
ibm.com/redbooks

Linux on IBM
zSeries and S/390:
Large Scale Linux Deployment

Gregory Geiselhart
Malcolm Beattie

Vic Cross
Michael Donovan

Aaron Kirby
Lutz Kühner

Julie Murphy
Michael Weisbach

z/VM concepts and tools for Linux
deployment

Networking and routing Linux
guests running under z/VM

Building a server farm for
Linux on zSeries

Front cover

Large Scale Linux Deployment

October 2002

International Technical Support Organization

SG24-6824-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2002)

This edition applies to z/VM 4.3 and many different Linux distributions. RedHat 7.1 for zSeries
was used.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiv
Become a published author . xv
Comments welcome. xv

Part 1. Running Linux under z/VM. 1

Chapter 1. z/VM for beginners . 3
1.1 The z/VM environment . 4
1.2 Logging on to z/VM . 4
1.3 General CP command structure . 6

1.3.1 Command truncations and abbreviations . 7
1.4 CP command privilege classes . 7

1.4.1 How privilege class affects CP commands . 9
1.5 The CP status indicator . 11
1.6 Using Program Function keys . 11
1.7 Disconnecting the 3270 session . 13
1.8 Booting Linux in a virtual machine. 13

1.8.1 Unattended startup of a Linux guest . 14
1.8.2 Recovering from unattended startup. 14

1.9 Communicating with CP from a Linux guest . 15
1.9.1 Communicating with CP from the VM console 15
1.9.2 Communicating with CP from a Linux telnet session 15

1.10 Querying the virtual machine. 16
1.10.1 Querying storage devices . 16
1.10.2 Querying network devices. 17
1.10.3 Querying the CPUs available to the virtual machine. 18
1.10.4 Querying virtual storage . 18

1.11 Using DDR to copy a minidisk. 19
1.12 Virtual Machine Resource Manager . 20

Chapter 2. Directory Maintenance Facility for z/VM 23
2.1 Managing VM using DirMaint . 24
2.2 DirMaint service machines . 24

2.2.1 DirMaint service machine . 25
2.2.2 DATAMOVE service machine . 25

© Copyright IBM Corp. 2002. All rights reserved. iii

2.3 DirMaint command syntax. 25
2.3.1 Using prefix keywords . 26

2.4 Some useful DirMaint commands . 26
2.5 Defining a userid as a DirMaint administrator . 27

2.5.1 Obtain the DirMaint AUTHFOR CONTROL file. 27
2.5.2 Format of the AUTHFOR CONTROL file . 27
2.5.3 Activating AUTHFOR CONTROL file changes 28

2.6 Adding a volume to a DirMaint group . 28
2.6.1 Obtain the DirMaint EXTENT CONTROL file 28
2.6.2 Format of the EXTENT CONTROL file . 28
2.6.3 Activating EXTENT CONTROL file changes. 30

2.7 Adding directory entries. 30
2.7.1 Defining a profile directory entry . 30
2.7.2 Adding a profile directory entry . 31
2.7.3 Defining a user directory entry . 31
2.7.4 Adding a userid using a prototype file . 31

2.8 Maintaining directory entries . 32
2.8.1 Reviewing a directory entry . 32
2.8.2 Adding a minidisk to a user directory entry . 33
2.8.3 Adding access passwords to a minidisk . 33
2.8.4 Dedicating a device to a userid . 33
2.8.5 Deleting a new minidisk from a user directory entry 33
2.8.6 Changing virtual storage for VM users . 34
2.8.7 Adding, deleting, and modifying CP options 34
2.8.8 Changing CP Privileges . 34
2.8.9 Using the SPECIAL DirMaint command . 34
2.8.10 Transferring a minidisk between userids. 34
2.8.11 Adding shared logon access to a userid . 35

Chapter 3. FCON/ESA for monitoring a penguin colony 37
3.1 Introducing FCON/ESA . 38
3.2 FCON/ESA support for Linux on z/VM . 38
3.3 The Distributed Data Server . 39

3.3.1 Download DDS . 39
3.3.2 Install DDS on a Linux guest . 40
3.3.3 Starting DDS . 40
3.3.4 Viewing monitored data. 40

3.4 Customizing FCON/ESA for monitoring Linux guests 41
3.4.1 Preparing the control file . 41
3.4.2 Updating the FCON/ESA profile . 42

3.5 The FCON/ESA Linux systems option . 42
3.6 FCON/ESA subcommands for Linux guests . 43

3.6.1 The LINUX subcommand . 44

iv Large Scale Linux Deployment

3.6.2 The Linux systems selection menu . 44
3.6.3 The Linux details selection menu . 44
3.6.4 The LXCPU subcommand . 46
3.6.5 The LXMEM subcommand . 47
3.6.6 The LXNETWRK subcommand . 48
3.6.7 The LXFILESYS subcommand . 48

3.7 Monitoring overall z/VM performance . 49
3.7.1 The CPU subcommand. 49
3.7.2 The STORAGE subcommand. 50
3.7.3 The DEVICE subcommand . 51
3.7.4 The USER subcommand . 52

Part 2. Networking for Linux on zSeries . 55

Chapter 4. HiperSockets and z/VM Guest LAN . 57
4.1 Introduction to HiperSockets . 58

4.1.1 Operating system support . 58
4.1.2 Capabilities . 58

4.2 Configuring HiperSockets . 58
4.2.1 Hardware tasks . 59
4.2.2 z/VM tasks. 59
4.2.3 Linux tasks . 60

4.3 Introduction to the Guest LAN feature. 62
4.3.1 Virtual HiperSockets . 62
4.3.2 Virtual QDIO . 63

4.4 VM Guest LAN configuration . 63
4.5 Creating a VM Guest LAN segment . 63

4.5.1 Establishing a VM Guest LAN owner . 64
4.5.2 Establishing a VM Guest LAN lifetime . 64

4.6 Creating a simulated NIC . 65
4.7 Attaching the simulated NIC to the VM Guest LAN. 66
4.8 A VM Guest LAN example . 66
4.9 Restricted VM Guest LANs . 67

4.9.1 Viewing VM Guest LAN attributes. 68
4.9.2 Changing VM Guest LAN attributes . 68

4.10 Defining a VM Guest LAN in the VM directory . 70
4.10.1 Define the VM Guest LAN in the SYSTEM CONFIG file. 70
4.10.2 Define and couple simulated NICs to the VM Guest LAN. 70
4.10.3 Automating connections to a VM Guest LAN 71

4.11 Configuring a VM Guest LAN in a Linux guest . 73
4.11.1 A word about network device drivers . 73
4.11.2 Loading the Linux network interface device driver 73
4.11.3 Configuring the network interface . 76

 Contents v

Chapter 5. TCP/IP direct connection . 77
5.1 Introduction . 78

5.1.1 Number of Linux guests . 78
5.2 OSA port sharing. 78

5.2.1 Hardware definition . 80
5.2.2 Advantages sharing OSA-Express in QDIO mode 81
5.2.3 Issues sharing OSA-Express in QDIO mode 82

5.3 IEEE 802.1Q VLAN support . 83
5.3.1 How VLANs work . 83
5.3.2 VLANs on Linux for zSeries . 85
5.3.3 Sharing an OSA-Express when using VLANs. 87
5.3.4 Configuring VLANs in Linux . 89
5.3.5 Infrastructure guests in a VLAN network. 90

Chapter 6. TCP/IP routing . 93
6.1 Planning for routing . 94

6.1.1 Connectivity method . 94
6.1.2 Isolation . 95
6.1.3 Address allocation. 95
6.1.4 Traffic shaping. 96
6.1.5 Linux router or z/VM TCP/IP router . 96
6.1.6 Routing considerations with OSAs . 97

6.2 Linux routers . 98
6.2.1 Device support . 99
6.2.2 Routing function . 99
6.2.3 Setting up a Linux router . 99
6.2.4 Changing a running Linux router guest . 100

6.3 z/VM TCP/IP routers . 100
6.3.1 Device support . 100
6.3.2 Routing function . 100
6.3.3 Changing a running z/VM TCP/IP stack . 102
6.3.4 z/VM TCP/IP support servers . 104

6.4 z/OS routers . 105
6.4.1 HiperSockets Accelerator . 105

6.5 Traffic control. 110
6.5.1 Components of traffic control . 111
6.5.2 Configuring CBQ . 112
6.5.3 CBQ usage example: bandwidth choke . 114
6.5.4 CBQ usage example: differentiating interactive traffic 115

6.6 Dynamic routing . 116
6.6.1 How dynamic routing works . 116
6.6.2 Dynamic routing in a penguin colony . 117
6.6.3 Controlling routing tables . 119

vi Large Scale Linux Deployment

Chapter 7. Network high availability . 121
7.1 Planning virtual connectivity for high availability 122

7.1.1 Determine the level of redundancy you need 122
7.1.2 z/VM TCP/IP availability . 122

7.2 Multiple network devices to Linux guests . 123
7.2.1 Configuring multiple network interfaces . 123
7.2.2 Virtual Router Redundancy Protocol (VRRP) 134
7.2.3 Virtual IP addresses . 136
7.2.4 IP connections outbound from Linux guests 137

7.3 Redundancy outside the zSeries complex . 143
7.3.1 Additional z/VM system. 143

7.4 Linux high availability solutions . 143
7.4.1 To cluster or not to cluster. 144
7.4.2 Linux Virtual Server . 145

Part 3. Creating and managing a penguin colony . 147

Chapter 8. Shared Linux filesystems . 149
8.1 Device filesystem mounts . 150
8.2 Bind mount directories. 150
8.3 Using bind mounts. 152

8.3.1 Mounting writable directories on a read-only filesystem 153
8.3.2 Preserving access to the original read-only directories. 154

8.4 The basevol filesystem . 155
8.5 The guestvol filesystem. 155
8.6 A basevol/guestvol Linux guest . 156
8.7 The File Hierarchy Standard . 156
8.8 RPM package management . 156
8.9 Booting a basevol/guestvol Linux guest . 159

8.9.1 The rc.guestvol script . 160
8.9.2 Determining if the Linux guest uses a guestvol mount 160
8.9.3 The maintenance shell . 161
8.9.4 Example basevol/guestvol Linux guest startup 161
8.9.5 Example basevol/guestvol Linux guest maintenance shell 162

8.10 Startup configuration . 162
8.10.1 The rc.sysinit-guestvol script . 163

8.11 Network configuration . 164
8.11.1 The z/VM configuration server . 164
8.11.2 Generating a CONFSERV response. 165
8.11.3 Security considerations . 166
8.11.4 The vmgetconf script. 166
8.11.5 The itsonet script . 168
8.11.6 Example of boot time configuration. 169

 Contents vii

8.12 Shutdown processing . 169
8.12.1 The guestvol-start-halt script . 170
8.12.2 The guestvol-final-halt script . 170
8.12.3 Example of a basevol/guestvol Linux guest shutdown 170

8.13 Advantages of a basevol/guestvol Linux guest 172

Chapter 9. Building a basevol/guestvol penguin colony 173
9.1 Overview of the process . 174
9.2 The BASEVOL virtual machine . 174
9.3 The LDV01 virtual machine . 175
9.4 Install Linux on the development image . 176

9.4.1 Choosing the packages to install . 176
9.5 Create the basevol and guestvol filesystem images 177

9.5.1 Prepare the LDV01 Linux guest . 177
9.5.2 Create the golden basevol filesystem image 178
9.5.3 Prepare guestvol filesystem image . 178
9.5.4 Booting the basevol/guestvol Linux guest . 179

9.6 Guestvol package management . 180
9.7 Cloning a basevol/guestvol Linux guest . 181

9.7.1 The LNXCLONE prototype . 181
9.7.2 Create the Linux clone virtual machine . 183
9.7.3 Create the Linux clone guestvol . 183
9.7.4 Define the Linux clone in the GUEST CONF configuration file 183
9.7.5 XAUTOLOG the Linux clone . 183

9.8 Remote startup and shutdown of Linux clones . 183
9.8.1 The ext_int kernel module. 184
9.8.2 Handling a shutdown external interrupt. 185
9.8.3 The management interface . 186
9.8.4 PROP actions to manage Linux clones. 187
9.8.5 The GUESTACT EXEC script . 188
9.8.6 Security considerations . 188

Chapter 10. Centralized management using LDAP 191
10.1 Using LDAP for centralized management . 192

10.1.1 The OpenLDAP directory server . 192
10.1.2 The penguin colony network topology. 192

10.2 Configuring the LDAP server. 194
10.3 LDAP tools . 195

10.3.1 An LDAP browser . 196
10.3.2 LDAP Data Interchange Format . 196
10.3.3 LDAP migration tools . 196

10.4 Network configuration and initialization . 197
10.4.1 The redbook LDAP schema . 197

viii Large Scale Linux Deployment

10.4.2 Redbook LDAP object classes . 198
10.4.3 Redbook LDAP attributes . 198
10.4.4 The itsoldap script . 199
10.4.5 Configuring LDAP clients . 200

10.5 UNIX authentication using LDAP . 201
10.5.1 The nss-ldap and pam-ldap modules . 201
10.5.2 Configuring PAM for LDAP authentication and authorization 202
10.5.3 Configuring NSS for LDAP user and group mapping 203
10.5.4 Migrating users and groups to LDAP . 204
10.5.5 Adding users and groups to LDAP . 204
10.5.6 Changing passwords stored in LDAP . 205

10.6 Using LDAP with Domain Name System . 207
10.6.1 The SDB LDAP backend for the ISC bind server 207
10.6.2 DNS resource records in LDAP . 209
10.6.3 Configure the DNS server to use the LDAP backend 211
10.6.4 Adding indexes to speed lookups . 211

10.7 A remote Web management interface to LDAP 212
10.7.1 Interface to reset passwords . 212
10.7.2 Interface to IPL and shutdown Linux guests 213

Appendix A. The Unit Record device driver and utility 215
A.1 The UR device driver and utility . 216
A.2 The UR device driver . 216

A.2.1 Build the UR device driver . 216
A.2.2 Install the UR device driver . 216
A.2.3 Create the UR character devices . 217
A.2.4 The addvmur command . 217

A.3 The UR utility . 218
A.3.1 Install the UR utility . 218
A.3.2 The ur command syntax . 218
A.3.3 The copy subcommand . 218
A.3.4 The info subcommand . 219
A.3.5 The list subcommand . 220
A.3.6 The add subcommand . 220
A.3.7 The remove subcommand . 220

Appendix B. Installing Red Hat 7.1 with OCO modules 221
B.1 The Red Hat for zSeries distribution . 222
B.2 Obtain the latest OCO drivers. 222
B.3 Create a second initial ramdisk for OCO qeth drivers. 223
B.4 Copy the installation images to the guest reader 223

B.4.1 Mount the installation CD-ROM image . 224
B.4.2 Copy the installation images to the VM reader 224

 Contents ix

B.5 Install the Linux guest . 224
B.5.1 Beginning the installation . 225
B.5.2 First stage configuration . 225
B.5.3 Second stage configuration . 226

Appendix C. Scripts and configuration files. 231
C.1 The basevol+guestvol-1.0.0-1.noarch.rpm package. 232

C.1.1 The /etc/rc.d/rc.guestvol script . 232
C.1.2 The /etc/rc.d/rc.sysinit-guestvol script . 234
C.1.3 The /etc/init.d/vmgetconf script. 250
C.1.4 The /etc/init.d/itsonet script. 252
C.1.5 The /etc/init.d/guestvol-start-halt script. 254
C.1.6 The /sbin/guestvol-final-halt script . 257
C.1.7 The /usr/sbin/basevol-devel script . 261
C.1.8 The /usr/sbin/mkguestvol script . 261

C.2 The itsobasevol-1.0.0-1.s390x.rpm package . 262
C.2.1 The /etc/init.d/itsoldap script . 263
C.2.2 The /usr/sbin/dasd script . 268

C.3 The GVCOPY EXEC . 268
C.4 The GUESTACT EXEC script. 269
C.5 The GETCONF EXEC script. 271
C.6 The PROP RTABLE configuration file . 272
C.7 The redbook.schema file . 273
C.8 The sample-ldap.php script . 276
C.9 The ipl-shutdown.php script . 277

Appendix D. Additional material . 279
Locating the Web material . 279
Using the Web material . 279

System requirements for downloading the Web material 280
How to use the Web material . 280

Abbreviations and acronyms . 281

Related publications . 283
IBM Redbooks . 283

Other resources . 284
Referenced Web sites . 285
How to get IBM Redbooks . 286

IBM Redbooks collections. 286

Index . 287

x Large Scale Linux Deployment

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2002. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
DirMaint™
^™
IBM®
MORE™
MVS™
OS/2®

OS/390®
Parallel Sysplex®
Perform™
RACF®
Redbooks(logo)™
RMF™
S/390®

Sequent®
SP™
VM/ESA®
z/OS™
z/VM™
zSeries™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

xii Large Scale Linux Deployment

Preface

This IBM Redbook discusses tools and techniques you can utilize for large scale
deployment on Linux on IBM ^ zSeries and S/390. Its target audience is
system administrators and I/T architects who are responsible for developing
optimized solutions for large Linux systems installed on IBM zSeries and S/390
machines.

For large scale deployment of Linux on zSeries and S/390, we only consider
running Linux guests under z/VM, for the following reasons:

� The hardware virtualization provided by z/VM allows many Linux to effectively
share resources.

� z/VM features can be used to assist in centrally managing Linux guests.

� Linux clones can easily be added to the server farm using z/VM.

In this book, we refer to a large number of Linux server running under z/VM as a
penguin colony.

This redbook is divided into three parts:

� In part one, we discuss basic VM concepts and commands. We examine tools
available on z/VM to help in creating and monitoring a penguin colony.

� In part two, we discuss networking features available for Linux on zSeries and
S/390. We describe how to use and configure HiperSockets and VM Guest
LAN networking. Options available for OSA direct routing and for TCP/IP
routing on zSeries and S/390 are covered in detail. In addition, we cover
network high availability issues and solutions.

� In part three, we discuss techniques to manage and create a penguin colony.
We cover a novel approach to sharing Linux filesystems among members of
the colony, and consider an central LDAP management system for the colony.

The appendix includes sections on:

� Using a utility to transfer files between Linux guests and a VM virtual reader,
punch, or printer: the UR device driver and utility

� An approach to installing Red Hat 7.1 with OCO module support

� A listing of important scripts covered in the redbook

Sample code discussed in the redbook is available online.

© Copyright IBM Corp. 2002. All rights reserved. xiii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Gregory Geiselhart is a project leader for Linux on zSeries at the International
Technical Support Organization, Poughkeepsie Center.

Malcolm Beattie is a Linux Technical Consultant with IBM UK working in the
EMEA IBM Enterprise Server Group (zSeries). He has 15 years of experience in
computing (13 years of UNIX, 10 years of Linux, 3 years of VM). He holds the
degrees of BA, MA and DPhil in mathematics from Oxford University. He has
been active in the development of open source software, mostly of Perl and
related software, but has also done minor work on Exim, PostgreSQL, the Linux
kernel and other bits and pieces.

Vic Cross is the Linux for zSeries and S/390 Team Leader at Independent
Systems Integrators, IBM’s Large Systems Business Partner in Australia. He has
more than 15 years of experience in general computing, seven of which has been
spent working on S/390 and zSeries. He holds a Bachelor of Computing Science
degree from Queensland University of Technology. His areas of expertise include
networking and Linux. He is a co-author of the IBM Redbook Linux on
IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299.

Michael Donovan is a Senior Software Engineer with IBM in Endicott, NY. He
joined VM Development in 1980 at the Glendale Programming Laboratory. He
holds a bachelors degree in Computer Science from the State University of New
York at Oswego. He has been involved in almost all aspects of the VM product,
including testing, packaging, design, development, and service. Most recently, he
was a developer on OpenExtensions for z/VM, Java for z/VM, and Language
Environment for VM. He has also been involved in the z/VM support of Linux for
zSeries.

Aaron Kirby is a Infrastructure Architect in New Zealand. He has five years of
experience working on enterprise system infrastructure including Windows
server and workstation, Linux, UNIX, ALCS Airline reservation emulation, Web
platforms, J2EE environments, middleware and mid-range enterprise systems.

Lutz Kühner is a system programmer working for Deutsche Bank AG in
Germany. He has 15 years of experience in z/OS, including UNIX System
Services, Networking, and z/VM. He has written extensively on chapter
networking, Linux guest LAN, and CP for beginners.

Julie Murphy is a senior I/T Specialist with IBM Global Services in
Poughkeepsie, New York. She joined IBM in 1981 as a VM/MVS Computer

xiv Large Scale Linux Deployment

Operator. She has 16 years of experience with VM System Programming. Her
current assignment is as Team Leader for IBM Server Group’s TPF and VICOM
systems. Her area of expertise focuses on VM.

Michael Weisbach is a Senior Systems Engineer working for IT Services and
Solutions GmbH (an IBM Global Services company), and a active member of the
IBM ITS Central Region Linux Community. He has ten years of experience in the
Linux field on Intel architecture and is afflicted with a IT security paranoia. He
holds a degree in Computing Science from Berufsakademie Sachsen, Staatliche
Studienakademie Glauchau, Germany. Currently he works in the areas of
Linux-based High Availability and High Performance Clustering at the EMEA
Linux Center of Competence, IBM Laboratory Boeblingen, Germany.

Thanks to the following people for their contributions to this project:

Terry Barthel, Dave Bennin, Ella Buslovich, Alison Chandler, Rich Conway, Roy
Costa, Al Schwab
International Technical Support Organization, Poughkeepsie Center

Bob Haimowitz
International Technical Support Organization, Raleigh Center

Team of the Technical Marketing Competence Center, Boeblingen, Germany

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xvi Large Scale Linux Deployment

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Running Linux
under z/VM

In this part we discuss aspects of running Linux as a guest operating system
under z/VM. Topics include:

� An overview of CP commands intended for the z/VM novice.

� The Directory Maintenance Facility (DirMaint) - a tool to help manage the VM
directory.

� FCON/ESA - a VM monitoring tool which integrates Linux guest performance
monitoring into z/VM.

Part 1

© Copyright IBM Corp. 2002. All rights reserved. 1

2 Large Scale Linux Deployment

Chapter 1. z/VM for beginners

In this chapter, we present basic concepts intended for the novice z/VM user and
introduce some basic CP commands useful for Linux guests running under z/VM.

1

© Copyright IBM Corp. 2002. All rights reserved. 3

1.1 The z/VM environment
The z/VM Control Program (CP) controls the virtual machine environment. CP
provides each z/VM user with a working environment referred to as a virtual
machine. A virtual machine is the functional equivalent a real system. Virtual
machines share real resources—processors, storage, console, and input/output
devices. Those real resources will be managed with a User Directory provided by
z/VM. A guest operating system (such as Linux) running in the virtual machine
“sees” the virtual resources as real hardware.

1.2 Logging on to z/VM
There are two ways to log on to VM:

1. Normal VM logon, using the LOGON command.

2. Delegated logon, using the LOGON BY command.

Example 1-1 illustrates normal VM logon; provide your userid and password in
the appropriate fields.

Example 1-1 Regular VM logon

z/VM ONLINE

 / VV VVV MM MM
 / VV VVV MMM MMM
 ZZZZZZ / VV VVV MMMM MMMM
 ZZ / VV VVV MM MM MM MM
 ZZ / VV VVV MM MMM MM
 ZZ / VVVVV MM M MM
 ZZ / VVV MM MM
 ZZZZZZ / V MM MM

 built on IBM Virtualization Technology
 Consolidating Linux guests for fun and profit since July 8

 Fill in your USERID and PASSWORD and press ENTER
 (Your password will not appear when you type it)
 USERID ===> LNX4
 PASSWORD ===>

 COMMAND ===>
 RUNNING VMLINUX

4 Large Scale Linux Deployment

Example 1-2 illustrates a delegated logon using the BY option. Use the
command line from the logon screen to issue the command:

LOGON LNX88 BY MAINT

After pressing the Enter key, you are prompted for the delegated user password
(in this case, the MAINT user).

Example 1-2 LOGON BY logon

z/VM ONLINE

 / VV VVV MM MM
 / VV VVV MMM MMM
 ZZZZZZ / VV VVV MMMM MMMM
 ZZ / VV VVV MM MM MM MM
 ZZ / VV VVV MM MMM MM
 ZZ / VVVVV MM M MM
 ZZ / VVV MM MM
 ZZZZZZ / V MM MM

 built on IBM Virtualization Technology
 Consolidating Linux guests for fun and profit since July 8

 Fill in your USERID and PASSWORD and press ENTER
 (Your password will not appear when you type it)
 USERID ===>
 PASSWORD ===>

 COMMAND ===> LOGON LNX88 BY MAINT
 RUNNING VMLINUX

Upon successful logon, you will be presented with a screen similar to
Example 1-3 on page 6. This is the 3270 console for your virtual machine. The
virtual machine is now ready to accept input.

Note: There must be a LOGONBY statement in the LNX88 directory entry in
order to log on in this manner. In Example 9-3 on page 181, we show an
example user directory entry which utilizes the LOGONBY statement.

 Chapter 1. z/VM for beginners 5

Example 1-3 The z/VM 3270 console

LOGON LNX4
z/VM Version 4 Release 3.0, Service Level 0201 (64-bit),
built on IBM Virtualization Technology
There is no logmsg data
FILES: 0003 RDR, NO PRT, NO PUN
LOGON AT 14:29:31 EDT WEDNESDAY 08/07/02
z/VM V4.3.0 2002-01-14 14:17

 RUNNING VMLINUX

At this point, the console in running under the Conversational Monitoring System
(CMS) operating system. You interact with the virtual machine using CP
commands.

1.3 General CP command structure
The general format for CP commands is a command name followed any
operands applicable to that command. Commands may be prefixed by the option
CP keyword to indicate the command is to be processed immediately by the
Control Program.

Commands and operands are case-insensitive; they may be entered in upper
case, or lower case, or mixed case. For example, this command will display the
system clock time value as determined by CP:

CP QUERY TIME

Tip: For help on any VM topic, type the following from the 3270 console
command line:

HELP

For help on a specific command, use:

HELP command

where command is the command in question.

6 Large Scale Linux Deployment

1.3.1 Command truncations and abbreviations
You need not enter commands as full words; abbreviations and truncations may
be supplied instead. Using truncation, you can drop one or more letters from the
end of the command.

The syntax diagram for each command shows the command displayed in both
upper case and lower case letters. The upper case letters indicate the minimum
truncation available for the command. For example, the syntax diagram for the CP
QUERY command shows the command syntax as:

Query

This indicates the command may be entered in any of the forms:

QUERY
QUER
QUE
QU
Q

Abbreviations allow you to use alternate, shorter forms of the command. For
example, the syntax diagram for the CP MESSAGE command shows the syntax as:

Message
Msg

This indicates the command:

� Has a minimum truncation value of M
� Has an abbreviation of MSG
� The abbreviation may be truncated to the values MS or M

Thus, CP accepts all of the following forms of the MESSAGE command:

MESSAGE
MESSAG
MESSA
MESS
MES
MES
MSG
MS
M

1.4 CP command privilege classes
CP commands are grouped in privilege classes indicative of the authorization
required to issue the command. User authorization is defined in the VM directory

 Chapter 1. z/VM for beginners 7

by the system programmer, and this determines the set commands available to
the user. Privilege classes and user types are summarized in Table 1-1.

Table 1-1 CP privilege classes and user types

Class User Description

A System Operator The class A user controls the z/VM system.
The system operator is responsible for the
availability of the z/VM system and its
resources. In addition, the system operator
controls system accounting, broadcast
messages, virtual machine performance
options, and other options that affect the
overall performance of z/VM. Note: The
class A user who is automatically logged on
during CP initialization is designated as the
primary system operator.

B System Resource Operator The class B user controls all the real
resources of the z/VM system, except those
controlled by the system operator and the
spooling operator.

C System Programmer The class C user updates or changes
system-wide parameters of the z/VM
system.

D Spooling Operator The class D user controls spool files and
the system’s real reader, printer, and punch
equipment allocated to spooling use.

E System Analyst The class E user examines and saves
system operation data in specified z/VM
storage areas.

F Service Representative The class F user obtains, and examines in
detail, data about input and output devices
connected to the z/VM system. This
privilege class is reserved for IBM use only.

G General User The class G user controls functions
associated with a particular virtual
machine.

H Reserved for IBM use.

8 Large Scale Linux Deployment

1.4.1 How privilege class affects CP commands
In addition to determining which commands a VM user has access to, CP
command privilege class affects the output generated by some commands. For
instance, Example 1-4 shows the output of the CP QUERY DASD command when
issued by a class G user.

Example 1-4 Output from CP QUERY DASD issued by class G user

DASD 0120 3390 430RES R/O 67 CYL ON DASD 3750 SUBCHANNEL = 000D
DASD 0190 3390 430RES R/O 107 CYL ON DASD 3750 SUBCHANNEL = 0007
DASD 0191 3390 LNXU1R R/W 25 CYL ON DASD 3731 SUBCHANNEL = 0002
DASD 019D 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 0008
DASD 019E 3390 430RES R/O 175 CYL ON DASD 3750 SUBCHANNEL = 0009
DASD 0201 3390 LX3FA2 R/W 200 CYL ON DASD 3FA2 SUBCHANNEL = 0000
DASD 0202 3390 LX3FA2 R/W 3138 CYL ON DASD 3FA2 SUBCHANNEL = 0001
DASD 0401 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 000B
DASD 0402 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 000A
DASD 0405 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 000C

From the first line in the example, we see:

� Virtual device 0120 resides on a 3390 DASD unit with volume label 430RES.

� The minidisk consists of 67 cylinders mounted read-only (R/O) by this virtual
machine.

Any Commands belonging to class “Any” are
available to any user, regardless of his
privilege class. These commands are
primarily those used to gain access to, or
relinquish access from, the z/VM system.

I-Z Classes I through Z are reserved for
redefinition through user class restructure
(UCR) by each installation for its own use.

Note: Linux guest users are typically defined with privilege class G (General
User) authorization.

Class User Description

Note: For a class G user, CP QUERY DASD is actually the CP command:

CP QUERY VIRTUAL DASD

with the optional VIRTUAL keyword omitted.

 Chapter 1. z/VM for beginners 9

� The real device number for the DASD unit is 3750 connected on subchannel
000D.

Contrast this with the output of the command:

CP QUERY DASD

issued by a class B user as shown in Example 1-5.

Example 1-5 Output from CP QUERY DASD issued by class B user

DASD 3731 CP SYSTEM LNXU1R 42
DASD 3750 CP OWNED 430RES 290
DASD 3751 CP OWNED 430W01 65
DASD 3753 CP OWNED 430PAG 2
DASD 3B44 CP OWNED 430PG2 0
DASD 3BA3 CP SYSTEM LX3BA3 4
DASD 3BA4 CP SYSTEM LX3BA4 6
DASD 3CA1 CP SYSTEM LX3CA1 4
DASD 3CA3 CP SYSTEM LX3CA3 4
DASD 3DA1 CP SYSTEM LX3DA1 7
DASD 3DA2 CP SYSTEM LX3DA2 0

In this example, we see:

� Real device 3731 is a DASD device allocated for user minidisk allocations
(indicated by SYSTEM) with volume label LNXU1R. The volume is linked to
42 minidisks.

� Real device 3750 is a DASD device allocated for paging and spooling activity
(indicated by OWNED) with volume label 430RES. The volume is linked to
290 minidisks.

To the class G user, the following command reports the attached virtual
minidisks:

CP QUERY DASD

For the class B user however, the attached real DASD devices are reported.

Tip: To report attached virtual minidisks regardless of user privilege class, use
this command:

CP QUERY VIRTUAL DASD

10 Large Scale Linux Deployment

1.5 The CP status indicator
An indication of the state of the virtual machine and how it will respond to input
can be found at the bottom right-hand corner of the 3270 VM console. The
possible states and their respective meanings are listed in Table 1-2.

Table 1-2 CP status indicators meanings

1.6 Using Program Function keys
To conserve keystrokes, use the CP SET PF command to assign a command to
any of the 24 Program Function (PF) keys available on the keyboard. The
command format is as follows:

CP SET PFxx [options] command

where:

xx Indicates the PF key number (1-24)
options Is an optional command modifier

Status indicator Indicates

CP READ CP expects input. Enter: Begin (abbreviated B) to continue
processing.

VM READ Similar to CP READ; however, input is expected by CMS. Press
Enter to continue.

RUNNING The virtual machine is working properly and is awaiting a
command to process.

MORE... The virtual machine display output exceeded the screen ranges.
Press the CLEAR or PA2 key to proceed to the next screen (on
modern PC keyboards, use the PAUSE/BREAK key). If no input is
received after 10 seconds, the screen will be automatically
cleared and the next page is displayed. A short beep is issued
shortly before the screen changes. This time interval can be
changed using the CP TERMINAL command.

HOLDING Similar to MORE... but any highlighted messages are left
outstanding on the screen.

NOT ACCEPTED The virtual machine did not process the previous input.

Attention: If your virtual machine is in the CP READ state, the guest operating
system is suspended. For a Linux guest, this means Linux will get no CPU
usage and will not service any requests.

 Chapter 1. z/VM for beginners 11

command Is the command to bind to the PF key

Command modifiers are described in Table 1-3.

Table 1-3 CP SET PF command modifiers

Typically, PF key bindings are set in the user PROFILE EXEC to set definitions
for the duration of the VM session. Example 1-6 illustrates some binding PF key
bindings.

Example 1-6 Use of CP SET PF command in the PROFILE EXEC

CP SET PF1 NODISP HELP /* sets PF1 to HELP */
CP SET PF3 IMMED QUERY TIME /* sets PF3 to query system time */
CP SET PF12 RETRIEVE /* sets PF12 to command retrieval */

To find the current PF key assignments issue the command:

CP QUERY PF

The output is shown in Example 1-7.

Example 1-7 Output from the CP QUERY PF command

PF01 NODISP HELP
PF02 UNDEFINED
PF03 IMMED QUERY TIME

Modifier Description

DELAYED The bound command is displayed in the input area when you press
the PF key. The command may then be modified as necessary. Press
Enter to process the command. DELAYED is the default.

IMMED The bound command is executed immediately on pressing the PF
key. The command is re-displayed on the command line upon
completion.

NODISP Similar to IMMED; however, the command is not re-displayed.

Note: When logging on to z/VM, the user will IPL a CMS guest operating
system. As part of the IPL process, CMS will execute a REXX exec named
PROFILE EXEC on the A-disk of logged on user.

By default, statements included in this file will be executed at logon. To bypass
execution of the PROFILE EXEC at IPL, see 1.8.2, “Recovering from
unattended startup” on page 14.

12 Large Scale Linux Deployment

PF04 UNDEFINED
PF05 UNDEFINED
PF06 UNDEFINED
PF07 UNDEFINED
PF08 UNDEFINED
PF09 UNDEFINED
PF10 UNDEFINED
PF11 UNDEFINED
PF12 RETRIEVE

1.7 Disconnecting the 3270 session
To disconnect the 3270 VM console without stopping operation of the virtual
machine, issue:

DISConnect

The virtual machine will remain disconnected until the next logon. To reconnect
to the virtual machine, logon and issue:

Begin

1.8 Booting Linux in a virtual machine
For a complete description of how to install Linux as a guest operating system
running under z/VM, refer to the IBM Redbook Linux on IBM ^ zSeries
and S/390: Distributions, SG24-6264.

Typically, Linux is booted from a storage device defined to the Linux guest user
virtual machine.

To boot the Linux guest, issue the following CP command, where vdev is the
virtual device number containing the Linux guest operating system:

Ipl vdev CLear

On IPL, the VM console will display the familiar boot sequence messages
generated by Linux startup.

Note: When you logon to a disconnected virtual machine, you are put into the
CP READ state. The guest will be suspended as discussed in 1.5, “The CP
status indicator” on page 11 until the Begin command is issued.

 Chapter 1. z/VM for beginners 13

In the event a fatal error occurs on Linux IPL, you can return to CMS using:

I CMS

Note that I is a truncation of the IPL command.

1.8.1 Unattended startup of a Linux guest
To automate the process of IPLing a Linux guest during logon, include the
following statement in the PROFILE EXEC A of the Linux guest userid:

IPL vdev CLEAR

1.8.2 Recovering from unattended startup
If you have included a IPL statement in the PROFILE EXEC of a Linux guest to
automatically boot Linux on logon, there may be times you would like to forego
execution of the PROFILE EXEC. For instance, you may need to modify the
virtual machine of the Linux guest, or the Linux boot device may need repair.

To suppress the automatic invocation of the PROFILE EXEC, the first command
you enter after the IPL CMS command is the CMS ACCESS command with the
NOPROF option. For example, enter the following:

IPL CMS

The system response will be:

z/VM V4.4.0 2002-07-11 10:58

To suppress the execution of your PROFILE EXEC, enter:

ACCESS (NOPROF

Tip: The CLEAR operand to the IPL command is optional. If specified, the
content of the virtual machine’s storage is set to binary zeros before the guest
operating system is loaded.

We suspect this option has no effect when IPLing a Linux guest, as we’ve
seen no case in which omitting the parameter has had a detrimental effect.

Important: Before including this statement in PROFILE EXEC, ensure that
Linux has been successfully installed. Otherwise, you may get into a situation
where z/VM will go into a continuous CP READ state. Refer to 1.8.2,
“Recovering from unattended startup” on page 14 for a hint on how to recover.

14 Large Scale Linux Deployment

The system responds with:

Ready;

Now you have loaded CMS and accessed filemode A, without running your
PROFILE EXEC.

1.9 Communicating with CP from a Linux guest
Commands can be passed from a Linux guest to the virtual machine for
processing by CP. The communication mechanism depends on whether
commands issued from the 3270 VM console, or from a Linux telnet session.

1.9.1 Communicating with CP from the VM console
From the 3270 VM console, you can issue CP commands by simply prefacing the
command with the #CP control sequence. For instance, to query the virtual
machine minidisk assignments, issue the command:

#CP QUERY VIRTUAL DASD

1.9.2 Communicating with CP from a Linux telnet session
In order to issue CP commands from a Linux telnet session, you will need to
install the cpint package. The hcp command can then be used to issue
commands to CP from the telnet session. Using hcp, use can query the virtual
minidisk assignments using:

hcp query virtual dasd

Attention: Be careful issuing the CP command DETach from the Linux guest. It
can destroy the environment of the virtual machine.

If this happens, you will need to log off and then log on to z/VM to restore the
virtual machine.

Note: This feature is enabled by z/VM and does not required installation of
any additional program product or package.

Tip: Remember to quote special characters (such as *) to prevent expansion
by the Bash shell.

 Chapter 1. z/VM for beginners 15

We show an example of using the hcp command in 8.11.4, “The vmgetconf
script” on page 166.

1.10 Querying the virtual machine
We now discuss some CP commands you can use to determine some of the
attributes of the virtual machine. These commands are available to class G
users, and they simply report resource definitions for the current virtual machine.
To actually add or modify these resources, you need to have system programmer
authority. See Chapter 2, “Directory Maintenance Facility for z/VM” on page 23
for an overview on how to define resources to a virtual machine.

1.10.1 Querying storage devices
The virtual machine defines disks (referred to as minidisks) for DASD storage.
Minidisks are assigned to a user’s virtual machine by the z/VM system
programmer. Minidisks are typically partitions on a real DASD device (similar to
partitioning on other operating systems such as Linux, OS/2, Windows, and
DOS). To view your virtual machine minidisk definition, use this command:

CP QUERY VIRTUAL DASD

Example 1-8 illustrates the output report.

Example 1-8 Output from the CP QUERY VIRTUAL DASD command

DASD 0120 3390 430RES R/O 67 CYL ON DASD 3750 SUBCHANNEL = 000D
DASD 0190 3390 430RES R/O 107 CYL ON DASD 3750 SUBCHANNEL = 0007
DASD 0191 3390 LNXU1R R/W 25 CYL ON DASD 3731 SUBCHANNEL = 0002
DASD 019D 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 0008
DASD 019E 3390 430RES R/O 175 CYL ON DASD 3750 SUBCHANNEL = 0009
DASD 0201 3390 LX3FA2 R/W 200 CYL ON DASD 3FA2 SUBCHANNEL = 0000
DASD 0202 3390 LX3FA2 R/W 3138 CYL ON DASD 3FA2 SUBCHANNEL = 0001
DASD 0401 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 000B
DASD 0402 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 000A
DASD 0405 3390 430RES R/O 102 CYL ON DASD 3750 SUBCHANNEL = 000C

In the example, we see the minidisk allocation for virtual address 0120. It
consists of 67 cylinders on a 3390 DASD unit with a physical volume name of
430RES. The virtual machine has read-only access to the minidisk.

Important: Do not enter the hcp command without any parameters will cause
the virtual machine to enter the CP READ state (see 1.5, “The CP status
indicator” on page 11).

16 Large Scale Linux Deployment

1.10.2 Querying network devices
Your virtual machine will normally have at least one network interface to
communicate with the outside world. If your virtual machine uses a simulated
network card (referred to as a NIC), you can view the characteristics of that NIC
by using this command:

CP QUERY NIC

In Example 1-9, we show the format of the command output:

Example 1-9 Output of the CP QUERY NIC command

Adapter 0500 Type: HIPERS Name: UNASSIGNED Devices: 3
 Port 0 MAC: 00-04-AC-00-00-1D LAN: SYSTEM PRIVHIPE MFS: 16384
Adapter 0700 Type: QDIO Name: UNASSIGNED Devices: 3
 Port 0 MAC: 00-04-AC-00-00-20 LAN: SYSTEM PRIVQDIO MFS: 8192

In this instance, the virtual machine has defined two NICs: a simulated
hipersocket (HIPERS) attached to virtual address 0500, and a simulated ethernet
(QDIO) attached to virtual address 0700.

Detailed NIC definition report
You can get more detailed information on NIC adapters by using this command,
where vdev is the virtual address of the desired NIC:

CP QUERY NIC vdev DETAILS

In Example 1-10, we show the detailed report for the simulated ethernet interface
generated by the command:

CP QUERY NIC 0700 DETAILS

Example 1-10 Output of the CP QUERY NIC 0700 DETAILS command

Adapter 0700 Type: QDIO Name: NIC0700 Devices: 3 1
 Port 0 MAC: 00-04-AC-00-00-20 LAN: SYSTEM PRIVQDIO MFS: 8192 2
 RX Packets: 259143 Discarded: 0 Errors: 0 3
 TX Packets: 213788 Discarded: 12 Errors: 0
 RX Bytes: 375747841 TX Bytes: 13044137
 Connection Name: HALLOLE State: Session Established 4
 Device: 0700 Unit: 000 Role: CTL-READ
 Device: 0701 Unit: 001 Role: CTL-WRITE
 Device: 0702 Unit: 002 Role: DATA
 Unicast IP Addresses: 5
 10.0.3.30
 Multicast IP Addresses: 6
 224.0.0.1 01-00-5E-00-00-01

Key points are discussed below:

 Chapter 1. z/VM for beginners 17

1. The adapter assigned to virtual device number 0700 is of type QDIO (a
hipersocket would be defined with Type: HIPERS). The portname of the adapter
is NIC0700, and there are three devices which form the adapter (0700, 0701,
and 0702).

2. The MAC address assigned to the adapter is 00-04-AC-00-00-20. It is coupled
to VM LAN PRIVQDIO, and has a Maximum Frame Size (MFS) of 8192.

3. The transmit and receive statistics for the adapter are reported.

4. The Connection Name for the adapter is HALLOLE, and it is enabled.

5. The IP address assigned for Unicast is 10.0.3.30.

6. The IP address assigned for Multicast is 224.0.0.1.

For details on simulated NIC adapters and how to define z/VM guest LANs, see
Chapter 4, “HiperSockets and z/VM Guest LAN” on page 57.

1.10.3 Querying the CPUs available to the virtual machine
To find how many CPUs are defined to your virtual machine, use this command:

CP QUERY VIRTUAL CPUS

Example 1-11 Output of the CP QUERY VIRTUAL CPUS command

CPU 00 ID FF0C0ECB20640000 (BASE)

The command response, illustrated in Example 1-11, shows there is one CPU
defined to the virtual machine.

1.10.4 Querying virtual storage
To find how much storage is defined to the virtual machine, use this command:

CP QUERY VIRTUAL STORAGE

Example 1-12 Output of the CP QUERY VIRTUAL STORAGE command

STORAGE = 128M

The response, illustrated in Example 1-12, shows there is 128 MEG of virtual
storage defined to the virtual machine.

Tip: You can get a detailed report on all simulated NIC adapters using the
command:

CP QUERY NIC ALL DETAILS

18 Large Scale Linux Deployment

1.11 Using DDR to copy a minidisk
DASD Dump Restore (DDR) is a utility used to dump, copy, or print data that
resides on z/VM user minidisks or dedicated DASD. This utility may also be used
to restore or copy DASD data that resides on z/VM user tapes. The DDR utility
has five functions:

1. Dumping part or all of the data from DASD to tape.

2. Restoring data from tapes created by the DDR dump function to DASD. The
DASD must be the same type that originally contained the data.

3. Copying data from one device to another of the same type.

4. Printing selected parts of DASD or tape records to the virtual printer.

5. Displaying selected parts of DASD or tape records to the terminal.

DDR uses control and function statements to describe the intended processing
and the needed I/O devices. The control statements are INput, OUTput, and
SYsprint. The most useful function statements are COpy, DUmp, and REstore.
We consider only the copy function of the DDR utility; refer to Example 1-3.

Example 1-13 Sample DDR copy

ddr 1
z/VM DASD DUMP/RESTORE PROGRAM
ENTER:
sysprint cons 2
ENTER:
input 192 3390 3
ENTER:
output 193 3390 4
ENTER:
copy all 5
HCPDDR711D VOLID READ IS TEMP 6
DO YOU WISH TO CONTINUE? RESPOND YES, NO OR REREAD:
yes
HCPDDR711D VOLID READ IS TEMP

Note: Class G users may increase virtual storage in the virtual machine up to
a limit set in the VM directory by using this command:

CP DEFINE STORAGE store

where store defines the amount of virtual storage to be defined. The value of
store is limited by the VM directory entry for the user (see 2.7.3, “Defining a
user directory entry” on page 31).

 Chapter 1. z/VM for beginners 19

DO YOU WISH TO CONTINUE? RESPOND YES, NO OR REREAD:
yes
COPYING TEMP 7
COPYING DATA 08/02/02 AT 12.48.13 GMT FROM TEMP TO TEMP
INPUT CYLINDER EXTENTS OUTPUT CYLINDER EXTENTS
 START STOP START STOP
 00000000 00000009 00000000 00000009
END OF COPY 8
ENTER: 9

END OF JOB

Key details are discussed below:

1. Invoke the utility using the DDR command.

2. The SYSPRINT statement direct output the console.

3. The INPUT statement describes the input device; we specify a 3390 DASD
device at address 192.

4. The OUTPUT statement describes the output device; we specify a 3390
DASD device at address 193.

5. The COPY statement instructs the utility to copy from the INPUT device (the
192 disk) to the OUTPUT device (the 193 disk).

6. DDR asks you to verify the volume id of each disk. If correct, answer YES.

7. The copy starts.

8. The copy ends - DDR reports the number of cylinders copied.

9. At this point you can either press Enter to end the utility, or enter more control
and function statements.

For additional information on the DDR command, refer to z/VM V4R3.0 CP
Command and Utility Reference, SC24-6008.

1.12 Virtual Machine Resource Manager
The Virtual Machine Resource Manager (VMRM) was introduced in z/VM
Version 4 Release 3.0. VMRM provides a facility for monitoring and adjusting
certain CPU and DASD goals. You, as the system administrator, can define
workloads and create groups of users which will use those workloads. VMRM
automatically adjusts CPU or DASD performance parameters when contention
for a resource occurs between virtual machines. A complete description of
VMRM can be found in z/VM V4R3.0 Performance, SC24-5999.

20 Large Scale Linux Deployment

Important: VMRM uses the CP SET SHARE command to change a virtual
machine’s system-resource-access priority, and uses the CP SET
IOPRIORITY command to change a virtual machine’s I/O priority.

The use of VMRM and these CP commands can be very useful for adjusting
the workload of your z/VM system and the ability of virtual machines to
operate on your system.

However, they can also have an adverse effect on your overall z/VM
performance if they are used incorrectly. For this reason, you need to review
the overall performance of your z/VM system and carefully define the
workloads and goals you want to achieve.

 Chapter 1. z/VM for beginners 21

22 Large Scale Linux Deployment

Chapter 2. Directory Maintenance
Facility for z/VM

This chapter introduces the z/VM Directory Maintenance Facility (DirMaint) for
the maintenance of the VM directory. We describe some of the features available
to help you maintain this directory, and provide example usage of DirMaint
commands.

2

© Copyright IBM Corp. 2002. All rights reserved. 23

2.1 Managing VM using DirMaint
Directory Maintenance Facility (DirMaint) is an IBM program product used to
manage the VM directory. DirMaint provides support for all the z/VM directory
statements. For large scale deployment, DirMaint can ease management of the
VM directory. You do not edit the directory; rather, you issue DirMaint commands
to define VM resources. In addition, DirMaint provides automated validation and
extent allocation routines to reduce the chance of operator error. DirMaint
commands have a similar name and format as the VM directory statements they
support.

We describe some of the more common functions provided by DirMaint. For a
complete description of all DirMaint commands, see the z/VM V4R3.0 Directory
Maintenance Facility Function Level 410 Command Reference, SC24-6025.

For details on how to administer DirMaint, see the z/VM V4R3.0 Directory
Maintenance Facility Function Level 410 Tailoring and Administration Guide,
SC24-6024.

2.2 DirMaint service machines
DirMaint uses several service machines for performing different tasks:

� 4VMDVH10

The DirMaint install and service user ID. By default, 4VMDVH10 owns the
DASD space containing the product code, the customer tailored files, and any
customized user exits.

� DIRMAINT

The primary DirMaint id. It handles everything to do with the source directory
and controls the DATAMOVE and DIRSAT service machines.

� DATAMOVE

A service machine that handles minidisk manipulation on behalf of DirMaint.

� DIRMSAT

A service machine that is mainly used in a multiple system environment. It
handles the object directory on other systems that are not running the
DirMaint service machine.

Attention: When using the GA version of z/VM 4.3.0, APAR VM63033 must
be applied to DirMaint to provide a variety of new functional enhancements.

24 Large Scale Linux Deployment

2.2.1 DirMaint service machine
The directory maintenance service machine userid is by default DIRMAINT. Its
tasks include:

� Owning the control program (CP) source directory
� Receiving transactions from authorized users
� Verifying the transactions are valid
� Making the appropriate updates to the source directory

If full Direct Access Storage Device (DASD) services are enabled, DirMaint also:

� Allocates work among one or more DATAMOVE service machines
� Monitors the progress of each machine

2.2.2 DATAMOVE service machine
If a command changes any DASD space allocation, DirMaint will delegate the
task to the DATAMOVE service machine. By default, the DATAMOVE service
machine userid is DATAMOVE. Its tasks include:

� Formatting newly allocated DASD space a virtual machine

� Copying Conversational Monitor System (CMS) files from an existing disk to
newly formatted extents.

� Formatting old extents being deallocated to prevent exposure of any residual
data to the next user.

2.3 DirMaint command syntax
The general format of a DirMaint command is:

DIRMaint [prefix] command [cmd_options]

where:

DIRMaint Is the name of the DirMaint EXEC

prefix Is an optional command prefix keyword and any
operands required for that keyword.

command Is the DirMaint command

cmd_options Are any options to be passed to command

 Chapter 2. Directory Maintenance Facility for z/VM 25

2.3.1 Using prefix keywords
Prefix keywords provide additional instructions to DirMaint regarding command
processing. Prefixes are placed before the command on which they operate. As
an example, the following prefix instructs DirMaint that command is to modify the
directory entry for user userid:

FORuser userid

2.4 Some useful DirMaint commands
Some useful DirMaint commands are:

SEND Request a copy of a DirMaint control file

FILE Add or replace a DirMaint control file

RLDCode Cause DirMaint to reload its resident operating
procedures

RLDExtn Cause DirMaint to reload its extent control file

Add Add a new user or profile directory entry

REView Review a user or profile directory entry

AMDisk Adds a new minidisk

DEDicate Add or delete an existing dedicate statements

DMDisk Removes a minidisk

LOGONBY Allows users to use their own password to logon to
different IDs

MDisk Change the access mode and passwords for minidisks

STorage Change logon storage size

SETOptn Add, change or delete CP options

CLAss Change the CP class for a directory entry

SPEcial Add or delete an existing special statement

TMDisk Transfer ownership of a minidisk from one userid to
another

26 Large Scale Linux Deployment

2.5 Defining a userid as a DirMaint administrator
You can define additional VM users as DirMaint administrators. This gives you
flexibility of having more that one administrator to manage the VM directory. To
define a VM userid as a DirMaint administrator, you first need to:

1. Obtain the AUTHFOR CONTROL file from DirMaint

2. Edit the control file, adding the additional userid as a DirMaint administrator

3. Send the revised AUTHFOR CONTROL file back to DirMaint

4. Tell DirMaint to reload its resident operating procedures

2.5.1 Obtain the DirMaint AUTHFOR CONTROL file
To obtain the AUTHFOR CONTROL file, use:

DIRM SEND AUTHFOR CONTROL

DirMaint will send a file to your reader called AUTHFOR CONTROL. Receive this
file using the replace option.

2.5.2 Format of the AUTHFOR CONTROL file
Example 2-1 illustrates the format of the AUTHFOR CONTROL file. The file
consists of space delimited fields, as explained in Table 2-1 on page 27.

Example 2-1 AUTHFOR CONTROL file

ALL MAINT * 140A ADGHOPS
ALL MAINT * 150A ADGHOPS
ALL COSTA * 140A ADGHOPS
ALL COSTA * 150A ADGHOPS
ALL MBEATTIE * 140A ADGHOPS
ALL MBEATTIE * 150A ADGHOPS
ALL LXOPR * 150A ADGHOPS
ALL LXOPR * 140A ADGHOPS
ALL LXADMIN * 150A ADGHOPS
ALL LXADMIN * 140A ADGHOPS

Table 2-1 AUTHFOR CONTROL field definitions

Field number Description

1 The target userid. When specified as the keyword ALL, the authorized
userid may act on behalf of any userid in the VM directory.

2 The authorized userid. This userid may act on behalf of the target
userid.

 Chapter 2. Directory Maintenance Facility for z/VM 27

2.5.3 Activating AUTHFOR CONTROL file changes
Once the AUTHFOR CONTROL file has been edited to define additional
administrators, the changes are made to DirMaint using:

DIRM FILE AUTHFOR CONTROL

To tell DirMaint to reload its resident operating procedures, use:

DIRM RLDC

2.6 Adding a volume to a DirMaint group
The DirMaint EXTENT CONTROL file defines volumes used for minidisk
allocation and provides the layout structure of how space on those volumes
should be used. You should define volumes in the EXTENT CONTROL file before
adding users. This comes into play especially when using a prototype.

2.6.1 Obtain the DirMaint EXTENT CONTROL file
To obtain the EXTENT CONTROL file, use:

DIRM SEND EXTENT CONTROL

DirMaint will send the file to your reader.

2.6.2 Format of the EXTENT CONTROL file
 Example 2-2 shows a sample EXTENT CONTROL file.

3 The network node id. An asterisk allows the authorized userid to enter
commands from any system within the cluster.

4 The command level. Valid values are 140A or 150A. A command level
140A allows the user to enter commands using DirMaint Release 4
compatibility syntax and 150A uses DirMaint Release 5 full function
syntax

5 The command set. This identifies which commands the user may use.
See z/VM V4R3.0 Directory Maintenance Facility Function Level 410
Command Reference, SC24-6025 for the IBM-defined default
command sets.

Field number Description

28 Large Scale Linux Deployment

Example 2-2 EXTENT CONTROL file

* **
:REGIONS. 1
 *RegionId VolSer RegStart RegEnd Type
 430RES 430RES 001 3338 3390-03
 430W01 430W01 001 3338 3390-03
 LNXU1R LNXU1R 001 3338 3390-03
 LX651A LX651A 001 3338 3390-03
 LX660E LX660E 001 3338 3390-03
 LX660F LX660F 001 3338 3390-03
:END.
:GROUPS. 2
ANY LNXU1R
LXDEMO LX651A LX660E LX660F
:END.
:EXCLUDE. 3
* USERID ADDRESS
:END.
:AUTOBLOCK. 4
 * IBM supplied defaults are contained in the AUTOBLK DATADVH file.
 * The following are customer overrides and supplements.
 *
 *DASDType BlockSize Blocks/Unit Alloc_Unit Architecture
:END.
:DEFAULTS. 5
 * IBM supplied defaults are contained in the DEFAULTS DATADVH file.
 * The following are customer overrides and supplements.
 *
 *DASDType Max-Size
:END. 6

Following are explanations of the details shown in the example:

1. The :REGIONS. stanza defines the area on the DASD volume to be used by
DirMaint for automatic allocation.

2. The :GROUPS. stanza defines a group of regions to be used by DirMaint for
automatic allocation.

3. The :EXCLUDE. stanza defines users or user/device combination that should
be excluded by DirMaint DASD subsystem.

4. The :AUTOBLOCK. stanza defines blocking factors for various device types.

5. The :DEFAULTS. stanza defines the default maximum size for various DASD
devices.

6. The :END. tag defines the end of a stanza.

 Chapter 2. Directory Maintenance Facility for z/VM 29

2.6.3 Activating EXTENT CONTROL file changes
Once the EXTENT CONTROL file has been edited, the changes are made to
DirMaint using:

DIRM FILE EXTENT CONTROL

To tell DirMaint to use the updated file, use:

DIRM RLDE

2.7 Adding directory entries
Using DirMaint, you can add, modify, and review VM directory entries. To simplify
the process of defining many similar userids, you can use directory profiles.
Profiles allow you to define common user characteristics. Defined profiles can
then be included in user definitions. More than one profile may exist in the VM
directory.

2.7.1 Defining a profile directory entry
Directory profiles are defined text files with names of the form:

PROFNAME DIRECT

where PROFNAME is the profile name. Once defined, these can then added to
DirMaint. Example 2-3 illustrates a directory profile named MYSAMPLE DIRECT.

Example 2-3 MYSAMPLE DIRECT

PROFILE MYSAMPLE 1
 IPL CMS 2
 MACH XA 3
 SPOOL 000C 2540 READER * 4
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 CONSOLE 009 3215 T 5
 LINK MAINT 0190 0190 RR 6
 LINK MAINT 019D 019D RR
 LINK MAINT 019E 019E RR

Following are explanations of the details shown in the example:

1. Specifies the name of the profile - in this case, MYSAMPLE. Profile names must
be one to eight-character alphanumeric strings.

2. Specifies that CMS is to be IPLed when the userid logs on.

3. Specifies the virtual machine type to be used. Valid types are ESA, XA, or XC.

30 Large Scale Linux Deployment

4. Specifies the reader, punch, and printer address and device type.

5. Specifies the console address and device type.

6. Specifies links to the CMS system disks.

2.7.2 Adding a profile directory entry
To add the above directory profile, use:

DIRM ADD MYSAMPLE

2.7.3 Defining a user directory entry
Users are defined text files with names of the form:

USERNAME DIRECT

where USERNAME is the VM user name. Once defined, these can then added to
DirMaint. Example 2-3 illustrates a user profile named LNX88 DIRECT.

Example 2-4 LNX88 DIRECT file

USER LNX88 LNX88PW 128M 1G G 1
INCLUDE MYSAMPLE 2
AMD 191 3390 AUTOG 5 LXDEMO MR 3

Following are explanations of the details shown in the example:

1. Defines a user named LNX88 with password LNX88PW. The user will run in
virtual machine with 128 MEG of storage and 1 GIG storage maximum. The
user will run with class G CP privileges.

2. The MYSAMPLE directory profile is to be included in this user’s definition.

3. Allocates a five-cylinder 191 minidisk.

Adding a user directory entry
To add the above user, use:

DIRM ADD LNX88

2.7.4 Adding a userid using a prototype file
When you need to make several userids with the same specifications, you can
use a prototype file. To create a VM user named LNX99 based on the LEAF
prototype, use:

DIRM ADD LNX99 LIKE LEAF

 Chapter 2. Directory Maintenance Facility for z/VM 31

In Example 2-5, we show the LEAF prototype definition.

Example 2-5 The LEAF PROTODIR definition

USER LEAF LEAFX 16M 64M G
 INCLUDE USRDFLT
 XAUTOLOG LEAFMSTR
 MDISK 0191 3390 AUTOG 1 LXDEMO MR

In Example 2-6, we show the directory entry for user LNX99.

Example 2-6 Directory entry for a user created using a prototype

USER LNX99 XXXXXXXX 16M 64M G
DVHRXV3355I The following records are included from profile: USRDFLT
 PROFILE USRDFLT
 IPL CMS
 MACH XA
 CONSOLE 0009 3215 T
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 LINK MAINT 0190 0190 RR
 LINK MAINT 019D 019D RR
 LINK MAINT 019E 019E RR
*DVHOPT LNK0 LOG1 RCM1 SMS0 NPW1 LNGAMENG PWC20020719 CRCå"
DVHRXV3355I The preceding records are included from profile: USRDFLT
 XAUTOLOG LEAFMSTR
 MDISK 0191 3390 940 1 LX651A MR

2.8 Maintaining directory entries
You can use DirMaint to review and modify directory entries.

2.8.1 Reviewing a directory entry
To review a profile or user directory entry, issue the REView DirMaint command.
For example, to view the directory entry for user LNX88, use:

DIRM FOR LNX88 REV

DirMaint will send the LNX88 DIRECT file to your reader.

Note: Prototype definitions are defined in a file named NAME PROTODIR,
where NAME is prototype name.

32 Large Scale Linux Deployment

2.8.2 Adding a minidisk to a user directory entry
You can add additional minidisks to a user with DirMaint. To create a new 192
minidisk of 10 cylinders allocated for userid LNX88, use:

DIRM FOR LNX88 AMD 192 3390 AUTOG 10 LXDEMO MR

The new disk will reside on one of the volumes under the DirMaint group called
LXDEMO (see 2.6, “Adding a volume to a DirMaint group” on page 28 for a
discussion of volume groups).

2.8.3 Adding access passwords to a minidisk
You can add a read, write, or multiple-write password to your minidisk. The
following command will add these passwords:

DIRM FOR LNX88 MD 191 = ALL WRITE MULTI

The character string ALL will allow any userid to link read-only to that disk without
knowing the correct password. It also set the write password to WRITE and the
multiple-write password to MULTI,

2.8.4 Dedicating a device to a userid
The following command will dedicate real device 2320 as LNX88 virtual device
111:

DIRM FOR LNX88 DED 111 2320

The most common devices to dedicate are DASD, tape drives, and networking
devices such as OSA cards and CTCs.

2.8.5 Deleting a new minidisk from a user directory entry
To remove a minidisk entry, use:

DIRM FOR LNX88 DMD 192 CLEAN

The 192 minidisk for userid LNX88 will be removed from the directory entry, and
the disk will be cleaned on removal.

Note: If more than one virtual machine has a dedicate statement for a given
real device, only the first virtual machine to log on receives control of the
device.

 Chapter 2. Directory Maintenance Facility for z/VM 33

2.8.6 Changing virtual storage for VM users
The following command will increase the storage for user LNX88 to 512 MEG:

DIRM FOR LNX88 STORAGE 512M

2.8.7 Adding, deleting, and modifying CP options
Use the SETOptn command to add, delete, or modify CP options. For example,
the following command will add the QUICKDSP CP option to user LNX88:

DIRM FOR LNX88 SETO ADD QUICKDSP

2.8.8 Changing CP Privileges
Use the CLAss command to change the CP privileges associated with a
directory entry. For example, the following command will assign user LNX88 to
CP class B:

DIRM FOR LNX88 CLASS ADD B

2.8.9 Using the SPECIAL DirMaint command
You can add or delete SPECIAL directory entry statements using the DirMaint
SPECIAL command. For instance, the following command will create a simulated
QDIO adapter for user LNX88:

DIRM FOR LNX88 SPECIAL 700 QDIO 3 SYSTEM PRIVQDIO

A simulated Network Interface Card (NIC) is defined at logon time with three
devices starting at base address 700. The NIC will automatically be coupled to a
VM LAN with the userid of SYSTEM and the LAN name of PRIVQDIO.

2.8.10 Transferring a minidisk between userids
You can transfer a minidisk to another userid; for example, using this command
will transfer LNX88 193 minidisk to MAINT as its 999 minidisk:

DIRM FOR LNX88 TMD 193 to MAINT 999

Note: QUICKDSP causes a virtual machine to be added to the dispatch list
immediately when it has work to do. This will increase the performance of that
userid. This option should be used sparingly.

Note: A class B user can control all the real resources of the z/VM system. For
a list of privileges, see 1.4, “CP command privilege classes” on page 7.

34 Large Scale Linux Deployment

2.8.11 Adding shared logon access to a userid
To be able to logon to another userid with your own password, use the following
command:

DIRM FOR LNX88 LOGONBY MAINT

This will allow userid MAINT to logon to LNX88 using MAINT user password.

Note: A maximum of eight users can be specified on the LOGONBY directory
statement.

 Chapter 2. Directory Maintenance Facility for z/VM 35

36 Large Scale Linux Deployment

Chapter 3. FCON/ESA for monitoring a
penguin colony

This chapter describes the VM/ESA Full Screen Operator Console and Graphics
Realtime Performance Monitor (FCON/ESA) tool. Using FCON/ESA, you can
monitor your Linux guests from a z/VM session.

3

© Copyright IBM Corp. 2002. All rights reserved. 37

3.1 Introducing FCON/ESA
VM/ESA Full Screen Operator Console and Graphical Realtime Performance
Monitor (FCON/ESA) was developed by Eginhard Jaeger of IBM Switzerland. It
provides performance monitoring capabilities with system console operations in
full screen mode. FCON/ESA can give you a real time view of system
performance. New performance monitoring and resource management functions
will be made available in a future release of z/VM.

Using FCON/ESA as the base, this optional feature will include functional
capabilities not provided today by the Performance Reporting Facility (PRF) and
RealTime Monitor (RTM) features of z/VM. The existing PRF and RTM priced
optional features will be withdrawn from marketing in a future release of z/VM.

3.2 FCON/ESA support for Linux on z/VM
With release 3.2.03 of FCON/ESA, a Linux performance data interface has been
added. Data retrieval and display of Linux internal performance data is based on
the Linux Distributed Data Server (DDS) interface, originally written for use with
Resource Measurement Facility (RMF) Performance Monitoring (PM).

The DDS interface must be installed and active on all Linux systems that are to
be monitored. Performance data retrieval is based on Extensible Markup
Language (XML) requests, sent to the Linux systems via TCP/IP. Only the data
actually needed for building a specific Linux performance report is retrieved.

Performance data is collected only in the Linux systems, and performance
history data is only available from the filesystems of the Linux systems.
FCON/ESA does not collect or save any Linux internal performance data. Figure
3-1, “Linux performance data collection” on page 39 illustrates the components
involved.

For additional information about FCON/ESA, see:

http://www.vm.ibm.com/perf/perfprod.html

Important: See the Statement of Direction at:

http://www.ibm.com/servers/eserver/zseries/library/specsheets/gm130075_more2.html#9

38 Large Scale Linux Deployment

http://www.vm.ibm.com/perf/perfprod.html
http://www.ibm.com/servers/eserver/zseries/library/specsheets/gm130075_more2.html#9

Figure 3-1 Linux performance data collection

3.3 The Distributed Data Server
The Distributed Data Server (DDS) acts to feed Linux monitor data to the Data
Collector. DDS is distributed as the server component of the RMF PM for Linux.
The RMF PM for Linux home page can be found at:

http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm

Refer to this page for prerequisites and installation details.

3.3.1 Download DDS
Download the DDS server from the RMF PM for Linux home page. DDS is
distributed in gzipped tar format (file rmfpms_s390_bit64.tgz for 64-bit Linux
installations).

LNX1

DDS

LNX2

DDS

LNXn

DDS

......

FCONX

Data
Collector

TCPIP

zVM

Important: Be sure to download the server component and not the client.

 Chapter 3. FCON/ESA for monitoring a penguin colony 39

http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm

3.3.2 Install DDS on a Linux guest
Extract the rmfpms_s390_bit64.tgz tar file to a directory of your choice. The tar
file packages all content under the relative directory named rmfpms. To extract to
the /opt directory, issue these commands:

cd /opt
tar -zxf rmfpms_s390_bit64.tgz

3.3.3 Starting DDS
To start DDS, execute rmfpms (found in the bin directory of the RMF PM
installation). Example 3-1 shows the output generated when starting RMF PM.

Example 3-1 Starting rmfpms

cd /opt/rmfpms/bin/

./rmfpms start
Creating ~/rmfpms/.rmfpms ...
Starting performance gatherer backends ...
DDSRV: RMF-DDS-Server/Linux-Beta (Mar 1 2002) started.
DDSRV: Functionality Level=1.813
DDSRV: Reading exceptions from gpmexsys.ini and gpmexusr.ini.
DDSRV: Server will now run as a daemon process.
done!

3.3.4 Viewing monitored data
If you have installed the RMF PM client on a graphics-enabled workstation, you
can view the monitoring data generated by the DDS. Example 3-2 on page 41
shows a sample of the monitoring output.

40 Large Scale Linux Deployment

Figure 3-2 Monitoring a Linux guest using the RMF PM client

3.4 Customizing FCON/ESA for monitoring Linux guests
After installing DDS on the Linux guest, some customizing needs to be
completed before monitoring can begin.

3.4.1 Preparing the control file
Create a file called FCONX LINUXUSR on the FCONX 201 disk. This control file
must contain one record for each Linux system, with the Linux use rid and the IP
address of its DDS interface. See Example 3-2, “The FCONX LINUXUSR control
file” on page 42 for a sample.

 Chapter 3. FCON/ESA for monitoring a penguin colony 41

Example 3-2 The FCONX LINUXUSR control file

*LINUX-ID IP ADDRESS FOR DDS INTERFACE
*
LNX5 10.0.3.5:8803
LNX8 10.0.3.8:8803

3.4.2 Updating the FCON/ESA profile
To update the FCON/ESA profile, add the following command to the FCONX
$PROFILE, which resides on the FCONX 201 disk.

FC MONCOLL LINUXUSR ON

where:

FC Specifies the FC subcommand that allows tailoring of
FCON/ESA functions

MONCOLL Allows control of data collection for performance
monitoring

LINUXUSR Controls the activation and deactivation of the TCP/IP
request interface for performance data retrieval from Linux
RMF DDS interfaces

ON Activates the request interface

3.5 The FCON/ESA Linux systems option
In this section we look at monitoring of Linux guests. Performance monitor mode
is activated by entering the MONITOR command. Example 3-3 shows the initial
performance data selection menu.

Example 3-3 Performance data selection menu

FCX124 Performance Screen Selection Perf. Monitor

 General System Data I/O Data History Data (by Time)
 1. CPU load and trans. 11. Channel load 31. Graphics selection
 2. Storage utilization 12. Control units 32. History data files*
 3. Storage subpools 13. I/O device load* 33. Benchmark displays*
 4. Priv. operations 14. CP owned disks* 34. Correlation coeff.
 5. System counters 15. Cache extend. func.* 35. System summary*
 6. CP IUCV services 16. DASD I/O assist 36. Auxiliary storage
 7. SPOOL file display* 17. DASD seek distance* 37. CP communications*
 8. LPAR data 18. I/O prior. queueing* 38. DASD load
 9. Shared segments 19. I/O configuration 39. Minidisk cache*

42 Large Scale Linux Deployment

 A. Shared data spaces 1A. I/O config. changes 3A. Paging activity
 B. Virt. disks in stor. 3B. Proc. load & config*
 C. Transact. statistics User Data 3C. Logical part. load
 21. User resource usage* 3D. Response time (all)*
 D. Monitor data 22. User paging load* 3E. RSK data menu*
 E. Monitor settings 23. User wait states* 3F. Scheduler queues
 F. System settings 24. User response time* 3G. Scheduler data
 G. System configuration 25. Resources/transact.* 3H. SFS/BFS logs menu*
 26. User communication* 3I. System log
 H. Exceptions 27. Multitasking users* 3K. TCP/IP data menu*
 28. User configuration* 3L. User communication
 I. User defined data* 29. Linux systems* 3M. User wait states

 Pointers to related or more detailed performance data
 can be found on displays marked with an asterisk (*).

 Select performance screen with cursor and hit ENTER
 Command ===>

Option 29 (Linux systems*) is used to monitor Linux guests as discussed in 3.6,
“FCON/ESA subcommands for Linux guests” on page 43.

Option D (Monitor Data) is used to monitor z/VM overall performance as
discussed in 3.7, “Monitoring overall z/VM performance” on page 49.

3.6 FCON/ESA subcommands for Linux guests
We concentrate on the subcommands for Linux guests listed in Table 3-1.

Table 3-1 FCON/ESA LINUX subcommands

Subcommand Description

LINux [guest] Displays the Linux systems selection menu or a Linux details
selection for guest

LXCPU guest Displays the Linux CPU utilization screen for guest

LXMEM guest Displays the Linux memory utilization screen for guest

LXNETwrk guest Displays the Linux network activity screen for guest

LXFILsys guest Displays the Linux filesystem usage screen for guest

 Chapter 3. FCON/ESA for monitoring a penguin colony 43

3.6.1 The LINUX subcommand
Use the LINUX subcommand to get a list of the different Linux guests that can be
monitored. This list is taken from the FCONX LINUXUSR file. To select a specific
Linux guest for performance analysis, either:

� Place the cursor on the name of the Linux guest and press Enter.

This navigates to the systems selection menu described in 3.6.2, “The Linux
systems selection menu” on page 44.

� Select the Linux guest by entering: LINUX guest on the command line.

This fastpath navigation takes you directly to the details selection described in
3.6.3, “The Linux details selection menu” on page 44.

3.6.2 The Linux systems selection menu
In Example 3-4, we show the Linux guest selection menu.

Example 3-4 Selecting a Linux system to monitor

FCX223 CPU 2064 SER C0ECB Linux Systems Perf. Monitor

 Selectable Linux Systems
 LNX1 LNX10 LNX11 LNX12 LNX13 LNX14
 LNX15 LNX16 LNX17 LNX18 LNX19 LNX2
 LNX20 LNX21 LNX22 LNX23 LNX24 LNX25
 LNX26 LNX27 LNX28 LNX29 LNX3 LNX30
 LNX4 LNX5 LNX6 LNX7 LNX8 LNX9

 Select a system for Linux details
 Command ===>

To navigate to the details selection menu for a specific guest, either:

� Place the cursor over the guest and press Enter.

� Provide the guest name on the command line and press Enter.

3.6.3 The Linux details selection menu
Choosing the LNX8 guest for detailed analysis, we are presented with the report
shown in Example 3-5 on page 45.

44 Large Scale Linux Deployment

Example 3-5 The Linux details selection screen

FCX224 CPU 2064 SER C0ECB Interval 10:10:00 - 10:11:00 Perf. Monitor

 Linux Performance Data Selection for System LNX8

 System Data
 Processes created per second 0.066
 Context switches per second 4.933
 Apache: Requests per second ...
 Bytes per request ...
 Busy threads ...
 Idle threads ...
 404 Errors per minute ...

 S Perform. Reports Description
 _ LXCPU LNX8 CPU utilization details

 _ LXMEM LNX8 Memory utilization & activity details

 _ LXNETWRK LNX8 Network activity (overall & by device)

 _ LXFILSYS LNX8 File system size and utilization

FCXLXD645E GPM0507I DDS could not retrieve valid data for the specified date
 Command ===>

This display shows general performance values for the specific Linux system.
You can obtain more detailed information on:

� CPU utilization

To get the details on CPU utilization for guest LNX8 (discussed in 3.6.4, “The
LXCPU subcommand” on page 46), either:

– Place the cursor on the LXCPU line and press Enter.
– On the command line, enter: LXCPU LNX8

� Memory utilization

To get the details on memory utilization for guest LNX8 (discussed in 3.6.5,
“The LXMEM subcommand” on page 47), either:

– Place the cursor on the LXMEM line and press Enter.
– On the command line, enter: LXMEM LNX8

Note: If you get the error message: FCXLCD645E GPM0507I DDS could not
retrieve valid data for the specified date when navigating to this menu,
ensure that the Apache Web server is installed and running on the Linux
guest.

 Chapter 3. FCON/ESA for monitoring a penguin colony 45

� Network activity

To get the details on network for guest LNX8 (discussed in 3.6.6, “The
LXNETWRK subcommand” on page 48), either:

– Place the cursor on the LXNETWRK line and press Enter.
– On the command line, enter: LXNETWRK LNX8

� Filesystem size and activity

To get the details on filesystem size and activity for guest LNX8 (discussed in
3.6.7, “The LXFILESYS subcommand” on page 48), either:

– Place the cursor on the LXFILESYS line and press Enter.
– On the command line, enter: LXFILESYS LNX8

3.6.4 The LXCPU subcommand
Example 3-6 shows output from the command LXCPU LNX8. This shows overall
CPU utilization, as perceived by the Linux guest, as well as utilization by
processor and by process.

Example 3-6 The Linux CPU utilization screen

FCX230 CPU 2064 SER C0ECB Interval 10:41:00 - 10:42:00 Perf. Monitor

 Linux CPU Utilization for System LNX8
 _____
 <--- Percent CPU Utilization ----> <-Accumulated (s)->
 Processor Total User Kernel Nice Idle TotTm UserTm KernTm
 >>Mean>> 1.23 0.36 0.86 0 98.76 --- --- ---
 cpu0 1.24 0.36 0.88 0 98.75 --- --- ---

 Process Name
 gpmddsrv.906 0.33 0.26 0.06 ... --- 761.8 554.6 207.2
 procgat.891 0.01 0.01 0 0 --- 1340 80.12 1260
 atd.634 0 0 0 0 --- 0.02 ... 0.02
 automount.549 0 0 0 0 ---
 crond.604 0 0 0 0 --- 6.63 0.53 6.1
 dasdgat.879 0 0 0 0 --- 385.5 10.18 375.3
 filegat.881 0 0 0 0 --- 48.47 1.41 47.06
 init.1 0 0 0 0 --- 3.3 0.27 3.03
 keventd.3 0 0 0 0 --- ... 0 0
 kjournald.10 0 0 0 0 --- 36.9 0 36.9
 klogd.461 0 0 0 0 --- 0.27 0.15 0.12
 kmcheck.2 0 0 0 0 --- 0 0 0
 kreclaimd.6 0 0 0 0 --- ... 0 0
 ksoftirqd_CPU0.4 0 0 0 19 --- 5.38 0 5.38
 kswapd.5 0 0 0 0 --- 540.2 0 540.2
 mingetty.649 0 0 0 0 --- 0.01 0.01 ...

46 Large Scale Linux Deployment

 qethsoftd0014.311 0 0 0 0 ---
 sshd.561 0 0 0 0 --- 2.26 2.23 0.03
 syslogd.456 0 0 0 0 --- 5.1 1.04 4.06

 Command ===>

3.6.5 The LXMEM subcommand
Example 3-7 shows the output from the command LXMEM LNX8. This shows
overall Linux memory utilization and activity, as perceived by the Linux guest, as
well as utilization and activity by process.

Example 3-7 The Linux memory utilization screen

FCX229 CPU 2064 SER C0ECB Interval 11:15:00 - 11:16:00 Perf. Monitor

 Linux Memory Util. & Activity Details for System LNX8

 Total memory size 115MB Swap space size 140MB
 Total memory used 112MB % Swap space used 4.08%
 Used for buffer 26MB Swap-in rate 0/s
 Used for shared 0MB Swap-out rate 0/s
 Used for cache 48MB Page-in rate 7/s
 Total free memory 2MB Page-out rate 7/s

 . ________
 <----- Size -----> <------- Page Fault Rate/s -------->
 (Bytes) (kB) Minor Major <-Incl.Children->
 Process Name VirtSize ResidSet MinPgFlt MajPgFlt MinPFltC MajPFltC
 gpmddsrv.8755 128664k 1720
 gpmddsrv.8756 128664k 1720 0
 gpmddsrv.8943 128664k 1720 0 0 0 0
 gpmddsrv.897 128664k 1720 0 0 0 0
 gpmddsrv.898 128664k 1720 0 0 0 0
 gpmddsrv.899 128664k 1720 0 0 0 0
 gpmddsrv.900 128664k 1720
 gpmddsrv.901 128664k 1720
 gpmddsrv.906 128664k 1720 8 5 16
 gpmddsrv.907 128664k 1720
 gpmddsrv.9130 128664k 1720 0 0 0 0
 gpmddsrv.9131 128664k 1720 0 0 0 0
 gpmddsrv.924 128664k 1720
 gpmddsrv.9442 128664k 1720 0 0 0 0

 Command ===>

 Chapter 3. FCON/ESA for monitoring a penguin colony 47

3.6.6 The LXNETWRK subcommand
Example 3-8 shows the output from the command LXNETWRK LNX8. This
shows network activity, both as total activity and by network device.

Example 3-8 The Linux network activity screen

FCX227 CPU 2064 SER C0ECB Interval 11:22:00 - 11:23:00 Perf. Monitor

 Linux Network Activity for System LNX8
 _______
 Network <------- Received/s -------> <----- Transmitted/s ------>
 Device RcvPack RcvByte RcvError SndPack SndByte SndError
 >Total> 0.91 142 0 0.86 624 0
 eth0 0.91 142 0 0.86 624 0
 eth1 0 0 0 0 0 0
 lo 0 0 0 0 0 0

Command ===>
 F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

3.6.7 The LXFILESYS subcommand
Example 3-9 shows the output from the command LXFILSYS LNX8. This shows
overall DASD I/O activity and response time, and both overall and “by filesystem”
information on filesystem size and usage. This shows if there are any DASD I/O
problems, as well as if you are running out of space on the Linux filesystems.

Example 3-9 The LINUX filesystem usage screen

FCX228 CPU 2064 SER C0ECB Interval 11:25:00 - 11:26:00 Perf. Monitor

 Linux Filesystem Usage for System LNX8

 DASD I/O Activity
 I/O request rate per second 0
 I/O response time/request (msec) nan
 I/O response time/sector (msec) nan

 __________
 Filesystem <---- MBytes ----> <-Percent->
 Name Size Free %Used %Free
 >Total> 2171 679 67.0 32.9
 /dev/dasdb1 2171 679 67.0 32.9

 Command ===>

48 Large Scale Linux Deployment

3.7 Monitoring overall z/VM performance
Table 3-2 lists useful FCON/ESA system and user data subcommands. They can
be executed from the MONITOR screen (shown in Example 3-3 on page 42).

Table 3-2 Useful FCON/ESA subcommands

3.7.1 The CPU subcommand
Example 3-10 shows the output from the CPU subcommand.

Example 3-10 Layout of the general CPU screen

FCX100 CPU 2064 SER C0ECB Interval 15:58:01 - 15:59:01 Perf. Monitor

 CPU Load Vector Facility Status or
 PROC %CPU %CP %EMU %WT %SYS %SP %SIC %LOGLD %VTOT %VEMU REST ded. User
 P00 6 3 2 94 2 0 97 6 not installed Master
 P01 5 2 3 95 1 0 98 5 not installed Alternate

 Total SSCH/RSCH 152/s Page rate .1/s Priv. instruct. 349/s
 Virtual I/O rate 2/s XSTORE paging .0/s Diagnose instr. 343/s
 Total rel. SHARE 11000 Tot. abs SHARE 3%

 Queue Statistics: Q0 Q1 Q2 Q3 User Status:
 VMDBKs in queue 8 1 0 45 # of logged on users 73
 VMDBKs loading 0 0 0 0 # of dialled users 0
 Eligible VMDBKs 0 0 0 # of active users 58
 El. VMDBKs loading 0 0 0 # of in-queue users 54
 Tot. WS (pages) 128807 89 0 621991 % in-Q users in PGWAIT 0
 Expansion factor 2 2 2 % in-Q users in IOWAIT 97
 85% elapsed time 15.99 1.999 15.99 95.95 % elig. (resource wait) 0

Subcommand Description

CPU Shows CPU load, processor status, queue and user status,
transactions, and extreme users

STORAGE Shows central and expanded storage utilization, paging and
spooling utilization, minidisk cache utilization and VDISKs

DEVICE or I/O Shows I/O device rates

DEVICE raddr Shows general device performance data, path data information,
control unit cache, and minidisk load

USER Shows users CPU load and virtual I/O

USER userid Shows general performance information for that user and device
activity and status

 Chapter 3. FCON/ESA for monitoring a penguin colony 49

 Transactions Q-Disp trivial non-trv User Extremes:
 Average users .7 .2 .2 Max. CPU % LNX5 .4
 Trans. per sec. .1 .6 .1 Max. VECT %
 Av. time (sec) 6.107 .436 1.780 Max. IO/sec LNX5 .5
 UP trans. time .436 1.780 Max. PGS/s LNX11 .1
 MP trans. time .000 .000 Max. RESPG LXDISP 28078
 System ITR (trans. per sec. tot. CPU) 17.4 Max. MDCIO
 Emul. ITR (trans. per sec. emul. CPU) .0 Max. XSTORE LNX30 4841

 Command ===>

3.7.2 The STORAGE subcommand
Example 3-11 shows the output from the STORAGE subcommand.

Example 3-11 Layout of the general storage utilization screen

FCX103 CPU 2064 SER C0ECB Interval 16:10:01 - 16:11:01 Perf. Monitor

 Main storage utilization: XSTORE utilization:
 Total available 3,072MB Total available 262,144kB
 Space for RIO370 0kB Att. to virt. machines 0kB
 CP resident nucleus 2,772kB Size of CP partition 262,144kB
 Shared storage 2,752kB CP XSTORE utilization 94%
 FREE storage pages 7,988kB Low threshold for migr. 6,904kB
 FREE stor. subpools 2,708kB XSTORE allocation rate 0/s
 Subpool stor. utilization 92% Average age of XSTORE blks 11939s
 Total DPA size 2,033MB Average age at migration ...s
 Locked pages 38,344kB
 Pageable (DPA - locked) 1,996MB MDCACHE utilization:
 Storage utilization 147% Min. size in XSTORE 0kB
 Tasks waiting for a frame 6 Max. size in XSTORE 262,144kB
 Tasks waiting for a page 0/s Ideal size in XSTORE 260,048kB
 Act. size in XSTORE 151,444kB
 V=R area: Bias for XSTORE 1.00
 Size defined 0kB Min. size in main stor. 0kB
 FREE storage 0kB Max. size in main stor. 3,072MB
 V=R recovery area in use ...% Ideal size in main stor. 2,265MB
 V=R user Act. size in main stor. 402,704kB
 Bias for main stor. 1.00
 Paging / spooling activity: MDCACHE limit / user 322,400kB
 Page moves <2GB for trans. 0/s Users with MDCACHE inserts 0
 Fast path page-in rate 0/s MDISK cache read rate 0/s
 Long path page-in rate 0/s MDISK cache write rate /s
 Long path page-out rate 0/s MDISK cache read hit rate 0/s

50 Large Scale Linux Deployment

 Page read rate 0/s MDISK cache read hit ratio 100%
Page write rate 0/s
Page read blocking factor ... VDISKs:
Page write blocking factor ... System limit (blocks) 2092k
Migrate-out blocking factor ... User limit (blocks) 524288
Paging SSCH rate 0/s Main store page frames 0
SPOOL read rate 0/s Expanded stor. pages 0
SPOOL write rate 0/s Pages on DASD 1
Enter 'FREesub' command for Free Storage Subpool details
Command ===>

3.7.3 The DEVICE subcommand
Example 3-12 shows the output from the DEVICE or I/O subcommand.

Example 3-12 Layout of the general I/O device screen

FCX108 CPU 2064 SER C0ECB Interval 16:14:01 - 16:15:12 Perf. Monitor
 ____ . .
 <-- Device Descr. --> Mdisk Pa- <-Rate/s-> <------- Time (msec) -------> Req.
 Addr Type Label/ID Links ths I/O Avoid Pend Disc Conn Serv Resp CUWt Qued
 >> All DASD << 0 .0 .2 .1 .4 .7 .7 .0 .00
 5090 CTCA >RSCS ... 1 .2 1 2000 .3 2001 2001 .0 .00
 3C30 3390-3 TARHF7 0 3 .0 .0 14.3 .0 .3 14.6 14.6 .0 .00
 3753 3390-3 430PAG CP 0 2 .1 .0 .2 6.5 2.3 9.0 9.0 .0 .00
 099C 3390-3 VMPSL2 0 4 .0 .0 5.6 .0 .5 6.1 6.1 .0 .00
 64AD ->641B PAS305 0 4 .0 .0 5.5 .0 .3 5.8 5.8 .0 .00
 25EA 3390-3 O37RC1 0 4 .0 .0 5.2 .1 .4 5.7 5.7 .0 .00
 64AC ->641B PAS305 0 4 .0 .0 5.2 .1 .4 5.7 5.7 .0 .00
 3D1C 3390-3 TOTCI4 0 3 .0 .0 5.2 .1 .3 5.6 5.6 .0 .00
 64AE ->641B PAS305 0 4 .0 .0 5.2 .0 .3 5.5 5.5 .0 .00
 2567 3390-3 TC7CKT 0 4 .0 .0 5.0 .1 .3 5.4 5.4 .0 .00
 3BA3 3390-9 LX3BA3 4 3 .9 .1 .6 2.5 2.2 5.3 5.3 .0 .00
 3CA1 3390-9 LX3CA1 4 3 .5 .0 .2 1.6 3.2 5.0 5.0 .0 .00
 3B6B 3390-3 NW3B6B 0 3 .0 .0 4.5 .1 .3 4.9 4.9 .0 .00
 3BA4 3390-9 LX3BA4 6 3 .4 .0 .2 3.1 1.6 4.9 4.9 .0 .00
 3B44 3390-3 430PG2 CP 0 3 .1 .0 .2 3.2 .7 4.1 4.1 .0 .00
 0CEE 3390-3 TOTDS0 0 4 .0 .0 2.9 .1 .5 3.5 3.5 .0 .00
 3731 3390-3 LNXU1R 22 2 .1 .0 .2 .0 3.2 3.4 3.4 .0 .00
 64AA ->641C FK641C 0 4 .0 .0 3.1 .0 .3 3.4 3.4 .0 .00
 099D 3390-3 VMTDK2 0 4 .0 .0 .3 1.2 1.0 2.5 2.5 .0 .00
 256B 3390-3 TRNRSB 0 4 .0 .0 2.1 .0 .4 2.5 2.5 .0 .00
 253C 3390-3 O37RA1 0 4 .0 .0 1.6 .1 .4 2.1 2.1 .0 .00
 6000 3390-3 SAPS01 0 4 .0 .0 .3 .1 1.7 2.1 2.1 .0 .00
 6100 3390-3 SAPS06 0 4 .0 .0 .3 .0 1.8 2.1 2.1 .0 .00
 67FE ->6700 HG6700 0 2 .0 .0 .3 .1 1.7 2.1 2.1 .0 .00
 Select a device for I/O device details
 Command ===>

 Chapter 3. FCON/ESA for monitoring a penguin colony 51

Specifying a device
Example 3-13 shows the out put from the DEVICE raddr subcommand, where
raddr is the real address of some device (in this case, we used 3731).

Example 3-13 Layout of the detailed I/O device screen

FCX110 CPU 2064 SER C0ECB Interval 16:19:51 - 16:19:52 Perf. Monitor

Detailed Analysis for Device 3731 (SYSTEM)
Device type : 3390-3 Function pend.: ...ms Device busy : ...%
VOLSER : LNXU1R Disconnected : ...ms I/O contention: ...%
Nr. of LINKs: 22 Connected : ...ms Reserved : ...%
Last SEEK : 516 Service time : ...ms SENSE SSCH : ...
SSCH rate/s : .0 Response time : ...ms Recovery SSCH : ...
Avoided/s : .0 CU queue time : ...ms Throttle del/s: ...
Status: MDCACHE USED

Path(s) to device 3731: 1B 27 32 3D
Channel path status : ON ON OFF OFF

Device Overall CU-Cache Performance Split
DIR ADDR VOLSER IO/S %READ %RDHIT %WRHIT ICL/S BYP/S IO/S %READ %RDHIT

 MDISK Extent Userid Addr IO/s VSEEK Status LINK VIO/s %MDC MDIO/s
+--+
C 1 - 20 LNX2 1777 .0 0 WR 1 .0 0 C
C 21 - 25 TCPIP111 0191 .0 0 WR 1 .0 0 C
C 51 - 75 LNX16 0191 .0 0 WR 1 .0 0 C
C 276 - 300 LNX24 0191 .0 0 WR 1 .0 0 C
C 426 - 450 LNX30 0191 .0 0 WR 1 .0 0 C
C 451 - 475 LNX23 0191 .0 0 WR 1 .0 0 C
C 476 - 495 MBEATTIE 0191 .0 0 WR 1 .0 0 C
C 516 - 575 FCONX 0191 .0 0 WR 2 .0 0 C
C 576 - 587 FCONX 0200 .0 0 WR 2 .0 0 C
C 588 - 596 TCPMAINT 0298 .0 owner C

Command ===>

3.7.4 The USER subcommand
Example 3-14 on page 53 shows the output from the USER subcommand.

52 Large Scale Linux Deployment

Example 3-14 Layout of the user resource usage screen

FCX112 CPU 2064 SER C0ECB Interval 16:37:01 - 16:38:01 Perf. Monitor
______
 <----- CPU Load -----> Vect <-- Virtual IO/s --->
 <-Seconds-> T/V Fac
Userid %CPU TCPU VCPU Ratio %Vec Total DASD Avoid UR Pg/s User Status
>System< .1 .1 .1 1.1 .0 .0 .0 .0 .0 .0 ---,---,----
CONFSERV 0 0 0 ... 0 0 0 0 0 0 ESA,---,DORM
DATAMOVE 0 0 0 ... 0 0 0 0 0 0 ESA,---,DORM
DIRMAINT 0 0 0 ... 0 0 0 0 0 0 ESA,---,DORM
DISKACNT 0 0 0 ... 0 0 0 0 0 0 ESA,---,DORM
EREP 0 0 0 ... 0 0 0 0 0 0 ESA,---,DORM
FCONX .0 .0 .0 0 .1 .1 .0 .0 .0 ESA,---,DORM
GCS 0 0 0 ... 0 0 0 0 0 0 ESA,---,DORM
LCL101 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL102 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL103 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL104 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL105 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL106 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL107 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL108 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL109 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL110 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL111 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL112 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL113 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL114 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL115 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
LCL116 .2 .1 .1 1.0 .0 .0 .0 .0 .0 .0 EME,CL3,DISP
Select a user for user details or IDLEUSER for a list of idle users
Command ===>

Specifying a specific user
Example 3-15 on page 54 shows the output from the USER userid subcommand,
where userid is the id you want to look at (we used CONFSERV id).

 Chapter 3. FCON/ESA for monitoring a penguin colony 53

Example 3-15 Layout of the user resource details screen

FCX115 CPU 2064 SER C0ECB Interval 16:35:00 - 16:35:57 Perf. Monitor

 Detailed data for user LCL101 (sec. user: CONFSERV)
 Total CPU : .1% Storage def. : 64MB Page fault rate: .0/s
 Superv. CPU : .1% Resident <2GB: 3499 Page read rate : .0/s
 Emulat. CPU : .0% Resident >2GB: 5268 Page write rate: .0/s
 VF total : % Proj. WSET : 10038 Pgs moved >2GB>: .0/s
 VF overhead : % Reserved pgs : 0 Main > XSTORE : .0/s
 VF emulation: % Locked pages : 22 XSTORE > main : .0/s
 VF load rate: /s XSTORE dedic.: 0MB XSTORE > DASD : .0/s
 I/O rate : .0/s XSTORE pages : 302 SPOOL pg reads : .0/s
 DASD IO rate: .0/s DASD slots : 3030 SPOOL pg writes: .0/s
 UR I/O rate : .0/s IUCV X-fer/s : .0/s MDC insert rate: .0/s
 Diag. X'98' : .0/s Share : 100 MDC I/O avoided: .0/s
 *BLOCKIO : .0/s Max. share : ...

 #I/O active : 4 Active :100% PSW wait : 0% I/O act. : 0%
 Stacked blk : .. Page wait : 0% CF wait : 0% Eligible : 0%
 Stat.: EME,DSC,IOWT I/O wait :100% Sim. wait: 0% Runnable : 0%

 Data Space Name Size Mode PgRd/s PgWr/s XRd/s XWr/s Migr/s Steal/s
 BASE 64MB Priv .0 .0 .0 .0 .0 .0

 Device activity and status:
 0009 3215 .0 000C 254R CL *, EOF NOH NCNT
 000D 254P CL A, CO 01, NOH NCNT 000E 1403 CL A, CO 01, NOH NCNT
 0190 3390 .0 3750,RR, 107Cyl,--->0 019D 3390 .0 3750,RR, 102Cyl,--->0
 019E 3390 .0 3750,RR, 175Cyl,--->0 0202 3390 .0 6711,RR,3338Cyl,>1927
 0700 OSA .0 INT.MISS 0701 OSA .0
 Enter 'STOrage Display' for storage details
 Command ===>

54 Large Scale Linux Deployment

Part 2 Networking for
Linux on
zSeries

In this part we describe networking the penguin colony. We discuss using
HiperSockets and z/VM Guest LAN, routing, and traffic shaping. Topics
discussed include:

� An overview of zSeries HiperSockets

� The Guest LAN feature of z/VM version 4

� Connectivity in the server farm without routing

� TCP/IP routing configurations available to the server farm

� Network redundancy issues for high availability

Part 2

© Copyright IBM Corp. 2002. All rights reserved. 55

56 Large Scale Linux Deployment

Chapter 4. HiperSockets and z/VM
Guest LAN

This chapter describes the Guest LAN feature of z/VM Version 4. It describes the
basic emulated-HiperSockets function, as well as the new virtual-QDIO mode
introduced with z/VM Version 4.3.

In addition, we look at the HiperSockets function of the zSeries 800 and 900
processors.

4

© Copyright IBM Corp. 2002. All rights reserved. 57

4.1 Introduction to HiperSockets
HiperSockets is a feature of the zSeries 800 and 900 processors. It provides a
high-speed network connectivity method, which can be used to link operating
systems running in logical partitions on a single zSeries processor.

4.1.1 Operating system support
HiperSockets is supported by the following zSeries operating systems:

� Linux (kernel 2.4, using QDIO network driver)
� z/VM (Version 4 Release 2 and higher)
� z/OS (Version 1 Release 2 and higher)
� z/OS.e

4.1.2 Capabilities
HiperSockets uses the Self-Timed Interconnect (STI) bus of the zSeries
processors to perform high-speed data transfer.

Up to four HiperSockets networks can be defined on one zSeries processor. This
means that traffic between particular systems can be separated onto different
networks.

One reason you might do this is for security considerations: you can define a
DMZ HiperSockets network, separate from a private HiperSockets network used
for application database access. You could also use separate HiperSockets
networks to separate test LPARs from production LPARs.

4.2 Configuring HiperSockets
In order to use HiperSockets, you must perform hardware definition work, as well
as configuration in your operating system.

Note: For complete information about HiperSockets, including how to define
HiperSockets devices on your zSeries processor, refer to zSeries
Hipersockets, SG24-6816.

58 Large Scale Linux Deployment

4.2.1 Hardware tasks
You must add definitions for the HiperSockets networks you want to use to the
IODF for your zSeries processor. The device type to be used is IQD (for
internal-queued-direct).

The HiperSockets devices do not consume real physical channel paths, but do
require virtual channel path numbers to be allocated. There are no restrictions on
the channel path numbers that can be used for HiperSockets; however, it is
recommended that high channel path numbers are used. This means you can
keep the numbers used for virtual channels away from the “real” channel
numbers allocated to physical channels.

Once the hardware definition work is complete, you can configure your operating
systems for access to the HiperSockets network.

4.2.2 z/VM tasks
To use your HiperSockets connection in your z/VM TCP/IP stack, perform these
steps:

� Attach the correct device addresses to the TCPIP user
� Update the PROFILE TCPIP file
� Update the configuration of MPROUTE (if used)
� Restart the TCPIP machine, or use an obeyfile to activate the interface

Attaching the devices
Update the SYSTEM DTCPARMS file to ensure that the devices for your
HiperSockets interface are attached to your TCPIP service machine when it is
logged on. The system directory can be used for this also, but adding the
statements to the SYSTEM DTCPARMS file allows the TCPIP administrator to
control the configuration more directly.

To attach the devices while the TCPIP machine is up, you can issue the ATTACH
command (from a user with class B privilege) as shown in Example 4-1.

Example 4-1 Attaching HiperSockets devices to a guest

attach 7100 to tcpip 7100
OSA 7100 ATTACHED TO TCPIP 7100
Ready; T=0.01/0.01 18:26:44
attach 7101 to tcpip 7101
OSA 7101 ATTACHED TO TCPIP 7101
Ready; T=0.01/0.01 18:26:52
attach 7102 to tcpip 7102
OSA 7102 ATTACHED TO TCPIP 7102
Ready; T=0.01/0.01 18:26:58

 Chapter 4. HiperSockets and z/VM Guest LAN 59

Configure the TCP/IP stack
Once the device addresses are available to TCPIP, you can configure the device
to the stack. You use DEVICE and LINK statements for this purpose. An example
is shown in Example 4-2.

Example 4-2 TCPIP DEVICE and LINK statements for HiperSockets

DEVICE HIPERDEV HIPERS 7100 PORTNAME HIPERP
LINK HIPERLNK QDIOIP HIPERDEV

Update MPROUTE
If you are using the MPROUTE service machine to provide dynamic routing, you
will need to add your new interface to the configuration. If you do not define it,
MPROUTE may take default settings which you do not want. Refer to z/VM
V4R3.0 TCP/IP Level 430 Planning and Customization, SC24-6019, for
information on how to configure MPROUTE.

Activate your new interface
You can reconfigure TCP/IP dynamically, to make use of your new device without
having to schedule a restart of TCP/IP. Refer to 6.3.3, “Changing a running z/VM
TCP/IP stack” on page 102 for more information on how to do this.

4.2.3 Linux tasks
To add a HiperSockets connection to your Linux guest, perform these steps:

� Attach the correct device addresses to the Linux guest
� Update the system configuration
� Update the configuration of your dynamic routing daemon (if used)
� Restart the guest, or unload and reload the qeth.o module

Attaching the devices
From a privilege class B user, you can use the ATTACH command to add the
devices to your Linux guest dynamically.

Example 4-3 Attaching HiperSockets devices to a guest

attach 7104 to lnx6 7100
OSA 7104 ATTACHED TO LNX6 7100
Ready; T=0.01/0.01 18:27:14
attach 7105 to lnx6 7101
OSA 7105 ATTACHED TO LNX6 7101
Ready; T=0.01/0.01 18:27:17
attach 7106 to lnx6 7102

60 Large Scale Linux Deployment

OSA 7106 ATTACHED TO LNX6 7102
Ready; T=0.01/0.01 18:27:21

To make these changes permanent, you can add the DEDICATE statement to
the directory entry for the guest, as shown in Example 4-4.

Example 4-4 Directory statements for Linux guest HiperSockets

DEDICATE 7104 7100
DEDICATE 7105 7101
DEDICATE 7106 7102

If you use DirMaint to manage your user directory, refer to 2.8.4, “Dedicating a
device to a userid” on page 33 for instructions on how to perform this operation
using DirMaint.

Updating the system configuration
With Linux, you define the connection to HiperSockets interfaces using entries in
the /etc/chandev.conf file, which specifies the device addresses to be used for
each HiperSockets device you wish to use. Refer to “The /etc/chandev.conf file”
on page 74 for more information about how to correctly set up /etc/chandev.conf.

Updating the dynamic routing daemon
Depending on the daemon you use and the configuration method it employs, you
will have to add the new interface to its configuration. Refer to the documentation
for your chosen routing daemon for more information.

Configuring the interface to TCP/IP
Once the channel device layer is correctly configured, an hsiX device is available
for configuration to Linux TCP/IP.

Tip: These commands can be issued while a Linux guest is active. However,
you will need to reconfigure the channel device layer in order for the network
device to be usable.

Also, if you already have the qeth.o driver loaded for other OSA or
HiperSockets devices, you will need to schedule a time for the module to be
reloaded before your newly added HiperSockets interface can be configured.

Note: Even if you do not plan on using dynamic routing through this new
interface, you may still have to define it to the daemon. You may have to
change the way that the interface is advertised to the dynamic routing domain,
or ensure that the correct subnet mask or MTU value is used.

 Chapter 4. HiperSockets and z/VM Guest LAN 61

You can use the ifconfig command or the ip command to assign an IP address
to the interface and bring it up. If your distribution provides a network
configuration program (such as the “Network configuration” component of YaST
in a SuSE distribution), you can use that.

The following ip command will assign the address 10.0.6.6 to interface hsi1.

ip addr add 10.0.6.6/24 dev hsi1

4.3 Introduction to the Guest LAN feature
The Guest LAN feature provides support for network connection of guest
machines. Guest LAN can be used for TCP/IP communication between guests,
or between guests and a z/VM TCP/IP service machine.

4.3.1 Virtual HiperSockets
The original VM Guest LAN feature, introduced with z/VM Version 4.2, is based
on the HiperSockets microcode feature provided on zSeries processors.

Restriction: If you are already using interfaces supported by the qeth.o
module, a newly created or attached interface will be available for use
immediately.

However, if you are changing existing devices, the module will have to be
unloaded and reloaded after the channel device layer is reconfigured. This will
require all qeth-supported network interfaces to be brought down.

Reminder: TCP/IP configurations performed on the command line like this are
not persistent (that is, they will be lost at the next reboot). Various distributions
keep IP configuration information in different places (for example: in Red Hat,
the /etc/sysconfig/network-scripts/ifcfg-* files; in SuSE, the /etc/rc.config file
followed by the SuSEconfig command).

Update the appropriate files, or use your distribution configuration utility, to
make changes permanent.

Important: A VM Guest LAN can only support connections to virtual
machines on the same VM system.

62 Large Scale Linux Deployment

VM Guest LAN may be used on any processor supported by z/VM; it does not
utilize HiperSocket microcode. VM Guest LAN provides support for TCP/IP
traffic. With z/VM Version 4.3, IP multicast is supported, as well.

4.3.2 Virtual QDIO
Introduced with z/VM Version 4.3, the QDIO VM Guest LAN simulates a Shared
Access Transport Facility (SATF) network interfaced via a QDIO mode adapter
such as the OSA-Express Fast Ethernet. As far as the guest operating system is
concerned, the QDIO VM Guest LAN acts as an Ethernet network, and functions
such as broadcast and multicast are supported.

4.4 VM Guest LAN configuration
To use a VM Guest LAN, you need to do the following:

1. Create a VM Guest LAN segment to act as the network between virtual
machines.

2. On each virtual machine to be connected to the VM Guest LAN, create a
simulated network interface card (NIC).

3. Attach each virtual machine’s simulated NIC to VM Guest LAN segment.

4. For each Linux guest to be connected to the VM Guest LAN segment:

a. Start the Linux guest.
a. Configure the Linux network interface for the VM Guest LAN.

4.5 Creating a VM Guest LAN segment
Use the DEFINE LAN command to define a VM Guest LAN segment. The
command syntax is:

DEFine LAN lanname [operands]

where:

lanname Is a 1- to 8-character alphanumeric name for the VM Guest LAN
segment

operands Define the characteristics of the VM Guest LAN

Important: The name ‘DIO Guest LAN is somewhat of a misnomer, since the
QDIO interface layer is used for both HiperSockets and the simulated Ethernet
Guest LAN.

 Chapter 4. HiperSockets and z/VM Guest LAN 63

Operands accepted by the DEFINE LAN command are summarized in Table 4-1.

Table 4-1 Operands to the CP DEFINE LAN command

4.5.1 Establishing a VM Guest LAN owner
The OWNERid operand determines both the owner of the LAN and the lifetime of
the LAN. The OWNERid may assume values:

* The owner is invoker of the DEFINE LAN command
(this is the default).

ownerid A VM user that owns the LAN.

SYSTEM The LAN is to be a persistent LAN.

Both the LAN name and its owner uniquely identify a VM Guest LAN (this means
you may define two distinct LANs, provided they are owned by different VM
users).

4.5.2 Establishing a VM Guest LAN lifetime
The lifetime of a VM Guest LAN is determined by its owner. When assigned an
owner VM user at creation, the LAN is defined to be transient. If assigned the
special owner SYSTEM at creation, the LAN is defined to be persistent. If no owner

Operand Description

OWNERid ownerid Establishes the owner of the LAN.

TYPE lantype Specifies the LAN type. Valid lantype values are
HIPERsocket for by simulated HiperSockets adapters (the
default), or QDIO for use by simulated QDIO adapters.

MAXCONN maxconn Sets the maximum number of simultaneous adapters
allowed to connect to the LAN at maxconn. If specified as
INFinite (the default), no limit is set.

MFS size Sets the Maximum Frame Size for adapters on the network.
This option is only valid for HiperSocket LAN (the default
value in this case is 16 K).

UNRESTricted Defines a LAN with no access control - any user may
connect to the LAN. The default is to create an unrestricted
LAN.

RESTricted Defines a LAN with access control - only authorized users
may connect to the LAN.

ACCOUNTing value Determines if accounting records are created for the LAN -
value ON enables accounting, OFF disables accounting.

64 Large Scale Linux Deployment

is specified for the LAN, it will be created as a transient LAN owned by the
invoker.

Transient VM Guest LANs
A transient LAN exists as long as the owner VM user is logged on. Once the
owner logs off VM, a transient guest LAN will be destroyed, provided no
simulated NICs are coupled to the LAN (once all NICs are decoupled, however,
the LAN will be destroyed).

Persistent VM Guest LAN
A persistent LAN can only be destroyed using the DETACH LAN command.

4.6 Creating a simulated NIC
Use the DEFINE NIC command to create a simulated NIC. The command syntax
is:

DEFine NIC vdev [operands]

where:

vdev Specifies the base virtual device address for the adapter
operands Define the characteristics of the simulated NIC

Table 4-2 on page 66 lists operands accepted by the DEFINE NIC command.

Note: Class G users may create a VM Guest LAN segment. However, the
owner must be specified as the invoker (thus, all LANs created by a class G
user are necessarily transient).

Note: The CP DETACH LAN command can also be used to destroy transient
LANs.

Attention: A persistent VM Guest LAN will not persist across a VM IPL. To
ensure the definition of the LAN is maintained across IPL, see the procedure
outlined in 4.10, “Defining a VM Guest LAN in the VM directory” on page 70.

 Chapter 4. HiperSockets and z/VM Guest LAN 65

Table 4-2 Operands to the CP DEFINE LAN command

4.7 Attaching the simulated NIC to the VM Guest LAN
Use the COUPLE command to attach a simulated NIC to a VM Guest LAN. The
syntax of COUPLE command when used to attach a simulated NIC to a VM
Guest LAN is:

COUPLE vdev TO ownerid lanname

where:

vdev Specifies the base virtual device address for the adapter
ownerid Specifies the owner of the VM Guest LAN
lanname The name for the VM Guest LAN

4.8 A VM Guest LAN example
We illustrate the process of creating and explicitly destroying a QDIO VM Guest
LAN in Example 4-5.

Example 4-5 Steps to create and activate a VM Guest LAN

DEFINE LAN QDIOSAMP TYPE QDIO 1
LAN LNX88 QDIOSAMP is created
Ready; T=0.01/0.01 10:00:49
DEFINE NIC 0543 QDIO 2
NIC 0543 is created; devices 0543-0545 defined

Operand Description

HIPERsockets Creates a simulated HiperSockets NIC.

QDIO Creates a simulated QDIO NIC

DEVices num Sets the number of virtual devices associated to the adapter.
If omitted, the number of devices will default to 3.

Tip: When creating an interface for a Linux guest, you normally need three
devices: one for the read channel; one for the write channel; one for the data
channel. In this case, do not specify the DEVices operand; CP will allocate
three sequential devices starting with number vdev.

Important: You can only couple a simulated NIC to a VM Guest LAN of the
same type. For instance, if the VM Guest LAN is defined to be of type QDIO,
you can only couple simulated NICs of type QDIO to that LAN.

66 Large Scale Linux Deployment

Ready; T=0.01/0.01 10:01:44
COUPLE 0543 TO * QDIOSAMP 3
NIC 0543 is connected to LAN LNX88 QDIOSAMP
Ready; T=0.01/0.01 10:02:45
DETACH LAN QDIOSAMP 4
NIC 0543 is disconnected from LAN LNX88 QDIOSAMP
LAN LNX88 QDIOSAMP is destroyed
Ready; T=0.01/0.01 10:10:59

The notes highlighted in Example 4-5 refer to the following points:

1. Define a transient VM Guest LAN of type QDIO. The owner is the command
invoker (LNX88).

2. Define a simulated NIC of type QDIO. The virtual device number is 0543.

3. Couple the simulated NIC to the VM Guest LAN.

4. Explicitly destroy the VM Guest LAN.

At the end of this process, the simulated NIC at devices 0543-0545 still exists,
and can be COUPLEd to another VM Guest LAN. The command DETACH NIC is
used to destroy the simulated NIC, as shown in Example 4-6.

Example 4-6 Destroying a simulated NIC

DETACH NIC 0543
NIC 0543 is destroyed; devices 0543-0545 detached
Ready; T=0.01/0.01 10:11:09

4.9 Restricted VM Guest LANs
The RESTricted operand on the DEFINE LAN command allows you to restrict
VM users permitted to attach simulated NICs to the LAN. This security feature is
enabled when the LAN is created. Use the SET LAN command to authorize VM
users to attach to the LAN.

Important: The command DETACH 0543 cannot be used to detach a
simulated NIC. This is what happens if you try:

DETACH 0543
HCPDTV2793E Device 0543 not detached; DETACH NIC 0543 to remove network
devices 0543-0545

Remember, save yourself some effort by issuing DETACH NIC when you want
to remove a simulated NIC.

 Chapter 4. HiperSockets and z/VM Guest LAN 67

4.9.1 Viewing VM Guest LAN attributes
You can view the attributes of a VM Guest LAN using the QUERY LAN
command. The syntax to get a detailed view of a specific VM Guest LAN is

Query LAN lanname DETails

In Example 4-7, we request a detailed report on the VM Guest LAN named
QDIOSAMP.

Example 4-7 Using the QUERY LAN command to view VM Guest LAN attributes

QUERY LAN QDIOSAMP DETAILS
LAN LNX88 QDIOSAMP Type: QDIO Active: 1 MAXCONN: INFINITE 1
 TRANSIENT UNRESTRICTED MFS: 8192 ACCOUNTING: OFF 2
 Adapter Owner: LNX88 NIC: 0543 Name: UNASSIGNED 3
Ready; T=0.01/0.01 10:19:42

1. The VM Guest LAN is uniquely identified by both the owner and the LAN
name (LNX88 QDIOSAMP). It is of type QDIO with one active attached simulated
NIC. No limit on the number of connection to the LAN is defined.

2. The VM Guest LAN is transient and unrestricted. Accounting is turned off.

3. An adapter owned by user LNX88 is attached to the LAN. The simulated NIC
virtual device number is 0543, and the it has no assigned port name (Name:
UNASSIGNED).

4.9.2 Changing VM Guest LAN attributes
You can modify the attributes of a VM Guest LAN using the command SET LAN.
Attributes that may be modified include:

� The LAN owner

Tip: You can get a detailed report on all VM Guest LANs using the variation:

Query LAN ALL DETails

If lanname is omitted, this is the default.

Note: Although the MFS operand is only valid for type HiperSocket LANs,
type QDIO LANs have an effective MFS value of 8 K.

Note: Changing the owner from a VM user to special owner SYSTEM will
change the LAN from transient to persistent.

68 Large Scale Linux Deployment

� Accounting for the LAN (the ACCOUNTing operand of DEFINE LAN)

� The access list of authorized users for a restricted VM Guest LAN

The syntax to authorize a VM user to attach to a restricted LAN is:

SET LAN lanname GRANT userid

To revoke a VM users authorization, use:

SET LAN lanname REVOKE userid

In Example 4-8, we illustrate the creation of a restricted VM Guest LAN of type
HiperSockets, and the modification of its access list.

Example 4-8 Authorizations for a restricted VM Guest LAN

DEFINE LAN HIPRSAMP OWNER * MAXCONN 4 MFS 64K REST 1
LAN LNX88 HIPRSAMP is created
Ready; T=0.01/0.01 13:05:35
QUERY LAN HIPRSAMP DETAILS 2
LAN LNX88 HIPRSAMP Type: HIPERS Active: 0 MAXCONN: 4
 TRANSIENT RESTRICTED MFS: 65536 ACCOUNTING: OFF
 Authorized userids:
 LNX88
Ready; T=0.01/0.01 13:06:31
SET LAN HIPRSAMP GRANT LNX4 3
Command complete
Ready; T=0.01/0.01 13:07:20
QUERY LAN HIPRSAMP DETAILS 4
LAN LNX88 HIPRSAMP Type: HIPERS Active: 0 MAXCONN: 4
 TRANSIENT RESTRICTED MFS: 65536 ACCOUNTING: OFF
 Authorized userids:
 LNX4 LNX88
Ready; T=0.01/0.01 13:08:10
SET LAN HIPRSAMP REVOKE LNX4 5
Command complete
Ready; T=0.01/0.01 13:48:30
QUERY LAN HIPRSAMP DETAILS 6
LAN LNX88 HIPRSAMP Type: HIPERS Active: 0 MAXCONN: 4
 TRANSIENT RESTRICTED MFS: 65536 ACCOUNTING: OFF
 Authorized userids:
 LNX88
Ready; T=0.01/0.01 13:48:34

Important: Revoking a VM users authorization will not break any existing
connections by that user to the LAN.

 Chapter 4. HiperSockets and z/VM Guest LAN 69

The notes highlighted in Example 4-8 on page 69 refer to the following points:

1. Create a restricted HiperSockets VM Guest LAN named HIPRSAMP.

2. Query the LAN attributes. Note that the owner is the only authorized VM user.

3. Grant authorization to VM user LNX4.

4. Query the LAN attributes. Note that LNX4 is added to the access list.

5. Revoke authorization for user LNX4.

6. LNX4 is no longer in the access list.

4.10 Defining a VM Guest LAN in the VM directory
Because persistent VM Guest LANs are not maintained across VM IPL, we
describe a procedure to automate configuration of the LAN on IPL.

4.10.1 Define the VM Guest LAN in the SYSTEM CONFIG file
Add the DEFINE LAN command to the SYSTEM CONFIG to ensure the LAN is
defined on IPL (see z/VM V4R3.0 CP Planning and Administration, SC24-6043,
for details on the SYSTEM CONFIG file).

4.10.2 Define and couple simulated NICs to the VM Guest LAN
Using the SPECIAL statement in the user directory entry, you can define and
couple a simulated NIC to a defined VM Guest LAN using the format:

SPEcial vdev type devs owner lanname

where:

vdev Specifies the base virtual device address for the adapter
type Specifies type of NIC to create (HIPERs or QDIO)
devs Specifies the number of virtual devices in the NIC
owner Specifies the owner of the VM Guest LAN
lanname The name for the VM Guest LAN

Use the SPECIAL statement in the directory entry of all users intended to
connect to the VM Guest LAN.

Note: The SPECIAL statement has the effect of executing both the DEFINE
NIC and COUPLE commands consecutively.

70 Large Scale Linux Deployment

In Example 4-9, we show a VM directory entry for user LNX4 which defines a
QDIO simulated NIC and connects that NIC to a persistent QDIO LAN named
PRIVQDIO.

Example 4-9 VM directory entry to define and couple an NIC to a VM Guest LAN

*
USER LNX4 xxxx 126M 512M G
 INCLUDE IBMDFLT
 MACHINE XA
 SPECIAL 700 QDIO 3 SYSTEM PRIVQDIO
 IPL 190 PARM AUTOCR
 MDISK 191 3390 3075 025 430W01 MR READ WRITE MULTIPLE
 MDISK 201 3390 0001 0200 LX3755 MR READ WRITE MULTIPLE
 MDISK 202 3390 0201 1469 LX3755 MR READ WRITE MULTIPLE
 MDISK 203 3390 1870 1469 LX3730 MR READ WRITE MULTIPLE
*

Using DirMaint to define a simulated NIC
If you use DirMaint to manage the VM directory, you can add the SPECIAL
statements to a profile or user directory entry; see 2.7, “Adding directory entries”
on page 30 for details. Alternately, you can modify an existing profile or user
entry using the DIRM SPECIAL command; see 2.8.9, “Using the SPECIAL
DirMaint command” on page 34 for details.

4.10.3 Automating connections to a VM Guest LAN
As an alternative to using a SPECIAL statement in the VM directory, you can
have the VM user who intends to connect to the VM Guest LAN manage its own
network connections.

In Example 4-10, we show a REXX exec which automates connecting to a VM
Guest LAN and IPLing a Linux guest. The main features of the script are:

� The VM creates a simulated QDIO NIC using virtual devices 700, 701, and
702.

� The NIC is coupled to a persistent VM Guest LAN named PRIVQDIO.

� The Linux boot filesystem resides on the user’s 202 minidisk.

Attention: Remember to create a simulated NIC of the same type
(HiperSocket or QDIO) as the VM Guest LAN to which it is to be coupled.

 Chapter 4. HiperSockets and z/VM Guest LAN 71

Example 4-10 Automating connections to a VM Guest LAN from the VM user

/*---
 sample startup procedure for linux guests under z/VM
 ---*/
/*---------------------------------
 clear environment and define simulated NIC first
 ---------------------------------*/
'pipe CP DETACH NIC 700 ! stem det_result.'
'pipe CP DEFINE NIC 700 QDIO DEVICES 3 ! stem nic_result.'

if subword(nic_result.1, 1, 1) <> 'NIC'
 then do
 /*---
 any error condition are occured, inform any other components
 ---*/
 say 'ERROR: defining simulated NIC'
 exit(1)
 end
 else say 'NIC 700 successfully defined'
/*---------------------------------
 connect to desired VLAN
 ---------------------------------*/
'pipe CP COUPLE 700 TO SYSTEM PRIVQDIO ! stem couple_result.'

if subword(couple_result.1, 1, 1) <> 'NIC'
 then do
 /*---
 any error condition are occured, inform any other components
 ---*/
 say 'ERROR: coupling NIC to VLAN'
 exit(2)
 end
 else say 'NIC 700 successfully connected to PRIVQDIO'
/*--
 linux startup
 --*/
say 'unattended start for linux/390 will executed in 5 seconds'
say ' if not desired press <ENTER> to abort ...'

address cms 'sleep 5 sec attn' /* wait for five seconds for manual
 startup or something like that */
if RC = 0
 then do
 address cms 'cp i 202 clear'
 end
 else say 'start of linux/390 aborted'

exit

72 Large Scale Linux Deployment

4.11 Configuring a VM Guest LAN in a Linux guest
Once the VM Guest LAN segment is defined and a simulated NIC is coupled to
that LAN in the virtual machine of a Linux guest, the Linux network interface can
then be configured and enabled. The steps to configure the network interface
are:

1. Load the network interface device driver.
2. Provide the TCP/IP configuration for the interface.
3. Provide TCP/IP routing information for the device.

4.11.1 A word about network device drivers
The devices drivers required to support VM Guest LAN are distributed by IBM in
object code only (OCO) form. These drivers may be included as part of your
Linux for zSeries distribution (if you use SuSE, for example).

However, these drivers are not included as part of the Red Hat Linux for zSeries
distribution. In this case, you will need to download and install the device drivers
from the IBM Developerworks Web site:

http://www.ibm.com/developerworks/opensource/linux390/index.shtml

Follow the OCOs for RedHat link.

4.11.2 Loading the Linux network interface device driver
In order to configure the network interface for a VM Guest LAN in a Linux guest,
you first need to load the interface device drivers. The drivers are normally found
in the /lib/modules/kernel-version/net directory (where kernel-version is the
identifier of the booted Linux kernel).

To install the device drivers for a VM Guest LAN:

1. Update the /etc/chandev.conf file to add definitions for the physical devices.
2. Update the /etc/modules.conf file associate a driver to an interface.
3. Load the device driver using the modprobe command.

Important: The 2.4 Linux kernel is required in order to use a VM Guest LAN;
the HiperSocket interface is not supported in the 2.2 Linux kernel.

Note: Details on installation of device drivers on Linux for zSeries can be
found in Linux for zSeries and S/390 Device Drivers and Installation
Commands , LNUX-1303 available at:

http://www.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf

 Chapter 4. HiperSockets and z/VM Guest LAN 73

http://www.ibm.com/developerworks/opensource/linux390/index.shtml
http://www.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf

Interface naming conventions
Interfaces names formed from a base name (indicative of the type of network
device) and a device number (indicative of the number of devices of that type).
For VM Guest LAN interfaces, Linux on zSeries will generate a base name for the
interface according to the convention:

eth QDIO VM Guest LAN interfaces
hsi HiperSockets VM Guest LAN interfaces

The /etc/chandev.conf file
Network interface devices must be described in the /etc/chandev.conf file. In
Example 4-11, we show the chandev configuration necessary to configure a
QDIO VM Guest LAN (eth0) and a HiperSockets VM Guest LAN (hsi0).

Example 4-11 The /etc/chandev.conf file describing two VM Guest LAN interfaces

noauto;qeth0,0x0700,0x0701,0x0702;addparms,0x10,0x0700,0x0702,portname:NIC0700
noauto;qeth1,0x0500,0x0501,0x0502

The fields and the meanings listed in Example 4-11 are described here:

� noauto

No auto-detection will occur when probing for the device:

� qeth0,0x0700,0x0701,0x0702

The first interface to be handled by the qeth driver, qeth0, uses read-control
subchannel address 0700, write-control subchannel address 0701, and data
subchannel address 0702.

Important: When configuring the channel device layer, the device names that
the interfaces will be known to IP and to the qeth driver are not specified.
Instead, names used internally by the channel device layer (derived from the
values defined for the channel type) are used. You can display the
/proc/chandev pseudo-file for information that will tell you which chandev
name refers to which device name.

Important: Specify the three sequentially numbered virtual device
addresses in VM user’s simulated NIC created for this LAN (see 4.6,
“Creating a simulated NIC” on page 65).

74 Large Scale Linux Deployment

� addparms,0x10,0x0700,0x0702,portname:NIC0700

Identifies the device as a ‘qeth’ device (the 0x10 code) using devices ranging
from 0x0700 (the low device number) to 0x0702 (the high device number).
The portname used to identify the network the device will connect to is
NIC0700.

� qeth1,0x0500,0x0501,0x0502

The second interface handled by the qeth driver, qeth1, uses read-control
subchannel address 0500, write-control subchannel address 0501, and data
subchannel address 0502.

For this interface, we decided (against our own advice) to not specify a portname.
Therefore, we did not specify the add_parms section on this configuration line.

Update the /etc/modules.conf file
In the /etc/modules.conf file, add a line for each interface instructing the kernel to
load the appropriate qdio device driver for that interface. In Example 4-12, we
show the entries which apply to the interfaces described in “The
/etc/chandev.conf file” on page 74.

Example 4-12 The /etc/modules.conf file to describe VM Guest LAN interfaces

alias eth0 qeth
alias hsi0 qeth

Adding these alias entries to /etc/modules.conf makes it unnecessary to
manually install the device driver.

When the kernel is instructed to activate a network device called eth0, it will first
check to see if any already-active device drivers can handle the device being
requested. If not, it will probe for a module called eth0.

Important: For the portname parameter, care is required. On a real
OSA-Express adapter, you would need to use the real portname that is
specified for use on all the systems that share the OSA port. For VM Guest
LAN, you can use the VM Guest LAN segment name used when creating
the LAN with the DEFINE LAN command (see 4.5, “Creating a VM Guest
LAN segment” on page 63), or any name that suits your system
conventions.

For HiperSockets (real or VM simulated), we found you could safely leave
the portname off. However, doing so caused problems if the interface had
to be reconfigured later. We recommend following the same procedure as
for VM Guest LAN.

 Chapter 4. HiperSockets and z/VM Guest LAN 75

The alias entry basically says “if you’re looking for module eth0, it’s really called
qeth”. The kernel will load qeth.o instead. Internally, a dependency is known
between qeth.o and qdio.o, so the kernel will first load qdio.o (if it’s not already
loaded), and then load qeth.o.

4.11.3 Configuring the network interface
Once the interface is available to Linux, it can be configured to IP just like any
other interface. In “Configuring the interface to TCP/IP” on page 61, we provide
information about configuring IP on a HiperSockets interface; the same applies to
VM Guest LAN.

76 Large Scale Linux Deployment

Chapter 5. TCP/IP direct connection

This chapter describes how network connectivity can be implemented in Large
Scale implementations on zSeries without the use of internal routing facilities.

Many large scale Linux installations will employ some type of “virtual routing”
configuration. This type of configuration is discussed in Chapter 6, “TCP/IP
routing” on page 93.

However, depending on the size of your configuration and the type of connectivity
you require, you may be able to deploy your Linux guests without using routing at
all.

5

© Copyright IBM Corp. 2002. All rights reserved. 77

5.1 Introduction
Before you decide to build a routing infrastructure in your large scale Linux
installation, you need to determine whether you need to route at all. For smaller
numbers of Linux guests, you may be able to set up your guests with direct
connection to the network.

You will need to keep several issues in mind, including:

� The total number of Linux guests you expect to run in your z/VM system

� The type of network interface your installation uses between your zSeries
host and your network “at-large”

� Capabilities of the network interface that might work well with configuration or
technologies used in your network

� Availability of “routable” IP addresses (IP addresses that can be directly
accessible from the rest of your network, or the public Internet, if required)

5.1.1 Number of Linux guests
The network interface your installation uses will, to a large extent, determine
whether you can support all your Linux guests using direct connection. For
example, an OSA-2 interface can only support 16 entries in its OSA Address
Table per port, which means that each port can be shared by only 8 TCP/IP
stacks. The OSA-Express interface provides a very high level of “shareability”,
with up to 4096 IP addresses per port available1.

5.2 OSA port sharing
The easiest way to directly connect Linux guests to the network is by sharing a
port (or ports) on an OSA-Express interface. Each stack sharing the OSA port is
directly attached to the network, with an individual LAN IP address.

1 On z800/z900 servers only, up to 512 addresses on G5/G6 servers.

Recommendation: If you expect that the number of guests you will support
under z/VM will grow beyond 50 per OSA-Express port, or you are not using
the OSA-Express for network connectivity, we recommend that you build your
connectivity using routing rather than direct access.

78 Large Scale Linux Deployment

Under z/VM you can dedicate the required sets of device addresses to your Linux
guests, giving them direct access to the OSA hardware.

A possible port sharing configuration would look like the diagram shown in
Figure 5-1.

Figure 5-1 OSA-Express port sharing

In this example, two z/OS LPARs, a z/VM TCP/IP stack, and three Linux guests
under z/VM are all sharing an OSA port. The network to which the OSA is

Restriction: If you have OSA-2 interfaces instead of OSA-Express, be aware
that the OSA-2 can only support 16 IP addresses per port. This limits the
number of guests (or LPARs) that can share the port. We recommend that you
use a routing infrastructure instead of direct access when your network
interfaces are OSA-2.

For the rest of this section, we will discuss OSA-Express only, so where we
refer to OSA, we mean OSA-Express (unless otherwise specified).

z/VM

Switch

I/O Layer

172.31.90.254

OSAOSA

LINUX3

2A0C-2A0E

LINUX2

2A08-2A0A

LINUX1

2A04-2A06

TCPIP

2A00-2A02

z/OS

2A00-2A02

z/OS

2A00-2A02

172.31.90.13172.31.90.12172.31.90.11172.31.90.3

172.31.90.2172.31.90.1

 Chapter 5. TCP/IP direct connection 79

attached is the 172.31.90.0/24 network, and all of the IP stacks have addresses
on that network. No routing within the zSeries complex is required to reach other
LAN-attached services on the same LAN.

The device addresses in this diagram show another feature of a sharing
configuration. The device addresses used by the two z/OS LPARs, and by z/VM
TCP/IP, are all the same. Using the Enhanced Multiple Image Facility (EMIF), a
device can be shared across multiple LPARs using the same device address2.
Within a single LPAR, however, device addresses must be unique. This is shown
in the device addresses used by the Linux guests.

5.2.1 Hardware definition
In the IODF for your system, ensure that there are sufficient device addresses
defined against your OSA CHPID for the number of guests you want to share the
OSA. These device addresses will all be defined to the LPAR in which your z/VM
system will run.

You will then need to keep track of the device numbers you allocate to each of
your guests. Your system naming convention and resource allocation standards
will provide for this.

Defining the OSA as reconfigurable
An OSA CHPID can be defined so that it can be used by only one LPAR out of a
number of different LPARs at a time. This can be used for an OSA that is used
normally by a test system, but you need to ability to move it to a production
system if required. Such a CHPID is defined as reconfigurable. The maximum

2 IOCP uses the tuple of unit address and LPAR number to obtain uniqueness.

Note: The number of guests you can support will vary depending on whether
you use LCS or QDIO mode for accessing the OSA. LCS requires only two
device addresses per guest, while QDIO requires three, so in theory you can
support more guests using LCS mode than QDIO.

However, in LCS mode, the advanced features of the OSA-Express such as IP
Assist and dynamic IP addressing are not available, seriously affecting the
dynamic configurability of your Linux installation. Also, LCS mode is not
available on the OSA-Express Gigabit Ethernet feature.

We recommend that you run OSA-Express interfaces in QDIO mode in
large-scale Linux installations under z/VM. If this does not give you the
number of direct connections you require, change to a routing design rather
than running your OSA-Express adapter in LCS mode.

80 Large Scale Linux Deployment

device address capacity of the OSA is available to each LPAR, since only one
LPAR can use the OSA at a time.

Defining the OSA as shareable
If you plan to share your OSA with other operating systems in other LPARs, you
would need to define the OSA CHPID as “shareable”. This has great impact on
how the device allocation is done.

A limit of 240 device addresses can be configured on an OSA CHPID. When you
define the CHPID as shareable, this limit applies to the total number of devices
defined across all LPARs in the candidate list for the CHPID.

You will not be able to configure maximum capacity on any one LPAR, since you
must configure devices against all LPARs you place in the candidate list. The 240
devices for the OSA CHPID must be distributed across all systems in the
candidate list.

If you want maximum capacity on the LPAR used for your z/VM system, you will
need to take care when defining such a shareable CHPID. For other LPARs,
define only the actual number of device addresses you need (on a z/OS LPAR,
for instance, define only three devices). Define the rest of the devices on your
z/VM LPAR if you want to make them available for Linux guests.

5.2.2 Advantages sharing OSA-Express in QDIO mode
Apart from an administrative saving in not having to maintain virtual routing
guests, there are a number of advantages that OSA port sharing can provide.

IP Assist function
The OSA-Express IP Assist function offloads the following protocol functions
from the IP stack for processing in the adapter:

Important: If you want the ability to move an OSA CHPID from LPAR to LPAR
for recovery purposes, defining the CHPID as shareable is not a good idea.
Doing so would reduce the maximum usable capacity of the OSA by at least
half, since you would need to provide the same definitions on both the
production and backup LPARs (to provide access for all the Linux guests you
are recovering). Defining the CHPID as reconfigurable is better in this case.

If you must share the OSA with another LPAR as well as using it for recovery,
then defining the CHPID shareable is the only solution. You would need to
take into account the reduced capacity when designing your Linux guest
connectivity.

The candidate
list is the list of
LPARs that can
have access to
the CHPID.
LPARs not
defined in the
candidate list
cannot config-
ure the CHPID
online.

 Chapter 5. TCP/IP direct connection 81

� Broadcast filtering
� ARP processing
� Building MAC and LLC headers

Offloaded processing can reduce the cycles consumed by your Linux guests for
network traffic, giving a slight performance improvement. In a single guest the
effect might not be significant, but in a z/VM LPAR with Linux guests generating a
moderate-to-high volume of network traffic, we would expect an overall saving.

Stack-to-stack routing
When IP stacks are sharing an OSA, and one stack sends traffic destined to
another stack sharing the same OSA port, the OSA sends the traffic directly to
the destination stack. Network traffic processed in this way does not appear on
the LAN. This action takes place transparently to the sending stack.

This can provide a performance benefit when a number of guests send network
traffic to each other, as it will be sent directly between the stacks rather than out
across the network.

5.2.3 Issues sharing OSA-Express in QDIO mode
If you are considering an OSA-sharing configuration for your large scale Linux
installation, you need to be aware of some points regarding this connection
method.

How many stacks can share an OSA
A Washington Systems Center Flash (document number Flash10144) describes
some considerations to be observed when sharing an OSA Express port defined
in QDIO mode. It details the number of LPARs or guests that can share an OSA
(depending on the hardware type), and some zSeries code level dependencies.

In summary, a z900 with up-to-date microcode, or any z800, can support up to 80
IP stacks on an OSA-Express port in QDIO mode. Other combinations can
support considerably fewer than that.

What is not clear is the level of performance that can be expected when the OSA
is configured to its peak. Performance testing to date has focussed on throughput
from a single stack, rather than saturation across a fully-configured OSA.

Note: The full text of the WSC Flash can be found at:

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/PubAllNum/Flash10144

82 Large Scale Linux Deployment

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/PubAllNum/Flash10144

Broadcast traffic
Having your Linux guests visible directly on your LAN may expose them to
unwanted LAN broadcast traffic. This will create CPU load, preventing your idle
Linux guests from reaching a storage usage pattern that reflects their actual
useful work (rather than processing of spurious network traffic).

The broadcast filtering component of the IP Assist function in the OSA-Express
might help in this regard, but it is still almost guaranteed that your Linux guests
will be presented with more LAN traffic than they would behind a router.

5.3 IEEE 802.1Q VLAN support
Introduced with the IBM ^ zSeries 900 Turbo, Linux support for IEEE
802.1Q VLANs allows Linux guests to participate in VLAN infrastructure. You can
extend your VLAN configuration to include your Linux guests, so that no routing
is necessary to reach workstations on the LAN.

5.3.1 How VLANs work
IEEE 802.1Q VLANs operate by defining switch ports as members of virtual
LANs. Ports used to attach non-VLAN-aware equipment such as end-stations
are called “access” ports, while ports used to connect to other switches are
known as “trunk” ports. Network frames generated by VLAN-aware equipment
are marked with a “tag”, which identifies the VLAN that the frame belongs to.

Access ports are defined to belong to a single VLAN. All frames received from
stations attached to access ports are ‘tagged’ with the same VLAN ID (VID).
Trunk ports, on the other hand, can be defined to multiple VIDs, because the
VLAN-aware equipment knows how to handle frames with different VIDs.
Figure 5-2 on page 84 shows a logical diagram of a VLAN environment, showing
two switches and a number of VLANs.

Important: You may have noticed that in previous discussions on
HiperSockets and VM Guest LAN, we avoided the use of the term Virtual LAN
to describe these. This is because, in general networking terms, Virtual LAN
(or VLAN) refers specifically to IEEE 802.1Q VLANs.

Therefore, to avoid confusion (especially when talking with your friendly
networking folks), do not refer to zSeries and z/VM “virtual” networking
technologies as VLANs.

 Chapter 5. TCP/IP direct connection 83

Figure 5-2 VLAN example

In this example network, VLAN 10 only exists in switch 1, because the trunk port
to switch 2 is not a member of VLAN 10. VLANs 11 and 12 span the two
switches, because the trunk ports in each switch are members of both VLANs.

There is a single VLAN-aware router connected to switch 1, which provides
access to an external network to users in VLANs 10 and 12. (The trunk port to
which the router is attached is defined to VLANs 10 and 12, not to VLAN 11.
Therefore, no stations in VLAN 11 can reach the router). Hub 1 is a
non-VLAN-aware device, so the port in switch 2 that it connects to is an access
port.

In this example, we can see two of the reasons that VLANs are generally used:

� Staff in different physical locations retain common access to resources.

The server LINUXA is used by staff in both buildings. By defining these end
stations to the same VLAN, no additional configuration or equipment is
required for both locations to access the server, while at the same time
ensuring that other staff do not get access.

Router

Hub

Switch 2Switch 1

VLAN10 VLAN12

VLAN11

LINUXA

84 Large Scale Linux Deployment

� Consolidation of resource access.

The external network has to be accessed by different staff in both buildings.
Extending VLAN 12 across to the router port in switch 1 (and configuring the
router correctly) saves having to provide an additional link to the external
network or the router from building 2.

Broadcast in VLANs
All ports which are members of the same VLAN, including trunk ports, will
operate as if they were part of the same physical network. When a multicast or
broadcast frame is received from a station in a VLAN environment, the switch
transmits the packet on all ports (both trunk and access ports) belonging to the
same VLAN.

The only difference between the trunk and access port in this case is that the
frame transmitted onto the trunk port will have the VLAN tag intact (so that the
VLAN-aware equipment at the other end of the link will know how to handle it).

VLAN isolation
An important point about VLANs in general is that they provide isolation. VLANs
behave like separate physical networks, even though they may be contained
within the same switch.

In order for devices in different VLANs to communicate, TCP/IP routing must
occur. In the network shown in Figure 5-2 on page 84, stations in VLAN 10 and
VLAN 11 cannot communicate, because there is no routing path between the two
VLANs. Stations in VLANs 10 and 12 can communicate, as long as the router
they are attached to is configured appropriately.

5.3.2 VLANs on Linux for zSeries
Linux VLAN support will be of most use when you have servers in your Linux
environment that are providing service to particular parts of your network that are
already configured into different VLANs.

A Linux under z/VM network using VLANs might look like the diagram shown in
Figure 5-3 on page 86.

Note: VLAN support was added to the Linux kernel at version 2.4.14. If your
Linux guests are not running this level or higher, you will require an updated
kernel if you want to use VLANs. Contact your Linux vendor for more
information.

 Chapter 5. TCP/IP direct connection 85

Figure 5-3 Linux guests using VLAN support.

In this diagram, the Linux guests have a logical association with certain groups of
stations in the network (they might be Samba file-and-print servers for certain
areas of the organization, for instance). Using VLANs allows those Linux guests
to be connected to their client networks without the overhead of routing, and with
the advantage of behaving as if they were on the same physical network.

In “VLAN isolation” on page 85, we stated that VLANs provide isolation between
networks. Figure 5-3 shows a router with connections to the different VLANs to
provide access between the client PCs and the servers in VLAN 10. This can
also be done with a router which is VLAN-aware, in which case only one physical
connection to the switch is needed.

Server
VLAN

z/VM

VLAN 4
VLAN 3

VLAN 2

LINUXn

VLAN n

LINUX2

VLAN 2

LINUX3

VLAN 3

LINUX4

VLAN 4

OSAOSA

Switch

.......

.... Router

V
LA

N
 n

V
LA

N
 4

V
LA

N
 3

V
LA

N
 2

V
LA

N
 1

0

86 Large Scale Linux Deployment

5.3.3 Sharing an OSA-Express when using VLANs
At the time of writing, Linux is the only zSeries operating system to support VLAN
tagging using the OSA-Express interface. It is possible, however, to share an
OSA between Linux and other zSeries operating systems even though they do
not provide VLAN support.

Figure 5-4 on page 88 shows a network with z/VM and z/OS systems sharing an
OSA with Linux guests using VLANs.

Note: Often, a separate router is not required either. Most switch vendors
provide ways to include routing function in their switches to allow traffic
between VLANs. For example, the Cisco Catalyst 3550 series switches run
Cisco Internetwork Operating System (IOS) routing code as well as Catalyst
switch code to provide routing function in addition to switching. The server and
core grade Cisco Catalyst switches provide optional modules that can be
added to the switch to provide routing function.

Logically, the routing function is still separate from the switching function, even
if a separate physical device is not used.

 Chapter 5. TCP/IP direct connection 87

Figure 5-4 Sharing OSA between VLAN-capable and non-VLAN capable OSes

Usually, all frames sent on a trunk link are VLAN-tagged. In Figure 5-4, however,
we have a z/VM TCP/IP stack and a z/OS Communications Server stack sharing
the OSA with the Linux guests using VLANs. Since neither z/VM nor z/OS
support IEEE 802.1Q VLANs, the traffic generated by these stacks will not have
VLAN tagging.

According to the 802.1Q standard, this is a valid configuration. Rather than a
trunk port, the switch port the OSA connects to is called a hybrid port, since it
must behave like both an access port and a trunk port. A hybrid port acts like a
trunk port for frames that carry a VLAN tag, but the switch tags frames without a
VLAN tag with a port VID (like it would with an access port).

Server
VLAN

z/VM

VLAN 2
VLAN 3

VLAN 4

TCPIP

No VLAN

LINUX2

VLAN 2

OSAOSA

Switch

z/OS

No VLAN

.......

....

V
LA

N
 n

V
LA

N
 4

V
LA

N
 3

V
LA

N
 2

V
LA

N
 1

0

LINUX4

VLAN 4

LINUXn

VLAN n

LINUX3

VLAN 3

88 Large Scale Linux Deployment

5.3.4 Configuring VLANs in Linux
The vconfig program is used to add a VLAN configuration to an existing defined
adapter. Example 5-1 shows the full syntax of the vconfig command.

Example 5-1 The syntax of the vconfig program

Usage: add [interface-name] [vlan_id]
 rem [vlan-name]
 set_flag [interface-name] [flag-num] [0 | 1]
 set_egress_map [vlan-name] [skb_priority] [vlan_qos]
 set_ingress_map [vlan-name] [skb_priority] [vlan_qos]
 set_name_type [name-type]

* The [interface-name] is the name of the ethernet card that hosts
 the VLAN you are talking about.
* The vlan_id is the identifier (0-4095) of the VLAN you are operating on.
* skb_priority is the priority in the socket buffer (sk_buff).
* vlan_qos is the 3 bit priority in the VLAN header
* name-type: VLAN_PLUS_VID (vlan0005), VLAN_PLUS_VID_NO_PAD (vlan5),
 DEV_PLUS_VID (eth0.0005), DEV_PLUS_VID_NO_PAD (eth0.5)
* bind-type: PER_DEVICE # Allows vlan 5 on eth0 and eth1 to be unique.
 PER_KERNEL # Forces vlan 5 to be unique across all devices.
* FLAGS: 1 REORDER_HDR When this is set, the VLAN device will move the
 ethernet header around to make it look exactly like a real
 ethernet device. This may help programs such as DHCPd which
 read the raw ethernet packet and make assumptions about the
 location of bytes. If you don't need it, don't turn it on, because
 there will be at least a small performance degradation. Default
 is OFF.

Attention: Before designing a solution based a configuration like this, you
should consult your switch vendor to verify that their equipment will support
VLAN-unaware equipment on a trunk port (in other words, they understand a
hybrid port). If they do not, you will not be able to share an OSA port between
Linux guests using VLAN trunking and any other guests or LPARs.

Attention: Something else to confirm with your Linux vendor is the availability
of the vconfig program. On our SuSE system (based on the 2.4.17 kernel), we
had the 8021q.o module available, but no vconfig. We experimented with
building the program from source, but hopefully our Linux distributors will
include vconfig soon.

 Chapter 5. TCP/IP direct connection 89

As an example, to add a connection to VLAN 100 via the OSA Express at eth0,
enter the following:

vconfig add eth0 100

This creates a new VLAN interface called eth0.100 which you can now configure
as normal using ifconfig.

ifconfig eth0.100 192.168.100.1 netmask 255.255.255.0 up

Startup configuration
At this time, configuring VLANs is a manual process that must be scripted to take
place at your Linux guests’ bootup. Expect that as VLAN usage grows,
distributors will include VLAN boot-time configuration in their network scripts.

5.3.5 Infrastructure guests in a VLAN network
If you have guests that are part of your network infrastructure (such as DNS or
LDAP servers), you have two choices for connecting these in a VLAN
environment:

� Single interface on a “backbone” or infrastructure VLAN.

This makes the configuration of the server Linux guest easier, however, your
clients attached to VLANs will have to pass through some kind of router
(either a physical router in the network, or a virtual router in your penguin
colony) to reach it.

� Multiple interfaces, one for each VLAN.

This allows your clients to access your server without routing. However, the
configuration on the Linux server guest will be more complex, and some
services will require careful configuration (Samba using WINS, for example,
due to limitations with WINS name resolution).

The multiple interface option will allow you to provide the most direct path to all of
your clients, but it will require some careful design and configuration. If you
choose this option, we suggest using a virtual IP addressing method like that
introduced in 7.2.3, “Virtual IP addresses” on page 136.

If the amount of traffic is low, the overhead of routing to these Linux server guests
will not be a burden, and the “infrastructure VLAN” approach will provide the best
solution.

Note: This example uses the DEV_PLUS_VID_NO_PAD format of the VLAN
name, which is implied by the examples in Linux for zSeries and S/390 Device
Drivers and Installation Commands , LNUX-1303. Other examples you may
see in different documentation may show different formats of the VLAN name.

90 Large Scale Linux Deployment

Tip: If you do use multi-homed infrastructure servers, turn off IP forwarding.
Your network people will probably demand it anyway, and unless you really
want these guests to act as backup routers (and configure the network to suit),
it’s one less thing to worry about if you have routing problems in your network.

 Chapter 5. TCP/IP direct connection 91

92 Large Scale Linux Deployment

Chapter 6. TCP/IP routing

This chapter describes how routing can be implemented in Large Scale
implementations on zSeries.

When you deploy a large number of Linux guests under z/VM, you have choices
as to how the network connectivity to those guests will be arranged. zSeries
gives you a number of options, each of which can provide benefits in certain
configurations or for certain applications.

6

© Copyright IBM Corp. 2002. All rights reserved. 93

6.1 Planning for routing
It is critical to have a design for your routing environment planned in advance of
implementation. If your design is not well planned, you will encounter problems
later in the life of your project through growth and capacity problems. In fact, poor
planning can lead to problems during initial implementation.

Some of the issues that your plan should cover include:

� Connectivity method

The technology and topology you will use to connect the Linux guests to each
other, and to infrastructure services.

� Isolation

Ideally, the design will ensure that Linux guests have connectivity only to
sections of the environment that they need to. For example, testing guests
should not be able to get connectivity to production guests.

� Address allocation

The method you use to allocate IP addresses will be dependent upon the
connection methods you use, but should be flexible enough to provide some
opportunity for growth in the environment.

� Traffic shaping

Depending on your requirements, heavily utilized guests should not be able to
dominate the network and prevent other guests from providing service.

� Dynamic routing

Using a dynamic routing protocol is largely unnecessary if you have simple
connectivity (Linux guests with single network interfaces and no virtual IP
addressing, for instance). As the complexity of your configuration increases,
however, dynamic routing can provide benefits for redundancy and failover.
However, there can be considerable system overhead in running dynamic
routing.

In the following sections, we examine these issues in more detail.

6.1.1 Connectivity method
zSeries provides a number of technologies for network connectivity. Generally,
there are exterior connection methods (which provide connection to servers and
users outside the zSeries complex) and interior connection methods (which are
used to connect systems inside the zSeries complex).

94 Large Scale Linux Deployment

Exterior connection methods supported by zSeries include:

� OSA-Express adapters (Fast Ethernet, Gigabit Ethernet, and Token Ring1)
� Routers (Cisco Channel Interface Processor, IBM 2216)

Interior connection methods are:

� HiperSockets
� z/VM Guest LAN
� CTC (physical)
� vCTC (CTC simulation within z/VM)
� IUCV

6.1.2 Isolation
Keeping certain parts of your environment separate from each other may be
critical to the successful operation of your large scale Linux environment. As
already mentioned, it might be simply to keep test and development systems
away from production, but there are other reasons this might be required:

� Separating guests belonging to different customers

� Keeping Internet traffic away from internal applications and systems

� Implementing a “Demilitarized Zone” (DMZ)-style firewall within the z/VM
system

� Separating secure and insecure traffic (application data paths, for example)

� Creating separate internal networks for infrastructure services

6.1.3 Address allocation
TCP/IP addresses can be a scarce resource, particularly when your guests are
Internet-facing servers which cannot utilize RFC1918 private addresses.
Effectively utilizing the addresses you have can help you reduce costs by only
purchasing from your ISP an address range that fits your requirements.

1 OSA-Express Token Ring is available only on the z900 processor.

Note: The Parallel Sysplex Coupling Facility (CF) can also be used for TCP/IP
communication within a zSeries complex. However, only z/OS supports
Parallel Sysplex and the CF, so we will not discuss this further here since it is
not applicable to running Linux guests under z/VM.

 Chapter 6. TCP/IP routing 95

Even if you can utilize RFC1918 addressing, your addressing plan will ideally
allocate subnets and addresses in a way that allows for easy expansion with
minimal need to change existing allocations.

There are many ways you can assign addresses in your large scale Linux
installation. We strongly recommend working with the network staff at your site to
arrive at an address allocation strategy that fits the rest of your organization’s
networking configuration.

6.1.4 Traffic shaping
The connectivity options available on zSeries today can provide extremely high
bandwidth for servers running in the zSeries processor.

However, with such high amounts of bandwidth available, it is critical to ensure
that the bandwidth is used properly. This is important for two reasons:

� A heavily utilized service on one guest should not be allowed to dominate the
network, preventing other guests from providing service,

� A rogue application on a guest should not be able to flood the network with
traffic, potentially causing problems in other parts of the network.

This is discussed further in 6.5, “Traffic control” on page 110.

6.1.5 Linux router or z/VM TCP/IP router
In the IBM Redbook Linux on IBM ^ zSeries and S/390: ISP/ASP
Solutions, SG24-6299, the authors raise the topic of which system to use as a
router. The information in this book is still relevant, but needs to be updated a
little.

Limited device support in Linux
With the advent of HiperSockets and Guest LAN, the problem of limited interface
numbers supported in z/VM TCP/IP is relieved. HiperSockets and Guest LAN
allow a z/VM TCP/IP stack to support a very large number of guests through a
single interface (rather than individual IUCV or vCTC devices for each guest).

Did you know? RFC1918 describes several IP address ranges that are free
to be used within an organization’s private network without having to be
registered. You can learn more about private addressing by reading the RFC:

http://www.faqs.org/rfcs/rfc1918.html

96 Large Scale Linux Deployment

http://www.faqs.org/rfcs/rfc1918.html

Linux reconfigurability
The channel device layer introduced with the Linux 2.4 kernel allows for new
devices to be added to a Linux guest without an IPL, which is an improvement
over the Linux 2.2 kernel. This means that you can you can use z/VM commands
to add new devices such as Guest LAN NICs or real HiperSockets connections,
and have these available to Linux without an IPL. In most cases, you can also
use these new devices in TCP/IP immediately.

Device support in z/VM and Linux
z/VM still has greater support for unusual devices and connection methods, but
Linux is catching up. The Linux CLAW driver is no longer considered
experimental, for example.

Extra routing features
While Linux still has the advantage in terms of firewall functionality (through its
use of facilities such as iptables), z/VM TCP/IP has added intrusion detection
facilities into the stack. This intrusion detection function can handle many
common denial-of-service (DoS) attacks. Beware, however, that this support will
not provide comprehensive protection for an Internet-facing system due to the
rate at which new attacks are developed.

The authors of the ISP/ASP book state:

As it is necessary to set up at least one VM TCP/IP stack simply to support
the VM system itself, the VM TCP/IP stack is a good choice for general
routing use.

This is still a true comment. However, it is likely that the additional features being
added to Linux will favor the use of Linux routers. An example of such new
function is the support for IEEE 802.1Q Virtual LAN trunking provided in the
OSA-Express adapters in the z900 Turbo processor, which at this time is
supported only in Linux.

6.1.6 Routing considerations with OSAs
If you are using an OSA to provide connectivity to your network environment, you
must be aware of dependencies in the configuration of your OSA devices.

The ISP/ASP Redbook discusses the issues of using an OSA with Linux (refer to
4.4.3, “Using the OSA with Linux” in that publication).

In summary, the router guest or stack that “owns” the OSA must open the device
as the primary router in order to provide connectivity for a large-scale Linux
installation behind the router.

 Chapter 6. TCP/IP routing 97

� For an OSA-Express attached to a VM TCP/IP stack in QDIO mode, this is
done by adding the keyword “PRIRouter” to the OSA’s DEVICE statement in
the PROFILE TCPIP file. This is documented in TCP/IP Level 420 Planning
and Customization, SC24-6019.

� For a Linux TCP/IP router guest, this is done by adding the keyword
“primary_router” (with its preceding comma separator) to the add_parms line
of the OSA’s chandev configuration. This is documented in Linux for zSeries:
Device Drivers and Installation Commands, LNUX-1103.

The OSA will not forward IP packets to the router if the destination address is not
known to the OSA, unless the guest or LPAR is defined as primary router.

The alternative to defining primary router is to not share the OSA between guests
or LPARs. This may be a more workable solution for your installation; however, it
may increase the number of physical OSA ports you need to use.

Also, keep in mind that a shared OSA can have only one primary router
specified. If you have multiple router images that must have simultaneous
connectivity, each router must have its own OSA. Refer to 7.2, “Multiple network
devices to Linux guests” on page 123 for information about a configuration that
uses multiple routers and OSAs to provide high network availability for Linux
guests.

6.2 Linux routers
Using a Linux guest as a router provides a lot of flexibility, good routing
performance, and all of the advanced function available to Linux as a router
(including firewalling and traffic shaping). Most zSeries connectivity methods are
supported by Linux, particularly advanced methods such as OSA-Express,
HiperSockets and Guest LAN.

It is important, however, to make sure that all unnecessary services have been
removed from your Linux router guest to ensure that it occupies the smallest
possible footprint in your system. Minimizing services is good for security as well,
as it reduces (or eliminates) paths for compromise of the system.

Note: This requirement applies no matter what type of router (Linux guest,
z/VM TCP/IP stack, or z/OS system) you use.

98 Large Scale Linux Deployment

6.2.1 Device support
Linux on zSeries supports a subset of the connection methods available on
zSeries, including OSA-Express (QDIO and LCS), OSA-2 (LCS), CTC, IUCV,
HiperSockets, z/VM Guest LAN, and CLAW.

6.2.2 Routing function
The TCP/IP code in Linux started out as an implementation of classical UNIX
TCP/IP. It provides all basic routing and protocol functions. The Linux 2.2 kernel
introduced many new advanced routing features, including traffic control and high
performance routing. Linux 2.4 introduced stateful firewall features, in addition to
further routing enhancements.

All of the capabilities of Linux routing are functional on zSeries, and can be
added to the routing function performed by a Linux router guest. The only
restrictions are imposed by the capabilities of the network devices that provide
connectivity. A simple example of this is that CTC devices cannot handle
broadcast frames.

Using user-space daemons such as routed, mtr and zebra, Linux can
participate in dynamic routing networks using protocols such as RIP and OSPF.

6.2.3 Setting up a Linux router
A Linux router guest will have very little additional software installed. In fact, even
the “minimal” installation set provided by Linux distributors is likely to have much
more software running than required for a router.

The only components required for a Linux router guest will be:

� The kernel itself

� If a modularized kernel, appropriate modules for network drivers2 and
additional functions such as firewall

� A remote access daemon (sshd or telnetd)

� If you choose to do SNMP management of your router, an appropriate SNMP
daemon (such as ucd-snmp, now called net-snmp)

� If a dynamic routing protocol will be used, the appropriate dynamic routing
daemon (gated, zebra, etc.).

2 If you are using any network connectivity supported using the qeth.o driver, which is shipped
object-code-only from IBM, your kernel must be built with loadable module support.

 Chapter 6. TCP/IP routing 99

6.2.4 Changing a running Linux router guest
It is fairly easy to change a Linux router guest during operation. With root access
to the console or a Telnet or SSH session, you can use the ifconfig, route, ip
and other commands to change the operation of the running stack.

If you are adding new network interfaces, the channel device layer (introduced
with the Linux 2.4 kernel) can be reconfigured without rebooting Linux. For
devices supported by the qeth.o driver, most changes in the channel device layer
configuration take effect immediately (“The /etc/chandev.conf file” on page 74
has more information about this).

Routing table updates can be made on the fly using the route or ip commands.
The route command is the traditional command, while the ip command is part of
iproute2, a new IP command suite that allows more functions and options to be
provided.

6.3 z/VM TCP/IP routers
As discussed in “Linux router or z/VM TCP/IP router” on page 96, the z/VM
TCP/IP stack can provide a very effective routing platform. Unlike using a Linux
router, there are no additional concerns with trimming the installation down to
minimum. z/VM also supports dynamic routing (through the MPROUTE service
machine).

6.3.1 Device support
z/VM TCP/IP supports a wide range of TCP/IP devices, including OSA, CTC,
IUCV, HiperSockets, and z/VM Guest LAN. It also supports other connection
methods that are less frequently used, including ATM, HIPERchannel, SNALINK
and X.25 NPSI devices.

If your network includes host connectivity devices that are not supported by
Linux, then your only choice may be to use z/VM TCP/IP as a router.

6.3.2 Routing function
z/VM TCP/IP provides the same basic routing function as a Linux guest running
as a router. Compared to Linux, however, z/VM TCP/IP does not support
advanced routing features such as filtering and traffic shaping.

100 Large Scale Linux Deployment

Configuring routing in z/VM TCP/IP
The way that routes are configured in z/VM TCP/IP is quite different from TCP/IP
stacks on other platforms. The z/VM TCP/IP stack was originally written in the
days before Classless Inter-Domain Routing (CIDR) and variable-length subnet
masks, and routing configuration on z/VM TCP/IP reflects that. Once you think in
terms of network classes again, it becomes much easier to configure routing in
z/VM TCP/IP.

As an example, let’s configure a default route on an interface on the
10.10.10.0/24 network, to the router 10.10.10.201. Example 6-1 shows the
GATEWAY statement that would be coded in TCPIP PROFILE.

Example 6-1 z/VM TCP/IP GATEWAY statement

GATEWAY
10 = ETH1 1500 0.255.255.0 0.10.10.0
DEFAULT 10.10.10.201 ETH1 1500 0

The key to understanding the first entry in the GATEWAY statement is realizing
that the 10.10.10.0/24 network can also be referred to as a subnetwork of the
10.0.0.0 Class A network. z/VM TCP/IP requires the subnetwork portion to be
separated from the network portion, which is why the first part of the GATEWAY
statement shows 10 and the last part shows 0.10.10.0.

Put the two together, combined with the subnet mask of 0.255.255.0 (not
255.255.255.0, because the Class A 10.0.0.0 network already mandates
255.0.0.0, so we do not specify that again), and you get the network
10.10.10.0/24.

Another example is shown here.

Example 6-2 z/VM TCP/IP GATEWAY statement

GATEWAY
172.16 = ETH2 1500 0.0.255.0 0.0.10.0
DEFAULT 172.16.10.201 ETH2 1500 0

This interface is on the 172.16.10.0/24 network, which is a subnet of the
172.16.0.0 Class B network.

172.16.0.0 mandates a 255.255.0.0 netmask, so to get a /24 mask, we specify
0.0.255.0 in the netmask portion, and the subnet value is 0.0.10.0, giving us the
desired 172.16.10.0/24 network.

 Chapter 6. TCP/IP routing 101

6.3.3 Changing a running z/VM TCP/IP stack
Using a process called OBEYFILE, a running z/VM TCP/IP stack can be
changed without a restart. Almost all parts of the stack can be updated,
including:

� Adding devices and links
� Changing interface IP addresses
� Updating the stack routing table
� Changing operational parameters of the stack (IP forwarding, etc.)

To dynamically update the running stack, you make your changes with
appropriate syntax and use the OBEYFILE command to direct the TCP/IP stack
to read the statements in the file. The stack will be reconfigured accordingly.

Changes made using the OBEYFILE process are temporary; they are only
available until the TCP/IP machine is logged off. To make the changes
permanent, the PROFILE file for the stack must be updated with the changes.

OBEYFILE “gotcha”
When using OBEYFILE to update a running z/VM stack, you must be careful that
you do not affect the stack’s current parameters. Careful consideration must be
given to statements that contain many parameters, such as GATEWAY, HOME,
and IPCONFIG. When making a change to a statement, the entire statement
must be reproduced with the changes added.

Note: Starting with z/OS Version 1 Release 2, a new method of configuring
routing was introduced to z/OS Communications Server TCP/IP Services. To
date, this new process is not supported on z/VM TCP/IP.

Hopefully, this new syntax will be adopted in z/VM TCP/IP, so that the “unique”
method discussed here can finally be retired.

Note: As a security measure, the OBEY statement in the TCPIP PROFILE file
contains a list of userids that will be “obeyed” by the TCPIP stack. This is
required because the disk that contains the OBEYFILE module also contains
other user TCP programs such as FTP. This means that almost every user can
run the OBEYFILE program.

Specifying privileged userids on the OBEY statement in the TCPIP PROFILE
prevents malicious or inadvertent changes to the TCP/IP stack by
unauthorized users.

102 Large Scale Linux Deployment

Statements like DEVICE and LINK are what we might call “discrete” statements,
where a single set of parameters are given that have effect only on the specified
attribute of the stack. HOME, GATEWAY and IPCONFIG are some of the
statements that could be described as compound statements, where a single
statement contains multiple sets of parameters affecting many attributes of the
stack.

Because each set of parameters is usually specified on a separate line in the
PROFILE file, it seems like they are separate statements when in fact they are
not. When changing a compound statement, the entire statement must be given
in the OBEYFILE.

Consider the fragment of a TCPIP PROFILE file shown in Example 6-3:

Example 6-3 TCPIP PROFILE example

; Device and Link for OSA-Express
DEVICE OSA2324D OSD 2324 PORTNAME OSA2320
LINK OSA2324L QDIOETHERNET OSA2324D
;
HOME
9.12.6.66 OSA2324L
;
GATEWAY
9 = OSA2324L 1500 0.255.255.0 0.12.6.0
DEFAULTNET 9.12.6.75 OSA2324L 1500 0

We wish to add a HiperSockets network to this TCP/IP stack, so we code the
OBEYFILE shown in Example 6-4:

Example 6-4 TCPIP OBEYFILE example: in error

; Device and Link for HiperSockets
DEVICE IUTIQDED HIPERS 7100
LINK HIPER1 QDIOIP IUTIQDED
;
HOME
10.0.6.88 HIPER1
;
GATEWAY
10 = HIPER1 1500 0.255.255.0 0.0.6.0

If we were to run this OBEYFILE, we would find that the device and link for our
HiperSockets connection would be added as we expected. However, TCP/IP
communication with our z/VM system via the OSA-Express would no longer
function. This is because the HOME address for the OSA was removed by our

 Chapter 6. TCP/IP routing 103

OBEYFILE. Likewise, the interface route and default gateway were also
removed.

The correct OBEYFILE, with all the required parameters to HOME and
GATEWAY, would look like Example 6-5:

Example 6-5 TCPIP OBEYFILE example (correct)

; Device and Link for HiperSockets
DEVICE IUTIQDED HIPERS 7100
LINK HIPER1 QDIOIP IUTIQDED
;
HOME
9.12.6.66 OSA2324L
10.0.6.88 HIPER1
;
GATEWAY
9 = OSA2324L 1500 0.255.255.0 0.12.6.0
10 = HIPER1 1500 0.255.255.0 0.0.6.0
DEFAULTNET 9.12.6.75 OSA2324L 1500 0

Notice that the new parameters being added to HOME and GATEWAY are
specified, in addition to the existing parameters from the PROFILE file.

6.3.4 z/VM TCP/IP support servers
z/VM TCP/IP provides other services that support a TCP/IP network. You can
use z/VM to provide DNS, BOOTP and/or DHCP, IMAP mail, Kerberos, and other
TCP/IP server applications.

DNS server
You can configure a DNS server on z/VM. However, this DNS server uses DB2
as its backend database, which will generally preclude it from being used in a
large scale Linux installation. Therefore, we recommend that in a large scale
Linux installation, you use an alternative DNS server.

Note: Refer to z/VM V4R3.0 TCP/IP Level 430 Planning and Customization
for more information on how these servers are set up.

104 Large Scale Linux Deployment

6.4 z/OS routers
In general, the issues associated with using z/OS as a router are similar to z/VM,
with the obvious exception that your site may not be using z/OS. We would not
recommend that a new installation license z/OS simply to perform TCP/IP
routing. However, if your installation does currently use z/OS, there are a couple
of reasons why a z/OS router system may be beneficial.

6.4.1 HiperSockets Accelerator
The HiperSockets Accelerator function (HSA) is currently supported only on
z/OS. Using HSA, network packets can be efficiently routed to systems attached
to a HiperSockets network via an OSA-Express adapter.

When a router stack is used, packets arriving must be processed by the IP layer
in the LPAR or guest running the router. This may not be a large amount of
processing, but if a large number of guests are being routed via the stack or a
large traffic flow is experienced, the processing performed by the router stack
becomes significant.

HSA provides a means of increasing the efficiency and reducing the overhead of
routing by transferring packets from the OSA-Express adapter to a HiperSockets
network (and vice versa) at the lowest possible layer in z/OS Communications
Server. Processing in the z/OS TCP/IP stack is almost eliminated.

To see the effect of HiperSockets Accelerator, we added a z/OS Version 1
Release 2 system to our network configuration according to the diagram shown
in Figure 6-1 on page 106.

Note: In this section, when we refer to “z/OS”, this includes the new z/OS.e
available on the zSeries 800 processor.

Note: Refer to the Redbook zSeries HiperSockets for a more complete
explanation of HiperSockets Accelerator, including how it works and how it is
set up.

 Chapter 6. TCP/IP routing 105

Figure 6-1 HiperSockets Accelerator test configuration

Setting up HiperSockets Accelerator in z/OS TCP/IP
The TCPIP PROFILE defined for the z/OS TCP/IP stack contained the DEVICE
and LINK statements listed in Example 6-6 to define the OSA-Express and
HiperSockets interfaces.

Example 6-6 HiperSockets Accelerator: z/OS TCP/IP DEVICE and LINK

DEVICE OSA2940 MPCIPA PRIROUTER
LINK OSA2940LNK IPAQENET OSA2940
;
DEVICE IUTIQDED MPCIPA
LINK HIPERLED IPAQIDIO IUTIQDED

Notice that the OSA-Express device statement contains the keyword
PRIROUTER. This is an essential component of the HiperSockets Accelerator
configuration (refer to 6.1.6, “Routing considerations with OSAs” on page 97 for a
reminder on this).

z900 Server

z/OS
TCP/IP

z/VM

LinuxLinux

OSA2940

hsi1 hsi1

IUTIQDED

Ethernet
9.12.6.x

HiperSockets
10.0.6.x

.83

.1

.6 .9

106 Large Scale Linux Deployment

Also required is a new keyword on the IPCONFIG statement. The HiperSockets
Accelerator feature is enabled using the IQDIORouting keyword. We added the
following to our TCPIP PROFILE:

IPCONFIG IQDIOR

When we start TCP/IP on our z/OS system, the messages shown in Example 6-6
tell us the status of TCP/IP and HiperSockets Accelerator on our system.

Example 6-7 HiperSockets Accelerator: TCP/IP startup messages

EZZ0300I OPENED PROFILE FILE DD:PROFILE
EZZ0309I PROFILE PROCESSING BEGINNING FOR DD:PROFILE
EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE DD:PROFILE
EZZ0688I IQDIO ROUTING IS ENABLED
EZZ4202I OPENEDITION-TCP/IP CONNECTION ESTABLISHED FOR TCPIP
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE OSA2940
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE IUTIQDED
EZB6473I TCP/IP STACK FUNCTIONS INITIALIZATION COMPLETE.
EZAIN11I ALL TCPIP INTERFACES FOR PROC TCPIP ARE ACTIVE.

Linux configuration for HiperSockets Accelerator
There is no specific configuration task required for HiperSockets Accelerator in
any guest operating system, including Linux. The z/OS TCP/IP stack handles all
of the work. The way that the guest systems receive traffic from the HiperSockets
network is no different, whether HiperSockets Accelerator is used or not.

Demonstrating HiperSockets Accelerator
To verify the effect of HiperSockets Accelerator, we used a Linux system which
was attached to both the “accelerated” HiperSockets network, and a QDIO guest
LAN. The diagram shown in Figure 6-2 on page 108 illustrates the configuration.

Tip: If your Linux guests have multiple interfaces, and you are using
HiperSockets Accelerator, ensure that your Linux guests specify the z/OS
system as their default router. This will ensure that you get maximum benefit
from the HiperSockets Accelerator configuration.

 Chapter 6. TCP/IP routing 107

Figure 6-2 HiperSockets Accelerator: verification environment

In this diagram, you can see that there are two paths to LNX6:

� To 10.0.3.6, via LNX1 and the QDIO Guest LAN
� To 10.0.6.6, via z/OS and the HiperSockets LAN

Both of these paths are two-hop paths to LNX6 from the 9.12.6.x Ethernet
network, so we would expect that the output of the traceroute command (an IP
diagnosis tools that shows the path from one host to another) would differ only in
the IP address of the router used to reach the destination.

We issued the traceroute command from the LAN PC, to trace the IP path to
the host LNX6. Example 6-8 on page 109 shows the output from the traceroute
commands we issued.

z/OS
TCP/IP Linux

'LNX6'
Linux
'LNX1'

OSA2940

hsi1 eth0

IUTIQDED

Ethernet
9.12.6.x

HiperSockets
10.0.6.x

.83

.1

.6

.97

eth2

eth0

QDIO Guest LAN
10.0.3.x

z/VM

z900 Server

.1.6

108 Large Scale Linux Deployment

Example 6-8 HiperSockets Accelerator: traceroute commands

C:\>tracert -d 10.0.3.6
Tracing route to 10.0.3.6 over a maximum of 30 hops
 1 10 ms <10 ms <10 ms 9.12.6.97
 2 <10 ms <10 ms <10 ms 10.0.3.6
Trace complete.

C:\>tracert -d 10.0.6.6
Tracing route to 10.0.6.6 over a maximum of 30 hops
 1 20 ms <10 ms <10 ms 10.0.6.6
Trace complete.

C:\>

In the output of the first traceroute command, the hop through the Linux router is
clearly shown. The output of the second traceroute command tells us that there
was no intervening router in the path, and that the traffic arrived directly at the
destination host. This is HiperSockets Accelerator at work: the packets were not
processed by the TCP/IP stack of z/OS, but forwarded directly via low-level
device drivers across the HiperSockets to the destination.

When to use HiperSockets Accelerator
As mentioned earlier, a customer who does not currently use z/OS should not
licence z/OS simply to get HiperSockets Accelerator. However, there is at least

Note: When we issued the traceroute command after a period of network
inactivity, we got the following output:

C:\>tracert -d 10.0.6.6
Tracing route to 10.0.6.6 over a maximum of 30 hops
 1 20 ms 10 ms 20 ms 9.12.6.83
 2 10 ms 20 ms <10 ms 10.0.6.6
Trace complete.

This would seem to indicate that HSA was not functioning, but is actually
normal. The first packet to a destination on the HiperSockets network is routed
by z/OS TCIP as normal. In doing this, z/OS TCP/IP learns that the
destination can be reached through HiperSockets and is eligible for
“acceleration”. Subsequent packets are then sent via the HiperSockets
Accelerator “fast path”, and after some inactivity, this learned information is
dropped.

When we issued the traceroute command a second time, we got the expected
result (as shown in Example 6-8).

 Chapter 6. TCP/IP routing 109

one configuration where HiperSockets Accelerator can (and should) be used to
improve the performance of Linux routing.

Some high availability TCP/IP features of Communications Server for z/OS
require the OSA-Express port to be configured as primary router. This prohibits
the port from being shared with a Linux or z/VM router. In the past, in this
configuration you would have used a CTC or outboard router connection to link
between your z/OS system and your Linux or z/VM router, incurring a
performance penalty in doing so.

However, if you define your Linux or z/VM router on a HiperSockets LAN with the
z/OS TCP/IP, HiperSockets Accelerator will route traffic to and from the Linux or
z/VM router as if they were sharing the OSA port. This means your Linux guests
will enjoy greater performance than before, the routing load on z/OS TCP/IP will
be greatly reduced, and the z/OS high availability features will not be affected.

6.5 Traffic control
Traffic Control (TC) provides a way to interface with the TCP/IP prioritization
features of the Linux kernel. These functions operate on the IP output queue,
shown in the diagram in Figure 6-3.

Figure 6-3 Packet path in the Linux 2.2 kernel

Traffic control is implemented at the output stage in Linux, because there’s no
point in trying to control traffic that has already arrived in your input queue.

INPUT
demultiplexing

FORWARDING

Local sockets

OUTPUT

Traffic
control

Input
packets

Output
packets

110 Large Scale Linux Deployment

6.5.1 Components of traffic control
There are a number of complementary features that come together to provide
traffic control in Linux. Traffic control requires configuration of the following:

� Queue discipline

This component implements the traffic control queue associated with a
particular network interface. It defines what attributes can be assigned to
traffic, and the way that the prioritization attributes will affect traffic flow.

� Traffic class

The traffic class assigns values such as priority and bandwidth share to
traffic. The traffic classes configured for a particular traffic control queue set
the points that traffic can enter the queue. Some queue disciplines operate
without traffic classes because of the nature of the algorithm used.

� Filter

A traffic filter determines how traffic will be allocated to the classes. Filters are
defined using certain classification methods. Packets passing through the
kernel are checked against the defined filters, and processed accordingly (in
traffic control, this processing would be assignment to the appropriate class).

Depending on the type of classifier used in your filter, additional configuration
may be required. For example, a route classifier requires information to be
added to the route table to trigger the filter.

Queue disciplines
The Linux kernel includes support for several queuing disciplines, which define
the ways that traffic arriving at an traffic control queue will be processed. Some of

Note: A complete discussion of traffic control in Linux is beyond the scope of
this book. For additional information about this topic, you can refer to the
paper we used while researching this topic entitled "Linux - Advanced
Networking Overview" by Saravanan Radhakrishnan, available at:

http://qos.ittc.ukans.edu/howto/howto.html

Most of the first half of the paper is technical material about how traffic control
is implemented, but later there are examples of using the Linux tools to
configure it (although we did spot some errors in the examples; see our
comment box on Page 116).

Another excellent reference is Linux 2.4 Advanced Routing HOWTO by
Netherlabs BV et al., at:

http://www.linuxguruz.org/iptables/howto/2.4routing.html

 Chapter 6. TCP/IP routing 111

http://qos.ittc.ukans.edu/howto/howto.html
http://www.linuxguruz.org/iptables/howto/2.4routing.html

the queuing disciplines are First In, First Out (FIFO), Class-Based Queue (CBQ)
and Token Bucket Flow (TBF).

The traffic control queue is separated from the interface queue because the
interface queue is concerned with scheduling packets onto the physical medium
and not with prioritization. Separating the interface queue from the traffic control
queue makes it easier for different traffic control protocols to be used.

CBQ is the traffic control method most commonly used. Traffic is controlled using
classes. For each class, you can configure the priority of the traffic in that class
relative to other classes, and the bandwidth that class is allowed to consume.

A conceptual view of the interaction between the CBQ queue discipline, traffic
classes and filters is shown in Example 6-4.

Figure 6-4 Traffic control using class-based queueing

In basic terms, filters classify traffic into different classes. The queue decides
how the classified traffic will be sent to the adapter queue for transmission.

6.5.2 Configuring CBQ
To use class-based queueing, you need to define a CBQ at each of the interfaces
you wish to control. The following command will define a new CBQ attached to
interface eth0.

tc qdisc add dev eth0 root handle 1: cbq bandwidth 10Mbit allot 1514 \
 cell 8 avpkt 1000 mpu 64

Note: Whether CBQ is actually most commonly used is probably debatable;
we are only using the amount of documentation available on Linux traffic
control as a guide. Differential Service (diffserv), another queue discipline, is
likely to gain popularity as it is the principle upon which traffic control protocols
like Reservation Protocol (RSVP) are based.

Traffic Control queue

Classes

Filters

Adapter
Queue

Incoming
Traffic

112 Large Scale Linux Deployment

Some of the features of this queue are:

� Its handle (the name by which it is referenced) is 1 (handle 1:).
� The queueing discipline used is CBQ (cbq).
� The total bandwidth to be managed by this queue is 10 megabits per second

(bandwidth 10Mbit).
� Packet transmission time will be measured in terms of 8bytes (cell 8).
� The average size of a packet is 1000 bytes (avpkt 1000).
� The minimum packet size is 64 bytes (mpu 64).

Once a queue is defined, you can define a class which will utilize the queue. The
following command will define a new class associated with the queue defined in
the last command.

tc class add dev eth1 parent 1:1 classid 1:2 cbq bandwidth 10Mbit \
 rate 1Mbit allot 1514 cell 8 weight 100Kbit prio 3 maxburst 20 \
 avpkt 1000

This class has the following attributes:

� Its ID is 1:2 (classid 1:2), and its parent class is 1:1 (parent 1:1).
� The total bandwidth allocated to the queuing discipline owned by this class is

10 megabits per second (bandwidth 10Mbit).
� The bandwidth allocated to this class is 1 megabit per second (rate 1Mbit).
� The weight of this class is 100 kilobits per second (weight 100Kbit).
� The priority allocated to this class is 3 (prio 3).
� No more than 20 packets can be sent in a burst (maxburst 20).

Filters are used to allocate traffic to classes, and are defined using classifiers.
The simplest classifier is a route classifier, which allows you to allocate traffic to
classes based on entries in the route table. A more complex classifier is u32,
which you can use to allocate traffic based on source or destination port and
other attributes. This would allow you to control traffic on a per-application basis.

The following command will install a route classifier on a CBQ device.

tc filter add dev eth0 parent 1:0 protocol ip prio 100 route \
 to 1 classid 1:2

The parameter route designates this filter as a route classifier. It applies to IP
packets (protocol ip) and will give packets classified by it a default priority of
100. This filter will pick up packets assigned to route realm 1, and assign them to
traffic class 1:2.

You can now make entries in the routing table to classify traffic. Here is an
example of classifying traffic to the host 10.0.3.4 into the realm 1, which we
linked to the traffic class using the previous command:

ip route add 10.0.3.4 dev eth0 realm 1

 Chapter 6. TCP/IP routing 113

6.5.3 CBQ usage example: bandwidth choke
We used a Linux guest with two network interfaces to demonstrate traffic control.
We configured a CBQ on one of the interfaces to see if the configuration was
effective in limiting bandwidth usage by the Linux guest.

We used the FTP server on a common machine to transfer a large file via two
network paths, one using CBQ and the other using a direct network path. The
effect we were looking for was to have the FTP transfer throttled by traffic control
to the bandwidth we specify.

Figure 6-9 shows the log of the session.

Example 6-9 Setup and use of a CBQ traffic control configuration

tc qdisc add dev hsi1 root handle 1: cbq bandwidth 100Mbit allot 1514 cell 8
avpkt 1000 mpu 64
tc class add dev hsi1 parent 1:0 classid 1:1 cbq bandwidth 100Mbit rate
100Kbit allot 1514 cell 8 weight 10Kbit prio 3 maxburst 20 avpkt 1000
tc filter add dev hsi1 parent 1:0 protocol ip prio 100 route to 1 classid 1:1
ip route change 9.12.6.0/23 via 10.0.6.1 dev hsi1 realm 1
tc qdisc ls dev hsi1
qdisc cbq 1: rate 100Mbit (bounded,isolated) prio no-transmit
tc class ls dev hsi1
class cbq 1: root rate 100Mbit (bounded,isolated) prio no-transmit
class cbq 1:1 parent 1: rate 100Kbit prio 3

The following notes further explain points in this example:

� The first command, tc qdisc, added the CBQ to our HiperSockets interface
hsi1. We allocated a manageable bandwidth of 100 Mbps for this interface.

� The second command, tc class, defined our traffic class. In order to plainly
demonstrate the effect, we have set the rate limit to 100 kbps.

� The third command, tc filter, creates a filter using route classification. A
priority of 100 is assigned to these packets, and a routing realm of 1 is used to
select this filter.

� The fourth command, ip route, changes the route we had defined to the
destination network. The route realm is added, which invokes the route
classification filter. At this point, our traffic control configuration is controlling
packets.

� The fifth and sixth commands show the queue disciplines and classes
configured.

From a remote machine on the 9.12.6.0 network, we commenced an FTP
transfer of a large file.

114 Large Scale Linux Deployment

We noted that the transfer rate for the file was between 1 and 2 megabytes per
second, so it did not appear that the configuration had worked. After checking the
configuration, we discovered that we had omitted a crucial part of the
configuration that would be required to achieve our desired effect.

In our tc class command, we specified our desired rate as 100 kbps. However,
by default, traffic controlled by a class is allowed to use any excess bandwidth in
the parent class. Our class was working, but because excess capacity was
available in the parent class there was no visible bandwidth limiting taking place.

Example 6-10 shows the command we issued to change the class, followed by a
class list command to show the difference.

Example 6-10 CBQ test: fixing our configuration error

tc class change dev hsi1 parent 1:0 classid 1:1 cbq bandwidth 100Mbit rate
100Kbit allot 1514 cell 8 weight 10Kbit prio 3 maxburst 20 avpkt 1000 bounded
tc class ls dev hsi1
class cbq 1: root rate 100Mbit (bounded,isolated) prio no-transmit
class cbq 1:1 parent 1: rate 100Kbit (bounded) prio 3

When we retried the FTP transfer, we had successfully limited the transfer to
approximately 12 kilobytes per second.

6.5.4 CBQ usage example: differentiating interactive traffic
We noticed that once our traffic control configuration was in place and the FTP
transfer was in progress, interactive traffic (SSH, telnet) was extremely slow.
Since we were using route classification, all traffic to the destination network was
being throttled down by our class.

To attempt to get interactive traffic back to normal, we referred to some
iproute2+tc examples available on the Web. These examples imply that you can
set up sub-classes of the original class, and use the defmap attribute to classify
your traffic. However, this approach did not work for us.

Other examples on this topic use the u32 classifier to set up port-specific filters.
This looked like it would be the only effective way to prioritize interactive traffic.
However, that meant setting individual filters for each prioritized traffic type, and
defining a bitmap to link traffic types with the appropriate class.

 Chapter 6. TCP/IP routing 115

6.6 Dynamic routing
It is possible to use dynamic routing protocols inside a penguin colony. However,
the processing overhead involved in managing routing domains means that the
amount of dynamic routing should be kept to a minimum. We suggest using
dynamic routing protocols only between the router images and the exterior
network.

Within the penguin colony, you can use a static routing structure such as that
suggested in Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions,
SG24-6299, to provide connectivity to all your networks with the least amount of
routing configuration.

If you do need to use dynamic routing within your penguin colony, be aware that
your z/VM system may become slightly harder to tune because of the additional
overhead caused by dynamic routing updates. You may need to experiment with
increasing the interval between routing update messages (for example,
increasing the ‘Hello interval’ and ‘Dead router interval’ in the case of OSPF) to
reduce the amount of traffic in the network. Be aware, however, that increasing
these values will make your network less responsive to changes, since more time
is likely to pass between routing updates.

6.6.1 How dynamic routing works
Dynamic routing protocols generally fall into two categories: distance-vector
protocols and link-state protocols.

Distance-vector protocols like Routing Information Protocol (RIP) and Interior
Gateway Routing Protocol (IGRP) maintain lists of the cost to reach all of the
known networks (the “distance” to other networks). At regular intervals, routers
send a copy of their route table to all other routers in their network. This
information is used by routers to keep their own information up to date.

Comment: Arguably the most significant barrier to a deeper understanding of
Linux’s advanced routing features is the lack of good documentation. Very little
documentation exists, and what does exist relies on the reader already having
a solid understanding of the features of the kernel and just needing help with
the syntax of the iproute2 commands. Some of the examples circulating also
have errors.

Don’t let this discourage you, however! This chapter has only scratched the
surface of the capabilities of traffic control and advanced routing. If you take
the challenge and decide to explore further, we make one request: document!

116 Large Scale Linux Deployment

Distance-vector protocols introduce a lot of unnecessary traffic onto the network,
and take a long time to respond to network changes and failures.

Link-state protocols such as Open Shortest Path First (OSPF) and Intermediate
System-to-Intermediate System (IS-IS) maintain a database of the links in the
network. The routing table is built from the information contained in this
database.

Changes in the network cause routers to flood Link State Advertisements (LSAs)
through the network, advising all routers of the change, which means that
link-state protocols generally learn about changes and failures much quicker than
distance-vector protocols.

However, link-state protocols consume large amounts of memory (compared to
distance vector protocols), and the complexity of the protocol processing
consumes more processor resource.

6.6.2 Dynamic routing in a penguin colony
There are three circumstances under which you might want to use dynamic
routing in a penguin colony:

� Advertising a virtual IP address to the network

If you are using a virtual IP addressing method, you may want to use dynamic
routing to advertise this address to the network. This is the way z/OS
customers often make use of the VIPA function provided by z/OS
Communications Server, to allow them to use additional features like Dynamic
VIPA and VIPA Takeover.

In a penguin colony, however, it is much less likely that you will move an IP
address from one Linux guest to another. Therefore, you are more able to use
static routing mechanisms (like the route summarization method described in
the ISP/ASP redbook) to reach your virtual addresses.

� Advertising changes and reconfigurations in the penguin colony

If the routing configuration inside the penguin colony is subject to frequent
change, using dynamic routing would update the network rapidly and
automatically. However, with broadcast-style network connectivity like z/VM
Guest LAN being available inside the penguin colony, it is much less likely that
frequent changes will occur in the z/VM system.

Note: For more information about TCP/IP dynamic routing and how it works,
refer to Designing Large-Scale IP Internetworks by Cisco Systems, at:

http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/nd2003.htm

 Chapter 6. TCP/IP routing 117

http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/nd2003.htm

� Making use of multiple interfaces for redundancy

When you configure multiple interfaces to Linux guests, you have to ensure
that the Linux guest can make use of any interface for outgoing traffic, and the
network can use any available interface for incoming traffic. Duplicate routes
can take care of the requirement for the outgoing traffic, and for incoming
traffic, static routing can be used.

In any of these situations (particularly the last two), using dynamic routing
between your router images and the router network outside the zSeries
environment can be beneficial. This allows the router images to advise the
network about changes within the z/VM system.

The growth of your “neighborhood”
Perhaps the biggest reason not to use dynamic routing inside your penguin
colony becomes apparent when you have large numbers of guests attached to
z/VM Guest LANs and HiperSockets.

Dynamic routing protocols rely on the transmission of routing updates between
routing “neighbors”. Neighbors are routers attached by a common network
transport. Depending upon the nature of the routing protocol being used, large
amounts of network traffic can be generated, or large link-state databases can be
set up.

In a penguin colony, this is undesirable: with virtual networking (Guest LAN,
virtual CTCs, etc.), all network traffic results in processing, handling routing
updates requires processing, and managing dynamic routing domains requires
storage.

In a penguin colony that uses IUCV or vCTC connections, a dynamic routing
daemon on a Linux guest would be a neighbor to only one or two others: the
router (or routers) that provide their connection to the “outside world”. In a Guest
LAN or HiperSockets network, however, a dynamic routing daemon would
become a neighbor to every other guest on that same network.

In the case of a distance-vector protocol, all Linux guests would be sending their
whole routing table to each other at regular intervals, and a link-state protocol
would keep a record of every other Linux guest and its links and link status.
Clearly, this is not a desirable situation for our penguin colony.

Recommendation: We do not think that running dynamic routing inside a
large-scale Linux installation is worthwhile. Unless you really have a strong
need to use dynamic routing, consider alternatives.

118 Large Scale Linux Deployment

6.6.3 Controlling routing tables
You can use dynamic routing at your router systems to advertise the networks
within your penguin colony to the rest of the network. In this case, you get some
of the benefits of dynamic routing while minimizing the averse effects.

Even so, you should ensure that the routing tables of the router images do not
become overpopulated with useless route entries. This might occur if your router
images are considered to be part of the backbone network, from a dynamic
routing perspective.

There are methods to control routing table updates that vary between routing
protocols and the dynamic routing daemons used. One such process that can be
used in an OSPF configuration, for example, is the stub area.

An OSPF stub area is an area with certain attributes, the main one being that it is
not a through-path for network traffic (traffic is routed into or out of the area, but
never through it to another area). The routers at the border of a stub area
advertise a summarized route to the routers inside the stub area (usually just a
default route). The rest of the routing information that exists in the rest of the
OSPF domain is hidden from the routers in the stub area.

 Chapter 6. TCP/IP routing 119

120 Large Scale Linux Deployment

Chapter 7. Network high availability

In this chapter, we discuss methods you can use to make the network
connectivity in your large scale Linux environment more reliable and less
susceptible to outage.

We also touch briefly on clustering and server high availability.

7

© Copyright IBM Corp. 2002. All rights reserved. 121

7.1 Planning virtual connectivity for high availability
There are a number of tools and utilities in the Linux world that allow you to build
highly available application hosting facilities. Many papers and HOWTOs have
been written on high availability Linux, and projects such as Linux-HA specialize
in providing information and user-space tools for making highly available Linux
systems.

Some of the technologies that work well in discrete server environments do not
necessarily map well to a large scale Linux on zSeries installation. Since one of
the design objectives of the penguin colony is to minimize unnecessary CPU
consumption in the Linux guests, high availability solutions that rely on heartbeat
polling or dynamic routing protocols are less desirable, since they increase the
“idle” CPU utilization of the Linux guests. Also, the relatively cheap server
network cards with dual ports and automatic switchover do not compare to the
capabilities of an interface like the OSA-Express.

7.1.1 Determine the level of redundancy you need
Some of the options that will be described in this chapter introduce considerable
complexity to the configuration of the z/VM and Linux installations you will have
to maintain. For this reason, it is important not to overengineer your solution.

There are plenty of things that can be done in case something fails. In 7.2.1,
“Configuring multiple network interfaces” on page 123 we describe a way of
giving a Linux guest access to multiple router guests attached to multiple
OSA-Express adapters. This configuration is intended only for guests requiring
the highest levels of availability. If you have guests that do not have high
availability requirements, give consideration to using a basic configuration.

7.1.2 z/VM TCP/IP availability
A critical component which may be overlooked when designing connectivity in a
large scale Linux installation is the z/VM TCP/IP stack itself. There can be many
times when, as a result of misconfiguration or failure in a Linux system, you
cannot get access via the network to a Linux guest. On these occasions, being
able to obtain a connection via z/VM TCP/IP to the Linux console lets us do
enough to get network connectivity again, log on, and fix the problem. Being able
to get reliable access to the z/VM TCP/IP stack is therefore very important.

The z/VM TCP/IP stack supports the VIPA function. We suggest that you look at
using multiple interfaces to the z/VM stack, and use VIPA to address z/VM.

122 Large Scale Linux Deployment

Console access
An alternative to TCP/IP access would be to use console devices. zSeries
systems require console devices to support the operation of the system. A
console access controller such as the IBM 2074 Console Support Controller can
provide local console access via TN3270, allowing you to use a TN3270
emulator over your network to get a console connection to your zSeries system.

Using consoles would relieve some of the dependencies in the z/VM system (you
no longer require a functional TCP/IP stack, for instance). However, we do not
believe that TCP/IP access to the 2074 can be set up as reliably as to a z/VM
TCP/IP stack using VIPA. Also, since they are mainly used for system consoles
and require a high level of security, it is generally not recommended to put a 2074
on an open network (like a corporate backbone). This means that you may only
be able to connect to your 2074 from the systems operation area or other
secured locations.

7.2 Multiple network devices to Linux guests
You can provide multiple network connections to your Linux guests. This will
allow you to connect to multiple routing paths, removing the single point of failure
and making your Linux guests less susceptible to network outage.

7.2.1 Configuring multiple network interfaces
You can use your system administration tool (YaST on SuSE, for example) to
configure a second network interface in the same way you configure the first.
Remember that you will have to do more than just configure the Linux network
device; you will also have to do z/VM device definition and /etc/chandev.conf
updates as well, since these are not usually handled by the network configuration
tool. Refer to Chapter 4, “HiperSockets and z/VM Guest LAN” on page 57 for
information about configuring HiperSockets and Guest LAN networks.

We suggest that when configuring multiple interfaces on your Linux guest, you
use the same type of device for all connections. This avoids the possibility of
intermittent problems caused by certain network features (broadcast and
multicast, for example) not being present on one adapter or another.

The need for a virtual IP address
Having multiple network interfaces is, by itself, not sufficient to provide efficient
redundancy, because of the way that IP routing works. Figure 7-1 on page 124
will help to explain this.

An IP host with
more than one
interface is
called a
“multi-homed”
host.

 Chapter 7. Network high availability 123

Figure 7-1 IP addressing issue in multi-homed configuration

In Figure 7-1, consider traffic inbound to the Linux host from the network, bound
for the IP address 10.0.2.115. Linux, by default, will respond to traffic for any of its
configured IP addresses on any of its interfaces, so if the network directed the
traffic via Router 1 and the eth0 interface, then all would still work. Normal IP
routing, however, will direct this traffic to Router 2, because that’s how the
network learns to get traffic to the 10.0.2.0 network. If the eth1 interface was
down, there is no way (without complex configuration in the routers) to get this
traffic redirected to the other interface.

What this means is that clients requesting service from your Linux guest cannot
get seamless and transparent connectivity via either interface if they use the
“interface” IP address to communicate with the guest.

LINUX

eth0 eth1

Router 1

.42 .115

10.0.1.0 10.0.2.0

Router 2

124 Large Scale Linux Deployment

Eliminate common paths
There is not much point in configuring two separate interfaces on a Linux guest if
there is excessive duplication along the network path. Obviously there will be
some commonality that cannot be avoided (the network card in the client PC, for
example), but where possible there should be as much duplication through the
environment as technical and budgetary constraints will allow.

Figure 7-2 on page 126 shows a sample configuration which has no duplication
inside the z/VM environment.

More information: In the Linux IP stack, IP addresses are not bound to any
particular interface. Rather, the kernel keeps a list of addresses it will respond
to. Addresses are associated with interfaces simply as an indication of the
network that is directly reachable by a particular interface.

RFC1122, Requirements for Internet Hosts -- Communication Layers,
contains a discussion about multi-homed hosts, and categorizes their behavior
as either “Weak End System” or “Strong End System”. Linux’s default
configuration (which is heavily configurable) displays a combination of these
behaviors.

Refer to RFC1122 for a complete discussion of end system behaviors. You
can find this RFC at:

http://www.faqs.org/rfcs/rfc1122.html

 Chapter 7. Network high availability 125

http://www.faqs.org/rfcs/rfc1122.html

Figure 7-2 Redundant network design 1

10.0.69.0/24

.....

10.0.74.0/24

LINUX1 LINUX2 LINUX3 LINUX4 LINUXn

TCPIP

VIPA
10.0.30.1

M
P

R
O

U
T

E

10.0.72.0/30
vCTC or IUCV

172.16.10.0/24 172.16.11.0/24

.2

.2 .2

.1 .2

.42 .42

z/VM Guest LAN or
virtual HiperSockets

z/VM

Switch

OSAOSA

Router

Switch

OSAOSA

Router

.1.1

.1

Note: The IP addresses and ranges shown in Figure 7-2 and Figure 7-3 on
page 131 are for diagrammatic purposes only. The addresses you would use
in a real implementation would be determined by your installation.

126 Large Scale Linux Deployment

Here are some points to note regarding this design:

� We have not specified whether to use z/VM TCP/IP or Linux guests as the
routers. Refer to the discussion on this in Section 6.1.5, “Linux router or z/VM
TCP/IP router” on page 96.

� We are sharing the OSA ports with z/VM TCP/IP. For each of the OSA ports,
one of the router images is configured as primary router.

� A link has been defined for direct communication between the two routers. We
discuss this in “Connectivity between the routers” on page 127.

� The z/VM TCP/IP stack is configured with a VIPA address (for reasons
discussed in “z/VM TCP/IP availability” on page 122). In the routing network,
you could use static routing to reach the VIPA address via either of the OSAs.
Alternatively, you could set up the MPROUTE service machine to advertise
the VIPA address using dynamic routing.

Connectivity between the routers
The link between the routers is required to provide additional backup
connectivity. The method shown in Figure 7-2 on page 126 is one way to do this;
the other way would be to cross-connect the two routers and the two OSAs. We
discuss this method (as well as an undesirable side-effect) in “Cross-connected
OSAs” on page 130.

We could use the Linux guest networks as an alternate communication path
between the routers. By defining these interfaces to the dynamic routing protocol,
the router images would learn about other paths to the exterior network.
However, by doing this we are introducing unwanted broadcast/multicast traffic
onto the guest networks. This is not a preferred option.

Our objective is to make the Linux guests as highly available as we can, with
minimum disruption. In doing this, not only should we minimize the amount of
configuration change on the Linux guests, but we should also reduce the
processing work they need to do in failure modes. By giving them every possible
chance to use their primary default router (the one that we configure highest in
their route table), we minimize the potential disruption at the guest. By linking the
two routers, a Linux guest’s primary router will be available through more failure
modes than otherwise.

Note: The contents of the network “cloud” are generally beyond our control as
“penguin keepers.” Sometimes we do not even get an opportunity to specify
different network switches to connect our OSAs.

We suggest that you work with your network staff and customers to ensure
that the level of redundancy and backup in the environment is technically
feasible and meets customer needs.

 Chapter 7. Network high availability 127

The type of link you use for this is up to you. We would expect that it would be
used only in a failure scenario, so extremely high performance is not critical.
Since it is point-to-point, a CTC or IUCV link is ideal.

Failure modes
Let us examine the failure modes of this environment.

Failures we cannot recover from
There are some failure modes this configuration cannot recover automatically.
Eliminating events that would invoke disaster recovery planning rather than
failure management (such as failure of the z/VM system or the processor
supporting it, or site power failure), we see the following failure events.

� Network backbone failure

This is an outright failure of the network at large that causes complete loss of
connectivity between the data center and the client population. If there is no
way for the client traffic to reach the switches that our OSAs attach to, then no
configuration inside our installation will help.

� Failure of the Linux guest

Obviously, if the guest is broken or down, then network connectivity will not
solve the problem.

� Failure of one OSA and the opposing router image

This effectively removes all connectivity paths for the remaining OSA to reach
the exterior network. Manual reconfiguration of the remaining good OSA to
the remaining active router would resume connectivity, but it may just be
easier to fix the broken router image (which is another reason to keep these
images as simple as possible, so that they are easy to repair).

Failure of network switch or router
This will disrupt communication to one of our OSAs. There is not much we can do
directly in this scenario, but we rely on the rest of the router network delivering
the client traffic to the active OSA.

For outbound traffic, we need to prevent our router guests from sending traffic
into a “dead network”; using dynamic routing in this case will help, since the
dynamic routing protocol will delete paths via the inactive OSA. If we are not
using dynamic routing, we can stop the route being used by simply inactivating
the connection to the OSA which is attached to the failed switch.

Failure of one OSA
For inbound traffic, the router network must not direct incoming client traffic to the
failed OSA. This can be accomplished automatically using dynamic routing, or
manually by reconfiguring the routing tables of network routers.

128 Large Scale Linux Deployment

Outbound traffic will be directed through the active OSA by the router guests.

Failure of connectivity between the OSA and the switch
This failure may be physical (a cable inadvertently unplugged or repatched), or
due to the configuration (a switch port reconfigured out of a required VLAN).
These problems can be notoriously hard to find.

In a dynamic routing scenario, this will behave according to a combination of the
two cases above. Even though the interface is still active, dynamic routing
adjacency between the router guest and the network’s first-line routers will be
lost. Both sets of routers will remove the routing entries through that interface.

Without dynamic routing, the configuration will be reliant upon the dead gateway
detection of the respective routing equipment. Manual reconfiguration may be
required to force the routers to remove routes through the inactive interface.

Failure of one router guest
When dynamic routing is used, the situation is the same as the failure of an OSA.
Loss of adjacency would cause the routers to delete entries from their routing
tables.

For outgoing traffic, the scenario will depend on how you configure your Linux
guests. If you spread the routing load across the routers (by alternately
configuring the router images as the first default router), then approximately half
of your guests will see no impact. Guests that use the failed router image as their
primary path would rely on dead gateway detection to switch their default route to
the active router guest.

Failure of one of the guest networks
If the network is destroyed outright (by an operator actually deleting the
simulated LAN, for instance), the NIC will disconnect. Linux will bring the network
interface down, forcing traffic to pass through the other network interface. The
same will happen at the router end, causing inbound traffic to be directed to the
other router image and up through the active guest network.

Important: It may be tempting to take a “shortcut” in this situation, and
inactivate the interface to the suspected failing network. Such an approach,
however, may have unintended consequences.

From the router side especially, there may be other equipment attached to the
Ethernet interface that is working correctly (because the failure is specifically
on the connection to the OSA, for example). Therefore, it is very important that
you do not inactivate devices indiscriminately, since further problems may be
caused that exacerbate the failure scenario.

 Chapter 7. Network high availability 129

Failure of a NIC at the router image
For inbound traffic, the same as failure of the guest network. For outbound traffic,
same as failure of the router guest.

Failure of a NIC at a Linux guest
For outbound traffic, the Linux guest will use the remaining active network
interface.

For inbound traffic, the situation becomes more complex. If the traffic is intended
for the IP address of the NIC, the traffic will be lost. If a virtual IP address is used,
however, dead gateway detection in the router guest can help (because the
router sees the Linux guests’ interfaces as gateways to the final destination). The
router will move on to the next route configured for the virtual address, which will
be the IP address of the Linux guest’s other NIC.

Cross-connected OSAs
As an alternative to using a point-to-point connection between the two router
images, a configuration such as the one shown in Figure 7-3 on page 131 can be
used.

130 Large Scale Linux Deployment

Figure 7-3 Redundant network design 2

Figure 7-3 shows a design similar to the one in Figure 7-2 on page 126, except
that both router images connect to both OSAs. Each router activates its OSA
devices as either primary or secondary router, so that each OSA has both a
primary and secondary router (shown using “‘Pri” and “Sec” in the diagram).
Using the OSA direct routing function, this provides direct connection between
the two routers, as well as two paths to the exterior network from each router
image. In most cases, this provides better coverage than Figure 7-2.

10.0.69.0/24

.....

10.0.74.0/24

LINUX1 LINUX2 LINUX3 LINUX4 LINUXn

172.16.10.0/24 172.16.11.0/24

.2

.2 .2

.1 .2.42 .42

z/VM Guest LAN or
virtual HiperSockets

z/VM

.1.1

.1

Switch

OSAOSA

Router R2

Switch

OSAOSA

Router R1

TCPIP

VIPA
10.0.30.1

M
P

R
O

U
T

E

Sec PriPri Sec

 Chapter 7. Network high availability 131

Unfortunately, this configuration creates a failure mode that would be very difficult
to detect and troubleshoot, particularly when dynamic routing is used to the
exterior network. The problem arises from an interaction between the dynamic
routing processing and the OSA interface.

Picture the network shown in Figure 7-3, using dynamic routing. There are four
paths available to get to the router guests, and thereby on to the Linux guest
networks. The way that the route tables in the routing network get added is
non-deterministic, based simply on the timing of when each router receives and
responds to the routing protocol packets. Because of this, we cannot predict
which of these four routes will get to the top of the routing table. The problem
occurs if the route that gets to the top of the list is a route through a secondary
router OSA.

Suppose that traffic was inbound to a Linux guest, and the route chosen via the
network was via the address 172.16.11.2 (the left-hand interface on router image
R2). Because this is a secondary OSA port, the OSA will actually send the traffic
to router R1 because the destination address is unknown and R1 is the primary
router. If both of R1’s guest network interfaces are up, all will be fine, but if one of
R1’s interfaces is down (specifically, the interface to our intended network), then
there will be a problem. You might think that sending the traffic to R2 via the OSA
would be a solution, but again, if the wrong route happens to be at the top of the
table (in this case, via 172.16.11.1), then a routing loop is generated.

One way to avoid the effects of this issue is to increase the cost of the secondary
links in your dynamic routing configuration. This will make the paths through the
secondary definitions less likely to be taken than the primary. However, this
approach may have undesirable effects in other parts of the network, forcing
traffic onto less preferred paths for the wrong reasons.

Another option is to not define the secondary connections to your dynamic
routing protocol. This is actually self-defeating, because if the connections are
not defined to dynamic routing, they will not get advertised to the network and will
never be taken advantage of by the network. If they cannot be used by the
network, they may as well not be defined—and if you don’t define them, you don’t
have the problem!

Because of the caveats that this method introduces, we recommend that you do
not cross-connect routers to OSAs in this manner, unless you have a full and
complete understanding of the possible implications it may cause.

Multiple default routes
Possibly the biggest issue with a configuration like this is that if both possible
network paths are active at the same time, the routing table in the Linux guest will
choose one route in preference to the other for all traffic. If the networks beyond

132 Large Scale Linux Deployment

the z/VM complex are asymmetrical, then a suboptimal return path may be
chosen for traffic from the Linux guest to the client. Worse still would be a
situation where part of the network is reachable via one path but not the other.

One solution to this would be to run a dynamic routing daemon such as routed,
mrt or zebra on the Linux guests, to allow them to fully participate in the routing
network. This provides the best and most dynamic approach for network
connectivity, but is undesirable in a large scale Linux installation due to the
amount of CPU and network resource consumed by routing updates.

We consider that it is useful to have your router guests participate in dynamic
routing with the network at large, but that it is not desirable to use dynamic
routing protocols within the Linux server complex (dynamic routing in large scale
Linux installations is discussed more in Section 6.6, “Dynamic routing” on
page 116).

Another possibility is to use rdisc, the implementation of the Router Discovery
Protocol (RDP). There are two advantages to RDP over full dynamic routing
protocols:

� RDP is more directed than full dynamic routing protocols. Generally in OSPF
or RIP domains, all routers are peers and share information with all other
routers. With RDP, the routers providing routing service are designated
differently to the hosts requesting routing configuration. This reduces the
amount of routing information being distributed.

� The default broadcast interval is longer. Routers running RDP only advertise
routing information every 10 minutes, by default. This reduces the overall load
generated by routing updates (but it does create CPU load spikes).

There are considerations with using RDP, however:

� RDP is fairly easy to spoof, creating the possibility of a DoS attack. You can
block RDP message traffic at your firewall, thus preventing an attack from
outside your system, but you may still be vulnerable to attacks from other
guests within your system.

� The default advertisement interval may be too long for your needs, creating
extended downtime compared to using a full routing protocol.

Attention: If you want to experiment with RDP, you will obviously want to have
routers in your environment advertising RDP updates and answering RDP
solicitations. The in.rdisc man page as installed on our SuSE system stated
that the command in.rdisc -r would start the rdisc program in “router
mode”, but the rdisc program as shipped with SuSE does not support this
switch. The gated program implements RDP, but it is not available as part of
the SuSE distribution.

 Chapter 7. Network high availability 133

7.2.2 Virtual Router Redundancy Protocol (VRRP)
The Virtual Router Redundancy Protocol (VRRP) is an open protocol that
provides a way for router services to be provided to servers or clients.

How VRRP works
VRRP routers provide a “single router image” to clients and other routers. A
daemon on the router image listens for the multicast messages of other VRRP
routers. If it does not receive any, it assumes that there are none active and takes
on the role of “master router”. It adds the virtual router IP address to the interface
that attaches to the network the router is providing routing service for, and
advertises its details to the network for other VRRP daemons.

If a problem occurs with that router guest, another router running the VRRP
daemon will see that the master has not sent its multicast message and take over
the master role. There will be an interval when the clients will not be able to reach
a default router (while the other routers detect the loss of the master and
reconfigure), but this is configurable in the VRRP daemon based on how often
the master will send its multicast.

Experiences with VRRP
We obtained the source code for VRRP, built it, and attempted to use it. The
configuration we had intended looked like Figure 7-4 on page 135.

134 Large Scale Linux Deployment

Figure 7-4 Intended VRRP configuration

The two Linux routers would implement the VRRP router 10.0.3.254, which we
would then be able to configure as the default router on all the Linux guests.
VRRP would ensure that at least one of the router images would always respond
to the virtual router IP address.

Unfortunately, we encountered problems with VRRP which we were unable to
resolve. When we started the daemon on the first router, it successfully
registered the virtual router IP address and started advertising to other VRRP
daemons. However, every time a broadcast frame was sent, we got the error
messages shown in Example 7-1 in the system log:

Example 7-1 vrrpd: Messages from qeth.o

qeth: QETH_IP_VERSION is 0
qeth: skb->protocol=x0=0
qeth: skb:01 00 5e 00 00 12 00 00 00 00 00 00 08 00 45 00
qeth: skb:00 28 00 17 00 00 ff 70 ce 36 0a 00 03 06 e0 00

Linux
Guest

eth0

Router 1

10.0.3.0

Router 2

Linux
Guest

eth0

...

.6 .10

Virtual
Router

.254

vrrpd vrrpd

 Chapter 7. Network high availability 135

When we started the VRRP daemon on a second router, it appeared as if it was
not receiving the multicast advertisements from the master router. Therefore, it
assumed there was no other VRRP daemon active, and attempted to become
the master. When it tried to register the virtual router IP address, it failed because
the first router already was on the network with the address.

Obviously, takeover never occurred either because the second VRRP daemon
already believed it was the master.

7.2.3 Virtual IP addresses
The IBM Redbook Linux on IBM ^ zSeries and S/390: ISP/ASP
Solutions, SG24-6299, discusses a method of using multiple attachments in
combination with a virtual IP address configured on a dummy interface. This still
can form the basis of a high availability connectivity solution. As an alternative to
using a dummy interface, you can configure additional addresses against the IP
loopback interface (lo). This means you don’t need to have another module
installed.

The following command will configure the IP address 10.0.100.106 as an
alternate IP address bound to the loopback interface:

ifconfig lo:0 10.0.100.106 netmask 255.255.255.255 up

You can use the ifconfig command again to verify the command; see
Example 7-2 on page 137.

Important: The way that the Linux kernel processes incoming IP traffic does
not require the virtual IP address to be associated with a dummy or loopback
interface. Your virtual address can be just as easily defined against one of your
real interfaces. However, to ease possible confusion, we use a different
interface to make it clear that the address has nothing to do with any particular
physical network device.

136 Large Scale Linux Deployment

Example 7-2 ifconfig command output

lnx6:~ # ifconfig lo:0
lo:0 Link encap:Local Loopback
 inet addr:10.0.100.106 Mask:255.255.255.255
 UP LOOPBACK RUNNING MTU:16436 Metric:1

The ip command can be used to achieve a similar result. The syntax for the
equivalent ip command is shown here:

ip addr add 10.0.100.106/32 dev lo

When you use the ip command to add an address in this way, you will not be
able to use the ifconfig command to view the address. The way that ip adds
additional addresses does not appear to be compatible with ifconfig (largely
due to the BSD heritage of ifconfig, compared to the redeveloped Linux IP code
introduced with Linux kernel 2.2). You can use the ip command to view your
address configuration, however.

Example 7-3 ip addr list command output

lnx6:~ # ip addr list dev lo
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet 10.0.100.106/32 scope global lo
 inet6 ::1/128 scope host

7.2.4 IP connections outbound from Linux guests
If your Linux guest generates outgoing connections to other servers, the dummy
interface solution will not provide complete redundancy. This is because by
default, when an application does not specify what source address is to be used,
the Linux kernel uses the IP address of the most direct interface to the
destination as the source address of the connection. If that interface becomes
unreachable, the connection will fail. Most applications will deliberately not
specify a source address, since doing so relieves the application of the burden of
finding out what the address should be.

Attention: Because of this apparent incompatibility between ifconfig and ip,
we recommend that you make a site-wide decision on which tool and which
configuration method you will use across all your Linux guests. This will
ensure that your system administrators don’t get confused by output they don’t
expect.

 Chapter 7. Network high availability 137

The ISP/ASP book presents a solution based on Network Address Translation
(NAT) using iptables as a way of rewriting the source address of IP packets
leaving the Linux guest. There are at least two other ways of performing a similar
function.

Understanding Linux outbound address selection
The Linux IP code uses a complex process to determine the source address to
be used for an outgoing connection. The final default it will choose (if the
application does not specify an address to use) is determined by the routing
table, and refers to the interface associated with the route the kernel chooses to
send the traffic. The earlier processing steps can be controlled using the ip
command, which we discuss in the next section.

Another way to control the source address is for the application program to
specify one in its call to the bind() function. As mentioned earlier, most
applications do not do this because in most situations it is best to leave the
decision up to the kernel.

A utility called src_vipa has been written, which allows an application which does
not normally specify a source address to be set up to do so. We discuss the
src_vipa utility in “src_vipa” on page 139.

IP rules using the IP utility
The ip command allows the routing table to be manipulated to a greater degree
than the traditional ifconfig and route commands. Using ip, you can define a
rule that will override the source address for outgoing traffic.

You can selectively apply rules to traffic on the interface, allowing you to change
which addresses are changed. If you want traffic for different networks to be
treated differently, this can be done by creating alternate route tables with the
changes you want, and then specifying rules that determine which table will be
used for which traffic.

This function is similar to the NAT solution presented in the ISP/ASP book, in that
the behavior of the application is not changed.

The table is applied on all IP packets that match the rule, which means that all
traffic from a given interface (or all traffic to a specified network, if you are using
alternate tables) is changed regardless of application or protocol (for example,
TCP or UDP).

Note: Samba is one application that does provide options to specify the bind
address.

138 Large Scale Linux Deployment

Using the ip command

src_vipa
Utz Bacher from IBM Böblingen has written a utility called src_vipa that allows
you to modify an application’s behavior when it does not specify a source
address. The function of src_vipa is based on the Source VIPA function provided
by the Communications Server TCP/IP Feature on z/OS, z/VM and OS/390.

Together with a dummy or loopback IP address as described in 7.2.3, “Virtual IP
addresses” on page 136, the src_vipa utility can be very useful in providing more
deterministic connectivity when multiple interfaces are used.

The src_vipa package provides a wrapper script which is used to invoke a
program that you would like to benefit from the source VIPA function. The
wrapper script sets up an alternate IP library which is called by the application,
and fills in default values, before passing the call on to the system library.

The behavior of src_vipa is controlled by a configuration file which, by default, is
found at /etc/src_vipa.conf. Alternatively, the environment variable
SRC_VIPA_CONFIG_FILE can override the default location, allowing you to
have different configuration files for different situations or for different application
programs. The package provides a man page that outlines the configuration
options and how to use them.

src_vipa in use
We set up a virtual address on one of our Linux guests, and experimented with
src_vipa. Our src_vipa.conf file is shown in Example 7-4.

Example 7-4 src_vipa.conf

src_vipa.conf
configuration file for the src_vipa utility
#
9.12.6.0/23 10.0.100.106
.INADDR_ANY 1-623 10.0.100.106

This example configuration will ensure both of the following:

� All connections to the 9.12.6.0/23 network are made with a source address of
10.0.100.106.

Note: src_vipa can be downloaded from the Developerworks Linux for zSeries
and S/390 ‘Useful Add-Ons’ page:

http://oss.software.ibm.com/linux390/useful_add-ons.shtml

 Chapter 7. Network high availability 139

http://oss.software.ibm.com/linux390/useful_add-ons.shtml

� Any program that binds a socket on ports between 1 and 623 inclusive without
specifying a source address will also use a source address of 10.0.100.106.

Refer to the src_vipa man page for complete information about the contents of
the configuration file.

To demonstrate the first statement in the configuration file, we used the Telnet
program to connect to a remote machine. Telnet will not specify an IP address to
bind the socket to, so the kernel will choose one according to the route table. Our
route table looked as shown in Example 7-5.

Example 7-5 Linux route table for Source VIPA testing

lnx6:/etc/init.d # netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.6.0 * 255.255.255.0 U 40 0 0 hsi1
10.0.3.0 * 255.255.255.0 U 40 0 0 eth0
default 10.0.3.1 0.0.0.0 UG 40 0 0 eth0

Without src_vipa, the information in Example 7-6 is shown about our Telnet
session.

Example 7-6 netstat output for a non-VIPA telnet session

lnx6:/etc/init.d # netstat -a | grep telnet |grep EST
tcp 0 0 10.0.3.6:1270 9.12.6.83:telnet ESTABLISHED

The kernel chose the address 10.0.3.6 because it is the address of the interface
associated with device eth0, which is the interface we use to reach the
destination (via the default route).

We closed that session, then started the telnet program through the src_vipa.sh
wrapper script with the following command:

/usr/sbin/src_vipa.sh telnet 9.12.6.83

When we looked at the telnet session, we saw that the VIPA address was used
as the source this time; see Example 7-7.

Example 7-7 netstat output for a VIPA telnet session

lnx6:/etc/init.d # netstat -a | grep telnet |grep EST
tcp 0 0 10.0.100.106:1271 9.12.6.83:telnet ESTABLISHED

140 Large Scale Linux Deployment

For a demonstration of the second configuration line in /etc/src_vipa.conf, we
modified the startup script for the inetd daemon, as per the diff output shown in
Example 7-8.

Example 7-8 Alteration to inetd startup script

--- inetd.backup Wed Jul 31 11:35:11 2002
+++ inetd Wed Jul 31 13:46:32 2002
@@ -69,7 +69,7 @@

 # startproc should return 0, even if service is
 # already running to match LSB spec.
- startproc $INETD_BIN
+ startproc /usr/sbin/src_vipa.sh $INETD_BIN

 # Remember status and be verbose
 rc_status -v

Prior to restarting inetd using this modified script, we verified the addressing of
the sockets in use by inetd; see Example 7-9.

Example 7-9 inetd socket usage, before src_vipa

lnx6:/etc/init.d # netstat -ap | grep inetd
tcp 0 0 *:login *:* LISTEN 30604/inetd
tcp 0 0 *:time *:* LISTEN 30604/inetd
tcp 0 0 *:echo *:* LISTEN 30604/inetd
tcp 0 0 *:discard *:* LISTEN 30604/inetd
tcp 0 0 *:daytime *:* LISTEN 30604/inetd
tcp 0 0 *:finger *:* LISTEN 30604/inetd
tcp 0 0 *:chargen *:* LISTEN 30604/inetd
tcp 0 0 *:ftp *:* LISTEN 30604/inetd
tcp 0 0 *:telnet *:* LISTEN 30604/inetd

Tip: It may seem tedious to have to start every IP program through a wrapper
script. A much easier way is to copy the contents of the src_vipa.sh script to
the local profile for those users you wish to get source VIPA function. If you
want to give all users source VIPA function, copy to the /etc/profile.local file
instead.

The two lines in src_vipa.sh that you need to copy are as follows:

export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH
export LD_PRELOAD=/usr/lib/src_vipa.so

The first line adds the path to the src_vipa library to the shell’s library path,
and the second preloads the library so that the system’s library is not used.

 Chapter 7. Network high availability 141

udp 0 0 *:talk *:* 30604/inetd
udp 0 0 *:ntalk *:* 30604/inetd
udp 0 0 *:echo *:* 30604/inetd
udp 0 0 *:discard *:* 30604/inetd
udp 0 0 *:daytime *:* 30604/inetd
udp 0 0 *:chargen *:* 30604/inetd
udp 0 0 *:time *:* 30604/inetd

We then restarted inetd, and reran the netstat command; see Example 7-10.

Example 7-10 inetd socket usage, after src_vipa

lnx6:/etc/init.d # netstat -ap | grep inetd
tcp 0 0 10.0.100.106:login *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:time *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:echo *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:discard *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:daytime *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:finger *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:chargen *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:ftp *:* LISTEN 30635/inetd
tcp 0 0 10.0.100.106:telnet *:* LISTEN 30635/inetd
udp 0 0 10.0.100.106:talk *:* 30635/inetd
udp 0 0 10.0.100.106:ntalk *:* 30635/inetd
udp 0 0 10.0.100.106:echo *:* 30635/inetd
udp 0 0 10.0.100.106:discard *:* 30635/inetd
udp 0 0 10.0.100.106:daytime *:* 30635/inetd
udp 0 0 10.0.100.106:chargen *:* 30635/inetd
udp 0 0 10.0.100.106:time *:* 30635/inetd

As you can see, all of the inetd applications are now bound to the VIPA address.

The src_vipa utility is a useful way to enable the source VIPA functionality at an
application level without manipulating system routing tables.

Attention: Use this option with care. Daemons which are bound to a particular
address will accept incoming connections only on the address they are bound
to. For example, in the above scenario we can no longer use the interface
address (or even the loopback address) to connect to any of the inetd
services, as inetd is only listening on the VIPA address.

You can use this option to start multiple daemons for the same application on
different IP addresses. You might do something like this to provide daemons
with different configurations running on the same host—each would be bound
to a different VIPA.

142 Large Scale Linux Deployment

7.3 Redundancy outside the zSeries complex
By introducing additional networking and system intelligence outside a single
zSeries system, we can make our Linux guests more available.

7.3.1 Additional z/VM system
We can utilize a second zSeries processor to provide a backup environment for
our large scale Linux installation. This gives us options for load sharing, in
addition to high availability.

In the following scenario, a parallel image of our z/VM system with its operational
Linux guests is set up on a second zSeries processor. We have three choices for
how to run this second installation:

� Warm backup

In this case, z/VM is operational, but no Linux guests are started. In the event
of a failure of the primary z/VM system, the Linux disk is connected to the
secondary z/VM system (either by reconfiguration of channels, or by restoring
disk images from backup media) and the Linux guests are started.1

� Hot backup

In this case, z/VM and all Linux guests are operational, but no client load is
directed to the backup system. This would require some method of
synchronization between the Linux disk on the two different z/VM systems.

� Parallel operation

In this case, the backup z/VM system is running as per the “hot backup”
scenario, but in a load-sharing parallel operation configuration. In addition to
the disk synchronization requirements, an external means of sharing client
connections between the two systems is now required.

7.4 Linux high availability solutions
A number of high availability solutions exist for Linux. As stated in the introduction
to this chapter, some of these solutions can be applied to large scale Linux
installations, but others do not (for various reasons). Here, we discuss some of
the more popular high availability Linux solutions.

1 If the method of disk synchronization does not involve a z/VM system on the backup machine, there
would be little advantage in even having z/VM running in this scenario; therefore, it might also be
described as “cold backup”.

 Chapter 7. Network high availability 143

7.4.1 To cluster or not to cluster
Clustering for high-availability is becoming extremely popular, so it may be
surprising to some that the situation changes somewhat in the case of Linux
under z/VM.

Clustering across z/VM systems
In 7.3.1, “Additional z/VM system” on page 143, we introduce the idea of using a
second z/VM installation to provide redundancy of your large scale Linux
installation. In the parallel operation scenario, you could use clustering
technology to bring together Linux guests in two separate z/VM systems so that
they share load and provide backup for each other. Some of the techniques
discussed in the following sections could be used for this purpose.

We agree that clustering in this scenario is a useful thing to do in almost all
cases.

Clustering within a z/VM system
The benefit of clustering within a single z/VM system, however, is arguable. The
current crop of clustering technologies all employ a single “load balancer”
machine which distributes connections to back-end “worker” servers.

In a discrete server environment, these are individual machines with no
dependencies on each other. In a z/VM environment, however, the load balancer
machine, as well as all the back-end servers, share the same processing
resource. Does it make sense to subdivide the physical machine into smaller
machines, increasing the processing overhead as well as the overall complexity
of the installation? Why not have a single, large guest do the work?

We believe there are reasons you might want to use clustering in this case. Some
of these reasons are:

� Comparative cost of ”virtual clusters” and discrete server clusters

In a discrete server scenario, a clustering configuration will involve purchasing
extra hardware and increase environmental costs (floor space, electricity,
cooling, etc.). The added cost raises the point at which customers can
cost-justify a cluster configuration.

In a Linux on z/VM environment, a cluster configuration adds nothing to the
hardware or environmental cost, so the cost-justification threshold can be
much lower.

� Consistency across Linux guest configurations

If your installation uses standard processes and configurations for guests, it
may not be convenient to disrupt those processes if, for example, you have to
change one or two guests to give them more storage.

144 Large Scale Linux Deployment

Using clustering might allow you to spread the application load across two or
more guests using a standard configuration.

� More efficient workload scheduling

A single large Linux guest handling multiple concurrent tasks will become
processor-bound as the multiple tasks fight with each other for CPU timeslice.
You can avoid this by adding virtual CPUs to the guest, allowing Linux to
schedule more tasks concurrently, but that might add overhead due to both
Linux and z/VM scheduling the multiple CPU workload within the one guest.
Spreading the workload across multiple guests in a cluster can even out this
effect by letting z/VM schedule individual guests as separate units of work.

� I/O processing advantages.

At present, the I/O model for Linux under z/VM prevents a guest from having
more than one outstanding I/O to a single device. This is mainly important for
disk I/O, particularly as disk devices tend toward larger sizes (such as 3390
“Model 27”). The larger a guest is, and the more work it performs, the more
likely it is to have multiple processes attempting I/O to the same device.
Dividing this processing into smaller clustered guests may provide a way to
avoid I/O contention and improve overall performance.

With the network performance available with Guest LAN and HiperSockets,
network latency would not be a significant issue in a cluster configuration under
z/VM. You can also quite easily define a separated Guest LAN for heartbeat and
keepalive processing, if your particular clustering technology requires it (you
could even use the TTY mode of the CTC driver for this, allowing you to use a
discrete server serial-link heartbeat solution with almost no change).

On this topic, we cannot give a clear recommendation. We leave it up to you to
determine what configuration best suits your application load and service
requirements.

7.4.2 Linux Virtual Server
In the IBM Redbook Linux on IBM ^ zSeries and S/390: Distributions,
SG24-6264, there is a discussion of a sample implementation of the Linux Virtual
Server (LVS) concept. LVS ties a group of server machines together using
various network and scheduling techniques, so that they present a single server
“image” to clients requesting service. A single load balancing and scheduling
machine initially receives all the traffic, which it then sends to back-end servers.

 Chapter 7. Network high availability 145

Three network techniques are used in an LVS installation:

� Network Address Translation (LVS-NAT)

Packets arriving at the LVS load balancer are address-translated to the IP
address of one of the back-end servers handling the application. When the
response is generated, the load balancer reverses the address translation so
that the load balancer appears to have handled the request.

� IP Tunneling (LVS-TUN)

Packets arriving at the LVS load balancer are “tunnelled” to a back-end
server, which processes the request. The back-end server responds to the
client directly.

� Direct Routing (LVS-DR)

Packets arriving at the LVS load balancer are redirected to one of the
back-end boxes. The virtual IP address of the cluster is configured on the
interfaces of all of the machines in the cluster so that the kernel will correctly
receive packets intended for the cluster.

LVS-TUN and LVS-DR have the advantage that the response traffic is sent
directly from the back-end server to the client. LVS-NAT requires this outbound
traffic to pass through the load balancer. LVS-NAT works around a tricky ARP
configuration issue present in the other two options, however.

A complete analysis of LVS is beyond the scope of this book. We recommend
that you read the relevant section of the Distributions redbook to learn more
about how LVS works on Linux under z/VM.

Note: Another work on high availability on Linux on zSeries under z/VM that
we recommend is the Redpaper Linux on IBM zSeries and S/390: High
Availability for z/VM and Linux, REDP0220, available from

http://www.redbooks.ibm.com/abstracts/redp0220.html

146 Large Scale Linux Deployment

http://www.redbooks.ibm.com/abstracts/redp0220.html

Part 3 Creating and
managing a
penguin colony

In this part we introduce concepts to aid in the management a Linux server farm.
Topics include:

� Sharing Linux filesystems running under z/VM

� Building Linux guests as clones operating on shared Linx filesystems

� Managing a Linux server farm using LDAP.

Part 3

© Copyright IBM Corp. 2002. All rights reserved. 147

148 Large Scale Linux Deployment

Chapter 8. Shared Linux filesystems

In this chapter we discuss a method of sharing Linux filesystems created on VM
minidisks among multiple z/VM Linux guests.

We introduce the theory and provide a sample implementation. You can find the
scripts discussed in this chapter in the additional materials available with this
redbook.

8

© Copyright IBM Corp. 2002. All rights reserved. 149

8.1 Device filesystem mounts
‘Device filesystem mounts incorporate a filesystem on a block device into the
Linux global filesystem namespace.

For example, we consider a filesystem on block device /dev/dasdc1. The
filesystem contains a /lib directory containing a file named foo.bar. Upon issuing
the following command, the file foo.bar in the /lib directory on the /dev/dasdc1
device may be referenced using the global path name /usr/local/lib/foo.bar:

mount /dev/dasdc1 /usr/local

Files and directories which existed in the original /usr/local subtree can no longer
be accessed by their original path names. In practice, there are no files or
directories in the original /usr/local directory subtree (as it is created explicitly as
a “stub” directory solely for the purpose of being a mount point).

8.2 Bind mount directories
A bind mount expands the functionality of the device filesystem mount. Using
bind mounts, it is possible to graft a directory subtree from one part of the global
filesystem namespace to another. Bind mounts differ from device mounts in that
the source is the global filesystem namespace itself - not a block device.

As an example, consider a directory /guestvol/there containing a file named
foo.bar. An additional directory /mnt/here exists in the global namespace. Issue
the following command:

mount --bind /guestvol/there /mnt/here

Now the foo.abc file can be referenced by two path names:

/guestvol/there/foo.abc The original path name
/mnt/here/foo.abc The bind mount path name

This is illustrated in Figure 8-1 on page 151.

Note: Processes which have open files or have a current working directory in
/usr/local subtree continue to be able to manipulate those files and directories
as usual. The Linux kernel reference counts these open files to ensure access
is predictable and safe.

150 Large Scale Linux Deployment

Figure 8-1 The behavior of bind mount

Both names refer to the same underlying file. The Linux kernel maintains
coherence and consistency whichever name is used. We refer to this as a “bind
mount” in this redbook.

The bind mount feature is available in the Linux 2.4 kernel. It requires no special
configuration options. Bind mounts were inspired by similar functionality in the
Plan9 operating system.

Note: Plan9 is an operating system developed at Bell Labs by a group that
includes Ken Thompson (one of the original inventors of UNIX) and Rob Pike
(who also has a long UNIX heritage). For more details, see:

http://plan9.bell-labs.com/plan9dist/

Yes, Plan9 did take its name from the film Plan 9 From Outer Space.

guestvol there

mnt

foo.bar

Before mount

After mount

mount --bind /guestvol/there /mnt/here

guestvol there

/

foo.bar

mnt

guestvol there

/

foo.bar

there foo.bar

here

here foo.bar

 Chapter 8. Shared Linux filesystems 151

http://plan9.bell-labs.com/plan9dist/

8.3 Using bind mounts
Bind mounts offer some interesting possibilities for Linux guests running under
z/VM. Disk partitions seen by Linux guests are minidisk allocations defined to the
guest virtual machine. Because minidisks may be shared by many virtual
machines, it is possible to use bind mounts to define a common, read-only root
filesystem shared by many guests in a z/VM Linux cluster.

In Figure 8-2, we show the effect on the global filesystem namespace of
mounting a read-write filesystem (residing on a read-write block device) on a
read-only root filesystem.

Figure 8-2 Mounting disk partitions on a global filesystem namespace

Note: For simplicity, we illustrate only a portion of the filesystems which may
exist on the /dev/dasda1 and /dev/dasdb1 disk partitions.

Global filesystem namespace

/dev/dasdb1/dev/dasda1

etc/

var

guestvol

R/O R/W

etc/

var

guestvol

etc/

var

etc

var

R/W

R/O

1 2

152 Large Scale Linux Deployment

The steps shown in Figure 8-2 on page 152 are described here:

1. The root filesystem is initially mounted from the read-only /dev/dasda1 device:

mount /dev/dasda1 /

2. The /dev/dasdb1 device is mounted on the /guestvol stub directory:

mount /dev/dasdb1 /guestvol

As shown in Figure 8-2 on page 152, the /guestvol filesystem is read-write
accessible, while the root filesystem is read-only accessible.

8.3.1 Mounting writable directories on a read-only filesystem
Continuing the example, in Figure 8-3 we:

� Mount the read-write directories /guestvol/etc over the read-only /etc:

mount --bind /guestvol/etc /etc

� Mount the read-write /guestvol/var over the read-only /var:

mount --bind /guestvol/var /var

Figure 8-3 Mounting read-write directories on a read-only filesystem

Note: These commands are normally executed as part of the Linux boot
sequence; device and mount points are specified in the /etc/fstab file.

etc/

var

guestvol etc

var

R/W

R/O

 Chapter 8. Shared Linux filesystems 153

The path name /etc now refers to /guestvol/etc. Similarly, now /var refers to
/guestvol/var. Files and directories under the /etc and /var subtrees map to their
corresponding locations under the /guestvol subtree.

8.3.2 Preserving access to the original read-only directories
As noted, files and directories in the directory trees overlaid by bind mounts will
be hidden from the global namespace. It can be useful to preserve access to
those subtrees.

As illustrated in Figure 8-4, preserve the /etc and /var read-only directories:

mount --bind /etc /basevol/etc
mount --bind /var /basevol/var

Figure 8-4 Preserving read-only directories using bind mounts

Important: Any files or directories that existed in the /var or /etc subtree prior
to the bind mounts are now hidden from the global filesystem namespace.

Note: Although directory trees overlaid by bind mounts are hidden from the
global namespace, processes holding references to open files or directories
can still access entities.

etc/

var

guestvol

R/O

basevol etc

var

154 Large Scale Linux Deployment

The /basevol/etc and /basevol/var directories serve as stub directories for bind
mounts. At this point, we can bind mount the read-write /guestvol/etc and
/guestvol/var directories onto the /etc and /var directories as discussed in 8.3.1,
“Mounting writable directories on a read-only filesystem” on page 153. Access to
the original read-only copies can be obtained using the /basevol/etc and
/basevol/var path names.

8.4 The basevol filesystem
A base volume or basevol filesystem is a bootable root filesystem residing on a
VM read-only minidisk shared by many Linux guests. The basevol filesystem
contains a set common packages and services needed by all Linux guests in a
penguin colony.

A basevol contains a majority of the packages required to operate any single
Linux guest in the colony. Directories found on the basevol include:

� /sbin
� /bin
� /lib
� /usr
� /var/lib/rpm

8.5 The guestvol filesystem
A guest volume or guestvol filesystem is a filesystem residing on a VM read-write
minidisk dedicated to a single Linux guest running in a penguin colony.

The guestvol contains the packages and configuration files needed to
personalize a single Linux guest in a colony. A guestvol may require as little as
15 MB of DASD space. Directories found on the guestvol include:

� /etc
� /var
� /home
� /opt
� /dev
� /tmp
� /boot

Note: For simplicity, we do not show the read-write device mounts on the
/guestvol directory.

 Chapter 8. Shared Linux filesystems 155

� /root
� /usr/local

8.6 A basevol/guestvol Linux guest
A basevol/guestvol Linux guest is a member of a penguin colony that uses both
basevol and guestvol filesystems. Directories on the read-write guestvol are
bind-mounted over their respective location on the basevol.

8.7 The File Hierarchy Standard
The File System Hierarchy (FHS) defines a standard for managing a directory
hierarchy. In particular, it defines which portions of directory structure should be
read-only and which should be read-write. The current version (2.2) can be found
at:

http://www.pathname.com/fhs/

Discussion of the FHS is beyond the scope of this book. However, it serves to
assist in determining how to partition the hierarchy into basevol and guestvol
images.

8.8 RPM package management
By default, RPM manages installed packages using database files located in the
/var/lib/rpm directory. However, the /var guestvol filesystem is bind-mounted over
/var. Therefore, the /var/lib/rpm directory refers to the guestvol filesystem.

To prevent a basevol/guestvol Linux guest from unintentionally installing
packages on the guestvol, we want the var/lib/rpm directory to refer to the
basevol filesystem.

Using bind mounts, we do the following:

1. Preserve the basevol /var directory in the /basevol/var directory:
mount --bind /var /basevol/var

2. Bind-mount the /guestvol/var directory over /var:
mount --bind /guestvol/var /var

3. Bind-mount the /basevol/var/lib/rpm directory over /var/lib/rpm:
mount --bind /basevol/var/lib/rpm /var/lib/rpm

156 Large Scale Linux Deployment

http://www.pathname.com/fhs/

Figure 8-5 shows the read-only basevol with a device-mounted guestvol
(mounted on the /guestvol directory). Both the filesystems contain a
/var/lib/rpm/foo.bar file.

Figure 8-5 The effect of mount --bind /var /basevol/var

The read-only basevol /var subtree is preserved in /basevol/var.

Continuing in Figure 8-6 on page 158, we bind-mount the /guestvol/var directory
on /var.

guestvol var

var/ lib foo.barrpm

basevol var

lib foo.barrpm

guestvol var

var/ lib foo.barrpm

basevol var

lib foo.barrpm

lib foo.barrpm

Before mount

After mount
mount --bind /var /basevol/var

 Chapter 8. Shared Linux filesystems 157

Figure 8-6 The effect of mount --bind /guestvol/var /var

Finally, as shown in Figure 8-7 on page 159, the /basevol/var/lib/rpm directory is
mounted on /var/lib/rpm.

guestvol var

var/ lib foo.barrpm

basevol var

lib foo.barrpm

lib foo.barrpm

guestvol var

var/ lib foo.barrpm

basevol var

lib foo.barrpm

lib foo.barrpm

mount --bind /guestvol/var /var

Before mount

After mount

158 Large Scale Linux Deployment

Figure 8-7 The effect of mount --bind /basevol/var/lib/rpm /var/lib/rpm

The /var directory is now writable (as required by the FHS). The /var/lib/rpm
directory, however, remains read-only and refers to RPMs installed on the
basevol.

There may be cases where we wish to install RPM packages on the guestvol
filesystem image. For instance, two different clones might mount a basevol
device containing common applications and services, while one of the clones
installs additional packages on its guestvol device. We discuss how can be
accomplished in 9.6, “Guestvol package management” on page 180.

8.9 Booting a basevol/guestvol Linux guest
When booting a Linux guest from basevol/guestvol filesystems, we use bind
mounts in the Linux boot initialization. In addition, we ensure the Linux guest can
boot from the basevol, even in the event the read-write guestvol is unavailable.

We provide a sysinit add-on script (rc.guestvol) to perform the necessary bind
mounts. We also modify the existing rc.sysinit script.

guestvol var

var/ lib foo.barrpm

basevol var

lib foo.barrpm

lib foo.barrpm

guestvol var

var/ lib foo.barrpm

basevol var

lib foo.barrpm

lib foo.barrpm

mount --bind /basevol/var/lib/rpm /var/lib/rpm

Before mount

After mount

 Chapter 8. Shared Linux filesystems 159

8.9.1 The rc.guestvol script
In a basevol/guestvol Linux guest, the /etc/inittab file is modified to specify the
/etc/rc.d/rc.guestvol command to be run on system startup. This script is
responsible for:

� Determining if the Linux guest uses guestvol mounts.

� If so, mounting the guestvol device on the /guestvol directory (as shown in
Figure 8-2 on page 152).

� Bind mounting the basevol and guestvol directories as discussed in 8.3,
“Using bind mounts” on page 152.

A listing of the rc.guestvol script can be found in Appendix C.1.1, “The
/etc/rc.d/rc.guestvol script” on page 232.

8.9.2 Determining if the Linux guest uses a guestvol mount
It may not be possible to mount a guestvol on the base when booting a
basevol/guestvol Linux guest. For instance, the guestvol may not be available.
Additionally, the Linux guest may wish to boot the basevol as a normal read-write
root filesystem (for instance, to create a guestvol filesystem). The basevol startup
attempts to deal with a missing guestvol.

The guestvol is assumed to be defined as virtual device number 777. The
/etc/rc.d/rc.guestvol scripts first examines this device. If no device is found, a
DASD device is added:

echo "add range=777" > /proc/dasd/devices

Initialization then proceeds:

� If the device is a DASD device, and the DASD device appears to be a
guestvol (it contains a /guestvol/etc/inittab file), the guestvol initialization
continues.

� If the device is found to be a printer device, the script assumes the basevol is
to be mounted as a normal read-write root filesystem. Guestvol initialization
terminates and the normal /etc/rc.d/sysinit script is invoked.

� In all other cases, a maintenance shell is entered.

Note: This utilizes the dynamic DASD device feature of Linux on zSeries. No
device would be found (even though a valid guestvol might be defined to the
Linux guest virtual machine) if the dasd=ranges kernel option was omitted from
the IPL record of the basevol device.

160 Large Scale Linux Deployment

8.9.3 The maintenance shell
Once in the maintenance shell, the user is given the opportunity to define a
guestvol. If a guestvol device is detected upon exiting the maintenance shell,
guestvol initialization will proceed as normal.

8.9.4 Example basevol/guestvol Linux guest startup
Example 8-1illustrates the basevol/guestvol initialization using the Linux console
messages.

Example 8-1 Booting a basevol/guestvol Linux guest

 INIT: version 2.78 booting
Searching for guestvol device 777 1
dasd:/proc/dasd/devices: 'add range=777'
dasd(eckd):0777 on sch 18: 3390/0A(CU:3990/04) Cyl:20 Head:15 Sec:224
dasd(eckd):0777 on sch 18: 3390/0A(CU:3990/04): Configuration data read
debug: reserved 2 areas of 1 pages for debugging dasdd
dasd:waiting for responses...
dasd(eckd):/dev/dasdd(94:12),0777@0x12:(4kB blks): 14400kB at 48kB/trk classic
disk layout
 dasdd:CMS1/ LNX2GV(MDSK): dasdd dasdd1
Guestvol device 777 appears to be at device file /dev/dasdd1 2
Guestvol seems to have been successfully mounted...continuing boot 3
Finished binding guestvol directories, init will now restart... 4
 Welcome to Red Hat Linux
Mounting proc filesystem: [OK]
Configuring kernel parameters: [OK]

Notes highlighted in Example 8-1 refer to the following points:

1. The /etc/rc.d/rc.guestvol script (residing on the basevol) checks for the
existence of a virtual DASD 777.

In this case, none was found and the script dynamically adds the device.

2. Device number 777 is determined to be a DASD device.

It is mounted on the /guestvol directory.

3. A /guestvol/etc/inittab file is found.

a. Access to read-only root directories is preserved by bind-mounting those
directories over respective directories in /basevol (as outlined in 8.3.1,
“Mounting writable directories on a read-only filesystem” on page 153).

b. Directories in the read-write /guestvol directory are bind-mounted over
their respective locations on the root filesystem.

4. On completion, a restart signal is sent to init.

 Chapter 8. Shared Linux filesystems 161

The new /etc/inittab (the /guestvol//etc/inittab file) is executed.

Configuration of the basevol/guestvol Linux guest continues as outlined in 8.10,
“Startup configuration” on page 162.

8.9.5 Example basevol/guestvol Linux guest maintenance shell
To illustrate the maintenance shell, we simulate a missing guestvol by redefining
virtual device 777 to be 1777 before booting the Linux guest:

REDEFINE 777 AS 1777

The boot messages are shown in Example 8-2.

Example 8-2 Booting a basevol/guestvol Linux guest with a missing guestvol

REDEFINE 777 AS 1777
DASD 1777 DEFINED
IPL 202
...
 INIT: version 2.78 booting
Searching for guestvol device 777
dasd:/proc/dasd/devices: 'add range=777'
Error: failed to find /guestvol/etc/inittab
About to start maintenance shell. Please either mount guestvol
disk on /guestvol and then type "exit" or else just type
"exit 123" to boot the underlying basevol system in
read-write mode with no guestvol.
bash-2.05#

8.10 Startup configuration
At this point in the initialization, basevol/guestvol Linux guest has its read-write
guestvol directories mounted over the read-over basevol. Guest-specific

Important: The /etc/rc.d/rc.guestvol script examines the return code from the
maintenance shell.

� If zero, the script verifies that the guestvol device (number 777) contains an
/etc/inittab file. If not, it returns to the maintenance shell.

� If non-zero (for instance, by typing: exit 123), the rc.guestvol script
read-write mounts the basevol device.

If the device is read-only linked in the virtual machine, the Linux guest
cannot damage the basevol. However, Linux startup will fail.

162 Large Scale Linux Deployment

configuration (such as networking configuration) is performed by executing the
directives specified in the guestvol /etc/inittab file.

Although guest-specific configuration data could be stored on the guestvol
filesystem, this approach will quickly become too cumbersome to manage, for the
following reasons:

� Guestvols cannot simply be created by copying a master guestvol image.

This would lead to networking conflicts between basevol/guestvol Linux
guests.

� It is not feasible to customize guestvols for each basevol/guestvol Linux guest.

Managing configuration files on the guestvol devices is simply too
time-consuming and error-prone.

Instead, we implement a two-phase Linux guest configuration design:

� In the first phase, the basevol/guestvol Linux guest bootstraps itself
sufficiently to acquire a network temporary configuration.

We refer to this phase as early boot-time configuration, and its
implementation is discussed in 8.11, “Network configuration” on page 164.

� In the second phase, the basevol/guestvol Linux guests acquire configuration
information from a centrally managed LDAP database.

We discuss this in Chapter 10, “Centralized management using LDAP” on
page 191.

8.10.1 The rc.sysinit-guestvol script
The standard /etc/rc.d/rc.sysinit script presents problems to a basevol/guestvol
Linux guest:

� The filesystem on the root device is remounted in read-write mode.

The basevol device should remain read-only mounted; we comment out this
line.

� The contents of the /etc/mtab file are cleared.

The version created by the rc.guestvol script should be preserved; we
comment out this line.

� The rc.sysinit script runs itself through the initlog process.

We change the script name.

We provide a replacement, the /etc/rc.d/rc.sysinit-guestvol script shown in
Appendix C.1.2, “The /etc/rc.d/rc.sysinit-guestvol script” on page 234.

 Chapter 8. Shared Linux filesystems 163

8.11 Network configuration
We devise a centralized configuration server relying on the services provided by
z/VM to enable basevol/guestvol Linux guests to obtain network connectivity.
This configuration server is referred to as the confserv.

We implement the confserv guest using the VM Programmable Operator
(PROP). Details on PROP can be found in z/VM V4R3.0 CMS Planning and
Administration, SC24-6042.

The basevol/guestvol Linux guest requests network configuration from the
confserv using only native CP communication methods (thus avoiding the need
for any TCP/IP network at boot time).

8.11.1 The z/VM configuration server
PROP runs continuously in its own CMS guest; we use a VM virtual machine
named CONFSERV. Virtual machines communicate to the PROP service
machine using the CP SMSG command. Upon receiving a message, the PROP
virtual machine does the following:

� It searches its configuration file for a line with a matching message pattern.

� It executes the action specified on that line.

In Example 8-3, we show a line in the PROP configuration file for confserv, the
CONFSERV virtual machine.

Example 8-3 PROP configuration line for CONFSERV

/GETMYCONF / 1 10 4 GETCONF TAG

In the example, if confserv receives a type 4 message (a message sent using the
CP SMSG command) containing the text string GETMYCONF, the CONFSERV
virtual machine executes GETCONF EXEC.

Note: The confserv provides services similar to a DHCP server; clients with
no network obtain network configuration from a central management system.

VM Guest LANs do not provide services required for a DHCP server.

Note: The complete PROP configuration file is shown in Appendix C.6, “The
PROP RTABLE configuration file” on page 272.

164 Large Scale Linux Deployment

Parameters passed to GETCONF EXEC include:

� The name of the guest from which the message originated
� The final field in the PROP configuration file (in this case, the string "TAG")
� The contents of the message itself

A listing of the GETCONF EXEC script can be found in Appendix C.5, “The
GETCONF EXEC script” on page 271.

For example, if virtual machine CLONE1 issues the following command, then the
GETCONF EXEC script is invoked in the CONSERV virtual machine:

SMSG CONSERV GETMYCONF DEFAULT

Note the following:

� The guest name (CLONE1) and the requested role name (DEFAULT) are
passed as parameters.

� These parameters are used to search for the CLONE1 network parameters
specific to role DEFAULT in a CONSERV configuration file (the GUEST CONF
file).

In Example 8-4, we show the corresponding line in the GUEST CONF file.

Example 8-4 A configuration line from GUEST CONF

CLONE1 DEFAULT HOSTNAME=clone1;ETH0=10.0.3.101;GATEWAY=10.0.3.1

8.11.2 Generating a CONFSERV response
Because no IUCV API is available for Linux user programs, the confserv uses an
alternative method to send a response to the basevol/guestvol Linux guest:

� The Linux guest is required to have a virtual printer defined as device number
001E.

� The GETCONF EXEC script uses the CP SEND IP command to send a
response. The message is tagged to virtual device 001E.

In the preceding example, GETCONF EXEC composes the line:

CP SEND CP CLONE1 TAG 001E HOSTNAME=clone1;ETH0=10.0.3.101;GATEWAY=10.0.3.1

Note: Although additional parameters are passed as well, we do not use
them.

Note: Searches against the GUEST CONF file are case-insensitive.

 Chapter 8. Shared Linux filesystems 165

Linux guest CLONE1 retrieves the network configuration information from the tag
on its virtual printer as described in 8.11.4, “The vmgetconf script” on page 166.

8.11.3 Security considerations
The CONFSERV virtual machine requires sufficient privileges to be permitted to
to issue CP commands on behalf of a Linux guest. There are two ways to
accomplish this:

� Assign privilege class C to the confserv virtual machine in its VM user
directory entry.

This allows confserv virtual machine to send CP commands any virtual
machine.

Although PROP is designed for use by high privilege class users, this practice
may not conform to your site’s security policy. We do not recommend this
approach.

� Assign the confserv virtual machine as the secondary user (SECUSER) for
each basevol/guestvol Linux guest.

This can be done by adding the confserv user as the final field in the
CONSOLE line of the VM user directory entry for the basevol/guestvol Linux
guest. Alternatively, issue the CP command:

SET SECUSER confserv-user

Using this method, the confserv virtual machine can only respond to virtual
machines to which it is designated as the secondary user.

Although this approach can address security concerns, it can have
disadvantages: the confserv virtual machine can only respond to a
disconnected guest.

For guests started using XAUTOLOG, this is not a problem. However, logging
on to the console of a basevol/guestvol Linux guest and attempting to IPL
Linux will cause the confserv configuration request to fail.

8.11.4 The vmgetconf script
The vmgetconf script (found in /etc/init.d directory of the guestvol) generates the
request and receives the response from confserv. It uses a configuration file

Tip: Running PROP as a configuration server in this manner is light on
memory use. Although CONFSERV’s VM user directory entry gave it a 32 MB
virtual machine, the guest’s working set and resident set size both remain at
just over 100 pages (400 KB).

166 Large Scale Linux Deployment

(/etc/sysconfig/vmconfigserver) to determine the name of confserv virtual
machine and to provide the role requested by the basevol/guestvol Linux guest.

A sample /etc/sysconfig/vmconfigserver is shown in Example 8-5.

Example 8-5 The /etc/sysconfig/vmconfigserver file

CONFSERV="CONFSERV"
ROLE="default"

Sending a request to the confserv virtual machine
To send a confserv request, vmgetconf first defines a virtual printer at device
number 001E, then issues the request. The sequence is illustrated here:

hcp detach 001e
hcp define prt 001e
hcp smsg CONFSERV GETMYCONF default

Receiving the confserv response
After sending the request, vmgetconf polls the virtual printer:

hcp tag query 001e

� If the confserv response has not yet been received, the query results in a
message that begins:

PRT 001E TAG NOT SET

� Once the confserv response is received, the query results in a message of
the form:

PRT 001E TAG:
HOSTNAME=clone1;ETH0=10.0.3.101;GATEWAY=10.0.3.1

Generating a network configuration file
Once a confserv response is received, vmgetconf generates a network
configuration file (/etc/sysconfig/vmconfig) from that response. Example 8-6 on
page 168 shows a sample of the generated file.

Note: The value of the ROLE parameter is case-insensitive.

Note: We use the cpint package, as described in 1.9.2, “Communicating with
CP from a Linux telnet session” on page 15 to communicate with CP.

Note: The vmgetconf script polls the printer once per second for 10 seconds.
If a confserv response has not been received in that time, processing
continues. However, no network configuration will be possible.

 Chapter 8. Shared Linux filesystems 167

Example 8-6 The /etc/sysconfig/vmconfig file generated by vmgetconf

HOSTNAME=clone1
ETH0=10.0.3.101
GATEWAY=10.0.3.1

8.11.5 The itsonet script
The network configuration information available in the /etc/sysconfig/vmconfig file
is translated to the form expected in a normal Linux boot sequence.

For Red Hat 7.1, the /etc/rc.d/rc3.d/S10networking script (a symbolic link to the
/etc/rc.d/init.d/networking script) configures the network at runlevel 3. The
networking script configures the network based on information found in:

� /etc/sysconfig/network
� /etc/sysconfig/network-scripts/ifcfg-*

From the /etc/sysconfig/vmconfig file, we generate these files before the
/etc/rc.d/init.d/networking script is executed.

Additionally, we reset the networking hostname (it is set in another init script
executed before networking is configured).

The /etc/init.d/itsonet script shown in C.1.4, “The /etc/init.d/itsonet script” on
page 252 performs these actions.

The symbolic link S09itsonet in the guestvol /etc/rc.d/rc3.d directory itsonet is
executed at run level 3 before networking.

In Example 8-7 on page 169, we show an example of the network configuration
files generated by the itsonet script.

Note: Network configuration varies by Linux distributions. The itsonet script
described here is designed to operate on a Red Hat 7.1 s390x distribution.

168 Large Scale Linux Deployment

Example 8-7 Network configuration files generated by itsonet

/etc/sysconfig/network:
NETWORKING=yes
HOSTNAME=clone1
GATEWAY=10.0.3.1

/etc/sysconfig/network-scripts/ifcfg-eth0:
DEVICE=eth0
BOOTPROTO=static
IPADDR=10.0.3.101
NETMASK=255.255.255.0
ONBOOT=yes

8.11.6 Example of boot time configuration
Example 8-8 shows the console messages for a basevol/guestvol Linux guest
using the vmgetconf configuration.

Example 8-8 Fetching boot time configuration with vmgetconf

Entering non-interactive startup
Starting vmgetconf: [OK]
Generating network configuration files from vmconfig information
Hostname is clone1
Resetting hostname to clone1 [OK]
Setting gateway IP address to 10.0.3.1
Setting eth0 IP address to 10.0.3.101
ETH1 not set: not configuring eth1
Setting network parameters: [OK]
Bringing up interface lo: [OK]
Bringing up interface eth0: [OK]

8.12 Shutdown processing
For a basevol/guestvol Linux guest, we modify the system shutdown and reboot
scripts (performed by the /etc/rc.d/init.d/halt script):

At shutdown, all filesystems must be unmounted. The halt script executes from
the /etc directory, and init has open devices in the /dev directory.

Note: In addition to generating these files, itsonet will also issue the following
command to set the hostname correctly:

hostname clone1

 Chapter 8. Shared Linux filesystems 169

However, the basevol/guestvol Linux guest has bind-mounted both these
directories from the guestvol onto the basevol root, which prevents these
filesystems from being unmounted.

This problem is solved by splitting the function of /etc/rc.d/init.d/halt script into
two phases:

� Phase one executes the /etc/init.d/guestvol-start-halt script.
� Phase two executes the /sbin/guestvol-final-halt script.

8.12.1 The guestvol-start-halt script
The guestvol-start-halt script (shown in Appendix C.1.5, “The
/etc/init.d/guestvol-start-halt script” on page 254) performs the same function as
the normal /etc/rc.d/init.d/halt script up to the point where filesystems are
unmounted.

The script then performs an exec on the /sbin/guestvol-final-halt script. This frees
the /etc filesystem for umount.

8.12.2 The guestvol-final-halt script
The guestvol-final-halt script (shown in Appendix C.1.6, “The
/sbin/guestvol-final-halt script” on page 257) performs the bottom half
/etc/rc.d/init.d/halt script, unmounting all filesystems.

However, umount must be performed using the -n option. This prevents updating
the read-only basevol /etc/mtab file.

At this point, all filesystems except /guestvol are unmounted.

The /guestvol filesystem cannot be unmounted because the init process does the
following:

� It uses the /dev directory (it is bind-mounted from the /guestvol/dev directory
over the /dev directory).

� It keeps /dev/console and a FIFO (/dev/initctl) open.

To deal with this, guestvol-final-halt simply remounts the /guestvol filesystem in
read-only mode. This effectively frees the /guestvol filesystem.

8.12.3 Example of a basevol/guestvol Linux guest shutdown
Example 8-9 on page 171 shows the console messages generated when
shutting down a basevol/guestvol Linux guest.

170 Large Scale Linux Deployment

Example 8-9 Shutting down a basevol/guestvol Linux guest

bash-2.05# shutdown -h now
Broadcast message from root (console) Wed Aug 7 18:07:50 2002...
The system is going down for system halt NOW !!
INIT: Switching to runlevel: 0
bash-2.05# INIT: Sending processes the TERM signal
Stopping atd: [OK]
Stopping sshd:[OK]
Shutting down sendmail: [OK]
Stopping xinetd: [OK]
Stopping crond: [OK]
Stopping automount:[OK]
Saving random seed: [OK]
Shutting down NFS file locking services:
Shutting down NFS statd: [OK]
Stopping portmapper: [OK]
Shutting down kernel logger: [OK]
Shutting down system logger: [OK]
Shutting down interface eth0: [OK]
Shutting down interface eth1: [OK]
Starting killall: [OK]
Sending all processes the TERM signal...
Sending all processes the KILL signal... md: recovery thread got woken up ...
md: recovery thread finished ...
md: mdrecoveryd(9) flushing signals.

Turning off quotas:
Switching to final halt script for guestvol environment 1
Starting final part of halt procedure for guestvol environment 2
Remounting guestvol readonly on block device /dev/dasdd1 3
Halting system...
About to eval halt -i -d -p 4
md: stopping all md devices.
CONNECT= 00:00:59 VIRTCPU= 000:11.02 TOTCPU= 000:11.35 5
LOGOFF AT 18:10:22 EDT WEDNESDAY 08/07/02

Notes highlighted in Example 8-9 refer to the following points:

1. The /etc/init.d/guestvol-start-halt script issues an exec of the
/sbin/guestvol-final-halt script.

2. The /sbin/guestvol-final-halt script begins execution.

3. The /guestvol is remounted read-only to make it clean for the next boot.

4. The halt command is executed to cause the kernel to halt and power down.

5. The kernel powers down by issuing the CP LOGOFF command that was
configured via its boot time kernel parameter vmpoff=LOGOFF.

 Chapter 8. Shared Linux filesystems 171

8.13 Advantages of a basevol/guestvol Linux guest
While the concept of mounting personalized read-write filesystems over a
read-only root filesystem is not new, we believe running Linux under z/VM using
bind mounts offers some unique advantages.

� The technique relies on z/VM disk resources; no network-mounted drives are
required.

� No symbolic links are required. Path names retain their canonical names;
therefore, applications which might expect canonical names do not complain.

� Linux guests may be easily added to the cluster using standard z/VM user
management directives.

� Because the basevol filesystem is bootable, even if problems exist in the
guestvol definition, it is possible to boot a Linux guest directly from the
basevol filesystem.

172 Large Scale Linux Deployment

Chapter 9. Building a basevol/guestvol
penguin colony

In this chapter, we discuss how to create a basevol/guestvol Linux guest. We
then consider how to use that guest to clone a basevol/guestvol penguin colony.

9

© Copyright IBM Corp. 2002. All rights reserved. 173

9.1 Overview of the process
Using the concepts discussed in Chapter 8, “Shared Linux filesystems” on
page 149, we developed a procedure to create the basevol and guestvol
filesystem images. These images will be used in creating a penguin colony.

The procedure involves the following steps:

1. Creating a virtual machine to be used as a Linux guest.

We refer to this as the development Linux guest and name it LDV01.

2. Installing Linux on the development guest.

3. Customizing the installation on the development guest.

4. Partitioning the installation into two new filesystems: a basevol filesystem and
a guestvol filesystem.

Each of these filesystems will reside on its own DASD device.

5. Creating golden copies of the newly created basevol and guestvol images.

These images will be copied to DASD devices owned by the BASEVOL virtual
machine.

6. Developing an automated process to create Linux clones from the golden
basevol and guestvol images.

9.2 The BASEVOL virtual machine
We used a virtual machine named BASEVOL to own golden copies of the
basevol and guestvol images. Linux clones will mount the golden basevol images
as their read-only root. Each clone will have a dedicated read-write guestvol
created from the golden copy owned by BASEVOL.

Example 9-1 on page 175 shows the BASEVOL PROFILE definition.

Note: The network topology of the of the penguin colony is represented in
Figure 10-1 on page 193.

174 Large Scale Linux Deployment

Example 9-1 The BASEVOL PROFILE definition

USER BASEVOL NOLOG
 MDISK 1200 3390 1 3338 LX6711 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1201 3390 1 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1202 3390 81 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1203 3390 161 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1204 3390 241 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1205 3390 321 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1206 3390 401 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1207 3390 481 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1208 3390 561 80 LX6611 MR ALL XXXXXXXX XXXXXXXX
 MDISK 1209 3390 641 80 LX6611 MR ALL XXXXXXXX XXXXXXXX

The full volume 1200 minidisk will act as the golden copy of the basevol
filesystem image. We used the 80-cylinder minidisks allocated on volume
LX6611 as golden guestvol copies. This allowed us to create several guestvol
flavors for a single basevol.

Linux clones will read-only mount the BASEVOL 1200 minidisk as their read-only
basevol device. Each clone will have its own read-write guestvol device created
from a golden copy of a guestvol minidisk.

9.3 The LDV01 virtual machine
We used a virtual machine named LDV01 to act as the development Linux guest,
We show the LDV01 VM directory entry in Example 9-2.

Example 9-2 The LDV01 PROFILE definition

USER LDV01 LBYONLY 128M 1G G
 INCLUDE IBMDFLT
 IPL CMS
 LOGONBY MBEATTIE
 MACHINE XA
 XAUTOLOG CONFSERV 1
 SPECIAL 0700 QDIO 3 SYSTEM PRIVQDIO 2
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 SPOOL 0777 PRT 3
 LINK BASEVOL 1200 1200 MR 4
 LINK BASEVOL 1201 1201 MR 5
 MDISK 0191 3390 1339 20 LNXU1R
 MDISK 0202 3390 1 3338 LX6710 6

 Chapter 9. Building a basevol/guestvol penguin colony 175

The notes indicated in Example 9-2 on page 175 refer to the following points:

1. The LDV01 user is authorized to XAUTOLOG the CONFSERV virtual
machine.

See 8.11, “Network configuration” on page 164 for details on the CONFSERV
virtual machine.

2. The LDV01 virtual machine is connected to the PRIVQDIO VM Guest LAN.

3. Device 0777 is defined as a printer to indicate this virtual machine will not use
a guestvol bind mount.

See 8.9.2, “Determining if the Linux guest uses a guestvol mount” on
page 160 for details.

4. Create a read-write link to the BASEVOL 1200 minidisk.

This disk serves as a golden copy of the basevol filesystem.

5. Create a read-write link to the BASEVOL 1201 minidisk.

This disk serves as a golden copy of the guestvol filesystem.

6. The 202 minidisk will serve as the root filesystem for the LDV01 Linux guest.

9.4 Install Linux on the development image
After creating the BASEVOL and LDV01 virtual machines, we installed Linux on
the LDV01 virtual machine. We installed a Red Hat 7.1 s390x distribution.
Because the OCO qeth modules are not distributed on the Red Hat installation
CD-ROMs, we could either:

� Install the distribution, and then install the OCO qeth modules available from
the IBM Developerworks Web site

� Use the second initial ramdisk method outlined in on the first CD-ROM of the
Red Hat installation distribution

In our case, we created a second initial ramdisk installation and followed the
procedure outlined in Appendix B, “Installing Red Hat 7.1 with OCO modules” on
page 221.

9.4.1 Choosing the packages to install
You should give some careful consideration as to which software packages will
be initially installed on the LDV01 Linux guest. These packages will constitute the
contents of the basevol filesystem image. Therefore, choose the minimum set of
packages common to all Linux guests intended to operate on this basevol
filesystem.

176 Large Scale Linux Deployment

Packages that differentiate Linux guests may be installed on separate guestvol
filesystem images. Remember, however, that the basevol filesystem image is
intended to be bootable by a Linux guest without any defined guestvol image
mount.

9.5 Create the basevol and guestvol filesystem images
Once installed, we used the LDV01 Linux to create basevol and guestvol
filesystem images.

9.5.1 Prepare the LDV01 Linux guest
We installed packages on the LDV01 Linux guest which become part of the
basevol filesystem image. The packages we installed included:

� basevol+guestvol-1.0.0-1.noarch.rpm

This package provides startup and shutdown scripts needed to support a
basevol/guestvol Linux guest as discussed in Chapter 9, “Building a
basevol/guestvol penguin colony” on page 173. In addition, it adds the
required /basevol and /guestvol mount points.

� itsobasevol-1.0.0-1.s390x.rpm

This package includes the configuration startup scripts for managing a
penguin farm from a centralized LDAP server. We discuss this in 10.4,
“Network configuration and initialization” on page 197.

� pam_ldap-150-1.s390x.rpm

� nss_ldap-198-1.s390x.rpm

We examine these modules in 10.5, “UNIX authentication using LDAP” on
page 201.

� cpint-1.1.1-1.s390x.rpm

This package provides a communication facility to VM through the hcp
command.

Note: In this redbook, we focus on the methods used to create
basevol/guestvol Linux clones, and not on the criteria used to decide which
packages should be installed on the basevol image.

You should give consideration to what software should be installed on a
basevol image, and what should be installed on a guestvol image.

 Chapter 9. Building a basevol/guestvol penguin colony 177

We installed these packages on the LDV01 Linux guest:

rpm -Uvh basevol+guestvol-1.0.0-1.noarch.rpm \
itsobasevol-1.0.0-1.s390x.rpm \
pam_ldap-150-1.s390x.rpm \
nss_ldap-198-1.s390x.rpm \
cpint-1.1.1-1.s390x.rpm

To complete preparation of the development basevol filesystem, we executed:

basevol-devel enable

This enables the basevol/guestvol startup sequence.

9.5.2 Create the golden basevol filesystem image
We then created the golden basevol filesystem image. we logged off the LDV01
Linux guest and DDR-copied the LDV01 203 minidisk to the BASEVOL 1200
minidisk. For details on using the DDR command, see 1.11, “Using DDR to copy
a minidisk” on page 19.

9.5.3 Prepare guestvol filesystem image
Next, we prepared a golden guestvol filesystem.

The LDV01 Linux guest accesses the golden basevol filesystem image on its
1200 minidisk; the golden guestvol filesystem will be created on its 1201 minidisk
(see Example 9-2 on page 175).

Note: You can obtain these packages as part of the additional material
distributed with this redbook. See Appendix D, “Additional material” on
page 279 for details.

Note: The /usr/sbin/basevol-devel script is provided as part of the
basevol+guestvol-10.0-1.noarch.rpm package. A listing can be found in
Appendix C.1.7, “The /usr/sbin/basevol-devel script” on page 261.

Attention: We used the same DASD device type and size for both the
BASEVOL 1200 and LDV01 202 minidisks to ensure DDR will preserve the
underlying ext2 filesystem.

178 Large Scale Linux Deployment

1. We logged on to the LDV01 Linux guest.

2. We attached the 1200 and 1201 minidisks to the Linux guest:

dasd add 1200
dasd add 1201

The 1200 minidisk will now be accessed as /dev/dasdb; the 1201 minidisk is
accessed as /dev/dasdc.

3. We formatted, partitioned, and created an ext2 filesystem on the 1201
minidisk:

dasdfmt -n 1201 -b 4096
fdasd /dev/dasdc
mke2fs -b 4096 -i 2048 /dev/dasdc1

4. We mounted the 1200 minidisk on the /mnt/newbasevol directory:

mount /dev/dasdb1 /mnt/newbasevol

5. We mounted the 1201 minidisk on the /mnt/newguestvol directory:

mount /dev/dasdb1 /mnt/newguestvol

6. We executed the command:

mkguestvol /mnt/newbasevol /mnt/newguestvol

7. We unmounted the basevol and guestvol filesystems:

umount /mnt/newbasevol
umount /mnt/newguestvol

9.5.4 Booting the basevol/guestvol Linux guest
Now we could boot the LDV01 using the newly created basevol and guestvol
filesystem images:

Note: We used the /usr/sbin/dasd command supplied in the
itsobasevol-1.0.0-1.s390x.rpm package to dynamically add DASD devices.
See Appendix C.2.2, “The /usr/sbin/dasd script” on page 268 for details.

Note: The /usr/sbin/mkguestvol command is supplied in the
basevol+guestvol-1.0.0-1.noarch.rpm package. Its purpose is to copy the
writable portion of a basevol filesystem to a guestvol filesystem. For
details, see Appendix C.1.8, “The /usr/sbin/mkguestvol script” on
page 261.

 Chapter 9. Building a basevol/guestvol penguin colony 179

1. We shut down the LDV01 Linux guest:

shutdown -h now

2. We detached the existing 202 minidisk and read-only link to the BASEVOL
1200 minidisk as the new 202 device:

DET 202
LINK BASEVOL 1200 202 RR

3. We detached the existing 777 virtual printer and read-write link to the
BASEVOL 1201 minidisk as the new 777 device:

DET 777
LINK BASEVOL 1201 777 MR

4. We IPLed the basevol/guestvol Linux guest:

IPL 202

9.6 Guestvol package management
As mentioned in 8.8, “RPM package management” on page 156, the default
RPM database exists on the basevol filesystem. This means RPM packages
cannot be directly added to the guestvol filesystem (the RPM database is
read-only, and an attempt to install a package will fail).

As an example of how a package can be installed on a guestvol filesystem
image, we consider the DDS server component of RMF PM for Linux (used in
3.3, “The Distributed Data Server” on page 39).

We created an RPM package from the downloaded tar file. The SPEC used to
create the package can be found in the SPECS directory of addition material
available with this redbook (see Appendix D, “Additional material” on page 279).

Note: The LDV01 Linux guest should be defined in the GUEST CONF
configuration file of the CONSERV virtual machine as described in 8.11.1,
“The z/VM configuration server” on page 164, to ensure that the startup
network configuration is correct.

Tip: For information on how to build RPM packages, consult Maximum RPM -
Taking the Red Hat Package Manager to the Limit at:

http://www.rpm.org/max-rpm/

180 Large Scale Linux Deployment

http://www.rpm.org/max-rpm/

To install the package, we followed these steps:

1. We created a directory in a guestvol bind mounted directory to store the RPM
database files. We selected the /var/lib/guestrpm directory:

mkdir /var/lib/guestrpm

2. We initialized empty RPM database files in that directory:

rpm --initdb /var/lib/guestrpm

3. We installed the package on the guestvol filesystem image:

rpm -ivh --dbpath= rmfpms-2.3.33-1.s390x.rpm

9.7 Cloning a basevol/guestvol Linux guest
We now considered cloning basevol/guestvol Linux guests, which involves these
basic steps:

1. Define a clone virtual machine prototype.
2. Create a Linux clone using the clone prototype.
3. Copy the golden guestvol image to the clone’s 777 minidisk.
4. Add the clone to the CONSERV configuration file.
5. XAUTOLOG the new clone.

9.7.1 The LNXCLONE prototype
We used DirMaint prototypes to create Linux clone virtual machines. As
discussed in 2.7.4, “Adding a userid using a prototype file” on page 31, we first
created the prototype shown in Example 9-3.

Example 9-3 The LNXCLONE PROTODIR definition

USER LNXCLONE LBYONLY 64M 512M G 1
 IPL 202 2
 MACHINE XA
 XAUTOLOG CONFSERV 3
 LOGONBY MBEATTIE 4

Attention: When creating the package, you may need to add additional
Provides lines in the SPEC file definition to resolve package dependencies.

For instance, the package may have a dependency on the Bash shell.
Although the shell exists in the basevol filesystem, RPM has no way to know it
(it will not access the /var/lib/rpm database files).

As a workaround, we added this line:

Provides: /bin/sh

 Chapter 9. Building a basevol/guestvol penguin colony 181

 CONSOLE 0009 3215 T CONFSERV 5
 SPECIAL 0700 QDIO 3 SYSTEM PRIVQDIO 6
 SPECIAL 0704 QDIO 3 SYSTEM PUBLQDIO
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 LINK MAINT 0190 0190 RR
 LINK MAINT 019D 019D RR
 LINK MAINT 019E 019E RR
 LINK MAINT 0401 0401 RR
 LINK MAINT 0405 0405 RR
 LINK BASEVOL 0202 0202 RR 7
 MDISK 0777 XXXX AUTOG 80 ANY 8

The notes highlighted in Example 9-3 refer to the following points:

1. The password field is set to the special value LBYONLY to specify that
LOGON to the virtual requires the BY option (see 1.2, “Logging on to z/VM”
on page 4).

2. Clones operate as Linux guests IPLed from their 202 virtual device (a
read-only basevol filesystem image).

3. Clones are permitted to XAUTOLOG the CONFSERV user - the first stage
network configuration server discussed in 8.11.1, “The z/VM configuration
server” on page 164.

4. The users permitted to LOGON to a clone virtual machine.

5. The CONFSERV virtual machine is assigned as a secondary user for the
basevol/guestvol Linux guest as discussed in 8.11.3, “Security
considerations” on page 166.

6. The SPECIAL lines create two simulated NICs and connect those NICs to
their respective VM Guest LAN.

7. The read-only basevol filesystem image is linked as the 202 minidisk.

8. A read-write 777 minidisk is allocated when the clone virtual machine is
created. This minidisk will be the read-write guestvol filesystem image.

Note: Although the clone virtual machine normally is started using
XAUTOLOG, this allows for logon with providing a visible password.

Note: Logging on to a clone virtual machine using LOGON BY is provided
as a debugging feature.

182 Large Scale Linux Deployment

To enable the LNXCLONE prototype, we first added the prototype definition to
DirMaint:

DIRMAINT FILE LNXCLONE PROTODIR A

9.7.2 Create the Linux clone virtual machine
To create a new clone virtual machine, we used:

DIRMAINT ADD LCL101 LIKE LNXCLONE PW LBYONLY

This creates the LCL101 virtual machine based on the LNXCLONE prototype.

9.7.3 Create the Linux clone guestvol
Once the clone virtual machine was created, we created the clone-specific
guestvol filesystem image from a golden copy. As discussed in 9.3, “The LDV01
virtual machine” on page 175, we used the BASEVOL 1201 minidisk as the
golden copy of the guestvol filesystem image. This image is copied to the 777
minidisk of each clone virtual machine.

To create the guestvol image for clone LCL101 from the BASEVOL 1201 golden
copy, we used the command:

GVCOPY BASEVOL 1201 LCL101 777

9.7.4 Define the Linux clone in the GUEST CONF configuration file
Before starting the new Linux, we added a line to the GUEST CONF
configuration file of the CONFSERV virtual machine as outlined in 8.11.1, “The
z/VM configuration server” on page 164.

9.7.5 XAUTOLOG the Linux clone
To start the new clone, we used XAUTOLOG the clone virtual machine:

XAUTOLOG LCL101

9.8 Remote startup and shutdown of Linux clones
In this section, we consider a mechanism to remotely start and stop the Linux
clones in the penguin colony.

Note: The GVCOPY EXEC is listed in C.3, “The GVCOPY EXEC” on
page 268.

 Chapter 9. Building a basevol/guestvol penguin colony 183

9.8.1 The ext_int kernel module
To intercept external interrupts, we used a kernel module called ext_int. The
source is shown in Example 9-4.

Example 9-4 The ext_int kernel module

/*
 * Kernel module to hook S/390 and zSeries external interrupts
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Copyright (C) 2001 IBM UK Ltd, IBM Corporation
 * Author: Malcolm Beattie <beattiem@uk.ibm.com>
 */

#include <linux/module.h>
#include <linux/sched.h>
#include <asm/s390_ext.h>

static unsigned short code = 0;
static int pid = 0;
static int sig = 0;

MODULE_PARM(code, "h");
MODULE_PARM_DESC(code, "external interrupt code number to hook");
MODULE_PARM(pid, "i");
MODULE_PARM_DESC(pid, "pid to be signalled when external interrupt arrives");
MODULE_PARM(sig, "i");
MODULE_PARM_DESC(sig, "signal to send when external interrupt arrives");

MODULE_AUTHOR("Malcolm Beattie <beattiem@uk.ibm.com>");
MODULE_DESCRIPTION("Hook S/390 external interrupts to signal a process");

static void send_signal(struct pt_regs *regs, __u16 ourcode)
{

printk(KERN_DEBUG "ext_int: EXT %hX--sending sig %d to pid %d\n",
code, sig, pid);

kill_proc(pid, sig, 1);
}

int init_module(void)
{

int err;

if (code == 0 || pid == 0 || sig == 0) {

184 Large Scale Linux Deployment

printk(KERN_ERR "ext_int: code, pid & sig must be non-zero\n");
return -EINVAL;

}
err = register_external_interrupt(code, send_signal);
if (err)

return err;
printk(KERN_INFO "ext_int: code=0x%hx, pid=%d, sig=%d\n",

code, pid, sig);
return 0;

}

void cleanup_module(void)
{

unregister_external_interrupt(code, send_signal);
}

Using the ext_int module, you can send a signal to a specified process upon
receiving an external interrupt of a specific type.

When loaded, the ext_int module requires three parameters:

code The hexadecimal external interrupt number to listen for
pid The process to notify upon receiving the external interrupt code
sig The UNIX signal to send to pid

For instance, to send UNIX signal 10 to process with pid number 1234 upon
receiving external interrupt 0x1243, use:

insmod -o ext1234 ext_int code=0x1234 pid=789 sig=10

To unload the module, use:

rmmod ext1234

9.8.2 Handling a shutdown external interrupt
The ext_int module in conjunction with an external interrupt can be used to
remotely trigger shutdown of a Linux guest.

Note: External interrupt codes are 16-bit numbers in the hexadecimal range
0000 through FFFF.

Note: The -o ext1234 option causes the ext_int module to be loaded under
name ext1234. This allows you to register multiple instances of the ext_int
module - each handling a different external interrupt.

 Chapter 9. Building a basevol/guestvol penguin colony 185

In the /etc/inittab file, we added the line:

ca::ctrlaldel:/sbin/shutdown -h now

This line defines the action the init process is to take upon receiving UNIX
signal SIGINT (signal number 2). We registered the ext_int kernel module to
send the init process a SIGINT upon receipt of a 0x0d1e external interrupt
using:

insmod -o ext0d1e ext_int code=0x0d1e pid=1 sig=2

Note: There does not appear to be a documented range of available external
interrupt numbers. However, it seems that interrupt codes 0x8000 and higher are
ignored by some Linux kernel and/or z/VM versions.

9.8.3 The management interface
To remotely start or stop a Linux guest, we used the PROP facility as outlined in
8.11, “Network configuration” on page 164, together with a Web frontend. We
show the management interface HTML in Example 9-5.

Example 9-5 The management interface HTML

<html>
 <head>
 <title>VMLINUX Management Interface</title>
 </head>
 <body>
 <h1 align="center">VMLINUX Management Interface</h1>
 <h2>Act on one guest</h2>
 <form action="/cgi-bin/guestact">
 Guest: <input name="guest">
 <input type="submit" name="start" value="Start">
 <input type="submit" name="shutdown" value="Shutdown">
 </form>
 </body>
</html>

The interface supports startup and shutdown of a Linux guest specified by name.

In Example 9-6 on page 187, we show the guestact CGI script which processes
management requests.

Attention: We chose to use code 0x0d1e. However, some codes are actively
used by the S/390 and zSeries architecture. Our choice seemed appropriate,
but this choice may be reserved for future use.

186 Large Scale Linux Deployment

Example 9-6 The guestact CGI script

#!/usr/bin/perl
use strict;

sub hcp {
 system("/usr/sbin/hcp @_ > /dev/null 2>&1");
}

sub start_guest {
 my $guest = shift;
 hcp("smsg confserv xautolog $guest");
 print "IPL has been initiated for guest $guest\n";
}

sub shutdown_guest {
 my $guest = shift;
 hcp("smsg confserv shutdown $guest");
 print "Shutdown has been initiated for guest $guest\n";
}

my $query = $ENV{QUERY_STRING};
my %q = split(/[&;=]/, $query);

print "Content-Type: text/html\n\n";

if ($q{start}) {
 start_guest($q{guest});
} elsif ($q{shutdown}) {
 shutdown_guest($q{guest});
} else {
 print "<h2>Unknown action</h2>\n";
}

The guestact script utilizes the SMSG command to forward a request to the
CONFSERV virtual machine for processing.

9.8.4 PROP actions to manage Linux clones
To enable PROP to handle startup and shutdown requests generated by the
guestact script, we first needed to add an appropriate handler to the PROP
RTABLE configuration file. In Example 9-7, we show the relevant lines.

Example 9-7 The PROP configuration lines for remote startup and shutdown

/XAUTOLOG / 1 9 4 LNX5 GUESTACT XAUTOLOG
/SHUTDOWN / 1 9 4 LNX5 GUESTACT EXT0D1E

 Chapter 9. Building a basevol/guestvol penguin colony 187

As shown in the example, PROP will execute the GUESTACT REXX script upon
receiving an XAUTOLOG or SHUTDOWN request from the LNX5 virtual machine
(the Linux guest running the Web server).

9.8.5 The GUESTACT EXEC script
The GUESTACT EXEC script (shown in Appendix C.4, “The GUESTACT EXEC
script” on page 269) issues the CP commands required to perform remote
startup and shutdown of Linux guests.

In the case of a startup request, the script executes the XAUTOLOG command
on the intended virtual machine. For shutdown, the EXTERNAL CP command
will sent to the intended Linux guest’s console, passing the external interrupt
code to generate (0D1E in our case). This will generate the external interrupt to
be handed by the ext_int module.

9.8.6 Security considerations
The same considerations as discussed in 8.11.3, “Security considerations” on
page 166 apply to the use of PROP here, as well. We note some additional
security checks implemented in the management interface:

� The XAUTOLOG and SHUTDOWN actions specified in the PROP RTABLE
configuration file are restricted to requests originating from the LNX5 virtual
machine (the Web server machine).

� The GUESACT EXEC script performs a check to ensure the target machine is
listed in the GUEST CONF file (to ensure only Linux clones can be remotely
managed).

Web server security
In order to execute the hcp command, the cpint package must be installed on the
Web server machine (in this case, LNX5). Because hcp (a user-mode command)
requires transition to supervisor mode in order to execute the DIAGNOSE 08
API, cpint provides a kernel module to act on its behalf.

The character device /dev/cpint8 owner and permissions control which users and
groups may use the hcp command. By default, this device is owned by root with
0600 permissions. This implies only root may execute hcp.

Note: The entire contents of the PROP RTABLE configuration file can be
found in Appendix C.6, “The PROP RTABLE configuration file” on page 272.

188 Large Scale Linux Deployment

In developing this redbook as a proof of concept, we simply granted write
authority to the Web server userid (apache) which is an inherently insecure
choice. A more acceptable option would be to implement a privileged wrapper
command around hcp for use by the Web server.

Important: You should consider the security implications and evaluate how
these conform to your location’s security policy before implementing this type
of management interface.

 Chapter 9. Building a basevol/guestvol penguin colony 189

190 Large Scale Linux Deployment

Chapter 10. Centralized management
using LDAP

In this chapter, we discuss options for centralized management of the penguin
colony introduced in Chapter 9, “Building a basevol/guestvol penguin colony” on
page 173.

10

© Copyright IBM Corp. 2002. All rights reserved. 191

10.1 Using LDAP for centralized management
Centralized management and system administration becomes a crucial
consideration in the operation of a penguin colony. Ideally, we would like to store
as much server-specific information as possible in a central repository, and have
services and applications access that repository. The Lightweight Directory
Access Protocol (LDAP) is designed to address this issue.

See the IBM Redbook Understanding LDAP, SG24-4986 for details on LDAP. A
good source for on-line information on LDAP can be found at the LDAPzone Web
site:

http://www.ldapzone.com/

In this section, we consider using LDAP for:

� Network configuration and initialization
� UNIX user and group authentication
� An LDAP backend for Domain Name System (DNS)

10.1.1 The OpenLDAP directory server
We use the OpenLDAP directory server, which is an open source LDAP
implementation available with many Linux distribution. The OpenLDAP home
page is found at:

http://www.openldap.org/

10.1.2 The penguin colony network topology
Figure 10-1 on page 193 illustrates the network topology of our penguin colony.

192 Large Scale Linux Deployment

http://www.ldapzone.com/
http://www.openldap.org/

Figure 10-1 The network topology of the penguin colony

Details about key points in the figure are described here.

� The LNX1 virtual machine

This Linux guest serves as the default gateway to the external network. All
network traffic to and from the penguin farm is routed through this guest and
forwarded to the appropriate destination using an OSA interface shared with
z/VM.

The LNX1 guest runs services such as:

– ipchains for IP forwarding
– slapd for LDAP services

z/VM
OSAOSA

LNX1

LNX32

LNX2LNX2LNX2

LCL140

LNX2LNX2LCL101

Guest LAN PUBLHIPE
Network 10.0.5.0
DNS public2.itso.ibm.com

Guest LAN PUBLQDIO
Network 10.0.4.0
DNS public1.itso.ibm.com

Guest LAN PRIVQDIO
Network 10.0.3.0
DNS vmlinux.itso.ibm.com

LDV01

Cloned
Images

Test
Images

10.0.3.1 10.0.4.1 10.0.5.1

Development
Image

 Chapter 10. Centralized management using LDAP 193

– bind for DNS services

� The test images LNX2 through LNX32

These guests can either run as stand-alone Linux guests or as
basevol/guestvol Linux guests. We can use these virtual machines to test the
basevol and guestvol images created using the procedure outlined in
Chapter 9, “Building a basevol/guestvol penguin colony” on page 173.

� The cloned images LCL101 through LCL140

These virtual machines are basevol/guestvol Linux guests created from the
LNXCLONE prototype outlined in 9.7.1, “The LNXCLONE prototype” on
page 181.

� The PRIVQDIO VM Guest LAN

This QDIO-type Guest LAN is the management network over which Linux
clones acquire their initial network connectivity as outlined in 8.10, “Startup
configuration” on page 162.

� The PUBLQDIO VM Guest LAN

This QDIO-type Guest LAN is a public network over which most network
traffic in the penguin colony travels. Once a basevol/guestvol Linux guest
acquires connectivity to the PRIVQDIO network, it will LDAP to configure its
interface to this network, as described in 10.4, “Network configuration and
initialization” on page 197.

� The PUBLHIPE VM Guest LAN

This HiperSocket-type Guest LAN is a public network available to test Linux
guests.

10.2 Configuring the LDAP server
As illustrated in Example 10-1, we first configure the LDAP server which runs on
the LNX1 guest (shown in Figure 10-1 on page 193).

Example 10-1 The OpenLDAP slapd.conf configuration file

include /etc/openldap/schema/core.schema 1
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/nis.schema 2
include /etc/openldap/schema/dnszone.schema 3
include /etc/openldap/schema/redbook.schema 4

pidfile /var/run/slapd.pid
argsfile /var/run/slapd.args

194 Large Scale Linux Deployment

database ldbm
directory /var/lib/ldap
suffix "o=IBM-ITSO,c=US" 5
rootdn "cn=Manager,o=IBM-ITSO,c=US" 6
rootpw secret

The notes highlighted in Example 10-1 refer to the following points:

1. We include the default LDAP schemas:

– core schema

The core LDAP schema based on RFC2251 through RFC2256.

– cosine.schema

An X.500 directory schema based on RFC1274.

– inetorgperson.schema

A schema to represent a person object class suitable for Internet directory
services based on RFC2798.

2. The nis schema maps Network Information Service entities to LDAP based on
RFC2307. We use this schema in 10.5, “UNIX authentication using LDAP” on
page 201.

3. The dnszone schema maps DNS resource records to LDAP. We discuss DNS
and LDAP in 10.6, “Using LDAP with Domain Name System” on page 207.

4. The redbook schema file maps the penguin colony network topology to LDAP.
In 10.4, “Network configuration and initialization” on page 197, we discuss
using LDAP to manage network configuration.

5. The distinguished name (DN) suffix is defined to be o=IBM-ITSO,c=US.

6. The root distinguished name is defined as cn=Manager,O=IBM-ITSO,C=US.

10.3 LDAP tools
In the following section, we introduce LDAP tools that can assist you in
maintaining an LDAP directory.

Note: A complete list and detailed description of all parameters can be found
in the LDAP Implementation HOWTO available at:

http://tldp.org/HOWTO/LDAP-HOWTO/

 Chapter 10. Centralized management using LDAP 195

http://tldp.org/HOWTO/LDAP-HOWTO/

10.3.1 An LDAP browser
To visually examine and edit the contents of an LDAP directory, use an LDAP
browser. A useful Java-based browser, available for both Windows and
UNIX/Linux platforms, is the LDAP Browser/Editor at:

http://www.iit.edu/~gawojar/ldap/

10.3.2 LDAP Data Interchange Format
You can define LDAP directory entities in an ASCII file format referred to as
LDAP Data Interchange Format (LDIF). These entities can then be added to the
LDAP directory using the ldapadd command supplied with OpenLDAP.

As an example, to add entities defined in the LDIF file entities.ldif using the DN
cn=Manager,O=IBM-ITSO,C=US, issue:

ldapadd -D “cn=Manager,O=IBM-ITSO,C=US” -W -x -f entities.ldif

where:

-D Specifies the DN at which to bind the data
-W The prompt for a password - use the rootpw defined in the slapd.conf

file
-x Use simple authentication
-f Specifies the file containing LDIF definitions

For complete details on the ldapadd command, consult the man page.

10.3.3 LDAP migration tools
Padl Software provides tools to assist you in migrating existing nameservices to
LDAP. You can obtain the migration package from:

http://www.padl.com/OSS/MigrationTools.html

Use these tools to create the base structure o=IBM-ITSO,c=US, as follows:

1. Download and extract the migration tools package:

tar -zxf MigrationTools.tgz

2. Customize the MigrationTools/migrate_common.ph file for our schema, as
shown in Example 10-2 on page 197.

Note: When prompted, use the rootpw password specified in the
slapd.conf file/.

196 Large Scale Linux Deployment

http://www.padl.com/OSS/MigrationTools.html
http://www.iit.edu/~gawojar/ldap/

Example 10-2 The customized MigrationTools/migrate_common.ph file

...
Default DNS domain
$DEFAULT_MAIL_DOMAIN = "itso.ibm.com";

Default base
$DEFAULT_BASE = "o=IBM-ITSO,c=US";
...
$DEFAULT_MAIL_HOST = "itso.ibm.com";

turn this on to support more general object clases
such as person.
$EXTENDED_SCHEMA = 1;
...

3. Generate an LDIF file:

./migrate_base > base.ldif

4. Import the LDIF file to the LDAP server:

ldapadd -D "cn=Manager,o=IBM-ITSO,c=US" -W -x -f base.ldif

10.4 Network configuration and initialization
In 8.11, “Network configuration” on page 164, we examine a procedure used by
basevol/guestvol Linux guests to acquire an initial network configuration. The
initial network corresponds to the VMGuestManagementNetwork class described
in 10.4.1 “The redbook LDAP schema”.

Pictorially, this corresponds to the PRIVQDIO VM Guest LAN depicted in
Figure 10-1 on page 193.

10.4.1 The redbook LDAP schema
To represent the network topology we store in LDAP, we create a custom LDAP
schema using the redbook.schema file. A complete listing of schema can be
found in Appendix C.7, “The redbook.schema file” on page 273.

 Chapter 10. Centralized management using LDAP 197

10.4.2 Redbook LDAP object classes
Object classes defined in the redbook schema include:

VMGuest A Linux guest virtual machine

VMGuestManagmentNetwork The network over which a VMGuest
configures itself

VMGuestPublicNetwork A public network available to a VMGuest

10.4.3 Redbook LDAP attributes
Attributes defined in the redbook schema include:

VMNodeName The z/VM machine to which a VMGuest
belongs.

VMGuestName The name of the VMGuest.

VMGuestRole The role the VMGuest is to assume. We define a
single role: DEFAULT.

VMGuestNetwork The name of a VMGuestPublicNetwork to which
a VMGuest is connected.

VMGuestMgmtNetwork The name of a VMGuestManagementNetwork to
which a VMGuest is connected.

VMGuestGatewayIP The gateway IP address of a
VMGuestPublicNetwork or
VMGuestManagementNetwork.

VMGuestNet The network address of a
VMGuestPublicNetwork or
VMGuestManagementNetwork.

VMGuestNetMask The network mask of a VMGuestPublicNetwork
or VMGuestManagementNetwork.

VMGuestLDAPIP The IP address of the LDAP server for a
VMGuestManagementNetwork.

VMGuestNetType The network type of a VMGuestPublicNetwork
or VMGuestManagementNetwork. We use “eth”
for a QDIO VM Guest LAN, and “hsi” for
HiperSocket VM Guest LAN.

VMGuestCHANDEV The virtual device addresses (in the style of an
/etc/chandev.conf file) for a
VMGuestPublicNetwork or
VMGuestManagementNetwork.

198 Large Scale Linux Deployment

In Figure 10-2, we illustrate the redbook schema.

Figure 10-2 The redbook schema

10.4.4 The itsoldap script
After completion of the initialization of a basevol/guestvol Linux guest outlined in
8.10, “Startup configuration” on page 162, the Linux guest has the network
interface to the PRIVQDIO network configured but not yet started. At this point,
startup initialization will execute the /etc/init.d/itsoldap script (shown in
Appendix C.2.1, “The /etc/init.d/itsoldap script” on page 263) to complete
network configuration.

The main function of the itsoldap script is to:

1. Save backup copies of the Red Hat network configuration scripts and the
/etc/chandev.conf file.

2. Start the network interface to the PRIVQDIO network.

3. Connect to the LDAP server running on the LNX1 machine (over the
PRIVQDIO network) and acquire the network configuration parameters for
this specific Linux guest. These parameters are expressed using the redbook
schema shown in 10.4.1, “The redbook LDAP schema” on page 197.

VMGuest

VMNodeName
VMGuestName
VMGuestMgmtNetwork
VMGuestRole
VMGuestNetwork VMGuestPublicNetwork

VMGuestNetwork
VMGuestNet
VMGuestGatewayIP
VMGuestNetMask
VMGuestNetType
VMGuestCHANDEV

VMGuestMgmtNetwork
VMGuestNet
VMGuestGatewayIP
VMGuestNetMask
VMGuestLDAPIP
VMGuestNetType

VMGuestManagementNetwork

 Chapter 10. Centralized management using LDAP 199

4. For each VMGuestPublicNetwork, based on the LDAP attributes for the
network:

a. Create a Red Hat network configuration file (a
/etc/sysconfig/network-scripts/ifcfg-* file for the interface).

b. Add an entry to the /etc/chandev.conf file.

5. Create a clone-specific ldap.conf configuration for LDAP clients as discussed
in 10.4.5, “Configuring LDAP clients” on page 200.

6. Shut down the network interface to the PRIVQDIO network.

After completion of /etc/init.d/itsoldap, init runs the /etc/init.d/network script to
complete network initialization.

10.4.5 Configuring LDAP clients
System-wide default values for LDAP clients are set in the
/etc/openldap/ldap.conf file. We specify the LDAP server IP address and the
LDAP directory base DN.

As an additional security measure, we would like to restrict access to any server
based on a user’s membership in the group
cn=machine-name,ou=HostAccess,o=IBM-ITSO,c=US.

For example, in Example 10-3, we specify this line to specify only users defined
to the PAM_GROUPDN group may login:

PAM_GROUPDN cn=lnx16.vmlinux.itso.ibm.com,ou=HostAccess,o=IBM-ITSO,c=US

Example 10-3 The ldap.conf file for Linux guest lnx16

ldap_version 3

HOST 10.0.3.1
PORT 389

BASE o=IBM-ITSO,c=US

PAM_GROUPDN cn=lnx16.vmlinux.itso.ibm.com,ou=HostAccess,o=IBM-ITSO,c=US
PAM_CHECK_HOST_ATTR no

PAM_PASSWORD exop

#SSL START_TLS
#TLS_CHECKPEER yes
TLS_CACERTFILE /etc/openldap/ca.cert

200 Large Scale Linux Deployment

To create a ldap.conf file specific to each Linux clone, we use the template
illustrated in Example 10-4.

Example 10-4 The ldap.template.conf file used to generate ldap.conf

ldap_version 3

HOST @LDAPHOST@
PORT 389

BASE @LDAPBASEDN@

PAM_GROUPDN @LDAPPAMGROUPDN@
PAM_CHECK_HOST_ATTR no

PAM_PASSWORD exop

#SSL START_TLS
#TLS_CHECKPEER yes
TLS_CACERTFILE /etc/openldap/ca.cert

10.5 UNIX authentication using LDAP
Using Name Service Switch (NSS) and Pluggable Authentication Modules
(PAM), we can configure the penguin colony to authenticate UNIX users and
groups from a central LDAP directory.

A large list of information sources on UNIX authentication and LDAP can be
found at the PADL software documentation Web site:

http://www.padl.com/Contents/Documentation.html

For information on PAM authentication, see the The Linux-PAM System
Administrators’ Guide by Andrew G. Morgan available at:

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html

10.5.1 The nss-ldap and pam-ldap modules
To enable LDAP authentication, we use the nss-ldap and pam-ldap modules. The
latest versions are available under the GNU Lesser General Public License from
the PADL Software Web site:

http://www.padl.com/Contents/OpenSourceSoftware.html

 Chapter 10. Centralized management using LDAP 201

http://www.padl.com/Contents/Documentation.html
http://www.padl.com/Contents/OpenSourceSoftware.html
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html

10.5.2 Configuring PAM for LDAP authentication and authorization
To configure PAM to use LDAP for authentication and authorization, we modify
the appropriate PAM configuration file fund in the /etc/pam.d directory.

For a Red Hat Linux system, we modify the /etc/pam.d/system-auth file as shown
in Example 10-5.

Example 10-5 LDAP modifications to /etc/pam.d/system-auth for Red Hat

#%PAM-1.0
auth required /lib/security/pam_nologin.so
auth sufficient /lib/security/pam_pwdb.so shadow nodelay md5
auth required /lib/security/pam_ldap.so use_first_pass

account sufficient /lib/security/pam_localuser.so
account required /lib/security/pam_ldap.so

password required /lib/security/pam_cracklib.so
password sufficient /lib/security/pam_ldap.so
password required /lib/security/pam_pwdb.so shadow use_authtok md5

session required /lib/security/pam_limits.so
session required /lib/security/pam_mkhomedir.so skel=/etc/skel/ umask=0022
session required /lib/security/pam_pwdb.so

Although we use a Red Hat distribution as the basis of our penguin colony, a
SuSE Linux system would require modification to the /etc/pam.d/login file, as
shown in Example 10-6 on page 203.

Note: Red Hat uses the PAM module pam_stack.so in many of the
service-specific PAM configuration files (such as login, passwd, and sshd).

The pam_stack.so module refers back to the system-auth configuration file, so
changes made here immediately affect those services as well.

Note: Sequence is important in the PAM configuration file. The following
account lines specify the pam_localuser.so module first, in order to ensure
that a local user can logon in the event the LDAP server is unreachable:

account sufficient /lib/security/pam_localuser.so
account required /lib/security/pam_ldap.so

We use pam_localuser.so as opposed to pam_unix.so to avoid using NSS.
This is discussed in 10.5.1, “The nss-ldap and pam-ldap modules” on
page 201.

202 Large Scale Linux Deployment

Example 10-6 LDAP modifications to /etc/pam.d/login for SuSE

#%PAM-1.0
auth required pam_nologin.so
auth sufficient pam_unix_auth.so
auth required pam_ldap.so try_first_pass

account sufficient pam_localuser.so
account required pam_ldap.so

password required pam_pwcheck.so nullok
password required pam_ldap.so use_first_pass use_authok
password required pam_unix.so nullok use_first_pass use_authtok

session required pam_unix_session.so
session required pam_limits.so
session required pam_env.so
session optional pam_mail.so

10.5.3 Configuring NSS for LDAP user and group mapping
To configure NSS to use LDAP for UNIX user and group mapping, we modify the
/etc/nsswitch.conf file as shown in

Example 10-7 Changes to the /etc/nsswitch file for LDAP user and group mapping

...
passwd: files ldap
group: files ldap
...

This specifies user and group information should be read from both local files
(/etc/passwd and /etc/group), and from LDAP.

Important: Editing PAM configuration files can be extremely problematic! If
done incorrectly, the result may be that you cannot logon to your system. For
this reason, we recommend the following measures:

� Always keep an extra root terminal session active. Save a backup copy of
any files you edit.

� Verify the changes in a new session (login as root and as an
LDAP-managed user).

� Restore the backup configuration files from the root terminal session if you
experience problems.

 Chapter 10. Centralized management using LDAP 203

10.5.4 Migrating users and groups to LDAP
Using the LDAP migration tools introduced in 10.3.3, “LDAP migration tools” on
page 196, you can import existing /etc/passwd and /etc/group files into the LDAP
directory:

1. Create an LDIF representation of /etc/passwd:

migrate_passwd.pl /etc/passwd > users.ldif

2. Create an LDIF representation of /etc/passwd:

migrate_group.pl /etc/group > groups.ldif

3. Add the LDIF for users to the LDAP directory:

ldapadd -D "cn=Manager,o=IBM-ITSO,c=US" -W -x -f users.ldif

4. Add the LDIF for groups to the LDAP directory:

ldapadd -D "cn=Manager,o=IBM-ITSO,c=US" -W -x -f groups.ldif

10.5.5 Adding users and groups to LDAP
You can add users and groups to the LDAP directory by importing the definitions
using the LDIF definition. In Example 10-8, we show the LDIF definition for
POSIX user “mwei”.

Example 10-8 The LDIF definition for the “mwei” user

dn: uid=mwei,ou=People,o=IBM-ITSO,c=US
uid: mwei
objectClass: account
objectClass: posixAccount
objectClass: top
objectClass: shadowAccount
shadowMax: 10000
gecos: Michael Weisbach
cn: Michael Weisbach
homeDirectory: /home/mwei
gidNumber: 10000
uidNumber: 10000
loginShell: /bin/bash
shadowLastChange: 11901
userPassword: {CRYPT}e1NTSEF9VWdyV

In Example 10-9 on page 205, we show the LDIF definition for group “mwei”.

Attention: The users.ldif and groups.ldif files contain readable user and group
information. Although passwords are encrypted, treat these as you would
password, shadow password, and group files.

204 Large Scale Linux Deployment

Example 10-9 The LDIF definition for the “mwei” group

dn: cn=mwei, ou=Group, o=IBM-ITSO,c=US
objectClass: posixGroup
objectClass: groupOfUniqueNames
objectClass: top
uniqueMember: uid=mwei,ou=People,o=IBM-ITSO,c=US
cn: mwei
gidNumber: 10000

10.5.6 Changing passwords stored in LDAP
To permit users to change their own passwords in LDAP, the appropriate Access
Control Lists (ACLs) must be added to the LDAP slapd.conf configuration file. In
Example 10-10, we show the pertinent lines to append to slapd.conf.

Example 10-10 The ACLs to add to slapd.conf for user password modification

access to attr=userpassword
 by self write
 by anonymous auth

access to *
 by self write
 by * read

Once the password ACLs are enabled, LDAP passwords may be changed by
using either the passwd command or the ldapmodify command.

Using the pam_ldap.so module
From the command line, LDAP passwords may be changed using passwd. This is
enabled in the /etc/pam.d/system-auth file by the lines:

password required /lib/security/pam_cracklib.so
password sufficient /lib/security/pam_ldap.so
password required /lib/security/pam_pwdb.so shadow use_authtok md5

Example 10-11 on page 206 illustrates the effect of the pam_ldap.so module on
the passwd command.

Note: The rootdn user (specified as cn=Manager,o=IBM-ITSO,c=US in the
slapd.conf file in Example 10-1 on page 194) has full write access to all data in
the LDAP directory.

 Chapter 10. Centralized management using LDAP 205

Example 10-11 Changing password using the pam_ldap.so module

bash-2.05$ passwd
Enter login(LDAP) password:
New password:
Password too short
New password:
Re-enter new password:
LDAP password information changed for mwei
passwd: all authentication tokens updated successfully
bash-2.05$

Using the ldapmodify command
LDAP passwords may be changed directly using the ldapmodify command:

1. Create an LDIF with the password modification. We show a sample in
Example 10-12.

2. Issue the command:

ldapmodify -D 'cn=Manager,o=IBM-ITSO,c=US' -x -W -f passwd.ldif

Example 10-12 LDIF definition to change password for user “mwei”

dn: uid=mwei,ou=People,o=IBM-ITSO,c=US
changetype: modify
replace: userpassword
userpassword: {crypt}68i4YwmwUMGhs

To automate generation of the LDIF file with an encrypted password, use the Perl
script shown in Example 10-13.

Example 10-13 Perl script to generate LDIF for password update

#!/usr/bin/perl
$basedn="ou=People,o=IBM-ITSO,c=US";
print "username: ";
$username= <STDIN>;chop ($username);
print "password: ";system ("stty -echo");

Note: Password checking (as seen in the line Password too short) is enabled
by the pam_cracklib.so module.

Note: Users may modify their own passwords by simply specifying
themselves as the DN user. For example, under user “mwei”, issue:

ldapmodify -D 'cn=mwei,o=IBM-ITSO,c=US' -x -W -f passwd.ldif

Supply the old password when prompted.

206 Large Scale Linux Deployment

$cleartext= <STDIN>;system ("stty echo");chop ($cleartext);

/* generate “good” password hashes using random salt */
srand (time());
$salt=substr(rand 100,0,2);
$crypttext=crypt($cleartext,$salt);
print "\n\n";

print "dn: uid=$username,$basedn\n";
print "changetype: modify\n";
print "replace: userpassword\n";
print "userpassword: {crypt}$crypttext\n\n";

10.6 Using LDAP with Domain Name System
Using the open source Internet Software Consortium (ISC) bind implement of
DNS, you can enable an LDAP backend for storing DNS resource records.

10.6.1 The SDB LDAP backend for the ISC bind server
The standard ISC bind packages include LDAP support. We need to build the
bind server with LDAP support:

1. Obtain the ISC bind server source code.

The ISC bind server is available from the ISC products Web page:

http://www.isc.org/products/BIND/

Choose the current release (version 9.2.1, as of this writing) and download
the source package: bind-9.2.1.tar.gz

2. Obtain the SDB LDAP backend source code.

The SDB LDAP backend is available from:

http://www.venaas.no/ldap/bind-sdb/

The latest release as of this writing is 0.9. Download the
bind-sdb-ldap-0.9.tar.gz package. In addition, download the DNSzone
schema: dnszone-schema.txt

Note: Once downloaded in text mode, rename the dnszone-schema.txt to
dnszone.txt in the /etc/openldap/schema directory.

 Chapter 10. Centralized management using LDAP 207

http://www.isc.org/products/BIND/
http://www.venaas.no/ldap/bind-sdb/

3. Uncompress the source packages.

In a directory suitable for compiling source code, issue:

tar -zxf bind-9.2.1.tar.gz
tar -zxf bind-sdb-ldap-0.9.tar.gz

4. Merge the SDB LDAP modifications into the bind source tree.

Copy the SDB LDAP modifications to the ISC bind directory:

cp bind-sdb-ldap-0.9/ldap.h bind-9.2.1/bin/named/include
cp bind-sdb-ldap-0.9/ldap.c bind-9.2.1/bin/named

5. Modify the bind Makefile to use the SDB LDAP backend.

Change lines in the bind-9.2.1/bin/named/Makefile.in file that begin with the
string DBDRIVER:

DBDRIVER_OBJS = ldapdb.@O@
DBDRIVER_SRCS = ldapdb.c
DBDRIVER_INCLUDES = -I/usr/include
DBDRIVER_LIBS = -L/usr/lib64 -lldap -llber -lresolv

6. Modify the bind main.c file to use the SDB LDAP backend.

Change lines that contain the string “xxdb” in the bind-9.2.1/named/main.c
file:

/*
* Include header files for database drivers here.
*/
/* #include "xxdb.h" */
#include “ldapdb.h”

and:

/*
* Add calls to register sdb drivers here.
*/
/* xxdb_init(); */
ldapdb_init();

7. Configure, build, and install the bind DNS server.

In the bind-9.2.1 directory, issue:

./configure --prefix=/usr/local/bind-9.2.1
make
make install

Attention: Ensure that the ldap.h file exists in the DBDRIVER_INCLUDES
directory, and that the ldap.a file exists in the DBDRIVER_LIBS directory.

Note: This installs the bind to directory /usr/local/bind-9.2.1.

208 Large Scale Linux Deployment

10.6.2 DNS resource records in LDAP
To mimic DNS zones in our LDAP database, we create DN records of the form:

zoneName=somezone,ou=DNS,o=IBM-ITSO,c=US

We use this scheme for both forward and reverse DNS mapping. For the topology
represented in Figure 10-1 on page 193, we create DN records:

zoneName=vmlinux.itso.ibm.com,ou=DNS,o=IBM-ITSO,c=US
The forward mapping for the PRIVQDIO VM Guest LAN zone.

zoneName=3.0.10.IN-ADDR.ARPA,ou=DNS,o=IBM-ITSO,c=US
The reverse mapping for the PRIVQDIO VM Guest LAN zone.

zoneName=public1.itso.ibm.com,ou=DNS,o=IBM-ITSO,c=US
The forward mapping for the PUBLQDIO VM Guest LAN zone.

zoneName=4.0.10.IN-ADDR.ARPA,ou=DNS,o=IBM-ITSO,c=US
The reverse mapping for the PUBLQDIO VM Guest LAN zone.

zoneName=public2.itso.ibm.com,ou=DNS,o=IBM-ITSO,c=US
The forward mapping for the PUBLHIPE VM Guest LAN zone.

zoneName=5.0.10.IN-ADDR.ARPA,ou=DNS,o=IBM-ITSO,c=US
The reverse mapping for the PUBLHIPE VM Guest LAN zone.

Start Of Authority (SOA) resource records
We create a Start Of Authority (SOA) record for each DN zone. In
Example 10-14, we show the LDIF definition of the SOA record for the
public1.itso.ibm.com zone.

Example 10-14 LDIF definition of the SOA record for the public1.itso.ibm.com zone

dn: zoneName=public1.itso.ibm.com,ou=DNS,o=IBM-ITSO,c=US
objectClass: top
objectClass: dNSZone
relativeDomainName: @
sOARecord: lnx1.vmlinux.itso.ibm.com. hostmaster.vmlinux.itso.ibm.com. 2002021
 400 10800 1800 604800 86400
dNSTTL: 86400
zoneName: public1.itso.ibm.com
nSRecord: lnx1.vmlinux.itso.ibm.com.
mXRecord: 10 mail.public1.itso.ibm.com.
mXRecord: 20 mail.public2.itso.ibm.com.

The SOA record for the reverse mapping for public1.itso.ibm.com (the 10.0.4.0
network) is shown in Example 10-15.

 Chapter 10. Centralized management using LDAP 209

Example 10-15 SOA record for the 4.0.10.IN-ADDR.ARPA zone (LDIF format)

dn: zoneName=4.0.10.IN-ADDR.ARPA,ou=DNS,o=IBM-ITSO,c=US
objectClass: top
objectClass: dNSZone
relativeDomainName: @
sOARecord: lnx1.vmlinux.itso.ibm.com. hostmaster.vmlinux.itso.ibm.com. 2002021
 400 10800 1800 604800 86400
dNSTTL: 86400
zoneName: 4.0.10.IN-ADDR.ARPA
nSRecord: lnx1.vmlinux.itso.ibm.com.

Address and Pointer resource records
We add Address (A) and Pointer (PTR) records to define the hosts in each zone.
In Example 10-16, we show the LDIF representation of the A record for the
lnx1.public1.itso.ibm.com host.

Example 10-16 A record for host linx1.public1.itso.ibm.com (LDIF format)

dn: cn=lnx1,zoneName=public1.itso.ibm.com,ou=DNS,o=IBM-ITSO,c=US
objectClass: top
objectClass: dNSZone
relativeDomainName: lnx1
aRecord: 10.0.4.1
dNSTTL: 86400
zoneName: public1.itso.ibm.com

In Example 10-17, we show the corresponding PTR record in LDIF format.

Example 10-17 PTR record for host linx1.public1.itso.ibm.com (LDIF format)

dn: cn=1,zoneName=4.0.10.IN-ADDR.ARPA,ou=DNS,o=IBM-ITSO,c=US
objectClass: top
objectClass: dNSZone
relativeDomainName: 1
dNSTTL: 86400
zoneName: 4.0.10.IN-ADDR.ARPA
pTRRecord: lnx1.public1.itso.ibm.com.

Canonical Name resource records
To define alias ldap within the public1.itso.ibm.com zone, we use a Canonical
Name (CNAME) record, as shown in Example 10-18 on page 211.

210 Large Scale Linux Deployment

Example 10-18 CNAME record for alias ldap.public1.itso.ibm.com (LDIF format)

dn: cn=lnx1-ldap,zoneName=vmlinux.itso.ibm.com,ou=DNS,o=IBM-ITSO,c=US
objectClass: top
objectClass: dNSZone
relativeDomainName: ldap
cNAMERecord: lnx1.vmlinux.itso.ibm.com.
dNSTTL: 86400
zoneName: vmlinux.itso.ibm.com

10.6.3 Configure the DNS server to use the LDAP backend
To configure bind (the DNS server) to use the populated LDAP, we add the
modifications to named.conf file highlighted in Example 10-19.

Example 10-19 Modified named.conf file for LDAP lookup

...
zone "public1.itso.ibm.com" {
 type master;
 database "ldap ldap://127.0.0.1/zoneName=public1.itso.ibm.com,ou=DNS,
 o=IBM-ITSO,c=US 172800";
};

...

zone "4.0.10.IN-ADDR.ARPA" {
 type master;
 database "ldap ldap://127.0.0.1/zoneName=4.0.10.IN-ADDR.ARPA,
 ou=DNS,o=IBM-ITSO,c=US 172800";
};

...

10.6.4 Adding indexes to speed lookups
To speed DNS lookups against the LDAP database, we create equality indexes
on the objectClass, relativeDomainName, and zoneName attributes.

In Example 10-20 on page 212, we show the required additions to the slapd.conf
file.

 Chapter 10. Centralized management using LDAP 211

Example 10-20 Additions to the slapd.conf file for DNS indexing

index objectClass eq
index relativeDomainName eq
index zoneName eq

10.7 A remote Web management interface to LDAP
Using the PHP scripting language, we can quickly devise a remote management
tool for LDAP basevol/guestvol Linux guests.

10.7.1 Interface to reset passwords
In Appendix C.8, “The sample-ldap.php script” on page 276, we show a sample
script to reset the password of LDAP users under the DN
ou=People,o=IBM-ITSO,c=US. The interface is shown in Figure 10-3.

Figure 10-3 Interface to reset LDAP passwords

Attention: As these examples provide for no encryption or authentication,
they are inherently insecure. We provide these simply as samples.

212 Large Scale Linux Deployment

10.7.2 Interface to IPL and shutdown Linux guests
In Appendix C.9, “The ipl-shutdown.php script” on page 277, we show a sample
script to reset the password of LDAP users under the DN
ou=People,o=IBM-ITSO,c=US. The interface is shown in Figure 10-3.

Figure 10-4 Interface to shutdown and IPL Linux guests

 Chapter 10. Centralized management using LDAP 213

214 Large Scale Linux Deployment

Appendix A. The Unit Record device
driver and utility

In this appendix we describe the Unit Record (UR) device driver and utility, which
copies data to and from a Linux guest and a z/VM virtual reader, punch, or
printer.

A

© Copyright IBM Corp. 2002. All rights reserved. 215

A.1 The UR device driver and utility
The UR device driver provides a Linux character device interface to an attached
unit record device for a Linux guest. The UR utility provides a user interface to
the UR device driver.

Using the UR driver and utility, it is possible to exchange files between a Linux
guest and a z/VM virtual machine (initiated within the Linux guest). The UR utility
provides an interface for copying files between UR devices (typically the reader,
punch, and printer defined by the virtual machine). It can handle any file block
size, and record length, and will perform EBCDIC-to-ASCII conversion as
required.

The UR device driver and utility can be downloaded from the Internet as
described in Appendix D, “Additional material” on page 279.

A.2 The UR device driver
The UR device driver is distributed in source code format - it is packaged in the
ur-0.4.tar.gz file. Perform the following steps to install the UR device driver.

A.2.1 Build the UR device driver
Extract the source code from the package file:

tar -zxf ur-0.4.tar.gz

Change to the UR device driver source directory and build the driver:

cd ur-0.4
make

A.2.2 Install the UR device driver
The device driver is built as a dynamically loaded kernel module, the ur.o
module:

1. Copy the driver to the loaded kernel modules misc directory:

cp ur.o /lib/modules/2.4.9-37/misc

2. Three helper utilities should be copied to a directory in the PATH:

cp makeurdev addvdev removevdev /usr/local/sbin

Note: The README file explains how to modify the Makefile in case your kernel
include files are not accessible using the /usr/include directory.

216 Large Scale Linux Deployment

3. Install the device driver:

insmod ur

A.2.3 Create the UR character devices
After installing the UR driver, you need to create the character devices. Issue the
command:

makeurdev

This creates (using the mknod command) the following character devices:

� /dev/urctl (minor number 0)
� /dev/ur1 through /dev/ur8 (minor number 1 through 8)

Then execute the command:

addvmur

A.2.4 The addvmur command
The UR device is typically used to provide access to the VM reader, punch, and
printer. The addvmur command is used to associate these to a specific UR
character device and provide a readable symbolic link to the respective device.

In Table A-1, we show the device node, symbolic links, device minor numbers,
VM virtual device number, and record lengths of the character devices created by
addvmur.

Table A-1 The RDR DR, PUN and PRT devices registered by addvmur

Attention: The device driver uses major number 240 - defined by LANANA for
use by local or experimental drivers. This may clash with another experimental
on your system. If so, redefine the UR_MAJOR macro in the ur.c file and
re-compile (be sure to re-run makeurdev if you need redefine UR_MAJOR).

Symbolic link Device node Minor Device type Devno Reclen

/dev/vmreader /dev/ur1 1 reader 000C 80

/dev/vmpunch /dev/ur2 2 punch 000D 80

/dev/vmprinter /dev/ur3 3 printer 000E 132

Note: After executing addvmur, there will be five remaining UR devices
(/dev/ur4 through /dev/ur8). If you need more than this, you should execute the
mknod command, supplying the appropriate major and minor numbers.

 Appendix A. The Unit Record device driver and utility 217

A.3 The UR utility
The UR utility provides an interface for dynamically adding and removing unit
record devices. It can copy data between UR devices and a Linux guest, or
between two unit record character devices. Block size, record length, and
EBCDIC to ASCII conversions are handled by the utility.

A.3.1 Install the UR utility
The UR utility is distributed in RPM format, the ur-utils-0.2-1.s390x.rpm package.
The source code is distributed in the ur-utils-0.2-1.src.rpm package.

The binaries can be installed on a RedHat 7.1 s390x Linux guest using:

rpm -ivh ur-utils-0.2-1.s390x.rpm

The ur command will be installed in the /usr/bin directory.

A.3.2 The ur command syntax
The ur command syntax is:

ur copy [-tbf] [infile | -] [outfile | -]
ur info devfile
ur list
ur add minor devno blksz reclen flags [devname [perm]]
ur remove minor

A.3.3 The copy subcommand
Use the copy subcommand to copy data to and from unit record devices.

The infile parameter indicates the data source. If omitted, or specified as “-”, data
is read from standard input (stdin).

The outfile parameter indicates the data destination. If omitted, or specified as
“-”, data is written to standard output (stdout).

218 Large Scale Linux Deployment

A.3.3.1 Flags
The optional flags accepted by ur copy are:

-t Indicates a text data transfer. Data records are translated to and from
ASCII or EBCDIC as appropriate.

When writing to a unit record device from a Linux input:

1. Input lines are translated from ASCII to EBCDIC.

2. The newline character is removed.

3. The output is padded with the NUL character up to the device
record length.

4. If the input line exceeds the output device record length, the copy
operation terminates with a non-zero return code. This behavior
may be overridden using the -f option.

Copy operations which specify unit record devices as both input and
output are treated as binary copies.

-b Indicates a binary data transfer - this is the default. No ASCII or
EBCDIC translation will apply. Data transfers to and from a unit
record device will use the block size associated with the device.

If both input and output are both unit record devices:

� Data is copied one record at a time.

� If the output record length exceeds input record length, records
will be padded with the NUL character.

� If the input record length exceeds output record length, the copy
operation terminates with a non-zero return code. This behavior
may be overridden using the -f option.

-f Indicates record truncation are permitted. In situations where the
output unit record device record length is exceeded, this option
allows the copy to proceed normally.

A.3.4 The info subcommand
Use the info subcommand to list information about unit record device devfile.
Reported information includes:

� The device minor number (in decimal)
� The subchannel (in hexadecimal)
� The virtual device number (in hexadecimal)
� The block size (in decimal)
� The record length (in decimal)
� Driver-specific flags (“r” indicates a readable device, “w” a writable device)

 Appendix A. The Unit Record device driver and utility 219

A.3.5 The list subcommand
Use the list subcommand to list all registered unit record devices. Reported
information is proceeded by the header:

MINOR SUBCH DEVNO BLKSIZE RECLEN FLAGS

where each field corresponds to the values reported by the info subcommand.

A.3.6 The add subcommand
Use the add subcommand to register a new unit record device. Parameters to the
subcommand are defined as:

minor The minor number associated with the device.

devno The virtual device number for the unit record device. This
is the hexadecimal number defined in the device virtual
machine.

blksize The block size associated with the device.

reclen The record length associated with the device.

devname An optional device name for the device. If provided, a
device node will be created (using mknod) using the
provided path name. If the device node exists, it will first
be removed using unlink.

perms The optional permissions to assign to the newly created
device node. This defaults to 0700 (argument is assumed
to be octal). Note: Permissions are modified by the
current umask setting.

A.3.7 The remove subcommand
Use the remove subcommand to remove a unit record device. The supplied
parameter indicates the minor number of the device to remove.

220 Large Scale Linux Deployment

Appendix B. Installing Red Hat 7.1 with
OCO modules

In this appendix we describe how to install Red Hat 7.1 on a Linux guest with
OCO qeth modules support.

B

© Copyright IBM Corp. 2002. All rights reserved. 221

B.1 The Red Hat for zSeries distribution
Red Hat does not provide the OCO qeth modules on the installation CD-ROMs.
In order to use Red Hat on zSeries with a VM Guest LAN, you can:

� Install the Linux guest using a point-to-to network (CTC or IUCV)
� Boot the Linux guest and install the OCO qeth modules
� Configure the interfaces using the qeth modules

Alternatively, the Red Hat installer allows you to provide a second initial ramdisk
containing the IBM OCO qeth drivers at installation. The installer then uses the
second initial ramdisk to install the OCO modules. This method simplifies the
process - the qeth drivers and their interfaces can be installed and configured at
system installation time.

We describe an installation method using a second initial ramdisk.

B.2 Obtain the latest OCO drivers
To prepare for installation, you need to first obtain the OCO drivers. You can
obtain the latest OCO drivers from the IBM Developerworks site:

http://www.ibm.com/developerworks/opensource/linux390/special_oco_rh_2.4.sh
tml

1. Download the redhat-oco-2.4.9-37-s390x-1.tar.gz file.

2. Extract the package to the root directory:

cd /
tar -zxf /root/redhat-oco-2.4.9-37-s390x-1.tar.gz

The package contains files:

– redhat-oco/LICENSE

The license agreement for using the OCO modules.

– redhat-oco/README

Instructions to read and agree to the license before using the OCO
modules.

– redhat-oco/redhat-oco-2.4.9-37-s390x-1.tgz

The OCO drivers packaged as gzipped tar files.

3. After reading and agreeing to the LICENSE, extract the OCO drivers:

Important: You must read and agree to the LICENSE before continuing.

222 Large Scale Linux Deployment

cd redhat-oco
tar -zxf redhat-oco-2.4.9-37-s390x-1.tgz

B.3 Create a second initial ramdisk for OCO qeth drivers
Now create a second initial ramdisk containing the OCO qeth modules, following
the instructions in the README file of the first Red Hat installation CD-ROM.

1. Create an initrd filesystem. To simply the process, use the mkinitrd
command:

mkinitrd /boot/initrd-OCO.img 2.4.9-37

2. Uncompress and mount the newly created filesystem:

zcat /boot/initrd-OCO.img > myimage
mkdir -p /mnt/myimage
mount -o loop myimage /mnt/myimage

3. Remove the existing contents of the initrd filesystem, and copy the OCO
drivers to the initrd filesystem:

rm -Rf /mnt/myimage/*
cp -a /redhat-oco/lib /mnt/myimage

4. Unmount the modified initial ramdisk, compress it, and save to disk:

umount /mnt/myimage
gzip < myimage > /boot/initrd-OCO.img

The /boot/initrd-OCO.img file is now ready for use as a second initial disk.

B.4 Copy the installation images to the guest reader
Now copy the installation images and the second initial ramdisk to the reader of
the virtual machine to be installed. We used the unit record utility outlined in
Appendix A, “The Unit Record device driver and utility” on page 215.

First you need to obtain copies of the installation images from the first installation
CD-ROM.

Note: This extracts the drivers to directories:

� lib/modules/2.4.9-37
� lib/modules/2.4.9-37BOOT
� lib/modules/2.4.9-37BOOTtape
� lib/modules/2.4.9-37tape

 Appendix B. Installing Red Hat 7.1 with OCO modules 223

B.4.1 Mount the installation CD-ROM image
The CD-ROM images were previously copied to an ext2 filesystem in the LNX1
virtual machine. The filesystem was created on the 203 DASD device which
maps to the /dev/dasdc device.

1. Mount the /dev/dasdc device on the /mnt/iso directory:

mount /dev/dasdc1 /mnt/iso

2. Mount CD-ROM image on the /rh71/cd1directory:

mkdir -p /rh71/cd1
mount -o loop /mnt/iso/rh-7.1-en-s390x.cd1.iso /rh71/cd1

B.4.2 Copy the installation images to the VM reader
Now copy the installation images to the VM reader for the virtual machine to be
installed. In Example B-1, we show the command sequence.

Example: B-1 Using ur to copy installation images to a VM reader

cd /rh71/cd1
hcp spool pun to ldv01
ur copy kernel.img /dev/vmpunch
hcp close pun
PUN FILE 0061 SENT TO LDV01 RDR AS 0001 RECS 041K CPY 001 A NOHOLD NOKEEP
ur copy redhat.prm /dev/vmpunch
hcp close pun
PUN FILE 0062 SENT TO LDV01 RDR AS 0002 RECS 0001 CPY 001 A NOHOLD NOKEEP
ur copy initrd.img /dev/vmpunch
hcp close pun
PUN FILE 0063 SENT TO LDV01 RDR AS 0003 RECS 060K CPY 001 A NOHOLD NOKEEP
ur copy /boot/initrd-OCO.img /dev/vmpunch
hcp close pun
PUN FILE 0064 SENT TO LDV01 RDR AS 0004 RECS 5394 CPY 001 A NOHOLD NOKEEP

B.5 Install the Linux guest
You are now ready to install the Linux guest. In the instructions that follow, we
assume the virtual machine definition for the Linux guest to install include:

� A 201 DASD device to be used as a Linux swap device

� A 202 DASD device to be used for the Linux root filesystem

� A QDIO-type simulated NIC at virtual devices 0700, 0701, and 0702

224 Large Scale Linux Deployment

B.5.1 Beginning the installation
First logon the guest virtual machine (we used the LDV01 user). At this poin, the
reader contains the Red Hat installation images, along with the second initial
ramdisk for the OCO modules.

Install from the CD-ROM images on the LNX1 203 minidisk.

1. Define the minidisk at virtual device 203:

LINK LNX1 203 203

2. To ensure the installation images will not be deleted from the reader:

CH RDR ALL KEEP NOHOLD

3. To begin installation, IPL from the virtual reader:

IPL 00C

B.5.2 First stage configuration
At this point configuration proceeds from the 3270 console. The installer will
prompt for network configuration and DASD device assignments. Later,
installation will be completed from a telnet session.

Network configuration
On IPL, the installer loaded the second initial ramdisk containing the OCO
modules. Provide configuration parameters for network configuration:

1. We choose the eth0 network interface.

2. When prompted for the first chandev configuration parameters, we supplied:

qeth0,0x0700,0x0701,0x0702,0,0,0

3. When prompted for the second chandev configuration parameters, we
supplied:

add_parms,0x10,0x0700,0x0702,portname:NIC0700

Note: If we had defined a HiperSocket-type simulated NIC (instead of a
QDIO-type), we would select the hsi0 interface.

Important: Be sure to supply qeth0 as the first - not eth0.

 Appendix B. Installing Red Hat 7.1 with OCO modules 225

4. The installer then prompts for specific IP configuration parameters, such as:

– IP address
– network mask
– network address
– default gateway
– DNS server address

We provided the values specific to our installation.

DASD device configuration
To avoid auto-probing for DASD devices, the installer next prompts for DASD
virtual device numbers. We entered the range:

202-203

These devices map to the Linux names:

202 The /dev/dasda device used for the Linux root filesystem.
203 The /dev/dasdb device containing the installation CD-ROM images.

B.5.3 Second stage configuration
At this point, the Red Hat installer configures the network and DASD devices.
When prompted, we started a telnet to the Linux guest using the IP address
provided in the first stage configuration. We logged in as root and continued the
installation using the command:

loader

Choosing the installation medium
Select the Hard Drive option when prompted for the installation media, and
select the /dev/dasdb1 device.

Format the DASD
Next, format the DASD devices. Begin formatting the /dev/dasda device by
choosing the device and selecting Format DASD.

Important: A portname must be specified. For VM Guest LAN, the actual
name used has no special significance. However, the chosen name is used
for reporting purposes. We recommend using the same name for all
interfaces connected to a guest LAN.

Note: We logged in as root - no password is required.

226 Large Scale Linux Deployment

Partition the DASD
Next, create a Linux partition on the minidisks. Select the device and choose Edit
Partitions to start fdasd. In Example B-2, we show the command dialog.

Example: B-2 The fdasd command dialog

Command action
 m print this menu
 p print the partition table
 n add a new partition
 d delete a partition
 v change volume serial
 t change partition type
 r re-create VTOC
 s show mapping (partition number - data set name)
 q quit without saving changes
 w write table to disk and exit

Command (m for help):

Following are explanations of the actions highlighted in Example B-2.

Add a new partition
To add a new partition, enter: n at the command prompt. Accept all the default
parameters in the subsequent dialog to create a Linux ext2 partition.

Write table to disk and exit
To write the partition table to disk and exit, enter: w on the command line.

Partition the /dev/dasda1 device
Next, partition the /dev/dasda device for use as a ext2 filesystem.

Attention: Do not attempt format the /dev/dasdb device - it contains an ext2
filesystem with the CD-ROM images.

Attention: Do not attempt to partition the /dev/dasdb device.

Note: The dialog will prompt for the starting track number and partition size.
We used a single partition starting at track 2 (track 1 contains the VTOC
record for OS/390 and z/OS compatibility) and spanning the entire minidisk.

 Appendix B. Installing Red Hat 7.1 with OCO modules 227

After selecting the device and choosing Edit Partitions:

1. Add a new partition.
2. Write table to disk and exit.

Converting an ext2 filesystem to ext3
You can convert an ext2 filesystem to ext3 using the command:

tune2fs -j devname

where devname is the DASD block device name (/dev/dasda1, for instance).

Converting an ext3 filesystem to ext2
You can convert an ext3 filesystem to ext2 using the command

tune2fs -O ^has_journal devname

where devname is the DASD block device name (/dev/dasda1, for instance).

Important: This should only be issued against a clean filesystem. To verify the
filesystem after the conversion, run the command:

e2fsck -f devname

Kernel boot parameters
The Red Hat installer will prompt for any additional boot parameters to add to the
/etc/zipl.conf file. We append the following option to the Kernel Parameters
entry field:

vmpoff=LOGOFF

The vmpoff option allows you select a CP command to run when the halt -p
command is issued. We run the LOGOFF command in order to enable XAUTOLOG
for the guest virtual machine.

Important: We chose an ext2 filesystem for the /dev/dasda - not ext3. Even
when mounting a read-only ext3 filesystem, the kernel attempts to replay the
filesystem journal (and therefore, write to the filesystem). When using a
basevol/guestvol Linux guest, the read-only basevol cannot be corrupted by
an unclean shutdown.

Note: The -O is the uppercase letter O, the ^ is the caret symbol. This denotes
option “turn the has_journal option off”.

Note: Kernel boot parameters are whitespace delimited - do not use a comma
to append to the existing parameter list.

228 Large Scale Linux Deployment

When the vmhalt option is specified, its value indicates the CP command to run
when halt is executed; the vmpoff command will not be executed. Similarly,
when executing the halt -p command, the vmhalt command will not be
executed. To summarize these parameters:

halt -p Executes the command specified by vmpoff
halt Executes the command specified by vmhalt

Note: The vmhalt option is documented in Linux for zSeries and S/390 Device
Drivers and Installation Commands , LNUX-1303. However, the vmpoff option
is not.

 Appendix B. Installing Red Hat 7.1 with OCO modules 229

230 Large Scale Linux Deployment

Appendix C. Scripts and configuration
files

In this appendix, we provide listings of the scripts and configuration files
developed for and used in this redbook.

C

© Copyright IBM Corp. 2002. All rights reserved. 231

C.1 The basevol+guestvol-1.0.0-1.noarch.rpm package
We list some of the scripts found in the basevol+guestvol-1.0.0-1.noarch.rpm
package.

C.1.1 The /etc/rc.d/rc.guestvol script
In Example C-1, we show the /etc/rc.d/rc.guestvol script discussed in 8.9.1, “The
rc.guestvol script” on page 160.

Example: C-1 The /etc/rc.d/rc.guestvol script

#!/bin/sh
rc.guestvol - Find and mount a guestvol on Linux for S/390 or zSeries
Copyright (C) 2002 IBM UK Ltd
Author: Malcolm Beattie <beattiem@uk.ibm.com>
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
15 Jul 2002 Initial test version
18 Jul 2002 Remove unneeded debug telemetry
#

mount -n -t proc /proc /proc

First see if we're a development guest which has a virtual
printer (a 1403 from CP DEF PRT 777) at 777 to "block" the
guestvol slot. If so, go straight to the ordinary non-guestvol
boot process. If 777 is merely absent, we give them the benefit
of the doubt and drop to a maintenance shell so that guestvol
guests with broken (or unusual) device configs can recover.

if grep -q '^0777...................1403' /proc/subchannels; then
 umount /proc
 exec /etc/rc.d/rc.sysinit
fi

#
Find and mount the guestvol. Ensure 777 is in the range of active
DASD devices, look for an active devno 777 in /proc/dasd/devices,

232 Large Scale Linux Deployment

find its device name and append a "1" to use partition 1 of that disk.
#
grep -q '^0777' /proc/dasd/devices || echo "add range=777" > /proc/dasd/devices
dev=`awk '(/^0777/ && $9 == "active") { print $7 }' /proc/dasd/devices`

if ["x$dev" != "x"]; then
 guestdev="/dev/${dev}1"
 echo "Guestvol device 777 appears to be at device file $guestdev" # debug
 mount -n "$guestdev" /guestvol
fi

rc=0
while [! -f /guestvol/etc/inittab -o $rc -ne 0]; do
 echo "Error: failed to find /guestvol/etc/inittab" 2>&1
 echo "About to start maintenance shell. Please either mount guestvol"
 echo "disk on /guestvol and then type \"exit\" or else just type"
 echo "\"exit 123\" to boot the underlying basevol system in "
 echo "read-write mode with no guestvol."
 bash -i
 rc=$?
 if [$rc -eq 123]; then
 echo "Maintenance shell exited with code 123."
 echo "Leaving guestvol script and returning to ordinary boot"
 echo "procedure of basevol in read-write mode."
 exec /etc/rc.d/rc.sysinit
 fi
 if [$rc -ne 0]; then
 echo "Shell exited with unexpected return code $rc." 2>&1
 fi
done

echo "Guestvol seems to have been successfully mounted...continuing boot"

#
Preserve access to original basevol directories via /basevol
#
for dir in etc var boot root dev; do
 mount --bind /$dir /basevol/$dir
done

#
Bind the necessary directories into the main filesystem namespace
#
mount --bind /guestvol/etc /etc

Initialise mtab here (on the new guestvol /etc) instead of in rc.sysinit
We need to find guestvol in /proc/mounts because we may not know the
underlying device name if someone mounted it from the maintenance shell.
grep /guestvol /proc/mounts > /etc/mtab

 Appendix C. Scripts and configuration files 233

Use "mount -f" to create more mtab entries while only faking the mounts
for dir in etc var boot root dev; do
 mount -f --bind /$dir /basevol/$dir
done
mount -f --bind /guestvol/etc /etc

umount -n /proc
Note that /proc has now been unmounted again

Now bind all the rest from guestvol. We can leave out the "-n"
from the mount command this time since the entries will be written
to the "correct" mtab on the new, writable /etc.
If devfs is in use then dev can be removed from the list below
If tmpfs is in use then tmp can be removed from the list below
for dir in var root dev opt tmp home usr/local boot mnt; do
 mount --bind /guestvol/$dir /$dir
done

Put the original (readonly) basevol /var/lib/rpm in place over
the current empty /var/lib/rpm. RPMs installed by the guest go
in --dbpath /var/lib/guestrpm.
mount --bind /basevol/var/lib/rpm /var/lib/rpm

echo "Finished binding guestvol directories, init will now restart..."

#
Kick init to reread the new /etc/inittab
#
kill -1 1

C.1.2 The /etc/rc.d/rc.sysinit-guestvol script
In Example C-2, we show the /etc/rc.d/rc.sysinit-guestvol script discussed in
8.10.1, “The rc.sysinit-guestvol script” on page 163.

Example: C-2 The /etc/rc.d/rc.sysinit-guestvol script

#!/bin/bash
#
/etc/rc.sysinit - run once at boot time
#
Taken in part from Miquel van Smoorenburg's bcheckrc.
#
This is a modified rc.sysinit for the guestvol environment.
Modifications by Malcolm Beattie.
Don't remount the root filesystem read-write (we leave it readonly)
Don't clear out /etc/mtab (rc.guestvol has already done some magic on it)
#

234 Large Scale Linux Deployment

Rerun ourselves through initlog
if [-z "$IN_INITLOG"]; then
 [-f /sbin/initlog] && exec /sbin/initlog $INITLOG_ARGS -r
/etc/rc.d/rc.sysinit-guestvol
fi

If we're using devfs, start devfsd now - we need the old device names
[-e /dev/.devfsd -a -x /sbin/devfsd] && /sbin/devfsd /dev

LD_LIBRARY_PATH=/lib
for i in `cat /etc/ld.so.conf`; do LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$i ; done
export LD_LIBRARY_PATH
Set the path
PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

HOSTNAME=`/bin/hostname`

Read in config data.
if [-f /etc/sysconfig/network]; then
 . /etc/sysconfig/network
else
 NETWORKING=no
fi

if [-z "$HOSTNAME" -o "$HOSTNAME" = "(none)"]; then
 HOSTNAME=localhost
fi

Source functions
. /etc/init.d/functions

Print a banner. ;)
echo -en $"\t\t\tWelcome to "
["$BOOTUP" != "serial"] && echo -en $"\\033[1;31m"
echo -en $"Red Hat"
["$BOOTUP" != "serial"] && echo -en $"\\033[0;39m"
echo $" Linux"
if ["$PROMPT" != "no"]; then
 echo -en $"\t\tPress 'I' to enter interactive startup."
 echo
 sleep 1
fi

Mount /proc (done here so volume labels can work with fsck)

action $"Mounting proc filesystem: " mount -n -t proc /proc /proc

 Appendix C. Scripts and configuration files 235

Fix up kernel versioning on binary-only modules
if [-x /sbin/oco-setkver]; then
 kver=`</proc/sys/kernel/osrelease`
 kernelver=`echo $kver|awk -F '-' '{ print $1 }'`
 if ["$HOSTTYPE" = "s390x"]; then
 kernelver="${kernelver}x"
 fi
 if ["${kver:0:3}" = "2.4"]; then
 modpath="/lib/modules/$kver/kernel/net"
 else
 modpath="/lib/modules/$kver/net"
 fi
 for i in /lib/modules/ibm/*; do
 [-e $i] || break
 /sbin/oco-setkver $kver $i $modpath/`basename $i`
 done
fi

Fix console loglevel
/bin/dmesg -n $LOGLEVEL

Unmount the initrd, if necessary
if grep -q /initrd /proc/mounts ; then
 action $"Unmounting initrd: " umount /initrd
 /sbin/blockdev --flushbufs /dev/ram0 >/dev/null 2>&1
fi

Configure kernel parameters

action $"Configuring kernel parameters: " sysctl -e -p /etc/sysctl.conf

Set the system clock.
ARC=0
SRM=0
UTC=0

if [-f /etc/sysconfig/clock]; then
 . /etc/sysconfig/clock

 # convert old style clock config to new values
 if ["${CLOCKMODE}" = "GMT"]; then
 UTC=true
 elif ["${CLOCKMODE}" = "ARC"]; then
 ARC=true
 fi
fi

CLOCKDEF=""
CLOCKFLAGS="--hctosys"

236 Large Scale Linux Deployment

case "$UTC" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS --utc";
 CLOCKDEF="$CLOCKDEF (utc)";
 ;;
 no|false)
 CLOCKFLAGS="$CLOCKFLAGS --localtime";
 CLOCKDEF="$CLOCKDEF (localtime)";
 ;;
esac

case "$ARC" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS --arc";
 CLOCKDEF="$CLOCKDEF (arc)";
 ;;
esac
case "$SRM" in
 yes|true)

CLOCKFLAGS="$CLOCKFLAGS --srm";
CLOCKDEF="$CLOCKDEF (srm)";

 ;;
esac

if [-x /bin/hwclock] ; then
 /sbin/hwclock $CLOCKFLAGS
 action $"Setting clock $CLOCKDEF: `date`" date
else
 # System date on S390 is always set correctly
 action $"System date: `date` " date
fi

if ["`/sbin/consoletype`" = "vt"]; then
 # Load keymap
 if [-x /bin/loadkeys]; then
 KEYTABLE=
 KEYMAP=
 if [-f /etc/sysconfig/console/default.kmap]; then
 KEYMAP=/etc/sysconfig/console/default.kmap
 else
 if [-f /etc/sysconfig/keyboard]; then
 . /etc/sysconfig/keyboard
 fi
 if [-n "$KEYTABLE" -a -d "/usr/lib/kbd/keymaps" -o -d "/lib/kbd/keymaps"];
then
 KEYMAP=$KEYTABLE
 fi
 fi

 Appendix C. Scripts and configuration files 237

 if [-n "$KEYMAP"]; then
 # Since this takes in/output from stdin/out, we can't use initlog
 if [-n "$KEYTABLE"]; then
 echo -n $"Loading default keymap ($KEYTABLE): "
 else
 echo -n $"Loading default keymap: "
 fi
 loadkeys $KEYMAP < /dev/tty0 > /dev/tty0 2>/dev/null && \
 success $"Loading default keymap" || failure $"Loading default keymap"
 echo
 fi
 fi

 # Load system font
 if [-x /sbin/setsysfont]; then
 [-f /etc/sysconfig/i18n] && . /etc/sysconfig/i18n
 if [-f /etc/sysconfig/console/$SYSFONT.psf.gz -o \
 -f /usr/lib/kbd/consolefonts/$SYSFONT.psf.gz -o \
 -f /etc/sysconfig/console/$SYSFONT.gz -o \
 -f /usr/lib/kbd/consolefonts/$SYSFONT.gz -o \

 -f /lib/kbd/consolefonts/$SYSFONT.gz -o \
 -f /lib/kbd/consolefonts/$SYSFONT.psf.gz]; then

 action $"Setting default font ($SYSFONT): " /sbin/setsysfont
 fi
 fi
fi

Start up swapping.
action $"Activating swap partitions: " swapon -a -e

Set the hostname.
action $"Setting hostname ${HOSTNAME}: " hostname ${HOSTNAME}

Initialize USB controller and HID devices
usb=0
if ! grep -iq "nousb" /proc/cmdline 2>/dev/null && ! grep -q "usb"
/proc/devices 2>/dev/null ; then
 aliases=`/sbin/modprobe -c | awk '/^alias usb-controller/ { print $3 }'`
 if [-n "$aliases" -a "$aliases" != "off"] ; then
 modprobe usbcore
 action $"Mounting USB filesystem: " mount -t usbdevfs usbdevfs
/proc/bus/usb
 for alias in $aliases ; do

["$alias" != "off"] && action $"Initializing USB controller ($alias): "
modprobe $alias
 done
 [$? -eq 0 -a -n "$aliases"] && usb=1
 fi
fi

238 Large Scale Linux Deployment

if ! grep -iq "nousb" /proc/cmdline 2>/dev/null && grep -q "usb" /proc/devices
2>/dev/null ; then
 usb=1
fi

needusbstorage=
if [$usb = "1"]; then
 sleep 5
 mouseoutput=`cat /proc/bus/usb/devices 2>/dev/null|grep -E
"^I.*Cls=03.*Prot=02"`
 kbdoutput=`cat /proc/bus/usb/devices 2>/dev/null|grep -E
"^I.*Cls=03.*Prot=01"`
 needusbstorage=`cat /proc/bus/usb/devices 2>/dev/null|grep -e "^I.*Cls=08"`
 if [-n "$kbdoutput"] || [-n "$mouseoutput"]; then

action $"Initializing USB HID interface: " modprobe hid 2> /dev/null
 fi
 if [-n "$kbdoutput"]; then

action $"Initializing USB keyboard: " modprobe keybdev
 fi
 if [-n "$mouseoutput"]; then

action $"Initializing USB mouse: " modprobe mousedev
 fi
fi

if [-f /fastboot] || grep -iq "fastboot" /proc/cmdline 2>/dev/null ; then
fastboot=yes

 else
 fastboot=
fi

if [-f /fsckoptions]; then
fsckoptions=`cat /fsckoptions`

 else
fsckoptions=

fi

if [-f /forcefsck]; then
fsckoptions="-f $fsckoptions"

fi

if ["$BOOTUP" != "serial"]; then
fsckoptions="-C $fsckoptions"

else
fsckoptions="-V $fsckoptions"

fi

_RUN_QUOTACHECK=0

 Appendix C. Scripts and configuration files 239

ROOTFSTYPE=`grep " / " /proc/mounts | awk '{ print $3 }'`
if [-z "$fastboot" -a "$ROOTFSTYPE" != "nfs"]; then

 STRING=$"Checking root filesystem"
echo $STRING
initlog -c "fsck -T -a $fsckoptions /"
rc=$?

if ["$rc" = "0"]; then
success "$STRING"
echo

elif ["$rc" = "1"]; then
 passed $"$STRING"

echo
 fi

 # A return of 2 or higher means there were serious problems.
if [$rc -gt 1]; then

failure "$STRING"
echo
echo
echo $"*** An error occurred during the file system check."
echo $"*** Dropping you to a shell; the system will reboot"
echo $"*** when you leave the shell."

PS1=$"(Repair filesystem) \# # "; export PS1
sulogin

echo $"Unmounting file systems"
umount -a
mount -n -o remount,ro /
echo $"Automatic reboot in progress."
reboot -f

elif ["$rc" = "1"]; then
_RUN_QUOTACHECK=1

fi
fi

grep -E '[[:space:]]+/[[:space:]]+' /etc/fstab | \
 awk '{ print $4 }' | \
 grep -q quota
_ROOT_HAS_QUOTA=$?
if [X"$_RUN_QUOTACHECK" = X1 -a \
 "$_ROOT_HAS_QUOTA" -a \
 -x /sbin/quotacheck]; then
 if [-x /sbin/convertquota]; then
 if [-f /quota.user]; then
 action $"Converting old user quota files: " \
 /sbin/convertquota -u / && rm -f /quota.user

240 Large Scale Linux Deployment

 fi
 if [-f /quota.group]; then
 action $"Converting old group quota files: " \
 /sbin/convertquota -g / && rm -f /quota.group
 fi
 fi
 action $"Checking root filesystem quotas: " /sbin/quotacheck -nug /
fi

check for arguments passed from kernel

if grep -iq nopnp /proc/cmdline >/dev/null 2>&1 ; then
 PNP=
else
 PNP=yes
fi

set up pnp
if [-x /sbin/isapnp -a -f /etc/isapnp.conf -a ! -f /proc/isapnp]; then
 if [-n "$PNP"]; then

action $"Setting up ISA PNP devices: " /sbin/isapnp /etc/isapnp.conf
 else

action $"Skipping ISA PNP configuration at users request: " /bin/true
 fi
fi

Remount the root filesystem read-write.
We comment this out for guestvol where the root filesystem is readonly
#state=`awk '/(^\/dev\/root| \/)/ { print $4 }' /proc/mounts`
#["$state" != "rw"] && \
action $"Remounting root filesystem in read-write mode: " mount -n -o
remount,rw /

LVM initialization
if [-e /proc/lvm -a -x /sbin/vgchange -a -f /etc/lvmtab]; then
 action $"Setting up LVM:" /sbin/vgscan && /sbin/vgchange -a y
fi

Clear mtab
Commented out for guestvol environment--mtab already set up by rc.guestvol
>/etc/mtab

Remove stale backups
rm -f /etc/mtab~ /etc/mtab~~

Enter root, /proc and (potentially) /proc/bus/usb and devfs into mtab.
mount -f /
mount -f /proc
[-f /proc/bus/usb/devices] && mount -f -t usbdevfs usbdevfs /proc/bus/usb

 Appendix C. Scripts and configuration files 241

[-e /dev/.devfsd] && mount -f -t devfs devfs /dev

Turn on harddisk optimization
There is only one file /etc/sysconfig/harddisks for all disks
after installing the hdparm-RPM. If you need different hdparm parameters
for each of your disks, copy /etc/sysconfig/harddisks to
/etc/sysconfig/harddiskhda (hdb, hdc...) and modify it.
each disk which has no special parameters will use the defaults.

disk[0]=s; disk[1]=hda; disk[2]=hdb; disk[3]=hdc;
disk[4]=hdd; disk[5]=hde; disk[6]=hdf; disk[7]=hdg; disk[8]=hdh;

if [-x /sbin/hdparm]; then
 for device in 0 1 2 3 4 5 6 7 8; do
 unset MULTIPLE_IO USE_DMA EIDE_32BIT LOOKAHEAD EXTRA_PARAMS
 if [-f /etc/sysconfig/harddisk${disk[$device]}]; then
 . /etc/sysconfig/harddisk${disk[$device]}
 HDFLAGS[$device]=
 if [-n "$MULTIPLE_IO"]; then
 HDFLAGS[$device]="-q -m$MULTIPLE_IO"
 fi
 if [-n "$USE_DMA"]; then
 HDFLAGS[$device]="${HDFLAGS[$device]} -q -d$USE_DMA"
 fi
 if [-n "$EIDE_32BIT"]; then
 HDFLAGS[$device]="${HDFLAGS[$device]} -q -c$EIDE_32BIT"
 fi
 if [-n "$LOOKAHEAD"]; then
 HDFLAGS[$device]="${HDFLAGS[$device]} -q -A$LOOKAHEAD"
 fi
 if [-n "$EXTRA_PARAMS"]; then
 HDFLAGS[$device]="${HDFLAGS[$device]} $EXTRA_PARAMS"
 fi
 else
 HDFLAGS[$device]="${HDFLAGS[0]}"
 fi
 if [-e "/proc/ide/${disk[$device]}/media"] ; then
 hdmedia=`cat /proc/ide/${disk[$device]}/media`
 if ["$hdmedia" = "disk"]; then
 if [-n "${HDFLAGS[$device]}"]; then
 action $"Setting hard drive parameters for
${disk[$device]}: " /sbin/hdparm ${HDFLAGS[$device]} /dev/${disk[$device]}
 fi
 fi
 fi
 done
fi

242 Large Scale Linux Deployment

The root filesystem is now read-write, so we can now log via syslog()
directly..
if [-n "$IN_INITLOG"]; then
 IN_INITLOG=
fi

if ! grep -iq nomodules /proc/cmdline >/dev/null 2>&1 && [-f /proc/ksyms];
then
 USEMODULES=y
else
 USEMODULES=
fi

Our modutils don't support it anymore, so we might as well remove
the preferred link.
rm -f /lib/modules/preferred
rm -f /lib/modules/default
if [-x /sbin/depmod -a -n "$USEMODULES"]; then
 # If they aren't using a recent sane kernel, make a link for them
 if [! -n "`uname -r | grep -- "-"`"]; then
 ktag="`cat /proc/version`"
 mtag=`grep -l "$ktag" /lib/modules/*/.rhkmvtag 2> /dev/null`
 if [-n "$mtag"]; then
 mver=`echo $mtag | sed -e 's,/lib/modules/,,' -e 's,/.rhkmvtag,,' -e
's,[].*$,,'`
 fi
 if [-n "$mver"]; then
 ln -sf /lib/modules/$mver /lib/modules/default
 fi
 fi
 if [-L /lib/modules/default]; then
 INITLOG_ARGS= action $"Finding module dependencies: " depmod -A default
 else

INITLOG_ARGS= action $"Finding module dependencies: " depmod -A
 fi
fi

tweak isapnp settings if needed.
if [-n "$PNP" -a -f /proc/isapnp -a -x /sbin/sndconfig]; then
 /sbin/sndconfig --mungepnp >/dev/null 2>&1
fi

Load sound modules iff they need persistent DMA buffers
if grep -q "options sound dmabuf=1" /etc/modules.conf 2>/dev/null ; then
 RETURN=0
 alias=`/sbin/modprobe -c | awk '/^alias sound / { print $3 }'`
 if [-n "$alias" -a "$alias" != "off"] ; then
 action $"Loading sound module ($alias): " modprobe $alias
 RETURN=$?

 Appendix C. Scripts and configuration files 243

 fi
 alias=`/sbin/modprobe -c | awk '/^alias sound-slot-0 / { print $3 }'`
 if [-n "$alias" -a "$alias" != "off"] ; then
 action $"Loading sound module ($alias): " modprobe $alias
 RETURN=$?
 fi
 # Load mixer settings
 if grep -q "\(sparcaudio\|sound\)" /proc/devices 2>/dev/null ; then
 if [$RETURN -eq 0 -a -f /etc/.aumixrc -a -x /bin/aumix-minimal]; then
 action $"Loading mixer settings: " /bin/aumix-minimal -f /etc/.aumixrc
-L
 fi
 fi
fi

if [-f /proc/sys/kernel/modprobe]; then
 if [-n "$USEMODULES"]; then
 sysctl -w kernel.modprobe="/sbin/modprobe" >/dev/null 2>&1
 sysctl -w kernel.hotplug="/sbin/hotplug" >/dev/null 2>&1
 else
 # We used to set this to NULL, but that causes 'failed to exec'
messages"
 sysctl -w kernel.modprobe="/bin/true" >/dev/null 2>&1
 sysctl -w kernel.hotplug="/bin/true" >/dev/null 2>&1
 fi
fi

Load modules (for backward compatibility with VARs)
if [-f /etc/rc.modules]; then

/etc/rc.modules
fi

Add raid devices
if [! -f /proc/mdstat]; then

modprobe md >/dev/null 2>&1
fi

if [-f /proc/mdstat -a -f /etc/raidtab]; then
echo -n $"Starting up RAID devices: "

rc=0

for i in `grep "^[^*]*raiddev" /etc/raidtab | awk '{print $2}'`
do

RAIDDEV=`basename $i`
 RAIDSTAT=`grep "^$RAIDDEV : active" /proc/mdstat`

if [-z "$RAIDSTAT"]; then
Try raidstart first...if that fails then
First scan the /etc/fstab for the "noauto"-flag

244 Large Scale Linux Deployment

for this device. If found, skip the initialization
for it to avoid dropping to a shell on errors.
If not, try raidstart...if that fails then
fall back to raidadd, raidrun. If that
also fails, then we drop to a shell
RESULT=1
NOAUTO=`grep "^$i" /etc/fstab | grep -c "noauto"`
if [$NOAUTO -gt 0]; then
 RESULT=0
 RAIDDEV="$RAIDDEV(skipped)"
fi
if [$RESULT -gt 0 -a -x /sbin/raidstart]; then

/sbin/raidstart $i
RESULT=$?

fi
if [$RESULT -gt 0 -a -x /sbin/raid0run]; then

/sbin/raid0run $i
RESULT=$?

fi
if [$RESULT -gt 0 -a -x /sbin/raidadd -a -x /sbin/raidrun]; then

/sbin/raidadd $i
/sbin/raidrun $i
RESULT=$?

fi
if [$RESULT -gt 0]; then

rc=1
fi
echo -n "$RAIDDEV "

else
echo -n "$RAIDDEV "

fi
done
echo

A non-zero return means there were problems.
if [$rc -gt 0]; then

echo
echo
echo $"*** An error occurred during the RAID startup"
echo $"*** Dropping you to a shell; the system will reboot"
echo $"*** when you leave the shell."

PS1=$"(RAID Repair) \# # "; export PS1
sulogin

echo $"Unmounting file systems"
umount -a
mount -n -o remount,ro /
echo $"Automatic reboot in progress."

 Appendix C. Scripts and configuration files 245

reboot -f
fi

fi

_RUN_QUOTACHECK=0
Check filesystems
if [-z "$fastboot"]; then
 STRING=$"Checking filesystems"

echo $STRING
initlog -c "fsck -T -R -A -a $fsckoptions"
rc=$?

 if ["$rc" = "0"]; then
success "$STRING"
echo

elif ["$rc" = "1"]; then
 passed "$STRING"

echo
fi

A return of 2 or higher means there were serious problems.
if [$rc -gt 1]; then
 failure "$STRING"

echo
echo
echo $"*** An error occurred during the file system check."
echo $"*** Dropping you to a shell; the system will reboot"
echo $"*** when you leave the shell."

PS1=$"(Repair filesystem) \# # "; export PS1
sulogin

echo $"Unmounting file systems"
umount -a
mount -n -o remount,ro /
echo $"Automatic reboot in progress."
reboot -f

elif ["$rc" = "1" -a -x /sbin/quotacheck]; then
_RUN_QUOTACHECK=1

fi
fi

Mount all other filesystems (except for NFS and /proc, which is already
mounted). Contrary to standard usage,
filesystems are NOT unmounted in single user mode.
action $"Mounting local filesystems: " mount -a -t nonfs,smbfs,ncpfs

check remaining quotas other than root
if [X"$_RUN_QUOTACHECK" = X1 -a -x /sbin/quotacheck]; then

if [-x /sbin/convertquota]; then

246 Large Scale Linux Deployment

 # try to convert old quotas
 for mountpt in `cat /etc/mtab | awk '$4 ~ /quota/{print $2}'`; do

if [-f "$mountpt/quota.user"]; then
 action $"Converting old user quota files: " \
 /sbin/convertquota -u $mountpt && \

rm -f $mountpt/quota.user
fi
if [-f "$mountpt/quota.group"]; then
 action $"Converting old group quota files: " \
 /sbin/convertquota -g $mountpt && \

rm -f $mountpt/quota.group
fi

 done
fi
action $"Checking local filesystem quotas: " /sbin/quotacheck -aRnug

fi

if [-x /sbin/quotaon]; then
 action $"Enabling local filesystem quotas: " /sbin/quotaon -aug
fi

Turn on process accounting
if [-x /sbin/accton] ; then

action $"Turning on process accounting" /sbin/accton /var/log/pacct
fi

Configure machine if necessary.
if [-f /.unconfigured]; then
 if [-x /usr/bin/passwd]; then
 /usr/bin/passwd root
 fi

 # on S390 console we don't have newt
 if ["`/bin/arch`" = "s390" -o "`/bin/arch`" = "s390x"] ; then

ARCH=".s390"
 else

ARCH=""
 fi

 if [-x /usr/sbin/netconfig$ARCH]; then
 /usr/sbin/netconfig$ARCH
 fi
 if [-x /usr/sbin/timeconfig$ARCH]; then
 /usr/sbin/timeconfig$ARCH
 fi
 if [-x /usr/sbin/authconfig$ARCH]; then
 /usr/sbin/authconfig$ARCH --nostart
 fi
 if [-x /usr/sbin/ntsysv$ARCH]; then

 Appendix C. Scripts and configuration files 247

 /usr/sbin/ntsysv$ARCH --level 35
 fi

 # Reread in network configuration data.
 if [-f /etc/sysconfig/network]; then

. /etc/sysconfig/network

Reset the hostname.
action $"Resetting hostname ${HOSTNAME}: " hostname ${HOSTNAME}

 fi

 rm -f /.unconfigured
fi

Clean out /etc.
rm -f /fastboot /fsckoptions /forcefsck /halt /poweroff

Do we need (w|u)tmpx files? We don't set them up, but the sysadmin might...
_NEED_XFILES=
[-f /var/run/utmpx -o -f /var/log/wtmpx] && _NEED_XFILES=1

Clean up /var
I'd use find, but /usr may not be mounted.
for afile in /var/lock/* /var/run/*; do
 if [-d "$afile"]; then
 ["`basename $afile`" != "news" -a "`basename $afile`" != "sudo" -a
"`basename $afile`" != "mon"] && rm -f $afile/*
 else
 rm -f $afile
 fi
done
rm -f /var/lib/rpm/__db*

Reset pam_console permissions
[-x /sbin/pam_console_apply] && /sbin/pam_console_apply -r

{
Clean up utmp/wtmp
>/var/run/utmp
touch /var/log/wtmp
chgrp utmp /var/run/utmp /var/log/wtmp
chmod 0664 /var/run/utmp /var/log/wtmp
if [-n "$_NEED_XFILES"]; then
 >/var/run/utmpx
 touch /var/log/wtmpx
 chgrp utmp /var/run/utmpx /var/log/wtmpx
 chmod 0664 /var/run/utmpx /var/log/wtmpx
fi

248 Large Scale Linux Deployment

Delete X locks
rm -f /tmp/.X*-lock

Delete Postgres sockets
rm -f /tmp/.s.PGSQL.*

Now turn on swap in case we swap to files.
swapon -a
action $"Enabling swap space: " /bin/true

Initialize the serial ports.
if [-f /etc/rc.serial]; then

. /etc/rc.serial
fi

If a SCSI tape has been detected, load the st module unconditionally
since many SCSI tapes don't deal well with st being loaded and unloaded
if [-f /proc/scsi/scsi] && grep -q 'Type: Sequential-Access'
/proc/scsi/scsi 2>/dev/null ; then

if grep -qv ' 9 st' /proc/devices ; then
if [-n "$USEMODULES"] ; then

Try to load the module. If it fails, ignore it...
insmod -p st >/dev/null 2>&1 && modprobe st >/dev/null 2>&1

fi
fi

fi

Load usb storage here, to match most other things
if [-n "$needusbstorage"]; then

modprobe usb-storage >/dev/null 2>&1
fi

If they asked for ide-scsi, load it
if grep -q "ide-scsi" /proc/cmdline ; then

modprobe ide-cd >/dev/null 2>&1
modprobe ide-scsi >/dev/null 2>&1

fi

Generate a header that defines the boot kernel.
/sbin/mkkerneldoth

Adjust symlinks as necessary in /boot to keep system services from
spewing messages about mismatched System maps and so on.
if [-L /boot/System.map -a -r /boot/System.map-`uname -r` -a \

! /boot/System.map -ef /boot/System.map-`uname -r`] ; then
ln -s -f System.map-`uname -r` /boot/System.map

fi
if [! -e /boot/System.map -a -r /boot/System.map-`uname -r`] ; then

ln -s -f System.map-`uname -r` /boot/System.map

 Appendix C. Scripts and configuration files 249

fi

Now that we have all of our basic modules loaded and the kernel going,
let's dump the syslog ring somewhere so we can find it later
dmesg -s 131072 > /var/log/dmesg
Also keep kernel symbols around in case we need them for debugging
i=5
while [$i -ge 0] ; do
 if [-f /var/log/ksyms.$i] ; then
 mv /var/log/ksyms.$i /var/log/ksyms.$(($i+1))
 fi
 i=$(($i-1))
done
(/bin/date;
 /bin/uname -a;
 /bin/cat /proc/cpuinfo;
 /bin/cat /proc/modules;
 /bin/cat /proc/ksyms) >/var/log/ksyms.0
sleep 1
kill -TERM `/sbin/pidof getkey` >/dev/null 2>&1
} &
if ["$PROMPT" != "no"]; then
 /sbin/getkey i && touch /var/run/confirm
fi
wait

C.1.3 The /etc/init.d/vmgetconf script
In Example C-3, we show the /etc/init.d/vmgetconf script discussed in 8.11.4,
“The vmgetconf script” on page 166.

Example: C-3 The /etc/init.d/vmgetconf script

#!/bin/sh
#
vmgetconf - obtain config info from the VM configuration server guest
#
Copyright (C) 2002 IBM UK Ltd
Author: Malcolm Beattie <beattiem@uk.ibm.com>
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

250 Large Scale Linux Deployment

GNU General Public License for more details.
#
24 Jul 2002 Initial version
#
Overview:
Ensure cpint kernel module is loaded
Ensure we have a virtual printer at devno 001E (we only use its tag field)
Read CONFSERV guest name and our role from /etc/sysconfig/vmconfigserver
Send configuration server a request via
CP SMSG CONFSERV GETMYCONF role
Config server finds our config_info and does
CP SEND CP US TAG 001E config_info
In the meantime, we poll (once a second or so) for the TAG to appear
(a fancier version of this uses the ext_int kernel module to avoid polling
We read the config_info via "CP TAG QUERY 001E".
We parse it as "ENV1=val1;ENV2=val2;..." and write /etc/sysconfig/vmconfig
Finally we load ext_int (if possible) to allow remote shutdown trigger
#

The following file must include a line
CONFSERV=name_of_config_server_guest
and optionally may include a line
ROLE=our_role_we_want_to_ask_server_for
The default for ROLE is "default" and the value is case-insensitive

ROLE="default"
. /etc/sysconfig/vmconfigserver

if ["$CONFSERV" = ""]; then
 echo "Error: CONFSERV not defined in /etc/sysconfig/vmconfigserver" 1>&2
 echo "Continuing without updating $vmconfig_file"
 exit 1
fi

tries=10
interval=1
vmconfig_file=/etc/sysconfig/vmconfig
prtdev=001E

modprobe cpint
hcp detach $prtdev > /dev/null
if ! hcp define prt $prtdev > /dev/null; then
 echo "Error: failed CP DEFINE PRT $prtdev" 1>&2
 echo "Continuing without updating $vmconfig_file"
 exit 1
fi

echo -n "Fetching configuration for role \"$ROLE\" from $CONFSERV: "

 Appendix C. Scripts and configuration files 251

hcp smsg $CONFSERV GETMYCONF $ROLE > /dev/null
tag=""
while [$tries -gt 0]; do
 tag=`hcp tag query $prtdev | awk '
 ($3 == "TAG:") {getline; print; exit}
 ($3 == "TAG" && $4 == "NOT" && $5 == "SET") {exit 1}
 {exit 99}'`
 if [$? -ne 1]; then
 break
 fi
 echo -n "."
 sleep $interval
 tries=$(($tries - 1))
done
hcp detach $prtdev > /dev/null
if ["$tag" = ""]; then
 echo "timeout"
 echo "Error: timeout contacting VM configuration server $CONFSERV" 1>&2
 echo "Continuing without updating config file $vmconfig_file"
 exit 1
else
 echo "done"
fi

echo "$tag" | awk 'BEGIN {RS=";"} {print}' > $vmconfig_file

Try to load ext_int to intercept external interrupt OD1E and map it
to a SIGINT for init. That initiates the ctrlaltdel line in /etc/inittab
which can be configured for a "shutdown -h now".
if insmod -o ext0d1e ext_int code=0x0d1e pid=1 sig=2 > /dev/null 2>&1; then
 echo "ext_int loaded: CP EXT 0D1E will trigger init ctrlaltdel"
fi

Let's ensure CP SET RUN ON while we're here
hcp set run on > /dev/null 2>&1

exit 0

C.1.4 The /etc/init.d/itsonet script
In Example C-4, we show the /etc/init.d/itsonet script discussed in 8.11.5, “The
itsonet script” on page 168.

Example: C-4 The /etc/initt.d/itsonet script

#!/bin/sh
#
itsonet - init script

252 Large Scale Linux Deployment

Use the configuration information in /etc/sysconfig/vmconfig
(provided dynamically from the VM configuration server CONFSERV
earlier in the boot process) to create appropriate network config
files. For RedHat, we need to create /etc/sysconfig/network and
/etc/sysconfig/network-scripts/ifcfg-eth{0,1}.
The information in /etc/sysconfig/vmconfig is of the form
NETDEV=ifname
IPADDR=10.x.y.z
NETMASK=255.255.255.0
along with optional fields
GATEWAY=10.d.e.f
and also there will in practice be a field
LDAP=10.p.q.r
from which a later boot script will find the LDAP configuration server.

. /etc/init.d/functions

Pick up current settings from /etc/sysconfig/network (in case someone
has already set the hostname for example and will not be using the
LDAP host configuration).

. /etc/sysconfig/network

echo "Generating network configuration files from vmconfig information"
Now get the vmconfig information that has been dynamically fetched for us
. /etc/sysconfig/vmconfig

if ["$HOSTNAME" = ""]; then
 HOSTNAME="cloned-but-unset"
fi

cat > /etc/sysconfig/network <<EOT
NETWORKING=yes
HOSTNAME=$HOSTNAME
EOT

if ["$GATEWAY" != ""]; then
 echo "GATEWAY=$GATEWAY" >> /etc/sysconfig/network
fi

if ["$NETDEV" = ""]; then
 echo "itsonet: NETDEV not set: not configuring network device information"
elif ["$IPADDR" = ""]; then
 echo "itsonet: IPADDR not set: not configuring network device information"
elif ["$NETMASK" = ""]; then
 echo "itsonet: NETMASK not set: not configuring network device information"
else
 echo "itsonet: net device $NETDEV, IP address $IPADDR, netmask $NETMASK"
 cat > /etc/sysconfig/network-scripts/ifcfg-$NETDEV <<EOT

 Appendix C. Scripts and configuration files 253

DEVICE=$NETDEV
BOOTPROTO=static
IPADDR=$IPADDR
NETMASK=$NETMASK
ONBOOT=yes
EOT
fi

C.1.5 The /etc/init.d/guestvol-start-halt script
In Example C-5, we show the /etc/init.d/guestvol-start-halt script discussed
8.12.1, “The guestvol-start-halt script” on page 170.

Example: C-5 The /etc/init.d/guestvol-start-halt script

#!/bin/bash
#
guestvol-start-halt
First part of halt procedure for guestvol environment.
Modifications for guestvol environment by Malcolm Beattie but the
majority of the script is the first part of the rc.halt script by...
#
Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Damien Neil
#

Set the path.
PATH=/sbin:/bin:/usr/bin:/usr/sbin

export NOLOCALE=1
. /etc/init.d/functions

runcmd() {
 echo -n $"$1 "
 shift
 if ["$BOOTUP" = "color"]; then
 $* && echo_success || echo_failure
 else
 $*
 fi
 echo
}

halt_get_remaining() {
 awk '!/(^#|proc|loopfs|autofs|^none|^\/dev\/root| \/)/ {print $2}'
/proc/mounts
 awk '{ if ($3 ~ /^proc$/ && $2 !~ /^\/proc/) print $2; }' /proc/mounts
}

254 Large Scale Linux Deployment

See how we were called.
case "$0" in
 *halt)

message=$"Halting system..."
command="halt"
;;

 *reboot)
message=$"Please stand by while rebooting the system..."
command="reboot"
;;

 *)
echo $"$0: call me as 'rc.halt' or 'rc.reboot' please!"
exit 1
;;

esac
if [-n "$1"]; then
 case "$1" in
 *start)
 ;;
 *)
 echo $"Usage: (halt|reboot) {start}"

exit 1
;;

 esac
fi

Kill all processes.
["${BASH+bash}" = bash] && enable kill

runcmd $"Sending all processes the TERM signal..." /sbin/killall5 -15
sleep 5
runcmd $"Sending all processes the KILL signal..." /sbin/killall5 -9

Write to wtmp file before unmounting /var
halt -w

Save mixer settings, here for lack of a better place.
grep -q "\(sparcaudio\|sound\)" /proc/devices
if [$? = 0 -a -x /bin/aumix-minimal]; then
 runcmd $"Saving mixer settings" /bin/aumix-minimal -f /etc/.aumixrc -S
fi

Sync the system clock.
ARC=0
SRM=0
UTC=0

if [-f /etc/sysconfig/clock]; then

 Appendix C. Scripts and configuration files 255

 . /etc/sysconfig/clock

 # convert old style clock config to new values
 if ["${CLOCKMODE}" = "GMT"]; then
 UTC=true
 elif ["${CLOCKMODE}" = "ARC"]; then
 ARC=true
 fi
fi

CLOCKDEF=""
CLOCKFLAGS="$CLOCKFLAGS --systohc"

case "$UTC" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS -u";
 CLOCKDEF="$CLOCKDEF (utc)";
 ;;
 no|false)
 CLOCKFLAGS="$CLOCKFLAGS --localtime";
 CLOCKDEF="$CLOCKDEF (localtime)";
 ;;
esac

case "$ARC" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS -A";
 CLOCKDEF="$CLOCKDEF (arc)";
 ;;
esac
case "$SRM" in
 yes|true)

CLOCKFLAGS="$CLOCKFLAGS -S";
CLOCKDEF="$CLOCKDEF (srm)";

 ;;
esac

#runcmd $"Syncing hardware clock to system time" /sbin/hwclock $CLOCKFLAGS

Turn off swap
SWAPS=`awk '! /^Filename/ { print $1 }' /proc/swaps`
[-n "$SWAPS"] && runcmd $"Turning off swap: " swapoff $SWAPS

[-x /sbin/accton] && runcmd $"Turning off accounting: " /sbin/accton

[-x /sbin/quotaoff] && runcmd $"Turning off quotas: " /sbin/quotaoff -aug

For a guestvol configuration, we need to get /sbin/guestvol-final-halt
to do the rest. This is because the next step is to unmount filesystems

256 Large Scale Linux Deployment

and we are currently running from a script under /etc which is mounted
from a directory on the guestvol disk.
echo "Switching to final halt script for guestvol environment" # debug
exec /sbin/guestvol-final-halt $0

Shouldn't get here
echo "Error: failed to execute /sbin/guestvol-final-halt"
echo "Attempting emergency halt"

umount -a -f

mount | awk '/(\/ |^\/dev\/root)/ { print $3 }' | while read line; do
 mount -n -o ro,remount $line
done

Now halt or reboot.
echo $"$message"
if [-f /fastboot]; then
 echo $"On the next boot fsck will be skipped."
elif [-f /forcefsck]; then
 echo $"On the next boot fsck will be forced."
fi

HALTARGS="-i -d"
if [-f /poweroff -o ! -f /halt]; then
 HALTARGS="$HALTARGS -p"
fi

if ["$command" = halt] ; then
 if [-r /etc/ups/upsmon.conf -a -f /etc/killpower -a -f /etc/sysconfig/ups
] ; then
 . /etc/sysconfig/ups
 ["$SERVER" = "yes" -a "$MODEL" != "NONE" -a -n "$MODEL" -a -n
"$DEVICE"] && $MODEL -k $DEVICE
 fi
fi

eval $command $HALTARGS

C.1.6 The /sbin/guestvol-final-halt script
In Example C-6, we show the /sbin/guestvol-final-halt script discussed in 8.12.2,
“The guestvol-final-halt script” on page 170.

Example: C-6 The /sbin/guest-final-halt script

#!/bin/bash
#

 Appendix C. Scripts and configuration files 257

guestvol-final-halt
Perform the final part of the halt sequence for a guestvol environment.
The first part of the halt sequence is /etc/init.d/halt but in a
guestvol environment, /etc is mounted from a directory on the guestvol
disk. Now we need to unmount disks, we switch to this script which
lives in /sbin on the root filesystem.
#
Modifications for guestvol by Malcolm Beattie but the majority of the
code is taken from the rc.halt script by...
#
Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Damien Neil
#

Set the path.
PATH=/sbin:/bin:/usr/bin:/usr/sbin

export NOLOCALE=1
. /etc/init.d/functions

runcmd() {
 echo -n $"$1 "
 shift
 if ["$BOOTUP" = "color"]; then
 $* && echo_success || echo_failure
 else
 $*
 fi
 echo
}

halt_get_remaining() {
 awk '!/(^#|proc|loopfs|autofs|^none|^\/dev\/root| \/)/ {print $2}'
/proc/mounts
 awk '{ if ($3 ~ /^proc$/ && $2 !~ /^\/proc/) print $2; }' /proc/mounts
}

See if we want to halt or reboot
(Note we take this from our first argument, not from $0)
case "$1" in
 *halt)

message=$"Halting system..."
command="halt"
;;

 *reboot)
message=$"Please stand by while rebooting the system..."
command="reboot"
;;

258 Large Scale Linux Deployment

 *)
echo $"$0: call me as 'rc.halt' or 'rc.reboot' please!"
exit 1
;;

esac

echo "Starting final part of halt procedure for guestvol environment" # debug

For a guestvol, unmount "bind" mounts before the others. Use /etc/mtab
to find them since /proc/mounts only tracks the underlying block device.
Use -n to avoid updating mtab since /etc becomes the readonly
basevol instance part way through this procedure.
Reverse the list so we umount in the correct order.
mtablist=`awk '(!/^(#|\/dev|\/guestvol\/dev)/ && $4 ~ /,bind/) {print $2}'
/etc/mtab`

revmtablist=""
for dir in $mtablist; do
 revmtablist="$dir $revmtablist"
done

for dir in $revmtablist; do
 umount -n $dir
done

#
Find /guestvol device for later
#
guestvol_dev=`awk '($2 == "/guestvol") {print $1}' /proc/mounts`
if [-z "$guestvol_dev"]; then
 guestvol_dev="none" # if all else fails, try this
fi

Unmount file systems, killing processes if we have to.
Unmount loopback stuff first
remaining=`awk '!/^#/ && $1 ~ /^\/dev\/loop/ && $2 != "/" {print $2}'
/proc/mounts`
devremaining=`awk '!/^#/ && $1 ~ /^\/dev\/loop/ && $2 != "/" {print $1}'
/proc/mounts`
[-n "$remaining"] && {

sig=
retry=3
while [-n "$remaining" -a "$retry" -gt 0]
do

if ["$retry" -lt 3]; then
runcmd $"Unmounting loopback filesystems (retry):" umount -n

$remaining
else

runcmd $"Unmounting loobpack filesystems: " umount -n $remaining

 Appendix C. Scripts and configuration files 259

fi
 for dev in $devremaining ; do
 losetup $dev > /dev/null 2>&1 && \
 runcmd $"Detaching loopback device $dev: "
losetup -d $device
 done

remaining=`awk '!/^#/ && $1 ~ /^\/dev\/loop/ && $2 != "/" {print $2}'
/proc/mounts`
 devremaining=`awk '!/^#/ && $1 ~ /^\/dev\/loop/ && $2 != "/"
{print $1}' /proc/mounts`

[-z "$remaining"] && break
/sbin/fuser -k -m $sig $remaining >/dev/null
sleep 5
retry=$(($retry -1))
sig=-9

done
}

umount -n -a -f

Remount read only anything that's left mounted.
#echo $"Remounting remaining filesystems (if any) readonly"
mount | awk '/(\/ |^\/dev\/root)/ { print $3 }' | while read line; do
 mount -n -o ro,remount $line
done

Now the same for guestvol
echo "Remounting guestvol readonly on block device $guestvol_dev" # debug
mount -n -o remount,ro $guestvol_dev /guestvol

Now halt or reboot.
echo $"$message"
if [-f /fastboot]; then
 echo $"On the next boot fsck will be skipped."
elif [-f /forcefsck]; then
 echo $"On the next boot fsck will be forced."
fi

HALTARGS="-i -d"
if [-f /poweroff -o ! -f /halt]; then
 HALTARGS="$HALTARGS -p"
fi

if ["$command" = halt] ; then
 if [-r /etc/ups/upsmon.conf -a -f /etc/killpower -a -f /etc/sysconfig/ups
] ; then
 . /etc/sysconfig/ups
 ["$SERVER" = "yes" -a "$MODEL" != "NONE" -a -n "$MODEL" -a -n
"$DEVICE"] && $MODEL -k $DEVICE

260 Large Scale Linux Deployment

 fi
fi

echo "About to eval $command $HALTARGS" # debug

eval $command $HALTARGS

C.1.7 The /usr/sbin/basevol-devel script
In Example C-7, we show the /usr/sbin/basevol-devel script discussed in 9.5.1,
“Prepare the LDV01 Linux guest” on page 177.

Example: C-7 The /usr/sbin/basevol-devel script

#!/bin/sh

if ["$1" = "enable"]; then
 awk -F: '{if ($3 == "sysinit") {print "gv::sysinit:/etc/rc.d/rc.guestvol"} \
 else { print }}' < /etc/inittab > /etc/inittab.for-basevol
 rm -f /etc/inittab.pre-basevol
 ln /etc/inittab /etc/inittab.pre-basevol
 mv -f /etc/inittab.for-basevol /etc/inittab
elif ["$1" = "disable"]; then
 awk -F: '{if ($3 == "sysinit") {print "si::sysinit:/etc/rc.d/rc.sysinit"} \
 else { print }}' < /etc/inittab > /etc/inittab.not-basevol
 rm -f /etc/inittab.old-basevol
 ln /etc/inittab /etc/inittab.old-basevol
 mv -f /etc/inittab.not-basevol /etc/inittab
else
 echo "Usage: basevol-devel enable|disable" 1>&2
 exit 2
fi

C.1.8 The /usr/sbin/mkguestvol script
In Example C-8, we show the /usr/sbin/mkguestvol script discussed in 9.5.3,
“Prepare guestvol filesystem image” on page 178.

Example: C-8 The /usr/sbin/mkguestvol script

#!/bin/sh
mkguestvol - copy the "to-be-writable" part of a basevol to a new guestvol
#
runcmd=""

if ["$1" = "-n"]; then
 runcmd="echo"

 Appendix C. Scripts and configuration files 261

 shift
fi

basevol="$1"
guestvol="$2"

if [-z "$basevol" -o -z "$guestvol"]; then
 echo "Usage: mkguestvol [-n] /mnt/newbasevol /mnt/newguestvol" 1>&2
 exit 2
fi

for dir in etc home opt root usr tmp boot; do
 $runcmd mkdir $guestvol/$dir
done
$runcmd chmod 1777 $guestvol/tmp
$runcmd cp -a $basevol/dev $basevol/etc $basevol/mnt $basevol/var $guestvol
"local" subdirectory of source ends up in target dir so below is correct
$runcmd cp -a $basevol/usr/local $guestvol/usr
find $guestvol/var/log -type f -name '*.[0-9]' -exec $runcmd rm -f '{}' \;
find $guestvol/var/log -type f -exec $runcmd cp /dev/null '{}' \;
find $guestvol/var/run -type f ! \(-name utmp -o -name runlevel.dir \) \
 -exec $runcmd rm -f '{}' \;
$runcmd awk -F: '{if ($3=="sysinit") \
 {print "si::sysinit:/etc/rc.d/rc.sysinit-guestvol"} \
 else if ($3=="ctrlaltdel") \
 {print "ca::ctrlaltdel:/sbin/shutdown -h now"} \
 else {print}}' \
 < $basevol/etc/inittab > $guestvol/etc/inittab
$runcmd ln -sf ../init.d/vmgetconf $guestvol/etc/rc.d/rc3.d/S01vmgetconf
$runcmd ln -sf ../init.d/itsonet $guestvol/etc/rc.d/rc3.d/S04itsonet
$runcmd ln -sf ../init.d/guestvol-start-halt $guestvol/etc/rc.d/rc0.d/S01halt
$runcmd ln -sf ../init.d/guestvol-start-halt $guestvol/etc/rc.d/rc6.d/S01reboot
echo "Don't forget to edit the following files if necessary:"
echo " $guestvol/etc/chandev.conf"
echo " $guestvol/etc/modules.conf"
echo "Don't forget to remove the following files if necessary:"
echo " unneeded $guestvol/etc/sysconfig/network-scripts/ifcfg-*"

C.2 The itsobasevol-1.0.0-1.s390x.rpm package
We list some of the scripts found in the itsobasevol-1.0.0-1.s390x.rpm package.

262 Large Scale Linux Deployment

C.2.1 The /etc/init.d/itsoldap script
The /etc/init.d/itsoldap script shown in Example C-9 we discussed in 10.4.4, “The
itsoldap script” on page 199.

Example: C-9 The /etc/init.d/itsoldap script

#!/bin/sh
#
chkconfig: 2345 9 80
description: VM configuration server
#
itsoldap.init
Use the configuration information in /etc/sysconfig/vmconfig
(provided dynamically from the VM configuration server CONFSERV
earlier in the boot process) to create a appropriate LDAP client
config file /etc/openldap/ldap.conf and retrieve other
informations from the LDAP directory

["$1" != "start"] && exit 0

. /etc/init.d/functions

. /etc/sysconfig/vmconfig

set VMGUESTNAME and VMNODENAME via "hcp q userid"
eval `hcp q userid | tr "[:upper:]" "[:lower:]" | \
 awk '{ printf "VMGUESTNAME=%s\nVMNODENAME=%s\n",$1,$3 }'`

set hostname by convention
HOSTNAME=`echo "$VMGUESTNAME.$VMNODENAME.itso.ibm.com" | \
 tr "[:upper:]" "[:lower:]"`

LDAPHOST="10.0.3.1"
LDAPBASEDN="o=IBM-ITSO,c=US"
LDAPBASEDN_VM="ou=VM,$LDAPBASEDN"
LDAPPAMGROUPDN="cn=$HOSTNAME,ou=HostAccess,$LDAPBASEDN"

LDAPTMP="/tmp/itsoldap.$$"

IFNUMCHANDEV="0"
IFNUMETH="0"
IFNUMHSI="0"

###
###

increment_ifnum ()
{
 case "$IFTYPE" in

 Appendix C. Scripts and configuration files 263

 eth) IFNUMETH=`expr "$IFNUMETH" + 1`
 ;;
 hsi) IFNUMHSI=`expr "$IFNUMHSI" + 1`
 ;;
 esac

 IFNUMCHANDEV=`expr "$IFNUMCHANDEV" + 1`
}

get_ifnum ()
{
case "$IFTYPE" in
eth) IFNUM="$IFNUMETH"
;;
hsi) IFNUM="$IFNUMHSI"
;;
esac

 IFNUM="$IFNUMCHANDEV"
}

###
###

lookup_publicnetwork ()
{
 VMGUESTPUBNET=$1

 ldapsearch -x -H ldap://$LDAPHOST -b "$LDAPBASEDN_VM" \

"(&(objectClass=VMGuestPublicNetwork)(VMGuestNetwork=$VMGUESTPUBNET))" \
 | perl -00 -pe 's/\n[\t]//gs; s/^(\w+): (.*)$/$1="$2"/mg' \
 > $LDAPTMP.2

 . $LDAPTMP.2

 if (cat $LDAPTMP.2 | grep -q "numEntries: 1")
 then
 PUBNETFOUND="1"
 else
 PUBNETFOUND="0"

 echo "FAILED: Could not retrieve LDAP configuration for
PublicNet \"$VMGUESTPUBNET\"!"
 ERROR="1"
 fi

 rm $LDAPTMP.2
}

264 Large Scale Linux Deployment

###
###

config_interface ()
{
 IFTYPE="$VMGuestNetType"
 get_ifnum

 cat > /etc/sysconfig/network-scripts/ifcfg-$IFTYPE$IFNUM <<EOT
#
autogenerated by /etc/init.d/itsoldap script
#

DEVICE=$IFTYPE$IFNUM
BOOTPROTO=static
IPADDR=$PUBNETIP
NETMASK=$VMGuestNetMask
ONBOOT=yes
EOT

 echo "qeth$IFNUMCHANDEV,$VMGuestNetCHANDEV" | \
 sed -e 's/\^/;/' >> /etc/chandev.conf

 increment_ifnum
}

###
INIT
keep management configuration and backup all others

IFNUM="1"
ERROR="0"

remove old backup files
rm -f \
 /etc/sysconfig/network-scripts/ifcfg-*.bak \
 /etc/sysconfig/network.bak \
 /etc/chandev.conf.bak

mv /etc/chandev.conf /etc/chandev.conf.bak
cp /etc/chandev.template.conf /etc/chandev.conf

mv /etc/sysconfig/network /etc/sysconfig/network.bak && \
 cat /etc/sysconfig/network.bak | grep -vE "^HOSTNAME=" > \
 /etc/sysconfig/network
echo "HOSTNAME=$HOSTNAME" >> /etc/sysconfig/network

for i in /etc/sysconfig/network-scripts/ifcfg-*

 Appendix C. Scripts and configuration files 265

do
 if ["$i" != "/etc/sysconfig/network-scripts/ifcfg-$NETDEV" -a \
 "$i" != "/etc/sysconfig/network-scripts/ifcfg-lo"]
 then
 mv $i{,.bak}
 fi
done

bring up management interface now
ifup $NETDEV

IFTYPE=`echo "$NETDEV" | sed -e 's/[0-9]//'`
increment_ifnum

###
MAIN

echo "Connecting to LDAP server to lookup PublicNet's parameters..."

VMNODEBASEDN="VMNodeName=$VMNODENAME,ou=VM,o=IBM-ITSO,c=US"
ldapsearch -x -H ldap://$LDAPHOST \
 -b $VMNODEBASEDN "(&(objectClass=VMGuest)(VMGuestName=$VMGUESTNAME))" \
 | perl -00 -pe 's/\n[\t]//gs; s/^(\w+): (.*)$/$1="$2"/mg' > $LDAPTMP

if (cat $LDAPTMP | grep -q "numEntries: 1")
then
 . $LDAPTMP

 echo "I'm $VMGuestName @ $VMNodeName... searching $VMNODEBASEDN"

 cat $LDAPTMP | grep "^VMGuestNetwork=" | while read PUBNET
 do
 eval `echo $PUBNET`
 PUBNETNAME=`echo $VMGuestNetwork | cut -d ',' -f 1`
 PUBNETIP=`echo $VMGuestNetwork | cut -d ',' -f 2`

 echo "Connecting to PublicNet $PUBNETNAME with IP $PUBNETIP..."
 lookup_publicnetwork $PUBNETNAME

 if ["$PUBNETFOUND" = "1"]
 then
 config_interface
 fi
 done
else
 echo "FAILED: Could not retrieve LDAP configuration for guest
\"$VMGUESTNAME\"!"
 ERROR="1"
fi

266 Large Scale Linux Deployment

rm $LDAPTMP

###
LDAP.CONF

if ["$ERROR" = "0"]
then
 cat /etc/openldap/ldap.template.conf | \
 sed -e "s/@LDAPHOST@/$LDAPHOST/g" \
 -e "s/@LDAPBASEDN@/$LDAPBASEDN/g" \
 -e "s/@LDAPPAMGROUPDN@/$LDAPPAMGROUPDN/g" \
 > /etc/openldap/ldap.conf

fi

###
DONE

if ["$ERROR" != "0"]
then
 echo "Something went wrong. Using backup network configuration!"

 for i in /etc/sysconfig/network-scripts/ifcfg-*.bak
 do
 if ["$i" != "/etc/sysconfig/network-scripts/ifcfg-$NETDEV.bak"
]
 then
 F=`echo $i | sed -e 's/\.bak$//'`
 mv $i $F
 fi
 done

 if [-f mv /etc/chandev.conf.bak]
 then
 mv /etc/chandev.conf.bak /etc/chandev.conf
 fi
else
 echo "LDAP informations retrieved successfully."

 ifdown eth0

 echo "reset_conf" > /proc/chandev
 echo "read_conf" > /proc/chandev
 echo "reprobe" > /proc/chandev

 rmmod qeth && modprobe qeth
fi

 Appendix C. Scripts and configuration files 267

exit 0

C.2.2 The /usr/sbin/dasd script
Example C-10 shows the /usr/sbin/dasd script, a systems administration helper
script for dynamically adding, listing, enabling and disabling DASD devices. It is
merely a wrapper script that hides the underlying manipulation of the
/proc/dasd/devices interface to the kernel DASD driver.

Example: C-10 The /usr/sbin/dasd script

#!/bin/sh
dasd - simple utility for dynamic DASD management

if ["$1" = "add" -a "$2" != ""]; then
 echo "add range=$2" > /proc/dasd/devices
elif ["$1" = "on" -a "$2" != ""]; then
 echo "set device range=$2 on" > /proc/dasd/devices
elif ["$1" = "off" -a "$2" != ""]; then
 echo "set device range=$2 off" > /proc/dasd/devices
elif ["$1" = "list"]; then
 cat /proc/dasd/devices
else
 echo "Usage: dasd add|on|off vdev_or_range" 1>&2
 echo " dasd list" 1>&2
 exit 2
fi

C.3 The GVCOPY EXEC
In Example C-11, we show the GVCOPY EXEC discussed in 9.7.3, “Create the
Linux clone guestvol” on page 183.

Example: C-11 The GVCOPY script

/* */
parse upper arg src_user src_vdev dst_user dst_vdev
say "Copying guestvol from" src_user src_vdev "to" dst_user dst_vdev
address command CP "LINK" src_user src_vdev "2777" "RR"
address command CP "LINK" dst_user dst_vdev "3777" "MW"
queue "SYSPRINT CONS"
queue "INPUT 2777 3390"
queue "OUTPUT 3777 3390"

268 Large Scale Linux Deployment

queue "COPY ALL"
queue "YES"
queue "YES"
queue ""
DDR
address command CP "DETACH 2777"
address command CP "DETACH 3777"

C.4 The GUESTACT EXEC script
Example C-12 shows the GUESTACT EXEC script discussed in 9.8.5, “The
GUESTACT EXEC script” on page 188.

Example: C-12 The GUESTACT EXEC script

/*
 * GUESTACT - perform a variety of actions on a guest in GUEST CONF
 * Intended for use as a PROP action script
 *
 * Copyright 2002, IBM UK Ltd
 * Author: Malcolm Beattie <beattiem@uk.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * Sample code. Do not use in production.
 * 29 Jul 2002 Initial version
 */

conffile="GUEST CONF"

parse upper arg ruser rnode lglopr msgcode puser pnode netid rtable
pull msg
pull action

parse var msg . user restofmsg
okchars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
okchars = okchars !! "0123456789_-$"
if verify(user, okchars, "Nomatch") ! length(user)=0 ! length(user)>8
then do

 Appendix C. Scripts and configuration files 269

 say "GUESTACT: Syntax error in requested username:" user
 exit 1
end

/*
 * Only allow a username which appears in GUEST CONF
 */
found = 0
parse value stream(conffile,'c','open read') with ok fh
if ok == "ERROR:" then do
 say "GUESTACT: Error opening config file" conffile ":" fh
 exit 1
end

do while found == 0 & lines(fh) > 0
 parse value linein(fh) with cuser .
 if translate(cuser) == translate(user) then found = 1
end
ok = stream(fh,'c','close')
/* stream() barfs with RC(-3) used without the "ok =". Go figure. */

if found == 0 then do
 say "GUESTACT: Request for user not in guestlist:" user
 exit 1
end

/*
 * We need to do compare action below with "=" and not "=="
 * since PROP passes us the action string as 8 characters
 * right-padded with spaces.
 */

select
 when action = "XAUTOLOG" then
 address command CP "XAUTOLOG" user
 when substr(action, 1, 3) == "EXT" then do
 extint = substr(action, 4, 4)
 address command CP "SEND CP" user "EXT" extint
 end
 when action = "LOGOFF" then
 address command CP "SEND CP" user "LOGOFF"
 when action = "DISC" then
 address command CP "SEND CP" user "DISC"
 when action = "BEGIN" then
 address command CP "SEND CP" user "BEGIN"
 when action = "RUNON" then
 address command CP "SEND CP" user "SET RUN ON"
 when action = "CPCMD" then
 address command CP "SEND CP" user restofmsg

270 Large Scale Linux Deployment

 when action = "VMCMD" then
 address command CP "SEND" user restofmsg
 when action = "CONSTART" then
 address command CP "SEND CP" user "SPOOL CON TO" ruser "START"
 when action = "CONCLOSE" then
 address command CP "SEND CP" user "SPOOL CON CLOSE"
 when action = "CONOFF" then
 address command CP "SEND CP" user "SPOOL CON OFF"
 otherwise do
 say "GUESTACT: Unknown action:" action
 exit 1
 end
end
exit 0

C.5 The GETCONF EXEC script
Example C-13 shows the GETCONF EXEC script discussed in 8.11.1, “The
z/VM configuration server” on page 164.

Example: C-13 The GETCONF EXEC script

/*
 * GETCONF EXEC
 * Retrieve guest configuration information.
 * Intended to be called as a PROP action routine, not manually.
 *
 * Copyright 2002, IBM UK Ltd
 * Author: Malcolm Beattie <beattiem@uk.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * Sample code. Do not use in production.
 *
 * 24 July 2002 Initial Version
 */

prtdev="001E"
conffile="GUEST CONF"

 Appendix C. Scripts and configuration files 271

parse upper arg ruser rnode lglopr msgcode puser pnode netid rtable
pull msg
pull method

/* Find role for which guest wants information and sanitise it */
parse var msg . role .
okchars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
okchars = okchars !! "0123456789_-"
if verify(role, okchars, "Nomatch") ! length(role)=0 ! length(role)>32
then role = "default"

/*
 * Look in GUEST CONF for the line whose first words are ruser and role
 * where the comparison for both is case *in*sensitive
 */
found = 0
do while found = 0 & lines(conffile) > 0
 parse value linein(conffile) with cuser crole info .
if translate(cuser) == translate(ruser) ,
 & translate(crole) == translate(role)
 then found = 1
end
if found = 0 then info = "ERROR=No_config_info_found"

/*
 * Send back info as the reply via the appropriate method
 */
select
 when method = 'TAG' then
 address command CP 'SEND CP' ruser 'TAG' prtdev info
 when method = 'MSG' then
 address command CP 'MESSAGE' ruser 'GETCONF:' info
 otherwise
 say 'Method' method 'not supported'
end
exit 0

C.6 The PROP RTABLE configuration file
Example C-14 shows the PROP RTABLE configuration file discussed in 8.11.1,
“The z/VM configuration server” on page 164.

Example: C-14 The PROP RTABLE configuration file

LGLOPR MBEATTIE VMLINUX
TEXTSYM / $ ^

272 Large Scale Linux Deployment

LOGGING ALL
ROUTE
*
* ALLOW INTERNAL PROP COMMANDS TO AUTHORIZED PEOPLE
*
/SET / 1 4 MBEATTIE DMSPOR SET
/GET / 1 4 MBEATTIE DMSPOR GET
/CMD / 1 4 MBEATTIE DMSPOR TOVM
/QUERY / 1 6 MBEATTIE DMSPOR QUERY
/STOP / 1 5 MBEATTIE DMSPOR STOP
/LGLOPR / 1 8 MBEATTIE DMSPOR LGLOPR
/LOADTBL / 1 8 MBEATTIE DMSPOL
/*/ 1 1 MBEATTIE
/LOG / 1 4 MBEATTIE
/GETMYCONF / 1 10 4 GETCONF TAG
/GETMYCONFMSG / 1 13 4 GETCONF MSG
/XAUTOLOG / 1 9 4 MBEATTIE GUESTACT XAUTOLOG
/LOGOFF / 1 7 4 MBEATTIE GUESTACT LOGOFF
/SHUTDOWN / 1 9 4 MBEATTIE GUESTACT EXT0D1E
/DISC / 1 5 4 MBEATTIE GUESTACT DISC
/BEGIN / 1 6 4 MBEATTIE GUESTACT BEGIN
/RUNON / 1 6 4 MBEATTIE GUESTACT RUNON
/CPCMD / 1 6 4 MBEATTIE GUESTACT CPCMD
/VMCMD / 1 6 4 MBEATTIE GUESTACT VMCMD
/STARTCONS / 1 10 4 MBEATTIE GUESTACT CONSTART
/STOPCONS / 1 9 4 MBEATTIE GUESTACT CONOFF
/SENDCONS / 1 9 4 MBEATTIE GUESTACT CONCLOSE
* Web interface
/XAUTOLOG / 1 9 4 LNX5 GUESTACT XAUTOLOG
/SHUTDOWN / 1 9 4 LNX5 GUESTACT EXT0D1E
/STARTCONS / 1 10 4 LNX5 GUESTACT CONSTART
/STOPCONS / 1 9 4 LNX5 GUESTACT CONOFF
/SENDCONS / 1 9 4 LNX5 GUESTACT CONCLOSE

C.7 The redbook.schema file
Example C-15 illustrates the LDAP schema definition discussed in 10.4.1, “The
redbook LDAP schema” on page 197.

Example: C-15 The redbook.schema

#
SG24-6824-00 Redbook's directory schema items

These are provided for informational purposes only.

 Appendix C. Scripts and configuration files 273

objectIdentifier itsoOID 1.3.6.1.4.1.2.4711
objectIdentifier itsoSNMP itsoOID:1
objectIdentifier itsoLDAP itsoOID:2
objectIdentifier itsoAttributeType itsoLDAP:1
objectIdentifier itsoObjectClass itsoLDAP:2

attributetype (itsoAttributeType:1 NAME 'VMNodeName'
 DESC 'z/VM Node Name'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{8})

attributetype (itsoAttributeType:2 NAME 'VMGuestName'
 DESC 'Linux Guest Name under z/VM Node Name'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{8})

attributetype (itsoAttributeType:3 NAME 'VMGuestRole'
 DESC 'Linux Guest Role'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{8})

attributetype (itsoAttributeType:4 NAME 'VMGuestMgmtNetwork'
 DESC 'Linux Guest Management Network Name and IP'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{128})

attributetype (itsoAttributeType:5 NAME 'VMGuestNetwork'
 DESC 'Linux Guest Network Name and IP'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{128})

attributetype (itsoAttributeType:6 NAME 'VMGuestGatewayIP'
 DESC 'Linux Guest Network - Gateway IP Address'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{12})

attributetype (itsoAttributeType:7 NAME 'VMGuestNet'
 DESC 'Linux Guest Network - Network'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{12})

274 Large Scale Linux Deployment

attributetype (itsoAttributeType:8 NAME 'VMGuestNetMask'
 DESC 'Linux Guest Network - Network Mask'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{12})

attributetype (itsoAttributeType:9 NAME 'VMGuestLDAPIP'
 DESC 'Linux Guest Network - LDAP Server IP Address'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{12})

attributetype (itsoAttributeType:10 NAME 'VMGuestNetType'
 DESC 'Linux Guest Network - Network Type (eth,hsi)'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{3})

attributetype (itsoAttributeType:11 NAME 'VMGuestNetCHANDEV'
 DESC 'Linux Guest Network - Network CHANDEV Parameter'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{80})

objectClass (itsoObjectClass:1 NAME 'VMGuest'
 DESC 'IBM ITSO Redbook SG24-6824 Linux VM Guest Object'
 SUP top AUXILIARY
 MUST (VMnodename $ VMguestname $ VMGuestMgmtNetwork)
 MAY (VMGuestRole $ VMGuestNetwork)
)

objectClass (itsoObjectClass:2 NAME 'VMGuestManagementNetwork'
 DESC 'IBM ITSO Redbook SG24-6824 Linux VM Guest Management Network
Object'
 SUP top AUXILIARY
 MUST (VMGuestMgmtNetwork $ VMGuestNet $ VMGuestGatewayIP $
 VMGuestNetMask $ VMGuestLDAPIP $ VMGuestNetType)
)

objectClass (itsoObjectClass:3 NAME 'VMGuestPublicNetwork'
 DESC 'IBM ITSO Redbook SG24-6824 Linux VM Guest Management Network
Object'
 SUP top AUXILIARY
 MUST (VMGuestNetwork $ VMGuestNet $ VMGuestGatewayIP $
 VMGuestNetMask $ VMGuestNetType $ VMGuestNetCHANDEV)
)

 Appendix C. Scripts and configuration files 275

C.8 The sample-ldap.php script
The sample-ldap.php script resets LDAP passwords as discussed in 10.7.1,
“Interface to reset passwords” on page 212.

Example: C-16 The sample-ldap.php script

<?php
$ldap_host="10.0.3.1";
$ldap_basedn="o=IBM-ITSO,c=US";
$ldap_rootdn="cn=Manager,". $ldap_basedn;
$ldap_rootdn_password = "secret";
$password="notverysecret";

echo "<H1>LDAP password reset frontend</H1>";

$connect=ldap_connect($ldap_host);
if (!$connect) {
 die ("Could not connect to LDAP server!");
}

/* if 'dn' argument passed, reset users password */
if ($dn) {
 echo "LDAP DN of user is '". $dn ."'
";

 /* bind as manager */
 $result=@ldap_bind($connect, $ldap_rootdn, $ldap_rootdn_password);

 if ($result) {
 /* generate a good password hash */
 $random = md5(time() . getmypid());
 $salt = substr($random,0,2);
 $cryptpw = crypt($password,$salt);

 /* update the LDAP attribute "userPassword" */
 $entry[userPassword]="{CRYPT}". $cryptpw;
 $result = ldap_mod_replace($connect, $dn, $entry);

 if ($result) {
 echo "password is now '". $password ."'";
 }
 }

/* lookup list of users */
} else {

Attention: This script is inherently insecure as there is no encryption or
authentication. This is provided only as a sample.

276 Large Scale Linux Deployment

 /* bind anonymous */
 $r=ldap_bind($connect);

 $result=ldap_search($connect,"ou=People,". $ldap_basedn,
"objectclass=posixaccount");
 $info = ldap_get_entries($connect, $result);

 echo "<TABLE BORDER>";
 echo "<TR><TD>LDAP DN of user</TD>";
 echo " <TD>Password</TD></TR>";

 for ($i=0; $i<$info["count"]; $i++) {
 $dn=$info[$i]["dn"];

 /* create row for each user, pass his DN attribute as 'dn' */
 echo "<TR><TD>". $dn ."</TD>";
 echo " <TD><A HREF=\"/sample-ldap.php?dn=". urlencode($dn)
."\">reset</TD></TR>";
 }
 echo "</TABLE>";
}

ldap_close($connect);

C.9 The ipl-shutdown.php script
The ipl-shutdown.php script shuts down basevol/guestvol Linux guest as
discussed in 10.7.2, “Interface to IPL and shutdown Linux guests” on page 213.

Example: C-17 The ipl-shutdown.php script

<?php
$ldap_host="10.0.3.1";
$ldap_basedn="ou=VM,o=IBM-ITSO,c=US";

function myhcp($guest, $action) {
 $command="/usr/sbin/hcp smsg confserv ". $action ." ". $guest;
 echo $command ."
";

 if (!($p=popen("($command)2>&1","r"))) return 126;
 while (!feof($p)) {
 $l=fgets($p,2342);
 print $l;

Attention: This script is inherently insecure as there is no encryption or
authentication. This is provided only as a sample.

 Appendix C. Scripts and configuration files 277

 }
 return pclose($p);
}

echo "<H1>List of LCLxxx@VMLINUX Linux guests</H1>";

if ($guest) {
 myhcp ($guest,$action);

} else {
 $connect=ldap_connect($ldap_host);
 if (!$connect) {
 die ("Could not connect to LDAP server!");
 }

 /* bind anonymous */
 $r=ldap_bind($connect);

 $result=ldap_search($connect,$ldap_basedn,
 "(&(objectclass=VMGuest)(VMGuestName=LCL*))");

 $info = ldap_get_entries($connect, $result);

 echo "<TABLE BORDER>";
 echo "<TR><TD>VMGuest</TD>";
 echo " <TD COLSPAN=2>Action</TD></TR>";

 /* for each VMGuest object found in the LDAP tree */
 for ($i=0; $i<$info["count"]; $i++) {
 $dn=$info[$i]["dn"];
 $vmguest=$info[$i]["vmguestname"][0];

 /* offer IPL and Shutdown option via guestact script */
 echo "<TR><TD>". $vmguest ."</TD>";
 echo " <TD><A HREF=\"ipl-shutdown.php?guest=". $vmguest
 ."&action=xautolog\">IPL</TD>";
 echo " <TD><A HREF=\"ipl-shutdown.php?guest=". $vmguest
 ."&action=shutdown\">SHUTDOWN</TD></TR>";
 }
 echo "</TABLE>";

 ldap_close($connect);
}

278 Large Scale Linux Deployment

Appendix D. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246824

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6824.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246824.tar.gz A gzipped tar file containing the sample code.

D

© Copyright IBM Corp. 2002. All rights reserved. 279

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
ftp://www.redbooks.ibm.com/redbooks/SG244824

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 15 MB
Operating System: Linux for zSeries or S/390

How to use the Web material
Copy and unzip the sg246824.tar.gz to your Linux server. The tar file expands to
the sg246824 directory. In this directory, you will find:

� The REXX directory

This contains the REXX scripts and configuration files discussed in
Chapter 8, “Shared Linux filesystems” on page 149. Copy these files to the
PROP user virtual machine (CONFSERV, in our configuration).

� The bin directory

This contains the ldapasswd.pl Perl script to generate an LDIF file used to
modify a user password as discussed in 10.5.6, “Changing passwords stored
in LDAP” on page 205.

� The src directory

This contains the ext_int.c source file for the ext_int device driver discussed in
9.8.1, “The ext_int kernel module” on page 184.

� The LDAP directory

This contains the OpenLDAP server configuration and schemas discussed in
Chapter 10, “Centralized management using LDAP” on page 191.

� The RPMS directory

This contains package discussed throughout Part 3, “Creating and managing
a penguin colony” on page 147.

� The SPECS directory

This contains the RPM SPEC files needed to rebuild the packages in the
RPMS directory.

280 Large Scale Linux Deployment

acronyms
BNF Backus Naur Form

CBQ Class-Based Queue

CF Coupling Facility

CHPID Channel-path Identifier

CMS Conversional Monitoring
System

CP Control Program

CTC Channel-To-Channel

DASD Direct Access Storage Device

DDS Distributed Data Server

DMZ Demilitarized Zone

DN Distinguished Name

DNS Domain Name System

DoS Denial of Service

EMIF Enhanced Multiple Image
Facility

FHS Filesystem Hierarchy
Standard

FIFO First In First Out

HA High Availability

HSA HiperSockets Accelerator

IBM International Business
Machines Corporation

IGRP Interior Gateway Routing
Protocol

IQD Internal Queued Direct

IS-IS Intermediate System-to-
Intermediate System

ITSO International Technical
Support Organization

IUCV Inter-User Communication
Vehicle

LAN Local Area Network

Abbreviations and

© Copyright IBM Corp. 2002. All rights reserved.
LANANA Linux Assigned Names and
Numbers Authority

LDAP Lightweight Directory Access
Protocol

LDIF LDAP Data Interchange
Format

LPAR Logical Partition

LSA Link State Advertisement

LSB Linux Standard Base

LVM Logical Volume Manager

LVS Linux Virtual Server

NIC Network Interface Card

NSS Name Service Switch

OCO Object Code Only

OSA Open System Adapter

OSPF Open Shortest Path First

PAM Pluggable Authentication
Modules

PGP Pretty Good Privacy

PHP PHP: Hypertext Preprocessor

PM Performance Monitor

PRF Performance Reporting
Facility

QDIO Queued Direct Input/Output

RFC Request For Comment

RIP Routing Information Protocol

RMF RealTime Monitor Function

RPM RedHat Package Manager

RSVP Reservation Protocol

RTM RealTime Monitor

SATF Shared-access Transport
Facility

SMB System Message Block

 281

SNMP System Network Message
Protocol

SSL Secure Sockets Layer

STI Self-Timed Interrupt

TBF Token Bucket Flow

UUID Universal Unique Identifier

VIPA Virtual IP Addressing

VMRM Virtual Machine Resource
Manager

VRRP Virtual Router Redundancy
Protocol

WSC Washington Systems Center

XML Extensible Markup Language

282 Large Scale Linux Deployment

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 286.

� Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299

http://www.ibm.com/redbooks/abstracts/sg246299.html

� Linux on IBM ^ zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� Linux for S/390, SG24-4987

http://www.ibm.com/redbooks/abstracts/sg244987.html

� zSeries Hipersockets, SG24-6816

http://www.ibm.com/redbooks/abstracts/sg246816.html

� Understanding LDAP, SG24-4986

http://www.ibm.com/redbooks/abstracts/sg244986.html

� ABCs of System Programming Volume 1, SG24-5597

http://www.ibm.com/redbooks/abstracts/sg245597.html

� Linux on IBM zSeries and S/390: High Availability for z/VM and Linux,
REDP0220

http://www.ibm.com/redbooks/abstracts/redp0220.html

� Linux on IBM zSeries and S/390: Securing Linux for zSeries with a central
z/OS LDAP server (RACF), REDP0221

http://www.ibm.com/redbooks/abstracts/redp0221.html

� Linux on IBM zSeries and S/390: Server Consolidation with Linux for zSeries,
REDP0222

http://www.ibm.com/redbooks/abstracts/redp0222.html

© Copyright IBM Corp. 2002. All rights reserved. 283

http://www.ibm.com/redbooks/abstracts/sg246299.html
http://www.ibm.com/redbooks/abstracts/sg246264.html
http://www.ibm.com/redbooks/abstracts/sg244987.html
http://www.ibm.com/redbooks/abstracts/sg246816.html
http://www.ibm.com/redbooks/abstracts/sg244986.html
http://www.ibm.com/redbooks/abstracts/redp0220.html
http://www.ibm.com/redbooks/abstracts/redp0221.html
http://www.ibm.com/redbooks/abstracts/sg245597.html
http://www.ibm.com/redbooks/abstracts/redp0221.html

Other resources
These publications are also relevant as further information sources:

� z/VM V4R3.0 CP Command and Utility Reference, SC24-6008-03

� z/VM V4R3.0 Directory Maintenance Facility Function Level 410 Command
Reference, SC24-6025

� z/VM V4R3.0 Directory Maintenance Facility Function Level 410 Tailoring and
Administration Guide, SC24-6024

� z/VM V4R3.0 CMS Planning and Administration, SC24-6042

� z/VM V4R3.0 Performance, SC24-5999

� z/VM V4R3.0 TCP/IP Level 430 Planning and Customization, SC24-6019

� Linux - Advanced Networking Overview by Saravanan Radhakrishnan found
at:

http://qos.ittc.ukans.edu/howto/howto.html

� Linux 2.4 Advanced Routing HOWTO by Netherlabs BV et al. found at:

http://www.linuxguruz.org/iptables/howto/2.4routing.html

� Designing Large-Scale IP Internetworks by Cisco Systems found at:

http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/nd2003.htm

� Maximum RPM - Taking the Red Hat Package Manager to the Limit, by
Edward C. Bailey found at:

http://www.rpm.org/max-rpm/

� OpenLDAP home page at:

http://www.openldap.org/

� The Linux-PAM System Administrators’ Guide by Andrew G. Morgan

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html

� LDAP Implementation HOWTO by Roel van Meer and Giuseppe Lo Biondo,
by Roel van Meer and Giuseppe Lo Biondo found at:

http://tldp.org/HOWTO/LDAP-Implementation-HOWTO/

� LDAP Linux HOWTO at:

http://www.tldp.org/HOWTO/LDAP-HOWTO/

� PADL Software Pty Ltd Open Source Software distribution site at:

http://www.padl.com/Contents/OpenSourceSoftware.html

� Samba-LDAP PDC HOWTO at:

http://samba.idealx.org/

� Proceedings of the 2002 Ottawa Linux Symposium at:

284 Large Scale Linux Deployment284 Large Scale Linux Deployment

http://www.rpm.org/max-rpm/
http://tldp.org/HOWTO/LDAP-Implementation-HOWTO/
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html
http://www.openldap.org/
http://www.tldp.org/HOWTO/LDAP-HOWTO/
http://www.padl.com/Contents/OpenSourceSoftware.html
http://samba.idealx.org/
http://qos.ittc.ukans.edu/howto/howto.html
http://www.linuxguruz.org/iptables/howto/2.4routing.html

http://www.linux.org.uk/~ajh/ols2002_proceedings.pdf.gz

� Linux for zSeries and S/390 Device Drivers and Installation Commands ,
LNUX-1303 at:

http://www.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf

Referenced Web sites
These Web sites are also relevant as further information sources:

� z/VM Version 4 Release 3 Statement of Direction

http://www.ibm.com/servers/eserver/zseries/library/specsheets/gm130075_more
2.html#9

� VM Solutions for System Performance

http://www.vm.ibm.com/perf/perfprod.html

� z/OS RMF PM with Support for Linux Enterprise Server

http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm

� TCP/IP Stack Limitation on OSA-Express

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/PubAllNum/Flash10144

� RFC1918 - Address Allocation for Private Internets

http://www.faqs.org/rfcs/rfc1918.html

� RFC1122 - Requirements for Internet Hosts -- Communication Layers

http://www.faqs.org/rfcs/rfc1122.html

� Useful add-ons for Linux on zSeries and S/390 for IBM Developerworks

http://oss.software.ibm.com/linux390/useful_add-ons.shtml

� The Plan9 from Bell Labs home page

http://plan9.bell-labs.com/plan9dist/

� The Filesystem Hierarchy Standard home page

http://www.pathname.com/fhs/

� The LDAPzone home page

http://www.ldapzone.com/

� The LDAP Browser/Editor home page

http://www.iit.edu/~gawojar/ldap/

� PADL Software LDAP migration tools

http://www.padl.com/OSS/MigrationTools.html

 Related publications 285

http://www.ldapzone.com/
http://www.linux.org.uk/~ajh/ols2002_proceedings.pdf.gz
http://www.vm.ibm.com/perf/perfprod.html
http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm
http://www.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/PubAllNum/Flash10144
http://www.faqs.org/rfcs/rfc1918.html
http://www.faqs.org/rfcs/rfc1122.html
http://oss.software.ibm.com/linux390/useful_add-ons.shtml
http://plan9.bell-labs.com/plan9dist/
http://www.pathname.com/fhs/
http://www.iit.edu/~gawojar/ldap/
http://www.padl.com/OSS/MigrationTools.html

� PADL Software LDAP documentation page

http://www.padl.com/Contents/Documentation.html

� The Internet Software Consortium bind server implementation

http://www.isc.org/products/BIND/

� An SDB LDAP add-on for the the ISC bind server

http://www.venaas.no/ldap/bind-sdb/

� The OCO qeth drivers from IBM Developerworks for RedHat on zSeries and
S/390

http://www.ibm.com/developerworks/opensource/linux390/special_oco_rh_2.4.sh
tml

� IEEE “Get IEEE 802”(TM) Home Page

http://standards.ieee.org/getieee802/

� IBM Developerworks: Linux for zSeries and S/390

http://www.ibm.com/developerworks/opensource/linux390/index.shtml

� LANANA (Linux Assigned Names and Numbers Authority)

http://www.lanana.org/

� 2002 Ottawa Linux Symposium

http://www.linuxsymposium.org/2002/

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.

286 Large Scale Linux Deployment286 Large Scale Linux Deployment

http://www.linuxsymposium.org/2002/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://standards.ieee.org/getieee802/
http://www.ibm.com/developerworks/opensource/linux390/index.shtml
http://www.lanana.org/
http://www.isc.org/products/BIND/
http://www.padl.com/Contents/Documentation.html

Index

A
addvmur 217

B
basevol 155

contents 155
basevol+guestvol-1.0.0-1.noarch.rpm 177, 232
basevol/guestvol Linux guest 156

advantages 172
configuration 162
early boot-time configuration 163
maintenance shell 161
RPM managment 156
scripts

/etc/init.d/guestvol-start-halt 170, 254
/etc/init.d/itsoldap 199, 263
/etc/init.d/itsonet 168, 252
/etc/init.d/vmgetconf 166, 250
/etc/rc.d/rc.guestvol 160, 232
/etc/rc.d/rc.sysinit 163
/etc/rc.d/rc.sysinit-guestvol 163, 234
/etc/rc.d/rc3.d/S09itsonet 168
/etc/sysconfig/vmconfigserver 167
/sbin/guestvol-final-halt 170, 257
/usr/sbin/basevol-devel 178, 261
/usr/sbin/dasd 179, 268
/usr/sbin/mkguestvol 179, 261

shutdown 169
startup 159

bind mount 150
preserving access to read-only directories 154
writable directories on a read-only filesystem
153

C
confserv 164

CONFSERV virtual machine 164
PROP configuration file 164
request 167
response 165
security considerations 166

convert ext2 filesystem to ext3 228

© Copyright IBM Corp. 2002. All rights reserved.
convert ext3 filesystem to ext2 228
CP

command abbreviation 7
command privilege classes 7
command structure 6
command truncation 7
commands

ATTach 59
Begin 13
COUPLE 66
DEFine LAN 63
DEFine NIC 65
DEFine STORage 19
DETach LAN 65
DETach NIC 67
DISConnect 13
EXTernal 188
Help 6
Ipl 14
Logon 4
Logon BY 4
Message 7
Query DAsd 9
Query LAN 68
Query NIC 17
Query PF 12
Query Time 6
Query Virtual CPUS 18
Query Virtual DAsd 9
Query Virtual STorage 18
Set IOPRIORity 21
Set LAN 68
Set PF 11
Set SHARE 21
SHUTDOWN 188
SMsg 164–165, 187
XAUTOLog 188

issue CP commands from Linux guest 15
status indicator 11

CP READ 11
HOLDING 11
MORE... 11
NOT ACCEPTED 11
RUNNING 11

 287

VM READ 11
cpint package 15
cpint-1.1.1-1.s390x.rpm 177

D
dasdfmt 179
DDR 19
device filesystem mounts 150
DirMaint 23

access passwords on minidisks 33
administrator 27
APAR VM63033 24
AUTHFOR CONTROL file 27
command syntax 25
commands

ADD 31, 183
AMDISK 33
CLASS 34
DEDICATE 33
DMDISK 33
FILE 28, 183
LOGONBY 35
MDISK 33
REVIEW 32
RLDC 28
RLDE 30
SEND 27
SETOPTN 34
SPECIAL 34, 71
STORAGE 34
TMDISK 34

EXTENT CONTROL file 28
prefix keywords 26
profile directory entry 30
service machines 24

4VMDVH10 24
DATAMOVE 24
DIRMAINT 24
DIRMSAT 24

user directory entry 31
user prototypes 31

dynamic routing 116
controlling routing tables 119
growth of the neighborhood 118
how it works 116
use in a penguin colony 117

E
ext_int kernel module 184

F
FCON/ESA 38

CPU subcommand 49
customizing for Linux 41

control file 41
profile 42

DEVICE subcommand 51
Distributed Data Server 39

download 39
install 40
start 40
viewing monitored data 40

Linux systems option 42
STORAGE subcommand 50
subcommands for Linux guests 43

LINUX 44
LXCPU 46
LXFILESYS 48
LXMEM 47
LXNETWR 48

support for Linux 38
USER subcommand 52

fdasd 179, 227
FHS 156
firewall features 99

G
GETCONF EXEC 164, 271
GUEST CONF 183
GUEST CONF file 165
guestact CGI script 186
GUESTACT EXEC 188, 269
guestvol 155

contents 155
device number 777 160

GVCOPY EXEC 183, 268

H
hcp command 15
HiperSockets 58

capabilities 58
configuring 58

IODF definitions 59
Linux configuration

288 Large Scale Linux Deployment

attaching devices 60
configuring the interface 61
updating system configuration 61
updating the dynamic routing daemon 61

operating system support 58
VM configuration

activate interface 60
attaching devices 59
configure TCP/IP stack 60
update MPROUTE 60

I
IEEE 802.1Q VLAN 83

broadcast 85
configuring 89
infrastructure guests 90
isolation 85
Linux support 85
OSA-Express sharing 87
theory of operation 83

ifconfig command 62, 90
ip command 62, 114
ipl-shutdown.php 277
itsobasevol-1.0.0-1.s390x.rpm 177, 262

K
kernel boot parameters 228

L
LDAP 192

authentication using LDAP 201
configuring NSS 203
configuring PAM 202
nss-ldap and pam-ldap 201

browser 196
configuring clients 200
configuring the server 194
DNS 207
indexes 211
LDIF 196
migration tools 196
OpenLDAP directory server 192
schemas

core 195
cosine 195
dnszone 195
inetorgperson 195

nis 195
redbook 195, 197

ldapadd 196
ldapmodify 206
Linux router 98

changing 100
device support 99
routing function 99
set up 99

LNXCLONE prototype 181

M
makeurdev 217
mke2fs 179
mtr 99

N
NSS 201
nss_ldap-198-1.s390x.rpm 177

O
OBEYFILE command 102

gotcha 102
OSA

broadcast traffic issues 83
defining as reconfigurable 80
defining as shareable 81
IP Assist 81
LCS mode 80
number of Linux guests 78
OSA-2 78
OSA-Express 78
port sharing 78

EMIF 80
hardware definition 80

QDIO mode 80
stack-to-stack routing 82

OSPF 99

P
PAM 201
pam_ldap-150-1.s390x.rpm 177
penguin colony xiii
PROP 164, 187
PROP RTABLE 188, 272

 Index 289

R
redbook.schema 197, 273
Redbooks Web site 286

Contact us xvi
RedHat 7.1 with OCO modules 221

installing 223
second initial ramdisk 223

RIP 99
RMF PM for Linux 39
routed 99
routing 94

considerations with OSAs 97
Linux vs z/VM 96

device support 97
extra routing features 97
limited device support in Linux 96
Linux reconfigurability 97

planning 94
address allocation 95
connectivity 94
isolation 95
RFC1918 96
traffic shaping 96

S
sample-ldap.php 276
SNMP 99

T
tc command

class 114
filter 114
qdisc 114

traceroute command 109
traffic control 110

bandwidth choke 114
components 111
configuring CBQ 112
differentiating interactive traffic 115
queue disciplines 111

tune2fs 228

U
Unit Record 215

device driver 216
character devices 217
installing 216

utility 218
command syntax 218

ur add 220
ur copy 218
ur info 219
ur list 220
ur remove 220

V
vconfig command 89
Virtual Machine Resource Manager 20
VM

LBYONLY 182
profile directory entry 30
prototype directory entry 31
SPECIAL statement 70
SYSTEM CONFIG file 70
SYSTEM DTCPARMS file 59
user directory entry 31
XAUTOLog 182

VM Guest LAN 62
/etc/chandev.conf file 74
/etc/modules.conf file 75
automating connections 71
changing attributes 68
configuration 63

attaching simulated NIC 66
creating LAN segment 63
creating simulated NIC 65
establishing lifetime 64
establishing owner 64

define and couple simulated NIC 70
interface naming conventions 74
Linux network device drivers 73
loading network device driver 73
persistent 65
restricted 67
transient 65
viewing attributes 68
virtual Hipersockets 62
virtual QDIO 63

vmhalt option 229
vmpoff option 228

Z
z/OS router 105

HiperSockets Accelerator 105
demonstrating 107

290 Large Scale Linux Deployment

Linux configuration 107
set up 106
when to use 109

z/VM router 100
device support 100
routing function 100

zebra 99

 Index 291

292 Large Scale Linux Deployment

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

Large Scale Linux Deploym
ent

®

SG24-6824-00 ISBN 0738427373

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux on IBM
zSeries and S/390:
Large Scale Linux Deployment

z/VM concepts and
tools for Linux
deployment

Networking and
routing Linux guests
running under z/VM

Building a server
farm for Linux on
zSeries

This IBM Redbook discusses techniques available for building
a large farm of Linux servers running under zVM (a “penguin
colony”). It has been developed for system administrators and
I/T architects who are responsible for developing optimized
solutions for large Linux systems installed on IBM zSeries and
S/390 machines.

The book is divided into three parts. We first discuss basic VM
concepts and commands, and examine tools available on
z/VM that can help you create and monitor a server farm.

We then cover networking features and options, and discuss
network high availability issues and solutions. Finally, we
demonstrate methods for optimizing virtual Linux server
farms (including a novel approach to sharing Linux
filesystems among members), and examine central LDAP
management. The sample code we discuss is available
online.

We also recommend when to use the z/VM IP stack as a
router, when to use a virtual Linux IP router, and when to
dedicate logical OSA ports to virtual Linux Servers. Linux
cloning techniques are also covered.

Back cover

™

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Running Linux under z/VM
	Chapter 1. z/VM for beginners
	1.1 The z/VM environment
	1.2 Logging on to z/VM
	1.3 General CP command structure
	1.3.1 Command truncations and abbreviations

	1.4 CP command privilege classes
	1.4.1 How privilege class affects CP commands

	1.5 The CP status indicator
	1.6 Using Program Function keys
	1.7 Disconnecting the 3270 session
	1.8 Booting Linux in a virtual machine
	1.8.1 Unattended startup of a Linux guest
	1.8.2 Recovering from unattended startup

	1.9 Communicating with CP from a Linux guest
	1.9.1 Communicating with CP from the VM console
	1.9.2 Communicating with CP from a Linux telnet session

	1.10 Querying the virtual machine
	1.10.1 Querying storage devices
	1.10.2 Querying network devices
	1.10.3 Querying the CPUs available to the virtual machine
	1.10.4 Querying virtual storage

	1.11 Using DDR to copy a minidisk
	1.12 Virtual Machine Resource Manager

	Chapter 2. Directory Maintenance Facility for z/VM
	2.1 Managing VM using DirMaint
	2.2 DirMaint service machines
	2.2.1 DirMaint service machine
	2.2.2 DATAMOVE service machine

	2.3 DirMaint command syntax
	2.3.1 Using prefix keywords

	2.4 Some useful DirMaint commands
	2.5 Defining a userid as a DirMaint administrator
	2.5.1 Obtain the DirMaint AUTHFOR CONTROL file
	2.5.2 Format of the AUTHFOR CONTROL file
	2.5.3 Activating AUTHFOR CONTROL file changes

	2.6 Adding a volume to a DirMaint group
	2.6.1 Obtain the DirMaint EXTENT CONTROL file
	2.6.2 Format of the EXTENT CONTROL file
	2.6.3 Activating EXTENT CONTROL file changes

	2.7 Adding directory entries
	2.7.1 Defining a profile directory entry
	2.7.2 Adding a profile directory entry
	2.7.3 Defining a user directory entry
	2.7.4 Adding a userid using a prototype file

	2.8 Maintaining directory entries
	2.8.1 Reviewing a directory entry
	2.8.2 Adding a minidisk to a user directory entry
	2.8.3 Adding access passwords to a minidisk
	2.8.4 Dedicating a device to a userid
	2.8.5 Deleting a new minidisk from a user directory entry
	2.8.6 Changing virtual storage for VM users
	2.8.7 Adding, deleting, and modifying CP options
	2.8.8 Changing CP Privileges
	2.8.9 Using the SPECIAL DirMaint command
	2.8.10 Transferring a minidisk between userids
	2.8.11 Adding shared logon access to a userid

	Chapter 3. FCON/ESA for monitoring a penguin colony
	3.1 Introducing FCON/ESA
	3.2 FCON/ESA support for Linux on z/VM
	3.3 The Distributed Data Server
	3.3.1 Download DDS
	3.3.2 Install DDS on a Linux guest
	3.3.3 Starting DDS
	3.3.4 Viewing monitored data

	3.4 Customizing FCON/ESA for monitoring Linux guests
	3.4.1 Preparing the control file
	3.4.2 Updating the FCON/ESA profile

	3.5 The FCON/ESA Linux systems option
	3.6 FCON/ESA subcommands for Linux guests
	3.6.1 The LINUX subcommand
	3.6.2 The Linux systems selection menu
	3.6.3 The Linux details selection menu
	3.6.4 The LXCPU subcommand
	3.6.5 The LXMEM subcommand
	3.6.6 The LXNETWRK subcommand
	3.6.7 The LXFILESYS subcommand

	3.7 Monitoring overall z/VM performance
	3.7.1 The CPU subcommand
	3.7.2 The STORAGE subcommand
	3.7.3 The DEVICE subcommand
	3.7.4 The USER subcommand

	Part 2 Networking for Linux on zSeries
	Chapter 4. HiperSockets and z/VM Guest LAN
	4.1 Introduction to HiperSockets
	4.1.1 Operating system support
	4.1.2 Capabilities

	4.2 Configuring HiperSockets
	4.2.1 Hardware tasks
	4.2.2 z/VM tasks
	4.2.3 Linux tasks

	4.3 Introduction to the Guest LAN feature
	4.3.1 Virtual HiperSockets
	4.3.2 Virtual QDIO

	4.4 VM Guest LAN configuration
	4.5 Creating a VM Guest LAN segment
	4.5.1 Establishing a VM Guest LAN owner
	4.5.2 Establishing a VM Guest LAN lifetime

	4.6 Creating a simulated NIC
	4.7 Attaching the simulated NIC to the VM Guest LAN
	4.8 A VM Guest LAN example
	4.9 Restricted VM Guest LANs
	4.9.1 Viewing VM Guest LAN attributes
	4.9.2 Changing VM Guest LAN attributes

	4.10 Defining a VM Guest LAN in the VM directory
	4.10.1 Define the VM Guest LAN in the SYSTEM CONFIG file
	4.10.2 Define and couple simulated NICs to the VM Guest LAN
	4.10.3 Automating connections to a VM Guest LAN

	4.11 Configuring a VM Guest LAN in a Linux guest
	4.11.1 A word about network device drivers
	4.11.2 Loading the Linux network interface device driver
	4.11.3 Configuring the network interface

	Chapter 5. TCP/IP direct connection
	5.1 Introduction
	5.1.1 Number of Linux guests

	5.2 OSA port sharing
	5.2.1 Hardware definition
	5.2.2 Advantages sharing OSA-Express in QDIO mode
	5.2.3 Issues sharing OSA-Express in QDIO mode

	5.3 IEEE 802.1Q VLAN support
	5.3.1 How VLANs work
	5.3.2 VLANs on Linux for zSeries
	5.3.3 Sharing an OSA-Express when using VLANs
	5.3.4 Configuring VLANs in Linux
	5.3.5 Infrastructure guests in a VLAN network

	Chapter 6. TCP/IP routing
	6.1 Planning for routing
	6.1.1 Connectivity method
	6.1.2 Isolation
	6.1.3 Address allocation
	6.1.4 Traffic shaping
	6.1.5 Linux router or z/VM TCP/IP router
	6.1.6 Routing considerations with OSAs

	6.2 Linux routers
	6.2.1 Device support
	6.2.2 Routing function
	6.2.3 Setting up a Linux router
	6.2.4 Changing a running Linux router guest

	6.3 z/VM TCP/IP routers
	6.3.1 Device support
	6.3.2 Routing function
	6.3.3 Changing a running z/VM TCP/IP stack
	6.3.4 z/VM TCP/IP support servers

	6.4 z/OS routers
	6.4.1 HiperSockets Accelerator

	6.5 Traffic control
	6.5.1 Components of traffic control
	6.5.2 Configuring CBQ
	6.5.3 CBQ usage example: bandwidth choke
	6.5.4 CBQ usage example: differentiating interactive traffic

	6.6 Dynamic routing
	6.6.1 How dynamic routing works
	6.6.2 Dynamic routing in a penguin colony
	6.6.3 Controlling routing tables

	Chapter 7. Network high availability
	7.1 Planning virtual connectivity for high availability
	7.1.1 Determine the level of redundancy you need
	7.1.2 z/VM TCP/IP availability

	7.2 Multiple network devices to Linux guests
	7.2.1 Configuring multiple network interfaces
	7.2.2 Virtual Router Redundancy Protocol (VRRP)
	7.2.3 Virtual IP addresses
	7.2.4 IP connections outbound from Linux guests

	7.3 Redundancy outside the zSeries complex
	7.3.1 Additional z/VM system

	7.4 Linux high availability solutions
	7.4.1 To cluster or not to cluster
	7.4.2 Linux Virtual Server

	Part 3 Creating and managing a penguin colony
	Chapter 8. Shared Linux filesystems
	8.1 Device filesystem mounts
	8.2 Bind mount directories
	8.3 Using bind mounts
	8.3.1 Mounting writable directories on a read-only filesystem
	8.3.2 Preserving access to the original read-only directories

	8.4 The basevol filesystem
	8.5 The guestvol filesystem
	8.6 A basevol/guestvol Linux guest
	8.7 The File Hierarchy Standard
	8.8 RPM package management
	8.9 Booting a basevol/guestvol Linux guest
	8.9.1 The rc.guestvol script
	8.9.2 Determining if the Linux guest uses a guestvol mount
	8.9.3 The maintenance shell
	8.9.4 Example basevol/guestvol Linux guest startup
	8.9.5 Example basevol/guestvol Linux guest maintenance shell

	8.10 Startup configuration
	8.10.1 The rc.sysinit-guestvol script

	8.11 Network configuration
	8.11.1 The z/VM configuration server
	8.11.2 Generating a CONFSERV response
	8.11.3 Security considerations
	8.11.4 The vmgetconf script
	8.11.5 The itsonet script
	8.11.6 Example of boot time configuration

	8.12 Shutdown processing
	8.12.1 The guestvol-start-halt script
	8.12.2 The guestvol-final-halt script
	8.12.3 Example of a basevol/guestvol Linux guest shutdown

	8.13 Advantages of a basevol/guestvol Linux guest

	Chapter 9. Building a basevol/guestvol penguin colony
	9.1 Overview of the process
	9.2 The BASEVOL virtual machine
	9.3 The LDV01 virtual machine
	9.4 Install Linux on the development image
	9.4.1 Choosing the packages to install

	9.5 Create the basevol and guestvol filesystem images
	9.5.1 Prepare the LDV01 Linux guest
	9.5.2 Create the golden basevol filesystem image
	9.5.3 Prepare guestvol filesystem image
	9.5.4 Booting the basevol/guestvol Linux guest

	9.6 Guestvol package management
	9.7 Cloning a basevol/guestvol Linux guest
	9.7.1 The LNXCLONE prototype
	9.7.2 Create the Linux clone virtual machine
	9.7.3 Create the Linux clone guestvol
	9.7.4 Define the Linux clone in the GUEST CONF configuration file
	9.7.5 XAUTOLOG the Linux clone

	9.8 Remote startup and shutdown of Linux clones
	9.8.1 The ext_int kernel module
	9.8.2 Handling a shutdown external interrupt
	9.8.3 The management interface
	9.8.4 PROP actions to manage Linux clones
	9.8.5 The GUESTACT EXEC script
	9.8.6 Security considerations

	Chapter 10. Centralized management using LDAP
	10.1 Using LDAP for centralized management
	10.1.1 The OpenLDAP directory server
	10.1.2 The penguin colony network topology

	10.2 Configuring the LDAP server
	10.3 LDAP tools
	10.3.1 An LDAP browser
	10.3.2 LDAP Data Interchange Format
	10.3.3 LDAP migration tools

	10.4 Network configuration and initialization
	10.4.1 The redbook LDAP schema
	10.4.2 Redbook LDAP object classes
	10.4.3 Redbook LDAP attributes
	10.4.4 The itsoldap script
	10.4.5 Configuring LDAP clients

	10.5 UNIX authentication using LDAP
	10.5.1 The nss-ldap and pam-ldap modules
	10.5.2 Configuring PAM for LDAP authentication and authorization
	10.5.3 Configuring NSS for LDAP user and group mapping
	10.5.4 Migrating users and groups to LDAP
	10.5.5 Adding users and groups to LDAP
	10.5.6 Changing passwords stored in LDAP

	10.6 Using LDAP with Domain Name System
	10.6.1 The SDB LDAP backend for the ISC bind server
	10.6.2 DNS resource records in LDAP
	10.6.3 Configure the DNS server to use the LDAP backend
	10.6.4 Adding indexes to speed lookups

	10.7 A remote Web management interface to LDAP
	10.7.1 Interface to reset passwords
	10.7.2 Interface to IPL and shutdown Linux guests

	Appendix A. The Unit Record device driver and utility
	A.1 The UR device driver and utility
	A.2 The UR device driver
	A.2.1 Build the UR device driver
	A.2.2 Install the UR device driver
	A.2.3 Create the UR character devices
	A.2.4 The addvmur command

	A.3 The UR utility
	A.3.1 Install the UR utility
	A.3.2 The ur command syntax
	A.3.3 The copy subcommand
	A.3.4 The info subcommand
	A.3.5 The list subcommand
	A.3.6 The add subcommand
	A.3.7 The remove subcommand

	Appendix B. Installing Red Hat 7.1 with OCO modules
	B.1 The Red Hat for zSeries distribution
	B.2 Obtain the latest OCO drivers
	B.3 Create a second initial ramdisk for OCO qeth drivers
	B.4 Copy the installation images to the guest reader
	B.4.1 Mount the installation CD-ROM image
	B.4.2 Copy the installation images to the VM reader

	B.5 Install the Linux guest
	B.5.1 Beginning the installation
	B.5.2 First stage configuration
	B.5.3 Second stage configuration

	Appendix C. Scripts and configuration files
	C.1 The basevol+guestvol-1.0.0-1.noarch.rpm package
	C.1.1 The /etc/rc.d/rc.guestvol script
	C.1.2 The /etc/rc.d/rc.sysinit-guestvol script
	C.1.3 The /etc/init.d/vmgetconf script
	C.1.4 The /etc/init.d/itsonet script
	C.1.5 The /etc/init.d/guestvol-start-halt script
	C.1.6 The /sbin/guestvol-final-halt script
	C.1.7 The /usr/sbin/basevol-devel script
	C.1.8 The /usr/sbin/mkguestvol script

	C.2 The itsobasevol-1.0.0-1.s390x.rpm package
	C.2.1 The /etc/init.d/itsoldap script
	C.2.2 The /usr/sbin/dasd script

	C.3 The GVCOPY EXEC
	C.4 The GUESTACT EXEC script
	C.5 The GETCONF EXEC script
	C.6 The PROP RTABLE configuration file
	C.7 The redbook.schema file
	C.8 The sample-ldap.php script
	C.9 The ipl-shutdown.php script

	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

