment, or the DB2 group attachment
name when processing inside a SYSPLEX data sharing environment. The name should
correspond to the value in VZD001of INZTVAR. In our example, we use the DB2 subsystem
name which is DB2G.

The unique identifier for your HPU job is specified in the second parameter of the PARM
equation. This is UID. You cannot use special characters in the UID. In our example, the UID
is DB2UNLOAD.

DDNAMES used in the HPU job
The DDNAMES used in the HPU are reserved and user specified.

The reserved DD names allocated dynamically by HPU are shown in Table 7-11. You cannot
use these DDNAMES for other purpose.

Table 7-11 Reserved DDNAMES allocated dynamically by HPU

There are also DDNAME in the HPU JCL the user needs to provide. These DDNAMES are
shown in the Table 7-12.

Note: You can unload tables from different table spaces in parallel. Just specify one select
statement per table.

DDNAMES Description

INFOL001 DD name used to save the SYSIN data set.

UTPRINT Output data set for SORT utility messages.

SYSIN Data set used for the call to the DSNUTILB
program when HPU QUIESCEs the catalog.

SYSPRINT Data set used for the call to the DSNUTILB
program when a QUIESCE is needed.

SORT DDNAMEs HPU calls the SORT utility when you specify an
ORDER BY or an ORDER
CLUSTER.Thus,SORT DDNAMEs are allocated
dynamically.

INFOIC nn DD name used to identify the last image copy,
where nn is a sequence number.
156 Moving Data Across the DB2 Family

Table 7-12 DDNAMES that the user provides

DDNAMES Description

STEPLIB HPU must be able to access the exits used by
DB2 to ensure compatibility with products using
these standard exits.Therefore,you must specify
the location of libraries containing exits for DB2
and DSNHDECP for this DB2 subsystem in
STEPLIB, if the libraries are not in the LINKLIST.

SYSIN Data set containing commands for HPU.

SYSPRINT DD name for the data set that receives the report
from execution of HPU.

SYSTERM DD name for the data set that receives the
additional diagnostic information from execution
of HPU.

INFPLIB This is an optional DDNAME. It connects HPU to
the PARMLIB that contains member INZUTIL.
This ddname should be omitted if, during
installation, member INZPARM was customized
and submitted.
You will encounter an error in your batch job if you
have customized INZPARM and still coded this
option in your JCL.

COPYDD This is an optional DDNAME. Value of the
COPYDDN parameter specified in the SYSIN.
Specify a DD statement naming the image copy
data set from which the unload is to be
performed. To allow HPU to do processing in
parallel for partitioned table spaces using image
copies as input, code in your JCL one copydd nnn
statement for each partition you want to unload
(copydd 01 copydd 02 ...,copydd nnn ; nnn is a
2-o 3-digit sequential number.

OUTDD This DDNAME is optional. Value of the OUTDDN
parameter specified in the SYSIN. Specify a DD
statement naming the data set that will contain
the result of a SELECT (logical unload). For
information on processing in parallel for
partitioned table spaces, see OUTDDN
description

UNLDD This is an optional DDNAME. unldd is the value
of the UNLDDN parameter specified in the
SYSIN. Specify a DD statement naming the data
set that will contain the physical unload of your
table space.
Chapter 7. IBM DB2 High Performance Unload for z/OS 157

7.5 Components of the HPU statement
The HPU statement is composed of statement blocks. These blocks are joined together to
form the HPU statement. Not all blocks are required. The blocks that you include in your
statement depends on the requirement you have for the output file.

7.5.1 HPU blocks
The HPU statement is composed of a main block and four optional blocks, see Figure 7-6.
Only the main block is required for the HPU statement. The four optional blocks could be
incorporated in the statement depending on the intended output file.

Figure 7-6 The HPU blocks

The Unload block is the main block. It is where all other blocks are connected. A Select block,
a Global block, and/or an Options block can be connected to an Unload block. The Format
block can only be connected to a Select block. If your HPU statement does not have a Select
block then the Format block is not needed. The Options block can be connected to a Select
block, Global block, and the Unload block, but it cannot be connected to a Format block. The
Global block can contain an Options block. See Figure 7-7.

LOADDD This is an optional DDNAME. loaddd is the value
of the LOADDDN parameter specified in the
SYSIN. Specify a DD statement naming the data
set that will contain the SYSIN for a LOAD
allowing the RELOAD of a SELECT (in
DSNTIAUL or VARIABLE format) into the same
or another table.
Note: If you are requesting that HPU do
processing in parallel for partitioned table
spaces, you MUST specify this processing for all
ddnames (copydd, unldd, and outdd) coded in the
JCL.

DDNAMES Description

DB2 HP Unload statement

 GLOBAL DB2 YES ;
 UNLOAD TABLESPACE DSNDB04.DEPT
 QUIESCE YES QUIESCECAT YES LOCK YES
 OPTIONS DATE DATE_B

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1) ASCII
 FORMAT VARIABLE ALL

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN2) ASCII
 FORMAT DELIMITED SEP ';' DELIM '*'

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN3) ASCII
 FORMAT DSNTIAUL
 LOADDDN LOADDDN1 LOADOPT (RESUME NO REPLACE)

Global block

Format block
Select block

Unload block
Options block

Format block

Select block

Format block
Select block
158 Moving Data Across the DB2 Family

Figure 7-7 Connection diagram of the blocks of HPU

7.5.2 Descriptions of the HPU blocks
The following are descriptions of the HPU blocks:

Unload block
The Unload block Example 7-12 is the main block of the HPU statement. All HPU statements
are required to have this block.

Example 7-12 Complete options available in the Unload block

UNLOAD TABLESPACE dbname.tsname
 PART (ALL | integer | ,)
 COPYDDN [LAST_IC | copydd]
 DB2 [YES | NO]
 LOCK [YES | NO]
 QUIESCE [YES | NO]
 QUIESCECAT [YES | NO]
 OPTIONS opt_form
 UNLDDN unldd
 UNLMAXROWS n
 UNLFREQROWS n

Options you can specify in the Unload block:

DB2
Specifies the processing to be performed for SELECT statements that are not supported
by HPU.

– YES

 UNLOAD TABLESPACE dbname.tsname
 PART (ALL | integer | ,)
 COPYDDN [LAST_IC | copydd]
 DB2 [YES | NO]
 LOCK [YES | NO]
 QUIESCE [YES | NO]
 QUIESCECAT [YES | NO]
 OPTIONS opt_form
 UNLDDN unldd
 UNLMAXROWS n
 UNLFREQROWS n

SELECT [* | colname | literal]
 FROM [creator.table | creator.view]

 ORIGINOBID obid
 WHERE where clause

 ORDER BY [colname | num]
 [ASC | DESC]

 OUTDDN (outdd)
 OUTMAXROWS n

 OUTFREQROWS n
 OUTEXIT exitname [ASM | C | COBOL2]

 OPTIONS NULL [val1 val2 | OFF]
 DATE date-form
 TIME time-form
 TIMESTAMP timestamp form
 PIC [+] [LEAD | TRAIL] [. | ,]
 LOADOPT [str | str str]

GLOBAL DB2 [YES | NO]
 LOCK [YES | NO]

 QUIESCE [YES | NO]
 QUIESCECAT [YES | NO]

 FORMAT [DSNTIAUL
 DELIMITED [SEP val]
 [DELIM val]
 [NULL DELIM]
 VARIABLE [END | ALL]
 USER format_user]

 FORMAT DSNTIAUL or VARIABLE:
 LIKE table LOADDDN loaddd
 LOADOPT (str) (str str)
Chapter 7. IBM DB2 High Performance Unload for z/OS 159

Indicates that if the SELECT statement is too complex to be handled directly by
HPU,DB2 is called to extract the rows.A Warning message (Severity 4)is issued to
report this occurrence. The overall return code is raised to 4.

– NO

Indicates that the SELECT statements must be processed by HPU.If a SELECT
statement is not supported by HPU, an error is raised and execution stops.Note:the
control is done when reading the SYSIN, prior to processing any unload.

– FORCE

Indicates that DB2 must be used to extract the requested rows. This is useful when the
SELECT statement uses a filtering predicate that is very efficiently processed through
SQL, and the filtering factor is high. That is a small number of rows (say 10%) will be
unloaded and an index will be used by DB2. In this case, DB2 processing is faster than
HPU’s. An Information message (Severity 0) is issued in the report.

DB2 FORCE cannot be used when unloading from an image copy. Attempting to
unload from a FIC using DB2 FORCE will result in an error and the execution will stop.

LOCK
Indicates whether or not HPU must lock the table space during the unload:

– YES

The table space is accessed in read-only mode during the execution of HPU.

– NO

The table space is processed without changing its access mode.

QUIESCE
Specifies whether or not to issue a QUIESCE against the table space before unloading it.
If the unload is against an image copy, this option is ignored.

– YES

The QUIESCE command is processed if the table space is not in COPY pending
status; otherwise, the table space is stopped and restarted.

– NO

The table space is processed without QUIESCE.

QUIESCECAT
Specifies whether or not to issue a QUIESCE on the DB2 catalog’s table spaces before
unloading.The QUIESCE is done only once, prior to any catalog access, if at least one
unload requests it:

– YES

A QUIESCE is to be processed on the catalog tables.

– NO

No QUIESCE is to be processed on the catalog tables.

Global block
In this block you put the global options that you want for all of the output files. The options you
specify in the global block will be the default option for all the output files created by the Select
statements in SYSIN. However, the options specified in the Unload block takes precedence
over the Global block. Hence, these values will be overridden by the options you specify for
each column or table in the Unload block.
160 Moving Data Across the DB2 Family

The options you can specify on the Global block are DB2, LOCK, QUIESCE, and
QUIESCECAT, see Example 7-13. Refer to the Unload block for the description of these
options.

Example 7-13 Global block

GLOBAL DB2 [YES | NO]
 LOCK [YES | NO]
 QUIESCE [YES | NO]
 QUIESCECAT [YES | NO]

Select block
In this block, you specify the table, column name or column number of the data that you want
to unload. The options available in the Select block is in Example 7-14.

Example 7-14 Select block

SELECT [* | colname | literal]
 FROM [creator.table | creator.view]
 ORIGINOBID obid
 WHERE where clause
 ORDER BY [colname | num]
 [ASC | DESC]
 OUTDDN (outdd)
 OUTMAXROWS n
 OUTFREQROWS n
 OUTEXIT exitname [ASM | C | COBOL2]

SELECT
The use of the select clause statement in this block is the same as the DB2 SQL Select
clause. See DB2 SQL User’s Reference Guide for further information.

The select statement in this block includes these clauses:

– Where clause
– Order by

ORIGINOBID
This keyword must be specified in conjunction with the COPYDDN statement.It is used
when the OBID table in the image copy is not the same as the OBID read in the
catalog.This can happen, for example, for an image copy of a table that was dropped and
then recreated with a new

OBID
If the source data is an image copy, use this keyword to specify the OBID of the rows to be
processed in this image copy.

– integer

If the image copy file contains a unique table, the value 0 can be used instead of the OBID
of the table. If you specify the value 0, HPU processes the first OBID that is found in the
image copy.

– X ’hhhh’

hhhh is the hexadecimal value of the OBID of the table in the image copy.
Chapter 7. IBM DB2 High Performance Unload for z/OS 161

ORDER CLUSTER
This clause indicates to HPU that the output data set must be sorted according to the
index cluster. You must code the ddname (UTPRINT), which contains the sort messages
(see “DDNAMES”). If no index is defined on the table, a warning message is issued, and
processing continues.

OUTDDN outdd
Specifies the ddname of the sequential output data set containing the unloaded data.You
can specify up to 255 ddnames. outdd is the base ddname of the output data set. If you
want HPU to perform processing in parallel for partitioned table spaces, code in your JCL
one outdd nnn statement for each partition (outdd 01 outdd 02 ...outdd nnn), where nnn is
a 2-to 4-digit sequential number that identifies a partition to be unloaded. During the
unload process data from each partition is directed to the corresponding ddname. If the
corresponding ddname is allocated, it is used for the given partition; otherwise, the base
ddname, if allocated, is used. For example:

UNLOAD TABLESPACE PART(1,2,4,5)SELECT *FROM Q.T OUTDDN(MYDD)
FORMAT DSNTIAUL

If MYDD,MYDD01,and MYDD0004 are allocated, then MYDD contains the rows from
partition 2 and 5,MYDD01 contains the rows from partition 1, and MYDD0004 contains the
rows from partition 4.

If you do not specify this parameter, then specify UNLDDN on the UNLOAD TABLESPACE
statement.

OUTMAXROWS n
Specifies the maximum number of rows, n to be extracted for this SELECT statement. If
you are processing a partitioned table space, the number n applies to each partition.

OUTFREQROWS n
Specifies the unload sampling frequency. One row every n rows will be written to the
OUTDDN data set.

OUTEXIT exitname
Specifies the name and the language of the exit that handles the rows during unload
processing.The exit must reside in an authorized library, and is loaded dynamically during
the execution.The library must be in either the LINKLIST, or in an authorized JOBLIB or
STEPLIB. For COBOL/2 and C, the STEPLIB, JOBLIB, or LINKLIST should also point to
the LE/370 runtime libraries.

– ASM

Assembler language

– C

C language

– COBOL2

COBOL/2 language

Default: ASM

EBCDIC/ASCII/UNICODE/ASIS
Specifies that the data is unloaded in EBCDIC, ASCII, or UNICODE format using the
CCSID of the installation or the specified CCSID.

– ASCII
162 Moving Data Across the DB2 Family

Indicates that the unloaded data must be in ASCII format.HPU uses the subsystem’s
ASCII CCSID, unless overridden by specifying the CCSID option.

– ASIS

Indicates that the data is unloaded in its original format.If the specification for the
underlying table space cannot be determined (for example, if the data is processed by
DB2),the CCSID returned by a standard prepare statement in SQLDA is used.You can
also override ASIS by specifying the CCSID keyword.

Specifying ASIS does not mean that no conversion is necessary. Conversion might still
be required in some situations, such as between input from SYSIN and the CCSID of
the system, or between the CCSID of the system and printed output.

– EBCDIC

Indicates that the data is unloaded in EBCDIC format. HPU uses the subsystem’s
EBCDIC CCSID, unless you override it by specifying the CCSID keyword.

– UNICODE

Indicates that the data is unloaded in UNICODE format. HPU uses the subsystem’s
UNICODE CCSID, unless you override it by specifying the CCSID option.

Default: EBCDIC

If the unload format (the unload format is either specified in the SYSIN or in the PARMLIB
using the UNLSCHEM variable) is not identical to the system’s EBCDIC format, all
constants that are specified in SYSIN will be translated to the unload format.

CCSID
Specifies up to three coded character set identifiers (CCSIDs) for the unloaded data.The
first specifies the CCSID for SBCS data, the second specifies the CCSID for MIXED
DBCS data, and the third specifies the CCSID for DBCS data.If any of these are specified
as 0 or omitted, the CCSID of the corresponding data type is assumed to be the same as
the installation default CCSID.

CCSID can also be specified at the column level, in the user_block syntax.

Format block
In this block, you specify the format of the output data that will be produced by the HPU
statement, see Example 7-15. The Format block can only be attached to a Select block.

Example 7-15 Format block

FORMAT [DSNTIAUL
 DELIMITED [SEP val]

[DELIM val]
[NULL DELIM]

 VARIABLE [END | ALL]
 USER format_user]

FORMAT DSNTIAUL or VARIABLE:
 LIKE table LOADDDN loaddd
 LOADOPT (str) (str str)

Format USER options, se Example 7-16.

Example 7-16 Format USER options

FORMAT USER:
Chapter 7. IBM DB2 High Performance Unload for z/OS 163

(COL [colname | num]
 TYPE type idem scan
 PADDING val
 DELIM val
 LENGTHBYTE [YES | NO]
 LENGTH [REAL | MAX]
 NULLID [YES | NO]

DELIMITED delimited_block
Use this keyword to specify that data is to be unloaded in DELIMITED format.For a
description of the delimited_block syntax, see “DELIMITED block”.

You have the following three options:

– SEP val

This keyword defines the separator character to be used in a FORMAT DELIMITED.

• val can be ’c’ or X ’hh’.

Default blank

– DELIM val

val can equal ’c’ or X’hh’.This option defines the delimiter character (there is no default
value.)

– NULL DELIM

This option defines whether the null values should be enclosed by the delimiter.

Char, varchar, graphic, and vargraphic columns are enclosed by the delimiter
character.Null columns are not enclosed by the delimiter character if DELIM val and NULL
DELIM are coded. All the other types of columns are enclosed by the separator character.

Columns in DATE, TIME, and TIMESTAMP have the format ISO, which means:

– DATE corresponds to format YYYY-MM-DD
– TIME corresponds to HH.MM.SS
– TIMESTAMP corresponds to YYYY-MM-DD-HH.MM.SS.NNNNNN

You can override the default DATE/TIME/TIMESTAMP format by specifying an
options_block at the SELECT level.Only a SELECT level options_block will be taken into
consideration for this format.

DSNTIAUL dsntiaul_block
Use this keyword to specify that data is to be unloaded in the same format as is produced
by the DSNTIAUL program.

USER user_block
Use this keyword to specify that data is to be unloaded as defined by the user. You can
specify the format of a specific column using a user_block. Specify FORMAT USER to
indicate that you want the unloaded data to be formatted according to the keywords
specified in the user_block.You can change field attributes for all selected columns, which
means you can specify several keywords for each column, according to the type of data
the column contains.

The default values are determined by the values set in the options_block. If all the fields
unloaded are fixed, then the default RECFM is FB. If at least one output field is variable,
then the default RECFM is VB.

If the LRECL is not specified, HPU determines it at run time using the following rules:
164 Moving Data Across the DB2 Family

– Fixed: the LRECL of the data set is equal to the sum of the maximum length of fields,
regardless of what was specified as the LRECL in the JCL.The output data set will be
in FB format.

– Variable and variable blocked: the LRECL of the data set is equal to the sum of the
maximum length of fields plus 4,regardless of what was specified as the LRECL in the
JCL.The output data set will be in VB format.

The options that you can specify are:

– COL colname /num

Specifies the column’s name or number in the SELECT statement.

The attributes that can be specified (in keywords) for each field follow:

– The type of output field
– A padding character for character strings
– A delimiter for fields containing DATE, TIME, or TIMESTAMP
– A choice of whether variable-length fields will make use of their actual length or of the

maximum length
– Whether a field is to be preceded by a null indicator
– Whether the two length bytes will be deleted for types of variable-length
– A justification for character or numeric strings.

A description of the keywords that specify these attributes follows:

– TYPE val

The output field format to produce. TYPE can specifies the conversion to be performed.

Example: TYPE CHAR(10)

Default: the default field format for output records is the format specified for columns in the
SELECT statement.

– PADDING val

Specifies the padding character val to be used whenever padding is necessary for a
column.The padding character can be a single character or a hexadecimal value.If you
specify val otherwise, only the first character or the first two digits are used.Padding is
normally applied to the end of character strings.If JUST RIGHT is specified, the padding is
added at the beginning of the string.

The padding is used for the conversion of characters to a string of greater length.

Example: PADDING ’*’or PADDING X ’00’ (binary zero)

A “blank” character is used as the default padding character.

For the DATE, TIME, and TIMESTAMP columns, the default format is the one that is used
in the options_block.

– DELIM literal

Important: When you pad a character field and also do a conversion from EBCDIC to
ASCII or vice-versa in one HPU job. The output file will be converted first before it is
padded by the value you specify. So you will have a field with EBCDIC characters but with
ASCII padding or a field with ASCII characters with EBCIDC padding depending on the
conversion you are doing. So it is not recommended that you pad your characters and do
the code page conversion at the same time in one HPU statement.

One way to do it is by padding your character fields in your HPU statement. When you
already have the output file do the code page conversion through FTP.
Chapter 7. IBM DB2 High Performance Unload for z/OS 165

When specified in a user_block, indicates the delimiter to be used in external DATE or
TIME fields.The literal must be one character long (and also one byte long, regardless of
the literal CCSID.)

Defaults:

– ’-’for DATE fields
– ’.’for TIME fields

For the TIMESTAMP column, both delimiters are used.

– LENGTHBYTE

Specifies whether the 2 length bytes for variable-length columns should be written to the
output data set:

• YES

The two length bytes should be written.

• NO

The two length bytes should not be written.

Default: LENGTHBYTE YES

– LENGTH

Specifies whether the real or maximum length is to be used for fields of variable length.

• REAL

The length of the field is not to change (value of the two length bytes.)

• MAX

The output field is to be padded to its maximum length with binary zeros.

Note: This keyword is only useful for variable-length fields.

Default: LENGTH REAL

– NULLID

Specifies whether a null indicator byte is to be created preceding an output field.NULLID
can also be specified in the options_block.

• YES

The null indicator is to be created.This indicator will be set to the value X ’FF’ if the
column is null; otherwise, the indicator will be set to X'00'.The indicator can be used by
LOAD to load null values into a table.The values of the null indicator can be changed
with the NULL option.

• NO

The Null indicator is not to be created.

Default: NULLID NO

– JUST

Specifies whether the output character string is to be justified (aligned).The JUST attribute
specifies right or left justification for extended numeric values or for character strings when
converting to strings of greater length:

• RIGHT

Justify the output character string to the right.

• LEFT

Justify the output character string to the left.
166 Moving Data Across the DB2 Family

Default: Left justification for conversion between character strings; right justification for
numeric conversions in strings.

– NULL

Indicates whether the null indicator is generated in the output data set. NULL can also be
specified in the options_block.

• val1 Value of the null indicator when the column value is NULL. val1 can be
specified in character (’C’) or hexadecimal (X'hh').

• val2 Value of the null indicator when the column value is NOT NULL. val2 can be
specified in character (’C’) or hexadecimal (X'hh').

• OFF No null indicator is generated.

VARIABLE variable_block
Use this keyword to specify that data is to be unloaded in a format that is compatible with
the DB2 LOAD data set.

You can specify the following options for formatting the variable columns:

– END

The characteristics and the sequence of fields in the generated data set correspond to
those in the SELECT statement. The fields generated in the data set are also typical of
those in DSNTIAUL format; the only differences are:

Columns in DATE, TIME, or TIMESTAMP have the format ISO, which means:

• DATE corresponds to format YYYY-MM-DD

• TIME corresponds to HH.MM.SS

• TIMESTAMP corresponds to YYYY-MM-DD-HH.MM.SS.NNNNNN

If a column accepts the nulls, the null indicator is generated in front of the field.This
indicator contains the value X ’FF’ if the field is null and X ’00’ if the value is usable.

If the last selected column is variable, the type of the default generated data set will be VB,
and this last column will be written only on its effective length; the two length bytes are
placed before the column.

You can override the default DATE/TIME/TIMESTAMP format by specifying an
options_block at the SELECT level.Only a SELECT level options_block will be taken into
consideration for this format.

– ALL

The only difference between this format and the END format is that all the variable
columns are written using their actual length.

– LIKE table-name

The use of FORMAT VARIABLE with a table name is the same as for FORMAT DSNTIAUL
(described on page “DSNTIAUL block”), and the differences described above are still
valid.

LOADDDN loaddd
Use this keyword if you want HPU to create a command data set for the Load utility.

– loaddd

Specifies the name of the DD statement describing the command data set.The
corresponding DD statement must be present in the execution JCL.This data set contains
the necessary commands for loading a sequential data set using the DB2 LOAD utility.
Chapter 7. IBM DB2 High Performance Unload for z/OS 167

When the clause LIKE CREATOR-TABLE is not used, the model table is the one
referenced in the SELECT statement.

LOADOPT
This keyword enables you to modify the options of the DB2 LOAD command.Use this
keyword to specify the options that you want HPU place in the LOAD SYSIN that is
created during the unload process.

– tableoptions

Options for the table space

– partoptions

Options for the partition

UNLDDN unldd
Indicates that a physical unload of the table space is to be performed, and specifies the
ddname of the output data set.

– unldd

This is the base ddname of the output data set. If you want HPU to perform processing in
parallel for partitioned table spaces, code in your JCL one unldd nnn statement for each
partition (unldd 01 unldd 02 ...unldd nnn , where nnn is a 2-to 4-digit sequential number
that identifies a partition to be unloaded. During the unload process, data from each
partition is directed to the corresponding ddname.

If the corresponding ddname is allocated, it is used for the given partition; otherwise, the
base ddname, if allocated, is used. For example:

UNLOAD TABLESPACE PART(1,2,4,5)UNLDDN(MYDD)FORMAT DSNTIAUL

If MYDD,MYDD01,and MYDD0004 are allocated, then MYDD contains the rows from
partition 2 and 5,MYDD01 contains the rows from partition 1, and MYDD0004 contains the
rows from partition 4.

If you do not specify this parameter, specify OUTDDN on the SELECT statement.

The format of this data set is similar to the format when a DB2 REORG UNLOAD ONLY is
done.

UNLMAXROWS n
Specifies the maximum number of rows to unload for a physical unload.If the unload
involves a partitioned table space, which is treated partition by partition, then the limit
applies to each partition.The variable n must be an integer.

UNLFREQROWS n
Specifies the unload sampling frequency for a physical unload.One row of every n rows
will be written to the UNLDDN data set.The variable n must be an integer.

Options block
The options_block enables you to specify the default conversions that will be used with the
SELECT statement. This block can be used in the global_block, the unload_block, and the
select_block.

Options specified in a global_block or unload_block are only applicable to the USER format,
except LOADOPT. The value of the LOADOPT is created by merging values specified in the
parmlib, the global_block, the unload_block, and the select_block.However,LOADOPT is also
specified in the FORMAT specification, then it is used as is (no merge with previous levels.)
Options block, see Example 7-17.
168 Moving Data Across the DB2 Family

Example 7-17 Options block

OPTIONS NULL [val1 val2 | OFF]
DATE date-form
TIME time-form
TIMESTAMP timestamp form
PIC [+] [LEAD | TRAIL] [. | ,]
LOADOPT [str | str str]

NULL
Indicates whether the null indicator is generated in the output data set.This keyword has
meaning only for the USER format.It also can be specified in the SELECT statement in the
FORMAT USER syntax.

– val1 Value of the null indicator when the column value is NULL.

– val1 can be specified in character (’C’) or hexadecimal (X'hh').

– val2 Value of the null indicator when the column value is NOT NULL.

– val2 can be specified in character (’C’) or hexadecimal (X'hh').

– OFF No null indicator is generated.

DATE DATE_x
Specifies the default output format for the DATE columns.Specify DATE_x where x can be
any uppercase letter from A through P. The formats for each choice are as follows:

– DATE_A format MM-DD-YYYY
– DATE_B format MM-DD-YY
– DATE_C format YYYY-MM-DD
– DATE_D format YY-MM-DD
– DATE_E format DD-MM-YYYY
– DATE_F format DD-MM-YY
– DATE_G format YYYY-DDD
– DATE_H format YY-DDD
– DATE_I format MMDDYYYY
– DATE_J format MMDDYY
– DATE_K format YYYYMMDD
– DATE_L format YYMMDD
– DATE_M format DDMMYYYY
– DATE_N format DDMMYY
– DATE_O format YYYYDDD
– DATE_P format YYDDD

DATEDELIM literal
Specifies the default delimiter to be used in external date representation. Val must be one
character (and one byte long, regardless of the literal CCSID.)

TIME TIME_x
Specifies the default conversion for time representation.Specify TIME_x where x can be
any uppercase letter from A through E. The result of each choice is as follows:

– TIME_A format HH.MM.SS
– TIME_B format HH.MM
– TIME_C format HH.MM AM
– TIME_D format HHMMSS
– TIME_E format HHMM
Chapter 7. IBM DB2 High Performance Unload for z/OS 169

TIMEDELIM literal
Indicates the default delimiter to be used in external time representation. The literal must
be 1 character long (and also 1 byte long, regardless of the literal CCSID.)

TIMESTAMP TIMESTAMP_x
Specifies the default conversion for the TIMESTAMP columns.Specify TIMESTAMP
TIMESTAMP_x, where x can be an uppercase letter from A through G.The result of each
choice is as follows:

– TIMESTAMP_A format YYYY-MM-DD-HH.MM.SS
– TIMESTAMP_B format YYYY-MM-DD-HH.MM.SS.NNNNNN
– TIMESTAMP_C format YYYYMMDDHHMMSS
– TIMESTAMP_D format YYMMDDHHMMSS
– TIMESTAMP_E format YYYYMMDDHHMMSSNNNNNN
– TIMESTAMP_F format YYMMDDHHMMSSNNNNNN
– TIMESTAMP_G format YYYY-MM-DD HH:MM:SS.NNN

For DATE, TIME, and TIMESTAMP columns:

The values DATE_C, TIME_A, and TIMESTAMP_B are used to unload the DATE,TIME,
and TIMESTAMP columns, unless other values are specified for the TYPE parameter
within the FORMAT USER block

Default values in the OPTIONS block

Variables VUU015/ULDATE,VUU016/ULTIME, or VUU017/ULTMSP at installation or
during the customization process.

PIC (parm1, parm2, parm3, parm4)
Defines the numeric data display format used when numeric values are converted for
external representation.The PIC keyword has four parameters.The first three must be
specified, and the fourth is optional.

The first parameter specifies the rules for printing the sign:

– ’-’ Indicates that the minus sign, ’-’ ,is present if the number is negative.Otherwise the
sign character is a ’blank’.

– ’+’ Indicates that the sign is always present. Positive values have a ’+’, and negative
values have a ’-’ sign.

– ’P’ Indicates that the padding character is used for positive values and the minus
sign,’-’,is used for negative values.

The second parameter specifies the position the sign relative to the column.

– LEAD

The sign will be placed in front of the numeric value.(LEAD is ignored for floating point
numbers.)

– TRAIL

The sign will be placed after the numeric value.(TRAIL is ignored for floating point
numbers.)

The third parameter specifies the decimal separator to be used.

– ’.’ Use a point as the decimal separator.

– ’,’ Use a comma as the decimal separator.

The optional fourth parameter indicates formatting rules for a nonsignificant zero:
170 Moving Data Across the DB2 Family

– ’*.*’ No unnecessary 0 is added to the number either before or after the decimal
separator. The number 0 is represented as 0. For example: a DECIMAL(3,4)0.23 is
represented as .23; 2 is represented as 2.

– ’*.0 ’ The number is padded with 0 up to the decimal precision of the column.For
example: a DECIMAL(5,3)12.5 is represented as 12.500;0.3 is represented as .300.A
DECIMAL(5,0)120 is represented as 120.

– ’0.*’ No unnecessary number is added to the number after the decimal
separator.However,there is always a digit before the decimal point if the precision
allows it.For example: a DECIMAL(4,3)1.23 is represented as 1.23;.25 is represented
as 0.25;2 is represented as 2.

– ’00.*’ The integer part of the number, if any, according to the precision and scale of the
number, is padded with 0.For example: a DECIMAL(5,2)2 is represented as 002;1.23 is
represented as 001.23.

– ’0.0’ The number is padded with 0 up to the decimal precision of the column, and there
is always a digit prior to the decimal point, if the precision allows it.For example
DECIMAL(4,3)1.23 is represented as 1.230;0.5 is represented as 0.500.

– ’00.0’ The integer part of the number, if any, according to the precision and scale of the
number, is padded with 0 and the number will be padded with 0 up to the decimal
precision of the column.For example:DECIMAL(5,2)0 is represented as 000.00.

Default: The default value is (’-’,LEAD,’.’,’*.*’),meaning that the sign will be printed in front
of the numeric value, the sign will only be shown for negative values, the decimal
separator will be a point, and no unnecessary 0 is added to the number.

LOADOPT
For this keyword, see the LOADOPT description in the Format block.

LENGTHBYTE
Specifies whether the 2 length bytes for variable-length columns should be written to the
output data set.

– YES

The two length bytes should be written.

– NO

The two length bytes should not be written.

Default: LENGTHBYTE YES

LENGTH
Specifies whether the real or maximum length is to be used for fields of variable length.

– REAL

The length of the field is not to change (value of the two length bytes.)

– MAX

The output field is to be padded to its maximum length with binary zeros.

This keyword is only useful for variable-length fields.

Default: LENGTH REAL

NULLID
Specifies whether a null indicator byte is to be created preceding an output field.This
keyword is has meaning only for the USER format.It can also be specified in the SELECT
statement in the FORMAT USER syntax.
Chapter 7. IBM DB2 High Performance Unload for z/OS 171

– YES

The null indicator is to be created.This indicator will be set to the value X ’FF’ if the
column is null; otherwise, the indicator will be set to X'00'.The indicator can be used by
LOAD to load null values into a table.The values of the null indicator can be changed
with the NULL option (see “Options block description”.)

– NO

The Null indicator is not to be created.

NULLPOS
Specifies the position of the NULL indicator.This keyword is has meaning only for the
USER format. This option is only available in the OPTION BLOCK.

– BEFORE

Position the null indicator before the data field.

– AFTER

Position the null indicator after the data field.

7.6 Examples on using HPU in batch
Given the numerous options available in an Unload job you can have a lot of choices resulting
from the permutation of their selection. This flexibility makes HPU a good tool to move data
across different platforms. In this section we show some examples of the flexibility on using
HPU.

Example 1: Unloading to an ASCII file with variable format
You can unload a table space to an ASCII file having variable format, see Example 7-18.
When a table that resides in DB2 for z/OS is unloaded to an ASCII file then you can move it
through FTP to a DB2 residing in a distributed DB2 server.

Example 7-18 Sample JCL to unload to an ASCII file with variable format

//PAOLOHPU JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* HP UNLOAD ASCII
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,DB2UNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//*
//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT
 DB2 YES
 QUIESCE YES QUIESCECAT YES
 OPTIONS DATE DATE_A

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1) ASCII
 FORMAT VARIABLE ALL

172 Moving Data Across the DB2 Family

/*
//SYSPRINT DD SYSOUT=*
//*
//********* DDNAMES USED BY THE SELECT STATEMENTS **********
//*
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.ASCIIVAR,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)

Example 2: Unloading to a delimited ASCII file
You can unload to a table space into a delimited ASCII file. The conversion from EBCDIC to
ASCII will be done automatically when you specify the ASCII option on the OUTDDN line. In
Example 7-19, SANCHEZ1.DEPT table is in the DSNDB04.DEPT tablespace. All columns
from the DEPT table will be unloaded in a delimited ASCII file. The file delimiter is a
semi-colon ‘;’ and the character delimiter is an asterisk ‘*’.

Example 7-19 Sample JCL to unload to a delimited ASCII file

//HPUNLOAD JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* HP UNLOAD ASCII
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,DB2UNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//*
//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT
 DB2 YES
 QUIESCE YES QUIESCECAT YES
 OPTIONS DATE DATE_A

 SELECT * FROM SANCHEZ1.DEPT
 OUTDDN (UNLDDN2) ASCII
 FORMAT DELIMITED SEP ';' DELIM '*'
/*
//SYSPRINT DD SYSOUT=*
//*
//********* DDNAMES USED BY THE SELECT STATEMENTS **********
//*
//UNLDDN2 DD DSN=SANCHEZ1.MD.HPUNLOAD.ASCIIDEL,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)

Example 3: Unloading non-partitioned table space
You can unload a non-partitioned table space that contains two different tables. The unload
can be done in parallel. In Example 7-20 there are two select statements. One for each table.
The output of the first select statement is in variable format while the output of the second
select statement is in DSNTIAUL format.
Chapter 7. IBM DB2 High Performance Unload for z/OS 173

Example 7-20 Unloading non-partitioned table space

UNLOAD TABLESPACE DB_DB04.TS_DEV1
SELECT * FROM SANCHEZ1.DEPT01
OUTDDN (DDNTBL01)
FORMAT VARIABLE END
SELECT *FROM SANCHEZ1.EMP02
OUTDDN (DDNTBL02)
FORMAT DSNTIAUL

Example 4: Unloading all partitions in partitioned table space
To unload all partitions in a partitioned tablespace just do it like you are unloading one
non-partitioned table space, see Example 7-21.

Example 7-21 Unloading all partitions in a partitioned table space

UNLOAD TABLESPACE DB_DB04.TS_DEV1
SELECT * FROM SANCHEZ1.EMPL01
OUTDDN (DDNTBL01)
FORMAT VARIABLE END

Example 5: Unloading selective partitions in a partitioned tablespace
You can selectively unload partitions in a partitioned table space. In this example, we are
unloading partitions 1, 2, and 4. You can put the partitions together into one data set. But you
also have the option to put them in separate data sets.The output will be in the data set
specified by the OUTDD1 DD name specified in the JCL, see Example 7-22.

Example 7-22 Selectively unloading partitions 1,2 and 4 in a partitioned table space

UNLOAD TABLESPACE DB_DB04.TS_PROD1 PART (1,2,4)
SELECT * FROM SANCHEZ1.DEPT01
OUTDDN (OUTDD1)
FORMAT VARIABLE END

Example 6: Unloading a partitioned table space one file per partition
You can unload a partitioned table space one partition per file, see Example 7-23. To do this,
you must code in the OUTDDN statement a generic ddn, and declare this ddn in your JCL
using the partition number as a suffix, in our example that is 001, 003 and 004. Remember
that in DB2 Version 5, the maximum partition number is 3 digits; therefore, the generic part
(the prefix) must not exceed 5 characters.

Example 7-23 Unloading partitions to different files

UNLOAD TABLESPACE DSNDB04.TS_PROD2 PART (1,3,4)
SELECT *FROM PAOLOR3.DEPT02
OUTDDN (UNLDD)
FORMAT VARIABLE END

In the JCL, specify the following output DD statements:
//UNLDD001 DD DSN=PAOLOR2.MD.HPUNLOAD.ASCIIVAR,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)
//UNLDD003 DD DSN=PAOLOR2.MD.HPUNLOAD.ASCIIDEL,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)
//UNLDD004 DD DSN=PAOLOR2.MD.HPUNLOAD.ASCIITIA,
174 Moving Data Across the DB2 Family

// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)

Example 7: Unloading to a VARIABLE length file in EBCDIC format
Example 7-24 shows to unload a DB2 table to a variable-length file with EBCDIC format.
There will be a consistency point taken during the unload (QUIESCE point.)

Example 7-24 Unloading a DB2 table to a variable-length file

UNLOAD TABLESPACE DSNDB04.DEPT
 DB2 YES
 QUIESCE YES QUIESCECAT YES
 OPTIONS DATE DATE_A

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1) EBCDIC
 FORMAT VARIABLE ALL

Example 8: Using the USER TYPE with data transformation
In Example 7-25 we transform the first column from VARCHAR(10) to CHAR (15). Both
columns are left justified. Only the columns specified in the USER statement will have a data
type transformation, in our example that is columns 1 and 2. All the other columns in the table
will retain their original data type in the unload file.

Example 7-25 Unloading the table to a USER TYPE format

UNLOADTABLESPACE DSNDB04.DEPT01

SELECT *FROM SANCHEZ1.DEPT01
OUTDDN (MYDDN)
FORMAT USER (
COL 1 TYPE CHAR(15)
NULLIDYES
JUST LEFT,

COL 2 TYPE CHAR(3)
NULLIDYES
JUST LEFT
)

Example 9: Unloading a limited number of rows from a table
This Example 7-26 will unload rows from the DEPT01 table and place it in the data set
specified in the MYOUT DD. The number of rows unloaded is 150. This also selects every
10th row and passes it to a user exit named CBLEXIT which is written in COBOL2.

Example 7-26 Unloading limited number of rows and calling a user exit

UNLOADTABLESPACE DSNDB04.TS_PROD01
SELECT * FROM SANCHEZ1.DEPT01
OUTDDN (MYOUT)OUTMAXROWS 150
OUTFREQROWS 10
OUTEXIT CBLEXIT COBOL2
FORMAT VARIABLE END
Chapter 7. IBM DB2 High Performance Unload for z/OS 175

Example 10: Unloading from image copies
Example 7-26 shows the image copies of the table space where table PAOLOR2.DEPT is
located. ICTYPE F and I means respectively FULL and INCREMENTAL. The parenthesis with
the negative number is not information from the SYSCOPY table, it is included to be used in
some of the following examples.

Example 7-27 Image copy information from SYSIBM.SYSCOPY

TIMESTAMP DSNAME ICTYPE
2002-11-14-21.14.29.402332 PAOLOR2.COPY0005.DEPT1ZN9 F (-1)
2002-11-13-17.12.26.714920 PAOLOR2.COPYI002.DEPT1ZN9 I
2002-11-12-20.11.42.745452 PAOLOR2.COPYI001.DEPT1ZN9 I
2002-11-10-09.10.25.392324 PAOLOR2.COPY0004.DEPT1ZN9 F (-2)
2002-11-07-10.07.07.039527 PAOLOR2.COPY0003.DEPT1ZN9 F (-3)
2002-11-03-16.30.28.004300 PAOLOR2.COPY0002.DEPT1ZN9 F (-4)

Full image copies (ICTYPE = F)
The latest copy can be referred in three ways:

� By the key word LAST_IC
� By the negative integer -1
� By data set name

In Example 7-28 you will find syntax for these three alternatives.

Example 7-28 How to refer to the last full image copy

//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT1ZN9
 COPYDDN LAST_IC

 SELECT * FROM PAOLOR2.DEPT
 OUTDDN (UNLDDN1)

//COPYDD DD SYSOUT=*

//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT1ZN9
 COPYDDN -1

 SELECT * FROM PAOLOR2.DEPT
 OUTDDN (UNLDDN1)

//COPYDD DD SYSOUT=*

//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT1ZN9
 COPYDDN COPYDD

 SELECT * FROM PAOLOR2.DEPT
 OUTDDN (UNLDDN1)

//COPYDD DD DSN=PAOLOR2.COPY0005.DEPT1ZN9,DISP=SHR

Older full image copies that the youngest can be referred in two ways:

� Related to the last (-1) with negative integer (-n)
� Data set name

In Example 7-29 you will find syntax to find the third youngest copy for these two alternatives.
176 Moving Data Across the DB2 Family

Example 7-29 How to refer to an earlier full image copy

//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT1ZN9
 COPYDDN -3

 SELECT * FROM PAOLOR2.DEPT
 OUTDDN (UNLDDN1)

//COPYDD DD SYSOUT=*

//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT1ZN9
 COPYDDN COPYDD

 SELECT * FROM PAOLOR2.DEPT
 OUTDDN (UNLDDN1)

//COPYDD DD DSN=PAOLOR2.COPY0004.DEPT1ZN9,DISP=SHR

Incremental image copies (ICTYPE = I)
Incremental image copies can only be referred by data set name. See Example 7-30. An
incremental copy contains only rows inserted or updated since the last image copy (Full or
incremental.)

Example 7-30 How to refer to an incremental image copy

//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT1ZN9
 COPYDDN COPYDD

 SELECT * FROM PAOLOR2.DEPT
 OUTDDN (UNLDDN1)

//COPYDD DD DSN=PAOLOR2.COPYI002.DEPT1ZN9,DISP=SHR

7.7 Using the HPU interactively
The HPU can be started interactively. You can use the DB2 Administration tool or the DB2
tools Launchpad to run the tool interactively.

7.7.1 Using the DB2 Administration tool to start HPU
The HPU can be started using the DB2 Administration tool.

Step 1: Launch DB2 Admin
To launch the DB2 Administration tool, go to the ISPF main menu panel. Type ADM in the
command line. Your ID needs to have the right authority or privilege to perform administrative
tasks on the system. See Figure 7-8.

Note: If you are using the negative integer or the LAST_IC key word, HPU always in the
job report will verify which data set name was used.
Chapter 7. IBM DB2 High Performance Unload for z/OS 177

Figure 7-8 The ISPF main menu panel

Step 2: Enter the DB2 subsystem name
After entering ADM in the command line you will be presented with another panel with the list
of DB2 subsystems active under your MVS. You are required to enter the DB2 subsystem
name that you plan to use. Select the DB2 subsystem where the source table spaces are
located as shown in Figure 7-9.

Figure 7-9 The ISPF Active DB2 Systems panel

 Master Application Menu - SC63
 Opt => ADM Sc => HALF

 USERID - PAOLOR3
 Enter SESSION MANAGER Mode ===> NO (YES or NO) TIME - 13:04

 TP TOPS - TSO Operator Presentation Sample
 TN TPNS - Teleprocessing Network Simulator
 AP APPC - APPC Adminstrative Application
 PW PRINTWAY - IP PrintWay
 IN INFOPRT - Infoprint Server
 CV CICSVR - CICS VSAM Recovery
 MQ MQS - MQSeries
 TE TERSE - TERSE/MVS
 VE VSAMEDIT - VSAM Editor
 FT NV FTP - NetView File Transfer Program
 IX IXFP - IBM Extended Facilities Product (for RVA)
 FM FILEMAN - File Manager
 S2 SDF II - SDF II Functions
 ADM DB2ADM - DB2 Administration Tool V4 and Object Compare V2
 AT DB2AUT - DB2 Automation Tool

 Use UP and DOWN PF Keys or commands to scroll MENU.

 DB2 Admin ------------------- Active DB2 Systems ------------------ Row 1 of 3
Command ===> Scroll ===> PAGE

This is a list of the active DB2 systems on this MVS system.

Enter:
DB2 system name ===>

Or select the one you wish to use, or press END to exit.

Sel DB2 System Description Group
--- ---------- -- -----
s DB2G
 DB2H
 DB7Y
******************************* Bottom of data ********************************

178 Moving Data Across the DB2 Family

Step 3: Go to the DB2 system catalog panel
You can move to the DB2 system catalog panel by entering option 1 in the DB2 Administration
menu panel as shown in Figure 7-10.

Figure 7-10 The DB2 Administration menu — Option 1

Step 4: Select the table or table space that you want to unload
When you are already in the DB2 Administration system catalog panel enter T at the options
prompt line. This will bring you to the DB2 Administration tables, views, and aliases panel. In
this panel yo can select the table that yo want to unload.

If you want a physical unload of a table space where you unload the entire table space with all
the tables in it you should choose the S option from the DB2 Administration system catalog
panel as shown in Figure 7-11. This will bring you to the DB2 Administration table space
panel. In that panel you can select the table space that you want to unload.

 DB2 Admin -------------- DB2 Administration Menu 4.1.0 ------------------ 13:41
 Option ===> 1

 1 - DB2 system catalog DB2 System: DB2G
 2 - Execute SQL statements DB2 SQL ID: PAOLOR3
 3 - DB2 performance queries Userid : PAOLOR3
 4 - Change current SQL ID DB2 Rel : 710
 5 - Utility generation using LISTDEFs and TEMPLATEs
 P - Change DB2 Admin parameters
 DD - Distributed DB2 systems
 E - Explain
 Z - DB2 system administration
 SM - Space management functions
 W - Manage work statement lists
 CC - DB2 catalog copy version maintenance
 More: +
 Interface to other DB2 products and offerings:
 I - DB2I DB2 Interactive
 OC - DB2 Object Comparison Tool

Chapter 7. IBM DB2 High Performance Unload for z/OS 179

Figure 7-11 The DB2 system catalog panel — Option S

On the other hand, you can perform a logical unload by using the DB2 Administration tables,
views and aliases menu panel. In this option, you can download tables or views and have an
SQL SELECT statement to qualify rows and columns in the unload data. You can enter that
panel by selecting the option T on the DB2 system catalog panel. See Figure 7-12.

 DB2 Admin --------------------- DB2G System Catalog --------------------- 13:53
 Option ===> S

 More: +
 Options: DB2 System: DB2G
 V - Volumes DB2 SQL ID: PAOLOR3
 G - Storage groups GA - Authorizations to storage groups
 D - Databases DA - Authorizations to databases
 S - Table spaces SA - Authorizations to tables spaces
 T - Tables, views, and aliases TA - Authorizations to tables and views
 X - Indexes
 C - Columns CA - Authorizations to columns
 Y - Synonyms
 P - Plans PA - Authorizations to plans
 K - Packages KA - Authorizations to packages
 L - Collections LA - Authorizations to collections
 M - DBRMs RA - Authorizations to resources
 Enter standard selection criteria (An SQL LIKE operator will be used):
 Name ===> Grantor ===>
 Owner ===> Grantee ===>
 In D/L/H ===> Switch Catalog Copy ===> N (N/S/C)
 And/or other selection criteria (option xC shows you columns for option x)
 Column ===> Operator ===> Value ===>
180 Moving Data Across the DB2 Family

Figure 7-12 The DB2 system catalog panel — Option T

Step 5: Enter HPU line command
Type HPU on the line that corresponds to the table that you want to unload. This should be
entered on the Sel column inside the DB2 Administration table spaces panel. See
Example 7-13.

 DB2 Admin --------------------- DB2G System Catalog --------------------- 13:53
 Option ===> T

 More: +
 Options: DB2 System: DB2G
 V - Volumes DB2 SQL ID: PAOLOR3
 G - Storage groups GA - Authorizations to storage groups
 D - Databases DA - Authorizations to databases
 S - Table spaces SA - Authorizations to tables spaces
 T - Tables, views, and aliases TA - Authorizations to tables and views
 X - Indexes
 C - Columns CA - Authorizations to columns
 Y - Synonyms
 P - Plans PA - Authorizations to plans
 K - Packages KA - Authorizations to packages
 L - Collections LA - Authorizations to collections
 M - DBRMs RA - Authorizations to resources
 Enter standard selection criteria (An SQL LIKE operator will be used):
 Name ===> Grantor ===>
 Owner ===> Grantee ===>
 In D/L/H ===> Switch Catalog Copy ===> N (N/S/C)
 And/or other selection criteria (option xC shows you columns for option x)
 Column ===> Operator ===> Value ===>
Chapter 7. IBM DB2 High Performance Unload for z/OS 181

Figure 7-13 The DB2 Administration tables, views, and aliases panel — Option HPU

You can also enter the HPU line command on the DB2 Administration tables spaces panel. Put
the command on the Select column corresponding to the table space that you want to unload.
See Figure 7-14.

Figure 7-14 The DB2 Administration table spaces panel — Option HPU

 DB2 Admin ----------- DB2G Tables, Views, and Aliases Row 443 to 455 of 1,000
 Command ===> Scroll ===> PAGE

 Valid line commands are:
 C - Columns A - Auth L - List X - Indexes S - Table space D - Database
 V - Views T - Tables P - Plans Y - Synonyms SEL - Select prototyping
 ? - Show all line commands

 Sel Name Owner T DB Name TS Name Cols Rows Checks
 * * * * * * * *
 ----- ------------------ -------- - -------- -------- ------ ----------- ------
 TRY BARTR2 T DSNDB04 TRY 1 -1 0
 UTLISTE BART T DSNDB04 UTLISTE 13 -1 0
 TBPRODUCTS SC246300 T DSNDB04 TBPRODUC 4 -1 0
 LOGGING2 DB28710 T DSNDB04 LOGGING2 4 -1 0
 LINEITEM PAOLOR7 T DSNDB04 LINEITEM 16 -1 0
 PLAN_TABLE USER T DSNDB04 PLAN1HGJ 51 -1 0
 PLAN_TABLE BARTR2 T DSNDB04 PLANRTAB 51 -1 0
 EMP PAOLOR7 T DSNDB04 EMP 14 -1 0
 PHONENO BART T DSNDB04 PHONENO 1 -1 0
 PLAN_TABLE SYS1 T DSNDB04 PLAN1HOV 51 -1 0
 HPU DEPT PAOLOR7 T DSNDB04 DEPT 5 -1 0
 ACT PAOLOR7 T DSNDB04 ACT 3 -1 0

 DB2 Admin ------------------ DB2G Table Spaces --------- Row 200 to 212 of 407
 Command ===> Scroll ===> PAGE

 Valid line commands are:
 T -Tables D - Database A - Auth G - Storage group ICS - Image copy status
 DIS - Display database STA - Start database STO - Stop database X - Indexes
 ? - Show all line commands

 Select Name DB Name Parts Bpool L E S I C Tables Act. pages Segsz T L
 * * * * * * * * * * * *
 ------ -------- -------- ------ ------ - - - - - ------ ----------- ------ - -
 CUSTOMER DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 HPU DEPT DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DEPTCOPY DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DEPT1GGC DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DGORDGOD DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DGORDGOP DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DSNRFUNC DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DSNRSTAT DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DSNR1J@X DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DSNR1TUY DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 DSNR1U1H DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
 EMP DSNDB04 0 BP0 A N A Y Y 1 0 0 Y
182 Moving Data Across the DB2 Family

Step 6: Enter the unload options
After entering HPU on the line that corresponds to the table, the next options panel that
appears is reported in Figure 7-15.

Figure 7-15 Choosing the output format of the unload file

This panel allows you to select the output format. You can select from DSNTIAUL, delimited
file, non-delimited file, variable and user format. In our example, we have chosen the
delimited format. Our row delimiter is a semicolon(;) and our character delimiter is a double
quote (“). The table name chosen here is PAOLOR7.DEPT. Our table will be unloaded in an
EBCDIC file format because this is the default value that we specified in the INZTVAR
member.

If you choose the DSNTIAUL format it is necessary to fill-up the LOADddn command options.
Choosing the DELIMITED format will give you the option to fill-up the SEP and DELIM
parameters.

You can choose the file scheme whether EBCDIC to ASCII. You will need this transformation
if you will move your data from mainframe to distributed environment. Mainframe computers
use EBCDIC characters while machines in distributed platform use ASCII characters.

The CCSID can be specified in the panel shown in Figure 7-16.

 HPU -------- DB2G PAOLOR7 . DEPT - SEL &ZPREFIX NOT USABLE
 Command ===>

 Commands : COLumns WHERE ORDERby OUTddn FUSER LOADddn JCL

 Other Option : PART

 SELECT Description ===> PAOLOR7 .DEPT

 PART ===> * (L : List, * : ALL, nnn : partition number)

 FORMAT ===> 2 (1: DSNTIAUL, 2: DELIMITED, 3: VARIABLE, 4: USER)
 DSNTIAUL STRICT ===> (Yes, No)
 DELIMITED SEP ===> ; (enter one character or an hexadecimal value)
 DELIM ===> " (enter one character or an hexadecimal value)
 NULL DELIM ===> y (Yes, No)
 VARIABLE ===> (End or All)

 LIKE creator ===>
 table ===>
 (Enter : next screen...)
Chapter 7. IBM DB2 High Performance Unload for z/OS 183

Figure 7-16 Select panel of HPU

The characters used in different languages requires different code pages. For example, if the
table you are unloading uses double byte Japanese characters, you need to specify in the
DBCS option the appropriate code page number, so that the Japanese characters can be
handled properly in the unloaded table. A list of the CCSID codes that you can use is in the
appendix.

After selecting the format of the output file, you can select the columns that you want to
download by going to the COLUMNS command option box and pressing Enter. You can
remove any column by typing D or you can arrange the order of the columns by entering the
numbers on the Pos in Select column on the panel.

You can also go to the WHERE command option to enter a condition to qualify each row in
the select statement of the unload. When you go to this panel you have to type the conditions
that will be in the Where clause of your Select statement.

The COLUMNS and the WHERE options are not required to complete the JCL that will be
generated by the interactive tool. You can skip these and proceed the OUTDDN command
option. The OUTddn is where you enter the output data set that will be used. See Figure 7-18.

Important: The FORMAT and OUTDDN are the only required command options that
needs to be filled-up. The other option boxes, like COLUMNS, WHERE, ORDRER BY are
not required to be filled-up if you are going to unload the entire table.

 HPU -------- DB2G PAOLOR7 . DEPT - SELECT format ------- 17:31
 Command ===>

 Commands : COLumns WHERE ORDERby OUTddn FUSER LOADddn JCL

 Other Option : PART

 ORIGINOBID ===> (HexaDecimal value)
 or ===> (Decimal value)

 OUTMAXROWS ===>
 OUTFREQROWS ===>

 SCHEME ===> E (E: Ebcdic, A: Ascii, S: aSis, U: Unicode)
 CCSID SBCS ===>
 MIXED ===>
 DBCS ===>

 OUTEXIT exitname ===>
 in ===> (1: ASM, 2: C, 3: COBOL2)
 (PF3 : previous screen...)
184 Moving Data Across the DB2 Family

Figure 7-17 Choosing the format of the output of your unload

You do not need to fill-up the Select-columns panel if you are going to unload all the columns
from the table.

You can enter the data set name that will be used to contain the unload data as shown in
Figure 7-18. This panel is required to be filled-up for all of the command options. After typing
the data set name press Enter.

Figure 7-18 The HPU OUTddn command panel

In Figure 7-19, we are using a data set that does not yet exist in the DASD with
DISP=(NEW,CATLG,DELETE).

 HPU -------- DB2G PAOLOR7 . DEPT - SELECT columns Row 1 from 5
 Command ===> Scroll ===> CSR

 Commands : FORMAT WHERE ORDERby OUTddn FUSER LOADddn JCL

 Other Option: SelectALL

 SELECT Description ===> PAOLOR7 .DEPT

 Use the following selection codes: U Update, D Delete

 Pos in <-------------------- Columns description -------------------->
 S Select Name/Value/Expr. Trunc L/C/E Type Length Scale Pos in table
 - ------ ------------------ ----- ----- -------- ------ ----- ------------
 <=== NEW
 DEPTNO C CHAR 3 1
 DEPTNAME C VARCHAR 36 2
 MGRNO C CHAR 6 3
 ADMRDEPT C CHAR 3 4
 LOCATION C CHAR 16 5
 ******************************* Bottom of data ********************************

 HPU --------- DB2G PAOLOR7 . DEPT - OUTDDN list -------- 18:15
 Command ===> Scroll ===> CSR

 Commands : FORMAT COLumns WHERE ORDERby FUSER LOADddn JCL

 SELECT Description ===> PAOLOR7 .DEPT

 Use the following selection codes:
 S Select a file, D Delete a file, C Copy a file to a new file.

 S Data Set Name Disp
 - -- -------------
 PAOLOR3.MD.HPUNLOAD.ASCDATA1............ <=== NEW
 ******************************* Bottom of data ********************************
Chapter 7. IBM DB2 High Performance Unload for z/OS 185

Figure 7-19 Panel for output data set attributes

Step 7: Review the JCL
After filling-up the required data set attributes, press F3. You will go back to the OUTddn
panel (Figure 7-18 on page 185). Review the JCL generated by putting the cursor on the JCL
command option box and press enter. Choose EDIT in the listbox and press Enter. See
Figure 7-20. The JCL that was generated will appear on the screen, and you can edit to see if
there are some parameters that needs to be changed.

Figure 7-20 Viewing the JCL

 HPU --------- DB2G PAOLOR7 . DEPT - OUTDDDN file ------- 18:38
 Command ===>

 Dataset with formated result of SELECT

 Data Set Name : PAOLOR3.MD.HPUNLOAD.ASCDATA1

 Disp ===> (N , C , D) (New/Old/Mod) (Del/Keep/Catlg)
 Generic unit ===> SYSDA
 Volume serial ===> - - - -
 FORMAT ===> FB (F, FB, V, VB)
 LRECL ===> 130
 BLKSIZE ===> 26000
 Primary quantity ===> 10
 Secondary quantity ===> 20
 Space units ===> TRKS (BLKS, TRKS, CYLS)

 for tape unit
 Label ===>

 HPU --------- DB2G DSNDB04 . DEPT - SELECT statement list Row 1 to 1 of 1
 Command ===> Scroll ===> CSR

 Commands : PART COPyddn OPTions UNLddn JCL
 EsssssssssssssN
 e EDIT e
 e SUBmit e
 e SaveJCL e
 New Select statement ? : (Yes) DsssssssssssssM
 Interactive Select : (Y/N, default is Yes)
 or
 Use the following selection codes:
 S select statement, D delete statement, C Copy statement to new statement

 S Select description Inter. Creator Table or view
 - ----------------------------- ------ -------- ------------------
 . PAOLOR7 .DEPT Y PAOLOR7 DEPT
 ******************************* Bottom of data ********************************
. .
 Menu RefList RefMode Utilities Help
186 Moving Data Across the DB2 Family

After you have reviewed the JCL, as listed in Figure 7-21, you can submit the job on that
panel by typing SUB or SUBMIT on the command line. Or you can do it through the HPU
interactive panels. Put the cursor to the JCL command option box. Press the Enter key and a
listbox will appear. Then Position your cursor on the SUBMIT line then press Enter. This will
submit the JCL generated by the HPU tool for CPU for processing.

Figure 7-21 Display of JCL and final revisions

The JCL generated by the HPU interactive tool is in Example 7-31. This job will produce a
delimited file in EBCDIC file format. All of the contents of the DEPT table will be unloaded to
PAOLOR3.MD.UNLOAD.ASCDATA1 data set.

Example 7-31 JCL generated by the HPU interactive tool

//PAOLOHPU JOB PAOLOR21,'DB2 UNLOAD',
// MSGCLASS=A,CLASS=A,NOTIFY=&SYSUID,
// REGION=0M
//*
//*
//**
//* H P U P R O D U C T *
//**
//* *
//* UNLOAD GENERATED BY PAOLOR3 ON 02/11/01 13:28 *
//* *
//**
//UNLOAD EXEC PGM=INZUTILB,PARM='DB2G,HPU'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//O11 DD DSN=PAOLOR3.MD.HPUNLOAD.ASCDATA1,
//O11 DD DSN=PAOLOR3.MD.HPUNLOAD.ASCDATA1,
// DISP=(NEW,CATLG,DELETE),

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT PAOLOR3.SC63.SPFTEMP1.CNTL Columns 00001 00072
 Command ===> Scroll ===> PAGE
 ****** ***************************** Top of Data ******************************
 ==MSG> -Warning- The UNDO command is not available until you change
 ==MSG> your edit profile using the command RECOVERY ON.
 000001 //PAOLOHPU JOB PAOLOR21,'DB2 UNLOAD',
 000002 // MSGCLASS=A,CLASS=A,NOTIFY=&SYSUID,
 000003 // REGION=0M
 000004 //*
 000005 //*
 000006 //**
 000007 //* H P U P R O D U C T *
 000008 //**
 000009 //* *
 000010 //* UNLOAD GENERATED BY PAOLOR3 ON 02/10/30 19:13 *
 000011 //* *
 000012 //**
 000013 //UNLOAD EXEC PGM=INZUTILB,PARM='DB2G,HPU'
 000014 //STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
 000015 // DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
 000016 // DD DSN=DB2G7.SDSNLOAD,DISP=SHR
Chapter 7. IBM DB2 High Performance Unload for z/OS 187

// UNIT=SYSDA,
// SPACE=(TRK,(10,20)),
// DCB=(RECFM=FB,LRECL=130,BLKSIZE=2600)
//UTPRINT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
UNLOAD TABLESPACE DSNDB04.DEPT

SELECT *
 FROM
PAOLOR7 . DEPT
OUTDDN (O11)
FORMAT DELIMITED
 SEP ';'
 DELIM '"'
 NULL DELIM
/*

Step 8: Submit the job
After reviewing the JCL you can submit the job by going back to the command options panel
by pressing F3. Then put the cursor on the JCL command option box and press Enter. The
listbox will appear again, but this time choose SUBMIT. The job will run like a regular JCL job.
Check the outlist on the SDSF panel.

Successful execution of the unload will result in return code equal to 0 (RC=0). See
Figure 7-23 for a sample outlist of a successful unload. A return code of 4 means there are
warnings on the unload operation. Look for the warning messages in the outlist. If it the
warning is tolerable then you can consider the unload successful. Ask your system
programmer about the warning messages. Any return code greater than 4 (RC=4) is
considered unsuccessful.

Figure 7-22 SDSF panel — Unload execution results

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY PAOLOHPU JOB10924 DSID 2 LINE 0 COLUMNS 01- 80
COMMAND INPUT ===> SCROLL ===> CSR
******************************** TOP OF DATA **********************************
 J E S 2 J O B L O G -- S Y S T E M S C 6 3 -- N O D E

19.22.37 JOB10924 ---- WEDNESDAY, 30 OCT 2002 ----
19.22.37 JOB10924 IRR010I USERID PAOLOR3 IS ASSIGNED TO THIS JOB.
19.22.37 JOB10924 ICH70001I PAOLOR3 LAST ACCESS AT 19:21:47 ON WEDNESDAY, OCT
19.22.37 JOB10924 $HASP373 PAOLOHPU STARTED - INIT 1 - CLASS A - SYS SC63
19.22.37 JOB10924 IEF403I PAOLOHPU - STARTED - ASID=03EA - SC63
19.22.38 JOB10924 IGD01008I &DSN = SYS02303.T192238.RA000.PAOLOHPU.R0102065
19.22.38 JOB10924 IGD01008I &UNIT = SYSDA
19.22.38 JOB10924 IGD01008I &ALLVOL =
19.22.38 JOB10924 IGD01008I &ANYVOL =
19.22.39 JOB10924 INZX006 DEPT TABLESPACE UNLOAD PHASE STARTED
19.22.40 JOB10924 INZX090 O11 : 43 RECORDS WRITTEN
19.22.40 JOB10924 - --TIMINGS (MINS.)-
19.22.40 JOB10924 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOC
19.22.40 JOB10924 -PAOLOHPU UNLOAD 00 428 .00 .00 .0
19.22.40 JOB10924 IEF404I PAOLOHPU - ENDED - ASID=03EA - SC63
188 Moving Data Across the DB2 Family

You can view the summary of the tablespace unload at the bottom of the outlist as listed in
Figure 7-23. It will tell you how many rows were unloaded, and how many were discarded, the
number of pages read and the number of pages in error.

Figure 7-23 Outlist of HPU on the SDSF panel.

You can exit the HPU panel by pressing F3 several times until you reach the ISPF panels. You
can view the output file on the Data set list utility panel (P.3.4) of ISPF. In Figure 7-24 the
example is for a delimited EBCDIC file.

Figure 7-24 Output data set of HPU

If you will move the data to a DB2 table in a distributed platform (UNIX, Windows, Linux) you
need to transform your file to ASCII format. But if you plan to move your data to another
mainframe DB2 table then you can leave it as an EBCDIC file.

TABLESPACE UNLOAD STATISTICS UT4100 DB2 HIGH PERFORMANCE
* TABLE * PART NO. * ROWS READ * ROWS KEPT * IX SCAN *
* * * * * *
* DEPT * 0 * 43 * 43 * 0 % *
* INVALID ROWS* 0 * 0 * *
* TABLESPACE TOTAL* 43 * 43 * 0 % *
NUMBER OF PAGES READ ... 12
NUMBER OF PAGES IN ERROR 0
******************************* BOTTOM OF DATA ********************************

 HPU --------- DB2G PAOLOR7 . DEPT - OUTDDN list -- Row 1 from 1
 . .
 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT PAOLOR3.MD.HPUNLOAD.ASCDATA1 Columns 00001 00072
 Command ===> Scroll ===> CSR
 ****** ***************************** Top of Data ******************************
 ==MSG> -Warning- The UNDO command is not available until you change
 ==MSG> your edit profile using the command RECOVERY ON.
 000001 "A00";"SPIFFY COMPUTER SERVICE DIV.";"000010";"A00";" "
 000002 "A01";"SPIFFY COMPUTER SERVICE DIV.";"000011";"Z01";" "
 000003 "A02";"SPIFFY COMPUTER SERVICE DIV.";"000012";"A02";" "
 000004 "B00";"PLANNING";"000020";"A00";" "
 000005 "B01";"PLANNING";"000021";"Z01";" "
 000006 "B02";"PLANNING";"000022";"A02";" "
 000007 "C00";"INFORMATION CENTER";"000030";"A00";" "
 000008 "C01";"INFORMATION CENTER";"000031";"Z01";" "
 000009 "C02";"INFORMATION CENTER";"000032";"A02";" "
 000010 "D00";"DEVELOPMENT CENTER";;"A00";" "
 000011 "D01";"DEVELOPMENT CENTER";;"Z01";" "
 000012 "D02";"DEVELOPMENT CENTER";;"A02";" "
 000013 "D10";"MANUFACTURING SYSTEMS";"000060";"D55";" "
 000014 "D11";"MANUFACTURING SYSTEMS";"000060";"D55";" "
Chapter 7. IBM DB2 High Performance Unload for z/OS 189

7.8 HPU performance measurements
The new Version 2.1 of HPU performs better in CPU, when compared to DB2 for z/OS
Version 7 Unload, except in cases where small number of rows fetched are returned (case 7
and 9). HPU 2.1 is also showing comparable elapsed times with DB2 Unload (5% difference.)

The test cases are the following:

Case 1: UNLOAD FROM TABLESPACE
Case 2: UNLOAD FROM IMAGE COPY
case 3: UNLOAD SELECT * FROM TABLE
Case 4: UNLOAD SELECT COL A,COL B,COL C,COL D,COL E
Case 5: UNLOAD SELECT *

WHERE COL C <> '061' >>>>>>>>>>>>>>> non-indexed column
Case 6: UNLOAD SELECT COLA,COLB,COLC,COLD,COLE

WHERE COL C <> '061'
Case 7: UNLOAD SELECT * FROM TABLE

WHERE COL C = '061'
Case 8: UNLOAD SELECT * FROM TABLE

WHERE COL D <> 9 >>>>>>>>>>>>>>> indexed column
Case 9: UNLOAD SELECT * FROM TABLE

WHERE COL D = 9

The data definition and type of processing are:

� Table has 20 million rows, 20 partitions, and 588,320 pages
� Case 5 and 6 return 19,649,999 records
� Case 7 returns 350,001 records
� Case 8 returns 20,000,000 records
� Case 9 returns 0 record
� Output from case 2:

 HPU DB2 UNLOAD
===
Record format VB VB
Record length 121 121
Block size 27998 27998
Allocated cysl/extents2 887/62 790/5
Used cyls/extents2 887/62 790/5

Both sets of measurements were preceded by RUNSTATS execution and were run on a G7
zSeries engine with z/OS 1.3.

Table 7-13 shows the CPU and elapsed times of the executions of HPU and Unload for a
table with one index. From these results we can observe that:

� There is no significant difference in elapsed time of HPU2.1 and DB2 V7 Unload.

� HPU2.1 takes two to four times less CPU time when most rows in a table are to be
unloaded, with or without predicates.

� HPU2.1 takes 20% more CPU time when the number of rows to be unloaded is small with
good filtering predicates.

Table 7-13 HPU vs. Unload — Table with 1 index

Table with 1 IX HPU V2R1 (time in seconds) Unload (time in seconds)

CPU Elapsed CPU Elapsed

Case # 1 23.6 183 56 192

Case # 2 19.5 228 79 237
190 Moving Data Across the DB2 Family

Other measurements have shown that there is no difference as more indexes are added.

7.9 Considerations
The HPU for z/OS was created to provide an alternative to unload data from DB2 for z/OS
tables. The file format options in the output data allows it to be loaded to other tables in the
DB2 for z/OS database or across distributed platforms, using the ASCII and DELIMITED
format. The main difference of HPU is that it performs a tablespace unload by directly
accessing the data from the VSAM clusters using the VSAM buffering capability. Even though
HPU can execute the unload directly from the VSAM clusters, it still needs DB2 to be up and
running, in order to access the catalog and resolve all the object definitions.

The parallel execution of the select statements makes efficient use of each I/O operation.
Each row retrieved is offered to all select statements in the HPU job. It does not have to go
back to the same row in the table even if a different Select statement requires this row.

Performance tests on the HPU shows comparable performance to DB2 Unload utility in terms
of elapsed time. HPU takes less CPU time in execution, and also provides you with more
versatility because you can use the full SQL select statement to select the rows and columns
that you want to be unloaded.

HPU can directly process all types of SQL statements, but any SQL which cannot be resolved
by processing the data with just one pass, will be given back to DB2 for execution. For
example, HPU cannot directly perform a table JOIN or any column function. Hence, if at all
possible, you could try to simplify the SQL statement that you use in the HPU statement, so
that it can be performed by HPU without calling the DB2 engine. This will save you CPU time.

Whether or not HPU uses DB2 to access the rows from the table is transparent to the user if
the option DB2 has been set to YES.

You can also force the use of DB2 using the FORCE parameter when you know that the result
set is very small, and DB2 can take advantage of the filtering effect.

It is also highly recommended to specify QUIESCE YES and QUIESCECAT YES. This will
create a consistency point in the database and make sure that structure changes (such as
those reflecting table views used for unloading) are implemented. The buffer pools will be
flushed and data will be written on disk. If this option is not specified, you could have some
updates on your table that will not be included in the output data. A new option can eliminate
the need for QUIESCECAT by reading the DB2 catalog with SQL rather than the VSAM
structures.

Case # 3 26.2 184 NA NA

Case # 4 21.8 184 73 175

Case # 5 34.5 184 65 189

Case #6 30.3 184 85 175

Case # 7 25.1 184 21 174

Case # 8 34.3 184 67 191

Case # 9 24.7 184 21 175

Table with 1 IX HPU V2R1 (time in seconds) Unload (time in seconds)

CPU Elapsed CPU Elapsed
Chapter 7. IBM DB2 High Performance Unload for z/OS 191

If you are handling large object binary (LOB) data in your table, you should use DB2 Cross
Loader to perform the unload and load of data. HPU does not support LOB SQL data type.
See the redbook Large Objects with DB2 for z/OS and OS/390, SG24-6571 for details on
functionalities and restrictions.

The output file of the HPU can only be moved across different platforms through FTP or other
file transfers methods. You cannot take advantage of a Federated Database set-up where you
can move data from one table to another by just using nicknames. Moving data through HPU
is always a three step process:

1. unload data from source table,
2. FTP to the other machine,
3. load the data to the target table.

We have discussed the advantages and disadvantages of this tool. It is really up to the
database personnel to decide on its applicability and the related trade-offs.
192 Moving Data Across the DB2 Family

Chapter 8. IBM DB2 High Performance
Unload for Multiplatforms

This chapter provides a description of the IBM DB2 High Performance Unload (abbreviated to
HPU or HPU for MP in this chapter to differentiate it from the HP for z/OS) tool for distributed
environments.

The topics we discuss in this chapter are:

� General overview of HPU features
� Using HPU for MP
� HPU examples
� Performance measurements
� Comparison with the Export utility

8

© Copyright IBM Corp. 2003. All rights reserved. 193

8.1 An overview of HPU for Multiplatforms
IBM DB2 High Performance Unload (HPU) for Multiplatforms (MP) is a tool not included in the
DB2 UDB product distribution. This product has to be purchased separately and installed on
all DB2 server nodes. The installation procedure is outlined in the DB2 High Performance
Unload for Multiplatforms Version 2 Release 1 User’s Guide, SC27-1623-01. More details are
currently included in the Readme file distributed with the product. The latest revision level will
always be reflected at the Web site:

http://www-3.ibm.com/software/data/db2imstools/

The current version of HPU for MP is Version 2.1. It officially works with DB2 UDB Version 7.1
and above, though HPU tool needs FixPak 3 to work with DB2 UDB V8. This maintenance
level, equivalent to V1R2M3 was made available while this redbook was being written, hence
some of our results and recommendations are also applicable to DB2 UDB V8. During our
project we worked with both levels at modification 2 and 3. Informal tests did show that it also
works with DB2 UDB for UNIX V6.

HPU for MP can increase performance by circumventing the database manager. Instead of
accessing the database by issuing SQL commands against the DB2 database manager, as
typical database applications do, HPU itself translates the input SQL statement and directly
accesses the database object files. An unload from a backup image may be performed even if
the DB2 database manager is not running. Active DB2 database manager is needed to verify
that a user not belonging to the sysadm group does have authority needed to run the HPU
tool.

HPU can unload data to flat files, pipes, and tape devices. Delimited ASCII and IXF file
formats are supported. The user format option is intended to be used to create a file format
compatible with the positional ASCII (ASC) formats used by the other DB2 tools and utilities.
Creating multiple target files (location and maximum size can be specified) allows for better
file system management.

A partitioned database environment HPU with FixPak 3, offers the following features:

� Data from all partitions can be unloaded to multiple target files.

The syntax allows you to unload, with a single command, on the machine where the
partition is, or to bring everything back to the machine you are launching HPU from. The
command OUTPUT(ON REMOTE HOST "/home/me/myfile") creates a file per partition on the
machine where the partition reside. Of course the path /home/me/ must exist on each
machine impacted by the unload.

� A partitioned table can be unloaded into a single file.

The command OUTPUT(ON CURRENT HOST "/home/me/myfile") creates only the file myfile
on the machine you are running from, and will contain all the data of the unload. This is the
default, for compatibility reasons, while multiple files will offer better performance.

� A subset of table nodes can be unloaded by specifying command line options or through a
control file or both.

The OUTPUT command now supports the FOR PARTS() clauses. The appropriate
combination of these clauses allows you the needed flexibility.

Note: The new option ON "mynamedhost" HOST behaves like ON CURRENT HOST, except
that the output file will be created on the specified host rather than the current host. A
restriction exists that the named host must be part of the UDB nodes.
194 Moving Data Across the DB2 Family

http://www-3.ibm.com/software/data/db2imstools/

HPU tool is an executable externally to DB2 UDB. Input parameters are specified either as
command line options or through a control file. HPU can also be defined as a Control Center
plug-in.

For detailed information about the HPU, command line syntax, and control file syntax, please
consult IBM DB2 High Performance Unload for Multiplatforms User’s Guide.

8.2 Installing and configuring HPU for MP
In this section we explain how to install and configure HPU for MP.

8.2.1 System requirements
The following table lists the operating systems that HPU supports, as well as the approximate
amount of memory and disk space required to use HPU on each system.

Table 8-1 Memory and disk requirements

8.2.2 Installation considerations and prerequisites
Before you begin installing HPU, review the following information:

� You must have an IBM DB2 UDB Version 7.1 or above in order to use this version of HPU.

� You must install HPU on the same computer where the DB2 tables that you want to unload
are physically located.

� You must have the following information:

– The name and version of your operating system

– The root password for UNIX or Linux (you must be super-user root)

– If you are installing on a Windows host, the administrative permissions associated with
your user ID

– If you have a permanent license for HPU, your specific nodelock file authorization

All installed directories must have .drwxr-xr-x .permissions.

Operating system Memory Disk space

IBM AIX ®4.3 and up 32 MB RAM 42 MB

Linux IA-32 32 MB RAM 42 MB

Hewlett-Packard HP-UX
11.0

32 MB RAM 34 MB

Sun Solaris 2.6,7,and 8 32 MB RAM 32 MB

Windows 2000 and
Windows NT 4.0

32 MB RAM 31 MB

Important: The install setup will fail if the system default permissions are less than
777 and the root super-user mask is different than 022.
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 195

8.2.3 Installing HPU for MP
The following sections provide instructions for installing HPU on Windows, Linux, and UNIX
systems.

Starting the installation process on Windows
On Windows systems, place the CD into the CD-ROM device and the setup will start
automatically.

If the automatic start does not work, from File Manager or Windows Explorer, locate your
CD-ROM drive and then double-click the setup.exe file.

On NT 4.0,the hpuplug.zip file does not get copied into the sqllib \cc directory and renamed to
db2plug.zip. To work around this problem:

1. Copy the hpuplug.zip file from x:\Program Files \IBM \hpu \V2.1 \java and move it to
x:\Program Files \cc.

2. Rename hpuplug.zip to db2plug.zip.

If you are using the Control Center plug-in:

If your HPU installation suddenly disappears, it is possible that the installation of another
product into the Control Center has overlaid the HPU plug-in. To fix this problem, you must
re-install the HPU plug-in.

To reinstall the HPU plug-in:

1. Run the SETUP command.
2. Select CUSTOM install.
3. Click the HPU button.
4. Follow the instructions that appear on each panel.

Installing HPU on UNIX and Linux systems
To install HPU on UNIX systems:

1. Insert the product CD into the CD-ROM drive on the UNIX computer where you are
installing HPU.

2. Log on to the host computer with the user ID root.

3. Mount the CD on a suitable mount point (for example, /mnt/cdrom).

4. Verify that the DISPLAY environment variable is correctly set.

5. Check the Xserver authorizations (you must be able to start a xterm window.)

6. Change to the directory corresponding to the platform under the CD mount point.
For example:

– For AIX systems:cd /mnt/cdrom/aix
– For UNIX systems:cd /mnt/cdrom/linux

7. From the command line, type the command ./setupxxx, where xxx is the platform.
Examples are:

./setupaix or ./setupsun

Note: The Windows version must be installed by the Install Administrator only. The
installation is then available to all users with administration rights belonging to an
administrator group.
196 Moving Data Across the DB2 Family

The initial installation screen is displayed.

The HPU installation wizard
This section describes the installation wizard for installing HPU on Windows, Linux, and
UNIX.

Welcome page
The first page is the Welcome page. Click Next to continue the installation.

Choose Destination Location page
The Choose Destination Location page of the Installation wizard allows you to specify a
default destination folder for HPU or to change a destination folder.

Choose from the following options to specify the installation directory:

1. Click Next to set HPU as the default destination folder (where the product is installed.)

2. Click Browse to locate a different installation directory.

The default installation directories are listed below.

Table 8-2 Default installation directories

User Input Parameters page
In the User Input Parameters page of the Installation wizard, enter the required information:

� The default instance name. This name must correspond to an existing DB2 instance on
the host on which you are installing HPU.

� The default database name. This database must exist within the default instance. The
default database name and the default instance name will be used by HPU when a
specific instance or database is not specified in the command line or the control file.

� The DB2 directory as the instance home of the default instance. A sqllib directory must
exist under the DB2 directory.

After the required input values are correct, click Next.

Select Components page
Choose from the following options to specify the installation type for Select Components:

� To install HPU unload and network services (Typical installation), click Next. This option
will skip the Select Custom Components page.

� To select specific HPU features that you want to install, click Custom, then click Next. The
Select Custom Components page is displayed.

Note: In case of a multi-node environment, HPU must be installed on all physical nodes.
You can only execute HPU on the catalog node.

Note: At any time during the installation process, you can click Cancel to stop the
installation program or Back to return to the previous page.

System Installation directory Temporary directory

UNIX and Linux /opt/IBM/hpu/V2.1 / tmp

Windows C:\Program Files \IBM \hpu
\V2.1

C:\Temp
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 197

Select Custom Components page
To customize your installation, choose from the following HPU components:

� HPU unload feature

Selecting this option specifies that you want to install the program db2hpu. This module is
used to unload the local DB2 files. This option must be used on a system where a DB2
server is installed.

� HPU network feature

Selecting this option specifies that you want to install the HPU network server. The server
is a specific service that allows HPU to unload DB2 files through the network. This option
must be installed on the server if you want to use the GUI to communicate with it, or if this
is a partitioned (EEE) environment.

Resume Before Install page
Before you begin the installation, review your selections and then choose one of the following
options from the Resume Before Install page:

� Click Back to return to a previous page to change any of your selections.

� Click Next to install the product as it is shown in the summary. When you click Next, a
page showing the progress of the installation is displayed.

The installation program installs HPU into various directories. For more information on these
directories, refer to page 11 of the IBM DB2 High Performance Unload for Multiplatforms User
Guide, SC27-1623-01.

Using a response file to install HPU
On a system where you cannot use the graphic wizard to install HPU, you can run the setup
module with a silent option.T do this, you must create an ASCII text response file with all of
the required information:

1. Create a response file.

A typical response file is shown in the following example:

#specify silent install
-silent
#Main product directory
-P hpu.installLocation="/home/IBMhpu/V2.1"
#Default instance name
-W userInput.defaultInstance="db2instance"
#Default database name
-W userInput.defaultDB="DATABASE1"
#Default instance home directory
-W userInput.defaultHome="/db2home/db2instance"

To add comments, precede the comment line with a pound sign (#).

The keyword –silent specifies to install in silent mode, where the installation is performed
with no user interaction.

Main product directory corresponds to the value of the Destination Location page in the
Install wizard.

The other parameters, default instance namef, default database name, and default
instance home directory correspond to the Input fields of the User Input Parameters page
from the Install wizard.

2. Start the silent install.
198 Moving Data Across the DB2 Family

To start the silent install, you must add –options response_filename as a parameter of the
./setup command.

For example:

/mnt/cdrom/aix/setup -options /root/db2hpu/responsefile

To use a response file, specify the -options parameter on the command line, followed by
the absolute path to the response file. An absolute path to the response file on a Windows
system might look like this:

c:\directory \responsefile

while on a UNIX system, the absolute path might look like this:

/root/db2hpu/responsefile

8.2.4 Installation directories and files
Files and directories necessary for the installation of HPU are listed in the following section.

Installation directories
The HPU installation program creates the following default product directory during the
installation (unless you specify a different directory):

On UNIX and Linux:

/opt/IBM/kk/V2.1

On Windows:

\Program Files \IBM \hpu \V2.1

The following table lists the directories and significant files installed in your product directory
for all supported systems.

Table 8-3 Directory description

Directory Description

bin Contains the executables for
HPU:db2hpu,db2hpudm (extensions appear as
.exe on Windows systems.)

lib Contains the dynamic libraries (*.so on UNIX r
*.dll on Windows.)

cfg Contains the configuration file for HPU
defaults:db2hpu.cfg

msg Contains language-dependant messages and
resource files.

java Contains all files (classes, jar files, zip files,...)
needed by the .HPU plug-in for Control Center
feature.

_jvm Contains all of the Java Machine files that are
used by the install and uninstall setup processes.

_uninst Contains information installation files.These files
will be used by the automatic uninstall setup.
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 199

After installing HPU, you must modify the config file.

HPU configuration file
The db2hpu.cfg file drives all default values. This file is an ASCII text file, and it is located in
the cough directory.

A typical db2hpu.cfg file is shown in the following example obtained with FixPak 2 level.

Example 8-1 db2hpu.cfg with default values

#HPU default configuration
version=02.01.000
pagesizes=4:8:16:32
bufsize=8388608
memsize=8388608
db2dbdft=SAMPLE
db2instance=db2inst1
maxunloads=2
maxsockets=4
insthomes=db2inst1:/home/db2inst1

Lines beginning with a pound symbol (.#.) and empty lines are ignored. Each parameter is
defined on one line and that format is: keyword=value. There is no space between keyword
and the equal sign (.=.). There is also no space between the equal sign (.=.) and value.

pagesize
This parameter defines the size of the DB2 pages that will be unloaded. For each value of 4,
8, 16, or 32, a set of system resources will be locked. Your database should have a page size
of at least 32 KB. HPU will be faster if the pagesize parameter value is 4: 8: 16. This
parameter is ignored with FixPak 3.

bufsize
This is the value (8388608) of the parameter defining the default buffer size that is used when
writing the output file.The value is the actual number of bytes used for this buffer.

memsize
This parameter controls the default size of the memory buffer used between the reader and
writer co-processes when reading DB2 files. This value is the actual number of bytes. If the
input I/O is executed on the same device of the output (typical Windows demo situation) we
recommend a pretty small memsize (10-20 KB) and the largest bufsize possible (say 60 MB)
without causing paging. For a regular production system with more than one disk, a buff size
of 5-10 MB, and a memsize of 2-4 table spaces extents should be sufficient. These
recommendations are subject to change with the improvements that will be provided in the

sample Contains sample control files for HPU that you
can run against the DB2 SAMPLE database.
Refer to Appendix A, of the HPU for
Multiplatforms User Guide, SC27-1623-01

help Contains the help files.

install Contains the files used by the installation
process.

images Contains the images associated with message

Directory Description
200 Moving Data Across the DB2 Family

future to the I/O subsystem of HPU, with the intent of aiming at the best performance on large
configurations.

db2dbdft
This parameter corresponds to the database name used by HPU when no database name is
given (command line option –d).

db2instance
The value that corresponds to the parameter is the instance name used by HPU when no
run-time value is given (command line option –i).

maxunloads
This parameter limits the number of concurrent threads that HPU will generate when
unloading DB2 files.HPU generates one thread by unload block.

maxsockets
This parameter is the number of connections the deamon will answer to concurrently. This
value is not user tunable and does not set a limit on the number of sockets that HPU
execution will open since they are HPU defined.

insthomes
This parameter provides the DB2 home directory path for all DB2 instances. At install time,
only one DB2 instance is granted with HPU, and if you need to grant more instances, you
must modify this parameter. For example, if you need to grant HPU with one default instance
of db2inst1 (instance home is /home/db2inst1) and another instance of db2inst2 (instance
home is /home/db2inst2), this parameter is:

insthomes=db2inst1:/home/db2inst1,db2inst2:/home/db2inst2

8.3 Using HPU for MP
This section describes the use of the HPU tool for distributed platforms. We discuss how to
prepare your database before using HPU, the restrictions on the tool, and some examples on
its use.

Preparing for unload
� The authority needed to perform the Load is any of the following:

– sysadm
– dbadm

� If unloading from the database object files, or if the use running the tool does not have the
sysadm authority, ensure that DB2 database manager is running.

Restrictions
There are some restrictions on the complexity of SQL statements HPU can process.
Currently, when these are encountered, HPU uses the DB2 Export utility and the options are
not processed. Other restrictions are:

� HPU cannot perform an unload from a DMS table space backup.
� HPU does not support table joins.
� HPU cannot evaluate select statements involving a WHERE clause.
� HPU cannot select a subset of table columns.
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 201

8.3.1 Invoking HPU for MP
There are two ways of using the HPU tool:

� Command prompt
� HPU notebook in the Control Center

Note that the HPU is an executable only, and it cannot be used through an application
programming interface.

Using the Command window

Use the following rules when you run HPU from your operating system command line using
the db2hpu command and its options:

� Either the -f, -t, or -v option is required. All other command-line options are optional.

� Specify the full or the abbreviated option name.
for example, either: --database or --d represents the database name.

� The option names must be lowercase whether you specify the full or abbreviated name.

� Unless the values enter for table_name, database_name, and password are enclosed in
quotation marks, HPU converts them to uppercase in accordance with DB2 naming
conventions.

� For options with associated values, you must separate the option names from the values
with a space.

Simple unloads can be executed by specifying a few command line options:

db2hpu -d sample -t staff -o staff.del

In this example:

� data is unloaded from the staff table in the sample database,
� output is redirected to file staff.del,
� default SQL statement selects all data in the table,
� default data format is DEL, with column delimiter ‘,’ and char delimiter ‘”’,
� data is unloaded from the database object files.

Settings needed to perform more complex unloads are defined through the unload
configuration file. The control file option is specified by ‘-f’. Other command line options can
be used in conjunction with it. To perform an unload reading the input values from file
db2hpu.config issue:

db2hpu -f db2hpu.config

To unload a table from a backup create the following control file:

global connect to sample;
unload tablespace userspace1
backup "backup\sample.0\db2\node0000\catn0000\20021025\162850.001"
select * from mmilek.employee;
output ("employee.del" append)
format del;

In this example:

– All data from employee table is unloaded.
– Table resides in table space userspace1 in database sample.
– Path to the full backup image has to be provided.
– The output file, employee.del, is written in the append mode, default mode is replace.
– Output format is delimited ASCII.
202 Moving Data Across the DB2 Family

To unload the whole table space:

global connect to sample;
unload tablespace sample.userspace1
output("userspace1.ixf")
lob in ("lobs")
lobfile ("userspace1.lob")
format ixf;

In this example:

– The whole table space userspace1 is unloaded using a single command.

– Single output file is created for each table

– userspace1.ixf is used as a basename, output files are of the form
basename_schema_tablename

– LOB data is stored in external files, saved in the lobs directory

– Basename for LOB file names is userspace1.lob

– Output format is ixf

HPU tool creates a single file for each LOB object it unloads. If a large number of records
containing LOB data needs to be exported both ‘lobs to’ and ‘lobfile’ can be specified. The
tool can unload up to 1000 lob objects for each basename specified by the lobfile parameter.
Multiple lob paths can be used to circumvent file system space limitations:

global connect to sample;
unload tablespace userspace1
select * from emp_resume;
output("emp_resume.ixf")
lob in ("lobs")
lobfile ("e_r1.lob", "e_r2.lob", "e_r3.lob", "e_r4.lob", "e_r5.lob", "e_r6.lob",
"e_r7.lob", "e_r8.lob", "e_r9.lob", "e_r10.lob")
format ixf;

In this example a maximum of 10000 records can be exported because 10 basenames for
LOB files are specified,

HPU will call the Export API if the select statement is too complex for its processing:

global connect to sample;
unload tablespace userspace1
select deptnumb,deptname from org where DEPTNUMB<40;
output("org.del")
format del;

In this example:

– A subset of columns is unloaded to a del file (due to the WHERE clause)
– As HPU cannot process this select statement, the Export utility is used

HPU tool can be used to create a sampling of data contents:

global connect to sample;
unload tablespace userspace1
select * from employee;
maxrows 100 skip 5 interval 10
output("employee.del")
format del;

In this example:

� Every tenth record in the employee table is unloaded into the output file.
� First 5 records are skipped.
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 203

� A maximum of 100 rows is unloaded.

More examples of HPU use are distributed with the product. Please refer to Appendix A of the
IBM DB2 High Performance Unload for Multiplatforms Version 2, Release 1, SC27-1623-01.

Using the Fast Unload Notebook of the Control Center
The screen shots in this section show the Control Center plugin distributed with HPU for MP
V2.1, used with DB2 UDB V7. If you run a different version of HPU or DB2 UDB, graphical
interfaces may not be exactly as shown:

1. From the Control Center, expand the object tree until you find the Tables folder.

2. Click on the Tables folder. Any existing tables are displayed in the pane on the right side of
the window (the contents pane.)

3. Right click the table you want in the contents pane, and select Fast Unload from the
pop-up menu. You will be prompted for a username and a password. The Fast Unload
Notebook opens.

4. Use the Process Options tab to set general unload parameters. These include HPU
behavior if the select statement cannot be processed, partitions involved in unload, lock
and quiesce options, number of concurrent unload tasks and the exit error code criterion.
Figure 8-1 on page 205.

5. Use the Output Options tab to set column options, select sampling criteria and choose
number and data-time formats. Figure 8-2 on page 205.

6. Use the Large Objects tab to set LOB options. Figure 8-3 on page 206.

7. Use the Unload tab to provide output and message file names, and to specify select
blocks for the unload. Click the appropriate buttons to add (the Add Select Block window
opens), change (the Change Select Block window opens), delete, and reorder multiple
select blocks. Figure 8-4 on page 206.

8. Use the Add Select Block window or the Change Select Block window to set the output
file name by clicking the Add button or the Change button. The Add Output File window or
the Change Output File window opens and you can choose its format by clicking the
Options button (the Format Options window opens). Figure 8-5 on page 207.

9. Use the Format Options window to set the output file type. If user format is selected,
specify the column list by clicking the Add button (the Add Column Format window opens),
the Change button (the Change Column Format window opens) or the Remove button.
Figure 8-5 on page 207.

10.Use the Add Column Format window or the Change Column Format window to specify
column type, delimiter, size, null indicators, and number format options for each output
column. Figure 8-7 on page 208.

11.Contents of the control file created using current settings can be viewed by clicking on the
Show Command button on the Fast Unload Notebook.
204 Moving Data Across the DB2 Family

Figure 8-1 The Process Options tab of the Fast Unload Notebook

Figure 8-2 The Output Options tab of the Fast Unload Notebook
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 205

Figure 8-3 The Large Objects tab of the Fast Unload Notebook

Figure 8-4 The Unload tab of the Fast Unload Notebook
206 Moving Data Across the DB2 Family

Figure 8-5 The Change Select Block window

Figure 8-6 The Format Options window
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 207

Figure 8-7 The Add Column Format window

If you need more information on the operation of the Control Center you can view the online
Help facility inside the control center.

8.4 Comparing HPU for MP and Export
In this section we present performance comparisons between HPU for MP tool and Export
utility.

DB2 sample database
In the first analysis we used tables from the sample database. Measurements were done on
DB2 UDB V7 AIX and Windows platforms. The results are listed in Table 8-4, where the
execution time is measured in seconds.

Tables from the sample database were populated with randomly generated data. LOB objects
were stored in external files. Unless specified otherwise, Export was ran in the old lob mode,
creating a LOB file for each LOB object.

By repeating some measurement we estimate a 5% error on the ratios of execution times in
non-partitioned environments. Because of necessary network traffic, and a more complex
processing model, this uncertainty is larger in partitioned environments. Our estimate here is
10%.
208 Moving Data Across the DB2 Family

Table 8-4 Comparison of Export and Unload execution times on Windows platform

Non-partitioned sample database on Windows platform was used for the analysis
summarized in Table 8-4 on page 209. Table employee does not contain any LOB or LONG
columns and no indexes are defined on the table. Table emp_resume does contain a LOB
column, and a two dimensional primary key is defined on the table.

HPU outperforms Export in all scenarios. The difference is more significant when LOB fields
are present.

TPC-C like benchmark
In another set of measurements, a TPC-C like benchmark was used to compare HPU and
DB2 Export. The results are reported in Figure 8-8.

Figure 8-8 DB2 Export and HPU TPC-C measurements

The results have also been reported in the diagram in Figure 8-9.

These measurements show that HPU is better in elapsed time than DB2 Export. In this case
the difference is small for a small number of rows, but it reaches a ratio of five times at around
1 million rows and remains the same up to five million rows. Note that the tables used in this
set of measurements are not large and have rather narrow row length. They are significative
for an OLTP like environment. More measurements are planned from other sets of
applications.

Table Rows Format Export (s) Unload (s) Ratio

employee 1 M IXF 29.0 17.7 1.6

employee 1 M DEL 25.4 17.7 1.4

emp_resume 40 K IXF 397.6 143.0 2.8

emp_resume 40 K DEL 287.5 103.2 2.8

Preliminary performance measurements
TPC-C like database

Tablename # of Rows DB2 Export
(secs)

HPU (secs)

Warehouse 100 3 5

District 1000 1 3

Item 100,000 10 6

New_Order 899,991 52 9

Orders 3,000,000 266 48

History 3,000,000 310 63

Order_Line 5,000,000 912 181
Chapter 8. IBM DB2 High Performance Unload for Multiplatforms 209

Figure 8-9 Chart of DB2 Export vs. HPU performance

8.4.1 When to use HPU for MP tool or the Export utility
This section summarizes strengths and weaknesses of the two methods used for moving data
from the database into an external medium. These results should help your make an informed
decision as to which utility/tool to use in a given scenario.

Use HPU when
� Performance is critical, and the select statement can be processed by HPU. As shown,

HPU outperforms Export in most scenarios, sometimes by as much as a factor of 5.

Before using HPU in production, use a subset of your data to verify that HPU does work
properly in your setup.

Use Export when
� You need to use a select statement that HPU does not support.

� The select statement specified could use an index. HPU does not use all indices to access
table data.

� You need to store LOB data in external files, and you run a version of DB2 UDB that
supports exporting multiple LOB objects into a single LOB file.

� You need to unload a partitioned table into a single output file.

� You need to access data not located on the machine where HPU is running.

Preliminary performance measurements
TPC-C like database

100
1000

100,000
899,991

3,000,000
5,000,000

of rows exported

0

120

240

360

480

600

720

840

960
Ti

m
e

in
 se

cs DB2 Export

HPU
210 Moving Data Across the DB2 Family

Part 4 Scenarioss

In this part we describe some scenarios of moving data.

This part is structured in the following chapters:

� Getting ready for moving data
� Moving data to DB2 for z/OS
� Moving data to DB2 Distributed

Part 4
© Copyright IBM Corp. 2003. All rights reserved. 211

212 Moving Data Across the DB2 Family

Chapter 9. Getting ready for moving data

This chapter describes the tools that can be used to extract the data definition language. We
discuss these Data Management tools:

� Before moving data
� DB2 Administration Tool
� db2look command
� DB2 Control Center

9

© Copyright IBM Corp. 2003. All rights reserved. 213

9.1 Before moving data
Moving data can be a one time activity or it could be a continuous activity done periodically.
There are several things you need to consider in moving data. You should know the proper
tool to use, the software requirements, hardware requirements, authorities needed and the
limitations you have on resources. In this section, we discuss some of these concerns. Our
objective is present the information to you so that you can make an informed decision on your
data moving.

In moving data across different databases, you also have to consider:

� Column definitions (primary keys, foreign keys, unique keys, etc.)
� Referential integrity
� Table index

9.1.1 Choosing a tool or utility
Database administrators weigh the pros and cons of each tool before using it. The
advantages and disadvantages of each tool should be understood with respect to the
environment and the circumstances in which it operates. The risks involved in moving the
data, the performance objectives that need to be followed, and the resource constraints of the
system set-up must be taken into consideration.

These are some factors you need to consider in choosing which tool is the best suited for your
data migration objectives.

Speed
Performance is one of the most important factors you need to consider when choosing a tool.
You need to know the length of time you have to complete the migration and the volume of
data you need to move. There are a lot of benchmark testing done by different vendors, but
you need to know that these tests are done in a controlled environment.

You need to understand the constraints and bottlenecks that you have in your system. Using
the fastest tool or most efficient tool is useless if your system has a network or I/O bottleneck.

Some tools are simply built for speed. But nothing is for free. There are always trade-offs
along the way. Versatility and control could be sacrificed to add a few mph on a tool. There are
tools now that no longer use DB2 to unload. These tools may provide better performance
because they directly access the physical file. However, they may lack the control and
versatility that comes from executing the SQL statements.

Concurrency
This is the ability of a tool to move data in a live environment. This means you do not have to
stop the database to load or unload the data. Furthermore, some tools have online
capabilities, giving other applications concurrent access to the data being processed.

This ability is essential for database shops where continuous availability of data is of primary
importance. For example, a bank’s ATM needs a 24x7 access to data of the depositors
accounts. A migration or back-up of a database needs to be concurrent to avoid down time.

Volume
The volume of data that can be transferred by a tool at a given time is an important factor that
should be considered. This factor matters more if you are moving an entire database or table
space involving terabytes of actual data.
214 Moving Data Across the DB2 Family

Network capacity
The Network speed and capacity in transferring data needs to be considered in choosing a
tool. For example, if the network that you will use in transferring data from one database to
another is already congested, you should consider using tools that can write and read its
output to and from a removable media.

Recovery
Recovery is the ability to go back to a consistent state and retrieve data if a database
operation fails. For example, if loading data to an active database fails, you need to be able to
recover by doing a rollback.

Capability of moving metadata, DDL, and DCL
Moving data requires movement not only of the actual data inside the tables, but also the
related descriptions, such as contained in data dictionaries, and definitions; such as table
definitions, the DDL or data definition language, and authorities and privileges, the DCL or
data control language. You need to know what your tool is capable of moving. This will
determine the tasks that you have to do before and after moving the data.

SQL capability
A tool that can execute SQL has a great advantage in versatility. The SQL select statement
enables the tools to process data selectively. You can choose which columns you want, join
tables, and have a condition for the rows you want to unload.

This is very useful if you intend to create a test database by using a subset of your data.

Sort capability
This is the capability of a tool to sort the data while doing the load or unload operation. If a
certain load or unload sequence is required and this capability is not present in the tool, you
need perform the data sorting separately, before performing the load. Without this capability
data is loaded in the same sequence as it appears in the input file.

Referential integrity
Referential integrity, in the RDBMS sense, is a restriction imposed by the DBMS in changes in
a table, so as to ensure that every column can only refer to a column that exists. The foreign
key of a table needs to access an existing primary key or unique key of another table. If this
concept is applied in moving data it would simply mean, moving a table (table A) whose
column refers to a column of another table (table B), requires that both of the tables (table A
and table B) need to be included in the data movement.

You need to know whether the tool you are using respects the referential integrity of your
data. The referential integrity of your database is implemented through the DBMS or through
the application that uses the data. If it is not implemented through the DBMS then you have to
manually monitor that all tables needed to preserve the referential integrity are being
downloaded together.

Security
Security in a data movement tool is its ability to control the access of people who can move or
copy data from a database or table. Security of a database also necessitates that even the
back-up files cannot be restored unless the person has the proper authority.
Chapter 9. Getting ready for moving data 215

Capability to handle different encoding schemes and code pages
A tool that can move data across different platforms requires that it can handle different
encoding schemes and it can convert from encoding scheme to another. Mainframe stores its
data in EBCDIC while distributed platforms (UNIX, Windows NT, and Linux) store its data in
ASCII. Hence, one consideration that you have to put in mind in moving data across different
platforms is the EBCDIC to ASCII conversion. For details see 9.1.5, “Encoding scheme and
code pages” on page 218.

Capability to handle different file formats
Being able to handle positional, delimited, and IXF format is an important consideration in
moving data to another platform. The tool used to unload data from the source need to be
able to produce an output format that can be read by a tool in the target platform. For
example, if you are moving to a mainframe database you need to use a tool that can read
positional format. For details see 9.1.4, “File format considerations” on page 217.

Capability to add dimensions to the unloaded data
There are some tools that allow the addition of new dimensions or columns on the output
(typically a timestamp). These additional dimensions are columns added on the target table. It
is generated through computation or processing done on the existing columns of the source
database.

Capability to selectively unload data
A tool that can perform logical operations when unloading data is important when additional
logical processing is needed to selectively unload data to be placed on the target database.
This will enable you to save time in accessing the target database after the data is moved.
This can be very useful in cleaning the data that you download. You can check whether a
value in a column falls within the range of accepted values. Or, this can be useful if you just
need to extract a subset of the source database and migrate it as a test database.

9.1.2 Disk space considerations
Make sure that you know how much disk space is required by the data that you are going to
move. This space should be allocated before you start. The amount of disk space required
will vary, depending on the complexity of the database (the number and size of database
objects). These objects include all tables and views. You should make available at least two
times the amount of disk space that the database currently occupies.

If your SYSCAT table space is an SMS type of table space, you should also consider updating
the database configuration parameters that are associated with the log files. You should
increase the values of logfilsiz, logprimary, and logsecond to prevent the space for these log
files from running out (normally SQL1704N with reason code 3). If this happens, increase the
log space parameters, and repeat the migration.

9.1.3 Software considerations
These are some things you have to consider in your software environment before you do
database migration.

DB2 version compatibility
You need to consider if the DB2 version you are installing and migrating into can work
properly with the old version that you have. The down-level compatibility becomes an issue
only when you intend to use an older DB2 version with a new one.
216 Moving Data Across the DB2 Family

9.1.4 File format considerations
File format compatibility is important when exporting, importing, or loading data across
platforms. The following sections describe PC/IXF, delimited ASCII (DEL), positional ASCII
(ASC) and WSF file format considerations when moving data between different operating
systems.

PC/IXF file format
PC/IXF is the recommended file format for transferring data across platforms. PC/IXF files
allow the Load utility or the Import utility to process (normally machine dependent) numeric
data in a machine-independent fashion. For example, numeric data is stored and handled
differently by Intel and other hardware architectures.

To provide compatibility of PC/IXF files among all products in the DB2 Family, the Export
utility creates files with numeric data in Intel format, and the Import utility expects it in this
format. However, take note that the PC/IXF format is different from the QMF IXF format that is
used in the mainframe. These two formats are not compatible with each other. You can find
documentation on their differences in the DB2 UDB Version 8 On-line documentation.

Depending on the hardware platform, DB2 products convert numeric values between Intel
and non-Intel formats (using byte reversal) during both Export and Import operations.

PC/IXF files cannot be loaded, but it can be imported into a partitioned database environment
using DB2 UDB V7.

ASCII file formats
DB2 UDB tools and utilities support two different ASCII file formats:

� Delimited (DEL) for Load/Import/Export
� Positional (ASC) for Load/Import

DEL allows rows larger than 32 KB, while ASC does not.

ASCII files may have characteristics specific to the operating system on which they were
created. These characteristics are:

� Row separator characters
– UNIX based text files use a line feed (LF) character.
– Non-UNIX based text files use a carriage return/line feed (CRLF) sequence.

� End-of-file character
– UNIX based text files do not have an end-of-file character.
– Non-UNIX based text files have an end-of-file character (X’1A’).

When ASCII files are transferred from one operating system to another through FTP, changes
to the data can occur.

Note: PC/IXF file format is different from the QMF/IXF format. These two file formats are
not compatible with each other.
Chapter 9. Getting ready for moving data 217

WSF file format
Numeric data in WSF format files is stored using Intel machine format. This format allows
Lotus WSF files to be transferred and used in different Lotus operating environments (for
example, in Intel based and UNIX based systems.)

As a result of this consistency in internal formats, exported WSF files from DB2 products can
be used by Lotus 1-2-3 or Symphony running on a different platform. DB2 products can also
import WSF files that were created on different platforms. Transfer WSF files between
operating systems in binary (not text) mode.

For details see DB2 UDB Data Movement Utility Guide and Reference Version 8, SC09-4830.

9.1.5 Encoding scheme and code pages
An encoding scheme is a set of rules used to represent character data. All string data stored in
a table must use the same encoding scheme, and all tables within a table space must use the
same encoding scheme except for: global temporary tables, declared temporary tables, and
workfile table spaces. Encoding schemes include:

Extended Binary Coded Decimal Interchange Code (EBCDIC)
EBCDIC is an encoding scheme used to represent character data.This is normally used by
the mainframe platforms (z/OS, OS/390, VSE, OS/400). It is a group of coded character sets
that consist of 8-bit coded characters. EBCDIC coded character sets use the first 64 code
positions (X'00' to X'3F') for control codes and the range X'41' to X'FE' for graphic characters.

American Standard Coded for Information Interchange (ASCII)
ASCII is an encoding scheme used to represent characters. It is limited to 256 code positions.
This is the file format normally used by distributed platforms (UNIX, Windows, Linux)

Unicode
A universal encoding scheme for written characters and text that enables the exchange of
data internationally. It provides a character set standard that can be used all over the world. It
uses a 16-bit encoding form that provides code points for more than 65,000 characters and
an extension called UTF-16 that allows for encoding as many as a million more characters. It
provides the ability to encode all characters used for the written languages of the world and
treats alphabetic characters, ideographic characters, and symbols equivalently, because it
specifies a numeric value and a name for each of its characters. It includes: punctuation
marks, mathematical symbols, technical symbols, geometric shapes, and dingbats. Three
encoding forms include the following:

Notes:

1. FTP can handle operating system-dependant differences if you transfer the files in text
mode; the conversion of row separator and end-of-file characters is not performed in
binary mode.

2. If character data fields contain row separator characters as actual data, these will also
be converted during file transfer. This conversion may cause unexpected changes to
the data. For this reason, it is recommended that you do not use ASCII files to move
data across platforms. The PC/IXF format is recommended, since data is encoded in a
binary format that is not subject to OS specific characters.

Note: Do not use the WSF file format to transfer data between DB2 databases on different
platforms, because a loss of data can occur. Use the PC/IXF file format instead.
218 Moving Data Across the DB2 Family

UTF-8: Unicode Transformation Format, a 8-bit encoding form designed for
ease of use with existing ASCII-based systems. The CCSID value
for data in UTF-8 format is 1208.

UCS-2: Universal Character Set coded in 2 octets, which means that
characters are represented in 16-bits per character.

UTF-16: Unicode Transformation Format, a 16-bit encoding form designed
to provide code values for over a million characters and a superset
of UCS-2. The CCSID value for data in UTF-16 format is 1200.

With DB2 UDB Version 8, the Fixpack 2 code level will allow the creation of Unicode UTF-8
tables in any table space of a database of any other encoding.

Coded character set identifier (CCSID)
A CCSID is a two-byte, unsigned binary integer that uniquely identifies an encoding scheme
and one or more pairs of character sets and code pages.

A coded character set is a set of unambiguous rules that establishes a character set and the
one-to-one relationships between the characters of the set and their coded representations. It
is a character set in which each character is assigned a numeric code value.

Code page
A set of assignments of characters to code points. In EBCDIC, for example, 'A' is assigned
code point X'C1' and 'B' is assigned code point X'C2'. In Unicode, 'A' is assigned code point
"U+0041". Within a code page, each code point has only one specific meaning. A code point
is a unique bit pattern that represents a character. It is a numerical index or position in an
encoding table used for encoding characters.

9.1.6 Moving data with DB2 Connect
If you are working in a complex environment in which you need to move data between a host
database system and a workstation, you can use DB2 Connect; the gateway for data transfer
from the host to the workstation, as well as the reverse. The DB2 Export and Import utilities
allow you to move data from a host or AS/400 and iSeries server database to a file on the
DB2 Connect workstation, and the reverse.

Restrictions
With DB2 Connect, Export and Import operations must meet the following conditions:

� The only file type supported by DB2 Connect is PC/IXF.

� A target table with attributes that are compatible with the data must be created on the
target server before you can Import to it. The db2look utility can be used to get the
attributes of the source table. We discuss about generating the DDL for data transfer on
Chapter 9, “Getting ready for moving data” on page 213. Import through DB2 Connect
cannot create a table, because INSERT is the only supported mode.

Note:

1. The data to be exported or imported must comply with the size and data type
restrictions that are applicable to both databases.

2. To improve Import performance, you can use compound SQL. Specify the compound
file type modifier in the Import utility to group a specified number of SQL statements into
a block. This may reduce network overhead and improve response time.
Chapter 9. Getting ready for moving data 219

� A commit count interval must not be specified for the Import operation. If any of these
conditions is not met, the operation fails, and an error message is returned.

Note: Index definitions are not stored on Export or used on Import. If you Export or Import
mixed data (columns containing both single-byte and double-byte data), consider the
following:

� On systems that store data in EBCDIC (MVS, OS/390, OS/400, VM, and VSE), shift-out
and shift-in characters mark the start and the end of double-byte data. When you define
column lengths for your database tables, be sure to allow enough room for these
characters. Variable-length character columns are recommended, unless the column data
has a consistent pattern.

9.2 Extracting the data definition language
The DDL needs to be extracted from the source database before you can recreate the
definitions on your target database. These are some tools that you can use to extract the
DDL:

� DB2 Administration Tool for z/OS
� db2look command

– Invoked through CLP
– Invoked through DB2 Control Center

9.2.1 Using DB2 Administration Tool for z/OS to extract DDL
You can generate the data definition language of a database, table, table space, or view
residing in z/OS through the DB2 Administration Tool.

Getting the DDL through the DB2 Administration Tool
These are the steps to get the DDL through the DB2 Administration Tool for z/OS.

Step 1
Logon to the ISPF panel using an ID with at least a Select privilege on the table or database
that you want to access. After logging on, go to the DB2 Administration Tool by entering ADM
on the main ISPF panel. See Figure 9-1.

Note: If you have DB2 UDB Enterprise Edition or Extended Enterprise Edition, DB2
Connect is already included in the package. It is installed automatically in your system
when you install the DB2 UDB.
220 Moving Data Across the DB2 Family

Figure 9-1 The ISPF main menu panel

Step 2
Go to the DB2 subsystem where your source tables or database is located. You can type S
corresponding to the DB2 subsystem name, or you can type it on the DB2 system name
prompt. See Figure 9-2.

Figure 9-2 The ISPF Active DB2 Systems panel

Step 3
Go to the DB2 system catalog panel by entering 1 on the Option prompt. See Figure 9-3.

 Master Application Menu - SC63
 Opt => ADM Sc => HALF

 USERID - PAOLOR3
 Enter SESSION MANAGER Mode ===> NO (YES or NO) TIME - 13:04

 TP TOPS - TSO Operator Presentation Sample
 TN TPNS - Teleprocessing Network Simulator
 AP APPC - APPC Adminstrative Application
 PW PRINTWAY - IP PrintWay
 IN INFOPRT - Infoprint Server
 CV CICSVR - CICS VSAM Recovery
 MQ MQS - MQSeries
 TE TERSE - TERSE/MVS
 VE VSAMEDIT - VSAM Editor
 FT NV FTP - NetView File Transfer Program
 IX IXFP - IBM Extended Facilities Product (for RVA)
 FM FILEMAN - File Manager
 S2 SDF II - SDF II Functions
 ADM DB2ADM - DB2 Administration Tool V4 and Object Compare V2
 AT DB2AUT - DB2 Automation Tool

 Use UP and DOWN PF Keys or commands to scroll MENU.

 DB2 Admin ------------------- Active DB2 Systems ------------------ Row 1 of 3
Command ===> Scroll ===> PAGE

This is a list of the active DB2 systems on this MVS system.

Enter:
DB2 system name ===>

Or select the one you wish to use, or press END to exit.

Sel DB2 System Description Group
--- ---------- -- -----
s DB2G
 DB2H
 DB7Y
******************************* Bottom of data ********************************

Chapter 9. Getting ready for moving data 221

Figure 9-3 The DB2 Administration menu — Option 1

Step 4
Choose the database object that you want to be the source of the DDL to be generated. If you
want a DDL for the table or view, choose T. If you want it for the whole database choose D. In
this example, we will generate the DDL of a group of tables, so we chose D. See Figure 9-4.

 DB2 Admin -------------- DB2 Administration Menu 4.1.0 ------------------ 13:41
 Option ===> 1

 1 - DB2 system catalog DB2 System: DB2G
 2 - Execute SQL statements DB2 SQL ID: PAOLOR3
 3 - DB2 performance queries Userid : PAOLOR3
 4 - Change current SQL ID DB2 Rel : 710
 5 - Utility generation using LISTDEFs and TEMPLATEs
 P - Change DB2 Admin parameters
 DD - Distributed DB2 systems
 E - Explain
 Z - DB2 system administration
 SM - Space management functions
 W - Manage work statement lists
 CC - DB2 catalog copy version maintenance
 More: +
 Interface to other DB2 products and offerings:
 I - DB2I DB2 Interactive
 OC - DB2 Object Comparison Tool

222 Moving Data Across the DB2 Family

Figure 9-4 The DB2 system catalog panel — Option S

Step 5
Select the database by entering GEN on the Select column corresponding to it. You can sort
the database list by entering SORT NAME on the Options prompt. See Figure 9-5.

 DB2 Admin --------------------- DB2G System Catalog --------------------- 13:53
 Option ===> D

 More: +
 Options: DB2 System: DB2G
 V - Volumes DB2 SQL ID: PAOLOR3
 G - Storage groups GA - Authorizations to storage groups
 D - Databases DA - Authorizations to databases
 S - Table spaces SA - Authorizations to tables spaces
 T - Tables, views, and aliases TA - Authorizations to tables and views
 X - Indexes
 C - Columns CA - Authorizations to columns
 Y - Synonyms
 P - Plans PA - Authorizations to plans
 K - Packages KA - Authorizations to packages
 L - Collections LA - Authorizations to collections
 M - DBRMs RA - Authorizations to resources
 Enter standard selection criteria (An SQL LIKE operator will be used):
 Name ===> Grantor ===>
 Owner ===> Grantee ===>
 In D/L/H ===> Switch Catalog Copy ===> N (N/S/C)
 And/or other selection criteria (option xC shows you columns for option x)
 Column ===> Operator ===> Value ===>
Chapter 9. Getting ready for moving data 223

Figure 9-5 The DB2 system catalog panel

Step 6
Check the options in this panel. Mark the database objects that you want to include in the
DDL by entering Y. See Figure 9-6.

DB2 Admin ------------------- DB2G Databases -------------- Row 53 to 65 of 87
Command ===> Scroll ===> PAGE

Valid line commands:
 T - Tables S - Table spaces X - Indexes G - Storage group ICS - IC status
 DIS - Display database STA - Start database STO - Stop database A - Auth
 ? - Show all line commands
 Storage Buffer Created Index
Select Name Owner Group Pool DBID By T E Buffer Pool
 * * * * * * * * *
------ -------- -------- -------- -------- ------ -------- - - -----------
 DSG24P11 SG24P1M SG246420 BP1 319 BARTR3 E BP2
 DSG24P12 SG24P1M SG246420 BP1 327 BARTR3 E BP2
 DSG24P13 SG24P1M SG246420 BP1 328 BARTR3 E BP2
 DSG24P21 SG24P2M SG246420 BP1 333 BARTR3 E BP2
 DSG24P22 SG24P2M SG246420 BP1 334 BARTR3 E BP2
 DSG24P23 SG24P2M SG246420 BP1 335 BARTR3 E BP2
 DSG25D0P SG25D0P SG256420 BP1 330 BARTR2 E BP2
 DSHADOW SYS1 SYSDEFLT BP1 271 PAOLOR1 E BP0
GEN DSNDB04 SYSIBM SYSDEFLT BP0 4 SYSIBM BP0
 DSNDB06 SYSIBM 6 SYSIBM E BP0
 DSNDB07 PAOLOR5 SYSDEFLT BP1 7 PAOLOR5 W BP2
 DSNRLST PAOLOR5 SYSDEFLT BP1 256 PAOLOR5 E BP2
224 Moving Data Across the DB2 Family

Figure 9-6 The DB2 Generate SQL panel

You can see the other options by pressing F8. You can leave most of the options in its default
value. You also have a choice of running the DDL through batch or running it through TSO.
You can specify this option in the Execution Mode prompt in Figure 9-9. You can chose
BATCH mode or TSO mode. If you chose batch mode a JCL job will be generated. You can
edit this job and submit it anytime you want. If you chose the TSO execution mode, the
command will be run automatically and the DDL will be re-created immediately.

 DB2 Admin -------------- DB2G Generate SQL from DB2 catalog ------------- 19:11
 Option ===>

 Generate SQL statements for database DSNDB04 DB2 System: DB2G
 DB2 SQL ID: PAOLOR3
 More: +
 SQL statement types to be generated from the DB2 catalog:
 CREATE DATABASE. : Y GRANT access ON DATABASE . : Y
 CREATE TABLESPACE. . . . : Y GRANT access ON TABLESPACE : Y
 CREATE TABLE : Y GRANT access ON TABLE. . . : N
 CREATE VIEW. : N GRANT access ON VIEW . . . : N
 CREATE INDEX : N ALTER TABLE ADD FOREIGN KEY: N
 CREATE SYNONYM : N LABEL ON : N
 CREATE ALIAS : N COMMENT ON : N
 CREATE TRIGGER : Y REBIND PLAN/PACKAGE. . . . : Y
 CREATE STORAGE GROUP . . : Y GRANT use OF STORAGE GROUP : Y

 New names/values for generated SQL: (leave blank to use current values)
 Object owner : Run SQLID. :
 Alloc TS size as : DEFINED (DEFINED, USED, or ALLOC)
 Database name. :
 Storage group for TS . . : Storage group for IX . . . :
 Target DB2 version . . . : (Current DB2 version: 710)
Chapter 9. Getting ready for moving data 225

Figure 9-7 The DB2 Generate SQL options panel

Step 7
if you chose the BATCH execution mode, a JCL job will be generated as shown on the panel
(See Figure 9-8). You should review this job and submit. After you have submitted the job the
DDL will be re-created if there are no errors in the JCL.

 DB2 Admin -------------- DB2G Generate SQL from DB2 catalog ------------- 19:11
 Option ===>

 Generate SQL statements for database DSNDB04 DB2 System: DB2G
 DB2 SQL ID: PAOLOR3
 More: -
 Database name. :
 Storage group for TS . . : Storage group for IX . . . :
 Target DB2 version . . . : (Current DB2 version: 710)
 Use Masking. : N (Yes or No)

 Output file and execution mode:
 Add to work stmt list. . : N (Yes or No)
 Data set name. :
 Data set disposition . : OLD (OLD, SHR, or MOD)
 Execution mode : TSO (BATCH or TSO)
 Commit statements per. . : (Db, tS, Tb, All, None. Default is All)
 DB2 defaults handling. . : (Keep, or Remove. Default is Keep)

 DB2 Command output file:
 Data set name. :
 Data set disposition . : OLD (OLD, SHR, or MOD)

226 Moving Data Across the DB2 Family

Figure 9-8 This JCL panel will be displayed if you chose the BATCH execution mode.

If you chose the TSO execution mode, the DDL will be created immediately. There will be
some messages from the DDL generation that will be shown on your panel. Just press F3
until you reach the DDL statements as shown in Figure 9-9.

I

Figure 9-9 The DDL statement of the database object in the DSNDB04 database

 DB2 Admin -------------- Edit Generated JCL -------------- Columns 00001 00072
 Command ===> SUB Scroll ===> PAGE
 Verify and submit JCL
 ****** ***************************** Top of Data ******************************
 ==MSG> -Warning- The UNDO command is not available until you change
 ==MSG> your edit profile using the command RECOVERY ON.
 000001 //PAOLOR3D JOB (999,PAOLOR3),'DB2 UTILITY',
 000002 //* RESTART=STEPNAME, <== FOR RESTART REMOVE * AND ENTER STEP NAME
 000003 // REGION=0M,NOTIFY=PAOLOR3,
 000004 // MSGCLASS=X,
 000005 // CLASS=A
 000006 //*
 000007 //**
 000008 //*
 000009 //* DB2 ADMIN GENERATED JOB
 000010 //*
 000011 //**
 000012 //*
 000013 //***ADB2GEN***
 000014 //* STEP GENSQL: GENERATE SQL FROM DB2 CATALOG
 000015 //**
 000016 //GENSQL EXEC PGM=IKJEFT01,DYNAMNBR=100
 000017 //STEPLIB DD DISP=SHR,DSN=GOC.V2R1M0.SGOCLLIB

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT SYS02324.T193403.RA000.PAOLOR3.R0104953 Columns 00001 00072
 Command ===> Scroll ===> PAGE
 000018 -- ADB2GEN: Generate DDL for Database DSNDB04 --
 000019 -- --
 000020 --
 000021 --
 000022 --
 000023 --
 000024 -- Database=DSNDB04 Stogroup=SYSDEFLT
 000025 --
 000026 --
 000027 SET CURRENT SQLID='SYSIBM';
 000028 --
 000029 CREATE DATABASE DSNDB04
 000030 BUFFERPOOL BP0
 000031 INDEXBP BP0
 000032 STOGROUP SYSDEFLT ;
 000033 --
 000034 SET CURRENT SQLID='PAOLOR5';
 000035 --
 000036 GRANT CREATETAB,CREATETS
Chapter 9. Getting ready for moving data 227

9.2.2 Using db2look to extract DDL
The db2look tool extracts the required DDL statements to reproduce the database objects of
a target database on a source database. This tool can also generate the required UPDATE
statements used to replicate the statistics on the objects in a test database, as well as the
update database configuration and update database manager configuration parameters; and
the db2set statements so that the registry variables and configuration parameter settings on
the test database match those of the production database. It is often advantageous to have a
test system contain a subset of the production system’s data. However, access plans selected
for such a test system are not necessarily the same as those that would be selected for the
production system. Both the catalog statistics and the configuration parameters for the test
system must be updated to match those of the production system. Using this tool makes it
possible to create a test database where access plans are similar to those that would be used
on the production system.

You are required at least a select privilege on the table of database before you can use this
tool. You do not need to connect to the database to execute, because this tool automatically
makes the database connection if you are not yet connected.

Syntax of db2look
The parts of the command outside the curly brackets are required. Those inside the curly
brackets are optional. The options are not positional. Hence, you can interchange the
placement of the letters representing the options.

Description of the options
These are the options that you can use with the db2look command:

-d DBname
Alias name of the database that is to be queried. DBname can be the name of a DB2 UDB for
UNIX, Windows, OS/2, or DB2 UDB for OS/390 database. If the DBname is a DB2 UDB for
OS/390 database, the db2look utility will extract the DDL and UPDATE statistics statements
for OS/390 objects. These DDL and UPDATE statistics statements are statements applicable
to a DB2 UDB database and not to a DB2 for OS/390 database. This is useful for users who
want to extract OS/390 objects and recreate them in a DB2 UDB database.

If DBname is an OS/390 database, then the db2look output is limited to the following:

� Generate DDL for tables, indexes and views
� Generate UPDATE statistics statements for Tables, columns, column distributions, and

indexes

-u Creator
Limits output to objects with this Creator ID. If option -a is specified, this parameter is ignored.
If neither -u nor -a is specified, the environment variable USER is used.

-z Schema name
Limits output to objects with this schema name.

db2look -d database name {-u creator [-z schema name] -s -g -a -h -r -c

[-t tablename] -p -o -f filename -e -m -l -x [-i userid] [-w password] -f }
228 Moving Data Across the DB2 Family

-s
Generate a PostScript file.

-g
Use a graph to show fetch page pairs for indices.

-a
When this option is specified the output is not limited to the objects created under a particular
creator ID. All objects created by all users are considered. For example, if this option is
specified with the -e option, DDL statements are extracted for all objects in the database. If
this option is specified with the -m option, UPDATE statistics statements are extracted for all
user created tables and indexes in the database.

-h
Display help information. When this option is specified, all other options are ignored, and only
the help information is displayed.

-r
When this option is specified in conjunction with the -m option, db2look does not generate the
RUNSTATS command. The default action is to generate the RUNSTATS command. The -r
option is ignored if the -m option is not specified.

-c
When this option is specified in conjunction with the -m option, db2look does not generate
COMMIT, CONNECT and CONNECT RESET statements. The default action is to generate
these statements.

The -c option is ignored if the -m option is not specified.

-t Tablename
Table name. Limits the output to a particular table.

-p
Use plain text format.

Note:

� This option removes all LaTeX and .tmp PostScript files.
� Required non-IBM software: LaTeX, dvips.
� The psfig.tex file must be in the LaTeX input path.

Note:

� This option generates a filename.ps file, as well as the LaTeX file.
� Required non-IBM software: Gnuplot.
� The psfig.tex file must be in the LaTeX input path.

Note: If neither -u nor -a is specified, the environment variable USER is used. On UNIX
based systems, this variable does not have to be explicitly set. On Windows NT, however,
there is no default value for the USER environment variable: on this platform, a user
variable in the SYSTEM variables must be set, or a set USER=<username>must be issued
for the session.
Chapter 9. Getting ready for moving data 229

-o Filename
If using LaTeX format, write the output to filename.tex. If using plain text format, write the
output to filename.txt. If this option is not specified, output is written to standard output. You
can specify the directory of the output file here. Example: -o c:/output.txt

-e
Extract DDL statements for database objects. This option can be used in conjunction with the
-m option. DDL for the following database objects are extracted when using the -e option:

� Tables
� Views
� Automatic Summary Tables (AST)
� Aliases
� Indexes
� Triggers
� User defined Distinct Types
� Primary Key, RI, and CHECK constraints
� User Defined Structured Types
� User Defined Functions
� User defined Methods
� User defined Transforms
� Federated objects (wrappers, sewers, nicknames, user mappings) with DB2 V8

-m
Generate the required UPDATE statements to replicate the statistics on tables, columns, and
indexes. The -p, -g, and -s options are ignored when the -m option is specified.

-l
If this option is specified, then the db2look utility will generate DDL for user defined table
spaces, nodegroups, and buffer pools. DDL for the following database objects is extracted
when using the -l option:

� User defined table spaces
� User defined nodegroups
� User defined buffer pools

-x
If this option is specified, the db2look utility will generate authorization DDL (GRANT
statement, for example.)

-i
userid

Use this option when working with a remote database.

-w password
Used with the -i option, this parameter allows the user to run db2look against a database that
resides on a remote system. The user ID and the password are used by db2look to logon to
the remote system.

Note: The DDL generated by db2look can be used to recreate user defined functions
successfully. However, the user source code that a particular user defined function
references (the EXTERNAL NAME clause, for example) must be available in order for
the user defined function to be usable.
230 Moving Data Across the DB2 Family

-f
Use this option to extract configuration parameters and registry variables.

Calling the db2look through the command prompt
The db2look command can be called through the AIX or DOS command prompt. Here we
report some examples of calling the db2look through the command prompt.

Example 1
Generate the DDL statements for objects created by all users in the database SAMPWIN.
The db2look output is sent to file C:\DDLOUT.SQL as text file:

db2look -d sampwin -a -e -o c:\ddlout.sql

The output of the above command is shown in Example 9-1.

Example 9-1 Sample output of db2look command

-- This CLP file was created using db2look Version 7.1
-- Timestamp: 11/20/02 12:58:31 PM
-- Database Name: SAMPWIN
-- Database Manager Version: DB2/NT Version 7.2.0
-- Database Codepage: 1252

CONNECT TO SAMPWIN;

--
-- DDL Statements for table "DB2INST1"."ORG"
--

 CREATE TABLE "DB2INST1"."ORG" (

 "DEPTNUMB" SMALLINT NOT NULL ,
 "DEPTNAME" VARCHAR(14) ,
 "MANAGER" SMALLINT ,
 "DIVISION" VARCHAR(10) ,
 "LOCATION" VARCHAR(13))
 IN "USERSPACE1" ;

-- (there are other CREATE TABLE statements here truncated to shorten the example...)

COMMIT WORK;

CONNECT RESET;

TERMINATE;

Example 2
Generate the DDL statements for objects created by user DB2ADMIN in database
SAMPWIN. The db2look output is sent to file DDLOUT.SQL as text file:

db2look -d sampwin -u DB2ADMIN -e -o ddlout.sql

Note that the creator name is case sensitive.

Note: Only configuration parameters and registry variables that affect the DB2 query
optimizer are extracted.
Chapter 9. Getting ready for moving data 231

In this case the output will be very similar to Example 9-1, only limited to a subset of values.

Example 3
Generate the UPDATE statements to replicate the statistics for the tables and indexes created
by user DB2ADMIN1 in database SAMPWIN. The output is sent to file ddlout.sql:

db2look -d sampwin -u DB2ADMIN -m -o ddlout.sql

The output of this command is shown in Example 9-2.

Example 9-2 db2look with the mimic option

-- This CLP file was created using db2look Version 7.1
-- Timestamp: 11/21/02 09:26:05 AM
-- Database Name: SAMPWIN
-- Database Manager Version: DB2/NT Version 7.2.0
-- Database Codepage: 1252

CONNECT TO SAMPWIN;

-- Mimic Tables, Columns, Indexes and Column Distribution

-- Mimic table ORG

RUNSTATS ON TABLE "DB2INST1"."ORG" WITH DISTRIBUTION;

UPDATE SYSSTAT.INDEXES
SET NLEAF=-1,
 NLEVELS=-1,
 FIRSTKEYCARD=-1,
 FIRST2KEYCARD=-1,
 FIRST3KEYCARD=-1,
 FIRST4KEYCARD=-1,
 FULLKEYCARD=-1,
 CLUSTERFACTOR=-1,
 CLUSTERRATIO=-1,
 SEQUENTIAL_PAGES=-1,
 DENSITY=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';

UPDATE SYSSTAT.COLUMNS
SET COLCARD=-1,
 NUMNULLS=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';

UPDATE SYSSTAT.TABLES
SET CARD=-1,
 NPAGES=-1,
 FPAGES=-1,
 OVERFLOW=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';

UPDATE SYSSTAT.COLUMNS
SET COLCARD=-1,
 NUMNULLS=-1,
 --SUB_COUNT=-1,
232 Moving Data Across the DB2 Family

 --SUB_DELIM_LENGTH=-1,
 AVGCOLLEN=-1
WHERE COLNAME = 'DEPTNUMB' AND TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';
-- (SOME TABLES WERE REMOVED HERE TO SHORTEN THE EXAMPLE)
COMMIT WORK;

COMMIT WORK;

-- Mimic functions

UPDATE SYSSTAT.FUNCTIONS
SET ios_per_invoc= -1.0,
 insts_per_invoc= -1.0,
 ios_per_argbyte= -1.0,
 insts_per_argbyte= -1.0,
 percent_argbytes= -1,
 initial_ios= -1.0,
 initial_insts= -1.0,
 cardinality= -1.0;

COMMIT WORK;

CONNECT RESET;

TERMINATE;

Example 4
Generate both the DDL statements for the objects created by user DB2ADMIN and the
UPDATE statements to replicate the statistics on the tables and indexes created by the same
user. The db2look output is sent to file ddlout.sql:

db2look -d sampwin -u DB2ADMIN -e -m -o ddlout.sql

Example 9-3 db2look for DDL and mimic option

-- This CLP file was created using db2look Version 7.1
-- Timestamp: 11/20/02 03:22:43 PM
-- Database Name: SAMPWIN
-- Database Manager Version: DB2/NT Version 7.2.0
-- Database Codepage: 1252

CONNECT TO SAMPWIN;

--
-- DDL Statements for table "DB2INST1"."ORG"
--

 CREATE TABLE "DB2INST1"."ORG" (

 "DEPTNUMB" SMALLINT NOT NULL ,
 "DEPTNAME" VARCHAR(14) ,
 "MANAGER" SMALLINT ,
 "DIVISION" VARCHAR(10) ,
 "LOCATION" VARCHAR(13))
 IN "USERSPACE1" ;

--
-- DDL Statements for table "DB2INST1"."STAFF"
--
Chapter 9. Getting ready for moving data 233

 CREATE TABLE "DB2INST1"."STAFF" (

 "ID" SMALLINT NOT NULL ,
 "NAME" VARCHAR(9) ,
 "DEPT" SMALLINT ,
 "JOB" CHAR(5) ,
 "YEARS" SMALLINT ,
 "SALARY" DECIMAL(7,2) ,
 "COMM" DECIMAL(7,2))
 IN "USERSPACE1" ;

-- (SOME CREATE TABLES WERE TRUNCATED HERE OT SHORTEN THE EXAMPLE...)

-- Mimic Tables, Columns, Indexes and Column Distribution

-- Mimic table ORG

RUNSTATS ON TABLE "DB2INST1"."ORG" WITH DISTRIBUTION;

UPDATE SYSSTAT.INDEXES
SET NLEAF=-1,
 NLEVELS=-1,
 FIRSTKEYCARD=-1,
 FIRST2KEYCARD=-1,
 FIRST3KEYCARD=-1,
 FIRST4KEYCARD=-1,
 FULLKEYCARD=-1,
 CLUSTERFACTOR=-1,
 CLUSTERRATIO=-1,
 SEQUENTIAL_PAGES=-1,
 DENSITY=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';

UPDATE SYSSTAT.COLUMNS
SET COLCARD=-1,
 NUMNULLS=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';

UPDATE SYSSTAT.TABLES
SET CARD=-1,
 NPAGES=-1,
 FPAGES=-1,
 OVERFLOW=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2INST1';

--(SOME UPDATE STATEMENTS WERE REMOVED HERE TO SHORTEN THE EXAMPLE...)

COMMIT WORK;

COMMIT WORK;

-- Mimic functions

UPDATE SYSSTAT.FUNCTIONS
SET ios_per_invoc= -1.0,
234 Moving Data Across the DB2 Family

 insts_per_invoc= -1.0,
 ios_per_argbyte= -1.0,
 insts_per_argbyte= -1.0,
 percent_argbytes= -1,
 initial_ios= -1.0,
 initial_insts= -1.0,
 cardinality= -1.0;

COMMIT WORK;

CONNECT RESET;

TERMINATE;

Invoking db2look through the DB2 Control Center
You can generate the DDL of your database objects in a DB2 UDB on Windows and UNIX
platforms using the DB2 Control Center. The procedure is relatively simple. You have to open
the Control Center and locate the database or table that you want the source of the DDL. See
Figure 9-10.

Figure 9-10 DB2 Control Center in Windows

Generating DDL for entire database
You also have the option to generate the DDL of the entire database. To do this, you need to
right-click on the database name from the control panel window. See Figure 9-11.
Chapter 9. Getting ready for moving data 235

Figure 9-11 Option to generate DDL

Generating DDL for a single table
From the Control Center screen, right-click on the object that you want to perform the DDL
extraction. You can chose the table name and right-click on it. A menu box will appear.
Choose GENERATE DDL... from that menu box. See Figure 9-12.
236 Moving Data Across the DB2 Family

Figure 9-12 Generating DDL for a table

After choosing the GENERATE DDL... from the menu box, a window will pop-up. You can
enter the database objects that you want to be included in your DDL by clicking the
check-box. Then click the Generate button. See Figure 9-13.

Figure 9-13 Generate DDL option box from the control panel.

You can look at the DB2 command that will be executed in the background by clicking the
Show Command button. This is optional but you can see from this screen the db2look
command being executed with the options that you selected using the check boxes. See
Figure 9-14.
Chapter 9. Getting ready for moving data 237

Figure 9-14 db2look command being executed in the background

After you click the Generate button on the options box. You will be prompted for your userid
and password. Remember that you need at least a select privilege on the catalog tables.

After entering the userid and password, you will see a message box saying that the job is
being run and you can see it in the Journal Window of the control center. Take note of the job
number. See Figure 9-15.

Figure 9-15 Message box stating the job number.

Go to the Journal window by clicking Tools in the menu bar and then Journal (Tools ->
Journal). When you are in the Journal window click the Job History button. All the jobs will
be shown in this window. Choose the job number that was specified in the message box. See
Figure 9-16.
238 Moving Data Across the DB2 Family

Figure 9-16 Journal window

After right-clicking on the line corresponding to the job number, a menu box will appear.
Chose the Show Results option. See Figure 9-17.
Chapter 9. Getting ready for moving data 239

Figure 9-17 Chose the ‘Show Results’ option

The DDL will be shown in the job output screen. See Figure 9-18.

Figure 9-18 Generated DDL
240 Moving Data Across the DB2 Family

9.2.3 Considerations
You can generate the DDL of a database objects through the db2look command, DB2
Administration Tool, or the DB2 Control Center. The DDL that you generated can be used as
a skeleton to re-create the database objects of the source database on the target database.
In the examples that we provided, we extracted the DDL from distributed and mainframe
sources.

For DB2 Administration Tool
The DDL that was generated from the Admin Tool does not need to be modified if your target
DB2 database also resides in the z/OS platform. You need to modify the DDL if you are
transferring from a DB2 for z/OS database to a DB2 for distributed database. There is a minor
difference in their DDL syntax.

For db2look
The db2look command can be called through the command prompt or through the DB2
Control Center. The DDL generated by this tool can be used without modification to create
database objects on another DB2 distributed platform. However, as mentioned above, you
need to do some minor modifications if you will use it to create DB2 database objects in a
z/OS platform.
Chapter 9. Getting ready for moving data 241

242 Moving Data Across the DB2 Family

Chapter 10. Moving data to DB2 for z/OS

In this chapter we discuss moving data to DB2 for z/OS. The source of data would be from
either DB2 UDB on distributed platforms, or from DB2 for z/OS. We explore the different tools
that we can use, and we give recommendations on which are the best tools to use and
methods for doing the data transfer.

We use these tools for moving data to a DB2 for z/OS target:

� DB2 Cross Loader
� DB2 Data Propagator
� DB2 Unload and Load
� DB2 HP Unload and Load
� DB2 Export and Import
� SQL Insert with subselect (in DB2 Version 8 only)

There are other set of tools that we can use to move data to and from a mainframe database,
such as DSNTIAUL and LOAD, but we are not going to write about them because there is
already an extensive literature about the use these tools. If you need instructions on how to
use them, you can refer to the DB2 for z/OS and OS/390 Version 7 Using the Utilities
Suite,SG24-6289-00, or the DB2 UDB for OS/390 and z/OS V7 Utility Guide and Reference,
SC26-9945-03.

10
© Copyright IBM Corp. 2003. All rights reserved. 243

10.1 Overview of moving data to DB2 for z/OS
There are several DB2 utilities and tools that you can use to move data from a DB2 database
in a distributed platform to DB2 database in z/OS. We are going to discus these tools and
utilities, specifically on how they can be used as pairs in moving data. Presenting one tool as
the thrower and the other as the catcher of data would provide a holistic view in describing the
roles performed by these tools in moving data. We will give examples on the Cross Loader,
Data Propagator, HPU and Load, Import and Export, SQL Insert with subselect. We believe
these are the best DB2 tools and utilities to move data across the DB2 Family.

In moving data across distributed and mainframe platforms, DB2 Connect and the Distributed
Data Facility (DDF) needs to be set-up in the system. See Appendix B, “DB2 connectivity” on
page 307 for more information. The only exception to this rule is when you move data through
FTP. Text files exported from a DB2 table in a distributed platform can be FTPed. These files
can be converted as sequential files with EBCDIC format in a mainframe. You can then use
these sequential files as input data to load tables in DB2 for z/OS. See Figure 10-1.

In DB2 Version 8 you can use Federated Database set-up in moving data across different
platforms or even different relational databases. See Appendix A, “Defining a Federated
Database” on page 299 for more information. In this scenarios, data can be moved from one
distributed database to a host database, or vice-versa by simply using SQL Insert and
subselect.

Important: When you move data, both the Data Definition Language (DDL) and the actual
data needs to be moved to the target system. The examples here show how to move actual
data. It is assumed that DDL has been transferred and tables have been created on the
target database. See Chapter 9., “Getting ready for moving data” on page 213 for
examples on extracting DDL and recreating it.
244 Moving Data Across the DB2 Family

Figure 10-1 Diagram of moving data from DB2 on distributed to DB2 for z/OS

The letters written on the arrows represents the formats that you can choose between:

A Positional (fixed) format (ASC)
D Delimited format (DEL)
I Integrated exchange format, PC version (IXF)
(I) We were not able to produce IXF from HPU for MP

In this chapter, we use the Federated Database, DB2 Connect, and Distributed Data Facility
(DDF) to move data from distributed platforms to mainframe. In Figure 10-2, you can see that
we created a nickname for the PAOLOR7.DEPT and PAOLOR2.DEPT tables. Their
nicknames in the Federated Database system are DB2ADMIN.DEPT390S and
DB2ADMIN.DEPT390T, respectively. The DRDA WRAPPER enables the Federated
Database, which is created in the DB2 distributed database, to call tables on a DB2 on z/OS
database using nicknames. Take note that the table PAOLOR7.DEPT and the
PAOLOR2.DEPT tables are not created in the Federated Database. Nicknames are created in
the SAMPAIX8 database that point to tables in the DB2 for z/OS database.

Import
utility

Export
utility

HP Un-
load tool

Seq.
file

Source
table

Source
table

Mainframe Distributed

Moving data to z/OS

HP Un-
load tool

Unload
utility

Seq.
file

DB2
Connect

FTP

DB2

DB2

DPropR
Capture

DPropR
Apply

Target
table

CD
table

DB2

Load
utility

Cross
Loader

with
cursor

A

 D ,
(I)

I , D

I

Cross
Loader

with
cursor

DDF

Note: The broken line means that for the time being there is no utility or tool which
produces the positional format that LOAD on z/OS requires.
Chapter 10. Moving data to DB2 for z/OS 245

We can also see in the diagram that Import and Export are executed on the DB2 distributed
side, but it can write data on DB2 for z/OS. The HPU for z/OS, Unload and Load are all
executed in the mainframe side, but they can get data from DB2 for distributed tables and
write it on the DB2 for z/OS tables.

The Cross Loader is simply a Load from a cursor. The cursor can be created through a Select
statement against a DB2 on distributed table. The result set will be loaded on a DB2 for z/OS
table.

In moving data within DB2 for z/OS databases, we used Unload and HPU for z/OS to unload
the data. We used Load utility on the mainframe to load the data to DB2 on z/OS tables.
Obviously, we did not used the Federated Database system and DB2 Connect in this
scenario.

Figure 10-2 This is a diagram of the examples used in this chapter

The numbers in Table 10-1 represent the section where the function and the example are
reported.

Environment used in the examples

DistributedMainframe

sampaix8
db2g

PAOLOR2.
DEPT

DBADMIN.
DEPT390T

DBADMIN.
DEPT390S

PAOLOR7.
DEPT

DB2INST2.
DEPARTMENT

ImportUnload Data
set

HPU
Export

File/
pipe

Cross
Loader

nickname

DB2
Connect

DRDA-
Wrapper

nickname

DDF

insert with
subselect

Load
246 Moving Data Across the DB2 Family

Table 10-1 Cross reference function to section in this chapter

10.2 Moving data from DB2 distributed
We are recommending these tools for moving data from DB2 on distributed platforms to DB2
for z/OS:

� Cross Loader
� Data Propagator
� Export and Import
� Insert with sub-select using Federated Database (only for DB2 UDB Version 8)

10.2.1 Using Cross Loader to move data from DB2 distributed to DB2 for z/OS
DB2 Cross Loader lets you transfer data from one database location to another in just one
job. The data is read from the source location with a dynamic SQL statement and loaded in a
table at the target location by the LOAD utility. The Cross Loader is actually an enhanced
function of the LOAD utility. It is the ability of the LOAD utility to populate a table using data in
a cursor you declared using EXEC SQL as input.

The advantage of this tool is its ease of use. You do not have to concern yourself with ASCII
to EBCDIC conversions, or what file format you are going to use. Data is extracted from one
table and loaded to another table in just one JCL step. There are no external files created in
the process. Data is just moved internally from the source table to the target table.

You would need to define the remote database in the DDF and CDB of the mainframe. The
remote database needs to be included in the SYSIBM.LOCATIONS, SYSIBM.IPNAMES, and
SYSIBM.USERNAMES. You can only use the three part name when the remote database is
defined in these tables.

To use DB2 Cross Loader, you need PTF UQ55541 for APAR PQ45268 and PTF UQ55542
for APAR PQ46759. These PTFs together with their PREREQ PTFs update DB2 V7 for
OS/390 to have the Cross Loader functionality.

Moving data from DB2 distributed to z/OS using DB2 Cross Loader
In this example, we move data from a table in DB2 distributed database to DB2 on mainframe.
We are using the three part name to access the table from the distributed platform
(SAMPAIX.DB2INST2.DEPARTMENT). Here, SAMPAIX8 is the database name, DB2INST2

Function Section

Cross Loader 10.2.1, “Using Cross Loader to move data from DB2 distributed to DB2 for z/OS”
on page 247 and 10.3.1, “Using Cross Loader to move data from/to DB2 for z/OS”
on page 251

HPU 10.3.4, “HPU for z/OS and Load” on page 255

Unload 10.3.3, “Unload and Load” on page 252

Load 10.3.3, “Unload and Load” on page 252

Import 10.2.3, “Export and Import” on page 249

Export 10.2.3, “Export and Import” on page 249

Insert with
subselect

10.2.4, “SQL Insert with subselect in a Federated Database” on page 250 and
10.3.5, “SQL Insert with subselect in a Federated Database” on page 264
Chapter 10. Moving data to DB2 for z/OS 247

is the schema name and DEPARTMENT is source table name. The target table is DEPT and
the schema name of the target table is PAOLOR2. See Example 10-1.

Database objects
The database object used in this example are in Table 10-2.

Table 10-2 Database objects for Example 10-1

The Load option used in this example is explained in Table 10-3.

Table 10-3 Options used in Load

DB2 Cross Loader sample job
This DB2 Cross Loader example, shown in Example 10-1, moves (copies) data from
SAMPAIX.DB2INST2.DEPARTMENT in AIX to PAOLOR2.DEPT in z/OS.

Example 10-1 Cross Loader example of moving data from DB2 distributed to z/OS

//PAOLOR2A JOB (ACCOUNT),'PAOLOR2',NOTIFY=&SYSUID,USER=PAOLOR2
// EXEC PGM=DSNUTILB,PARM='DB2G,CRLOAD'
//STEPLIB DD DSN=DSN710.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT *
 FROM SAMPAIX8.DB2INST2.DEPARTMENT
ENDEXEC
LOAD DATA
 REPLACE
 INCURSOR C1
 INTO TABLE PAOLOR2.DEPT

Objects Object name

Source DB2 on AIX

Database name SAMPAIX8

Schema name DB2INST2

Table name DEPARTMENT

Three part name SAMPAIX8.DB2INST2.DEPARTMENT

Target DB2 for z/OS

Subsystem name DB2G

Schema name PAOLOR2

Table name DEPT

Option Description

REPLACE With the LOAD REPLACE option, first, the
existing rows in table PAOLOR2.DEPT are
deleted, and then all the rows read via cursor
from table
SAMPAIX8.DB2INST2.DEPARTMENT are newly
loaded in PAOLOR2.DEPT.
Other Option: RESUME YES, RESUME NO
248 Moving Data Across the DB2 Family

//*

10.2.2 Data Propagator
DB2 Data Propagator can also be used to move data from DB2 distributed to z/OS. Read
11.5, “Data Propagator” on page 279.

10.2.3 Export and Import
You can use the Import and Export utilities to move data from distributed DB2 databases to
DB2 for z/OS databases. Both the Export and the Import utility are installed in the client side.
There are no DB2 tools being used in the mainframe side. Before you can use this you should
Bind the list of packages for the utilities in the DB2 client. The list of packages is found in the
db2ubind.lst file. DB2 was engineered to automatically Bind the utilities that you call if that
utility that not been bound yet. It does this on the background and it is transparent to the user.
A bind on the utilities has to be performed every time you install a FixPak or when you
connect to new host machine.

You can Export a DB2 table in distributed platform into an IXF file then Import this file to an
existing table. Only IXF file format is supported. Only the Import INSERT option can be used.
The Import REPLACE and the Import CREATE option are not allowed. You need to have DB2
Connect running in your system. This however is automatically installed with DB2 Enterprise
Edition or DB2 Enterprise Extended Edition.

Example on moving data from distributed to z/OS using Import - Export
This example will move the DEPARTMENT table in the SAMPAIX8 database from a
distributed DB2 database to an existing table PAOLOR2.DEPT in a DB2 for z/OS database.

Step 1. Connect to source database
Connect to the source database.

From the DB2 command prompt enter:

CONNECT TO SAMPAIX8

Step 2. Export the table
This step will export the DEPARTMENT table to an IXF file called DEPTFILE.IXF. The
table information and the data will be in this file. You have to include the schema name in
the SELECT statement if you are not the owner of the table:

EXPORT TO DEPTFILE.IXF OF IXF SELECT * FROM DB2INST2.DEPARTMENT

If the export is successful you will see a message on the screen indicating the number of
rows exported and the file name where the data is stored.

Step 3. Connect to the target database
Connect to the target mainframe database. Notice that to connect to the mainframe
database need to specify the DB2 subsystem name in the connect statement. In our
example DB2G is the subsystem name in the DB2 for z/OS. You will be prompted for a
password after entering this command:

CONNECT TO DB2G USER MYUSERNM

Step 4. Import the IXF file into the source table
To import the IXF file that you created in step 2, enter the command below. When you are
using the Import tool in moving data from distributed to mainframe, you can only use the
Chapter 10. Moving data to DB2 for z/OS 249

INSERT option of the Import tool. Take note also that only the IXF file format can be used
in this scenario:

IMPORT FROM DEPTFILE.IXF OF IXF MESSAGES MESSAGE.TXT INSERT INTO PAOLOR2.DEPT

If the import is successful you should see the message on the number of rows that was
inserted into the table. The messages generated from this command will be placed in the
text file MESSAGE.TXT

This procedure applies also to moving data with LOB columns. You export the table with
the LOBs to an IXF file then import it using the same steps we outlined above.

Using pipes in export-import to move data from distributed to z/OS
The export-import tools can also use pipes in moving data from distributed to z/OS. Before
you execute the export-import commands you need to create the pipe in AIX using the
command:

mkfifo pipename

or

mknod pipename p

When the pipe is already created treat it like a regular IXF file. Follow the import-export
steps 1 to 4 outlined above. The LOBSINFILE option cannot be used with pipes.

10.2.4 SQL Insert with subselect in a Federated Database
You can use an SQL Insert and a subselect statement to move data from distributed platform
to mainframe platform. The prerequisite of this method is a Federated Database set-up and a
DB2 UDB Version 8. With DB2 Version 8 you can already retrieve and update data in a
Federated Database; in previous versions you can only read data from it. To use a Federated
Database in moving data, you need to assign nicknames for the source and the target
database tables. The steps in creating a Federated Database are outlined in Appendix A.

After the Federated Database is set-up, you can use the SQL Insert to write data to the target
z/OS database table. The SQL subselect is used to retrieve the data from the source DB2 on
distributed database table.

Example of using the SQL Insert with subselect in a Federated Database
You first need to set-up the Federated Database creating a nickname on the DB2 for z/OS
table. In this example, our target table is the PAOLOR7.DEPT table in the z/OS database
which is nicknamed as DB2ADMIN.DEPT390T in the Federated Database. Our source table
is the DEPARTMENT table in the client machine. DB2INST2 is the schema name of the
DEPARTMENT table.

In the DB2 CLP in the client machine, issue these commands:

First, connect to the database in the client machine where the Federated Database is defined:

CONNECT TO SAMPAIX8

Then, issue the Insert with subselect command to transfer the data to the target:

INSERT INTO DB2ADMIN.DEPT390T SELECT * FROM DB2INST2.DEPARTMENT

You can also specify the columns that you want to retrieve in your Select statement. The
subselect is like a regular SQL Select statement. You can have a Where clause and scalar
functions in your Select statement as long as the result set matches the columns of your
target table.
250 Moving Data Across the DB2 Family

10.3 Moving data between two DB2 for z/OS databases
There are five sets of tools/utilities that we will use in moving data from one DB2 for z/OS
database to another. These are:

� DB2 Cross Loader
� DB2 Data Propagator
� DB2 Unload and Load
� HPU for z/OS and Load
� Insert with subselect

Database objects and environment
The database objects and environments used in this section are listed in Table 10-4. Most of
the examples will be based on this table unless the example states otherwise.

Table 10-4 Database objects in moving data across DB2 for z/OS databases

10.3.1 Using Cross Loader to move data from/to DB2 for z/OS
Cross Loader can also move data between two DB2 tables residing in z/OS.

Example of using DB2 Cross Loader to move data in DB2 in z/OS
You need DSNUTILB to be APF authorized. In this example, this will insert new rows into the
PAOLOR2.DEPT table and retain the old ones. If you want to replace the existing rows in the
table, you need to specify REPLACE instead of RESUME YES. The source of the data is the
PAOLOR7.DEPT table. See Example 10-2.

The Load option used in this example is explained in Table 10-5.

Objects Object name

Source DB2 for z/OS

Subsystem name DB2G

Table space name DSNDB04.DEPT

Schema name PAOLOR7

Table name DEPT

Columns DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16)

Target DB2 for z/OS

Subsystem name DB2G

Table space name DSNDB04.DEPTCOPY

Table name PAOLOR2

Table name DEPT

Columns DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16)
Chapter 10. Moving data to DB2 for z/OS 251

Table 10-5 Options used in Load

Look at Example 10-2 to see an example of a DB2 Cross Loader job for moving data between
two mainframe DB2 tables.

Example 10-2 Cross Loader sample JCL moving from z/OS to z/OS

//PAOLCRLO JOB (999,POK),'DB2CRLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* CROSS LOADER *
//***
//*
//EXEC EXEC PGM=DSNUTILB,PARM='DB2G,CRLOAD'
//STEPLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUT1 DD DSN=PAOLOR3.LOAD.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),RLSE,,ROUND)
//SORTOUT DD DSN=PAOLOR3.LOAD.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),RLSE,,ROUND)
//SYSIN DD *
EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO, LOCATION
 FROM PAOLOR7.DEPT
 ENDEXEC
 LOAD DATA
 INCURSOR C1
 RESUME YES
 INTO TABLE PAOLOR2.DEPT
//*

10.3.2 Data Propagator
It is also possible to move data from one z/OS database to another using DB2 Data
Propagator. Read 11.5, “Data Propagator” on page 279.

10.3.3 Unload and Load
The DB2 Unload utility and the Load utility are two of the most common tools used to move
data from z/OS to z/OS databases. The Unload utility produces an output file compatible to
the Load utility input file format. The Load utility can load one or more tables of a table space.
It builds or extends any indexes defined on the table. If the table space already contains data,
you can choose whether you want to add the new data to the existing data (RESUME YES
option) or replace (REPLACE option) the existing data.

Option Description

RESUME YES The new rows from PAOLOR7.DEPT will be
appended to the existing rows of
PAOLOR2.DEPT. Existing rows in the
PAOLOR2.DEPT table will remain in the table.
Other Option: REPLACE, RESUME NO
252 Moving Data Across the DB2 Family

Example of moving data within z/OS using DB2 Unload and Load
The first JCL step of this job is unloading data from the z/OS DB2 table. The source table
PAOLOR7.DEPT is unloaded to a sequential data set PAOLOR2.MD.UNLOAD.DATAVAR.
The varchar columns are not padded (NOPAD option). The second JCL step loads the output
file created by the first step and inserts it to the target table. The existing rows in the table are
retained (RESUME YES option) and the new rows are appended by the Load utility.

In the EXEC statement of the JCL, the UID (utility ID) of the first job step should be ‘UNLOAD’
and the UID of the second step is LOAD. The parameter ‘SYSTEM’ is the DB2 subsystem
name.

The SORTOUT data set in the LOAD step can be left blank because there is no index created
in the PAOLOR7.DEPT table during the LOAD. The data set
PAOLOR2.MD.UNLOAD.DATAVAR is the output data set in the Unload utility job step and it
will be the input data set in the Load utility job step. See Example 10-3.

The database object used in this example are in the table below. See Table 10-4 on
page 251. The Load and Unload option used in this example are explained below. See
Example 10-6.

Table 10-6 Options used in Example 10-3

Look at Example 10-3 to see an example of a DB2 Unload and Load utility job for moving data
between two mainframe DB2 tables.

Example 10-3 JCL to Unload and Load data to and from DB2 for z/OS tables

//PAOLLOAD JOB (999,POK),'DB2LOAD-1',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//JOBLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR

Option Description

Unload Options

NOPAD VARCHAR fields that have not consumed the
entire allocated space will NOT be padded.

Load Options

RESUME YES The new rows will be appended to the existing
row. Existing rows in the table will be remain in
the table.
Other Option: REPLACE, RESUME NO

EBCDIC Data will be loaded in EBCDIC format
Other options: ASCII, ASIS

LOG NO The Load activity will not be logged.
Other option: LOG YES

CCSID(00037,00000,00000) CCSID value for USA, Canada, Australian
English code page. This is the default value. You
only need to specify this if you are going to use
another code page.
Other options:
CCSID(00000, 05035,00000) for Japanese;
CCSID(00000,01371.00000) for Chinese
CCSID(00865,00000,00000) for Denmark,

Sweden, Norway, Finland
Chapter 10. Moving data to DB2 for z/OS 253

//*
//***
//* STEP 1: DB2 UNLOAD UTILITY NOPAD (VARIABLE FORMAT) *
//***
//*
//UNLOAD EXEC DSNUPROC,UID='UNLOAD',UTPROC='',SYSTEM='DB2G'
//SYSREC DD DSN=PAOLOR2.MD.UNLOAD.DATAVAR,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(2,1),RLSE)
//SYSPUNCH DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 UNLOAD DATA NOPAD
 FROM TABLE PAOLOR7.DEPT
//*
//***
//* STEP 2: DB2 LOAD UTILITY - LOADS DATA UNLOADED IN STEP 1 *
//***
//*
//LOAD EXEC DSNUPROC,UID='LOAD',UTPROC='',SYSTEM='DB2G'
//SYSREC DD DSN=PAOLOR2.MD.UNLOAD.DATAVAR,DISP=SHR
//SYSUT1 DD SYSOUT=*
//SORTOUT DD SYSOUT=*
//SYSIN DD *
LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "PAOLOR2 "."DEPT "
 WHEN(00001:00002 = X'005C')
 ("DEPTNO " POSITION(00003:00005) CHAR(003)
 , "DEPTNAME " POSITION(00006) VARCHAR
 , DSN_NULL_IND_00003 POSITION(*) CHAR(1)
 , "MGRNO " POSITION(*) CHAR(006)
 NULLIF(DSN_NULL_IND_00003)=X'FF'
 , "ADMRDEPT " POSITION(*) CHAR(003)
 , DSN_NULL_IND_00005 POSITION(*) CHAR(1)
 , "LOCATION " POSITION(*) CHAR(016)
 NULLIF(DSN_NULL_IND_00005)=X'FF'
)
//*

Suggested tasks after performing Load
These are some tasks that should be done after the LOAD operation. Not all of them are
necessary. It depends on the status of your database after the LOAD operation was
performed.

� CHECK DATA if referential integrity is violated

LOAD places a table space in the CHECK-pending status if its referential integrity is in
doubt, or its check constraints are violated. The intent of the restriction is to encourage the
use of the CHECK DATA utility. That utility locates invalid data, and optionally, removes it. If
it removes the invalid data, the data remaining satisfies all check and referential
constraints, and the CHECK-pending restriction is lifted.

� Reorganizing an auxiliary index after LOAD

Indexes on the auxiliary tables are not built during the BUILD phase. Instead, LOB values
are inserted (not loaded) into auxiliary tables during the RELOAD phase as each row is
loaded into the base table, and each index on the auxiliary table is updated as part of the
INSERT operation. Because the LOAD utility inserts keys into an auxiliary index, free
space within the index might be consumed and index page splits might occur. Consider
254 Moving Data Across the DB2 Family

reorganizing an index on the auxiliary table after LOAD completes to introduce free space
into the index for future INSERTs and LOADs.

� Copying the loaded table space or partition

If you have used LOG YES, consider taking a full image copy of the loaded tablespace or
partition to reduce the processing time of subsequent recovery operations. If you also
specified RESUME NO or REPLACE, indicating that this is the first load into the table
space, we recommend that you take two or more full image copies to enable recovery.
Alternatively, we recommend that you take primary and backup inline copies when you do
a LOAD REPLACE; full table space or partition image copies taken after the LOAD
completes are not necessary.

� Re-bind application plans that depend on the loaded table

Use either the STATISTICS option to collect inline statistics, or the RUNSTATS utility so
that the DB2 catalog statistics take into account the newly loaded data, and DB2 can
select SQL paths with accurate information. Following this, rebind any application plans
that depend on the loaded tables to update the path selection of any embedded SQL
statements.

� Removing COPY-pending status

If you Load with LOG NO and do not take an inline copy, LOAD places a table space in the
COPY-pending status. Immediately after that operation, DB2 cannot recover the table
space (though you can, by loading it again). Prepare for recovery, and turn off the
restriction, by making a full image copy using SHRLEVEL REFERENCE. (If you end the
copy job before it is finished, the table space is still in COPY-pending status.)

You can also remove the restriction by one of these operations:

– LOAD REPLACE LOG YES
– LOAD REPLACE LOG NO with an inline copy
– REORG LOG YES
– REORG LOG NO with an inline copy
– REPAIR SET with NOCOPYPEND

If you use LOG YES and do not make an image copy of the table space, subsequent
recovery operations are possible, but will take longer than if you had made an image copy.

A table space in COPY-pending status can be read without restriction; however, it cannot
be updated.

10.3.4 HPU for z/OS and Load
The HPU for z/OS can be used to unload a DB2 table. The output data set can be formatted
in different ways, so that it can be compatible to the DB2 Load utility. The HPU can produce
an output with DSNTIAUL format, USER format (positional ASCII), DELIMITED ASCII format,
and VARIABLE format.

In moving data between two DB2 for z/OS tables, you can use three output formats
compatible with the Load utility. These are: DSNTIAUL, VARIABLE format, and the USER
format. Of these three, it is best to use the DSNTIAUL if you are not doing data type
transformation (example decimal to integer, or char to varchar) while unloading data. It is a lot
easier and less prone to error to use the DSNTIAUL. However, if you need to do some data
type transformations, it is best to use the USER format.

Example 1: HPU and Load to move data in DB2 in z/OS tables
In this example, we are going to move data from a DB2 table residing in z/OS to another DB2
table in z/OS. The source table is PAOLOR7.DEPT and the target table is PAOLOR2.DEPT.
We are going to use the DSNTIAUL format because it is one of the formats compatible with
Chapter 10. Moving data to DB2 for z/OS 255

the LOAD utility. Notice that DB2 is set to YES. This is so that if the SQL statement in the
Unload job cannot be executed by HPU, the job can be passed to DB2 for retrieval of rows.

You should also specify QUIESCE YES and QUIESCECAT YES so that any late changes in
the source table will be included in the output. When this is specified, you can only proceed
with it when the table is finished in the QUIESCE operation, and the data in the buffer is
already flushed in the disk.

The SORTOUT and SYSUT1 data sets are not required because the target table in this
example is not indexed. See Example 10-4.

The database object used in this example are in Table 10-4 on page 251. The options used in
this example are explained in Table 10-7.

Table 10-7 Options used in Example 10-4

Look at Example 10-4 to see an example of a HPU job for moving data between two
mainframe DB2 tables

Option Description

Unload options

DB2 YES HPU can pass the query to DB2 for execution if
the SQL Select cannot be performed by the HPU
program.
Other options: DB2 NO, DB2 FORCE

QUIESCE YES QUIESCE will be done on the table space before
unloading it.
Other option: QUIESCE NO

QUIESCECAT YES QUIESCE will be done on the DB2 catalog’s table
spaces before unloading.
Other option: QUIESCECAT NO

DATE DATE_A Date format is MM-DD-YYYY

Load options

DSNTIAUL Format of output will be same as DSNTIAUL
program output.

LIKE PAOLOR2.DEPT Indicates that HPU uses the characteristics of the
table model PAOLOR2.DEPT as parameters, and
formats the data set to allow the LOAD of this
table.

REPLACE The new rows from PAOLOR7.DEPT will be
appended to the existing rows of
PAOLOR2.DEPT. Existing rows in the
PAOLOR2.DEPT table will remain in the table.
Other Options: RESUME YES, RESUME NO

EBCDIC Refer to Table 10-6 on page 253

LOG YES Refer to Table 10-6 on page 253

CCSID(0037) Refer to Table 10-6 on page 253
256 Moving Data Across the DB2 Family

Example 10-4 JCL for HPU and Load

//PAOLJOB2 JOB (999,POK),'HPUNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* STEP 1: HP UNLOAD TOOL - UNLOAD IN FORMAT DSNTIAUL *
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,HPUNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSIN DD *
 UNLOAD TABLESPACE
 DB2 YES
 QUIESCE YES QUIESCECAT YES
 OPTIONS DATE DATE_A

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1)
 FORMAT DSNTIAUL LIKE PAOLOR2.DEPT
 LOADDDN LOADDD LOADOPT (LOG YES REPLACE)
/*
//SYSPRINT DD SYSOUT=*
//COPYDD DD SYSOUT=*
//OUTDD DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//LOADDD DD SYSOUT=*
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.DATA1,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)
//*
//***
//* STEP 2: LOAD UTILITY - LOADS DATA UNLOADED IN STEP 1 *
//* (FORMAT: DSNTIAUL) *
//***
//*
//STEP2 EXEC DSNUPROC,UID='LOADUTIL',UTPROC='',SYSTEM='DB2G'
//STEPLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSREC DD DSN=PAOLOR2.MD.HPUNLOAD.DATA1,DISP=SHR
//SYSUT1 DD SYSOUT=*
//SORTOUT DD SYSOUT=*
//SYSIN DD *
LOAD DATA LOG YES REPLACE
EBCDIC CCSID(0037)
INTO TABLE PAOLOR2.DEPT
(
DEPTNO
 POSITION (1) CHAR (3),
DEPTNAME
 POSITION (4) VARCHAR,
MGRNO
 POSITION (42) CHAR (6)
 NULLIF(48) = '?',
ADMRDEPT
 POSITION (49) CHAR (3),
LOCATION
 POSITION (52) CHAR (16)
Chapter 10. Moving data to DB2 for z/OS 257

 NULLIF(68) = '?'
)
//*

Example 2: HPU and Load with the last full image copy as source
The HPU can unload the last incremental copy of a database back-up and place it in a data
set. This data set will then be used as input of the Load utility. In this example, we have two
JCL steps in our job. The first step unloads the the full image copy and the second step loads
to the target table. The latest full image copy is automatically updated in the
SYSIBM.SYSCOPY table every time a back-up is made on a table space. HPU refers to the
SYSCOPY table to determine where the latest full image copy is stored. The output data set
of the HPU job step is the PAOLOR2.MD.HPUNLOAD.DATA2, which has a DSNTIAUL format.

In the second JCL step, we use the LOAD utility to load data into the PAOLOR3.DEPT table.
The SYSUT1 and the SORTOUT data sets are needed because the PAOLOR3.DEPT is an
indexed table. The index will be re-written after the new data is inserted into the table. Hence,
the SORTOUT and SYSUT1 data sets will be used as work data sets for the sort and
indexing. See Example 10-5.

Database objects and options
The database object used in this example are in Table 10-4 on page 251. The Unload and
Load options used in this example are explained below. See Table 10-8.

Table 10-8 Options used in Example 10-5

Option Description

Unload options

COPYDDN LAST_IC This option indicates that the last image copy of
PAOLOR2.DEPT will be used as the source of
data. This is different from the existing
PAOLOR2.DEPT table. The last image copy is
the latest back-up of the table. The name of the
data set that has last image copy will be read
from the SYSIBM.SYSCOPY table.

DB2 YES Refer to Table 10-7 on page 256

QUIESCE YES Refer to Table 10-7 on page 256

QUIESCECAT YES Refer to Table 10-7 on page 256

DATE DATE_A Refer to Table 10-7 on page 256

Load options

DSNTIAUL Refer to Table 10-7 on page 256

LIKE PAOLOR2.DEPT Indicates that HPU uses the characteristics of the
table model PAOLOR2.DEPT as parameters, and
formats the data set to allow the LOAD of this
table.
258 Moving Data Across the DB2 Family

Look at Example 10-5 to see a HPU job for moving data between two mainframe DB2 tables.

Example 10-5 HPU and Load using a full image copy of the back-up

//PAOLJOB3 JOB (999,POK),'HPUNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* STEP 1: HPU TOOL - UNLOAD IN FORMAT DSNTIAUL *
//* (UNLOAD FROM LAST INCREMENTAL COPY) *
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,HPUNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSIN DD *
 UNLOAD TABLESPACE DSNDB04.DEPT
 COPYDDN LAST_IC

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1)
 FORMAT DSNTIAUL LIKE PAOLOR2.DEPT
 LOADDDN LOADDD LOADOPT (LOG YES RESUME YES)

//SYSPRINT DD SYSOUT=*
//COPYDD DD SYSOUT=*
//OUTDD DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//LOADDD DD SYSOUT=*
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.DATA2,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)
//*
//***
//* STEP 2: LOAD UTILITY - LOADS DATA UNLOADED IN STEP 1 *
//* (FORMAT: DSNTIAUL) *
//***
//*
//STEP2 EXEC DSNUPROC,UID='LOADUTIL',UTPROC='',SYSTEM='DB2G'
//STEPLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSREC DD DSN=PAOLOR2.MD.HPUNLOAD.DATA2,DISP=SHR
//SYSUT1 DD DSN=PAOLOR2.LOAD.SYSUT1,

REPLACE The new rows from PAOLOR2.DEPT will be
appended to the existing rows of
PAOLOR3.DEPT. Existing rows in the
PAOLOR3.DEPT table will remain in the table.
The rows will be sorted and indexed because
PAOLOR3.DEPT is an indexed table. Hence you
are required to specify the SORTOUT and
SYSUT1 data sets.

EBCDIC Refer to Table 10-6 on page 253

LOG YES Refer to Table 10-7 on page 256

CCSID(0037) Refer to Table 10-6 on page 253

Option Description
Chapter 10. Moving data to DB2 for z/OS 259

// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(1,5),RLSE)
//SORTOUT DD DSN=PAOLOR2.LOAD.SORTOUT,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(1,5),RLSE)
//SYSIN DD *
LOAD DATA LOG YES RESUME YES
EBCDIC CCSID(0037)
INTO TABLE PAOLOR2.DEPT
(
DEPTNO
 POSITION (1) CHAR (3),
DEPTNAME
 POSITION (4) VARCHAR,
MGRNO
 POSITION (42) CHAR (6)
 NULLIF(48) = '?',
ADMRDEPT
 POSITION (49) CHAR (3),
LOCATION
 POSITION (52) CHAR (16)
 NULLIF(68) = '?'
)
//*

Example 3: HPU from two DB2 z/OS source tables to one target
In this example we unload data from two DB2 for z/OS tables and put it in one target DB2 for
z/OS table. Notice that PAOLOR2.DEPT(table 1) and PAOLOR7.DEPT(table 2) are located in
different table spaces. One JCL job will be used for the unload and load operation. See
Example 10-6.

Database objects
The database object used in this example are in Table 10-4 on page 251. Another source
table is used in this example. PAOLOR3.DEPT has similar properties as PAOLOR7.DEPT, but
they are located in different table spaces.

The options used in this example are explained below. See Table 10-9.

Table 10-9 Options used in Example 10-6

Option Description

Unload options

DB2 NO This option means DB2 cannot be called to
retrieve the rows in case HPU cannot perform the
query. In this example, there is no need to call
DB2 because HPU can perform a simple Select
statement.

QUIESCE YES A QUIESCE will be done on table spaces
DSNDB04.DEPT1ZN9 and
DSNDB04.DEPT1WD before it is unloaded. This
will make you sure that data in the buffer will be
flushed to the disk before Unload is performed.

QUIESCECAT NO QUIESCE will NOT be done on the DB2 catalog’s
table spaces before unloading.

DATE DATE_A Refer to Table 10-7 on page 256
260 Moving Data Across the DB2 Family

See Example 10-6, for a sample JCL to use HPU to unload two DB2 tables and load it to one
table using the Load utility.

Example 10-6 JCL to HPU two DB2 for z/OS tables to one target table

//PAOLJOB4 JOB (999,POK),'HPUNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* STEP 1: HP UNLOAD TOOL - UNLOAD IN FORMAT DSNTIAUL *
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,HPUNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSIN DD *
 UNLOAD TABLESPACE
 DB2 NO
 QUIESCE YES QUIESCECAT NO
 OPTIONS DATE DATE_A

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1)
 FORMAT DSNTIAUL LIKE PAOLOR2.DEPT
 LOADDDN LOADDD1

 SELECT * FROM PAOLOR3.DEPT
 OUTDDN (UNLDDN2)
 FORMAT DSNTIAUL LIKE PAOLOR2.DEPT
 LOADDDN LOADDD2
/*
//SYSPRINT DD SYSOUT=*
//COPYDD DD SYSOUT=*
//OUTDD DD SYSOUT=*
//UTPRINT DD SYSOUT=*

Load options

DSNTIAUL Refer to Table 10-7 on page 256

LIKE PAOLOR2.DEPT Indicates that HPU uses the characteristics of the
table model PAOLOR2.DEPT as parameters, and
formats the data set to allow the LOAD of this
table.

REPLACE New rows from PAOLOR2.DEPT and
PAOLOR7.DEPT will be appended to the existing
rows of PAOLOR3.DEPT. Existing rows in the
PAOLOR3.DEPT table will be remain in the table.
The target table will be sorted and indexed after
the LOAD. Hence, you are required to specify the
SYSUT1 and SORTOUT data sets.

EBCDIC Refer to Table 10-6 on page 253

LOG YES Refer to Table 10-6 on page 253

CCSID(0037) Refer to Table 10-6 on page 253

Option Description
Chapter 10. Moving data to DB2 for z/OS 261

//LOADDD1 DD DUMMY
//LOADDD2 DD DUMMY
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO41,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//UNLDDN2 DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO42,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//*
//***
//* STEP 2: LOAD UTILITY - LOADS DATA UNLOADED IN STEP 1 *
//* (FORMAT: DSNTIAUL) *
//***
//*
//STEP2 EXEC DSNUPROC,UID='DB2LOAD',UTPROC='',SYSTEM='DB2G'
//STEPLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSREC DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO41,DISP=SHR
// DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO42,DISP=SHR
//SYSUT1 DD DSN=PAOLOR2.LOAD.SYSUT1,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SORTOUT DD DSN=PAOLOR2.LOAD.SORTOUT,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SYSIN DD *
LOAD DATA LOG YES REPLACE
EBCDIC CCSID(0037)
INTO TABLE PAOLOR2.DEPT
(
DEPTNO
 POSITION (1) CHAR (3),
DEPTNAME
 POSITION (4) VARCHAR,
MGRNO
 POSITION (42) CHAR (6)
 NULLIF(48) = '?',
ADMRDEPT
 POSITION (49) CHAR (3),
LOCATION
 POSITION (52) CHAR (16)
 NULLIF(68) = '?'
)
//*

Example 4: Move data across DB2 subsystems in another LPAR
In this scenario, we move data from two tables residing in one DB2 subsystem in LPAR DEV1
to one target table residing in another DB2 subsystem in LPAR PROD1. The pre-requisite is
that you need to have at least a Select privilege on the source tables and an update privilege
on the target table in the other subsystem.

We will use the same HPU and Load options as the one we used in Example 3. The only
condition that we changed is that the target table resides in a different DB2 subsystem in a
different LPAR.

We need to separate the two JCL steps and run the jobs in different LPARs. The job for the
HPU should be submitted at the DEV1 LPAR, while the job for the Load utility should be
submitted at the PROD1 LPAR.
262 Moving Data Across the DB2 Family

The job in Example 10-7 will unload data from the source table in DB2G in LPAR DEV1.
Hence, this job should be run at the LPAR DEV1.

Example 10-7 HPU job to extract data from DB2G subsystem

//PAOLJOB4 JOB (999,POK),'HPUNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* STEP 1: HP UNLOAD TOOL - UNLOAD IN FORMAT DSNTIAUL *
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,HPUNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSIN DD *
 UNLOAD TABLESPACE
 DB2 NO
 QUIESCE YES QUIESCECAT NO
 OPTIONS DATE DATE_A

 SELECT * FROM PAOLOR7.DEPT
 OUTDDN (UNLDDN1)
 FORMAT DSNTIAUL
 LOADDDN LOADDD1

 SELECT * FROM PAOLOR3.DEPT
 OUTDDN (UNLDDN2)
 FORMAT DSNTIAUL
 LOADDDN LOADDD2
/*
//SYSPRINT DD SYSOUT=*
//COPYDD DD SYSOUT=*
//OUTDD DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//LOADDD1 DD DUMMY
//LOADDD2 DD DUMMY
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO41,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//UNLDDN2 DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO42,
// DISP=(NEW,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//*

The output data sets of the HPU job which are PAOLOR2.MD.HPUNLOAD.DATAJO41 and
PAOLOR2.MD.HPUNLOAD.DATAJO42 should be made accessible to the PROD1 LPAR. It
could be through FTP or through removable media. Then you can use these data sets as the
input of the Load utility JCL (SYSREC).

To change the subsystem, you just need to change the SYSTEM parameter on the EXEC
statement of the JCL, and set it to the DB2 subsystem name that you want to access. See
Example 10-8.
Chapter 10. Moving data to DB2 for z/OS 263

Example 10-8 Load utility to write data to the D7F1 subsystem

//PAOLJOB4 JOB (999,POK),'HPUNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* STEP 2: LOAD UTILITY - LOADS DATA UNLOADED IN STEP 1 *
//* (FORMAT: DSNTIAUL) *
//***
//*
//STEP2 EXEC DSNUPROC,UID='DB2LOAD',UTPROC='',SYSTEM='D7F1'
//STEPLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//SYSREC DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO41,DISP=SHR
// DD DSN=PAOLOR2.MD.HPUNLOAD.DATAJO42,DISP=SHR
//SYSUT1 DD DSN=PAOLOR2.LOAD.SYSUT1,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SORTOUT DD DSN=PAOLOR2.LOAD.SORTOUT,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SYSIN DD *
LOAD DATA LOG YES REPLACE
EBCDIC CCSID(0037)
INTO TABLE PAOLOR2.DEPT
(
DEPTNO
 POSITION (1) CHAR (3),
DEPTNAME
 POSITION (4) VARCHAR,
MGRNO
 POSITION (42) CHAR (6)
 NULLIF(48) = '?',
ADMRDEPT
 POSITION (49) CHAR (3),
LOCATION
 POSITION (52) CHAR (16)
 NULLIF(68) = '?'
)
//*

10.3.5 SQL Insert with subselect in a Federated Database
This is only applicable to DB2 Version 8. Data can be moved across two different DB2 for
z/OS tables using SQL Insert and sub-select. In this scenario, you need to create a nickname
on the Federated Database of the source and target DB2 for z/OS tables. When nicknames
have been created you can use these nicknames in the SQL Insert and Subselect statement
like regular DB2 table names.

Using SQL Insert with subselect in two z/OS databases
To use a Federated Database in moving data, you need to assign nicknames for the source
and the target database tables. The steps in creating a Federated Database are outlined in
Appendix A.

After the Federated Database is set-up, you can use the SQL Insert to write data to the target
z/OS database table. The SQL sub-select is used to retrieve the data from the source DB2 on
distributed database table.
264 Moving Data Across the DB2 Family

In this example, we nicknamed the source PAOLOR7.DEPT table in the z/OS database as
DBADMIN.DEPT390S. The target table PAOLOR2.DEPT was nicknamed as
DB2ADMIN.DEPT390T.

In the DB2 CLP in the client machine, issue these commands:

First, connect to the database in the client machine where the Federated Database is defined:

CONNECT TO SAMPAIX8

Then, issue the Insert with subselect command to transfer the data to the target:

INSERT INTO DB2ADMIN.DEPT390T
SELECT * FROM DB2ADMIN.DEPT390S

You can also specify the columns that you want to retrieve in your Select statement. The
subselect is like a regular SQL Select statement. You can have a Where clause and scalar
functions in your Select statement as long as the result set matches the columns of your
target table:

INSERT INTO DB2ADMIN.DEPT390T(DEPTNO, DEPTNAME, ADMRDEPT)
SELECT DEPTNO,DEPTNAME,ADMRDEPT
FROM DB2ADMIN.DEPT390S
WHERE DEPTNO IN (‘A00’,’B00’,’C00’)

You can use SQL Insert with sub-select to move data across different DB2 subsystems.
These DB2 subsystems have to be defined in the Federated Database. Once nicknames
have been created for the remote relational table, you can use these nicknames like regular
table names in the SQL Insert and sub-select statement.

10.4 Summary and conclusions
In this chapter, we discussed moving data to DB2 for z/OS database. We focused on some
tools and utilities that move data from DB2 distributed and from DB2 on z/OS. We showed
examples of moving data across mainframe and distributed platforms. And we mentioned the
considerations that you should bear in mind when moving data to another platform.

The examples in this chapter show how to move actual data. It is assumed that all database
objects exist on the target database. See Chapter 9., “Getting ready for moving data” on
page 213.

10.4.1 From distributed
Currently, there is no combination of high-speed utilities or tools to move large amounts of
data from distributed to mainframe. When HPU for distributed database can produce a
positional format, it can be a powerful combination with FTP and the Load utility on the
mainframe.

We recommend the Cross Loader for z/OS to read data from distributed databases or from
nicknames in a Federated Database system. This is based on three-part names with the
location defined in the CDB. The Load utility will reserve the data to be loaded through a
cursor.

Note: You can use DB2 Data Joiner to access data from different relational databases and
use the SQL Insert with sub-select to move data between different relational databases,
like Oracle or MS SQL Server. With this technique you are only limited by the databases
that you can connect to your Federated Database system.
Chapter 10. Moving data to DB2 for z/OS 265

If you are moving data in a regular basis, Data Propagator is a very convenient and effective
tool to use. You have the option to copy only the changes in the table, which saves you the
time needed to copy the entire table every time you do an update. With this tool, you can
schedule the movement of data, and it will automatically perform the scheduled run.

With the Import utility on distributed, you can do SQL Insert for IXF formatted data from a file
or named pipe. For the time being IXF data has to be produced by the Export utility. At
present, HPU for MP cannot produce IXF.

You can create a nickname on mainframe table in a Federated Database system. By using
SQL Insert into a nickname, you can sub-select from a table or another nickname in the
Federated Database system.

10.4.2 From mainframe
In moving data within mainframe DB2 databases, the two main tools that we used to unload
data are the HPU for z/OS and the Unload utility.

HPU for z/OS is a very efficient tool in unloading data from DB2 for z/OS databases. Its
strength is its ability to read the VSAM files directly. It also consumes less CPU processing
than the Unload utility. However, they are nearly equal in speed performance. HPU can
customize the output using the SQL Select and the USER format. Another advantage of HPU,
is it can read incremental copies. The HPU is recommended for unloading data when the
Select statement can be performed by the HPU and not by the DB2 engine. The HPU is
separately priced tool, while the Unload utility is included in the DB2 for z/OS Utility suite
package.

You should consider changing the existing solutions that use the DSNTIAUL program. The
HPU can produce output formats compatible with the DSNTIAUL. But it saves on the
overhead time required to pass the query to DB2 if the query is relatively simple. The
DSNTIAUL always call DB2 to perform its query.

There is no alternative to the Load utility in the mainframe. This will load data from the data
set produced by HPU or from the Unload utility. The Cross Loader in z/OS also uses the Load
utility taking input from a cursor declared on a mainframe table.

With regards to the Data Propagator, the same considerations as from distributed is valid.

10.4.3 Miscellaneous
Code page conversion in our examples are done automatically using the HPU, the Unload
utility or the Load utility.

Moving data to a DB2 for z/OS database is supported by several tools and utilities. These
tools and utilities are constantly being improved through PTFs and FixPaks. You can get the
latest list of PTF and FixPaks on the Web sites:

http://www.ibm.com/support/us/

http://www-3.ibm.com/software/data/db2/
266 Moving Data Across the DB2 Family

http://www.ibm.com/support/us/
http://www.ibm.com/support/us/
http://www-3.ibm.com/software/data/db2/
http://www.ibm.com/support/us/

Chapter 11. Moving data to DB2 Distributed

In this chapter we discuss the alternatives available when moving data into DB2 UDB on
distributed platforms such as UNIX and Windows. Source databases can reside on any
member of the DB2 Family, or even on other relational database systems. In each case we
comment on usability, performance, and explicit restrictions.

The following data movement methods are described:

� Cross Load into a distributed environment (in DB2 UDB Version 8 only)
� Export followed by a Load or Import into a distributed environment
� SQL Insert containing a SELECT clause into a distributed environment (in DB2 UDB

Version 8 only)
� Data Propagator
� HPU for z/OS followed by Load or Import into a distributed environment
� Unload utility on z/OS followed by Load or Import into a distributed environment
� HPU for MP followed by Load or Import into a distributed environment

11
© Copyright IBM Corp. 2003. All rights reserved. 267

11.1 An overview
The next two pictures reported in Figure 11-1 and Figure 11-2 show the various functions of
data movements, which we will present and give examples on in this chapter.

Data movement from any DB2 to DB2 distributed
Figure 11-1 provides a graphical summary representation of the function, which can be used
when moving data from DB2 members residing either on the mainframe or distributed
platform, to a DB2 member on the distributed platform.

Figure 11-1 Moving data to distributed

The letters written on the arrows represents the formats that you can choose between:

A Positional (fixed) format (ASC)
D Delimited format (DEL)
I Integrated exchange format, PC version (IXF)
(I) The IXF format is accepted, but the table has to exist
UA User defined Positional (fixed) format (ASC)

Target
table

Import
utility

Export
utility

HP Un-
load tool

File/
pipe

Source
table

Mainframe Distributed

D ,
I (?)

D, I

A , D , I

Moving data to DB2 distributed

HP Un-
load tool

Unload
utility

File

FTPD , UA UA

I

DB2
DB2 A , D

(I)DPropR
Apply

DPropR
Capture

CD
table

DB2
Connect

Load
utility

Cross
Loader

Cross Loader
with cursor

(only if Source
Table's DB =

Target Table's
DB)

Source
table

DB2
268 Moving Data Across the DB2 Family

Data movement from any relational DB to DB2 distributed
Figure 11-2 shows how you can map an environment though a federated system on
distributed by using nicknames. The source and the target tables can reside on any database
that Federated Databases support. This can be within or outside the DB2 Family.

It is important to notice that the Export utility, the Cross Loader, and Insert with subselect can
all read from a nickname, but only Insert with subselect can write to a nickname (from Version
8.)

Figure 11-2 Moving data using a Federated System

The letters written on the arrows represents this information:

D Delimited format (DEL)
I Integrated exchange format, PC version (IXF)
V.8 DB2 UDB Version 8

11.1.1 File format considerations
When employing a data movement scheme where a file format must be chosen (DEL, ASC,
or IXF), some considerations need to be made before making the choice. Each file format has
its advantages and disadvantages, shown below:

� DEL (Delimited ASCII)

Import
utility

Export
utility

File/
pipe

Distributed

Moving data using a Federated system

W
r
a
p
p
e
r

W
r
a
p
p
e
r

Source Target

Source
Nickname

Source
table

Target
table

Target
Nickname

Target
table

Insert with
subselect

Load
utility

Cross
Loader

DB2

I , D

V.8

HPU

Source
table
Chapter 11. Moving data to DB2 Distributed 269

– Advantages

• Unlimited record length
• Data is human readable

– Disadvantages

• This file format is not portable to a mainframe environment

� ASC (positional ASCII):

– Advantages

• Data is human readable
• Loading/Importing time is faster than DEL.
• This file format is compatible with the Load utility in a mainframe environment

– Disadvantages

• Record length is limited to 32 KB.

• Column length information is not encoded in the ASC format, therefore variable
length character fields can only be loaded as variable length if the STRIPTBLANKS
file type modifier is specified during Load or Import. STRIPTBLANKS strips trailing
blanks encountered in character fields. However, doing this does not guarantee that
data will be correct. Any character columns that originally contained trailing blanks
will have their trailing blanks stripped when the data is loaded or imported.

• Although this file format is compatible with the mainframe Load utility, it is not
supported by the Import utility in a distributed environment when connected to a
mainframe environment.

� IXF (PC/IXF)

– Advantages

• Loading/Importing time is faster than DEL and ASC.

– Disadvantages

• Not supported in a partitioned database environment for Load, although it is
supported for Import.

• Data is in binary, and is not human readable.

Note: If you are moving data from a Windows distributed environment to a UNIX
distributed environment, keep in mind that the Export utility on Windows
represents a newline as two characters (0x0D 0x0A). The Load utility and the
Import utility in a UNIX environment both do not recognize this two character
newline. They expect the newline character to be a single character (0x0A).
Therefore, it will not load Windows exported data properly (for DEL format only,
IXF is okay). Before performing the load or import, either FTP the DEL file from
the source to target machine in ASCII mode (which will convert two character
newlines to single character newlines), or perform the conversion yourself.

Note: There are two types of positional ASCII: FIXED length and FLEXIBLE length.
FIXED length means that the RECLEN option is specified during the import or load,
and that all records are of a fixed length. FLEXIBLE length means that the RECLEN is
not specified during the import or load, and records are delimited by the newline
character.
270 Moving Data Across the DB2 Family

• This file format is not portable to a mainframe environment, although it can be used
through the Import utility on a distributed environment when a connection is made
to a mainframe environment through DB2 Connect.

11.1.2 Index considerations
If your target table contains indexes, it may be a good idea to either defer index rebuilding or
to drop the indexes and recreate them after the data bas been loaded or imported.

In the case where the Import utility is being used, SQL inserts are used to populate the
target table. For tables containing indexes, this involves constant updates to the indexes. This
may be less efficient than dropping the indexes before the import and recreating them
afterwards, especially if the target table was originally empty or close to empty.

In the case where the Load utility is being used, the Load utility currently does not have the
ability to build multiple indexes in parallel, whereas the SQL CREATE INDEX command does.
Therefore, for a target table containing multiple indexes, it may be more efficient either to drop
the indexes before the load and recreate them afterwards, or perform the load with INDEXING
MODE DEFERRED, especially if the target table was originally empty or close to empty.

When a load to a table is executed with INDEXING MODE DEFERRED, the table’s indexes
are marked bad and the load’s BUILD phase is skipped. Subsequent access of the table’s
indexes (apart from another load) will automatically force the indexes to be rebuilt.

11.1.3 Environment used for data movement examples
For the examples given in this section, we use a distributed database named distdb as the
target database, and a mainframe database named db2g and a distributed database named
distdb2 as the source databases. distdb is a Federated Database on a federated system.
db2g is locally CATALOGed as hostdb on the same system as distdb. distdb is locally
CATALOGed as distdb on the same system as distdb2. For more details on defining a
Federated Database, see Appendix A, “Defining a Federated Database” on page 299.

Data movement to distributed: description of db2g database
The source database, db2g, has the following characteristics:

� db2g resides on a mainframe machine at IP address 192.168.0.1, which can be accessed
through port 12345.

� db2g can be accessed through the userid paolor2 and password xxyyzz.

db2g contains the following tables:

PAOLOR2.EMP
COLUMN NAME DATA TYPE LENGTH NULLS
EMPNO CHAR 6 NO
FIRSTNME VARCHAR 12 NO
MIDINIT CHAR 1 NO
LASTNAME VARCHAR 15 NO
WORKDEPT CHAR 3 YES
PHONENO CHAR 4 YES
HIREDATE DATE YES
JOB CHAR 8 YES
EDLEVEL SMALLINT YES
SEX CHAR 1 YES
BIRTHDATE DATE YES
SALARY DECIMAL (9, 2) YES
Chapter 11. Moving data to DB2 Distributed 271

BONUS DECIMAL (9, 2) YES
COMM DECIMAL (9, 2) YES

SC246300.LITERATURE
COLUMN NAME DATA TYPE LENGTH NULLS
TITLE CHAR 25 YES
IDCOL ROWID NO
MOVLENGTH INTEGER YES
LOBMOVIE BLOB 2048 YES
LOBBOOK CLOB 10240 YES

Data movement to distributed: description of hostdb database
db2g was CATALOGed locally as hostdb on the distributed system where distdb resides, by
executing the following CLP commands:

CATALOG TCPIP NODE hostnode REMOTE 192.168.0.1 SERVER 12345
CATALOG DCS DATABASE rmtdbdcs AS db2g
CATALOG DATABASE rmtdbdcs AS hostdb AT NODE hostnode AUTHENTICATION DCS

Data movement to distributed: description of distdb database
The target database, distdb, has the following characteristics:

� distdb resides on a distributed system at IP address 192.167.1.1, which can be accessed
through port 56789

� distdb is a Federated Database on a DB2 UDB Version 8 federated system.

� distdb can be accessed through the userid markomp and password aabbcc.

distdb contains the following tables:

MARKOMP.EMP
Column Type Type
name schema name Length Scale Nulls
------------------------------ --------- ------------------ -------- ----- ------
EMPNO SYSIBM CHARACTER 6 0 No
FIRSTNME SYSIBM VARCHAR 12 0 No
MIDINIT SYSIBM CHARACTER 1 0 No
LASTNAME SYSIBM VARCHAR 15 0 No
WORKDEPT SYSIBM CHARACTER 3 0 Yes
PHONENO SYSIBM CHARACTER 4 0 Yes
HIREDATE SYSIBM DATE 4 0 Yes
JOB SYSIBM CHARACTER 8 0 Yes
EDLEVEL SYSIBM SMALLINT 2 0 Yes
SEX SYSIBM CHARACTER 1 0 Yes
BIRTHDATE SYSIBM DATE 4 0 Yes
SALARY SYSIBM DECIMAL 9 2 Yes
BONUS SYSIBM DECIMAL 9 2 Yes
COMM SYSIBM DECIMAL 9 2 Yes

MARKOMP.LIT
Column Type Type
name schema name Length Scale Nulls
------------------------------ --------- ------------------ -------- ----- ------
TITLE SYSIBM CHARACTER 25 0 Yes
IDCOL SYSIBM VARCHAR 40 0 No
MOVLENGTH SYSIBM INTEGER 4 0 Yes
LOBMOVIE SYSIBM BLOB 2048 0 Yes
LOBBOOK SYSIBM CLOB 10240 0 Yes
272 Moving Data Across the DB2 Family

� distdb contains nicknames MARKOMP.EMPHOST and MARKOMP.LITHOST that refer
to the tables in database db2g PAOLOR2.EMP and SC246300.LITERATURE,
respectively. They were created using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
CREATE WRAPPER DRDA
CREATE SERVER hostsrvr TYPE DB2/MVS VERSION 7.0.0 WRAPPER DRDA AUTHORIZATION
"paolor2" PASSWORD "xxyyzz" OPTIONS (NODE 'hostnode', DBNAME 'HOSTDB')
CREATE USER MAPPING FOR markomp SERVER hostsrvr OPTIONS (REMOTE_AUTHID 'paolor2',
REMOTE_PASSWORD 'xxyyzz')
CREATE NICKNAME MARKOMP.EMPHOST FOR hostsrvr.PAOLOR2.EMP
CREATE NICKNAME MARKOMP.LITHOST FOR hostsrvr.SC246300.LITERATURE

Data movement to distributed: description of distdb2 database
The source database, distdb2, has the following characteristics:

� distdb2 is a database on a different DB2 UDB Version 8 system.

� distdb2 can be accessed through the userid mikemp and password nnoopp.

distdb2 contains the following table:

MIKEMP.EMP
Column Type Type
name schema name Length Scale Nulls
------------------------------ --------- ------------------ -------- ----- ------
EMPNO SYSIBM CHARACTER 6 0 No
FIRSTNME SYSIBM VARCHAR 12 0 No
MIDINIT SYSIBM CHARACTER 1 0 No
LASTNAME SYSIBM VARCHAR 15 0 No
WORKDEPT SYSIBM CHARACTER 3 0 Yes
PHONENO SYSIBM CHARACTER 4 0 Yes
HIREDATE SYSIBM DATE 4 0 Yes
JOB SYSIBM CHARACTER 8 0 Yes
EDLEVEL SYSIBM SMALLINT 2 0 Yes
SEX SYSIBM CHARACTER 1 0 Yes
BIRTHDATE SYSIBM DATE 4 0 Yes
SALARY SYSIBM DECIMAL 9 2 Yes
BONUS SYSIBM DECIMAL 9 2 Yes
COMM SYSIBM DECIMAL 9 2 Yes

Data movement to distributed: description of distdb database
distdb was CATALOGed locally as distdb on the distributed system where distdb2 resides, by
executing the following CLP commands:

CATALOG TCPIP NODE dnode REMOTE 192.167.1.1 SERVER 56789
CATALOG DATABASE distdb AT NODE dnode

Important: As mentioned above, distdb resides on a Version 8 federated system. Had
distdb resided on a Version 7 federated system, the DBNAME value of the CREATE
SERVER command would have specified the DB2G database directly instead of the
locally CATALOGed database HOSTDB. For more details, please refer to the steps that
describe the CREATE SERVER command in Appendix A, “Defining a Federated
Database” on page 299.
Chapter 11. Moving data to DB2 Distributed 273

11.1.4 Graphical representation of the environment used in the examples
Figure 11-3 shows the example environment described in 11.1.3, “Environment used for data
movement examples” on page 271. We have used three different databases:

� db2g is a mainframe system used as a source system.
� distdb2 is a distributed system used as a source system.
� distdb is a federated system used as the target system.

Observe that:

� db2g is cataloged as hostdb on distdb and can be accessed from this.
� distdb is cataloged as distdb on distdb2 and can be accessed from this.

Figure 11-3 Environment for our examples

11.2 Cross loading
This method of data movement is applicable to any source server type that Federated
Databases support.

Outline
1. If the source does not exist in the same database as the target, use Federated Database

support to create a nickname for the source (see Appendix A, “Defining a Federated

Environment used in the examples

Distributed
(Federated System)

D
R
D
A
-

W
r
a
p
p
e
r

Mainframe

userid: paolor2
password: xxyyzz

distdbdb2g

IP address
192.168.0.1
port 12345

DB2
userid: markomp

password: aabbcc

DB2

SC246300.
LITERATURE

MARKOMP.
LITHOST

MARKOMP.
EMPHOSTnickname

PAOLOR2.
EMP

MARKOMP.
LIT

MARKOMP.
EMP

(The db2g subsystem is cataloged locally as hostdb)

nickname

Distributed

userid: mikemp
password: nnoopp

distdb2

DB2

MIKEMP.
EMP

D
R
D
AIP address 192.167.1.1

port 56789

(The distdb is cataloged locally
as distdb)
274 Moving Data Across the DB2 Family

Database” on page 299 for more details). Cross Load requires that both source and target
table are accessible from the same database connection.

2. If performing the cross load through CLP, declare a cursor for selecting data from the
source. This cursor will be used in the CLP load command that performs the cross load.
Note that if the cross load is being invoked through the load API db2Load(), the SQL query
is passed directly to the API and an intermediate declared cursor is not necessary.

3. Perform the cross load by invoking the load utility with the necessary options.

Evaluation
� Restrictions:

– DB2 UDB V8 has to be used on the distributed environment.

– A Federated database must be used if the source is not in the same database as the
target.

– For the Load, see Chapter 6, “Load with DB2 Distributed” on page 91.

� Performance:

– Using the fastest tool available on the target side

– Data retrieved from the source through an SQL query statement

� Usability:

– The process is administered only on a distributed environment.

– Since the source can be a nickname, the source can be anything that Federated
databases support, even other database products. The only downside is that some
additional setup is needed to create table nicknames when needed.

– It is easy to use, and no intermediate data files are produced.

Example
The following example demonstrates how the Cross Loader can be used to move data from a
mainframe system to distributed. However, it can be used to move data from any source that
Federated Databases support, to distributed.

Moving data from PAOLOR2.EMP to MARKOMP.EMP
To move data from the host table PAOLOR2.EMP to the distributed table MARKOMP.EMP
(through the nickname MARKOMP.EMPHOST), you can use the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
DECLARE hostcursor CURSOR FOR select * from MARKOMP.EMPHOST
LOAD FROM hostcursor OF cursor MESSAGES load.msg REPLACE INTO MARKOMP.EMP

In this example:

� In the Federated Database distdb, MARKOMP.EMPHOST was set up as a nickname for
the table PAOLOR2.EMP that belonged to the mainframe database db2g (see 11.1.3,
“Environment used for data movement examples” on page 271 for more details.)

� This example is applicable to both a partitioned database environment and a
non-partitioned database environment.
Chapter 11. Moving data to DB2 Distributed 275

11.3 Export followed by Load or Import
This method of data movement is applicable when moving data from a distributed
environment, an environment supported by DB2 Connect (such as a mainframe
environment), or any source type that Federated Databases support.

Outline
1. Export the data from the source table into a file or a named pipe. Exporting to a named

pipe provides the following benefits:

– You can save space in the file system, since no intermediate data file is generated.
– The exporting and loading/importing processes will be performed simultaneously.

2. If the source is not in the same database as the target, you have several choices for the
database connection:

– If the source database is on a distributed system, you can CATALOG it locally and then
connect to it.

– If the source database is on a system that is supported by DB2 Connect (for example,
a mainframe system), you can CATALOG it locally and then connect to it (DB2 Connect
will be used automatically). Appendix B, “DB2 connectivity” on page 307 contains
examples on how to CATALOG a mainframe database.

– If the source database in on a system that is supported by Federated databases, you
can create a nickname for the source inside your target table’s database. Then you can
connect to your target table’s database and export from the nickname. For details on
setting up a Federated Database, see Appendix A, “Defining a Federated Database”
on page 299.

3. There are restrictions on the file types allowed and whether or not using a named pipe is
allowed. Restrictions are listed in the next section.

4. If possible, use the Load utility to move the data from the file or pipe into the target table,
unless the amount of data to move is small (in which case, the import utility may perform
faster). In some situations, it will be necessary to use the Import utility.

Evaluation
� Restrictions:

– Only the IXF format is supported if the export is being performed through DB2
Connect. Additionally, if the target distributed system is in a partitioned database
environment, you have the following choices:

• If the environment is Version 8 or higher, load the IXF file using the
LOAD_ONLY_VERIFY_PART mode (see “Loading IXF files in a Version 8
partitioned database environment” on page 97 for more details.)

• Use the Import utility.

– The Export and Load/Import must use the LOBSINFILE modifier if LOB objects greater
than 32K in length are involved.

– You cannot export into a named pipe in the following situations:

• The LOBSINFILE modifier is being used.

• A load is being performed in LOAD_ONLY_VERIFY_PART mode in a partitioned
database environment.

– For the Load or AutoLoader utility, see Chapter 6, “Load with DB2 Distributed” on
page 91.
276 Moving Data Across the DB2 Family

– For the Export and Import utilities, see Chapter 5, “Export and Import with DB2
distributed” on page 79.

– Formats to be used (considering both the restrictions just mentioned and those
outlined in 11.1.1, “File format considerations” on page 269)

• DEL
• ASC
• IXF

� Performance:

– Using the fastest tool available on the target side
– Data retrieved from the source through a select statement

� Usability:

– The process is administered only on the distributed environment
– Need to manually manage files or named pipes

Examples
The following examples demonstrate how the data can be moved from a mainframe system to
distributed. However, as mentioned earlier, data can be moved from other source types,
including any source that Federated Databases support.

Moving data from PAOLOR2.EMP to MARKOMP.EMP using a file
To move data from the host table PAOLOR2.EMP to the distributed table MARKOMP.EMP
through exporting to a file, you can use the following CLP commands:

CONNECT TO hostdb USER paolor2 USING xxyyzz
EXPORT TO emp.ixf OF ixf MESSAGES export.msg select * from PAOLOR2.EMP
CONNECT RESET
CONNECT TO distdb USER markomp USING aabbcc
LOAD FROM emp.ixf OF ixf MESSAGES load.msg REPLACE INTO MARKOMP.EMP

In this example:

� Since a connection was made to a mainframe system, it was made through DB2 Connect.
Therefore, the IXF file format was required.

� The Import utility could have been used instead of the Load utility. For small amounts of
data, an import may be faster than a load due to the Load utility’s startup and shutdown
overhead.

Moving data from PAOLOR2.EMP to MARKOMP.EMP using a named pipe
To move data from the host table PAOLOR2.EMP to the distributed table MARKOMP.EMP
through exporting to a named pipe, you must first create the named pipe. For this example,
we will assume that the distdb database (where the MARKOMP.EMP table belongs) resides
on a UNIX distributed environment. We can create a named pipe called mypipe using the
following system command:

mknod mypipe p

Next, to perform an export and a simultaneous load, you can run two separate CLP sessions
simultaneously as follows:

� CLP Session 1:

CONNECT TO hostdb USER paolor2 USING xxyyzz
EXPORT TO mypipe OF ixf MESSAGES export.msg select * from PAOLOR2.EMP
CONNECT RESET

� CLP Session 2 (to import, replace “LOAD” with “IMPORT”):
Chapter 11. Moving data to DB2 Distributed 277

CONNECT TO distdb USER markomp USING aabbcc
LOAD FROM mypipe OF ixf MESSAGES load.msg REPLACE INTO MARKOMP.EMP
CONNECT RESET

11.4 SQL insert containing a SELECT clause
This method of data movement is applicable to any source server type that Federated
Databases support.

Outline
1. If the source does not exist in the same database as the target, use Federated Database

support to create a nickname for the source (see Appendix A, “Defining a Federated
Database” on page 299 for more details.)

2. It is recommended that the target table be created with the NOT LOGGED INITIALLY
property specified, and that the ALTER TABLE command be executed against the table
specifying APPEND ON. If there are any indexes defined on the table, it is recommended
that they be dropped before the insert and recreated afterwards. Doing these things will
help to optimize the performance of the insert.

Evaluation
� Restrictions:

– DB2 UDB V8 has to be used on the distributed environment.

– A Federated database must be used if the source is not in the same database as the
target.

� Performance:

– performance is likely suboptimal

� Usability:

– The process is administered only on a distributed environment.

– Since the source can be a nickname, the source can be anything that Federated
databases support, even other database products. The only downside is that some
additional setup is needed to create table nicknames when needed.

– It is easy to use, and no intermediate data files are produced.

– It has some benefits over using the Cross Loader, such as it can fire triggers where as
the Load utility cannot.

Example
The following example demonstrates how an SQL insert can move data from a mainframe
system to distributed. However, it can be used to move data from any source that Federated
Databases support, to distributed.

Moving data from PAOLOR2.EMP to MARKOMP.EMP
To move data from the host table PAOLOR2.EMP to the distributed table MARKOMP.EMP
(through the nickname MARKOMP.EMPHOST), you can issue the following SQL statement:

CONNECT TO distdb USER markomp USING aabbcc
INSERT INTO MARKOMP.EMP select * from MARKOMP.EMPHOST

Note: Using a named pipe is only possible if the LOBSINFILE modifier is not used.
278 Moving Data Across the DB2 Family

In this example:

� In the Federated Database distdb, MARKOMP.EMPHOST was set up as a nickname for
the table PAOLOR2.EMP that belonged to the mainframe database db2g (see 11.1.3,
“Environment used for data movement examples” on page 271 for more details.)

� This example is applicable to both a partitioned database environment and a
non-partitioned database environment.

11.5 Data Propagator
There are several redbook projects on Data Propagator (DPropR), the most current one is
documented as a draft (Redpiece) in The Practical Guide to DB2 Data Replication V8,
SG24-6828. We have not focused on DPropR in this project, but for readers with no
experience, we want to highlight it together with the other functions and tools we
recommend.The main reasons for using Data Propagator can be categorized in:

� Distribution of data to other locations
� Consolidation of data from other locations
� Bidirectional exchange of data with other locations

Replication from non-database sources is also provided through the federated data support.

Outline
Pre-propagation activities:

1. Define your tables as sources for the replication.
2. Create new tables as targets for the replication.
3. Populate control tables for Capture and Apply process.
4. Define subscription set and members.
5. Schedule Apply process.

Propagation activities (see Figure 11-4):

1. DB2 writes all changes in EMP table to the DB log

2. Capture program captures all the changes on the EMP table by reading the DB log

3. Captures writes committed changes to the EMPCD table and updates the REGISTER
table

4. Apply program is invoked by addressing the actual SUBS-set. It reads new changes from
the EMPCD table and inserts or updates the EMP target table. The following control tables
will determine the processing of the changes:

c. SUBS-member describes tables included in the subscription.

d. SUBS-columns describes columns included in the tables.

e. SUBS-statements describes before or after SQL to be executed during the apply
phase.

5. Apply program updates SUBS_SET and PRUNCNTL tables.

6. Capture prunes delivered changes from the EMPCD table and updates PRUNCNTL table.

Because this is the most efficient, we have chosen to show the APPLY program using the
PULL technique. APPLY could also run on the mainframe side and use the PUSH technique
to insert the changes in the target table.
Chapter 11. Moving data to DB2 Distributed 279

Figure 11-4 Data Propagator environment

Evaluation
Compared to other function and tools, DPropR is not appropriate for one time data
movement. It is a tool that helps you keeping your databases in sync continuously or makes
captured changes available. To facilitate this, a preparation and customizing effort is
necessary.

You should consider DPropR if your need for data movement is based on continuously
updated information like this:

� A complete or partial copy of a source table
� A complete or partial copy of changes to a source table
� An aggregate of a source table based on SQL column functions / GROUP BY
� An aggregate of changes to a source table based on SQL column functions / GROUP BY
� An updateable copy (replica) of all or portion of a source table

DPropR can also offer data transformation, filtering, complemental information, and derived
information during the propagation process.

For other DBMS, the capture of changes is based on triggers fired inside time critical UOWs,
but DPropR reads the undo and redo records in the database log. This does not influence the
application.

EMP
table

Mainframe Distributed

DataPropagator Environment

DB2
logs

DB2

DPropR
Apply

DPropR
Capture

EMPCD
table

DB2
Connect

REGI
STER

DB2

EMP
Subs-

set

Mem-
ber

State-
ments

Col-
umn

PRUN
CNTL
280 Moving Data Across the DB2 Family

Some of the enhancements in DB2 Replication V8
New features:

� Replication Center
� Replication Center Monitoring
� Replication Alert Monitor

Important enhancements:

� All stored passwords are encrypted.
� Changes are not inserted in CD-tables until they have been committed.
� No changes captured for your source unless the change affects your selected columns.
� Changes from the master site should not be recaptured at the replica site.
� Multiple Capture programs can run on the same DB2 database or subsystem.
� Capture prunes changes concurrently with the capture of changes on DB2.
� Faster full refreshes of target tables can be done using the load utility improvements.

A migration utility is included to convert existing DB2 Replication V5, V6, and V7
environments to DB2 Replication V8.

For a detailed discussion of enhancements, see IBM DB2 Universal Database Replication
Guide and Reference Version 8, SC27-1121-00.

11.6 HPU for z/OS followed by Load or Import
This method of data movement is exclusive to using z/OS as the source.

Outline
1. HPU for z/OS can unload data into a delimited or a positional file. For the delimited file,

make sure to specify that null indicators should not be enclosed by delimiters. For the
positional file, make sure to specify external formats and padding.
This are the only formats available on z/OS that can be read by utilities running on a
distributed environment.
You can unload either ASCII or EBCDIC.

2. Transfer the file from the host to the multiplatform workstation. If the unloaded files on the
z/OS are in EBCDIC, specify ASCII as FTP option, else use BIN as option.

3. Use the Load utility to insert the data into the target table. If the target database is
partitioned and you are using DB2 UDB V7 or older, use the AutoLoader to insert the data
into the target table. Note that the Import utility can be used in this step. For small amounts
of data, an import may be faster than a load due to the Load utility’s startup and shutdown
overhead.

Evaluation
� Restrictions:

– For HPU, keep in mind that tables containing LOB objects are not supported. Also, see
Chapter 7, “IBM DB2 High Performance Unload for z/OS” on page 119.

– For the Load or AutoLoader utility, see Chapter 6, “Load with DB2 Distributed” on
page 91.

– For the Import utility, see Chapter 5, “Export and Import with DB2 distributed” on
page 79.
Chapter 11. Moving data to DB2 Distributed 281

– Formats to be used:

• Delimited format (DEL) is the easiest, but positional ASCII (ASC) created through
the USER format is also an alternative. Consult 11.1.1, “File format considerations”
on page 269 before making your choice.

� Performance:

– These are the fastest tools available on both platforms (unless import is chosen).

� Usability:

– Need to administer the process on both z/OS and multiplatform
– Need to manually manage and transfer files

Examples
The following are examples on using the HPU for z/OS and then subsequently using the Load
or Import utility to load the data into the distributed database distdb.

Unload EMP table in DELIMITED format with the HPU
Example 11-1 shows the JCL for unloading the table PAOLOR2.EMP. Following options are
used:

DB2 NO The job will terminate if HPU is not able to execute the SQL without
using DB2

QUIESCE YES All records will be written to disk before HPU accesses the VSAM data
set

QUIESCECAT NO Updates against the DB2 Catalog can still reside in the buffer pool,
which probably means that the QUISCE information for EMP is not
written to the VSAM data set with SYSIBM.SYSCOPY

DATE DATE_A Columns with coltype will be given a predefined format
(MM-DD-YYYY)

EBCDIC The output data set will be EBCDIC encoded
DELIMITED The format of the output data set will be DELIMITED
SEP ';' ; is chosen as the separator character
DELIM '*' * is chosen as the delimiter character
NULL DELIM Defines that NULL values should not be enclosed by delimiters

Example 11-1 JCL HPU delimited format

//PAOLOHPU JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* HP UNLOAD EBCDIC - DELIMITED
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,DB2UNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//*
//SYSIN DD *
 UNLOAD TABLESPACE
 DB2 NO
 QUIESCE YES QUIESCECAT NO
 OPTIONS DATE DATE_A

 SELECT * FROM PAOLOR2.EMP
282 Moving Data Across the DB2 Family

 OUTDDN (UNLDDN1) EBCDIC
 FORMAT DELIMITED SEP ';' DELIM '*' NULL DELIM
/*
//SYSPRINT DD SYSOUT=*
//COPYDD DD SYSOUT=*
//OUTDD DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//*
//********* DDNAMES USED BY THE SELECT STATEMENTS **********
//*
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.EBCDIDEL,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)

In Example 11-2 the result from the HPU job is shown.

Example 11-2 HPU job report

********************************* TOP OF DATA **********************************
 J E S 2 J O B L O G -- S Y S T E M S C 6 3 -- N O D E

21.38.14 JOB11640 ---- TUESDAY, 05 NOV 2002 ----
21.38.14 JOB11640 IRR010I USERID PAOLOR2 IS ASSIGNED TO THIS JOB.
21.38.14 JOB11640 ICH70001I PAOLOR2 LAST ACCESS AT 20:59:51 ON TUESDAY, NOVEMB
21.38.14 JOB11640 $HASP373 PAOLOHPU STARTED - INIT 1 - CLASS A - SYS SC63
21.38.14 JOB11640 IEF403I PAOLOHPU - STARTED - ASID=03EA - SC63
21.38.17 JOB11640 INZX006 EMPA1FHX TABLESPACE UNLOAD PHASE STARTED
21.38.17 JOB11640 INZX090 UNLDDN3 : 42 RECORDS WRITTEN
21.38.18 JOB11640 - --TIMINGS (MINS.)--
21.38.18 JOB11640 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK
21.38.18 JOB11640 -PAOLOHPU STEP1 00 585 .00 .00 .05
21.38.18 JOB11640 IEF404I PAOLOHPU - ENDED - ASID=03EA - SC63
21.38.18 JOB11640 -PAOLOHPU ENDED. NAME-DB2UNLOAD TOTAL CPU TIME=
.
DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = DB2UNLOAD
DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSNDB04.EMPA1FHX
DSNU477I -DB2G DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSNDB04.EMPA1FHX
DSNU474I -DB2G DSNUQUIA - QUIESCE AT RBA 0002FAA28D32 AND AT LRSN 0002FAA28D32
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0
INZX090 UNLDDN3 : 42 RECORDS WRITTEN
 TABLESPACE UNLOAD STATISTICS UT4100 DB2 HIGH PERFORMANCE
* TABLE * PART NO. * ROWS READ * ROWS KEPT * IX SCAN *
* * * * * *
* EMP * 0 * 42 * 42 * 0 % *
* INVALID ROWS* 0 * 0 * *
* TABLESPACE TOTAL* 42 * 42 * 0 % *
NUMBER OF PAGES READ ... 12
NUMBER OF PAGES IN ERROR 0
******************************** BOTTOM OF DATA ********************************

Example 11-3 shows how to FTP the file PAOLOR2.MD.HPUNLOAD.EBCDIDEL produced in
Example 11-1. The file is EBCDIC encoded and you have to define ASCII conversion in the
FTP. If the file is ASCII, you have to use the BIN option instead of ASCII.
Chapter 11. Moving data to DB2 Distributed 283

Example 11-3 FTP the file of Example 11-1 from DOS window

Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>ftp 192.168.0.1<--- the IP-adress of mainframe
Connected to 192.168.0.1.
220-FTPMVS1 IBM FTP CS V1R2 at 192.168.0.1, 22:37:45 on 2002-11-05.
220 Connection will close if idle for more than 5 minutes.
User (192.168.0.1:(none)): paolor2
331 Send password please.
Password: <--- type password
230 PAOLOR2 is logged on. Working directory is "PAOLOR2.".
ftp> get 'paolor2.md.hpunload.ebcdidel' unload_ebcdic_del.txt ascii
200 Port request OK.
125 Sending data set PAOLOR2.MD.HPUNLOAD.EBCDIDEL
250 Transfer completed successfully.

Example 11-4 shows the file unload_ebcdic_del.txt after being FTP to the distributed system.
Notice that NULL values are represented with ;; and ; if it is at the last column.

Example 11-4 The delimited file to be loaded on the distributed

000010;*CHRISTINE*;*I*;*HAAS*;*A00*;;1965-01-01;*PRES *; 18;*F*;1933-08-14; 52750.00; 1000.00; 4220.00
000020;*MICHAEL*;*L*;*THOMPSON*;*B01*;*3476*;1973-10-10;*MANAGER *; 18;;1948-02-02; 41250.00;; 3300.00
000030;*SALLY*;*A*;*KWAN*;*C01*;*4738*;1975-04-05;*MANAGER *; 20;*F*;1941-05-11; 38250.00; 800.00;
000050;*JOHN*;*B*;*GEYER*;*E01*;*6789*;1949-08-17;; 16;*M*;1925-09-15; 40175.00; 800.00; 3214.00
000060;*IRVING*;*F*;*STERN*;*D11*;*6423*;1973-09-14;*MANAGER *; 16;*M*;1945-07-07; 32250.00; 600.00; 2580.00
000070;*EVA*;*D*;*PULASKI*;*D21*;*7831*;1980-09-30;; 16;*F*;1953-05-26; 36170.00; 700.00; 2893.00
000090;*EILEEN*;*W*;*HENDERSON*;*E11*;*5498*;1970-08-15;; 16;*F*;1941-05-15; 29750.00; 600.00; 2380.00
000100;*THEODORE*;*Q*;*SPENSER*;*E21*;*0972*;1980-06-19;; 14;*M*;1956-12-18; 26150.00; 500.00; 2092.00
000110;*VINCENZO*;*G*;*LUCCHESI*;*A00*;*3490*;1958-05-16;; 19;*M*;1929-11-05; 46500.00;-900.00; 3720.00
000120;*SEAN*;* *;*O'CONNELL*;*A00*;*2167*;1963-12-05;*CLERK *; 14;*M*;1942-10-18; 29250.00; 600.00; 2340.00

Load or import unload_ebcdic_del.txt into distributed
Loading unload_ebcdic_del.txt into the MARKOMP.EMP table can be accomplished using the
following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
load from unload_ebcdic_del.txt of del modified by chardel0x2A coldel0x3B replace into
MARKOMP.EMP

For Version 7, if you are using the db2atld utility in a partitioned database environment, the
above Load command can be used in the autoloader configuration file.

Importing into MARKOMP.EMP can be accomplished by using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
import from unload_ebcdic_del.txt of del modified by chardel0x2A coldel0x3B replace into
MARKOMP.EMP

Unload EMP table in POSITIONAL format with HPU
Example 11-5 shows the JCL for unloading the table PAOLOR2.EMP into a positional file.
The following options are used:

Note: The character delimiter 0x2A (asterisk) and column delimiter 0x3B (semicolon)
are specified in the load command.
284 Moving Data Across the DB2 Family

DB2 NO The job will terminate if HPU is not able to execute the SQL without
using DB2.

QUIESCE YES All records will be written to disk before HPU accesses the VSAM data
set.

QUIESCECAT NO Updates against the DB2 Catalog can still reside in the buffer pool,
which probably means that the QUIESCE information for EMP is not
written to the VSAM data set with SYSIBM.SYSCOPY.

NULL X’FF’ X’00’ A NULL indicator is included in the output data set for all columns that
can contain NULLS. If NULL a hex high value (x’FF’) will be generated,
if not NULL a hex low value (x’00’) will be generated.

PIC (‘+’, LEAD, ‘.’) Defines the external display format of numeric data. ‘+’ means that
positive values are given a ‘+’ and negative values are given a ‘-’.
LEAD places the sign in front of the numeric value. ‘.’ is the decimal
separator.

DATE DATE_A Columns with coltype will be given a predefined format
(MM-DD-YYYY)

EBCDIC The output data set will be EBCDIC encoded.

Columns that need to be treated different than the default, must all be specified in the user
block:

TYPE In this example, the VARCHAR columns are converted to CHAR and
given the maximum length. The SMALINT and DECIMAL columns are
converted to CHAR and given a length that includes sign and decimal
separator.

PADDING If the contents of the column is less than the maximum, ‘ ‘ (blanks) are
padded to the left (see next).

JUST LEFT Specifies that the output string is justified to the left

Example 11-5 JCL HPU positional format

//PAOLOHPU JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* HP UNLOAD EBCDIC - USERDEFINED (FIXED)
//***
//*
//STEP1 EXEC PGM=INZUTILB,REGION=0M,DYNAMNBR=99,
// PARM='DB2G,DB2UNLOAD'
//STEPLIB DD DSN=INZ.V2R1M0.SINZLINK,DISP=SHR
// DD DSN=DB2V710G.SDSNEXIT,DISP=SHR
// DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//*
//SYSIN DD *
 UNLOAD TABLESPACE
 DB2 NO
 QUIESCE YES QUIESCECAT NO
 OPTIONS NULL X'FF' X'00' PIC ('+', LEAD, '.') DATE DATE_A

 SELECT * FROM PAOLOR2.EMP
 ORDER BY 1
 OUTDDN (UNLDDN1) EBCDIC
 FORMAT USER
 (
 COL FIRSTNME TYPE CHAR(12) PADDING ' ' JUST LEFT,
 COL LASTNAME TYPE CHAR(15) PADDING ' ' JUST LEFT,
 COL EDLEVEL TYPE CHAR(6),
 COL SALARY TYPE CHAR(13),
Chapter 11. Moving data to DB2 Distributed 285

 COL BONUS TYPE CHAR(13),
 COL COMM TYPE CHAR(13)
)
 LOADDDN LOADDDN1

/*
//SYSPRINT DD SYSOUT=*
//COPYDD DD SYSOUT=*
//OUTDD DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//LOADDDN1 DD SYSOUT=*
//*
//********* DDNAMES USED BY THE SELECT STATEMENTS **********
//*
//UNLDDN1 DD DSN=PAOLOR2.MD.HPUNLOAD.EBCDIFIX,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(10,20),RLSE)

Example 11-6 shows the load statements generated. This will be useful when defining the
column list pairs to the Load utility on the distributed.

Example 11-6 Load statements positional format generated of HPU

LOAD DATA LOG NO ENFORCE NO EBCDIC CCSID(007)
INTO TABLE PAOLOR2.EMP
(
EMPNO POSITION (1) CHAR (6),
FIRSTNME POSITION (7) CHAR (12),
MIDINIT POSITION (19) CHAR (1),
LASTNAME POSITION (20) CHAR (15),
WORKDEPT POSITION (36) CHAR (3)
 NULLIF(35) = X'FF',
PHONENO POSITION (40) CHAR (4)
 NULLIF(39) = X'FF',
HIREDATE POSITION (45) DATE EXTERNAL (10)
 NULLIF(44) = X'FF',
JOB POSITION (56) CHAR (8)
 NULLIF(55) = X'FF',
EDLEVEL POSITION (65) INTEGER EXTERNAL (6)
 NULLIF(64) = X'FF',
SEX POSITION (72) CHAR (1)
 NULLIF(71) = X'FF',
BIRTHDATE POSITION (74) DATE EXTERNAL (10)
 NULLIF(73) = X'FF',
SALARY POSITION (85) DECIMAL EXTERNAL (13, 2)
 NULLIF(84) = X'FF',
BONUS POSITION (99) DECIMAL EXTERNAL (13, 2)
 NULLIF(98) = X'FF',
COMM POSITION (113) DECIMAL EXTERNAL (13, 2)
 NULLIF(112) = X'FF',
)

Example 11-7 is an example how to FTP the file PAOLOR2.MD.HPUNLOAD.EBCDIFIX
produced in Example 11-5. The file is EBCDIC encoded and you have to define ASCII
conversion in the FTP. If the file is ASCII, you have to use the BIN option instead of ASCII.
286 Moving Data Across the DB2 Family

Example 11-7 FTP from a DOS window

Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>ftp 192.168.0.1<--- the IP-adress of mainframe
Connected to 192.168.0.1.
220-FTPMVS1 IBM FTP CS V1R2 at 192.168.0.1, 22:37:45 on 2002-11-05.
220 Connection will close if idle for more than 5 minutes.
User (192.168.0.1:(none)): paolor2
331 Send password please.
Password: <--- type password
230 PAOLOR2 is logged on. Working directory is "PAOLOR2.".
ftp> get 'paolor2.md.hpunload.ebcdifix' unload_ebcdic_fixed.hpu.txt ascii
200 Port request OK.
125 Sending data set PAOLOR2.MD.HPUNLOAD.EBCDIFIX
250 Transfer completed successfully.

Example 11-8 shows the file unload_ebcdic_fixed.hpu.txt to be loaded on the distributed side
after being converted to ASCII during the FTP. The NULL indicators appears as a ’ÿ‘.

Example 11-8 Positioned output file from HPU

000010CHRISTINE IHAAS A00ÿ 01-01-1965 PRES +00018 F 08-14-1933 +000052750.00 +000001000.00 +000004220.00
000020MICHAEL LTHOMPSON B01 3476 10-10-1973 MANAGER +00018ÿ 02-02-1948 +000041250.00ÿ +000003300.00
000030SALLY AKWAN C01 4738 04-05-1975 MANAGER +00020 F 05-11-1941 +000038250.00 +000000800.00ÿ
000050JOHN BGEYER E01 6789 08-17-1949ÿ +00016 M 09-15-1925 +000040175.00 +000000800.00 +000003214.00
000060IRVING FSTERN D11 6423 09-14-1973 MANAGER +00016 M 07-07-1945 +000032250.00 +000000600.00 +000002580.00
000070EVA DPULASKI D21 7831 09-30-1980ÿ +00016 F 05-26-1953 +000036170.00 +000000700.00 +000002893.00
000090EILEEN WHENDERSON E11 5498 08-15-1970ÿ +00016 F 05-15-1941 +000029750.00 +000000600.00 +000002380.00
000100THEODORE QSPENSER E21 0972 06-19-1980ÿ +00014 M 12-18-1956 +000026150.00 +000000500.00 +000002092.00
000110VINCENZO GLUCCHESI A00 3490 05-16-1958ÿ +00019 M 11-05-1929 +000046500.00 -000000900.00 +000003720.00
000120SEAN O'CONNELL A00 2167 12-05-1963 CLERK +00014 M 10-18-1942 +000029250.00 +000000600.00 +000002340.00

Load or import unload_ebcdic_fixed.hpu.txt into distributed
Loading unload_ebcdic_fixed.hpu.txt into the MARKOMP.EMP table can be accomplished
using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
load from unload_ebcdic_fixed.hpu.txt of ASC modified by nullindchar=0xFF STRIPTBLANKS
method l (1 6, 7 18, 19 19, 20 34, 36 38, 40 43, 45 54, 56 63, 65 70, 72 72, 74 83, 85
97, 99 111, 113 125) null indicators (0, 0, 0, 0, 35, 39, 44, 55, 64, 71, 73, 84, 98,
112) replace into MARKOMP.EMP

For Version 7, if you are using the db2atld utility in a partitioned database environment, the
above load command can be used in the autoloader configuration file.

Importing into MARKOMP.EMP can be accomplished by using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
import from unload_ebcdic_fixed.hpu.txt of ASC modified by nullindchar=0xFF STRIPTBLANKS
method l (1 6, 7 18, 19 19, 20 34, 36 38, 40 43, 45 54, 56 63, 65 70, 72 72, 74 83, 85
97, 99 111, 113 125) null indicators (0, 0, 0, 0, 35, 39, 44, 55, 64, 71, 73, 84, 98,
112) replace into MARKOMP.EMP

Note: The flexible length positional ASC format is used here. This is indicated by the
lack of the RECLEN modifier being used in the load command. Also notice that the
STRIPTBLANKS modifier is being used here. Without specifying it, VARCHAR column
data would have been padded with trailing blanks.
Chapter 11. Moving data to DB2 Distributed 287

11.7 Unload utility followed by Load or Import
This method of data movement is exclusive to using z/OS as the source.

Outline
1. Unload utility on z/OS can unload data into a positional file. Make sure to specify external

formats and keep the default padding.
You can unload either ASCII or EBCDIC.

2. Transfer the file from the host to the distributed system. If the unloaded files on the z/OS
are in EBCDIC, specify ASCII as FTP option, else use BIN as option.

3. Use the Load utility to insert the data into the target table. If the target database is
partitioned and you are using DB2 UDB V7 or older, use the AutoLoader to insert the data
into the target table. Note that the import utility can be used in this step. For small amounts
of data, an import may be faster than a load due to the Load utility’s startup and shutdown
overhead.

Evaluation
� Restrictions:

– For Unload utility, see Chapter 3, “Unload with DB2 for z/OS” on page 33.

– For the Load or AutoLoader utility, see Chapter 6, “Load with DB2 Distributed” on
page 91.

– For the Import utility, see Chapter 5, “Export and Import with DB2 distributed” on
page 79.

– Formats to be used

• Positional ASCII (ASC). Be aware of the restrictions outlined in 11.1.1, “File format
considerations” on page 269.

� Performance:

– Using fastest tools available on both platforms (unless import is chosen)

� Usability:

– Need to administer the process on both z/OS and multiplatform
– Need to manually manage and transfer files

Examples
The following are examples on using the Unload tool, and then subsequently using the Load
or Import utility to load the data into the distributed database distdb.

Unload EMP table in POSITIONAL format with the Unload utility
Example 11-9 shows the JCL for the unload utility to run. You have to explicit define
EXTERNAL formats on data types that needs to be converted before the loaded. Be sure to
use NOSUBS if you unload with ASCII option. Padding is default, so never use NOPAD
option. The SYSPUNCH makes the load statement available.

Example 11-9 JCL Unload utility positional format

//PAOLUNLO JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* UNLOAD EBCDIC PADDED "EXTERNAL FORMAT" ON SOME COLUMNS
//***
288 Moving Data Across the DB2 Family

//*
//STEP1 EXEC DSNUPROC,UID='UNLOAD',UTPROC='',SYSTEM='DB2G'
//SYSREC DD DSN=PAOLOR2.MD.UNLOAD.EBCDIFIX,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(2,1),RLSE)
//SYSPUNCH DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 UNLOAD DATA NOSUBS
 FROM TABLE PAOLOR2.EMP
 (EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE,
 JOB, EDLEVEL INTEGER EXTERNAL, SEX, BIRTHDATE, SALARY DECIMAL
 EXTERNAL, BONUS DECIMAL EXTERNAL, COMM DECIMAL EXTERNAL)
 PUNCHDDN SYSPUNCH UNLDDN SYSREC EBCDIC
//*

Example 11-10 shows the result from the Unload utility run. The load statements with
positions can be useful when defining the input file for the Load utility.

Example 11-10 Unload utility job report

********************************* TOP OF DATA **********************************
 J E S 2 J O B L O G -- S Y S T E M S C 6 3 -- N O D E

13.28.55 JOB11693 ---- WEDNESDAY, 06 NOV 2002 ----
13.28.55 JOB11693 IRR010I USERID PAOLOR2 IS ASSIGNED TO THIS JOB.
13.28.55 JOB11693 ICH70001I PAOLOR2 LAST ACCESS AT 13:26:38 ON WEDNESDAY, NOVE
13.28.55 JOB11693 $HASP373 PAOLUNLO STARTED - INIT 1 - CLASS A - SYS SC63
13.28.55 JOB11693 IEF403I PAOLUNLO - STARTED - ASID=03EA - SC63
13.28.59 JOB11693 - --TIMINGS (MINS.)--
13.28.59 JOB11693 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK
13.28.59 JOB11693 -PAOLUNLO STEP1 DSNUPROC 00 248 .00 .00 .06
13.28.59 JOB11693 IEF404I PAOLUNLO - ENDED - ASID=03EA - SC63
13.28.59 JOB11693 -PAOLUNLO ENDED. NAME-DB2UNLOAD TOTAL CPU TIME=
13.28.59 JOB11693 $HASP395 PAOLUNLO ENDED
.
DSNU253I DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=42 FOR TABLE
PAOLOR2.EMP
DSNU252I DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=42 FOR
TABLESPACE DSNDB04.EMPA1FHX
DSNU250I DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "PAOLOR2 "."EMP "
 WHEN(00001:00002 = X'01B7')

 ("EMPNO " POSITION(00003:00008) CHAR(006)
 , "FIRSTNME " POSITION(00009:00022) VARCHAR
 , "MIDINIT " POSITION(00023:00023) CHAR(001)
 , "LASTNAME " POSITION(00024:00040) VARCHAR
 , "WORKDEPT " POSITION(00042:00044) CHAR(003)
 NULLIF(00041)=X'FF'
 , "PHONENO " POSITION(00046:00049) CHAR(004)
 NULLIF(00045)=X'FF'
 , "HIREDATE " POSITION(00051:00060) DATE EXTERNAL
 NULLIF(00050)=X'FF'
 , "JOB " POSITION(00062:00069) CHAR(008)
Chapter 11. Moving data to DB2 Distributed 289

 NULLIF(00061)=X'FF'
 , "EDLEVEL " POSITION(00071:00081) INTEGER EXTERNAL(011)
 NULLIF(00070)=X'FF'
 , "SEX " POSITION(00083:00083) CHAR(001)
 NULLIF(00082)=X'FF'
 , "BIRTHDATE " POSITION(00085:00094) DATE EXTERNAL
 NULLIF(00084)=X'FF'
 , "SALARY " POSITION(00096:00106) DECIMAL EXTERNAL(11,02)
 NULLIF(00095)=X'FF'
 , "BONUS " POSITION(00108:00118) DECIMAL EXTERNAL(11,02)
 NULLIF(00107)=X'FF'
 , "COMM " POSITION(00120:00130) DECIMAL EXTERNAL(11,02)
 NULLIF(00119)=X'FF'
)
******************************** BOTTOM OF DATA ********************************

Example 11-11 is an example how to FTP the file PAOLOR2.MD.UNLOAD.EBCDIFIX
produced in Example 11-9. The file is EBCDIC encoded and you have to define ASCII
conversion in the FTP. If the file is ASCII, you have to use the BIN option instead of ASCII.

Example 11-11 FTP the file of Example 11-9 from a DOS window

Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>ftp 192.168.0.1<--- the IP-adress of mainframe
Connected to 192.168.0.1.
220-FTPMVS1 IBM FTP CS V1R2 at 192.168.0.1, 22:37:45 on 2002-11-05.
220 Connection will close if idle for more than 5 minutes.
User (192.168.0.1:(none)): paolor2
331 Send password please.
Password: <--- type password
230 PAOLOR2 is logged on. Working directory is "PAOLOR2.".
ftp> get 'paolor2.md.unload.ebcdifix' unload_ebcdic_fixed.txt ascii
200 Port request OK.
125 Sending data set PAOLOR2.MD.UNLOAD.EBCDIFIX
250 Transfer completed successfully.

Example 11-12 shows the output file unload_ebcdic_fixed.txt from the Unload after it is
transferred and converted to ASCII on the distributed.

Example 11-12 The positional file to be loaded on the distributed

» 000010 CHRISTINE I HAAS A00ÿ 1965-01-01 PRES 18 F 1933-08-14 52750.00 1000.00 4220.00
» 000020 MICHAEL L THOMPSON B01 3476 1973-10-10 MANAGER 18 ÿ 1948-02-02 41250.00 ÿ 3300.00
» 000030 SALLY A KWAN C01 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250.00 800.00 ÿ
» 000050 JOHN B GEYER E01 6789 1949-08-17ÿ 16 M 1925-09-15 40175.00 800.00 3214.00
» 000060 IRVING F STERN D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00
» 000070 EVA D PULASKI D21 7831 1980-09-30ÿ 16 F 1953-05-26 36170.00 700.00 2893.00
» 000090 EILEEN W HENDERSON E11 5498 1970-08-15ÿ 16 F 1941-05-15 29750.00 600.00 2380.00
» 000100 THEODORE Q SPENSER E21 0972 1980-06-19ÿ 14 M 1956-12-18 26150.00 500.00 2092.00
» 000110 VINCENZO G LUCCHESI A00 3490 1958-05-16ÿ 19 M 1929-11-05 46500.00 -900.00 3720.00
» 000120 SEAN O'CONNELL A00 2167 1963-12-05 CLERK 14 M 1942-10-18 29250.00 600.00 2340.00

Attention: To correct position error in the generated load statements (only when including
varchar columns), make sure that PTF XXXX for APAR PQ66712 is applied to your system.
290 Moving Data Across the DB2 Family

Load or import unload_ebcdic_fixed.txt into distributed
Loading unload_ebcdic_fixed.txt into the MARKOMP.EMP table can be accomplished using
the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
load from unload_ebcdic_fixed.txt of ASC modified by nullindchar=0xFF reclen=131
STRIPTBLANKS method l (3 8, 11 22, 23 23, 26 40, 42 44, 46 49, 51 60, 62 69, 71 81, 83
83, 85 94, 96 106, 108 118, 120 130) null indicators (0, 0, 0, 0, 41, 45, 50, 61, 70,
82, 84, 95, 107, 119) replace into MARKMO.EMP

For Version 7, if you are using the db2atld utility in a partitioned database environment, the
above load command can be used in the autoloader configuration file.

Importing into MARKOMP.EMP can be accomplished by using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
import from unload_ebcdic_fixed.txt of ASC modified by nullindchar=0xFF reclen=131
STRIPTBLANKS method l (3 8, 11 22, 23 23, 26 40, 42 44, 46 49, 51 60, 62 69, 71 81, 83
83, 85 94, 96 106, 108 118, 120 130) null indicators (0, 0, 0, 0, 41, 45, 50, 61, 70,
82, 84, 95, 107, 119) replace into MARKMO.EMP

Unload LITERATURE table (with LOB data) in POSITIONAL format with the
unload utility

Example 11-13 shows the JCL for the Unload utility to run. LOB data columns must be less
than 32 KB in length, since this is the limit for inline data used with Import and Load. This limit
can be overcome by using the LOBSINFILE option.

Example 11-13 The Unload utility JCL

//PAOLUNLO JOB (999,POK),'DB2UNLOAD',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M,MSGLEVEL=(1,1)
//*
//***
//* UNLOAD EBCDIC LOB
//***
//*
//STEP1 EXEC DSNUPROC,UID='UNLOAD',UTPROC='',SYSTEM='DB2G'
//SYSREC DD DSN=PAOLOR2.MD.UNLOAD.EBCDILOB,
// DISP=(OLD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(2,1),RLSE)
//SYSPUNCH DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 UNLOAD DATA
 FROM TABLE SC246300.LITERATURE
 PUNCHDDN SYSPUNCH UNLDDN SYSREC EBCDIC
//*

Example 11-14 shows the load statements for the LITERATURE table.

Note: The fixed length positional ASC format is used here. This is indicated by the use
of the RECLEN modifier in the load command. Also notice that the STRIPTBLANKS
modifier is being used here. Without specifying it, VARCHAR column data would have
been padded with trailing blanks.
Chapter 11. Moving data to DB2 Distributed 291

Example 11-14 LOAD statement from PUNCHDDN

LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "SC246300"."LITERATURE "
 WHEN(00001:00002 = X'006F')
 ("TITLE " POSITION(00004:00028) CHAR(025)
 NULLIF(00003)=X'FF'
 , "MOVLENGTH " POSITION(00072:00075) INTEGER
 NULLIF(00071)=X'FF'
 , "LOBMOVIE " POSITION(00077:02128) BLOB
 NULLIF(00076)=X'FF'
 , "LOBBOOK " POSITION(02130:12373) CLOB
 NULLIF(02129)=X'FF'
)

Example 11-15 is an example how to FTP the file PAOLOR2.MD.UNLOAD.EBCDILOB
produced in Example 11-13. The file is EBCDIC encoded and you have to define ASCII
conversion in the FTP. If the file is ASCII, you have to use the BIN option instead of ASCII.

Example 11-15 FTP file of Example 11-13 from a DOS window

Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>ftp 192.168.0.1<--- the IP-adress of mainframe
Connected to 192.168.0.1.
220-FTPMVS1 IBM FTP CS V1R2 at 192.168.0.1, 22:37:45 on 2002-11-05.
220 Connection will close if idle for more than 5 minutes.
User (192.168.0.1:(none)): paolor2
331 Send password please.
Password: <--- type password
230 PAOLOR2 is logged on. Working directory is "PAOLOR2.".
ftp> get 'paolor2.md.unload.ebcdilob' unload_ebcdic_fixed.lob.txt ascii
200 Port request OK.
125 Sending data set PAOLOR2.MD.UNLOAD.EBCDILOB
250 Transfer completed successfully.

Load or import unload_ebcdic_fixed.lob.txt into distributed
Loading unload_ebcdic_fixed.lob.txt into the MARKOMP.LIT table can be accomplished using
the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
load from unload_ebcdic_fixed.lob.txt of ASC modified by nullindchar=0xFF STRIPTBLANKS
method l (4 28, 30 30, 72 75, 77 2128, 2134 12373) null indicators (3, 0, 71, 76, 2129)
replace into MARKOMP.LIT

For Version 7, if you are using the db2atld utility in a partitioned database environment, the
above load command can be used in the autoloader configuration file.

Importing into MARKOMP.LIT can be accomplished by using the following CLP commands:

Note: The flexible length positional ASC format is used here. This is indicated by the
lack of the RECLEN modifier being used in the load command. Also notice that the
STRIPTBLANKS modifier is being used here. Without specifying it, VARCHAR column
data would have been padded with trailing blanks.
292 Moving Data Across the DB2 Family

CONNECT TO distdb USER markomp USING aabbcc
import from unload_ebcdic_fixed.lob.txt of ASC modified by nullindchar=0xFF STRIPTBLANKS
method l (4 28, 30 30, 72 75, 77 2128, 2134 12373) null indicators (3, 0, 71, 76, 2129)
replace into MARKOMP.LIT

11.8 HPU for MP followed by Import or Load
This method of data movement is applicable when moving data within a distributed
environment.

Outline
1. Use the HPU to unload the data from the source table into a file or a named pipe.

Unloading to a named pipe provides the following benefits:

– You can save space in the file system, since no intermediate data file is generated.
– The exporting and loading/importing processes will be performed simultaneously.

2. The source table has to reside on the same machine where HPU runs.

3. There are restrictions on the file types allowed and whether or not using a named pipe is
allowed. Restrictions are listed in the next section.

4. If possible, use the Load utility to move the data from the file or pipe into the target table,
unless the amount of data to move is small (in which case, the import utility may perform
faster). In some situations, it will be necessary to use the Import utility.

Evaluation
� Restrictions:

– For the HPU for MP, see Chapter 8, “IBM DB2 High Performance Unload for
Multiplatforms” on page 193.

– For the Load or AutoLoader utility, see Chapter 6, “Load with DB2 Distributed” on
page 91.

– For the Import utility, see Chapter 5, “Export and Import with DB2 distributed” on
page 79.

– Do not specify a named pipe to unload into if you are generating LOB files.

– Currently supported formats are (see 11.1.1, “File format considerations” on page 269
before choosing which file format to use):

• DEL
• IXF

� Performance:

– Using the fastest tool available on both, source and target side
– Data retrieved from the source through a select statement only if

� Usability:

– The process is administered only on the distributed environment
– Need to manually manage files or named pipes

Note: For the SELECT statement used, it is recommended that you use one that
is a basic “SELECT * from table” or “SELECT col1,col2,etc from table”. If you
specify a statement that is too complex, HPU will invoke the Export utility, which
in most cases is not as fast.
Chapter 11. Moving data to DB2 Distributed 293

Examples
The following examples demonstrate how the data can be moved between distributed
systems.

Moving data from MIKEMP.EMP to MARKOMP.EMP using a file
To move data from the table MIKEMP.EMP to the table MARKOMP.EMP through HP unload to
a file, you can chose one of the following three examples:

� In example 1 we are working from two machines.

First, on the machine where distdb2 resides, run the following command to unload the
contents of the MIKEMP.EMP table into a data file emp.del:

db2hpu -d distdb2 -m hpunload.txt -o emp.del -t mikemp.emp -i db2inst3

Next, move the unloaded data file emp.del to the machine where distdb resides through
one of the following methods:

– FTPing the emp.del file to the machine.
– If you are in Windows, map the drive where emp.del was unloaded.

Next, load the data file using the following CLP commands (on the machine where distdb
resides):

CONNECT TO distdb USER markomp USING aabbcc
LOAD FROM emp.del OF del MESSAGES import.msg REPLACE INTO MARKOMP.EMP

� In example 2 we are working from the machine where distdb2 resides.

First, run the following command to unload the contents of the MIKEMP.EMP table into a
data file emp.del:

db2hpu -d distdb2 -m hpunload.txt -o emp.del -t mikemp.emp -i db2inst3

Next, import the data file using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
IMPORT FROM emp.del OF del MESSAGES import.msg REPLACE INTO MARKOMP.EMP

� In example 3 we are also working from the machine where distdb2 resides.

First, run the following command to unload the contents of the MIKEMP.EMP table into a
data file emp.del:

db2hpu -d distdb2 -m hpunload.txt -o emp.del -t mikemp.emp -i db2inst3

Next, load the data file using the following CLP commands:

CONNECT TO distdb USER markomp USING aabbcc
LOAD CLIENT FROM emp.del OF del MESSAGES import.msg REPLACE INTO MARKOMP.EMP

In example 3 we are using the CLIENT option, which allows us to instruct the load utility to
load data that exists on our client (the machine where distdb2 resides). Execute the load
command from the machine where distdb2 resides, while you are connected to a locally
cataloged version of the distdb database. emp.del exists on the machine where distdb2
resides.

Moving data from MIKEMP.EMP to MARKOMP.EMP using a named pipe
To move data from the host table MIKEMP.EMP to the distributed table MARKOMP.EMP
through HP unload to a named pipe, you must first create the named pipe. For this example,
we will assume that the distdb database (where the tables belongs) resides on a UNIX
distributed environment. We can create a named pipe called mypipe using the following
system command:

mknod mypipe p
294 Moving Data Across the DB2 Family

Next, to perform an HP unload and a simultaneous load, you can run two separate sessions
simultaneously as follows:

� Session 1 (system command):

db2hpu -d distdb2 -m hpunload.txt -o mypipe -t mikemp.emp -i db2inst3

� Session 2 (CLP):

CONNECT TO distdb USER markomp USING aabbcc
IMPORT FROM mypipe OF ixf MESSAGES load.msg REPLACE INTO MARKOMP.EMP
CONNECT RESET
Chapter 11. Moving data to DB2 Distributed 295

296 Moving Data Across the DB2 Family

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2003. All rights reserved. 297

298 Moving Data Across the DB2 Family

Appendix A. Defining a Federated Database

Federated Databases in a distributed environment provide a very effective means of moving
data. They are available on DB2 UDB Version 7 and above:

� They can be used in conjunction with the Export utility or the Cross Loader (on a
distributed platform) to move data out of any system that Federated Databases support.

� Data movement can also be performed through Federated Databases by executing an
SQL insert statement that contains a SELECT clause.

� It is even possible to perform a cross load on a mainframe environment that reads data
from a Federated Database through a three part name.

Version 8 includes many enhancements, the most important are:

� Additional data sources and operating systems

You can access Informix data sources, and, through DB2 Relational Connect, you can
access Microsoft SQL Server, Sybase, and ODBC data sources. The new Life Sciences
Data Connect enables you to access BLAST search algorithms, Documentum data files,
Microsoft Excel spreadsheets, table-structured files, and XML tagged files. All DB2
servers using Linux, HP-UX, and Windows 2000 operating systems can now be federated
servers.

� Write capability (or transparent DDL)

You can now issue INSERT, UPDATE, and DELETE statements on nicknames. This
enables DB2 replication to support replication to and from non-DB2 data sources. You can
also create remote tables on relational data sources.

� New federated DB2 Control Center support

Using the DB2 Control Center you can quickly create the wrappers, supply the server
definitions, identify user mappings, and create nicknames for the data source objects.
Additionally, the DB2 Control Center is the easiest way to create remote tables using
transparent DDL.

For more details on federated systems and Federated Databases, and of course specifics on
the new V8 functions, refer to the DB2 UDB Federated Systems Guide Version 8, SC09-4830.

A

© Copyright IBM Corp. 2003. All rights reserved. 299

A.1 Examples of creating Federated Databases
A Federated Database can be created using the following steps:

1. Update DATABASE MANAGER CONFIGURATION using FEDERATED YES.

2. CATALOG a node against the remote system.

3. Locally CATALOG the remote database against the node (not necessary for Version 7).

4. Create a database that will be used as the Federated Database, and CONNECT to it.

5. Create a WRAPPER that corresponds with the remote system.

6. Create a SERVER against the remote system that refers to the node just created, and the
database containing the remote system. Note that Version 7 and Version 8 differ in the
way that the database is referenced.

7. Create a USER MAPPING for the instance user against the SERVER just created.

8. Create a NICKNAME for the remote source.

What follows are examples on how to set up Federated Databases in both v7 and v8 using
CLP commands, against both a distributed environment and a mainframe environment, see
Figure A-1.

Figure A-1 Federated database setup examples

A.1.1 Federated database setup with DB2 V7
We show the setup steps for accessing both, the distributed and the mainframe
environments.
300 Moving Data Across the DB2 Family

A.1.1.1 Against a distributed environment
Suppose an instance user v7user wishes to set up a Federated Database fedv7 to be able to
access a table myschema.rmttable through a nickname chosen as v7schema.nickrmt.
myschema.rmttable resides in a remote database rmtdb, where rmtdb has the following
characteristics:

� rmtdb is a database on a DB2 UDB V7 system (distributed platform.)

� rmtdb resides on a remote machine named rmtsystm that is accessible through TCP/IP
port 34567.

� rmtdb can be accessed using the userid rmtuser and password rmtpwd.

The following steps should be taken:

1. Verify that the FEDERATED value of the DATABASE MANAGER CONFIGURATION is set
to YES. This can be accomplished through the following CLP command (note that the
instance must be stopped and restarted in order to have the change take effect):

UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

2. Verify that the DB2COMM registry variable is set to TCPIP. This can be accomplished
through the following system command (note that the instance must be stopped and
restarted in order to have the change take effect):

db2set DB2COMM=TCPIP

3. CATALOG a node against the remote system. For this example, the node will be called
distnode. CLP command:

CATALOG TCPIP NODE distnode REMOTE rmtsystm SERVER 34567

4. If the Federated Database fedv7 has not been created yet, then create it. CLP command:

CREATE DATABASE fedv7

5. Connect to fedv7. CLP command:

CONNECT TO fedv7

6. Create a WRAPPER that corresponds with the remote system. In this case, the correct
wrapper to choose is DRDA. CLP command:

CREATE WRAPPER DRDA

7. Create a SERVER against the remote system. For this example, the server will be called
distsrvr. CLP command:

CREATE SERVER distsrvr TYPE DB2/UDB VERSION 7.0.0 WRAPPER DRDA AUTHORIZATION
"rmtuser" PASSWORD "rmtpwd" OPTIONS (NODE 'distnode', DBNAME 'RMTDB')

8. Create a USER MAPPING for v7user against distsrvr. CLP command:

CREATE USER MAPPING FOR v7user SERVER distsrvr OPTIONS (REMOTE_AUTHID 'rmtuser',
REMOTE_PASSWORD 'rmtpwd')

Important: It is recommended that the DBNAME value (in this case, rmtdb) be
specified in uppercase.

Important: The meaning of the DBNAME value in the CREATE SERVER command
differs between version 7 and Version 8. When creating a SERVER for a version 7
Federated Database, the DBNAME refers to the name of the database on the
remote system. That database does not have to be CATALOGed locally before
creating the SERVER.
Appendix A. Defining a Federated Database 301

9. Create a NICKNAME for myschema.rmttable. CLP command:

CREATE NICKNAME v7schema.nickrmt FOR distsrvr.myschema.rmttable

A.1.1.2 Against a mainframe environment
The process of setting up a Federated Database against a mainframe environment is almost
identical to that of setting one up against a distributed environment. Please refer to
Appendix A.1.1.1, “Against a distributed environment” on page 301. The only changes to the
example would be:

� rmtdb is a database on a mainframe machine rmtsystm, running DB2 for z/OS and
OS/390 Version 7.

� The CREATE SERVER command is slightly different (its TYPE is DB2/MVS instead of
DB2/UDB):

CREATE SERVER distsrvr TYPE DB2/MVS VERSION 7.0.0 WRAPPER DRDA AUTHORIZATION
"rmtuser" PASSWORD "rmtpwd" OPTIONS (NODE 'distnode', DBNAME 'RMTDB')

A.1.2 Federated Database setup with DB2 V8
The process of setting up a Version 8 Federated Database is very similar to the Version 7
process. They differ mainly in the way the CREATE SERVER command is used. While for
Version 7, the DBNAME value refers to the name of the database on the remote system, for
Version 8, the database on the remote system must first be CATALOGed locally, and then
DBNAME value must refer to the locally CATALOGed database. Please refer to the following
examples for details:

A.1.2.1 Against a distributed environment
Suppose an instance user v8user wishes to set up a Federated Database fedv8 to be able to
access a table myschema.rmttable through a nickname chosen as v8schema.nickrmt.
myschema.rmttable resides in a remote database rmtdb, where rmtdb has the following
characteristics:

� rmtdb is a database on a DB2 UDB V7 system (distributed platform.)

� rmtdb resides on a remote machine named rmtsystm that is accessible through TCP/IP
port 34567.

� rmtdb can be accessed using the userid rmtuser and password rmtpwd.

The following steps should be taken:

1. Verify that the FEDERATED value of the DATABASE MANAGER CONFIGURATION is set
to YES. This can be accomplished through the following CLP command (note that the
instance must be stopped and restarted in order to have the change take effect):

UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

2. Verify that the DB2COMM registry variable is set to TCPIP. This can be accomplished
through the following system command (note that the instance must be stopped and
restarted in order to have the change take effect):

db2set DB2COMM=TCPIP

Note: In this example, distsrvr.myschema.rmttable refers to table
“myschema.rmttable” that resides in the SERVER “distsrvr”. To create additional
NICKNAMEs against the same server (meaning the same remote database), the
distsrvr SERVER can be used again (additional SERVERs do not need to be
created.)
302 Moving Data Across the DB2 Family

3. CATALOG a node against the remote system. For this example, the node will be called
distnode. CLP command:

CATALOG TCPIP NODE distnode REMOTE rmtsystm SERVER 34567

4. CATALOG the remote database against the node. For this example, the database will be
CATALOGed locally as rmtdblcl. CLP command:

CATALOG DATABASE rmtdb AS rmtdblcl AT NODE distnode

5. If the Federated Database fedv8 has not been created yet, then create it. CLP command:

CREATE DATABASE fedv8

6. Connect to fedv8. CLP command:

CONNECT TO fedv8

7. Create a WRAPPER that corresponds with the remote system. In this case, the correct
wrapper to choose is DRDA. CLP command:

CREATE WRAPPER DRDA

8. Create a SERVER against the remote system. For this example, the server will be called
distsrvr. CLP command:

CREATE SERVER distsrvr TYPE DB2/UDB VERSION 7.0.0 WRAPPER DRDA AUTHORIZATION
"rmtuser" PASSWORD "rmtpwd" OPTIONS (NODE 'distnode', DBNAME 'RMTDBLCL')

9. Create a USER MAPPING for v8user against distsrvr. CLP command:

CREATE USER MAPPING FOR v8user SERVER distsrvr OPTIONS (REMOTE_AUTHID 'rmtuser',
REMOTE_PASSWORD 'rmtpwd')

10.Create a NICKNAME for myschema.rmttable. CLP command:

CREATE NICKNAME v8schema.nickrmt FOR distsrvr.myschema.rmttable

A.1.2.2 Against a mainframe environment
The process of setting up a Federated Database against a mainframe environment is almost
identical to that of setting one up against a distributed environment. Please refer to
Appendix A.1.2.1, “Against a distributed environment” on page 302. The only changes to the
example would be:

Note: This step is only necessary for Version 8 Federated Databases.

Important: It is recommended that the DBNAME value (in this case, rmtdblcl) be
specified in uppercase.

Important: The meaning of the DBNAME value in the CREATE SERVER command
differs between version 7 and Version 8. When creating a SERVER for a Version 8
Federated Database, the DBNAME refers to a locally CATALOGed database. This
means that remote databases must first be CATALOGed locally before creating the
SERVER.

Note: In this example, distsrvr.myschema.rmttable refers to table
“myschema.rmttable” that resides in the SERVER “distsrvr”. To create additional
NICKNAMEs against the same server (meaning the same remote database), the
distsrvr SERVER can be used again (additional SERVERs do not need to be
created.)
Appendix A. Defining a Federated Database 303

� rmtdb is a database on a mainframe machine rmtsystm, running DB2 for z/OS and
OS/390 Version 7.

� CATALOGing the rmtdb database from the mainframe system requires that a DCS
database be CATALOGed against rmtdb, and then that the DCS database be
CATALOGed locally against the remote node (in this case, distnode). For this example,
the DCS database will be called rmtdbdcs:

CATALOG DCS DATABASE rmtdbdcs AS rmtdb
CATALOG DATABASE rmtdbdcs AS rmtdblcl AT NODE distnode AUTHENTICATION DCS

� The CREATE SERVER command is slightly different (its TYPE is DB2/MVS instead of
DB2/UDB):

CREATE SERVER distsrvr TYPE DB2/MVS VERSION 7.0.0 WRAPPER DRDA AUTHORIZATION
"rmtuser" PASSWORD "rmtpwd" OPTIONS (NODE 'distnode', DBNAME 'RMTDBLCL')

A.2 Server and wrapper type
Server types indicate what kind of data source the server will represent. Server types vary by
vendor, purpose, and platform. Supported values depend on the wrapper being used.

DRDA wrapper - DB2 Family
Table A-1 IBM DB2 Universal Database

Table A-2 IBM DB2 Universal Database for AS/400

Table A-3 IBM DB2 Universal Database for OS/390

Server type Data Source

DB2/UDB IBM DB2 Universal Database

DataJoiner IBM DB2 DataJoiner V2.1 and V.2.1.1

DB2/6000 IBM DB2 for UNIX

DB2/HPUX IBM DB2 for HP-UX V1.2

DB2/NT IBM DB2 for Windows NT

DB2/EEE IBM DB2 Enterprise-Extended Edition

DB2/SUN IBM DB2 for Solaris V1 and V1.2

DB2/2 IBM DB2 for OS/2

DB2/Linux IBM DB2 for Linux

DB2/PTX IBM DB2 for NUMA-Q

DB2/SCO IBM DB2 for SCO Unixware

Server type Data source

DB2/400 IBM DB2 for AS/400

Server type Data source

DB2/390 IBM DB2 for OS/390

DB2/MVS IBM DB2 for MVS
304 Moving Data Across the DB2 Family

Table A-4 IBM DB2 Server for VM and VSE

SQLNET wrapper
Table A-5 Oracle data sources supported by Oracle SQL*Net V1 or V2 client software

NET8 wrapper
Table A-6 Oracle data sources supported by Oracle Net8 client software

Other wrappers
Please consult wrapper documentation.

Server type Data source

DB2/VM IBM DB2 for VM

DB2/VSE IBM DB2 for VSE

DB2/DS IBM SQL/DS

Server type Data source

ORACLE Oracle V7.0.13 or later

Server type Data source

ORACLE Oracle V7.0.13 or later
Appendix A. Defining a Federated Database 305

306 Moving Data Across the DB2 Family

Appendix B. DB2 connectivity

In a distributed data environment, DB2 applications can access data at many different DB2
sites and at remote relational database systems.

A company's distributed environment relies on the distributed data facility (DDF), which is part
of DB2 for OS/390 and z/OS. DB2 applications can use DDF to access data at other DB2
sites and at remote relational database systems that support Distributed Relational Database
Architecture (DRDA). DRDA is a standard for distributed connectivity. All IBM DB2 servers
support this DRDA standard.

DDF also enables applications that run in a remote environment that supports DRDA. These
applications can use DB2 Connect and DDF to access data in DB2 servers on z/OS. DB2
Connect provides connectivity to mainframe or AS/400 from Windows, OS/2, and
UNIX-based platforms. You can connect to DB2 databases on AS/400, VSE, VM, MVS,
OS/390 and z/OS. You can also connect to non-IBM databases that comply with the
Distributed Relational Database Architecture (DRDA). DB2 Connect has several connection
solutions:

� Personal Edition, which provides direct connectivity to host or AS/400 databases

� Enterprise Edition, which provides indirect connectivity that allows clients to access host
or AS/400 databases through the DB2 Connect server

This appendix describes the minimum customizing the redbook team had to do:

� Communication database on DB2 for z/OS
� Cataloging the databases on DB2 distributed

Figure B-1 shows how the mainframe and the distributed environment is connected.

B

© Copyright IBM Corp. 2003. All rights reserved. 307

Figure B-1 A distributed data environment

When z/OS is the requestor, DDF will use the location part of the 3.part name to find correct
IP-address and portno to the server in its own CDB for the outgoing requests. This includes
user name and password as well:

SELECT * FROM SAMPAIX.DB2INST1.EMP

When distributed is the requestor, the DB2 subsystem on z/OS must be cataloged as a
database in the distributed system.The DDF verifies the incoming requests against the
SYSIBM.LUNAMES table in the CDB. If it is not a row with blank in the LUNAME column,
DB2 rejects client connections that do not explicitly state a valid LUNAME.

Solid lines indicates that z/OS is the requestor and
distributed is the server.

Dotted lines indicates that distributed is the requestor
and z/OS is the server.

z/OSz/OS

AIXAIX

DB2

WINDOWSWINDOWS

DB2

DDFDB2

CDB

DB2
Connect

DB2
Connect
308 Moving Data Across the DB2 Family

B.1 Communication database on DB2 for z/OS
The DDF uses the CDB to verify in- and outbound requests.

When sending a request from z/OS, DB2 uses the LINKNAME column of the
SYSIBM.LOCATIONS table to determine which protocol to use. If the value in the LINKNAME
column is found in the:

� SYSIBM.IPNAMES table, TCP/IP is used for DRDA connections
� SYSIBM.LUNAMES table, SNA is used

If the same name is in both SYSIBM.LUNAMES and SYSIBM.IPNAMES, TCP/IP is used to
connect to the location.

The table SYSIBM.LUNAMES defines the security and mode requirements for conversations
with other systems. Decisions about how to populate this table depend on how you intend to
use DB2:

� If you use this system only as a server, DB2 can use a blank in the LUNAME column as a
default.

� If this DB2 requests data from other systems, you need to provide LU names or IP names
for those systems.

If you do not have a row with a blank in the LUNAME column, DB2 rejects client connections
that do not explicitly state a valid LUNAME.

For details, see DB2 Universal Database for OS/390 and z/OS Installation Guide,
GC26-9936-02, and DB2 Universal Database for OS/390 and z/OS Administration Guide,
SC26-9931-02.

B.1.1 Populate the communication database
If you plan to use DB2 on the z/OS only as a server, you do not need to populate the CDB.
However, if you intend to request data, you need to enter rows in the tables:

� SYSIBM.LOCATIONS
� SYSIBM.IPNAMES
� SYSIBM.USERNAMES

B.1.1.1 SYSIBM.LOCATIONS table
The table LOCATIONS is used to determine the port number or service name used to
connect to the remote location. The column LINKNAME maps to the corresponding row in
table IPNAMES. Insert statement, see Example B-1.

LOACTIONS has the following columns:

LOCATION The unique network location name, or DRDA RDBNAM, assigned to a
system, remote or local. You must provide location names for any
systems that you request data from. This column is the primary key for
this table.

LINKNAME Identifies the TCP/IP attributes associated with this location. For each
LINKNAME specified, you must have a row in SYSIBM.IPNAMES
whose LINKNAME matches the value specified in this column.

Note: SYSIBM.LUNAMES must at least contain the default row inserted in the
DSNTIJSG installation job.
Appendix B. DB2 connectivity 309

Because this table is used for outbound requests, you must provide a
LINKNAME or your requests fail. Do not enter blanks in this column.

PORT The port number of the remote database server. The number must be
1 to 5 characters and left justified.

Example: B-1 Insert into LOCATIONS table

INSERT INTO SYSIBM.LOCATIONS (LOCATION, LINKNAME, PORT)
 VALUES ('SAMPAIX','DMAIX', '50000');
INSERT INTO SYSIBM.LOCATIONS (LOCATION, LINKNAME, PORT)
 VALUES ('SAMPWIN','DMWIN', '50000');

B.1.1.2 SYSIBM.IPNAMES table
IPNAMES defines the outbound security and host names used to connect to other systems
using TCP/IP. Insert statement; see Example B-2.

IPNAMES has the following columns:

LINKNAME This value matches that specified in the LINKNAME column of the
associated row in SYSIBM.LOCATIONS.

SECURITY_OUT Defines the security option that is used when local DB2 SQL
applications connect to any remote server associated with this TCP/IP
host. The default, A, means that outgoing connection requests contain
an authorization ID without a password.

USERNAMES This column is used for outbound requests to control translations of
authorization IDs. The values 'O' or 'B' are valid for TCP/IP
connections.

IPADDR This column contains the IP address or domain name of a remote
TCP/IP host. An IP address must be 1 to 15 characters and left
justified.

Example: B-2 Insert into IPNAMES table

INSERT INTO SYSIBM.IPNAMES (LINKNAME, SECURITY_OUT, USERNAMES, IPADDR)
 VALUES ('DMAIX', 'P', 'O', '9.1.38.177');
INSERT INTO SYSIBM.IPNAMES (LINKNAME, SECURITY_OUT, USERNAMES, IPADDR)
 VALUES ('DMWIN', 'P', 'O', '9.1.39.42');

B.1.1.3 SYSIBM.USERNAMES table
USERNAMES contains information needed for outbound translation only. Reminder: Inbound
ID translation and come from checking are not done for TCP/IP requesters. Insert statement,
see Example B-3.

USERNAMES has the following columns:

TYPE Whether the row is for outbound translation. The value 'O' is valid for
TCP/IP connections.

AUTHID Authorization ID to translate. If blank, it applies to all authorization IDs.

Restriction: Column LOCATION is the primary key in the LOCATIONS table, which means
you have to create alias on databases with the same name.
310 Moving Data Across the DB2 Family

LINKNAME Identifies the TCP/IP network location associated with the row. A blank
indicates it applies to all TCP/IP partners. For non blank values, this
value must match the LINKNAME value in SYSIBM.IPNAMES.

NEWAUTHID The translated value of AUTHID.

PASSWORD The password to accompany an outbound request. This column is
ignored if RACF PassTickets, or already verified USERIDs are used.

Example: B-3 Insert into USERNAMES table

INSERT INTO SYSIBM.USERNAMES (TYPE, LINKNAME, NEWAUTHID, PASSWORD)
 VALUES ('O', 'DMAIX', 'db2inst1', 'xxxxxxxx');
INSERT INTO SYSIBM.USERNAMES (TYPE, LINKNAME, NEWAUTHID, PASSWORD)
 VALUES ('O', 'DMWIN', 'db2admin', 'xxxxxxxx');

B.1.2 CDB tables with contents
After inserting the rows described in Chapter B.1.1, “Populate the communication database”
on page 309 the content should look like Example B-4:

Example: B-4 Rows in CDB tables

SYSIBM.LOCATIONS

LOCATION LINKNAME IBMREQD PORT TPN
---------+---------+---------+---------+---------+---------+---------+---------+
SAMPAIX DMAIX N 50000
SAMPWIN DMWIN N 50000

SYSIBM.IPNAMES

LINKNAME SECURITY_OUT USERNAMES IBMREQD IPADDR
---------+---------+---------+---------+---------+---------+---------+---------+
DMAIX P O N 9.1.38.177
DMWIN P O N 9.1.39.42

SYSIBM.USERNAMES

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD IBMREQD
---------+---------+---------+---------+---------+---------+---------+---------+
O DMAIX db2inst1 xxxxxxxx N
O DMWIN db2admin xxxxxxxx N

You should ensure that the LUNAMES table contains at least the row shown in Example B-5
and that the LUNAME is blank:

Example: B-5 Rows in LUNAMES table

SYSIBM.LUNAMES

LUNAME SYSMODENAME SECURITY_IN SECURITY_OUT ENCRYPTPSWDS MODESELECT USERNAMES GENERIC IBMR
-------+--------+--------+--------+---------+--------+--------+---------+----------+-------
 A A N N N N
Appendix B. DB2 connectivity 311

B.1.3 Test the connectivity

From SPUFI you can try the following select:

SELECT * FROM SAMPAIX.DB2INST1.DEPARTMENT ORDER BY 1;

If you get a SQL -805 on package DSNESM68 shown in Example B-6, you have to bind it
shown in Example B-7.

Example: B-6 SQL -805 in SPUFI

DSNT408I SQLCODE = -805, SQLSTATE = 51002, INVALID APPLICATION STATE FROM
 OS/2 TOKENS DSNESPCS.DSNESM68

Example: B-7 Bind SPUFI cursor stability plan

BIND PACKAGE (SAMPAIX.DSNESPCS) MEMBER(DSNESM68) -
 LIB('DB2G7.SDSNDBRM') -
 ISOLATION(CS) -
 ACTION(REPLACE)

Be aware of the warnings you get in the bind result, see Example B-8:

Example: B-8 Result from the bind

DSN
 BIND PACKAGE (SAMPAIX.DSNESPCS) MEMBER(DSNESM68)
 LIB('DB2G7.SDSNDBRM') ISOLATION(CS)
WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"
WARNING, ONLY IBM-SUPPLIED PACKAGE-IDS SHOULD BEGIN WITH "DSN"
DSNT232I -DB2G SUCCESSFUL BIND FOR
 PACKAGE = SAMPAIX.DSNESPCS.DSNESM68.()
DSN

Example B-9 shows the result from a SQL statement where the location name is not defined
in the CDB:

SELECT * FROM AIXSAMP.DB2INST1.STAFF

Example: B-9 The location name of the remote site is not defined in the CDB

DSNT408I SQLCODE = -950, ERROR: THE LOCATION NAME SPECIFIED IN THE CONNECT
 STATEMENT IS INVALID OR NOT LISTED IN THE COMMUNICATIONS DATABASE

Example B-10 shows the result set from a successful execution in SPUFI:

Important: You have to stop and start the DB2 DDF address space to make the changes
in the CDB tables effective. If not, this error occurs when you try a select:

SQLCODE = -30061, ERROR: RDB NOT FOUND

Note: If you are using repeatable read, you also have to bind the DSNESPRR plan
qualified with the same location name.
312 Moving Data Across the DB2 Family

Example: B-10 Result set from the DEPARTMENT table on AIX in SPUFI

********************************* Top of Data **********************************
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT * FROM SAMPAIX.DB2INST1.DEPARTMENT ORDER BY 1; 00020009
---------+---------+---------+---------+---------+---------+---------+---------+
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
---------+---------+---------+---------+---------+---------+---------+---------+
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00 ----------------
B01 PLANNING 000020 A00 ----------------
C01 INFORMATION CENTER 000030 A00 ----------------
D01 DEVELOPMENT CENTER ------ A00 ----------------
D11 MANUFACTURING SYSTEMS 000060 D01 ----------------
D21 ADMINISTRATION SYSTEMS 000070 D01 ----------------
E01 SUPPORT SERVICES 000050 A00 ----------------
E11 OPERATIONS 000090 E01 ----------------
E21 SOFTWARE SUPPORT 000100 E01 ----------------
DSNE610I NUMBER OF ROWS DISPLAYED IS 9
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE617I COMMIT PERFORMED, SQLCODE IS 0

B.2 Cataloging the databases on DB2 distributed
In the following, there are screen shots to show how do define the connection to the
mainframe to be used by DB2 Connect.

The easiest way to set up the mainframe connection is to use the Client Configure Assistant.
DB2 have to be installed and activate the wizard like this:

start menu ==> Program ==> IBM DB2 ==> Client Configuration Assistant

During this project we used DB2 subsystem DB2G on the mainframe in Poughkeepsie.
Figure B-2 shows the first window and the databases that are configured. Push the ADD
button.

Note: To activate the connection to the database on windows, you have to bind the
DSNESPCS and DSNESPRR plans qualified with the actual location name. In this
scenario, it means SAMPWIN.
Appendix B. DB2 connectivity 313

Figure B-2 Client Configuration Assistant — Available DB2 databases

If the IP-address is known, choose Manually In Figure B-3 and press the Next button.

Figure B-3 Client Configuration Assistant 1 — Source
314 Moving Data Across the DB2 Family

Choose options as shown In Figure B-4 and press the Next button.

.

Figure B-4 Client Configuration Assistant 2 — Source

Type the IP-address and the Port number to the mainframe as shown In Figure B-5 and press
the Next button.

Figure B-5 Client Configuration Assistant 3 — TCP/IP

Type the subsystem name on the mainframe as shown In Figure B-6 and press the Next
button. Use the comment field for more details.
Appendix B. DB2 connectivity 315

Figure B-6 Client Configuration Assistant 4 — Database

The following 4 windows are optional and we did not fill them out:

� 5 — ODBC
� 6 — Node options
� 7 — Security options
� 8 — Host options

After the eight windows, test the connection as shown In Figure B-7. When you get The
connection test was successful click the OK button. Hopefully, the mainframe connection
is added to list of available databases in Figure B-2.
316 Moving Data Across the DB2 Family

Figure B-7 Client Configuration Assistant — Test connection

The equivalent test connection CLP script to the sequence of panels in Figure B-7 is listed in
Figure B-11.

Example: B-11 Test connection CLP script

catalog tcpip node hostnode remote 9.12.6.8 server 33378;
catalog DB2G as DB2G at node hostnode authentication dcs:
connect to DB2G user paolor2 using xxxxxx;
Appendix B. DB2 connectivity 317

318 Moving Data Across the DB2 Family

Appendix C. Migrating to DB2 distributed V8

Moving data across the DB2 Family sometimes also includes migrating to a new DB2 version.
Migrating your database is data movement that involves moving not just individual tables, but
also the DDL used to create the tables, and other table definitions like referential integrity.
Planning is essential before you do your database migration. It is prudent to have an overview
of all the steps that you are going to make before you actually start. Failure to do so may
require the whole operation to be restarted due to error.

Although there are also some post-operation tasks that should be done in single table data
movements like Unload and Load operation. We will discuss these tasks on the chapter that
refer specifically to that tool or utility.

C

© Copyright IBM Corp. 2003. All rights reserved. 319

C.1 Migration restrictions
There are certain pre-conditions or restrictions that you should be aware of before attempting
to migrate your database.

Migration is only supported from DB2 UDB V6 and later releases, and also Data Joiner
V2.1.1. Migration from DB2 V1.2. Parallel Edition is not supported. Earlier versions of DB2
(Database Manager) must be migrated to V5.x or V6 before being migrated to a later release.

1. The migration command has to be issued from a client level corresponding to the release
level of the new database server. Migration from a down-level client is not supported.

2. Migration between platforms is not supported.

3. User objects within your database cannot have object names identical to reserved schema
names existing in the new release. These reserved schema names include: SYSCAT,
SYSSTAT and SYSFUN.

4. User-defined distinct types using the names BIGINT, REAL, DATALINK, or REFERENCE
must be renamed before migrating the database.

5. You cannot migrate a database that is in one of the following states:

– Backup pending
– Roll-forward pending
– One or more table spaces not in a normal state
– Transaction inconsistent

Restoration of down-level database backups is supported, but the rolling forward of
down-level logs is not supported.

C.2 Pre- and post-migration tasks
Following are the steps you must take to migrate your database to DB2 version 8. The
database manager must be started before migration can begin.

Pre-migration tasks
The pre-migration steps must be done on a previous release (that is, on your current release
before migrating to, or installing, the new release.)

1. Verify that there are no unresolved issues that pertain to “Migration restrictions” section.

2. Disconnect all applications and end users from each database being migrated (use the
LIST APPLICATIONS command, or the FORCE APPLICATIONS command, as
necessary.)

3. Use the DB2CKMIG pre-migration utility to determine if the database can be migrated (for
detailed information about using this utility, see the Quick Beginnings book for your
platform). Note that on Windows NT or OS/2, you are prompted to run this tool during
installation, but on UNIX based systems, this tool is invoked automatically during instance
migration.

4. Back up your database.

Migration is not a recoverable process. If you back up your database before the Version 6
reserved schema names are changed, you will not be able to restore the database using DB2
UDB Version 8. To restore the database, you will have to use your previous version of the
database manager.
320 Moving Data Across the DB2 Family

You should also be aware that any database transactions done between the time the backup
was taken and the time that the upgrade to Version 8 is completed are not recoverable. That
is, if at some time following the completion of the installation and migration to Version 8, the
database needs to be restored (to a Version 8 level), the logs written before Version
8installation cannot be used in roll-forward recovery.

Post-migration tasks on DB2 Version 8
1. Optionally, use the DB2UIDDL utility to facilitate the management of a staged migration of

unique indexes on your own schedule. (DB2 Version 5 databases that were created in
Version 5 do not require this tool to take advantage of deferred uniqueness checking,
because all unique indexes created in Version 5 have these semantics already. However,
for databases that were previously migrated to Version 5, these semantics are not
automatic, unless you use the DB2UIDDL utility to change the unique indexes.) This utility
generates CREATE UNIQUE INDEX statements for unique indexes on user tables, and
writes them to a file. Running this file as a DB2 CLP command file results in the unique
index being converted to Version 8 semantics. For detailed information about using this
utility, refer to one of the Quick Beginnings books.

2. Optionally, issue the RUNSTATS command against tables that are particularly critical to
the performance of SQL queries. Old statistics are retained in the migrated database, and
are not updated unless you invoke the RUNSTATS command.

3. Optionally, use the DB2RBIND utility to revalidate all packages, or allow package
revalidation to occur implicitly when a package is first used.

4. Optionally, migrate Explain tables if you are planning to use them in Version 8. For more
information, see the SQL Explain Facility in the Administration Guide: Performance.

5. Tune your database and database manager configuration parameters to take advantage
of Version 8 enhancements.

Attention: If you do not have a backup of your database, and the migration fails, you will
have no way of restoring your database using DB2 UDB Version 8, or your previous version
of the database manager.
Appendix C. Migrating to DB2 distributed V8 321

322 Moving Data Across the DB2 Family

Appendix D. DB2 UDB for z/OS Unload
options

This appendix can be used as references while choosing the Unload options. More
information in DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference,
SC26-9945-03.

DATA
Identifies the data selected for unloading with table-name in the from-table-spec. The DATA
keyword is mutually exclusive with TABLESPACE, PART and LIST keywords and
from-copy-spec.

When you specify the DATA keyword, or you omit either the TABLESPACE or the LIST
keyword, you must also specify at least one FROM TABLE clause.

TABLESPACE
Specifies the table space (and, optionally, the database to | which it belongs) from which the
data is unloaded.

database-name
The name of the database to which the table space belongs. The name cannot be DSNDB01
or DSNDB07.

The default is DSNDB04.

tablespace-name
The name of the table space from which the data is unloaded. The specified table space must
not be a LOB table space.

PART
Identifies a partition or a range of partitions from which the data is unloaded. This keyword
applies when the specified table space is partitioned; it cannot be specified with LIST. The
maximum is 254.

D

© Copyright IBM Corp. 2003. All rights reserved. 323

integer
Designates a single partition. integer must be an existing partition number within the table
space.

int1:int2
Designates a range of partitions from int1 to int2. int1 must be a positive integer that is less
than the highest partition number within the table space. int2 must be an integer greater than
int1 and less than or equal to the highest partition number.

If no PART keyword is specified in an UNLOAD control statement, the data from the entire
table space will be unloaded into a single unload data set.

FROMCOPY data-set-name
Indicates that data is unloaded from an image copy data set. When you specify FROMCOPY,
the Unload utility processes only the specified image copy data set. Alternatively, the
FROMCOPYDDN keyword can be used where multiple image copy data sets can be
concatenated under a single DD name.

data-set-name
Specifies the name of a single image copy data set.

The FROMCOPY image copy data set must have been created by one of the following
utilities:

� COPY

� # COPYTOCOPY

� LOAD inline image copy

� MERGECOPY

� REORG TABLESPACE inline image copy

� DSN1COPY

If the specified image copy data set is a full image copy, either compressed or uncompressed
records can be unloaded.

If the specified image copy data set is an incremental image copy or a copy of a partition or
partitions, you can unload compressed records only when the same data set contains the
dictionary pages for decompression. If an image copy data set contains a compressed row
and a dictionary is not available, then DB2 issues an error message.

When you specify FROMCOPY or FROMCOPYDDN, you can also specify selection criteria
with either PART, or FROM TABLE, or both, to qualify tables and rows to be unloaded.

FROMVOLUME
Identifies the image copy data set.

CATALOG
Identifies that the data set is cataloged. Use this option only for an image copy that was
created as a cataloged data set (its volume serial is not recorded in SYSIBM.SYSCOPY.)
324 Moving Data Across the DB2 Family

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its first volume. Use this
option only for an image copy that was created as a non-cataloged data set. To locate a data
set stored on multiple tape volumes, specify the first vol-ser in the SYSCOPY record.

FROMCOPYDDN ddname
Indicates that data is unloaded from one or more image copy data sets associated with the
specified DDNAME. Multiple image copy data sets (primarily for copy of pieces) can be
concatenated under a single DD name.

ddname
Identifies a DD name with which one or more image copy data sets are associated.

LIST listdef-name
Identifies the name of a list of objects that are defined by a LISTDEF utility control statement.
Index spaces, LOB table spaces, and directory objects must not be included in the list. You
cannot use the LIST option to specify image copy data sets.

When you specify the LIST option, the referenced LISTDEF identifies:

� The table spaces from which the data is unloaded (you can use the pattern-matching
feature of LISTDEF.)

� The partitions (if a table space is partitioned) from which the data is unloaded (defined by
the INCLUDE, EXCLUDE and PARTLEVEL keywords in the LISTDEF statement.)

The Unload utility associates a single table space with one output data set, except when
partition-parallelism is activated. When you use the LIST option with a LISTDEF that
represents multiple table spaces, you must also define a data set TEMPLATE that
corresponds to all the table spaces and specify the template-name in the UNLDDN option.

If you want to generate the LOAD statements, you must define another TEMPLATE for the
PUNCHDDN data set that is similar to UNLDDN. DB2 then generate a LOAD statement for
each table space.

PUNCHDDN
Specifies the DD name for a data set, or a template name, that defines one or more data set
names to receive the LOAD utility control statements that the Unload utility generates.

ddname
Specifies the DD name. The default is SYSPUNCH.

template-name
Identifies the name of a data set template that is defined by a TEMPLATE utility control
statement.

If the name is defined as a DD name by the JCL, it is treated as the DD name.

When you run the Unload utility for multiple table spaces and you want to generate
corresponding LOAD statements, you must have multiple output data sets that correspond to
the table spaces so that DB2 retains all of the generated LOAD statements. In this case, you
must specify an appropriate template name to PUNCHDDN. If you omit the PUNCHDDN
specification, the LOAD statements are not generated.
Appendix D. DB2 UDB for z/OS Unload options 325

If the partition variable (&PART. or &PA). is included in a TEMPLATE for PUNCHDDN, DB2
replaces the &PART. or &PA. variable with the lowest partition number in the list of partitions
to be unloaded. The partition number is in the form nnnnn.

UNLDDN
Specifies the DD name for a data set or a template name that defines one or more data set
names into which the data is unloaded.

ddname
Specifies the DD name. The default is SYSREC.

template-name
Identifies the name of a data set template that is defined by a TEMPLATE utility control
statement.

If the specified name is defined both as a DDNAME (in the JCL) and as a template name (a
TEMPLATE statement), it is treated as the DDNAME.

When you run the Unload utility for a partitioned table space, the selected partitions are
unloaded in parallel if a template name is specified in UNLDDN and the template data set
name contains the partition as a variable (&PART. or &PA.). In this case, the template is
expanded into multiple data sets that correspond to the selected partitions. For example, the
data from partitions 2 and 5 of the table space testdb.testtsp1 are unloaded in parallel into two
data sets by using the following utility statement:

TEMPLATE unldtemp
DSNAME(&DBNAME..&TSNAME..P&PART.)

LISTDEF unldlist
INCLUDE TABLESPACE testdb.testtsp1 PARTLEVEL (2)
INCLUDE TABLESPACE testdb.testtsp1 PARTLEVEL (5)

UNLOAD LIST unldlist UNLDDN unldtempl ...

Similarly, when you run the Unload utility for multiple table spaces, the output records are
placed in data sets that correspond to the respective table spaces; therefore, the output data
sets must be physically distinctive, and you must specify an appropriate template name to
UNLDDN. If you omit the UNLDDN specification, the SYSREC DDNAME is not used and an
error occurs.

If the partition variable (&PART. or &PA). is included in TEMPLATE DSNAME when the
partition parallelism is not applicable (when the source is a non-partitioned table space or an
image copy), the variable is replaced by '00000' in the actual data set name. In this case,
warning message DSNU 1252 is issued, and the Unload utility issues return code 4.

EBCDIC
Specifies that all output data of the character type will be in EBCDIC. If a different encoding
scheme is used for the source data, the data is converted into EBCDIC (except for bit strings.)

If you do not specify either EBCDIC, ASCII, UNICODE, or CCSID, the encoding scheme of
the source data is preserved.

See the description of the CCSID option for this utility.

ASCII
Specifies that all output data of the character type will be in ASCII. If a different encoding
scheme is used for the source data, the data is converted into ASCII (except for bit strings.)
326 Moving Data Across the DB2 Family

If you do not specify either EBCDIC, ASCII, UNICODE, or CCSID, the encoding scheme of
the source data is preserved.

See the description of the CCSID option for this utility.

UNICODE
Specifies that all output data of the character type will be in UNICODE (except for bit strings.)
If a different encoding scheme is used for the source data, the data is converted into
UNICODE.

If you do not specify either EBCDIC, ASCII, UNICODE, or CCSID, the encoding scheme of
the source data is preserved. See the description of the CCSID option of this utility.

CCSID
Specifies up to three coded character set identifiers (CCSIDs) to be used for the data of
character type in the output records, including data unloaded in the external character
formats.It is coded as:

CCSID(integer1,integer2,integer3)

Iinteger1 specifies the CCSID for SBCS data.

� integer2 specifies the CCSID for mixed data.

� integer3 specifies the CCSID for DBCS data. This option is not applied to data with a
subtype of BIT.

The following specifications are also valid:

� CCSID(integer1)

 Only an SBCS CCSID is specified.

� CCSID(integer1,integer2)

 An SBCS CCSID and a mixed CCSID are specified.

– integer

Valid CCSID specification or 0.

If you specify an argument as 0 or omit an argument, the encoding scheme specified by
EBCDIC, ASCII, or UNICODE is assumed for the corresponding data type (SBCS, MIXED, or
DBCS). If you do not specify either EBCDIC, ASCII, or UNICODE:

If the source data is of character type, the original encoding scheme is preserved. For
character strings that are converted from numeric data, date, time or timestamp, the default
encoding scheme of the table is used. For more information, see the CCSID option of the
CREATE TABLE statement in Chapter 5 of DB2 SQL Reference.

When a CCSID conversion is requested, CCSID character substitutions can occur in the
output string. Use the NOSUBS option to prevent possible character substitutions during
CCSID conversion.

NOSUBS
Specifies that CCSID code substitution is not to be performed during unload processing.

When a string is converted from one CCSID to another (including EBCDIC, ASCII, and
UNICODE), a substitution character is sometimes placed in the output string. For example,
this substitution occurs when a character (referred to as a codepoint) that exists in the source
Appendix D. DB2 UDB for z/OS Unload options 327

CCSID does not | exist in the target CCSID. You can use the NOSUBS keyword to | prevent
the Unload utility from allowing this substitution.

If you specify the NOSUBS keyword and character substitution is attempted while unloading
data, it is treated as a conversion error. The record with the error is not unloaded, and the
process continues until the total error count reaches the number specified by MAXERR.

NOPAD
Specifies that the variable length columns in the unloaded records occupy the actual data
length without additional padding. As a result, the unloaded or discarded records might have
varying lengths.

When you do not specify NOPAD, default UNLOAD processing pads variable length columns
in the unloaded records to their maximum length, and the unloaded records have the same
length for each table.

The padded data fields are preceded by the length fields that indicate the size of the actual
data without the padding.

When the output records are reloaded using the LOAD utility, padded data fields are treated
as varying length data.

While LOAD processes records with variable length columns that are unloaded or discarded
by using the NOPAD option, these records cannot be processed by applications that only
process fields in fixed positions. For example, the LOAD statement generated for the EMP
sample table would look similar to the LOAD statement shown.

FLOAT
Specifies the output format of the numeric floating point data. This option applies to the binary
output format only.

S390
Indicates that the binary floating point data is written to the output records in the S/390®
internal format (also known as the hexadecimal floating point or HFP.)

The default is FLOAT S390.

IEEE
Indicates that the binary floating point data is written to the output records in the IEEE format
(also known as the binary floating point or BFP). The IEEE option is applicable only when
OS/390 Version 2 Release 6 or a subsequent version is installed, and a G5 or above
processor is present.

MAXERR
Specifies the maximum number of records in error that are allowed; the unloading process
terminates when this value is reached. It is coded as:

MAXERR integer

This value specifies the number of records in error that are allowed. When the error count
reaches this number, the Unload utility issues message DSNU1219 and terminates with
return code 8.
328 Moving Data Across the DB2 Family

The default is 1, which indicates that Unload stops when the first error is encountered. If you
specify 0 or any negative number, execution continues regardless of the number of records in
error.

If multiple table spaces are being processed, the number of records in error is counted for
each table space. If the LIST option is used, you can add OPTION utility control statement
(EVENT option with ITEMERROR) before the UNLOAD statement to specify that the table
space in error is skipped and the subsequent table spaces are processed.

SHRLEVEL
Specifies whether other processes can access or update the table space or partitions while
the data is being unloaded.

Unload ignores the SHRLEVEL specification when the source object is an image copy data
set. The default is SHRLEVEL CHANGE ISOLATION CS.

CHANGE
Specifies that rows can be read, inserted, updated, and deleted from the table space or
partition while the data is being unloaded.

ISOLATION
Specifies the isolation level with SHRLEVEL CHANGE.

CS
Indicates that the Unload utility reads rows in cursor stability mode. With CS, the Unload utility
assumes CURRENTDATA(NO.)

UR
Indicates that uncommitted rows, if they exist, are unloaded. The unload operation is
performed with minimal interference from the other DB2 operations that are applied to the
objects from which the data is being unloaded.

REFERENCE
Specifies that during the unload operation, rows of the tables can be read, but cannot be
inserted, updated, nor deleted by other DB2 threads.

When you specify SHRLEVEL REFERENCE, the Unload utility drains writers on the table
space from which the data is to be unloaded. When data is unloaded from multiple partitions,
the drain lock will be obtained for all of the selected partitions in the UTILINIT phase.
Appendix D. DB2 UDB for z/OS Unload options 329

330 Moving Data Across the DB2 Family

ronyms
AIX Advanced Interactive eXecutive
from IBM

APAR authorized program analysis report

AR access register

ARM automatic restart manager

ART access register translation

ASCII American National Standard Code
for Information Interchange

BLOB binary large object

CCA client configuration assistant

CCSID coded character set identifier

CD compact disk

CEC central electronics complex

CF coupling facility

CFCC coupling facility control code

CFRM coupling facility resource
management

CLI call level interface

CLOB character large object

CLP command line processor

CPU central processing unit

CRLF carriage return and line feed

CSA common storage area

CTT created temporary table

DAD document access definition

DASD direct access storage device

DAT dynamic address translation

DB2 PM DB2 performance monitor

DBAT database access thread

DBCLOB double byte character large object

DBET database exception tables states

DBD database descriptor

DBID database identifier

DBMS database management system

DBRM database request module

DCL data control language

DDCS distributed database connection
services

DDF distributed data facility

DDL data definition language

DEL delimited ASCII

Abbreviations and ac
© Copyright IBM Corp. 2003. All rights reserved.
DLL dynamic load library manipulation
language

DML data manipulation language

DNS domain name server

DPSI data partitioned secondary index

DRDA distributed relational database
architecture

DSC dynamic statement cache, local or
global

DTT declared temporary tables

EA extended addressability

EBCDIC extended binary coded decimal
interchange code

ECS enhanced catalog sharing

ECSA extended common storage area

EDM environment descriptor
management

ENFM enabling new function mode

ERP enterprise resource planning

ESA Enterprise Systems Architecture

ESS Enterprise Storage Server

ETR external throughput rate, an
elapsed time measure, focuses on
system capacity

FDT functional track directory

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

GBP group buffer pool

GRS global resource serialization

GUI graphical user interface

HA Host adapter

HFS Hierarchical File System

HPJ high performance Java

I/O input/output

IBM International Business Machines
Corporation

ICF integrated catalog facility

ICF integrated coupling facility

ICMF internal coupling migration facility

IFCID instrumentation facility component
identifier

IFI instrumentation facility interface
 331

IPLA IBM Program Licence Agreement

IRLM internal resource lock manager

IRWW IBM Relational Warehouse
Workload

ISPF interactive system productivity
facility

ISV independent software vendor

ITR internal throughput rate, a
processor time measure, focuses
on processor capacity

ITSO International Technical Support
Organization

IVP installation verification process

IXF integration exchange format

JDBC Java Database Connectivity

JFS journaled file systems

JIT Just in time (Java compiler)

JNI Java Native Interface

JVM Java Virtual Machine

KB kilobyte (1,024 bytes)

LCU logical control unit

LOB large object

LPAR Logical Partition

LPL logical page list

LRECL logical record length

LRSN log record sequence number

LVM logical volume manager

MB megabyte (1,048,576 bytes)

MSM Multidimensional Storage Manager

NPI non partitioning index

NVS Non Volatile Storage

ODB object descriptor in DBD

ODBC Open Data Base Connectivity

OLAP Online Analytical Processing

OS/390 Operating System/390

PAV Parallel Access Volume

PDS partitioned data set

PIB parallel index build

PSID page set identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

QBIC query by image content

QMF Query Management Facility

RACF Resource Access Control Facility

RBA relative byte address

RECFM record format

RID record identifier

ROT rule of thumb

RR repeatable read

RRS resource recovery services

RRSAF resource recovery services attach
facility

RS read stability

RSM Relational Resource Manager

RTS real time statistics

RVA RAMAC Virtual Array

SDK software developers kit

SMIT System Management Interface Tool

SVL IBM Silicon Valley Laboratory

TCB Task control block

USS UNIX System Services

WAS WebSphere Application Service

WLM Workload Manager

WSF worksheet file format
332 Moving Data Across the DB2 Family

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 334.

� DB2 for z/OS and OS/390 Version 7 Using the Utilities Suite, SG24-6289

� DB2 for z/OS and OS/390 Version 7 Performance Topics, SG24-6129

� DB2 for z/OS and OS/390 Tools for Performance Management, SG24-6508

� DB2 UDB Server for OS/390 and z/OS Version 7 Presentation Guide, SG24-6121

� DB2 for z/OS DM Tools for Database Administration and Change Management,
SG24-6420-00

� DB2 Web Query Tool Version 1.2, SG24-6832

� A Practical Guide to DB2 UDB Data Replication V8, SG24-6828

� DB2 Warehouse Management: High Availability and Problem Determination Guide,
SG24-6544

� Large Objects with DB2 for z/OS and OS/390, SG24-6571

Other resources
These IBM publications are also relevant as further information sources:

� DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference, SC26-9945-03

� DB2 UDB for OS/390 and z/OS Version 7 Application Programming and SQL Guide,
SC26-9933

� DB2 UDB for OS/390 and z/OS Version 7 Programming Guide and Reference for Java,
SC26-9932

� DB2 UDB for OS/390 and z/OS Version 7 Administration Guide, SC26-9931-03

� DB2 UDB Quick Beginnings for DB2 Servers Version 8, SC09-4836

� DB2 UDB Administration Guide: Performance Version 8, SC09-4821

� DB2 UDB Administrative API Reference, SC09-4824

� DB2 UDB Data Movement Utilities Guide and Reference Version 8, SC09-4830

� DB2 UDB Federated Systems Guide Version 8, SC09-4830

� DB2 UDB Command Reference Version 8, SC09-4828

� DB2 Connect User’s Guide Version 8, SC09-4835

� DB2 High Performance Unload for z/OS Version 2 Release 1, SC27-1602

� DB2 High Performance Unload for Multiplatforms Version 2 Release 1, SC27-1623-01

� DB2 Data Export Facility for z/OS Version 1 Release 1, SC27-1466

� DB2 Replication Guide and Reference, SC26-9920-00
© Copyright IBM Corp. 2003. All rights reserved. 333

� DB2 Web Query Tool User’s Guide, SC27-0971-05

� Data Warehouse Center Administration Guide, SC26-9993-01

� Information Integration, IBM Systems Journal - Vol. 41, No. 4, 2002, G321-0147

Referenced Web sites
These Web sites are also relevant as further information sources:

� DB2 UDB distributed V8 beta code and manuals

http://www.ibm.com/db2/v8beta/

� IBM Data Management home page

http://www.ibm.com/software/data

� IBM Data Management Tools

http://www.ibm.com/software/data/db2imstools/

� DB2 support, online manuals

http://www.ibm.com/software/data/support

� DB2 service and FixPaks

http://www.ibm.com/cgibin/db2www/data/db2/udb/winos2unix/support/help.d2w/report

� DB2 white papers

http://www.ibm.com/software/data/pubs/papers

� DB2 for UNIX and Windows manuals and support

http://www.ibm.com/software/data/db2/udb/winos2unix/support

� DB2 UDB for Windows

http://www.ibm.com/software/data/db2/udb/udb-nt

� DB2 UDB LUW manuals

http://www.ibm.com/cgi-bin/

� DM Tools support information

http://www.ibm.com/support/search

� DB2 for z/OS Version 8 information

http://www.ibm.com/software/data/db2/os390/db2zosv8.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the
following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from
that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
334 Moving Data Across the DB2 Family

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/db2/v8beta/
http://www.ibm.com/software/data
http://www.ibm.com/software/data/db2imstools/
http://www.ibm.com/software/data/support
http://www.ibm.com/cgibin/db2www/data/db2/udb/winos2unix/support/help.d2w/report
http://www.ibm.com/software/data/pubs/papers
http://www.ibm.com/software/data/db2/udb/winos2unix/support
http://www.ibm.com/software/data/db2/udb/udb-nt
http://www.ibm.com/support/search
http://www.ibm.com/software/data/db2/os390/db2zosv8.html

Index

Numerics
1140 46
37 46

A
ADD 22
ALIAS 26
ALLOW NO ACCESS 96
ALLOW READ ACCESS 96
ALTER ADD COLUMN 37
APPLY program 279
ASCII 48, 217, 326
AutoLoader 95

modes 95

B
Backup and Restore 13
Backup and Restore utilities 13
BACKUP DATABASE 13
before moving data 214
Buffering 121
Build phase 92

C
Capability of moving metadata 215
CATALOG 324
CCSID 46, 327
CHANGE 329
CLP 17, 98
clustering sequence 69
COLUMNS 184
Command Line Processor 81, 100
command line processor 14, 17
Concurrency 214
contents 6
CONTINUEIF 68
Control Center 102
COPY NO 94
COPY YES 94
copying DB2 data with non-DB2 functions 8
COREQ 122
Cross Loader 12, 58, 247

binding the package 65
declaring a cursor 67
examples 69
loading a partitioned table space 74
loading with the cursor 68
recommendations 77

Cross Loader option for DB2 distributed Load 17
Cross Loader option of distributed Load 98
cross loading 274
CS 329
© Copyright IBM Corp. 2003. All rights reserved.
CSV 26
CURSOR 17

D
DATA 323
Data Export Facility tool 22
Data Replication tools for z/OS and Multiplatform 24
database-name 323
DB2 Administration Tool 220
DB2 Administration tool 177
DB2 Connect 16, 219, 245, 276
DB2 High Performance Unload for Multiplatforms 193
DB2 High Performance Unload for z/OS 119
db2atld 95
db2batch 80
db2look 20, 228
db2move 19
db2ubind.lst 249
DBPROTOCOL 65
DDF 245
DDL for a single table 236
DDL for entire database 235
ddname 325
DEF 23
DEL 14, 24, 26
Delete phase 93
DELIMITED 23, 120, 151
DFSORT 54
Dimensions 216
DISCARD option 34
disk space estimation 22
distributed Load

invoking 100
preparation 99

distributed load
restrictions 100

distributed Load Notebook 102
distributed Load utility

using 99
distributed platform 4
DRDA 24
DRDA WRAPPER 245
DROP 22
DSN1COPY 8
DSNTIAUL 9, 23, 120, 151
DSNTIJSG 65
DSNU070I 68
DSNU331I 68

E
EBCDIC 46, 326
EBCDIC, ASCII, UNICODE 68
Encoding schemes 216
ENDEXEC 60
 335

EXEC phase 61
EXEC SQL 12, 58–59

commit scope 62
Export API 84
Export Notebook 81
Export utility 14

invoking 81

F
Fast Unload Notebook 204
federated database 98, 245, 250, 299
federated system 271
Field specifications 68
File formats 216
FIXED length 270
FLEXIBLE length 270
FLOAT 328
FLOAT(IEEE) 68
FORMAT 68, 184
FROM TABLE 45
FROMCOPY data-set-name 324
FROMVOLUME 324

H
High Performance Unload tool for Multiplatforms 26
High Performance Unload tool for z/OS 23
HPU for MP

Command Window 202
install directories 198
installation wizard 197
installing and configuring 195
invoking 202
requirements 195
restrictions 201
using 201

HPU for Multiplatforms
overview 194

HPU for z/OS
blocks 158
customization 126
data formats 150
data types conversions 153
input data 150
installation procedure 123
options block 168
output data 150
performance measurements 190

HPU for z/OS examples of batch usage 172
HPU for z/OS in batch mode 154
HPU libraries 130
HPU output format 120
HTML 26

I
IEEE 328
IFREQ 122
IGNOREFIELDS YES 70
impact analysis 22

Import
Command Line Processor 86
Import Notebook 87
invokation 86
preparation 85
restrictions 86

Import CREATE 249
Import INSERT 249
Import REPLACE 249
Import utility 16, 84–85
IMS 4
INCURSOR 12, 59
index considerations 271
Index copy phase 93
Informix Version 9.3 26
int1

int2 324
integer 324
integrating HPU into DB2 Admin tool 147
INTERVAL 26
introduction 3
INZPARM 149
INZRSAVE 126
INZT01 procedure 127
INZT02 145
INZTDSN 128
INZTVAR 129
ISOLATION 329
isolation level RR 85
IXF 14, 19, 97, 217

L
LIMIT option 45
LIST listdef-name 325
LISTDEF 36
Load and Import comparison 112
Load and Import functions 113
LOAD and Import performance 112
Load for z/OS

input data 52
JCL 53

Load From Cursor 98
Load or Import

when to use 114
Load phase 92
Load Recovery 94
Load utility 11

overview 92
Load utility for DB2 distributed 16
Load utility for distributed platforms 91
Load utility for z/OS 52
LOB column 72
LOCK WITH FORCE 96

M
mainframe 4
MAXERR 40, 328
MAXROWS 26
messages option 97
336 Moving Data Across the DB2 Family

Microsoft Excel 26
MIGRATE 22

N
Network capacity 215
nickname 98, 269
NO 94
NONRECOVERABLE 94
NOPAD 328
NOSUBS 68, 327

O
OUTDDN 184

P
parallel export 14
PART 323
partition parallelism 75
partitioned database Load

modes 97
partitioned table space 74
PARTLEVEL 43
parts 6
platform 4
PQ45268 59, 247
PQ46759 59, 247
PQ50223 49
PQ62837 67
PQ66712 290
PQ67037 67
PQ68028 22
PREREQ 121
PULL technique 279
PUNCHDDN 36, 325

R
Recovery 215
redbook

contents 6
parts 6

Redbooks Web site 334
Contact us xx

redo 280
REFERENCE 329
Referential Integrity 111, 215
referential structures 22
REORG UNLOAD EXTERNA 34
REORG UNLOAD EXTERNAL 10, 34
Reorg utility 10
RESTORE DATABASE 13
RESUME YES 54
REVOKE 22

S
S390 328
Security 215
Selectively unload data 216

SHRLEVEL 44, 329
SHRLEVEL CHANGE 44, 68
SHRLEVEL REFERENCE 44
SINZAMP 128
SKIP 26
SMP/E 123
Sort capability 215
Speed 214
SQL AS 70
SQL capability 215
SQL Insert with subselect 264
sqluexpr 81
sqluimpr 86, 89
Synchronization 121
SYSIBM.SYSSTRINGS 24
SYSPUNCH 36
SYSREC 36, 54

T
table space access during Load 96
TABLESPACE 323
tablespace-name 323
target table 98
TEMPLATE 36
terminology 5

crossplatform 5
DB2 distributed 5
DB2 for z/OS 5
distributed platform 5
mainframe platform 5
multiplatform 5

tools 3

U
UDT 71
undo 280
UNICODE 327
UNION ALL 74
UNLDDN 326
UNLDDN option 36
UNLOAD 34–35

converting data 46
FROM TABLE 39
FROMCOPY 39
output data sets 36
SAMPLE option 45
WHEN option 45

Unload
terminating or restarting 48

UNLOAD and image copy 37
UNLOAD and SHRLEVEL 44
Unload for z/OS 33

authority required 35
examples 38
image copy input 37
input and output 36
phases 35
restrictions 48
syntax 38
 Index 337

using image copy 40
Unload from z/OS table space 41
Unload utility 10
Unload utility with DB2 for z/OS V7 34
Unload with field selection list 46
unloading compressed table space 40
unloading from a table space 41
unloading in parallel by partition 43
UQ55541 59, 247
UQ55542 59, 247
UQ72062 22
UR 329
USER 23, 120, 152
UTILINIT 35
UTILTERM 35

V
VARIABLE 23, 120, 151
vol-ser 325
Volume 214
VSAM 120

W
Warehouse Manager for UNIX, Windows 27
WEB Query tool for z/OS and Multiplatform 26
WHEN 68
WHEN clause 10, 34
WHEN option 40
WHERE 184
wrapper 304
WSF 14, 218

X
XML 26
338 Moving Data Across the DB2 Family

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

M
oving Data Across the DB2 Fam

ily

®

SG24-6905-00 ISBN 0738428299

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Moving Data Across cross
the DB2 FamilyFamily

Explore the usability
and performance of
the DB2 Family’s
functions

Try out the High
Performance Unload
on several platforms

Experience the new
Load from Cursor
utility option

Moving data across different databases and even different
platforms has been a common task in IT shops for quite some
time. Applications may have been developed independently and
over time, using packages and different technology; and data
might reside on different platforms exploiting the specific
platform strong points. However, there still is a growing need for
applications that need to access all of this data for overall
processing.

While new Web related technologies are emerging with the intent
to provide functions to collect and integrate information across
multiple databases and applications for access in real time,
moving data to one location for overall processing is still a very
common requirement.

This IBM Redbook provides an overview of what is currently
available within the DB2 Family of products (specifically DB2 for
z/OS, and DB2 for UNIX and Windows) in terms of functions, tools,
and utilities to satisfy the need for moving data. We focus on
discussing High Performance Unload and Cross Loader; the first
one is a tool, the second one is a new option of the Load utility,
since they are the latest functions that IBM has released. We also
introduce the concepts and some examples of using the
Federated Database support.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Examples
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. Introduction
	1.0.1 Platforms and configurations
	1.0.2 Terminology
	1.1 Contents of this redbook

	Chapter 2. Overview of data movers
	2.1 Preliminary considerations
	2.2 DB2 UDB for z/OS
	2.2.1 DB2 DSN1COPY utility
	2.2.2 DB2 sample program DSNTIAUL
	2.2.3 DB2 Reorg utility
	2.2.4 DB2 Unload utility
	2.2.5 DB2 Load utility
	2.2.6 DB2 Cross Loader option

	2.3 DB2 UDB for UNIX and Windows
	2.3.1 DB2 Backup and Restore utilities
	2.3.2 DB2 Export utility
	2.3.3 DB2 db2batch
	2.3.4 DB2 Import utility
	2.3.5 DB2 Load utility
	2.3.6 DB2 Cross Loader option
	2.3.7 DB2 db2move
	2.3.8 DB2 db2look

	2.4 Tools for z/OS and multiplatforms
	2.4.1 DB2 Administration Tool for z/OS
	2.4.2 DB2 Data Export Facility tool for z/OS
	2.4.3 DB2 High Performance Unload tool for z/OS
	2.4.4 DB2 Data Replication tools for z/OS and Multiplatform
	2.4.5 DB2 Web Query tool for z/OS and Multiplatform
	2.4.6 DB2 High Performance Unload tool for Multiplatforms
	2.4.7 DB2 UDB Warehouse Manager for UNIX and Windows

	2.5 Data movers summary

	Part 2 Product functions and utilities
	Chapter 3. Unload with DB2 for z/OS
	3.1 Overview of the Unload utility
	3.1.1 Extra functionality of the Unload utility
	3.1.2 Privilege and authority required
	3.1.3 Phases of the Unload utility

	3.2 Input and output data sets
	3.2.1 Output data sets from Unload
	3.2.2 Input of Unload from image copy

	3.3 Unload syntax and examples
	3.3.1 Examples of using the Unload utility
	3.3.2 Terminating or restarting Unload

	Chapter 4. Load with DB2 for z/OS
	4.1 The Load utility for DB2 for z/OS
	4.1.1 Input data for Load
	4.1.2 Sample Load JCL
	4.1.3 Some tips on using the Load

	4.2 Cross Loader option
	4.2.1 INCURSOR Load option
	4.2.2 EXEC SQL utility control statement
	4.2.3 Using the Cross Loader

	4.3 Conclusions and recommendations

	Chapter 5. Export and Import with DB2 distributed
	5.1 Export utility overview
	5.2 Using Export utility
	5.2.1 Invoking the Export utility

	5.3 Import utility overview
	5.4 Using the Import utility
	5.4.1 Invoking the Import utility

	Chapter 6. Load with DB2 Distributed
	6.1 Load utility overview
	6.1.1 Per-partition Load operation
	6.1.2 Load Recovery

	6.2 AutoLoader utility
	6.3 New features in DB2 distributed V8
	6.3.1 Increased table space access during Load
	6.3.2 Load with read access
	6.3.3 Load into partitioned databases
	6.3.4 Cross Loader option
	6.3.5 Generated column support
	6.3.6 Multi-dimensional clustering support

	6.4 Using the Load utility
	6.4.1 Invoking the Load utility

	6.5 Comparing Load and Import
	6.5.1 LOAD and Import performance comparison
	6.5.2 Load and Import functional comparison
	6.5.3 When to use Load or Import utilities

	Part 3 High Performance Unload
	Chapter 7. IBM DB2 High Performance Unload for z/OS
	7.1 An overview of HPU for z/OS
	7.1.1 Applicability of HPU
	7.1.2 Strong points of HPU

	7.2 Installing HPU for z/OS
	7.2.1 Installation requirements
	7.2.2 Step-by-step installation procedures
	7.2.3 Customization procedures for HPU

	7.3 Data formats used by the HPU
	7.3.1 Sources of input data that can be used by HPU
	7.3.2 Output data formats

	7.4 Using HPU
	7.4.1 Using the HPU in batch mode

	7.5 Components of the HPU statement
	7.5.1 HPU blocks
	7.5.2 Descriptions of the HPU blocks

	7.6 Examples on using HPU in batch
	7.7 Using the HPU interactively
	7.7.1 Using the DB2 Administration tool to start HPU

	7.8 HPU performance measurements
	7.9 Considerations

	Chapter 8. IBM DB2 High Performance Unload for Multiplatforms
	8.1 An overview of HPU for Multiplatforms
	8.2 Installing and configuring HPU for MP
	8.2.1 System requirements
	8.2.2 Installation considerations and prerequisites
	8.2.3 Installing HPU for MP
	8.2.4 Installation directories and files

	8.3 Using HPU for MP
	8.3.1 Invoking HPU for MP

	8.4 Comparing HPU for MP and Export
	8.4.1 When to use HPU for MP tool or the Export utility

	Part 4 Scenarios
	Chapter 9. Getting ready for moving data
	9.1 Before moving data
	9.1.1 Choosing a tool or utility
	9.1.2 Disk space considerations
	9.1.3 Software considerations
	9.1.4 File format considerations
	9.1.5 Encoding scheme and code pages
	9.1.6 Moving data with DB2 Connect

	9.2 Extracting the data definition language
	9.2.1 Using DB2 Administration Tool for z/OS to extract DDL
	9.2.2 Using db2look to extract DDL
	9.2.3 Considerations

	Chapter 10. Moving data to DB2 for z/OS
	10.1 Overview of moving data to DB2 for z/OS
	10.2 Moving data from DB2 distributed
	10.2.1 Using Cross Loader to move data from DB2 distributed to DB2 for z/OS
	10.2.2 Data Propagator
	10.2.3 Export and Import
	10.2.4 SQL Insert with subselect in a Federated Database

	10.3 Moving data between two DB2 for z/OS databases
	10.3.1 Using Cross Loader to move data from/to DB2 for z/OS
	10.3.2 Data Propagator
	10.3.3 Unload and Load
	10.3.4 HPU for z/OS and Load
	10.3.5 SQL Insert with subselect in a Federated Database

	10.4 Summary and conclusions
	10.4.1 From distributed
	10.4.2 From mainframe
	10.4.3 Miscellaneous

	Chapter 11. Moving data to DB2 Distributed
	11.1 An overview
	11.1.1 File format considerations
	11.1.2 Index considerations
	11.1.3 Environment used for data movement examples
	11.1.4 Graphical representation of the environment used in the examples

	11.2 Cross loading
	11.3 Export followed by Load or Import
	11.4 SQL insert containing a SELECT clause
	11.5 Data Propagator
	11.6 HPU for z/OS followed by Load or Import
	11.7 Unload utility followed by Load or Import
	11.8 HPU for MP followed by Import or Load

	Part 5 Appendixes
	Appendix A. Defining a Federated Database
	A.1 Examples of creating Federated Databases
	A.1.1 Federated database setup with DB2 V7
	A.1.2 Federated Database setup with DB2 V8

	A.2 Server and wrapper type

	Appendix B. DB2 connectivity
	B.1 Communication database on DB2 for z/OS
	B.1.1 Populate the communication database
	B.1.2 CDB tables with contents
	B.1.3 Test the connectivity

	B.2 Cataloging the databases on DB2 distributed

	Appendix C. Migrating to DB2 distributed V8
	C.1 Migration restrictions
	C.2 Pre- and post-migration tasks

	Appendix D. DB2 UDB for z/OS Unload options
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

