

ibm.com/redbooks

IBM Rational Application Developer V6
Portlet Application Development
and Portal Tools

Juan R. Rodriguez
Cristiano Cesario

Karla Galvan
Belen Gonzalez
George Kroner

Gianfranco Rutigliano
Ryan Wilson

Learn how to develop MVC, Struts and
JavaServer Faces portlet applications

Learn about IBM Portlet API and
the JSR 168 standard API

Access Web Services and
secure Web applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM Rational Application Developer V6
Portlet Application Development and Portal Tools

August 2005

International Technical Support Organization

SG24-6681-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2005)

This edition applies to Version 6 of IBM Rational Application Developer and Version 5.1 of IBM
WebSphere Portal.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

Contents

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xix
Become a published author . xxii
Comments welcome. xxii

Chapter 1. Overview . 1
1.1 Portal evolution . 2

1.1.1 The generations of portal technology . 3
1.2 Overview . 4

1.2.1 What is a portal? . 5
1.2.2 Enablement for portals . 5
1.2.3 The WebSphere Portal framework . 7
1.2.4 WebSphere Portal architecture . 9
1.2.5 WebSphere Portal tooling . 17

1.3 WebSphere Portal . 18
1.3.1 Portal concepts . 18
1.3.2 Portlets . 21
1.3.3 The model-view-controller (MVC) design pattern 23
1.3.4 Standard MVC architecture. 23
1.3.5 Portlet MVC architecture . 24
1.3.6 Portlet MVC sample . 25
1.3.7 WebSphere Portal runtime: the portlet container 26
1.3.8 Page aggregation . 26

1.4 Highlights in WebSphere Portal V5.1 . 31
1.4.1 Portal install. 32
1.4.2 General infrastructure . 32
1.4.3 Event broker . 32
1.4.4 Member subsystem. 33
1.4.5 Authentication . 33
1.4.6 Authorization . 33
1.4.7 URL generation, processing and mappings 35
1.4.8 Search. 35
1.4.9 Content management . 36
1.4.10 Transcoding . 37
1.4.11 Struts Portlet Framework . 37

© Copyright IBM Corp. 2005. All rights reserved. iii

1.4.12 JSF Portlet Runtime . 38
1.4.13 User interface . 38
1.4.14 Cooperative portlets (Click-To-Action) . 39
1.4.15 Portal Toolkit . 40

1.5 Portlet solution patterns. 41
1.6 Building a war file . 44

Chapter 2. Developing Portal applications . 47
2.1 Portal overview . 48

2.1.1 Portal concepts and definitions . 48
2.1.2 IBM WebSphere Portal . 51
2.1.3 IBM Rational Application Developer . 51

2.2 Developing applications for WebSphere Portal . 54
2.2.1 Portal samples and tutorials . 54
2.2.2 Development strategy . 55
2.2.3 Portal tools for developing portals. 58
2.2.4 Portal tools for developing portlets . 65
2.2.5 Portal tools for testing and debugging portlets 78
2.2.6 Portal tools for deploying and managing portlets 82
2.2.7 Enterprise Application Integration Portal tools 84
2.2.8 Coexistence and migration of tools and applications 85

2.3 Portal development scenario. 86
2.3.1 Preparing for the sample. 87
2.3.2 Creating a portal project . 88
2.3.3 Adding and modifying a portal page . 89
2.3.4 Creating and modifying two portlets . 92
2.3.5 Adding portlets to a portal page . 95
2.3.6 Running the project in the test environment 98

Chapter 3. Portlet development platform sample installation. 101
3.1 Prerequisites . 102

3.1.1 Hardware requirements. 102
3.1.2 Software requirements . 102

3.2 Rational Application Developer and Portal Tools 102
3.3 WebSphere Portal V5.1 Test Environment . 106
3.4 Configuration of the Test Environment . 110
3.5 WebSphere Test Environment V5.1 (optional) . 113

Chapter 4. IBM Portlet API . 115
4.1 IBM portlets . 116
4.2 IBM portlet application. 116
4.3 Servlets versus portlets . 117
4.4 Portlet modes . 119
4.5 Portlet states . 119

iv IBM Rational Application Developer V6 and Portal Tools

4.6 Core objects . 120
4.6.1 Hierarchy. 120
4.6.2 Portlet . 121
4.6.3 PortletAdapter . 121
4.6.4 PortletRequest . 121
4.6.5 PortletResponse . 123
4.6.6 PortletSession object . 124
4.6.7 Client . 125
4.6.8 PortletConfig object . 126
4.6.9 PortletContext object. 127
4.6.10 PortletSettings object . 128
4.6.11 PortletApplicationSettings object. 129
4.6.12 PortletData object . 130
4.6.13 PortletLog object . 131
4.6.14 PortletException . 132
4.6.15 UnavailableException . 132
4.6.16 PortletWindow object . 132
4.6.17 User object . 133
4.6.18 PortletURI . 133

4.7 Portlet life cycle . 134
4.8 Listeners . 137

4.8.1 PortletTitleListener . 137
4.8.2 PortletPageListener. 138
4.8.3 PortletSessionListener . 139
4.8.4 WindowListener. 140
4.8.5 PortletSettingsAttributeListener. 141
4.8.6 PortletApplicationSettingsAttributesListener 141

4.9 Action event handling . 141
4.9.1 ActionListener . 142
4.9.2 ActionEvent . 142
4.9.3 PortletURI . 142
4.9.4 ModeModifier . 144

4.10 Attribute storage summary . 145
4.11 Portlet JSPs. 146

4.11.1 Portlet tag library . 147
4.11.2 Portlet events and messaging. 152

4.12 Portlet deployment . 155
4.12.1 web.xml . 157
4.12.2 portlet.xml . 160
4.12.3 Parameter summary . 168
4.12.4 Descriptors relationship (web.xml and portlet.xml) 170
4.12.5 UID guidelines. 171

4.13 Resources . 171

 Contents v

Chapter 5. A first portlet application . 173
5.1 Sample scenario . 174
5.2 Creating the portlet project . 174

5.2.1 Using the Portlet Project wizard . 175
5.3 Configuring the test environment . 185
5.4 Running the portlet project . 188
5.5 Modifying the portlet project and verifying changes 192

5.5.1 Changing the JSP used for the View mode 192
5.5.2 Adding a JavaBean . 196

Chapter 6. IBM Portlet API portlet development. 203
6.1 About action events. 204
6.2 Development scenario. 207
6.3 Creating the portlet project . 209
6.4 Configuring your project in the test environment. 214
6.5 Examining and modifying the source code . 216
6.6 Running your project in the test environment . 219

Chapter 7. Portlet messaging. 225
7.1 Portlet messaging . 226
7.2 MessageListener . 226
7.3 MessageEvent. 227
7.4 DefaultPortletMessage . 227
7.5 PortletMessage . 228
7.6 Sample scenario . 230

7.6.1 Description . 231
7.6.2 Sending a message . 232
7.6.3 Creating the target portlet . 235
7.6.4 Running the portlet application . 240

7.7 Broadcasting messages . 242

Chapter 8. JSR 168 API . 251
8.1 JSR overview . 252

8.1.1 Number of portlet instances . 252
8.1.2 Portlet windows . 252
8.1.3 Thread safety . 253

8.2 JSR 168 comparison to servlets . 254
8.3 JSR 168 portlet modes . 254
8.4 JSR 168 Portlet window states . 256
8.5 Core JSR 168 objects . 257

8.5.1 interface javax.portlet.Portlet. 257
8.5.2 class javax.portlet.GenericPortlet . 259
8.5.3 interface javax.portlet.PortletURL . 261
8.5.4 interface javax.portlet.PortletContext . 263

vi IBM Rational Application Developer V6 and Portal Tools

8.5.5 interface javax.portlet.PortletRequest . 264
8.5.6 interface javax.portlet.ActionRequest . 267
8.5.7 interface javax.portlet.RenderRequest . 270
8.5.8 interface javax.portlet.PortletResponse . 270
8.5.9 interface javax.portlet.ActionResponse. 271
8.5.10 interface javax.portlet.RenderResponse . 272
8.5.11 interface javax.portlet.PortalContext . 274
8.5.12 interface javax.portlet.PortletPreferences 274
8.5.13 interface javax.portlet.PreferencesValidator 276
8.5.14 interface javax.portlet.PortletConfig . 277
8.5.15 interface javax.portlet.PortletSession . 278

8.6 JSR 168 Portlet life cycle . 280
8.6.1 Instantiation. 280
8.6.2 Initialization . 280
8.6.3 Request handling . 281
8.6.4 End of service . 282

8.7 Portlet caching. 283
8.7.1 Remote cache . 283

8.8 Listeners . 284
8.8.1 HttpSessionBindingListener . 284
8.8.2 ServletContextListener . 285
8.8.3 ServletContextAttributeListener . 285
8.8.4 HttpSessionListener . 285
8.8.5 HttpSessionAttributeListener. 285

8.9 Deployment descriptors. 287
8.9.1 Portlet.xml declaration. 288
8.9.2 portlet-app - required, can occur only once 288
8.9.3 portlet - can occur zero or more times . 289
8.9.4 custom-portlet-mode - can occur zero or more times 295
8.9.5 custom-window-state - can occur zero or more times 296
8.9.6 user-attribute - can occur zero or more times 296
8.9.7 security-constraint - can occur zero or more times 298

8.10 JSR 168 limitations in WebSphere Portal . 299

Chapter 9. JSR 168 portlet development . 301
9.1 Overview . 302
9.2 Creating a JSR 168 portlet project . 302

9.2.1 Creating a basic JSR 168 portlet . 303
9.2.2 Examining the generated portlet . 306

9.3 Updating the generated portlet . 306
9.3.1 Modifying the session bean. 307
9.3.2 View mode . 310
9.3.3 Edit mode . 317

 Contents vii

9.3.4 Configure mode. 326
9.3.5 Updating the portlet descriptor (portlet.xml) 329
9.3.6 Modifying the MySimplePortletPortletPreferenceValidator class . . 331

9.4 Running the portlet . 333
9.4.1 Executing the portlet . 333

Chapter 10. Migrating to JSR 168 . 335
10.1 Modifying the deployment descriptor. 336

10.1.1 doctype . 336
10.1.2 portlet-app . 336
10.1.3 concrete-portlet-app . 337
10.1.4 portlet . 337
10.1.5 portlet-name . 337
10.1.6 web.xml . 337
10.1.7 cache. 337
10.1.8 supports . 338
10.1.9 allows . 339
10.1.10 config-param . 339
10.1.11 Locale settings . 339

10.2 Modifying the Java source. 340
10.2.1 Package . 340
10.2.2 Superclass . 341
10.2.3 doXXX methods . 341
10.2.4 actionPerformed . 341
10.2.5 ActionEvent . 341
10.2.6 Logging . 342
10.2.7 JSP includes . 342
10.2.8 PortletData and PortletSettings. 343
10.2.9 namespace . 343
10.2.10 portlet URLs . 343

10.3 Modifying the JSP source . 344
10.3.1 taglib . 344
10.3.2 portletAPI:init . 345
10.3.3 namespace . 345
10.3.4 Creating URLs. 346
10.3.5 portletAPI:text . 347
10.3.6 encodeURL . 347
10.3.7 CSS. 347

10.4 Struts . 347
10.5 JSF . 348
10.6 Portlet services . 348
10.7 Messaging . 351

viii IBM Rational Application Developer V6 and Portal Tools

Chapter 11. Using JSPs and servlets . 353
11.1 Overview . 354

11.1.1 Generating output . 354
11.2 RequestDispatcher . 356

11.2.1 PortletContext.getRequestDispatcher. 356
11.2.2 PortletContext.getNamedDispatcher. 356
11.2.3 PortletRequestDispatcher.include. 356

11.3 JSP tags . 360
11.3.1 defineObjects . 361
11.3.2 renderURL. 361
11.3.3 actionURL . 362
11.3.4 namespace . 363
11.3.5 param . 364
11.3.6 IBM tags . 364
11.3.7 JSTL . 365

11.4 Cascading style sheets (CSS). 366
11.4.1 WSRP Styles. 366
11.4.2 IBM styles . 370

Chapter 12. Internationalization . 373
12.1 Resource bundles . 374

12.1.1 Creating resource bundles in Rational Application Developer . . . 376
12.1.2 Translating resource bundles . 379
12.1.3 Accessing resource bundles in portlets. 381
12.1.4 Accessing resource bundles in JSPs . 382

12.2 Translating whole resources . 383
12.3 JSR 168 API considerations . 384
12.4 Dynamically changing the language . 385
12.5 NLS administration . 386

12.5.1 Portlet NLS administration . 386
12.5.2 Portal NLS administration . 390
12.5.3 Setting NLS titles. 390
12.5.4 Supporting a new language . 391

12.6 Working with characters . 392
12.7 NLS best practices . 392
12.8 Sample scenario: NLS bundles . 393

12.8.1 NLS bundles . 394
12.8.2 Accessing NLS bundles from JSPs. 399
12.8.3 Running the NLS scenario . 400
12.8.4 Accessing NLS bundles in Java portlets . 404

12.9 Sample scenario: translating whole resources 406
12.10 Dynamically changing the language . 411

 Contents ix

Chapter 13. Struts portlets . 415
13.1 Overview . 416
13.2 The Struts portlet framework . 419

13.2.1 Struts applications. 420
13.2.2 Changes to Struts JSPs . 423
13.2.3 Configuration files . 426
13.2.4 Creating link tags in Struts . 426

Chapter 14. Creating Struts portlets with the IBM Portlet API 429
14.1 Overview . 430
14.2 Creating Struts applications with IBM portlet API 430

14.2.1 Creating a Portlet project . 430
14.2.2 Inspecting the Struts portlet project. 433
14.2.3 Designing the application . 434
14.2.4 Realizing the application components. 436
14.2.5 Adding logging support . 444
14.2.6 Adding support to Edit mode. 446
14.2.7 Realizing the new application components 450
14.2.8 Adding internationalization support . 460

14.3 Messaging . 462
14.4 Migration . 463

Chapter 15. Struts portlet development using the JSR 168 API 465
15.1 Overview . 466
15.2 Message flow . 467
15.3 Creating a Portlet project. 469

15.3.1 Inspecting the Struts portlet project. 475
15.4 Designing the application (View mode) . 477

15.4.1 Realizing the application components. 480
15.4.2 Realizing the index.jsp page . 482
15.4.3 Realizing the notConfigured.jsp . 486
15.4.4 Realizing the Form Bean. 486
15.4.5 Realizing configured.jsp . 489
15.4.6 Editing the resources file. 490
15.4.7 Realizing the welcome action mapping. 490
15.4.8 Running the Struts portlet . 493

15.5 Designing the application (Edit mode). 494
15.6 Realizing the Edit mode application components 495

15.6.1 Realizing the editBean . 495
15.6.2 Realizing index.jsp . 498
15.6.3 Realizing the saveConfiguration action. 499

15.7 Adding new keys to the resources file. 500
15.8 Running the portlet . 501

x IBM Rational Application Developer V6 and Portal Tools

15.9 Adding internationalization support . 502
15.9.1 Portlet application View mode internationalization 503
15.9.2 Struts framework internationalization support 504
15.9.3 Editing the Portlet deployment descriptor 505
15.9.4 Testing the new locale . 505

15.10 Adding logging support to the application . 506

Chapter 16. JavaServer Faces portlets . 511
16.1 Overview . 512

16.1.1 Life cycle of a JSF page . 514
16.2 A simple JSF application . 518

16.2.1 Creating the pages . 519
16.2.2 Defining navigation rules. 521
16.2.3 Developing the beans . 523

16.3 User interface component model . 525
16.3.1 User interface component classes . 525
16.3.2 Component rendering model. 527
16.3.3 Conversion model . 531
16.3.4 Event and listener model. 535
16.3.5 Validation model . 536

16.4 Navigation model. 539
16.5 Backing bean management. 540
16.6 JSF in portlets . 542

16.6.1 JSF portlet runtime . 542
16.6.2 Mapping between portlet phases and JSF phases 544
16.6.3 Welcome page and navigation in JSF portlets 545
16.6.4 Programming guidelines . 546
16.6.5 Limitations in JSF portlets . 548

16.7 Migration . 548

Chapter 17. JavaServer Faces portlet development 551
17.1 The calculator application . 552
17.2 Creating the project . 552

17.2.1 Inspecting the JSF portlet project . 555
17.3 Creating the page layout . 558
17.4 Implementing component attributes and validation 563

17.4.1 Testing the validation . 567
17.5 Binding the front end to the calculator. 568

17.5.1 Testing the binding . 572
17.6 Invoking the business logic of the calculator . 572

17.6.1 Implementing an error page . 573
17.7 Implementing page navigation . 577
17.8 Implementing a validator . 580

 Contents xi

17.9 Implementing a value change event . 583
17.10 Implementing internationalization . 587

17.10.1 Internationalization of standard validator messages 590

Chapter 18. Additional Faces portlet sample scenarios 593
18.1 The call center application. 594

18.1.1 Creating the project. 594
18.1.2 Creating the page layout . 595
18.1.3 Defining a parameter for the list . 599
18.1.4 Creating a detail portlet . 601
18.1.5 Linking the portlets . 602
18.1.6 Testing the application . 605

18.2 The Web service client portlet . 606
18.2.1 Creating the project. 606
18.2.2 Creating a new Web service client . 607
18.2.3 Creating the page layout . 612
18.2.4 Testing the application . 615

Chapter 19. Portlet services . 617
19.1 Portlet services . 618

19.1.1 ContentAccessService . 618
19.1.2 Custom services . 620

19.2 Accessing portlet services. 627
19.2.1 Accessing a portlet service in an IBM portlet 627
19.2.2 Accessing a portlet service in a JSR 168 portlet 627

Chapter 20. Credential Vault Service . 629
20.1 Overview . 630

20.1.1 Credentials . 630
20.2 Credential Vault organization . 631

20.2.1 Vault segments . 632
20.2.2 Credential slots . 633

20.3 Working with the CredentialVaultService . 634
20.3.1 Acquiring a reference to the CredentialVaultService 634
20.3.2 Using the CredentialVaultService . 634

20.4 Credential objects . 635
20.4.1 Passive credential objects. 636
20.4.2 Active credential objects . 637
20.4.3 Storing credential objects in the PortletSession 640

Chapter 21. The Credential Vault . 641
21.1 Sample scenario . 642
21.2 Importing a secure servlet application. 644
21.3 Using active credentials . 648

xii IBM Rational Application Developer V6 and Portal Tools

21.3.1 Creating the Credential Vault portlet application. 648
21.3.2 Reviewing the generated code . 651
21.3.3 Updating the generated portlet . 653
21.3.4 Running the portlet . 662

21.4 Using passive credentials . 667

Chapter 22. Accessing JDBC databases from portlet applications 669
22.1 Creating a portlet project . 670

22.1.1 Creating HRPortlet . 670
22.2 Creating a sample database . 675

22.2.1 Creating the WSSAMPLE database . 675
22.2.2 Creating a connection . 678
22.2.3 Creating an SQL statement. 683
22.2.4 Generating Java classes. 685

22.3 Sample scenario . 689
22.3.1 Overview . 690
22.3.2 Importing the WAR file . 692
22.3.3 Reviewing the portlet code . 693
22.3.4 Running the HRPortlet application . 698

Chapter 23. Accessing JDBC databases using Data Source in standard
portlets. 703

23.1 Data Source overview . 704
23.2 Creating a JSR 168 portlet project . 705

23.2.1 Creating HRPortlet . 705
23.3 Creating a sample database . 710

23.3.1 Creating a connection . 710
23.3.2 Creating an SQL statement. 716
23.3.3 Generating Java classes. 719

23.4 Sample scenario . 724
23.4.1 Overview . 725
23.4.2 Importing the WAR file . 727
23.4.3 Reviewing the portlet code . 729
23.4.4 Creating the Data Source . 733
23.4.5 Running the HRPortlet168 application . 736

Chapter 24. IBM API declarative cooperative portlets 741
24.1 Overview . 742

24.1.1 The WebSphere Portal property broker . 743
24.1.2 Property broker runtime components . 744

24.2 IBM Portlets for cooperation . 744
24.2.1 Registering and publishing properties. 745
24.2.2 Struts integration . 746
24.2.3 Internationalization . 746

 Contents xiii

24.3 Sample scenario (IBM portlets) . 747
24.3.1 Description . 747
24.3.2 Source cooperative portlet . 750
24.3.3 Target cooperative portlet . 761
24.3.4 Running the cooperative portlets . 765

Chapter 25. IBM API programmatic cooperative portlets 771
25.1 Publishing properties programmatically . 772
25.2 Portlet event handling . 773

25.2.1 PropertyListener interface . 775
25.2.2 EventPhaseListener interface . 776

25.3 Broadcasting source data . 777
25.4 Wiring tool . 778
25.5 Sample scenario . 779

25.5.1 Declarative source cooperative portlet . 779
25.5.2 Enabling the portlet for target C2A programmatic. 781
25.5.3 Running the cooperative portlets . 789
25.5.4 Wire portlets . 793
25.5.5 Enabling HRPortlet for programmatic source C2A 794
25.5.6 Running the programmatic source portlet 798

Chapter 26. JSR 168 cooperative portlets . 801
26.1 Overview . 802
26.2 Source cooperative portlet . 803

26.2.1 Importing the HRPortlet168 portlet . 804
26.2.2 Internationalization . 805
26.2.3 Declaring exchange capabilities using WSDL. 806
26.2.4 Updating the portlet deployment descriptor 809
26.2.5 Updating the HRPortlet168 portlet code . 811
26.2.6 Updating the JSP to generate a link . 815

26.3 Target cooperative portlet . 816
26.3.1 Internationalization . 818
26.3.2 Declaring exchange capabilities using WSDL. 819
26.3.3 Updating the portlet deployment descriptor 821

26.4 Running the cooperative portlets. 824
26.4.1 Populating the sample database. 824
26.4.2 Creating a data source . 825
26.4.3 Running and wiring the cooperative portlets 828

Chapter 27. Struts cooperative portlets . 835
27.1 Overview . 836
27.2 Source cooperative portlet . 837

27.2.1 Importing the Echo portlet . 837
27.2.2 Declaring exchange capabilities using WSDL. 838

xiv IBM Rational Application Developer V6 and Portal Tools

27.2.3 Updating the portlet deployment descriptor 841
27.2.4 Updating the EchoSource portlet code . 842
27.2.5 Internationalization . 844

27.3 Target cooperative portlet . 844
27.3.1 Importing the Echo portlet . 845
27.3.2 Declaring exchange capabilities using WSDL. 846
27.3.3 Updating the EchoTarget portlet code . 849
27.3.4 Internationalization . 850

27.4 Running the cooperative portlets. 851

Chapter 28. Accessing Web Services from portlet applications 857
28.1 Overview . 858
28.2 Sample scenario . 858

28.2.1 Creating a Web Service . 859
28.2.2 Creating a Web Services client portlet . 874

Chapter 29. Web Services for Remote Portlets (WSRP) 885
29.1 Overview . 886
29.2 Implementing WSRP in WebSphere Portal . 888

29.2.1 Tasks for Producer portals . 889
29.2.2 Tasks for Consumer portals . 892
29.2.3 Testing the scenario . 898

29.3 Security . 899

Chapter 30. Portlet debugging . 901
30.1 Overview . 902
30.2 Sample scenario . 902

30.2.1 Fixing compile errors. 902
30.2.2 Debugging a portlet application. 905

Chapter 31. Remote Server Attach . 915
31.1 Overview . 916
31.2 Sample scenario . 917

31.2.1 Preparing Remote Portal server to debug. 917
31.2.2 Creating Remote Portal server users . 920
31.2.3 Creating a WebSphere Portal Server Attach 921
31.2.4 Debugging a portlet on WebSphere Portal Server Attach. 924

31.3 Defining Web browsers and emulator devices 932

Chapter 32. Updating a portal layout. 935
32.1 Overview . 936
32.2 Creating a Portal server connection . 937
32.3 Importing the WebSphere Portal server configuration 943
32.4 Modifying the Portal Navigation and Layout . 945

 Contents xv

32.5 Adding portlets . 950
32.6 Additional ways to add portlets . 952
32.7 Testing the updated portal configuration . 954
32.8 Applying themes . 957

Chapter 33. Creating new portal themes. 961
33.1 Overview . 962
33.2 Creating a new theme . 962
33.3 Editing a theme . 965
33.4 Editing Styles. 976
33.5 Applying MyCorp theme . 984
33.6 Applying a Skin . 985
33.7 Testing the new Portal Project . 986
33.8 Publishing the Portal Project . 990
33.9 Deploying the Portal Project . 993

Appendix A. Additional material . 1003
Locating the Web material . 1003
Using the Web material . 1003

System requirements for downloading the Web material 1004
How to use the Web material . 1004

Related publications . 1005
IBM Redbooks . 1005
Other publications . 1006
Online resources . 1006
How to get IBM Redbooks . 1007
Help from IBM . 1007

Index . 1009

xvi IBM Rational Application Developer V6 and Portal Tools

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
ibm.com®
z/OS®
ClearCase®
Cloudscape™
CrossWorlds®
CICS®
DB2®

DPI®
Everyplace®
Illustra™
Informix®
IBM®
IMS™
Lotus Notes®
Lotus®
Notes®
Rational®

Redbooks™
Roma®
SecureWay®
Tivoli®
TME®
WebSphere®
Workplace™
Workplace Web Content
Management™

The following terms are trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xviii IBM Rational Application Developer V6 and Portal Tools

Preface

This IBM Redbook provides an overview and hands-on scenarios to help you
design, develop and implement portlet applications using the Rational®
Application Developer V6.0 and the provided Portal Tools. The sample scenarios
included in this redbook target Business-to-Employee (B2E) enterprise
applications, but most of the scenarios presented will also apply to
Business-to-Consumer (B2C) applications. You will find step-by-step examples
and scenarios showing ways to integrate your enterprise applications into an IBM
WebSphere® Portal environment using the WebSphere Portal APIs provided by
the Portal Tools to develop portlets. You will also learn how to extend your portlet
capabilities to use other advanced functions such as cooperative portlets,
internationalization, action events, using the Credential Vault to enable Single
Sign-On, Web Services, remote portlets, portal design and portlet debugging
capabilities.

Elements of the Portlet API and the standard JSR168 API are described and
sample code is provided. The scenarios included in this redbook can be used to
learn about portlet programming and as a basis to develop your own portlet
applications. You will also find numerous scenarios describing recommended
ways to develop portlets and portlet applications that follow the MVC design
pattern, the Struts framework and JavaServer Faces technology.

A basic knowledge of Java™ technologies such as servlets, JavaBeans, EJBs,
JavaServer Pages (JSPs), as well as of XML applications and the terminology
used in Web publishing, is assumed.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization,
Raleigh Center.

Juan R. Rodriguez is a Consultant at IBM ITSO, Raleigh
Center. He received his M.S. degree in Computer Science from
Iowa State University. He writes extensively and teaches IBM
classes worldwide on such topics as networking, pervasive
computing, Web technologies, and information security. Before
joining the IBM ITSO, he worked at IBM Research Triangle Park, North Carolina
as a designer and developer of networking products.

© Copyright IBM Corp. 2005. All rights reserved. xix

Cristiano Cesario is an Application IT Architect at IBM Global
Services in Brazil. He has experience in WebSphere products and
Portal solutions. He holds a Bachelor's degree in Computer
Systems Enginnering from the Universidade do Estado do Rio de
Janeiro (UERJ) in Brazil and a Post-Graduate Degree in
Information Systems Project and Management from Universidade
Federal do Rio de Janeiro (UFRJ) in Brazil.

Karla Galvan is a WebSphere IT Specialist at IBM Software
Group in Monterrey, Mexico. She is responsible for Application
Integration and Middleware (AIM) Technical Sales in the northeast
region of Mexico. She holds a Bachelor’s degree in Computer
Science from Universidad Autónoma de Nuevo León, Mexico. Her
areas of expertise include WebSphere Portal, Workplace™ Web
Content Manager and Business Intregration Solutions.

Belen Gonzalez is an IT Specialist in IBM Global Services in IBM
Spain. She has seven years of experience in the e-business field
and three years of experience in WebSphere Portal products. She
holds a degree in Computer Science Engineering from
Universidad Autonoma de Madrid. Her areas of expertise include
J2EE application development with WebSphere Studio and
Rational Application Developer and e-commerce projects.

George Kroner is a recent graduate of Penn State University,
having pursued a Bachelor of Science degree in Information
Sciences and Technology. He has several years of experience in
portal development and design. His interests include Web
applications, wireless mobile applications and integration, portlet
applications, and innovative business strategy.

Gianfranco Rutigliano holds a degree in Systems Engineering
from the University of Lima (Peru) and has been a member of IBM
Global Services. He has experience designing and implementing
pervasive and Java-based Web solutions. He is now a Software
Architect for Avatar e-Business Solutions, an IBM Business
Partner, and has participated in several ITSO residencies for
pervasive computing and WebSphere technologies.

Ryan Wilson is a WebSphere Portal support IT Specialist in RTP,
North Carolina. He was the technical team lead for WebSphere
Studio site developer support before joining Portal. His areas of
expertise include J2EE application development with IBM
WebSphere Studio and Rational Application Developer. He has
participated in many projects, including internal tools
development.

xx IBM Rational Application Developer V6 and Portal Tools

Thanks to the following people for their contributions to this project:

Masato Noguchi
IBM Software Group, Japan

Marshall Lamb, Ryan E. Smith, Shannon Pixley
IBM Research Triangle Park, North Carolina, USA

Stefan Hepper, Oliver Koeth
IBM Software Group, Germany

Cecilia Bardy
International Technical Support Organization, Raleigh Center

 Preface xxi

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

xxii IBM Rational Application Developer V6 and Portal Tools

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Overview

WebSphere Portal provides a flexible framework based on open standards with
the capability to integrate with a best of breed solution.

This chapter provides an overview of the WebSphere Portal technology, IBM’s
portal tooling, and its use in developing integrated portal applications. A
high-level overview of the WebSphere Portal concepts integral to development is
presented here.

In this chapter, we explore:

� The evolution of portals
� Fundamental Portal concepts and definitions
� Portal development patterns

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 Portal evolution
As J2EE technology has evolved, much emphasis has been placed on the
challenges of building enterprise applications and bringing those applications to
the Web. At the core of the challenges currently being faced by Web developers
is the integration of disparate user content into a seamless Web application and
well-designed user interface. Portal technology provides a framework to build
such applications for the Web.

If we take a step back in time to the original PC days when each application took
up the entire screen and used all the computer’s resources, we see that the
advent of using windows revolutionized the way we interacted with our desktop.
A user no longer had to close one application to interact with another. Each
application’s content was aggregated to the desktop. This same evolution is
taking place on the Web with portal technology.

Taking a shorter step back in time to the advent of the Web, initially interaction
with the Web involved entering a single URL to access a single Web site much
like the single application model of the early PCs. As the Web quickly evolved, so
did the associated browser technology such as applets and browser plug-ins for
technologies like Java. Unfortunately, these technologies never standardized
and made the job of the Web developer very difficult when trying to provide
cross-browser implementations. In parallel with these technologies, the desire
grew for dynamic content on the Web and drove the development of Web servers
into application servers that could serve dynamic content and technologies such
as JSPs.

Support for portals evolved from this application server evolution along with the
need to render multiple streams of dynamic content. The early portals fall in the
category of roll your own. These are proprietary and specific to each
implementation. As these portals grew, so did tooling and frameworks to support
the building of new portals. The main job of a portal is to aggregate content and
functionality. Portal servers provide:

� A server to aggregate content
� A scalable infrastructure
� A framework to build portal components and extensions

Additionally, most portals require personalization and customization.
Personalization enables the portal to deliver user-specific information targeting a
user based on their unique information. Customization allows the user to
organize the look and feel of the portal to suit their individual needs and tastes.

WebSphere Portal provides a framework for addressing all these issues along
with an open flexible infrastructure for creating many types or portals accessible
from a wide variety of devices.

2 IBM Rational Application Developer V6 and Portal Tools

1.1.1 The generations of portal technology
Portals have gone through an evolution process of their own.

First generation portals
The first portals, known as first generation portals, were focused on providing
static Web content, Web documents and live feeds. They were mostly an
aggregation of content. In a corporate environment, they had a similar objective,
providing a single interface to corporate information distributed throughout the
enterprise. They typically contained information such as company news,
employee contact information, company policy documents and other key Web
links.

Second generation portals
Second generation portals are first generation portals with added features such
as personalized, customized content and a search capability but are often a
manual roll-your-own process.

Third generation portals
Third generation portals focus on specific information and applications.
Integration has been added at the data level. These portals incorporate the
notion of providing services along with the first generation idea of providing
content. Another key feature of third generation portals is collaboration.

Collaboration portals provide the ability for teams to work in a virtual office. They
provide content management services, the mining and organization of related
information, along with collaborative services that allow users to chat, e-mail,
share calendars and define user communities. Collaborative portals are typically
internal corporate portal installations.

Fourth generation portals
Fourth generation portals are intended to address full-function e-business
(Figure 1-1 on page 4). This involves integration with legacy applications at the
component level. Enterprise portals have evolved from the provision of traditional
employee self-service such as the HR policy to providing employees with a
complete set of comprehensive tools to enhance their productivity.

These take portals beyond the corporate boundaries for use by employees,
suppliers and customers. They also provide access from multiple types of
devices to address the diverse user communities in need of services. They offer
the richest set of content and application choice via a single user interface to a
diverse community including browsers and pervasive devices.They also provide
automated personalization based on business rules. The key to their further
evolution is their open framework for common services.

 Chapter 1. Overview 3

IBM WebSphere Portal is a fourth generation portal providing organizations with
a portal framework that connects a wide range of enterprise content and
applications. It provides a high degree of integration technologies based on the
J2EE platform. Its extensible architecture provides a scalable framework
allowing adaptation to the changing needs of business.

Figure 1-1 e-business needs

1.2 Overview
The primary purpose of implementing an enterprise portal is to enable a working
environment that integrates people, their work, personal activities and supporting
processes and technology. Investment in portal technology will remain high
amidst economic adjustments. The reason for the sustained growth is that
enterprise portals deliver immediate tangible cost savings, enhance productivity,
increase efficiency and generate revenue for the clients.

Most companies have developed their Business to Consumer (B2C), Business to
Business (B2B) and Business to Employee (B2E) strategies. Many times, the
challenge is to tie them together via a comprehensive strategy that is extendable
to employees, business partners and customers. Customers are often faced with
issues of integration with legacy systems. Companies are often faced with the
decision of whether to build or buy.

4 IBM Rational Application Developer V6 and Portal Tools

Portal solutions such as IBM WebSphere Portal are proven and shorten the
development time. Pre-built adapters and connectors are available so that
customers can leverage on the company's existing investment by integrating with
the existing legacy systems without re-inventing the wheel.

1.2.1 What is a portal?
Portals are the next-generation desktop, delivering e-business applications over
the Web to all kinds of client devices. Portals provide site users with a single
point of access to multiple types of information and applications. Regardless of
where the information resides or what format it uses, a portal aggregates all of
the information in a way that is pleasing and relevant to the user. A complete
portal solution should provide users with convenient access to everything they
need to get their tasks done.

1.2.2 Enablement for portals
A portal represents a comprehensive approach to delivering Web-supported
tools and enabling services to employees, customers and business partners. A
portal enables services that should be available through Web-enabled devices,
on a 24x7 basis.

Authentication/authorization
Authentication provides different mechanisms that can be used to validate the
identity of all portal users. Authorization determines whether a user has the
necessary privilege to request a service.

Directory services
The Lightweight Directory Access Protocol (LDAP) infrastructure provides a
foundation for deploying comprehensive identity management and advanced
software architectures such as Web services.

Content management
Content management provides a way for the company to manage and leverage
the enterprise’s intellectual assets. Knowledge assets may include business
intelligence and competitive intelligence data.

Collaboration
Collaboration enables employees, customers and business partners to work
with, interact with, and develop or maintain content with others who share
activities or interests.

 Chapter 1. Overview 5

Search
The portal offers a search service that supports distributed, heterogeneous
searches across different data sources. Search and indexing allows users to
solve problems quickly, since users often need to make ad hoc queries to gather
new information.

Personalization
Personalization provides the user the ability to establish preferences and
profiles. In addition, value-added services for users increase the stickiness of the
portal.

e-learning
A portal can provide just-in-time training and development of skills or expertise
for work. It allows the individual to select the time and place of learning activities
in their own time.

Internationalization
There is an increasing need for providing globalization. As business is getting
more global, workplaces are decentralized, often with thousands of individuals
working in shifting locations.

Pervasive computing
Portal provides access to applications and systems to mobile, remote users at
any time and any place. It provides personalized delivery of integrated content
through multiple channels: portal, wireless, kiosk, etc.

e-commerce
Most of the time, the return on investment (ROI) of implementing a portal may
accrue through direct savings in self-service as well as reduced transaction
costs. Integrating the portal with e-commerce applications can generate revenue
and add tangible value that contributes to enterprise competitiveness.

Host integration
These capabilities provide a single point of entry to applications including legacy
systems. This allows processes and data from multiple applications through a
single workspace. Most of the time, companies have invested substantially in the
legacy systems and the investment can be leveraged.

Site usage
Site analytics provide comprehensive Web site analytics to improve the overall
effectiveness of Web initiatives and campaigns and to ensure a high quality,
high-availability, error-free Web experience for visitors and customers.

6 IBM Rational Application Developer V6 and Portal Tools

1.2.3 The WebSphere Portal framework
WebSphere Portal's extensible framework allows the end user to interact with
enterprise applications, people, content, and processes. They can personalize
and organize their own view of the portal, manage their own profiles, and publish
and share documents. WebSphere Portal provides additional services (see
Figure 1-2) such as Single Sign-On, security, directory services, content
management, personalization, search, collaboration, search and taxonomy,
support for mobile devices, accessibility support, internationalization, e-learning,
integration to applications, and site analytics. Clients can further extend the
portal solution to provide host integration and e-commerce.

Figure 1-2 Portal context diagram

IBM WebSphere Portal provides a single, secure, interactive point of access to
dynamic applications, information, people and processes to help build successful

Portal

Directory
Services

Authorization/
Authentication

Collaboration

Inter-
nationalization

Search

Content
Management

Personalization

Site Usage

Host Integration
Pervasive
Computing

E-Commerce
E-Learning

 Chapter 1. Overview 7

Business to Business (B2B), Business to Employee (B2E) and Business to
Consumer (B2C) portals. WebSphere Portal:

� Consists of pre-integrated software which is customizable, extensible and
scalable

� Is built on the award-winning WebSphere Application Server 5.1 platform,
using J2EE standards to optimize performance

� Provides integrated Web services so you can quickly deploy portlets

� Gives users a content publishing and personalization interface that lets them
create and target portal content in one step

� Offers numerous portlets for e-mail, calendars, syndicated news, industry
applications and many other functions

� Provides award-winning collaborative technology within the portal, in addition
to making it available for portlets

WebSphere Portal is a framework that lets you plug in new features or
extensions called portlets. In the same way that a servlet is an application within
a Web server, a portlet is an application within WebSphere Portal. Developing
portlets is the most important task in providing a portal that functions as the
user’s window to information and tasks.

Portlets are an encapsulation of content and functionality. They are reusable
components that combine Web-based content, application functionality and
access to resources. Portlets are assembled into portal pages which, in turn,
make up a portal implementation. Portlets are similar to Windows® applications
in that they present their contents in a window-like display on a portal page. Like
a Windows application, the portlet window has a title bar which contains controls,
allowing the users to expand (maximize) and shrink (minimize) the application.

Portlets function within the Portal framework where Windows applications
function in the Windows framework. From the portal user’s perspective, a portlet
is a window on a portal site which provides access to a specific service or
resource.

The portal also provides the runtime environment for the portlets that make up
the portal implementation. This runtime environment is the portlet container.
WebSphere Portal supports two different portlet containers, one for running IBM
portlets and the other for running JSR 168 portlets.

The portlet container, in the J2EE sense of a container, is responsible for
instantiating, invoking and destroying portlets. The portlet container provides the
life cycle infrastructure for the portlets. Portlets rely on their container to provide
the necessary infrastructure to support a portal environment. The portal

8 IBM Rational Application Developer V6 and Portal Tools

infrastructure provides the core sets of services required by the portlets,
including:

� Access to user profile information
� A framework for portlets to participate in events
� A framework to communicate with other portlets
� Access to remote content
� Access to credentials
� A framework for storing persistent data.

1.2.4 WebSphere Portal architecture
The WebSphere Portal platform is positioned to enhance the WebSphere family
of products, providing tooling for aggregating and personalizing Web-based
content and making that content available via multiple devices. WebSphere
Portal takes advantage of the strong platform provided by WebSphere
Applications Server.

WebSphere Portal finds its roots in Apache Jetspeed. Jetspeed is an Open
Source implementation of an Enterprise Information Portal, using Java and XML.
Jetspeed was created to deliver an Open Source Portal that individuals or
companies could use and contribute to in an open manner.

Soon after creation, it became apparent that Jetspeed was going to become an
“engine” for Web applications. That, however, was far beyond the scope of the
original project. Around that time, there were many discussions that spawned the
Turbine project based on technology donated by Jon Stevens/Clear Ink. Turbine
is now the Web application framework that Jetspeed shares with many other
Web applications.

Typical topology
Building on the Jetspeed implementation, WebSphere Portal provides an
architecture for building and running portal applications. The overall WebSphere
Portal Architecture can be seen in Figure 1-5 on page 14. WebSphere Portal
provides services for authentication and authorization though the WebSphere
Member Services.

The core of WebSphere Portal architecture is composed of the Presentation
Services, the portal infrastructure, and the portal services.

Note: The IBM portlet API and JSR 168 portlets will interact with portlet
services in different ways, including the Credential Vault and the Cooperative
portlet features. Please see the respective sections for more information.

 Chapter 1. Overview 9

Figure 1-3 Distributed Portal system

Distributed solution
WebSphere Portal can run in a single, two, three, or n - tier environment. This,
combined with the delegation capabilities from WebSphere Portal, provides you
with a structured management in a distributed environment. WebSphere Portal
can be part of an open, architected, and extensible end-to-end geographically
distributed solution. The scalable solution incorporates redundancy with high
availability design and is proven for a geographically distributed infrastructure.
Additional optional components in the Portal Server architecture include a load
balancer (WebSphere Edge Server - Network Dispatcher), integration to
intrusion detection, and translation (WebSphere Translation Server) within the
demilitarized zone (DMZ).

Secure demilitarized zone configuration
Figure 1-4 on page 13 depicts a sample architecture of deploying portal in a
multi-tier Demilitarized Zone (DMZ) configuration with high availability. This
configuration can be used for an Internet/extranet portal solution.

10 IBM Rational Application Developer V6 and Portal Tools

SSL support
IBM WebSphere Portal supports SSL. SSL support for secure transactions is one
of the main reasons to use the IBM HTTP Server as part of your Web
development process. The SSL encryption system is used on servers to ensure
privacy when information is sent across the Internet. An SSL-enabled server
enables clients to verify a server's identity, and ensures that information
transmitted between client and server remains private.

Reverse proxy security server
As shown in this configuration, Tivoli® WebSEAL is used to shield the Web
server from unauthorized request for external facing users. This approach is
desirable when the Web server may contain sensitive data and direct access to it
is not desirable. WebSEAL is a Reverse Proxy Security Server (RPSS) that uses
Tivoli Access Manager (TAM) to perform coarse-grained access control to filter
out unauthorized requests before they reach the domain firewall. WebSEAL uses
Tivoli Access Manager (TAM) to perform access control as illustrated in the
diagram.

The reverse proxy acts as an authentication gateway node and sits between the
browser and the Web servers it protects. It actually acts as a stand-in for these
Web servers. The authentication gateway intercepts all requests to the protected
resources as well as the responses from the Web servers. To the browser
submitting requests, the authentication gateway appears to be the actual Web
server; to the Web server responding to requests, the authentication gateway
appears to be the client.

Load balancing
In this particular example of integrating with WebSEAL, you can configure
WebSphere Application Server to use the LDAP user registry, which can be
shared with WebSEAL and TAM. Replicated front end WebSEAL provides the
portal site with load balancing during periods of heavy traffics and failover
capability. The load balancing mechanism is handled by a Network Dispatcher
such as an IBM WebSphere Edge Server. If the Network Dispatcher fails for
some reason, the standby Network Dispatcher will continue to provide access to
the portal. In our sample configuration, HTTP Servers and Portal Servers are
clustered to provide additional redundancy.

Directory services
The Directory and Security Services provide support for a directory of users
accessible through LDAP. These services are used for authentication and can
also control and verify the resource access privileges or permissions granted to
users. The Directory Server can be replicated to one or more replica LDAP
servers to provide redundancy. WebSphere Application Server uses LDAP to
perform authentication. The client ID and password are passed from WebSphere
Application Server to the LDAP server.

 Chapter 1. Overview 11

Database service
The database server component is not accessed directly by portal users or
administrators. No application-specific tables are created. Database Server is
used by WebSphere Application Server, WebSphere Portal, TAM and Directory
Server to store the data they need for their operation. Replication can be turned
on in the database server which is used by the portal.

Intranet clients
In this configuration, it is optional to use a separate WebSEAL for the internal
users for better performance.

Open standards
IBM WebSphere Portal is based on open standards. IBM is leading efforts to
standardize the application programming interfaces between portals and other
applications. In particular, the Java Community Process (JCP) and the
Organization for the Advancement of Structured Information Standards (OASIS)
are working cooperatively to standardize the Java and XML technology needed
to link portals to disparate applications.

IBM along with Sun and several other companies have created the JSR 168
Portlet specification. This new portlet API is designed to provide a standard for
portlet development.

OASIS created the Web Services for Remote Portals (WSRP) Technical
Committee. Chaired by IBM, the WSRP committee has created an XML and Web
services standard that allows the interoperability of visual, user-facing services
with portals or other Web applications.

Syndicated content
IBM WebSphere Portal provides a framework for pre-built, real-time news and
syndicated content portlets from third-party vendors such as Financial Times,
Pinnacor, YellowBrix, Factiva (Dow Jones and Reuters Company), Moreover,
CoreMedia, divine, FatWire, Autonomy, ScreamingMedia, X-Fetch, Atomica,
Knowmadic and Quiver, just to name a few. The integration is pre-built and
seamless. End users and administrators can easily subscribe to the portlets and
customize the preference personally to enhance the user experience.

Companies are embracing syndication concepts and standards to automate the
publishing of electronic catalogs and other internal information, and to make this
information available to workers through enterprise portals.

A popular and useful format for syndicated news and entertainment content is
Rich Site Summary (RSS). Content can be published directly from the content
management system into Rich Site Summary and Open Content Syndication

12 IBM Rational Application Developer V6 and Portal Tools

(OCS) channels, where it can easily be displayed by the Portal Server's built-in
RSS portlet. This self-syndication concept defines a procedure for editing,
managing, and publishing your own sources of content.

Figure 1-4 High availability portal solution

Building on the Jetspeed implementation, WebSphere Portal provides an
architecture for building and running portal applications. WebSphere Portal V5.1
provides a modular, easily extensible architecture. It is designed as a product
that can run stand-alone if required, but allows plugging in alternative
implementations for those components that may already be set in customer
environments. The main components of the WebSphere Portal V5 architecture
are shown in Figure 1-5 on page 14. The core of WebSphere Portal architecture
is composed of the presentation services, the portal infrastructure, and the portal
services.

WebWeb

Internet Production DMZ Intranet
Internet

DMZ

Network
Dispatcher

Network
Dispatcher
(Standby)

80/443
389/636

80/443

81/1443
389/63681/1443 80/443

389/636
81/1443

Uncontrolled
Zone

Controlled
Zone

Restricted
Zone

Trusted
Zone

WebSEAL/
TAM

IBM
HTTP
Server

Lotus
QuickPlace

WebSEAL/
TAM

Network
Dispatcher

Network
Dispatcher
(Standby)

BrowserBrowser

LDAPLDAP

WebSEAL/
TAM

WebSEAL/
TAM

Cluster

Cluster

Replicate

ReplicateFirewall FirewallFirewall

HeartbeatHeartbeat

Port closed
Port open

DB
DB

Lotus
Sametime

Portal
Server

Portal
Server

Portal
Server

 Chapter 1. Overview 13

Figure 1-5 WebSphere Portal architecture

Presentation services
WebSphere Portal presentation services provide customized and personalized
pages for users through aggregation. Page content is aggregated from a variety
of sources via content and applications. The portal presentation framework
simplifies the development and maintenance of the portal by defining the page
structure independent the portlet definition. Portlets can be changed without
impact to the overall portal page structure.

The Portal engine
WebSphere Portal provides an engine whose main responsibility is to aggregate
content from different sources and serve the aggregated content to multiple
devices. The Portal engine also provides a framework that allows the
presentation layer of the portal to be decoupled from the portlet implementation
details. This allows the portlets to be maintained as discrete components.
Figure 1-6 on page 15 shows the WebSphere Portal engine components.

Web Sphere Portal
Engine

Intranet
Intranet

Internet
Internet

Portlet API (W
P4.1 + JSR 168)

Aggregation
Modules

W
AS

 A
ut

he
nt

ica
tio

n

Authorization Portlet Services

Cr
ed

en
tia

l V
au

lt

Se
ar

ch

Po
rta

l C
on

te
nt

Ac

ce
ss

RPW
S

W
SRP

Local
Portlets
Local

App.Portlets
Content
Mgmt.

Portlets

Local
PortletsLocal

Portlets
Public
RPWS

Services

Global
UDDI

Directory

Corporate
UDDI

Directory

Local
PortletsLocal

Portlets
Corporate

RPWS
Services

Dynamic
Assembly

W
or

kf
lo

w
Fr

ag
m

en
ts

Pe
rs

on
al

iza
tio

n
Fr

ag
m

en
ts

Re
m

ot
e P

or
ta

l
Fr

ag
m

en
ts

 (f
ut

ur
e)

J2EE and WebSphere APIs

JC
A

Co
nn

ec
to

rs

En
te

rp
ris

e
Ja

va
Be

an
s

Pe
rs

on
ali

za
tio

n
Ru

les

Local
PortletsLocal

Portlets
Corporate

Web
Services

Local
PortletsLocal

Portlets
Public
Web

Services

Cl
ick

-2
-A

ct
io

n

Portlet
Filters

Cl
ick

-2
-A

ct
io

n
Fi

lte
r

Tr
an

sc
od

in
g

Fi
lte

r

Tag
Libs

Cl
ick

-2
-A

ct
io

n
Ta

gs

Po
rtl

et
 T

ag
s

Navigation
Portlets

WBI/Struts
Portlets

Local
Portlets
Local

Portlets
Portlet
Proxies

LDAP DB DB HT
ML

W
M

L
CH

TM
L

Vo
ice

XM
L

SOAP
SOAP

W
P

Da
ta

ba
se

Ti
vo

li A
cc

es
s

M
an

ag
er

Ne
te

gr
ity

Si
te

m
in

de
r

Se
ar

ch
 T

ag
s

Co
nt

en
t A

cc
es

s T
ag

s

Ju
ru

, V
er

ity
,

Au
to

no
m

y.
...

.
iW

CP
, V

ig
ne

tte
,

In
te

rv
ow

en
, ..

.

Ti
vo

li A
cc

es
s M

an
ag

er
,

W
P

Da
ta

st
.

Pr
op

er
ty

Br
ok

er

Collab.
Portlets

Admin
Portlets

W
eb

Sp
he

re

W
or

kf
lo

w
W

eb
Sp

he
re

Pe

rs
on

ali
za

tio
n

W
TP

Tr
an

sla
tio

n
Fi

lte
r

Tr
an

sla
tio

n
Se

rv
er

AXIS
Servlet
(SOAP)

Portal
Servlet
(HTTP)

UR
L

Ma
pp

er

Se
rv

let
 F

ilt
er

W
TP

Co
lla

bo
ra

tio
n

&
Aw

ar
en

es
s

…

Sa
m

et
im

e
Ch

at
Qu

ick
pl

ac
e,

 …

…

DB 2
Oracle
Cloudscape
SQL Server
Informix
…

Secure Way Directory
iPlanet Directory
Active Directory
…

WebSphere
Member
Manager

WebSphere
Portal Datastore

Portlet Invoker

…

…

Po
rta

l C
on

te
nt

Ac

ce
ss

HT
TP

 P
ro

xy
 (e

.g
. E

dg
e S

er
ve

r)

JM
S

W
or

kf
lo

w
En

gi
ne

(D

ra
go

nf
ly)

Ne
te

gr
ity

TA
I

TA
M

TA
I

HT
TP

 S
er

ve
r C

ac
hi

ng
 P

lu
gi

n

Re
ve

rs
e P

ro
xy

 (
e.

g.
Ed

ge
Se

rv
er

)

Br
ow

se
r C

ac
he

…

Object Caching

Ja
va

 M
ail

In
te

llig
en

t N
ot

ifi
-

ca
tio

n
(e

.g
. S

MS
)

…

Life
Cycle
Hooks

Li
fe

 C
yc

le
Ha

nd
ler

s

Co
lla

bo
ra

tio
n

14 IBM Rational Application Developer V6 and Portal Tools

Figure 1-6 WebSphere Portal engine

The Authentication Server is a third-party authentication proxy server that sits in
front of the Portal engine. Access to portlets is controlled by checking access
rights during page aggregation, page customization, and other access points.

The Portal Servlet is the main component of the Portal engine. The Portal Servlet
handles the requests made to the portal. The portal requests are handled in two
phases. The action phase is used for processing actions. This is also the phase
where messaging is processed in the IBM portlet API. The other is the redner
phase. In the render phase, the appropriate Aggregation Module for the
requesting device renders the overall portal page by collecting information from
all the portlets on the page and adding standard decorations such as title bars,
edit buttons, etc.

Portlet container
Portal Services are components WebSphere Portal uses to extend the portal
functionality. Key functionality is provided with WebSphere Portal for
personalization, search, content management, site analysis, enterprise
application integration collaboration and Web services. Portlets can access these
services via their container or JNDI in the case of JSR 168 portlets.

Portal infrastructure
The WebSphere Portal infrastructure is the framework that provides the internal
features of the portal. Functionality such as user and group management via self
registration, as well as portal administration, are provided by the Portal
infrastructure.

Portal
Servlet

Aggregation
Modules

User Bean

LDAP
Directory

Relational
Database

Management
System

Portal
Registry

Portlets

Services

Access ControlTrust
Association
Interceptor

Authentication
Server

Portal Engine Full Page
View

 Chapter 1. Overview 15

User and group management
The WebSphere Portal infrastructure provides facilities to allow user self
management along with enterprise integration with user directories such as
LDAP or database structures.

Security services
Since WebSphere Portal runs within the WebSphere Application Server platform,
it makes use of the standard Java Security APIs to provide authentication. The
WebSphere Portal is configured so that incoming requests pass through an
authentication component such as WebSphere Application Server, WebSEAL or
other proxy servers. A user’s authorization for a particular resource such as page
or a portlet is handled by the portal engine.

User beans are provided to allow programmatic access to the User information
for use within IBM portlets. JSR 168 portlets can take advantage of J2EE
security methods or they can use the user attributes stated in the specification.

Page transformation
WebSphere Transcoding Technology is integrated with WebSphere Portal to
transform the portal markup produced by WebSphere Portal to markup for
additional devices such as mobile phones and PDAs.

Portal services
Portal services are built-in features the WebSphere Portal provides to extend and
enhance the full portal solution. These services are provided via the Portlet
container as seen in Figure 1-5 on page 14. Among the services are the
following:

� Personalization

The IBM WebSphere Personalization functionality enables advanced
personalization capabilities. Base customization, such as choosing which
portlets are desired on a page, is accomplished by the user via administration
functionality. Advanced personalization via rules engines, user preferences
and profiles is accomplished by the provided personalization services.

� Content management

WebSphere Portal provides services to facilitate connections to content
management sources. Built-in support is provided for several common
content types such a as Rich Site Summary (RSS), News Markup Language
(NewsML) and Open Content Syndication (OCS) along with most XML and
Web browser markup.

� Search

WebSphere Portal offers a simple search service. The Portal Search
capability enables search across distributed HTML and text data sources.

16 IBM Rational Application Developer V6 and Portal Tools

The search can crawl a Web site and is configured so as to force it to follow
several layers in a site or to extend beyond several links in a site.
Furthermore, IBM Extended Search and Enterprise Information Portal can be
fully incorporated into the portal environment. These search engines are
industrial-strength tools that provide federated searches across numerous
data sources.

� Site analysis

You can take advantage of the underlying WebSphere Application Server
technology and Site Analyzer to provide information about Web site visitor
trends, usage and content. This detailed information can then be used to
improve the overall effectiveness of the site.

� Collaboration

Collaboration services are provided by WebSphere Portal through a set of
pre-defined portlets. These portlets allow for team-room function, chat,
e-mail, calendering and many other collaborative technologies.

� Web Services

WebSphere Portal provides services for exposing and integrating portlets as
remote portlets hosted on another portal platform via Web Services
technology. The entire process of packaging and responding to a SOAP
request is hidden from the developer and the administrator. WebSphere
Portal V5.1 provides a set of portlets for providing and consuming remote
portlets.

1.2.5 WebSphere Portal tooling
WebSphere Portal and Rational Application Developer, provide the basic tooling
for developing and deploying portals and their associated portlets.

WebSphere Portal
WebSphere Portal contains built-in support for portlet deployment, configuration,
administration and communication between portlets.

WebSphere Portal provides the framework for building and deploying portals and
the portal components, portlets. Portlet content is aggregated by the WebSphere
Portal to provide the desired portal implementation.

WebSphere Portal makes use of the WebSphere Application Server technology
to provide a portal platform.

 Chapter 1. Overview 17

Rational Application Developer
WebSphere Portal tools provided with Rational Application Developer provides
an environment for developing portlets for both APIs, IBM and JSR. With
Rational Application Developer, you can now also develop portal themes and
skins.

Rational Application Developer provides the ability to quickly create complete,
MVC-compliant portlet applications. It also provides intuitive editors for working
with the deployment descriptors required by your portlet applications.
Furthermore, it allows you to dynamically debug your portlet applications.

1.3 WebSphere Portal
WebSphere Portal takes the advantage of the WebSphere Application Server,
making use of its J2EE services. WebSphere Portal itself installs as an
Enterprise application in WebSphere Application Server.

1.3.1 Portal concepts
The following are some definitions and descriptions of Portal concepts.

Portlet
A portlet is an application that displays page content.

Portlet application
Portlet applications are collections of related portlets and resources that are
packaged together. All portlets packaged together share the same context which
contains all resources such as images, properties files and classes.

Page
A portal page displays content. A page can contain one or more portlets. For
example, a World Market page might contain two portlets that displays stock
tickers for popular stock exchanges and a third portlet that displays the current
exchange rates for world currencies. To view a page in the portal, you select its
page.

Layout
The page layout defines the number of content areas within the page and the
portlets displayed within each content area. In many cases, the portal
administrator defines the page layout. The administrator can permit specified
users or user groups to change the page layout to reflect individual preferences.

18 IBM Rational Application Developer V6 and Portal Tools

If you have authority to change a page, use the configure icon (wrench icon) to
alter the page layout.

Roles
Each portal page is subdivided into one or more content areas. Each content
area can contain one or more portlets. The portal administrator or a user who has
authority to manage a page can control whether others who have authority to edit
the page can move, edit or delete the content areas and the portlets on the page.
Portal V5.1 permission is role-based. A role is a set of permissions. Roles can be
assigned (or mapped) to individual principals granting those principals the
corresponding permissions. If you have authority to make changes to a portal
page, use the Resource Permissions page in Access under Administration to set
the permissions for the page. By default, there are seven roles:

� Administrators are allowed to have unrestricted access on all portal
resources

� Security Administrators are allowed to grant access on a resource

� Delegators are allowed to grant access to other principals

� Managers are allowed to create, edit, and delete shared resources

� Editors are allowed to create and edit shared resources

� Privileged Users are allowed to create private resources

� Users are allowed to view portal resources

Comparison of V4.x permission with V5.x roles
Permissions that a principal (a user or group) had in WebSphere Portal V4.x are
mapped to the appropriate roles in WebSphere Portal V5.0. The following table
illustrates this role mapping.

Table 1-1 Role mapping

V4.x Permissions V5.0 Roles

View User

Edit Privileged User

Manage Manager

Delegate Security Administrator

View + Edit Privileged User

View + Manage Manager

View + Delegate Security Administrator + User

 Chapter 1. Overview 19

Themes
Themes represent the overall look and feel of the portal, including colors, images
and fonts. There are several default themes provided with the standard
installation of WebSphere Portal. Each page in the portal may have a different
theme associated with it, thereby creating the appearance of virtual portals. Use
the Themes and Skins under Portal User Interface to manage themes.

Skins
The term skin refers to the visual appearance of the area surrounding an
individual portlet. Each portlet can have its own skin. The skins that are available
for use with a portlet are defined by the portal theme that is associated with the
page. The portal administrator or the designer determines the theme for pages
and the available skins for the theme. The administrator can permit specified
users to change the skins to reflect individual preferences. If you have authority
to make changes to a portal page, use the Themes and Skins under Portal User
Interface to manage themes.

Edit + Manage Manager

Edit + Delegate Security Administrator + Privileged User
(Migration option: Security Administrator +
Editor)

Manage + Delegate Administrator

View + Edit + Manage Manager

View + Edit + Delegate Security Administrator + Privileged User
(Migration option: Security Administrator +
Editor)

View + Manage + Delegate Administrator

View + Edit + Manage + Delegate Administrator

Create No longer necessary. In WebSphere
Portal V5.0, principals with the
Administrator, Manager, Editor, or
Privileged User roles on a resource are
automatically allowed to create new
resources underneath that resource in the
resource hierarchy.

V4.x Permissions V5.0 Roles

20 IBM Rational Application Developer V6 and Portal Tools

1.3.2 Portlets
The base building blocks of a portal are the portlets. Portlets are complete
applications following the Model-View-Controller design pattern. Portlets are
developed, deployed, managed and displayed independent of all other portlets.

Portlets may have multiple states and modes along with event. Based on the
J2EE container model, portlets run inside the Portlet Container of WebSphere
Portal analogous to the way servlets run inside the Servlet Container of
WebSphere Application Server.

To understand the portlet model used by WebSphere Portal, let us take a step
back and examine the Flyweight pattern. This pattern is used by WebSphere
Portal as the design pattern for the portlet model.

The Flyweight pattern
The Flyweight pattern was originally presented by the GoF or Gang of Four
(Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides) in E.Gamma,
et al., Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

Flyweight is a structural pattern used to support a large number of small objects
efficiently. Several instances of an object may share some properties. Flyweight
factors these common properties into a single object, thus saving considerable
space and time otherwise consumed by the creation and maintenance of
duplicate instances. Key to the Flyweight Design Pattern is the fact that the
objects share some information. It is then possible to greatly reduce the
overhead problem and make the presence of so many objects possible.

The flyweight object is a shared object that can be used in multiple contexts at
the same time; the object functions independently in each context.

The state shared by the objects falls into two categories, intrinsic and extrinsic.

Intrinsic state State stored in the object and independent of object’s
context. Thus the information is sharable across the
objects. The more stateless and intrinsic information
shared between objects in the flyweight, the better. This
allows for greater savings in memory, since less context
information needs to be passed around.

Extrinsic state State that depends on a single request varies with the
objects context and therefore cannot be shared. This
information must be stateless and determined by context,
having no stored values, but values that can be calculated
on the spot. Client Objects are responsible for passing the
extrinsic state to the object when the object needs it.

 Chapter 1. Overview 21

This separation into extrinsic and intrinsic information allows great numbers of
similar objects to exist, differing only in the context in which they exist.

The different components involved in the Flyweight Pattern are the Flyweight, the
ConcreteFlyweight, the UnsharedConcreteFlyweight, the FlyweightFactory and
the Client.

� The flyweight: the shared object with intrinsic state. The flyweight declares an
interface through which flyweights can receive and act on intrinsic data.

� ConcreteFlyweight: implements the flyweight interface and adds storage for
the intrinsic state.

� UnsharedConcreteFlyweight: the flyweight interface enables sharing but does
not enforce it. Not all flyweights are shared. It is common for
UnsharedConcreteFlyweight objects to have ConcreteFlyweight objects as
children at some level in the hierarchy.

� FlyweightFactory: serves to dispense particular flyweights that are requested.
When a Flyweight with certain properties is requested, it checks to see if one
already exists, and if so, returns that flyweight. If the requested flyweight does
not exist, it creates the requisite flyweight, stores and returns it.

� Client: when creating an object, a client must assign a flyweight to it, so it
asks the FlyweightFactory for a particular flyweight, receives that flyweight,
and creates a reference to it in the object it is creating.

The parameterization of portlets is based on the flyweight pattern, the Portlet
Container being the Flyweight Factory.

Portlets
Portlets are invoked by the portlet container. A portlet is a Web application that
runs within a portlet container. Portlets receive and respond to requests from the
portlet container. There is only ever one portlet object instance per portlet
configuration in the deployment descriptor. IBM portlets use the Web deployment
descriptor while JSR portlets are defined in the portlet deployment descriptor.

Basic portlet terms
In order to fully understand some of the introductory topics, it is necessary to
define a few of the most basic terms used when discussing portlets.

State
This is the current state of the portlet window. Valid states in both portlet APIs are
Normal, Minimized and Maximized. IBM portlet API will also support SOLO while
JSR 168 does not.

22 IBM Rational Application Developer V6 and Portal Tools

Mode
This defines the current condition of the portlet. The modes that are available for
any particular user depend on the permissions for that user, the device used to
access the portlet and the configuration and implementation of the portlet. IBM
portlet API supports View, Edit, Config and Help modes, while JSR 168 portlets
supported View, Edit and Help modes, as well as custom modes. The Config
mode for JSR 168 portlets is supported as a custom mode.

1.3.3 The model-view-controller (MVC) design pattern
To help you understand the role of a portlet and prepare you for effective and
well-designed portlet development, a review of the model-view-control (MVC)
architecture is necessary. This section will briefly review the MVC Model 2
architecture.

In the simplest of forms, the MVC model 2 architecture is illustrated as in
Figure 1-7.

Figure 1-7 Simple MVC architecture

1.3.4 Standard MVC architecture
The Model View Control architecture is concerned with separation of
responsibilities. The objective, no matter how it is applied or to what type of
application, is to segregate a system into components. Each component should
be small, identifiable, self-contained and reusable. These components are
identified by the role they play in the system. Each role in that system may have
several classes working in conjunction to achieve the goal of that role. This
section will cover the three roles of MVC: Model, View and Control.

Though the MVC architecture was originally applied to Swing applications, it has
gained popularity and widespread acceptance throughout the servlet community.

Note: All portlets must support the default mode, View.

JSP

Bean

Servlet

Control

View

ModelClient

 Chapter 1. Overview 23

This section is technology-independent, but will use the servlet technology to
demonstrate the application of MVC.

Model
This component is responsible for encapsulating all the business logic required
by the system. It must be independent of the other components in the system. To
achieve this objective, it must be able to retrieve the data required to complete
the business rules data by itself or accept very generic receive parameters.
Furthermore, it must be able to return the results in a generic form that any
potential View component could use. In a typical servlet environment, the Model
is represented by one or more Java beans, EJBs or other Java classes.

View
This component is responsible for creating a presentation resource for the
results of the Model component. Like all MVC components, the View must be
independent of the other components in the system. Its success or failure must
not depend on the success or failure of the Model component. In practice,
several different View components may be developed in order to create a
dynamic, complete and possibly multi-purpose application. In a typical servlet
environment, the View is created using Java Server Pages.

Control
At the heart of the MVC architecture is the Controller component. Each client
request of the system is routed through the Controller class. Its responsibility is
threefold. First, it should evaluate the validity of the request, including the user’s
state and any parameter information passed as part of the request. The
Controller then decides which Model component has the requisite functionality to
satisfy the business requirements of the request. Once the Model component
has completed its work, the Controller is responsible for deciding on the
appropriate View component to present the results back to the client. If either one
of the Model or View components fails, the Controller is responsible for either
attempting to satisfy the request in another fashion or deciding on an appropriate
View component capable of presenting an error message. In a typical servlet
environment, the servlet itself plays the role of the Controller.

1.3.5 Portlet MVC architecture
The MVC architecture can be applied as a design pattern to any system needing
to achieve separation of responsibilities. In fact, you will see as you continue
through this redbook that the Portal Server itself is architected this way.
Furthermore, several of the benefits of the portlet architecture are available to
you only if you employ a good MVC design.

24 IBM Rational Application Developer V6 and Portal Tools

Model
The Model in a portlet application is not necessarily different from the Model in
any other Java server side application.The Model represents business logic and
should not be concerned with the Controller or the View. The Controller could be
a servlet, portlet, or a simple Java class. The View could be a JSP or even simple
HTML. In theory, then, provided that existing applications employ solid MVC
practices, porting the functionality WebSphere Portal should not require any
changes to the logic. However, in practice, there are always applications that lack
this foresight. The rich API covered later in this chapter will arm you with the tools
to tackle this situation. Implementing a rigid commitment to the MVC architecture
now will conserve an enormous amount of effort in later migrations or
maintenance duties.

View
Like the servlet MVC implementation, the View is traditionally implemented using
JSPs or simple HTML. However, because the HTML the View returns will be
aggregated, it must not contain page-level tags and must be very mindful of the
environment in which it is executing. Furthermore, the Portlet API provides tag
libraries which aid in creating dynamic view resources for the portlet
environment.

Control
The Controller is responsible for determining the requested mode, executing an
appropriate Model and selecting the correct View. The portlet class itself acts as
the Controller. Instead of determining the request method as in servlets, portlets
need to determine the mode the user has requested. In a normal presentation,
where a page is built with several portlets on it, the mode is View. The user, with
appropriate permissions, may click the Edit button in order to perform some edit
functionality. In this case, the mode is Edit.

1.3.6 Portlet MVC sample
In the simplest of portlet applications, the MVC architecture would be applied as
in Figure 1-8 on page 26. Note that Figure 1-8 on page 26 does not reflect the
architecture of the Portal Server, simply the portlets executed by the server in
any given single request.

 Chapter 1. Overview 25

Figure 1-8 Portlet MVC architecture

1.3.7 WebSphere Portal runtime: the portlet container
WebSphere Portal is a J2EE application based on the servlet technology. In fact,
IBM Portlets inherit from HTTP Servlet in the Java hierarchy, providing the
servlet functionality. JSR 168 portlets do not inherit from servlets but they are
model after them. The WebSphere Portal portlet container is not, however, a
standalone container as is the servlet container. The portlet container is a thin
layer implemented on top of the servlet container designed to reuse the
functionality provided by the servlet container.

Both portlet APIs provides the standard interfaces for accessing the services
provided by the portlet container. As previously mentioned, the Portlet Container
is implemented on top of the servlet container and thus both portal APIs are
similar to the servlet API.

1.3.8 Page aggregation
Portals allow users to choose sets of portlets they would like to work with and
provides a framework for displaying those portlets in a consistent fashion.

A defined set of applications, which should be presented in a common
environment are referred to as a page.

JSP

Bean

Portlet

JSP

Bean

Portlet

JSP

Bean

Portlet

Request

Client

WebSphere
Portal

Aggregated
JSP

Response

26 IBM Rational Application Developer V6 and Portal Tools

Page aggregation is the process that collects information about the user’s
choices, the device being used and the selected portlets, then takes that
information and combines it to create a display that is appropriate for the device.

The aggregation process involves three basic steps:

� Collecting user information
� Selecting the active applications
� Aggregating the output

Once the active page is determined, the layout of this page is used to aggregate
the content of the defined applications, arrange the output and integrate
everything into a complete page. Basic Portal Page Layout can be seen in
Figure 1-9 on page 28.

Rendering of page components is done using JSPs, images, style sheets, and
other resources. These resources are located in the file system in a path-naming
convention that the portal server uses to locate the correct resources for the
client. WebSphere Portal provides dynamic aggregation of pages from page
descriptors held in the portal database.

Collecting user information
During the collection of user information, the following information is collected:

User The user is authenticated at login and the user
identification is available throughout the session.

Client The user’s device is determined by information contained
in the request header. Once determined, this information
is also stored in the session.

Markup The markup is associated with the device category. There
are currently three markups defined, HTML, cHTML and
WML. New markup scan be added via the Markup
Manager Portlet.

Markup version The version for the supported markup. For example, ie5
for the Internet Explorer family of browsers, ns for the
Netscape family of browsers.

Language The portal determines the language to be displayed via
the following algorithm.

If the user is logged in, the portal user interface is
displayed in the preferred language of the user.

If no preferred language is set, the portal UI is displayed
in the language set by the client browser if available.

 Chapter 1. Overview 27

If no browser language is available, the portal UI is
displayed in the default language set for the portal.

Portlets not supporting any of the above scenarios display
their UI in the portlet’s default language.

Page The access control list determines which pages and
labels a user has access to.

Theme The name of the active theme is taken from the currently
active page.

Screen Depending on the interactions of the user with the portal,
different screens are presented. The screen holds the
output of the portlets on a page.

Selecting the active applications
During this phase of aggregation, the portal determines the active applications or
portlets to be displayed. When the portal receives a request, it determines the
active page for the current user. Aggregation then continues with the rendering of
the page.

Aggregating the output
Once the active page is determined, the portal uses the layout of the page to
aggregate the content of the defined applications, to place the output and build
the complete page. A page contains components such as row or column
containers that contain other components or portlets. Figure 1-9 shows the
layout of a portal page.

Figure 1-9 Portal page layout

A portal page is made up of the following elements.

28 IBM Rational Application Developer V6 and Portal Tools

Portal window The content inside the displayed window. It is made up of
the banner and the portal page.

Banner The top area of the window that holds the company
information, the greeting, a page selection box, tabs to
select the current page in the page group being displayed
and some additional controls for interacting with the portal
such as logging in, logging out and help.

Screen Hold the output of the portlets on the currently selected
page. The layout is determined by its row and column
containers.

Node Node is a level of hierarchy in the portal. Nodes include
pages, labels, or URLs, and are used to navigate the
portal structure. The portal has a tree structure that is
used to organize the portal into branch nodes, which
belong to other nodes that are higher in the tree. The
single highest node in the portal is called the content root.
Nodes are represented and accessed from the portal
navigation menu.

Page Page is a type of node that provides portal content, similar
to a page on any Web site. However, portal pages display
content in the form of portlets, which are arranged on the
page by row and column containers. Each page displays
content that has been customized for the portal user.

Label Label is a type of node that has a name and is used to
hold other nodes.

URL URL is a type of node that can open locations within the
portal or external Web sites.

Container A container is an area on a page that contains content. A
container can be structured as a row, column, or cell in a
table. That is, when you are arranging content on the
page, the content can be placed in a container that spans
the width of the page (row) or the height of a page
(column).

Row A container inside a page that allows portlets to be
arranged in a horizontal format.

Column A container inside a page that allows portlets to be
arranged in a vertical format.

Control The frame around the portlet is constructed by the frame.
It builds the bar above the portlet output including buttons
to control the state and view of the portlet.

 Chapter 1. Overview 29

Portlet A portlet is a type of application that can be accessed
through a small box or window in a portal page. Portlets
provide access to specific services or information, for
example, a calendar or news feed.

Themes and skins
Window and component layouts can be controlled by themes and skins. Themes
refer to the window templates. Themes represent the look and feel of the portal,
including background colors, images and fonts, and is also used to render to
portal banner. Skins refer to the component templates. It defines the border,
margins, and title bar of the portlets on a page. Skins use the theme name to
select the graphics that match the theme colors.

Templates
Aggregation uses the concept of templates to perform window, screen and
component layout. When a corresponding part needs to be rendered, a template
loader will load the requested template. If the requested template cannot be
found, the default template will be used. A template consists of the template
class that controls the rendering, the localization and the launch of the template
JSP. The template JSP performs the actual rendering. There are three types of
templates:

� Window templates

The Window template is responsible for the layout of the parts of the banner
area and the placement of the screen. You can change, for example, the
navigation tab location via the window template.

� Screen templates

The Screen template is responsible for the layout and the content of the
screen, the portion of the portal page containing the output of the portlets.

� Component templates

Component templates are responsible for rendering the component itself and
for starting the rendering of its children components. The children of container
components (row and column) may be other containers or controls. The child
of a control will always be a single portlet.

Page aggregation processing
The rendering process is a domino process starting with the root container. The
root container triggers the rendering of all the child components in the page
hierarchy as seen in Figure 1-10 on page 31.

Rendering the screen triggers the aggregation of a page and its portlets. The
pageRender tag in the screen starts the rendering process. If no portlet is
maximized, then the pageRender tag calls the RootContainer.

30 IBM Rational Application Developer V6 and Portal Tools

The Root Container holds all the containers and controls for this page. The
pageRender tag tells the Root Container to invoke the rendering of all its
children. Since the Root Container is used only as a starting point for the
aggregation, it does not render itself and therefore is not visible on the screen.

Each child of the Root Container invokes its template which is responsible for
rendering all the content of its child. If the child contains further child components
the componentLoop and componentRender tags execute the rendering of all
these components one at a time.

Each component invokes its own template which in turn invokes more
components until the leaf of each branch is reached. Thus, control moves
between component classes and their respective JSPs. Each component writes
its content to the servlet output stream.

When a control is reached, it invokes the rendering of the portlet, which adds its
output to the output stream via its rendering. When the entire tree has been
traversed, the output stream is closed and the output is sent back to the
requesting client.

Figure 1-10 Page aggregation

1.4 Highlights in WebSphere Portal V5.1
In this section, we present general information about Portal V5.1.

<Page Render Tag/>
Root Row

Container

Column
Container

Column
Container

Control

Page
Descriptor

Control

Control

Control

Portlet

RowContainer.jsp ColumnContainer.jsp Control.jsp

Portlet

Portlet

Portlet

Portlet
Rendering

Customizable Aggregation Objects

 Chapter 1. Overview 31

1.4.1 Portal install
While WebSphere 4.x has an install procedure that tried to address all needs and
adapt virtually all portal settings to the specific customer environment which
resulted in a complex install procedure that required systems administrators to
know and specify many things at install time, WebSphere Portal 5.1 has a
redesigned install that follows a more modular approach, consisting of the
following steps:

1. Installation - This step lays down the required files and only asks for some
basic configuration settings. By default, the portal installation installs
WebSphere Application Server 5.0.1 EE and the Cloudscape™ database,
plus the portal software on top of those. Alternatively, the install can be done
on a preexisting installation of WebSphere Application Server 5.0.1 EE
optionally using a preexisting database (for example Cloudscape, DB2®,
Oracle, SQL Server, Informix®). Installation of the portal is quick and simple,
using common defaults.

2. Configuration - This step allows tailoring a portal installation fit the specific
customer environment by running configuration scripts to change the
database being used by the portal, switch from using the WMM database as a
user registry to using one of the supported LDAP directories, enabling use of
a proxy for access of remote content through the portal, etc.

1.4.2 General infrastructure
The general infrastructure of Portal V5.1 consists of the following elements.

Support for WebSphere Application Server V5.1 Enterprise
WebSphere Portal 5.1 runs on WebSphere Application Server 5.1 Enterprise to
take advantage of better performance and scalability.

Enabling for Communities
WebSphere Portal 5.1 through its WebSphere Member Manager Component
provides support for Communities as special groups with additional
meta-information.

1.4.3 Event broker
WebSphere Portal 5.1 has a portal event broker to which portal components can
fire typed events which the broker dispatched to the listeners previously
registered for those events. The portal event broker is used to deliver portal
internal events across portal components as well as for producing events for
event listeners for BEI and site analyzer integration.

32 IBM Rational Application Developer V6 and Portal Tools

Figure 1-11 Event broker

1.4.4 Member subsystem
WebSphere Portal Server 5.1 uses WebSphere Member Manager instead of
WMS.

WebSphere Member Manager can access user information in different types of
repositories using WMM Repository Adapters which implement the WMM
Member Repository Interface. WMM provides repository adapters for LDAP user
profile repositories and the WMM Database user profile repository (supporting
the same set of databases as WebSphere Portal). It is also possible to connect
custom repositories by implementing a custom profile repository adapter, for
example, in service projects.

1.4.5 Authentication
Authentication in this version consists of the following elements.

J2EE Security
The authentication function in WebSphere Portal Server 5.x uses the J2EE
Security calls to authenticate users instead of the SSO Authenticator calls that
had been used in WebSphere Portal 4.x.

Deprecating old SSO functionality
In WebSphere Portal Server 5.x, the old JAAS-based SSO functionality allowing
portlets to take user ID and password from the JAAS Subject for the special case
that no authentication proxy is used is no longer supported. Instead, portlets
have to use the Credential Vault that also works in the general case.

1.4.6 Authorization
Authorization in this version consists of the following elements.

Command API

CommandXY

CommandXYZ

Custom Event
Handlers

EventhandlerX

EventhandlerY

EventhandlerZ
EventRegistry

Event Event

EventBroker

 Chapter 1. Overview 33

Enhancing access control for roles and inheritance
WebSphere Portal uses a role-based approach to manage user authorization for
accessing portal resources such as portlets and pages. Access control
administration can be performed using corresponding portlets within the running
portal or via the XMLAccess scripting interface.

Portal access control (PAC) is the single access control decision point within the
portal. It controls access to all sensitive portal resources, like for example pages
and portlets. PAC is used by various components including the customizer, the
different aggregation modules, and the SOAP RPI router that allows for remote
invocation of portlets. All these components will allow actions on particular portal
resources only if these actions are allowed by PAC.

PAC directly supports access control configuration of hierarchical resource
topologies through the concept of permission inheritance. This concept reduces
the administration overhead for an administrator when controlling access to a
large number of portal resources. Inherited permissions are automatically
assembled into roles that can be assigned to individual users and user groups,
granting them access to whole sets of logically related portal resources. The
"user-to-role-assignments" can be managed within the portal or within external
authorization systems (for example Tivoli Access Manager).

To allow for pluggable implementations, the authorization component defines a
Service Provider Interface (SPI). WebSphere Portal Server 5.x has a built-in
authorization component implementation that plugs into the SPI so that it can be
replaced by other implementations easily.

The summarized access control facilities provided by PAC include:

� Instance-level access control for the complete set of portal resources

� Granting/revoking of permissions based on roles

� Support for predefined action sets for convenient creation of roles based on
the intrinsic portal resource topology

� Flexible blocking of permission inheritance on a per resource/per action set
basis

� Notion of Private Resources to reduce the number of defined roles within the
portal for high volume personalized resources

� Delegated administration concept supporting an unlimited number of
delegation levels

� Leveraging a sophisticated caching infrastructure for high performance
access control decisions

� SPI plug-point for external access control components like, for example, Tivoli
Access Manager

34 IBM Rational Application Developer V6 and Portal Tools

1.4.7 URL generation, processing and mappings
WebSphere Portal 5.1 has mechanisms for generating URLs to be embedded in
portal or portlet markup and for analyzing the URLs in incoming requests to
determine what actions to process and what to display.

Canonical Portal URLs
WebSphere Portal 5.0 supports a canonical URL format that consists of the
server name plus one or more GUIDs or Unique Names of URL addressable
resources within the portal such as places, pages, and portlet instances.

User-friendly Portal URLs
In addition to canonical URLs, WebSphere Portal 5 can support arbitrary
user-friendly URLs defined by administrators explicitly for selected portal
resources. To define user-friendly URLs, the portal administrator defines URL
contexts organized as trees which have context names as their nodes. The
user-friendly URLs result from traversals from the root to a leaf of such a tree.

URL mappings
To translate user-friendly URLs (which in general have an arbitrary structure and
do not contain GUIDS or unique names that can be understood by the portal's
URL processing) into canonical portal URLs (which contain the correct GUIDs or
unique names for portal resources), URL mappings are required.

WebSphere Portal allows administrators to define URL mappings for the parts of
URL spaces for which they have the appropriate access rights in two ways: They
select a node in the URL spaces and may map it to a URL addressable portal
resources they start by selecting a URL addressable portal resource and then
selecting the node(s) in the user-friendly URL space which should map to the
resource. Administrators may only define URL mappings for those friendly URL
contexts for which they have been granted the appropriate access rights.

1.4.8 Search
WebSphere Portal 5.1 introduces major improvements in its search functionality,
adding additional content sources and a new Search Center Portlet.

New in WebSphere Portal 5.1:

� You can make intranet sites available for searches.

� WebSphere Portal site are now also available for searches. Only portlets for
which you have access to will be indexed. Furthermore only the main panels
of portlets are indexed.

 Chapter 1. Overview 35

� Lotus® Workplace Web Content Management™ is now available for indexing
as well.

� You can configure the use of external search engine such as Google.

� The new Search Center portlet provides many new useful features.

See the WebSphere Portal InfoCenter for more details:

http://publib.boulder.ibm.com/infocenter/wp51help/topic/com.ibm.wp.ent.doc/wps/
admsrch.html

1.4.9 Content management

Portal Document Manager
Portal Document Manager (PDM) is a portlet application which provides a
simple, real-time document viewing and contribution solution for Portal users. It
is built according to the WebSphere Portal 5.0 portlet style and architecture
guidelines and uses the new WPCP Portal Content Management (PCM) API to
provide the necessary folder, document and user management functions needed
for the PDM solution. PDM will be shipped in all versions of WebSphere Portal
V5.0 (including Express). One of PDM's major usability objectives is to provide a
simple interface, one that can be used without training, often referred to as a
"walk up and use" interface. PDM's target audience includes business
professionals, and content contributors who demand a nontechnical interface.

This release of PDM provides the following functions:

� Document Management: Navigate a hierarchy of documents organized into
user-defined folders; Authorized users can add, view, modify and delete
folders and documents.

� Access Control: Portal users/user groups used for access control; assign
access control rights for folders and documents using Portal access control
interface.

� Search: PDM documents and folders are searchable using Portal search
engine.

� Workflow Process: Using built-in workflow, assign approvers for workflow
process during PDM configuration. Approvers must approve new and
changed documents before they are made public. Work items show up in the
Tasks folder.

� Subscription: Allows subscription to documents and folders. Subscription
folder shows subscribed documents.

� Integration with On-Demand Client (ODC) components: ODC editors
(RichTextEditor, Presentation Editor and Spreadsheet Editor) can be used to
edit PDM documents. ODC Mailbox portlet can save attachments as PDM

36 IBM Rational Application Developer V6 and Portal Tools

http://publib.boulder.ibm.com/infocenter/wp51help/topic/com.ibm.wp.ent.doc/wps/admsrch.html
http://publib.boulder.ibm.com/infocenter/wp51help/topic/com.ibm.wp.ent.doc/wps/admsrch.html
http://publib.boulder.ibm.com/infocenter/wp51help/topic/com.ibm.wp.ent.doc/wps/admsrch.html

documents or attach PDM documents to e-mail. ODC document conversion
services are used when needed to change PDM document formats.

� Versioning: The user can create new versions of documents. The user can
view and retrieve document versions. PDM provides built-in versioning
support but can be configured to support CVS, IBM CM, and ClearCase®.

IBM Lotus Workplace Web Content Manager
IBM Lotus Workplace Web Content Manager (ILWWCM) provides a Web content
management solution that gives nontechnical users greater control over content
published to portals and other Web sites. Users benefit from the combined power
of having one place to manage content for their Portal environment or other Web
sites and an easy-to-use Web interface. This interface puts content management
back into the hands of nontechnical business users and provides them with tools
such as personalization rules, templates, page designs, workflow, and
versioning, that make the content creation process simple, yet controlled.
ILWWCM decreases Web maintenance and administration costs, increases
sales and profits by deploying timely and personalized content, and improves
efficiency by getting all content produced in an enterprise to the Web.

1.4.10 Transcoding
Transcoding technology was incorporated into WebSphere Portal 4.1. As
transcoding technology serves different market through various IBM offerings,
including WebSphere Portal, a number of markup language transformations
were not enabled in WebSphere Portal.

Starting with WebSphere Portal V5, plug-ins for WML and cHTML markup
transformation are enabled. WebSphere Transcoding Publisher will be bundled
as part of the portal server core install package. This will alleviate the need to
have a separate installation for WebSphere Transcoding Publisher and Portal.

The aim is to simplify the installation process and reduce the chance of an error
during installation of portal and later during migration. In an effort to do this, now
transcoding is installed inside the portal directory; this includes moving
transcoding classes to the shared app directory. Configuration steps are also
simplified by pre-configuring portal property files with transcoding information.

1.4.11 Struts Portlet Framework
Struts is a very popular framework for Web applications using a
mode-view-controller design pattern. The Struts framework can be used to
effectively design Web applications and support development teams of different
sizes and organization.

 Chapter 1. Overview 37

For WebSphere Portal 4.2, the Struts Portlet Framework was updated to include
the Struts 1.1 Beta 3 release and support for Tiles and File upload was added.

The Struts Portlet Framework in the WebSphere Portal 4.2 implementation is
closely tied to Portal Core API, so changes there will effect the Struts Portlet
framework and require changes to function in the WebSphere Portal version 5
product. There are also WebSphere Application Server V5 dependencies that
need to be addressed. The new functions that end users will see again are
supported for newer releases of Struts.

WebSphere portal version 5.1 provide a Struts portlet framework to be used with
JSR 168 portlets.

1.4.12 JSF Portlet Runtime
JavaServer Faces (JSF) is a technology defined by JSR 127 standard, that helps
you build user interfaces for dynamic Web applications that run on the server.
The JavaServer Faces framework manages UI states across server requests
and offers a simple model for the development of server-side events that are
activated by the client. JSF is consistent and easy to use.

WebSphere Portal 5.1 includes support for JSF portlet applications by providing
a JSF portlet runtime that makes possible to run JSF applications as portlets in
WebSphere Portal.

1.4.13 User interface
WebSphere Portal V5 implemented a new containment model.The functions of
the containment model can be grouped into two parts: information supply and
administration.

The next two sections deal with these aspects, a further section explains the
structure of the containment model.

Information supply
The containment model provides the information needed to perform tasks such
as content aggregation or building navigation to browse the aggregated content.
The information supplied can be dependent on a specific user; it would be a
user-specific view on the containment model.

Administration
The information in the containment model must be changeable, of course. This
can only be done via the Command API. The commands can manipulate
information about the content, navigation, derivation and any other information

38 IBM Rational Application Developer V6 and Portal Tools

stored in the containment model. Elements can be managed via PAC to enable
the permission concept of the portal, this means each element of the
containment model is a resource which can be protected in regards to what
action can be performed on it for a specific user.

The administration of the containment model allows you to:

� Add and delete root nodes

� Add, move, reorder and delete child nodes of a node

� Modify a node, including:

– Changing associated information
– Implicitly or explicitly deriving a content node (a page)

1.4.14 Cooperative portlets (Click-To-Action)
One of the most significant advantages of the Portlet architecture is the portlets’
ability to communicate with one another to create dynamic, interactive
applications. Portlets can use messages to share information, notify each other
of a user’s actions or simply help better manage screen real estate.

Messages can be sent to all portlets on a page, to a specific named portlet or to
all portlets in a single portlet application.

User-Driven Process Integration extensions to C2A
Enhancements to C2A which would contribute to the realization of the
User-Driven Process Integration (UDPI) idea would be remembering the user
choice for each step (so that only that choice is presented or automatically
executed during subsequent interactions), supporting cross-page data transfer,
so that the next step in the task is automatically surfaced to the user, supporting
the notion of "sticky notes" which the user can attach to chosen sources (as
reminders in a partially completed process of what he intends to do next), etc.

Also, a user with special privileges should be able to save his choices (which in
effect will define a particular process connecting a set of diverse applications) for
import and use by other users or all users in a group or organization.

Property wiring tool
The wiring tool may be invoked as part of editing a page. It provides the
capability to view sharable properties on each portlet instance and create wirings
between them. It also provides the capability to view the existing set of wiring
rules for the current page.

In order to obtain information about the sharable properties, the tool invokes
listProperties on the property broker. In order to obtain information about the

 Chapter 1. Overview 39

existing rules, it invokes getMatchRules on the PropertyBrokerServiceInternal
interface. This allows the user to pairwise choose compatible properties on two
portlet instances and wire them up, or to specify that type-based matching be
used for a specified property on a portlet.

After the user has created the matching rules using this tool, the tool will invoke
setMatchRules on the PropertyBrokerServiceInternal interface. The property
broker service will store the rules persistently and cause the property match
broker to update its in-memory data structures to add the new rules.

1.4.15 Portal Toolkit
The portlet tools are integrated into Rational Application Developer and adds
portlet development and debug functionality. The toolkit includes two primary
components and a set of example portlets which demonstrate portlet
programming techniques.

The Portlet Wizard components allows a developer to begin development of a
new portlet application. The developer specifies the portlet API, optional
frameworks, portlet name, Java class name for the portlet, and the markups to
be supported by the portlet. The wizard then generates a skeleton portlet
application as a project in Rational Application Developer. This project includes a
Java source file that represents the portlet controller, a Java class that
implements a Java bean to transfer display data from the controller class to the
display JSPs, and sample display JSPs for all supported portlet modes and
display markups. The project also includes properly completed web.xml and
portlet.xml documents.

The Portlet Application debug components allow the developer to source debug
a portlet. The developer defines a server instance for local debug, with
WebSphere Portal running inside Rational Application Developer, remote debug,
with WebSphere Portal running on a remote instance of WebSphere Application
Server, and remote attach, which allows the developer to debug a portal within a
full portal production runtime stack.

The toolkit also includes interactive, dialog driven editors for the portlet.xml and
web.xml documents. As the developer changes Java files or JSPs, these
resources are automatically recompiled and validated.

A portlet application project may be packaged as a standard portal WAR file and
exported to a portal server at any time.

40 IBM Rational Application Developer V6 and Portal Tools

1.5 Portlet solution patterns
Enterprise Resource Planning (ERP) and Customer Relationship Management
(CRM) systems are excellent candidates for portlets because efficient,
personalized access to these functions provide measurable returns on your
portal investment. WebSphere Portal includes portlets that help you access a
variety of ERP and CRM systems.

Enterprise Applications running on a back-end or host system are another group
of candidates for portlets, especially when the portal addresses the
business-to-employee pattern and you want to provide a common working
environment to your users, whatever application and system they may need for
their work.

There are many ways to perform application integration in a Web environment.
Not all of them are based on portlets and amongst the portlet-based solutions,
several different architectural approaches can be applied. Depending on
technical circumstances, the given time frame and the goals of the integration,
typically, different approaches may be combined in one portal solution.

We try to list some of the patterns you might think of. One way we can
differentiate is shrink-wrapped versus roll-your-own.

Customizable portlets from a vendor

In this pattern, a portlet is provided which can be installed in Portlet Server and,
after a configuration effort, the system or application in question can be accessed
through the portal. Often, such a portlet is delivered by the vendor of the system
that should be accessed. Both the Host On-Demand portlet and the Host
Publisher portlet we use in the following examples are of this type.

Custom developed portlets

This pattern comes into play when either no vendor offers a portlet for the
requested application, or the requested level of functionality, usability,
accessibility or security is not met by the existing portlets. Another reason might
be that you want to combine information or functionality of multiple applications
seamlessly into one portlet.

Most probably, this integration will include using the Java Connector Architecture
(JCA). JCA is a standard architecture for integrating J2EE applications with
Enterprise Information Systems that are not relational databases. Each of these
systems provides native APIs for identifying a function to call, specifying its input
data, and processing its output data. The goal of the JCA is to achieve an
independent API for coding these functions.

 Chapter 1. Overview 41

JCA also defines a standard Service Provider Interface (SPI) for integrating the
transaction, security and connection management facilities of an application
server with those of a transactional resource manager. Thus, JCA is a
standards-based approach to managing connections, transactions, and secure
access to enterprise application systems. IBM’s JCA connectors provide access
to systems such as SAP, People Soft, CICS®, and IMS™. Leveraging its
CrossWorlds® acquisition, IBM will also develop and integrate JCA connectors
to many other systems.

Another way to look at portlets for application integration is from a topology point
of view.

Client to remote application

In this pattern, for example used by IBM Host On-Demand, the portlet is just a
bootstrap to allow the client to get in touch with the requested system or
application, and Portal Server is the framework for the user interface. This
implies that normally, an applet is involved which makes a direct network
connection to a remote system.

Figure 1-12 Portal Solutions - client to remote application

Portlet to remote application

This is the topology most likely used if you write your own application integration
portlet. Access to the requested application or information is gained through
standardized interfaces such as JCA connectors, JDBC and JMS, or by using a
proprietary API provided by the application that is to be integrated (for example
SAP Business Connector).

W
eb

 a
pp

lic
at

io
n

Application server

Portal server

Portlet 1 Portlet 2

Hand-held computer

Mainframe

Workstations

Workstation

ServersHTTP server

Internet/Intranet

Server

W
eb

 a
pp

lic
at

io
n

42 IBM Rational Application Developer V6 and Portal Tools

Figure 1-13 Portal Solutions - portlet to remote application

Portlet to Web application

In this pattern, most of the work is done in a Web application. Also, if you write a
Web application using the JCA or EJB and create a portlet interface to it, you
follow this pattern. The enterprise application integration does not stop here at
integrating with ERP and CRM systems.

Figure 1-14 Portal Solutions - Portlet to Web application

W
eb

 a
pp

lic
at

io
n

Application server

Portal server

Portlet 1 Portlet 2

Internet/Intranet

W
eb

 a
pp

lic
at

io
n

Hand-held computer

Mainframe

Servers

Server

HTTP server

Workstations

Workstation

W
eb

 a
pp

lic
at

io
n

Application server

Portal server

Internet/Intranet

W
eb

 a
pp

lic
at

io
n

Portlet 1 Portlet 2

Hand-held computer

Mainframe

Servers

Server

HTTP server

Workstations

Workstation

 Chapter 1. Overview 43

1.6 Building a war file
All the elements of the portlet need to be deployed in a Web archive (.war) file.
This file can be created with any zip creation tool, the jar command line utility or
the export utility of Rational Application Developer. Each war file should contain
elements listed in Figure 1-15.

Figure 1-15 Basic WAR contents

The source folder is optional and you may choose what source to include for
distribution.

The webApplication folder is optional and may be used to contain the WEB-INF
folder. Alternatively, the WEB-INF folder can be placed directly under the root
without modification.

Generally, it will also contain a JSP folder to hold all JSPs used throughout the
entire portlet application. The JSP folder will organize the contained JSPs in
folders representing the markup and languages they are intended to support. For
example, if a portlet supported HTML, WML and cHTML and provided limited
National Language support for HTML requests, the JSP folder would be
organized as in Figure 1-16.

Figure 1-16 WAR structure for a portlet with NLS and multi-device support

44 IBM Rational Application Developer V6 and Portal Tools

The WEB-INF folder must contain at a minimum the two required deployment
descriptors. The web.xml and portlet.xml must be placed directly under the
WEB-INF folder.

The classes that make up the portlet application must be stored in one of two
locations. Those classes that have been packaged into jar files should be stored
in the lib directory. Classes that are not packaged in a jar file are stored in the
classes folder with the complete package structure. Both approaches are
illustrated in Figure 1-17.

Figure 1-17 Storing classes in the WEB-INF folder

Once the contents have been organized correctly, you can use the jar command
line utility to create the war file. There is no compression requirement for the war
file so you may choose to compress the file or not without affecting deployment.
For a complete discussion regarding the jar utility, refer to:

http://java.sun.com/docs/books/tutorial/jar/basics/index.html

 Chapter 1. Overview 45

http://java.sun.com/docs/books/tutorial/jar/basics/index.html

46 IBM Rational Application Developer V6 and Portal Tools

Chapter 2. Developing Portal
applications

This chapter describes the portal development tools and test environment for
IBM WebSphere Portal that are now included with IBM Rational Application
Developer V6.0. We will also highlight how the portal tools in Rational Application
Developer can be used to develop a portal and associated portlet applications for
WebSphere Portal. Lastly, we have included a development scenario to
demonstrate how to use the new integrated portal tooling and test environment to
develop a portal, customize the portal, and develop two portlets.

The chapter is organized into the following topics:

� Portal overview
� Development applications for WebSphere Portal
� Portal development scenario

2

© Copyright IBM Corp. 2005. All rights reserved. 47

2.1 Portal overview
As J2EE technology has evolved, much emphasis has been placed on the
challenges of building enterprise applications and bringing those applications to
the Web. At the core of the challenges currently being faced by Web developers
is the integration of disparate user content into a seamless Web application and
well-designed user interface. Portal technology provides a framework to build
such applications for the Web.

Because of the increasing popularity of portal technologies, the tooling and
frameworks used to support the building of new portals has evolved. The main
job of a portal is to aggregate content and functionality. Portal servers provide:

� A server to aggregate content
� A scalable infrastructure
� A framework to build portal components and extensions

Additionally, many portals offer personalization and customization features.
Personalization enables the portal to deliver user-specific information targeting a
user based on their unique information. Customization allows the user to
organize the look and feel of the portal to suit their individual needs and
preferences.

Portals are the next-generation desktop, delivering e-business applications over
the Web to many types of client devices from PCs to PDAs. Portals provide site
users with a single point of access to multiple types of information and
applications. Regardless of where the information resides or what format it is in,
a portal aggregates all of the information in a way that is relevant to the user.

The goal of implementing an Enterprise portal is to enable a working
environment that integrates people, their work, personal activities and supporting
processes and technology.

2.1.1 Portal concepts and definitions
Before beginning development for portals, you should become familiar with some
common definitions and descriptions of portal-related terminology.

Portal page
A portal page is a single Web page that can be used to display content
aggregated from multiple sources. The content that appears on a portal page is
displayed by an arrangement of one or more portlets. For example, a World
Stock Market portal page might contain two portlets that display stock tickers for
popular stock exchanges and a third portlet that displays the current exchange
rates for world currencies.

48 IBM Rational Application Developer V6 and Portal Tools

Portlet
A portlet is an individual application that displays content on a portal page. To a
user, a portlet is a single window or panel on the portal page that provides
information or Web application functionality. To a developer, portlets are
Java-based pluggable modules that can access content from a source such as
another Web site, an XML feed, or a database, and display this content to the
user as part of the portal page.

Figure 2-1 Portal page and portlets

Portlet application
Portlet applications are collections of related portlets and resources that are
packaged together. Portlets within the same portlet application can exchange
and share data and act as a unit. All portlets packaged together share the same
context which contains all resources such as images, properties files and
classes.

Portlet

Portlet Portlet

Portlet

Portal page

 Chapter 2. Developing Portal applications 49

Portlet states
Portlet states determine how individual portlets look when a user accesses them
on the portal page. These states are very similar to minimize, restore, and
maximize window states of applications run on any popular operating system just
in a Web-based environment.

The state of the portlet is stored in the PortletWindow.State object and can be
queried for changing the way a portlet looks or behaves based on its current
state. The IBM portlet API defines three possible states for a portlet:

� Normal: The portlet is displayed in its initial state as defined when it was
installed.

� Minimized: Only the portlet title bar is visible on the portal page.

� Maximized: The portlet fills the entire body of the portal page hiding all other
portlets.

Portlet modes
Portlet modes allow the portlet to display a different face depending on how it is
being used. This allows different content to be displayed within the same portlet
depending on its mode. Modes are most commonly used to allow users and
administrators to configure portlets or to offer help to the users. There are four
modes in the IBM Portlet API:

� View: Initial face of the portlet when created. The portlet normally functions in
this mode.

� Edit: This mode allows the user to configure the portlet for their personal use
(for example, specifying a city for a localized weather forecast).

� Help: If the portlet supports the Help mode, this mode displays a help page to
the user.

� Configure: If provided, this mode displays a face that allows the portal
administrator to configure the portlet for a group of users or a single user.

Portlet events
Some portlets only display static content in independent windows. To allow users
to interact with portlets and to allow portlets to interact with each other, portlet
events are used. Portlet events contain information to which a portlet might need
to respond. For example, when a user clicks a link or button, this generates an
action event. To receive notification of a given event, the portlet must also have
the appropriate event listener implemented within the portlet class. There are
three commonly used types of portlet events:

� Action events: Generated when an HTTP request is received by the portlet
that is associated with an action, such as when a user clicks a link.

50 IBM Rational Application Developer V6 and Portal Tools

� Message events: Generated when one portlet within a portlet application
sends a message to another portlet.

� Window events: Generated when the user changes the state of the portlet
window.

2.1.2 IBM WebSphere Portal
IBM WebSphere Portal provides an extensible framework that allows the end
user to interact with enterprise applications, people, content, and processes.
They can personalize and organize their own view of the portal, manage their
own profiles, and publish and share documents. WebSphere Portal provides
additional services such as Single Sign-On (SSO), security, credential vault,
directory services, document management, Web content management,
personalization, search, collaboration, search and taxonomy, support for mobile
devices, accessibility support, internationalization, e-learning, integration to
applications, and site analytics. Clients can further extend the portal solution to
provide host integration and e-commerce.

WebSphere Portal allows you to plug in new features or extensions using
portlets. In the same way that a servlet is an application within a Web server, a
portlet is an application within WebSphere Portal. Developing portlets is the most
important task when providing a portal that functions as the user’s interface to
information and tasks.

Portlets are an encapsulation of content and functionality. They are reusable
components that combine Web-based content, application functionality and
access to resources. Portlets are assembled into portal pages which, in turn,
make up a portal implementation.

Portal solutions such as IBM WebSphere Portal are proven and shorten
development time. Pre-built adapters and connectors are available so that
customers can leverage on the company's existing investment by integrating with
the existing legacy systems without re-inventing the wheel.

2.1.3 IBM Rational Application Developer
IBM Rational Application Developer provides development tools for applications
destined to WebSphere Portal. Bundled with IBM Rational Application Developer
V6.0 are a number of Portal Tools that allow you to create, test, debug, and
deploy portal and portlet applications. These tools are described in more detail in
2.2, “Developing applications for WebSphere Portal” on page 54.

 Chapter 2. Developing Portal applications 51

Portal Tools
Unlike WebSphere Studio Application Developer where the tools where installed
as a separate toolkit, Portal Tools can now be installed as a feature when
installing IBM Rational Application Developer V6.0. For this reason, there is no
longer a separate Portal Toolkit or separate installation procedure.

Figure 2-2 Portal tools installation

Portal Test Environments
As part of this tool set, Rational Application Developer provides an integrated test
environment to run and test your portal and portlet projects from within the
Rational Application Developer workbench.

At the time IBM Rational Application Developer V6.0 was released, the
WebSphere Portal V5.0.2.2 Test Environment was included as an installed
component of the Rational Application Developer installer known as the
Launchpad (see Figure 2-3 on page 53).

52 IBM Rational Application Developer V6 and Portal Tools

Figure 2-3 Product installation launchpad

CDs to install the WebSphere Portal V5.1 Test Environment are also included
with the IBM Rational Application Developer V6.0 distribution. To install the
WebSphere Portal V5.1 Test Environment, you must run the WebSphere Portal
V5.1 setup program and select Test Environment as the setup type as seen in
Figure 2-4 on page 54. Follow the instructions in the InfoCenter to configure this
test environment so that it works from within Rational Application Developer. The
WebSphere Portal V5.0.2.2 and V5.1 Test Environments can co-exist within the
same product installation.

 Chapter 2. Developing Portal applications 53

Figure 2-4 Installing the WebSphere Portal V5.1 Test Environment

2.2 Developing applications for WebSphere Portal
Rational Application Developer includes many tools to help you quickly develop
portals and individual portlet applications. In this section, we will cover some
basic portlet development strategies and provide an overview of the tools
included with IBM Rational Application Developer V6.0 to aid in development for
WebSphere Portal.

2.2.1 Portal samples and tutorials
Rational Application Developer also comes with several samples and tutorials to
aid you in development for WebSphere Portal. The Samples Gallery provides
sample portlet applications to illustrate portlet development.

To access portlet samples, click Help → Samples Gallery. Then expand
Technology samples and Portlet. Here you can select a Basic Portlet, Faces
Portlet, or Struts Portlet Framework to view sample portlet application projects
that you can then modify and build upon for your own purposes.

54 IBM Rational Application Developer V6 and Portal Tools

The Tutorials Gallery provides detailed tutorials to illustrate portlet development.
These are accessible by selecting Help → Tutorials Gallery. Then expand Do
and Learn. You can select Create a portal application or Examine the
differences between portlet APIs to view the content of these tutorials.

2.2.2 Development strategy
A portlet application consists of Java classes, JSP files, and other resources
such as deployment descriptors and image files. Before beginning development,
several decisions must be made regarding the development strategy and
technologies that will be used to develop a portlet application.

Choosing an API - IBM or JSR 168
WebSphere Portal supports portlet development using the IBM portlet API and
the JSR 168 portlet API standard. The Portal Tools included with IBM Rational
Application Developer V6.0 support both APIs.

The IBM portlet API was initially supported in WebSphere Portal V4.x and will
continue to be supported by WebSphere Portal. It is important to note that the
IBM portlet API extends the servlet API. More information about the IBM portlet
API can be found at:

http://www.ibm.com/developerworks/websphere/zones/portal/portlet/5.0api/WPS

JSR 168 is a Java specification from the Java Community Process Program that
addresses the requirements of content aggregation, personalization,
presentation, and security for portlets running in a portal environment. It was
finalized in October of 2003. Portlets conforming to JSR 168 are more portable
and reusable because they can be deployed to any JSR 168 compliant portal.
Rational Application Developer supports Faces portlet development based on
the JSR 168 specification.

Unlike the IBM portlet API, the JSR 168 API does not extend the servlet API. It
does, however, share many of the same characteristics such as servlet
specification, session management, and request dispatching. The JSR 168 API
as implemented in WebSphere Portal V5.0.2.2 does not support Click-to-Action
cooperative portlets or portlet messaging. However, in WebSphere Portal V5.1,
the JSR 168 container has been enhanced with Property Broker support which
can act as a messaging broker for either portlet messaging or wired (automatic
cooperating) portlets. At the time of writing, the support for Click-to-Action
(user-initiated cooperating portlets) was still under development.

For new portlets, consider using JSR 168 when the functionality it provides is
sufficient for the portlet’s needs or when the portlet is expected to be published
as a Web Service for Remote Portlets (WSRP) service.

 Chapter 2. Developing Portal applications 55

http://www.ibm.com/developerworks/websphere/zones/portal/portlet/5.0api/WPS

IBM will further support JSR 168 in follow-on versions to make the JSR 168
portlet API as robust as the current IBM counterpart and offer tooling to support
JSR 168 development. IBM is committed to wider adoption of open standards in
WebSphere Portal.

More information can be found on JSR 168 at:

http://www.jcp.org/en/jsr/detail?id=168

Choosing markup languages
WebSphere Portal supports mobile devices by generating pages in any markup
language. Three markup languages are officially supported in Rational
Application Developer:

� HTML (Hyper Text Markup Language) is used for Web browsers on desktop
computers. All portlet applications support HTML at a minimum.

� WML (Wireless Markup Language) is used for WAP devices which are
typically Web-enabled mobile telephones.

� cHTML (compact Hyper Text Markup Language) is used for mobile devices
in the NTT DoCoMo i-mode network. For more information about the i-mode
network, visit the following Web site:

http://www.nttdocomo.co.jp/english/

Adding emulator support for other markup languages
To run a portlet application which supports WML or cHTML, you must use an
emulator provided by the device vendor. To add device emulator support to
Rational Application Developer, do the following:

1. Select Window → Preferences.

2. Expand Internet and select Web browser.

3. Click the Add button to locate the device emulator appropriate for the device
that you wish to test and debug.

Enabling transcoding for development in other markup languages
Transcoding is the process by which WebSphere Portal makes portal content
displayable on mobile devices. By default, it is not enabled in the WebSphere
Portal Test Environment. Therefore, you need to make some configuration
changes before you can test and debug applications on mobile device emulators.
You will need to remove the comments from lines beginning with #Disable
Transcoding from three files.

The PortletFilterService.properties and PortalFilterService.properties files are all
located by default in the following directory:

56 IBM Rational Application Developer V6 and Portal Tools

http://www.nttdocomo.co.jp/english/
http://www.jcp.org/en/jsr/detail?id=168

<rad_home>\runtimes\portal_v50\shared\app\config\services

The services.properties file is located by default in the following directory:

<rad_home>\runtimes\portal_v50\shared\app\config

Choosing other technologies
Struts technology and JavaServer Faces technology can also be incorporated
into a portlet development strategy.

Struts
Struts-based application development can be applied to portlets, similar to the
way that Struts development is implemented in Web applications. The Struts
Portal Framework (SPF) was developed to merge these two technologies. SPF
support in Rational Application Developer simplifies the process of writing Struts
portlet applications and eliminates the need to manage many of the underlying
requirements of portlet applications. In addition, multiple wizards are present to
help you create Struts portlet-related artifacts. These are the same wizards used
in Struts development. These wizards include: Action Class, Action Mapping,
ActionForm, Form-Bean Mapping, Struts Configuration, Struts Module, Struts
Exception, and Web Diagram. Refer to the Rational Application Developer Struts
documentation for usage details.

In WebSphere Portal V5.0.2.2, Struts is only supported using the IBM portlet API.
Struts is fully supported in both the IBM and JSR 168 APIs in WebSphere Portal
V5.1; however, there is no tooling support in Rational Application Developer for
this configuration.

More information about Struts can be found at:

http://struts.apache.org/

JavaServer Faces (JSF)
JavaServer Faces is a GUI framework for developing J2EE Web applications
(JSR 127). It includes reusable user interface components, input validation, state
management, server-side event handling, page life cycle management,
accessibility, and internationalization. Faces-based application development can
be applied to portlets, similar to the way that Faces development is implemented
in Web applications. Similar to Struts, there are many wizards to help you with
Faces development. Both WebSphere Portal V5.0.2.2 and V5.1support
JavaServer Faces.

There are certain limitations to Faces portlet development in the current release.
Service Data Objects (SDO), formerly referred to as WebSphere Data Objects
(WDO), are limited to prototyping purposes only. Applications that rely on SDOs

 Chapter 2. Developing Portal applications 57

http://struts.apache.org/

should be limited in a production environment. File upload and binary download
are not supported for Faces components. Finally, document root-relative URLs
are not supported for images.

Refer to the Rational Application Developer Faces documentation in the
InfoCenter for usage details. Alternatively you can refer to the following Web site:

http://www.jcp.org/en/jsr/detail?id=127

Beginning development
After making these decisions, you can now begin development using the Portal
Tools included with Rational Application Developer.

2.2.3 Portal tools for developing portals
A portal is essentially a J2EE Web application. It provides a framework where
developers can associate many portlets and portlet applications via one or more
portal pages.

Rational Application Developer includes several new portal site creation tools
that enable you to visually customize portal page layout, themes, skins, and
navigation.

Portal Import Wizard
One way to create a new portal project is to import an existing portal site from a
WebSphere Portal V5.0 server into Rational Application Developer. Importing is
also useful for updating the configuration of a project that already exists in IBM
Rational Application Developer.

The portal site configuration on WebSphere Portal server contains the following
resources: the global settings, the resource definitions, the portal content tree,
and the page layout. Importing these resources from WebSphere Portal server to
Rational Application Developer overwrites duplicate resources within the existing
portal project. Non-duplicate resources from the server configuration are copied
into the existing portal project. Likewise, resources that are unique to the portal
project are not affected by the import.

Rational Application Developer uses the XML configuration interface to import a
server configuration, and optionally retrieves files under the
websphere_installation_directory/installedApps/node/wps.ear directory. These
files include the JSP, CSS, and image files for themes and skins. When creating
a new portal project, retrieving files is mandatory. To retrieve files, Rational
Application Developer must have access to this directory as specified when you
define a new server for this project.

58 IBM Rational Application Developer V6 and Portal Tools

http://www.jcp.org/en/jsr/detail?id=127

You can access the Portal Import Wizard by selecting File → Import, then
selecting Portal. You will need to specify the server and options for importing the
project into Rational Application Developer.

Follow the instructions in the Help Topics on Developing Portal Applications to
ensure that the configuration in the development environment accurately reflects
that of the staging or runtime environment. If you do not do this, you may
experience compilation errors after the product is imported or unexpected portal
behaviors.

Portal Project Wizard
The New Portal Project wizard will guide you through the process of creating a
portal project within Rational Application Developer.

During this process, you are able to:

� Specify a project name
� Specify the default server
� Choose a default theme (optional)
� Choose a default skin for the theme (optional)

The project that you create with this wizard will not have any portlet definitions,
labels or pages. The themes and skins that are available in this wizard are the
same as if you had imported a portal site from a WebSphere Portal server.

You can access this wizard by clicking File → New → Project and then selecting
Portal Project from the list. Figure 2-5 on page 60 displays the options to specify
when creating a Portal Project after clicking the Show Advanced button.

Important: You should not name your project wps or anything that resembles
this string to avoid internal naming conflicts.

 Chapter 2. Developing Portal applications 59

Figure 2-5 Portal Project Wizard

Portal Designer
Rational Application Developer allows for editing both the graphic design and
portlet layout within your portal. Portal Designer is the workbench interface that
you see upon opening a portal project.

When using Portal Designer, the portal page layout can be altered. The layout
refers to the number of content areas within a page and the number of portlets
within those content areas. Page content includes rows, columns, URLs and
portlets.

Once the project is published to the Portal server, Portal administrators can use
the administration portlets to give site users permission to edit the page layout.

In terms of portal layout and appearance, you can think of Portal Designer as a
What-You-See-Is-What-You-Get (WYSIWYG) editor. It will render graphic
interface items such as themes, skins, and page layouts.

Portal Designer will also render the initial pages of JSF and Struts portlets within
your portal pages, but not anything else with regard to portlet content.

60 IBM Rational Application Developer V6 and Portal Tools

Portal Designer provides the capability of altering the layout of the content within
a portal page with respect to navigation (the hierarchy of your labels, pages, and
URLs) and content (the arrangement of portlets via rows and columns on the
portal pages).

Portal Configuration is the name of the layout source file that resides in the root
of the portal project folder (see Figure 2-6). To open Portal Designer, double-click
the file in the Project Explorer.

Figure 2-6 Portal Designer

Skin and theme design and editing
A skin is the border around each portlet within a portal page. Unlike themes,
which apply to the overall look and feel of the portal, skins are limited to the look
and feel of each portlet that you insert into your portal application.

The IBM Rational Application Developer installation includes pre-built themes
and skins to use with portal projects. There are also wizards to create new
themes and skins. Changing themes and skins was previously done through

 Chapter 2. Developing Portal applications 61

portal administration. In addition to these wizards for creating new skins and
themes, there are tools that can be used to change or edit these.

Once created, skins and themes will be displayed in the Project Explorer view.
Double-click a skin or theme to manually edit it.

New Skin wizard
In addition to using the pre-made skins that came with the installation, you can
use the New Skin wizard to create customized skins for your project. Right-click
the portal project in the Project Explorer view and select New → Skin.

Figure 2-7 New Skin wizard

New Theme wizard
Themes provide the overall look and feel of your portal application. In addition to
using the pre-existing themes, you can use the New Theme wizard to create

62 IBM Rational Application Developer V6 and Portal Tools

customized themes for your project. Right-click the portal project in the Project
Explorer view and select New → Theme (see Figure 2-8).

Figure 2-8 New Theme wizard

Deploying portal projects
From Rational Application Developer, you can choose to publish a portal project
to a WebSphere Portal server either manually (export) or automatically (deploy).

There are two models of publishing your portal project to WebSphere Portal:

� Export: This method is recommended for publishing to a staging or
production server. You need to manually copy the packaged portal project to
the portal server. Since exporting does not require FTP or copy access to the
portal server, there is very little chance of interruption during publishing.

 Chapter 2. Developing Portal applications 63

To export, select File → Export, then select Portal Project Deploy Set. You
will need to specify the Portal EAR file and specify a target Portal server. The
wizard examines the Portal server so that it can generate specific deploy
information. It then generates a set of files for manually deploying the portal
project to the Portal server. These files include:

– WPS.ear
– XmlAccess for deployment portal configuration (contained in the EAR)
– Readme file with instructions for deploying to a server
– WAR files for each portlet project used in the portal project
– XMLAccess script for deploying portlets

The wizard also created a file named DeployInstructions.txt, which is a set
of instructions that will guide you through the process of manually deploying
your exported project to the server.

� Deploy: This method automatically publishes a configuration from a portal
project to a Portal Server. The deploy method is recommended for publishing
to a test, integration or staging server.

If you are also transferring the theme and skin files during the deployment,
you must also have FTP or copy access to the portal server.

To deploy a portal, right-click the portal project and select Deploy Portal.
From here, a wizard will guide you through the deployment process. This will
include specifying the portal server to where you are deploying.

Once you start the deploy process, do not interrupt it. Errors in a project or an
unfinished deploy may cause a portal server to become inoperable. As such,
you should not deploy directly to a production server. Before running deploy, it
is recommended that you back up or image your server.

Since the portal project does not have any access control information, use
administration portlets in the published Portal site to set appropriate access
control.

Note: Do not attempt to manually deploy the exported files to a portal
server other than the one you specify. The export operation contains
information from this portal server, and it will not work with other servers.

Note: If a transfer interruption (for example, network failure) occurs during
deployment, there is a slight chance that the portal server will become
inoperable.

64 IBM Rational Application Developer V6 and Portal Tools

2.2.4 Portal tools for developing portlets
Whether beginning or continuing development of individual portlets and portlet
projects, Rational Application Developer has tools that can make this process
easier.

Project Interchange files
If you are not using a software configuration management (SCM) system, such
as ClearCase or CVS, and you want to share portlet projects with team members
or develop a portlet application among multiple computers, you can use the
Project Interchange feature.

There are other ways that you can share projects and files including manually
copying the project’s workspace and importing via WAR files. The recommended
method of accomplishing project portability is using the Project Interchange
feature. When you export using Project Interchange, the entire project structure
is maintained, including metadata files. You can also export several unrelated
projects or include required projects for an entire application. Projects exported
using this feature can be easily imported into another workspace with a single
action.

The Project Interchange mechanism exports projects as they exist in the
workbench, including the project property that specifies the target server runtime
for the project. If a user imports the exported project and does not have the same
target server runtime installed, the project will not compile. This can be corrected
by modifying the target server for the project.

Exporting a Project Interchange file
To export to a Project Interchange file, follow these steps:

1. Right-click the project that you want to export, and select Export.

2. Select Project Interchange, and click Next.

3. Select the projects that you want to export. You have the following options for
selection:

– Click Select All to select all projects in the window.
– Click Deselect All to clear all the check boxes.
– Click Select Referenced to automatically select projects that are

referenced by any of the currently selected projects.

Important: It is important that the IBM Rational Application Developer V6
install path is common for all team members sharing code to avoid absolute
library path problems found in projects when importing.

 Chapter 2. Developing Portal applications 65

4. In the To zip file field, enter the full path, including the ZIP file name, where
you want to export the selected projects.

5. Click Finish.

Importing a Project Interchange file
To import a Project Interchange file, do the following:

1. Click File → Import.

2. Select Project Interchange and click Next.

3. In the From ZIP file field, click Browse to navigate to the ZIP file that contains
the shared projects. The Import wizard lists the projects that are in the ZIP
file.

4. Select the projects that you want to import. You have the following options for
selection:

– Click Select All to select all projects in the window.
– Click Deselect All to clear all the check boxes.
– Click Select Referenced to automatically select projects that are

referenced by any of the currently selected projects.

5. Click Finish.

Importing WAR files
An alternate method of transferring a portlet project to another computer is via a
WAR file. WAR files package all pieces of a portlet project into a single file. They
are most commonly used to manually deploy portlet projects to Portal Servers.

For development purposes, WAR files can be used to move portlet projects from
one computer to another. WAR files are not optimized for this purpose, and
moving projects in this way may result in lost meta data or lost time due to any
reconfigurations that may be required upon import.

For portlet projects completed with a version of the Portal Toolkit prior to
V5.0.2.2, importing by WAR file is the only supported migration path.

To import a project by WAR file, follow these steps:

1. Select File → Import and select WAR File. Then click Next.

2. Locate the WAR file to import by using the Browse button.

3. The wizard assumes you want to create a new Web project with the same
name as the WAR file. Accepting these defaults will create a new project with
the same servlet version as specified by the WAR file and in the same
location. To override these settings, click New and specify the new settings in
the Dynamic Web Project wizard.

66 IBM Rational Application Developer V6 and Portal Tools

4. To import a WAR file into an existing Web project, select the project from the
Web project drop-down list. If this method is used, the overwrite existing
resources without warning option can be selected.

5. Click Finish to populate the Web project.

Figure 2-9 WAR Import window

Portlet Project wizard
Portlet projects are used for developing portlet applications in Rational
Application Developer. To create a portlet application, first create a portlet project
using the Portlet Project wizard.

The Portlet Project wizard is a very powerful tool that automatically assembles a
framework for a portlet project containing all the resources that are necessary for
testing, debugging, or deploying a portlet.

To use the Portlet Project wizard, do the following:

Note: When a portlet project is exported to a WAR file, the source files must
be included. This procedure is detailed in “Exporting WAR files” on page 82.

 Chapter 2. Developing Portal applications 67

1. Select File → New → Project.

2. Select Portlet Project and click Next.

3. On the first screen in the wizard, enter a project name. You can also specify
an alternate project location by clicking the Browse button.

4. If you do not want to create the initial portlet definitions in the project, clear the
Create a portlet checkbox. Typically, a portlet does not need to be created
when importing a WAR file.

5. Click the Show Advanced button to see more options (see Figure 2-10 on
page 69):

The advanced options allow changes to be made to the project’s J2EE
settings and runtime server environment. The Servlet version specifies the
version of Servlet and JSP specifications to be included in your portlet.

Choosing a Servlet version also determines the choice of target servers that
appear in the drop-down list. When choosing a server, do not accidentally
select any WebSphere Application Server options.

a. Deselect the Add module to an EAR project option only if you do not
intent to deploy the portlet. Name an EAR project according to the name of
the enterprise application project (EAR) that the portlet project should be
associated with during deployment. All portlet applications associated with
a single EAR project will run on a single session on a WebSphere Portal
Server. You should use the same EAR project for portlet projects that are
related.

The context root is used as the top-level directory in the portlet project
when the portlet is deployed. It must not be the same as ones used by
other projects.

b. Ensure that the Add support for annotated Java classes checkbox is
selected if using model annotations to generate code in portlet projects.

c. Click Next to continue with the Portlet Project wizard or Finish to generate
a portlet project based on the defaults associated with a Basic IBM API
portlet project.

Tip: Use the 2.2 Servlet version if importing a WebSphere Portal V4.x
project WAR file. Note that features such as Servlet filters and life cycle
event listeners are not supported if this level is chosen.

68 IBM Rational Application Developer V6 and Portal Tools

Figure 2-10 Portlet Project wizard

d. On the following screen, select a portlet type that is appropriate for the
portlet project. There are four types of portlets (see Figure 2-11 on
page 70):

• Empty portlet: Creates a portlet application that extends the
PortletAdapter class with minimum code included. This option is
selected if importing a project from a WAR file or when customizing
empty portlet projects from scratch.

• Basic portlet: Creates a basic portlet application that extends the
PortletAdapter class comprised of a complete concrete portlet and
concrete portlet application. It contains a portlet class, sample JSP files
that are used when rendering the portlet, and a sample Java bean.

• Faces portlet: Creates a Faces portlet application based on Java
Faces technology.

 Chapter 2. Developing Portal applications 69

• Struts portlet: Creates a Struts portlet application based on Java
Struts technology.

e. When finished selecting option on this screen, click Next.

Figure 2-11 Portlet type window

When creating a Faces portlet, you will be presented with the following window.

70 IBM Rational Application Developer V6 and Portal Tools

Figure 2-12 Faces portlet miscellaneous window

When creating a Struts portlet, you will be presented with the following window.

 Chapter 2. Developing Portal applications 71

Figure 2-13 Struts portlet settings window

When creating a Basic portlet, you will be presented with the following window. It
allows you to select features that provide additional functionality in the portlet
application. Select features as necessary. Deselect the Web Diagram check box
if you are creating a Basic or Empty portlet. Select JSP Tag Libraries to include
the functionality of this technology in the portlet project.

Figure 2-14 Portlet features window

72 IBM Rational Application Developer V6 and Portal Tools

In the Portlet Settings window, update or add any general portlet settings. The
application name is the name of the portlet application as used to manage it by
the portal administrator. To update this name after generating your portlet project,
use the deployment descriptor editor to modify portlet.xml. Modify the Display
name of each concrete portlet application.

The portlet name is the name of the portlet. It is also used by the portal
administrator. It also can be updated used the deployment descriptor editor and
modifying the Display name of each concrete portlet.

The default locale specifies a default locale to use if the client locale cannot be
determined. You can add supported locale using the deployment descriptor
editor and adding a locale to each concrete portlet.

The portlet title appears in the portlet title bar. To update this in the future, you
can use the deployment descriptor editor to modify the title of each concrete
portlet.

Change code generation options can be used to change the package and class
prefixes.

Click Next to continue. If creating an empty portlet, the Miscellaneous screen as
seen in Figure 2-18 on page 77 will be shown. If creating a Basic portlet, the
Event Handling screen will be shown.

 Chapter 2. Developing Portal applications 73

Figure 2-15 Portlet settings window

On this screen, you have the ability to optionally add event handling capabilities
to the portlet application. An action event is sent when an HTTP request is
received that is associated with a portlet action. The Add action listener option
implements the ActionListener interface to handle action events. The Add form
sample option generates code to demonstrate action event handling with a
simple form example.

Cooperative portlets provide a model for declaring, publishing, and sharing
information with each other using the WebSphere Portal property broker.
Cooperative portlets are only available when the Servlet level is 2.3. Cooperative
portlets can run on WebSphere Portal V5.x servers. Create a portlet application
that extends the PortletAdapter class. Enable cooperative target adds a sample
WSDL file so that the Click-to-Action target can receive input properties. If you
select this option with the Add form sample option in the Action Event handling
section of this screen, the generated portlet project will be enabled as a
Click-to-Action receiver. It is also possible to create an action handler and form
and customize the WSDL file as required. The Add Click-to-Action sender
portlet sample adds a simple Click-to-Action sender portlet that is useful to test
receiver function and provides sample code. The Enable cooperative source

74 IBM Rational Application Developer V6 and Portal Tools

adds the Click-to-Action tag library directive for JSP files of the Click-to-Action
source portlet.

Message events can be sent from one portlet to others if the recipient portlets are
placed on the same portal page as the sending portlet. To get a Java class that
implements the MessageListener interface, select the Add message listener
option. The Add message sender portlet sample generates a sample message
sender portlet.

To add a function showing events received by listeners in View mode, select
Add event log viewer. To select this option, you need to add at least one of the
event listeners. The option to Add edit panel allows you to change the default
maximum event count while in Edit mode.

Click Next to continue with the Portlet Project wizard.

Figure 2-16 Event handling window

 Chapter 2. Developing Portal applications 75

Use the Single Sign-On screen to add sample code to support credential vault
handling which is used to safely store credentials that are used in portlet
authentication. Portlets written to extract users’ credentials from the credential
vault can hide the login challenge from the user. A portlet private credential vault
clot stores user credentials that are not shared among portlets. A shared
credential vault slot shares user credentials among all a user’s portlets. The
administrative credential vault slot allows each user to store their confidential
information for accessing administrator-defined resources such as Lotus Notes®
databases. A system credential vault slot stores system credentials where the
actual confidential information is shared among all users and portlets.

The slot name defines the name of the credential vault slot to store and retrieve
the credentials. The Show password option allows a password to be displayed
on the screen while in View mode.

Click Next to continue with the Portlet Project wizard.

Figure 2-17 Single sign-on window

The Miscellaneous window allows other supported markup languages and
portlet modes to be selected. For more information about markup languages, see
“Choosing markup languages” on page 56. For more information about modes,
see “Portlet modes” on page 50.

76 IBM Rational Application Developer V6 and Portal Tools

Click Finish to generate the new portlet project. You may be presented with a an
option to switch to the Web perspective to work on this project. Click Yes if the
Confirm Perspective Switch is shown.

Figure 2-18 Supported markups and modes window

Web perspective
The Web perspective combines views and editors that assist you with Web
application development. This perspective is used to edit the project resources,
such as HTML and JSP files, and deployment descriptors that make up the
portlet project.

Page Designer
Page Designer is an editor for HTML, XHTML, JSP, and Faces JSP files. It
provides three representations of each file: Design, Source, and Preview. Each
of these provides a different way to work with a file while it is being edited. You
can switch between these by clicking the tabs at the bottom of the editor (see
Figure 2-19 on page 78):

� Design: The design page provides a visual environment to create and work
with a file while viewing its elements on the page.

� Source: The source page enables you to view and directly work with a file's
source code.

 Chapter 2. Developing Portal applications 77

� Preview: The preview page shows you how the current page is likely to look
when viewed in an external Web browser. Previewing dynamic content
requires running the portlet or portal page on a local or remote test server.

Figure 2-19 Page Designer showing the design page

2.2.5 Portal tools for testing and debugging portlets
Once development is underway, you will need to test and debug your
applications. Rational Application Developer provides many ways for you to do
this. When defining a remote (server attach) server for testing, debugging or
profiling a portlet project, you must create and configure the server.

Portal Server configuration
Portlet tools provide an additional type of server configuration, called the portal
server configuration, which contains the server configuration information needed
to publish your portlet application on a WebSphere Portal machine. After it is
published, your target portlet will appear on the test page and the debug page of
your WebSphere Portal. Source-level debugging is also supported.

78 IBM Rational Application Developer V6 and Portal Tools

Remote server test
When developing portlet projects, you have the option of testing and debugging
on a remote server or in a local test environment (as described in the next
section). To test portlets on a remote WebSphere Portal Server, you will use this
feature.

Before testing portlets with a Server Attach server, you may need to configure
the remote server. See the section titled Preparing WebSphere Portal for remote
testing and debugging in the product help for more information. The configuration
steps detailed in this section are required when performing any of the following
tasks.

� Testing or debugging with multiple users to the same remote server.
� Testing or debugging a JSR 168 portlet on WebSphere Portal 5.0.2.
� Debugging to a remote Server Attach server.
� Testing or debugging to a remote server behind a firewall.
� Testing or debugging to a remote server running Linux®.

To use the remote server testing feature, do the following:

1. Right-click your portlet project and select Run → Run on Server.

2. To use an existing server, select Choose an existing server and choose a
WebSphere Portal Server Attach server from the list.

3. To define a new external test server, you will need to use the New Server
Wizard to configure it. See the section titled Configuring remote servers for
testing portlets in the product help.

4. Click Finish.

After the server starts and the portal is deployed, the Web browser opens to
the URL of the portal application on the external server.

Important: If multiple users are testing portlets to the same portlet server,
ensure that the UIDs of the portlets are unique. Otherwise, when the portlet is
installed on the portlet server, it may replace the original portlet using that UID.

� For the IBM portlet API, modify the UID using the portlet deployment
descriptor editor.

� For the JSR 168 portlet API, the UID is constructed using the ID attribute of
the portlet-app element.

� If the ID attribute is not specified, the UID is generated automatically using
the login user ID and project name.

 Chapter 2. Developing Portal applications 79

WebSphere Portal Test Environment
Rational Application Developer includes the WebSphere Portal Test Environment
to locally test and debug portlet applications.

The WebSphere Portal Universal Test Environment allows you to locally test and
debug portlets developed with the Portal Tools from within the Rational
Application Developer workbench. This is similar to running a Java servlet
webapp in the WebSphere (Application Server) Test Environment.

The test environment is a WebSphere Portal runtime built on top of the
WebSphere Test Environment. By default, the test environment uses Cloudscape
as the portal configuration database. This can be configured to use DB2 UDB or
Oracle.

When using the WebSphere Portal Test Environment, the server is running
against the resources that are in the workspace. It supports adding, changing, or
removing a resource from the portlet project without needing to be restarted or
republished for these changes to be reflected.

To run your project in the WebSphere Portal Test Environment, right-click the
portlet project and select Run → Run on Server. The Server Selection dialog is
displayed. You may either choose to run the application on an existing server or
manually define a new server.

To define a new local test server, perform the following steps:

1. Choose the option to Manually define a server.

2. Select WebSphere Portal V5.0 Test Environment from the list of server
types.

3. Click Next.

Note: An XML exception occurs and the server attach fails to start if the
project name, the file name, the file directory structure or the user ID for
WebSphere Portal login name is excessively long.

To correct this, shorten the length of the filename, the file directory structure or
the User ID for WebSphere Portal login at the WebSphere Portal Server
Attach server configuration.

Note: You must have installed the WebSphere Portal V5.0 Test
Environment when installing IBM Rational Application Developer for this
option to be available.

80 IBM Rational Application Developer V6 and Portal Tools

4. On the WebSphere Server Configuration Settings page, select one of the
following values:

– Select Use default port numbers and set the HTTP port number to use
the default HTTP port (9081).

– Select Use consecutive port numbers and set the First port number to
use port numbers other than the default numbers used by WebSphere
Application Server.

This setting causes the Test Environment to use sequential port numbers,
starting with the number you specify. You must specify a port number that
begins a range of port numbers that are not being used by another
application. This option allows you to have an external Portal server or
WebSphere Application Server running on your system, and allows the
Test Environment to use different port numbers. You can also configure
the Test Environment server's HTTP port numbers by editing the server
configuration, as explained below.

5. Click Finish.

Additional options for local servers can be viewed and changed by
double-clicking the server in the Servers view. This opens the server
configuration editor. You can change any of the settings that were defined
previously. In addition, the Portal tab has several additional settings that can
be changed to suit your individual configuration.

Figure 2-20 Server configuration editor

 Chapter 2. Developing Portal applications 81

When you test a portlet on the local test environment server, the default theme
and skin are used.

The test environment does not support features that rely on WebSphere
Enterprise Edition (personalization and asynchronous rendering of portlets) or
LDAP. Transcoding is also not enabled by default. It must be enabled to use a
WML device emulator when developing portlets for mobile phones and other
devices. See “Choosing markup languages” on page 56 for instructions on how
to do this.

When testing or debugging, you may experience the following limitations:

� Help mode does not function correctly in the test environment while using the
internal browser. Using an external browser corrects this issue.

� Single sign-on using LDAP is not supported when using the local test
environment. LDAP is supported when testing portlets by remotely attaching
to another WebSphere Portal server.

� You cannot create new portal users while in debug mode. Use the normal
mode to create users.

� Portlet modifications are not previewed correctly when the portlet has been
cached by the browser. Logging out and back in to the portal server corrects
this.

� If using Linux, you may not be able to start the test environment server
without the appropriate user permissions. Users need full permissions on
<STUDIO_HOME>/runtimes/portal_v50/cloudscape/wps50.

2.2.6 Portal tools for deploying and managing portlets
When development is complete, these tools will help you to load your completed
portlet project onto a WebSphere Portal Server.

Exporting WAR files
Exporting a portlet project to a WAR file allows you to install it on a WebSphere
Portal server. To export a WAR file for a portlet project, do the following:

1. Right-click the portlet project and select Export → WAR file. The Export
wizard opens.

2. On the WAR Export page, select a destination directory for the WAR file.
Enter a name for the WAR file or accept the default.

3. Select the Export Source files checkbox to include source files in the WAR
file. When deploying to a WebSphere Portal Server, you do not need to
include the source files. If you were exporting a WAR file to continue
development on another machine, you would want to select this option.

82 IBM Rational Application Developer V6 and Portal Tools

4. Select the Overwrite existing file option to replace an existing WAR file with
the same name.

5. Click Finish.

Install the WAR file on the WebSphere Portal server by using the WebSphere
Portal administrative tools.

Remote Server Deploy
Remote Server Deploy is a function that allows portlets developed for a
WebSphere Portal V5.0 Server to be deployed in an automated fashion.

This functionality is not available for WebSphere Portal V5.1 Servers. To deploy
portlets to a WebSphere Portal V5.1 server, you must export portlet projects to
WAR files, and then install them to WebSphere Portal V5.1 using the WebSphere
Portal administration interface. The process of exporting WAR files is described
in “Exporting WAR files” on page 82.

To deploy a portlet project to a WebSphere Portal server, follow the steps below.

1. Right-click the portlet project and select Deploy Portlet. The Deploy Portlet
wizard opens.

2. Select an existing server from the list or create a new one. Then click Next.

3. On the Portlets page, define these options for Portlet Overwriting:

a. Select Automatically overwrite portlets to replace existing portlets
without warning.

b. Select the Update or the Remove & Deploy option.

i. Use the Update option to install the portlet, but preserve any
customization data that was added in the configure or Edit modes.

ii. Use the Remove & Deploy option to remove and reinstall the portlet.
During the removal process, all customization data is also removed,
and portlets are removed from any pages where they were already
placed. The install process only installs portlets, but does not restore
customization data nor place portlets on pages. Use this option if you
want to clean up portlet settings, or your portlet is not compatible with
the old version.

4. Click Finish. Do not interrupt the deployment process.

 Chapter 2. Developing Portal applications 83

Portal administration
Administrative portlets can be enabled in the server configuration by using the
Portal Server Configuration editor described in “Portal Server configuration” on
page 78.

You can use the administrative portlets to configure advanced options when
running portal and portlet projects.

There are several limitations to using the administrative portlets. You cannot
install portlets using the administration portlets. In addition, any changes that are
made are reset to the default values the next time the Test Environment is
started.

It is recommended that you only use this option when necessary. It affects the
performance of the Test Environment.

To debug portlets in a particular layout, use the test and debug options of a portal
project, not the administration portlets in the test environment.

2.2.7 Enterprise Application Integration Portal tools
Rational Application Developer also includes some tools to help you with
Enterprise Application Integration with SAP and Siebel.

Service Data Objects and tools
Service Data Objects (SDO), the JSR 235 standard, is a new model for
representing data, accessing persistent data, and passing data between tiers. It
provides a single, consistent interface to any data source.

The JSF tools for SDO in IBM Rational Application Developer provide minimal or
zero coding for building dynamic data-bound JSPs.

IBM has included SDO mediators for applications including SAP and Siebel that
are supported on WebSphere Portal V5.1 Servers.

SDO mediators are added to portlets through drag-and-drop from the Palette
view and the Page Data view.

Note: An XML Exception occurs and the server attach fails to start if the
project name, the filename, the file directory structure or the User ID for
WebSphere Portal login name is excessively long. To correct this, shorten the
length of the filename, the file directory structure or the User ID for
WebSphere Portal login at the WebSphere Portal Server Attach server
configuration.

84 IBM Rational Application Developer V6 and Portal Tools

Business Process Portlet development tools
The Portal Tools in IBM Rational Application Developer V6.0 also include support
for Business Process Execution Language (BPEL)-based business process
portlet development. These portlets are supported on WebSphere Portal V5.1
servers.

To use these tools, process designers develop business processes by using the
BPEL-editor and test them in the WebSphere Test Environment.

You can then import the resultant business processes as JAR files to develop
and compile task processing portlets using the remote server attach function for
testing and debugging portlets.

2.2.8 Coexistence and migration of tools and applications
When installing multiple version of IBM development software and working with
portal and portlet projects developed with different versions of development
software, there are some important issues to consider.

WebSphere Studio and Rational Application Developer
WebSphere Studio Application Developer and IBM Rational Application
Developer can coexist with regards to the Portal Toolkit 5.0.x on WebSphere
Studio 5.x.

Portlet Projects (Portal Toolkit 5.0.2.2 and above)
Portlet projects completed using the Portal Toolkit V5.0.2.2 will be migrated
automatically to Rational Application Developer V6.0 Portal Tools by either
migrating the Portal Toolkit workspace or importing the project using the Project
Interchange feature.

During migration of Portal Toolkit V5.0.2.2 projects, some additional changes
take place:

� The target server is set to WebSphere Portal V5.0, if no target server is set to
the project.

� The portlet build path is corrected

� A portlet project nature is added.

Portlet projects (Portal Toolkit earlier than V5.0.2.2)
If migrating portlet projects from earlier versions of Portal Toolkit (prior to
V5.0.2.2), the best practice is to export your portlet projects to WAR files and
then import the WAR files into new portlet projects within IBM Rational
Application Developer V6.0.

 Chapter 2. Developing Portal applications 85

Manually migrate your portlet projects by following these directions:

1. Export the existing project to a WAR file, and include its source files.

a. Right-click the project and select Export.

b. Select WAR file and Export source files and click Finish.

2. Import the portlet WAR file into a new portlet project:

a. In the Portal Tools for Rational Application Developer V6.0, create a new
empty portlet project.

i. Select File → New → Project → Portal → Portlet Project or Portlet
Project (JSR 168).

ii. Deselect Create a portlet.

iii. Click Show Advanced.

iv. If you are importing a WebSphere Portal V4.2 portlet, select 2.2 as the
servlet version.

v. Select WebSphere Portal V5.0 as the target server, and click Finish.

b. Import the WAR file to this new empty portlet project.

i. Select File → Import.

ii. Select WAR file and specify the WAR file from the portlet project that
you exported.

iii. Select the newly created empty portlet project.

iv. Select Overwrite existing resources without warning.

v. Do not select Delete project on overwrite.

vi. Delete the TLD file.

It is recommended that you delete the portlet TLD file from the project if
it exists. Otherwise, you will get a warning message when you rebuild
the project. Leaving it may cause a problem when the portlet project is
deployed to WebSphere Portal and the TLD file of the portlet is
different from the file in the server.

2.3 Portal development scenario
To gain an understanding of the portal development process, this scenario
demonstrates how the Portal Tools can be used to create a portal site.

Note: If you are migrating a WebSphere Portal V4.2 portlet, you will need to
migrate this migrated portlet project to WebSphere Portal V5.x. Backward
compatibility of portlet projects is not supported.s

86 IBM Rational Application Developer V6 and Portal Tools

The portal development scenario is organized into the following tasks:

� Preparing for the sample
� Adding and modifying a portal page
� Creating and modifying two portlets
� Adding portlets to a portal page
� Running the project in the test environment

2.3.1 Preparing for the sample
Prior to working on the portal development scenario, ensure you have prepared
the environment by installing the Portal Tools and WebSphere Portal Test
Environment (V5.0.2 or V5.1).

Installing the Portal Tools
For details on installing the Portal Tools as component of the Rational
Application Developer installation, refer to Chapter 3, “Portlet development
platform sample installation” on page 101.

Installing the WebSphere Portal Test Environment
For the scenario in this chapter, you can install either the V5.0.2 or V5.1
WebSphere Portal Test Environments (sample applies to both).

For more information about installing the WebSphere Portal Test Environments
refer to the following:

� IBM WebSphere Portal V5.0.2 Test Environment:

Refer to Chapter 3, “Portlet development platform sample installation” on
page 101

� IBM WebSphere Portal V5.1 Test Environment:

Refer to Chapter 3, “Portlet development platform sample installation” on
page 101.

Note: The sample code described in this chapter can be completed by
following along in the procedures documented. Alternatively, you can import
the sample Portal code provided in the c:\6449code\portal\Portal.zip
Project Interchange file. For details refer to Appendix A, “Additional material”
on page 1003.

When importing the Project Interchange file, we found some errors when
using the IBM WebSphere Portal V5.0.2 Test Environment due to issues
related files outside of the scope of the Project Interchange packaging
(specifically, themes and related JSPs).

 Chapter 2. Developing Portal applications 87

Installing the Rational Application Developer V6 interim fix
We recommend that you install the latest Rational Application Developer interim
fixes. For details refer to Chapter 3, “Portlet development platform sample
installation” on page 101.

Starting Rational Application Developer
To begin, start the IBM Rational Application Developer workbench. By default,
click Start → Programs → IBM Rational → IBM Rational Application
Developer V6.0 → Rational Application Developer.

Once Developer is open, you will begin using the Portal Tools to develop a portal
site as instructed below.

2.3.2 Creating a portal project
To create a portal project, do the following:

1. Select File → New → Project.

2. When the New Project dialog appears, select Portal Project and then click
Next.

3. If prompted with the dialog displayed in Figure 2-21, click OK to enable portal
development capabilities.

Figure 2-21 Enable portal development

4. When the Portal Project dialog appears, enter MyPortal in the Name field,
click Show Advanced to see more options (we accepted the defaults), and
then click Next.

5. When the Select Theme dialog appears, select the desired theme. For
example, we select the Corporate theme and then clicked Next.

6. When the Select Skin dialog appears, select the desired skin. For example,
we selected the Outline skin and then clicked Finish.

This will generate the framework for the portal site.

88 IBM Rational Application Developer V6 and Portal Tools

7. If prompted to change to the Web perspective as seen in Figure 2-22, click
Yes.

Figure 2-22 Confirm perspective switch

2.3.3 Adding and modifying a portal page
This section describes how to add and modify a portal page for a portal site.

To add a new portal page, do the following:

1. Drag-and-drop the Page button from the Palette and place it in the same
column as the existing Page1 was created (see Figure 2-23 on page 90).

2. Click New Page.

3. Select the Title tab from the Properties view at the bottom of the window.

4. Change the page names.

Change the names of the pages Page1 and New Page to Top Page and
Bottom page respectively.

 Chapter 2. Developing Portal applications 89

Figure 2-23 Insert a new page and modify title

5. Add a label to the page (see Figure 2-24 on page 91).

a. Drag and drop the Label button from the Palette view, and place it to the
right of the existing Label1.

b. Drag and drop the Page button from the Palette view onto the New Label
to add a new page on which to place portlets.

90 IBM Rational Application Developer V6 and Portal Tools

Figure 2-24 Add a new label and page

6. Change the label names (see Figure 2-25).

In the same way that the titles of pages are modified, change the names of
the two labels on the portal site. Name the right label Right Label and the left
label Left Label.

Figure 2-25 Changing label titles

7. Click File → Save All to save all the changes you have made.

8. By adding labels and pages, you are able to alter the navigational structure of
the portal. You can also view an outline view of this structure by looking at the

 Chapter 2. Developing Portal applications 91

Outline view which appears in the lower left corner of the workbench (see
Figure 2-26).

Figure 2-26 Outline view

2.3.4 Creating and modifying two portlets
Now that the portal site and its navigational structure have been defined, we can
add content. Content is added to portals by placing portlets on each of the pages.
We will create two portlet projects for our example in this section.

Creating the first portlet
To create the first portlet, do the following:

1. Click File → New → Project.

2. When the New Project dialog appears, select Portlet Project and click Next.

3. Enter Basic Portlet in the Name field and click Next.

4. When the Portlet Type dialog appears, select the Basic portlet type and click
Next.

5. When the Features dialog appears, uncheck Web Diagram and click Next.

6. When the Portlet Settings dialog appears, we accepted the default portlet
settings and click Next.

7. When the Event Handling dialog appears, do the following and then click
Next:

– Uncheck Add form sample
– Uncheck Add action listener

8. When the Single Sign-on dialog appears, accept the default values for
credential vault handling and click Next.

92 IBM Rational Application Developer V6 and Portal Tools

9. When the Miscellaneous dialog appears, check Add Edit mode on the
miscellaneous settings page, and click Finish to generate your portlet code.

The portlet’s View mode JSP is now displayed in the workbench to be edited.

10.Expand Dynamic Web Projects → MyPortal in the Project Explorer view
(see Figure 2-27).

Under this directory are all the resources associated with the portlet including
the supporting JSP files, Java classes, and the portlet’s deployment
descriptor. You can double-click any resource to edit it in its default editor.

Figure 2-27 Basic Portlet project in the workbench

Creating the second portlet
Now, create a second portlet for the portal site. This portlet will process a form
and display the results.

1. Select File → New → Project.

2. When the New Project dialog appears, select Portlet Project, and click Next.

3. Enter Form Portlet in the Name field and click Next.

 Chapter 2. Developing Portal applications 93

4. When the Portlet Type dialog appears, select Basic portlet and click Next.

5. When the Features dialog appears, uncheck Web Diagram, check the JSP
Tag Libraries, and then click Next.

6. When the Portlet Settings dialog appears, we accepted the default portlet
settings, and clicked Next.

7. When the Event Handling dialog appears, accept the defaults on the event
handling screen. The Add action listener and Add form sample options
should be selected. Click Next.

8. When the Single Sign-on dialog appears, accept the default values for
credential vault handling and click Next.

9. When the Miscellaneous dialog appears, accept the default and click Finish
to generate your portlet code.

10.In the FormPortletPortletView.jsp file that is displayed on your screen,
delete Welcome!

11.Figure 2-28 displays a sample View mode page. You have to edit this page to
customize it for your own use.

The source file for this page is as follows, leaving only the form sample to be
displayed on this page:

/Web Content/form_portlet/jsp/html/FormPortletPortletView.jsp

Figure 2-28 Modified second portlet

12.Click File → Save All to save all the changes made to the portlet projects.

94 IBM Rational Application Developer V6 and Portal Tools

2.3.5 Adding portlets to a portal page
Now return to the Portal Configuration editor used in 2.3.3, “Adding and
modifying a portal page” on page 89 to add portlets to a portal page.

1. Expand Dynamic Web Projects → MyPortal.

2. Double-click Portal Configuration to open in the editor.

3. Add portlets to the Left Label of the Top Page.

a. Select the Left Label of the Top Page.

b. Drag and drop the Column button from the Palette View into the area of
the Top Page that says Place portlet here.

By doing this, the layout of the page is changed to accommodate two
portlets side-by-side as seen in Figure 2-29.

Figure 2-29 Adding a column

c. Right-click the left column and click Insert Portlet → As Child.

d. Select the Basic Portlet portlet as seen in Figure 2-30 on page 96, and
click OK.

 Chapter 2. Developing Portal applications 95

Figure 2-30 Select portlet to insert

4. Add portlets to the Left Label of the Bottom Page.

a. Select the Left Label of the Bottom Page.

b. Drag and drop the Column button from the Palette View into the area of
the Bottom Page that says Place portlet here.

c. Right-click the right column and click Insert Portlet → As Child.

d. Select the Form Portlet portlet and click OK.

5. Perform the same action to insert the Basic Portlet portlet to the Left Label
of the Bottom Page (see Figure 2-31 on page 97).

96 IBM Rational Application Developer V6 and Portal Tools

Figure 2-31 Basic portlet on the bottom page of the left label

6. Now click the Right Label.

7. Insert the Form Portlet onto this page (see Figure 2-32).

Figure 2-32 Inserting the form portlet into the right label new page

8. Click File → Save All to save all the changes made to your portal site.

 Chapter 2. Developing Portal applications 97

2.3.6 Running the project in the test environment
Now you can run and test the project in the WebSphere Portal Test Environment.
This section assumes that you have not previously defined a WebSphere Portal
Test Environment server and will configure a server for you as part of the
procedure.

1. Open the Web perspective.

2. Expand Dynamic Web Projects.

3. Right-click MyPortal, and select Run → Run on Server as seen in
Figure 2-33.

Figure 2-33 Run on server

4. When the Define a New Server dialog appears, select Manually define a
server, and select the desired WebSphere Portal Test Environment (V5.0 or
V5.1). For example, we selected WebSphere Portal V5.0 Test Environment
and clicked Next.

5. When the WebSphere Server Configuration Settings dialog appears, we
accepted the default port (9081) and clicked Next.

98 IBM Rational Application Developer V6 and Portal Tools

6. When the Add and Remove Projects dialog appears, select each of the
following projects and click Add:

– Form PortletEAR
– Basic PortletEAR
– MyPortalEAR

7. When done adding the projects to the Configured projects column, you
should have four projects (MyPortalEAR, Form PortletEAR, Basic
PortletEAR, MyPortalPortletsEAR) associated with your MyPortal project so
that they can run on the server. Click Finish.

8. Click OK if you receive the Repair Server Configuration dialog window (see
Figure 2-34). This indicates that your portlets will be added to the server so
that they run in your portal project.

Figure 2-34 Repair Server Configuration dialog

9. The server will now start, and your portal site will load in the Web browser as
seen in Figure 2-35 on page 100.

Test the portal site.

a. Navigate the portal site using the labels and page links.

b. Enter Edit mode on the Basic Portlet by clicking Edit Page.

c. Submit a value using the form.

 Chapter 2. Developing Portal applications 99

Figure 2-35 My Portal project in Web browser within IBM Rational Application Developer

100 IBM Rational Application Developer V6 and Portal Tools

Chapter 3. Portlet development
platform sample installation

This chapter illustrates a sample portlet development software installation by
describing the steps necessary to prepare a single computer running Windows
XP Professional SP1 for WebSphere application development and testing. The
steps include:

1. Installation of Rational Application Developer V6.0 and Portal Tools

2. Installation of WebSphere Portal V5.1 Test Environment

3. Configuration of WebSphere Portal V5.1 Test Environment in Rational
Application Developer V6.

4. Optional installation of WebSphere Test Environment V5.1

3

© Copyright IBM Corp. 2005. All rights reserved. 101

3.1 Prerequisites
The following software and hardware requirements must be met in order to
successfully install and use Rational Application Developer V6 for portlet
application development.

3.1.1 Hardware requirements
The following hardware must be present before you install Rational Application
Developer:

� Pentium® III 800 MHz processor minimum (Higher is recommended)
� 768 MB RAM minimum (1 GB RAM is recommended)
� 3.5 GB of disk space for a full installation
� Display resolution of 1024 x 768 or higher
� TCP/IP stacks must be installed to use the test environments

3.1.2 Software requirements
One of the following operating systems must be present before you install
Rational Application Developer:

� Windows XP Professional with Service Packs 1 and 2
� Windows 2000 Professional with Service Packs 3 and 4
� Windows 2000 Server with Service Packs 3 and 4
� Windows 2000 Advanced Server with Service Packs 3 and 4
� Windows Server 2003 Standard Edition
� Windows Server 2003 Enterprise Edition
� Red Hat Enterprise Linux Workstation, version 3.0 (all service packs)
� SuSE Linux Enterprise Server (SLES) version 9 (all service packs)

More information about software requirements can be found in the install.html file
on the Rational Application Developer installation disk 1 or online at:

http://www.ibm.com/developerworks/rational

3.2 Rational Application Developer and Portal Tools
Prepare the following CDs prior to installing Rational Application Developer V6
and the Portal Tools:

� Rational Application Developer - Disk 1
� Rational Application Developer - Disk 2
� Rational Application Developer - Disk 3
� Rational Application Developer - Disk 4

102 IBM Rational Application Developer V6 and Portal Tools

http://www.ibm.com/developerworks/rational

Follow these steps to install this product:

1. Insert installation disk 1. If autorun is enabled on your system, the installation
launchpad program automatically opens. If autorun is disabled on your
system, run launchpad.exe from the CD to display the Rational Software
Development Platform Launchpad.

Figure 3-1 Rational Software Development Platform Launchpad

2. Select Install Rational Application Developer V6.0.

3. Click Next to continue once the installation program opens.

4. Accept the license agreement, and click Next to continue.

5. Accept the default installation path: C:\Program Files\IBM\Rational\SDP\6.0\.

 Chapter 3. Portlet development platform sample installation 103

Figure 3-2 Installation directory window

6. In the features window, you may deselect IBM WebSphere Application
Server V6.0 Integrated Test Environment. It is not required for portlet
application development and is not a prerequisite for the WebSphere Portal
V5.1 Test Environment. You may wish to leave this feature selected if you will
be developing applications for WebSphere Application Server V6.0. You can
run the installation program again in the future to add this functionality.

WebSphere Application Server V5.1 will be automatically installed when
installing the WebSphere Portal V5.1 Test Environment as shown in 3.3,
“WebSphere Portal V5.1 Test Environment” on page 106.

Also select Portal Tools under the Additional Features heading. This option
is required for portlet development. Click Next to continue.

104 IBM Rational Application Developer V6 and Portal Tools

Figure 3-3 Features window

7. In the summary information window, click Next to continue with the
installation.

8. When prompted, insert disks 2, 3, and 4 and click OK after each to continue
the installation.

9. Click Next to continue after this installation has been completed.

10.You may deselect the Launch Agent Controller Install option. Agent
Controller is a daemon that allows client applications to launch and manage
local or remote applications and provides information about running
applications to other applications. You must install Agent Controller before
you can use profiling tools to profile your applications, logging tools to import
remote log files, component testing tool to run test cases, runtime analysis
tools for probe insertion, code coverage and leak analysis, and tools for
remote application testing on WebSphere Application Server version 5.0 or
5.1. It is not a required component for portlet development.

More information about this tool can be found online at:

http://www.ibm.com/developerworks/rational

Click Finish to complete this installation.

Note: Agent Controller can be installed after the installation of Rational
Application Developer by selecting Install Agent Controller from the
launchpad, as shown in Figure 3-1.

 Chapter 3. Portlet development platform sample installation 105

http://www.ibm.com/developerworks/rational

Figure 3-4 Agent Control installation window

3.3 WebSphere Portal V5.1 Test Environment
Prepare the following CDs prior to installing WebSphere Portal V5.1 Test
Environment for Rational Application Developer V6. These CDs are bundled with
Rational Application Developer V6. They are also shipped with WebSphere
Portal V5.1.

� WebSphere Portal V5.1 - Setup
� WebSphere Portal V5.1 - Disk 1-1
� WebSphere Portal V5.1 - Disk 1-2
� WebSphere Portal V5.1 - Disk 1-15
� WebSphere Portal V5.1 - Disk 2
� WebSphere Portal V5.1 - Disk 3

Follow these steps to install this product:

1. Insert the Setup disk. If autorun is enabled on your computer, the installation
program will load. If it is not, browse the CD and run install.bat.

2. Select the installation language to be used with the installation program. Click
OK to continue.

3. In the next window, you may open and read the InfoCenter or click Next to
continue the installation.

4. Accept the license agreement and click Next to continue the installation.

106 IBM Rational Application Developer V6 and Portal Tools

5. Select the Test Environment installation, and click Next to continue.

Figure 3-5 WebSphere Portal V5.1 installation window

6. Click Next to continue after ensuring that no instances of WebSphere
Application Server or WebSphere Portal are running on the local machine.

7. Accept the default installation directory for WebSphere Application Server.
Click Next to continue.

 Chapter 3. Portlet development platform sample installation 107

Figure 3-6 WebSphere Application Server installation directory

8. Accept the default installation directory for WebSphere Portal. Click Next to
continue.

108 IBM Rational Application Developer V6 and Portal Tools

Figure 3-7 WebSphere Portal installation directory

9. Enter information for a WebSphere Portal administrative user and password.
For example, enter a username and password of wpsadmin. Click Next to
continue.

 Chapter 3. Portlet development platform sample installation 109

Figure 3-8 WebSphere Portal administrative user and password window

10.Click Next to begin the installation.

11.When prompted, insert CDs 1-2, 1-1, 1-15, 2, and 3. Click Next after each to
continue the installation.

12.Click Finish in the final installation window to complete the installation.

3.4 Configuration of the Test Environment
To use the WebSphere Portal V5.1 Test Environment in Rational Application
Developer, you must configure it.

Follow these instructions to configure this product:

1. Run Rational Application Developer by clicking Start → Programs → IBM
Rational → IBM Rational Application Developer V6.0 → Rational
Application Developer.

2. Click Window → Preferences.

110 IBM Rational Application Developer V6 and Portal Tools

Figure 3-9 Rational Application Developer preferences

3. Expand the Server category and select Installed Runtimes. Select the
WebSphere Portal V5.1 stub. Then click the Edit button.

 Chapter 3. Portlet development platform sample installation 111

Figure 3-10 Installed Server Runtime Environments window

4. Change the following information:

– Name:
WebSphere Portal V5.1

– WebSphere Portal Location:
C:\Program Files\Portal51UTE\PortalServer

– WebSphere Application Server Location:
C:\Program Files\Portal51UTE\AppServer

112 IBM Rational Application Developer V6 and Portal Tools

Figure 3-11 Changing server profile

5. Click Finish and then OK to save these changes.

3.5 WebSphere Test Environment V5.1 (optional)
Occasionally, you may wish to test some application functionality by running a
component of your application within WebSphere Application Server instead of
within the WebSphere Portal Test Environment. To do this, you will need to install
the WebSphere Test Environment. Prepare Rational Application Developer - Disk
1 and Rational Application Developer - WebSphere Test Environment V5.x Disk
1 and follow these steps:

1. Insert Rational Application Developer - Disk 1. If autorun is enabled on your
system, the installation launchpad program automatically opens. If autorun is
disabled on your system, run launchpad.exe from the CD to display the
Rational Software Development Platform Launchpad. This launchpad is
shown in Figure 3-1 on page 103.

2. Select Install WebSphere test environment V5.x. You will be prompted to
insert WebSphere Test Environment V5.x Disk 1. Do so and click OK.

3. Click Next to navigate to the next window.

 Chapter 3. Portlet development platform sample installation 113

4. Accept the license agreement and click Next.

5. Select WebSphere Application Server 5.1 from the Integrated Test
Environments category and click Next to continue.

Figure 3-12 Integrated test environments selection window

6. Click Next to begin installation of the test environment.

7. Click Finish to complete installation of the test environment.

No additional configuration is needed within Rational Application Developer for
the WebSphere V5.1 Test Environment to function.

114 IBM Rational Application Developer V6 and Portal Tools

Chapter 4. IBM Portlet API

This chapter provides details about the Portlet life cycle, Portlet API and
deployment concerns.The goal of this chapter is to provide you with the ability
not only to design and build dynamic IBM portlet applications, but also to
recognize opportunities to portalize existing applications and services.

At the end of this chapter, you should be able to work with the IBM Portlet API to
design and build new portlet applications. You will have the requisite skills to
deploy new applications as well as existing portalized applications.

4

© Copyright IBM Corp. 2005. All rights reserved. 115

4.1 IBM portlets
IBM portlets are Web applications that runs in the context of the WebSphere
Portal Server. They inherit from the javax.servlet.http.HttpServlet class and as
such are treated as servlets by the application server. The portlet is executed
inside a Web container managed by the application server. In the IBM Portlet
API, this container is referred to as the Portlet container.

Note: It is not possible to directly execute the portlet functionality by addressing
the portlet via http.

A portlet is visible on a portal page as a single small window, of which each portal
page may have many. The portlet is the content inside the window, not the
window itself. The window is defined by the selected skin.

4.2 IBM portlet application
A portlet application is a group of logically associated portlets. At a minimum, a
portlet application defines a single portlet, such as in weather portlet application.
In practice, the application may contain several portlets such as the
exchange2000 portlet application which contains five portlets as illustrated in
Figure 4-1 on page 117.

Portlets defined in the same application may share configuration parameters set
in the deployment descriptor or by the administrator at runtime. They also have
the ability to communicate with each other with custom messages.

Portlet Applications are defined in the deployment descriptors at development
time and cannot be created dynamically by the administrator. From an
administrative perspective, portlet applications allow repetitive administrative
tasks to be completed on a group of portlets instead of on individual portlets.

From a development perspective, portlet applications allow developers to
provide for deployment all the portlets needed to achieve a business requirement
and to ensure, at a minimum, that all these components are installed into the
Portal Server.

116 IBM Rational Application Developer V6 and Portal Tools

Figure 4-1 A Portlet application with multiple portlets

4.3 Servlets versus portlets
Those coming from a servlet background will find many similarities when first
working with portlets. This section will address some of the more important
conceptual differences between servlets and portlets. When designing your
portlet applications, the most important factor to initially consider is that unlike
servlets, portlets are only a small piece of a large presentation.

Servlets have the luxury of knowing they will be the only presentation resource
returned to the client at any given time. Portlets, on the other hand, must
understand that the presentation resource they return will be aggregated into a
larger resource returned to the client. As a result, they are forced to consider
constraints such as screen real estate, portlet interactivity, and events as well as
overall performance.

Real estate
Portlets can access a variety of information through the API to help it understand
its current condition in the portal. The PortletState informs the portlet if the user
has requested the portlet to be minimized, maximized or restored (normal). A
portlet should attempt to tailor the content it returns in accordance with the
requested state.

For example, if the user has maximized the portlet window, the content returned
should adequately fill the portal page. However, if the user has requested that the
portlet be minimized, you can return some content. To allow a portlet to return

 Chapter 4. IBM Portlet API 117

content in a minimized state you will need to update the skin to allow it. It is not
possible to dynamically change the state of the portlet except during event
handling.

Page aggregation
Although a servlet may be a single piece of a much larger Web application, at
any given point in time only a single servlet is fulfilling a user’s request. This
provides a great deal of predictability in that as the master controller, it can
guarantee what is executed and returned to the client. This is not true of portlets.
Each portal page is potentially the aggregation of several portlets.

Furthermore, when a servlet executes and returns content to the user, it can be
sure that the content it returns will not be affected by any other servlet in the
system. This is not true of portlets. A portlet has the ability to write markup to the
top of the page even though its normal content is placed inside a cell in a table.
This provides a mechanism to include JavaScript functionality the portlet may
need. Be aware, however, that as one portlet has that ability, so do all. As such,
you must properly encode variable names and functions.

This functionality must be used with care as there is no inherent mechanism for
one portlet to control the presence or absence of another portlet on a page, and
as such it cannot reasonably predict what other page-level code may be present.

Inter-portlet communication
Servlets have the ability to share data through a variety of scopes but since they
are executed serially by the client, they cannot interact with each other during a
single request. Because portlets are pieces of a larger portal, they have the
ability to communicate with other portlets and to be affected by other portlets in a
single request. This inter-portlet communication provides a way to create a
dynamic portlet application crossing multiple portlets on the same page.

For example, one portlet can inform other portlets in the same portlet application
or the same page that a user has performed some action. The listening portlets
can then alter their presentation, perform alternative logic or otherwise change
their behavior.

Event handling
In the servlet architecture, events are represented via HTTP methods. For
example, when a user submits a form, the doPost method is called. The portlet
event model, however, closely mirrors the traditional Java event model in that
portlets implement appropriate interfaces and are notified by the Portal Server
when these events are fired. For example, when a user clicks a button, an action
event is generated and sent to the registered listener. The Portlet API also
provides MessageEvents.

118 IBM Rational Application Developer V6 and Portal Tools

Security
Servlets execute in a neutral environment and are inherently responsible for
validating the user’s authenticity and/or authority to make a specific request. This
is traditionally a function of the controller role. A portlet, on the other hand,
operates only in the context of the portal server and cannot be called directly.

The Portal Server is responsible for authentication and authorizing all user
access. Therefore, portlets can be reasonably assured that authentication and
authorization has been performed prior to their execution. They may, however,
perform some authorization in order to tailor content to a specific user or role.
Where in servlets, authentication is a daily concern of developers, it is an option
for portlet developers.

4.4 Portlet modes
The following portlet modes are supported in the IBM Portlet API:

� View. When a user is simply viewing the portlet, likely with other portlets on
the page, it is in View mode.

� Edit. When the user selects the Edit button to change some configuration
information, the portlet is in Edit mode. Users only have access to the Edit
mode if they have been granted edit access by the administrator.

� Configure. The Configure mode is conceptually similar to Edit mode in that it
is used to adjust the configuration of the portlet. However, only users with
manage permissions on a portlet have access to the Configure mode. In
practice, the average user may have edit permissions on a portlet to change
certain personal settings such as user IDs and passwords. Typically, only
administrators would have manage permissions on a portlet in order to adjust
non-user specific settings such as server names, etc. The actual
implementation of the Edit and Configure modes, however, is entirely up to
the portlet developer.

� Help. The Help mode is used to present help information.

4.5 Portlet states
Portlet states determine how the portlet is displayed in the portal. The state of the
portlet is stored in the PortletWindow.State object and can be queried for
optimizing processing based on state. The three states of a portlet are:

Normal The portlet is displayed in its initial state as defined when
it was installed.

 Chapter 4. IBM Portlet API 119

Maximized The portlet view is maximized and takes over the entire
body of the portal replacing all the other portal views.

Minimized By default only the portlet title bar is visible inside the
portlet page. You can modify the skin do display the
portlets content in a minimized state. When doing this you
test for the state before generating content. If the state is
minimized you should only generate minimal content.

4.6 Core objects
Portlets are descendents of HttpServlets and as such inherit much of the basic
functionality from that class. However, as illustrated in 4.3, “Servlets versus
portlets” on page 117, there are some key differences. This section will introduce
many of the key objects in the portlet API. This section is not intended to replace
the javadoc and therefore will discuss the primary function of certain objects and
some of their key methods. The complete javadoc for the portlet API can be
found in the \WebSphere\PortalServer\app\wps.ear\wps.war\doc\Javadoc\WPS
directory. For the most up-to-date API information, refer to:

http://www-128.ibm.com/developerworks/websphere/zones/portal/

4.6.1 Hierarchy
The abstract class Portlet descends from the HttpServlet interface as illustrated
in Figure 4-2. Note that the package structure indicates the portlet belongs to the
org.apache.jetspeed.portlet package. It is important to understand that the IBM
Portlet API and the Jetspeed API are not the same, or even compatible at this
time.

Figure 4-2 Portlet hierarchy

120 IBM Rational Application Developer V6 and Portal Tools

http://www-128.ibm.com/developerworks/websphere/zones/portal/

4.6.2 Portlet
The abstract class Portlet defines the abstract methods that comprise the base
functionality of each portlet. All life cycle methods such as init, service and
destroy are defined in this class.

For convenience, these abstract methods have been implemented in the
PortletAdapter class. The PortletAdapter implements the service method with the
basic functionality to determine the type of request and delegate the request to
the appropriate do method. As such, it also defines the doView, doConfigure,
doHelp and doEdit methods. Most portlet development will extend from the
PortletAdapter class.

4.6.3 PortletAdapter
This class is provided as a default implementation of the Portlet class. It is
recommended that your portlet extends from this abstract class rather than from
the Portlet class. The adapter only provides implementations of the
portlet-specific methods. It does not provide an implementation for the doXXX
methods of the servlet parent (for example, doPost, doGet, etc.). The service
method in PortletAdapter will not call doGet or doPost and therefore should not
be used in your portlet. In addition to the methods of the Portlet class, this class
defines several additional methods.

The methods getVariable, setVariable and removeVariable provide access to the
variables you can set on the concrete portlet. It is important to remember that
these variables are at the concrete level and therefore will not be shared with
other concrete portlets even though they may be based upon the same abstract
portlet. These variables are available only in code and are not presented in portal
administration, nor are they configurable in the portlet.xml deployment
descriptor. Example 4-1 illustrates the usage of these methods.

Example 4-1 Setting and Accessing the concrete portlet variable

setVariable("var", “Some Value”);
String var = (String) getVariable("var");

4.6.4 PortletRequest
The PortletRequest interface inherits from the HttpServletRequest and
ServletRequest interfaces. It represents the user’s request and like
ServletRequest, encapsulates information about the user and the client. An
implementation of PortletRequest is passed to the service method and
subsequently to the delegated do methods (doView, doEdit and so on). In

 Chapter 4. IBM Portlet API 121

addition to client and user information, the PortletRequest object can be used as
a short term bucket for storing information, such as JavaBeans. JSPs then have
access to the information stored in the PortletRequest to create dynamic
presentations. Some of the more frequently used methods of this object are
listed below. Example 4-2 illustrates some common usage of the PortletRequest
object.

� getAttribute/setAttribute/removeAttribute

These methods allow you to store data in a short term bucket. The
PortletRequest is portlet-specific and therefore data stored in this object is not
available to other portlets. The storage is only valid during the single request.
All objects placed in this scope should be serializable.

� getParameter

This method provides access to the parameters passed as part of the
HttpServletRequest. There is no need to distinguish whether the parameter is
passed via an HTTP get or post method. This method is often used in
event-handling.

� getCookies

This method provides access to the cookies stored by the current domain on
the client’s machine. An array of cookie objects is returned and the portlet is
responsible for iterating through the collection.

� getHeader

This method provides access to the headers supplied by the client. Some of
the more common headers you may want to access include accept,
accept-encoding and cache-control.

� getLocale

This method returns the preferred locale for the user. The Portal Server
determines the locale by first retrieving the user’s preferred language set
during registration. If the preferred language is not set, the locale is retrieved
from the accept-language header supplied by the client.

� getPreviousMode

This method returns the previous mode visited by the user.

Example 4-2 Working with the PortletRequest

request.setAttribute("uri", uri);
String fNmame = request.getParameter("f_name");
java.util.Locale locale = request.getLocale();

122 IBM Rational Application Developer V6 and Portal Tools

4.6.5 PortletResponse
The PortletResponse interface extends from the HttpServletResponse and
ServletResponse interfaces. This object encapsulates the response sent to the
Portal Server for aggregation. Unlike the ServletResponse, the response is sent
to the Portal Server, not the client machine directly. Therefore, attempting to
influence the overall request, such as setting a status code, will have no effect.
Some of the most commonly used methods of this object are listed below:

� getWriter

This method returns a java.io.PrintWriter object that can be used to return
markup to the Portal Server. The content returned by the PrintWriter is
aggregated into the entire portal page. While it is possible to use a PrintWriter
as well as include a JSP, it is generally considered bad practice to do so.

� encodeNamespace

This method takes a String and attaches the name of the portlet application
as a prefix. For example, the value “variable_one” when encoded would be
returned as “PC_175_variable_one”. Any variables that will become part of the
aggregated portal page should be encoded. JavaScript functions and
variables are good examples of values that should be encoded to prevent
name collisions.

� addCookie

This method allows you to add a cookie to the ultimate HTTP response that is
sent by the Portal Server to the client. In order to ensure the name of cookie is
unique throughout the portal, it is recommended that you use the
encodeNameSpace method.

� addHeader/setHeader/containsHeader

This method provides access to the headers sent back to the client via the
portal server.

� encodeURL

This method will append the passed string to the complete URL of the Portal
Server. For example, the string “example.gif” becomes
“http://www.yourco.com/wps/WPS_PA_351/example.gif” when passed to the
encodeURL method.

� createURI/createReturnURI

These methods will create URI object that contains a URL pointing the portlet
in particular mode. For more information see 4.6.18, “PortletURI” on
page 133.

 Chapter 4. IBM Portlet API 123

Example 4-3 Working with the PortletResponse

java.io.PrintWriter out = response.getWriter();
out.println("Hello World");
PortletURI uri = response.createURI();
String functionName = response.encodeNamespace("myFunction");

4.6.6 PortletSession object
When the user initially accesses a portlet, a PortletSession is created. The portlet
session stores transient data associated with an individual use of the portlet. The
concrete portlet instance parameterized by the PortletSession is referred to as
the User Portlet Instance.

Figure 4-3 The portlet parameterization

The PortletSession object extends from HttpSession and serves much the same
purpose. The PortletSession is intended to represent an ongoing conversation
between the client and the portlet. To this end, the PortletSession can be used to
store information needed between requests. The PortletSession is intended to
store data between requests, not between portlets. As such, data stored in the
session by one portlet is not accessible by another. The PortletSession is
retrieved from the request object as illustrated in Example 4-4 on page 125.

Portlet
Portlet Settings

PortletData

PortletSession

Portlet
Portlet Settings

PortletData

PortletSession

Portlet
Portlet Settings

PortletData

Portlet
Portlet Settings

PortletData

Portlet
Portlet Settings

Portlet

Portlet
Portlet Settings

Portlet Settings

PortletData

PortletSession

Concrete Portlet

Concrete Portlet
Instance

User Portlet
Instance

124 IBM Rational Application Developer V6 and Portal Tools

Since a PortletSession object is created when a user logs in, there is no need to
create one. However, the getPortletSession(boolean) can be used to create a
session for an anonymous user.

Example 4-4 Retrieving a PortletSession

PortletSession session = request.getPortletSession();

The most important methods of the PortletSession are
getAttribute/setAttribute/removeAttribute: these methods allow you to store,
retrieve and delete objects in the PortletSession. Objects stored in the
PortletSession should be serializable. To be serializable, the class needs to
implement the Serializable interface. Object being placed in the session should
be serializable in case the session needs to sent to another JVM in the case of
failover or load balancing. This will prevent a NotSerializableException.

4.6.7 Client
The Client interface represents the device making the request, not the user. The
Client object can be retrieved from the PortletRequest object as illustrated in
Example 4-5. Figure 4-4 on page 126 illustrates the result of most of the
methods of the client object when requested via Internet Explorer and a Nokia
WAP emulator.

Example 4-5 Working with the client object

Client client = request.getClient();
out.print("<P>Manufacturer: " + client.getManufacturer() + "
");
out.print("MarkupName:" + client.getMarkupName() + "
");
out.print("MimeType " + client.getMimeType() + "
");
out.print("Model: " + client.getModel() + "
");
out.print("UserAgent: " + client.getUserAgent() + "
");
out.print("Version: " + client.getVersion() + "</P>");

Generally, the client object is used to determine the markup language to which
the device is mapped. Based on that information, device-specific markup can be
generated.

 Chapter 4. IBM Portlet API 125

Figure 4-4 Client Information displayed on various clients

4.6.8 PortletConfig object
The PortletConfig object represents the abstract portlet. Therefore, any
information contained in the PortletConfig is shared by all concrete portlets
deployed based on the same abstract portlet. This object can be used to access
the initialization parameters set in the web.xml deployment descriptor’s servlet
definition. Unlike other parameters, these are read-only and cannot be altered
dynamically. This object can also be used to determine which modes and states
are supported. Furthermore, this object provides access to the PortletContext
object. The PortletConfig is retrieved via the getPortletConfig method of the
PortletAdapter class or the getConfig method of the AbstractPortlet class. There
are some useful methods available in this object. They are listed below and
illustrated in Example 4-6 on page 127.

� supports

This method can accept a PortletWindow.State object or a Portlet.Mode
object and return a boolean indicating whether or not the state or mode is
supported by the portlet.

� getContext

This method will return a PortletContext object. For more information about
the PortletContexr, refer to 4.6.9, “PortletContext object” on page 127.

126 IBM Rational Application Developer V6 and Portal Tools

Example 4-6 Working with PortletConfig

boolean maxSup = getPortletConfig().supports(PortletWindow.State.MAXIMIZED);
boolean minSup = getPortletConfig().supports(PortletWindow.State.MINIMIZED);
boolean viewSup = getPortletConfig().supports(Portlet.Mode.VIEW,

request.getClient());
boolean editSup = getPortletConfig().supports(Portlet.Mode.EDIT,

request.getClient());
boolean configureSup = getPortletConfig().supports(Portlet.Mode.CONFIGURE,

request.getClient());
boolean helpSup = getPortletConfig().supports(Portlet.Mode.HELP,

request.getClient());
PortletContext context = getPortletConfig().getContext();

4.6.9 PortletContext object
The PortletContext provides a mechanism for the portlet to access the services
of the portlet container in which it is running. For example, the Context provides
access to the PortletLog, servlet context parameters as well as any services
hosted by the portal such as Credentials Vault, PersistentConnection and
possibly other custom services. The parameters accessed by the PortletContext
are the context parameters set in the web.xml. These parameters are common to
all portlets deployed in the same web.xml, regardless of their organization into
various portlet applications. The PortletContext object is retrieved from the
PortletConfig object as illustrated in Example 4-7.

Example 4-7 Accessing Context Parameters via the PortletContext

PortletContext context = getPortletConfig().getContext();
String webmaster = context.getInitParameter("webmaster");

The PortletContext can also be used to store attributes that will be shared by all
portlets deployed via the same web.xml regardless of concrete portlet
application. These attributes are not distributed in a clustered environment.

� include

This is the most commonly used method of the PortletContext object. In a
well-designed MVC architecture, the portlet executes one or more business
objects to satisfy the logic of the request. Once the logic has completed, the
include method generally calls a JSP to produce the output. Unlike Servlets,
there is no ability to forward to a JSP. Example 4-8 on page 128 illustrates this
approach.

 Chapter 4. IBM Portlet API 127

� getContainerInfo

This method indicates the Portal Server version the portlet is executing. It
only indicates the major version, not the minor one. In WebSphere Portal
Server V4.1.2, this method returns the String ‘IBM WebSphere Portal
Server/4.1’.

� getText

This method provides access to Resource Bundles to use in providing
National Language Support (NLS). For more information about NLS, see
Chapter 12, “Internationalization” on page 373.

Example 4-8 Including a JSP

public void doView(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

//Business logic completed
 getPortletConfig().getContext().include("/jsp/View.jsp",

request, response);
}

4.6.10 PortletSettings object
When the portal administrator deploys a new portlet or copies an existing one,
PortletSettings are created. A Portlet parameterized by its PortletSettings is
referred to as a concrete portlet.

Figure 4-5 Portlet parameterization objects

This object is best thought of as wrapping the information defined in the
<concrete-portlet> section of the portlet.xml deployment descriptor. The
PortletSettings object encapsulates the configuration information of the concrete
portlet instance. The parameter information is retrieved from the portlet.xml but
can be modified at runtime while the portlet is in Configure mode. Therefore, the
PortletSettings object can be used as a storage for attributes to be shared by all

Portlet Settings

PortletData

PortletSession

Portlet deployed

Portlet placed
on a page

Portlet accessed
by a user

Persistent Data

Transient Data

128 IBM Rational Application Developer V6 and Portal Tools

the concrete portlet instances. When attributes are adjusted or added, be sure to
call the store method to persist the new values. The administrator can add new
parameters and alter existing parameter values via the Manage Portlets portlet in
Administration place. The PortletSettings object also provides access to
configuration information such as the title of the concrete portlet and the default
locale. This object can be retrieved from the PortletRequest object or is passed
as a parameter to the initConcrete and destroyConcrete methods of the portlet.
The main methods are:

� getAttribute/setAttribute/removeAttribute: these methods provide access
to attributes.

� getTitle: this returns a string indicating the title of the portlet for the current
client and the specified locale. Note that this method returns the active title,
not necessarily the title specified in the deployment descriptor. If the
administrator has changed the title at runtime for example, that value is
returned.

� getDefaultLocale: this method returns a Locale object specifying the default
locale as determined by the portlet.xml.

� getPortletApplicationSettings: this method will return the
PortletApplicationSettings object discussed in 4.6.11,
“PortletApplicationSettings object” on page 129.

Example 4-9 Working with PortletSettings

String title = request.getPortletSettings().getTitle(
request.getLocale(),
request.getClient()));

java.util.Locale locale = request.getPortletSettings().getDefaultLocale());
PortletApplicationSettings portletAppSettings =

request.getPortletSettings().getApplicationSettings();
String attribute = request.getSettings().getAttribute(“attName”);

//Only available in doConfigure:
request.getSettings().setAttribute("attribute", "Some Value");
request.getSettings().store();

4.6.11 PortletApplicationSettings object
This object is best thought of as wrapping the information defined in the
<concrete-portlet-app> section of the portlet.xml deployment descriptor. It is used
to encapsulate the information pertaining to all concrete portlets\ deployed as
part of the same concrete portlet application. The context parameters defined in
the concrete portlet application section of the portlet.xml are available through

 Chapter 4. IBM Portlet API 129

this object’s getAttribute method. These parameters can be adjusted and new
ones added only while a portlet is in configure mode.

� getAttribute/setAttribute/removeAttribute: these methods provide access
to attributes of the concrete portlet application.

Example 4-10 Working with PortletApplicationSettings

PortletApplicationSettings portletAppSettings =
request.getPortletSettings().getApplicationSettings();

String attribute = portletAppSettings.getAttribute("attribute"):

//Only available in doConfigure:
portletAppSettings.setAttribute("attribute", "Some Value");
portletAppSettings.store();

4.6.12 PortletData object
The PortletData object represents a ConcretePortlet instance on a users page. It
provides a quick, secure and effective method of attribute persistence with no
JDBC code required. The PortletData is not dependent on the life cycle of the
portlet. The PortletData is user-specific. However, when a user first accesses a
portlet utilizing the PortletData object, the PortletData is not unique. In fact, until
the user sets some value in the PortletData, they continue to use a shared Data.
This PortletData is shared with the administrative user who first place the portlet
on the page. All values stored in the PortletData must be serializable. Since a
null object is not serializable, be sure to test the validity of your object prior to
setting them into the PortletData object.

For example, the HelloWorld portlet uses PortletData to persist the greeting
String and the moniker the user wishes to be addressed by. The Administrator
installs this portlet, grants edit permissions to the All Authenticated Users group
and places it on the Welcome page. The Administrator chooses to edit the portlet
and enters hello there as the greeting String and “admin” as the moniker. When
user JohnSmith logs into the portal page and opens the welcome page, he sees
the name admin and the greeting “hello there”. The administrator decides to
change the greeting to “Greetings”. Since JohnSmith has not edited the
PortletData, he continues to share the PortletData and sees the changes the
admin has made. JohnSmith chooses to edit the PortletData to use his name
instead of admin. Once he edits the PortletData, he has his own PortletData
object. Changes he makes will be seen by no one else. Furthermore, he will no
longer see any changes to the PortletData made by the administrator.

130 IBM Rational Application Developer V6 and Portal Tools

Example 4-11 Working with PortletData

PortletData data = request.getData();
String greeting = (String) data.getAttribute("greeting");
String moniker = (String) data.getAttribute("moniker");

//Only available in doEdit or possibly actionPerformed:
PortletData data = request.getData();
data.setAttribute("greeting", greeting);
data.setAttribute("moniker", moniker);

4.6.13 PortletLog object
This allows you to quickly write error messages or other information to the log
files. All messages are written to the same file location regardless of the level
currently enabled. The log file is named wps_<time-stamp>.log where the
<time-stamp> is formatted as YYYY.MM.DD-HH.MM.SS. For example:
wps_2002.10.14-12.32.41.log. The time stamp reflects the time the log file was
created, typically when the server was first started. The log file is stored in
<WPS-ROOT>\log. To change the location of the directory, uncomment the
baseGroup.FileHandler.fileName attribute in jLog.properties and enter the new
location. If the directory does not exist, it will be created for you.

There are four levels of severity when writing to the log: info, debug, warn and
error. By default, error and warn are enabled. Debug and info levels are enabled
for your portlets by enabling the PortletTraceLogger in the EnableTracing portlet
in the Portal Administration. Since there is an associated expense with logging,
the API provides a mechanism to determine if a logging level is currently enabled
prior to writing the message. Example 4-12 illustrates this approach. Finally, if
you pass an exception to a particular write method such as error or debug, the
portlet container will print out the stack trace to the log file.

Example 4-12 Simple Logging

PortletLog log = getPortletConfig().getContext().getLog();
if (log.isDebugEnabled())log.debug("debug enabled:" + someMsg);
if (log.isWarnEnabled()) log.warn("warn enabled:" + someMsg);
if (log.isInfoEnabled()) log.info("info enabled:" + someMsg);
if (log.isErrorEnabled())log.error("error enabled:" + someMsg);

If the portlet you are writing extends PortletAdapter, a convenience method has
been provided for you as illustrated in Example 4-13 on page 132.

 Chapter 4. IBM Portlet API 131

Example 4-13 Log object

PortletLog log = getPortletLog();

4.6.14 PortletException
The Portlet Exception inherits from the ServletException and is used as the basis
for most exceptions thrown in the Portal environment, including
UnavailableException

4.6.15 UnavailableException
This exception is thrown if the portlet fails to initialize. Generally, your portlets will
include an init method which calls the super.init. Since this call may produce an
UnavailableException, the functionality is provided to evaluate what to do if the
initialization fails.

� getUnavailableSeconds: this method returns an int (integer) indicating how
long this portlet is unavailable for.

� isPermament: this method returns a boolean indicating this portlet is not
permanently unavailable.

The length of time the portlet is unavailable is determined when the exception is
first created.

� UnavailableException(String msg): this constructor indicates the portlet is
permanently unavailable.

� UnavailableException(String msg, int time): this constructor will reflect the
length of time for which this portlet is unavailable.

4.6.16 PortletWindow object
This object represents the window surrounding the portlet only. Generally, this
class is useful when determining the real state a portlet has to work with.
Example 4-14 on page 133 illustrates this approach. Minimized, Normal and
Maximized are defined as constants in the PortletWindow.State class.

132 IBM Rational Application Developer V6 and Portal Tools

Example 4-14 Determining portlet window state

PortletWindow.State state = request.getWindow().getWindowState();
if (state.equals(PortletWindow.State.NORMAL)){
 getPortletConfig().getContext().include("/jsp/View.jsp", req, resp);
} else if (state.equals(PortletWindow.State.MAXIMIZED)){

getPortletConfig().getContext().include("/jsp/MaxView.jsp", req, resp);
} else {

//Window is minimized, no need to generate content.
}

4.6.17 User object
The User object represents the authenticated user and is retrieved from the
PortletRequest object. The API provides predicable getters and setters for the
most common attributes of the user such as GivenName, FamilyName and
UserID. This class provides access to both Basic and Extended attributes of the
user. Basic attributes are those stored in the LDAP directory as part of the
schema used throughout the portal. Extended attributes are those attributes
stored in the Portal Server database. Example 4-15 illustrates accessing both
basic and extended attributes.

Example 4-15 Working with User attributes

User user = request.getUser();
String familyName = user.getFamilyName();
String favoriteColor = user.getAttribute(“favColor”);
String phoneNumber = user.getAttribute(“phoneNumber”);

The getID returns as a String the complete DN of the user. For example,
wpsadmin in a typical SecureWay® environment would return uid=wpsadmin,
cn=users,dc=<domain>,dc>=<com> ‘‘

There are two User interfaces defined in the Portlet API. The
org.apache.jetspeed.portlet.User class represents the logged in user and is the
User object you will use day-to-day. The com.ibm.wps.puma.beans.User
interface is an EJB and is not used to access individual user information

4.6.18 PortletURI
The PortletURI is used in organizing navigation through the portal as a user
moves from mode to mode in a portlet. When a user is on a normal page (for
example when the portlets are presented in View mode), the page is an
aggregation of all the portlets. In order for any one portlet to be able to navigate

 Chapter 4. IBM Portlet API 133

back to that aggregated state, the PortletURI can store the URL. The PortletURI
is then placed in a bucket such as the request or session object.

4.7 Portlet life cycle
This section will explain the portlet life cycle and when certain objects become
available. The basic life cycle of each portlet is displayed in Figure 4-6. Though
the login and logout methods are part of SessionListener interface, they are
covered here since they are usually included in normal portlet implementations.
Other listeners are covered in 4.8, “Listeners” on page 137.

Figure 4-6 Basic portlet life cycle

Much like the Servlet Container, the Portlet Container manages the portlet life
cycle along with providing services to the portlets running in the container.

The portlet container loads and instantiates the portlet class. This can happen
during startup of the portal server or later, but no later then when the first request
to the portlet has to be serviced. Also, if a portlet is taken out of service
temporarily, for example while administrating it, the portlet container may finish
the life cycle before taking the portlet out of service. When the administration is
done, the portlet will be newly initialized.

During the portlet life cycle, the portlet container invokes the following methods
on the Portlet class (subclass of a the Portlet Adapter class) on behalf of user
requests as seen in Figure 4-7 on page 135.

� init()
� initConcrete()

init

login*

logout*

destroy

initConcrete

service

destroyConcrete

134 IBM Rational Application Developer V6 and Portal Tools

� login()
� service()

– doView()
– doEdit()
– doHelp()
– doConfigure()

� logout()
� destroyConcrete()
� destroy()

Figure 4-7 Portlet life cycle

init(PortletConfig config)
This method is called by the portlet container on the abstract portlet when the
portlet is first loaded. As with servlets, portlets are loaded when they are first
requested. Any subsequent calls to the portlet will not execute this method.
Generally, initialization that is applicable to every concrete portlet based on this
abstract portlet is placed in this method. If you choose to override this method, at
a minimum it should make a call to its parent via super.init(portletConfig). At
this point in the portlet life cycle, no portlet-specific storage objects are available.
This includes PortletSession, PortletData, PortletApplicationSettings and
PortletSettings.

initConcrete(PortletSettings settings)
This method is called by the portlet container on the concrete portlet. The
initialization code performed in this method is not shared by other concrete
portlets even though they may be based upon the same abstract portlet. It is in
this method that the PortletSettings object is first available. The PortletSettings

User login Portlet login()

Po
rt

le
t

Po
rt

al

Portlet initailized Portlet init() ;
 initConcrete()

User page request
PortletPageListener beginPage();
Portlet service();endService();
PortletPageListener endPage()

Portlet markup returnedPortal page returned

User logout Portlet logout()

Portal terminated Portlet destroy();
destroyConcrete()

Po
rt

le
t C

on
ta

in
er

 Chapter 4. IBM Portlet API 135

encapsulates the concrete portlet configuration parameter information. From the
PortletSettings object, the PortletApplicationSettings object is available. The
PortletApplicationSettings object encapsulates concrete portlet application
context parameters. In this method, no user-specific objects are yet available.

login(PortletRequest request)
If the concrete portlet has been placed on a page that requires authorization, the
login method is called by the portlet container to associate a user with the portlet.
It is at this point that the PortletData object is first available. The PortletSession is
created by the container for the registered user at this point and is available in
this method via the request object. If the request for the portlet is made by an
anonymous user, this method is not called. If this method is not called, a default
session object can still be created with no user association, though it may be of
little practical use. This method is actually defined in the PortletSessionListener
interface which is implemented by the abstract class Portlet. Since your custom
portlets will extend from Portlet, it is included in this discussion even though other
oft-used listeners are not.

service(PortletRequest request, PortletResponse response)
This method is called on each and every request of the portlet. After the portlet
has been added to a page and initially accessed by a user, this is the only
method that will be called by the portlet container on subsequent requests.
Generally, this method will delegate the request to the appropriate doXXX
method to render content. At this point, all portlets and, if applicable,
user-specific objects are available.

logout(PortletSession session)
Only when a user specifically selects the Log Off button on the portal is this
method called. This method provides you with the opportunity to manage any
user-specific information once the user has logged out and to clean up
user-related resources. If the user removes the portlet from their page, the logout
method is not called until the user actually logs out of the portal, even though
they no longer are accessing the portlet. When the portlet is taken out of service
by the Portal server or the administrator, this method will not be called. The
PortletSettings object is still available in this method, although the PortletRequest
is not. This method is actually defined in the PortletSessionListener interface
which is implemented by the abstract class Portlet. Since your custom portlets
will extend from Portlet, it is included in this discussion even though other
oft-used listeners are not.

destroyConcrete(PortletSettings settings)
This method is called when the concrete portlet is taken out of service either
because of the portal server stopping or the application being uninstalled from

136 IBM Rational Application Developer V6 and Portal Tools

the portal server. The portlet container will call each running concrete portlet in
the application individually when the application is deleted. In this method, the
PortletSettings object is passed in as a parameter and cannot be retrieved from
the normal getPortletSettings method.

destroy(PortletConfig config)
The portlet container executes this method on the abstract portlet when the
portlet is taken out of service. Since it is executed on the abstract portlet and not
the concrete portlets, it is executed only once. This method provides an
opportunity to execute clean-up code on each and every concrete portlet in the
application derived from this abstract portlet.

4.8 Listeners
The event model of the IBM Portal API is very similar to the traditional Java event
model. However, there are two main points of distinction. First, there is no need
to register listeners. When a portlet in installed, the Portal Server determines the
listeners it implements and registers them on behalf of the portlet. Secondly,
since the registration is taken care of by the Portal Server, it is not possible to
specify which portlets a particular portlet wishes to register for. Therefore,
portlets implementing listeners need to carefully plan for unsolicited and
unexpected events.

There are several listeners defined in the IBM Portal API. The ActionListener is
covered in the Event handling section and the MessageListener is covered in the
Messaging section.

4.8.1 PortletTitleListener
This listener allows you to dynamically set the title of the portlet. This listener
requires the single method as shown in Example 4-16. This interface is
particularly useful when tailoring the title to certain modes or devices. To return a
title, simply use a PrintWriter object or include a JSP using the PortletContext
object. While the second approach allows you to create a more dynamic title
including images and so forth, you must remain mindful of the limited space in
the title bar.

Example 4-16 PortletTitleListener example

public void doTitle(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PrintWriter out = response.getWriter();
String title = getPortletSettings().getTitle(

request.getLocale(), request.getClient());

 Chapter 4. IBM Portlet API 137

out.print(title + "(" + request.getMode() + ")");
}

4.8.2 PortletPageListener
This interface provides the opportunity to add content to the top and bottom of
the aggregated page. Example 4-17 illustrates a simple implementation of the
PortletPageListener interface. It is important to note that content returned from
the beginPage method is not placed at the top of the page but rather at the top of
the aggregated content as displayed in Figure 4-8 on page 139.

Example 4-17 PortletPageListener implementation

public class AgendaPortlet extends PortletAdapter implements
PortletPageListener {
........

public void beginPage(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PrintWriter out = response.getWriter();
out.println("This page contains my agenda.");

}

public void endPage(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PrintWriter out = response.getWriter();
out.println("End of my agenda.");

}
}

The resulting page including the top and bottom messages is illustrated in
Figure 4-8 on page 139.

138 IBM Rational Application Developer V6 and Portal Tools

Figure 4-8 beginPage and endPage placements

The beginPage is a convenient method when you need to include JavaScript
functions needed by your portlet. However. be very conscious of any content you
decide to display in the beginPage method as it may adversely affect the overall
aggregation of the page. Furthermore, because the page is aggregated, be sure
that any functions or global variables you declare have properly encoded the
namespace of the portlet to ensure there are no naming collisions. Use the
response.encodeNamespace to do this.

4.8.3 PortletSessionListener
This interface requests the Portal Server to notify the portlet if an authenticated
user has accessed the portlet. This interface is already implemented by the
PortletAdapter class which is traditionally the parent of most custom portlets.
This interface defines the two methods shown in Example 4-18 on page 140.
Figure on page 134 illustrates where in the life cycle of the portlet these
methods are called. The functionality of the login and logout methods is detailed
in 4.7, “Portlet life cycle” on page 134.

Restriction: The Home.jsp can choose to cancel calls to the
PortletPageListener via the <wps:pageRender includeBeginPage="no"
includeEndPage="no"> tag. In this case, your beginPage and endPage
methods will not be called.

 Chapter 4. IBM Portlet API 139

Example 4-18 PortletSessionListener methods

public void login(PortletRequest request) throws PortletException{ ... }
public void logout(PortletSession session) throws PortletException{ ... }

4.8.4 WindowListener
The WindowListener is no longer supported in WebSphere Portal as of version
5.1.

This interface will notify the portlet that the user has changed the window state.
Presently, there are only three supported window states, despite the javadoc.
NORMAL, MAXIMIZED and MINIMIZED states are supported. The portlet is
notified of these three states through windowMaximized, windowMinimized, and
windowRestored, respectively. Though only three states are currently supported,
the WindowListener defines methods for windowClosing, windowOpening,
windowDetached and windowClosed. This methods are never called. However,
in order to implement this interface, all methods must be implemented even
though several will contain empty bodies.

Note: The WindowEvent interface has also been removed in WebSphere
Portal V5.1; you should use the PortletWindow.getWindowState() method
instead. It is included here for information and as a reference for portlets
developed using previous releases.

Note: You will need to make sure you implement the interface
org.apache.jetspeed.portlet.event.WindowListener and not the AWT
counterpart since some development environments will offer both.

140 IBM Rational Application Developer V6 and Portal Tools

Example 4-19 Implementing the WindowListener

public void windowMaximized(WindowEvent arg0) throws PortletException {
// Some action can be performed

}
public void windowMinimized(WindowEvent arg0) throws PortletException {

// Some action can be performed
}
public void windowRestored(WindowEvent arg0) throws PortletException {

// Some action can be performed
}
public void windowClosing(WindowEvent arg0) throws PortletException { }
public void windowClosed(WindowEvent arg0) throws PortletException { }
public void windowDetached(WindowEvent arg0) throws PortletException { }

4.8.5 PortletSettingsAttributeListener
The PortletSettings object encapsulates the concrete portlet defined in the
portlet.xml. Part of that definition includes configuration parameters that may be
declared at deployment time. These parameters can be altered and new ones
can be added at runtime. The PortletSettingsAttributeListener notifies your
portlet if the configuration parameters are changed at runtime.

4.8.6 PortletApplicationSettingsAttributesListener
Similar to the PortletSettingsAttributeListener, this listener provides notification
when the context parameters of the concrete application have changed, been
added or removed.

4.9 Action event handling
The event model in WebSphere Portal is very similar to the traditional Java event
model. When a portlet wishes to be notified that a user has performed an action,
it simply implements the ActionListener correctly and the portal server will take
care of calling the appropriate method when the event is generated. Unlike in the
traditional Java event model, only the portlet generating the event may listen for
that event. That is, there will always only be a single listener for any particular
ActionEvent. In order to notify other portlets of an event, the listening portlet may
choose to send messages. For more information about sending messages, see
4.10, “Attribute storage summary” on page 145.

When the Portal server services a request, it acts in two distinct phases. The first
phase is the event processing phase. All events, including ActionEvents and

 Chapter 4. IBM Portlet API 141

MessageEvents are generated, delivered and processed in this phase. Once this
phase is complete, the content generation phase begins. Once content
generation has begun, no events can be generated. Attempting to generate
events during the content generation phase, for example doView, doEdit, etc.,
will cause an exception.

4.9.1 ActionListener
The org.apache.jetspeed.portlet.event.ActionListener interface defines a single
method to be implemented as illustrated in Example 4-20.

Example 4-20 ActionListener Interface

org.apache.jetspeed.portlet.event.ActionListener
public void actionPerformed(org.apache.jetspeed.portlet.event.ActionEvent

event) throws PortletException;

4.9.2 ActionEvent
An implementation of the org.apache.jetspeed.portlet.event.ActionEvent
interface is passed to the actionPerformed method by the PortalServer when a
PortletURI with an action is executed. The ActionEvent object provides access to
the PortletRequest and the action.

Note: The DefaultPortletAction class and the PortletAction interfaces are
deprecated in this release and you should use the Simple Action string instead,
as illustrated in Example 4-21.

Example 4-21 Working with the ActionEvent

public void actionPerformed(ActionEvent event) throws PortletException {
PortletRequest request = event.getRequest();
String action = event.getActionString();

4.9.3 PortletURI
The portletURI represents a URL that can be used to navigate between modes.
The PortletURI can be used to navigate to a previous mode, such as from Edit to
View, or to navigate back to the same mode, such as a multi-part form in View or
Edit. There is no ability to create a PortletURI object pointing to a mode not yet
visited by the user.

PortletRequest.createURI returns a portletURI object pointing to the portlet in its
current mode. For example, if the portletURI is created in the doView mode, the

142 IBM Rational Application Developer V6 and Portal Tools

URL points to the portlet in View. The createReturnURI method returns a
PortletURI object pointing to the last mode the portlet was in. This mode is
commonly used in the doEdit method when the URI needs to point back to the
View mode. The edit.jsp would use the PortletURI to bring the user back to the
View mode when they have completed the edit or configure process.

In order for a portlet to be notified of an event, such as the user clicking a button,
the portletURI must contain an associated PortletAction. Typical PortletURI
construction and usage is shown in Example 4-22.

The process of adding actions to PortletURI objects has been simplified. The
addAction(PortletAction) method has been deprecated and replaced with
addAction(String). Since the vast majority of work with PortletActions involves no
more than setting a name, this new implementation is much more convenient.

Developers are advised to use simple action string instead.

Since the DefaultPortletAction class and the PortletAction interfaces are
deprecated in this release, we show the use of the Simple Action string instead,
as illustrated in Example 4-22.

Example 4-22 Working with PortletURI

PortletURI uri = response.createReturnURI();
uri.addAction("save");
request.setAttribute("uri", uri.toString());

It is possible to add parameters to the PortletURI object. Parameters added to
the PortletURI via code or through a form are accessed the same way via the
portlet request object. This provides a mechanism to pass default values or to
pass parameters not displayed in the form. Example 4-23 displays the code for
adding a parameter. Be aware that parameters set via the PortletURI are not
passed in the traditional HTML syntax.

Note: The DefaultPortletAction class and the PortletAction interfaces are
deprecated and you should use the Simple Action string instead, as illustrated in
Example 4-23.

Example 4-23 Add URI

public void doView(PortletRequest request, PortletResponse response) throws

Note: Deprecated classes and interfaces are still supported in the current
release but are not recommended for use because they might not be
supported in future releases.

 Chapter 4. IBM Portlet API 143

PortletException, IOException {
PortletURI viewURI = response.createReturnURI();
viewURI.addAction("save");
viewURI.addParameter("Param1", "Param1Value");
request.setAttribute("viewURI", viewURI.toString());
getPortletConfig().getContext().include("/jsp/View.jsp", request,

response);
}

4.9.4 ModeModifier
When a PortletURI is created, it points to a portlet in particular mode. When that
PortletURI is executed and it contains a PortletAction, it will notify the appropriate
listener. If, in the actionPerformed method, you need to redirect the user to a
mode other the one specified, the request.setModeModifier method can be used
to redirect the user to another mode. The ModeModifier can only be set during
event processing. Calling this method in doView or doEdit, etc., will have no
effect. There are three possible modes the user can be redirected to:

� REQUESTED

This ModeModifier will navigate the user to whatever mode was originally set
by the PortletURI. Essentially, this is the default. If the ModeModifier is
changed, it cannot be changed back to REQUESTED.

� CURRENT

This ModeModifier will keep the user in the current mode. For example, if the
user tries to save some information and the actionPerformed determines it is
incorrect, setting ModeModifier to CURRENT will return them to the Edit
screen.

� PREVIOUS

This ModeModifier will return the user to the mode the user was in prior to the
CURRENT regardless of previous ModeModification. Therefore, setting
ModeModifier to CURRENT in one event process will not make that mode
PREVIOUS in the next event process.

144 IBM Rational Application Developer V6 and Portal Tools

4.10 Attribute storage summary
There are many objects in the portal environment for storing attributes. In order
to help you choose the right object for the right situation, refer to the following
chart.

Object Scope Attribute
Type

Programmatic
Access

Best Practice

PortletRequest Limited to request
between the portal
server and the portlet

object getAttribute()
setAttribute()
removeAttribute()

Use a short term bucket
for communication
between portlet and JSP
(ex: Portlet URI)

PortletSession Limited to
subsequent requests
by the same user on
the same concrete
portlet instance

object getAttribute()
setAttribute()
removeAttribute()

Use as an open line of
communication between
requests. (for example
Shopping cart)

PortletSettings Shared by all
instances of the
concrete portlet.
Editable only in
configure mode.

String getAttribute()
setAttribute()
removeAttribute()

Use only for
configuration
information that is
applicable to all
instances (for example
user ID)

PortletApplication
Settings

Shared by all
concrete portlet
instances deployed
in the same concrete
application.Editable
only in configure
mode.

String getAttribute()
setAttribute()
removeAttribute()

Use only for
configuration
information that is
applicable to all
concrete portlet
instances in the same
application (for example
server name)

PortletData Persistently available
to a single concrete
portlet instance.

object
(serializa
ble)

getAttribute()
setAttribute()
removeAttribute()

Use for information that
needs life beyond a
session (for example
portlet preferences)

PortletURI One request through
to the
actionPerformed
method

String addParameter() Use to provide default
parameter values in
case the user does not
enter a value in a form

 Chapter 4. IBM Portlet API 145

4.11 Portlet JSPs
When designing your portlet applications, you will generally use the MVC Model
2. For the development of dynamic portlet JSPs, a rich tag library is provided with
WebSphere Portal Server. There are several custom tag libraries supplied with
WebSphere Portal Server depending on the installation type and what additional
components are installed.

� portlet.tld

This tag library contains the tags used in day-to-day JSP development when
working with JSPs.

� c2a.tld

This tag library contains the tags to be used in cooperative portlets using the
declarative approach.

PortletMessage Only available to
registered message
listeners in the event
processing phase

Object Since each
custom portlet
message can be
implemented
uniquely, access is
not pre-defined

Use to adequately
capture all the
information necessary
to complete the
message. There is no
predictably regarding
order of execution for
listeners so do depend
on this.

PortletConfig Same config object is
available to every
concrete portlet
instance derived
from the same
abstract portlet

String getInitParameter() This vale can only be set
during development or
deployment. Since its
scope is very broad, use
carefully.

DefaultPortlet
Action

Available as long as
the PortletURI it is
attached to is
available.

object setParameter()
getParameters()

It is not recommended
that you store objects
such as
PortletResponse etc.
Use sparingly.

PortletAdapter Available to all
instances of the
concrete portlet.
Value is not unique
between users.

object getVariable()
setVariable()

Use this object to store
attributes that are not
unique to any one user,
and can be lost if the
server shuts down

Object Scope Attribute
Type

Programmatic
Access

Best Practice

146 IBM Rational Application Developer V6 and Portal Tools

� extend.tld

This tag library is only supplied if the installation type is extend or experience.
These tags are not available with the enable installation.

� content.tld

This tag is used in JSPs working with the PortletContent Organizer.

� menu.tld

This tag library provides access to Collaborative functionality in the themes.

� person.tld

This tag library provides access to Collaborative functionality inside your
portlets.

4.11.1 Portlet tag library
The portlet.tld is located in the <WP-ROOT>app\wps.ear\wps.war\WEB-INF\tld
directory. Example 4-24 illustrates referencing the tag library at the beginning of
a JSP.

Example 4-24 Referencing a tag library

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

This section will cover the tags available in the portlet.tld tag library and some of
their most common uses.

� init <portletAPI:init />

This tag must be called if you wish to access the PortletRequest,
PortletResponse or PortletConfig objects in the JSP. This tag simply
initializes three variables for you: portletRequest, portletResponse,
and portletConfig. Attempting to access these variables without calling
the init tag will cause the page compilation of the JSP to fail. However, you
still have full access to the javax.servlet.http.HttpServlet objects via the
normal variable names.

� createReturnURI <portletAPI:ecreateReturnURI />

This tag returns a String pointing to the portlet in the previous mode. The
resulting URI could be used to create a Back button or to specify and an
action on a FORM. If you wish to add a PortletAction to the URI object in
order to notify any applicable listeners, you can include the URIAction tag in
the body of the createReturnURI tags. Example 4-25 on page 148 illustrates
this approach.

 Chapter 4. IBM Portlet API 147

Example 4-25 Adding a PortletAction to the PortletURI

<portletAPI:createReturnURI >
<portletAPI:URIAction name="submit" />

</portletAPI:createReturnURI>

You can also add a parameter to the PortletURI object using a similar
approach to the one used with the PortletAction.

Example 4-26 Adding a Parameter to the PortletURI and the resulting URI

<portletAPI:createReturnURI >
<portletAPI:URIParameter name="fname" value="john" />

</portletAPI:createReturnURI>

Result:

/wps/myportal/.cmd/ActionDispatcher/_pagr/104/_pa.104/113/.md/-/.piid/188/.ciid
/223/.reqid/-1/PC_188_fname/john#223

� createURI <portletAPI:createURI />

This tag returns a String pointing to the portlet in the current mode. As with
the createReturnURI tag, PortletActions and parameters can be added to the
resulting URI. Though the documentation indicates that the state can be
controlled by passing a string attribute, this functionality is not implemented.

� URIAction <portletAPI:URIAction name=”sting”/>

This tag is only used when creating a PortletURI object. Example 4-25
illustrates the use of this tag. This tag requires that a name attribute be
specified.

� URIParameter <portletAPI:URIParamter name=“string” value=“string”/>

This tag is only used when creating a PortletURI object. Example 4-26
illustrates the use of this tag. This tag requires that name and value attributes
be specified.

� dataAttribute <portletAPI:dataAttribute name=“string” />

This tag will retrieve from the PortletData object the attribute specified by the
name attribute. If the attribute does not exist in the PortletData, nothing is
returned. When the dataAttribute tag is used in the body of the a dataLoop
tag, it does need to specify the name of the attribute.

Example 4-27 Retrieving a single PortletData attribute

Welcome <portletAPI:dataAttribute name = "pref.nick_name" /> to your page.

148 IBM Rational Application Developer V6 and Portal Tools

� dataLoop <portletAPI:dataLoop pattern="string">

 </portletAPI:dataLoop>

This tag provides a loop through all the attributes stored in the PortletData
object. Though by default, it will iterate through all attributes, it is possible to
specify a pattern to limit the attributes it locates. Omitting the pattern attribute
will return all attributes. Example 4-28 illustrates the usage of this tag. Notice
the loop simply iterates through the collection of attributes; it does not retrieve
the value. To retrieve a PortletData value, use the dataAttribute tag.

Example 4-28 Looping through the attributes in the PortletData object

<portletAPI:dataLoop pattern="pref.*">
<portletAPI:dataAttribute/>

</portletAPI:dataLoop>

Though using an asterisk in the pattern is helpful for readability and reliability,
the pattern attribute in fact does not need to use an asterisk at all. The tag will
attempt to find the value specified by the pattern attribute anywhere in the
name of the attribute. For example, if an attribute is stored in the PortletData
with the name “pref.greeting”, the code in Example 4-29 would successfully
locate the attribute. However, it is important to note that the pattern is
case-sensitive. Therefore, the pattern “name” would not locate the attribute
“Name”.

Example 4-29 Using the Pattern attribute

<portletAPI:dataLoop pattern="eet">

� settingsAttribute <portletAPI:settingAttribute name=”string” />

This tag provides access to the parameters set in the <config-param> blocks
in the portlet.xml’s concrete portlet section. When the dataAttribute tag is
used in the body of the settingsLoop tag, it does need to specify the name of
the attribute.

Example 4-30 Accessing the PortletSettings attributes

For support contact <portletAPI:settingsAttribute name = "author" />

� settingsLoop <portletAPI:settingsLoop pattern="string">

 </portletAPI:settingsLoop>

If several configuration parameters have been set in the portlet.xml, they can
all be retrieved with this tag. The pattern tag is optional.

 Chapter 4. IBM Portlet API 149

Example 4-31 Looping through the PortletSettings attributes

<portletAPI:settingsLoop pattern="info.">
 <portletAPI:settingsAttribute/>

</portletAPI:settingsLoop>

If you do not include the pattern attribute or enter an empty string, it will return
all attributes in the PortletSettings object. As with the dataLoop tag, the
settingsLoop tag will attempt to locate the specified pattern anywhere in the
attribute’s name. For example, if a <config-param> were set in the portlet.xml
with a name of “info.author”, the code in Example 4-32 would successfully
retrieve the attribute. However, it is important to note that the pattern is
case-sensitive. Therefore the pattern “author” would not locate the attribute
“Author”.

Example 4-32 Using pattern to locate an attribute

<portletAPI:settingsLoop pattern="thor">

� encodeNameSpace <portletAPI:encodeNamespace value="string" />

When including JavaScript functions or other variables that will be returned to
the aggregated portal page, it is important to ensure the values are unique in
order to avoid name collisions. This tag prefixes the namespace of the portlet
to the string it is passed. This tag should be used when creating the variable
and when accessing it. Example 4-33 illustrates the usage and result of this
tag.

Example 4-33 Encoding the name space

<portletAPI:encodeNamespace value="function1" />

Result:

PC_189_function1

� encodeURI

This tag will prefix the full URL of the portal to the passed path value. For
example, if the image yourco.jpg is in the images folder directly under the root
of the deployed portlet application, the code shown in Example 4-34 on
page 151 would successfully locate the image and create a fully qualified
URL.

150 IBM Rational Application Developer V6 and Portal Tools

Example 4-34 Creating a fully qualified URL

<img src= <portletAPI:encodeURI path="/images/yourco.jpg" /> >

Result:

http://ka0kkhc.sg246897.com/wps/WPS_PA_206/images/yourco.jpg

� if <portletAPI:if attribute= "string">

</portletAPI:if>

This tag allows you test some of the more common conditions a portlet may
face. When the attribute evaluates to true, the body of the if tag is executed.
There are several attributes you can evaluate.

– mode
– state
– locale
– mime type
– markup
– capabilities

Example 4-35 Executing If tags individually

<portletAPI:if state = "Normal"> state is normal </portletAPI:if>
<portletAPI:if state = "Maximized"> state is maximized </portletAPI:if>
<portletAPI:if locale = "en"> Locale is english </portletAPI:if>
<portletAPI:if markup = "html"> Markup is html </portletAPI:if><
<portletAPI:if mimetype = "text/html"> mime type is text html
</portletAPI:if>

<portletAPI:if mode="view"> Mode is View </portletAPI:if >

You can evaluate more than one condition on a single attribute. In this case, if
any of the conditions are true, that attribute will evaluate to true.
Example 4-36 illustrates this.

Example 4-36 Evaluating multiple conditions on a single attribute

<portletAPI:if state="Normal, Maximized" >

You may also evaluate multiple attributes in the same tag as illustrated in
Example 4-37. All conditions must evaluate to true for the if tag to return true.

Example 4-37 Evaluating multiple attributes

<portletAPI:if state="Normal" mode="view" locale="en">
Displaying the normal English view

 Chapter 4. IBM Portlet API 151

</portletAPI:if>

� log <portletAPI:log text="string" level="string"/>

This tag will write the value passed to the log file located in the
<WP-ROOT>\log directory. The text attribute contains the string you wish to
write to the log file. The level attribute indicates which level this message
should be written under. This tag does not evaluate whether the requested
level is enabled before it attempts to write the message. For more information
about writing to the log, see 4.6.13, “PortletLog object” on page 131.
Example 4-38 illustrates the usage of this tag. The valid values for the level
attribute are error, warn, debug and info. If you omit the level tag, the default
level is error.

Example 4-38 Using the log tag

<portletAPI:log text="There was an error" level="warn"/>

� text <portletAPI:text key="sting" bundle="string">

This tag was used to provide access to key-value pairs in resource bundles.

� bidi <porteltAPI:bidi locale=”string” dir=”ltr | rtl” />

This tag is used to support text for bidirectional languages. Bidirectional
languages are read from right to left or from bottom to top. The attributes are
not required. For example, if the request indicates that the client is Hebrew or
Arabic, it will execute the tag contents if dir is set to rtl.

4.11.2 Portlet events and messaging
Many portals today display static content in independent windows. The ability for
portlets to interact within a portal is key to giving a portal a “live” feeling. In “live”
portals, quite often the user is presented with one portlet on a page that presents
a choice of data, a list of stocks for example, and choosing from the list causes
another portlet to be updated with the details of the choice. This type of list-detail
processing via multiple portlets is done with portlet events and messaging. This
same type of process could be accomplished using a single portlet but consider
the example of a stock list, stock details and news associated with the stock.
Giving the user this function via three portlets allows the user to customize the
portal experience by choosing which information about the chosen stock is
displayed by simply adding the associated portlet to the page.

Note: The text tag has been deprecated in this release. You should now
use the fmt tag from the JSP Standard Tag Library (JSTL).

152 IBM Rational Application Developer V6 and Portal Tools

In portlet messaging, one portlet typically detects a condition and formats a
message as a result of that condition, then sends the message to the receiver.
The receiving portlet receives the message from the event handler and
processes the message as you would expect. Portlets can both send and receive
messages.

Portlets communicate using portlet actions and portlet messages. For example,
an account portlet creates a portlet action and encodes it into the URL that is
rendered for displaying transactions. When the link is clicked, the action listener
is called, which then sends a portlet message to send the necessary data to the
transaction detail portlet.

There are some basic rules to portlet messaging:

� Portlets in different applications can only communicate through default portlet
message objects. Default portlet message objects can only carry strings.

� In order for portlets to communicate through custom messages, they must be
part of the same portlet application. WebSphere Portal uses a unique class
loader for each portlet application to provide security between applications.
The message is typically a custom Java object unique to the application.
Since messaging portlets must share this message object, they must share
the same class loader and therefore they must be part of the same portlet
application.

� For performance reasons, portlets that communicate through messaging
must reside on the same page. Since only one page is displayed at a time,
there is little need to send messages to portlets not currently displayed.

Portlet events contain information about an event to which a portlet might need to
respond. For example, when a user clicks a link or button, this generates an
action event. To receive notification of the event, the portlet must have the
appropriate event listener implemented within the portlet class.

Action events: generated when an HTTP request is received by the portlet
container that is associated with an action, such as when the user clicks a link.

Message events: generated when another portlet within the portlet application
sends a message.

Window events: generated when the user changes the state of the portlet
window.

The portlet container delivers all events to the respective event listeners (and
therefore the portlets) before generating any content to be returned to the portal
page. Should a listener, while processing the event, find that another event
needs to be generated, that event will be queued by the portlet container and
delivered at a time point determined by the portlet container. It is only guaranteed

 Chapter 4. IBM Portlet API 153

that it will be delivered and that this will happen before the content generation
phase. There is no guarantee for event ordering.

Once the content generation phase has started, no further events will be
delivered. For example, messages cannot be sent from within the service,
doView or other content generation methods. Attempts to send a message
during the content generation phase will result in an org.apache.jetspeed.
portlet.AccessDeniedException.

The event listener is implemented directly in the portlet class. The listener can
access the PortletRequest.

It is important to understand the underlying event handling and message
processing to ensure delivery of all send messages. The portal event handling
and message processing sees four steps executed in the following order.

1. Processing all action events

The user makes a request of the portal, the portal receives the request and
decodes the action URI sent by the client and propagates an action event to
the appropriate portlet. The receiving portlet’s action listener is called to
process an action event. An appropriate time to send messages to other
portlets is during the processing of the action event.

2. Processing all message events

If a message is sent to a portlet, the portlet’s message listener is called to
process the message. Since portlets can send multiple messages and send
messages as a result of receiving a message, this process continues until
there are no more messaging events pending. Cyclical messaging is
prevented by the WebSphere Portal architecture.

3. Processing all window events

Sizing operations such as maximize, minimize and restore, along with the
portlet’s ability to request a specific size, causes multiple window events to be
sent to all portlets affected by the sizing activity. This processing of window
events continues until there are no more window events pending.

4. Portlet rendering process

Upon completing the event processing in the order specified above, the portal
aggregator begins calling each container on the page being displayed,
causing its contents to be rendered. When aggregation is complete, the page
is returned to the user.

154 IBM Rational Application Developer V6 and Portal Tools

4.12 Portlet deployment
When a portlet is installed into the portal server, the deployment information is
contained in two deployment descriptors. The Web.xml deployment descriptor is
used by the WebSphere Application Server to register the portlets being
deployed. The application server is not aware of the portlet hierarchy and is
simply installing a Web application containing servlets. The portlet.xml
deployment descriptor is used by the portal server to retrieve parameters and to
set the initial configuration.

When the portlet application is deployed, it is deployed as a Web archive (war),
not an enterprise application (ear). When the war file is deployed, the portal
server actually creates an associated ear folder in the
WebSphere\AppServer\installedApps directory. The new ear folder will contain
the original name of the war file with _WPS_PA_191.ear appended to the end of
the name of the war file. The last number indicates the order in which the portlet
application was installed.

The war file that was deployed is placed into the ear file with a META-INF folder.
This folder contains the application.xml deployment descriptor, the
ibm-application-ext.xmi and the Manifest.MF files. All these files are generated
by the portal server when the application is installed.

Abstract and concrete portlet applications
The portlet.xml deployment descriptor is used by the portal server to identify the
abstract and concrete portlet applications you wish to deploy. An abstract portlet
application contains one or more abstract portlets. A concrete portlet application
contains one or more concrete portlets. The abstract application is used as a
foundation for concrete applications. The combination of an abstract application
and configuration parameters creates a concrete application. Each portlet.xml
may only define a single abstract portlet application. However, any number of
concrete applications may be defined based on the single abstract application.

The concrete applications are the applications presented in the portal server
administration. They are the actual applications available to the users. This

Important: It is important to note that events are not processed in the last step
of the process, page rendering. If a message is sent by a portlet during
rendering, the message will not be delivered or processed. This is a result of
the fact that the event queue is help in the portlet request and at the time of
rendering, the portlet request is no longer available. Therefore, if portlet
interaction is desired, portlet messages must be sent during the first three
steps of the event and aggregation process.

 Chapter 4. IBM Portlet API 155

allows the same application to be deployed repeatedly with different
parameterization, effectively creating multiple applications.

Figure 4-9 Abstract and Concrete relationship in a single portlet.xml

Certain configuration parameters are set at the abstract level while others are set
at the concrete level. As expected, parameters set at the abstract level affect
each concrete application. The parameters and configuration information unique
to each concrete application are represented in a PortletApplicationSettings
object. Parameter and configuration information unique to each portlet are
represented in the PortletSettings object. When the portlet is actually placed on a
page, it is parameterized by a PortletData object.

When a user logs on and accesses a portlet, it is associated with a session
object. This sequence is represented in Figure 4-10 on page 157.

Abstract Portlet
Application Concrete Portlet Application 1

Concrete Portlet Application 2

Concrete
Portlet 1 Concrete

Portlet 2

Concrete
Portlet 2 Concrete

Portlet 3

Abstract
Portlet 1

Abstract
Portlet 3

Abstract
Portlet 2

156 IBM Rational Application Developer V6 and Portal Tools

Figure 4-10 Portlet parameterization

4.12.1 web.xml
The web.xml defines the Web application being deployed. This section will detail
the required elements of the web.xml when deploying a portlet application. For
details on all of the elements of the web.xml deployment descriptor, refer to
http://java.sun.com/j2ee/tutorial. Example 4-39 provides an example
web.xml document. To keep this section simple, the deployment descriptors will
define only a single portlet in the application.

Example 4-39 Simplest web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app id="WebApp">

<display-name>HelloWorld</display-name>
<context-param>

<param-name>webmaster</param-name>
<param-value>the webmaster</param-value>

</context-param>
<servlet id="Servlet_1">

<servlet-name>HelloWorldPortlet</servlet-name>
<servlet-class>

com.ibm.itso.ral.portlets.HelloWorldPortlet
</servlet-class>
<init-param>

<param-name> init_param1 </param-name>

User Portlet
Instance

User Portlet
Instance

PortletSettings

PortletSettings

Portle
tData PortletData

PortletSession

PortletSession

Portlet

Concrete
Portlet

Concrete
Portlet

Concrete
Portlet

Instance

Concrete
Portlet

Instance

 Chapter 4. IBM Portlet API 157

http://java.sun.com/j2ee/tutorial

<param-value> An initialization parameter </param-value>
</init-param>

</servlet>
<servlet-mapping>

<servlet-name>HelloWorldPortlet</servlet-name>
<url-pattern>/HelloWorldPortlet/*</url-pattern>

</servlet-mapping>
</web-app>

� DOCTYPE required
This will be the same for each and every web.xml deployed. This tag defines
the DTD that is to be used when this document is parsed. Only one is
allowed.

� web-app required
This is the top-level tag wrapping the entity of the web.xml. Only one is
allowed.

– id required
This attribute identifies the web-app in the application server but is not
seen in the portal environment.

� display-name required
Though this name is never seen in the portal environment, it will be seen in
the WebSphere Administrator’s console Event Message screen when the
Web module is loaded. Only one is allowed.

� context-param optional
This element provides an opportunity to set context parameters that will be
shared by all portlets deployed via this Web application. Every portlet
subsequently based on this web.xml will share access to the context
parameters via the PortletContext object. There is no limit on the number of
context parameters that may be set. These parameters cannot be changed at
runtime by the administrator. For more information about parameters see
“Parameter summary” on page 168.

� param-name required
This indicates the name of the parameter. This name is used in code to
retrieve the parameter value. For a summary on the various parameters set in
the deployment descriptors, see “Parameter summary” on page 168.

� param-value required
The String value held by the parameter.

158 IBM Rational Application Developer V6 and Portal Tools

� servlet required
This tag wraps the definition of the servlet class. There must be one or more
of these tags.

– id required
This provides an identifier for the defined servlet. This id will be used in the
portlet.xml to refer to the defined class. The id must be unique within the
Web application only.

� servlet-name required
This name is not used by the portlet environment.

� servlet-class required
The full class name must be provided. This class must be accessible either in
the deployed war, via the application server library or through the classpath.

� init-param optional
This element provides an opportunity to set parameters that will be shared by
all portlets based on this servlet. These parameters are available in code
through the PortletConfig object. There is no limit on the number of init
parameters that may be set. These parameters cannot be changed at runtime
by the administrator. For a summary on the various parameters set in the
deployment descriptors, see “Parameter summary” on page 168.

� param-name required
Indicates the name of the parameter. This name is used in code to retrieve
the parameter value.

� param-value required
The value held by the parameter.

� servlet-mapping required
Though this element is not used by the portal environment it is a required
element of the web-app element and therefore must be included.

� servlet-name required
This is required and must be the same as the servlet name defined in the
servlet element.

� url-pattern required
This tag is required and may not be empty. The URL pattern is not used in the
portal environment.

There are numerous other elements in traditional web.xml but they are not
required in the portal environment.

 Chapter 4. IBM Portlet API 159

4.12.2 portlet.xml
The portlet.xml elements are defined by the portlet_1.1.dtd which can be found in
the WebSphere\PortalServer\app\wps.ear\wps.war\dtd directory. Figure 4-40
displays a simple portlet.xml.

Example 4-40 portlet.xml deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN"
"portlet_1.1.dtd">
<portlet-app-def>
 <portlet-app uid="DCE:d798f9c6c:1" major-version="2" minor-version="1">
 <portlet-app-name>HelloWorld application</portlet-app-name>
 <portlet id="HWPortlet_1" href="WEB-INF/web.xml#Servlet_1"

major-version="3" minor-version="2">
 <portlet-name>HelloWorld portlet</portlet-name>
 <cache>
 <expires>30</expires>
 <shared>yes</shared>
 </cache>
 <allows>
 <maximized/>
 <minimized/>
 </allows>
 <supports>
 <markup name="html">
 <view output="fragment"/>
 <configure/>
 <edit/>
 <help output="document"/>
 </markup>
 <markup name="wml">
 <view/>
 </markup>
 </supports>
 </portlet>
 </portlet-app>
 <concrete-portlet-app uid="DCE:d798f9c6c:1.1">
 <portlet-app-name>HelloWorld application</portlet-app-name>
 <context-param>
 <param-name>context_param1</param-name>
 <param-value>A context parameter</param-value>
 </context-param>
 <concrete-portlet href="#HWPortlet_1">
 <portlet-name>HelloWorld portlet</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en">
 <title>HelloWorld</title>

160 IBM Rational Application Developer V6 and Portal Tools

 <title-short>Hello</title-short>
 <description>A simple hello world portlet.</description>
 <keywords>Hello World simple</keywords>
 </language>
 <language locale="it">
 <title>ciao mondo</title>
 <title-short>ciao</title-short>
 <description>Un portlet semplice del mondo di ciao.

 </description>
 <keywords>Ciao mondo semplice.</keywords>
 </language>
 <language locale="es">
 <title>hola mundo</title>
 </language>
 <config-param>
 <param-name>config_param1</param-name>
 <param-value>A configuration parameter</param-value>
 </config-param>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>

� DOCTYPE required
This will be the same for each and every portlet.xml deployed. This tag
defines the DTD that is to be used when this document is parsed. Only one is
allowed.

� portlet-app-def required
This is the top-level tag which encapsulates all abstract and concrete portlet
application definitions. It is required and not more than one is allowed.

� portlet-app required
This tag is used to define the abstract portlet application. This abstract
application will be used as a basis for the concrete portlet applications defined
later in the descriptor. Only one portlet-app tag is allowed per portlet.xml and
only one portlet.xml is allowed per war file. Therefore, each war file may only
deploy a single abstract portlet application.

– uid required
This ID uniquely identifies this abstract application in the portal server.
This ID must unique throughout the entire portal environment. For
guidelines on ensuring the ID is unique, refer to “UID guidelines” on
page 171. This ID will be used if the portlet application is updated. Once
the ID is determined, it should not be changed between iterations. Doing
so will cause updates to fail. The ID may contain any combination of
letters and characters to maximum length of 255.

 Chapter 4. IBM Portlet API 161

– major-version optional
An optional tag only used by administrators to track releases; it is not used
in the portal. It must be a number and only one is allowed. If this attribute
is not supplied, the major-version will always be 0. If this attribute is
supplied, the minor-version must also be included or the default value of 0
will be assumed.

– minor-version optional
An optional tag only used by the administrators to track releases and not
used in the portal. Must be a number and only one is allowed. If this
attribute is not supplied, the minor version will be 0. If this attribute is
supplied, the major-version must also be included or the default value of 0
will be assumed.

� portlet-app-name required
Only one is allowed. Since only concrete portlet applications are visible in the
portal, this name is visible in the portal environment when the full information
for the portal application is requested on the Manage Portlet Applications
portlet. This name need not be unique.

� portlet required
One or more of these tags is required. This tag defines the abstract portlets
contained in the abstract portlet application. Each portlet tag maps to a single
servlet defined in the web.xml. There is a one-to-one relationship between the
servlets defined in the web.xml and the abstract portlets defined in the
portlet.xml. You may not map two abstract portlets to the same servlet.
Therefore, if there are two servlets defined in the web.xml, there will be two
abstract portlets defined in the portlet.xml

– id required
This ID must be unique within the abstract portlet application only. This ID
will be used by the concrete portlets to create a link to the abstract
definition. It may be any combination of letters and numbers to a maximum
of 64 characters.

– href required
This tag creates the link between the abstract portlet and the servlet
defined in the web.xml. The link is formatted as in Example 4-41 where
Servlet_1 is the ID defined in the <servlet id> tag of the web.xml.

Example 4-41 href syntax

href="WEB-INF/web.xml#Servlet_1"

162 IBM Rational Application Developer V6 and Portal Tools

– major-version optional
An optional tag only used by the administrators to track releases. Not used
in the portal. Must be a number and only one is allowed. If this attribute is
supplied, the minor-version must also be included or the default value of 0
will be assumed.

– minor-version optional
An optional tag only used by the administrators to track releases. Not used
in the portal. Must be a number and only one is allowed. If this attribute is
supplied, the major-version must also be included or the default value of 0
will be assumed.

� portlet-name required
Defines the name of the abstract portlet. This name will only be seen in the
show info screen of the Manage Portlet Application portlet, not during normal
portlet administration or execution. Must be unique within the abstract portlet
application only.

� cache optional
This tag indicates the type and level of caching this portlet will perform. If this
tag is included, it must contain the expires and shared elements. If the cache
element is not included, the default values for expires and shared are 0 and
no respectively.

� expires required
Indicates in seconds the when the cached content should be considered
expired.

– 0 indicates the content immediately expires and should always be
refreshed

– -1 indicates the content does not expire.The content will not be refreshed
once the portlet is initialized.

– Any other value measures the cache in seconds.

� shared required
Indicates if the content is to shared among all users or if a cache must be
maintained for each user. Use the NO option carefully as a large cache will
result. Valid values are yes or no.

� allows required
This tag indicates the portlet states that are supported by this portlet. The
normal state is assumed and may not be unsupported. The other valid values
are:

 Chapter 4. IBM Portlet API 163

– maximized optional
When selected, the portlet will take ownership of the portal screen and
other portlets will not be able to return content for inclusion in the portal
page. Each portlet on the page will state have the opportunity to execute
any listeners it implements, such as PortletPageListener. However, the
service method, and by extension doView method of the other portlets will
not be executed.

– minimized optional
When selected, the portlet will be displayed as a title bar only. Any
listeners implemented by the portlet will be executed but the portlet’s
service, and by extension doView method will not.

– detached, moving, resizing, closed optional
Though these are valid values according to the DTD, they have no
corresponding support in the portal server. As such, including or omitting
them will have no effect at this point.

� supports required
This element indicate which markup languages this portlet can render its
content. It is required and at least one markup may be supported.

� markup required
This tag provides a definition for a single markup that this portlet will support.
Each markup that is to be supported is defined in a markup element.

– name required
This attribute identifies the name of the markup defined in this element.
Valid strings are html, wml, chtml. If custom markups have been defined,
they too would be valid.

� view required
Indicates that at a minimum, this portlet supports View mode. This is required
for all markup types.

– output optional
This attribute indicates the type of output the portal server should expect
from this portlet. Valid values are document and fragment

• Document: Not used in V4.1.2

• Fragment: All HTML portlets should use this value.

� configure optional
Indicates this portlet supports the Configure mode. As with the View mode, it
may specify as output fragment or document. This tag has no effect on
non-html markup types. The developer is required to implement configure

164 IBM Rational Application Developer V6 and Portal Tools

support by including a doConfigure method in the portlet. This tag simply
instructs the portal server to include the appropriate link on the portlet title bar.

� edit optional
Indicates this portlet supports the Edit mode. As with the View mode, it may
specify as output fragment or document. This tag has no effect on non-html
markup types. The developer is required to implement edit support by
including a doEdit method in the portlet. This tag simply instructs the portal
server to include the appropriate link on the portlet title bar.

� help optional
Indicates this portlet supports the Help mode. As with the View mode, it may
specify as output fragment or document. This tag has no effect on non-html
markup types. The developer is required to implement help support by
including a doHelp method in the portlet. This tag simply instructs the portal
server to include the appropriate link on the portlet title bar.

� concrete-portlet-app required
This element defines the concrete portlet application to be deployed into the
portal server. One or more of these elements are required. This concrete
application is based upon the abstract portlet application defined earlier in the
portlet.xml. A concrete portlet application is not required to contain all of the
portlets defined in the abstract application. However, it may not define more
portlets than the abstract application. Each concrete portlet contained in the
concrete application maps to one and only one abstract portlet. An abstract
portlet may not be mapped twice in the same concrete application.

– uid required
This uid must be unique throughout the entire portal environment. Refer to
4.12.5, “UID guidelines” on page 171 for more information about ensuring
UIDs are unique. This UID will be used by the portal server when the
portlet is updated or deleted. If the ID changes between iterations, the
original concrete application will not be update. Instead, a new concrete
application will be installed, resulting in multiple concrete applications.
Generally, once the ID has been determined, it should not be changed.
The ID may contain any combination of letters and characters to a
maximum length of 255.

� portlet-app-name required
This is the application name that will be used in the portal server. When the
war file is deployed, each of the concrete applications will be listed. This is the
name that will appear in that list. This name need not be unique in the
portlet.xml or the portal server. However, deploying more than one concrete
portlet application with the same name may cause some administrative
confusion. If two or more applications are deployed with the exact same
name, only one will be initially active. The other application must be manually

 Chapter 4. IBM Portlet API 165

activated. In practice, when there is a one-to-one relationship between the
abstract and concrete portlet applications, the application names are often the
same. This name may contain any combination of letters and numbers to a
maximum length of 255 and only one is allowed per concrete application.

� context-param optional
This element provides an opportunity to set parameters that will be shared by
all concrete portlets defined in the concrete portlet application. These
parameters are available in code through the PortletApplicationSettings
object. There is no limit on the number of context parameters that may be set.
Be aware that these parameters may be changed at runtime by the
administrator via the Manage Portlet Applications portlet. For a summary on
the various parameters set in the deployment descriptors, see 4.12.3,
“Parameter summary” on page 168.

� param-name required
Indicates the name of the parameter. This name will be seen by the
administrator if they decide to work with these parameters at runtime. This is
also the name used in code to retrieve the parameter value. The name has a
maximum length of 255.

� param-value required
The value intended to be held by the parameter. This value can be changed
at runtime by the administrator. The maximum length of the parameter value
is 1048576.

� concrete-portlet required
This element wraps the definition of the concrete portlet being deployed in
this concrete application. Any number of concrete portlets may be deployed,
up to the number of abstract portlets defined in the abstract portlet
application.

– href required
This attribute creates a link between the concrete portlet and the abstract
portlet. The syntax dictates that the portlet id defined in the abstract
application be prefixed with a # symbol as illustrated in Example 4-42.

Example 4-42 Concrete portlet href

<concrete-portlet href="#HWPortlet_1">

� portlet-name required
This tag indicates the administrative name of the portlet. This name is not the
title of the portlet and will not be seen by the average end user. This name
need not be unique in the portlet.xml or the portal server. However, take care

166 IBM Rational Application Developer V6 and Portal Tools

to properly name your portlets to prevent confusion. If two or more portlets
are deployed in the same portlet.xml with the exact same name, only one will
be initially active. The name may be any combination of characters to a
maximum length of 255.

� default-locale required
This element indicates which language is the default language for this
concrete portlet alone. This setting will not override the user’s preferred locale
or locale settings provided by the client browser. If the client’s locale cannot
be determined, this value is used. Also, if the portlet does not support the
locale requested by the user, this default locale is used instead. The value
must be a recognized country code including, if appropriate, any variants.
This value cannot be changed at runtime by the administrator.

� language required
At least one language block must be included. Though not required, it is a
best practice to ensure that at a minimum, the default locale is implemented
in a language block. In practice, a language block should be provided for
each language this portlet intends to support. ideally this includes all ten
group 1 languages. Only the languages defined in the portlet.xml will be
available. Though the strings can be changed, there is no mechanism to add
new languages at runtime.

– locale required
This attribute indicates the locale being defined by this language block.
The value must a recognized country code, including any applicable
variants.

� title required
This tag specifies the language specific title of this portlet. This title will be
seen in the title bar of the portlet at runtime.This value may be changed at
runtime by the administrator. The maximum length of the title is 255
characters.

� title-short optional
This tag specifies the language specific short title of the portlet. The
maximum length of the short title is 128.

� description optional
This description is used in several places in the portal. For example, in the
Edit Layout and Content portlet, the description will display in a hover box
over the portlet. The maximum length for the description is 1024
characters.

 Chapter 4. IBM Portlet API 167

� keywords optional
This tag specifies the language specific keywords of the portlet. The
maximum length of the keywords is 1024 characters.

� config-param optional
This element allows parameters to be passed to the concrete portlet.
Unlike context and servlet-config parameters, these parameters are not
shared between portlets. Any number of portlet-config parameters may be
supplied. The values can be changed at runtime by the administrator via
the Manage Portlets portlet. These parameters are accessed in code via
the PortletSettings object. For a summary on the various parameters set in
the deployment descriptors, see “Parameter summary” on page 168.

� param-name required
Indicates the name of the parameter. This name will be seen by the
administrator if they decide to work with these parameters. This is also the
name used in code to retrieve the parameter value. The name has a
maximum length of 255.

� param-value required
The value intended to be held by the parameter. This value can be
changed at runtime by the administrator. The maximum length of the
parameter value is 1048576.

4.12.3 Parameter summary
There are four types of parameters that can be specified in the deployment
descriptors.

Parameter
Name

Location Visibility Programmatic
Access

Runtime
Accessibility

Context-
Param

web.xml - web
app definition

Every portlet deployed
in the .war

PortletContext.get
InitParameter()

Read-only

Init-Param web.xml -
servlet
definition

Each portlet based on
the particular servlet

PortletConfig.getI
nitParameter()
Portlet.getInitPara
meter()

Read-only

Context-
Param

portlet.xml
concrete app
definition

All portlets defined in a
single concrete app

PortletApplication
Settings.
getAttribute()

Read/Write

168 IBM Rational Application Developer V6 and Portal Tools

Config-
Param

portlet-xml
concrete
portlet
definition

Individual Concrete
portlets

PortletSettings.get
Attribute()

Read/Write

Parameter
Name

Location Visibility Programmatic
Access

Runtime
Accessibility

 Chapter 4. IBM Portlet API 169

4.12.4 Descriptors relationship (web.xml and portlet.xml)
The relationship between servlets, abstract portlets and concrete portlets is best
described in Figure 4-11. Note that some required elements have been omitted
for clarity.

Figure 4-11 web.xml and portlet.xml relationship

<web-app id="WebApp">
<display-name>SimplePortlet</display-name>
<servlet id="Servlet_1">

<servlet-name>Portlet</servlet-name>
<servlet-class>com.yourco.portlets.Portlet</servlet-class>

</servlet>
<servlet id="Servlet_2">

<servlet-name>AnotherPortlet</servlet-name>
<servlet-class>com.yourco.portlets.AnotherPortlet</servlet-class>

</servlet>
<servlet-mapping> ... </servlet-mapping>
<servlet-mapping> ... </servlet-mapping>

</web-app>

<portlet-app-def>
 <portlet-app uid="DCE:4604:1">
 <portlet-app-name>SimplePortlet application</portlet-app-name>
 <portlet id="Simple_Portlet_1" href="WEB-INF/web.xml#Servlet_1">
 <portlet-name>SimplePortlet portlet</portlet-name>
 </portlet>
 <portlet id="Another_Portlet_1" href="WEB-INF/web.xml#Servlet_2">
 <portlet-name>New Portlet</portlet-name>
 </portlet-app>
 <concrete-portlet-app uid="DCE:4604:1.1">
 <portlet-app-name>Simple Portlet application</portlet-app-name>
 <concrete-portlet href="#Simple_Portlet_1">
 <portlet-name>SimplePortlet portlet</portlet-name>
 </concrete-portlet>
 </concrete-portlet-app>
 <concrete-portlet-app uid="DCE:4604:1.2">
 <portlet-app-name>Second Simple Portlet Application</portlet-app-name>
 <concrete-portlet href="#Another_Portlet_1">
 <portlet-name>Another Simple portlet</portlet-name>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>

170 IBM Rational Application Developer V6 and Portal Tools

4.12.5 UID guidelines
When determining the UID for either concrete or abstract portlet applications
there are several steps to follow to ensure the ID is guaranteed to be unique
throughout the entire portal environment. It is recommended that your
organization develop style guidelines to ensure uniqueness in your environment.

� Include the portlet's namespace in the UID, using the same format that is
used for Java packages

� Add some portlet application specific description

� Add some arbitrary characters to guarantee uniqueness within the
namespace, for example: com.ibm.wps.samplet.mail.4969

� Add postfixes for the corresponding concrete portlet applications, for
example: com.ibm.wps.samplet.mail.4969

4.13 Resources
� For the most up-to-date information about WebSphere Portal, refer to the

Portal zone at:

http://www7b.boulder.ibm.com/wsdd/zones/portal/

� For help via a news group, visit http://new.software.ibm.com/ and locate
the ibm.software.websphere.portal-server news group.

� For other Redbooks discussing installation and administration, refer to:

http://www.redbooks.ibm.com

 Chapter 4. IBM Portlet API 171

http://new.software.ibm.com/
http://www7b.boulder.ibm.com/wsdd/zones/portal/
http://www.redbooks.ibm.com

172 IBM Rational Application Developer V6 and Portal Tools

Chapter 5. A first portlet application

This chapter provides a sample scenario for creating and testing the simplest
example of a portlet project using the IBM Portlet API, the Hello World example.
You will use the New Portlet Project wizard to create a framework for your
application. You will then run your application in the test environment. After
running the portlet, you will modify the source code of the portlet and verify your
changes. These activities will allow you to understand the techniques used to
develop portlet projects.

5

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: IBM Portlet API
� Application type: MVC

© Copyright IBM Corp. 2005. All rights reserved. 173

5.1 Sample scenario
In this sample scenario, you will complete the following tasks:

1. Create and run a portlet project using the basic portlet type to become familiar
with how portlets work

2. Modify the portlet to use JSP expressions and verify your changes

3. Add a JavaBean to your project and verify the changes

The development workstation and its components can be seen in Figure 5-1.

Figure 5-1 Development and runtime environments

5.2 Creating the portlet project
You will start by creating a portlet application using IBM Rational Application
Developer. This sample portlet is based on the Model-View-Controller (MVC)
design pattern. The MVC methodology allows efficient relationships between the
user interface and the underlying data model. The main components of this
design pattern are:

� Model - represents the logical structure of data in a software application

� View - represents all elements in the user interface

� Controller - represents the elements connecting the Model and View
elements

Figure 5-2 on page 175 illustrates the MVC portlet application. The portlet
application also includes a Configure.jsp, but it is not shown here.

IBM Rational
Application Developer
V6.0
Portal Tools V6.0 for
Rational Application
Developer
Sample portlets

IBM WebSphere Portal V5.1 Test
Environment
IBM WebSphere Application
Server V5.1 via Portal V5.1 Test
Environment
Cloudscape V5.1 via Portal V5.1

Development Runtime

Run on Server

174 IBM Rational Application Developer V6 and Portal Tools

Figure 5-2 HelloWorld portlet application

You will start by creating a portlet application using IBM Rational Application
Developer. This sample portlet uses the basic portlet type.

In this section, you will create a portlet application and then test the application in
the WebSphere Portal V5.1 Test Environment. The sample portlet HelloWorld
displays a Hello World message and a message indicating the portlet current
mode. Portlet modes allow a portlet to display different content to the user,
depending on the task required by the portlet. The WebSphere Portal API
provides the modes View, Help, Edit and Configure.

5.2.1 Using the Portlet Project wizard
To set up the framework for your portlet project, follow these instructions:

1. Open the IBM Rational Application Developer by clicking Start → Programs
→ IBM Rational → IBM Rational Application Developer V6.0 → Rational
Application Developer. If you are prompted to select a workspace, click OK
to use the default workspace directory.

2. Select File → New → Project.

Control

View

ModelClient
View.jsp
Edit.jsp
Help.jsp

HelloWorld
PortletViewBean

java

HelloWorldPortlet
java set

getInclude

 Chapter 5. A first portlet application 175

Figure 5-3 Starting a new project

3. Select Portlet Project from the list, and click Next.

176 IBM Rational Application Developer V6 and Portal Tools

Figure 5-4 Selecting a portlet project

4. If you receive a dialog to confirm the enablement of the Portal Development
Tools, click OK.

Figure 5-5 Enable portal development

 Chapter 5. A first portlet application 177

5. In the Portlet Project window, name the project HelloWorld. Click the Show
Advanced button, and select the WebSphere Portal V5.1 target server. Click
Next to continue the wizard.

Figure 5-6 Portlet Project window

6. Select the Basic Portlet type, and click Next to continue.

178 IBM Rational Application Developer V6 and Portal Tools

Figure 5-7 Portlet type window

7. On the Features window, deselect Web Diagram and select JSP Tag
Libraries to add these to your project. Click Next to continue.

 Chapter 5. A first portlet application 179

Figure 5-8 Project features window

8. Accept the default settings on the Portlet Settings window. Click Next to
continue.

180 IBM Rational Application Developer V6 and Portal Tools

Figure 5-9 Portlet Settings window

9. Deselect Add action listener and Add form sample from the Event
Handling window. Click Next to continue.

 Chapter 5. A first portlet application 181

Figure 5-10 Event handling window

10.Since the portlet project does not require credential vault handling, accept the
default settings on the Single Sign-On window. Click Next to continue.

182 IBM Rational Application Developer V6 and Portal Tools

Figure 5-11 Single Sign-On window

11.On the Miscellaneous window, select Add Edit mode, Add Help mode, and
Add configure mode. Then click Finish to generate your project.

Figure 5-12 Miscellaneous window

 Chapter 5. A first portlet application 183

12.If you are prompted to switch to the Web perspective to work on this project,
answer Yes.

Figure 5-13 Confirm perspective switch dialog

13.The workbench will now show your newly created portlet project in the Web
perspective.

Figure 5-14 Workbench overview

184 IBM Rational Application Developer V6 and Portal Tools

14.The files for your project can be seen in the Project Explorer view on the
left-hand side of the workbench.

Figure 5-15 Project explorer view

5.3 Configuring the test environment
To run this project in the WebSphere Portal V5.1 Test Environment, you will need
to create a new test server. To do this, follow these instructions:

1. In the Servers view at the bottom of the workbench, right-click and select New
→ Server.

 Chapter 5. A first portlet application 185

Figure 5-16 Adding a new server

2. In the Define a New Server window, choose the WebSphere Portal V5.1 Test
Environment and click Next.

Figure 5-17 Defining a new server

3. Accept the default port of 9081 and click Next.

186 IBM Rational Application Developer V6 and Portal Tools

Figure 5-18 Server port selection

4. On the Portal Server Settings window, accept the defaults and click Next.

Figure 5-19 Portal Server Settings window

5. On the Projects window, add HelloWorld to this server. Then click Finish to
configure your new test environment.

 Chapter 5. A first portlet application 187

Figure 5-20 Add and Remove Projects window

5.4 Running the portlet project
To run your portal project on the local test environment server, follow these steps:

1. To run your project, right-click it in the Project Explorer view.

188 IBM Rational Application Developer V6 and Portal Tools

Figure 5-21 Run your project

2. Select the existing WebSphere Portal V5.1 Test Environment and click
Next.

 Chapter 5. A first portlet application 189

Figure 5-22 Define a New Server

3. Confirm that HelloWorld is configured to run on this server. Click Finish to run
the project.

190 IBM Rational Application Developer V6 and Portal Tools

Figure 5-23 Add and remove projects window

4. Your portlet will load in the Web browser configured in the workbench. By
default, it will run in View mode, click the icons in the upper right of the portlet
to enter configure mode, Edit mode, and Help mode. Configure mode is only
available to Portal administrators to change portlet settings.

Figure 5-24 Portlet running in View mode with icons highlighted

Configure mode

Edit mode Help mode

 Chapter 5. A first portlet application 191

5.5 Modifying the portlet project and verifying changes
You will now make some changes to your portlet and verify them in the test
environment.

5.5.1 Changing the JSP used for the View mode
Follow these steps to see how the JSPs can be modified to show dynamic
information:

1. Double-click HelloWorldPortletView.jsp from the
/WebContent/helloworld/jsp/html/ directory in the Project Explorer view.

Figure 5-25 View.jsp

2. Click the Source tab at the bottom of the editor to see the source code.

192 IBM Rational Application Developer V6 and Portal Tools

Figure 5-26 Editing JSP source

3. Add the following source code to the HelloWorldPortletView.jsp.

Example 5-1 View JSP source edit

<%@ page session="false" contentType="text/html" import="java.util.*,
helloworld.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/helloworld/jsp/html/HelloWorldPortletView.jsp".

Current time: <%=new java.util.Date() %>

Hostname: <%= request.getRemoteHost()%>
...

4. Save all of your changes by clicking File → Save All.

5. Again, right-click your project in the Project Explorer view. Then click Run →
Run on Server.

 Chapter 5. A first portlet application 193

Figure 5-27 Run on server

6. Choose your existing WebSphere Portal V5.1 Test Environment. You can
click Finish to run the project in the Web browser since you have already
configured this server to work with this project.

194 IBM Rational Application Developer V6 and Portal Tools

Figure 5-28 Running your project in the test environment

7. Observe your changes in the Web browser.

 Chapter 5. A first portlet application 195

Figure 5-29 Changes in the View JSP

5.5.2 Adding a JavaBean
Another way to store information to be accessed and displayed by the View
mode JSP is to use a JavaBean. In this exercise, you will add a JavaBean to
your project and use it to display information when it is run. JavaBeans are a
special type of Java class that contain the business logic of the application. They
are used to temporarily store and process data and access back-end resources
such as databases.

1. The Java source files used to invoke the JSPs to render content are located
in the /Java Resources/JavaSource/helloworld/ folder of your project as seen
in the Project Explorer view.

196 IBM Rational Application Developer V6 and Portal Tools

Figure 5-30 Project Explorer view

2. Right-click the helloworld package and select New → Class.

 Chapter 5. A first portlet application 197

Figure 5-31 Adding a new class

3. Name the class HelloWorldPortletViewBean. Click Finish to add it to your
project.

198 IBM Rational Application Developer V6 and Portal Tools

Figure 5-32 Naming the new class

4. The HelloWorldPortletViewBean.java file will now appear under the /Java
Resources/JavaSource/helloworld/ folder. Double-click this file for editing.
Modify the source code according to the following example. When you are
finished, select File → Save All to save your changes.

Example 5-2 JavaBean code

public class HelloWorldPortletViewBean {

private String myName = "";

public String getMyName() {
return myName;

}
public void setMyName(String myName) {

 Chapter 5. A first portlet application 199

this.myName = myName;
}

}

5. Next, you will need to modify the HelloWorldPortlet.java file.You will add code
that will use the set information in the bean you just created. This code is
inserted in the doView() method of the HelloWorldPortlet.java file.

Example 5-3 doView() method code modification

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

//Make a bean
HelloWorldPortletViewBean viewBean = new HelloWorldPortletViewBean();

//Set your name
viewBean.setMyName("John Doe");

//Save bean in the request so the view jsp can read it
request.setAttribute("HelloWorldPortletViewBean", viewBean);

// Invoke the JSP to render

getPortletConfig().getContext().include(VIEW_JSP+getJspExtension(request),
request, response);

}

6. Now that the bean is created and the portlet can successfully store a value in
this bean, it is necessary to modify the code to the HelloWorldPortletView.jsp
file so that the value can be extracted from the bean and shown on the
screen. Double-click the HelloWorldPortletView.jsp file and make the
following changes. The useBean tag tells the JSP file that it will be accessing
values stored in a JavaBean.

Example 5-4 View JSP code modification

<jsp:useBean id="HelloWorldPortletViewBean"
class="helloworld.HelloWorldPortletViewBean" scope="request"></jsp:useBean>

<%@ page session="false" contentType="text/html" import="java.util.*,
helloworld.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>

200 IBM Rational Application Developer V6 and Portal Tools

This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/helloworld/jsp/html/HelloWorldPortletView.jsp".

Current time: <%=new java.util.Date() %>

Hostname: <%= request.getRemoteHost() %>

Updated by <%= HelloWorldPortletViewBean.getMyName() %>

</DIV>

7. Again save your changes by clicking File → Save All.

8. Again, right-click the HelloWorld project, and select Run → Run on Server.
Click Finish on the Server Selection window to run it on the existing test
environment server. Your changes will be shown in the Web browser.

Figure 5-33 Portlet with changes

 Chapter 5. A first portlet application 201

202 IBM Rational Application Developer V6 and Portal Tools

Chapter 6. IBM Portlet API portlet
development

This chapter introduces you to the action event handling capabilities of portlet
applications. Action events occur when a user interacts with a portlet, usually by
submitting a form. To receive these events, an action event listener must be
implemented in the portlet class. In addition, the actionPerformed() method must
be added to process the action event.

This chapter covers a scenario that will allow you to understand the techniques
used to develop portlets that process action events.

In this chapter, you will find the following topics:

� How action events are processed
� Creating a basic portlet to implement an action event using IBM portlet API
� Code samples
� Running a portlet in the WebSphere Portal V5.1 Test Environment

6

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: IBM Portlet API
� Application type: MVC

© Copyright IBM Corp. 2005. All rights reserved. 203

6.1 About action events
Portlet events contain information about an event to which a portlet might need to
respond. Action events are generated when an HTTP request is received by the
portlet container that is associated with an action, such as when the user clicks a
link or submits a form.

Portlet actions can be one of two types:

� PortletAction objects: The PortletAction object has been deprecated in
favor of simple portlet action strings. It is maintained in the Portlet API to
support existing portlets that use PortletActions. You should always use
simple portlet actions instead of PortletAction objects.

� Simple portlet action Strings: Actions created as simple actions can be
executed multiple times, enabling a user's back button to work. Links created
with simple portlet actions are represented in the URL rather than in the
session. Therefore, portlets with simple actions can be placed on an
anonymous page where no session exists. Simple portlet actions are
associated with action events by using the getActionString() method.

Simple portlet actions are not available in the Portlet API prior to WebSphere
Portal Version 4.2. To check if a simple action String is supported, you can
use getMajorVersion() and getMinorVersion() methods of the PortletContext,
which return, respectively, the major and minor version of the Portlet API that
the portlet container supports. The sample code is shown in Example 6-1.

Example 6-1 Check PortletAPI version

if ((getPortletConfig().getContext().getMajorVersion() <= 1) &&
(getPortletConfig().getContext().getMinorVersion() <= 1)) {

// simple actions not supported
} else {

// simmple actions supported
}

When a portlet wishes to be notified that a user has performed an action, it has to
implement the ActionListener interface and a portlet action. Only the portlet
generating the event may listen for that event. There will always be only a single
listener for any particular action event. The ActionListener interface provides the
actionPerformed() method, to which an ActionEvent is passed. This event
listener is implemented directly in the portlet class. The listener can access the
PortletRequest from the event and respond using the PortletRequest or
PortletSession attributes. In order to notify other portlets of an event, the listening
portlet may choose to send messages.

204 IBM Rational Application Developer V6 and Portal Tools

A portlet has two phases of processing and rendering sequences. The first phase
is the action processing phase. All events are generated, delivered and
processed in this phase. Once this phase is complete, the service phase begins,
in which portlets’ outputs are rendered. Once this phase has begun, no events
can be generated without causing an exception. The service method is also
called when a portal page is refreshed.

The objects you will need to work with when managing event handling in action
events are described below.

ActionListener
The org.apache.jetspeed.portlet.event.ActionListener interface defines a single
method to be implemented as illustrated in Example 6-2.

Example 6-2 Implementing ActionListener interface

org.apache.jetspeed.portlet.event.ActionListener
public void actionPerformed(org.apache.jetspeed.portlet.event.ActionEvent
event) throws PortletException;

ActionEvent
An ActionEvent is sent by the portlet container when an HTTP request is
received that is associated with a portlet action.

The getActionString() method returns the action string that this event carries.
Simple portlet actions use a single string as portlet action which can be executed
multiple times and does not require a session.

Example 6-3 Working with the ActionEvent.

public void actionPerformed(ActionEvent event) throws PortletException {
String actionString = event.getActionString();
PortletRequest request = event.getRequest();

}

PortletURI
The PortletURI represents a URL that can be used to create navigation between
modes. The PortletURI can be used to navigate to a previous mode, such as
from Edit to View, or to navigate back to the same mode, such as for a multi-part

Note: The getAction() method returns the action that this action event carries
but it is deprecated in favor of a getActionString() method.

 Chapter 6. IBM Portlet API portlet development 205

form in View or Edit. There is no ability to create a PortletURI object pointing to a
mode not yet visited by the user.

PortletResponse.createURI returns a portletURI object pointing to the portlet in
its current mode. For example, if the portletURI is created in the doView mode,
the URL points to the portlet in View. The createReturnURI method returns a
PortletURI object pointing to the last mode the portlet was in. This mode is
commonly used in the doEdit method when the URI needs to point back to the
View mode. The edit.jsp would use the PortletURI to bring the user back to the
View mode when the edit or configure process has been completed.

In order for a portlet to be notified of an event, such as the user clicking a button,
the portletURI must contain an associated PortletAction. Typical PortletURI
construction and usage is shown in Example 6-4.

Example 6-4 Working with PortletURI

PortletURI uri = response.createReturnURI();
uri.addAction(“save”);
request.setAttribute("uri", uri.toString());

It is possible to add parameters to the PortletURI object. Parameters added to
the PortletURI via code or through a form are accessed in the same way via the
portlet request object. This provides a mechanism to pass default values or to
pass parameters not displayed in the form. Example 6-5 displays the code for
adding a parameter. Be aware that parameters set via the PortletURI are not
passed in the traditional HTML syntax. Example 6-5 shows how parameters are
added to the URI.

Example 6-5 Adding a parameter to the PortletURI

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

PortletURI viewURI = response.createReturnURI();
viewURI.addAction(“save”);
viewURI.addParameter("Param1", "Param1Value");
request.setAttribute("viewURI", viewURI.toString());
getPortletConfig().getContext().include("/jsp/View.jsp", request,

response);
}

Portlet.ModeModifier
When a PortletURI is created, it points to a portlet in a particular mode. When
that PortletURI is executed and if it contains a PortletAction, it will notify the
appropriate listener. If, in the actionPerformed method, you need to redirect the
user to a mode other than the one specified, the request.setModeModifier

206 IBM Rational Application Developer V6 and Portal Tools

method can be used to redirect the user to another mode. The ModeModifier can
only be set during event processing. Calling this method in doView or doEdit will
have no effect. There are three possible modes to which the user can be
redirected.

� REQUESTED: this ModeModifier will navigate the user to whatever mode
was originally set by the PortletURI. Essentially, this is the default. If the
ModeModified is changed, it cannot be changed back to REQUESTED.

� CURRENT: this ModeModifier will keep the user in the current mode. For
example, if the user tries to save some information and the actionPerformed
determines it is incorrect, setting ModeModifer to CURRENT will return the user
to the edit screen.

� PREVIOUS: this ModeModifier will return the user to the mode the user was
in prior to CURRENT regardless of previous ModeModification. Therefore,
setting ModeModifer to CURRENT in one event process will not make that mode
PREVIOUS in the next event process.

6.2 Development scenario
The sample scenario illustrates the process of creating a sample portlet project
that handles action events. You will create, deploy and run this portlet
application. These exercises will allow you to understand the techniques used to
develop portlets that process action events.

The development and runtime environments are illustrated in Figure 6-1.

Figure 6-1 Development environment

IBM Rational
Application Developer
V6.0
Portal Tools V6.0 for
Rational Application
Developer
Sample portlets

IBM WebSphere Portal V5.1 Test
Environment
IBM WebSphere Application
Server V5.1 via Portal V5.1 Test
Environment
Cloudscape V5.1 via Portal V5.1

Development Runtime

Run on Server

 Chapter 6. IBM Portlet API portlet development 207

We will start by creating a portlet application using IBM Rational Application
Developer. This portlet is again based on the Model-View-Controller (MVC)
design pattern.

In this scenario, you will create a portlet with support for action events using the
Portlet Project wizard. To send an ActionEvent you must associate a
PortletAction with the HTTP request. The PortletAction is normally linked with
URLs or buttons in an HTML form to provide a way for portlet programmers to
implement different processing actions for different user input or interaction.

Figure 6-2 Event handling scenario

The sequence flow for this scenario is as follows:

1. Initially, the doView method is executed.

2. A JSP is called to render an initial screen. A message is obtained from the
request object.

3. The Portlet View mode screen is shown in the browser window.

4. The user clicks Edit to go into Edit mode.

5. The Edit mode screen is displayed (the doEdit method is executed).

6. The user selects the desired action button (red or blue).

7. The actionPerformed method is executed to process the action. A resulting
message is stored in the request object.

action
Performed

View
Mode

Edit
Mode

doView

Portal

Browser

Action Red
Action Blue

Bean

view.jsp

1

2

3

5

6

7
8

doEdit

4

edit.jsp

ActionPortlet

208 IBM Rational Application Developer V6 and Portal Tools

8. The doView method is executed to complete the cycle and a message is
obtained from the request object.Starting your portlet development project

6.3 Creating the portlet project
In this section, you create a Basic type portlet application with the name
ActionEvent. The portlet application will be published and executed in the test
environment. Follow these steps:

1. Open the IBM Rational Application Developer by clicking Start → Programs
→ IBM Rational → IBM Rational Application Developer V6.0 → Rational
Application Developer. If you are prompted to select a workspace, click OK
to use the default workspace directory.

2. If you have developed a portlet project before, you can select File → New →
Portlet Project. Otherwise, select New → Project.

Figure 6-3 Starting a new portlet project

3. Name the project ActionEvent. Click the Show Advanced button and select
WebSphere Portal V5.1 as the target server. Then click Next.

 Chapter 6. IBM Portlet API portlet development 209

Figure 6-4 Portlet project settings window

4. Choose the Basic Portlet type. Click Next to continue.

5. On the Features window, deselect Web Diagram and select JSP Tag
Libraries. Then click Next to continue.

210 IBM Rational Application Developer V6 and Portal Tools

Figure 6-5 Adding JSP Tag Libraries

6. Accept the default settings on the Portlet Settings window. Click Next to
continue.

7. On the Event Handling window, deselect Add form sample. Since you will be
using the action event listener, leave this option selected. Click Next to
continue.

 Chapter 6. IBM Portlet API portlet development 211

Figure 6-6 Event handling window

8. Since you will not be using the credential vault in this project, accept the
defaults on the Single Sign-On window and click Next.

9. Click Add Edit mode on the Miscellaneous window. You will be using it in this
scenario. Click Finish to generate your portlet project.

212 IBM Rational Application Developer V6 and Portal Tools

Figure 6-7 Add Edit mode

10.Your project will display in the Project Explorer view on the left-hand side of
the workbench.

 Chapter 6. IBM Portlet API portlet development 213

Figure 6-8 Project explorer view

6.4 Configuring your project in the test environment
To configure your project to work with an existing WebSphere Portal V5.1 Test
Environment, follow these steps.

1. Right-click WebSphere Portal V5.1 Test Environment in the Servers view at
the bottom of the workbench. Select Add and remove projects.

214 IBM Rational Application Developer V6 and Portal Tools

Figure 6-9 Modifying the server configuration

2. Use the Add and Remove buttons to remove HelloWorldEAR from the test
environment and to add ActionEventEAR to the test environment. Click
Finish to finish this configuration.

Figure 6-10 Server configuration changes

 Chapter 6. IBM Portlet API portlet development 215

6.5 Examining and modifying the source code
You will now add a pair of buttons to the Edit.jsp so that a user can interact with
the portlet to generate an action event. Follow these instructions:

1. Double-click the ActionEventPortletEdit.jsp located in the
/WebContent/actionevent/jsp/html/ folder. It will open in its editor. You will now
edit this JSP and add two buttons for the user to click, corresponding to the
two actions that they will be able to select when they run this portlet. Modify
the source code in this file so it matches the source code shown in the
following example.

Example 6-6 ActionEventPortletEdit.jsp

<%@ page session="false" contentType="text/html"
import="org.apache.jetspeed.portlet.*,actionevent.*" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<TABLE class="Portlet" border="0">
 <TR>
 <TD>Please select an action:
 <FORM method='POST' action="<portletAPI:createReturnURI>
 <portletAPI:URIAction

name='<%=ActionEventPortlet.ACTION_RED%>'/>
 </portletAPI:createReturnURI>">
 <TABLE class="Portlet" border="0">
 <TR>
 <TD><INPUT type='submit' name='redButton' value='Red Action'></TD>
 </TR>
 </TABLE>
 </FORM>

 <FORM method='POST' action="<portletAPI:createReturnURI>
 <portletAPI:URIAction

name='<%=ActionEventPortlet.ACTION_BLUE%>'/>
 </portletAPI:createReturnURI>">
 <TABLE class="Portlet" border="0">
 <TR>
 <TD><INPUT type='submit' name='blueButton' value='Blue Action'></TD>
 </TR>
 </TABLE>
 </FORM>
 </TD>
 </TR>
</TABLE>

216 IBM Rational Application Developer V6 and Portal Tools

2. After making these updates, click File → Save All to save your changes. You
may see errors listed in the Problems view. The changes you will make in
other files will correct these errors.

3. Next, you will make changes to the ActionEventPortletView.jsp file. Open it by
double-clicking the file which is located in the
/WebContent/actionevent/jsp/html/ folder. Make the changes highlighted in
the following example.

Example 6-7 ActionEventPortletView.jsp

<%@ page session="false" contentType="text/html" import="java.util.*,
actionevent.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/actionevent/jsp/html/ActionEventPortletView.jsp".

<% if (request.getAttribute("value") == null) { %>

No action performed, select your action in Edit Mode
<% } else { %>

<%= request.getAttribute("value") %> ...was selected !
<% } %>

</DIV>

4. Click File → Save All to save your changes.

5. Next, you will make the changes to ActionEventPortlet.java. Open this file for
editing by navigating to the /Java Resources/JavaSource/actionevent/ folder
and double-clicking it.

6. Several changes need to be made to ActionEventPortlet.java. Refer to the
following examples to make these:

a. First, you will add the variables ACTION_RED and ACTION_BLUE to hold the
values for each of the two possible user actions.

Example 6-8 ActionEventPortlet.java

...
public class ActionEventPortlet extends PortletAdapter implements
ActionListener {

 Chapter 6. IBM Portlet API portlet development 217

 public static final String VIEW_JSP =
"/actionevent/jsp/ActionEventPortletView."; // JSP file name to be rendered
on the view mode
...
 // Add strings corresponding to the actions
 public static final String ACTION_RED = "ACTION.RED";
 public static final String ACTION_BLUE = "ACTION.BLUE";
...

public void init(PortletConfig portletConfig) throws UnavailableException {
super.init(portletConfig);

...

}

b. Next, you will edit the doView method to send content to the JSP to
render.

Example 6-9 ActionEventPortlet.java

...
public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

// Create an instance of portlet data to store values
PortletData portData = request.getData();

// Extract value in portlet data into variable
String value = (String) portData.getAttribute("value");

// Store the extracted value in the request
request.setAttribute("value", value);

 // Invoke the JSP to render

getPortletConfig().getContext().include(VIEW_JSP+getJspExtension(request),
request, response);

}
...

c. Next, you will edit the actionPerformed method to process the action.
Remove the existing action string handler, and add the code from the
following example.

Example 6-10 ActionEventPortlet.java

public void actionPerformed(ActionEvent event) throws PortletException {
if(getPortletLog().isDebugEnabled())

218 IBM Rational Application Developer V6 and Portal Tools

getPortletLog().debug("ActionListener - actionPerformed called");
// ActionEvent handler
String actionString = event.getActionString();
PortletRequest request = event.getRequest();
// Add action string handler here

if(actionString.equalsIgnoreCase(ACTION_RED)){

// Create the string of HTML to be rendered
String value = "Action RED";

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try{
// Save value into portlet data
portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}

if(actionString.equalsIgnoreCase(ACTION_BLUE)){

// Create the string of HTML to be rendered
String value = "Action BLUE";

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try{
// Save value into portlet data
portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}
}

7. Click File → Save All to save your changes.

6.6 Running your project in the test environment
It is now time to run your project in the test environment to see your changes.
Follow these instructions:

 Chapter 6. IBM Portlet API portlet development 219

1. Right-click the ActionEvent project in the Project Explorer view. Then select
Run → Run on Server.

Figure 6-11 Running your project

2. Select your existing WebSphere Portal V5.1 Test Environment server and
click Next.

220 IBM Rational Application Developer V6 and Portal Tools

Figure 6-12 Select your server

3. Confirm that the ActionEventEAR project is the only one configured to run in
the test environment. Click Finish to run your project.

 Chapter 6. IBM Portlet API portlet development 221

Figure 6-13 Confirm configuration

4. Your project will run in the Web browser. Since no action has been made, a
message is displayed to indicate this. Enter Edit mode to choose an action by
click the Edit mode icon.

222 IBM Rational Application Developer V6 and Portal Tools

Figure 6-14 No action performed

5. Now select either the Red Action or Blue Action button.

Figure 6-15 Selecting an action

6. A message will be displayed according to which button you select. You may
enter Edit mode repeatedly to select an action.

 Chapter 6. IBM Portlet API portlet development 223

Figure 6-16 Red action selected

224 IBM Rational Application Developer V6 and Portal Tools

Chapter 7. Portlet messaging

Portlet messaging is provided for portlet applications using the IBM Portlet API.
This chapter describes what portlet messaging is and the objects you will need to
work with when messaging between portlets.

� MessageListener
� MessageEvents
� DefaultPortletMessage
� PortletMessage

7

© Copyright IBM Corp. 2005. All rights reserved. 225

7.1 Portlet messaging
One of the most significant advantages of the Portlet architecture is the portlets’
ability to communicate with each other to create dynamic, interactive
applications. Portlets can use messages to share information, notify each other
of a user’s actions or simply help better manage screen real estate.

Messages can be sent to all portlets on the same page, to a specific named
portlet or to all portlets in a single portlet application. To send a message to all
portlets on a page, you must send an instance of the DefaultPortletMessage.
Portlets that are deployed as Web services cannot send or receive messages.

In order to make full use of this potential, you need to adequately architect the
entire portlet application, anticipating inter-portlet communication. Attempting to
implement effective and meaningful message after significant portlet
development will cause some difficulty and may require the entire application to
be overhauled. This is true for several reasons. For example, access to certain
storage objects, such as PortletData, is limited to certain modes. Therefore, if the
initial design of an application makes significant use of the PortletData object,
implementing messaging later to share configuration information would require a
considerable effort. Furthermore, in order to reduce or eliminate code, action
event and message event functionality can be combined into a common method.
However, to achieve this, it is necessary to consider the information passed via
the action or message objects.

First, you must become familiar with the core objects used in the messaging
architecture.

7.2 MessageListener
The org.apache.jetspeed.portlet.event.MessageListener interface must be
implemented by the portlets receiving a message. The interface defines the
single method listed in Example 7-1 on page 227. Since the portlet may be
notified by more than one other portlet and therefore may receive different types
of messages, it should validate the type of message received prior to working
with the object. This is illustrated in Example 7-1 on page 227.

Note: Sharing data between two or more portlets can be accomplished using
cooperative portlets. Cooperative portlets subscribe to the WebSphere Portal
property broker by publishing properties that they can share. Property Broker
should be used instead of messaging.

226 IBM Rational Application Developer V6 and Portal Tools

Example 7-1 Implementing the MessageListener interface

public void messageReceived(MessageEvent event) throws PortletException {

 PortletMessage msg = event.getMessage();

 if(msg instanceof DefaultPortletMessage) {
 String messageText = ((DefaultPortletMessage)msg).getMessage();
 // Add DefaultPortletMessage handler here

 }

}

Be aware that when a portlet receives a message, it is not in Edit or Configure
mode and therefore faces certain restrictions. For instance, portlets do not have
write access to the PortletData object when they are not in Edit mode. Also, they
cannot adjust the attributes stored in the PortletSettings object unless they are in
configure mode. Attempts to store attributes in these object when not in the
appropriate mode result in an AccessDeniedException.

Therefore, when attempting to share configuration or settings information
between portlets, you need to choose your scope carefully or decide to persist to
an outside resource.

7.3 MessageEvent
This object is sent to registered MessageListeners by the portlet container when
a portlet executes the send method of the PortletContext object. There are two
important methods available in this object

� getMessage: returns the message object sent with this event. Since this
method returns a PortletMessage, the result must be cast to the appropriate
type as illustrated in Example 7-1.

� getRequest: returns the current PortletRequest. The request can be used to
access the PortletSession object or to store data to be used in the doView
method.

7.4 DefaultPortletMessage
This object implements the PortletMessage interface and provides the basic
functionality needed for sending string messages between portlets on the same
page regardless of the portlet application.

 Chapter 7. Portlet messaging 227

If you broadcast a DefaultPortletMessage to null, it will be sent to all portlets on
the page implementing the MessageListener interface. Example 7-2 illustrates
sending a simple broadcast message to all portlets on the same page regardless
of application affiliation.

Example 7-2 Broadcasting a message to all portlets on a page

PortletMessage msg = new DefaultPortletMessage(“Some Message”);
getPortletConfig().getContext().send(null, msg);

If you specify the portlet name, the message will be sent to all portlets and all
their instances on the same page. The portlets with that name receive the
message if they have implemented the appropriate listener. If the source and
target portlet have the same name, the message will not be sent to avoid cyclic
calls.

Example 7-3 Sending a message to a given portlet name on a page

PortletMessage msg = new DefaultPortletMessage(“Some Message”);
getPortletConfig().getContext().send(“Portlet name”, msg);

7.5 PortletMessage
This interface defines the message object that will be sent between portlets
inside the same portlet application on the same page. Since it is a flag interface,
it does not define any methods to be implemented. Therefore, you are free to
create message objects that can store a wide variety of information. Example 7-4
illustrates a simple custom message used to carry a detail information about an
entry of an agenda.

Example 7-4 Creating a custom message

import org.apache.jetspeed.portlet.PortletMessage;
public class AgendaMessage implements PortletMessage {

private AgendaBean entry;

public AgendaBean getEntry() {
return entry;

}

Note: Since portlet messaging can be accomplished across portlets in
different applications, this is the recommended way to implement portlet
messaging.

228 IBM Rational Application Developer V6 and Portal Tools

public void setEntry(AgendaBean entry) {
this.entry = entry;

}
}

If you simply need to send a string message between portlets, the
DefaultPortletMessage provides this basic functionality. It is not possible to send
a broadcast message using custom messages. Sending a custom message to
null will only send the message to portlets implementing the MessageListener
interface on the same page and deployed as part of the same portlet application.
This is illustrated in Example 7-5; a message is sent with the information of an
entry selected in other portlet in the same application.

Example 7-5 Sending a custom message

public void actionPerformed(ActionEvent event) throws PortletException {
if(getPortletLog().isDebugEnabled())

getPortletLog().debug("ActionListener - actionPerformed called");
// ActionEvent handler
String actionString = event.getActionString();
PortletRequest request = event.getRequest();
// Add action string handler here
if (actionString != null && actionString.startsWith(ACTION_DETAILS)) {

//get the entry selected from the actionString
String opc = actionString.substring(actionString.indexOf("=")+1);
int elem = Integer.valueOf(opc).intValue();
Vector list = getSessionAgenda(request);
AgendaBean entry = (AgendaBean)list.elementAt(elem);
//send a message with this object
AgendaMessage msg = new AgendaMessage();
msg.setEntry(entry);
getPortletConfig().getContext().send(null,msg);

}
}

.....

If a portlet wants to receive this message, it has to implement the
messageListener interface.

Example 7-6 Receiving a custom message

public void messageReceived(MessageEvent event) throws PortletException {
 if(getPortletLog().isDebugEnabled())
 getPortletLog().debug("MessageListener - messageReceived called");
 // MessageEvent handler
 PortletMessage msg = event.getMessage();
 // Add PortletMessage handler here
 if(msg instanceof AgendaMessage) {

 Chapter 7. Portlet messaging 229

 AgendaBean detailEntry = ((AgendaMessage)msg).getEntry();
 // Add DefaultPortletMessage handler here
 PortletRequest request = event.getRequest();
 request.setAttribute("detailEntry", detailEntry);
 }
 else {
 // Add general PortletMessage handler here
 }
}

Now you can see all the entries in one portlet and detailed information about an
entry you selected previously in the other portlet. Figure 7-1 shows the result
after selecting the third entry of the agenda.

Figure 7-1 Receiving a custom message with an entry of the agenda

7.6 Sample scenario
Message events are a way for portlets to communicate with each other. This is
accomplished through the familiar event-listener model. Portlets that need to
listen for message events must implement a MessageListener interface, and
portlets that need to send message events do so within the handling of their own
Action Events, as you will see in this sample scenario. Message events can be
sent to named portlets or broadcast to all portlets on the same page. All events
are handled within the page’s event-processing phase, after which comes the
content generation phase.

230 IBM Rational Application Developer V6 and Portal Tools

For this sample scenario, the action event sample portlet application (see
Chapter 6, “IBM Portlet API portlet development” on page 203) will be modified to
include message events so that you will see an example of how these can work
together within portlet applications.

7.6.1 Description
In this scenario, you will enhance the ActionEvent portlet application to send
messages to a new message receiver portlet as illustrated in Figure 7-2.

Figure 7-2 Message Event handling scenario

Figure 7-2 shows the flow for this scenario, as follows:

1. The actionPerformed() method in the ActionEventPortlet.java portlet will be
extended to send a broadcast message event (DefaultPortletMessage) upon
arrival of action events.

2. The MessageReceiver portlet, which will implement the MessageListener
interface, receives the message in the new messageReceived method.

3. The received message is saved in the PortletRequest object.

4. The Portal invokes the doView method which in turn invokes the JSP (select).

5. The JSP retrieves the message from the request object and displays the
message.

action
Performed

View
mode

Edit
mode

doView

Portal

Browser

Action Red
Action Blue

Bean

JSP

1

JSP

doView

View
mode

message
Received

Request
object

MessageReceiver.javaActionEventPortlet.java

2

3

4

5

Set

Get

 Chapter 7. Portlet messaging 231

This scenario will be implemented using a broadcast style of message event
rather than point-to-point messaging. In addition, the DefaultPortletMessage
object will be used.

7.6.2 Sending a message
In this section, you will update ActionEventPortlet.java to send out a broadcast
message from within its actionPerformed method. The message will be
broadcast to all portlets implementing the MessageListener interface and using
the DefaultPortletMessage object. Follow these steps:

1. If IBM RAD is not running, start the IBM Rational Application Developer by
clicking Start → Programs → IBM Rational → IBM Rational Application
Developer V6.0 → Rational Application Developer.

2. If the Test Environment is still running, stop the server by invoking Servers
(make sure you switch to the Web perspective), right-click WebSphere Portal
5.1 Test Environment and click Stop.

3. Next, you will update the actionPerformed() method to instantiate a
DefaultPortletMessage object (the parameter value contains the message to
be included in the object) and send the message (the parameter null
indicates that this is a broadcast message). Add the highlighted code to the
actionPerformed method in ActionEventPortlet.java (located in the /Java
Resources/Java Source/actionevent/ folder) as illustrated in Example 7-7.

Example 7-7 Modifying implementation of actionPerformed() methods

...
public void actionPerformed(ActionEvent event) throws PortletException {

if(getPortletLog().isDebugEnabled())
getPortletLog().debug("ActionListener - actionPerformed called");

// ActionEvent handler
String actionString = event.getActionString();
PortletRequest request = event.getRequest();
// Add action string handler here
if(actionString.equalsIgnoreCase(ACTION_RED)) {

// Create the string of HTML to be rendered
String value = "Action RED";

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try {

Note: While the DefaultPortletMessage object allows you to send messages
to portlets in different applications, you can only send a String type message.

232 IBM Rational Application Developer V6 and Portal Tools

// Save value into portlet data
portData.setAttribute("value",value);
portData.store();

}
catch (AccessDeniedException ade) {
}catch (IOException ioe) {
}

// Send a portlet message
PortletMessage message = new DefaultPortletMessage(value);
try {

this.getPortletConfig().getContext().send(null, message);
}catch (AccessDeniedException ade){}

}

if(actionString.equalsIgnoreCase(ACTION_BLUE)) {
// Create the string of HTML to be rendered
String value = "Action BLUE";

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try {
// Save value into portlet data
portData.setAttribute("value",value);
portData.store();

}
catch (AccessDeniedException ade) {
}catch (IOException ioe) {
}

// Send a portlet message
PortletMessage message = new DefaultPortletMessage(value);
try {

this.getPortletConfig().getContext().send(null, message);
}catch (AccessDeniedException ade){}

}

}
...

4. Save and close the ActionEventPortlet.java file.

5. Next, you will slightly update the ActionEventPortletView.jsp page to notify
that you are now sending a message. Double-click the
ActionEventPortletView.jsp under the /WebContent/actionevent/jsp/html/
directory.

 Chapter 7. Portlet messaging 233

Figure 7-3 Project Explorer View

6. Insert the text highlighted in Example 7-8.

Example 7-8 Adding the code to broadcast PortletMessage

<%@ page session="false" contentType="text/html" import="java.util.*,
actionevent.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/actionevent/jsp/html/ActionEventPortletView.jsp".

<% if (request.getAttribute("value") == null) { %>

No action performed, select your action in Edit Mode
<% } else { %>

<%=request.getAttribute("value") %> ... was selected ! and this
information was broadcasted as a message.
<% } %>

234 IBM Rational Application Developer V6 and Portal Tools

</DIV>

7. Save and close the ActionEventPortletView.jsp file.

Note: At this point, you have implemented all the required logic in
ActionEventPortlet to be able to send a broadcast message from within its
actionPerformed() method.

7.6.3 Creating the target portlet
In this section, you will use the wizard to create the target portlet to receive the
message sent by ActionEventPortlet.java.

1. Click File → New → Portlet. If you do not see this option, select File →
New → Other and then select Portlet under Portal folder and click Next to
continue.

2. In the next window, enter the following information:

– Project: select ActionEvent from the list.
– Default name prefix: MessageReceiver
– Select the type of new portlet: Basic portlet

 Chapter 7. Portlet messaging 235

Figure 7-4 Adding a portlet

3. Click Next.

4. Examine and accept the default values in the portlet settings window and click
Next.

5. Uncheck the Add form sample and the Add action listener boxes. Check
the Add message listener box to add the messageReceived method. Click
Next.

236 IBM Rational Application Developer V6 and Portal Tools

Figure 7-5 Adding a message listener

6. Do not check the Add credential vault handling box (not required in this
sample scenario). Click Next.

7. Leave the options for markups and modes unchecked. Click Finish to add the
portlet to your project.

8. You will now see the new portlet files in the Project Explorer panel.

 Chapter 7. Portlet messaging 237

Figure 7-6 Project Explorer panel

9. Open the MessageReceiverPortlet.java file located in the /Java
Resources/JavaSource/messagereceiver/ folder by double-clicking it.

10.Add the following highlighted code to this file to receive the broadcast Portlet
Message in the messageReceived() method.

Note: The messageReceived() method implements the logic to receive the
PortletMessage. In this example, you only need to check for messages of
type DefaultPortletMessage, which is the type of message sent by
ActionEventPortlet. Then the message is extracted via the getMessage()
method, and you set the text of this message into a portlet request as an
attribute with name MyMessage.

Example 7-9 MessageReceiverPortlet.java

...
public void messageReceived(MessageEvent event) throws PortletException {
 if(getPortletLog().isDebugEnabled())

238 IBM Rational Application Developer V6 and Portal Tools

 getPortletLog().debug("MessageListener - messageReceived called");
 // MessageEvent handler
 PortletMessage msg = event.getMessage();
 // Add PortletMessage handler here
 if(msg instanceof DefaultPortletMessage) {
 String messageText = ((DefaultPortletMessage)msg).getMessage();
 // Add DefaultPortletMessage handler here
 PortletRequest request = event.getRequest();
 request.setAttribute("MyMessage", messageText);
 }
 else {
 // Add general PortletMessage handler here
 }
}

...

11.When you are done, save the file and exit.

12.Now that you can receive the message, you will need to modify the
MessageReceiverPortletView.jsp to display the message to the user. To edit
this file, open the /WebContent/messagereceiver/jsp/html/ folder and
double-click the file.

Note: The Java code inside the scriptlet checks the value of the portlet
request attribute MyMessage. If null, no message has been received yet, and
it displays that it is ready to receive a message. If not null, the message is
displayed with HTML markup. Make the following changes.

Example 7-10 MessageReceiverPortletView.jsp file (message receiver portlet)

<%@ page session="false" contentType="text/html" import="java.util.*,
messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/MessageReceiverPortletView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Ready to receive message ...
<% } else { %>

Received a message:
<%= request.getAttribute("MyMessage") %>

<% } %>

 Chapter 7. Portlet messaging 239

</DIV>

13.When you are done, save the file and exit.

You have now implemented the code to receive and display a broadcast
portlet message to the user.

7.6.4 Running the portlet application
In this section, you will run the portlet application you have developed to send a
message from the message sender portlet (ActionEventPortlet.java) to the
message receiver portlet (MessageReceiverPortlet.java). Follow these steps:

1. Right-click the ActionEvent project and select Run → Run on Server.

2. In the Define new server window select Choose an existing server and
select WebSphere Portal V5.1 Test Environment.

3. Click Next.

4. Be sure that the ActionEventEAR project is configured to run in the test
environment (it appears in the right panel).

5. Click Finish. The project will be published and then started.

Note: You will see that the internal Web browser brings up the two portlets on
your screen, as shown in Figure 7-7. Notice that the ActionEvent portlet
indicates that no action has been performed and the MessageReceiver portlet
indicates that it is ready to receive a message.

Figure 7-7 Running the messaging project in the Portal Server Test Environment

240 IBM Rational Application Developer V6 and Portal Tools

6. Choose the Edit mode of ActionPortlet. Click the Red Action button. This will
both (a) create an action that you will see the action in ActionPortlet, and (b)
broadcast a message which will be sent and shown in MessageReceiver.

Figure 7-8 Creating an action and broadcasting the message

7. You will see the value shown in both the ActionEvent portlet and the
MessageReceiver portlet.

Note: In summary, you have seen how the IBM portlet API implements
message events which can be useful for passing data between portlets that
need to be notified of other portlets’s actions and events. This is a very useful
feature of the API when building portlet applications that contain multiple
portlets.

Figure 7-9 Red action and Red message broadcast

 Chapter 7. Portlet messaging 241

8. You can enter Edit mode again and select the Blue Action button.The results
will again be displayed accordingly.

Figure 7-10 Blue action and message broadcast

7.7 Broadcasting messages
In this section, we show how to send a broadcast message to all portlets on a
page that have implemented the MessageListener interface. For example follow
these steps:

1. Create a new portlet project:

a. Select File → New → Portlet Project.

b. Enter Message as the project name and select WebSphere Portal V5.1 as
Target server.

c. In the event handling page, check only the option Add message listener.

d. Click Finish.

2. Open the MessagePortlet.java file located in the /Java
Resources/JavaSource/message/ folder and modify the messageReceived()
method to receive the broadcast message. You only need to check for a
message of type DefaultPortletMessage, which is the type of message sent
by ActionEventPortlet. Once the message is extracted, it will set the text of
this message as an attribute into the portlet request.

242 IBM Rational Application Developer V6 and Portal Tools

Example 7-11 MessagePortlet.java

public void messageReceived(MessageEvent event) throws PortletException {
 if(getPortletLog().isDebugEnabled())
 getPortletLog().debug("MessageListener - messageReceived called");
 // MessageEvent handler
 PortletMessage msg = event.getMessage();
 // Add PortletMessage handler here
 if(msg instanceof DefaultPortletMessage) {
 String messageText = ((DefaultPortletMessage)msg).getMessage();
 // Add DefaultPortletMessage handler here
 PortletRequest request = event.getRequest();
 request.setAttribute("message", messageText);
 }
 else {
 // Add general PortletMessage handler here
 }
}

3. Modify the MessagePortletView.jsp to display the message to the user.

Example 7-12 MessagePortletView.jsp

...
<H3 style="margin-bottom: 3px">New application.</H3>

<% if (request.getAttribute("message") == null) { %>

No message has been received from another portlet application.
<% } else { %>

Message received: <%= (String)request.getAttribute("message") %>
<% } %>
...

4. You need to configure the new project to run in test environment. Right-click
WebSphere Portal V5.1 Test Environment server and select Add and
remove projects. Select MessageEAR in the available projects panel and
click Add.

 Chapter 7. Portlet messaging 243

Figure 7-11 Add and remove projects window

5. Click Finish.

6. Before starting the server open the server properties by double-clicking in
WebSphere Portal 5.1 Test environment server. Click Portal panel and check
enable base portlets for portal administration and customization option.

Note: Portlets that send and receive message must be on the same page. By
default, when you configure more than one project on the server they will
appear in different pages. You will need to customize the ActionEvent page
adding the new Message portlet.

244 IBM Rational Application Developer V6 and Portal Tools

Figure 7-12 Portal options

7. Save and close the server options window.

8. Right-click the ActionEvent project or Message project and choose Run →
Run on Server.

9. When the Web browser appears, you will see the applications in different
pages.

 Chapter 7. Portlet messaging 245

Figure 7-13 Running two portlet applications

10.To customize your page, select Administration in the portal theme. You
need to log in as an administrator user to see this option.

11.In Administration window, select on the left panel Manage Pages under
Portal User Interfaces. On the right panel, you will see options to work with
your pages. Select My Portal and then Test Environment. You will see a
page as show in Figure 7-14.

Figure 7-14 Manage pages

246 IBM Rational Application Developer V6 and Portal Tools

12.Click the pencil icon to edit page layout.

Figure 7-15 Edit page layout

13.Click Add portlet button. A new window appears with all portlets that have
been installed. Fill the search file with the name of the portlet you are looking
for, Message in our example, and click Search

Figure 7-16 Adding a portlet to a page

14.In the results of your search you will see the Message portlet, check it and
click OK.

 Chapter 7. Portlet messaging 247

15.Now you will see the Message portlet in ActionEvent page layout.

16.Click DONE.

17.Click My Portal to test the application.

18.You will see the tree portlets on ActionEvent page.

Figure 7-17 Before sending a broadcast message to all portlets

19.Go to the Edit mode of the ActionEvent portlet and click the Red action
button; now both portlets (the portlet in the same application of
ActionEventPortlet and the portlet in the other application) display the
message.

248 IBM Rational Application Developer V6 and Portal Tools

Figure 7-18 After sending a broadcast message

Sending a message to a portlet in a different application
Now modify the actionPerformed() method of ActionEventPortlet.java class to
send a message to a specific portlet in a different application project.

1. Open the ActionEventPortlet.java file located in the /Java
Resources/JavaSource/actionevent/ folder of ActionEvent project. In the
actionPerformed() method, when the action received is ACTION_RED, send the
message only to the portlet called Message portlet.

Example 7-13 actionPerformed() method - ActionEventPortlet.java

if(actionString.equalsIgnoreCase(ACTION_RED)){
.......
// Send a portlet message
PortletMessage message = new DefaultPortletMessage(value);
try{
this.getPortletConfig().getContext().send("Message portlet",message);
}catch (AccessDeniedException e){}

.....

2. Save the change and run the application. Now it is not necessary to restart
the server; you only have to close the browser and run the project. Go to the
Edit mode of the ActionEvent portlet and click the Red action button; now
only the portlet called Message portlet receives the message.

 Chapter 7. Portlet messaging 249

Figure 7-19 After sending a message to a specific portlet

250 IBM Rational Application Developer V6 and Portal Tools

Chapter 8. JSR 168 API

JSR 168 is new portlet specification created to be a standard for portlet
development. IBM WebSphere Portal provides support for portlets developed
using this API. In this chapter, the following topics are discussed:

� JSR 168 overview
� JSR 168 comparison to servlets
� JSR 168 portlet modes
� JSR 168 portlet window states
� Core JSR 168 objects
� JSR 168 portlet life cycle
� JSR 168 portlet caching
� Listeners
� Deployment descriptors
� JSR 168 limitations in WebSphere Portal

8

© Copyright IBM Corp. 2005. All rights reserved. 251

8.1 JSR overview
JSR 168 is a specification from the Java Community Process for the
standardization of portlets. The specification was developed to provide
interoperability for running portlets on any vendor's implementation of the JSR
168 portlet container. The specification was approved in October of 2003. For
more information about the Java Portlet Specification, see the JSR 168
specification:

http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/

WebSphere Portal starting with version 5.0.2.1 provides a runtime environment
for both the IBM Portlet API, which is based on org.apache.jetspeed.portlet
interfaces and JSR 168 compliant portlets.

The basic concepts are similar between the two APIs; however, several
differences do exist.

8.1.1 Number of portlet instances
The portlet deployment descriptor, also called portlet.xml, defines how the portlet
container creates the portlet instance. For a single system which is not clustered
there is only one portlet object per portlet definition. In a clustered environment
(marked distributable in the web.xml), only one portlet object will be instantiate
per portlet definition per VM.

8.1.2 Portlet windows
Portlets are defined in the portlet.xml. The portlets may contain preferences and
default values. These values are used to create the PortletPreferences object.
The portlet entity has the PortletPreferences attached to it. A portlet window is
the representation of a portlet entity on a page, including navigational and
session state attached to it.

The portletPreferences object may be customized by the user or by the
administrator. Administrators can globally change the parameters while in Config
mode. The changes will affect all of the portlet instances on all pages. If a user
modifies a portletPreference, it will only affect their PortletPreferences object.

Note: Portlets of either API can be placed on the same portal page. However,
a portlet cannot mix classes and methods from both packages although the
JSR 168 API can take advantage of some of the IBM specific features,
including Cooperative portlets and portlet services like the Credential Vault.

252 IBM Rational Application Developer V6 and Portal Tools

http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/

The user will use the administrator’s portletPreferences object until they set their
own; after that, changes made by the administrator will not be reflected in the
users portletPreferences.

As an example, a portlet is placed on a page that displays your name. The
administrator has access to the Edit and Configuration modes. The user will only
have access to the Edit mode. The administrator modifies the name using the
Configuration mode to enter his name. The user then logs in and sees the
administrator name. The user changes the name in Edit mode, adding their own
name. Now the user will always see their own name even if the administrator
updates it in Config mode. This user has their own portlet window representing
this portlet.

Figure 8-1 Portlet window

8.1.3 Thread safety
The PortletRequest and PortletResponse objects are not guaranteed to be
thread safe. These object should only be used in the scope of the processAction

portlet.xml

Portlet Definition

Portlet Entity

portlet preferences

PortletPreferences
object

PortletPreferences
object

portlet entity

Portlet Window
Navigational + Session state

PortletPreferences
object

portlet entity

Portlet Window
Navigational + Session state

 Chapter 8. JSR 168 API 253

and render methods. You should not reference the PortletRequest or
PortletResponse in any object outside these methods.

WebSphere Portal server will handle multiple concurrent requests to the same
portlet request handling methods on multiple threads. If the request handling
methods modify class variables, these variables will also be modified for all
instances of the portlet. This can cause unexpected problems in your portlets
that are difficult to debug. Use method local variables to avoid this problem.

8.2 JSR 168 comparison to servlets
In the IBM Portlet API, portlets are servlets and extend the HttpServlet class. The
IBM Portlet API also implements or extends many of the servlet interfaces
including the HttpServletRequest, HttpServletResponse, and HttpSession. The
JSP 168 API does not extend or implement any of the Servlet classes or
interface. However, JSR 168 portlets are modeled after the servlet specification.

JSR 168 portlets do leverage many features of the Servlet specification including
deployment, classloading, life cycle, session management and request
dispatching.

Unlike servlets, portlets can only generate markup fragments. The portal server
will aggregate all portlets and themes and skins to create the complete page.
Portlets therefore cannot set character set encoding for the response. They also
cannot set HTTP header responses.

The life cycle of servlet and portlets also differ and will be discussed in a later
section, please see.“JSR 168 Portlet life cycle” on page 280.

Portlets are loaded with the same classloader used to load the Web application.
This allows the ServletContext and the PortletContext to share attributes. This
also allows the HttpSession to share attributes with the PortletSession. The
opposite is true also, the PortletSession can share attributes with the
HttpSsession.

8.3 JSR 168 portlet modes
Portlets will perform different tasks and create different output depending on the
function they are currently performing. Modes will allow the portlets to provide
different function for the task that is required. JSR 168 supports three modes,
View, Edit, and Help. JSR 168 also supports custom modes. IBM WebSphere
Portal at the time of this writing only supports the custom mode Configuration.

254 IBM Rational Application Developer V6 and Portal Tools

Portlet can change the mode programmatically in the processAction method. You
can also specify the mode when creating an action or render link. See “interface
javax.portlet.PortletURL” on page 261.

View
The View mode is used for displaying content reflecting the current state of the
portlet. View mode may included multiple screens the user can navigate. The
doView() method of the GenericPortlet class is invoked for this mode. All portlets
are required to support the View mode.

Edit
The Edit mode is used for customizing the behavior of the portlet by modifying
the PortletPreferences object. As with View mode the Edit mode may contain
multiple screens for navigation. The doEdit() method of the GenericPortlet class
is invoked for this mode. Portlets are not required to support the Edit mode.

Help
Help should be used to provide the user with information about the portlet. This
could be generic or it could provide context-sensitive help. The doHelp() method
of the GenericPortlet class is invoked for this mode. Portlets are not required to
support the Help mode

Custom-portlet-mode

Configuration mode is used to globally update a portlet configuration. In
Configuration mode an administrator can update the read-only
PortletPreferences. Changes are reflected in all occurrences of the portlet on all
pages. The doDispatch() method of the GenericPortlet class needs to be
overridden to handle this custom mode. The code in Example 8-1 was generated
from Ration Application Developer when custom mode was selected in the
portlet creation process.

Example 8-1 Overridden doDispatch() method to handle the custom Config mode

protected void doDispatch(RenderRequest request, RenderResponse response)
 throws PortletException, IOException {

if(!WindowState.MINIMIZED.equals(request.getWindowState())){
PortletMode mode = request.getPortletMode();
if(CUSTOM_CONFIG_MODE.equals(mode)) {

doCustomConfigure(request, response);
return;

Note: WebSphere Portal will only support the custom portlet mode
Configuration.

 Chapter 8. JSR 168 API 255

}
 }
super.doDispatch(request, response);

}

The doDispatch() method calls the doCustomConfigure() method of the portlet
class if the current mode is represented by the CUSTOM_CONFIG_MODE
variable, else it calls the doDispatch of GenericPortlet class to handle all other
modes.

8.4 JSR 168 Portlet window states
Window state determines how much space the portlet will have to render its
content. The portlet container will provide the current window state to the portlet
to allow the portlet the display the appropriate content. JSR 168 supports three
Window states, NORMAL, MAXIMIZED, and MINIMIZED.

Like portlet mode the Window state can be programmatically changed in
processAction() while processing an action request. The state can also be
requested while creating a render or action URL.

NORMAL
Normal indicates that the portlet will be provided equivalent space on the page
as other portlets. This portlet could also be the only portlet on the page. The
Show layout tools in WebSphere Portal could be used to further customize the
layout of the portlet on the page.

MAXIMIZED
Maximized state indicates that the portlet will be the only portlet displayed on the
page.

MINIMIZED
The default implementation of the GenericPortlet class and the IBM supplied
skins, are to show only the portlet title bar when in the minimized state. The skins
will not invoke the render method and therefore will not display any of the portlets
output. You can modify the control.jsp for the skin as seen in Example 8-2 on
page 257. You will also need to override the doDispatch() method to get different
results as seen in Example 8-3 on page 257.

256 IBM Rational Application Developer V6 and Portal Tools

Example 8-2 Modifying control.jsp in the skin

<wps:if portletState="Normal,Maximized,Minimized,Solo">

Example 8-3 Overriding doDispatch

protected void doDispatch(RenderRequest request, RenderResponse response)
throws PortletException, IOException {

if(request.getWindowState() == WindowState.MINIMIZED){
response.setContentType(request.getResponseContentType());
response.getWriter().println("Portlet is minimized!
");

} else {
super.doDispatch(request, response);
}

}

Custom window states

The custom state would be defined in the portlet deployment descriptor using the
custom-window-state element. Portlets could use the
getSupportedWindowStates() method of the PortalContext to obtain the window
states supported by the portal server. Unsupported states will be ignored.

8.5 Core JSR 168 objects
This section will describe the core object used when developing a JSR 168
portlet. We will also discuss some important method of each object.

8.5.1 interface javax.portlet.Portlet
All portlets must implements this interface directly or by extending a class that
implements this interface. This interface defines the following methods.

Note: Example 8-2 shows the portletState solo. This is to support portlets
written using the IBM Portlet API. Solo is not a supported window state in the
JSR 168 API.

Note: Custom Windows states are part of the JSR 168 specification and is
mentioned here. WebSphere Portal at the time of this writing does not support
custom Window states. Unlike the IBM portlet API, JSR 168 does not have a
solo window state either.

 Chapter 8. JSR 168 API 257

void destroy()
This method is called when the portlet is being removed from service. Use this
method to release any resources or write persistent state. Once the destroy
method has been called no request can be sent to this portlet. If needed, a new
portlet object will be instantiated to serve new requests. If there is a
RuntimeException thrown during the destroy method, the destroy is considered
to have completed successfully. The portlet object is eligible for garbage
collection after the destroy method has completed.

void init(PortletConfig config)
The init method is called upon the first request to the portlet to indicate that the
portlet is being placed into service. The init must successfully complete before
the portlet is allowed to service any requests. The init is called only once per
portlet object and should be used to load any expensive resources (such as
database connections). A unique PortletConfig object is passed into the init
method. This PortletConfig object is per portlet definition. You can gain access to
the initialization parameters and the resource bundles from the PortletConfig
object. You can also get the PortletContext from the PortletConfig. The
PortletContext will provide information about the portlet's runtime environment.

The init method can throw two different exceptions. An UnavailableException or
a PortletException. If either type of exception is thrown then the portlet is not put
into service and the destroy method is not called.

The UnavailableException may specify a minimum amount of time that the
portlet will be unavailable. If a time is specified then the portlet cannot be put
back into service until at least that amount of time has expired.

void processAction(ActionRequest request, ActionResponse
response)

The processAction method is called in response to an action request. URLs
generated by the portlet using RenderResponse.createActionURL() or the
ActionURL JSP tag will generate an action URL causing this method to be
invoked. This method should be used to update the portlets state based on the
action request parameters. Two objects are passed in, an ActionRequest and an
ActionResponse.

The ActionRequest provides access to the parameters, window state, portlet
mode, portlet context, portlet session and the PortletPreferences object. During
the action request, the portlet may issue a redirect to a different URL.

While processing an action request, the portlet window state and the portlet
mode may be changed. This change would be reflected in the next render phase.

258 IBM Rational Application Developer V6 and Portal Tools

It should not be assumed that the portlet will change mode or window state as
WebSphere Portal server may override the change. Changes to the window state
and mode are made through the ActionResponse object.

Code in this method should be written to handle concurrent execution from
multiple threads.

void render(RenderRequest request,
RenderResponseresponse)

The render method is invoked for all render requests. During the render request,
the portlet generates content based on its current state (View, Edit, Help, or
Configuration). The render method are passed two objects. A RenderRequest
object and a RenderResponse object. The RenderRequest provides access to
the render parameters, window state, portlet mode, portlet context, portlet
session and the PortletPreferences object. The RenderRequest does not have
access to the parameters passed into the ActionRequest unless they have been
explicitly added during the action request using the
ActionResponse.setRenderParameter() method.

The RenderResponse is used to display content, it can either use the
RenderResponse Writer or it can delegate to a JSP or Servlet using the
PortletRequestDispatcher.

Code in this method should be written to handle concurrent execution from
multiple threads.

8.5.2 class javax.portlet.GenericPortlet
The GenericPortlet class implements the Portlet interface and does provide
default implementations of the methods. All portlets should extend the
GenericPortlet class rather that implementing the Portlet interface directly. The
GenericPortlet implements many of the methods and reduces the workload when
developing portlet.

java.lang.String getInitParameter(java.lang.String name)
Returns the value of the initialization parameter. If the parameter does not exist
null will be returned

java.lang.Enumeration getInitParameterNames()
Returns all the initialization parameters names in an Enumeration of Strings. If
there are no initialization parameters defined then an empty Enumeration is
returned.

 Chapter 8. JSR 168 API 259

javax.portlet.PortletContext getPortletContext()
Returns the PortletContext for the portlets portlet application. Please see
“interface javax.portlet.PortletContext” on page 263 for more information about
the PortletContext class.

java.lang.String getName()
Returns the name of the portlet defined by either the administrator or the
application deployment descriptor.

java.util.ResourceBundle
getResourceBundle(java.util.Localelocale)

Portlets may define basic information to be used in the title bar. This information
may include title, short-title and keywords. This information can be added directly
in the portlet deployment descriptor or it may be added in an external
ResourceBundle. If this information is located in an external ResourceBundle,
the portlet deployment descriptor must provide the name of the ResourceBundle.
Portal will search the values in the ResourcesBundle first and then it will look for
the resources inline. If the resource cannot be found, an empty String will be
returned. The render method of the GenericPortlet uses this method to get the
portlet title.

void doDispatch(RenderRequest request,
RenderResponseresponse)

The doDispatch method is called from the render method. The doDispatch will
determine the portlet mode and invoke the correct method. If using a custom
mode, you should override the doDispatch method to test for your custom mode.
If the request is not for your custom mode invoke super.doDispatch to allow
GenericPortlet do dispatch the correct method.

void doEdit(RenderRequest request,
RenderResponseresponse)

When the portlet mode is Edit, the doEdit method will be invoked by doDispatch.

void doHelp(RenderRequest request,
RenderResponseresponse)

When the portlet mode is Help, the doHelp method will be invoked by
doDispatch.

260 IBM Rational Application Developer V6 and Portal Tools

void doView(RenderRequest request,
RenderResponseresponse)

The doview method is invoked by doDispatch when the portlet mode is View.

PortletConfig getPortletConfig()
This method returns the PortletConfig object for this portlet. Please see “interface
javax.portlet.PortletConfig” on page 277 for more information about the
PortletConfig class.

java.lang.String getPortletName()
This returns the name of the portlet.

java.lang.String getTitle(RenderRequest request)
This returns the portlet title.

void processAction(ActionRequest request,
ActionResponseresponse)

The processAction method is invoked for all action requests for the portlet.

void render(RenderRequest request,
RenderResponseresponse)

The render method sets the portlet title and then invokes the doDispatch()
method.

8.5.3 interface javax.portlet.PortletURL
The PortletURL are used to create URLs that reference the portlet. There are two
type of PortletURLs, ActionURL and RenderURL. By using the
RenderResponse.createActionURL, RenderResponse.createRenderURL or the
JSP tags, the portlet developer can create the different types of URLs. When a
render URL is encountered, the render method is invoked and it turn invokes the
appropriate doXXX method. When an action URL is encountered, the
processAction method is invoked. Only action URLs should be used for forms.
Render and Action parameters are different. Parameters set for an action URL
(parameters in an HTML form) are not available to the render method unless
they are explicitly added using the setRenderParameter of the ActionResponse
class. Some important methods of this interface are listed below.

 Chapter 8. JSR 168 API 261

void setParameter(java.lang.String name,
java.lang.Stringvalue)

This method is used to add parameters. Parameter added for a render URL will
only be available during the render request. Parameters added for an action URL
will only be available for the action request unless they are specifically added
using ActionResponse.setRenderParameter method.

void setParameter(java.lang.String name,
java.lang.String[]values)

This method will have the same characteristics as the method above, only that it
should be used when there are multiple values for the parameter.

void setParameters(java.util.Map parameters)
This method also adds parameters, and will have the same characteristics as the
two methods listed above. This is used when the name value pairs of the
parameters are in a Map. The keys in the Map must be of type java.lang.String
and the values must be of type java.lang.String[] (String array)

void setPortletMode(PortletMode portletMode)
This method is used to change the portlet mode. If the mode is not a supported
mode by the portlet then a PortletModeException will be thrown.

void setWindowState(WindowState windowState)
This method is used to change the portlet window state. If the window state is not
a supported state a WindowStateException will be thrown

java.lang.String toString()
This method will return a URL in the correct form for the portal server. See
Example 8-4.

Example 8-4 Using an actionURL in a link

<%
PortletURL actionurl = renderResponse.createActionURL();
%>
<a href="<%= actionurl.toString() %>">ActionURL

void setSecure(boolean secure)
This method is part of the PortletURL interface, however, it is not supported by
WebSphere Portal. The security level will always be same as the current request.

262 IBM Rational Application Developer V6 and Portal Tools

8.5.4 interface javax.portlet.PortletContext
The PortletContext provides the portlet with information about the portlet
application that it is running in. If the portlet application is not in a distributed
environment, there is only once PortletContext object instantiated for each portlet
application deployed. If the application is in a distributed environment (marked
distributable in the web.xml) then there will be one instance per JVM.

You can log events, get resources for the portlet application, initialization
parameters, you can also store and retrieve attributes that all the portlets, JSPs
and servlet of the application can access. You will use the PortletContext object
to obtain a request dispatcher for including other JSPs and servlets. The
PortletContext and the ServletContext are closely coupled. The initialization
parameters for both the PortletContext and the ServletContext are defined in the
web.xml. The PortletContext attributes are stored in the servlet context and are
accessible in any JSP or servlet. Attributes that are stored in the servlet context
are also available to all portlets.

The following methods of the PortletContext class will have the same
implementation as the ServletContex:

� getAttribute
� getAttributeNames
� getInitParameter
� getInitParameternames
� getMimeType
� getRealPath
� getResource
� getResourcePaths
� getResourceAsStream
� log
� removeAttribute
� setAttribute

The portlet specific methods of the PortletContext interface are:

int getMajorVersion()
Returns the major version of the JSR 168 Portlet API that is supported by the
Portal server.

int getMinorVersion()
Returns the minor version of the JSR 168 Portlet API that is suported by the
Portal server.

 Chapter 8. JSR 168 API 263

java.lang.String getPortletContextName()
This returns the display-name element defined in the web.xml. This represents
the name of the portlet application for this PortletContext.

Example 8-5 getPortletContextName()

web.xml
<web-app id="WebApp_ID">

<display-name>MyPortlet</display-name>
....
</web-app>

Code in portlet
String portletDisplayName = getPortletContext().getPortletContextName();
System.out.println("Display name: " + portletDisplayName);

Output in console
Display name: MyPortlet

8.5.5 interface javax.portlet.PortletRequest
The portlet request object will contain information about the client request. The
request will also include parameters, the portlet mode, the window state,
session, and access to the portlat context. PortletRequest defines commonly
used functionality for ActionRequest and RenderRequest.

Parameters received during an action request will not be sent to the render
request unless they are explicitly added using the setRenderParameters or
setRenderParameters of the ActionResponse class. This can only be done in the
processAction method.

If the render request follows an action request as part of the same request, the
parameters sent in the render request will be the render parameters set during
the action request.

A portlet will only be able to see parameters in its own request. Parameters set
for other portlets will not be visible.

Parameter and attribute names beginning with javax.portlet are reserved and
should not be used.

Request properties are used for portal specific properties. These properties may
include http headers.

Example 8-6 Code to get the properties and values of a request

Enumeration enum = request.getPropertyNames();

264 IBM Rational Application Developer V6 and Portal Tools

while(enum.hasMoreElements()){
String name=(String)enum.nextElement();
Enumeration values = request.getProperties(name);
StringBuffer valueBuffer = new StringBuffer();
while(values.hasMoreElements()){
//seperate values with a ';'
valueBuffer.append((String)values.nextElement() + "; "); }
System.out.println("Name: " + name + ", Value: " + valueBuffer.toString());

}

Example 8-7 Output from the above code while running a sample portlet

Name: accept-encoding, Value: deflate; gzip;
Name: connection, Value: Keep-Alive;
Name: referer, Value:
http://localhost:9081/wps/myportal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKL
N4g39DEDSUGYpvqRaGLGmEKOCBFvfV-P_NxU_QD9gtzQ0IhyR0UAATozOQ!!/delta/base64xml/L0
lJWWtpaWxDbEEhIS9JRGpBQUFUQUFNSkFBTXdzaXNwc1lBISEvNElVR1JZUWxHamdJLzZfMF8xTDYvN
18wXzFSRQ!!;
Name: host, Value: localhost:9081;
Name: accept-language, Value: en-us;
Name: user-agent, Value: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0);
Name: cookie, Value: JSESSIONID=00004jB0KukifHc_3h_7QBn9D-z:-1;
Name: wps.markup, Value: html;
Name: accept, Value: */*;

The following methods should be used for getting and setting request
parameters:

java.lang.String getParameter(java.lang.String name)
Returns the value of the request parameter or null if it does not exist.

java.util.Enumeration getParameterNames()
Returns all the parameter names in the form of an Enumeration of Strings or null
if no parameters exist.

java.lang.String[] getParameterValues(java.lang.String name)
Return a String array of the parameters values. If the parameter does not exist
null will be returned.

java.lang.Map getParameterMap()
Returns a Map of all the parameters. The keys are Stings and the values are
stored in String [] (String arrays). If there are no parameters, an empty Map will
be returned.

 Chapter 8. JSR 168 API 265

The following methods should be used for getting and setting request attributes.

java.lang.Object getAttribute(java.lang.String name)
Return an object of the named attribute or null if the object does not exist

java.util.Enumeration getAttributeNames()
Returns an Enumeration of the names of all the attribute.

void setAttribute(java.lang.String name, java.lang.Objectvalue)
This method is used to add an attribute.

void removeAttribute(java.lang.String name)
This method removes the stored named attribute.

Here is a list of other important method of the PortletRequest class.

java.lang.String getContextPath()
The path returned starts with ‘/’ character but it does not end with a ‘/’. This
method should be used when including resources such as images

Example 8-8 Code to get the context path of the portlet

<%= portletResponse.encodeURL(renderRequest.getContextPath() +
"/images/myImage.jpg") %>

boolean isPortletModeAllowed(PortletMode mode)
This method will true if the mode is defined in the portlet deployment descriptor. If
the mode is not defined it will return false.

PortletMode getPortletMode()
This method will return the current portlet mode.

boolean isWindowStateAllowed(WindowState state)
If the window state is defined in the deployment descriptor this will return true,
else it will return false.

WindowState getWindowState()
Returns the current window state of the portlet.

266 IBM Rational Application Developer V6 and Portal Tools

java.lang.String getProperty(java.lang.String name)
Returns the value of the named property. If the property does not exist, null is
returned. Only the first value is returned if there are more than one value. The
getProperties() method should be used for multiple values. An
IllegalArgumentException is thrown is the name is null.

java.util.Enumeration getProperties(java.lang.String name)
Returns an Enumeration of Strings representing all the values of the named
property. An empty Enumeration is returned if there are no properties. An
IllegalArgumentException is thrown if the name is null.

java.util.Enumeration getPropertyNames()
Returns an Enumeration of Strings containing all the properties for this request.
An empty Enumeration is returned if there are no properties.

java.lang.String getRemoteUser()
This method will return the user who is logged in. If the user is not logged in null
will be returned. Even with security disabled this method will return the user
information, although with security disabled the returned name may not be
human-readable. With security enabled a more readable user name will be
returned.

boolean isUserInRole(java.lang.String role)

javax.security.Principal getUserPrincipal()
Returns the Principal object of the current user who is logged in. If security is not
enabled, this method will always returns null.

8.5.6 interface javax.portlet.ActionRequest
The ActionRequest interface extends the PortletRequest interface and is used
during an action request. The ActionRequest object is passed into the
processAction method. The ActionRequest object is in scope only during
execution of the processAction method.

The ActionRequest interface adds the additional ability to get the input stream of
the request. Access to the input stream is useful when a file is uploaded from a
form.

Note: At the time of this writing this method is unsupported and will always
return false. All <security-role-ref> elements in the portlet.xml are ignored.

 Chapter 8. JSR 168 API 267

Example 8-9 Form is a JSP using multipart encoding to upload a file.

<form method="POST" action="<portlet:actionURL />"
enctype="multipart/form-data">
<input type="file" name="<%= UploadPortlet.FILE_NAME %>">

<INPUT name="<%=UploadPortlet.FILE_SUBMIT%>" value="Upload" type="submit"/>
</form>

java.io.BufferedReader getReader()
This returns a BufferedReader containing the body of the HTTP request as
character data. The character data returned will be of the same type as the
character encoding of the body. If the character encoding is not supported, an
UnsupportedEncodingException will be thrown.

When the data is of type application/x-www-form-urlencoded, portal has already
processed the form and the parameters will be available via request parameters.
An IllegalStateException will be thrown if the data is of type
application/x-www-form-urlencoded.

Either the getReader or the getPortletInputStream may be called for the
ActionRequest object but not both. If the getPortletInputStream has been called,
an ensuing call to getReader will throw an IllegalStateException.

java.io.InputStream getPortletInputStream()
An InputStream containing the HTTP request body in the form of binary data will
be returned.

When the data is of type application/x-www-form-urlencoded, portal has already
processed the form and the parameters will be available via request parameters.
An IllegalStateException will be thrown if the data is of type
application/x-www-form-urlencoded.Either the getPortletInputStream or the
getReader may be called for the ActionRequest object but not both. If the
getreader has been called, an ensuing call to getPortletInputStream will throw an
IllegalStateException.

java.lang.String getContentType()
Returns the MIME type of the HTTP request body. If the type is not known, null is
returned.

java.lang.String getCharacterEncoding()
Returns the character encoding used in the body of the HTTP request or null if
one was not specified.

268 IBM Rational Application Developer V6 and Portal Tools

void setCharacterEncoding(java.lang.String enc)
This method will set the character encoding for the returned input of the
getReader method. This must be called before the call to getReader. An
UnsupportedEncodingException is thrown if the encoding passed in is
unsupported or unknown. An IllegalStateException will be thrown if this method
is called after getReader().

int getContentLength()
Returns the length of the input stream bytes. If the length is unknown a -1 will be
returned.

Example 8-10 Parsing a file using the getReader() method

if(request.getContentType().lastIndexOf("multipart/form-data") != -1) {
BufferedReader in = request.getReader();
String line;
while ((line = in.readLine()) != null) {
if((line.indexOf("Content-Disposition") != -1) ||
(line.indexOf("Content-Type") != -1)){
/*
Place your parsing code here.
The first few lines will contain the filename and content type
Example:
-----------------------------7d5352d210102

Content-Disposition: form-data; name="FileName"; filename="C:\MyFile.txt"
Content-Type: text/plain
<This would be a blank line>
<The rest of the file>

All request parameters would then be printed
Example:
-----------------------------7d5352d210102
Content-Disposition: form-data; name="UserName"

Hailey
*/
}
else if(line.length() > 0)

//Line is part of the file
}
out.println(request.getPortletSession().getId());
in.close();
}

 Chapter 8. JSR 168 API 269

8.5.7 interface javax.portlet.RenderRequest
The RenderRequest interface extends the PortletRequest. The RenderRequest
does not define any additional functionality. The RenderRequest object is scoped
to the render method.

8.5.8 interface javax.portlet.PortletResponse
The portlet response object contains information to be returned to the portlet
during a request. Examples of this include redirection, portlet mode change, title,
content, etc. The portlet response object is passed into the render and the
processAction methods.

The portlet response provides a way to add or update the response properties.

void setProperty(java.lang.String key, java.lang.String value)
This method will replace the value of the existing key. If the key is being passed
in is null, an IllegalStateException will be thrown.

void addProperty(java.lang.String key, java.lang.String value)
This method will add a property. Once again an IllegalStateException will be
thrown if the key being passed in is null.

java.lang.String encodeURL(java.lang.String path)
This method should be used to encode URLs when including other resources in
the portlet like images, servlets, JSPs, and other files. The returned String will be
the encoded URL required by portal. If the URL does not need to be encoded
then the original String will be returned.

The path for this method must be either an absolute URL:

renderResponse.encodeURL(“http://localhost:9081/wps/myportal/myportlet/
images/myimage.gif”);

or a root relative path using the getContextPath method of the RenderRequest
object.

Example 8-11 Code to get the root relative path

<%= renderResponse.encodeURL(renderRequest.getContextPath() +
"/images/myimage.gif") %>

270 IBM Rational Application Developer V6 and Portal Tools

8.5.9 interface javax.portlet.ActionResponse
The ActionResponse interface extends the PortletResponse interface. The
ActionResponse is used during an action request and is passed into the
processAction method. ActionResponse includes added functionality for
changing the portlet mode, changing the portlet window, setting render
parameters, and redirecting to another URL. The ActionResponse object is only
in scope during the processAction method.

void sendRedirect(java.lang.String location)
This method redirects the user to the specified URL. This method will only accept
an absolute URL or a root relative URI. An IllegalArgumentException is thrown if
a relative URL is passed in. If this method is called after setRenderParameter,
setRenderParameters, setwindowState, or setPortletMode then an
IllegalStateException is thrown and the redirection is not executed.

void setPortletMode(PortletMode portletMode)
This method is used to change the portlet mode. If a mode is selected that is not
supported by the portlet then a PortletModeException is thrown. You can use the
isPortletModeAllowed method of the PortletRequest object to determine if this is
a supported portlet mode. If this is called after the sendRedirect method an
IllegalStateException is thrown. Please see “JSR 168 portlet modes” on
page 254 for more information about portlet modes.

void setWindowState(WindowState windowState)
This method is used to change the window state of the portlet. If a window state
is selected that is not supported then a WindowStateException will be thrown.
You can use the isWindowStateAllowed method of the PortletRequest object to
determine if the window state is supported. If this is called after the sendRedirect
method then an IllegalStateException is thrown. Please see “JSR 168 Portlet
window states” on page 256 for more information.

void setRenderParameter(java.lang.String key,java.lang.String
value)

Parameters set using this method will be used in all subsequent render requests
until the portlet is targeted with a new request. If there are no parameters set
using this method then there will be no render parameters for the
RenderRequest.

This method is overloaded for render parameters that contain a String[] (String
array) for the values.

 Chapter 8. JSR 168 API 271

void setRenderParameter(java.util.Map parameter)
This method will have the same function as the method listed above. This
method accepts a Map of key value pairs where the key must be of type String
and the value must be of type String[] (String array).

8.5.10 interface javax.portlet.RenderResponse
The RenderResponse interface extends the PortletResponse interface. This
object is passed to the render method. This object is used to set the title of the
portlet and generate content by either obtaining a writer or delegating to a JSP or
Servlet. The scope of this object is only for the render method.

Some important method of the RenderResponse interface. Please see the JSR
168 API for a complete listing of methods.

void setContentType(java.lang.String type)
This method is used to set the content type. An IllegalArgumentException will be
thrown if the type is not a valid type return by the getResponseContentType
method of the PortletRequest object.

If the getWriter or getPortletOutpuStream are called before this method then an
IllegalStateException is thrown.

java.io.PrintWriter getWriter()
This method should be used for writing content to the response. The
setContentType should be called before this method. An IllegalStateException
will be thrown if the getPortletOutputStream has already been called.

java.io.OutputStream getPortletOutputStream()
This method is also used for generating content to the response. Like the
getWriter, the setContent should be called before this method. An
IllegalStateException will be thrown if the getWriter has already been called.

int getBufferSize()
The buffer size for the response is returned. A zero will be returned if no buffer is
used.

void setBufferSize(int size)
This method will set a requested buffer size for the response body. The buffer
size will be at least as large as the requested size. It could be larger. This method
needs to be called before any content is written.

272 IBM Rational Application Developer V6 and Portal Tools

void reset()
This will clear all the content on the buffer and the properties that were set. This
will throw an IllegalStateException if the response has already been committed.
You can use the isCommitted() method to determine if any bytes have been
written to the client.

void resetBuffer()
This method is the same as the reset, however this will not clear the properties.
This will also throw an IllegalStateException if the response is committed. You
can use the isCommitted() method to determine if any bytes have been written to
the client.

void flushBuffer()
Invoking this method will force the content in the buffer to be written to the client.
The response is considered to be commited after a call to this method.

boolean isCommited()
Returns true if the response has been committed else it returns false.

void setTitle(java.lang.String title)
This method is used for setting the title of the portlet. Currently WebSphere
Portal does not support this method.

java.lang.String getNamespace()
This method returns the namespace of the portlet. This String should be prefixed
to elements to make them unique on a page. JavaScript variable, functions, and
form fields should be prefix with the String returned by this method.

PortletURL createRenderURL()
Creates a URL pointing to the portlet. This URL will cause a render request.

Please see “interface javax.portlet.PortletURL” on page 261 for information about
the PortletURL object.

PortletURL createActionURL()
Creates a URL pointing to the portlet. This URL will cause an action request.

Please see 8.5.3, “interface javax.portlet.PortletURL” on page 261 for information
about the PortletURL object.

 Chapter 8. JSR 168 API 273

8.5.11 interface javax.portlet.PortalContext
The PortalContext will provide information about the portal server that is invoking
the portlet. This object can be obtained from the PortletRequest object.

java.lang.String getPortalInfo()
This method returns information about the server

Example 8-12 String returned from the getPortalInfo() method

IBM WebSphere Portal/5.1

java.lang.String getProperty(java.lang.String name)
Returns the value of the portal property with the given name. Null will be returned
if no property of that name is found.

java.util.Enumeration getPropertyNames()
Returns an Enumeration of all the portal property names. An empty Enumeration
is returned if there are no portal properties.

java.util.Enumeration getSupportedPortletModes()
Returns an Enumeration of PortletMode objects that the portal server supports.

java.util.Enumeration getSupportedWindowStates()
Returns an Enumeration of WindowState objects that are supported by the portal
server.

8.5.12 interface javax.portlet.PortletPreferences
The PortletPreferences object is used to provide a customized view of the portlet
to the user. Preferences are stored as name value pairs. They can be either
defined in the portlet deployment descriptor or programmatically. If the
parameters are defined in the deployment descriptor, they have the option of
being read only. Read only parameters can only be updated by the administrator
while in Config mode. The administrator can also modify the parameters using
the admin portlets. If the parameters are added programmatically they are not
considered to be read-only. Users can modify parameters only while in the Edit
mode and only parameters that are not read only. Changes made in Config
mode by the administrator will affect all instances of the portlet on all pages.

Example 8-13 Preference parameter tag in the portlet deployment descriptor

<preference>
<name>My Preference Parameter Name</name>

274 IBM Rational Application Developer V6 and Portal Tools

<value>My Preference Parameter Value</value>
</preference>

java.util.Map getMap()
This method returns a Map of all the preferences. The keys will be of type String
and the Values will be of type String[] (String array). An empty Map will be
returned if there are no preferences.

java.util.Enumeration getNames()
Returns an Enumeration of all the preference keys that have a value. An empty
Enumeration will be returned if there are no keys.

java.lang.String getValue(java.lang.String key,
java.lang.Stringdef)

This method returns the first preference found matching the key parameter. If the
preference has multiple values, only the first value will be returned. If there are
no values found for this preference the default parameter passed in will be
returned as the value. If the key is null then an IllegalArgumentException will be
thrown.

java.lang.String[] getValues(java.lang.String key,
java.lang.String[] def)

This method will have the same functionality as the method listed above with the
exception that this is used when there are multiple values for the preference.

boolean isReadOnly(java.lang.String key)
Use this method to determine if the preference is read only. Only Admistrators in
CONGIF mode can modify read only preferences. An IllegalArgumentException
is thrown if the preference does not exist.

void reset(java.lang.String key)
This method will reset the preference to the default value if there is one specified.
If there are no default values, this preference will be removed. If the preference
cannot be modified, a ReadOnlyException will be thrown. An
IllegalArgumentException will be thrown if the preference does not exist.

void setValue(java.lang.String key, java.lang.String value)
This method is used to modify the value for the preference. The value can be null
but the key must be a valid String. An IllegalArgumentException will be thrown if

 Chapter 8. JSR 168 API 275

the key is null, the key is too long, or the value is too long. A ReadOnlyException
will be thrown if the user does not have the right to modify this preference for this
request.

void setValues(java.lang.String key, java.lang.String[] values)
This method has the same functionality as the method listed above with the
exception that this method should be used when there are multiple values for the
preference.

void store()
This method must be called for new or update preferences to be stored in
persistence. This needs to only be called once for all of the values to be stored.
Store does not have to be called for each preference. If store() does not throw an
exception, it is assumed that the save completed. If the save cannot be
completed in the backend, an IOException will be thrown. This method can also
throw a ValidtorException if the parameter cannot be validated by the
PreferenceValidator class specified in the deployment descriptor. See interface
javax.portlet.PreferencesValidator for more information.

An IllegalStateException is thrown if this method is called inside the render
method.

8.5.13 interface javax.portlet.PreferencesValidator
Portlets that wish to validate preferences should create a class that implements
PreferencesValidator interface. This class should then be added to the portlet
deployment descriptor.

Example 8-14 PreferenceValidator defined in the portlet deployment descriptor

<preferences-validator>myportlet.myportletPreferencesValidator
</preferences-validator>

The validate method of this class will be called by the store method. If the
validate class throws a Validator exception the store will not complete and it will
propagate the exception to the portlet.

void validate(PortletPreferences preferences)
If the preferences are not valid then this method should throw a
ValidatorException. If the preferences are valid this method should finish
gracefully. It is the responsibility of the portlet developer to add a error description
to the ValidatorException if needed.

276 IBM Rational Application Developer V6 and Portal Tools

Example 8-15 Validate method generated by Rational Application Developer

public void validate(PortletPreferences preferences) throws ValidatorException
{

Collection failedKeys = new ArrayList();
for(Enumeration names=preferences.getNames(); names.hasMoreElements();) {

String name = names.nextElement().toString();
if(name.startsWith(".")) continue;
String value = preferences.getValue(name, "");
//validates that the preferences do not start or end with white space
//validates that the preferences start with http: or https:
if(!value.equalsIgnoreCase(value.trim()) ||
!(value.startsWith("http:")||value.startsWith("https:"))) {
failedKeys.add(name);
}
}
if(!failedKeys.isEmpty()) {

throw new ValidatorException("One or more preferences do not comply
+ with the validation criteria",failedKeys);

}
}

8.5.14 interface javax.portlet.PortletConfig
The portlet config object is used during initialization of the portlet. From the
PortletConfig object you can obtain the PortletContext and the resource bundle
used for setting the title. Unlike the PortletContext object, the PortletConfig will
use the init parameters defined in the portlet.xml and not the init parameters
defined in the web.xml.

The portlet may define some basic information in the deployment descriptor that
is used for the title bar. The information may also be used for the categorization
of the portlet. This information can be directly stored in the deployment descriptor
or it may be stored in an external resource bundle. Resource bundles will be
discussed in a later section but was addressed here to acknowledge that the
portlet config provides access to this information.

java.lang.String getInitParameter(java.lang.String name)
This will return the named initialization parameters defined in the portlet
deployment descriptor.

Example 8-16 Init parameter defined in the portlet deployment descriptor

<init-param>
<name>My init param</name>
<value>My init param value</value>

 Chapter 8. JSR 168 API 277

</init-param>

If the named parameter does not exist then null is returned. An
IllegalArgumentException is thrown if the named parameter is null.

java.util.Enumeration getInitParameters()
Returns an Enumeration of Strings for all the initialization parameters defined by
the portlet. An empty Enumeration is returned if there are no initialization
parameters defined.

PortletContext getPortletContext()
Returns the PortletContext object. Please see “interface
javax.portlet.PortletContext” on page 263” for more information about the
PortletContext interface.

java.lang.String getPortletName()
This returns the name of the portlet as defined by the administrator or the name
defined in the portlet deployment descriptor.

Example 8-17 Portlet name in the portlet deployment descriptor

<portlet-name>myPortlet</portlet-name>

java.lang.ResourceBundle
getResourceBundle(java.util.Locale)

Returns the resource bundle for the locale specified. The resource bundle can be
defined as external or it can be inline text in the portlet.xml.

8.5.15 interface javax.portlet.PortletSession
The portlet session object provides session tracking for all requests coming from
the same client. All portlets of the same portlet application will share a portlet
session for that user. Portlets of other portlet application will not be able to
access this session object and therefore will not be able to share attributes.

PortletSession provides two static variables to be used to when adding
attributes. The two variables representing the scopes are
APPLICATION_SCOPE and PORTLET_SCOPE.

Objects stored in the APPLICATION_SCOPE are shared among all portlets of
the same portlet application. Attributes stored as PORTLET_SCOPE are
available only to the portlet, although the attribute is not completely hidden it is

278 IBM Rational Application Developer V6 and Portal Tools

namespaced to the specific portlet. The PortletSessionUtil class should be used
to decode portlet attributes stored in the PORTLET_SCOPE when called through
the HttpSession of the HttpSessionBindingListener. Please see “Listeners” on
page 284 for more information.

The PortletSession and the HttpSession can share attributes. This means that
servlets and JSPs will have access to attributes stored by the PortletSession at
APPLICATION_SCOPE. The PortletSession will also have access to attributes
stored by servlets and JSPs.

Example 8-18 Sharing session attributes

Code in the portlet
request.getPortletSession().setAttribute("name", "Hailey Anne",
PortletSession.APPLICATION_SCOPE);
PortletRequestDispatcher rd =
getPortletContext().getRequestDispatcher("/MyServlet");
rd.include(request,response);

Code in MyServlet
String name = request.getSession().getAttribute("name");

The following methods of the PortletSession are based on the HttpSession:

� getCreationTime
� getId
� getLastAccessedTime
� getMaxInactiveInterval
� invalidate
� isNew
� setMaxInactiveInterval

The following methods of PortletSession are also based on HttpSession
methods:

� getAttribute
� setAttribute
� removeAttribute
� getAttributeNames

PortletSession does overload the previous methods to provide access for the
different storage scopes of the portlet session (PORTLET_SCOPE and
APPLICATION_SCOPE).

java.lang.Object getAttribute(java.lang.String name, int scope)
Returns the named object bound in session to the given scope. If no object is
found, null is returned.

 Chapter 8. JSR 168 API 279

java.lang.Enumeration getAttributeNames(int scope)
Returns an Enumeration of type String that contains all the attribute names of the
specified scope.

void removeAttribute(java.lang.String name, int scope)
Removes the named attribute from the specified scope.

void setAttribute(java.lang.String name, java.lang.Object
value, int scope)

This method will bound the named object to the specified scope. If an attribute
with the given name already exist in the scope it is updated with the new object.
If the object implements HttpSessionBindingListener is will be notified. This will
be discussed further in the listeners section.

8.6 JSR 168 Portlet life cycle
The life cycle of a portlet closely resembles the life cycle of a servlet. There are,
however, some differences. The following section will describe the life cycle of a
portlet from beginning to end.

WebSphere portal server will mange the life cycle of the portlet by using the
methods of the Portlet class.

8.6.1 Instantiation
The portlet will be instantiated during startup. The portlet will be loaded using the
same classloading that is used for loading the Web application.

8.6.2 Initialization
The init() method of the Portlet class is called when the portlet is first requested.
Portal will pass a unique Portletconfig object to the init method. During
initialization any one time setup for the portlet should be completed. This
includes expensive operations such as database connections.

There are two exceptions that may be thrown during initialization. If either
exception is thrown, the portlet will not be placed into service and the destroy()
method will not be called.

Note: Attribute names starting with javax.portlet are reserved and should not
be used.

280 IBM Rational Application Developer V6 and Portal Tools

UnavailableException
The UnavalableException may indicate a specific time out value. If WebSphere
portal server wishes to attempt to place this portlet back into service then it must
at least wait for the specified time to expire.

PortletException
All RuntimeException thrown during initialization are treated as
PortletExceptions. If PortletException is thrown the portal server does not need
to wait any amount of time before attempting to place the portlet into service.

8.6.3 Request handling
JSR 168 portlets use a two phase processing model. The phases are split
between a render phase and an action phase.

The portlet can generate a link to itself by using a PortletURL object. There are
two types of PortletURL, ActionURL and a RenderURL. Using the
RenderResponse object you can create a URL of either type or you can also use
the JSP tags, actionURL and renderURL.

During request handling a portlet may throw one of the following exceptions

PortletException
This exception indicates that error in processing has occurred. All
RuntimeExceptions are treated as a PortletException. If this is thrown from the
processAction() method, all actions on the ActionResponse object will be ignored
and the render method for this portlet will not be call during this request. The
render method for all other portlets on the page will be invoked. If the portlet is
cached, the cached version may be returned instead of invoking the render
method.

PortletSecurityException
This exception indicates that the user does not have the proper rights for the
portlet.

UnavailableException
This exception indicates that the portlet is unavailable to process the request.
Like in the init method, the UnavailableException may indicate a time value that
the portlet will be unavailable for.

Render phase
A RenderURL will cause the portlet to enter the render phase, this is also known
as a render request. The render phase is used for displaying content in the

 Chapter 8. JSR 168 API 281

portlet. During a render request, the render method for all portlets on the page
will be invoked, unless the portlet is cached. The render method may not be call
and the cached content of the portlet could be returned. The processAction
method will not be invoked during a render request. The render phase is also
entered when a request is made for the page that the portlet resides.

Action phase
An actionURL will cause the portlet to enter the action phase, also known as
action request. The action phase is typically used to modify the state of the
portlet or to process a task. During the action phase the processAction() method
of the portlet is called. After the process action completes, the render method is
invoked for all portlets on the page, unless the portlet is cached. The render
method may not be called and the cached content of the portlet could be
returned. Action parameters are passed into the processAction method via the
ActionRequest object. These parameters can represent a field in an HTML form
or they can be parameters explicitly set by the programmer.

While in the action phase, the portlet mode and the window state may be
changed. Although they can be programmatically changed, the portal server can
override the change for any reason including the user may not have the required
rights. The user may also be redirected to another URL during the action phase
by using a request dispatcher.

Action parameter are not passed to the render phase unless they are explicitly
specified. You should use the setRenderParameter or setRenderParameters
method of the ActionResponse to pass parameters to the render phase. The
parameters will be out of scope after the render method completes.

8.6.4 End of service
When WebSphere portal server is removing the portlet from service, the
destroy() method of Portlet is invoked. This gives the portlet an opportunity to
clean up resources obtained in the init method and save the persistent state.
WebSphere portal server will wait until all threads serving a request for this
portlet have completed. If this does not occur in a timely manner the portlet will
be removed from service. The destroy method may throw a RuntimeException. If
this happens the destroy is considered to have completed successfully and the
portlet is removed from service.

Once the portlet is removed, the portlet object is eligible for garbage collection.
There cannot be any further requests for this portlet unless a new portlet object is
instantiated.

282 IBM Rational Application Developer V6 and Portal Tools

8.7 Portlet caching
Caching improves performance by reducing the load on the server. Caching is
per user per portlet, a portlet cached for one user will not be used for another
user. A JSR 168 portlet must use the portlet.xml to enable caching.

Example 8-19 Portlet caching in the portlet.xml

<portlet>
...

<expiration-cache>600</expiration-cache>
...

</portlet>

The expiration cache is defined in seconds. In the example above, the contents
of the portlet should be cached for 10 minutes. A value of zero indicates that the
portlet caching is disabled. A -1 value will cause the portlet cache to never
expire. Any value above 0 will be interpreted as the number of seconds the
content should be cached for.

If the expiration-cache is defined in the portlet.xml, the portlet may
programmatically change the expiration time. The request property
expiration-cache should be used to modify the caching values.

Example 8-20 Programmatically changing the expiration time-out value

RenderResponse.setProperty(
 PortletResponse.EXPIRATION_CACHE,
 (new Integer(600)).toString());

While the portlet content is cached and the portlet is not a target of a request, the
cached content will be used during the render phase. If there is a request for the
portlet, the cached content will be disregarded and the render method of the
portlet will be invoked.

8.7.1 Remote cache
JSR 168 portlets can indicate how a page is cached on a remote proxy server.

The ibm-portlet-portal-ext.xmi will need to be modified in order to enable remote
portlet caching. The <remote-cache-scope> element is used to specify if the
cache is SHARED or NON_SHARED.

Example 8-21 ibm-portlet-portal-ext.xmi

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://www.ibm.com/xml/ns/portlet/portlet-app_1_0_ext.xsd"

 Chapter 8. JSR 168 API 283

version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xml/ns/portlet/portlet-app_1_0_ext.xsd
http://www.ibm.com/xml/ns/portlet/portlet-app_1_0_ext.xsd" >
 <anonymous-session>true</anonymous-session>
 <!-- Use the portlet name in the portlet.xml for the href -->
 <portlet href="PORTLET_NAME_FROM_PORTLET_XML">
 <remote-cache-scope>SHARED</remote-cache-scope>
 <remote-cache-dynamic>true</remote-cache-dynamic>
 </portlet>
</portlet-app>

Portlets can get a persistent HttpSession object on an unauthenticated page by
specifying true in the <anonymous-session> element. With a value of false, the
HttpSession is lost after each request. The default value for the
anonymous-session element if false if the element is not present.

You can also specify the setting <remote-cache-dynamic>. This element
determines if the portlet will publish remote cache information. A setting of false
will improve performance by indicating that portal does not need to wait for the
remote cache to be published.

Like local cache, you can also programmatically modify the setting for remote
cache.

Example 8-22 Programmatically modifying remote cache settings

RenderResponse.setProperty(RemoteCacheInfo.KEY_SCOPE, “SHARED”);
RenderResponse.setProperty(RenderResponse.EXPIRATION_CACHE, (new
Integer(600)).toString());

8.8 Listeners
JSR 168 portlets do not define any portlet listeners, instead they use servlet
listeners. Servlet listeners should be implemented in the portlet environment like
they are in the servlet environment. The listeners should be added in the
web.xml or to any object that needs to be informed when being added or
removed from the session should implement HttpSessionBindingListener.
Detailed description of servlet listeners are outside the scope of this book, but we
will briefly describe them here.

8.8.1 HttpSessionBindingListener
Object that require notification when being added or removed from the portlet
session should implement this interface. This interface defines two methods,

284 IBM Rational Application Developer V6 and Portal Tools

valueBound and valueUnbound. Both of these methods are passed a
HttpSessionBindingEvent object. From the HttpSessionBindingEvent object you
can get access to the name and value of the object that has been added or
removed from the session. You can also get the session object. When using
attribute that are store in the portlet scope, you should use the PortletSessionUtil
class to decode the attribute names.

8.8.2 ServletContextListener
The ServletContextListener can be used for the PortletContext. This listener
contains contextInitialized and contextDestroyed methods. An object of type
ServletContextEvent is passed into the initialized and destroyed methods. From
this object you can get access to the ServletContext. The contextInitialized
method will be called when the PortletContext is created and contextDestroyed
will be call when the PortletContext is destroyed.

8.8.3 ServletContextAttributeListener
This interface defines three methods, added, removed and replaced. These
methods are to be used when attributes have been added, removed, and
replaced. A ServletcontextAttributeEvent is passed to these three methods.
From this object you can get the name and value of the attribute that has been
added, updated or removed.

8.8.4 HttpSessionListener
The HttpSessionListener provides two methods sessionCreate and
sessionDestroyed. These are invoked when the session has been created and
destroyed. A HttpSessionEvent object is passed into these method. From the
HttpSessionEvent you can get the HttpSession.

8.8.5 HttpSessionAttributeListener
Like the ServletContextAttributeListener, the HttpSessionAttributeListener
defines the same three methods attributeAdded, attributeRemoved, and
attributeReplaced. These methods are pass a HttpSessionBindingEvent object.
You can get the name and value of the attribute that has been added, removed or
replaced.

The following examples will show the web.xml, the listener class and a bean
implementing the HttpSessionBindingListener.

Example 8-23 web.xml

<web-app id="WebApp_ID">

 Chapter 8. JSR 168 API 285

...
<listener>

<listener-class>listener.MyListeners</listener-class>
</listener>

...
</web-app>

Example 8-24 Class implementing ServletContextListener,
ServletContextAttributeListener,HttpSessionListener, and HttpSessionAttributeListener

public class MyListeners implements ServletContextListener,
ServletContextAttributeListener, HttpSessionListener,
HttpSessionAttributeListener {

//ServletContextListener methods.
public void contextInitialized(ServletContextEvent sce) {

System.out.println("Servlet Context initialized.");
}
public void contextDestroyed(ServletContextEvent sce) {

System.out.println("Servlet Context destroyed");
}
//ServletContextAttributeListener methods.
public void attributeAdded(ServletContextAttributeEvent scae) {

System.out.println("Servlet context attribute added: " + scae.getName());
}
public void attributeRemoved(ServletContextAttributeEvent scae) {

System.out.println("Servlet context attribute removed: " + scae.getName());
}
public void attributeReplaced(ServletContextAttributeEvent scae) {

System.out.println("Servlet context attribute replaced: " +
scae.getName());

}

//HttpSessionListener methods.
public void sessionCreated(HttpSessionEvent hse) {

System.out.println("HttpSession created");
}
public void sessionDestroyed(HttpSessionEvent hse) {

System.out.println("Httpsession destroyed.");
}

//HttpSessionAttributeListener methods.
public void attributeAdded(HttpSessionBindingEvent hsbe) {

System.out.println("HttpSession added: " + hsbe.getName());
}
public void attributeRemoved(HttpSessionBindingEvent tbia) {

System.out.println("HttpSession attribute removed: " + tbia.getName());
}
public void attributeReplaced(HttpSessionBindingEvent hsbe) {

System.out.println("HttpSession attribute replaced: " + hsbe.getName());

286 IBM Rational Application Developer V6 and Portal Tools

}
}

Example 8-25 Bean implementing HttpSessionBindingListener

public class SessionBean implements HttpSessionBindingListener {
public void valueBound(HttpSessionBindingEvent hsb) {

System.out.println("SessionBean added to HttpSession");
}
public void valueUnbound(HttpSessionBindingEvent hsb) {

System.out.println("SessionBean removed from HttpSession");
}

}

8.9 Deployment descriptors
Deployment descriptors provide information to the server about the application.
Two deployment descriptors are required for portlets, web.xml and portlet.xml.
The web.xml (Web deployment descriptor) will be used to define all non portlet
resources. Compared to the IBM portlet API, JSR 168 does not define a servlet
so you do not have to define a servlet in the web.xml. Remember that in JSR 168
the portlet do not extend the HttpServlet interface like they do in the IBM API.
Therefore portlets are not servlets and are not required to go into the web.xml.
You can, however, use this to define other resources. The following items would
be set in the web.xml.

� <description> tag should contain the portlet application description
� <display-name> tag should contain the portlet application name
� <servlet> tag should be used to define any new servlets.
� <security-role> will define security roles for the portlet security role mapping

Example 8-26 Web deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp_ID">

<display-name>My Portlet</display-name>
 <description>This is my portlet</description>

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

 Chapter 8. JSR 168 API 287

</welcome-file-list>
</web-app>

Please see the servlet specification for complete details on the Web deployment
descriptor.

The portlet.xml is used to define all portlet related resources. You should use
Rational Application Developer to create and modify your portlet.xml. Rational
Application Developer contains tools for inserting and removing elements and
also to verify that the portlet.xml is valid. We will discuss each of the elements in
the portlet.xml to give a complete understanding.

8.9.1 Portlet.xml declaration
All portlet deployment descriptors need to declare the xml version and encoding.

<?xml version="1.0" encoding="UTF-8"?>

8.9.2 portlet-app - required, can occur only once

The portlet-app element is the root element for the portlet deployment descriptor.
This has a required attribute “version” that specifies the version of the xml
schema that this portlet.xml conforms with.

Example 8-27 portlet-app tag. This should all appear on one line

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

Attributes
� version -

This attribute is required.

� id -

This attribute is optional.

Elements
(The elements are required to be listed in the order they are presented)

� portlet

Can occur zero or more times. This element defines the portlet. The portlet
name must be unique within the portlet application.

288 IBM Rational Application Developer V6 and Portal Tools

� custom-portlet-mode

Can occur zero or more times. This element defines any custom portlet
modes for the portlet application. The name of the portlet-mode defined must
be unique for the portlet application.

� custom-window-state

Can occur zero or more times. This element defines any custom window
states for this application. The name of the window-state must be unique
within the portlet application.

� user-attributes -

Can occur zero or more times.

� security-constraint -

Can occur zero or more times.

8.9.3 portlet - can occur zero or more times

The portlet tag contains information used for initializing the portlet.

Example 8-28 portlet tag in the portlet.xml

<portlet>
<portlet-name>MyPortlet</portlet-name>
<display-name>MyPortlet portlet</display-name>
<display-name xml:lang="en">MyPortlet portlet</display-name>
<portlet-class>myportlet.MyPortletPortlet</portlet-class>
<init-param>

<name>wps.markup</name>
<value>html</value>

</init-param>
<expiration-cache>0</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>
<portlet-mode>config</portlet-mode>

</supports>

Note: WebSphere Portal does not provide support for any custom window
states at this time.

Note: WebSphere portlet does not currently support the security-constrain
tag.

 Chapter 8. JSR 168 API 289

<supported-locale>en</supported-locale>
<resource-bundle>myportlet.nl.MyPortletPortletResource</resource-bundle>
<portlet-info>

<title>MyPortlet portlet</title>
</portlet-info>
<portlet-preferences>

<preference>
<name>.MyPortletPortletEditKey</name>
<value>Read-Write Value</value>

</preference>
<preference>

<name>.MyPortletPortletConfigKey</name>
<value>Read-Only Value</value>
<read-only>true</read-only>

</preference>
</portlet-preferences>

</portlet>

Attributes
� id

The id attribute is optional.

Elements
� description - can occur zero or more times

Attribute:

– xml:lang

This attribute indicates the language used in the description

This element is used in describing the portlet. This should include information
about the portlet.

� portlet-name - must occur only once
The portlet name must be unique within the portlet application. The
portlet-name can only occur once for each portlet element.

� portlet-class - must occur only once
The portlet class must be a fully qualified class or interface. The portlet-class
can only occur once for each portlet element.

� init-param - can occur zero or more times
Attribute:

– id

The id attribute is optional.

290 IBM Rational Application Developer V6 and Portal Tools

Elements:

– description - can occur zero or more times
Attributes:

• xml:lang

This attribute indicates the language used in the description

This element is used to describing the initialization parameters.

– name - must occur only once
The name element specifies the name of the initialization parameter

– value - must occur only once
The value element specifies the value for this initialization parameter

� expiration-cache - can occur either zero or one time
This elements defines caching for this portlet. The parameter indicates the
time in seconds after which the portlet output expires. -1 indicates that the
output never expires.

� supports - must occur one or many times
All portlets are required to support View mode. The supports element must
occur at least once, containing the View mode. WebSphere portlet will only
support the following modes View, Edit, Help, and Configuration.
Configuration is the only custom mode supported by WebSphere Portal.

Attribute:

– id

The id attribute is optional.

Elements:

– mime-type - must occur only once
This element is used to define the MIME type for the portlet mode. The
MIME type may contain wildcard character '*', like "text/*" or "*/*, or it can
explicitly define the type like "text/html".

– portlet-mode - can occur zero or more times
Since all portlets must support View mode it is not required to add it.
However, it is recommended that it is added for readability. The
portlet-mode must be a valid mode.

� supported-locale - can occur zero or more times
Indicates the locale that this portlet supports.

 Chapter 8. JSR 168 API 291

You can choose to have a resource bundle with zero or one portlet-info elements.
You can only define one resource-bundle for each portlet application. If you do
have a resource bundle with the inline portlet-info element, portal will look for the
value in the resource bundle first. If it does not find the value there but finds it
inline, it will add the inline element to the resource bundle.

� resource-bundle - must occur only once
This element will contain the filename for the resource bundle. The filename
should be the fully qualified class name and it should be located in
/WEB-INF/classes/nls subdirectory of the WAR. All of the locale-specific
resource bundles append the locale to the filename (for example,
MyPortlet_es.properties for Spanish).

To correctly display the portlet title, there must be a corresponding
supported-locale element for each resource bundle locale. If the locale is
missing from the supported-locale element, the default locale will be used for
the portlet title.

There are three constrains for the resource bundle

– javax.portlet.title

This is the title of the portlet to be displayed in the title bar. This may be
overridden programmatically of by the administrator.

– javax.portlet.short-title

This is a short title for the portlet. This is used in cases where device
cannot display the full title.

– javax.portlet.keywords

Keywords may be used by portal when searching for portlets. The
keywords must be separated by commas (‘,’).

Example 8-29 Resource bundle in portlet.xml

<resource-bundle>nls.SamplePortlet</resource-bundle>

Example 8-30 Resource bundle examples

English Resource Bundle
#
Filename: SamplePortlet.properties
javax.portlet.title=Sample Portlet
javax.portlet.short-title=sample
javax.portlet.keywords=sample,test

Spanish Resource Bundle
#

292 IBM Rational Application Developer V6 and Portal Tools

Filename: SamplePortlet_es.properties
javax.portlet.title=EjemploMi Portlet
javax.portlet.short-title=ejemplo
javax.portlet.keywords=ejemplo, prueba

� portlet-info - can occur only once
The portlet info is used to provide the title, short-title, and keywords for the
default locale.

Attribute:

– id

The id attribute is optional.

Elements:

– title - must occur only once
This is the title of the portlet to be displayed in the title bar. This may be
overridden programmatically of by the administrator.

– short-title - can occur zero or one time
This is a short title for the portlet. This is used in cases where device
cannot display the full title.

– keywords - can occur zero or one time
Keywords may be used by portal when searching for portlets. The
keywords must be separated by commas (‘,’).

If the resource bundle does not exist, the portlet-info must occur only once.

� portlet-info - can occur only once
The portlet info is used to provide the title, short-title, and keywords for the
default locale.

Attribute:

– id

The id attribute is optional.

Elements:

– title - must occur only once
This is the title of the portlet to be displayed in the title bar. This may be
overridden programmatically of by the administrator.

– short-title - can occur zero or one time
This is a short title for the portlet. This is used in cases where device
cannot display the full title.

 Chapter 8. JSR 168 API 293

– keywords - can occur zero or one time
Keywords may be used by portal when searching for portlets. The
keywords must be separated by commas (‘,’).

� portlet-preferences - can occur zero or more times
The portlet-preferences element will store the portlet preferences. Portlet
preferences are used to store persistent data for the user.

Attribute:

– id

The id attribute is optional.

Elements:

– preference - can occur zero or more times
The preference element will store the name and value pairs for the
preferences. Please refer to “interface javax.portlet.PortletPreferences” on
page 274 for more information.

Attribute:

• id

The id attribute is optional.

Elements:

• name - must occur once
The name element represents the name of the preference.

Example 8-31 Using the preferences in the portlet.xml and code

<portlet-preferences>
<preference>

<name>test</name>
<value>value for test preference</value>
<read-only>true</read-only>

</preference>
</portlet-preferences>

The following code will retrieve the value for test.

PortletPreferences preferences = RenderRequest.getPreferences();
String value = preferences.getValue("test", "No value found");

• value - can occur zero or more times
You can have multiple values for the preference. Multiple values will be
returned as a String[] (String array).

294 IBM Rational Application Developer V6 and Portal Tools

• read-only - can occur zero or one time
Read only will take a boolean value of either true or false. True
indicates that this preference can only be updated by the administrator
during Configuration mode.

– preference-validator - can occur zero or one time
The preference-validator class must use the fully qualified class name.
This class must implement javax.portlet.PortletValidator. The validate()
method will be invoked during a call to the store() method of the
PortletPreference class.

� security-role-ref - can occur zero or more times
Is used in conjunction with the web.xml.

Attribute:

– id

This id attribute is optional.

Elements:

– description - can occur zero or more times
Attribute:

• xml:lang

This attribute indicates the language used in the description.

This element is used to describing the security role references.

– role-name - must only occur once
This defines the name for the security role.

– role-link - can occur zero or one time
The role-link element refers to a defined security role. The role-link
element must contain the name of one of the security roles defined in the
security-role elements of the web.xml.

8.9.4 custom-portlet-mode - can occur zero or more times

The custom-portlet-mode is used to define modes for the portlet. Currently
WebSphere portal only supports the Configuration custom mode.

Note: WebSphere portal version 5.1 will ignore all security-role-ref tags as
they are currently not supported.

 Chapter 8. JSR 168 API 295

Attribute
� id

The id attribute is optional.

Elements
� description - can occur zero or more times

Attributes:

– xml:lang

This attribute indicates the language used in the description.

This element is used to describing the custom portlet mode.

� portlet-mode - must occur only once
The portlet-mode names are not case sensitive. They must be unique within
the portal application.

8.9.5 custom-window-state - can occur zero or more times

The custom-window-state is used to define window states for the portlet.
Currently WebSphere portal does not supports any custom window states.

Attribute
� id

The id attribute is optional.

Elements
� description - can occur zero or more times

Attribute:

– xml:lang

This attribute indicates the language used in the description

This element is used to describing the custom window.

� window-state- must occur only once
The window-state names are not case sensitive. They must be unique within
the portal application.

8.9.6 user-attribute - can occur zero or more times

Portlets may need to behave differently based on the user. The user attributes
allow you to access user attributes. The following table shows the user attributes

296 IBM Rational Application Developer V6 and Portal Tools

supported by WebSphere portlet. The second column shows the corresponding
attribute name in Member Manager (wmmAttributeName).

Table 8-1 Supported user attributes

A map containing all of the user attribute information can be retrieved using a call
to the getAttribute of the request object, see Example 8-32 on page 298. If the
user is unauthenticated then a null will be returned. If, however, the user is
authenticated and the there are no user attributes defined, an empty Map will be
returned. The Map will contain the user attributes mapped during deployment
and they will be in the form of a String name value pair. Security must be enabled
to retrieve most of the user information.

User attribute name Member Manager
equivalent

user.gender ibm-gender

user.employer o

user.department ou

user.jobtitle ibm-jobTitle

user.name.prefix ibm-personalTitle

user.name.given givenName

user.name.family sn

user.name.middle ibm-middleName

user.home-info.telecom.telephone.number homePhone

ser.home-info.online.email u ibm-otherEmail

user.business-info.postal.street street

user.business-info.postal.stateprov stateOrProvinceName

user.business-info.postal.postalcode postalCode

user.business-info.postal.country countryName

user.business-info.telecom.telephone.number telephoneNumber

user.business-info.telecom.fax.number facsimileTelephoneNumber

user.business-info.telecom.mobile.number mobile

user.business-info.telecom.pager.number pager

user.business-info.telecom.online.email ibm-primaryEmail

 Chapter 8. JSR 168 API 297

Example 8-32 Getting user attribute information.

Map userinfo = (Map)request.getAttribute(RenderRequest.USER_INFO);
if(userinfo != null){

for (Iterator it=userinfo.entrySet().iterator(); it.hasNext();) {
 Map.Entry entry = (Map.Entry)it.next();
 String key = (String)entry.getKey();
 String value = (String)entry.getValue();
 System.out.println("Name: " + key + ", Value: " + value);
 }

}

Attribute
� id

The id attribute is optional.

Elements
� description - can occur zero or more times

Attribute:

– xml:lang

This attribute indicates the language used in the description

This element is used to describing the user attributes.

� name - must occur only once
Defines the name of the user attribute.

8.9.7 security-constraint - can occur zero or more times

Once again, this tag is not supported by WebSphere portal at the time of this
writing. Please consult the WebSphere Portal Infocenter for more information.

Attribute
� id

The id attribute is optional.

Elements
� display-name - can occur zero or more times

Rational Application Developer will use the display-name to name this
security constraint in the IDE. This name does not have to be unique.

298 IBM Rational Application Developer V6 and Portal Tools

Attribute:

– xml:lang

This attribute indicates the language used in the description

� portlet-collection - must occur only once
– portlet-name - can occur once or many times

The portlet name must be a valid portlet defined in the portal application.

� user-data-constraint - must occur only once
Attribute:

– id

The id attribute is optional.

Elements:

– description - can occur zero or more times
Attribute:

• xml:lang

This attribute indicates the language used in the description.

This element is used to describe the user data constraints.

– transport-guarantee - must occur only once
The transport-guaranteeType specifies the type of communication
between client and portlet. This value can only be one of the following,
NONE, INTEGRAL, or CONFIDENTIAL.

NONE indicates the portlet does not require guarantees for the transport.
INTEGRAL indicates that the data between the portlet and client cannot
be changed while in transit.

CONFIDENTIAL indicates the data cannot be observed while in transit.
This ensures that the data cannot be observed by other parties.

INTEGRAL or CONFIDENTIAL usually indicate SSL is required.

8.10 JSR 168 limitations in WebSphere Portal
The following limitations apply in this release of WebSphere Portal:

� The JSR 168 specification does not define portlets filters. The portlet filter
provided as a portal service in WebSphere Portal cannot be used with JSR
168 portlet.

 Chapter 8. JSR 168 API 299

� The setsecure() method of the PortletURL is part of the PortletURL interface,
However, it is not supported by WebSphere Portal. The security level will
always be same as the current request.

� The isUserInRole() method of the portlet request at the time of this writing this
is unsupported and will always return false. All <security-role-ref> elements in
the portlet.xml are ignored.

� The getUserPrincipal() method of the portlet request always returns null if
application server security is not enabled.

� The getRemoteUser method will return the user who is logged in. If the user is
not logged in, null will be returned. Even with security disabled this method
will return the user information, although with security disabled the returned
name may not be human-readable. With security enabled a more readable
user name will be returned.

� The <security-constraint/> element in the portlet.xml is not supported at the
time of this writing.

� User information supported a limited number of user attributes. Please see
“user-attribute - can occur zero or more times” on page 296 for more
information.

� RenderResponse.setTitle(java.lang.String title) method is currently not
supported.

300 IBM Rational Application Developer V6 and Portal Tools

Chapter 9. JSR 168 portlet development

In this chapter, you will use Rational Application Developer to create a JSR 168
portlet. The following tasks are included:

� Use the wizard to create a JSR 168 portlet project
� Examine the generated portlet
� Update the generated portlet
� Deploy the portlet to run on the Portal Test Environment
� Execute the portlet

9

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: JSR 168
� Application type: MVC

© Copyright IBM Corp. 2005. All rights reserved. 301

9.1 Overview
The JSR 168 sample portlet shown in this chapter will allow you to implement the
following:

� You will enter your name and select the color that it is displayed in.

� You will also be able to add new colors to use.

� A user with administration rights will be able to change the greeting that
appears before your name.

� You will use the PortletPreferences object to store the colors and greeting.

� A JavaBean, stored in the PortletSession, will store the currently selected
color, name, and greeting.

� The PortletPreferencesValidator will be used to validate the color before
adding it to the portletpreferences object.

� The portlet will show the render and action phases of the JSR 168 portlet API.

� It will also display the View, Edit, Config, and Help modes.

Figure 9-1 JSR 168 sample portlet

9.2 Creating a JSR 168 portlet project
In this section, you will create a new portlet project using Rational Application
Developer. The portlet created by the wizard will be then manually updated for
this scenario.

Help.jsp

 sessionBean

processAction()

doView()

doHelp()

doCustomConfigure()doEdit()

View.jsp Configure.jspEdit.jsp

302 IBM Rational Application Developer V6 and Portal Tools

9.2.1 Creating a basic JSR 168 portlet
Execute the following steps to create the sample portlet:

1. Open Rational Application Developer if not already opened.

2. Select File → New

3. Select Project.

4. Select Portlet Project (JSR 168) to create a JSR 168 project.

5. An Auto Launch Configuration Change Alert window may pop up. If so, select
Yes to continue.

6. If needed, select OK to confirm enablement of Portal Development tools.

7. Enter MySimplePortlet as the project name. Target server should be Portal
V5.1. Select Next.

Figure 9-2 Enter the name and target server of your portlet

8. Select Basic portlet (JSR 168) and then click Next.

 Chapter 9. JSR 168 portlet development 303

Figure 9-3 Selecting a basic JSR 168 portlet

9. Examine and take default values in the features window. Click Next.

10.Examine and take default values in the portlet settings window. Click Next.

11.In the Actions and Preferences window, select all four check boxes to add
support for action handling and preferences handling. Notice that the Add
Preferences validator box will be available when the Add preferences
handling box is selected.

304 IBM Rational Application Developer V6 and Portal Tools

Figure 9-4 Actions and Preferences

12.Single Sign-On with Credential Vault will not be used. Click Next.

13.Select the check boxes to support Edit Mode, Help Mode, and Configure
Mode. Select Finish to complete the creation of the portlet project.

Figure 9-5 Additional modes

 Chapter 9. JSR 168 portlet development 305

9.2.2 Examining the generated portlet
As an optional exercise, examine the generated portlet. For example:

1. Locate and display the web.xml.

2. Locate and display the portlet descriptor (portlet.xml).

3. Read the generated Java code for MySimplePortlet.java

a. Identify what class the portlet is extended from.

b. See what parameters are passed to the doView() method.

c. See what parameters are passed to the processAction() method

d. Review the doCustomConfigure() method

4. Review the generated session bean.

5. Display the generated JSPs for all modes (view, edit, help, configure).

9.3 Updating the generated portlet
In this section, you will update the components of the generated JSR 168 portlet
in order to implement the sample portlet scenario as described in 9.1, “Overview”
on page 302. For the sake of simplicity in your project, do the following:

1. Disable Group Projects. This can be accomplished by selecting the button
that looks like a folder or by clicking the small triangle and deselecting Group
Projects as shown in Figure 9-6.

Figure 9-6 Group projects by type

2. In a similar way, select Filters. The Filters window will now be displayed.

3. Select the Types of content tab.

4. Deselect WebService, Databases, and Database Servers since these
extensions will not be used in this project. Click OK.

306 IBM Rational Application Developer V6 and Portal Tools

Figure 9-7 Filters window

9.3.1 Modifying the session bean
The generated session bean (MySimplePortletPortletSessionBean.java) is used
to pass data to the JavaServer Pages (JSPs). In this section, you will modify this
class as follows:

� Store the user name, color and greeting.
� Declare these class variables as private.
� Use getter and setter methods for saving and retrieving the data.

Note: Using private class variables allows you to control what values are set by
using the setter methods.

Execute the following steps:

1. Expand the MySimplePortlet project by selecting the plus symbol next to it.

2. Expand the Java Resources and the JavaSource folders.

3. Finally, expand the mysimpleportlet package folder.

 Chapter 9. JSR 168 portlet development 307

Figure 9-8 Java Source folder expanded

4. Open the class by double-clicking
MySimplePortletPortletSessionBean.java.

5. Delete all the class variables and methods from the SessionBean class.

6. Create private Strings for userName, color, and greeting. The bean class
should now look as illustrated in Example 9-1.

Example 9-1 MySimplePortletPortletSessionBean class

package mysimpleportlet;
public class MySimplePortletPortletSessionBean {

private String userName = "";
private String color = "";
private String greeting = "";

}

7. Right-click in the MySimplePortletPortletSessionBean window and select
Source then Generate Getters and Setters.

308 IBM Rational Application Developer V6 and Portal Tools

Figure 9-9 Generate Getters and Setters option

8. Check the boxes for color, userName, and greetings so that getters and
setters will be generated for all three variables. Click OK.

Figure 9-10 Getters and Setters

9. Save the file by using Ctrl-s or File → Save.

Note: You may see errors in other classes after saving this file. You will
correct these errors in a later step.

 Chapter 9. JSR 168 portlet development 309

9.3.2 View mode
In this section, you will update the JSP for View mode and the processAction()
method to satisfy the requirements of the sample scenario.

Modifying MySimplePortletPortletView.jsp (View mode)
In this section, you will modify the view JSP to display the greeting and name in
the selected color. The sample form created will also be modified to select a
color and receive a name.

Execute the following steps:

1. Expand the WebContent folder by clicking the plus symbol.

2. Expand the mysimpleportlet folder.

3. Expand JSP then html.

4. Double-click MySimplePortletPortletView.jsp to open it.

5. Replace the MySimplePortletPortletView.jsp with the code shown in
Example 9-2.

Example 9-2 MySimplePortletPortletView.jsp

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,mysimpleportlet.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<%
MySimplePortletPortletSessionBean sessionBean =
(MySimplePortletPortletSessionBean)renderRequest.getPortletSession().getAttribu
te(MySimplePortletPortlet.SESSION_BEAN);
%>

<DIV style="margin: 6px">

<% /******** This form will be updated later *********/ %>
<FORM method="POST" action="<portlet:actionURL/>">
<LABEL for="<%=MySimplePortletPortlet.FORM_TEXT%>">Enter order id:</LABEL>

<INPUT name="<%=MySimplePortletPortlet.FORM_TEXT%>" type="text"/>
<INPUT name="<%=MySimplePortletPortlet.FORM_SUBMIT%>" type="submit"
value="Submit"/>
</FORM>
<% /******** End of sample code *********/ %>
</DIV>

6. You will now get the userName, color, and greeting variables out of the
sessionBean. You should consider the following issues for this sample
scenario:

310 IBM Rational Application Developer V6 and Portal Tools

– Notice that you have previously defined the greeting and userName
variable with an empty String in the sessionBean.

– The first time running the portlet, both the name and the greeting will be
empty and therefore will not appear on the page.

– You will set a CSS style in the header to display the user name and
greeting in the currently selected color. If the length of the color String is
not longer than zero indicating that no color has been selected, we will use
black for the color.

– The first time the portlet is called, there will not be a color selected so color
black will be used as default.

7. Add the code highlighted in Example 9-3 to get the variables from the session
bean.

8. Add also a heading element (H3) to display the variables obtained from the
session bean.

Example 9-3 Getting variables from sessionBean

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,mysimpleportlet.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<%
MySimplePortletPortletSessionBean sessionBean =
(MySimplePortletPortletSessionBean)renderRequest.getPortletSession().getAttribu
te(MySimplePortletPortlet.SESSION_BEAN);

 String name = sessionBean.getUserName();
 String greeting = sessionBean.getGreeting();
 String color = sessionBean.getColor();
 if((color == null) || (color.length() == 0)){
 color = "black";
 }
%>
<H3 style="margin-bottom: 3px; color:<%= color %>"><%= greeting + " " + name
%></H3>

9. Modify the form to get the user’s name and the desired color.

– You will now change the label and the input for the form to use the variable
FORM_NAME.

Note: You do not have to test for null for these variable because you set
them as an empty String by default. However, for a production application,
it is recommended testing for null.

 Chapter 9. JSR 168 portlet development 311

– Next, you will add a select tag and use
SimplePortletPortlet.FORM_COLOR variable as the name.

– Then add code to get the preferences.

– Once you have the preferences, you can look through all the preferences
to fill the drop-down list for all the colors.

– In a later step you will be adding the three primary colors into the portlet
descriptor (portlet.xml) preferences along with a greeting preference.
Because of this, you do not need to test the preferences to determine if
there are any colors.

– You do, however, have to test for the .greeting preference. You do this by
testing if the preference first character starts with a “.” character.

– If the color from the sessionBean matches the preference color then you
mark the option tag as selected. It will be the selected color the next time
the user views the page.

10.Replace the form in MySimplePortletPortletView.jsp with the form shown in
Example 9-4.

Example 9-4 New updated form in the view JSP

<FORM method="POST" action="<portlet:actionURL/>">
<LABEL for="<%=MySimplePortletPortlet.FORM_NAME%>">Enter your name:</LABEL>

<INPUT name="<%=MySimplePortletPortlet.FORM_NAME%>" value="<%= name %>" type="text"/>
<SELECT name="<%= MySimplePortletPortlet.FORM_COLOR %>">
<%
PortletPreferences prefs = renderRequest.getPreferences();
// loop through all the preferences to get the colors.
// The three primary colors have been added to the portlet.xml so we do not
// need to test for no colors.

Enumeration prefNames = prefs.getNames();
while(prefNames.hasMoreElements()) {
String thisColor = (String)prefNames.nextElement();

if((thisColor != null) && (!thisColor.startsWith("."))){
%>
<option <% if(color.equalsIgnoreCase(thisColor)) { %>
selected="selected" <% } %> value="<%= thisColor %>" >
<%= thisColor %></option>
 <%

 }
 }%>
 </SELECT>

<INPUT name="<%=MySimplePortletPortlet.FORM_SUBMIT%>" type="submit" value="Submit"/>
</FORM>

11.Save the file by using Ctrl-s or File → Save. Once again, there will be errors
in the JSP and they will be fixed in the next step.

312 IBM Rational Application Developer V6 and Portal Tools

12.Optionally, preview the View mode JSP as illustrated in Figure 9-11.

Figure 9-11 View mode JSP preview

Updating MySimplePortletPortlet to handle the new view form
You will need to update MySimplePortletPortlet.java code to support the changes
you made in the JSP for View mode (MySimplePortletPortletView.jsp). The
following issues should be considered:

� You changed the variable name in the form from FORM_TEXT to
FORM_NAME.

� You also added the FORM_COLOR drop-down box.

� You will need to modify the portlet class for the new variables

� You also need to modify the actionProcess () method to handle the name and
color from the form in MySimplePortletPortletView.jsp.

Follow these steps to update the Java code:

1. Expand the MySimplePortletPortlet class in the Project Explorer view of
Rational Application Developer and select the FORM_TEXT field.

 Chapter 9. JSR 168 portlet development 313

Figure 9-12 Project Explorer view

2. Right-click the FORM_TEXT field and select Refactor → Rename.

3. A dialog box will pop up allowing you to change the field name. Change the
name to FORM_NAME. Click OK.

Note: Be sure the check box for Update References is selected.

Figure 9-13 Renaming the field

4. If you get a warning, select Continue. This warning is a result of compilation
errors in the portlet class. These errors will be corrected in a later step.

314 IBM Rational Application Developer V6 and Portal Tools

Figure 9-14 Warning message

5. All the references in the portlet class will now be updated to reflect the new
name. We will now modify the value for this variable.

6. Open the portlet class by double-clicking the file.

7. Modify the FORM_NAME variable to look like Example 9-5. This should be all
be on the same line. You changed the value to reflect the new name of the
variable and you also modified the comment line.

Example 9-5 FORM_NAME variable

public static final String FORM_NAME = "MySimplePortletPortletFormName"; //
Parameter for the name of the user

8. Now add a new variable for the FORM_COLOR. Enter the line shown in
Example 9-6. It should be all in one line and under the FORM_NAME line.

Example 9-6 New FORM_COLOR variable

public static final String FORM_COLOR = "MySimplePortletPortletFormColor";
// Parameter for the selected color

9. Locate the processAction() method. You will be using a session bean to store
the user name and the selected color from the form. The processAction()
method needs to be updated to handle the new fields of the form from
MySimplePortletPortletView.jsp. Add the methods to set the variables in the
sessionBean using the setter methods you created earlier. The code is shown
in Example 9-7 on page 316.

 Chapter 9. JSR 168 portlet development 315

Example 9-7 Submit action process

if(request.getParameter(FORM_SUBMIT) != null) {
// Set form text in the session bean
MySimplePortletPortletSessionBean sessionBean = getSessionBean(request);
if(sessionBean != null) {

sessionBean.setUserName(request.getParameter(FORM_NAME));
sessionBean.setColor(request.getParameter(FORM_COLOR));

}
}

10.Also, in the processAction() method, remove the complete if statements for
PREF_RESET and PREF_SET. You will not be using these parameters. The
processAction() method should now look as illustrated in Example 9-8.

Example 9-8 Processing actions in the processAction() method

public void processAction(ActionRequest request, ActionResponse response)
throws PortletException, java.io.IOException {
if(request.getParameter(FORM_SUBMIT) != null) {

// Set form text in the session bean
MySimplePortletPortletSessionBean sessionBean = getSessionBean(request);
if(sessionBean != null) {

sessionBean.setUserName(request.getParameter(FORM_NAME));
sessionBean.setColor(request.getParameter(FORM_COLOR));

}
}

if(request.getParameter(EDIT_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

prefs.setValue(EDIT_KEY,request.getParameter(EDIT_TEXT));
prefs.store();

}
catch(ReadOnlyException roe) {
}
catch(ValidatorException ve) {
}

}

if(request.getParameter(CONFIG_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

prefs.setValue(CONFIG_KEY,request.getParameter(CONFIG_TEXT));
prefs.store();

}
catch(ReadOnlyException roe) {
}
catch(ValidatorException ve) {

316 IBM Rational Application Developer V6 and Portal Tools

}
}
}

11.Save the file by using Ctrl-s or File → Save

There should not be any errors in the portlet class at this point. You should
also not have any errors in the view JSP. You may need to open the view JSP
make a small change like adding a new blank line and save the file again to
cause it to recompile.

Note: You may see an error for the renderRequest object not being resolved.
This object will be created during runtime by the <portlet:defineObjects/> tag.
This error should be ignored at this time.

9.3.3 Edit mode
In this section, you will update the generated JSP for Edit mode and the
processAction() method to satisfy the requirements of the sample scenario.

Modifying MySimplePortletPortletEdit.jsp (Edit mode)
You will now modify MySimplePortletPortletEdit.jsp to allow the user to add more
colors by invoking the portlet Edit mode.

Execute the following steps:

1. Open MySimplePortletPortletEdit.jsp by double-clicking the file.

2. You start by leaving only the form for entering the new value and the form for
returning to the View mode. The Edit mode JSP should now look as shown in
Example 9-9.

Note: As an alternative, you can change the JSP by replacing it with the code
shown in Example 9-9.

Example 9-9 Edit JSP after deleting some source

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,mysimpleportlet.*"%>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<DIV style="margin: 6px">
 <FORM ACTION="<portlet:actionURL/>" METHOD="POST">
 <LABEL for="<%=MySimplePortletPortlet.EDIT_TEXT%>">New Value</LABEL>

 <INPUT name="<%=MySimplePortletPortlet.EDIT_TEXT%>" value="<%=value%>"
type="text"/>

 <INPUT name="<%=MySimplePortletPortlet.EDIT_SUBMIT%>" value="Save"
type="submit"/>
 </FORM>

 Chapter 9. JSR 168 portlet development 317

<FORM ACTION="<portlet:renderURL portletMode="view"/>" METHOD="POST">
<INPUT NAME="back" TYPE="submit" VALUE="Back to view mode">

</FORM>
</DIV>

3. First, you will edit the field names of the label and input to show that these
fields will hold the new color value as follows:

a. Change the name of the label and input from
MySimplePortletPortlet.EDIT_TEXT to
MySimplePortletPortlet.EDIT_COLOR.

b. Also change the value of the label tag from New Value to New Color.

c. Delete the value=”<%=value%>” from the input tag.

d. The form should now look as shown in Example 9-10.

Example 9-10 Updated form in edit JSP

<FORM ACTION="<portlet:actionURL/>" METHOD="POST">
<LABEL for="<%=MySimplePortletPortlet.EDIT_COLOR%>">New Color</LABEL>

 <INPUT name="<%=MySimplePortletPortlet.EDIT_COLOR%>" type="text"/>

 <INPUT name="<%=MySimplePortletPortlet.EDIT_SUBMIT%>" value="Save"
type="submit"/>
</FORM>

4. Display colors using an unordered list.

a. Create a new line under the first division tag (<DIV style=”margin: 6px”>)
and add the following heading element:

<H3 style="margin-bottom: 3px">Available colors:</H3>

b. The colors will be displayed in an unordered list. They will be displayed by
their name and in the color they represent. For example, blue will be
displayed in blue. Create a new line under line you just created and create
an opening and closing list tag:

c. The edit page should now look as illustrated in Example 9-11.

Example 9-11 Updated view page

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,mysimpleportlet.*"%>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<DIV style="margin: 6px">
<H3 style="margin-bottom: 3px">Available colors:</H3>

<FORM ACTION="<portlet:actionURL/>" METHOD="POST">

318 IBM Rational Application Developer V6 and Portal Tools

<LABEL for="<%=MySimplePortletPortlet.EDIT_COLOR%>">New Color</LABEL>

 <INPUT name="<%=MySimplePortletPortlet.EDIT_COLOR%>" type="text"/>

 <INPUT name="<%=MySimplePortletPortlet.EDIT_SUBMIT%>" value="Save"
type="submit"/>
</FORM>
<FORM ACTION="<portlet:renderURL portletMode="view"/>" METHOD="POST">

<INPUT NAME="back" TYPE="submit" VALUE="Back to view mode">
</FORM>
</DIV>

5. You have already created the code to loop through the preferences in the
View mode JSP (MySimplePortletPortletView.jsp). You will now use the code
in that JSP to create a snippet that you can easily paste into other files rather
that retyping the code each time.

a. Open MySimplePortletPortletView.jsp.

b. In the View mode JSP, highlight and copy to the clipboard the code shown
in Example 9-12. To copy select Ctrl-c or use Edit → Copy.

Example 9-12 Selected code from View mode page (MySimplePortletPortletView.jsp)

PortletPreferences prefs = renderRequest.getPreferences();
// loop through all the preferences to get the colors.
// The three primary colors have been added to the portlet.xml so we do not
// need to test for no colors.
Enumeration prefNames = prefs.getNames();
while(prefNames.hasMoreElements()) {
String thisColor = (String)prefNames.nextElement();
if((thisColor != null) && (!thisColor.startsWith("."))){

%>
<option <% if(color.equalsIgnoreCase(thisColor)) { %>

selected="selected" <% } %> value="<%= thisColor %>" >
<%= thisColor %></option>

<%}
}

c. Notice that you did not select the opening and closing JSP scriplet tags
(<% and %>).

d. You will also use this code snippet in MySimplePortletPortlet class and
these tags will not be needed.

e. When you create the snippet you will also remove the other scriplet tags
and replace the line with a variable.

6. Create a snippet from the previous code.

Note: Snippets are sections of code that can be reused throughout your
application.

 Chapter 9. JSR 168 portlet development 319

a. Be sure you are in the Web Perspective and the Snippets view is selected
as illustrated in Figure 9-15.

b. In the gray area below the Web Services button, right-click and select
Customize....

Figure 9-15 Select Customize

7. The Customize Palette window will now be displayed.

a. In the Customize Palette Window select New then New Category.

b. For the name, type MySnippets and then select Apply.

Figure 9-16 Customize Palette window

320 IBM Rational Application Developer V6 and Portal Tools

8. You should now see your new snippet on the left window.

a. Highlight the snippet by clicking it and then select New → New Item.

b. For the name, type Color Preferences and for the description, type Loop
through the colors in the preferences object.

c. You will now paste in the code you copied to the clipboard from the view
JSP. Click in the Template Pattern window and select Ctrl-V to paste the
code.

Figure 9-17 Template Pattern

9. You now need to modify the selected code to add the variable.

a. Delete the following section in the template window:

 Chapter 9. JSR 168 portlet development 321

%><option <% if(color.equalsIgnoreCase(thisColor)) { %>
selected="selected" <% } %> value="<%= thisColor %>" ><%= thisColor
%></option> <%

b. Under the variable section, select New and enter a name of loopAction
and a description of Loop Action.

Figure 9-18 Snippet variables

c. Place your cursor on the line that you deleted in step a., “Delete the
following section in the template window:” on page 321 and select the
Insert Variable PlaceHolder button.

d. Double-click loopAction then select Apply.

e. When your Customize Palette window looks as shown in Figure 9-19 on
page 323, select OK.

322 IBM Rational Application Developer V6 and Portal Tools

Figure 9-19 Completed customized palette window

10.Place your cursor in between the and tags in
MySimplePortletPortletEdit.jsp and enter <% %> as highlighted in
Example 9-13.

Example 9-13 Updated tags in edit page

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,mysimpleportlet.*"%>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<DIV style="margin: 6px">
<H3 style="margin-bottom: 3px">Available colors:</H3>
<% %>

11.Place you cursor in between the two <% %> tags you just created.

 Chapter 9. JSR 168 portlet development 323

12.In the snippets view, double-click the Color Preferences snippet you just
created.

13.Enter the following for the loopAction variable by placing the cursor in the
value box next to the loopAction then select Insert.

%><li style="color:<%= thisColor %>"><%= thisColor %><%

Figure 9-20 Insert loopAction variable

Note: This will create a list items for each color in the preferences. The style
tag will display the color in the color it depicts.

14.You will now add a note in MySimplePortletPortletEdit.jsp informing the user
that there are only 16 supported colors for this portlet. In a later step, you will
modify the PortletPreferencesValidator to only accept these colors.

a. Add a new line directly under the ending tag.

b. Enter the following code:

<div style="color:maroon">
(Only the following colors are supported:

aqua, black, blue, fuchsia, gray, green, lime, maroon,

navy, olive, purple, red, silver, teal, white, yellow)
</div>

15.Save the file by using Ctrl-s or File then Save.

324 IBM Rational Application Developer V6 and Portal Tools

16.Optionally, use the click the Preview tab to see the Edit mode JSP as
illustrated in Figure 9-21.

Figure 9-21 Edit mode JSP preview

Updating MySimplePortletPortlet class to handle the edit form
If not already done, open the portlet class by double-clicking it.

1. You will not be using the EDIT_KEY variable so it can be deleted.

Example 9-14 Delete EDIT_KEY line

public static final String EDIT_KEY = ".MySimplePortletPortletEditKey"; //
Key for the portlet preferences

2. Modify the EDIT_TEXT to EDIT_COLOR and also change the value:

public static final String EDIT_COLOR = "MySimplePortletPortletEditColor";
// Parameter name for the new color

3. Find the processAction() method and locate the if statement for the process of
the edit form submit.

if(request.getParameter(EDIT_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

Note: Once again, you will see errors in your JSP. These will be fixed in
a later step.

 Chapter 9. JSR 168 portlet development 325

4. You will need to make sure that the new color is not null. First, you will create
a new String named newColor to store the color retrieved from the
EDIT_COLOR field of the form. You will then test to see is the newColor
String is null. If the newColor String is not null trim any leading and trailing
spaces but using the trim() method and you also set it to all lower case.

5. Modify the try block in the if statement to look like Example 9-15.

Example 9-15 Modified the if statement for the edit form

if(request.getParameter(EDIT_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

String newColor = request.getParameter(EDIT_COLOR);
if(newColor != null){

newColor.trim().toLowerCase();
}
prefs.setValue(newColor,newColor);
prefs.store();

}
catch(ReadOnlyException roe) {
}
catch(ValidatorException ve) {
}

}

6. Save the file by using Ctrl-s or File → Save.

9.3.4 Configure mode
In this section, you will update the generated JSP for configure mode and the
processAction() method to satisfy the requirements of the sample scenario.

Modifying MySimplePortletPortletConfig.jsp (Configure mode)
You will edit the config JSP form for the greeting. Execute the following steps:

1. Delete everything after the first division tag (<DIV style="margin: 6px">) up
to the form. Then delete everything after the form to the closing division tag
(</DIV>). Your JSP should now look like Figure 9-16 on page 327.

Note: As an alternative you can replace the wizard generated JSP with the
JSP illustrated in Example 9-16 on page 320.

Note: You should not see any errors in the portlet class after saving. If
MySimplePortletPortletEdit.jsp still contains errors, open the file add a
blank line then save the file to force it to recompile. You should no longer
see the errors.

326 IBM Rational Application Developer V6 and Portal Tools

Example 9-16 Configuration mode JSP

<%@ page session="false" contentType="text/html"
import="javax.portlet.*,mysimpleportlet.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<DIV style="margin: 6px">

 <FORM ACTION="<portlet:actionURL/>" METHOD="POST">
 <LABEL for="<%=MySimplePortletPortlet.CONFIG_TEXT%>">New Value</LABEL>

 <INPUT name="<%=MySimplePortletPortlet.CONFIG_TEXT%>" value="<%=value%>"
type="text"/>

 <INPUT name="<%=MySimplePortletPortlet.CONFIG_SUBMIT%>" value="Save"
type="submit"/>
 </FORM>

</DIV>

2. You will add the code to get the current greeting from the sessionBean. Add
the following lines to the Configure mode JSP above the opening division tag.

<%
//This should be on one line

MySimplePortletPortletSessionBean sessionBean =
(MySimplePortletPortletSessionBean)renderRequest.getPortletSession().getAtt
ribute(MySimplePortletPortlet.SESSION_BEAN);
//The following code will be on new lines.
 String greeting = "";
 if(sessionBean != null)
 greeting = sessionBean.getGreeting();
%>

3. Change the label and input parameters of the form from
MySimplePortletPortlet.CONFIG_TEXT to
MySimplePortletPortlet.CONFIG_GREETING. Also change the value of the
label from New Value to New greeting.

4. Change the value of the input from <%= value %> to <%= greeting %>

5. Save the file by using Ctrl-s or File → Save.

6. Optionally, preview the Configuration mode JSP.

 Chapter 9. JSR 168 portlet development 327

Figure 9-22 Configuration mode JSP preview

Updating MySimplePortletPortlet to handle the config form
You will also need to modify the portlet class to accept the greeting. Execute the
following steps:

1. If not already opened, open the portlet class by double-clicking it.

2. Modify the CONFIG_TEXT to look like Example 9-17.

Example 9-17 CONFIG_GREETING variable

public static final String CONFIG_GREETING =
"MySimplePortletPortletConfigGreeting"; // Parameter name for the greeting

3. Change the value of the CONFIG_KEY from
.MySimplePortletPortletConfigKey to .greeting.

4. Locate the processAction() method and find the if statement for
CONFIG_SUBMIT.

request.getParameter(CONFIG_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

5. Process the greeting message as follows:

a. You will first create a String named greeting and store the value of the
CONFIG_GREETING field from the form.

b. You will then test if the greeting String is not null and if its length is greater
than zero. If it is, you will store it in the preferences using the
CONFIG_KEY

c. You will then store the greeting in the session bean.

Note: There might be some errors in your JSP. These errors will be fixed in
a later step.

328 IBM Rational Application Developer V6 and Portal Tools

d. Your code should look like Example 9-18.

Example 9-18 Config form in processAction() method

if(request.getParameter(CONFIG_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

String greeting = request.getParameter(CONFIG_GREETING);
if((greeting != null) && (greeting.length() > 0)){
prefs.setValue(CONFIG_KEY, greeting);
prefs.store();
//get greeting from preferences and set it.
MySimplePortletPortletSessionBean sessionBean = getSessionBean(request);

 sessionBean.setGreeting(request.getPreferences().getValue(CONFIG_KEY,
"Hello"));

 //set it session
 request.getPortletSession().setAttribute(SESSION_BEAN, sessionBean);

}
}
catch(ReadOnlyException roe) {

//this is read only and can only be updated by an admin
}
catch(ValidatorException ve) {
}

}

6. Save the file by using Ctrl-s or File → Save

9.3.5 Updating the portlet descriptor (portlet.xml)
In this section, you will update the portlet descriptor (portlet.xml) to do the
following:

� Add three primary colors as preferences
� You will also add the .greeting preference

Execute the following steps:

1. Open the portlet.xml by double-clicking the Portlet Deployment Descriptor
in your project.

2. Select the Portlets tab and then select MySimplePortlet as seen in
Figure 9-23 on page 330.

Note: There should not be any errors in this file. If you still have errors in
MySimplePortletPortletConfig.jsp, open the JSP add a blank line and then
save. This will force the JSP to recompile and remove the errors.

 Chapter 9. JSR 168 portlet development 329

Figure 9-23 Portlet.xml

3. Scroll down until you see the Persistent Preference Store box as shown in
Figure 9-24.

4. Clear all preferences as follows:

a. Select all the preferences by holding down Ctrl and selecting each
preference.

b. Select Remove.

Figure 9-24 Persistent Preference Store

5. You will now add the preferences for the .greeting, red, yellow, and blue. For
the .greeting, you will mark it as read-only.

Note: Read only means that only an administrator in Configuration mode will
be able to update this preference during runtime.

330 IBM Rational Application Developer V6 and Portal Tools

Execute the following steps:

a. Select Add to open the New Preference window.

b. Enter .greeting for the name.

c. Select Add to enter a value of Hello.

d. For the .greeting preference only: check the box for read-only.

e. Select OK.

f. Repeat steps a through e for the three colors (red, yellow, and blue). Use
lower case for the color names and values. Do not select the read-only
option for these preferences.

Figure 9-25 New Preference window

g. Save and close the portlet.xml by using Ctrl-s or File → Save.

6. Examine the portlet descriptor (portlet.xml) source and review the
preferences you just entered.

9.3.6 Modifying the MySimplePortletPortletPreferenceValidator class
You will now update the MySimplePortletPortletPreferenceValidator class to only
store the 16 supported colors.

1. Open the MySimplePortletPortletPreferenceValidator by double-clicking the
class.

2. Delete the for loop in the validate method so that it looks like Example 9-19 on
page 332.

Note: There should not be any errors in any of the files.

 Chapter 9. JSR 168 portlet development 331

Example 9-19 Validate method

public void validate(PortletPreferences preferences) throws ValidatorException
{
Collection failedKeys = new ArrayList();
if(!failedKeys.isEmpty()) {

throw new ValidatorException("One or more preferences do not comply
with the validation criteria",failedKeys);

}
}

3. In the validate method, you will do the following:

a. Create a String array to store all the valid colors.

b. You will then loop through all the preferences (excluding the .greeting).

c. If there are any colors that do not match a supported color, a
ValidatorException will be thrown and the new color will not be stored.

d. The code in your validate method should look like Example 9-20.

Example 9-20 New validate method

public void validate(PortletPreferences preferences) throws ValidatorException
{
String[] HTMLColors = new String[] { "aqua", "black", "blue", "fuchsia",
"gray", "green", "lime", "maroon", "navy", "olive", "purple", "red", "silver",
"teal", "white", "yellow" };
Collection failedKeys = new ArrayList();
PREFERENCES_LOOP:

for(Enumeration names=preferences.getNames(); names.hasMoreElements();) {
String name = names.nextElement().toString();
if(name.startsWith(".")) continue;
String value = preferences.getValue(name, "");
for(int i = 0; i < HTMLColors.length; i++){

if(value.equalsIgnoreCase(HTMLColors[i])) continue PREFERENCES_LOOP;
}
failedKeys.add(name);

}
if(!failedKeys.isEmpty()) {

throw new ValidatorException("One or more preferences do not comply with
the validation criteria",failedKeys);
}
}

4. Save the file by using Ctrl-s or File → Save. There should not be any errors
in this file.

332 IBM Rational Application Developer V6 and Portal Tools

9.4 Running the portlet
Now that you have created the portlet, you will deploy it and execute it on the
local Portal test environment. For example, execute the following steps to deploy
the portlet:

1. Run the portlet by right-clicking MySimplePortlet project in the Project
Explorer view and select Run → Run on server....

2. In the Define a New Server window, select Choose an existing server
option and for Select the server that you want to use, select WebSphere
Portal V5.1 Test Environment @ localhost. Also, use default port 9081.

3. The portlet executes and you will see it in the built-in browser.

9.4.1 Executing the portlet
When the server is started you will see your portlet displayed in a browser as
shown in Figure 9-26. Notice that the greeting and the name are not displayed.

Figure 9-26 MySimplePortlet

1. Enter your name then select Submit.

2. You should now see your name displayed in red.

3. Use the drop-down box to select blue and then click Submit.

4. Your name will now appear in blue. Try again, this time selecting yellow.

5. Let’s add a greeting now. Select the Config mode icon (the wrench icon in the
title bar).

6. Enter Hello in the New Greeting box and click Save.

7. Select the back button on the title bar.

Note: You can also check the Set server as project default checkbox, so
you will not be prompted again when you run the portlet.

 Chapter 9. JSR 168 portlet development 333

8. Your name will now be displayed with the Hello greeting.

9. Let’s give your portlet more color. Select the edit icon on the title bar, the edit
icon is the pencil.

10.Add as many of the supported colors as you would like by entering the color
in the new color text box and then selecting Save.

11.If you entered a supported color, you will now be able to see it in the list.

Figure 9-27 Edit mode with colors added

12.Select the back button in the title bar.

13.You can now select your new colors.

Figure 9-28 Name displayed in new color

334 IBM Rational Application Developer V6 and Portal Tools

Chapter 10. Migrating to JSR 168

This chapter will provide an overview of some considerations when migrating
from an IBM Portlet to a JSR 168 portlet.

� Modifying the deployment descriptor
� Modifying Java source
� Modifying JSP
� Struts
� JSF
� Portlet services
� Messaging

Cooperative portlets will be covered in Chapter 24, “IBM API declarative
cooperative portlets” on page 741, Chapter 25, “IBM API programmatic
cooperative portlets” on page 771, Chapter 26, “JSR 168 cooperative portlets”
on page 801, and Chapter 27, “Struts cooperative portlets” on page 835.
Credential Vault will be covered in Chapter 20, “Credential Vault Service” on
page 629.

10

© Copyright IBM Corp. 2005. All rights reserved. 335

10.1 Modifying the deployment descriptor
There are major differences between the deployment descriptor for IBM portlets
and JSR 168 portlets. As discussed in the overview, IBM portlets are servlets
and require the portlet to reference the servlet entry in the web.xml. JSR 168
portlets do not need to reference the web.xml because they are not servlets. Due
to the complicated nature of the portlet deployment descriptor, it is
recommended that you use Rational Application Developer to modify the
portlet.xml. The portlet.xml for JSR 168 portlets do require tags to be placed in a
specific order.

10.1.1 doctype
The JSR 168 portlet deployment descriptor uses XML schema for validation and
does not require the use of the doctype element. The following line can be
removed from the portlet.xml:

<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN"
"portlet_1.1.dtd">

10.1.2 portlet-app
The root element for the portlet.xml for JSR 168 portlets is the <portlet-app>
element. This element has attributes to specify the schema definition, version,
and id. Remove the following elements:

<portlet-app-def>
.....
</portlet-app-def>

The <portlet-app-name> element can also be removed; it is not used in JSR 168
portlets.

The following example shows the portlet-app element for MyJSRPortlet portlet.
Update the <portlet-app> element to look like the following. You will want to
change the ID for your portlet project.

Example 10-1 portlet-app element

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
id="myjsrportlet.MyJSRPortletPortlet.422c1f0220">

336 IBM Rational Application Developer V6 and Portal Tools

10.1.3 concrete-portlet-app
The concept of concrete portlets in JSR 168 is nonexistent. The portlet element
in the JSR portlet.xml is used to define the portlet. You will define the portlet title
and any initialization parameters there. Save any configuration information along
with language definitions and the remove all <concrete-portlet-app> elements.

10.1.4 portlet
JSR also uses the portlet elements like the IBM portlet API. However, there are
many different attributes and sub-elements. You can remove the href attribute
because, once again JSR portlets do not need to reference the web.xml. JSR
portlets also do not contain the version numbers in the portlet.xml. If you need to
maintain the version number, it is recommended that you use the manifest file
under the meta-inf directory.

Your new <portlet> element should look like the following:

<portlet id="myportlet.MyPortletPortlet">

The id attribute of the portlet element is optional and can be removed.

10.1.5 portlet-name
The portlet-name element needs to be added to represents the portlet’s name:

<portlet-name>MyPortlet</portlet-name>

10.1.6 web.xml
The IBM portlets required that the servlet be declared in the web.xml. We will not
be extending HttpServlet for JSR 168 portlets so the servlet and the
servlet-mapping elements can be removed from the web.xml. Copy the servlet
class; we will use this for the portlet-class element.

<portlet-class>myportlet.MyPortletPortlet</portlet-class>

10.1.7 cache
JSR 168 uses the <expiration-cache> for determining the cache. The
interpretation of the cache value is the same for both portlet APIs. Copy the value
of the portlet cache and then delete the cache elements. JSR 168 does not
define shared cache so the expiration-cache element will just accept the cache
value as shown in the following line.

<expiration-cache>0</expiration-cache>

 Chapter 10. Migrating to JSR 168 337

10.1.8 supports
Instead of supporting markup types, JSR 168 supports MIME types. Both APIs
use the supports element, however JSR 168 uses the portlet-mode element to
define the supported modes.

Change the portlet.xml from:

Example 10-2 IBM API supports element

<supports>
<markup name="html">

<view />
<configure />
<edit />
<help />

</markup>
</supports>

to:

Example 10-3 JSR 168 supports element

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>
<portlet-mode>config</portlet-mode>

</supports>

JSR 168 only defines View, Help, and Edit modes. CONFIG is provided as a
custom mode. If using Config mode you will have to define a custom mode. You
will also have to override the doDispatch method in the portlet class but we will
discuss that later.

The required order of elements under portlet-app is as follows:

1. portlet
2. custom-portlet-mode
3. custom-window-state
4. user-attributes
5. security-constraints

You must create the custom-portlet-mode definition after the last portlet element.

Use the following code to define the CONFIG mode.

338 IBM Rational Application Developer V6 and Portal Tools

Example 10-4 custom-portlet

<custom-portlet-mode>
<portlet-mode>config</portlet-mode>

</custom-portlet-mode>

10.1.9 allows
JSR 168 portlets only support MINIMIZED, MAXIMIZED, and NORMAL window
states. By default, all of these modes are supported by the portlet and the
<allows> element should be removed form the portlet.xml

10.1.10 config-param
JSR 168 portlets use a PortletPreference object instead of the PortletData and
PortletSettings objects. If you have defined any config-param elements in your
portlet.xml, you should convert these to portlet-preference elements.

Change:

Example 10-5 config-param in portlet.xml

<config-param>
<param-name>favoriteFood</param-name>
<param-value>Pizza</param-value>

</config-param>

to:

Example 10-6 portlet-preference

<portlet-preferences>
<preference>

<name>favoriteFood</name>
<value>Pizza</value>
<read-only>true</read-only>

</preference>
</portlet-preferences>

The preference element contains a read-only element. If the preference is
read-only, only the administrator can update this preference.

10.1.11 Locale settings
JSR 168 portlets define the default locale by using inline text in the portlet.xml.

 Chapter 10. Migrating to JSR 168 339

default-locale
The default-locale element can be removed, JSR 168 will use the first locale as
the default.

supported-locale
All supported locales need to be declared using the supported-locale element.

<supported-locale>en</supported-locale>

resource-bundles
JSR 168 uses resource bundles to contain the portlet title, short title, and
keywords for each supported locale. The locale for each resource should also be
added to the supported-locale element.

The resource-bundle element is used to define the resource bundle.

<resource-bundle>nls.MyPortlet</resource-bundle>

Resource bundles should contain the following three elements

� javax.portlet.title

This key is used for the portlet title.

� javax.portlet.short-title

The short-title is used for devices that cannot display the full title.

� javax.portlet.keywords

Keywords are used when searching portlets.

Note: You do have an option of using the portlet-info tag if you choose not to use
the resource bundle.

10.2 Modifying the Java source
Portlets of both APIs follow the MVC design patterns and they use two phase
processing. Both have an action and a render phase. the method names are
different and all the objects are also different.

10.2.1 Package
The package declarations need to be changed from the IBM portlet API to JSR
168 packages. You can manually change the imports or you can modify the class
names and then perform an “Organize Imports” in Rational Application
Developer.

340 IBM Rational Application Developer V6 and Portal Tools

Change:

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlet.event.*;

to:

import javax.portlet.*;

For JSR 168 portlets, you do not have to implement and action listener. There is
no equivalent package for org.apache.jetspeed.portlet.event. If you are
leveraging any other IBM specific classes, you may need to modify them for JSR
168.

10.2.2 Superclass
The superclass will need to be changed from PortletAdapter to GenericPortlet.
Again, if you are implementing IBM portlet API listeners, you can remove the
interfaces.

public class MyPortletPortlet extends GenericPortlet

10.2.3 doXXX methods
All the doXXX methods (doView, doHelp, doEdit, and doConfigure) need to be
modified to accept RenderRequest and RenderResponse objects rather than
Portletrequest and PortletResponse. The doConfigure will be invoked by
overriding the doDispatch method to test for the custom portlet mode CONFIG.

10.2.4 actionPerformed
JSR 168 portlets use the processAction method instead of the actionPerformed
method. The processAction method accepts an ActionRequest and
ActionResponse object. Change your actionPerformed method to:

public void processAction(ActionRequest request, ActionResponse response)
throws PortletException

10.2.5 ActionEvent
In the IBM portlet API, the ActionEvent object is used to retrieve an ActionString.
The ActionString is used to determine which form made the request. With JSR
168 you should test the request parameters for the Submit button value.
Example 10-7 on page 342 Illustrates a JSR form and the processAction
method. As you can see, the submit button in the form has the name of the
FORM_SUBMIT static variable. Then, in the processAction method, we test if

 Chapter 10. Migrating to JSR 168 341

this parameter exists. If so, we know that the form associated with this submit
button was submitted and we can process accordingly.

Example 10-7 JRS 168 Action Handling

JSP Form
<FORM method="POST" action="<portlet:actionURL/>">
<LABEL for="<%=MyJSRPortletPortlet.FORM_TEXT%>">Enter order id:</LABEL>

<INPUT name="<%=MyJSRPortletPortlet.FORM_TEXT%>" type="text"/>
<INPUT name="<%=MyJSRPortletPortlet.FORM_SUBMIT%>" type="submit"
value="Submit"/>
</FORM>

Portlet Code
public void processAction(ActionRequest request, ActionResponse response)
throws PortletException, java.io.IOException {

if(request.getParameter(FORM_SUBMIT) != null) {
// FORM_SUBMIT form was submitted
//Do something!

}

Create new unique static variables for each of the submit buttons (or any other
field that will result in a request parameter) used to create an action request.
Then modify your processAction method to test for these parameters and
process the data as need.

10.2.6 Logging
Unlike the IBM portlet API, JSR 168 portlets do not provide a way to determine if
logging is enabled (ie. getPortletLog().isErrorEnabled()). You should remove all if
statements testing for logging enabled. Logging for JSR 168 portlets should use
getPortletContext().log() instead of getPortletLog().error().

10.2.7 JSP includes
In JSR 168 portlets, the MIME type is set in the render (doView, doHelp, doEdit,
and doConfigure) method. JSPs and Servlets are included using a
PortletRequestDispatcher. Change your JSP includes to look like the following:

Example 10-8 JSP includes

response.setContentType("text/html");
PortletContext portletContext = getPortletContext();
PortletRequestDispatcher rd =
portletContext.getRequestDispatcher(VIEW_JSP+getJspExtension(request));
rd.include(request, response);

342 IBM Rational Application Developer V6 and Portal Tools

The getJSPExtension() method in IBM portlets is used to get the file extension.
For JSR 168 portlets, you should change this method to just return a String with
the value jsp.

10.2.8 PortletData and PortletSettings
JSR 168 portlets use a PortletPreferences object in replace of PortletData and
Portletsettings. All instances of the PortletData should be changed to use
PortletPreferences.

Replace:

Example 10-9 PortletData

PortletData portletData = request.getData();
portletData.setAttribute(“name”, new String(“Hailey”));
portletData.store();

with:

Example 10-10 PortletPreferences

PortletPreferences preferences = request.getPreferences();
preferences.seValue(“name”, new String(“Hailey”));
preferences.store();

10.2.9 namespace
The namespace concept for both portlet APIs are used in the same way. They
do, however, use different methods.

Change:

response.encodeNamespace();

to:

response.getNamespace();

10.2.10 portlet URLs
JSR 168 portlets use PortletURL objects for creating links. There are two types
of PortletURLs, ActionURL and RenderURL. Use ActionURLs to create links to
invoke and action request and use a RenderURL to invoke a render request. You
can use the PortletURL objects to set the portlet mode, window state, and set
parameters.

 Chapter 10. Migrating to JSR 168 343

Use the following to create PortletURLs.

Example 10-11 PortletURL

PortletURL myURL = response.createRenderURL();
myURL.setPortletMode(PortletMode.EDIT);
myURL.setWindowState(WindowState.MAXIMIZED);
myURL.setParameter("myParam", "My Parameter");

10.3 Modifying the JSP source
The majority of your JSPs will probably not need to be changed. Both the IBM
portlet API and the JSP 168 portlet API can leverage the Servlet 2.3 and JSP 1.2
specifications. You will need to change from the IBM JSP custom tags to the JSR
custom tags.

10.3.1 taglib
The tag library needs to be changed to point to the JSR 168 tld and not the IBM
tld.

For all JSP using portlet tag, change:

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

to:

<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

You can leave the prefix as portletAPI if you choose.

You will then need to define the tld in the web.xml. The tagib element needs to be
placed after the error-page element. If you are not using an error-page element,
you can place the taglib element after the welcome-file-list. Example 10-12
shows the taglib element in the web.xml.

Example 10-12 taglib element

<welcome-file-list>
.....
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>
<taglib id="PortletTLD">

<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

</taglib>

344 IBM Rational Application Developer V6 and Portal Tools

10.3.2 portletAPI:init
The IBM portlet API uses the init tag to defines the following objects.

� portletRequest of type PortletRequest
� portletResponse of type PortletResponse
� portletConfig of type PortletConfig

JSR 168 uses the portlet:defineObjects tag to generate object for use in the JSP.
JSP are called during the render phase. The defineObjects tag defines the
following objects.

� renderRequest of type RenderRequest
� renderResponse of type RenderResponse
� portletConfig of type PortletConfig.

Although both tags define a portletConfig variable, they are different types of
PortletConfigs.

All JSP scriptlets containing portletRequest and portletResponse should be
changed to use renderRequest and renderResponse.

10.3.3 namespace
Both APIs use namespacing to uniquely identify portlets on a page. The
portletAPI:encodeNameSpace tag and the portlet:namespace tag have the same
function, but they are implemented quite differently. While the IBM API tag take a
value attribute used to concant to the end of the namespace, the JSR tag will just
return the namespace without accepting an attribute.

Example 10-13 Namespace using tags

IBM API namespace
<portletAPI:encodeNamespace value=”name” />

JSR 168 namespace
<portlet:namespace/>

You can also use the method the RenderResponse class to get the namespace.

Example 10-14 Namespace using PortletResponse objects.

IBM API namespace method
response.encodeNamespace("name");

JSR 168 API
response.getNamespace();

 Chapter 10. Migrating to JSR 168 345

10.3.4 Creating URLs
JSR 168 Portlets define two types of PortletURLs. An ActionURL used to
generate an action request and a RenderURL used to generate a render request.
An action request will cause the processAction method to be invoked. As
discussed in “actionPerformed” on page 341, you should update the name of the
submit buttons for your forms. The action value for forms should be an
ActionURL. You can either use the JSP or the RenderResponse object to create
the URL. RenderURLs will invoke a render request and cause the render method
of the portlet to be called. The render method invoke the doDispatch which in
turn calls one of the doXXX methods. Through the PortletURLs, you can also
change the portlet mode, window state, and add parameters. Example 10-15
demonstrates creating an ActionURL in a form.

Example 10-15 ActionURL in a form

Creating an ActionURL using the JSP tag:
<FORM method="POST" action="<portlet:actionURL />" >
 <LABEL class="wpsLabelText" for="<portlet:namespace
/><%=MyPortletPortlet.TEXT%>">Enter order id:</LABEL>

 <INPUT class="wpsEditField" name="<portlet:namespace
/><%=MyPortletPortlet.TEXT%>" type="text"/>
 <INPUT class="wpsButtonText" name="<portlet:namespace
/><%=MyPortletPortlet.FORM_SUBMIT%>" value="Submit" type="submit"/>
 </FORM>

Creating an ActionURL using the RenderResponse object:
<FORM method="POST" action="<%= renderResponse.createActionURL() %>" >
 <LABEL class="wpsLabelText" for="<portlet:namespace
/><%=MyPortletPortlet.TEXT%>">Enter order id:</LABEL>

 <INPUT class="wpsEditField" name="<portlet:namespace
/><%=MyPortletPortlet.TEXT%>" type="text"/>
 <INPUT class="wpsButtonText" name="<portlet:namespace
/><%=MyPortletPortlet.FORM_SUBMIT%>" value="Submit" type="submit"/>
 </FORM>

In Example 10-16 we will create a RenderURL, setting the portlet mode to Edit
and the window state to maximized. We will also set some render parameters.

Example 10-16 RenderURL

Creating a RenderURL using the JSP tags:
<a href="<portlet:renderURL portletMode="EDIT" windowState="MAXIMIZED">
<portlet:param name="myParam" value="myValue"/>
</portlet:renderURL>">My RenderURL

Creating a RenderURL using the RenderResponse object:
<% PortletURL myRenderURL = renderResponse.createRenderURL();

346 IBM Rational Application Developer V6 and Portal Tools

myRenderURL.setPortletMode(PortletMode.EDIT);
myRenderURL.setWindowState(WindowState.MAXIMIZED);
myRenderURL.setParameter("myParam", "myValue"); %>

<a href="<%=myRenderURL %>">My RenderURL

10.3.5 portletAPI:text
The text tag of the IBM API is deprecated in favor of using JSTL.

10.3.6 encodeURL
The encodeURL method is used in both APIs. However, in JSR 168, the
encodeURL must be passed a root relative path. You should use the
RenderRequest.getContextPath() method before the path of the included file. In
Example 10-17, we will include the myimage.gif image under the images
directory.

Example 10-17 encodeURL

<%= renderResponse.encodeURL(renderRequest.getContextPath() +
"/images/myimage.gif") %>

10.3.7 CSS
We recommend using WSRP styles whenever possible when developing JSR
168 portlets. In WebSphere Portal, all consumed remote portlet are treated as
JSR 168 portlets. By using WSRP styles, this help ensure that your portlet will
display correctly if provided as a remote portlet on another portal server. If your
portlet is consumed on a different vendors portal server, the IBM specific classes
specified on your JSP/HTML would not be picked up. This could cause
appearance problems in the new environment.

10.4 Struts
A Struts portlet configuration consists of a specific Portlet class to extend from,
some init-params to configure it, as well as an specific RequestProcessor class
in struts-config.xml. This configuration is slightly different from the IBM Portlet
API to the JSR 168 API. In Chapter 15, “Struts portlet development using the
JSR 168 API” on page 465 you can find more details that will help you to migrate
a Struts Portlet application based on the IBM Portlet API to a Struts Portlet
application based on the JSR 168 API.

 Chapter 10. Migrating to JSR 168 347

10.5 JSF
JSF portlet applications have a portlet.xml with a FacesPortlet defined, as well as
some init-params to specify the initial page for each portlet mode. The
faces-config.xml file for JSF portlet applications must define a
FacesContextFactory, as well as some variable and property resolvers. In
Chapter 16, “JavaServer Faces portlets” on page 511, you can find more details
that will help you to migrate JSF applications to JSF portlet applications that use
the JSR 168 portlet API

10.6 Portlet services
JSR 168 portlets can access portlet services in WebSphere Portal version 5.1.
Your portlet service will need to be rewritten to work with JSR 168. You can,
however, write the portlet so that you can still use it with IBM portlets. The service
provider interfaces from org.apache.jetspeed.portlet.service.spi are still
supported to provide IBM portlets access to services.

You will have to create a new portlet service interface extending
com.ibm.portal.portlet.service.PortletService.

Example 10-18 JSR Portlet Service interface

package example.portletservice;

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import com.ibm.portal.portlet.service.PortletService;

public interface MyJSRPortletService extends PortletService {
public void HelloService(RenderRequest request, RenderResponse response);

}

You can use the same portlet service implementation with a few modifications.
You will need to verify that the service implementation implements
com.ibm.portal.portlet.service.spi.PortletServiceProvider. This interface provides
the methods for the life cycle of the portlet service. You will also need to
implement your new JSR portlet service interface. If you still need to use this
service for IBM portlets, you can also implement you IBM Portlet API portlet
service interface. WebSphere portal provides a class for converting IBM Portlet
API object into JSR 168 objects. You can use this class to wrap your JSR 168
objects and pass them into the IBM methods of the portlet service

348 IBM Rational Application Developer V6 and Portal Tools

implementation. This allows only having to maintain code in only one method, be
sure that you method behaves the same using this approach.

Example 10-19 JSR Portlet Service implementation

package example.portletservice;

import java.io.IOException;

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import org.apache.jetspeed.portlet.PortletRequest;
import org.apache.jetspeed.portlet.PortletResponse;
import org.apache.jetspeed.portlet.service.PortletServiceUnavailableException;
import org.apache.jetspeed.portlet.service.spi.PortletServiceConfig;
import org.apache.jetspeed.portlet.service.spi.PortletServiceProvider;

import com.ibm.portal.portlet.apiconvert.APIConverterFactory;

public class MyPortletServiceImpl implements MyPortletService,
PortletServiceProvider, MyJSRPortletService {

public void HelloService(PortletRequest request, PortletResponse response)
{

//moved the code from here to HelloService for JSR 168 portlets

//call the JSR 168 method using the APIConverterFactory class

HelloService(APIConverterFactory.getInstance().getRenderRequest(request),

APIConverterFactory.getInstance().getRenderResponse(response));
}

public void HelloService(RenderRequest request, RenderResponse response){
try {

response.getWriter().println("Hello World from a Portlet Service!");
} catch (IOException e) {

e.printStackTrace();
}

}

public void init(PortletServiceConfig arg0)
throws PortletServiceUnavailableException {

}

public void destroy() {
}

 Chapter 10. Migrating to JSR 168 349

}

JSR 168 portlets will register portlet services using JNDI. As with IBM Portlet API
portlet services, you should place your JAR file under the <WebSphere
Portal>/shared/app directory. You will then need to modify the
PortletServiceRegistryService.properties file in <WebSphere
Portal>/shared/app/config/services directory. If you are still using the service for
IBM portlets you can leave the current entry and create a new entry for use with
JSR 168 portlets. The main difference is that when defining the portlet service,
you need to prefix the service interface with jndi:.

Example 10-20 Registering JSR 168 portlet service

#My portlet service
example.portletservice.MyPortletService =
example.portletservice.MyPortletServiceImpl
jndi:example.portletservice.MyJSRPortletService =
example.portletservice.MyPortletServiceImpl

You will need to modify your portlet to use a JNDI lookup to get the portlet
service. Remove all code from your portlet that retrieves portlet services. The
object returned from the JNDI lookup will be of type PortletServiceHome. From
the PortletServiceHome object you will be able to access your service. You
should perform the lookup in the init method of your portlet. This may take time
and only needs to be performed once.

Example 10-21 Retreiving a portlet service from a JSR 168 portlet

package myjsrportlet;

import java.io.IOException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NameNotFoundException;
import javax.naming.NamingException;
import javax.portlet.GenericPortlet;
import javax.portlet.PortletConfig;
import javax.portlet.PortletException;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import com.ibm.portal.portlet.service.PortletServiceHome;

Note: In Example 10-20, we use the same implementation class for both
portlets. We can do this because we defined methods for both portlet APIs in
our implementation class.

350 IBM Rational Application Developer V6 and Portal Tools

import example.portletservice.MyJSRPortletService;

public class MyJSRPortletPortlet extends GenericPortlet {

private PortletServiceHome myServiceHome = null;

public void init(PortletConfig config) throws PortletException {
super.init(config);
try{

Context ctx = new InitialContext();
Object home =

ctx.lookup("portletservice/example.portletservice.MyJSRPortletService");
if(home != null){

myServiceHome = (PortletServiceHome)home;
}

} catch(NameNotFoundException nnf){
config.getPortletContext().log("MyJSRPortletService is not

available");
nnf.printStackTrace();

} catch(NamingException ne){
ne.printStackTrace();

}
}

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, IOException {
 response.setContentType("text/html");

 MyJSRPortletService myService =
(MyJSRPortletService)myServiceHome.getPortletService(MyJSRPortletService.class)
;
 myService.HelloService(request, response);

}
}

10.7 Messaging
Portlets using the Messaging interfaces should change to use a cooperative
portlet. The JSR specification does not define a messaging listener and therefore
the only option is to use cooperative portlets. See Chapter 26, “JSR 168
cooperative portlets” on page 801 for more information about the cooperative
portlet.

 Chapter 10. Migrating to JSR 168 351

352 IBM Rational Application Developer V6 and Portal Tools

Chapter 11. Using JSPs and servlets

In this chapter, we will discuss using JSPs and servlets with JSR 168 portlets.
This chapter contains the following sections.

� Overview
� Generating output
� RequestDispatcher
� JSP tags
� Cascading Style Sheets (CSS)

11

© Copyright IBM Corp. 2005. All rights reserved. 353

11.1 Overview
Portlets follow the Model View Controller (MVC) design pattern. In this design
pattern, portlets will usually use JSPs to generate the output. A portal page can
be composed of many portlets along with the theme and skins.

11.1.1 Generating output
Portlets use the PortletRequestDispatcher.include() method to delegate content
generation to JSPs or servlets.

Portlets are displayed on a portal page by using themes and skins. To allow
portlets to dynamically match the current theme/skin in which they are contained,
portlets should take advantage of cascading style sheets (CSS). When
developing JSR 168 portlets, you should make every effort to use a WSRP style
if available. You should also avoid using absolute positioning with CSS. The
dynamic nature of portal cannot guarantee that your portlet will be displayed in a
certain position on the page.

The page that a user sees when accessing a portal page is the result of an
aggregation of all the portlets on a page with the themes and skins. Each portlet
should contain JSPs that are well formed. If a JSP is not well formed, it could
result in other portlets and possible the entire page not displaying correctly. You
should use standard HTML tags with no <html>,<head>, or <body> tags. Only
elements that can be displayed in the cell of a table can be rendered. Be aware
of the size of the portlet when it is rendered, this portlet may share a page with
other portlets and may cause problems if the rendered output of the portlet is too
big.

Use Java style comments rather than HTML comments, this produces a smaller
page to be sent to the client, improving performance. Also the comment will not
be visible to the user when viewing the HTML source.

IFRAMEs should be used with caution. While they do provide solutions to some
special cases, not all browsers support them. Also the content in an IFRAME
may be displayed with scroll bars if the content is larger than the allowed display
size. This can cause an unsightly portlet.

Whenever possible, avoid the use of pop-up windows. Pop-ups may cause
problems with the current portlets state. Pop-ups are acceptable when the target
for the new window is outside portal.

Example 11-1 JavaScript to open a URL in a new window

IBM

354 IBM Rational Application Developer V6 and Portal Tools

Portlets should be designed to be accessible to users with disabilities. the
following coding practices should be applied:

� Do not use only color or sound alone to convey information.

� Use labels with forms to match the description with the information requested.

Example 11-2 uses labels within a form. The label goes with the “OrderID”
form field.

Example 11-2 Using labels with a form

<FORM method="POST" action="<portlet:actionURL/>">
<LABEL for="OrderID">Enter order id:</LABEL>

<INPUT name="OrderID" type="text"/>
<INPUT name="SubmitButton" type="submit" value="Submit"/>

</FORM>

� Use the ALT attribute with images to provide a description of the image for
those who cannot see it.

JSR 168 provides a set of JSP tags to use while developing pages. These tags
along with JSTL will reduce the amount of JSP scripting elements in the page.
This also enables developers who are not familiar with JSP scripting elements to
still create dynamic JSPs

All JavaScript variable and function names should be namespaced to avoid
conflict with other portlets on the same page. The namespace should be added
before element name. You can either use the JSP tag <portlet:namespace/> or
RenderResponse.getNamesapace() method.

Portlets must use the methods of the portlet API to create links to other
resources within the portlet (images, JSPs, applets, etc.). The getEncodeURL
method of the RenderResponse object will create the correct link. You must pass
a root relative path to this method. To obtain the correct path use the
RenderRequest.getContextPath() method to prepend your path.

Example 11-3 Creating a link to an image from a jsp

<img src="<%= renderResponse.encodeURL(renderRequest.getContextPath() +
"/images/smile.jpg")%>”alt=”Smile”/>

Although your portlets can also generate output for WML and cHTML, we will not
discuss these topics here.

 Chapter 11. Using JSPs and servlets 355

11.2 RequestDispatcher
JSR 168 portlets use the PortletRequestDispatcher to delegate responsibility to
servlets and JSPs. The PortletRequestDispatcher can only be used while the
portlet is processing a render action. The request dispatcher is obtained from the
portlet context by using either the getRequestDispatcher or the
getNamedDispatcher method.

11.2.1 PortletContext.getRequestDispatcher
The getRequestDispatcher method takes a String representing the context root
relative path of the included file. This path must begin with a ‘/’. This method will
return null if the path is not found.

While using the getRequestDispatcher method, you may include parameters in
the path. For example, if your path is /mypath/myjsp.jsp, you can include
parameters by adding them to the end of the path
/mypath/myjsps.jsp?name=Hailey. Parameters in the URL take precedence over
any other render parameters of the same name. These parameters are only in
scope for the current request.

Example 11-4 getRequestDispatcher

Code in the portlet
String path = "/jsptest/jsp/html/testCase.jsp?name=Hailey";
PortletRequestDispatcher rd = getPortletContext().getRequestDispatcher(path);
rd.include(request,response);

Code in JSP
Hello <%= renderRequest.getParameter("name") %>

11.2.2 PortletContext.getNamedDispatcher
The getNamedDispatcher will take the name of a servlet rather than a path. This
servlet must be a known servlet and registered in the web deployment descriptor.
This method will return null if the servlet is not found.

11.2.3 PortletRequestDispatcher.include
The include() method of the PortletRequestDispatcher class is used to include
JSPs and servlets. The RenderRequest and RenderResponse objects passed
into the render method must be passed into the include() method.

The include() method can be called at any time during the render method of the
portlet.

356 IBM Rational Application Developer V6 and Portal Tools

JSPs and Servlets called from the include method will have access to the
following request parameters. However, if the RequestDispatcher for a servlet
was obtained using the getNamedDispatcher the following attributes will not be
available.

All of the following attribute and parameter can be obtained from the requests
getAttribute method.

The following five request parameters have corresponding methods in the
HttpServletRequest to get the information.

javax.servlet.include.request_uri
The request_uri is the context root relative path of the included JSP or servlet

javax.servlet.include.context_path
The context_path in the context root for the portlet.

javax.servlet.include.servlet_path
The servlet path will be the request_uri minus the context_path

javax.servlet.inclue.path_info
path_info contains information about the path.

javax.servlet.include.query_string
The query_string will contain any parameters that have been added to the path.
For example if you had a path of /mypath/myjsps.jsp?name=Hailey, the
query_string would contain name=Hailey.

The following three attributes will store portlet objects. When using JSPs it is
recommended that you use the defineObjects portlet tags rather than getting the
objects from the request.

Example 11-5 Request attributes

RenderRequest renderRequest =
(RenderRequest)request.getAttribute("javax.portlet.request");
RenderResponse renderResponse =
(RenderResponse)request.getAttribute("javax.portlet.response");
PortletConfig portletConfig =
(PortletConfig)request.getAttribute("javax.portlet.config");

Note: The included JSPs and Servlets should not use the Servlet
RequestDispatcher to do a forward as this may cause unpredictable behavior.

 Chapter 11. Using JSPs and servlets 357

javax.portlet.config
Is an object of type PortletConfig

javax.portlet.request
Is an object of type RenderRequest

javax.portlet.response
Is an object of type RenderResponse

Request and Response objects of included JSPs and Servlets
An included JSP and Servlet does have access to some of the functionality of the
request and response objects.

HttpServletRequest
The following methods will perform no actions and or return null

� getProtocol
� getRemoteAddr
� getRemoteHost
� getRealPath
� getRequestURL
� getCharacterEncoding
� setCharacterEncoding
� getContentType
� getInputStream
� getreader
� getContentLength will always return zero

The following methods will be used to return the request parameters listed above

� getPathInfo

javax.servlet.include.path_info

� getQueryString

javax.servlet.include.query_string

� getRequestURI

javax.servlet.include.request_uri

� getServletPath

javax.servlet.include.servlet_path

The methods of the HttpServletrequest method for handling parameters will be
the same as the methods of PortletRequest.

358 IBM Rational Application Developer V6 and Portal Tools

� getParameter
� getParameterNames
� getParameterValues
� getParameterMap

The properties defined in PortletRequest will be used for the following
HttpServletRequest methods.

� getHeader
� getHeaders
� getHeaderNames
� getCookies
� getDateHeader
� getIntHeader

The following list of HttpServletRequest methods will be the as the methods of
the PortletRequest with the same or similar name.

� getScheme
� getServerName
� getServerPort
� getAttribute
� getAttributeNames
� setAttribute
� removeAttribute
� getLocale
� getLocales
� isSecure
� getAuthType
� getcontextPath
� getRequestedSessionId
� isRequestedSessionIdValid
� getRequestDispatcher
� getMethod - (this will always return GET)
� getSession
� isRequestedSessionIdFromCookie
� isRequestedSessionIdFromURL
� isRequestedSessionIdFromUrl

HttpServletResponse
The following methods in HttpServletResponse will return null.

� encodeRedirectURL
� encodeRedirectUrl

The following methods in HttpServletResponse will not perform any actions:

 Chapter 11. Using JSPs and servlets 359

� setContentType
� setContentLength
� setLocale
� addCookie
� sendError
� sendRedirect
� setDataHeader
� addDataHeader
� setHeader
� addHeader
� setIntHeader
� addIntHeader
� setStatus
� containsHeader - (will always return false)

The following list of HttpServletResponse methods will be the as the methods of
the PortletResponse with the same or similar name.

� getCharacterEncoding
� setBufferSize
� flushBuffer
� resetBuffer
� reset
� getBufferSize
� isCommited
� getOutputStream
� getWriter
� encodeURL
� endoceUrl

11.3 JSP tags
The JSP tags provided for JSR 168 portlets allow the portlet developers to rely
less on using JSP scripting elements. The JSR 168 specification provides a set
of custom tags. WebSphere Portal also provides an extended JSP tag for JSR
168 portlets. The Servlet specification also defines the Java Standard tag Library
(JSTL). JSTL is a set of standard tags used for logic and presentation in your
JSPs.

The following tags are defined by the JSR 168 specification. These tags will
allow developers access to the portlet objects such as the renderRequest and
the renderResponse objects. They also allow for creating render and action
URLs, and encoding namespaces. You must use the following taglib directive in
your JSP in order to use these tags.

360 IBM Rational Application Developer V6 and Portal Tools

<@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>

11.3.1 defineObjects
The defineObjects tag will create the following objects.

� renderResponse of type javax.portlet.RenderResponse
� renderRequest of type javax.portlet.RenderRequest
� portletConfig of type javax.portlet.PortletConfig

After invoking the defineObjects tag on a page, you can use any of the defined
variables in Java scriplets. In Example 11-6, after the defineObjects tag has been
called we use the renderResponse object to create a render URL. We also set
the portlet mode to EDIT, the window state to maximized, and we added a
RenderRequest parameter named “edit_param“.

Example 11-6 Using renderResponse to create a render action

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,jsptest.*" %>

<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<% PortletURL url = renderResponse.createRenderURL();

url.setPortletMode(PortletMode.EDIT);
url.setParameter("edit_param","This is an edit param!");
url.setWindowState(WindowState.MAXIMIZED);

%>
<a href="<%= url.toString() %>">Render
URL

11.3.2 renderURL
The renderURL tag will generate a URL that triggers a render action pointing to
this portlet. You can set the portlet mode, window state and pass parameters
using this tag.

The following attributes are optional.

windowState
This attribute will set the window state. For WebSphere portal the only supported
states are MINIMIZED, MAXIMIZED, and NORMAL. A JSPException will be
thrown if the window state is not valid or the portlet does not specify the window
state as supported. If no windowState is specified, the windowState will remain
the same as the current request. This attributes does accept a runtime
expression for the value (windowState=”<%= newWindowState %>”).

 Chapter 11. Using JSPs and servlets 361

portletMode
This indicates the mode of the portlet after executing the render action.
WebSphere Portal support VIEW, EDIT, HELP, and the custom mode CONFIG. A
JSPException will be thrown if the mode specified is not a mode supported by
WebSphere portal or the mode is not supported by the current portlet. If the
portlet mode is not specified, the portlet mode will remain the same as the same
as the current request. This attributes does accept a runtime expression for the
value (portletMode=”<%= newPortletMode %>”).

var
The var attribute will create a variable with the provide name. This variable will be
stored in the page scope and provided the value of the created URL. This
attributes does accept a runtime expression for the value (var=”<%= varName
%>”).

secure
The secure attribute will make use of the setSecure method and is currently not
supported in WebSphere Portal.

Example 11-7 will create a URL using the renderURL tag. The URL generated is
the same as the URL generated in Example 11-6 on page 361.

Example 11-7 Using the renderURL tag to generated a render action

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,jsptest.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>
<portlet:renderURL portletMode="EDIT" windowState="maximized" var="myURL">
<portlet:param name="edit_param" value="This is an edit parameter"/>
</portlet:renderURL>
<a href="<%= myURL %>">Render URL

11.3.3 actionURL
The actionURL tag will create a URL that triggers the action phase for this portlet.
You can set the portlet mode, window state, and pass parameters.

The following attributes are optional.

Note: When in the source view in Rational Application Developer, when using
this variable in a scriplet (<%= myVar %>) you may see a red box on the right
side of the screen stating that myVar variable cannot be resolved. This will be
resolved during runtime and you should not be concerned about the warning.

362 IBM Rational Application Developer V6 and Portal Tools

windowState
This attribute will set the window state. For WebSphere portal the only supported
states are MINIMIZED, MAXIMIZED, and NORMAL. A JSPException will be
thrown if the window state is not valid or the portlet does not specify the window
state as supported. If no windowState is specified, the windowState will remain
the same as the current request. This attributes does accept a runtime
expression for the value (windowState=”<%= newWindowState %>”).

portletMode
This indicates the mode of the portlet after executing the render action.
WebSphere Portal support VIEW, EDIT, HELP, and the custom mode CONFIG. A
JSPException will be thrown if the mode specified is not a mode supported by
WebSphere portal or the mode is not supported by the current portlet. If the
portlet mode is not specified, the portlet mode will remain the same as the same
as the current request.This attributes does accept a runtime expression for the
value (portletMode =”<%= newPortletMode %>”).

var
The var attribute will create a variable with the provide name. This variable will be
stored in the page scope and provided the value of the create URL. This
attributes does accept a runtime expression for the value (var=”<%= varName
%>”).

secure
The secure attribute will make use of the setSecure method and is currently not
supported in WebSphere Portal.

11.3.4 namespace
The namespace tag should be used for named elements to ensure that they are
associated with the current portlet. Typically you would namespace JavaScript
functions, variables. Namespacing uniquely identifies that the element belongs to
the portlet and avoids conflicts with other portlets on the page. The namespace
tag does not contain a body and it does not have any attributes.

Example 11-8 Using namespace with JavaScript elements

<script language="JavaScript">
var <portlet:namespace/>userName = "Hailey";

Note: When in the source view in Rational Application Developer, when using
this variable in a scriplet (<%= myVar %>) you may see a red box on the right
side of the screen stating that myVar variable cannot be resolved. This will be
resolved during runtime and you should not be concerned about the warning

 Chapter 11. Using JSPs and servlets 363

function <portlet:namespace />helloUser(){
alert(<portlet:namespace/>userName);
}
</script>
<INPUT type="button" value="Click Me"
onclick="<portlet:namespace/>helloUser()"/>

11.3.5 param
The param tag defines a renderURL or an actionURL parameter. Example 11-7
on page 362 shows the param tag used in the body of a renderURL tag. The
param tag has two required attributes.

The following attributes are required.

name
The name attribute will be used to name the parameter. If this parameter is null
or empty, the parameter will not be added. This attribute can be expressed by a
runtime value (name=”<%= myParameterName %>).

value
The value attribute will represent the String value for the named parameter. If this
value is null or empty it will be treated as an empty String. This attribute can also
be expressed by a runtime value (value=”<%= myParameterValue %>).

11.3.6 IBM tags
WebSphere Portal provides an additional tag for use with JSR 168 portlets. This
tag is used for bidirectional languages.

To use this tag, you must include the following tag library.

<@ taglib uri=”/WEB-INF/tld/ibm-portlet-ext.tld” prefix=”portletExt” %>

bidi
Bidirectional languages are read from right to left. The bidi tag is used to support
the bidirectional language.

The following attributes are not required.

dir
The dir attribute specifies the direction for the language. The only two supported
values are rtl for right to left and ltr for left to right. The default for this attribute is
rtl.

364 IBM Rational Application Developer V6 and Portal Tools

locale
The locale must be specified in the LocalizerService.properties. This attribute
can be expressed by a runtime value (for example locale=”<%= myLocale %>).

11.3.7 JSTL
Java Standard Tag Library (JSTL) is a set of custom tags included in the Servlet
specification. These tags provide common functionality used when developing
JSPs. While JSTL is not specific to portlets, you can use them while developing
the JSPs in your portlet. Although the complete JSTL specification is outside the
scope if this book, we will try to give an overview and some examples.

JSTL tags allows portlet developers to use less JSP scripting elements in their
JSPs. This is cleaner and less prone to errors. It also enables developers who
are not Java programmers to add dynamic content. Although JSTL does provide
allot of functionality, there still may be times that scripting cannot be avoided.

The JSTL is composed of four libraries.

core
The core is used for basic functionality such as conditional statements. You can
also perform looping and input/output operations from this library. To use the core
library you must declare the following taglib directive in your JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c"%>

xml
The xml library is used for xml processing. You must include the correct taglib
directive to use the xml library.

<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x"%>

fmt
The format library is used for formatting currency, dates, and other values. This
library is also used for internationalization. The following taglib directive is used
to declare the format library.

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

Example 11-9 fmt

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<fmt:setBundle basename="nls.NLSExample"/>
<fmt:message key="message"/>

 Chapter 11. Using JSPs and servlets 365

sql
The sql library is used for queries and database access. The following taglib
directive is used for specifying the sgl library.

<%@ taglib uri="http://java.sun.com/jstl/sql" prefix="sql"%>

Example 11-10 show a JSTL loop. The number is printed along with a line stating
if the number is even or odd.

Example 11-10 JSTL example

<c:forEach var="i" begin="1" end="10" step="1">
<c:if test="${ (i % 2) == 0}">

<c:out value="${i} is an even number!" />
</c:if>
<c:if test="${ (i % 2) != 0}">

<c:out value="${i} is an even number!" />
</c:if>

</c:forEach>

11.4 Cascading style sheets (CSS)
Cascading style sheets (CSS) allows Web developer to control the look and feel
of Web pages. Many pages can be associated with a single CSS file. If changes
to a sites appearance are required they only have to updated in one place.
WebSphere portlet uses CSS to give a common look for themes and skins. JSR
168 portlets should use the CSS style defined for the WSRP specification
whenever possible. This allows the portlets to alter their appearance dynamically
depending on the theme/skin they are displayed in. IBM also provide many
classes for styles, but once again use the WSRP style whenever possible.

CSS files are located in the <WebSphere Application
Server>\installedApps\localhost\wps.ear\wps.war\themes directory. The correct
CSS file is used based on the theme name, locale, and client.

We will not explain how CSS works, but we will explain the WSRP styles and
where they should be used.

11.4.1 WSRP Styles
WSRP styles are a set of styles defined by the WSRP specification.

366 IBM Rational Application Developer V6 and Portal Tools

Links
Table 11-1 Anchors

Fonts
Table 11-2 Fonts

Example 11-11 Font styles

<div class="portlet-font">
 Hello World!

</DIV>
<div class="portlet-font-dim">
 Hello dimmer World!

</div>

Figure 11-1 Font styles

Messages
Message style are using to modify the appearance of paragraphs.

Table 11-3 Messages

Tag Style

<a> There are no styles defined for an anchor.

Style Description

portlet-font This should be used for normal fonts.

portlet-font-dim This will be lighter than the portlet-font

Style Description

portlet-msg-status Displaying current status

portlet-msg-info Additional information

portlet-msg-error Error messages

portlet-msg-alert Warning messages

portlet-msg-success Task completed successfully

 Chapter 11. Using JSPs and servlets 367

Sections
Section style should be used with division (div) and span HTML tags.

Table 11-4 Sections

Tables
Table styles should be used for HTML table tags.

Table 11-5 Table

Example 11-12 Table styles

<div class="portlet-table-text">
This is my Table.
</div>
<TABLE border="1" width="456">

Style Description

portlet-section-header Section header

portlet-section-body Normal text

portlet-section-alternate Text for alternating rows

portlet-section-selected Selected text

portlet-section-subheader Subheading text

portlet-section-footer Section footer

portlet-section-text All other text that does not fall into one of the
previous styles. This could be used for
additional information.

Style Description

portlet-table-header Table header

portlet-table-body Text in the cell of a table

portlet-table-alternate Alternate rows of a table

portlet-table-selected Selected text in a cell

portlet-table-subheader Subheading text

portlet-table-footer Table footer

portlet-table-text All other text that does not fall into one of the
previous styles. This could be used for
additional information.

368 IBM Rational Application Developer V6 and Portal Tools

<TBODY class="portlet-table-body">
<TR class="portlet-table-header">

<TD width="173">First Name</TD>
<TD width="275">Last Name</TD>

</TR>
<TR >

<TD width="173">Bob</TD>
<TD width="275">Smith</TD>

</TR>
<TR class="portlet-table-alternate">

<TD width="173">Ed</TD>
<TD width="275">Jones</TD>

</TR>
<TR>

<TD width="173">Sue</TD>
<TD width="275">Johnson</TD>

</TR>
</TBODY>

</TABLE>

Forms
Table 11-6 Forms

Example 11-13 WSRP form styles

<DIV style="margin: 6px">
<p class="portlet-form-label">Please fill out your information:</p>
<form name="<portlet:namespace />" action="<portlet:actionURL/>">
Please enter your gender:

<label class="portlet-form-field-label" for="<%= WSRPTestPortlet.GENDER
%>">Male</label>

Style Description

portlet-form-label Label for the entire form and not a label specific
to a field.

portet-form-input-field Text of an input field

portlet-form-button Text of a button

portlet-icon-label Text surrounding an action icon

portlet-dlg-icon-label Text surrounding a standard button such as OK
or cancel.

portlet-form-field-label Text for a field label

portlet-form-field Text for a field other than an input field such as
a checkbox or radio button

 Chapter 11. Using JSPs and servlets 369

<input class="portlet-form-field" type="radio" name="<%= WSRPTestPortlet.GENDER
%>" value="Male">

<label class="portlet-form-field-label" for="<%= WSRPTestPortlet.GENDER
%>">Female</label>
<input class="portlet-form-field" type="radio" name="<%= WSRPTestPortlet.GENDER
%>" value="Female">

<label class="portlet-form-field-label" for="<%= WSRPTestPortlet.FIRST_NAME
%>">First name:</label>
<input class="portlet-form-input-field" type="text" name="<%=
WSRPTestPortlet.FIRST_NAME %>" />

<label class="portlet-form-field-label" for="<%= WSRPTestPortlet.LAST_NAME
%>">Last name:</label>
<input class="portlet-form-input-field" type="text" name="<%=
WSRPTestPortlet.LAST_NAME %>" />

<input class="portlet-form-button" type="submit" name="<%=
WSRPTestPortlet.SUBMIT %>" value="Enter" />
</form>
</DIV>

Menus
Table 11-7 Menus

11.4.2 IBM styles
WebSphere portal provided a large list of classes for use within portlets, too
numerous to list here. Once again, it is recommended that you use the WSRP
style when available.

Style Description

portlet-menu Menu settings

portlet-menu-item Deselected menu item

portlet-menu-item-selected Selected menu item

portlet-menu-item-hover Mouse over on an deselected menu item

portlet-menu-item-hover-selected Mouse over on a selected menu item

portlet-menu-cascade-item Deselected menu item with submenus

portlet-menu-cascade-item-selected Selected submenu item

portlet-menu-description Description of the menu

portlet-menu-cation Menu caption

370 IBM Rational Application Developer V6 and Portal Tools

The Style.css will be located in
was_root/installedApps/hostname/wps.ear/wps.war/themes/html. In this
Style.css you will be able to find both IBM and WSRP styles and a description
about the style. WebSphere portlet also provides a HelpStyle.css to provide a
constant look and feel to the Help mode of portlets.

During aggregation, the most specific directory is searched first. If a match is not
found there then the search gets more general until a match is found. This allows
the creation of style for different scenarios. Example 11-14 shows the order of
the search.

Example 11-14 Order of precedence during aggregation

1. locale_region
2. locale
3. client
4. theme_name
5. markup

For example, if you use a style that behaves differently in Internet Explorer, you
could change that Style under the ie directory while leaving the style in the
directory below untouched. Now when an Internet Explorer client access the
page they will see the correct style.

Let’s say we are using the Science theme and need to create a new class and a
special value for clients using Internet Explorer. We could update the class under
the ie directory.

WebSphere portlat will search the following directories for the styles. You would
need to update the Style.css in the most specific directory under ie in order to
see the changes for Internet Explorer. All other browser will pick up the Style.css
from the most specific directory not containing ie.

� themes/html/Science/ie/en/en_US/Style.css
� themes/html/Science/ie/en/Style.css
� themes/html/Science/ie/Style.css
� themes/html/Science/Style.css
� themes/html/ie/en/en_US/Style.css
� themes/html/ie/en/Style.css
� themes/html/ie/Style.css
� themes/html/en/en_US/Style.css
� themes/html/en/Style.css
� themes/html/Style.css
� themes/Style.css

 Chapter 11. Using JSPs and servlets 371

372 IBM Rational Application Developer V6 and Portal Tools

Chapter 12. Internationalization

In order to make a portal accessible and attractive to a wider audience, it is
necessary to provide the portal and its components in multiple languages.
WebSphere Portal has been translated into the languages listed on Table 12-1
on page 375.

The WebSphere Portal architecture makes it easy and efficient to provide
internationalization support to portals. The enablement can be performed during
development, deployment or runtime with the proper design decisions up front.

This chapter will guide you through several approaches to enable
internationalization:

� Using resource bundles
� Translating whole resources
� JSR 168 API considerations
� Dynamically changing the language during the session
� Administration
� Working with characters
� Best practices

12

© Copyright IBM Corp. 2005. All rights reserved. 373

12.1 Resource bundles
A resource bundle is a simple text file that contains key-value pairs. The key is
used by a Java class to retrieve a locale-specific value. To provide support for a
new locale, you need only create a new resource bundle with the same key
names and translated values.

Example 12-1 demonstrates a base resource bundle. Example 12-2
demonstrates the resource bundle translated for Spanish. Notice the key names
do not change, only the value is translated.

Example 12-1 NLSLab.properties resource bundle

welcome = hello
goodbye = goodbye
message = This is the NLSExample portlet

Example 12-2 NLSLab_es.properties resource bundle

welcome = hola
goodbye = adiós
message = éste es el portlet NLSExample

The file name of the resource bundle is very important. The file must of type
properties. All translated copies of the default resource bundle must include the
locale in their title. This is illustrated in Figure 12-1.

Figure 12-1 Translated resource bundles

The name is important because the Portal will locate the appropriate bundle for
you based on the locale you provide. The naming convention for resource
bundles is [bundle]_[language]_[country]_[variant].properties. The ISO standard
ISO-639 is used for the language codes of most languages.For Hebrew the old

374 IBM Rational Application Developer V6 and Portal Tools

language code iw is used. The ISO standard ISO-3166 is used for the
country/region codes. WebSphere portal supports the use of [variant], although
resource bundles supplied with the portal do not use it.

When you use properties files in your code you need only provide the base name
of the bundle and it will append the appropriate locale. The locales are listed in
Table 12-1.

Table 12-1 Languages supported by WebSphere Portal

Locale Code Language

ar Arabic

cs Czech

da Danish

de German

el Greek

en English

ru Russian

sv Swedish

es Spanish

tr Turkish

fi Finnish

fr French

zh Simplified Chinese

zh_TW Traditional Chinese

hu Hungarian

it Italian

iw Hebrew

ja Japanese

ko Korean

nl Dutch

no Norwegian

pl Polish

 Chapter 12. Internationalization 375

12.1.1 Creating resource bundles in Rational Application Developer
The resource bundles need to be created in the JavaSource directory as
illustrated in Figure 12-1 on page 374. Though not required, as a matter of good
practice, you should place the files in a dedicated directory such as nls. To create
a new resource bundle in RAD, open the project explorer view in the Web
perspective. Locate the JavaSource directory of the portlet you are enabling and
right-click. From the context menu, select New → Other.

Figure 12-2 Creating a new folder

Select Simple → Folder and click Next.

pt Portuguese

pt_BR Brazilian Portuguese

ro Romanian

th Thai

uk Ukrainian

Locale Code Language

376 IBM Rational Application Developer V6 and Portal Tools

Figure 12-3 Creating an nls folder

Enter the name of the new folder, typically nls as shown in Figure 12-4 on
page 378.

 Chapter 12. Internationalization 377

Figure 12-4 Creating the nls folder in RAD

In the nls folder, you need to create the default properties files. Select the nls
folder and right-click. From the context menu, select New → Other → Simple
→ File. Be sure the correct directory is selected and enter the name of the
default properties file as illustrated in Figure 12-5 on page 379. Do not include
any language codes in the name, or include any spaces in the name of the
resource bundle.

378 IBM Rational Application Developer V6 and Portal Tools

Figure 12-5 Creating the default properties bundle

When you are done, double-click the properties file in the navigator to open the
simple text editor. Using the text editor, define your keys and the default values,
such as those shown in Example 12-1 on page 374. Use CTRL-S to save the file.

12.1.2 Translating resource bundles
Once you have defined your default resource bundle with all the keys that will be
used by the portlets and JSPs in your application, you must provide translations.
It is possible to use the copy functionality in RAD. Another way is to work directly
with the source files on the file system. Locate the directory containing the
current workspace. You can obtain this path by right-clicking the portlet
application and selecting Properties from the context menu. The Info option will
display the file system location of the application. This is illustrated in Figure 12-6
on page 380.

 Chapter 12. Internationalization 379

Figure 12-6 Locating the application on the file system

Open the directory containing the application and use the normal system
copy/paste and rename functionality to create the new resource bundles. Each
new bundle should have a unique locale appended. In practice, you may at
development time only have the default and English properties files. This same
approach can later be used to import translated files received from an outside
source.

Once you have created the bundles you want, you need to make them available
in the RAD environment. To do this, simply select the portlet project, right-click
and select Refresh as shown in Figure 12-7 on page 381.

380 IBM Rational Application Developer V6 and Portal Tools

Figure 12-7 Loading resource bundles into RAD

When you are done, the folder should appear as in Figure 12-1 on page 374,
depending of course on the number of languages you choose to support.

12.1.3 Accessing resource bundles in portlets
If you are printing out content directly from the portlet, you can use the portlet API
to access the resource bundles quite easily. Most of your development will
adhere to a good MVC approach; you can use this approach for setting the title,
predefining parameters in a PortletURI or if you are providing some content via
the beginPage or endPage methods.

The resource bundle is accessed via the PortletContext object’s getText method
as displayed in Example 12-3.

Example 12-3 getText API

PortletContext.getText("Bundle Base Name", "Key", Locale)

� Bundle Base Name: the first parameter indicates the base name of the
resource bundle. The name includes the path relative to the classes directory
as shown in Example 12-4 on page 382. The name does not specify the
locale suffix or the properties file type. If the base file name cannot be found,
or the key is not present in the properties file, a PortletException will be
thrown.

� Key: this parameter maps to a key value in the properties file. If the key is not
found, a PortletException is thrown.

 Chapter 12. Internationalization 381

� Locale: this is used by the Portal to create the complete resource bundle
name. You are free to use any locale you like but to ensure the user’s locale is
returned, the code in Example 12-4 works well. The getLocale method
returns the preferred locale for the user. The Portal Server determines the
locale by first retrieving the user’s preferred language set during registration.
If the preferred language is not set, the locale is retrieved from the
accept-language header supplied by the client.

Example 12-4 Accessing resource bundles via the API

getPortletConfig().getContext().getText("nls.NLSExample", "welcome",
request.getLocale());

12.1.4 Accessing resource bundles in JSPs
When you employ a well designed MVC approach to your portlet development,
the vast majority of NLS enablement work will need to take place in the view
space. This section will guide you through providing locale-specific strings in a
JSP. Section 12.2, “Translating whole resources” on page 383 will guide you
through providing a unique JSP for each locale you choose to support.

To access resource bundles in JSP, you need to include the JSP Standard Tag
Library. You can include it while you create the portlet application project, in the
Features window check JSP Tag Libraries option. You can also add this feature
to an existing portlet application: right-click in your portlet application, select
Properties and then Web Project Features. In Available Web project features,
check the JSP Tag Libraries and click OK.

Your JSP files can access resource bundles in two ways, as shown in the
following examples.

Example 12-5 Accessing resource bundles in a portlet JSP

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<fmt:setBundle basename="nls.NLSExample"/>
<fmt:message key="message"/>

Example 12-6 Accessing resource bundles in a portlet JSP

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<fmt:bundle basename="nls.NLSExample">
<fmt:message key="message"/>
</fmt:bundle>

As with specifying bundles in portlet code, the bundle name here must include
the package name relative to the classes directory.

382 IBM Rational Application Developer V6 and Portal Tools

If the key cannot be located in the properties file, you will see the key written
between question marks.

Figure 12-8 Key not found in a properties file

12.2 Translating whole resources
If the entirety of your JSP requires translation, you may find programmatically
accessing resource bundles impractical. In practice, you will find that help JSPs,
for example, contain little or no code and as such can be completely translated
without incurring the runtime expense of NLS enablement.

WebSphere Portal facilitates this approach by allowing you to organize
translated files in a predictable directory structure. Portal will then take
responsibility for locating the correct file at runtime. This facility is also available
for multiple markup support. Your directory structure should reflect Figure 12-9.

Figure 12-9 NLS directory structure

 Chapter 12. Internationalization 383

Each locale you support must have its own folder and contain whatever fully
translated resources you want the portal to serve. If the portal cannot find the
requested resource in the appropriate directory, it will attempt to locate the
default by searching one level higher. If no default resource is located up the
directory tree, an exception is thrown.

To retrieve the translated resource, simply use the include method of the
PortletContext object. Do not specify the NLS directory structure. This code is
illustrated in Example 12-7. You should notice that there is in fact nothing unique
about calling a translated JSP and calling the simple JSPs. All the work is done
by the portal.

Example 12-7 Including translated JSP files

getPortletConfig().getContext().include("/messagereceiver/jsp/MessageReceiverVi
ew.jsp", request, response);

12.3 JSR 168 API considerations
In this section you will see how to access resource bundles in Portlets JSR 168,
from JSPs and from portlets.

If you want to access resource bundles in JSPs, you have to use the JSP tag
library as we explained in “Accessing resource bundles in JSPs” on page 382.

To access resource bundles in Portlets JSR 168 use
getResourceBundle(java.util.Locale) method of javax.portlet.GenericPortlet class
as displayed in Example 12-8

Example 12-8 Accessing resource bundles in Portlets JSR 168

ResourceBundle resource =
getPortletConfig().getResourceBundle(request.getLocale());

String valor = resource.getString("welcome");

The name of the resource bundles where the information is stored is provided by
the portlet deployment descriptor, as shown in Figure 12-10 on page 385.

384 IBM Rational Application Developer V6 and Portal Tools

Figure 12-10 Portlet.xml

Unlike IBM Portlets API, in Portlets JSR 168 you can set the portlet title using
resource bundles. If you want to set the portlet title using resource bundles,
create a resource bundles for each language you want to be supported.
Translate the javax.portlet.title key.

Example 12-9 Translate portlet title using resource bundles

Portlet Info resource bundle example
javax.portlet.title=portlet con soporte NLS
javax.portlet.short-title=Prueba NLS
javax.portlet.keywords=

You also have to add the supported locales in portlet.xml file. In Figure 12-10
English, Spanish and Brazilian Portuguese are the supported locales for that
portlet.

12.4 Dynamically changing the language
If you want users to be able to dynamically change the language during the
session, you can use the following command provided by WebSphere Portal:

 Chapter 12. Internationalization 385

Example 12-10 Changing the language during the session

<wps:url command=”ChangeLanguage”>
<wps:urlParam name=”locale” value=”language”/>

</wps:url>

where language is the code representation of the language that you want to be
available in your portal. The 12.10, “Dynamically changing the language” on
page 411 shows how to add links to the portal theme to change to different
languages in one click.

12.5 NLS administration
Certain aspects of NLS enablement can be configured via the Administration
window in WebSphere Portal. While this section will guide you through these
features, bear in mind that the administration does not replace the developer’s
responsibility for designing and incorporating NLS enablement.

12.5.1 Portlet NLS administration
The Manage Portlets page allows you to set locale-specific titles for portlets. You
cannot add support for new locales. Only locales specified by the portlet.xml
deployment descriptor can be adjusted. Furthermore, you cannot change the
default locale specified by the portlet.xml. To access the titles, log in as the
administrator and navigate to the Manage Portlets page in the Administration
window, as illustrated in Figure 12-11 on page 387.

386 IBM Rational Application Developer V6 and Portal Tools

Figure 12-11 Working with portlets

Locate the portlet you want to work with and click the Configure portlets icon. At
the bottom of the next window, select I want to set titles and descriptions. By
default, the resulting window, shown in Figure 12-12 on page 388, will only
display the languages listed in Table 12-1 on page 375 indicated for support by
the portlet.xml.

 Chapter 12. Internationalization 387

Figure 12-12 Supported languages of the selected portlet

To change the title and/or description, select the edit icon of the language for
which you want to set a title and/or description. Enter the new title in the resulting
window shown in Figure 12-13.

Figure 12-13 Setting the locale-specific title

You may have noticed that only the title and description can be adjusted via the
Administration window.

388 IBM Rational Application Developer V6 and Portal Tools

To add support for a locale in the portlet.xml in RAD, open the portlet.xml editor
and select the concrete portlet you wish to work with. This is illustrated in
Figure 12-14.

Figure 12-14 Adding locale support to a concrete portlet

To add a new locale, select the Add button in the locale section as shown in
Figure 12-14. In the resulting dialog, you can select the locale from the
drop-down list or enter the country code if you know it. This is illustrated in
Figure 12-15. If the locale you choose is already defined in the portlet.xml, you
will be prevented from adding it again.

Figure 12-15 Specifying a new locale

 Chapter 12. Internationalization 389

All portlets must have a default language specified in the deployment description,
otherwise the portlet cannot be installed.

12.5.2 Portal NLS administration
While it is the developer’s responsibility to carefully consider the NLS support
portlet applications will bring, the administrator is responsible for ensuring the
Portal itself properly supports multiple languages.

Some of the basic settings for NLS enablement include setting page, theme and
skin names properly, configuring or maintaining property files and incorporating
support for new languages.

12.5.3 Setting NLS titles
To set locale-specific titles for a page, navigate to Administration → Portal
User Interface → Manage Pages, then locate your page and click the Edit
Page Properties icon. In the next window, Edit Layout page, select Edit
properties button. A window as in Example 12-16 appears.

Figure 12-16 Editing page properties

Display the advanced options and select I want to set titles and descriptions.
In the resulting window, select the Edit icon of the language for which you want
to set a title and/or description. Enter the new title and/or description and select
OK.

390 IBM Rational Application Developer V6 and Portal Tools

Figure 12-17 Using unicode values

Now you will see the new title and description in the list.

12.5.4 Supporting a new language
To support new languages you need to add that language to the file
language.properties located in /wp_root/shared/app/config directory. Then you
have to insert resource bundles, with an appropriate name, in the directory
located at /wp_root/shared/app/nls. The directory where you have to store the
JSP will depend on how the portal locates your JSP for rendering its content.

There are several resource bundles that are used by the portal server to present
locale-specific messages. Be aware that changes to a property file are not
recognized until the portal is restarted. All the properties files listed below can be
found in the JAR file wp.ui.jar under the location
/wp_root/shared/app/wp.ui.jar/nls.

� button.properties
� commonAdmin.properties
� problem.properties
� field.properties
� engine.properties
� titlebar.properties
� registration.properties
� LocaleNames.properties
� pbruntime.properties
� virtual_principals.properties

 Chapter 12. Internationalization 391

12.6 Working with characters
Typically, it will not be the developer’s responsibility to provide the translations
necessary to provide NLS enablement. Once your base resource bundles and/or
static files have been created, the translation process should be completed by a
language expert. However, during development, if you need to enter characters
that cannot generate with your keyboard, such as Japanese characters, written
accents, etc., you will need to discover the unicode values and enter them using
entity references as illustrated in Figure 12-17 on page 391. The four character
unicode values can be found at http://www.unicode.org/charts. The entity
reference syntax is � where 0000 represents the unicode character you
want to display. If you have access to the interpreted unicode character, you can
copy and paste it in the text field as well.

12.7 NLS best practices
� Make the decision to use the API or translated resources early. This decision

will play a large role in the design and development of your View components.

� Do not commit entirely to one approach. For example, it may make sense to
translate your View JSPs at runtime and have your Help JSPs fully translated
since they are simple text.

� Plan for NLS enablement from the beginning. Though you may not have
access to the translated values during development, building the default
resource bundle as you iterate through the development will make future NLS
enablement much easier and virtually painless.

� Be conscious of character-locale ratios. If you are developing in English, be
aware that translations into other languages such as German or Spanish may
require more screen space. A number of API facilities are available for you to
determine the current locale.

Note: If your portal configuration includes Lotus Collaborative Services, add a
new CSRes_language.properties file for the new language to the
/wp_root/shared/app/nls directory

392 IBM Rational Application Developer V6 and Portal Tools

http://www.unicode.org/charts

� Do not rely on an administration implementation of NLS. The NLS
enablement facility for portlets is limited and there is no guarantee or check
system. To implement dynamic NLS titles, consider implementing the
PortletTitleListener interface and generating the title content via JSP or HTML
files.

� Leave translations to language experts. With proper design, planning and
construction of your portlet applications, there should be little to no effort
involved in incorporating support for new languages.

12.8 Sample scenario: NLS bundles
In this sample scenario, NLS bundles will be created to support multiple
languages. Once you have done this using RAD, the JSP that delivers markup
content in View mode for portlet MessageReceiverPortlet will be enhanced to
access the NLS bundles.

The Portlet Messaging application sample scenario from Chapter 7, “Portlet
messaging” on page 225 will be used as a base application to add NLS support.
The scenario is illustrated in Figure 12-18.

Figure 12-18 National Language Support (NLS) scenario

action
Performed

View
mode

Edit
mode

doView

Portal

Browser
Action Red
Action Blue

Bean

JSP

View
mode

receive
Message

Request
object

MessageReceiver.javaActionEventPortlet.java

Set

Get JSP with
NLS

bundle
access

doView

NLS bundles

English
Spanish
Portuguese

 Chapter 12. Internationalization 393

The resource bundle is accessed via the PortletContext object’s getText method
and you will need to provide the following:

� Bundle Base Name: the first parameter indicates the base name of the
resource bundle. The name includes the path relative to the classes directory.
The name does not specify the locale suffix or the properties file type. If the
base file name cannot be found, or the key is not present in the properties file,
a PortletException is thrown.

� Key: this parameter maps to a key value in the properties file. If the key is not
found, a PortletException is thrown.

In addition, the locale is used by the Portal to select the proper language bundle.
However, you cannot set this value when invoking NLS bundles from JSPs.

12.8.1 NLS bundles
In this section, you will use the sample scenario from Chapter 7, “Portlet
messaging” on page 225. The portlet application will be enhanced to support
NLS. Follow these steps:

1. If needed, start the IBM RAD. Click Start → Programs → IBM Rational →
IBM Rational Application Developer V6.0 → Rational Application
Developer.

2. You will create a new folder with the name nls to store the resource bundles.
The following resource bundles will be imported into this folder:

– NLSLab.properties (default)
– NLSLab_en.properties (English)
– NLSLab_es.properties (Spanish)
– NLSLab_pt_BR.properties (Brazilian Portuguese)

3. Select your ActionEvent/Java Resources/JavaSource folder.

394 IBM Rational Application Developer V6 and Portal Tools

Figure 12-19 Select Java source to create the nls folder

4. Right-click it and select New → Other.

5. Select Simple → Folder, and click Next.

 Chapter 12. Internationalization 395

Figure 12-20 Create a new folder

6. In the next window enter the following values:

– Parent folder: ActionEvent/JavaSource
– Folder name: nls
– Click Finish.

7. Your directory structure should now look as shown in Figure 12-21 on
page 397.

396 IBM Rational Application Developer V6 and Portal Tools

Figure 12-21 A new nls folder

8. Select the new ActionEvent/Java Resources/JavaSource/nls folder.

9. Click File → Import.

10.Select File System and click Next. Browse to C:\LabFiles\NLSLab\Bundles.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix A,
“Additional material” on page 1003.

11.Select all four properties files and click Finish to import.

 Chapter 12. Internationalization 397

Figure 12-22 Importing the bundles

12.View the files in the nls folder by double-clicking them. Notice how they are
structured.

Example 12-11 NLSLab.properties (default)

readystatus=Ready to receive message
receivedstatus=Received a message
viewmode=Operating in View mode
redColor=RED
blueColor=BLUE

Example 12-12 NLSLab_en.properties (English)

readystatus=Ready to receive message

398 IBM Rational Application Developer V6 and Portal Tools

receivedstatus=Received a message
viewmode=Operating in View mode
redColor=RED
blueColor=BLUE

Example 12-13 NLSLab_es.properties (Spanish)

readystatus=Listo para recibir mensaje
receivedstatus=Mensaje recibido
viewmode=Operando en modo de visualizaci\u00F3n
redColor=ROJO
blueColor=AZUL

Example 12-14 NLSLab_pt_BR.properties (Brazilian Portuguese)

readystatus=Pronto para receber mensagem
receivedstatus=Mensagem recebida
viewmode=Operando em modo de Visualização
redColor=VERMELHA
blueColor=AZUL

12.8.2 Accessing NLS bundles from JSPs
In this section, you will update the MessageReceiverPortletView.jsp file to display
NLS content based on the locale value (English, Spanish or Brazilian
Portuguese). In general, modifications to the JSPs are necessary to allow them
to display language-specific content. Follow these steps:

1. When you created the ActionEvent portlet you select JSP Tag Libraries in
Features window. To be sure these libraries are included follow these steps:

a. Right-click the ActionEvent project.

b. Select Properties.

c. Select Web Project Features from the list.

d. Check the JSP Standard Tag library box if it was not checked.

e. Click OK.

2. Open the MessageReceiverPortletView.jsp file. This file is located in the
/WebContent/messagereceiver/jsp/html/ directory.

3. In this JSP, you have the following text with static information:

– Ready to receive message
– Received a message

4. Add logic to display messages in the proper language. Updates to this JSP
are highlighted in bold in Example 12-15 on page 400.

 Chapter 12. Internationalization 399

Example 12-15 MessageReceiverPortletView.jsp supporting NLS with bundles

<%@ page session="false" contentType="text/html" import="java.util.*,
messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/MessageReceiverPortletView.jsp".

<fmt:setBundle basename="nls.NLSLab"/>

<% if (request.getAttribute("MyMessage") == null) { %>

<fmt:message key="readystatus"/> ...
<% } else { %>

<fmt:message key="receivedstatus"/>:
<%= request.getAttribute("MyMessage") %>

<% } %>
</DIV>

5. Select File → Save All to save all your changes to the project.

12.8.3 Running the NLS scenario
In this section, you will run the portlet application messaging scenario now
enabled for NLS.

1. Stop the Test Environment server so that next time, the new properties files
will be used.

2. Right-click ActionEvent and select Run → Run on Server.

3. Select WebSphere Portal V5.1 Test Environment server and click Next.

4. Confirm that the ActionEventEAR project is the only one configured to run in
the test environment. Click Finish to run your project.

5. The message receiver portlet will now display its markup using NLS.

400 IBM Rational Application Developer V6 and Portal Tools

Figure 12-23 ActionEvent portlet with no preferred language selected

6. Select a new locale value by clicking the Edit my profile icon to select a
preferred language, as shown in Figure 12-24.

Figure 12-24 Edit my profile icon

For example, select Brazilian Portuguese as the preferred language for the
wpsadmin user (default user for portlet development environment). It may be
necessary to enter a first and last name before you can continue. Enter wps
for both if this happens.

 Chapter 12. Internationalization 401

Figure 12-25 User profile

7. Click OK. Now you will view the information displayed in the
MessageReceiver portlet in Brazilian Portuguese.

Note: You should also notice that when the language locale changes, the text
of the WebSphere Portal menu at the top of the page also changes.

402 IBM Rational Application Developer V6 and Portal Tools

Figure 12-26 ActionEvent Portlet with Brazilian Portuguese as preferred language

8. Edit the user profile again (Editar meu perfil in Brazilian Portuguese) and try
Spanish (Espanhol) as the new locale.

The content you specified will display in Spanish.

Figure 12-27 ActionEvent portlet with Spanish as preferred language

9. Edit the user profile again and try French (Frances in Spanish) as the new
locale.

10.Since French has not been enabled, Portal will use the default bundle. Your
message will display in English (as is specified in the default bundle), but the
WebSphere Portal menu at the top will display in French.

 Chapter 12. Internationalization 403

Figure 12-28 ActionEvent portlet with French as preferred language

11.To change your language back to English before you exit, click Edit my
profile (Editer mon profil) and select English (Anglais in French) as your
language.

12.8.4 Accessing NLS bundles in Java portlets
In this section, you will update the ActionEventPortlet.java file to display NLS
content based on the locale value (English, Spanish or Brazilian Portuguese).
You also need to add the new key-value pairs in the associated property file.

1. Open the file ActionEventPortlet.java for editing by double-clicking it. Next,
you will update the code to display the color in the preferred language
selected by the user. The resource bundle is accessed via the PortletContext
object’s getText() method. This method receives three parameters:

a. Base name of the resource bundle, including the path relative to the
classes directory and without the locale suffix or the properties file type.

b. Key specified in the properties file.

c. Locale.

2. Make the following highlighted updates in the actionPerformed() method.

Example 12-16 ActionEventPortlet.java

......
import java.io.IOException;
import java.util.Locale;

......

public void actionPerformed(ActionEvent event) throws PortletException {

404 IBM Rational Application Developer V6 and Portal Tools

if(getPortletLog().isDebugEnabled())
getPortletLog().debug("ActionListener - actionPerformed called");

//get the preferred locale for the user
Locale loc = event.getRequest().getLocale();

// ActionEvent handler
String actionString = event.getActionString();
PortletRequest request = event.getRequest();

// Add action string handler here
if(actionString.equalsIgnoreCase(ACTION_RED)) {

//access the resource bundle via the PortletContext object's getText
method

String red = getPortletConfig().getContext().getText("nls.NLSLab",
"redColor", loc);

//create the string of HTML to be rendered
String value = "Action " + red + "";

// Create an instance of portlet data to store values
PortletData portData = request.getData();
........................

if(actionString.equalsIgnoreCase(ACTION_BLUE)) {
// access the resource bundle via the PortletContext object's getText

method
String blue = getPortletConfig().getContext().getText("nls.NLSLab",

"blueColor", loc);

//create the string of HTML to be rendered
String value = "Action " + blue + "";

// Create an instance of portlet data to store values
PortletData portData = request.getData();

.......

3. Open the resource bundles located in the ActionEvent/Java
Resources/JavaSource/nls folder and make sure the following key-value
pairs required for this scenario have been included in the properties files.

Example 12-17 NLSLab.properties (default)

redColor=RED
blueColor=BLUE

 Chapter 12. Internationalization 405

Example 12-18 NLSLab_en.properties (English)

redColor=RED
blueColor=BLUE

Example 12-19 NLSLab_es.properties (Spanish)

redColor=ROJO
blueColor=AZUL

Example 12-20 NLSLab_pt_BR.properties (Brazilian Portuguese)

redColor=VERMELHA
blueColor=AZUL

4. Select File → Save All to save all your changes to the project.

5. Close the browser.

6. Click Run on Server to test your changes.

7. Click Edit my profile to change the preferred languages and execute the
application again to check that portlets display the word BLUE or RED in the
language you have selected.

Note: For simplicity, not all text in this sample scenario has been enabled for
NLS.

12.9 Sample scenario: translating whole resources
Another way to accomplish internationalization is by translating and maintaining
separate JSPs within a predictable directory structure. The Portal will take
responsibility for locating the correct file at runtime, depending on the preferred
language selected by the user.

406 IBM Rational Application Developer V6 and Portal Tools

Figure 12-29 Sample scenario

1. Open the
WebContent/messagereceiver/jsp/html/MessageReceiverPortletView.jsp
page to delete fmt tags and return to static information. Your code should look
as shown in Example 12-21.

Example 12-21 MessageReceiverPortletView.jsp

<%@ page session="false" contentType="text/html" import="java.util.*,
messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/MessageReceiverPortletView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

action
Performed

View
mode

Edit
mode

doView

Portal

Browser
Action Red
Action Blue

Bean

JSP

View
mode

receive
Message

Request
object

MessageReceiver.javaActionEventPortlet.java

Set

Get
JSP
(en)

doView

html

English
Spanish
Portuguese

JSP
(es)

JSP
(pt)

 Chapter 12. Internationalization 407

Ready to receive message ...
<% } else { %>

Received a message:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

2. Select your Web Content/messagereceiver/jsp/html folder, right-click it and
select New → Folder.

3. Type en for the Folder name field and click Finish.

4. Right-click
WebContent/messagereceiver/jsp/html/MessageReceiverView.jsp and
select Copy.

Figure 12-30 Copy a JSP page

5. Now select the WebContent/messagereceiver/jsp/html/en folder, right-click
it and select Paste.

6. Open the page
WebContent/messagereceiver/jsp/html/en/MessageReceiverView.jsp to
update the text indicating the location of the source file page. This is not
required but it is recommended for clarity.

408 IBM Rational Application Developer V6 and Portal Tools

Example 12-22 MessageReceiverPortletView.jsp (English)

<%@ page session="false" contentType="text/html" import="java.util.*,
messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/en/MessageReceiverPortletView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Ready to receive message ...
<% } else { %>

Received a message:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

7. Optionally, repeat the steps to create the folders and JSPs for other
languages such as Spanish (es) and Brazilian Portuguese (pt_BR). Your
directory structure should be as illustrated in Figure 12-31 on page 410.

 Chapter 12. Internationalization 409

Figure 12-31 Directory structure

8. Modify the JSP pages to display a message in the proper language. Also
change the directory of the source file pages. For example, create a folder
with a JSP for Spanish (es).

Example 12-23 MessageReceiverPortletView.jsp (Spanish)

<%@ page session="false" contentType="text/html" import="java.util.*,
messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/es/MessageReceiverPortletView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Listo para recibir mensaje ...
<% } else { %>

Mensaje recibido:
<%= request.getAttribute("MyMessage") %>

410 IBM Rational Application Developer V6 and Portal Tools

<% } %>

</DIV>

Example 12-24 MessageReceiverPortletView.jsp (Br Portuguese)

<%@ page session="false" contentType="text/html" import="java.util.*,
messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/pt_BR/MessageReceiverPortletView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Pronto para receber mensagem ...
<% } else { %>

Mensagem recebida:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

9. Run the scenario (click Run → Run on Server) and verify your results in
multiple languages.

10.Change the locale in the user profile as before and try other supported
languages.

12.10 Dynamically changing the language
In the above sample scenarios when you want to see the application in other
language you need to changes the user profiles. Here you learn how to use the
ChangeLanguage command described in 12.4, “Dynamically changing the
language” on page 385.

Note that this command only change the language during the current session.
Preferred language selected in the user’s profile does not change.

1. Open the Default.jsp file located in
was_root/installedApps/node_name/wps.ear/wps.war/themes/html/ directory.

 Chapter 12. Internationalization 411

That is where the default files for WebSphere theme are, if you are using
another theme select its corresponding directory.

2. To create links for English, Spanish and Brazilian Portuguese add the
following code

Example 12-25 Adding links to the portal theme

............
<%-- Admin link bar - New Page, Edit Page, Assign Permissions

 Don't show these links in solo state --%>
 <wps:if portletSolo="no">
 <%@ include file="./AdminLinkBarInclude.jsp" %>
 </wps:if>

</td>
</tr>

<%-- supported languages --%>
<tr>
<td colspan="2">
<table border="0" cellspacing="5" cellpadding"0">
<tr>

<td>
<a href="<wps:url command='ChangeLanguage'><wps:urlParam name='locale'

value='en'/></wps:url>"><wps:text key="lang_en" bundle="nls.Text"/>
</td>
<td>
<a href="<wps:url command='ChangeLanguage'><wps:urlParam name='locale'

value='es'/></wps:url>"><wps:text key="lang_es" bundle="nls.Text"/>
</td>
<td>
<a href="<wps:url command='ChangeLanguage'><wps:urlParam name='locale'

value='pt_BR'/></wps:url>"><wps:text key="lang_pt_BR" bundle="nls.Text"/>
</td>

</tr>
</table>
</td>
</tr>

<tr>
<td colspan="2">
<%-- Show navigation bars for first two levels of page navigation

 Don't show navigation in solo state --%>
<wps:if portletSolo="no">

<%@ include file="./PlaceBarInclude.jsp" %>
<%@ include file="./PageBarInclude.jsp" %>

</wps:if>
</td>
</tr>

.............

412 IBM Rational Application Developer V6 and Portal Tools

3. In Example 12-25 on page 412 we also translate the links for the different
language using resource bundles. Create four new files in
wp_root/shared/app/nls/ directory and call them: Text_en.properties,
Text_es.properties, Text_pt_BR.properties and Text.properties.

Example 12-26 Text.properties (default)

lang_en=English
lang_es=Spanish
lang_pt_BR=Brazilian Portuguese

Example 12-27 Text_en.properties (English)

lang_en=English
lang_es=Spanish
lang_pt_BR=Brazilian Portuguese

Example 12-28 Text_es.properties (Spanish)

lang_en=Ingl\u00E9s
lang_es=Espa\u00F1ol
lang_pt_BR=Portugu\u00E9s de Brasil

Example 12-29 Text_pt_BR.properties (Brazilian Portuguese)

lang_en=Ingl\u00EAs
lang_es=Espanhol
lang_pt_BR=Portugu\u00EAs (Brasil)

4. Re-start the server and run the application. You will see a link for each
language supported as show in Figure 12-32. Click them to test the scenario.

Figure 12-32 Portal theme

Note: Since the preferred language selected by the user does not change, no
text translated using the preferred locale for the user will display in the proper
language.

 Chapter 12. Internationalization 413

414 IBM Rational Application Developer V6 and Portal Tools

Chapter 13. Struts portlets

Struts is a very popular open source framework that embodies the
Model-View-Controller (MVC) pattern. The Struts framework is an open source
project of The Apache Software Foundation and can be used to effectively
design Web applications as well as portlet applications.

The Struts portlet framework was implemented by IBM so that applications
written based on the Struts framework could run in WebSphere Portal
environment, as well as to enable the development of portlets using the Struts
framework.

In this chapter we provide an overview of the Struts framework and discuss the
main differences that exist when using the Struts portlet framework.

13

© Copyright IBM Corp. 2005. All rights reserved. 415

13.1 Overview
The MVC pattern that is embodied by Struts provides an standard way to
separate logic, presentation and data in modular applications, among the three
application tiers, as shown in Figure 13-1:

� The model is the set of data and business rules for the application. This is
commonly called the application’s business logic. This business logic in most
cases involves access to data stores, legacy systems and external
applications.

� The view is the application’s user interface. This tier is also known as the
presentation layer.

� The controller defines the way that an application interacts with user input and
the model, that is, the overall flow of events. This is called the application
logic.

Figure 13-1 Struts and the Model-View-Controller pattern

The following considerations apply to Struts applications:

� All browser requests are submitted to the Struts ActionServlet.

� When the HTML form is submitted, the ActionForm subclass is automatically
populated with the form data.

request

Browser

Struts Action
Servlet User Actions Backend

Resources

execute()

invoke

return

forward

JSP

Control Model

View

JavaBeans
EJBs
Corba
Legacy
Web Appls
Domino
Web Services
Databases

Mappings in
struts-config.xml

416 IBM Rational Application Developer V6 and Portal Tools

� The Struts ActionServlet determines which Action subclass route to using
the mapping that is pre-configured in struts-config.xml.

� The ActionServlet passes the control to the Action subclass.

� The Action subclass can access the form data that is stored in the
ActionForm subclass and pass it to the back-end business logic for further
actions.

� The Action subclass invokes the back-end business logic, that can be
implemented with any technology.

� The Action subclass may update the any necessary data in the ActionForm
subclass.

� The Action subclass passes the control to the JSP that will render the view to
be returned to the browser.

� The JSP that will render the view can access the form data that is stored in
the ActionForm. This data is updated with all changes made by the Action.

� The view is returned to the browser.

Note: The core of the Struts framework is to provide a flexible controller layer,
interacting with both the view and the model layers.

Struts components
The main Struts components are illustrated in Figure 13-2 on page 418 and they
are:

� Actions and ActionServlet
The struts ActionServlet (org.apache.struts.action.ActionServlet)
handles all browser requests. According to the rules configured in a Struts
configuration file (struts-config.xml), the ActionServlet invokes an Action
subclass (subclass of org.apache.struts.action.Action). The
ActionServlet is said to “perform actions”, which means that the servlet
invokes the perform method of each of the instantiated action classes. Each
browser request is mapped to an Action subclass in the struts-config.xml file.
The ActionServlet loads the mapping during initialization. To configure the
Web project to pass all browser requests to the ActionServlet, map all URIs
that end with .do (for example, *.do) to the ActionServlet in the Web
deployment descriptor. You can then provide the actual Action subclass
mappings in the Struts configuration file for individual request URI, such as
/order.do.

� ActionForm
Struts provides the class org.apache.struts.action.ActionForm, which a
Java developer subclasses to create a form bean. At runtime, the bean is
used in two ways: when a JSP prepares the related HTML form for display,
the JSP accesses the bean, which holds values to be placed into the form.

 Chapter 13. Struts portlets 417

Those values are provided from business logic or from previous user input.
When user input is returned from a Web browser, the bean validates and
holds that input either for use by business logic or (if validation failed) for
subsequent redisplay.

� Tag libraries
Struts provides a variety of custom JSP tags which are simple to use but
powerful in the sense that they hide information. The page designer does not
need to know much about form beans beyond, for example, the bean names
and the names of each field in a given bean. The custom tags support:

– Pre-population of a HTML from with values taken from an ActionForm
subclass.

– Internationalization, such as providing text that is determined by the user’s
locale.

– Logic, such as showing a different title for a page based on how it is used.

Figure 13-2 Struts components

Struts portlet life cycle
The Struts portlet life cycle is illustrated in Figure 13-3 on page 419 using a
typical business transaction called Deposit as follows:

1. The index.jsp has a form for data entry (Account number, amount)

2. The ActionServlet fills the DepositForm with the data of the index.jsp, the
DepositForm validates the input data, and in case of errors the index.jsp is
redisplayed with error messages

ActionForm

JSP

ActionForm

View

Action
1

Action
2

Action
3

Action
4

Configuration
File

Backend
Resources

 Application
Resources

ActionServlet

Tag Libraries

JSP

Controller Model

Bean

418 IBM Rational Application Developer V6 and Portal Tools

3. The ActionServlet calls the DepositAction sub-class and passes the
DepositForm

4. DepositAction class invokes Deposit class to perform the business logic

5. The Deposit class performs the database retrieval and update

6. The result is the Account bean returned to the DepositAction and placed into
session (or request) data

7. The DepositAction class returns either a "success" or "fail" ActionForward
result

8. The ActionServlet calls either the result.jsp (for "success") or the error.jsp (for
"fail")

9. The result.jsp displays the Account data.

Figure 13-3 Struts portlet life cycle

13.2 The Struts portlet framework
Struts-based application development can be applied to portlets, similar to the
way that Struts development is implemented in Web applications. Because of the
differences in the servlet and portlet technologies, the Struts portlet framework
was developed to merge these two technologies.

Session

JDBC

Bank
Database

View ModelController
DepositForm

ActionForward
"success"

"fail"

 3
 4

 7
Action
Servlet

error.jsp
"fail"

Deposit

 8

result.jsp
"success"

Account

Deposit
Action

 9

 2

 6

 5

config

 1
index.jsp

resources
taglib

 Chapter 13. Struts portlets 419

Developers that have worked with Struts in the servlet environment should adapt
easily to the Struts portlet framework. The packaging of a Struts portlet
application is very similar to a Struts application in the servlet environment.
However, WebSphere Portal also introduces additional concepts, such as portlet
modes, multiple device support, and portlet communication, that might need to
be addressed by the Struts application. The Struts portlet framework also
supports Struts portlets developed using either the IBM Portlet API or the JSR
the JSR 168 API.

For example, the processing of a Struts portlet using the IBM Portlet API consists
of three steps:

1. Initialization. This process is called the first time that the portlet is invoked. In
this step the Portal initializes the WpsStrutsPortlet. One of the tasks
accomplished by the WpsStrutsPortlet.init method is initializing the
ActionServlet. At the end of this step, the ActionServlet has already loaded
all the configurations stored in the struts-config.xml file.

2. Action phase. This process is called during the portlet action phase (for
example, when the user clicks a submit button). In this step, the
WpsStrutsPortlet.actionPerformed method is invoked. This method will call
the WpsRequestProcessor.process method, that owns the responsibility to
invoke the Struts Action that was requested.

The WpsRequestProcessor also creates an IViewCommand (in this case, a
subclass named WpsViewCommand). The IViewCommand encapsulates the
information so that the command object can be rendered at a later time,
during the rendering phase.

3. Render phase. This process is called during the portlet render phase (that is,
after action processing or as the result of refreshing the page). In this step,
the WpsStrutsPortlet.service method is invoked. This method essentially
invokes the WpsViewCommand.execute method.

The execute method receives the request and response objects as
parameters. As part of the processing, the previously saved attributes are
populated into the request object that is passed in on the execute method.
Also, during the render phase, an execution context object
(ViewCommandExecutionContext) is passed in on the execute call, which
provides additional objects to help with the actual execution. At the end of this
phase, control is passed to some jsp page.

13.2.1 Struts applications
This section describes the main differences between a servlet-based Struts
application and a Struts application created for the portal environment.

420 IBM Rational Application Developer V6 and Portal Tools

Comparison of servlets and portlets
There are two main differences between the portlet and servlet environment that
affects a Struts application in WebSphere Portal.

Action processing and rendering
All servlet processing occurs during the service() method. The Struts rendering
of the page is usually immediately preceded by action processing and essentially
part of one step. The request and response object are passed to the service()
method, which writes the resulting output to the response object. Portlet
processing, however, is implemented in two phases, an event phase and a
render phase.

Action processing is performed prior to rendering the display view. Only the
request object is passed to the portlet during the event phase. When a Struts
application is migrated to the portlet environment, some of the information that
was available during the event phase, namely the request parameters, is no
longer available during the render phase.

Additionally, since rendering methods, such as doView(), can be called when the
portlet page is refreshed without a new event occurring for that portlet, all
information required to render the page must be available every time that method
is called.

A command pattern can be used to encapsulate the rendering of the view, and
the information required during this rendering. The pattern is implemented using
the IViewCommand interface. See the Struts Portlet Framework chapter of the
WebSphere Portal Infocenter

URI construction
URIs are constructed differently for portlets than for servlets. The portlet creates
the URI programmatically using the PortletResponse.createURI method. The
Struts portlet framework has modified the tags in Struts so that they create portal
links. The Struts link tags behave the same as they do in the servlet environment,
but the URL is a portlet URL and the Struts URL is passed as a parameter on the
URL.

Note: The Struts action is not invoked when changing modes (view, edit, and
configure). Only the service method is called (doView, doEdit) when switching
modes. Therefore, you will need to place a call to that action in these methods
to invoke Struts actions.

 Chapter 13. Struts portlets 421

Response object
During portlet action processing the response object is not available. The
methods called during Struts processing expect both a request and response. To
address the need for a response object, the Struts Portlet framework creates a
temporary one. Other than for calling sendError, you should not write to the
response object. Instead your action should return an ActionForward object and
let the Struts RequestProcessor complete the doForward set.

sendError() processing
The typical Struts application has no need to access the response object during
the action processing. However, when an application checks and finds some
state information invalid during action processing, it is not unusual for a Struts
application to report the error using the response.sendError method. The Struts
portlet framework intercepts the calls to sendError and saves the error
information in the session. During the later view render phase, this error
information is found, and the error information is displayed in lieu of displaying
other content for the portlet.

Forwards and redirects
Although you can write portlets using Struts, there are some aspects of the
servlet environment that you cannot do in a Struts portlet. For example, Struts
provides support for redirects and forwards to other servlets. These are provided
because they are functions generally available to servlets. However, these
capabilities are not available in portlets because WebSphere Portal does not
support forwards or redirects from Struts actions.

The following example demonstrates how to implement a forward to a Struts
Action from an Action or a custom tag.

Example 13-1 How to implement a forward from an Action or a custom tag

PortletApiUtils portletUtils = PortletApiUtils.getInstance();
if (portletUtils != null) {
 portletUtils.forward(page, request);
}else {
 pageContext.forward(page, request);
}

The PortletApiUtils.getInstance method is called to see if a PortletApiUtils
instance is available. If a non null value is returned, then the execution is inside
of WebSphere Portal. In this case, the portletApiUtils.foward method is used
instead of the PageContext.forward.

If a forward is required in a JSP, then the logic forward tag is the suggested
solution. The forward tag has been modified to use the PortletApiUtils forward

422 IBM Rational Application Developer V6 and Portal Tools

implementation, and is the preferred method for a forward from a JSP. The
PortletApiUtils can be obtained in a JSP through java code, but obtaining the
Struts ModuleConfig to prefix the path is problematic. The logic forward tag
handles these issues.

StrutsAction
The StrutsAction class provides an execute method that is passed portlet
objects instead of servlet objects so a cast is not required to access
portal-specific objects.

13.2.2 Changes to Struts JSPs
The JSPs for Struts applications in the portal environment have to be modified to
adapt to the way the portal server expects portlet URIs to be created. There are
some changes to the tag library for HTML markup and additional tag libraries
have been added to support cHTML and WML markup.

Creating portlet URIs
The Struts application paths, both to actions and to pages, must be sent and
retrieved using portlet URIs. Portlet URIs have a specific format. A special API is
used to generate the URI and add the desired information to be passed to the
portlet. If portlet URIs were not used, control would not get passed to the correct
portlet. Thus, the portlet URIs must be used to get control passed to the correct
portlet, with the additional path information needed by the Struts application
made available. The Struts tags have been modified to automatically provide this
needed functionality.

Struts Action mappings are defined in terms of paths. The name and location of
page objects (for example, JSPs) are also defined using paths. Thus, although
portlets have their own form of URI, it is still necessary to associate the Struts
path with an action sent to a portlet and to retrieve that Struts path when the
portlet action is handled. Typically a Struts application passes parameters on
such a path using the query string on the HTTP URL. Often the actions
containing these paths are generated from tags provided by Struts. The most
obvious examples of these are the tags for the HTML elements <link> and
<form>.

Stylesheets
Many existing Struts applications use the rewrite tag to create a link element for a
cascading style sheet. This is not the exact intention of the rewrite tag, which is
supposed to create the same path as the link tag without the <a> element. Since
the Struts portlet framework had to modify how links are created, the rewrite tag
required some customizations to be used to create link elements for style sheets.

 Chapter 13. Struts portlets 423

The rewrite tag will create the same path as the link tag, except when the page or
forward reference is to a CSS file. In the case where a CSS file is referenced, the
rewrite tag will use the Jakarta Struts implementation, which results in a path to
the CSS file. Here are examples of how to create link elements for stylesheets
using the Struts portlet framework:

� Using a forward

<link rel="stylesheet" type="text/css" href="<html:rewrite
forward='baseStyle'/>">

� Using a page

<link rel="stylesheet" type="text/css" href="<html:rewrite
page='/basestyle.css'/>">

� Using the portlet tags

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="api" %>
<api:init />
<link rel="stylesheet" type="text/css"
 href="<%= portletResponse.encodeURL(basestyle.css) %>">

Markup support
The Struts tag library has been modified to support the additional markup
languages supported by WebSphere Portal. For HTML, the tags that create links
have been modified to support portlet URIs. See “Creating portlet URIs” on
page 423 for details.

There might be cases where the JSPs for a Struts application need to run in both
the servlet and portlet environment. For this reason, page level tags are
implemented in tag libraries. The Struts application can use them in its JSPs, but
the tags will not generate markup when executed within WebSphere Portal.

You should also refrain from setting color, and fonts. The portal server supports
skins and themes that give the page a consistent look and feel. The JSP should
be authored so it adheres to the conventions of the theme by using the
appropriate style sheet.

Using the cHTML tags
The use of the cHTML tags is similar to the use of the HTML tags. The name of
the cHTML tag library file is struts-chtml.tld. The following is an example of the
cHTML taglib definition.

<%@ taglib uri="/WEB-INF/struts-chtml.tld" prefix="chtml" %>

424 IBM Rational Application Developer V6 and Portal Tools

Using the WML tags
The WML tags are a new addition for creating a user experience in WAP
devices. The use of the WML tags is similar to the use of the Struts HTML tags.
Use the following directive to make these tags available to a JSP.

<%@ taglib uri="/WEB-INF/struts-wml.tld" prefix="wml" %>

The use of the WML tags provided with this distribution is similar to the use of
Struts HTML tags. The name of the WML tag library file is struts-wml.tld. The
following is an example of the WML version of an index.jsp.

Example 13-2 Using the wml tag in struts portlets

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-wml.tld" prefix="wml" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<p>
<wml:link page="/editRegistration.do?action=Create">
 <bean:message key="index.registration"/>
</wml:link>

<wml:link page="/logon.jsp">
 <bean:message key="index.logon"/>
</wml:link>

<wml:link page="/overview.do">
 <bean:message key="index.overview"/>
</wml:link>
</p>

WML does not have a <form> element like HTML. Struts, however, uses the
<form> tag for the scoping of parameters and supporting form beans. For that
reason, the WML implementation also includes a <form> tag to support some of
the Struts features in WML. The <form> tag in the WML taglib takes an action as
an attribute.

The following is an example of a form in WML.

Example 13-3 A form in WML

<wml:form action="/logon">

<do type="options" label="send">

 <wml:go method="post">
 <postfield name="username" value="$username"/>
 <postfield name="password" value="$password"/>
 </wml:go>
</do>

 Chapter 13. Struts portlets 425

<bean:message key="prompt.username"/><wml:text property="username"/>
<bean:message key="prompt.password"/><wml:password property="password"
size="16" maxlength="16"/>

</p>

</wml:form>

13.2.3 Configuration files
Struts portlet framework specific init parameters have been added for the
configuration files that allow customizing the Struts application for the portal
environment. The portlet and Web deployment descriptors require configurations
specific to the Struts portlet framework. In addition, the Struts configuration file
must be changed to specify a portal specific request processor as the controller.
These configurations will be covered in the next chapters.

13.2.4 Creating link tags in Struts
Tags that create links need to create links that are serviced by the portlet. The
URL that is created because of the Struts processing needs to be passed as a
parameter back to the portlet. There should be a common tag for both a servlet
and a portlet. The code fragment below demonstrates how to write a tag that can
be used by a JSP in both a servlet and a portlet.

Example 13-4 Code to create a link that works in both a servlet and a portlet environment

PortletApiUtils portletUtils = PortletApiUtils.getInstance();
if (portletUtils != null) {
 Object pResponse = portletUtils.getPortletResponse((HttpServletRequest)
 pageContext.getRequest());
 Object portletURI =
 portletUtils.createPortletURIWithStrutsURL(pResponse,
 calculateURL());

 results.append(portletURI.toString());
} else {
 // servlet environment
 results.append(calculateURL());
}

The following are additional considerations:

� The else clause was the original statement for the servlet-only environment

426 IBM Rational Application Developer V6 and Portal Tools

� An instance of PortletAPIUtils is initially obtained. In a non-portlet
environment this call would return null.

� The initialization of the Struts portlet framework support would set the
instance of the PortletAPIUtils implementation.

� A PortletResponse object is obtained as an Object

� The PortletURI is then created with a DefaultPortletAction and a
parameter that contains the Struts path through the call to
createPortletURIWithStrutsURL

� More about links can be found in the chapter on Struts portlet framework in
WebSphere Portal Infocenter.

 Chapter 13. Struts portlets 427

428 IBM Rational Application Developer V6 and Portal Tools

Chapter 14. Creating Struts portlets with
the IBM Portlet API

In this chapter, we will cover the development of Struts portlets in Rational
Application Developer using the IBM Portlet API.

14

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: IBM Portlet API
� Application type: Struts

© Copyright IBM Corp. 2005. All rights reserved. 429

14.1 Overview
Struts portlet projects share common characteristics with standard portlets and
Struts projects, although there are some differences of which you should be
aware. The Struts portlet project structure and related resources are dictated by
the Struts portlet framework support provided by WebSphere Portal and include
in Rational Application Developer.

Struts portlet projects are created using the New Portlet Project wizard. A default
Struts-type portlet and, optionally, a Web diagram file will be added in the
process of creating the project. The wizard automatically generates Struts portlet
configuration files and the necessary updates to the web.xml file, and adds all of
the Struts portlet framework tag libraries and JAR files to the project in the
directory structure that is required.

We will also add support to Edit mode to show how to update portlet objects
(namely the PortletData) in order to store user preferences.

14.2 Creating Struts applications with IBM portlet API
The following sections show how a Struts portlet application is created in
Rational Application Developer, configured to work with the IBM portlet API.

14.2.1 Creating a Portlet project
To create a Portlet project, follow these steps:

1. In the menu, select File → New → Project.

2. In the New Project window, select the wizard for Portlet Project.

3. Click Next >.

4. If the Confirm Enablement window appears, asking if you want to enable the
portal development role, click OK.

430 IBM Rational Application Developer V6 and Portal Tools

Figure 14-1 Enable the Portal development role

5. In the Portlet project page, type the name of the project: MyFirstStruts.

6. Check the Create a portlet check box, if it is not already checked.
Typically, you do not need to create a portlet when you import a portlet WAR
file into the project.

7. Click Show Advanced > and select WebSphere Portal V5.1 stub for the
target server.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 431

Figure 14-2 The target server you need is WebSphere Portal V5.1 stub

8. Click Next >.

9. In the Portlet type page, select Struts portlet. Click Next >.

10.In the Features page, leave the Web Diagram option selected. Click Next >.

11.In the Portlet settings page, review the options provided.
The settings provided in this page are the same when you select a basic
portlet.

12.Leave all settings unchanged. Click Next >.

13.In the Struts portlet settings page, you can specify the name of the resource
bundle that will be used for this Struts portlet application, as well as the Java
package where it will be stored. Do not make any changes to these fields.

14.Click Next >.

432 IBM Rational Application Developer V6 and Portal Tools

15.In the Miscellaneous page, you can select additional markups and modes that
will be supported in this portlet application. Do not check any of the options at
this time; we will cover them later in the chapter.

16.Click Finish.

17.If the Confirm Perspective Switch window appears, click YES.

14.2.2 Inspecting the Struts portlet project
Now that the Struts portlet has been created, let’s take a look at what Rational
Application Developer have done automatically for us:

� All of the necessary *.tld files were included in the WEB-INF directory.

� All of the necessary *.jar files were included in the WEB-INF/lib directory.

� The struts-config file was created, and the <controller> element that defines
the RequestProcessor subclass was automatically generated in the Struts
configuration file.

<controller
processorClass="com.ibm.wps.portlets.struts.WpsRequestProcessor">
</controller>

� The web.xml deployment descriptor was created.

– A servlet was created and the WpsStrutsPortlet class was specified as
the servlet class, which takes an init-param to specify the struts-config file
to be used and another to specify the struts mapping. Other init-params
were also included but omitted in the sample below to simplify
understanding. For more information about all the elements added, see
the WebSphere Portal Infocenter.

<servlet id="Servlet_1106865613683">
<servlet-name>myfirststruts.MyFirstStrutsPortlet</servlet-name>
<display-name>myfirststruts.MyFirstStrutsPortlet</display-name>
<servlet-class>
com.ibm.wps.portlets.struts.WpsStrutsPortlet</servlet-class>
<init-param>

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<init-param>

<param-name>struts-servlet-mapping</param-name>
<param-value>*.do</param-value>

</init-param>
</servlet>

 Chapter 14. Creating Struts portlets with the IBM Portlet API 433

– Struts portlet tag library definitions were included.

– Welcome-file list support for Struts modules was supplied.

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

� The portlet.xml deployment descriptor was created.

14.2.3 Designing the application
The easier way to design our new Struts portlet application is to use the Web
diagram editor, and realize the Web page nodes you create in the diagram to
launch the proper Rational Application Developer wizards. You can also use the
File → New command on the top menu, or the options in the context menus, but
the Web diagram gives a good overview of how the different pages and actions
interact in the Struts portlet application.

To design the MyFirstStruts application, follow these steps:

1. Make sure you have the Web perspective active.

2. In the Project Explorer view, double-click the Web Diagram.

3. The Web diagram opens.
You can easily add nodes to the Web diagram using the Palette view. Note
that you have some Struts parts that you can pick up from the palette and
insert in the Web diagram.

Note: The definition of a config parameter above is the standard way
to define a Struts configuration file and modules. In the Struts portlet
framework, each markup and mode is mapped to a specific Struts
configuration file and module. If you want to add support for Edit mode
in the WML markup language, for example, you should create a
config/wml/edit parameter pointing to the Struts configuration file for
this mode/markup. For more information, refer to 14.2.6, “Adding
support to Edit mode” on page 446.

434 IBM Rational Application Developer V6 and Portal Tools

Figure 14-3 The palette view

4. Click Web Page on the palette view, then click anywhere in the Web diagram
to place it. Name the Web page index.jsp.
You should use this name because this will be the first page in our
application. The welcome-file list in the web.xml deployment descriptor is
already configured to find this page automatically.

5. Repeat these steps to place two other pages in the Web diagram. Name them
configured.jsp. and notConfigured.jsp.

6. Click Action Mapping, click again anywhere in the Web page diagram and
name the action mapping welcome.

7. Click Connection. Then connect index.jsp to the welcome action.

8. Click Connection. Then connect the welcome action to configured.jsp.

d. In the Choose a connection window that appears, expand Local Forward,
then select <new> and click OK.

e. Name the connection configured.

9. Click Connection again. Then connect welcome to notConfigured.jsp.

a. In the Choose a connection window that appears, expand Local Forward,
then select <new> and click OK.

b. Name the connection notConfigured.

At this time, your Web diagram should look like Figure 14-4 on page 436.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 435

Figure 14-4 The Web diagram

10.Save the Web diagram.

14.2.4 Realizing the application components
Now that all components were placed at the Web diagram, it is time to realize
them in real components.

1. Create a global forward in struts-config.xml that will be used by index.jsp.

a. In the Project explorer view, expand Dynamic Web Projects →
MyFirstStruts → Struts → <default module>.

b. Double-click struts-config.xml, as shown in Figure 14-5 on page 437.

436 IBM Rational Application Developer V6 and Portal Tools

Figure 14-5 Locating the struts-config.xml file

c. In the Struts configuration file editor, select the Global Forwards tab, at
the bottom.

d. Click Add. Name the global forward welcome.

e. Under the forward attributes section, enter /welcome.do as the Path.
Figure 14-6 on page 438 shows the global forward page filled.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 437

Figure 14-6 The global forward page

f. Save and close the editor.

2. The first component you will realize is the index.jsp file.

a. In the Web diagram, double-click index.jsp.

b. The New JSP file wizard appears. All fields should have been properly
filled by the wizard. Refer to Figure 14-7 on page 439 to make sure of this.

438 IBM Rational Application Developer V6 and Portal Tools

Figure 14-7 New JSP File window

c. Check Configure advanced options and click Next >.

d. In the Tag libraries page, remove all tag libraries by selecting them and
clicking Remove.

e. Click Add.

f. In the Select a tag library page, check the /WEB-INF/struts-logic.tld tag
library.

g. Click OK.

h. Click Next.

i. Click Next twice more.

j. In the Form field selection page, uncheck Generate fields in a form.

k. Click Finish.

l. In the JSP editor, paste the following code at the end of the file:

<logic:forward name="welcome"/>

 Chapter 14. Creating Struts portlets with the IBM Portlet API 439

This will automatically forward to the global forward welcome mapping, that
is, the welcome.do action mapping you will build.

m. Save the file and close the JSP editor.

3. The next component you will realize is the notConfigured.jsp file.

a. In the Web diagram, double-click notConfigured.jsp.

b. The New JSP file wizard appears. Uncheck the Advanced Options check
box.

c. Click Finish.

d. In the JSP editor, erase all code that was automatically generated by the
wizard.

e. Paste the code from Example 14-1.

Example 14-1 notConfigured.jsp code

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<h3><bean:message key="myfirststruts.title"/></h3>
<bean:message key="message.mustConfigureFirst"/>

We will create the messages in the resources file later on.

f. Save the file and close the JSP editor.

4. Now, realize the configured.jsp file.

a. In the Web diagram, double-click configured.jsp.

b. The New JSP file wizard appears.

c. Click Finish.

d. Erase all code that was automatically generated by the wizard and paste
the code from Example 14-2:

Example 14-2 configured.jsp code

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<h3><bean:message key="myfirststruts.title"/></h3>
<bean:message key="message.configured"/>

5. Edit the resources file.

a. In the Project Explorer view, expand Java Resources → JavaSource →
myfirststruts.resources.

b. Double-click ApplicationResources.properties.

440 IBM Rational Application Developer V6 and Portal Tools

c. Insert the lines shown in Example 14-3.

Example 14-3 ApplicationResources.properties

myfirststruts.title=Struts portlet with IBM Portlet API

message.mustConfigureFirst=You must configure this portlet through edit mode.
message.configured=This portlet has been configured.

d. Save the file and close the editor.

6. Now you will create a utility class to store the application constants.

a. In the Project Explorer view, expand Java Resources.

b. Right-click JavaSource and select New → Class.

c. Enter myfirststruts for the package and Constants for the class name.
Click Finish.

d. Paste the following code in the class:

public static final String USERNAME = "username";
public static final String PASSWORD = "password";

e. Save the file and close it.

7. Now you will realize the welcome action mapping.

a. In the Web diagram, double-click welcome.

The New Action Mapping wizard appears, as shown in Figure 14-8 on
page 442.

Note that the wizard has filled many data in this window. These data came
from the Web diagram you designed.

• The name of the Action mapping became the Action mapping path.

• The connections you created as Local forwards were automatically
inserted in the Forwards list.

• The Create an Action class radio button was selected, and the Model
chosen was the Struts Portlet Framework Action Mapping. This is
the mapping provided by Struts portlet framework.

b. Leave all data unchanged and click Next >.

c. The Create an Action class for your mapping shows that our mapping will
inherit from com.ibm.wps.struts.action.StrutsAction.

d. Click Finish.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 441

Figure 14-8 The New Action Mapping wizard

e. Replace the execute method with the code from Example 14-4 on
page 443:

442 IBM Rational Application Developer V6 and Portal Tools

Example 14-4 The execute method of the welcome Action Mapping

ActionForward forward = mapping.findForward("notConfigured");
try {

PortletApiUtils portletUtils = PortletApiUtils.getUtilsInstance();

if (portletUtils != null) {
PortletRequest portletRequest = (PortletRequest)
portletUtils.getPortletRequest(request);
PortletData portletData = portletRequest.getData();
if (portletData.getAttribute(Constants.USERNAME) != null) {

forward = mapping.findForward("configured");
}

}
} catch (Exception ex) {
}
return forward;

Note that the PortletApiUtils is used in order to retrieve the PortletData
object. You can test to see if the data that the application expects (here,
the username) is already stored at the PortletData and forward to
different pages en each case.

Note also that you have silenced the catch statement. This is not a good
practice, but we will show how to enable logging in the application in
14.2.5, “Adding logging support” on page 444.

f. Right-click anywhere in the code and select Source → Organize
imports.

g. Select com.ibm.portal.struts.common.PortletApiUtils for the
PortletApiUtils class and myfirstStruts.Constants for the Constants
class.

h. Click Finish.

i. Save the file and close the editor.

8. Run the code with what you have done so far.

a. Right-click the MyFirstStruts project.

b. Select Run → Run on Server.

c. In the Define a new server window, select Manually define a server.

d. Select the server type WebSphere Portal V5.1 Test Environment.

e. Check the Set server as project default check box.

f. Click Finish.

g. After a few minutes, you will see a page similar to Figure 14-9 on
page 444.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 443

Figure 14-9 MyFirstStruts in the browser

Of course, you are not able to configure the portlet in Edit mode yet; our portlet is
not configured to support that. This will be done in 14.2.6, “Adding support to Edit
mode” on page 446.

14.2.5 Adding logging support
The Struts Portlet Framework uses the Commons-Logging interface for a logging
facility. The Struts Portlet Framework has supplied an implementation of the
Commons-Logging Log interface that can be used to map the trace messages to
the logging facility used by the portal server. This file is normally found in the
wp_root/log directory. Trace logging is enabled by setting properties in the
wp_root/shared/app/config/log.properties file. By default, tracing is disabled. The
trace string for tracing a Struts portlet application can be configured in
log.properties. The trace string can be modified to add or remove classes.

To start logging our application, proceed as follows:

1. First, enable tracing of struts portlets; proceed as follows:

a. Open the wp_root/shared/app/config/log.properties, where wp_root is the
folder where the Portal test environment was installed.

b. Go to the end of the file and add the following traceString.

traceString=org.apache.struts.*=all=enabled:
com.ibm.wps.portlets.struts.*=all=enabled:
com.ibm.wps.struts.common.*=all=enabled:
com.ibm.wps.struts.base.*=all=enabled:
com.ibm.wps.portlets.struts.logging.WpsStrutsTraceLogger=all=enabled:
myfirststruts.*=all=enabled

Important: You can have only one traceString in the log.properties file,
and the entire traceString should be specified in only one line.

444 IBM Rational Application Developer V6 and Portal Tools

c. Save the file and close it.

2. Additionally, the Struts Portlet Framework specifies the common logging Log
Factory in the META-INF/services directory. The log factory class name is
dependent on the WebSphere Portal container. To specify the correct
commons LogFactory for our application, proceed as follows:

a. Expand Dynamic Web Projects → MyFirstStruts → WebContent.

b. Right-click the META-INF folder. Select New → Folder.

c. Enter services as the folder name.

d. Click Finish.

e. Right-click the services folder. Select New → Other.

f. In the Select a wizard window, expand Simple. Select File.

g. Click Next >.

h. Enter org.apache.commons.logging.LogFactory as the file name.

i. Click Finish.

j. Paste the following line in the file:

com.ibm.wps.portlets.struts.logging.StrutsLogFactory

k. Save the file and close it.

3. Now let’s add some code in the welcome action mapping.

a. Edit myfirststruts.actions.WelcomeAction.

b. Add the following instance variable:

private Log log = LogFactory.getLog(this.getClass());

c. Right-click anywhere in the code and select Source → Organize
Imports.

d. Select org.apache.comons.logging.Log for the Log class and click
Next >.

e. Select org.apache.commons.logging.LogFactory for the LogFactory
class and click Finish.

f. Add the following code at the beginning of the execute method:

if (log.isTraceEnabled()) {
log.trace("###Welcome###");

}

g. Finally, add the following code in the catch statement:

if (log.isDebugEnabled()) {
log.debug("WelcomeAction: Error determining if user is configured");

}

 Chapter 14. Creating Struts portlets with the IBM Portlet API 445

h. Save the file and close the editor.

4. Now you can run the application again, open the log file at wp_root/log folder
and look for the Welcome message. You should see a message similar to the
following:

2005.02.01 17:25:10.461 l myfirststruts.actions.WelcomeAction trace
Servlet.Engine.Transports : 1
 ###Welcome###

14.2.6 Adding support to Edit mode
To add support to Edit mode in our portlet, proceed as follows:

1. Edit the web.xml deployment descriptor.

a. Expand Dynamic Web Projects → MyFirstStruts.

b. Double-click Deployment Descriptor: MyFirstStruts.

c. In the editor, go to the servlets page.

d. Select myFirstStruts.MyFirstStrutsPortlet.

e. In the Initialization section, click Add.

f. Enter config/html/edit as the parameter name, and
/WEB-INF/html/edit/struts-config.xml as the parameter value.

g. Click Finish.

h. Go to the Pages tab.

i. Under the Welcome pages section, click Add.

j. Enter html/edit/welcome.jsp as the new welcome page name. This will
be the welcome page in Edit mode, for a html markup.

k. Save the file and close the editor.

2. Edit the portlet deployment descriptor.

a. Double-click Portlet Deployment Descriptor.

b. Expand Portlet Application.

c. Select myfirststruts.MyFirstStrutsPortlet.

d. In the Markups section, click under Edit and select Fragment.
(Figure 14-10 on page 447).

Note 1: You have to restart the server if it is still running, since you made
changes to the configuration files.

446 IBM Rational Application Developer V6 and Portal Tools

Figure 14-10 Adding support to Edit mode

e. Save the file and close the editor.

3. Add a new struts module to support the Edit mode.

a. In the Project Explorer view, right-click the Struts icon.

b. Select New → Module.

c. Fill in all the fields according to Figure 14-11 on page 448.

Note that you pointed to the same resources file that you had already
created.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 447

Figure 14-11 New Struts module wizard

d. Click Finish.

At this time, a new Struts module should appear under the Struts icon, as
shown in Figure 14-12.

Figure 14-12 The new Struts module

448 IBM Rational Application Developer V6 and Portal Tools

4. Create a new Web diagram for the Edit mode.

a. Right-click Web Diagram.

b. Select New → Web Diagram.

c. Enter editMode as the Web diagram file name.

d. Place four Web pages in the diagram. Name them
html/edit/welcome.jsp, html/edit/index.jsp, configured.jsp and
notConfigured.jsp.

e. Place two action mappings in the diagram. Name them
saveConfiguration and editConfiguration.

f. Place a form bean in the diagram. In the Form bean attributes window that
appears, enter userBean as its name and request as the scope.

g. Create the connections between the components; these are:

i. welcome.jsp to editConfiguration.

ii. editConfiguration to userBean.

iii. saveConfiguration to userBean.

iv. Local forward named success from editConfiguration to index.jsp.

v. index.jsp to saveConfiguration.

vi. Local forward named success from saveConfiguration to
editConfiguration.

vii. Local forward named user_not_set from saveConfiguration to
notConfigured.jsp.

viii.Local forward named user_set from saveConfiguration to
configured.jsp.

h. Right-click anywhere in the Web diagram. Select Change the Struts
module association.

i. Select /html/edit in the list. Click OK.

j. Your diagram should look like Figure 14-13 on page 450. Save it.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 449

Figure 14-13 The Web diagram for Edit mode

14.2.7 Realizing the new application components
Now that it is time to realize all the components that will support Edit mode in our
portlet.

1. Create a global forward in struts-config.xml, that will be used by index.jsp.

a. In the Project Explorer view, expand Dynamic Web Projects →
MyFirstStruts → Struts → /html/edit.

b. Double-click struts-config.xml.

c. Under the Global forwards page, click Add.

d. Name the global forward Welcome and enter /editConfiguration.do as the
path.

e. Save the file and close editor.

2. Realize welcome.jsp.

a. In the Web diagram for /html/edit module, double-click welcome.jsp.

The New JSP file wizard appears. Note that the folder is correctly pointing
to the html/edit folder under the Web application, since you inserted this
information when you created the Web page in the Web diagram.

450 IBM Rational Application Developer V6 and Portal Tools

b. Click Finish.

c. Replace all code in the new jsp with the following code:

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic"%>
<logic:forward name="Welcome"/>

d. Save the file and close the editor.

3. Next, you will realize the userBean.

a. Double-click userBean form bean. This will bring the New Form-Bean
wizard.

b. Leave the form bean name unchanged. Make sure that the Create an
ActionForm class radio button is selected, and that Generic Form-bean
Mapping is selected.

c. Click Next >.

d. Click Next > again.

e. In the Create new fields for your ActionForm class page, you are going to
add a couple of fields.

ix. Click Add....

x. Enter the field’s name username. Leave the field type as String.

xi. Click Add... again.

xii. Enter the field’s name password and leave the field type as String.

xiii.The window will look like in Figure 14-14 on page 452.

f. Click Next >.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 451

Figure 14-14 Creating new fields for the ActionForm Bean

g. In the Creating a mapping for your ActionForm class, check only reset
(which takes an HttpServletRequest as parameter and inherited abstract
methods. Leave all other method stubs unchecked.

h. Click Finish.

Rational Developer will generate the ActionForm bean, that extends from
rg.apache.struts.action.ActionForm, along with its proper accessor
methods. It will also include the form-bean tag in struts-config.xml file.

i. Replace the reset method with the following code:

this.username = "";
this.password = "";

j. Save the file and close it.

4. Next, you will realize the editConfiguration action mapping.

a. In the Web diagram, double-click /editConfiguration.

b. The New action mapping wizard appears. As every fields are already
properly set, click Finish.

c. Replace the execute method with the following code:

452 IBM Rational Application Developer V6 and Portal Tools

Example 14-5 The execute method from editConfiguration action mapping.

saveToken(request);

form.reset(mapping, request);
return (mapping.findForward("success"));

The code above initially calls the saveToken method, that Struts provides
to avoid multiple submissions from one form. Next, the form bean is reset.
This forces that the user always enter new values. Finally, the action
forwards to success, that points to index.jsp.

d. Save the file and close it.

5. The next component you will realize is index.jsp.

a. In the Web diagram, double-click index.jsp.

b. Click Finish.

c. Replace the jsp contents with the code from Example 14-6:

Example 14-6 index.jsp for Edit mode

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<h3><bean:message key="editmode.heading"/></h3>

<p><bean:message key="editmode.instructions"/></p>

 <bean:message key="editmode.instructions.1"/>
 <bean:message key="editmode.instructions.2"/>
 <bean:message key="editmode.instructions.3"/>
 <%--<bean:message key="editmode.instructions.4"/>--%>
 <bean:message key="editmode.instructions.5"/>

 <html:messages message="true" id="error">
 <bean:write name="error"/>
 </html:messages>

<html:form action="/saveConfiguration.do" urlType="return"
validate="false">

<table>

 <tr>

 Chapter 14. Creating Struts portlets with the IBM Portlet API 453

 <th align="right">
 <bean:message key="prompt.username"/>:
 </th>
 <td align="left">
 <html:text property="username" size="25"/>
 </td>
 </tr>

 <tr>
 <th align="right">
 <bean:message key="prompt.password"/>:
 </th>
 <td align="left">
 <html:password property="password" size="25"/>
 </td>
 </tr>

 <tr><td>
</td></tr>

 <tr>
 <td align="right">
 <html:submit value="Submit"/>
 </td>
 <td align="left">
 <html:reset/>
 </td>
 </tr>

</table>

</html:form>

Note that you added the html:messages tag, to support that messages
from the action can be processed and displayed correctly.

6. Finally, let’s realize the saveConfiguration action.

a. In the Web diagram, double-click saveConfiguration action.

b. All values should be correct, as the Web diagram had all information the
wizard needs to create the action.

c. Click Finish.

Important: If you want execute an Action that will change the portlet mode
to its previous mode, you must use the urlType attribute of the html:form
tag with the value of return. This attribute was added by Struts portlet
framework to the tags html:form, html:link and html:rewrite.

454 IBM Rational Application Developer V6 and Portal Tools

d. This action is the one with the most logic. Replace its contents with the
code in Example 14-7 and save the file:

Example 14-7 Listing of SaveConfigurationAction.java

package myfirststruts.actions;
import myfirststruts.Constants;
import myfirststruts.forms.UserBean;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.jetspeed.portlet.PortletData;
import org.apache.jetspeed.portlet.PortletRequest;
import org.apache.jetspeed.portlet.Portlet.Mode;
import org.apache.jetspeed.portlet.Portlet.ModeModifier;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;
import org.apache.struts.action.ActionMessages;
import com.ibm.portal.struts.common.PortletApiUtils;
import com.ibm.wps.struts.action.StrutsAction;

public class SaveConfigurationAction extends StrutsAction {
private Log log = LogFactory.getLog (this.getClass ());

public ActionForward execute(ActionMapping mapping, ActionForm form,
PortletRequest request) throws Exception {

ActionForward forward = mapping.findForward("success");
ActionMessages messages = new ActionMessages();

if (form instanceof UserBean) {
UserBean userBean = (UserBean) form;
try {

PortletApiUtils portletUtils =
PortletApiUtils.getUtilsInstance();

if (portletUtils != null) {
PortletRequest portletRequest =

(PortletRequest) portletUtils
.getPortletRequest(request);

PortletData portletData = portletRequest.getData();

if (portletRequest.getMode() == Mode.EDIT) {
processEditData(request, messages, userBean,

portletData);
} else {

log.debug("this command is only valid in edit mode");

forward = null;

 Chapter 14. Creating Struts portlets with the IBM Portlet API 455

}
if (!messages.isEmpty()) {

saveMessages(request, messages);

portletRequest.setModeModifier(ModeModifier.CURRENT);

forward = mapping.getInputForward();
} else {

if (portletData.getAttribute(Constants.USERNAME)
!= null) {

log.debug("Set view mode to user_set");
ActionForward actionForward =

mapping.findForward("user_set");
if (actionForward != null) {

portletUtils.createCommand(actionForward
.getPath(), request, Mode.VIEW.toString());

} else {
log.debug("Could not find action forward for view

mode");
}

} else {
log.debug("Set view mode to user_not_set");
ActionForward actionForward =

mapping.findForward("user_not_set");
if (actionForward != null) {

portletUtils.createCommand(actionForward.
getPath(), request, Mode.VIEW.toString());

} else {
log.debug("Could not find action forward for view

mode");
}

}
}

}

} catch (Exception ex) {
log.debug("Could not save configuration " + ex.toString());

}

}
return forward;

}

private void processEditData(PortletRequest request, ActionMessages
messages, UserBean userBean, PortletData portletData) throws Exception {

if (!isTokenValid(request)) {
messages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage("error.transaction.token"));
log.debug("token is not valid");

456 IBM Rational Application Developer V6 and Portal Tools

} else {
log.debug("token is valid");
// token was valid.
String username = userBean.getUsername();

if (username != null && !username.equals("")) {
if (username.equals("error")) {

messages.add(ActionMessages.GLOBAL_MESSAGE,
new ActionMessage("error.invalid.username"));

} else {
portletData.setAttribute(Constants.USERNAME,

userBean.getUsername());
}

} else {
portletData.removeAttribute(Constants.USERNAME);

}

if (userBean.getPassword() != null &&
!userBean.getPassword().equals("")) {

portletData.setAttribute(Constants.PASSWORD,
userBean.getPassword());

} else {
portletData.removeAttribute(Constants.PASSWORD);

}
portletData.store();

}
resetToken(request);

}
}

Let’s take a look at the major points of this code:

• First of all, you had to retrieve the PortletApiUtils instance. It is the
PortletApiUtils that gives us access to the PortletRequest object.

• Following, you check if the portlet is in Edit mode, with the following
code:

if (portletRequest.getMode() == Mode.EDIT)

This way, you guarantee that the action will work only and if only the
portlet mode is Edit.

• Next, the processEditData method is executed. First of all, it checks if
the token is valid, with

if (!isTokenValid(request))

This is to avoid multiple submits of the form.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 457

If the username and password attributes from UserBean are null, the
code removes these attributes from PortletData. If not, the code
stores them in PortletData, using the setAttribute method. The only
exception is when the enter error as the username. In this case, a
message is generated, stating that this is an invalid user name. The
processEditData also stores the PortletData object with its new
attribute values, and reset the token.

• Back to the execute method, the code checks if there is any message
to be shown. If there is any message, then it obligates the portlet to
stay at the same mode, with

portletRequest.setModeModifier(ModeModifier.CURRENT);

and forwards to the page that invoked this action, with

forward = mapping.getInputForward();

• Finally, the code tests if the username attribute was stored at
PortletData, if yes, than it creates a command that makes the View
mode page change to the one specified by the user_set local forward.

Example 14-8 The username attribute was found. Forwarding to user_set

ActionForward actionForward = mapping.findForward("user_set");
if (actionForward != null) {

portletUtils.createCommand(actionForward.getPath(), request,
Mode.VIEW.toString());

} else {
log.debug("Could not find action forward for view mode");

}

If the username attribute is not stored at PortletData, the View mode
forward is to the user_not_set local forward:

Example 14-9 The username attribute was not found. Forwarding to user_not_set

ActionForward actionForward = mapping.findForward("user_not_set");
if (actionForward != null) {

portletUtils.createCommand(actionForward.getPath(), request,
Mode.VIEW.toString());

} else {
log.debug("Could not find action forward for view mode");

}

7. Add new keys to resources file:

a. Edit myfirststruts.resources.ApplicationResources.properties.

b. Add the following keys at the end of the file:

458 IBM Rational Application Developer V6 and Portal Tools

Example 14-10 The new messages to be included in the resources file

editmode.heading=Edit Mode
editmode.title=Struts Edit Mode Example

editmode.instructions=Try the options below to demonstrate various Struts
features. When a valid username and password are given, an action forwards to a
JSP in view mode. Valid usernames and passwords are between 3 and 16 characters
long.
editmode.instructions.1=Click the Submit button without a valid username
and/or password to see dynamic validation
editmode.instructions.2=Enter a username of "error" and a valid password to see
ActionErrors supported
editmode.instructions.3=Enter a username of "delete" and a valid password to
remove the configuration
editmode.instructions.4=Refresh the page to demonstrate transaction support
editmode.instructions.5=Enter a valid username and password to complete the
configuration and change the mode to view mode

prompt.username=Username
prompt.password=Password

button.back=back
button.send=Send
button.save=Save
button.cancel=Cancel
button.reset=Reset

error.transaction.token=Transaction token is not valid
error.invalid.username=The username is not valid

c. Save the file and close editor.

8. Run the code:

a. Right-click the MyFirstStruts project.

b. Select Run → Run on Server.

c. After the welcome page displays, click the edit icon, go to Edit mode.

d. Try the code. You can choose any of the following:

• If you leave the username blank, or if you enter delete, the username
and password attributes will be removed from PortletData, and you will
be forwarded to notConfigured.jsp.

• If you enter error as the username, the application shows an error
message and continues in Edit mode.

• If you enter any other value to username and password, the application
stores these values at PortletData and forwards to configured.jsp.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 459

Figure 14-15 The portlet in Edit mode

14.2.8 Adding internationalization support
As you are already using the Struts tags to show messages, adding support to
other languages is a straightforward task. Proceed as follows to add Brazilian
Portuguese support to the application:

1. Edit the Portlet deployment descriptor.

a. In Project Explorer view, expand Dynamic Web Projects →
MyFirstStruts.

b. Double-click Portlet Deployment Descriptor.

c. In the Portlet deployment descriptor window, expand Concrete Portlet
Application.

d. Click myfirststruts.MyFirstStrutsPortlet.

e. Under the languages section, click Add. See Figure 14-16.

Figure 14-16 The languages section

460 IBM Rational Application Developer V6 and Portal Tools

f. Select pt_BR in the Locale list.

g. Click OK.

h. Enter MyFirstStruts portlet as the Title.

i. Save the file and close the editor.

2. Next, create a resources file for the new locale.

a. Expand Dynamic Web Projects → MyFirstStruts → Java Resources
→ JavaSource → myfirststruts.resources.

b. Right-click ApplicationResources.properties.

c. Select Copy.

d. Right-click the myfirststruts.resources package.

e. Select Paste.

f. Enter ApplicationResources_pt_BR.properties as the new name for the
file.

g. Click OK.

h. Double-click ApplicationResources_pt_BR.properties to edit it.

i. Replace all messages with brazilian portuguese messages. Use the
messages from Example 14-11.

Example 14-11 Resources file for brazilian portuguese Locale

myfirststruts.title=Portlet baseado em Struts utilizando a API IBM

message.mustConfigureFirst=Você deve primeiramente configurar este portlet em
modo de Edição.
message.configured=Este portlet foi configurado.

editmode.heading=Modo de Edição
editmode.title=Exemplo de Modo de Edição com Struts

editmode.instructions=Tente as opções abaixo para demonstrar várias capacidades
do Struts. Quando um usuário e senha válidos são inseridos, uma action
encaminha para um JSP em modo view.
editmode.instructions.1=Pressione o botão Submit com o usuário em branco
para remover a configuração
editmode.instructions.2=Digite "error" como nome de usuário para ver o suporte
a ActionErrors
editmode.instructions.3=Digite "delete" como nome de usuário para remover a
configuração
editmode.instructions.4=Atualize a página para demonstrar o suporte
transacional
editmode.instructions.5=Digite um nome de usuário e uma senha válidos para
completar a configuração e mudar para o modo View

 Chapter 14. Creating Struts portlets with the IBM Portlet API 461

prompt.username=Nome
prompt.password=Senha

button.back=voltar
button.send=Enviar
button.save=Salvar
button.cancel=Cancelar
button.reset=Limpar

error.transaction.token=Token de transação inválido
error.invalid.username=O nome de usuário não é válido

j. Save the file and close the editor.

3. Test the new Locale.

a. Run the application.

b. In the top menu, click Edit My Profile.

c. Under Preferred language, select Brazilian Portuguese.

d. Click OK.

e. The application now should look like Figure 14-17.

Figure 14-17 Application with new Locale set

14.3 Messaging
The recommended way to exchanges messages involving Struts portlets is
through the use of the Property Broker. See Chapter 24, “IBM API declarative
cooperative portlets” on page 741 for details about how to implement it. The
good thing is that the Struts portlet framework does the job of sending and
retrieving the messages, once that there is a match between the properties that
are through the wires and the form bean’s properties.

462 IBM Rational Application Developer V6 and Portal Tools

14.4 Migration
The file structure of the WAR file for a Struts Portlet Framework is the same as
that used for a Struts servlet. The Struts application in the portal server is a WAR
file just like it is in the servlet environment. The portlet WAR file has some
additional JARS and other requirements, but the basis of the implementation is
similar to the servlet application.

Existing Struts applications can be migrated using the Struts Portlet Framework
so the application can be deployed in WebSphere Portal. Since Struts is a
framework there are many variations to how the application can be built with
Struts. There are also numerous other frameworks that may also be incorporated
into the Struts application. The steps in this section can be used as a starting
point for the migration effort, but may not cover all of the issues that can be
encountered.

1. Make sure the existing Struts application has been built as a Struts 1.1
application.

2. Check Struts actions to see if the action writes directly to the response object.
If it does then, the action must be modified to either return an ActionForward
instead, or check to see if the IStrutsPrepareRender interface should be
used.

3. The Web deployment descriptor must be updated to use the
WpsStrutsPortlet as the servlet class instead of the ActionServlet. (See
14.2.2, “Inspecting the Struts portlet project” on page 433)

4. The servlet mapping for Struts actions must be specified as the
struts-servlet-mapping init parameter. (See 14.2.2, “Inspecting the Struts
portlet project” on page 433.)

5. Create a portlet.xml.

6. Modify the struts-config.xml to specify the WpsRequestProcessor as the
controller. (See 14.2.2, “Inspecting the Struts portlet project” on page 433)

7. Modify tags that use pageContext.forward to use the PortletApiUtils
forward.

8. Modify JSPs that use a forward to use the logic forward tag.

9. Modify JSPs as necessary to use the Struts tags for creating URLs, like the
Struts Link and Form tags.

10.The JAR files from the WEB_INF/lib directory of the SPFLegacyBlank.war
must be used. These files are the Struts JARs and the required Struts Portlet
Framework JARs. You can find the SPFLegacyBlank.war at
wp_root/installableApps.

 Chapter 14. Creating Struts portlets with the IBM Portlet API 463

11.The TLD files must be updated from the WEB_INF/lib directory of
SPFLegacyBlank.war. Verify the taglib attributes and that the JSP correctly
reference the TLD files. This has been a common source of problems when
migrating existing applications. You can find the SPFLegacyBlank.war at
wp_root/installableApps.

12.The JSPs should be modified so they do not use html, head and body
elements. All HTML output to the portal is written in the context of an HTML
table cell.

464 IBM Rational Application Developer V6 and Portal Tools

Chapter 15. Struts portlet development
using the JSR 168 API

In this chapter, we cover the development of Struts portlet applications in
Rational Application Developer using the JSR 168 API.

The following topics are covered in this chapter:

� Generating a Struts portlet project
� Designing the application (View mode and Edit mode)
� Realizing the mode application components
� Adding internationalization support
� Adding logging support
� Running and testing the Struts portlet

15

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: JSR 168
� Application type: Struts

© Copyright IBM Corp. 2005. All rights reserved. 465

15.1 Overview
Struts portlet projects share common characteristics with standard portlets and
Struts projects, although there are some differences that you should be aware of.
The Struts portlet project structure and related resources are dictated by the
Struts portlet framework support provided by WebSphere Portal and included in
Rational Application Developer.

Struts portlet projects are created using the New Portlet Project wizard. A default
Struts-type portlet and, optionally, a Web diagram file, will be added in the
process of creating the project. The wizard automatically generates Struts portlet
configuration files and the necessary updates to the web.xml file, and adds all of
the Struts portlet framework tag libraries and JAR files to the project in the
directory structure that is required.

Edit mode support will also be added to show how you can update portlet objects
(portlet preferences) in order to store user preferences. The sections in this
chapter show how a Struts portlet application is created in Rational Application
Developer, and configured to work with the JSR 168 Portlet API.

The sample scenario described in this chapter is illustrated in Figure 15-1.

Figure 15-1 JSR 168 Struts portlet

Note: The sample scenario described in this chapter requires WebSphere
Portal Test Environment version 5.1.0.1.

index.jsp

configured.jsp

notConfigured.jsp

index.jsp

Struts Action
Servlet

Portlet
Preferences

Welcome
Action

request

request

setValue

getValue

viewBean

editBean

welcome.do

saveConfiguration.do

View mode

Edit mode

Save
Configuration

Action

user_set

configured

notConfigured

Actions

466 IBM Rational Application Developer V6 and Portal Tools

15.2 Message flow
As an exercise, follow the message flow of this scenario which is explained here
step by step. The operation flow is as follows (see Figure 15-1 on page 466).

1. At initialization time, Portal invokes the initial View mode page configured in
the portlet descriptor (portlet.xml):

<portlet-preferences>
<preference>

<name>com.ibm.struts.portal.page.view.html</name>
<value>index.jsp</value>

</preference>
..................

</portlet-preferences>

2. The index.jsp page sends a forward with the name welcome:

<logic:forward name="welcome"/>

3. The configuration file (struts-config.xml) has a global forward indicating that
the action welcome should be invoked:

<global-forwards>
<forward name="welcome" path="/welcome.do">
</forward>

</global-forwards>

4. The configuration file (struts-config.xml) states that, for action welcome, the
execute method in WelcomeAction will be called and the Action Form
viewBean will be passed in the request object:

<action-mappings>
<action name="viewBean" path="/welcome" scope="request"

 type="myfirstjsr168struts.actions.WelcomeAction">
.................

</action>
</action-mappings>

5. The configuration file (struts-config.xml) states that the viewBean is the
ViewBean class:

<form-beans>
<form-bean name="viewBean"

type="myfirstjsr168struts.forms.ViewBean">
</form-bean>

</form-beans>

6. The execute method in the welcome action reads the portlet preferences and
if a username field is not found, the forward notConfigured is returned:

forward = mapping.findForward("notConfigured");
....................
return forward;

 Chapter 15. Struts portlet development using the JSR 168 API 467

7. The configuration file (struts-config.xml) shows that forward notConfigured
indicates that notConfigured.jsp should be called.

<action-mappings>
<action name="viewBean" path="/welcome" scope="request"

 type="myfirstjsr168struts.actions.WelcomeAction">
.................
<forward name="notConfigured" path="/notConfigured.jsp">
</forward>

</action>
</action-mappings>

8. The notConfigured.jsp displays a message indicating to the user that he or
she needs to switch to Edit mode and enter a user name and password.

9. When entering Edit mode, Portal invokes the initial Edit mode page
configured in the portlet descriptor (portlet.xml):

<portlet-preferences>
<preference>
.................

<name>com.ibm.struts.portal.page.edit.html</name>
<value>html/edit/index.jsp</value>

</preference>
</portlet-preferences>

10.The Edit mode index.jsp page executes and displays a form for the user to
enter a user name and a password.

11.The user enters a user name and a password. The form Submit button sends
an action with name saveConfiguration.do:

<html:form action="/saveConfiguration.do"

Note: The do option in the action parameter indicates that the forward is an
action and not a JSP.

12.The Struts Action Servlet populates (setter methods) the associated form
bean (editBean) with the user name and password. The Edit mode
configuration file (struts-html-edit.xml) shows that the execute method in
SaveConfigurationAction should be called and the form bean EditBean
should be passed in the request object.

<form-beans>
<form-bean name="editBean"

type="myfirstjsr168struts.html.edit.forms.EditBean">
</form-bean>

</form-beans>
<!-- Action Mappings -->

<action-mappings>
<action name="editBean" path="/saveConfiguration" scope="request"

type="myfirstjsr168struts.html.edit.actions.SaveConfigurationAction">
...................

468 IBM Rational Application Developer V6 and Portal Tools

</forward>
</action>

</action-mappings>

13.The execute method in SaveConfigurationAction executes and gets the user
name and password from the bean (getter methods). These values are stored
as portlet preferences.

14.The execute method (SaveConfigurationAction) returns the forward user_set:

forward = mapping.findForward("user_set");
return forward;

15.The Edit mode configuration file (struts-html-edit.xml) showsthat the View
mode index.jsp should now be called.

<action-mappings>
<action name="editBean" path="/saveConfiguration" scope="request"

type="myfirstjsr168struts.html.edit.actions.SaveConfigurationAction">
<forward contextRelative="true" name="user_set"

path="/index.jsp">
</forward>

</action>
</action-mappings>

Note: contextRelative="true" indicates that the page is found in the context
root and not in /html/edit/.

16.This closes the loop. View mode index.jsp sends the forward to execute its
associated action. The action in View mode reads the portlet preferences,
stores the values in the viewBean (setters) and this time returns the forward
configured.

17.View mode configuration file (struts-config.xml) states that configured.jsp
should now be invoked:

<action-mappings>
<action name="viewBean" path="/welcome" scope="request"

type="myfirstjsr168struts.actions.WelcomeAction">
<forward name="configured" path="/configured.jsp">
</forward>
...........

</action>
</action-mappings>

18.Page configured.jsp executes, reads the user name from the viewBean and
displays it.

15.3 Creating a Portlet project
Follow these steps to create the Portlet project.

 Chapter 15. Struts portlet development using the JSR 168 API 469

1. Start Rational Application Developer V6 if not already running.

2. If prompted, select the default workspace or any other workspace of your
preference for this session.

3. In the menu, select File → New → Project.

4. In the New Project window, select the wizard for Portlet Project (JSR 168).

Figure 15-2 JSR 168 Portlet Project

5. Click Next.

6. If the Confirm Enablement window appears, asking you if you want to enable
the portal development role, click OK.

470 IBM Rational Application Developer V6 and Portal Tools

Figure 15-3 Enable the Portal development role

7. In the Portlet Project (JSR 168) page, enter the project name as
MyFirstJSR168Struts.

8. Check the Create a portlet check box, if it is not already checked.

Note: Typically, you will not need to create a portlet when importing a portlet
WAR file into your project.

9. Click Show Advanced and select WebSphere Portal V5.1 stub for the
target server. Click Next.

10.In the WebSphere Portal version box, select 5.1.

Figure 15-4 Select WebSphere Portal Version 5.1

 Chapter 15. Struts portlet development using the JSR 168 API 471

11.Click Next.

12.In the Portlet type page, select Struts portlet (JSR 168).

Figure 15-5 Struts portlet (JSR 168) selection

13.Click Next.

14.In the Features page, leave the Web Diagram option selected.

472 IBM Rational Application Developer V6 and Portal Tools

Figure 15-6 Project features

15.Click Next.

16.In the Portlet settings page, review the options provided.

Note: The settings provided in this page are the same when you select a
basic portlet.

17.Leave all settings unchanged. Click Next.

18.In the Struts portlet settings page, you can specify the name of the resource
bundle that will be used for this Struts portlet application, as well as the Java
package where it will be stored. Take default values and do not make any
changes to these fields.

 Chapter 15. Struts portlet development using the JSR 168 API 473

Figure 15-7 Struts Portlet Settings

19.Click Next.

20.In the Miscellaneous page, you can select additional markups and modes that
will be supported in this portlet application. Check Add Edit mode as
illustrated in Figure 15-8.

Figure 15-8 Adding Edit mode support

21.Click Finish to generate the project.

22.If the Confirm Perspective Switch window appears, click Yes.

474 IBM Rational Application Developer V6 and Portal Tools

15.3.1 Inspecting the Struts portlet project
Now that the Struts portlet has been created, let’s take a look at what Rational
Application Developer has generated for you.

� All of the necessary *.tld files are included in the WEB-INF directory.

� All of the necessary *.jar files are included in the WEB-INF/lib directory.

� The struts-config file was created, and the <controller> element that defines
the RequestProcessor subclass was automatically generated in the Struts
configuration file. The struts-html-edit configuration file was also created.

<controller
processorClass="com.ibm.portal.struts.portlet.WpRequestProcessor">
</controller>

� The web.xml deployment descriptor was created.

– Struts portlet tag library definitions were included.

– Welcome-file list was supplied.

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

Note: This list is not really necessary; as we will see, the Struts Portlet
framework provides a mechanism to identify which page must be displayed
first for each different mode and markup language.

� The portlet.xml deployment descriptor was created.

– A portlet was created and the StrutsPortlet class was specified as the
servlet class. The config init-param was created to specify the
struts-config file to be used and the struts-servlet-mapping init-param
was created to specify the struts mapping. Other init-params were also
included but omitted in the sample below to simplify understanding.

– A preference pointing to the initial page to be used in View mode as well
as a preference pointing to the initial page for Edit mode were also created
by the wizard as shown in Figure 15-1 on page 476.

Note: For more information about other added elements, see the
WebSphere Portal Infocenter.

 Chapter 15. Struts portlet development using the JSR 168 API 475

Example 15-1 Generated portlet preferences in portlet descriptor (portlet.xml)

<portlet-preferences>
<preference>

<name>com.ibm.struts.portal.page.view.html</name>
<value>index.jsp</value>

</preference>
<preference>

<name>com.ibm.struts.portal.page.edit.html</name>
<value>html/edit/index.jsp</value>

</preference>
</portlet-preferences>

� The definition of a config parameter and a
com.ibm.struts.portal.page.<mode>.<markup> preference above is the
standard way to define a Struts configuration file and modules and the first
page to be displayed for each specific mode and markup language.

� In the Struts portlet framework, each markup and mode is mapped to a
specific Struts configuration file and module. If you want to add support for
Edit mode in the wml markup language, for example, you should create a
config/wml/edit parameter pointing to the Struts configuration file and a
com.ibm.struts.portal.page.edit.wml preference pointing to the initial page
for this mode/markup.

� Figure 15-9 illustrates the generated modules for View mode (default module)
and Edit mode (/html/edit).

Figure 15-9 Generated Struts portlet

476 IBM Rational Application Developer V6 and Portal Tools

15.4 Designing the application (View mode)
The easiest way to design a Struts portlet application is by using the Web
diagram editor. You will then realize the Web page nodes that you created in the
diagram by launching the proper Rational Application Developer wizards.

You can also use the File → New command on the top menu, or the options in
the context menus, but the Web diagram gives you a good overview of how the
different pages and actions interact in the Struts portlet application.

Follow these steps to design the MyFirstStruts portlet application:

1. Make sure you have the Web perspective as active.

2. In the Project Explorer view, double-click the Web Diagram.

3. This Web diagram opens. Read about how to add and connect nodes.

Figure 15-10 Initial Web diagram (empty)

4. You will add nodes to the Web diagram using the Palette view. Notice that you
have some Struts parts that you can pick up from the palette and then insert
into the Web diagram.

 Chapter 15. Struts portlet development using the JSR 168 API 477

Figure 15-11 The palette view

5. Click Web Page on the palette view, then click anywhere in the Web diagram
to place it. Name the Web page index.jsp. See Figure 15-14 on page 480 for
a suggested location of index.jsp.

Note: Unless you change the default name in the portlet descriptor, you
should use this name because this will be the first page in your application,
and the portlet.xml deployment descriptor is already configured to find this
page automatically:

<portlet-preferences>
<preference>

<name>com.ibm.struts.portal.page.view.html</name>
<value>index.jsp</value>

</preference>
................

</portlet-preferences>

6. Repeat these steps and place two other pages in the Web diagram. Name
them configured.jsp and notConfigured.jsp.

7. Click Action Mapping on the palette view. Click again anywhere in the Web
page diagram and name the action mapping welcome.

8. Click Form Bean on the palette view and place it in the Web diagram. Name
it viewBean and scope should be request.

478 IBM Rational Application Developer V6 and Portal Tools

Figure 15-12 Action Form bean for View mode welcome action

9. Create four connections as follows:

a. Click Connection on the palette view. Then connect index.jsp to welcome
action.

b. Click Connection on the palette view. Then connect welcome action to
configured.jsp.

i. In the Choose a connection window that appears, expand Local
Forward, then select <new> and click OK.

Figure 15-13 Choose a connection

ii. Name the connection configured as shown in Figure 15-14 on
page 480.

c. Click Connection again. Then connect welcome to the notConfigured.jsp.

i. In the Choose a connection window that appears, expand Local
Forward, then select <new> and click OK.

ii. Name the connection notConfigured.

d. Click Connection. Then connect welcome action to viewBean.

At this time, your portlet application Web diagram should look as illustrated in
Figure 15-14 on page 480.

 Chapter 15. Struts portlet development using the JSR 168 API 479

Figure 15-14 Web diagram (View mode)

10.Save the Web diagram.

15.4.1 Realizing the application components
Now that all components are in the Web diagram, it is time to realize them into
real components. Before you do this you will need to create a global forward in
the struts-config.xml, this will be used by the initial page (index.jsp).

Follow these steps:

1. In Project explorer view, expand Dynamic Web Projects →
MyFirstJSR168Struts → Struts → <default module>.

2. Double-click struts-config.xml, shown in Figure 15-15 on page 481.

480 IBM Rational Application Developer V6 and Portal Tools

Figure 15-15 Locating the struts-config.xml file

3. In the Struts configuration file editor, select the Global Forwards tab, at the
bottom. Click Add and name the global forward welcome.

4. Under the forward attributes section, enter /welcome.do as the Path.
Figure 15-16 on page 482 shows the Global Forwards page.

 Chapter 15. Struts portlet development using the JSR 168 API 481

Figure 15-16 The global forward page

5. The resulting global forward will be like this:

<global-forwards>
<forward name="welcome" path="/welcome.do">
</forward>

</global-forwards>

Note: The global forward will indicate a broken link since the action has not
been defined yet.

6. Save and close the file.

15.4.2 Realizing the index.jsp page
The first component you will realize is the initial index.jsp page as follows:

1. In the Web diagram, double-click index.jsp.

2. The New JSP File wizard appears. All fields should have been properly added
by the wizard. See Figure 15-17 on page 483 to verify that this is the case.

482 IBM Rational Application Developer V6 and Portal Tools

Figure 15-17 New JSP File window

3. Check Configure advanced options and click Next >.

4. In the Tag libraries page, remove all tag libraries by selecting them and
clicking Remove.

5. Click Add.

6. In the Select a tag library page, check the /WEB-INF/struts-logic.tld tag
library. Click OK.

 Chapter 15. Struts portlet development using the JSR 168 API 483

Figure 15-18 Selecting a tag library

7. Click Next.

484 IBM Rational Application Developer V6 and Portal Tools

Figure 15-19 Selected tag library

8. JSP file options. Take default values for encoding, content type and other
values. Click Next.

9. JSP file method stubs. Take default values for method stub creation. Click
Next.

10.In the Form field selection page, uncheck Generate fields in a form. Click
Finish to generate the JSP.

Figure 15-20 Form Field Selection

 Chapter 15. Struts portlet development using the JSR 168 API 485

11.In the JSP editor, select the source tab and replace the page with the
following code shown in Example 15-2.

Example 15-2 index.jsp page

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic"%>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<logic:forward name="welcome"/>

Note: This tag indicates that it will forward to the global forward welcome and
the action mappings should resolve where to go. In this scenario
welcome.do should point to the action code. This will be done later in 15.4.7,
“Realizing the welcome action mapping” on page 490.

12.Save the file and close the JSP editor.

15.4.3 Realizing the notConfigured.jsp
The next component you will realize is the notConfigured.jsp file. Follow these
steps:

1. In the Web diagram, double-click notConfigured.jsp.

2. The New JSP file wizard appears. Uncheck the Configure Advanced
Options check box.

3. Click Finish to generate the JSP.

4. In the JSP editor, replace all the code that was generated by the wizard with
the code illustrated in Example 15-3.

Example 15-3 notConfigured.jsp page

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<h3><bean:message key="myfirstjsr168struts.title"/></h3>
<bean:message key="message.mustConfigureFirst"/>

Note: The messages will be created later in the resources file.

5. Save the file and close the JSP editor.

15.4.4 Realizing the Form Bean
The next component you will realize is the ViewBean.java file. Follow these
steps:

1. In the Web diagram, double-click viewBean.

2. Examine and take default values in the New Form-Bean window.

486 IBM Rational Application Developer V6 and Portal Tools

Figure 15-21 New Form Bean window

3. Click Next.

4. In the Choose new fields for your ActionForm class, do not select any
items. New fields will be added manually to other items (for example
configured.jsp). Click Next.

5. In the Create new fields for your ActionForm class window:

a. Click Add to add a field

b. Enter userid for the name and select type String.

Note: A setter and a getter methods will be generated for this property
(userid).

 Chapter 15. Struts portlet development using the JSR 168 API 487

Figure 15-22 Defining viewBean (ActionForm class)

6. In the Create a mapping window, uncheck all method stubs and click Finish
to generate the bean.

488 IBM Rational Application Developer V6 and Portal Tools

Figure 15-23 Create a mapping

7. Inspect, save and close the bean (ViewBean class).

15.4.5 Realizing configured.jsp
The next component you will realize is the configured.jsp file. Follow these steps:

1. In the Web diagram, double-click configured.jsp.

2. The New JSP file wizard appears. Click Finish to generate the JSP.

3. Erase all the code that was automatically generated by the wizard and paste
the code shown in Example 15-4.

Example 15-4 configured.jsp page

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<h3><bean:message key="myfirstjsr168struts.title"/></h3>
<bean:message key="message.configured"/>

<bean:write name="viewBean" property="userid"/>

 Chapter 15. Struts portlet development using the JSR 168 API 489

15.4.6 Editing the resources file
In this section you will provide the messages, required by the portlet application,
in the resources file as follows:

1. In Project Explorer view, expand Java Resources → JavaSource →
myfirstjsr168struts.resources.

2. Double-click ApplicationResources.properties.

3. Insert the lines below:

Example 15-5 ApplicationResources.properties

myfirstjsr168struts.title=Struts portlet with JSR 168 Portlet API

message.mustConfigureFirst=You must configure this portlet through edit mode.
message.configured=This portlet has been configured for user:

4. Save the file and close the editor.

15.4.7 Realizing the welcome action mapping
The next component you will realize is the welcome action mapping. Follow
these steps:

1. In the Web diagram, double-click welcome. The New Action Mapping wizard
appears, as shown in Figure 15-24 on page 491.

490 IBM Rational Application Developer V6 and Portal Tools

Figure 15-24 The New Action Mapping wizard

2. Notice that the wizard has filled in most of the data in this window. This data
came from the Web diagram you previously designed. For example:

a. Action mapping name was entered as the Action Mapping Path.

 Chapter 15. Struts portlet development using the JSR 168 API 491

b. The connections you created as Local forwards were automatically
inserted into the Forwards list.

c. The Create an Action class radio button was selected, and the Model
chosen was the Struts Portlet Framework Action Mapping. This is the
mapping provided by Struts portlet framework.

3. No changes are required at this time so leave all data unchanged and click
Next.

4. The Create an Action class for your mapping window shows that the
mapping will inherit from com.ibm.wps.struts.action.StrutsAction. Click Finish
to generate the Action class for your mapping.

Figure 15-25 Create an Action class for your mapping

5. Replace the generated execute method with the code shown in
Example 15-6.

Example 15-6 Execute() method in the Welcome Action class

public ActionForward execute(ActionMapping mapping, ActionForm form,
 PortletRequest request, PortletResponse response) throws Exception
{

 System.out.println("===>View: Entering welcome action...");
 ActionForward forward = mapping.findForward("configured");
 ViewBean viewBean = (ViewBean) form;
 try {

492 IBM Rational Application Developer V6 and Portal Tools

 PortletPreferences portletPreferences = request.getPreferences();
 String username = portletPreferences.getValue("username", null);
 System.out.println("===>View: username = *" + username + "*");
 viewBean.setUserid(username);

 if (username == null || username.equals("")) {
 System.out.println("===>View: portlet not configured...");
 forward = mapping.findForward("notConfigured");
 }

 } catch (Exception ex) {
 }
 return forward;

}

6. If you get errors, you might need to organize your imports.

7. Save the file and close the editor.

15.4.8 Running the Struts portlet
Execute the following steps to run and test the Struts portlet (View mode only):

1. Right-click MyFirstJSR168Struts project and select Run → Run on Server.

2. In the Define a new server window, select Manually define a server.

3. Select the server type WebSphere Portal V5.1 Test Environment.

4. Click Finish.

5. Wait a few minutes so the Portal Test Environment is started and you will see
a page similar to Figure 15-26.

Figure 15-26 MyFirstJSR168Struts in the browser

 Chapter 15. Struts portlet development using the JSR 168 API 493

Note: The portlet has not been updated to fully support Edit mode yet. Adding
the portlet Edit mode code will be done next in 15.5, “Designing the application
(Edit mode)” on page 494 in this chapter.

15.5 Designing the application (Edit mode)
Execute the following steps to create a new Web diagram for Edit mode:

1. Right-click Web Diagram.

2. Select New → Web Diagram.

3. Enter editMode as the Web diagram file name.

4. Click Finish to create the empty Web diagram.

5. Web pages. Refer to Figure 15-28 on page 495 and place two pages in the
diagram with the following names:

a. html/edit/index.jsp

b. index.jsp (Note: this is View mode index.jsp)

6. Action mappings. Place an action mapping in the diagram with name
saveConfiguration.

7. Form Bean: Place a form bean in the diagram. In the Form Bean Attributes
window that appears enter the following:

– Form Bean Name: editBean

– Form Bean Scope: request

8. Connections. Create the following connections:

a. A connection from index.jsp to saveConfiguration action mapping.

b. A connection from saveConfiguration to View mode index.jsp. Use
user_set as the local forward name.

c. A connection from saveConfiguration to editBean.

9. Right-click anywhere inside the Web diagram and select Change the Struts
module association. From the list select /html/edit (Edit mode). Click OK.

494 IBM Rational Application Developer V6 and Portal Tools

Figure 15-27 Change the Struts module association

10.Verify that your Web diagram looks as illustrated in Figure 15-28.

Figure 15-28 Web diagram for Edit mode

11.Save the Web diagram.

15.6 Realizing the Edit mode application components
In this section you will realize the new application components that will support
Edit mode in your portlet.

15.6.1 Realizing the editBean
In this section you will realize the userBean. Execute the following steps:

 Chapter 15. Struts portlet development using the JSR 168 API 495

1. In the Web diagram, double-click EditBean form bean. This will bring up the
New Form-Bean wizard.

Figure 15-29 New Form-Bean wizard

2. Leave the form bean name unchanged. Make sure that the Create an
ActionForm class radio button is selected, and that Generic Form-bean
Mapping is selected.

3. Click Next.

4. In the Choose new fields for your ActionForm class window, do not select any
fields and click Next.

5. In the Create new fields for your ActionForm class window, you will add two
fields:

a. Click Add. Enter the field’s name username. Leave the field type as String.

b. Click Add again. Enter the field’s name password and leave the field type
as String.

6. The window will look like in Figure 15-30 on page 497. Click Next.

496 IBM Rational Application Developer V6 and Portal Tools

Figure 15-30 Creating new fields for the ActionForm Bean

7. In the Creating a mapping for your ActionForm class window, uncheck all
method stubs as shown Figure 15-31. These methods are not needed in this
scenario.

Figure 15-31 Creating a mapping

 Chapter 15. Struts portlet development using the JSR 168 API 497

8. Click Finish to create the bean. Rational Application Developer will generate
the ActionForm bean, that extends from rg.apache.struts.action.ActionForm,
along with its proper methods. In addition, it will also include the required
form-bean tag in the struts-config.xml file for Edit mode.

9. Save the file and close it.

15.6.2 Realizing index.jsp
In this section, you will realize the index.jsp. Follow these steps:

1. In the Web diagram, double-click index.jsp.

2. Click Finish to generate the page.

3. Replace the generated jsp content with the following code:

Example 15-7 index.jsp for Edit mode

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<h3><bean:message key="editmode.heading"/></h3>

<p><bean:message key="editmode.instructions"/></p>

<bean:message key="editmode.instructions.1"/>

<html:form action="/saveConfiguration.do" portletMode="view"
validate="false">

<table>
<tr>

<th align="right">
<bean:message key="prompt.username"/>:

</th>
<td align="left">

<html:text property="username" size="25"/>
</td>

</tr>
<tr>

<th align="right">
<bean:message key="prompt.password"/>:

</th>
<td align="left">

<html:password property="password" size="25"/>
</td>

</tr>

498 IBM Rational Application Developer V6 and Portal Tools

<tr><td>
</td></tr>
<tr>

<td align="right">
<html:submit value="Submit"/>

</td>
<td align="left">

<html:reset/>
</td>

</tr>
</table>

</html:form>

4. Review the code:

a. The saveConfiguration action has not been defined yet, so you get a
broken link message.

b. The portletMode="view" attribute in the form tag instructs that the portlet
will return to View mode after submitting the form.

5. Save the file and close it.

15.6.3 Realizing the saveConfiguration action
In this section you will realize the saveConfiguration action. Execute the following
steps:

1. In the Web diagram, double-click saveConfiguration action.

2. All values should be correct, as the Web diagram had all information the
wizard needs to create the action.

Note: In this case, the Context relative field is set as true for the user_set
forward. It indicates that the index.jsp page associated to this forward is in the
context root. That is, it refers to the View mode index.jsp page.

3. Click Finish.

4. This action is the one with the most logic. Replace its contents with the
following and save the file:

Example 15-8 The listing for saveConfiguration action

package myfirstjsr168struts.html.edit.actions;

import javax.portlet.PortletPreferences;
import javax.portlet.PortletRequest;
import javax.portlet.PortletResponse;

import myfirstjsr168struts.html.edit.forms.EditBean;

 Chapter 15. Struts portlet development using the JSR 168 API 499

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import com.ibm.portal.struts.action.StrutsAction;

public class SaveConfigurationAction extends StrutsAction {

public ActionForward execute(ActionMapping mapping, ActionForm form,
PortletRequest request, PortletResponse response) throws
Exception {

System.out.println("===>Edit: Entering saveConfiguration action...");
// get the ActionForward for the mode that is being set.
ActionForward forward = mapping.findForward("user_not_set");
EditBean userBean = (EditBean) form;
String username = userBean.getUsername();
String password = userBean.getPassword();
System.out.println("===>Edit: username = *" + username + "*");

PortletPreferences portletPreferences = request.getPreferences();
portletPreferences.setValue("username", username);
portletPreferences.setValue("password", password);
portletPreferences.store();

forward = mapping.findForward("user_set");
return forward;

}
}

5. Review the code. See 15.2, “Message flow” on page 467 for details.

6. Save the file.

7. Close the file.

15.7 Adding new keys to the resources file
Add entries to the Edit mode associated resource file:

1. Edit myfirstjsr168struts.resources.ApplicationResources.properties.

2. Add the key value pairs listed in Example 15-9.

Example 15-9 Edit mode resource file

editmode.heading=Edit Mode

500 IBM Rational Application Developer V6 and Portal Tools

editmode.title=Struts Edit Mode Example

editmode.instructions=Try the options below to demonstrate various
Struts features. When a valid username is given, an action forwards to a
JSP in view mode.
editmode.instructions.1=Enter a valid username to complete the
configuration

prompt.username=Username
prompt.password=Password

button.back=back
button.send=Send
button.save=Save
button.cancel=Cancel
button.reset=Reset

error.transaction.token=Transaction token is not valid
error.invalid.username=The username is not valid

c. Save the file and close editor.

15.8 Running the portlet
Run and test the portlet. Execute the following steps:

1. Stop the Portal Test Environment.

2. Right-click the MyFirstJSR168Struts project.

3. Select Run → Run on Server.

4. After the welcome page displays, click the edit icon, go to Edit mode.

5. Enter a user name and password; the application stores these values as
PortletPreferences and forwards to View mode index.jsp.

 Chapter 15. Struts portlet development using the JSR 168 API 501

Figure 15-32 The portlet in Edit mode

6. Enter your name and a password.

7. Click Submit to invoke the action (Edit Mode).

8. Click Reset to clear the fields.

15.9 Adding internationalization support
As you are already using the Struts tags to show messages, adding support to
other languages is a straightforward task.

Note: In this scenario, only View mode will be enabled for internationalization.
Edit mode can also be implemented in the same manner but we are not doing it
here.

Figure 15-33 on page 503 shows the resource files that you need to add and
update to support internalization in your portlet. You will add internationalization
support for View mode only and therefore for other modes (such as Edit mode)
and the Struts framework will use the default values. That is, keys that are not
found in the locale properties files will be taken from the file with no suffix. In this
scenario, key values in the default files are in English.

502 IBM Rational Application Developer V6 and Portal Tools

Figure 15-33 Resource files for internationalization (bundles)

15.9.1 Portlet application View mode internationalization
You will create a resource file for the new locale. Proceed as follows to add
Brazilian Portuguese support to your portlet application View mode:

1. Expand Dynamic Web Projects → MyFirstJSR168Struts → Java
Resources → JavaSource → myfirstjsr168struts.resources.

2. Right-click ApplicationResources.properties.

3. Select Copy.

4. Right-click the myfirstjsr168struts.resources package.

5. Select Paste.

6. Enter the new name for this file as ApplicationResources_pt_BR.properties.

7. Click OK.

8. Double-click ApplicationResources_pt_BR.properties to edit it.

9. Replace all messages with brazilian portuguese messages shown in
Example 15-10.

Example 15-10 Resources file for Brazilian portuguese locale

myfirstjsr168struts.title=Portlet baseado em Struts utilizando a API JSR 168

message.mustConfigureFirst=Você deve primeiramente configurar este portlet em
modo de Edição.
message.configured=Este portlet foi configurado.

 Chapter 15. Struts portlet development using the JSR 168 API 503

editmode.heading=Modo de Edição
editmode.title=Exemplo de Modo de Edição com Struts

editmode.instructions=Tente as opções abaixo para demonstrar várias capacidades
do Struts. Quando um usuário válido é inserido, uma action encaminha para um
JSP em modo view.
editmode.instructions.1=Digite "error" como nome de usuário ou deixe o nome de
usuário em branco para ver o suporte a ActionErrors.
editmode.instructions.2=Digite "delete" como nome de usuário para remover a
configuração.
editmode.instructions.3=Atualize a página para demonstrar o suporte
transacional.
editmode.instructions.4=Digite um nome de usuário válido para completar a
configuração e retornar para view mode.

prompt.username=Nome
prompt.password=Senha

button.back=voltar
button.send=Enviar
button.save=Salvar
button.cancel=Cancelar
button.reset=Limpar

error.transaction.token=Token de transação inválido
error.invalid.username=O nome de usuário não é válido

d. Save the file and close the editor.

15.9.2 Struts framework internationalization support
You also need to create a new resources file to be used by the Struts framework
for internationalization of your portlet preferences such as the portlet title and so
on. Execute the following steps:

1. Expand Dynamic Web Projects → MyFirstJSR168Struts → Java
Resources → JavaSource → myfirstjsr168struts.nl.

2. Right-click MyFirstJSR168StrutsPortletResource.properties.

3. Select Copy.

4. Right-click the myfirstjsr168struts.nl package.

5. Select Paste.

6. Enter MyFirstJSR168StrutsPortletResource_pt_BR.properties as the new
name for the file.

7. Click OK.

504 IBM Rational Application Developer V6 and Portal Tools

8. You do not have to add or change anything in this file, unless you want to
change the portlet title for example.

9. Save the file and close the editor.

15.9.3 Editing the Portlet deployment descriptor
Update the portlet descriptor to add support for the pt_BR locale. Execute the
following steps:

1. In Project Explorer view, expand Dynamic Web Projects →
MyFirstJSR168Struts.

2. Double-click Portlet Deployment Descriptor.

3. In the Portlet deployment descriptor window, click MyFirstJSR168Struts.

4. Under the supported locales section, click Add. See Figure 15-34.

Figure 15-34 Supported locales section

5. Select pt_BR in the Locale list.

6. Click OK.

7. Save the file and close the editor.

15.9.4 Testing the new locale
1. Stop the Portal Test Environment.

2. Run the portlet application.

3. In the top menu, click Edit My Profile. If you need login, enter the required
fields. User ID is wpsadmin and password is also wpsadmin.

4. Under Preferred language, select Brazilian Portuguese.

5. Click OK.

6. The application now should look like Figure 15-35 on page 506.

 Chapter 15. Struts portlet development using the JSR 168 API 505

Figure 15-35 Portlet display using the new locale pt_BR

7. Select Editar Meu Perfil and locale Ingles if you want to go back to locale
English.

15.10 Adding logging support to the application
The Struts Portlet Framework uses the Commons-Logging interface for a logging
facility. The Struts Portlet Framework has supplied an implementation of the
Commons-Logging Log interface that can be used to map trace messages to the
logging facility used by the portal server. This file is normally found in the
wp_root/log directory. Trace logging is enabled by setting properties in the
wp_root/shared/app/config/log.properties file.

Note: By default tracing is disabled.

The trace string for tracing a Struts portlet application can be configured in the
log.properties file. The trace string can be modified to add or remove classes.

Proceed as follows to enable logging in the portlet included in this sample
scenario:

1. First, enable tracing of struts portlets as follows:

a. Open the wp_root/shared/app/config/log.properties, where wp_root is the
folder where the Portal test environment was installed. In this scenario, the
file is located in the following path:

c:\Progra~1\Portal51UTE\PortalServer\shared\app\config\log.properties

b. Go to the end of the file after the following statement:

#traceString=*=all=disabled statement

and add the following traceString to enable Struts logging:

traceString=org.apache.struts.*=all=enabled:
com.ibm.portal.struts.*=all=enabled:

506 IBM Rational Application Developer V6 and Portal Tools

com.ibm.wps.struts.common.*=all=enabled:
com.ibm.wps.struts.base.*=all=enabled:
com.ibm.wps.standard.struts.logging.StrutsBaseTraceLogger=all=enabled:
myfirstjsr168struts.*=all=enabled

c. Save the file and close it.

2. Additionally, the Struts Portlet Framework specifies the commons logging Log
Factory in the META-INF/services directory. The log factory class name is
dependent on the WebSphere Portal container. To specify the correct
commons LogFactory for our application, proceed as follows:

a. Expand Dynamic Web Projects → MyFirstJSR168Struts →
WebContent.

b. Right-click the META-INF folder. Select New → Folder.

c. Enter services as the folder name. Click Finish.

d. Right-click the services folder. Select New → Other.

e. In the Select a wizard window do the following:

i. Expand Simple.

ii. Select File

iii. Click Next >.

Important: Make sure you have only one traceString in the log.properties
file. Also, the entire traceString must be specified in only one line. In
addition, in this sample scenario, myfirst168struts is the name of the
package.

 Chapter 15. Struts portlet development using the JSR 168 API 507

Figure 15-36 Select a wizard

f. Enter org.apache.commons.logging.LogFactory as the file name.

g. Click Finish.

h. Paste the following line in the file:

com.ibm.portal.struts.logging.StrutsLogFactory

i. Save the file and close it.

3. Add code in the welcome action mapping:

a. Go to MyFirstJSR168Struts → Java Resources → JavaSource →
myfirstjsr168struts.actions

b. Edit WelcomeAction.

c. Add the following instance variable just before the execute method:

private Log log = LogFactory.getLog(this.getClass());

d. You will need to organize your imports. Right-click anywhere in the code
and select Source → Organize Imports.

e. Select org.apache.comons.logging.Log for the Log class and click Next.

508 IBM Rational Application Developer V6 and Portal Tools

f. Select org.apache.commons.logging.LogFactory for the LogFactory
class and click Finish.

g. Add the following code at the beginning of the execute method:

if (log.isTraceEnabled()) {
log.trace("Welcome ###");

}

Note: Use ### or any other symbols to facilitate the search in the log file.

h. Finally, add the following code in the catch statement:

if (log.isDebugEnabled()) {
log.debug("WelcomeAction: Error determining if user is configured");

}

i. Save the file and close editor.

4. Now you can run the application again. For example:

a. Stop the server to pick up the new property changes.

b. Select MyFirstJSR168Struts and click Run → Run on Server.

c. Open the log file at <wp_root>/log folder and look for the Welcome
message by searching for the ### or any other symbols you used.

d. In this sample scenario the log files are in the following directory:

C:\Program Files\Portal51UTE\PortalServer\log\

e. Figure 15-37 illustrates a sample Struts log entry.

Figure 15-37 Sample Struts log entry

 Chapter 15. Struts portlet development using the JSR 168 API 509

510 IBM Rational Application Developer V6 and Portal Tools

Chapter 16. JavaServer Faces portlets

JavaServer Faces (JSF) is a technology that helps you build user interfaces for
dynamic Web applications that run on the server. The JavaServer Faces
framework manages UI states across server requests and offers a simple model
for the development of server-side events that are activated by the client. JSF is
consistent and easy to use. JSF is a standard defined by JSR 127.

This chapter presents an overview of the JSF framework and how it works.
Analyzing a simple JSF application, we will present the main items that compose
a JSF application. We will also talk about the specifics of JSF running in
WebSphere Portal and how to migrate JSF applications to WebSphere Portal.

16

Note: For details about JavaServer Faces technology see IBM WebSphere
Studio V5.1.2 JavaServer Faces and Service Data Objects, SG24-6361.

© Copyright IBM Corp. 2005. All rights reserved. 511

16.1 Overview
JavaServer Faces is based on the Model-View-Controller (MVC) design pattern
and used to develop and build Web and Portal applications. For JSF, this means
that the controller component is a servlet, the model component is represented
by Java Beans, and the view comprises JSF components with little or no
application code.

As illustrated in Figure 16-1, the main components of JSF technology are:

� An API for representing and managing UI components and their state;
handling events, input validation at the server-side, and data conversion;
defining page navigation; supporting internationalization and accessibility;
and providing extensibility for all these features.

� An extensive set of reusable user interface (UI) components.

� JavaServer Pages (JSP) custom tag libraries for expressing a JavaServer
Faces interface within a JSP.

Figure 16-1 JavaServer Faces components

JSF technology provides a clean separation between behavior and presentation,
like the one that is traditionally offered by client-side UI architectures. Figure 16-2
on page 513 illustrates the JavaServer Faces components within the MVC
design pattern.

JSF Application

Managed JavaBeans

JSF Libraries/Tags

Business
Logic

Faces Servlet XML Configuration File
Browser

JSPs with JSF UI

Component
Tree

Validators

Events

512 IBM Rational Application Developer V6 and Portal Tools

Figure 16-2 JavaServer Faces technology and the MVC design pattern

The actual work of a JSF application is executed by processing events triggered
by the JSF components on the pages. These events are fired by user actions.
For example, when the user clicks a button, the button triggers an event. The
JSF programmer has to decide what the JSF application will do when a particular
event happens. This is accomplished by implementing event listeners.

Note: JavaServer Faces technology is event-driven.

When an event is created, an HTTP request is sent to the server. Specifically,
the request is sent to the JSF provided servlet called the FacesServlet. A JSF
application in the Web container has its own FacesServlet.

The FacesServlet servlet creates an object called FacesContext, which holds the
information required for request processing. That is, for Web applications, the
ServletContext, ServletRequest and ServletResponse objects are passed to
the service method of FacesServlet. For portlet applications, Portal passes the
PortletContext, PortletRequest and PortletResponse objects to the service
method of FacesServlet.

Figure 16-3 The FacesContext object

FacesServlet
Controller

 JSP,
 UI components

View

JavaBeans
Model Backend

Resources

Request

Response

JSPs with JSF UI

Component
Tree FacesContext

(object)

 Chapter 16. JavaServer Faces portlets 513

Once the FacesContext object has been created and populated, the
FacesServlet servlet passes control to the lifecycle object. The lifecycle
object processes the FacesContext object in six different phases, as follows:

1. Restore component tree
2. Apply request values
3. Process validators
4. Update model values
5. Invoke application
6. Render response

Also, the JSF application configuration is done through an application
configuration file, where you can register Java Beans used in the application,
define the program-control flow with page-navigation rules, and perform many
other configuration tasks. The application configuration file is an XML file that is
normally put in the WEB-INF directory and called faces-config.xml.

16.1.1 Life cycle of a JSF page
The life cycle of JSF pages is similar to that of a JSP page. The client makes an
HTTP request for the page, and the server responds with the page translated to
HTML. However, due to the extra features offered by JSF technology, there are
some additional services provided by the life cycle to process a page.

A JSF page is represented by a tree of UI components, called a view. The life
cycle begins when a client makes a request for the page. During the life cycle,
the JSF implementation must build the view while considering state saved from a
previous submission of the page. When the client submits a page, the JSF
implementation must accomplish several tasks, such as validating the data input
of components in the view and converting input data to types specified on the
server side. The JSF implementation performs all these tasks as a series of
steps in the life cycle.

Which steps in the life cycle are executed depends on whether or not the request
originated from a JSF application and whether or not the response is generated
with the rendering phase of the JSF life cycle. We will focus on the most
complete scenario, where a JSF component submit a request to a JSF
application using the FacesServlet.

Figure 16-4 on page 515 illustrates the steps in the JSF request-response life
cycle.

514 IBM Rational Application Developer V6 and Portal Tools

Figure 16-4 The phases of the JSF life cycle

The life cycle handles two kinds of requests: initial requests and postbacks.
When a user makes an initial request for a page, he or she is requesting the
page for the first time. When a user executes a postback, he or she submits the
form contained on a page that was previously loaded into the browser as a result
of executing an initial request. When the life cycle handles an initial request, it
only executes the restore view and render response phases because there is no
user input or actions to process. Conversely, when the life cycle handles a
postback, it executes all of the phases.

Restore component tree
The JSF implementation begins this phase when a request for a JSF page is
made. During this phase, the JSF implementation builds the component tree
(also known as the view) of the page, wires event handlers and validators to
components in the view and saves the view in the FacesContext instance.

All the application’s component tags, event handlers, converters, and validators
have access to the FacesContext instance.

If this is an initial request to the page, the JSF implementation builds an empty
view during this phase and the life cycle advances to the render response phase.
If the request is a postback, a view corresponding to this page already exists, so

Restore
Component

Tree

Apply
Request
Values

Process
Events

Process
Validators

Process
Events

Update Model
Values

Process
Events

Invoke
Application

Process
Events

Render
Response

Response
Complete

Response
Complete

Response
Complete

Response
Complete

Render Response

Conversion Errors/Render Response

Validation Conversion Errors/Render Response

Request

Response

1 2 3

456

 Chapter 16. JavaServer Faces portlets 515

the JSF implementation restores the view by using the state information that is
saved.

Apply request values
The purpose of this phase is to give each component the opportunity to update
its current value using the information included in the current request, such as
parameters, headers, and cookies.

If any conversion of values is to be done and fails, an error message associated
with the component is generated and queued on FacesContext. This message
will be displayed during the render response phase, along with any validation
errors resulting from the process validations phase.

If events have been queued during this phase, the JSF implementation
broadcasts the events to interested listeners.

If the application needs to redirect to a different Web application resource or
generate a response that does not contain any JSF components, it can call
FacesContext.responseComplete.

At the end of this phase, the components are set to their new values, and
messages and events have been queued.

Process validations
As part of this creation of the view for this request, zero or more validator
instances can be registered for each component. In addition, component classes
themselves can implement validation logic in their validate() methods. At the end
of this phase, all configured validations are completed.

Validations that fail cause messages to be enqueued via calls to
FacesContext.addMessage, and the valid property on the corresponding
components are set to false. If any of the validate() methods that were invoked
called FacesContext.responseComplete, the life cycle processing of the current
request must be immediately terminated. If any of the validate() methods that
were invoked called FacesContext.renderResponse, control must be transferred
to the render response phase of the request processing life cycle. The same
conditions are true for an event listener that processed a queued event. If none
of these conditions occurs, control proceeds to the next phase to update model
values.

Update model values
If this phase of the request processing life cycle is reached, it means that the
incoming request is syntactically and semantically valid according to the
validations that were performed. The local value of every component in the

516 IBM Rational Application Developer V6 and Portal Tools

component tree has been updated, and it is now appropriate to update the
application’s model data in preparation for performing any application events that
have been queued.

The JSF implementation will update only the bean properties pointed at by an
input component’s value attribute. If the local data cannot be converted to the
types specified by the bean properties, the life cycle advances directly to the
render response phase so that the page is re rendered with errors displayed.
This is similar to what happens with validation errors.

If the application needs to redirect to a different Web application resource or
generate a response that does not contain any JSF components, it can call
FacesContext.responseComplete.

If events have been queued during this phase, the JSF implementation
broadcasts them to interested listeners.

Invoke application
During this phase, the JSF implementation handles any application-level events,
such as submitting a form or linking to another page.

If the application needs to redirect to a different Web application resource or
generate a response that does not contain any JSF components, it can call
FacesContext.responseComplete.

If the view being processed was reconstructed from state information saved by a
previous request and if a component has fired an event, these events are
broadcast to interested listeners.

Render response
This phase accomplishes two things at the same time: causes the response to
be rendered to the client, and causes the state of the response to be saved for
processing on subsequent requests. The reason for handling both of these
responsibilities in one phase is because the act of rendering the response in JSP
applications can cause the view to be built as the page renders. Therefore, the
state of the view cannot be saved until after it is rendered to the client.

If the request is a postback and errors were encountered during the apply
request values phase, process validations phase, or update model phase, the
original page is rendered during this phase. If the page contain message or
messages tags, any queued error messages are displayed on the page.

 Chapter 16. JavaServer Faces portlets 517

Event processing
During several phases of the request processing life cycle, events can be
queued, for example, via a call to the queueEvent method on the source
UIComponent instance, or a call to the queue() method on the FacesEvent
instance. These queued events must now be broadcast to interested event
listeners. The broadcast is performed as a side effect of calling the appropriate
life cycle management method (processDecodes(), processValidators(),
processUpdates(), or processApplication()) on the UIViewRoot instance at the
root of the current component tree. For each queued event, the broadcast()
method of the source UIComponent will be called to broadcast the event to all
event listeners who have registered an interest on this source component for
events of the specified type. A boolean flag is returned indicating whether this
event has been handled completely and whether the JSF implementation can
remove it from the event queue.

It is also possible for event listeners to cause additional events to be queued for
processing during the current phase of the request processing life cycle. Such
events must be broadcast in the order they were queued after all originally
queued events are broadcast, but before the life cycle management method
returns.

16.2 A simple JSF application
A JSF application is just like any other Java Web application. It runs in a servlet
container, and it typically contains:

� JSP pages
� Event listeners
� Java Beans that hold data and application-specific functionality
� Server-side classes, such as database access beans

In addition to these common items, a JSF application also has:

� A custom tag library for rendering UI components on a page. This is called the
component tag library, and it is provided by the JSF implementation. The
component tag library eliminates the need to hardcode UI components in any
specific markup language, such as HTML. This results in completely reusable
UI components.

� A custom tag library for representing event handlers, validators and other
actions. This is called the core tag library, and it is provided by the JSF
implementation. The core tag library makes it easy to register events,
validators and actions on the components.

� UI components represented as stateful objects on the server.

518 IBM Rational Application Developer V6 and Portal Tools

� Backing beans, which define properties and functions for UI components.

� Validators, converters, event listeners and event handlers.

� An application configuration resource file for configuring application
resources.

The example in this section is a simplification of the calculator application,
developed in Chapter 17, “JavaServer Faces portlet development” on page 551.
This application asks for two numbers and an operator. The application only
accepts sum and subtraction operators. After performing the necessary
validations, the application shows the result of the operation and lets the user
decide if another operation should be done or if the application should be ended.

16.2.1 Creating the pages
The task of creating JSF pages involves laying out UI components on the pages,
mapping these components with beans, and adding other core tags.

Example 16-1 shows the first page of the calculator application.

Example 16-1 welcome.jsp

<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<HTML>

<HEAD>
<TITLE>Calculator</TITLE>

</HEAD>
<BODY>

<f:view>
<h:form id="form1">

Number 1:
<h:inputText id="number1" value="#{calculator.number1}"

required="true">
<f:convertNumber type="number"/>

</h:inputText>
Operation:
<h:inputText id="operation" value="#{calculator.operation}"

validator="#{calculator.validateOperator}" required="true">
 </h:inputText>

<h:message style=”color: red; text-decoration:overline”
for="operation"/>

Number 2:
h:inputText id="number2" value="#{calculator.number2}"

required="true">
<f:convertNumber type="number"/>

</h:inputText>
<h:commandButton id="submit" value="Submit" action="success" />

 Chapter 16. JavaServer Faces portlets 519

</h:form>
</f:view>

</BODY>
</HTML>

This page demonstrates some important features used in most of the JSF
applications you will write.

The taglib references
To use the custom tags that represent JSF components, two taglib directives are
specified on top of the page:

<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

The first tag directive above points to the component tag library. The second one
points to the core tag library.

The root tree tag
All JSF components must be enclosed in the view tags of the core tag library:

<f:view>
<%-- all JSF components come here --%>
</f:view>

The form tag
The form tag represents an input form that allows the user to input data and
submit it to the server. All UI components that represent editable components
(such as text fields, text areas and menus) must be nested inside the form tag.

The inputText tag
The inputText tag represents a text field component. In the welcome.jsp
example, the first text field has three attributes: id, value and required.

The id attribute corresponds to the ID of the component object represented by
this tag. If you do not specify the component’s id attribute, the JSF
implementation will generate one automatically. We need to specify the
component’s id when we want to refer to it inside other components. In this
example, we can see that the operation component is referenced by the message
component.

The value attribute binds the number1 component with the bean property
calculator.number1, which holds the data entered into the text field. We can
also bind a component instance (instead of a component’s property) to a
property using the tag’s binding attribute.

520 IBM Rational Application Developer V6 and Portal Tools

The required attribute tells to JSF implementation that a validation error should
be fired if the component’s value was not entered. We talk about validation in
16.3.5, “Validation model” on page 536.

The operation component also has an validator attribute. This attributes tells to
JSF implementation to call the calculator.validateOperator method, to verify
whether the value entered in the component is valid or not.

The convertNumber tag
By nesting the convertNumber tag within a component tag, we register a
Converter onto the component. The converter registered by convertNumber will
convert the value to and from a valid number style (currency, integer, decimal
number or percent). In this case, the valid style is a decimal number (as stated by
the type attribute of the convertNumber tag).

This tag is shown here just to let you know how conversion works. It could be
omitted, once that UIInput components already perform this kind of conversion
automatically between the component model and the domain model for standard
types. 16.3.3, “Conversion model” on page 531 provides an overview of JSF
conversion model.

The commandButton tag
The commandButton tag represents the button used to submit the data entered in
the form. The action attribute specifies an outcome that helps the navigation
mechanism decide which page to open next. The navigation model is explained
in 16.2.2, “Defining navigation rules” on page 521.

The message tag
The message tag displays an error message if the data entered in the operation
field does not comply with the rules specified in the
calculator.validateOperation method. The error message displays wherever
you place the message tag on the page. The for attribute refers to the component
whose value failed validation, in this case the operation component represented
by the inputText tag in the welcome.jsp page. Note that the tag representing the
component whose value is validated must include an id attribute so that the for
attribute of the message tag can refer to it.

16.2.2 Defining navigation rules
The JSF implementation has a powerful rule-based system to define which page
to go after the user clicks a button or a hyperlink. These rules are defined in the
application configuration resource file. Example 16-2 on page 522 shows the
navigation rules defined for the calculator application.

 Chapter 16. JavaServer Faces portlets 521

Example 16-2 Navigation rules for the calculator application

<navigation-rule>
<from-view-id>/welcome.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/result.jsp</to-view-id>

</navigation-case>
</navigation-rule>
<navigation-rule>

<from-view-id>/result.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/welcome.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>end</from-outcome>
<to-view-id>/end.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Each navigation-rule element defines how to get from one page (specified in
the from-view-id) to other pages in the application. The navigation-rule
elements can contain any number of navigation-case elements, each of which
defines the page to open next (defined by to-view-id) base on a logical outcome
(defined by from-outcome.

The outcome can be defined either by the action attribute of the UICommand
component that submits the form, or by the return value of an action method in a
backing bean.

The welcome.jsp page illustrates the first way of defining the outcome:

<h:commandButton id="submit" value="Submit" action="success" />

Here, the commandButton component specifies the action success. If we look at
the navigation rules, we will see that this outcome makes the JSF
implementation call the result.jsp page.

If we wanted to perform some processing to determine the outcome, for
example, to check if the password entered by the user is valid or not, and return
an outcome of success or failure, the commandButton action attribute would
point to a method, instead of specifying directly the outcome. If we have a login
component that implements this logic in its verify method, this would result in a
tag similar to the following:

<h:commandButton id="submit" value="Submit" action="#{login.verify}" />

522 IBM Rational Application Developer V6 and Portal Tools

16.2.3 Developing the beans
A typical JSF application couples a backing bean with each page in the
application. The backing bean defines properties and methods associated with
the UI components used on the page. We can bind backing beans properties to
either a component instance or a component value.

Backing beans can also define methods that perform functions for the
component, such a validation and event handling.

We saw in “The inputText tag” on page 520 that we bind a component’s value to a
bean property using the component tag’s value attribute to refer to the property.
Example 16-3 shows the CalculatorBean backing bean property that maps to the
data for the number1 component:

Example 16-3 A property defined in the backing bean CalculatorBean

private int number1;
...
public int getNumber1() {

return number1;
}
public void setNumber1(int number1) {

this.number1 = number1;
}

Note that this bean property is just like any other bean property, that is, it is
defined by a set of accessor methods and a private field.

A property can be any of the basic primitive and numeric types or any Java
object type for which an appropriate converter is available. JSF technology
automatically converts the data to the type specified by the bean property.
Table 16-1 shows which types are accepted by which component tags.

Table 16-1 The acceptable types for each component value.

Component Acceptable types

UIInput, UIOutput, UISelectItem,
UISelectOne

Any basic primitive and numeric types, as
well as any Java object type for which an
appropriate Converter implementation is
available.

UIData array of beans, List of beans, single bean,
java.sql.ResultSet, javax.servlet.
jsp.jstl.sql.Result, javax.sql.RowSet.

UISelectItems java.lang.String, Collection, Array, Map.

 Chapter 16. JavaServer Faces portlets 523

In addition to binding components and their values to backing bean properties,
we can refer to a backing bean method from a component tag. See 16.5,
“Backing bean management” on page 540 for more information about this topic.

Adding managed bean declarations
Once that the backing beans are developed, we have to configure them in the
application configuration resource file so that the JSF implementation can
automatically create new instances of it whenever they are needed.
Example 16-4 shows the managed bean declaration for CalculatorBean.

Example 16-4 Declaration of CalculatorBean at the configuration file

<managed-bean>
<managed-bean-name>calculator</managed-bean-name>
<managed-bean-class>pagecode.beans.CalculatorBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

The application configuration file can specify initial values to the bean’s
properties. This is done by using the managed-property tag in the managed-bean
definition. If we want to specify an initial value of 30 for number1, the
managed-bean tag would look like the one in Example 16-5. Properties that are
not set an initial value in the managed-bean declaration will be initialized to
whatever the constructor of the bean class has the instance variable set to.

Example 16-5 Declaration of CalculatorBean with an initial value set to number1 property

<managed-bean>
<managed-bean-name>calculator</managed-bean-name>
<managed-bean-class>pagecode.beans.CalculatorBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>

<property-name>number1</property-name>
<property-class>int</property-class>
<value>30</value>

</managed-property>
</managed-bean>

The JSF implementation processes the configuration file on application startup
time. When the CalculatorBean is first referenced from a page, the JSF

UISelectBoolean boolean or Boolean.

UISelectMany array or List. Elements of the array or List
can be any of the standard types.

Component Acceptable types

524 IBM Rational Application Developer V6 and Portal Tools

implementation initializes it and stores it in session scope if no instance exists.
The bean is then available for all pages in the application. The scope can also be
set as request or application.

16.3 User interface component model
JSF UI components are configurable, reusable elements that compose the user
interfaces of JSF applications. A component can be simple, such as a button, or
compound, such as a table, which can be composed of several other
components.

The component architecture of JSF technology includes:

� A set of UIComponent classes for specifying the state and behavior of UI
components.

� A rendering model that defines the several ways of rendering the
components.

� An event and listener model that defines how to handle component events.

� A conversion model that defines how data converter are registered onto a
component.

� A validation model that defines how validators are registered onto a
component.

16.3.1 User interface component classes
The UIComponent interface defines the contract between a UI component and the
JSF implementation. This interface must be implemented by every UI
component, either directly or indirectly.

The JSF implementation provides base implementation class to this interface,
called UIComponentBase. This class defines the default state and behavior of a UI
component. It is recommended that you extend the UIComponentBase class,
rather than implement the UIComponent interface directly, to minimize the impact
of any future changes to the UIComponent interface to your application.

The UI component classes included with JSF technology are:

� UIColumn, which represents a column in a UIData component.

� UICommand, which represents a control that performs actions when the user
activate it.

� UIData, which represents a data binding to a collection of data represented by
a DataModel instance.

 Chapter 16. JavaServer Faces portlets 525

� UIForm, which represents an input form.

� UIGraphic, which displays an image.

� UIInput, which represents a component that gets and displays user input.

� UIMessage, which displays a localized message.

� UIMessages, which displays a set of localized messages.

� UIOutput, which displays data output.

� UIPanel, which is a container to child components.

� UIParameter, which represents substitution parameters used to configure
parent components.

� UISelectBoolean, which represents a component that have a boolean value.

� UISelectItem, which represents a single select item for select components.

� UISelectItems, which represents an entire set of items.

� UISelectMany, which represents a component that allows the user to select
zero or more values from a set of values.

� UISelectOne, which represents a component that allows the user to select
zero or one value from a set of values.

� UIViewRoot, which represents the root of the component tree.

The component classes also implement one or more behavioral interfaces, each
of one defines a different behavior for a set of components whose classes
implement it. These interfaces are as follows:

� ActionSource: By implementing this interface, the component is able to fire an
action event.

� EditableValueHolder: This interface extends ValueHolder and specifies
additional features for editable components, such as validation and emitting
value-change events.

� NamingContainer: Each component rooted at the component that implements
this interface must have a unique ID.

� StateHolder: Indicates that the component has state that must be saved
between requests.

� ValueHolder: Denotes that the component maintains a local value as well as
the option of accessing data in the model tier.

You only need to use the component classes and behavioral interfaces if you are
a component writer. Otherwise, you only need to know the appropriate tags that
will instruct the JSF implementation on how to render a specific component.
These tags are covered in the next section.

526 IBM Rational Application Developer V6 and Portal Tools

16.3.2 Component rendering model
The JSF component architecture separates the functionality of the components
from its rendering. In this way, the behavior of a component can be defined once,
despite of the multiple renderers each of which defines a different way to render
the component.

For example, a UISelectOne component has three different renderers. One of
them renders the component as a set of radio buttons. Another renders it as a
combo box. And the third one renders it as a list box.

The component tag library provides a set of tags, each one composed of the
component functionality (defined in the UIComponent class) and the rendering
attributes (defined by the Renderer class). This tag library supports all the
component tags listed in Table 16-2.

Table 16-2 The UI component tags

Tag Description Rendered As Appearance

<h:column> Represents a column of
data in a UIData component

A column in an HTML
table

A column in a
table

<h:commandButton> Submits a form An HTML <input
type=type> element,
where the type value
can be submit, reset,
or image

A button

<h:commandLink> Links to another page or
location on a page

An HTML <a href> tag A hyperlink

<h:dataTable> Represents a data wrapper. An HTML <table> tag A table that can
be updated
dynamically

<h:form> Represents an input form. An HTML <form> tag Invisible

<h:graphicImage> Displays an image An HTML tag An image

<h:inputHidden> A hidden variable in a page An HTML <input
type=hidden> tag

Invisible

<h:inputSecret> Allows a user to input a
string without the actual
string appearing in the field

An HTML <input
type=password> tag

A text field,
which displays
a row of
characters
instead of the
actual string

 Chapter 16. JavaServer Faces portlets 527

<h:inputText> Allows the user to input a
string

An HTML <input
type=text> tag

A text field

<h:inputTextarea> Allows the user to input a
multiline string

An HTML <input
type=textarea> tag

A multirow text
field

<h:message> Displays a localized
message

An HTML tag if
styles are used

A text string

<h:messages> Displays localized
messages

An HTML tag if
styles are used

A text string

<h:outputLabel> Displays a nested
component as a label for a
specified input field

An HTML <label> tag Plain text

<h:outputLink> Links to another page or
location on a page without
generating an action event

An HTML <a> tag A hyperlink

<h:outputFormat> Displays a localized
message

An HTML <p> tag Plain text

<h:outputText> Displays a line of text An HTML <p> tag Plain text

<h:panelGrid> Displays a table An HTML <table> tag
with <tr> and <td> tags

A table

<h:panelGroup> Groups a set of
components under one
parent

An HTML <tr> tag with
<td> tags

A row in a table

<h:selectBooleanCheckbox> Allows a user to change the
value of a Boolean choice

An HTML <input
type=checkbox> tag

A checkbox

<h:selectItem> Represents one item in a
list of items in a
UISelectOne component

An HTML <option> tag Invisible

<h:selectItems> Represents a list of items in
a UISelectOne component

A list of HTML
<option> tags

Invisible

<h:selectManyCheckbox> Displays a set of
checkboxes from which the
user can select multiple
values

A set of HTML <input
type=checkbox> tags

A set of
checkboxes

<h:selectManyListbox> Allows a user to select
multiple items from a set of
items, all displayed at once

An HTML <select>
element

A list box

Tag Description Rendered As Appearance

528 IBM Rational Application Developer V6 and Portal Tools

IBM extensions to the component model
One of the major benefits of JSF is its ability to be extended with useful
components to support application requirements. The JSF specification has
included a base set of components that map to HTML controls. Rational
Application Developer now includes a powerful set of extension components that
improve productivity and add richness to the existing base components. The JSF
community will eventually include a large set of open source and product
supplied components that customers from small businesses to enterprises can
use in application development. Table 16-3 lists some of the extension
components that are provided by IBM in Rational Application Developer. For a
complete reference of extended JSF components provided by Rational
Application Developer, refer to Rational Application Developer online help.

Table 16-3 Some of IBM extension components

<h:selectManyMenu> Allows a user to select
multiple items from a set of
items

An HTML <select>
element

A scrollable
combo box

<h:selectOneListbox> Allows a user to select one
item from a set of items, all
displayed at once

An HTML <select>
element

A list box

<h:selectOneMenu> Allows a user to select one
item from a set of items

An HTML <select>
element

A scrollable
combo box

<h:selectOneRadio> Allows a user to select one
item from a set of items

An HTML <input
type=radio> element

A set of radio
buttons

Tag Description Rendered As Appearance

Faces
component

Description Tag Type

Command-
Button

Creates a push button that can have text or
an image. The button may run an action.

<hx:commandExButton> UICommand

Link Creates a hyperlink to the URL you specify. <hx:outputLinkEx> UICommand

Image Displays an image on the page. Can display
an image from a data source as well.

<hx:graphicImageEx> UIGraphic

File Upload Displays an input field and associated
Browse button for uploading a file.

<hx:fileUpload>

Horizontal
Rule

Creates a horizontal line to visually separate
information on the page.

<hx:outputSeparator> UIOutput

 Chapter 16. JavaServer Faces portlets 529

Panel Group
Box - Snap
to border

Creates a container to group other
components, organizing them along the
sides of the panel.

<hx:panelLayout> UIPanel

Panel Group
Box - List

Creates a container to group other
components, organizing them as a vertical or
horizontal list.

<hx:panelBox> UIPanel

Panel Menu
Bar

Inserts a panel that places commands into a
menu bar. You can drag and drop buttons,
hyperlinks and horizontal rules to the panel
or add them from within the Properties views
of the components. You can also add a
sub-menu bar within a menu bar.

<hx:panelActionbar> UIPanel

Panels -
Tabbed

Creates a set of overlapping tabbed pages.
Each page can contain a set of components.
The user clicks a tab to show the contents of
that page.

<odc:tabbedPanel>

Rich Text
Area

Inserts a rich text editor component. Unlike
the <h:inputTextarea>, this component can
contain different fonts and sizes, tables,
links, and numbered and bulleted lists.

<r:inputRichtext>

Generic A/V
Player

Creates a media player on the Web page
and plays a file.

<hx:playerGenericPlayer>

Macromedia
Flash Player

Creates an instance of the Macromedia
Flash Player in order to play Flash files on
the Web page.

<hx:playerFlash>

Macromedia
Shockwave
Player

Plays Macromedia Shockwave Player files
on the Web page.

<hx:playerShockwave>

RealOne
Player

Plays Real Network RealOne Player files on
the Web page.

<hx:playerRealPlayer>

Windows
Media
Player

Creates an instance of the Windows Media
Player in order to play media files on the Web
page.

<hx:playerMediaPlayer>

Faces
component

Description Tag Type

530 IBM Rational Application Developer V6 and Portal Tools

16.3.3 Conversion model
JSF components can be associated with server-side object data, represented by
a Java Beans component. When this occurs, the application has two views of the
component’s data:

� The model view, in which data is represented as data types, such as int or
long.

� The presentation view, in which data is represented in a manner that can be
read or updated by the user. For example, a java.util.Date might be
represented as a text string in the format mm/dd/yyyy or a set of tree text
strings.

The JSF implementation automatically converts component data between these
two views when the bean property associated with the component is of one of the
types presented in Table 16-1 on page 523. For example, if a UIInput component
is associated with bean property of type int, the JSF implementation will
automatically convert the components data from String to int.

You might want to convert a component’s data to a type other than a standard
type. To allow this, JSF technology provides a way for you to register a
Converter implementation on UIOutput components and components whose
classes subclass UIOutput.

You can either use the standard converters that come with JSF implementation
or create your own custom converter. In order to create and use a custom
converter, three things must happen:

� The Converter interface must be implemented.

� The newly created Converter must be registered with the application, in the
application configuration resource file. This is done in the Converter tag.

� The Converter tag must be referenced from the tag of the component whose
data must be converted.

The following sections explain how to make each of these three things happen.

Implementing the Converter interface
The Converter interface defines the following two methods:

Object getAsObject(FacesContext context,UIComponent component,String newValue)
String getAsString(FacesContext context,UIComponent component,Object value)

The first method converts a string into an object of the desired type, throwing a
ConverterException if the conversion cannot be carried out. This method is
called when a string is submitted from the client, typically in a text field. The

 Chapter 16. JavaServer Faces portlets 531

second method converts an object into a string representation to be displayed in
the client interface.

Imagine that we had to develop a custom converter for credit card numbers. This
converter would allow users to enter a credit card number with or without spaces.
That is, the user could type the card number in any of the following forms:

1234567890123456
1234 5678 9012 3456

Example 16-6 shows the code for the custom converter. Notice that the
getAsString method tries to format the credit card number in a way that is
pleasing to the user. The digits are separated with white spaces, depending on
the credit card type. Table 16-4 shows the most common credit card formats.

Table 16-4 Most common credit card formats

Example 16-6 CreditCardConverter.java

package com.yourco.converters;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

import com.yourco.beans.CreditCard;

public class CreditCardConverter implements Converter {

public Object getAsObject(FacesContext context, UIComponent component,
String newValue) throws ConverterException {

boolean foundIllegalChar = false;
char illegalChar = '\0';

Card Type Digits Format

MasterCard 16 5xxx xxxx xxxx xxxx

Visa 16 4xxx xxxx xxxx xxxx

Visa 13 4xxx xxx xxx xxx

Discover 16 6xxx xxxx xxxx xxxx

American Express 15 37xx xxxxxx xxxxx

American Express 22 3xxxxx xxxxxxxx xxxxxxxx

Diners Club, Carte Blanche 14 3xxxx xxxx xxxxx

532 IBM Rational Application Developer V6 and Portal Tools

StringBuffer sb = new StringBuffer(newValue);
int i = 0;
while (i < sb.length() && !foundIllegalChar) {

char c = sb.charAt(i);
if (Character.isDigit(c)) {

i++;
} else if (Character.isWhitespace(c)) {

sb.deleteCharAt(i);
} else {

foundIllegalChar = true;
illegalChar = c;

}
}
if (foundIllegalChar) {

FacesMessage errmsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
"An invalid character was found.",
"The character " + illegalChar + "is not valid.");

throw new ConverterException(errmsg);
}
return new CreditCard(sb.toString());

}

public String getAsString(FacesContext context, UIComponent component,
Object value) throws ConverterException {

int[] boundaries = null;
String v = value.toString();
int length = v.length();
switch (length) {
case 13:

boundaries = new int[]{4, 7, 10};
break;

case 14:
boundaries = new int[]{5, 9};
break;

case 15:
boundaries = new int[]{4, 10};
break;

case 16:
boundaries = new int[]{4, 8, 12};
break;

case 22:
boundaries = new int[]{6, 14};
break;

default:
return v;

}
StringBuffer sb = new StringBuffer();
int start = 0;
for (int i = 0; i < boundaries.length; i++) {

 Chapter 16. JavaServer Faces portlets 533

int end = boundaries[i];
sb.append(v.substring(start, end));
sb.append(" ");
start = end;

}
sb.append(v.substring(start));
return sb.toString();

}
}

The CreditCard class referenced in the code is very simple. It contains just the
credit card number. See Example 16-6 on page 532:

Example 16-7 CreditCard.java

package com.yourco.beans;
public class CreditCard {
 private String creditCardNumber;
 public CreditCard(String creditCardNumber) {
 this.creditCardNumber = creditCardNumber;
 }
 public String toString(){ return creditCardNumber; }
}

Registering the converter
To register the converter, we have to associate a symbolic ID with the Converter
class. This is done with the following entry in faces-config.xml:

Example 16-8 Registering the converter in faces-config.xml

<converter>
<converter-id>CreditCard</converter-id>
<converter-class>

com.yourco.converters.CreditCardConverter
</converter-class>

</converter>

In Example 16-8, we chose theID CreditCard for our credit card converter.

Referencing the converter
To reference the converter, we can use the f:converter tag in our UIInput
component, specifying the converter ID:

<h:inputText value="#{someBean.card}">
<f:converter converterId="CreditCard"/>

</h:inputText>

534 IBM Rational Application Developer V6 and Portal Tools

We could also be more succint and use the converter attribute of the UIInput
component:

<h:inputText value="#{someBean.card}" converter="CreditCard"/>

16.3.4 Event and listener model
JSF applications are event-driven. Following the Java 2 event model, any object
in a JSF application can be designed to generate or receive events. For
example, a UICommand component can generate an event when the user clicks it.

There are three participants involved in the event and listener model:

� The event source, which is the object whose state changes.

� The event object, which encapsulates the state changes in the event source.

� The event listener, which is the object that wants to be notified of the state
changes of the event source.

In summary, when an event occurs, the event source generates an Event object
and sends it to the event Listener. The Event object stores information about the
event. To be notified of an event, an application must provide an implementation
of the Listener class and must register it on the component that generates the
event.

JSF technology supports three kinds of events: value-change events, action
events, and phase events.

An action event is fired by command components, for example, h:commandButton
and h:commandLink, when the button or link is activated.

A value-change event occurs when the user modifies the value of a component
represented by UIInput or one of its subclasses and the enclosing form is
submitted. Value-change events are fired only if no validation errors were
detected.

A phase event is fired by the JSF life cycle.

The application can react to action events or value-change events in either of two
ways:

� Implement an event listener class to handle the event and register the listener
on the component by nesting either a valueChangeListener tag or an
actionListener tag inside the component tag.

� Implement a method of a backing-bean to handle the event and refer to the
method with a method-binding expression from the appropriate attribute of
the component’s tag.

 Chapter 16. JavaServer Faces portlets 535

In Example 16-9, you can see how to attach a value change listener to a menu.
The example also uses the onchange attribute to force a form submit after the
menu’s value is changed. This example was extracted from the calculator
application that is built in Chapter 17, “JavaServer Faces portlet development” on
page 551.

Example 16-9 Attaching a valueChangeListener to a component

<h:selectOneMenu styleClass="selectOneMenu" id="operation"
valueChangeListener="#{pc_Calculate.handleOperationValueChange}"
onchange="sumit()">

..........
</h:selectOneMenu>

Example 16-10 handles the ValueChangeEvent. This example was also extracted
from the calculator application that is built in Chapter 17, “JavaServer Faces
portlet development” on page 551.

Example 16-10 Handling a ValueChangeEvent

public void handleOperationValueChange(ValueChangeEvent valueChangedEvent) {
log("OperationValueChangeEvent start");
HtmlSelectOneMenu operation =

(HtmlSelectOneMenu)valueChangedEvent.getSource();
String opnew = (String)valueChangedEvent.getNewValue();
String opold = (String)valueChangedEvent.getOldValue();
log("operation old="+opold+" new="+opnew);
getCalculator().setOperation(opnew); // is also done later by binding
getOpchanged().setValue("changed"); // change the output text field
getCalc().setValue(opnew); // change the Calculate button
log("OperationValueChangeEvent end");

}

16.3.5 Validation model
JSF technology provides a set of classes for validating input values entered into
input components, such as text fields. These classes are called validators.

JSF offers some standard validators that you can use in your applications.
Alternatively, you can write your own validator if none of the standard validators
suits your needs.

Basically, a validator is an implementation class that checks an input value and
sends an error message if the input is not valid. You use a validator by nesting it
inside an input component whose input needs to be validated. If the validator
decides that the user’s input is invalid, the JSF FacesServlet redisplays the JSP

536 IBM Rational Application Developer V6 and Portal Tools

page from which the form was submitted, without copying the local value to the
Java Bean instance bound to the input component.

The JSF core tag library defines a set of tags that correspond to a set of standard
classes for performing common data validation checks. Table 16-5 shows all the
standard validation classes and corresponding tags.

Table 16-5 The validator classes

To specify the range that the validators shown in Table 16-5 must check, you use
the maximum and minimum attributes inside each of the validator’s tag. These
values can be hardcoded in the tag or refer to a backing-bean property.

You can also specify that an input component has a required attribute. By doing
this, the JSF implementation checks whether the value of the component is null
or is an empty String.

The validation model also allows you to create your own custom validator and
corresponding tag to perform custom validation. There are two ways to
implement custom validators:

� Implement a Validator interface that performs the validation (see
Example 16-11 on page 538). By doing this, you must also:

– Register the Validator implementation with the application (See
Example 16-12 on page 538).

– Create a custom tag or use a validator tag to register the validator on the
component (See Example 16-13 on page 539).

Validator Class Tag Function

DoubleRangeValidator validateDoubleRange Checks whether the local value of
a component is within a certain
range. The value must be a
floating-point or convertible to
floating-point

LengthValidator validateLength Checks whether the length of a
component’s local value is within
a certain range. The value must
be a java.lang.String

LongRangeValidator validateLongRange Checks whether the local value of
a component is within a certain
range. The value must be any
numeric type or String that can be
converted to a long

 Chapter 16. JavaServer Faces portlets 537

� Implement a backing-bean method that performs the validation. By doing this,
you must also reference the validator from the component tag’s validator
attribute.

Example 16-11 Implementing a validator

package itso.jsf.calculator;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class OddValidator implements Validator {

public void validate(FacesContext arg0, UIComponent arg1, Object arg2)
throws ValidatorException {

System.out.println("OddValidator start");
UIInput field = (UIInput)arg1;
int value = ((Long)arg2).intValue();
System.out.println("Field="+field.getId()+" Value="+value);
if (value%2 == 1) {

field.setValid(true);
System.out.println("OddValidator end: valid");

} else {
System.out.println("OddValidator end: invalid");
FacesMessage errmsg = new FacesMessage

(FacesMessage.SEVERITY_ERROR,
"2nd number not odd.",
"Second number must be odd.");

throw new ValidatorException(errmsg);
}

}
}

Example 16-12 Registering the validator

<validator>
<description>Registers the OddValidator</description>
<validator-id>oddValidator</validator-id>
<validator-class>itso.jsf.calculator.OddValidator</validator-class>

</validator>

538 IBM Rational Application Developer V6 and Portal Tools

Example 16-13 Invoking the validator with the validator tag

h:inputText styleClass="inputText" id="number2" required="true" maxlength="2"
size="12" value="#{pc_Calculate.calculator.number2}">
<f:validator validatorId="oddValidator"></f:validator>

</h:inputText>

16.4 Navigation model
Page navigation is a crucial aspect of all Web applications. The JSF navigation
model makes it easy to define page navigation and to handle any additional
processing needed to choose the sequence in which pages are loaded.

In the JSF technology, navigation is a set of rules for choosing the next page to
be displayed after a UICommand is clicked, that is, a button or hyperlink. These
rules are defined in the application configuration resource file.

To handle the simplest navigations, you have to:

� Define the rules in the application configuration resource file (see
Example 16-16 on page 540).

� Refer to an outcome String from the button or hyperlink component’s action
attribute. This outcome String is used by the JSF implementation to select
the navigation rule to be used. Here is an example of this. Notice that the
action attribute is defining the outcome of back:

<hx:commandExButton type="submit" value="Back" action="back">
</hx:commandExButton>

In more complicated applications, you also must provide one or more action
methods, which perform some processing to determine which page should be
displayed next. For example, a login action can be triggered when the user
submits a form by clicking a button. This action can determine whether the login
data entered is valid or not, and return a logical outcome String (in this case
either “success” or “failure”). The NavigationHandler receives this outcome
and determines which page to display next by matching the outcome or the
action method reference against the navigation rules in the application
configuration resource file. The Example 16-14 shows how to reference a
method that implements this kind of dynamic navigation. Example 16-15 on
page 540 shows how this method can be implemented. This method has no
parameters and a return type String.

Example 16-14 Invoking an action method to determine the correct outcome

<h:commandButton label="login" action="#{loginController.veryfyUser}"/>

 Chapter 16. JavaServer Faces portlets 539

Example 16-15 Deciding the correct outcome

String veryfyUser() {
if (...)

return "success";
else

return "failure";
}

Each navigation rule defines how to navigate from one particular page to any
number of other pages in the application. Each navigation case within a
navigation rule defines a target page and either a logical outcome, a reference to
an action method, or both. Example 16-16 shows an example navigation rule
from the calculator application described in 16.2.2, “Defining navigation rules” on
page 521.

Example 16-16 An example navigation rule

<navigation-rule>
<from-view-id>/welcome.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/result.jsp</to-view-id>

</navigation-case>
</navigation-rule>

This rule states that when a button or hyperlink component on welcome.jsp is
activated, the application will navigate from the welcome.jsp page to the
result.jsp page if the outcome referenced by the button or hyperlink
component’s tag is success.

16.5 Backing bean management
Typical JSF applications include one or more backing beans. These are
JavaBean components associated with UI components used in a page. A
backing bean holds UI component properties, each of which is bound to either a
component’s value or a component’s instance. Backing beans can also define
methods that perform functions associated with a component, including
validation, event handling, and navigation processing.

The binding of component values and instances to backing beans is done
through the use of JSF expression language (EL) syntax. This syntax uses the
delimiters # { }. A JSF expression can be a value-binding expression or a method
binding expression. It can also accept mixed literals and the evaluation syntax
and operators of the JSP 2.0 expression language.

540 IBM Rational Application Developer V6 and Portal Tools

To illustrate value-binding expressions and method-binding expressions, take a
look at Example 16-17, which defines the operation component of the calculator
application.

Example 16-17 An UIInput component using both value-binding and method-binding
expressions

<h:inputText id="operation" value="#{calculator.operation}"
validator="#{calculator.validateOperator}" required="true">

</h:inputText>

This tag binds the operation component’s value to the calculator.operation
backing bean property. it also refers to the calculator.validateOperator
method, which performs validation of the component’s local value, which is
whatever the user enters into the field corresponding to this tag.

A tag representing a component that implements ActionSource can refer to
backing bean methods using actionListener and action attributes. The
actionListener attribute refers to a method that handles an action event. The
action attribute refers to a method that performs some processing associated
with navigation and returns a logical outcome String, which the navigation
system uses to determine which page to display next.

A tag can also bind a component instance to a backing bean property, instead of
a component’s value. This is done by referencing the property from the binding
attribute:

<inputText binding=”#{calculator.operationComponent}”

The property referenced from the binding attribute must accept and return the
same component type as the component instance to which it is bound.
Example 16-18 shows an example property the can be bound to the component
represented by the preceding inputText tag.

Example 16-18 Binding a component instance to a backing bean property

UIInput operationComponent = null;
...
public void setOperationComponent(UIInput operationComponent) {

this.operationComponent = operationComponent;
}
public UIInput getOperationComponent() {

return operationComponent;
}

These are the advantages of binding a component instance to a bean property:

 Chapter 16. JavaServer Faces portlets 541

� The backing bean can programmatically modify component attributes, like the
rendered attribute, that specify whether the component will be rendered or
not.

� The backing bean can instantiate components rather than let the page author
do so.

These are the advantages of binding a component’s value to a bean property:

� The page author has more control over the component attributes.

� The backing bean has no dependencies on the JSF API, allowing a greater
separation between the presentation layer and the model layer.

� The JSF implementation can perform conversions on the data based on the
type of the bean property without the developer needing to apply a converter.

In most situations, you will bind a component’s value rather than its instance to a
bean property.

Backing beans are created and stored with the application using the managed
bean creation facility, which is configured in the application configuration
resource file, as shown in 16.2.3, “Developing the beans” on page 523. When the
application starts up, it processes this file, making the beans available to the
application and instantiating them when they are first referenced by the
component tags.

16.6 JSF in portlets
JSF applications behavior is much similar when inside portlets. In this chapter,
we will see how JSF applications work as a portlet, how does the JSF life cycle
maps to the portlet life cycle and some JSF portlet programming guidelines.

16.6.1 JSF portlet runtime
The JSF portlet runtime is the component that makes possible to run JSF
applications as portlets in WebSphere Portal. The JSF portlet runtime is found in
a different jar file for each portlet API:

� For the JSR 168 API, the jar file is jsf-portlet.jar.
� For the IBM Portlet API, the jar file is jsf-wp.jar.

Figure 16-5 on page 543 shows how the JSF portlet runtime and the JSF servlet
runtime interact with the common JSF runtime.

542 IBM Rational Application Developer V6 and Portal Tools

Figure 16-5 How the JSF portlet runtime interacts with the common JSF runtime

The common JSF runtime defines the elements that were covered in the
previous sections. The only new element here is the variable resolver. The
variable resolver determines the value of the first variable in an expression. For
example, the standard variable resolver looks up managed beans and handles
the predefined variables such as cookie, view and session.

The JSF servlet runtime is based on the FacesServlet, and is in charge of calling
the JSF life cycle and creating an ExternalContext. Through the
ExternalContext, the JSF application can access the servlet objects, such as
ServletContext, ServletRequest and ServletResponse.

The JSF portlet runtime is based on the FacesPortlet, that accomplishes
essentially the same tasks as the FacesServlet does. That is, it is in charge of
calling the JSF life cycle and creating a PortletExternalContext. Through the
PortletExternalContext, the JSF portlet can access the portlet objects, such as
PortletContext, PortletRequest and PortletResponse.

The JSF portlet runtime also defines some portlet specific UI components, such
as c2a for cooperation and person for people awareness.

Finally, the JSF portlet runtime defines a variable resolver that permits
value-binding of portlet objects, such as PortletPreferences and PortletData.

Portlet
External
Context

Faces
Portlet

Portlet Specific
UI Components

Portlet Variable
Resolver

Faces Context

Lifecycle

UI Components/
Renderers

Variable
Resolvers

External
Context

Faces
Servlet

Create Has Has Create

Call Call

ServletContext
ServletRequest
ServletResponse

Request Parameter
Request Attributes
Session Attributes

PortletPreferences
PortletData

c2a
Person

PortletContext
PortletRequest
PortletResponse

JSF Portlet Runtime Common JSF Runtime JSF Servlet Runtime

 Chapter 16. JavaServer Faces portlets 543

16.6.2 Mapping between portlet phases and JSF phases
Figure 16-6 shows the mapping between the portlet an JSF phases. This
mapping is showing the portlets methods that are invoked in JSR 168 portlets,
but the mapping is analogous in IBM API portlets.

Figure 16-6 Mapping between portlet phases and JSF phases

As we know, portlets have two processing phases: the action phase and the
render phase.

If the portlet fired an action, it will send an action request to the server. An
example of firing an action is submitting a form or clicking a link. In this case, the
WebSphere Portal runtime will call both the action phase and the render phase
of the portlet. In the action phase, the FacesPortlet.processAction method is
invoked and it calls the five first phases of the JSF life cycle. In the render phase,
the FacesPortlet.render method is invoked and it calls the remaining phase of
the JSF life cycle.

There are times when the server receives only a render request, instead of an
action request. An example is when you have portlets A and B in the same page
and the user interacts with portlet A. While portlet A will process the action and

Restore
View

Apply Request
Values

Process
Validations

Update Model
Values

Invoke
Application

Render
Response

Lifecycle execute()

Lifecycle render()

FacesPortlet
processAction()

Call

FacesPortlet
render()

Restore
View

Apply Request
Values

Process
Validations

Update Model
Values

Invoke
Application

Render
Response

Lifecycle execute()

Lifecycle render()

FacesPortlet
render() Call

Action Request Render Request

544 IBM Rational Application Developer V6 and Portal Tools

render again, portlet B will only have to be rendered, because there are no
actions associated with it. In this case, the WebSphere Portal runtime will call
only the FacesPortlet.render method of portlet B. The FacesPortlet.render
method will call all six JSF life cycle phases, but since there are no parameters
associated with the request, most of the life cycle phases will be skipped.

16.6.3 Welcome page and navigation in JSF portlets
The welcome-file list in web.xml is not used by JSF portlets to determine which is
the initial page to be displayed. This is done through a parameter, named
com.ibm.faces.portlet.page.mode, where mode is the mode you want to set the
initial page to. This means that you will have a different parameter to set the
initial page to each mode that the portlet supports.

� In IBM Portlet API, this parameter is a config-param in the concrete portlet, in
portlet.xml. Example 16-19 specifies the initial pages to both View and Edit
modes of a portlet that uses the IBM Portlet API.

Example 16-19 Configuration of JSF initial pages in IBM Portlet API

<config-param>
<param-name>com.ibm.faces.portlet.page.view</param-name>
<param-value>/index.jsp</param-value>

</config-param>
<config-param>

<param-name>com.ibm.faces.portlet.page.edit</param-name>
<param-value>/html/edit/index.jsp</param-value>

</config-param>

� In JSR 168 API, this parameter is a init-param in portlet.xml. Example 16-20
specifies the initial pages to both View and Edit modes of a portlet that uses
the JSR 168 API.

Example 16-20 Configuration of JSF initial pages in JSR 168 API

<init-param>
<name>com.ibm.faces.portlet.page.view</name>
<value>/index.jsp</value>

</init-param>
<init-param>

<name>com.ibm.faces.portlet.page.edit</name>
<value>/html/edit/index.jsp</value>

</init-param>

Once the initial page is displayed, the navigation between pages follows the
page navigation rules defined in faces-config.xml. See 16.2.2, “Defining
navigation rules” on page 521 for more details.

 Chapter 16. JavaServer Faces portlets 545

16.6.4 Programming guidelines
The following topics provide some programming guidelines when developing
JSF portlets.

Accessing the portlet API in JSF actions
You can obtain PortletRequest, PortletResponse and PortletContext objects
through the ExternalContent object. You have to make the appropriate casting
when retrieving these objects, as shown in Example 16-21.

Example 16-21 Obtaining portlet API objects through the ExternalContext

PortletContext context =
(PortletContext)facesContext.getExternalContext().getContext();

Table 16-6 shows the methods available at ExternalContext and the objects
returned for each API.

Table 16-6 Objects returned by each ExternalContext method

Value binding for the portlet API
You can use value binding expressions to bind attributes of portlet API objects to
UI components.

Suppose you have the following parameter in portlet.xml of a portlet using IBM
portlet API:

<config-param>
<param-name>myName</param-name>
<param-value>John Doe</param-value>

Tip: Navigation is defined within a portlet mode. If you want to switch portlet
mode, refer to “Changing portlet modes” on page 547. Take care when
switching modes during navigation, to avoid the portlet being in a inconsistent
state.

ExternalContext
method

JSR 168 API IBM portlet API

getRequest() PortletRequest
(ActionRequest or RenderRequest)

PortletRequest

getResponse() PortletResponse
(ActionResponse or RenderResponse

PortletResponse

getContext() PortletContext PortletContext

546 IBM Rational Application Developer V6 and Portal Tools

</config-param>

You can bind this value to a UIInput component’s value, with the following code:

<h:inputText id="name" value="#{portletSettings.myName}"/>

You can also access the value from JSF code:

ValueBinding binding =
facesContext.getApplication().createValueBinding("#{portletSettings.myName}");
System.out.println("Value Binding: myName=" + binding.getValue(facesContext));

The value binding of portlet API attributes can be done because when you create
a JSF portlet, a portlet variable resolver is defined, according to what we have
seen in 16.6.1, “JSF portlet runtime” on page 542. Table 16-7 shows the
configuration objects that Portlet variable resolvers enable the use of value
binding to, and the corresponding expressions that bind the values of these
objects.

Table 16-7 Configuration objects that can be obtained through value binding

Changing portlet modes
It is possible to change the portlet mode in a JSF action. The following example
shows how to do this using the JSR 168 API.

Example 16-22 Changing mode in a JSF portlet using JSR 168 API

ActionResponse response = (ActionResponse)
facesContext.getExternalContext().getResponse();

try {
response.setPortletMode(PortletMode.VIEW);

} catch (PortletModeException e) {
// Your exception handling code here

}

Example 16-23 on page 548 shows how to change mode using the IBM portlet
API.

Portlet API Expression Configuration Object

JSR 168 API #{portletPreferences.name} PortletPreferences

IBM portlet API #{portletApplicationSettings.name} PortletApplicationSettings

#{portletSettings.name} PortletSettings

#{portletData.name} PortletData

 Chapter 16. JavaServer Faces portlets 547

Example 16-23 Changing mode in a JSF portlet using IBM portlet API

PortletRequest request = (PortletRequest)
facesContext.getExternalContext().getRequest();

try {
request.setModeModifier(Portlet.ModeModifier.PREVIOUS);

} catch (AccessDeniedException e) {
// Your exception handling code here

}

16.6.5 Limitations in JSF portlets
There are limitations that exist when running JSF portlet applications:

� The file upload component is not supported (hx:fileUpload).

� Components that support the download of binary data are not supported.

– Image (hx:graphicImageEx), when bound to data, as in:

<hx:graphicImageEx value="#{myBean.photo}"/>

– Link (hx:outputLinkEx), when bound to data, as in:

<hx:outputLinkEx value="#{myBean.resume}"/>

– Media Player (hx:playerGenericPlayer, hx:playerFlash,
hx:playerMediaPlayer, hx:playerRealPlayer, hx:playerShockwave),
when bound to data, as in:

<hx:playerGenericPlayer value="#{myBean.movie}"/>

� When adding an Image component to a Faces portlet page, you must specify
the URL relative to the document WebContent root folder, rather than relative
to the project root folder:

Wrong:

<hx:graphicImageEx value="/.YourPortlet/theme/yourimage.gif"/>

Correct:

<hx:graphicImageEx value="theme/yourimage.gif"/>

16.7 Migration
Existing JSF applications can be migrated in order to run in WebSphere Portal.
Since JSF is a framework there are many variations to how the application can
be built with JSF. The steps in this section can be used as a starting point for the
migration effort, but may not cover all of the issues that can be encountered.

548 IBM Rational Application Developer V6 and Portal Tools

1. Check if there are any file upload component in the application, or if the
application uses components that support the download of binary data. These
features are not supported in JSF portlets and cannot be migrated (see
16.6.5, “Limitations in JSF portlets” on page 548).

2. Decide to which Portlet API you want to migrate your JSF application. The
migration can be done either to the JSR 168 API or to the IBM Portlet API.

3. Create a portlet.xml according to the API you decided to migrate to.

– For the JSR 168 API, refer to 8.9, “Deployment descriptors” on page 287.

– For the IBM Portlet API, refer to 4.12.2, “portlet.xml” on page 160.

4. Specify the FacesPortlet class. This class will perform the tasks that the
FacesServlet does in a conventional JSF application.

– In JSR 168 API, the FacesPortlet is declared in portlet.xml and points to
the class com.ibm.faces.webapp.FacesGenericPortlet. The existing
FacesServlet in web.xml should be deleted.

– In IBM Portlet API, FacesPortlet is declared in web.xml and points to the
class com.ibm.faces.webapp.WPFacesGenericPortlet. The existing
FacesServlet in web.xml should be replaced by the FacesPortlet.

5. Specify the initial page to be loaded in each portlet mode, according to 16.6.3,
“Welcome page and navigation in JSF portlets” on page 545.

6. Import the correct jar file that contains the JSF Portlet Runtime into the
WEB-INF/lib directory:

– In JSR 168 API, this is the jsf-portlet.jar.
– In IBM Portlet API, this is the jsf-wp.jar.

7. Include a faces-context-factory in faces-config.xml:

– In JSR 168 API, include this factory tag:

<factory>
<faces-context-factory>

com.ibm.faces.context.PortletFacesContextFactoryImpl
</faces-context-factory>

</factory>

– In IBM Portlet API, include this factory tag:

<factory>
<faces-context-factory>

com.ibm.faces.context.WPPortletFacesContextFactoryImpl
</faces-context-factory>

</factory>

8. However, in faces-config.xml, you need to specify variable and property
resolvers to correctly use value binds:

 Chapter 16. JavaServer Faces portlets 549

– In JSR 168 API, include this application tag. If you already have an
application tag in your file, include only the inner tags shown below:

<application>
<variable-resolver>

com.ibm.faces.databind.SelectItemsVarResolver
</variable-resolver>
<variable-resolver>

com.ibm.faces.application.PortletVariableResolver
</variable-resolver>
<property-resolver>

com.ibm.faces.databind.SelectItemsPropResolver
</property-resolver>

</application>

– In IBM Portlet API, include this application tag. If you already have an
application tag in your file, include only the inner tags shown below:

<application>
<variable-resolver>

com.ibm.faces.databind.SelectItemsVarResolver
</variable-resolver>
<variable-resolver>

com.ibm.faces.application.WPPortletVariableResolver
</variable-resolver>
<property-resolver>

com.ibm.faces.databind.SelectItemsPropResolver
</property-resolver>

</application>

9. Be careful with pages that use JavaScript code. You will have to namespace
all JavaScript calls and references to JSF components. Refer to 17.9,
“Implementing a value change event” on page 583 for an example of how to
do this.

10.If your existing JSF application already supports multiple locales, remember
to update portlet.xml to include the supported languages. Refer to 17.10,
“Implementing internationalization” on page 587 to see how to do this.

11.The JSPs should be modified so they do not use HTML head and body
elements. All HTML output to the portal is written in the context of an HTML
table cell.

12.Refer to Chapter 8, “JSR 168 API” on page 251 and Chapter 4, “IBM Portlet
API” on page 115 for details about each API, so that you can make your
application take advantage of the features provided by each one.

550 IBM Rational Application Developer V6 and Portal Tools

Chapter 17. JavaServer Faces portlet
development

This chapter provides a sample scenario related to JavaServer Faces (JSF)
portlet development to illustrate the various features available in Rational
Application Developer V6 and Portal Tools.

In this chapter, you will develop JSF portlets in order to perform the following
tasks:

� Creating the JSF project and page layout
� Implementing component attributes and validation
� Binding the front end to the Managed Bean
� Invoking the business logic
� Page navigation, validators and value change events
� Internationalization

17

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: JSR 168
� Application type: JavaServer Faces

© Copyright IBM Corp. 2005. All rights reserved. 551

17.1 The calculator application
The first application to be created is a simple calculator. A JavaBean named
CalculatorBean is included to provide the basic mathematical operations on two
integer (long) numbers.

This bean has five properties:

� Operand 1
� Operand 2
� Operation
� Result
� Error message

The bean also has associated getter and setter methods for all of its properties.
In addition, the calculate() method calculates the result of one of the following
operations:

� Add
� Subtract
� Multiply
� Divide

The result is stored in the first number (operand 1) for subsequent operations. If
a division does not result in an integer, an exception is thrown. Finally, a
toString() method displays the numbers and the operation.

17.2 Creating the project
You will create the calculator project as a Portlet Project (JSR168) project. Follow
these steps to create it:

1. In the menu, select File → New → Project.

2. In the New Project window, select the wizard for Portlet Project (JSR 168).

3. Click Next >.

4. If the Confirm Enablement window appears, asking if you want to enable the
portal development role, click OK.

5. In the Portlet project page, type the name of the project Calculator.

6. Check the Create a portlet check box, if it is not already checked.
Note: Typically, you do not need to create a portlet when you import a portlet
WAR file into the project.

7. In the WebSphere Portal version box, select 5.1. Click Next >.

552 IBM Rational Application Developer V6 and Portal Tools

Figure 17-1 Portlet project (JSR 168)

8. In the Portlet type page, select Faces portlet (JSR 168). Click Next >.

 Chapter 17. JavaServer Faces portlet development 553

Figure 17-2 Selecting the portlet type

9. Click Next > again in the Features page.

Figure 17-3 Features

554 IBM Rational Application Developer V6 and Portal Tools

10.In the Portlet settings page, review the options provided and leave all settings
unchanged. Click Next >.

11.In the Miscellaneous page, select only the View mode for the portlet. Enter
/calculate.jsp as the name of the initial page.

Figure 17-4 Selection of portlet modes

12.Click Finish to generate the portlet.

13.If the Confirm Perspective Switch window appears, click Yes.

17.2.1 Inspecting the JSF portlet project
Now that the JSF portlet project has been created, let’s take a look at what
Rational Application Developer has generated:

1. Under Java Resources/JavaSource, you will find a package named
calculator.nl with two resource bundles, and a package named pagecode,
with two files: Calculate.java and PageCodeBase.java (Figure 17-5 on
page 556).

 Chapter 17. JavaServer Faces portlet development 555

Figure 17-5 Java resources created in the project

a. Open Calculate.java. The class is empty for now. It is a subclass of
PageCodeBase.

b. Open PageCodeBase. This class contains shared code for all JSF pages:

• Access to FacesContext, requestScope and so forth.

• gotoPage - switch to another JSF page

• findComponent - find any JSF component

• findComponentInRoot - find a JSF component under the root
component

• resolveExpression - resolves a JSF reference: #{xxxx}

• log - simplified test output to System.out.println

2. There is a new style sheet, stylesheet.css, in the WebContent/theme folder
(Figure 17-6 on page 557). Open the file; it has many predefined styles.

3. In the WEB-INF/lib folder you find the JSF runtime JAR files (Figure 17-6 on
page 557):

– jsf-api and jsf-impl are the basic JSF JAR files from Sun.

– jsf-ibm has the IBM extensions.

– jsf-portlet has the JSF portlet runtime for JSR 168 API.

– jstl and jstl_el are JSP standard tag libraries.

– commons-xxx are common utilities.

– jaxen-full, saxpath and standard are JAR files needed by the JSP
standard tag libraries.

556 IBM Rational Application Developer V6 and Portal Tools

Figure 17-6 Resources under WebContent

4. In the WEB-INF you find the JSF configuration file, faces-config.xml. Open
this file:

– It contains the definition of a FacesContextFactory specific to JSR 168:
com.ibm.faces.context.PortletFacesContextFactoryImpl. In an IBM
portlet API, this factory would be:

com.ibm.faces.context.WPPortletFacesContextFactoryImpl

– It contains a life cycle listener and already one managed bean,
pc_Calculate, which is the Java code for the JSF page.

– It contains a PropertyResolver and two VariableResolver. One of the
variable resolvers is specific to JSR 168:

com.ibm.faces.application.PortletVariableResolver

In IBM portlet API this variable resolver would be:

com.ibm.faces.application.WPPortletVariableResolver

5. Open the deployment descriptor, web.xml. It contains a servlet named JS
Resource Servlet. This servlet is an IBM extension for generated JavaScript
functions.

 Chapter 17. JavaServer Faces portlet development 557

6. Open the portlet deployment descriptor, portlet.xml.

– It contains the FacesPortlet definition. The portlet name is Calculator
and it points to the class com.ibm.faces.webapp.FacesGenericPortlet.

– The portlet has an init parameter pointing to the initial page of View mode:

<init-param>
<name>com.ibm.faces.portlet.page.view</name>
<value>/calculate.jsp</value>

</init-param>

17.3 Creating the page layout
Now you will create the basic JSP layout of the calculate.jsp.

1. In the Design view, select the text Place content here. and replace it with JSF
Calculator.

2. Select the text JSF Calculator, and on the top menu select Insert →
Paragraph → Heading 1.

Figure 17-7 Portlet heading

3. Select the Output component in the Faces Components palette. Drag the
cursor under the heading and drop the component.

558 IBM Rational Application Developer V6 and Portal Tools

Figure 17-8 Creating the page layout for the calculator

4. Select the outputText component in the Design view.

a. In the Properties view, change the Id to comment.

b. Change the Value to Created using Application Developer.

c. Enter style properties: font-size: 18; font-weight: bold.

Figure 17-9 The comment component properties

5. Position the cursor behind the output text and press Enter twice to add
s.

6. From the palette, select the Display Errors component and drop it under the
breaks. This is for validation error messages.

7. Select the new component and notice in the Properties view the messages
style class (see Figure 17-10 on page 560).

 Chapter 17. JavaServer Faces portlet development 559

Figure 17-10 The messages component properties

8. Open the file stylesheet.css.

a. In the Styles view (Figure 17-11), find the .messages class and open it
(double-click it).

Figure 17-11 The Styles view

b. In the Add Style --- .messages window, select Font and set the color to
Red. Click OK and the code is inserted into the stylesheet.css file:

.messages {
color: red

}

c. Change the .message entry in the same way. This class will be used for
error messages attached to one field. Save and close the stylesheet.css.
The {Error Messages} component is now red.

9. Insert a table with five rows and two columns under the error messages field.
Select Insert → Table, change Rows to 5, Border width to 0, and Padding
inside cells to 3.

560 IBM Rational Application Developer V6 and Portal Tools

Figure 17-12 Insert a table

10.Click OK. Your page now should look similar to Figure 17-13.

Figure 17-13 The page layout after inserting a table

11.Select File → Save All.

12.Open the Calculate.java file by selecting Edit Page Code from the context
menu inside the JSP in Page Designer (right-click). You can also open the
Java file directly, if you prefer. Notice the code that has been generated, for
example:

protected HtmlOutputText comment;
protected HtmlOutputText getComment() {

if (comment == null) {
comment = (HtmlOutputText) findComponentInRoot("comment");

 Chapter 17. JavaServer Faces portlet development 561

}
return comment;

}

Notice also that each component is defined with a lazy getter method;
therefore you will never use the variable in your own methods, but always in
the associated getter method.

13.Fill in the recently created table (Figure 17-14):

a. Drop Output components into column 1, rows 1, 2, 3, and 5.
b. Drop Input components into column 2, rows 1 and 3.
c. Drop a Combo Box component into column 2 row 2.
d. Drop a Command - Button component into column 2 row 4.
e. Drop an Output component into column 2 row 5.

The table should now look as illustrated in Figure 17-14.

Figure 17-14 Inserting JSF components into the table

14.Change the Output components in column 1. Select each component and in
the Properties view change the Value field (Figure 17-15 on page 563):

a. Column 1 row 1: Number 1 (11-888):
b. Column 1 row 2: Operation:
c. Column 1 row 3: Number 2 (0-19, odd):
d. Column 1 row 5: Result:

The table should now look as illustrated in Figure 17-15 on page 563.

562 IBM Rational Application Developer V6 and Portal Tools

Figure 17-15 Changing the output components value property

15.Select File → Save All.

17.4 Implementing component attributes and validation
Execute the following steps:

1. Select the first Input component. In the Properties view, h:inputText tab, do
the following (Figure 17-16 on page 564):

a. Change the id to number1.

b. Change the width to 12.

c. In the Format combo box, select Number.

d. Select Decimal as the type.

e. Check the Integer only checkbox.

 Chapter 17. JavaServer Faces portlet development 563

Figure 17-16 Properties for number1 component

2. Change to the Validation tab:

a. Check the Value is required checkbox.

b. Set Minimum and Maximum to 11 and 888.

c. Check the Display validation error messages in a error message
control checkbox.

d. An error message field is added to the right of the input field. Select it and
on the Properties view, if not already there, enter message in the Styles:
Classes property.

Figure 17-17 Validation properties

3. Select the Input component again and change to the Behavior tab:

a. Check Auto-advance to next field.

b. Enter 3 in the field After user types ... characters.

564 IBM Rational Application Developer V6 and Portal Tools

c. Click the All Attributes icon to see all the values you have entered. You
can also enter the values directly there.

Figure 17-18 Behavior properties

4. Similarly, select the second Input component. In the Properties view, do the
following:

a. h:inputText tab: id=number2, width=12, Format=Number, Type=Decimal
and Integer only checkbox.

b. Validation tab: required, minimum= 0, maximum=19.

c. Behavior tab: Auto-advance to next field and enter 2 in the field After
user types ... characters.

5. Select the Combo Box component (operation column 2). In the Properties
view, h:selectOneMenu tab:

a. Change id to operation.

b. In the Add a choice for each item in the combo box dropdown table
(Figure 17-19 on page 566):

i. Click the Add Choice button four times.

ii. Change the generated names to add, subtract, multiply, and
divide.

iii. Change the generated values to Add, Subtract, Multiply and Divide.

 Chapter 17. JavaServer Faces portlet development 565

Figure 17-19 Setting combo box choices (operations)

6. Select the Submit button. In the Properties view:

a. hx:commandExButton tab: enter calc as the id.

b. In the Display options tab: Replace Submit for Calculate as the Button
label.

7. Select the Result: Output component (column 1). In the Properties view, set
the Style: Props to:

color: blue; font-size: 18; font-weight: bold

8. Select the last Output component (column 2). In the Properties view, set the
id to result and the Style: Props to:

color: blue; font-size: 18; font-weight: bold

9. The page design should be similar to Figure 17-20.

Figure 17-20 Basic design for the calculator

566 IBM Rational Application Developer V6 and Portal Tools

10.Now, save the JSF page and take a look at some of the tags in the source
tab. For example:

� Tag libraries:

<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet"%>
<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@taglib uri="http://www.ibm.com/jsf/html_extended" prefix="hx"%>

� JSF style sheet:

<LINK rel="stylesheet" type="text/css"
href='<%= renderResponse.encodeURL(renderRequest.getContextPath() +
"/theme/stylesheet.css") %>'
title="Style">

� The whole page is contained in a <f:view> tag. Around the table is a
<f:form> tag.

� Input field with error message field:

<h:inputText styleClass="inputText" id="number1" size="12"
required="true" maxlength="3">

<f:convertNumber integerOnly="true"/>
<f:validateLongRange minimum="11" maximum="888"></f:validateLongRange>

</h:inputText>
<h:message for="number1"></h:message>

� Combo box:

<h:selectOneMenu styleClass="selectOneMenu" id="operation">
<f:selectItem itemValue="Add" itemLabel="add" />
<f:selectItem itemValue="Subtract" itemLabel="subtract" />
<f:selectItem itemValue="Multiply" itemLabel="multiply" />
<f:selectItem itemValue="Divide" itemLabel="divide" />

</h:selectOneMenu>

� Submit button (uses an IBM extension tag):

<hx:commandExButton type="submit" value="Calculate"
styleClass="commandExButton" id="calc"></hx:commandExButton>

17.4.1 Testing the validation

At this point, you can test your validation definitions:

1. Right-click the Calculator project.

2. Select Run → Run on Server.

3. In the Define a new server window, select Manually define a server.

4. Select the server type WebSphere Portal V5.1 Test Environment.

 Chapter 17. JavaServer Faces portlet development 567

5. Check the Set server as project default check box.

6. Click Finish.

7. The calculator application appears in the browser. Leave the fields empty and
click Calculate.

8. You get two error messages in the common error message field, and one
message in the error message field of number 1 (Figure 17-21).

Figure 17-21 Testing the input validation

9. Enter 9 and 2 for the two numbers. You should get a validation error for the
first number.

10.Enter an invalid value for the second number and you get an error message
as well.

11.Enter valid values and no error messages should be displayed.

Note: The second number is only validated for the range. Standard validation
does not check for odd numbers. You will implement this in 17.8, “Implementing a
validator” on page 580.

17.5 Binding the front end to the calculator
With the UI design completed, you can now hook it up to the CalculatorBean to
perform the operations and display the result. Execute the following steps:

1. Import the CalculatorBean.

568 IBM Rational Application Developer V6 and Portal Tools

a. Create a Java package named itso.jsf.calculator.

Figure 17-22 Creating a package

b. Select the package and in the context menu, select Import....

c. Select File System, locate and select the file CalculatorBean.java.

d. Click Finish.

2. Open the calculate.jsp page in Page Designer and go to the Page Data view.
In the context menu, select New → JavaBean (Figure 17-23).

Figure 17-23 Creating a new JavaBean in the page

3. In the Add JavaBean dialog (Figure 17-24 on page 570):

 Chapter 17. JavaServer Faces portlet development 569

a. Enter calculator as the name.

b. For the class click the Browse icon, then enter Calcu to locate the
CalculatorBean. Click OK.

c. Select Make this JavaBean reusable (this will create a new Managed
Bean in faces-config.xml) and select session for the scope.

d. Click Initialize Properties....

i. In the dialog, click Add.

ii. In the name column, select the operation property.

iii. In the value column, enter Subtract and press Enter.

iv. Click OK. When you run the code, the subtract operation will be
preselected.

e. Click Finish so the bean can be added to the Page Data view.

f. Save the JSP.

Figure 17-24 Defining the JavaBean

4. Open the faces-config.xml file and you will see the new managed bean.

5. The calculator bean is also added to the Calculate.java code with a
getCalculator method.

6. Select the first input field (number1).

570 IBM Rational Application Developer V6 and Portal Tools

a. In the Properties view, for the Value field, click the icon and select the
number1 property of the calculator bean.

b. Notice the generated binding: #{pc_Calculate.calculator.number1} in
the value field.

Figure 17-25 Page data objects

7. Repeat this for the number2 input field and bind it to the number2 property.

8. Expand the calculator bean in the Page Data view. Select the operation
property and drag/drop it onto the combo box. This has the same effect.
Select the result property and drag/drop it onto the output field in column 2.

9. Save the file.

10.The property names appear in the Design view for the input and output
components, as shown in Figure 17-26.

Figure 17-26 Binding properties to the JSF components

 Chapter 17. JavaServer Faces portlet development 571

17.5.1 Testing the binding
The front end is now coupled to the calculator bean and therefore you can now
test the binding. For example:

1. In the Servers view, select the WebSphere Portal V5.1 Test Environment @
localhost and from the context menu select Restart Project →
CalculatorEAR.

Note: You have to do this when the configuration file changes.

2. Run the Calculator project.

a. Notice that no values are displayed in the number fields and subtract is
displayed for the operation.

b. These values come from the calculator bean. Enter some values and
click Calculate.

c. See that the values are assigned to the bean by watching the test output in
the Console view.

17.6 Invoking the business logic of the calculator
To actually use the calculator, you have to invoke the calculate method of the
bean when Calculate is clicked.

1. In the Page Designer, select the Calculate button. In the Quick Edit view,
select Command in the left pane. Click in the right pane and this sample code
appears:

// Type Java code that runs when the component is clicked
// TODO: Return outcome that corresponds to a navigation rule
return "";

2. Replace the generated action code with the code shown in Example 17-1.

Example 17-1 Action code to invoke the calculate method

log("CalculateAction start");
try {

getCalculator().calculate();
} catch (Exception e) {

log("Calculator-Exception: "+e.getMessage());
if (getCalculator().getErrorMessage() == null)

getCalculator().setErrorMessage("Exception: "+e.getMessage());
} finally {

log("CalculateAction end");
}
return null;

572 IBM Rational Application Developer V6 and Portal Tools

3. Save the calculate.jsp. Open the Calculate.java file and notice that the action
code has been added in the doCalcAction method. You can also make further
changes either in the Quick Edit view or in the Java class.

4. Select the Calculate button. In the Properties view, click the Show All
Attributes icon (). You can see that the action is set to
#{pc_Calculate.doCalcAction}. This is the link to the Java code.

5. Rerun the project (Figure 17-27). Perform some calculations. For example, try
to multiply 123 by 14.

Figure 17-27 The calculator application showing the results

6. Try the divide operation with values that result in a non-integer result. Notice
the exception in the Console. The result is still calculated.

Note: You will implement an error page to display the error message in
17.6.1, “Implementing an error page” on page 573.

17.6.1 Implementing an error page
The exception error can be reported back on the same page. However, to
illustrate page switching, in this section you will implement an error page.

1. Under WebContent, right-click and select New → Faces JSP file. Enter
error.jsp as the name and click Finish.

 Chapter 17. JavaServer Faces portlet development 573

Figure 17-28 Faces JSP file

2. Replace the Place content here content with a heading 1, JSF Calculator
Error. See 17.3, “Creating the page layout” on page 558.

3. In the Page Data view, right-click and select New → JavaBean.

4. In the dialog, select Add existing reusable JavaBean (Figure 17-29 on
page 575).

5. Select the calculator bean and click Finish.

574 IBM Rational Application Developer V6 and Portal Tools

Figure 17-29 Adding a reusable JavaBean

6. Expand the calculator bean.

7. Select the errorMessage property and drag/drop it under the heading.

8. In the Insert JavaBean dialog (Figure 17-30 on page 576), select Displaying
data (read-only).

9. If needed, change the label to Error message: and click Finish.

Note: This creates a table with a label (Error message:) and an output text
bound to the calculatorBean.errorMessage property, plus a generic Error
Messages component.

 Chapter 17. JavaServer Faces portlet development 575

Figure 17-30 Binding the error message from the bean to the error JSP

10.From the palette, add a Command - Button at the bottom.

11.Change the label in the Properties view (Display options tab) to Back.

12.Save the error.jsp (Figure 17-31).

13.Notice the matching Error.java code in the pagecode package.

Figure 17-31 The error page

576 IBM Rational Application Developer V6 and Portal Tools

17.7 Implementing page navigation
In this section, you will implement the navigation between the calculate.jsp and
the error.jsp. Navigation rules are stored in the configuration file. There are local
rules (for one JSF page) and global rules (for all JSF pages).

1. In the error.jsp, select the Back button.

2. In the Properties view, hx:commandExButton tab, click Add Rule to add a
navigation rule.

Figure 17-32 Adding a navigation rule

3. Select the calculate.jsp page, enter back as the outcome and leave other
fields unchanged (Figure 17-33).

4. Click OK to add the rule.

Figure 17-33 Adding a navigation rule

 Chapter 17. JavaServer Faces portlet development 577

5. Select the Back button and in the Properties view, click the All Attributes
icon ().

6. Enter back in the action attribute.

Figure 17-34 Action attribute

Note: The symbolic alias name of the action can be entered directly, or in the
action logic. You will enter the action alias in the logic for the calculate.jsp.

7. Save the file.

8. In the calculate.jsp, select the Calculate button.

9. In the Properties view, hx:commandExButton tab, add two new rules:

a. calculate, which stays on the page.

b. error, which goes to the error page.

Note: If needed, click All Attributes again to add new rules.

10.Define the error rule as a global rule, by selecting the All pages option.

11.For this case, a global rule is not really necessary, but it illustrates the concept
of using global rules. Figure 17-35 illustrates the entered rules.

Figure 17-35 Navigation rules defined for the calculate JSP

12.Open the faces-config.xml file and locate the code that was added for the
navigation rules.

Example 17-2 Navigation rules in faces-config.xml

<navigation-rule>
<from-view-id>/error.jsp</from-view-id>

<navigation-case>
<from-outcome>back</from-outcome>

578 IBM Rational Application Developer V6 and Portal Tools

<to-view-id>/calculate.jsp</to-view-id>
</navigation-case>

</navigation-rule>
<navigation-rule>

<from-view-id>/calculate.jsp</from-view-id>
<navigation-case>

<from-outcome>calculate</from-outcome>
<to-view-id>/calculate.jsp</to-view-id>

</navigation-case>
</navigation-rule>
<navigation-rule>

<navigation-case>
<from-outcome>error</from-outcome>
<to-view-id>/error.jsp</to-view-id>

</navigation-case>
</navigation-rule>

13.Next, change the action code for the Calculate button as follows:

a. In case of an exception, go to the error page.

b. Otherwise, stay on the calculate page.

This process is accomplished by returning one of the two symbolic names,
calculate or error as highlighted in Example 17-3.

Note: You can make the changes in the Quick Edit view or directly in the
Calculate.java file.

Example 17-3 Action code for the Calculate button changed to reflect new rules

log("CalculateAction start");
try {

getCalculator().calculate();
return "calculate"; // stay on the calculate page

} catch (Exception e) {
log("Calculator-Exception: "+e.getMessage());
if (getCalculator().getErrorMessage() == null)

getCalculator().setErrorMessage("Exception: "+e.getMessage());
return "error"; // go to the error page

} finally {
log("CalculateAction end");

}
return null; // remove the existing return

14.Save all files.

Note: Instead of returning the calculate String, you can return null or an
empty string and the calculate.jsp is redisplayed.

 Chapter 17. JavaServer Faces portlet development 579

15.Run the code again, then try a division that produces the exception. The error
page is displayed (Figure 17-36). Click Back to get back to the calculator.

Figure 17-36 Error page showing the exception

17.8 Implementing a validator
We want to restrict the second number to odd values. Since there is no standard
validator for this, you will need to write your own validator. In addition, you will
also need to do the following:

� Register your validator in the configuration file.

� Link your validator to the number2 field so it can be checked.

Execute the following steps:

1. Right-click the itso.jsf.calculator package

a. Select New → Class.

b. Enter OddValidator as name.

c. Click Add for Interfaces.

d. Locate the javax.faces.validator.Validator interface and click OK.

e. Select Inherited abstract methods. Click Finish.

580 IBM Rational Application Developer V6 and Portal Tools

Figure 17-37 New Java class

2. The skeleton class is generated with this method skeleton:

public void validate(FacesContext arg0, UIComponent arg1, Object arg2)
throws ValidatorException {

}

Where:

– FacesContext arg0: provides access to all components

– UIComponent arg1: component to be validated

– Object arg2: value (of the component) to be validated

3. Replace the method body with the code below:

Example 17-4 The validator code

System.out.println("OddValidator start");
UIInput field = (UIInput)arg1;
int value = ((Long)arg2).intValue();

 Chapter 17. JavaServer Faces portlet development 581

System.out.println("Field="+field.getId()+" Value="+value);
if (value%2 == 1) {

field.setValid(true);
System.out.println("OddValidator end: valid");

} else {
System.out.println("OddValidator end: invalid");
FacesMessage errmsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,

"2nd number not odd.", "Second number must be odd.");
throw new ValidatorException(errmsg);

}

4. To resolve the classes, right-click in the code and select Source → Organize
imports.

5. Review the validator code:

a. Access the arg1 field to display its name, you can use UIInput or
HtmlInputText classes.

b. Obtain the value from arg2, you know its data type.

c. Create an error message, a FacesMessage, to handle errors:

i. The first message is the summary message (displayed in the global
error message field).

ii. The second message is the detailed message (displayed in an error
message field attached to the input field). A detailed message has not
been defined and therefore it will not be used in this case.

6. Save and close the OddValidator.

7. Register the validator. Open the faces-config.xml file and at the bottom ad
the lines shown in Example 17-5.

Example 17-5 The validation registration in faces-config.xml

<validator>
<description>Registers the OddValidator</description>
<validator-id>oddValidator</validator-id>
<validator-class>itso.jsf.calculator.OddValidator</validator-class>

</validator>

8. In the calculate.jsp, select the number2 field and go to the Source page in
the Design view.

a. Place the cursor before the end of the number2 field and just after the
</f:validateLongRange> tag:

....</f:validateLongRange> PUT CURSOR HERE

b. In the menu bar, select JSP → Insert Custom.

582 IBM Rational Application Developer V6 and Portal Tools

c. In the Insert Custom Tag dialog select the “f” tag library (at left) and
validator (at right) and click Insert.

d. Click Close. The custom tag is inserted.

e. Enter oddValidator for the validatorId attribute, either directly in the
Source, or in the Properties view. This generate the following tag:

<f:validator validatorId="oddValidator"></f:validator>

f. Save the calculator.jsp.

g. Restart the enterprise application. Enter an even value and you should
see the error message. Notice that the summary message is displayed.

h. Notice also the test output in the Console.

17.9 Implementing a value change event
This event allows you to monitor value changes. This event can be invoked
immediately or when the next action (button) is performed. As an example in this
sample scenario you will monitor the change of the combo box operation.

1. From the palette, select an Output component and drop it to the right of the
operation combo box (Figure 17-38). You will place a text there when the
operation has changed.

Figure 17-38 Output text to monitor changes in the combo box values

2. In the Properties view, change the Id to Opchanged. Make sure the output
component is still selected.

Figure 17-39 Properties view

 Chapter 17. JavaServer Faces portlet development 583

3. Select the operation combo box. In the Quick Edit view, select Value
Changed (left). Click in the code pane (right), and enter this code:

Example 17-6 Code to handle the value change event

log("OperationValueChangeEvent start");
HtmlSelectOneMenu operation = (HtmlSelectOneMenu)valueChangedEvent.getSource();
String opnew = (String)valueChangedEvent.getNewValue();
String opold = (String)valueChangedEvent.getOldValue();
log("operation old="+opold+" new="+opnew);
getCalculator().setOperation(opnew); // is also done later by binding
getOpchanged().setValue("changed"); // change the output text field
getCalc().setValue(opnew); // change the Calculate button
log("OperationValueChangeEvent end");

4. Save the calculate.jsp.

5. Open the Calculate.java file and you will find the
handleOperationValueChange method with your code.

6. Review the generated code:

a. The method that is generated (Calculate.java) has one parameter
(valueChangedEvent).

b. From this parameter you can access the source component and the old
and new values.

c. In this scenario, you set the Opchanged output field to the value changed.

d. You use the new value to change the label in the Calculate button.

e. Notice in the Properties view, with All attributes button selected, the
valueChangeListener is set to
#{pc_Calculate.handleOperationValueChange1}.

Note: The last character in the method name can be nothing or a
consecutive digit, depending on how many operations you have.

7. Run the code. You can see in the Console that the event is invoked. However,
no change is visible in the GUI. This is because the event is not immediate
and the refresh of the GUI after the action looses the changes if a navigation
rule is involved. If your action logic returned null, the changes would be
visible.

8. To make the event immediate, you have to handle the onchange event. But
before you do that, you will create a method to facilitate dealing with the
portlet namespace:

a. Open the PageCodeBase.java file. Create the following attribute:

protected String namespace;

b. Create a method to get the portlet namespace from the RenderResponse:

584 IBM Rational Application Developer V6 and Portal Tools

Example 17-7 getNamespace method

public String getNamespace() {
if (namespace == null) {

RenderResponse response =
(RenderResponse)facesContext.getExternalContext().getResponse();

namespace = response.getNamespace();
}
return namespace;

}

c. You may need to organize your imports.

9. Now you can handle the onchange event. Select the operation combo box. In
the Quick Edit view select onchange (left). Click in the code pane (right) and
enter this code:

document.forms['view<portlet:namespace/>:form1'].submit();
return false;

10.This creates a JavaScript function that is invoked from the combo box
(Example 17-8).

Example 17-8 JavaScript to handle the onchange event

<SCRIPT type="text/javascript">
function func_1(thisObj, thisEvent) {
//use 'thisObj' to refer directly to this component instead of keyword 'this'
//use 'thisEvent' to refer to the event generated instead of keyword 'event'
document.forms['view<portlet:namespace/>:form1'].submit();
return false;
}</SCRIPT>

11.Next, you have to change the name of the JavaScript function, to include the
namespace, so that it does not collide with the name of other portlets’ scripts
on the page:

a. Change the name of func_1 function to <portlet:namespace/>func_1. The
function signature should now be like this:

function <portlet:namespace/>func_1(thisObj, thisEvent) {

b. In the Source code of the combo box you will find:

<h:selectOneMenu onchange="return func_1(this, event);">

You need to change the call to the JavaScript function. Change the
onchange attribute value to the following:

onchange="return #{pc_Calculate.namespace}func_1(this, event);"

 Chapter 17. JavaServer Faces portlet development 585

12.Save the file and retest. When you change the operation, you see the
immediate result (Figure 17-40).

13.Notice that the button changes back to Calculate at the next operation
because a navigation rule is involved. If you change the action logic to return
null, the changes to the user interface will be permanent.

Figure 17-40 Result of value changed event

Note 1: "view<namespace>" is a client ID of UIView (<f:view>). In the normal
portlet programming pattern, it should be "<namespace>view", so that the
portlet container removes "<namespace>" part in the request parameters.
However, JSF requires the request parameter names match to the client IDs
and if the porlet container removes "<namespace>" part, JSF would fail to
apply the request parameters to UI components. That's why JSF portlet uses
"view<namespace>" instead, in order to avoid ID collision with other JSF
portlets in the same page.

Note 2: The reason to use value bind to retrieve the namespace in the
onchange attribute is because JSF components does not accept runtime
expressions as values. So you cannot use portlet:namespace here. For this
reason we created a namespace property in PageCodeBase class, with its
proper get method. Inside the JavaScript function, you do not have this
limitation, so you could use the portlet:namespace tag.

586 IBM Rational Application Developer V6 and Portal Tools

17.10 Implementing internationalization
In this section, you will use the internationalization feature to create JSF portlets
to run in multiple languages. You will include the text constants and error
messages into a properties file used by the JSF components and the business
logic.

However, in order to simply illustrate the concept, you will only implement a few
constants. Since you already have a properties file created by the portlet project
wizard, you will use this same file to include the key-value pairs for this
internationalization scenario.

Execute the following steps:

1. Open the calculator.nl.CalculatorPortletResource.properties file.
Include these lines at the end of the file, then save and close it:

page_comment=* Created using Application Developer *
text_operation=Calculator operation:
text_calculate=Perform Calculation

Note: CalculatorPortletResource.properties file is the name of the default
file (no locale suffix). If a locale is not supported by the portlet or the specific
properties file is not found, the user gets values from this properties file. For
example, if you want to create specific values for English, you will need to
create a file with name CalculatorPortletResource_en.properties.

2. Create a properties file for Brazilian Portuguese.

a. Right-click CalculatorPortletResource.properties.

b. Select Copy.

c. Right-click the calculator.nl package.

d. Select Paste.

e. Enter CalculatorPortletResource_pt_BR.properties as the new name
for the file. This is the suffix for brazilian Portuguese.

f. Click OK.

g. Change the three last keys, to use Brazilian Portuguese text:

page_comment=* Criado com Application Developer *
text_operation=Operação:
text_calculate=Efetuar Cálculo

h. Save the file and close the editor.

3. Edit the Portlet deployment descriptor.

a. Double-click Portlet Deployment Descriptor.

b. In the Portlet deployment descriptor window, click Portlets →Calculator.

 Chapter 17. JavaServer Faces portlet development 587

c. Under the supported locales section, click Add. See Figure 17-41.

Figure 17-41 The supported locales section

d. Enter pt_BR in the Locale list.

e. Click OK.

f. Save the file and close the editor.

4. You also need to specify the supported languages in the faces-config.xml
file.

a. Open the faces-config.xml file.

b. Within the <application> tag, include the following tags:

<locale-config>
<supported-locale>en</supported-locale>
<supported-locale>pt_BR</supported-locale>

</locale-config>

c. Save the file and close it.

5. In the calculate.jsp Source code, after the jsf/core tag library, enter:

<f:loadBundle var="constants"
basename="calculator.nl.CalculatorPortletResource"/>

Note: This tag provides access to the text constants for the selected
language.

6. In the Design view, select the comment field (Created using Application
Developer). In the Properties view, change the value attribute to:

#{constants.page_comment}

7. Similarly change the Operation: text to:

#{constants.text_operation}

8. Change the Calculate button label in the Display options tab to:

#{constants.text_calculate}

588 IBM Rational Application Developer V6 and Portal Tools

9. The page should look like Figure 17-42.

Figure 17-42 Page with components changed to run in multiple languages

10.Run the project again and change your preferred language in the profile to
Brazilian Portuguese. Use Edit my profile option and enter the required
information (password is wpsadmin).

11.You will have to run the project again so that the JSF framework accepts the
change.

12.Notice that the text has changed to the values contained in the resource file.

13.Now try to specify a value for number1 that is out of the permitted range
(11-888). You will notice that the error message is also translated to Brazilian
Portuguese, although you did not have to be concerned about (Figure 17-43
on page 590).

 Chapter 17. JavaServer Faces portlet development 589

Figure 17-43 The calculator internationalized to Brazilian Portuguese

17.10.1 Internationalization of standard validator messages
The JSF framework is already prepared to translate the standard validator
messages to many languages. If your language is not automatically translated or
if you want to change the default validator messages, proceed as follows:

1. In the faces-config.xml file, register the resource bundle that will store the
validator messages.

Within the <application> tag, include the following tag:

<message-bundle>calculator.nl.CalculatorPortletResource</message-bundle>

Note: The message-bundle element represents a set of localized messages.
This element contains the fully-qualified path to the resource bundle
containing the localized messages, in this case,
calculator.nl.CalculatorPortletResource.

2. Include the following key in CalculatorPortletResource.properties (default
locale bundle):

javax.faces.validator.NOT_IN_RANGE=Valid values must be in the range of {0}
to {1}

3. Include the following key in CalculatorPortletResource_pt_BR.properties:

590 IBM Rational Application Developer V6 and Portal Tools

javax.faces.validator.NOT_IN_RANGE=Este campo só aceita valores entre {0} e
{1}

4. Run the code again and try to specify a value for number1 that is out of the
permitted range (11-888). You will notice that the error message has changed
to the one specified in the properties file.

For your reference, the Table 17-1 shows the keys for the standard messages
associated with standard JSF components. The messages for the IBM
extended components can be found at the jsf-ibm.jar file.

Table 17-1 Keys for the standard messages

Key Standard Message

javax.faces.component.UIInput.CONVERSION Conversion error occurred

javax.faces.component.UIInput.REQUIRED Value is required

javax.faces.component.UISelectOne.INVALID Value is not a valid option

javax.faces.component.UISelectMany.INVALID Value is not a valid option

javax.faces.validator.NOT_IN_RANGE Specified attribute is not between the expected
values of {0}and {1}

javax.faces.validator.DoubleRangeValidator.MAXIMUM Value is greater than allowable maximum of {0}

javax.faces.validator.DoubleRangeValidator.MINIMUM Value is less than allowable minimum of {0}

javax.faces.validator.DoubleRangeValidator.TYPE Value is not of the correct type

javax.faces.validator.LengthValidator.MAXIMUM Value is greater than allowable maximum of {0}

javax.faces.validator.LengthValidator.MINIMUM Value is less than allowable minimum of {0}

javax.faces.validator.LongRangeValidator.MAXIMUM Value is greater than allowable maximum of {0}

javax.faces.validator.LongRangeValidator.MINIMUM Value is less than allowable minimum of {0}

javax.faces.validator.LongRangeValidator.TYPE Value is not of the correct type

 Chapter 17. JavaServer Faces portlet development 591

592 IBM Rational Application Developer V6 and Portal Tools

Chapter 18. Additional Faces portlet
sample scenarios

This chapter provides sample scenarios of JSF portlet development, to illustrate
additional features available in Rational Application Developer and the Portal
Tools.

18

Note: The portlet applications described in this chapter have the following
characteristics:

� Portlet API: IBM Portlet API (scenario 1) and JSR 168 (scenario 2)
� Application type: JavaServer Faces

© Copyright IBM Corp. 2005. All rights reserved. 593

18.1 The call center application
The application you will build is a call center application. The call center
application consists of a page that contain two portlets to list trouble tickets for a
customer and view the details of a trouble ticket.

Both portlets are created using Faces (JSF) portlet with prebuilt JavaBean that
represent the customers and trouble tickets.

Note: To make the example simple, static data is used instead of accessing a
database.

In this example, you will add support for Edit mode to select a customer ID. You
will also include a Click-to-Action tag in the list portlet to send a ticket ID to the
detail portlet.

18.1.1 Creating the project
We will create the project as a Portlet Project project. Follow these steps to
create it:

1. In the menu, select File → New → Project.

2. Select Portlet Project and click Next.

3. If the Confirm Enablement window appears, asking if you want to enable the
portal development role, click OK.

4. In the Portlet project page, type the name of the project Ticket.

5. Check the Create a portlet check box, if it is not already checked.

6. In the WebSphere Portal version box, select 5.1.

7. Click Next >.

8. In the Portlet type page, select Faces portlet.

9. Click Next >.

10.Click Next > again in the Features page.

11.In the Portlet settings page, review the options provided.
Leave all settings unchanged. Click Next >.

12.Check Edit mode and click Finish.

13.Click Yes in the Confirm Perspective Switch dialog.

A JSP file is opened with Page Designer.

14.Select Java Resources/JavaSource in Project Explorer and select Import
from the context menu.

594 IBM Rational Application Developer V6 and Portal Tools

15.Select Zip file and click Next.

16.Click Browse and select the com.ibm.faces.portlet.example.zip file.

17.Click Finish.

The prebuilt Java Bean package (com.ibm.faces.portlet.examples) is
shown under JavaSource.

18.1.2 Creating the page layout
We will now create a data table in TicketView.jsp to show the list of trouble
tickets. Proceed as follows:

1. In the Design view, delete the text Place content here.

2. In the Page Data view, select New → JavaBean from the context menu.

3. Enter ticketList for the Name and
com.ibm.faces.portlet.examples.TicketList for the class. If you wish, you
can use the icon next to Class to browse and type TicketList to find the
class.

4. Click Finish.

ticketList is shown in Page Data view (Figure 18-1).

Figure 18-1 The Page Data view showing the ticketList Java Bean

5. Expand ticketList and drag and drop ticketList/tickets from Page Data view
onto Page Designer.

6. Type com.ibm.faces.portlet.examples.Ticket in Type and click OK in the
Object Type dialog (Figure 18-2 on page 596).

 Chapter 18. Additional Faces portlet sample scenarios 595

Figure 18-2 The object type dialog

7. In the Insert JavaBean dialog (Figure 18-3 on page 597), click None and
select the fields ticketId, title and status. Sort the fields in this order clicking
Up/Down (icons). Enter Ticket ID as the label of the ticketId field.

596 IBM Rational Application Developer V6 and Portal Tools

Figure 18-3 Inserting the ticketList Java Bean in the page

8. Click Finish.

A data table with outputs is inserted.

9. Select one of the cells and change the focused node by clicking h:dataTable
on the Change focused node button at the top of Design view (Figure 18-4 on
page 598).

 Chapter 18. Additional Faces portlet sample scenarios 597

Figure 18-4 Changing the focused node

10.In the Display options tab, Enter 5 in Rows per page and click the Add a
deluxe pager button (Figure 18-5)

Figure 18-5 Setting the display options for the dataTable

Your page should look similar to Figure 18-6 on page 599.

598 IBM Rational Application Developer V6 and Portal Tools

Figure 18-6 Layout of the dataTable after setting the display options

11.Save the file.

18.1.3 Defining a parameter for the list
Now you will define a parameter to filter the list.

1. Expand Portlet in Page Data view.

2. Select PortletData and select Add Attribute from the context menu
(Figure 18-7).

Figure 18-7 New PortletData attribute

3. Type customerId as the Attribute name and click OK.

4. Select ticketList and select Configure from the context menu.

5. Click Initialize Properties.

6. Click Add.

7. Select customerId from Name.

 Chapter 18. Additional Faces portlet sample scenarios 599

8. Select PortletData/customerId from Value (click the icon to view the
dialog shown in Figure 18-8).

Figure 18-8 Selecting an Object from Page Data

9. Click OK.

10.Click OK again.

11.Click Finish.

12.Select File → Save from the menu bar.

13.Open WebContent/TicketEdit.jsp with Page Designer.

14.Replace the text Place content here. with Customer ID:.

15.Drag and drop Combo Box from Faces Components of Palette view, next to
the text Customer ID:.

16.Drag and drop Command - Button from the Faces Components of the Palette
view, next to the combo box. Your page should look like Figure 18-9.

Figure 18-9 Layout of TicketEdit.jsp

17.Select New → JavaBean from the context menu of Page Data view.

600 IBM Rational Application Developer V6 and Portal Tools

18.Enter customerList for the Name and
com.ibm.faces.portlet.examples.CustomerList for the class.

19.Click Finish.

customerList is shown in Page Data view.

20.Expand customerList/customers/Contained Type.

21.Enter com.ibm.faces.portlet.examples.Customer in Type and click OK in the
Object Type dialog.

22.Drag and drop customerList/customers/Contained Type/customerId on
the combo box in Page Designer.

The combo box gets wider to show the choice specification, but it is normal
behavior.

23.Expand Portlet in Page Data view.

24.Select PortletData and select Add Attribute from the context menu.

25.Enter customerId in Attribute name and click OK.

26.Select the combo box and in the Properties view, h:selectOneMenu tab, click
the icon next to Value.

27.Select PortletData/customerId and click OK in Page Data Object dialog.

28.Select File → Save from the menu bar.

18.1.4 Creating a detail portlet
Now you will create a new portlet in the same Portlet project to show the trouble
tickets detail.

1. Select File → New → Portlet from the menu bar.

2. Select Ticket for the Project.

3. Select Faces portlet and click Finish.

4. A JSP file named Ticket2View.jsp is opened with Page Designer.

5. Select New → JavaBean from the context menu of Page Data view.

6. Enter ticketDetail for the Name and
com.ibm.faces.portlet.examples.TicketDetail for the class.

7. Click Finish.

ticketDetail is shown in Page Data view.

8. Replace the text Place content here. with Ticket ID:.

9. Drag and drop Input from Faces Components of Palette view, next to the text,
Ticket ID:.

 Chapter 18. Additional Faces portlet sample scenarios 601

10.Drag and drop Command - Button from Faces Components of Palette view,
next to the input.

11.Drag and drop ticketDetail/ticketId from Page Data view on the input.

12.Drag and drop ticketDetail/ticket from Page Data view onto Page Designer,
below the Ticket ID text.

13.Select the following fields:

– title
– status
– owner
– contact
– note

and sort in the above order by clicking Up/Down (icons).

14.Click Finish.

A table with outputs is inserted (Figure 18-10).

Figure 18-10 Layout of the Details portlet

15.Select File → Save from the menu bar.

18.1.5 Linking the portlets
Now you will link the two portlets:

1. Switch to TicketView.jsp.

2. Drag and drop Click-to-Action Output Property from Portlet of Palette view on
the output labeled {ticketId}.

Note: You need to drop Click-to-Action Output Property ON the output
component to bind value automatically. To ensure that you are dropping on

602 IBM Rational Application Developer V6 and Portal Tools

the right place, be sure that during the drop the enclosing black rectangle is
shown around the output component.

The Insert Click-to-Action Output Property dialog is shown (Figure 18-11).

3. Type ticketId in Data type.

4. Select Ticket portlet from Source portlet and click OK.

The wizard creates the Ticketportlet.wsdl file and import the pbportlet JAR file
in the project.

Figure 18-11 Inserting a Click-to-Action output property

5. Select File → Save from the menu bar.

6. Select Portlet Deployment Descriptor/Ticket2 portlet in Project Explorer
view and select Cooperative > Enable Target from the context menu.

7. Click the first Browse button to select the Data type for the Input property.

8. Select ticketId (Figure 18-12) and click OK.

Figure 18-12 Select Data type for the Input property

 Chapter 18. Additional Faces portlet sample scenarios 603

9. Click the second Browse to select the target action.

10.Select /Ticket2View.jsp/form1/button1 (Figure 18-13) and click OK.

Figure 18-13 Select the target action

11.Type Show Detail in Label. Your dialog should look like Figure 18-14 on
page 605.

12.Click OK.

The wizard creates the Ticket2portlet.wsdl file.

604 IBM Rational Application Developer V6 and Portal Tools

Figure 18-14 Enable Cooperative Target dialog

18.1.6 Testing the application
Execute the following steps:

1. Select the Ticket project in the Project Explorer view and select Run → Run
on Server from the context menu.

2. Select IBM/WebSphere Portal V5.1 and click Finish. The browser opens
and shows a page with the portlets.

3. Click the Edit mode icon on the portlet window title of the left portlet.

4. Select C0002 from the combo box and click Submit.

5. Click the back icon on the portlet window title. Trouble tickets are shown in
the data table.

6. Click the Click-to-Action icon in the data table and select Show Detail.

7. The detail of the trouble ticket is shown in a table in the Detail portlet .

 Chapter 18. Additional Faces portlet sample scenarios 605

Figure 18-15 Running the application

18.2 The Web service client portlet
Portals generally serve as clients to back end services, so being able to quickly
build portlets that can call Web services is essential. In this application, you will
see how easily you can search for a known Web service published on the
Internet and create a portlet client using JSF components to access it. You will
build a portlet that calls a Traffic Condition Web service.

18.2.1 Creating the project
We will create the Traffic Condition project as a Portlet Project (JSR168) project.
Follow these steps to create it:

1. In the menu, select File → New → Project.

2. In the New Project window, select the wizard for Portlet Project (JSR 168).

3. Click Next >.

Note: A network connection to the Internet will be needed to run this example.

606 IBM Rational Application Developer V6 and Portal Tools

4. If the Confirm Enablement window appears, asking if you want to enable the
portal development role, click OK.

5. In the Portlet project page, type the name of the project TrafficCondition.

6. Check the Create a portlet check box, if it is not already checked.
Typically, you do not need to create a portlet when you import a portlet WAR
file into the project.

7. In the WebSphere Portal version box, select 5.1.

8. Click Next >.

9. In the Portlet type page, select Faces portlet (JSR 168).

10.Click Finish.

11.If the Confirm Perspective Switch window appears, click YES.

18.2.2 Creating a new Web service client
Now you will locate an existing Web Service and add it to the Page Data view.

1. With the TrafficConditionView.jsp file selected, right-click in the Page Data
view and select New → Web Service (Figure 18-16).

Figure 18-16 Creating a new Web Service in the Page Data

2. In the Web Service Discovery Dialog (Figure 18-17 on page 608), select Web
Services from a known URL.

 Chapter 18. Additional Faces portlet sample scenarios 607

Figure 18-17 Web Service Discovery dialog

3. On the next page (Figure 18-18 on page 609), enter
http://www.xmethods.net/sd/2001/CATrafficService.wsdl for the URL field.
Then click Go.

608 IBM Rational Application Developer V6 and Portal Tools

Figure 18-18 Web Services URL

Figure 18-19 The Web Services dialog displaying the Web Services Information window

4. The dialog will display information about the Web service in the Web Services
Information window (Figure 18-19). To explore the Web Service, select it and
click Details. This will launch the Web Services Explorer.

 Chapter 18. Additional Faces portlet sample scenarios 609

5. Invoke the WSDL operation by clicking getTraffic in the WSDL Binding
Details window. This will bring the Invoke a WSDL Operation window. Enter a
highway number as the hwynums parameter (Figure 18-20). The return of the
operation will be displayed in the Status window.

Figure 18-20 Invoking the WSDL operation

6. Click the Source link at the right of the Status window (Figure 18-21).

Figure 18-21 The Status window

The details of the SOAP request (Figure 18-22) and response (Figure 18-23
on page 611) are displayed in the Status window.

Figure 18-22 The SOAP request

610 IBM Rational Application Developer V6 and Portal Tools

Figure 18-23 The SOAP response

7. Close the Web Services Explorer. In the Services and Ports section of the
Web Services Discovery dialog, expand the Service element and select the
Port: CATrafficPort. Click Add to Project. This will generate a client proxy
that will hide the details of the Web service JAX-RPC API.

8. In the Add Web Service dialog (Figure 18-24 on page 612), select Finish.

 Chapter 18. Additional Faces portlet sample scenarios 611

Figure 18-24 The dialog to add a Web service

The published methods available for the Web service will now be visible in the
Page Data view (Figure 18-25)

Figure 18-25 The page data window with the new Web service defined

18.2.3 Creating the page layout
Now that you have located and explored the Web service, you will add it to the
page, then prepare the page for the Web service components by modifying the
default values and adding the correct components.

612 IBM Rational Application Developer V6 and Portal Tools

1. In the TrafficConditionView.jsp file, replace the default text with Enter a
highway number to get traffic conditions:

2. From the Faces Components palette, drag and drop a Panel - Group Box
below the text.

3. In the Select pop-up (Figure 18-26), select List and click OK.

Figure 18-26 Select Type

Now you will add the input and output components and the action button for
the Web service to the Faces JSP.

4. In the Page Data view, expand
catrafficporttypeproxyGetTrafficParamBean and select hwynums. Drag
and drop it into the Panel - Group Box.

5. In the Insert Web Service dialog, make sure that the Control Type selected is
Input Field (Figure 18-27 on page 614).

 Chapter 18. Additional Faces portlet sample scenarios 613

Figure 18-27 The insert Web service dialog

6. Click Finish.

7. Bind the doCatrafficporttypeproxyGetTrafficAction to the Submit button by
dragging and dropping the action onto the button (Figure 18-28).

Figure 18-28 Binding the action to the Submit button

8. Insert a break after the Submit button.

9. The catrafficporttypeproxyGetTrafficResultBean(String) will return the
result from the Web service. Drag and drop it below the break that was just
inserted.

10.In the Insert Web Service dialog, make sure that the Control Type selected is
Output Field. Change the label to Traffic Report:, then click Finish.

The page layout should look like Figure 18-29 on page 615:

614 IBM Rational Application Developer V6 and Portal Tools

Figure 18-29 The page layout for the Web service client portlet

11.Save and close the file.

18.2.4 Testing the application
1. Select the TrafficCondition project, in Project Explorer view and select Run

→ Run on Server from the context menu.

2. Select IBM/WebSphere Portal V5.1 and click Finish.

The browser opens and shows a page with the portlet.

3. Enter a highway number and click Submit. The Web service is invoked and
the result is displayed on the page (Figure 18-30):

Figure 18-30 Running the application

 Chapter 18. Additional Faces portlet sample scenarios 615

616 IBM Rational Application Developer V6 and Portal Tools

Chapter 19. Portlet services

In this chapter, we will discuss portlet services. WebSphere portal provide the
ContentAccessService, CredentialVaultService and the PropertyBrokerService.
We will briefly discuss the ContentAccessService here, the
CredentialVaultService and the PropertyBrokerService are discussed in their
own sections. We will also discuss writing a custom portlet service.

19

© Copyright IBM Corp. 2005. All rights reserved. 617

19.1 Portlet services
Portlet services provide commonly used functions to portlets. Portlet services
can be used with both IBM portlets and JSR 168 portlets. IBM portlets access the
service by using PortletContext.getService. JSR 168 portlets must use a JNDI
lookup to access the service. Portlet services can only be invoked from portlets,
not themes or skins.

Portlet service interfaces are different for the two APIs. You can, however, write a
portlet service implementation you can use for both APIs. You can write your own
portlet service and register it in the portal, so that all portlets can use it.

19.1.1 ContentAccessService
ContentAccessService (CAS) provides portlets with access to remote systems
and content from remote URLs. When developing portlets, if you are not certain if
there will be a firewall when the portlet is deployed you should use the
ContentAccessService. URLs on the other side of a proxyserver can be obtained
using ContentAccessService.

ContentAccessService provides three methods.

� getMarkup

This method will return a String of the content returned by the URL.

� include

The include method will use a RequestDispatcher to include the provided
URL.

� getInputStream

This method can be used if the URL to be requested does not specify the
character encoding. You can specify the required encoding, otherwise it is
returned as UTF-8.

� getURL

Returns a URL object representing the provided URL.

Using ContentAccessService in an IBM portlet
IBM portlets can use the getService method as seen in Example 19-1

Example 19-1 IBM portlet using CAS

org.apache.jetspeed.portlet.service.ContentAccessService service =
(org.apache.jetspeed.portlet.service.ContentAccessService)getPortletConfig().ge

618 IBM Rational Application Developer V6 and Portal Tools

tContext().getService(org.apache.jetspeed.portlet.service.ContentAccessService.
class);
service.include(someURL, request, response);

Using ContentAccessService in a JSR 168 portlet
JSR portlets use a JNDI look up to get the ContentAccessService as seen in
Example 19-2

Example 19-2 JSR 168 portlet using CAS

package casexample;

import java.io.IOException;
import java.io.PrintWriter;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.portlet.GenericPortlet;
import javax.portlet.PortletConfig;
import javax.portlet.PortletException;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import com.ibm.portal.portlet.service.PortletServiceHome;
import com.ibm.portal.portlet.service.contentaccess.ContentAccessService;

public class CASexamplePortlet extends GenericPortlet {
private PortletServiceHome contentAccessServiceHome;
public void init(PortletConfig config) throws PortletException {

super.init(config);

try {
Context ctx = new InitialContext();
Object home =

ctx.lookup("portletservice/com.ibm.portal.portlet.service.contentaccess.Content
AccessService");

if(home != null){
contentAccessServiceHome = (PortletServiceHome)home;

}
} catch (NamingException e) {

e.printStackTrace();
}

}

 Chapter 19. Portlet services 619

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, IOException {

// Set the MIME type for the render response
response.setContentType(request.getResponseContentType());

if(contentAccessServiceHome != null){
ContentAccessService service =

(ContentAccessService)contentAccessServiceHome.getPortletService(ContentAccessS
ervice.class);

service.include(request.getParameter("URL"), request, response,
getPortletConfig().getPortletContext());

}
}

}

19.1.2 Custom services
The Portlet API allows you to create your own services that you can install into
the portal server. The main benefits of services are twofold. First, they execute
outside of the Portlet Containers. Secondly, the are not tied to any given portlet
and therefore their life cycle is not dependent on individual portlets. This means
that once the service has been initialized, it is available to all portlets with no
further initialization cost. Likewise, the destruction cost is not absorbed by any
single portlet.

To create your own service, there are four steps. This section will use a custom
MailService as an example. This example allows a portlet to locate the
MailService, send an e-mail and verify that it was in fact sent.

Portlet Services can be written to support both IBM portlets and JSR 168
portlets. Most of the steps for creating portlet services for both APIs are the
same, but we will point it out where they are different.

1. Define the service interface

First, you must define an interface that defines the functionality this service
will provide. For JSR 168 portlet service, the custom service interface must
extend com.ibm.portal.service.PortletService.

IBM Portlet service will need to extend
org.apache.jetspeed.portlet.service.PortletService.

The PortletService interface for both APIs is a flag interface and therefore
does not define any methods.

620 IBM Rational Application Developer V6 and Portal Tools

Example 19-3 Defining the Service Interface for JSR 168 portlet service.

package com.yourco.services.mailservice;

import com.ibm.portal.portlet.service.PortletService;

public interface MailService extends PortletService {
public boolean sendMail(String to, String from, String subject, String

message);
}

2. Implement the service

The Service interface then needs to be implemented. The implementation
class must implement the custom service interface you defined as well as the
com.ibm.portal.portlet.service.spi.PortletServiceProvider interface. The
PortletServiceProvider defines the init method that must be implemented. The
init method may be called by the factory when the implementation class is first
created. In practice, while your custom factories may choose not to utilize this
method, the default factories do. The init method is an appropriate location to
load initialization parameters, establish connection pools, etc. Initialization
parameters are discussed in step 4.

You can use one implementation for both APIs. You would need to implement
both the JSR 168 portlet service interface and the IBM portlet service
interface defined in step 1.

Example 19-4 Implementing the custom service

package com.yourco.services.mailservice;

import java.util.Date;
import java.util.Properties;
import java.util.prefs.Preferences;

import javax.mail.Message;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

import com.ibm.portal.portlet.service.PortletServiceUnavailableException;
import com.ibm.portal.portlet.service.spi.PortletServiceProvider;

public class MailServiceImpl implements PortletServiceProvider, MailService {

 private String server_name;
 private String serverNotFound = "ServerNotFound";

 Chapter 19. Portlet services 621

public void init(Preferences servicePreferences)
throws PortletServiceUnavailableException {

// Set Mail Server name based on initialization parameters
server_name = servicePreferences.get("server_name", serverNotFound);

}

public boolean sendMail(String to, String from,String subject, String message)
{

if(server_name.equalsIgnoreCase(serverNotFound)){
 return false;
} else {

return send(to, from, subject, message);
}

}

private boolean send(String from, String to, String subject, String message)
{

try
{
Properties props = System.getProperties();
// -- Attaching to default Session, or we could start a new one --
props.put("mail.smtp.host", server_name);
Session session = Session.getDefaultInstance(props, null);

// -- Create a new message --
Message msg = new MimeMessage(session);

// -- Set the FROM and TO fields --
msg.setFrom(new InternetAddress(from));
msg.setRecipients(MimeMessage.RecipientType.TO, InternetAddress.parse(to,
false));

// -- Set the subject and body text --
msg.setSubject(subject);
msg.setText(message);

// -- Set some other header information --
msg.setHeader("X-Mailer", "LOTONtechEmail");
msg.setSentDate(new Date());

// -- Send the message --
Transport.send(msg);

return true;
}
catch (Exception ex)
{
ex.printStackTrace();

622 IBM Rational Application Developer V6 and Portal Tools

return false;
}
}
}

3. Using Portlet Object - optional

If you are creating a portlet service for both portlet APIs, you can use the
same implementation class for both. If any method take a portlet object, they
will have different signatures for the two. One will be a JSR 168 package and
the other will be an IBM package.

You could provide a single implementation method by converting the IBM
portlet objects to JSR 168 portlet object. WebSphere Portal provides the
com.ibm.portal.portlet.apiconvert.APIConverterFactory class. This class
includes methods for converting the IBM portlet object to the appropriate JSR
168 portlet object. Example 19-5 demonstrates using the
APIConverterFactory to convert the PortletRequest and PortletResponse to a
RenderRequest and RenderResponse object.

Example 19-5 APIConverterFactory

public void message(org.apache.jetspeed.portlet.PortletRequest request,
org.apache.jetspeed.portlet.PortletResponse response)
throws IOException {

message(APIConverterFactory.getInstance().getRenderRequest(request),
APIConverterFactory.getInstance().getRenderResponse(response));

}

4. Register the service

Once the service interface has been defined and the implementation class
created, the classes should be packaged into a jar file. This jar should be
placed in the <WPS-ROOT>shared\app directory.

Once the files have been deployed, the service must be registered. Open the
PortletServiceRegistryService.properties file in the
<WP-ROOT>\shared\app\config\services directory. It is recommended that
you make a backup of this file prior to modifying it. The service and its
implementation be registered. The first entry will be your custom service and
the second entry is your service implementation.

IBM Portlets will register portlet services as it seen in Example 19-6 on
page 624.

 Chapter 19. Portlet services 623

Example 19-6 Registering the service in PortletServiceRegistryService.properties

MailService
com.yourco.services.mailservice.IBMMailService =
com.yourco.services.mailservice.MailServiceImpl

JSR 168 portlet services are registered using JNDI. The syntax is
jndi:service_interface = service_implementation. Example 19-7 show
the addition of registering the JSR 168 portlet service.

Example 19-7 Registering JSR 168 Portlet Service

MailService
jndi:com.yourco.services.mailservice.MailService =
com.yourco.services.mailservice.MailServiceImpl
com.yourco.services.mailservice.IBMMailService =
com.yourco.services.mailservice.MailServiceImpl

Initialization parameters are also supplied in the
PortletServiceRegistryService.properties file as illustrated in Example 19-8.
Accessing these parameters is illustrated in Example 19-4 on page 621.

Example 19-8 Setting parameters in PortletServiceRegistryService.properties

MailService
jndi:com.yourco.services.mailservice.MailService =
com.yourco.services.mailservice.MailServiceImpl
com.yourco.services.mailservice.IBMMailService =
com.yourco.services.mailservice.MailServiceImpl
com.yourco.services.mailservice.MailServiceImpl.server_name =
your_server_name

5. Test the service

In order for the service to become available in the Portal, the Portal Server
must be restarted. Restart the WebSphere Portal Application Server.
Example 19-9 on page 625 shows a simple JSR 168 portlet making use of
the MailService service.

Note: The service implementation classes are the same for both portlet
APIs in my example. In some case you may need to separate the service a
implementations for each API.

624 IBM Rational Application Developer V6 and Portal Tools

Example 19-9 Using the MailService service

package jsrmailportlet;

import java.io.IOException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.GenericPortlet;
import javax.portlet.PortletConfig;
import javax.portlet.PortletException;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import com.ibm.portal.portlet.service.PortletServiceHome;
import com.yourco.services.mailservice.MailService;

public class JSRMailPortletPortlet extends GenericPortlet {

public static final String VIEW_JSP = "JSRMailPortletPortletView";
public static final String FORM_SUBMIT =

"JSRMailPortletPortletFormSubmit";
public static final String FORM_To = "JSRMailPortletPortletFormTo";
public static final String FORM_From =

"JSRMailPortletPortletFormFrom";
public static final String FORM_Subject =

"JSRMailPortletPortletFormSubject";
public static final String FORM_Message =

"JSRMailPortletPortletFormMessage";
private PortletServiceHome mailServiceHome;

public void init(PortletConfig config) throws PortletException {
super.init(config);
try {

Context ctx = new InitialContext();
Object home =

ctx.lookup("portletservice/com.yourco.services.mailservice.MailService");
if(home != null){

mailServiceHome = (PortletServiceHome)home;
}

} catch (NamingException e) {
e.printStackTrace();

 Chapter 19. Portlet services 625

}

}

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, IOException {

// Set the MIME type for the render response
response.setContentType(request.getResponseContentType());

 //test for failure
if(request.getParameter("error") == null){
// Invoke the JSP to render
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher("/jsrmailportlet/jsp/html/"+VIEW_JSP+"
.jsp");

rd.include(request,response);
} else if(request.getParameter("error").equalsIgnoreCase("true")){

response.getWriter().println("Error in sending mail!");
}

}

public void processAction(ActionRequest request, ActionResponse response)
throws PortletException, java.io.IOException {

if(request.getParameter(FORM_SUBMIT) != null) {
// Set form text in the session bean
if(mailServiceHome != null){

MailService mailService =
(MailService)mailServiceHome.getPortletService(MailService.class);

String to = request.getParameter(FORM_To);
String from = request.getParameter(FORM_From);
String subject = request.getParameter(FORM_Subject);
String message = request.getParameter(FORM_Message);

if(!mailService.sendMail(to, from, subject, message)){
//set render parameter
response.setRenderParameter("error", "true");

}
}

}
}

}

626 IBM Rational Application Developer V6 and Portal Tools

19.2 Accessing portlet services
Because of the inherit differences in the two portlet APIs, accessing portlet
services in each API is different

19.2.1 Accessing a portlet service in an IBM portlet
The IBM portlet API is tightly coupled with WebSphere Portal. The IBM portlet
API has direct access to certain features that the JSR 168 API does not. To
access a service in an IBM portlet you need to use the getService method on the
PortletContext. Example 19-10 shows an example of accessing the MailService
from an IBM portlet.

Example 19-10 Accessing MailService in an IBM portlet

IBMMailService mailService =
(IBMMailService)getPortletConfig().getContext().getService(IBMMailService.class
);

19.2.2 Accessing a portlet service in a JSR 168 portlet
JSR 168 portlets do not have direct access to the services like IBM portlets.
Instead JSR 168 portlets must get the service by using JNDI. The first step is
defining a class variable of type PortletServiceHome. Then in the init method
your should perform the lookup. If the portlet service is found, you should then
set the PortletServiceHome variable. To use the service in your code, first test to
make sure that service was found by testing PortletServiceHome for null. If it is
not null, you can use the PortletServiceHome object to get your portlet service.
Once you have the service you will use in the same manner as in IBM portlets.
Example 19-11 shows an example of accessing the MailService from a JSR 168
portlet.

Example 19-11 Accessing MailService in a JSR 168 portlet

....
private PortletServiceHome mailServiceHome;
....
public void init(PortletConfig config) throws PortletException {

super.init(config);
try {
Context ctx = new InitialContext();
Object home =
ctx.lookup("portletservice/com.yourco.services.mailservice.MailService");

if(home != null){
mailServiceHome = (PortletServiceHome)home;

}

 Chapter 19. Portlet services 627

} catch (NamingException e) {
e.printStackTrace();

}
}
.....

if(mailServiceHome != null){
MailService mailService =

(MailService)mailServiceHome.getPortletService(MailService.class);
.....

628 IBM Rational Application Developer V6 and Portal Tools

Chapter 20. Credential Vault Service

In this chapter, we will discuss the Credential Vault service, its purpose and the
APIs involved.

20

© Copyright IBM Corp. 2005. All rights reserved. 629

20.1 Overview
When integrating different back-end systems, portlets often need to provide
some type of authentication to access these back-end systems. WebSphere
Portal provides the use of a Credential Vault to store and retrieve user
credentials. By using Credential Vault portlets, you can provide a single sign-on
experience to the user, hiding the login challenge from the user.

After reading this chapter, you will be able to:

� Understand the value of Credential Vault for portlet development
� Identify the different components of Credential Vault

20.1.1 Credentials
Portlets running on WebSphere Portal may need to access remote applications
that require some form of authentication by using appropriate credentials.
Examples of credentials are user IDs and passwords, SSL client certificates and
private keys. In order to provide a single sign-on user experience, portlets should
not ask the user for the credentials of individual applications each time the user
starts a new portal session. Instead, they must be able to store and retrieve user
credentials for their particular associated application and use those credentials to
log in on behalf of the user. The Portal back-end secure access is illustrated in
Figure 20-1.

Figure 20-1 Credential Vault in action

630 IBM Rational Application Developer V6 and Portal Tools

The Credential Vault provides this functionality and portlets can use it through the
Credential Vault Service.

20.2 Credential Vault organization
The organization of Credential Vault in WebSphere Portal consists of vault
segments and credential slots. Figure 20-2 shows an overview of these
components.

Figure 20-2 Credential Vault organization

The portal server's credential vault is organized as follows:

� The portal administrator can partition the vault into several vault segments.
Vault segments can be created and configured only by portal administrators.

� A vault segment contains one or more vault slots. Vault slots are the
"drawers" where portlets store and retrieve a user's credentials. Each slot
holds one credential.

� A vault slot is linked to a resource in a vault implementation.

– A vault implementation is the place where users credentials are actually
stored. Examples of vault implementations include the WebSphere
Portal's default database vault or the Tivoli Access Manager lock box.

Vault
Implementations

Internal External

Vault Segment U
(User-Managed)

Slot A Slot B

Vault Segment A1
(Admin-Managed)

Slot C

Vault Segment A2
(Admin-Managed)

Slot X Slot Y

 Chapter 20. Credential Vault Service 631

– The resource within the vault implementation corresponds to an
application or backend system that requires its own authentication.
Examples of resources include Lotus Notes, personnel records, or a bank
account.

20.2.1 Vault segments
The Credential Vault is partitioned into segments and a vault segment contains
one or more vault slots. Vault segments can be created and configured only by
portal administrators.

There are two different types of vault segments:

� Administrator-managed vault segments: in this type of vault segment, the
creation of new slots is restricted to the portlet administrator.

� User-managed vault segments: in this type of vault segment, portlets can also
create new slots on behalf of the user.

Vault implementations are the actual locations where the credentials are stored.
This can be for example the default database of WebSphere Portal or the Tivoli
Access Manager lock-box.

Figure 20-3 on page 633 presents the relationship between Vault segments and
Vault implementations. Notice that there is only one user-managed vault
segment and it resides in the vault provided by WebSphere Portal.

Note: Setting and retrieving credentials can be performed by portlets for both
types of vault segments.

632 IBM Rational Application Developer V6 and Portal Tools

Figure 20-3 Vault segments and Vault implementations

20.2.2 Credential slots
As mentioned previously, every vault segment contains one or more credential
slots. Slots are “drawers” where portlets store and retrieve a user’s credentials.
Each slot holds one credential and links to a resource in a vault implementation.
There are four different types of slots:

� A system slot stores system credentials where the actual secret is shared
among all users and portlets. It is a shared slot that belongs to an
administrative segment.

� An administrative slot allows each user to store a secret for an
administrator-defined resource (for example, Lotus Notes). It is an unshared
slot that belongs to an administrative segment.

� A shared slot stores user credentials that are shared among the user's
portlets. It is a shared slot that belongs to the user segment.

� A portlet private slot stores user credentials that are not shared among
portlets. It is an unshared slot that belongs to the user segment.

You will find an example of using private slots in Chapter 21, “The Credential
Vault” on page 641.

 Chapter 20. Credential Vault Service 633

20.3 Working with the CredentialVaultService
To work with credentials, the first step is to acquire a reference to the
CredentialVaultService. This section explains how to acquire a reference to a
CredentialVaultService and its most important methods.

There are in fact two CredentialVaultService classes. One for each portlet API.
In IBM Portlet API you will use the
com.ibm.wps.portletservice.credentialvault.CredentialVaultService,
whereas in JSR 168 you will use the
com.ibm.portal.portlet.service.credentialvault.CredentialVaultService.

20.3.1 Acquiring a reference to the CredentialVaultService
There is a slight difference in the way you retrieve a reference to the
CredentialVaultService. In JSR 168, you must use a JNDI lookup to access the
service, as in Example 20-1.

Example 20-1 Acquiring a CredentialVaultService in JSR 168 API

com.ibm.portal.portlet.service.credentialvault.CredentialVaultService vaultService = null;
Context ctx = new InitialContext();
PortletServiceHome cvsHome =
(PortletServiceHome)ctx.lookup("portletservice/com.ibm.portal.portlet.service.credentialvault.C
redentialVaultService"); //$NON-NLS-1$
if (cvsHome != null) {
vaultService=(CredentialVaultService)cvsHome.getPortletService(CredentialVaultService.class);
}

In IBM Portlet API, the service is accessed by using
PortletContext.getService, as in Example 20-2.

Example 20-2 Acquiring a CredentialVaultService in IBM Portlet API

com.ibm.wps.portletservice.credentialvault.CredentialVaultService vaultService =
(CredentialVaultService)config.getContext().getService(CredentialVaultService.class);

20.3.2 Using the CredentialVaultService
The CredentialVaultService allows to retrieve credentials from the credential
vault and to manage vault segments and slots. The most important methods
provided by the CredentialVaultService are the following. For a complete list of
all methods, refer to the API documentation:

� getCredential

634 IBM Rational Application Developer V6 and Portal Tools

This method returns a specific credential to be used in the application. It
expects to receive the following parameters:

– String slotId: Identifies the slot where the credential will be retrieved from.

– String type: Identifies the type of credential to be retrieved. The valid
types are the ones described in 20.4, “Credential objects” on page 635.

– Map config: List of name/value pairs. Typically, you will pass a new
HashMap().

– PortletRequest request: The PortletRequest object of the API being
used.

� getUserSubject

This method returns the user's JAAS subject. This is a special case of the
getCredential call. It expects the PortletRequest as parameter.

� getCredentialTypes

This method Returns an Iterator of Strings that represent all Credential Types
that are registered in the Credential Type Registry.

� getAccessibleSlots

This method returns a Iterator of all credential slots that a portlet is authorized
to use. It expects the PortletRequest as parameter.

� setCredentialSecretBinary

This method sets a credential's binary secret. It expects the slotId, the secret,
and the PortletRequest as parameters

� setCredentialSecretUserPassword

This method sets a credential's user/password secret. It expects the slotId,
the user, the password, and the PortletRequest as parameters

� getAllVaultSegments

This method returns a List of all Vault Segments.

20.4 Credential objects
The CredentialVault PortletService returns credentials in the form of credential
objects. All credentials must implement the Credential interface. WebSphere
Portal differentiates between passive and active credential objects.

Note: For details about implementing a solution using the
CredentialVaultService, refer to Chapter 21, “The Credential Vault” on
page 641.

 Chapter 20. Credential Vault Service 635

20.4.1 Passive credential objects
These are containers for the credential’s secret. Portlets that use passive
credentials need to extract the secret out of the credential and do all the
authentication communication with the back-end resource. All passive credential
objects must implement the PassiveCredential interface. The following sections
present the passive credential objects that are shipped with WebSphere Portal.

UserPasswordPassive
This type of credential stores secrets in the form of user ID/password pairs. It is
implemented by the class UserPasswordPassiveCredential and provides the
following methods:

� getPassword

This method returns the password of the credential’s secret.

� getSecretType

This method returns the credential’s secret type in terms of the constants
declared in the CredentialVaultService interface.

� getUserId

This method returns the user ID of this credential's secret.

SimplePassive
This type of credential stores secrets in the form of serializable Java objects. It is
implemented by the class SimplePassiveCredential and provides the following
methods:

� getSecretType

Note: The names of types presented in this section are the same both in IBM
portlet API and JSR 168 API. The only difference is that the types will belong
to different packages for each of API.

For IBM portlet API, look at the
com.ibm.wps.portletservice.credentialvault.credentials package.

For JSR 168 API, look at the
com.ibm.portal.portlet.service.credentialvault.credentials package.

Note: Currently, the vault service in WebSphere Portal can store only
UserPasswordPassive objects.

636 IBM Rational Application Developer V6 and Portal Tools

This method returns the credential’s secret type in terms of the constants
declared in the CredentialVaultService interface.

� getSecret

This method returns the user's secret as an object.

JaasSubjectPassiveCredential
This type of credential relies on the Java Authentication and Authorization
Service, and stores secrets in the form of javax.security.auth.Subject objects. It is
implemented by the class JaasSubjectPassiveCredential and provides the
following methods:

� getSecretType

This method returns the credential’s secret type in terms of the constants
declared in the CredentialVaultService interface.

� getSecret

This method returns the user's secret as an jaas subject.

20.4.2 Active credential objects
These objects hide the credential's secret from the portlet; there is no way of
extracting it out of the credential. In return, active credential objects offer
business methods that take care of all the authentication. All passive credential
objects must implement the ActiveCredential interface. The following sections
present the active credential objects that are shipped with WebSphere Portal.

HttpBasicAuth
This type of credential stores userid/password secrets and supports HTTP Basic
Authentication. It is implemented by the class HttpBasicAuthCredential and
provides the following method:

� getAuthenticatedConnection

This method returns a new HttpURLConnection with added authentication
data. There are two different signatures available. One that receives a String
object representing the url, and another that receives a URL object.

Note: When using active credentials, portlets never get in touch with the
credential secrets and thus there is no risk a portlet could violate any security
rules such as, for example, storing the secret on the portlet session. While
there might not always be an appropriate active credential class available, this
is the preferred type of credential objects to use.

 Chapter 20. Credential Vault Service 637

HttpFormBasedAuth
This credential object stores userid/password secrets and supports HTTP
Form-Based Authentication. You must initialize this object prior to using it, using
the provided init method. This method expects a Map of key/value pairs, and the
value/name pairs that must be provided are shown in Table 20-1.

Table 20-1 Configuration data to initialize a HTTPFormBasedAuthCredential

This type of credential is implemented by the class
HttpFormBasedAuthCredential and provides the following methods:

� getAuthenticatedConnection

This method returns a new HttpURLConnection with added authentication
data. There are two different signatures available. One that receives a String
object representing the url, and another that receives a URL object. This latter
signature can be used only if cookies are used for authentication.

� login

This method performs the HTTP form based login.

Key name Type Description Mandatory?

KEY_CREDENTIAL_SECRET UserPassword
CredentialSecret

The credential’s
secret

Y

KEY_USERID_ATTRIBUTE_NAME String The name under
which the user ID is
posted

Y

KEY_PASSWORD_ATTRIBUTE_NAME String The name under
which the user
password is posted

Y

KEY_LOGIN_URL String The url to which the
login data is posted

Y

KEY_LOGOUT_URL String The url to which an
HTTP GET request is
send in order to log out
the user

Y

KEY_USE_AUTH_COOKIES Boolean Specifies whether the
authentication data
are cookies [true] of
URL rewriting [false]

Y

KEY_FORM_DATA List Any additional
name=value pairs that
need to be posted with
the login POST

N

638 IBM Rational Application Developer V6 and Portal Tools

� logout

This method performs the logout through an HTTP GET request to the
logoutUrl.

JavaMailCredential
This credential object stores userid/password pairs and leverages the
authentication functionality of the javax.mail API. It is implemented by the class
JavaMailCredential and provides the following methods:

� getSecretType

This method returns the credential’s secret type in terms of the constants
declared in the CredentialVaultService interface.

� getAuthenticatedSession

This method authenticates an javax.mail.Session. There is a signature that
receives the Session to authenticated and the mail server host name, and
another that receives these two parameters and also the mail server port
number.

LtpaTokenCredential
This credential object is for authenticating with a backend system that is within
the same WebSphere Application Server single sign-on domain as the portal. It
is implemented by the class LtpaTokenCredential and provides the following
method:

� getAuthenticatedConnection

This method returns a new HttpURLConnection with added authentication
data. There are two different signatures available.

SiteMinderTokenCredential
A credential object for authenticating with a backend system that is within the
same SiteMinder single sign-on domain as the portal. This credential should be
used when SiteMinder is used as an authentication proxy for the portal. It is
implemented by the class SiteMinderTokenCredential and provides the
following method:

� getAuthenticatedConnection

This method returns a new HttpURLConnection with added authentication
data. There are two different signatures available.

WebSealTokenCredential
A credential object for authenticating with a backend system that is within the
same WebSEAL single sign-on domain as the portal. This credential should be

 Chapter 20. Credential Vault Service 639

used when a WebSEAL authentication proxy is used by the portal. It is
implemented by the class WebSealTokenCredential and provides the following
method:

� getAuthenticatedConnection

This method returns a new HttpURLConnection with added authentication
data. There are two different signatures available.

20.4.3 Storing credential objects in the PortletSession
You cannot store credential objects directly in the PortletSession because they
do not implement java.io.Serializable. This is for security reasons, once that the
credential classes store the actual credential secret as one of their private
attributes. This could allow the secret to be found by anyone who has access to
the application server session database.

However, if you ensure that the PortletSession is not serialized in a cluster setup,
the credential object could be stored, for example, as a transient member of a
container class. You only have to make sure to check if the credential object got
lost during serialization and, in this case, retrieve it from the vault again.

640 IBM Rational Application Developer V6 and Portal Tools

Chapter 21. The Credential Vault

This chapter provides a sample scenario for creating a sample JSR 168 portlet
application that uses Credential Vault to log in and interact with back-end
systems. You will create, deploy and run a sample portlet application using the
Credential Vault to connect to a secure backend Web application. The sample
scenario will allow you to understand the techniques used to develop portlets
using the Credential Vault provided by IBM WebSphere Portal.

The sample scenario included in this chapter illustrates the following:

� How the Credential Vault with active credentials is used
� How the Credential Vault with passive credentials is used
� How to store credentials
� How to retrieve credentials
� How to log in to the Web application
� How to retrieve the Web application content in the portlet's View mode

21

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: JSR 168
� Application type: MVC

© Copyright IBM Corp. 2005. All rights reserved. 641

21.1 Sample scenario
In this sample scenario, you will create a sample portlet JSR 168 based on a
Basic portlet (JSR 168) type using the Portlet Wizard. You will also use this
wizard to enable Credential Vault to interact with back-end resources.

In this scenario, the protected back-end resource is a servlet and requires a user
ID and password credentials to log in to the Web application (servlet) to retrieve
some information. The servlet application has been secured with HTTP Basic
Authentication.

In the first part of this scenario, active credentials are used to access a secure
Web application using HTTP Basic Authentication. Once this is done, the sample
scenario illustrates how the JSR 168 portlet is updated to use Credential Vault
passive credentials.

Figure 21-1 Credential Vault sample scenario

Protected Backend
Resource

Servlet

View
Mode

Edit
Mode

JSR 168
portlet

Browser

Submit
userid
password

2

Credentials
userid

password

HTTP

HTTP Basic
Authentication

init()
create Vault

Service

Portlet

Configure
Mode

Preferences
Server name
Port number
Secure server
path

Secret
Manager

doView()

processAction()

Request
Number of
digits

1

2

3

4 5

6

7

8

9

13

12

10

11

642 IBM Rational Application Developer V6 and Portal Tools

The sequence flow for this scenario is as follows:

1. The init() method is used to initialize the Credential Vault Service.

2. Portal invokes the portlet doView() method. Since initially, no credentials have
been stored, a message is written indicating that a user ID and password
must be entered in Edit mode.

3. In the portlet View mode, a message is shown directing the user to use the
Edit mode to enter credentials.

4. The user clicks Edit to go into Edit mode.

5. The Edit mode screen is displayed, that is, the doEdit() method is executed
and a JSP displays a form to allow the user to enter credentials (user ID and
password) and submit the action.

6. The user enters a user ID and password and select Save.

7. The processAction() method is executed to process the action.

8. The processAction() method invokes the wizard generated Secret Manager to
create a slot and store the entered user ID and password information.

9. An administrator will switch to configure mode (through View mode) and enter
or change preferences such as the backend server name, port number and
secure server path.

10.The processAction() method is executed to process the action and save the
preferences.

11.When the user returns to View mode, it displays a form to enter the value that
you will send to the servlet as an argument. Once the user enters a value and
clicks Send the processAction() method is executed to retrieve the value.

12.The doView() method is eventually executed. The following tasks are
executed in this mode:

a. An HttpBasicAuth active credential object is retrieved from the credential
service. Because authentication is done in this object, we never get in
touch with the real credentials.

b. The authorization header is set in the request HTTP header.

c. The connection to the back-end resource (protected servlet in this
scenario) is invoked.

13.The user is authenticated and the servlet executes. The received content is
rendered to the user in View mode.

 Chapter 21. The Credential Vault 643

21.2 Importing a secure servlet application
In this section, you will import a previously created secure servlet. This servlet
will be the back-end secure resource you will access using Credential Vault. The
servlet is only accessible via HTTP basic authentication.

Note: In this sample scenario it is assumed that the WAR file containing the
secure Web application (SecureServlet) resides in the following path:

c:\LabFiles\CredentialVault\SecureServlet.war

Follow these steps to import the secure servlet:

1. If required, start IBM Rational Application Developer.

2. If needed, switch to the Web perspective.

3. From the main menu, select File → Import....

4. Select WAR file and click Next.

Figure 21-2 Importing a WAR file

5. In the next window, enter the following values:

644 IBM Rational Application Developer V6 and Portal Tools

a. Browse to the location of the SecureServlet.war file in
c:\LabFiles\CredentialVault\SecureServlet.war.

b. Web project: SecureServlet

c. Target server: select WebSphere Application Server V5.1.

d. EAR project: SecureServletEAR.

Note: The SecureServletEAR project will also be created for you.

Figure 21-3 Import the SecureServlet WAR file

6. Click Finish to import the application.

7. Execute the secure servlet to check that it is running properly. In the Project
Explorer view, expand the SecureServlet/WebContent/jsp folder.

8. Right-click input.jsp and select Run → Run on server... from the context
menu.

9. If a WebSphere V5.1 Test Environment server already exists, select it from
the list and click Next. If it does not exist, select Manually define a server
and select WebSphere V5.1 Test Environment as server type, see
Figure 21-4 on page 646. Click Next, leave the default port number (9080)
and click Next again.

 Chapter 21. The Credential Vault 645

Figure 21-4 Manually define a server

10.In the last window ,you will see available projects and configured projects for
this server. Make sure SecureServletEAR is a configured project.

11.Click Finish

12.The internal Web browser opens and you will see a form. You also can invoke
the Web application from an external browser. Enter a number of digits you
want the prime number to be. Click send.

646 IBM Rational Application Developer V6 and Portal Tools

Figure 21-5 Running the secured servlet

13.Because this servlet is secure and requires HTTP Basic Authentication, you
have to enter a user name and password. Enter user1 as the user name and
password1 as the password. Click OK to invoke the secure servlet.

Figure 21-6 Basic authentication

14.The browser displays the authenticated user name and the generated prime
number with the number of digits you entered in the form.

 Chapter 21. The Credential Vault 647

Figure 21-7 Secure Web application results

15.In the Servers view, select WebSphere V5.1 Test Environment server and
click the red Stop button to stop the server.

21.3 Using active credentials
After importing and testing the protected servlet, you will build a portlet JSR 168
application to access the PrimesGeneration servlet and using active credential
objects.The portlet will be created based on the Basic portlet type and will
demonstrate the use of credentials. Once the project is created, you will execute
it in the WebSphere Portal V5.1 Test Environment.

21.3.1 Creating the Credential Vault portlet application
For example, to create the new portlet project, follow these steps:

1. Select File → New → Project.

2. Select Portlet Project (JSR 168).

3. Enter the project name CredentialJSR and select WebSphere Portal V5.1 as
target server.

Note: If required, click the Show Advanced button to see the complete
window.

4. Click Next.

648 IBM Rational Application Developer V6 and Portal Tools

Figure 21-8 New Portlet Project JSR 168

5. In the Portlet Type window, select Basic portlet (JSR 168). Click Next.

6. In the Features window, uncheck all the features and click Next.

7. In the Portlet Settings window, accept all the default values. Click Next.

8. In Actions and Preferences, uncheck Add form sample in Portlet action
handling section so that only Add action request handler is checked. Click
Next.

9. In the Single Sign-On window, check Add credential vault handling and
enter the slot name SecureCredentialSlot as illustrated in Figure 21-9 on
page 650. Click Next.

 Chapter 21. The Credential Vault 649

Figure 21-9 Single Sign-On page

10.In the Miscellaneous window, check Add Edit mode and Add configure
mode. In Edit mode, you will enter the credentials to be stored and in
configure mode you will establish the settings that will be needed to gain
access to the secure servlet running in a different application server. Click
Finish to generate the JSR 168 portlet.

650 IBM Rational Application Developer V6 and Portal Tools

Figure 21-10 Additional modes of the new portlet

21.3.2 Reviewing the generated code
Before the portlet code is modified to access the secure portlet, let’s examine the
wizard generated code. Expand CredentialJSR → Java Resources →
JavaSource to access the credentialjsr package. In this package, in addition
to the portlet and bean classes, you will find the generated
CredentialJSRPortletSecretManager class. This class is responsible for
initializing the Credential Vault service and administering the credentials.

 Chapter 21. The Credential Vault 651

Figure 21-11 Reviewing CredentialJSRSecretManager class

The following methods are provided in this class to handle Credential Vault
issues:

� The init() method of this class initializes the vaultService data member.

� getCredential() returns the user name and password by using a string buffer.

� setCredential() sets the user name and password.

� getSlotId() returns the ID of the slot. Depending on the type of slot, this
method uses Portlet Preferences or VaultService to get the ID.

� New slots are created in the createNewSlot() method.

� getPrincipalFromSubject() retrieves the specified Principal from the provided
subject.

Note: In an early release the CredentialJSRPortletSecretManager class
generated by the wizard had an error. If this is your case, apply the required
fixes or just replace the following import statement:

import com.ibm.wps.portletservice.credentialvault.CredentialSlotConfig;

with this one:

import com.ibm.portal.portlet.service.credentialvault.CredentialSlotConfig;

652 IBM Rational Application Developer V6 and Portal Tools

� isWritable() checks whether the userid and password can be saved.

The wizard has also created an input form for a user ID and password in the
CredentialJSRPortletEdit.jsp. As previously described, when clicking the Save
button, the processAction() method is called. This method retrieves the user ID
and password from the form and uses the secret manager class to set the
credentials.

The current version of the doView method retrieves the user credentials from the
secret manager and displays them in the associated JSP. Because, in this
sample scenario, you want to include the content of the secured
PrimesGeneration servlet, you will replace this method in the next section of this
scenario.

21.3.3 Updating the generated portlet
Modify the portlet application as follows:

1. Open the portlet deployment descriptor.

2. Select the Portlets panel and click CredentialJSR.

3. In Persistent Preference Store click Add... to enter new preferences.

4. In new Preference window, enter.CredentialPortletServerKey in the text
field. Click Add and enter localhost in values field. Check Read only, this
value will be modified only by portal administrators in configuration mode:

Figure 21-12 New preference

5. Click OK and repeat the same to add the following preferences checking
Read only in all of them:

 Chapter 21. The Credential Vault 653

a. Name: .CredentialPortletPortKey, value: 9080.

b. Name: .CredentialPortletPathKey, value:
/SecureServlet/PrimesGeneration

c. Name: .CredentialPortletAttrKey, value: number

See the updated portlet deployment descriptor with the new preferences as
shown in Figure 21-13.

6. Save and close the file.

Figure 21-13 Updating Portlet Deployment Descriptor

7. Open CredentialJSRPortletSecretManager.java from the credentialjsr
package.

8. Using the Java editor, add the method shown in Example 21-1 to the class.

Note: The getConnectionUsingActiveObject method returns an http
connection.

Example 21-1 getConnectionUsingActiveObject method (active credentials)

public static HttpURLConnection getConnectionUsingActiveObject(
PortletRequest portletRequest,
CredentialJSRPortletSessionBean sessionBean,
String host,

654 IBM Rational Application Developer V6 and Portal Tools

String port,
String path) {
HttpURLConnection connection = null;
try {

URL urlSpec = new URL("http://" + host + ":" + port + path);
String slotId = getSlotId(portletRequest, sessionBean, false);
if (slotId != null) {

HttpBasicAuthCredential credential =
(HttpBasicAuthCredential) vaultService.getCredential(

slotId,
"HttpBasicAuth",
new HashMap(),
portletRequest);

connection = credential.getAuthenticatedConnection(urlSpec);
}

} catch (Exception e) {
e.printStackTrace();

}
return connection;

}

9. Some error codes appear because the required import statements are
missing. To fix these errors, right-click the Java editor and select Source →
Organize Imports.

10.In the Organize Imports dialog, choose the following:

a. java.net.HttpURLConnection. Click Next.

b. java.net.URL. Click Next.

c. com.ibm.portal.portlet.service.credentialvault.credentials.HttpBasicAuthCre
dential. Click Finish to close the Organize Imports dialog.

11.Save and close the Java file.

12.Open the class CredentialJSRPortlet from the credentialjsr package.

13.Add the variables shown in Example 21-2.

Example 21-2 Define new variables in CredentialJSRPortlet class

public static final String SERVER_KEY = ".CredentialPortletServerKey";
// Key for the portlet preferences

public static final String SERVER_TEXT = "CredentialPortletServerText";
// Parameter name for the server text input

public static final String PORT_KEY = ".CredentialPortletPortKey"; //
Key for the portlet preferences

public static final String PORT_TEXT = "CredentialPortletPortText"; //
Parameter name for the port number text input

 Chapter 21. The Credential Vault 655

public static final String PATH_KEY = ".CredentialPortletPathKey"; //
Key for the portlet preferences

public static final String PATH_TEXT = "CredentialPortletPathText"; //
Parameter name for the servlet path text input

public static final String ATTR_KEY = ".CredentialPortletAttrKey"; //
Key for the portlet preferences

public static final String ATTR_TEXT = "CredentialPortletAttrText"; //
Parameter name for the servlet attribute text input

public static final String NUMBER = "CredentialPortletFormNumber"; //
Parameter name for the number of digits text input

public static final String NUMBER_SUBMIT =
"CredentialPortletGeneratePrime"; // Action name for prime number generation
submit form

private String nDigits = null;

14.Next, you will modify the processAction method to store the preferences
values that portal administrators could change when running in custom
configuration mode.

You will also add code to handle the new event when the user enters a
number of digits and submits to generate a prime number by invoking the
secure PrimesGeneration servlet.

The new code to accomplish this is highlighted in Example 21-3.

Example 21-3 processAction method

if(request.getParameter(CONFIG_SUBMIT) != null) {
PortletPreferences prefs = request.getPreferences();
try {

//prefs.setValue(CONFIG_KEY,request.getParameter(CONFIG_TEXT));
prefs.setValue(SERVER_KEY, request.getParameter(SERVER_TEXT));
prefs.setValue(PORT_KEY, request.getParameter(PORT_TEXT));
prefs.setValue(PATH_KEY, request.getParameter(PATH_TEXT));
prefs.setValue(ATTR_KEY, request.getParameter(ATTR_TEXT));
prefs.store();

}
catch(ReadOnlyException roe) {
}
catch(ValidatorException ve) {
}

}
if (request.getParameter(NUMBER_SUBMIT) != null) {

// Get the NUMBER field
if (request.getParameter(NUMBER) != null &&

!request.getParameter(NUMBER).equalsIgnoreCase("")) {
nDigits = request.getParameter(NUMBER);

}
}

656 IBM Rational Application Developer V6 and Portal Tools

...............

15.Replace the doView () method so it looks as shown in Example 21-4.

Example 21-4 The doView method uses a Http connection from the SecretManager class

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, IOException {

// Set the MIME type for the render response
response.setContentType(request.getResponseContentType());
// Check if portlet session exists
CredentialJSRPortletSessionBean sessionBean = getSessionBean(request);
if(sessionBean==null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;

}
 // Retrieve user credentials

 StringBuffer userId = new StringBuffer("");
 StringBuffer password = new StringBuffer("");
 try {

CredentialJSRPortletSecretManager.getCredential(request,sessionBean,userId,
password);
 }
 catch(Exception e) {
 getPortletContext().log("Exception on
CredentialJSRPortletSecretManager.getCredential(): "+e.getMessage());
 }
 // Portlet should use userId/password to log in to the backend systems on
behalf of the user.
 // Show curent userId/password on the portal page at this time.

 // Set current userId/password in the request attribute
 request.setAttribute(USERID,userId.toString());

 request.setAttribute(PASSWORD,password.toString());

 if (nDigits != null) {
 StringBuffer result = new StringBuffer();

 try {
 PortletPreferences prefs = request.getPreferences();
 String host = prefs.getValue(SERVER_KEY, "");
 String port = prefs.getValue(PORT_KEY, "");
 StringBuffer path = new StringBuffer();
 path.append(prefs.getValue(PATH_KEY, ""));
 path.append("?");
 path.append(prefs.getValue(ATTR_KEY, ""));
 path.append("=");
 path.append(nDigits);

 Chapter 21. The Credential Vault 657

 System.out.println("Using Active Credentials");
 HttpURLConnection connection =

CredentialJSRPortletSecretManager.getConnectionUsingActiveObject(
 request,
 sessionBean,
 host,
 port,
 path.toString());

 if (connection != null) {
 connection.connect();
 String responseMessage = connection.getResponseMessage();
 int responseCode = connection.getResponseCode();
 // Were we successful?
 if (HttpURLConnection.HTTP_OK == responseCode) {
 result.append("<H4>Successfully connected!</H4>");
 } else {
 result.append(
 "<P>Unable to successfully connect to back-end server."
 + ", HTTP Response Code = "
 + responseCode
 + ", HTTP Response Message = \""
 + responseMessage
 + "\"</P>");
 }
 BufferedReader br =
 new BufferedReader(
 new InputStreamReader(connection.getInputStream()));
 String line;
 while ((line = br.readLine()) != null)
 result.append(line + "\n");
 } else {
 result.append(
 "<h2>Credential not found. Please set it in edit mode!
</h2>");
 }
 } catch (IOException exc) {
 result.append(
 "<h2>Single-sign-on error, login at back-end failed! </h2>");
 }

 // Set the result in the request attribute
 request.setAttribute("result",result.toString());
 }

// Invoke the JSP to render
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(getJspFilePath(request, VIEW_JSP));
rd.include(request,response);
nDigits = null;

658 IBM Rational Application Developer V6 and Portal Tools

}

16.You will need to organize the import statements again as you did previously.

17.Save and close the Java file.

18.Open CredentialJSRPortletConfig.jsp file under credentialjsr/jsp/html folder.
Modify the form to display the default values of the preference variables you
created before as illustrated in Figure 21-13 on page 654. The entire new JSP
code is shown in Example 21-5.

Example 21-5 CredentialJSRPortletConfig.jsp

<%@ page session="false" contentType="text/html"
import="javax.portlet.*,credentialjsr.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Write to the PortletPreferences</H3>

<DIV style="margin: 12px; margin-bottom: 36px">
<% /******** Start of sample code ********/ %>
<%
 PortletPreferences preferences = renderRequest.getPreferences();
 if(preferences!=null) {
 String server =
(String)preferences.getValue(CredentialJSRPortlet.SERVER_KEY,"");
 String port =
(String)preferences.getValue(CredentialJSRPortlet.PORT_KEY,"");
 String path =
(String)preferences.getValue(CredentialJSRPortlet.PATH_KEY,"");
 String attr =
(String)preferences.getValue(CredentialJSRPortlet.ATTR_KEY,"");
%>
 <FORM ACTION="<portlet:actionURL/>" METHOD="POST">

<TABLE cellspacing="3" cellpadding="3" border="0">
<tr>

<td><LABEL for="<%=CredentialJSRPortlet.SERVER_TEXT%>">Server
name:</LABEL></td>

<td><INPUT name="<%=CredentialJSRPortlet.SERVER_TEXT%>"
value="<%=server%>" type="text"/></td>

</tr>
<tr>

<td><LABEL for="<%=CredentialJSRPortlet.PORT_TEXT%>">Port
number:</LABEL></td>

 Chapter 21. The Credential Vault 659

<td><INPUT name="<%=CredentialJSRPortlet.PORT_TEXT%>" value="<%=port%>"
type="text"/></td>

</tr>
<tr>

<td><LABEL for="<%=CredentialJSRPortlet.PATH_TEXT%>">Servlet
path:</LABEL></td>

<TD><INPUT name="<%=CredentialJSRPortlet.PATH_TEXT%>" value="<%=path%>"
type="text" size="50"/></TD>

</tr>
<tr>

<td><LABEL for="<%=CredentialJSRPortlet.ATTR_TEXT%>">Servlet attribute
name:</LABEL></td>

<td><INPUT name="<%=CredentialJSRPortlet.ATTR_TEXT%>" value="<%=attr%>"
type="text"/></td>

</tr>
<tr>

<td colspan="2"><INPUT name="<%=CredentialJSRPortlet.CONFIG_SUBMIT%>"
value="Save" type="submit"/></td>

</tr>
</TABLE>

 </FORM>
<%
 }
else {
 %>Error: PortletPreferences is null.<%
 }
%>
<% /******** End of sample code *********/ %>
</DIV>
</DIV>

19.Save and close the jsp file.

20.Finally, open CredentialJSRPortletView.jsp and add a new form when there
are user credentials in the credential vault. For clarity, you will also modify the
message to be displayed when there are no credentials found in the vault.
Example 21-6 shows the new code.

Example 21-6 New form in updated CredentialJSRPortletView.jsp

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,credentialjsr.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<%
CredentialJSRPortletSessionBean sessionBean =

(CredentialJSRPortletSessionBean)renderRequest.getPortletSession().getAttribute
(CredentialJSRPortlet.SESSION_BEAN);

660 IBM Rational Application Developer V6 and Portal Tools

%>

<DIV style="margin: 6px">

<% if (renderRequest.getAttribute("result") != null) { %>
<%=(String)renderRequest.getAttribute("result") %>

<% } %>

<H3 style="margin-bottom: 3px">Single sign-on sample</H3>
The following user credentials have been retrieved from the credential
vault.

Portlet should use these credentials to log in to the backend systems on behalf
of the user.
<DIV style="margin: 12px; margin-bottom: 36px">
<% /******** Start of sample code ********/ %>

 <%
 int secretType = sessionBean.getSecretType();
 String secretTypeName = "Unknown";
 switch (secretType) {
 case CredentialJSRPortletSecretManager.SECRET_PORTLET_PRIVATE_SLOT:
 secretTypeName = "Portlet Private Slot";
 break;
 case CredentialJSRPortletSecretManager.SECRET_SHARED_SLOT:
 secretTypeName = "Shared Slot";
 break;
 case CredentialJSRPortletSecretManager.SECRET_ADMINISTRATIVE_SLOT:
 secretTypeName = "Administrative Slot";
 break;
 case CredentialJSRPortletSecretManager.SECRET_SYSTEM_SLOT:
 secretTypeName = "System Slot";
 break;
 case CredentialJSRPortletSecretManager.SECRET_JAAS_SUBJECT:
 secretTypeName = "JAAS Subject";
 break;
 }
 %>Secret type is <%=secretTypeName%>.
<%
 String userId =
(String)renderRequest.getAttribute(CredentialJSRPortlet.USERID);
 if(userId.length()>0) {
 String password =
(String)renderRequest.getAttribute(CredentialJSRPortlet.PASSWORD);
 %>
 User id is <%=userId%>.

<H3>Generate a prime number</H3>
<FORM ACTION="<portlet:actionURL/>" METHOD="POST">

 <LABEL for="<%=CredentialJSRPortlet.NUMBER%>">Enter the number of
digits:</LABEL>
 <INPUT name="<%=CredentialJSRPortlet.NUMBER%>" type="text">

 Chapter 21. The Credential Vault 661

 <INPUT name="<%=CredentialJSRPortlet.NUMBER_SUBMIT%>" value="Send"
type="submit"/>
 </FORM>

 <%
 }
 else {
 %><H5>There are no credentials in the vault for this portlet.<%
 if(CredentialJSRPortletSecretManager.isWritable(sessionBean)) {
 %> Use edit mode.</H5><%
 }
 }
 %>

<% /******** End of sample code *********/ %>
</DIV>

</DIV>

21.Save and close the view JSP file.

21.3.4 Running the portlet
In this section, you will run the portlet using active credentials to access the
back-end resource, a protected servlet in this case.

1. Right-click CredentialJSR portlet application and select Run → Run on
Server.

2. Choose or manually define a WebSphere Portal V5.1 Test Environment.

3. Click Finish to start the server.

4. After few minutes, you will see a browser displaying the portlet content in
View mode.

662 IBM Rational Application Developer V6 and Portal Tools

Figure 21-14 Portlet View mode display

Note: The portlet has executed the init method to initialize the Credential
Vault Service and the doView method. Since there are no credentials yet, a
message is displayed to indicate that the user should switch to Edit mode and
enter the required credentials. That is, the user ID and password in this
sample scenario.

5. Switch the portlet to Edit mode.

Figure 21-15 Portlet View mode display

 Chapter 21. The Credential Vault 663

6. Optionally, you may want to remove the top portion of portlet Edit mode
display in the CredentialJSRPortletEdit.jsp page. Skip this step if you do not
want to do this.

Example 21-7 Updated CredentialJSRPortletEdit.jsp

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,credentialjsr.*"%>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<%
CredentialJSRPortletSessionBean sessionBean =

(CredentialJSRPortletSessionBean)renderRequest.getPortletSession().getAttribute
(CredentialJSRPortlet.SESSION_BEAN);
%>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Single sign-on settings</H3>
<% if(CredentialJSRPortletSecretManager.isWritable(sessionBean)) {
 /******** Start of sample code ********/
 String userId =
(String)renderRequest.getAttribute(CredentialJSRPortlet.USERID);
 String password =
(String)renderRequest.getAttribute(CredentialJSRPortlet.PASSWORD);
 %>Set user credentials to be stored in the credential vault.
 <DIV style="margin: 12px; margin-bottom: 36px">

<FORM ACTION="<portlet:actionURL/>" METHOD="POST">
 <LABEL for="<%=CredentialJSRPortlet.USERID%>">Enter user id:</LABEL>

 <INPUT name="<%=CredentialJSRPortlet.USERID%>" value="<%=userId%>"
type="text">

 <LABEL for="<%=CredentialJSRPortlet.PASSWORD%>">Enter
password:</LABEL>

 <INPUT name="<%=CredentialJSRPortlet.PASSWORD%>" value="<%=password%>"
type="password">

 <INPUT name="<%=CredentialJSRPortlet.USER_SUBMIT%>" value="Save"
type="submit"/>
 </FORM>

 <% /******** End of sample code *********/ %>
 </DIV>
 <%
}
else {
 %>This credential vault is read-only.<%
}
%>

664 IBM Rational Application Developer V6 and Portal Tools

<FORM ACTION="<portlet:renderURL portletMode="view"/>" METHOD="POST">
<INPUT NAME="back" TYPE="submit" VALUE="Back to view mode">

</FORM>
</DIV>

7. Enter the following information:

– User ID field: user1
– Password field: password1

Figure 21-16 Running Edit mode of the portlet

8. Press the Save button. This will generate an action that will be checked by
the processAction() method in the CredentialJSRPortlet class. The portlet
returns to Edit mode, showing the credentials you entered. Click the Back to
view mode button to return the portlet to View mode.

9. Make sure the WebSphere Test Environment running the secure servlet is
running. Start this server if it is not running.

10.Since you are also running as administrator, switch to configure mode. You
will find the default values stored in the PortletPreferences to access the
back-end resources, check them out and return to View mode. The correct
values should be:

– Server name: localhost
– Port number: 9080
– Servlet path: /SecureServlet/PrimesGeneration
– Servlet attribute name: number.

 Chapter 21. The Credential Vault 665

Figure 21-17 Portlet configure mode

11.Go back to View mode. Now the portlet displays a form to enter the number of
digits to generate a prime number with this length. In View mode, enter a
number of digits and click Send button. At the top of the portlet you will see
the result generated by the PrimesGeneration servlet.

Figure 21-18 The CredentialJSR portlet in action

666 IBM Rational Application Developer V6 and Portal Tools

21.4 Using passive credentials
In the previous section, a portlet using an active credential object was built.
Although this is the preferred type of credential object, there are certain cases
where you have to use passive credential objects, for example when an
appropriate active credential class is not available.

In this sample scenario, the portlet will be changed to use a passive credential
object. To modify the portlet application, proceed as follows:

1. In the CredentialJSR project, open the CredentialJSRPortletSecretManager
class.

2. Using the Java editor, add to the class the method shown in Example 21-8 to
support passive credentials.

Example 21-8 The getConnectionUsingPassiveObject method (passive credentials)

public static HttpURLConnection getConnectionUsingPassiveObject(
PortletRequest portletRequest,
CredentialJSRPortletSessionBean sessionBean,
String host,
String port,
String path) {
StringBuffer userid = new StringBuffer("");
StringBuffer password = new StringBuffer("");
HttpURLConnection connection = null;
try {

getCredential(portletRequest, sessionBean, userid, password);
if (!userid.toString().equals("")) {

String userAndPassword =
new String(userid.toString() + ":" + password.toString());

byte[] userAndPasswordBytes = userAndPassword.getBytes();
BASE64Encoder encoder = new BASE64Encoder();
String basicAuth =

new String(encoder.encode(userAndPasswordBytes));
basicAuth = "Basic " + basicAuth;
URL url = new URL("http://" + host + ":" + port + path);
connection = (HttpURLConnection) url.openConnection();
connection.setRequestProperty("authorization", basicAuth);

}
} catch (Exception e) {

e.printStackTrace();
}
return connection;

}

3. Organize the import statements as you did in the previous scenario. Choose
com.ibm.misc.BASE64Encoder. Click Finish.

 Chapter 21. The Credential Vault 667

Note: The Sun.misc.Bas64Encoder class can also be used. In some specific
cases this can be the correct choice.

4. Save and close the Java file.

5. Open the class CredentialJSRPortlet from the credentialjsr package. In the
doView method, change the line:

HttpURLConnection connection =
CredentialJSRPortletSecretManager.getConnectionUsingActiveObject(request,
sessionBean, host, port, path.toString());

to

HttpURLConnection connection =
CredentialJSRPortletSecretManager.getConnectionUsingPassiveObject(request,
sessionBean, host, port, path.toString());

6. Save and close the Java file.

7. Restart the project and access the secure servlet again as described in
21.3.4, “Running the portlet” on page 662. The portlet should run exactly as it
did in the previous section when using active credentials. This time, the
getConnectionUsingPassiveObject method has access to the credentials.

Note: Having access to credentials could be a security risk, so when possible,
use always active credential objects.

668 IBM Rational Application Developer V6 and Portal Tools

Chapter 22. Accessing JDBC databases
from portlet applications

In this chapter, we introduce the process of gaining access to back-end JDBC
databases from portlet applications. A simple portlet project is included to show
how portlet applications access relational databases using the JDBC interface.

This chapter discusses the following topics:

� How to create a Portlet project on Rational Application Developer.

� How to create a connection to a database using Rational Application
Developer.

� A portlet example to access a database.

22

© Copyright IBM Corp. 2005. All rights reserved. 669

22.1 Creating a portlet project
In this section, the process of creating a portlet project named HRPortlet is
described. This project will be used later in 22.2, “Creating a sample database”
on page 675 to show the JDBC connection.

22.1.1 Creating HRPortlet
In this section, you will create a portlet project named HRPortlet. The portlet will
be created based on a Basic portlet type using the provided wizard. This portlet
will be published and executed in the Portal Test Environment.

If not already running, start the Rational Application Developer; select Start →
Programs → IBM Rational → IBM Rational Application Developer V6.0 →
Rational Application Developer.

1. Select File → New → Project....

Figure 22-1 Creating a new project

2. In the Select a wizard window, select Portlet Project. Click Next.

670 IBM Rational Application Developer V6 and Portal Tools

Figure 22-2 Select Portlet project

3. The Portlet Project window will appear; enter HRPortlet for the name of the
project. Click the Show Advanced >> button and change Target Server to
WebSphere Portal V5.1 stub and Context Root to /HRPortlet. Click Next.

 Chapter 22. Accessing JDBC databases from portlet applications 671

Figure 22-3 Portlet project configuration

4. In the Portlet Type window, select Basic portlet. Click Next.

672 IBM Rational Application Developer V6 and Portal Tools

Figure 22-4 Basic portlet

5. In the Features window, leave the default values. Click Next.

6. In the Portlet Settings window, click the Change code generations options
checkbox. Remove the portlet word from the Portlet name, Portlet Title and
Class Prefix fields, so they will look as in Figure 22-5 on page 674. Click Next.

 Chapter 22. Accessing JDBC databases from portlet applications 673

Figure 22-5 Portlet settings

7. Accept default values for the Event Handling window by clicking Next.

8. Accept default values for the Single Sign-on window by clicking Next. The
Credential Vault is not used in this scenario.

9. Click Finish in the Miscellaneous window.

Figure 22-6 Switch to Web perspective

Note: If this is the first time that Rational Application Developer is used, you
will be prompted to switch to the Web perspective. Click Yes.

674 IBM Rational Application Developer V6 and Portal Tools

As a result of this process you should see, in the Project Explorer view, all the
project artifacts created by Rational Application Developer, under Dynamic Web
Projects → HRPortlet.

Figure 22-7 HRPortlet project

22.2 Creating a sample database
In this section, we describe the process of creating a database connection and
generating the required Java classes; these classes are similar to the classes
used in the sample scenario included in this book.

This section explains how to create a database and a database connection using
the wizard provided by Rational Application Developer.

22.2.1 Creating the WSSAMPLE database
Before creating the connection, you need to create the database you are going to
connect to. In this sample scenario, you will use Cloudscape embedded within
Rational Application Developer.

Note: The sample scenario requires that you download the sample code
available as additional materials.

Note: In 22.3, “Sample scenario” on page 689, a portlet project to access a
JDBC database will be imported into the HRPortlet project created in the
previous section. In this implementation, the JDBC connection has already
been included.

 Chapter 22. Accessing JDBC databases from portlet applications 675

1. Create the c:\HRproject\database directory.

2. Copy the following files to this directory:

– CreateCloudTable.bat
– Tables.sql

3. Edit the provided CreateCloudTable.bat file and make sure the paths for
variables JAVA_HOME and DB2J_LIB point to the correct location. For
example, in this sample scenario, these directories (java and lib) can be found
at <RAD_root>\runtimes as shown in Example 22-1.

Example 22-1 Sample CreateCloudTable.bat file

set JAVA_HOME=C:\Progra~1\IBM\Rational\SDP\6.0\runtimes\base_v51\java
set DB2J_LIB=C:\Progra~1\IBM\Rational\SDP\6.0\runtimes\base_v51\cloudscape\lib
set
CLASSPATH=%DB2J_LIB%\db2j.jar;%DB2J_LIB%\db2jtools.jar;%DB2J_LIB%\db2jcview.jar
;%DB2J_LIB%\jh.jar
%JAVA_HOME%\bin\java -Dij.connection.myconn=jdbc:db2j:WSSAMPLE;create=true
-Dcloudscape.system.home=%DB2J_LIB% -ms16m -mx32m com.ibm.db2j.tools.ij
Tables.sql

4. Save and close the file.

5. Open a command window and change to the directory where these files are
located.

6. Execute CreateCloudTable.bat to create and populate the sample database
(WSSAMPLE) as illustrated in Figure 22-8.

Figure 22-8 Creating and populating the Cloudscape sample database

7. After executing the batch file, the WSSAMPLE folder is created in
c:\HRproject\database.

676 IBM Rational Application Developer V6 and Portal Tools

Accessing database information
As an option, you can review the sample database information. For example,
execute the following steps:

1. Open a command window.

2. Go to the embedded directory located in:

<RAD_root>\runtimes\base_51\cloudscape\bin\embedded

For example, in this scenario the complete path is:

C:\Progra~1\IBM\Rational\SDP\6.0\runtimes\base_v51\cloudscape\bin\embedded

3. Start Cloudview by executing the cview.bat file.

4. The Cloudview application starts. Select File → Open....

Figure 22-9 Executing Cloudview

5. In the directory c:\HRproject\database, select WSSAMPLE. Click Open.

6. You should see the tables and their content (data) by selecting them.

 Chapter 22. Accessing JDBC databases from portlet applications 677

Figure 22-10 View of created sample database

7. Click File → Exit to end the program.

22.2.2 Creating a connection
Once the database is created, you can proceed to create the connection to the
database and verify it. However, before you do this, you will need to create a
folder to copy the database metadata.

Creating a database folder
On the Web perspective, execute the following steps:

1. Right-click the WEB-INF folder and select New → Folder from the contextual
menu.

678 IBM Rational Application Developer V6 and Portal Tools

Figure 22-11 Select a new folder

2. Enter database as the folder name.

 Chapter 22. Accessing JDBC databases from portlet applications 679

Figure 22-12 Entering a folder name

3. Click Finish.

Creating a new connection
Follow these steps to create a new database connection:

1. Change to the Data perspective by selecting Window → Open Perspective
→ Data.

680 IBM Rational Application Developer V6 and Portal Tools

Figure 22-13 Data perspective

2. Right-click inside the Database Explorer view.

Figure 22-14 Creating a new connection

3. Click New Connection... from the context menu to create a new connection.
The Establish a connection to a database window will appear.

4. Type ConnHR as connection name. Click Next.

5. In the Specify connection parameters window, select the following values:

a. Select database manager: V5.1

b. JDBC driver: Cloudscape Embedded JDBC Driver

c. Enter the path where the database for this scenario was created. For
example:

 Chapter 22. Accessing JDBC databases from portlet applications 681

c:\HRProject\database\WSSAMPLE

d. Uncheck Create the database since you have already created the
database.

e. Leave the default value for the Class location field.

f. As a user ID, enter db2admin. As a password, use db2admin also.

Figure 22-15 Connection parameters

6. Click the Test Connection button. You should see a dialog box with the
message Connection to WSSAMPLE is successful. Click OK.

Note: The user ID and password are optional in this sample scenario
since Cloudscape does not verify it.

682 IBM Rational Application Developer V6 and Portal Tools

Figure 22-16 Successful database connection

Note: If you do not receive the successful message, make sure the values
you entered in the Specify connection parameters window are correct and try
again until you get a successful message indication.

7. Click Finish.

8. Click Yes to the question Do you want to copy the database metadata to a
project folder?.

9. In the Copy to Project window, click the Browse button and select the
database folder you previously created:

/HRPortlet/WebContent/WEB-INF/database

Figure 22-17 Copy objects

10.Click Finish.

22.2.3 Creating an SQL statement
In this section, a simple SQL statement to display all employees will be created.
When the statement has been created, the editor opens and you have several
options to create a SQL statement. For example, you can use the wizard or you
can use the editor to write your query. In this section, you will use the wizard to
create and execute the following SQL statement:

select * from employee

 Chapter 22. Accessing JDBC databases from portlet applications 683

1. In the Data Definition view, right-click the statement folder under the sample
WSSAMPLE database.

2. Select New → Select Statement.

Figure 22-18 Creating the SWL select statement

3. Enter SQLUtility for the Statement Name and click OK.

4. The Editor will open; right-click the Tables area.

5. Select Add Table... on the context window.

6. Select the APP.EMPLOYEE from the Table name pop-up and click OK.

Figure 22-19 Add table

7. On the Data Definition view, expand the Statement folder.

8. Right-click the SQLUtility statement.

9. Select Execute from the context menu.

684 IBM Rational Application Developer V6 and Portal Tools

Figure 22-20 Execute SQL statement

10.This request returns the content from the EMPLOYEE table.

Figure 22-21 SQL statement results

22.2.4 Generating Java classes
In the sample code provided in 22.3, “Sample scenario” on page 689, the
SQLUtilities.java class provides methods that execute the SQL statement,
returning a DBSelect reference and an array of objects representing the rows in
the result set.

Creating a utilities package
A package will be needed to store the generated java classes.

1. Open the Web perspective, right-click the Java Resources package and
select New → Package.

 Chapter 22. Accessing JDBC databases from portlet applications 685

Figure 22-22 Java Resources package

2. For the Source Folder, enter HRPortlet/JavaSource. For the Name, enter
utilities.

3. Click Finish to create the package.

Figure 22-23 Create a Java package

Generating Java classes
Follow these steps to generate the Java classes:

1. On Data Perspective, right-click the SQLUtility statement and select
Generate Java Bean.

686 IBM Rational Application Developer V6 and Portal Tools

Figure 22-24 Generate JavaBean

2. Enter the following values for the Java Class Specification window:

– Source Folder: HRPortlet/JavaSource
– Package: utilities
– Name: SQLUtilities

Figure 22-25 Java Class Specification

3. In the Specify Runtime Database Connection Information window, accept the
default value for the Use Driver Manager Connection option. Click Next.

 Chapter 22. Accessing JDBC databases from portlet applications 687

Figure 22-26 Runtime database connection information

4. Review the specification window information.

688 IBM Rational Application Developer V6 and Portal Tools

Figure 22-27 Review the specification

5. Click Finish.

6. Optionally, you can review the two Java classes created under Java
Resources/utilities.

22.3 Sample scenario
This section provides a sample scenario of a portlet project that uses the JDBC
interface to interact with relational database back end systems. You will import
the sample portlet project to the project created on previous sections, deploy and
run this portlet on a Test environment. This sample scenario will allow you
understand the techniques used to develop portlets that retrieve information from
databases using JDBC.

The development workstation has already been created for you and its
components can be seen in Figure 22-28 on page 690.

 Chapter 22. Accessing JDBC databases from portlet applications 689

Figure 22-28 Development workstation

22.3.1 Overview
In this section, you will review and understand the sample scenario. You will
import the code to use JDBC to interact with databases to the current HRPortlet
project.

This example shows how the JDBC interface is used to read information from a
Cloudscape sample table. In your portlet Edit mode, you will provide the
information needed to establish a connection with the database in order to
retrieve the content in View mode. The sample scenario is illustrated in
Figure 22-29 on page 691.

Rational Appliocation
Developer v6
Sample portlet
Cloudscape v5.1.6

Portal Test Environment v5.1
Cloudscape v5.1.6

Development Runtime

Run on Server

690 IBM Rational Application Developer V6 and Portal Tools

Figure 22-29 JDBC scenario

The sequence flow for this sample scenario is as follows:

1. Initially, the doView method is executed.

2. A JSP is invoked in View mode to render the initial screen containing a
welcome message telling the user to enter the database inquiry values in Edit
mode.

3. The user clicks Edit to go into Edit mode.

4. The doEdit method executes and invokes a JSP (include).

5. The JSP renders the form. to fill the connection information.

6. The user enters the database name, user ID, password and SQL statement.

7. The user submits the request (post) to the previous mode (View mode). An
action event is generated.

Note: It is assumed that the database has already been created and
populated and the sample portlet WAR file is available.

Note: A user ID and password have not been implemented for this version
of Cloudscape, therefore any user ID and password can be used

doView

Database
user ID
password
SQL statement

Database
Utilities

1

doEdit

Browser

View
Mode

Edit
Mode

JSP

Bean

WSSAMPLE

JDBC

Database
wssample

user ID
db2admin

password
db2admin

SQL statement
select * from jobs

actionPerformed()

JSP
5

2 3

4

6

7

8

9

 Chapter 22. Accessing JDBC databases from portlet applications 691

8. The actionPerformed() method executes and the following processes take
place:

a. The database, user ID, password, and SQL statement are extracted and
sent to the JDBCPortletResults Bean.

b. A connection object is created.

c. A DBResults object is created. This object encapsulates the database
inquiry.

d. Database Utilities (another bean) is invoked to execute the actual
database inquiry.

e. Results are stored as a String in the request object.

9. The doView method executes again:

a. Results are obtained in View mode.

b. Results are rendered directly in View mode.

22.3.2 Importing the WAR file
In previous sections you created the portlet project and some basics components
needed for database connection. In this section you will complete the Java code
needed to finish the portlet sample scenario.

You will import the WAR file provided for this sample scenario in the HRPortlet
project and you will replace the original files previously created by the wizard.
These are the files that will be overwritten with the complete Java code:

� HRPortlet.java (Portlet class)

� HRPortletSessionBean.java (Session bean)

� HRPortletEditBean.java (Bean)

� HRPortletEdit.jsp (Edit Mode)

� HRPortletView.jsp (View Mode)

� portlet.xml (Portlet deployment descriptor)

� web.xml (Web deployment descriptor)

� A new class SQLUtilities.java (Utility) to set the DBSelect properties values
and create methods to execute SQL statements

� A new class SQLUtilitiesRow.java (Utility) to retrieve each row of the result set

� A new class HRPortletViewBean.java (Bean) to store the DBResult object

To import the WAR file follow these steps:

1. Select File → Import...

692 IBM Rational Application Developer V6 and Portal Tools

2. In the Select window drag down and select WAR file, click Next.

3. In the Import Resources from a WAR file window, enter the following values:

a. WAR file: C:\LabFiles\JDBC\HR\HRPortlet.war

b. Web project: HRPortlet

c. Select the Overwrite existent resources without warning checkbox.

Note: Initially you will see a different Web project such as HRPortlet1. This is
because HRPortlet already exists. Change this value to HRPortlet and
therefore have the overwrite option available.

Figure 22-30 Importing the WAR file

4. Click Finish.

5. Select all resources to save.

22.3.3 Reviewing the portlet code
In this section, you will review the portlet code used in this sample scenario. To
do this you can double-click the java files, the Java editor will open. These files
are located in the /Java Source/hrportlet/ folder.

Double-click the HRPortlet.java file, to review its content:

1. The actionPerformed() method in this portlet does the following when an edit
action occurs (see Example 22-2 on page 694).

 Chapter 22. Accessing JDBC databases from portlet applications 693

a. It gets the parameters (database, user ID, password and SQL statement)
from the request (PortletRequest).

b. It sets these values in the HRPortletSessionBean.java bean.

Example 22-2 HRPortlet.java - actionPerformed() method

.....
// ActionEvent handler
String actionString = event.getActionString();
// Add action string handler here
PortletRequest request = event.getRequest();

HRPortletSessionBean sessionBean = getSessionBean(request);

if (EDIT_ACTION.equals(actionString)) {
String dbname = (String) request.getParameter("dbname");
String userid = (String) request.getParameter("userid");
String password = (String) request.getParameter("password");
String sqlstring = (String) request.getParameter("sqlstring");
sessionBean.setDbName(dbname);
sessionBean.setUserId(userid);
sessionBean.setPassword(password);
sessionBean.setSqlString(sqlstring);

}

if (FORM_ACTION.equals(actionString)) {
// Set form text in the session bean
sessionBean.setFormText(request.getParameter(TEXT));

}
}

.....

2. The doEdit() method in the portlet does the following:

a. It creates an instance of HRPorteltEditBean bean.

b. It adds the action which will be executed when the form is submitted and
sets this value in the Edit mode bean.

c. When the database, user ID, password and SQL statement values exist
for the session, it will also store these values in the Edit mode bean.

d. The Edit mode bean is passed in the request to the HRPortletEdit.jsp.

Example 22-3 HRPortlet.java - doEdit() method

.....
HRPortletEditBean editBean = new HRPortletEditBean();

editBean.setFormAction(EDIT_ACTION);

694 IBM Rational Application Developer V6 and Portal Tools

HRPortletSessionBean sessionBean = getSessionBean(request);
String sqlstring = sessionBean.getSqlString();

if (sqlstring != null) {
String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();

editBean.setDbname(dbname);
editBean.setPassword(password);
editBean.setUserid(userid);
editBean.setSqlstring(sqlstring);

}
request.setAttribute(EDIT_BEAN, editBean);

// Invoke the JSP to render
getPortletConfig().getContext().include(EDIT_JSP +

getJspExtension(request),request,response);
.....

3. The doView() method does the following:

a. It checks if there is a HRPortletSessionBean in the session. The first time
this method is invoked, the session bean will be null.

b. If there is an HRPortletSessionBean in session, it gets the database, user
ID, password and SQL sentence values stored in it and creates an
instance of HRPortletViewBean.

c. The execute() method of SQLUtilities class is called to execute the SQL
statement and the result is stored in the View mode bean by calling
populateData() method in the SQLUtilities class.

d. The View mode bean is passed in the request to HRPortletView.jsp.

Example 22-4 HRPortlet.java - doView() method

.....
// Check if portlet session exists
HRPortletSessionBean sessionBean = getSessionBean(request);
if (sessionBean == null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;

}

String sqlstring = sessionBean.getSqlString();
if (sqlstring != null && !sqlstring.equals("")) {

String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();

 Chapter 22. Accessing JDBC databases from portlet applications 695

// Make a view mode bean
HRPortletViewBean viewBean = new HRPortletViewBean();

SQLUtilities sqlUtility = new SQLUtilities();
try {

sqlUtility.execute(userid, password, dbname, sqlstring);
} catch (SQLException e) {

e.printStackTrace();
}
sqlUtility.populateData(viewBean);
request.setAttribute(VIEW_BEAN, viewBean);

}

// Invoke the JSP to render
getPortletConfig().getContext().include(VIEW_JSP +

getJspExtension(request),request,response);
.....

4. The HRPortletEdit.jsp is used to prompt for the database, user ID, password
and SQL statement parameters. Double-click this file (located in /Web
Content/hrportlet/jsp/html/ folder) to view its source code.

a. Notice that the database name, user ID, password and SQL fields all have
the HTML tag value=”<%=editBean.getXXX()%>”. This allows the JSP to
display the persistent data stored in the bean.

Example 22-5 HRPortletEdit.jsp (Edit mode sample code)

.....
<%

HRPortletEditBean editBean = (HRPortletEditBean)
portletRequest.getAttribute("hrportlet.HRPortletEditBean");
%>

<HTML>
<BODY>
<h4>Complete with your database information
and click Submit</h4>

<FORM method="post" action="<portletAPI:createReturnURI><portletAPI:URIAction
name='<%=editBean.getFormAction()%>'/></portletAPI:createReturnURI>">
<TABLE border="0">

<TBODY>
<TR>

<TD width="805">
<TABLE border="0">

<TBODY>
<TR>

696 IBM Rational Application Developer V6 and Portal Tools

<TD>Database
:</TD>

<TD><INPUT type="text" value="<%=editBean.getDbname()%>"
name='<portletAPI:encodeNamespace value="dbname"/>'

size="20"></TD>
.....

5. Once the database parameters are collected, the request is processed by the
actionPerformed() and doView() methods. The results are displayed by
HRPortletView.jsp. Double-click this file to view its source code.

This JSP checks if there is a HRPortletViewBean.java bean in the request. If
there is not then it displays a message to go to Edit mode and configure an
SQL statement. If the bean exists then the result of the query is displayed.

Example 22-6 HRPortletView.jsp (View mode sample code)

.....
<%

HRPortletViewBean viewBean =
(HRPortletViewBean)portletRequest.getAttribute(HRPortlet.VIEW_BEAN);

HRPortletSessionBean sessionBean =
(HRPortletSessionBean)portletRequest.getPortletSession().getAttribute(HRPortlet
.SESSION_BEAN);
%>

<% if (viewBean == null) { %>
<HTML>
<BODY>
This is the JDBC Sample Portlet. Go to Edit mode and configure a SQL
query
<% } else {

try {
com.ibm.db.beans.DBSelect results = viewBean.getResultFromDatabase();

%>
.....

6. The classes SQLUtilities.java and SQLUtilitiesRow.java have been generated
in the data perspective. In the data perspective, you can create a connection
to database, import the tables, create SQL statements and generate Java
beans for the statements as you did in previous sections. These classes
contain the methods to execute and retrieve information from database. The
execute() method is called by the doView() method of HRPortlet.java when
there is a statement in the session and the information retrieved is stored in
the View mode bean by calling the populateData() method of
SQLUtilities.java.

 Chapter 22. Accessing JDBC databases from portlet applications 697

Example 22-7 SQLUtilities.java

public void execute(String userid,String password,String url,String
command)

throws SQLException {
try {

select.setUrl(url);
select.setCommand(command);
select.setUsername(userid);
select.setPassword(password);
select.execute();

}

// Free resources of select object.
finally {

select.close();
}

}

public void populateData(HRPortletViewBean viewBean) {
viewBean.setResultFromDatabase(select);

}

22.3.4 Running the HRPortlet application
Finally, after creating the portlet project and importing the Java classes, you will
run the HRPortlet.

1. Run the HRPortlet portlet by right-clicking HRPortlet in the Project Explorer
view and selecting Run → Run on server....

2. In the Define a New Server window, select the Choose an existing server
option and for Select the server that you want to use, select WebSphere
Portal V5.1 Test Environment @ localhost. Also, use default port 9081.

3. The portlet executes and you will see it in the built-in browser.

The View mode is shown with a message indicating that you have to provide
an SQL query; you will also need to switch the portlet into Edit mode (as
indicated in Figure 22-31 on page 699) so you can enter these values.

Note: You can also check the Set server as project default checkbox,
so you will not be prompted again when you run the portlet.

698 IBM Rational Application Developer V6 and Portal Tools

Figure 22-31 Portlet initial window

4. In Edit mode, the JSP for this mode renders the form requesting the database
parameters. For the first time, enter the following information and select
Submit:

– Database: jdbc:db2j:C:\HRproject\database\WSSAMPLE
– User: db2admin
– Password: db2admin
– SQL statement: select * from jobs

Figure 22-32 Portlet in Edit mode

5. Clicking Submit generates a creatEReturnURI and the portlet will return to
View mode showing the results of your query against the WSSAMPLE
database.

 Chapter 22. Accessing JDBC databases from portlet applications 699

Figure 22-33 Query results

6. Enter Edit mode again. Notice that the database name, user ID, password
and SQL statement, which have been stored in session object, are persistent.

Figure 22-34 Database information and SQL query statement

700 IBM Rational Application Developer V6 and Portal Tools

7. Enter a new query, for example select * from survey, and click Submit. You
will be presented with the results of your new query.

Figure 22-35 Query results

 Chapter 22. Accessing JDBC databases from portlet applications 701

702 IBM Rational Application Developer V6 and Portal Tools

Chapter 23. Accessing JDBC databases
using Data Source in
standard portlets

In this chapter, we introduce the process of gaining access to back-end JDBC
databases using a Data Source for the database connection. The sample
scenario is implemented using the JSR 168 portlet specification for classes and
JSPs. A simple portlet project is included to show how portlets access relational
databases using the JDBC interface.

This chapter discusses the following topics:

� How to create a portlet project on Rational Application Developer.

� How to create a Data Source connection to a database using Rational
Application Developer.

� How to create Java classes that will provide a database connection through a
datasource.

� A portlet example to access a database.

23

© Copyright IBM Corp. 2005. All rights reserved. 703

23.1 Data Source overview
Portlet applications access relational databases through the JDBC API to store,
organize, and retrieve data. As an option, databases can also be accessed via
DataSource objects. In this case, the connection object that the getConnection()
method returns is a handle to a PooledConnection object rather than being a
physical connection.

In the general sense, using a connection pooling has no impact on portlet
applications except that connections should be closed. When a portlet
application closes a connection that is pooled, the connection is returned to a
pool of reusable connections. Using a connection pool will give you the following
benefits:

� A connection does not need to be created every time one is requested.

� You configure the minimum and maximum number of connections and
therefore you control the connectivity to a database to significantly improve
performance.

In WebSphere Application Server V5, a data source is associated with a JDBC
provider that supplies the specific JDBC driver implementation class. The data
source represents the J2EE Connector Architecture (JCA) connection factory for
the relational resource adapter. The JCA Connection Manager provides the
connection pooling, local transaction, and security supports. The relational
resource adapter provides both JDBC wrappers and JCA CCI implementation
that allows BMP, JDBC applications, and CMP beans to access the database.

Figure 23-1 JDBC Data Source using connection pooling

Note: For more details about data source, see the WebSphere Portal Server V5
InfoCenter.

When an application uses a version 5 data source, the data source will use the
JCA connector architecture to get to the relational database. Although there is no
difference between the existing WebSphere JDBC support and the new support

Portlet
Database
Utilities
Bean

WSSAMPLE

JDBC
Data

Source

Connection
Pooling

704 IBM Rational Application Developer V6 and Portal Tools

in terms of application development, there will be some connection behavior
changes because of different architectures. For example:

� The connection factory delegates the request to a connection manager.

� The connection manager looks for an instance of a connection pool in the
application server. If no connection pool is available, then the manager uses
the ManagedConnectionFactory to create a physical (nonpooled) connection.

23.2 Creating a JSR 168 portlet project
In this section, the process of creating a portlet project named HRPortlet is
described. This project will be used later in 23.3, “Creating a sample database”
on page 710 to show the JDBC connection.

23.2.1 Creating HRPortlet
In this section, you create a portlet project name HRPortlet168. The portlet will
be created based on a Basic portlet type using the provided wizard. This portlet
will be published and executed in the Portal Test Environment.

If not already running, start the Rational Application Developer; select Start →
Programs → IBM Rational → IBM Rational Application Developer V6.0 →
Rational Application Developer.

1. Select File → New → Project...

Figure 23-2 Creating a new project

2. In the Select a wizard window, select Portlet Project (JSR 168). Click Next.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 705

Figure 23-3 Select Portlet project

3. The Portlet Project window will appear; enter HRPortlet168 for the name of
the project. Click Show Advanced >> and change Target Server to
WebSphere Portal V5.1 stub and Context Root to /HRPortlet168. Click
Next.

706 IBM Rational Application Developer V6 and Portal Tools

Figure 23-4 Portlet project configuration

4. In the Portlet Type window, select Basic portlet. Click Next.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 707

Figure 23-5 Basic portlet

5. In the Features window, leave the default values. Click Next.

6. In the Portlet Settings window, click the Change code generations options
checkbox. Remove the portlet word from the Portlet name, Portlet Title and
Class Prefix fields, so they will look as in Figure 23-6 on page 709. Click Next.

708 IBM Rational Application Developer V6 and Portal Tools

Figure 23-6 Portlet settings

7. Accept default values for the Event Handling window by clicking Next.

8. Accept default values for the Single Sign-on window by clicking Next. The
Credential Vault is not used in this scenario.

9. Click Finish in the Miscellaneous window.

Note: If this is the first time that Rational Application Developer is used, you
will be prompted to switch to the Web perspective. Click Yes.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 709

Figure 23-7 Switch to Web perspective

As a result of this process, you should see, in the Project Explorer view, all the
project artifacts created by Rational Application Developer, under Dynamic Web
Projects → HRPortlet168.

Figure 23-8 HRPortlet168 project

23.3 Creating a sample database
In this chapter, it is assumed that the sample database WSSAMPLE has been
already created and populated with sample data. For details about how to create
and populate WSSAMPLE, see Chapter 22, “Accessing JDBC databases from
portlet applications” on page 669.

23.3.1 Creating a connection
Once the database is created, you can proceed to create the connection to the
database and verify it. However, before you do this, you will need to create a
folder to copy the database metadata.

710 IBM Rational Application Developer V6 and Portal Tools

Creating a database folder
On the Web perspective, execute the following steps:

1. Right-click the WEB-INF folder, select New → Folder from the contextual
menu.

Figure 23-9 Select a new folder

2. Enter database as the Folder name.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 711

Figure 23-10 Entering a folder name

3. Click Finish.

Creating a new connection
Follow these steps to create a new database connection:

1. Change to the Data perspective by selecting Window → Open Perspective
→ Data.

712 IBM Rational Application Developer V6 and Portal Tools

Figure 23-11 Data perspective

2. Right-click inside the Database Explorer view.

Figure 23-12 Creating a new connection

3. Click New Connection... from the context menu to create a new connection.
The Establish a connection to a database window will appear.

4. Type ConnHR as the connection name. Click Next.

5. In the Specify connection parameters window, select the following values:

a. Select database manager: V5.1

b. JDBC driver: Cloudscape Embedded JDBC Driver

c. Enter the path where the database for this scenario was created. For
example:

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 713

c:\HRProject168\database\WSSAMPLE

d. Uncheck Create the database since you already created the database.

e. Leave the default value for Class location field.

f. As a user ID , enter db2admin. As a password, use db2admin also.

Figure 23-13 Connection parameters

6. Click the Test Connection button. You should see a dialog box with the
message Connection to WSSAMPLE is successful. Click OK.

Note: The user ID and password are optional in this sample scenario
since Cloudscape does not verify it.

714 IBM Rational Application Developer V6 and Portal Tools

Figure 23-14 Successful database connection

Note: If you do not receive the successful message, make sure the values
you entered in the Specify connection parameters window are correct and try
again until you get a successful message indication.

7. Click Finish.

8. Click Yes to the question Do you want to copy the database metadata to a
project folder?.

9. In the Copy to Project window, click the Browse button, and select the
database folder you previously created:

/HRPortlet168/WebContent/WEB-INF/database

Figure 23-15 Copy objects

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 715

10.Click Finish.

23.3.2 Creating an SQL statement
In this section, a simple SQL statement to display all employees will be created.
When the statement has been created, the editor opens and you have several
options to create a SQL statement. For example, you can use the wizard or you
can use the editor to write your query. In this section, you will use the wizard to
create and execute the following SQL statement:

select * from employee

1. In the Data Definition view, right-click the Statement folder under the sample
WSSAMPLE database.

2. Select New → Select Statement.

Figure 23-16 Creating the SWL select statement

3. Enter SQLUtility for the Statement Name and click OK.

4. The Editor will open; right-click the Tables area.

716 IBM Rational Application Developer V6 and Portal Tools

5. Select Add Table... in the context window.

6. Select the APP.EMPLOYEE from the Table name pop-up and click OK.

Figure 23-17 Add table

7. On the Data Definition view, expand the Statement folder.

8. Right-click the SQLUtility statement.

9. Select Execute from the context menu.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 717

Figure 23-18 Execute SQL statement

10.This request returns the content from the EMPLOYEE table.

Figure 23-19 SQL statement results

718 IBM Rational Application Developer V6 and Portal Tools

23.3.3 Generating Java classes
In the sample code provided in 23.4, “Sample scenario” on page 724, the
SQLUtilities.java class provides methods that execute the SQL statement,
returning a DBSelect reference and an array of objects representing the rows in
the result set.

Creating a utilities package
A package will be needed to store the generated Java classes.

1. Open the Web perspective, right-click the Java Resources package and
select New → Package.

Figure 23-20 Java Resources package

2. For the Source folder, enter HRPortlet168/JavaSource. For the Name, enter
utilities.

3. Click Finish to create the package.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 719

Figure 23-21 Create a Java package

Generating Java classes
Follow these steps to generate the Java classes:

1. On Data Perspective, right-click the SQLUtility statement and select
Generate Java Bean.

720 IBM Rational Application Developer V6 and Portal Tools

Figure 23-22 Generate JavaBean

2. Enter the following values for the Java Class Specification window:

– Source Folder: HRPortlet168/JavaSource
– Package: utilities
– Name: SQLUtilities

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 721

Figure 23-23 Java Class Specification

3. In Specify Runtime Database Connection Information window, accept the
default value for the Use Driver Manager Connection option. Click Next.

722 IBM Rational Application Developer V6 and Portal Tools

Figure 23-24 Runtime database connection information

4. Review the specification window information.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 723

Figure 23-25 Review the specification

5. Click Finish.

6. Optionally, you can review the two Java classes created under Java
Resources/utilities.

23.4 Sample scenario
This section provides a sample scenario of a JSR 168 portlet project that uses
the JDBC interface to interact with relational database back end systems. You
will import the sample portlet project to the project created in previous sections,
deploy and run this portlet in a test environment. This sample scenario will allow
you to understand the techniques used to develop portlets that retrieve
information from databases using JDBC.

The development workstation has already been created for you and its
components can be seen in Figure 23-26 on page 725.

724 IBM Rational Application Developer V6 and Portal Tools

Figure 23-26 Development workstation

23.4.1 Overview
In this section, you will review and understand the sample scenario. You will
import the java code to use JDBC to interact with databases to the current
HRPortlet168 project.

This example shows how the JDBC interface is used to read information from a
Cloudscape sample table. In your portlet Edit mode, you will provide the
statement that is needed to establish a connection with the database in order to
retrieve the content in View mode. The sample scenario is illustrated in
Figure 23-27 on page 726.

Rational Appliocation
Developer v6
Sample portlet
Cloudscape v5.1.6

Portal Test Environment v5.1
Cloudscape v5.1.6

Development Runtime

Run on Server

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 725

Figure 23-27 Sample JSR 168 portlet using data source

The sequence flow for this sample scenario is as follows:

1. Initially, the doView method is executed.

2. A JSP is invoked in View mode to render the initial screen containing a
welcome message telling the user to enter the database inquiry values in Edit
mode.

3. The user clicks Edit icon to go into Edit mode.

4. The doEdit method executes and invokes a JSP (include).

5. The JSP renders the form to fill the connection information.

6. The user enters the user ID, password and SQL statement.

7. The user submits the request (post). An actionURL is generated.

doView

user ID
password
SQL statement

Database
Utilities

1

doEdit

Browser

View
Mode

Edit
Mode

JSP

Bean

WSSAMPLE

JDBC

Database
wssample

user ID
db2admin

password
db2admin

SQL statement
select * from jobs

processAction()

JSP

Data
Source

2 3

4

5

6

7

8

9

Note: It is assumed that the database has already been created and
populated and the sample portlet WAR file is available.

Note: A user ID and password have not been implemented for this version
of Cloudscape, therefore any user ID and password can be used.

726 IBM Rational Application Developer V6 and Portal Tools

8. The processAction() method executes and the following processes take
place:

a. The user ID, password, and SQL statement are extracted and sent to the
HRPortlet168SessionBean object.

b. If the PortletMode is Edit mode, then change the PortletMode to VIEW
mode, this execute the doView method.

9. In the doView:

a. A DBSelect object is created and initialized with the DataSource.

b. The user ID, password, and SQL statement are extracted and sent to the
SQLUtilities through the execute method.

c. Results are stored in the DBSelect object.

d. A HRPortlet168ViewBean is sent to the SQLUtility through the
populateData method.

a. The BDSelect object is added to the HRPortlet168ViewBean sent in the
previous activity.

b. Finally, the HRPortlet168ViewBean is rendered in the request to the JSP.

23.4.2 Importing the WAR file
In previous sections, you created the portlet project and some basics
components needed for database connection. In this section you will complete
the Java code needed to finish the portlet sample scenario.

You will import the WAR file provided for this sample scenario in the
HRPortlet168 project and you will replace the original files previously created by
the wizard. These are the files that will be overwritten with the complete Java
code:

� HRPortlet168.java (Portlet class)

� HRPortlet168SessionBean.java (Session bean)

� HRPortlet168EditBean.java (Bean)

� HRPortlet168Edit.jsp (Edit Mode)

� HRPortlet168View.jsp (View Mode)

� portlet.xml (Portlet deployment descriptor)

� web.xml (Web deployment descriptor)

� A new class SQLUtilities.java (Utility) to set the DBSelect properties values
and create methods to execute SQL statements

� A new class SQLUtilitiesRow.java (Utility) to retrieve each row of the result set

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 727

� A new class HRPortlet168ViewBean.java (Bean) to store the DBSelect object

To import the WAR file, follow these steps:

1. Select File → Import...

2. In the Select window, drag down and select WAR file, then click Next.

3. In the Import Resources from a WAR file window, enter the following values:

a. WAR file: C:\HRPortlet168\5.1\HRPortlet168.war

b. Web project: HRPortlet168

c. Select the Overwrite existent resources without warning checkbox.

Note: Initially, you will see a different Web project such as HRPortlet1681.
This is because HRPortlet already exists. Change this value to HRPortlet168
to have the overwrite option available.

Figure 23-28 Importing the WAR file

728 IBM Rational Application Developer V6 and Portal Tools

4. Click Finish.

5. Select all resources to save.

23.4.3 Reviewing the portlet code
In this section, you will review the portlet code used in this sample scenario. To
do this you can double-click the Java files, the Java editor will open. These files
are located in the /Java Source/hrportlet168/ folder.

Double-click the HRPortlet168.java file, to review its content:

1. The processAction() method in this portlet does the following when an edit
action occurs. (see Example 23-1)

a. It gets the parameters (user ID, password and SQL statement) from the
request (ActionRequest).

b. It sets these values in the HRPortlet168SessionBean.java bean.

Example 23-1 HRPortlet168.java - processAction() method

.....
//Add action string handler here
HRPortlet168SessionBean sessionBean = getSessionBean(request);

if(request.getPortletMode().equals(PortletMode.EDIT)) {
String dbname = (String) request.getParameter("dbname");
String userid = (String) request.getParameter("userid");
String password = (String) request.getParameter("password");
String sqlstring = (String) request.getParameter("sqlstring");
sessionBean.setDbName(dbname);
sessionBean.setUserId(userid);
sessionBean.setPassword(password);
sessionBean.setSqlString(sqlstring);
if(request.getPortletMode().equals(PortletMode.EDIT))

response.setPortletMode(PortletMode.VIEW);
}

if(request.getParameter(FORM_SUBMIT) != null) {
// Set form text in the session bean
sessionBean = getSessionBean(request);
if(sessionBean != null)

sessionBean.setFormText(request.getParameter(TEXT));
}

.....

2. The doEdit() method in the portlet does the following:

a. It creates an instance of HRPortelt168EditBean bean.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 729

b. When the user ID, password and SQL statement values exist for the
session, it will also store these values in the Edit mode bean.

c. The Edit mode bean is passed in the request to the HRPortlet168Edit.jsp.

Example 23-2 HRPortlet168.java - doEdit() method

.....
HRPortlet168EditBean editBean = new HRPortlet168EditBean();
HRPortlet168SessionBean sessionBean = getSessionBean(request);
String sqlstring = sessionBean.getSqlString();

if (sqlstring != null) {
String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();

editBean.setDbname(dbname);
editBean.setPassword(password);
editBean.setUserid(userid);
editBean.setSqlstring(sqlstring);

}
request.setAttribute(EDIT_BEAN, editBean);

// Invoke the JSP to render
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(getJspFilePath(request, EDIT_JSP));
rd.include(request,response);

.....

3. The doView() method does the following:

a. It checks if there is a HRPortlet168SessionBean in the session. The first
time this method is invoked, the session bean will be null.

b. If there is an HRPortlet168SessionBean in session, it gets the user ID,
password and SQL sentence values stored in it and creates an instance of
HRPortlet168ViewBean.

c. The execute() method of SQLUtilities class is called to execute the SQL
statement and the result is stored in the View mode bean by calling
populateData() method in the SQLUtilities class.

d. The View mode bean is passed in the request to HRPortlet168View.jsp.

Example 23-3 HRPortlet168.java - doView() method

.....
//Set the MIME type for the render response
response.setContentType(request.getResponseContentType());

730 IBM Rational Application Developer V6 and Portal Tools

// Check if portlet session exists
HRPortlet168SessionBean sessionBean = getSessionBean(request);
if(sessionBean==null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;

}
String sqlstring = sessionBean.getSqlString();
if (sqlstring != null && !sqlstring.equals("")) {

String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();

// Make a view mode bean
HRPortlet168ViewBean viewBean = new HRPortlet168ViewBean();
SQLUtilities sqlUtility = new SQLUtilities();
try {

sqlUtility.execute(userid, password, sqlstring);
} catch (SQLException e) {

e.printStackTrace();
}
sqlUtility.populateData(viewBean);
request.setAttribute(VIEW_BEAN, viewBean);

}
// Invoke the JSP to render
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(getJspFilePath(request, VIEW_JSP));
rd.include(request,response);

.....

4. The HRPortlet168Edit.jsp is used to prompt for the user ID, password and
SQL statement parameters. Double-click this file (located in /Web
Content/hrportlet168/jsp/html/ folder) to view its source code.

a. Notice that the user ID, password and SQL fields all have the HTML tag
value=”<%=editBean.getXXX()%>”. This allows the JSP to display the
persistent data stored in the bean.

Example 23-4 HRPortlet168Edit.jsp (Edit mode sample code)

.....
<portlet:defineObjects/>
<%

HRPortlet168EditBean editBean =
(HRPortlet168EditBean)renderRequest.getAttribute(HRPortlet168.EDIT_BEAN);
%>
<HTML>
<BODY>
<h4>Complete with an SQL Statement information
and click Submit</h4>

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 731

<FORM method="post" action="<portlet:actionURL/>">
<TABLE border="0">

<TBODY>
<TR>

<TD width="805">
<TABLE border="0">

<TBODY>
<TR>

<TD></TD>
<TD></TD>
<TD rowspan="5"><IMG

src='<%=response.encodeURL(request.getContextPath() +
"/images/database.gif")%>'></TD>

<TD width="476" valign="top"><FONT size="2"
face="Arial"> This can be use as default values</TD>

</TR>
<TR>

<TD>User
:</TD>

<TD><INPUT type="text" value="<%=editBean.getUserid()%>"
name="userid" size="20"></TD>
.....

5. Once the database parameters are collected, the request is processed by the
processAction() and doView() methods. The results are displayed by
HRPortlet168View.jsp. Double-click this file to view its source code.

a. This JSP check if there is a HRPortlet168ViewBean.java bean in the
request. If there is not then displays a message to go to Edit mode and
configure and SQL statement. If the bean exists then the result of the
query is displayed.

Example 23-5 HRPortlet168View.jsp (View mode sample code)

.....
<portlet:defineObjects/>
<%

HRPortlet168SessionBean sessionBean =
(HRPortlet168SessionBean)renderRequest.getAttribute(HRPortlet168.SESSION_BEAN);
 HRPortlet168ViewBean viewBean=
(HRPortlet168ViewBean)renderRequest.getAttribute(HRPortlet168.VIEW_BEAN);
%>

<% if (viewBean == null) { %>
<HTML>
<BODY>
This is the JDBC Sample Portlet. Go to Edit mode and configure a SQL

732 IBM Rational Application Developer V6 and Portal Tools

query
<% } else {

try {
com.ibm.db.beans.DBSelect results = viewBean.getResultFromDatabase();

%>
.....

6. The classes SQLUtilities.java and SQLUtilitiesRow.java have been generated
in the data perspective. In the data perspective, you can create a connection
to database, import the tables, create SQL statements and generate Java
beans for the statements as you did in previous sections. These classes
contain the methods to execute and retrieve information from database. The
execute() method is called by the doView() method of HRPortlet168.java
when there is a statement in the session and the information retrieved is
stored in the View mode bean by calling the populateData() method of
SQLUtilities.java.

Example 23-6 SQLUtilities.java

public void execute(String userid, String password, String command)
throws SQLException {

try {
select.setUsername(userid);
select.setPassword(password);
select.setCommand(command);
select.execute();

}

// Free resources of select object.
finally {

select.close();
}

}

public void populateData(HRPortlet168ViewBean viewBean) {
viewBean.setResultFromDatabase(select);

}

23.4.4 Creating the Data Source
Before you run the HRPortlet168 you will need to create the DataSource used by
the SQLUtility to make the connection to the database.

On the Web perspective.

1. Select the Server view located at the bottom center of the workspace.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 733

2. Double-click the WebSphere Portal V5.1 Test Environment. This will open
the Server config editor.

3. Select the Data source tab.

4. In the Server Settings section, select Cloudscape JDBC Driver from the
JDBC provider list.

5. Click Add... from Data source defined in the JDBC provider selected above.

Figure 23-29 Create Data Source

6. In the Create a Data source window, select Cloudscape JDBC provider and
click Next.

7. Enter the following values for the Modify Data Source window.

– Name: jdbc/WSSample
– JDBC Name: WSSample

734 IBM Rational Application Developer V6 and Portal Tools

Figure 23-30

8. Click Next.

9. Select databaseName from Resource Properties, enter
C:\HRproject\database\WSSAMPLE as the value (or the path where the
database is stored).

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 735

Figure 23-31 Create resource properties

10.Click Finish.

11.Close the Server configuration editor.

12.A window will prompt you if you want to save changes. Select Yes.

23.4.5 Running the HRPortlet168 application
After the portlet project creation and after importing the java classes, you will run
the HRPortlet168.

1. Run the HRPortlet168 portlet by right-clicking HRPortlet168 in the Project
Explorer view and selecting Run → Run on server....

2. In the Define a New Server window, select the Choose an existing server
option and for Select the server that you want to use, select WebSphere
Portal V5.1 Test Environment @ localhost. Also, use default port 9081.

Important: Close the connection created on the previous section, otherwise
this can cause conflict error on the WebSphere Portal Server V5 Test
Environment since this create the same connection to the database through
the data source just created.

736 IBM Rational Application Developer V6 and Portal Tools

3. The portlet executes and you will see it in the built-in browser.

The View mode is shown with a message indicating that you have to provide
an SQL query; you will also need to switch the portlet into Edit mode (as
indicated in Figure 23-32) so you can enter these values.

Figure 23-32 Portlet initial window

4. In Edit mode, the JSP for this mode renders the form requesting the database
parameters. For the first time, enter the following information and select
Submit:

– User: db2admin
– Password: db2admin
– SQL statement: select * from jobs

Note: You can also check the Set server as project default checkbox, so
you will not be prompted again when you run the portlet.

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 737

Figure 23-33 Portlet in Edit mode

5. Clicking Submit executes the processAction and the portlet will return to View
mode showing the results of your query against the WSSAMPLE database.

Figure 23-34 Query results

6. Enter Edit mode again. Notice that the database name, user ID, password
and SQL statement, which have been stored in session object, are persistent.

738 IBM Rational Application Developer V6 and Portal Tools

Figure 23-35 SQL query statement

7. Enter a new query, for example select * from survey, and click Submit. You
will be presented with the results of your new query.

Figure 23-36 Query results

 Chapter 23. Accessing JDBC databases using Data Source in standard portlets 739

740 IBM Rational Application Developer V6 and Portal Tools

Chapter 24. IBM API declarative
cooperative portlets

This chapter describes the architecture and development of cooperative portlets.
Cooperative portlets placed on a portal page can be developed independently
but they interact with one another and share the same information. This enables
an advanced user experience scenario where portlets automatically react to
events and actions originated from other portlets.

After reading this chapter, you will be able to:

� Understand the architecture and value of cooperative portlets
� Develop source cooperative portlets with IBM Portlet API
� Develop target cooperative portlets with IBM Portlet API

24

Note: The sample scenarios included in this chapter require that you have
completed Chapter 22, “Accessing JDBC databases from portlet applications”
on page 669. You can also download the sample code available as additional
materials. See Appendix A, “Additional material” on page 1003.

© Copyright IBM Corp. 2005. All rights reserved. 741

24.1 Overview
Cooperative portlets subscribe to a model for declaring, publishing and sharing
information with each other using the WebSphere Portal property broker. At
runtime, the property broker matches the data type of output properties from a
source portlet with the data type of input properties from one or more target
portlets. The transfer of the property can be initiated using the Portlet Wiring
Tool. A user creates a persistent connection between two portlets, called a wire.

For IBM portlets a user can launch a Click-to-Action event from an icon on the
source portlet. The icon presents a pop-up menu containing the list of targets for
the action. Selecting such a menu item results in the execution of the
actionPerformed() method on a target cooperative portlet. Figure 24-1 illustrates
an example of such a cooperative portlet menu.

Figure 24-1 Click-to-Action menu for IBM portlets

In Figure 24-1, one piece of information, for example a department number, can
be sent to a target portlet displaying all employees from the selected department
number or to a portlet displaying detailed information of the selected department.
In addition, the cooperative portlet technology also enables the broadcast of data
to multiple portlets by sending multiple property values with only one click. The
transfer of properties can be saved as wires using the Ctrl key. So the next time
the user clicks the icon, the saved menu selection is used without prompting the
user.

Note: An IBM portlet cannot be wired to a JSR 168 compliant portlet and vice
versa.

742 IBM Rational Application Developer V6 and Portal Tools

24.1.1 The WebSphere Portal property broker
During runtime, the WebSphere Portal property broker is responsible for
enabling cooperative portlets. This is done by matching the data type of output
properties from a source portlet with the data type of input properties from one or
more target portlets. Figure 24-2 shows the relationships between the two
portlets and properties.

Figure 24-2 The property broker matches input and output properties

Target portlets optionally provide actions to process the properties that it
receives. There is no difference between an action initiated by the portlet itself as
mentioned in Chapter 6, “IBM Portlet API portlet development” on page 203 and
an action initiated by a source cooperative portlet.

Cooperative portlets can be source portlets, target portlets, or both.

� Source portlets identify to the property broker properties which they are able
to share with other portlets.

� Target portlets identify to the property broker actions which are able to
process properties contributed by other portlets.

Portlet messaging versus cooperative portlets

In general, both portlet messaging and cooperative portlets can be used to
share data between two or more portlets. The most important difference is that
cooperative portlets are more loosely coupled than portlets using messaging.
Cooperative portlets do not have to know the name of the target portlet even if
they do not broadcast data. The matching of source and target portlets is done
at runtime based on registered properties and actions. Cooperative portlets
can also include a menu with a list of executable portlet actions. For this
menu, no additional programming is needed because it is part of the C2A tag
library. It is recommended using cooperative portlets instead portlet
messaging

WebSphere Portal
Property Broker

Match

Source
Portlet

Target
Portlet

Input
Properties

Output
Properties

 Chapter 24. IBM API declarative cooperative portlets 743

24.1.2 Property broker runtime components
To enable your portlet for cooperation as well as a broker component, you have
to wrap your portlet class with a generic wrapper portlet. The wrapper portlet is
only used for IBM portlets. This wrapper intercepts calls and interfaces with the
broker. The wrapper is packaged in each cooperative portlet’s WAR file. For JSR
168 compliant portlets the function of the wrapper is provided through a portlet
filter which is part of the runtime component and not the WAR file.

24.2 IBM Portlets for cooperation
Cooperative portlets can use a declarative or programmatic approach, or a
combination, to register and publish properties to the property broker. The
programmatic approach to publish properties is discussed in Chapter 25, “IBM
API programmatic cooperative portlets” on page 771. The declarative approach
is simpler. Few changes need to be made to existing portlets to enable them to
interact with other cooperative portlets on the page. Existing portlets that already
use action processing simply declare their actions to the property broker using
WSDL. Figure 24-3 shows how to develop source cooperative portlets.

Figure 24-3 Steps to program a source cooperative portlet

In general terms, there are two steps at runtime to establish cooperative portlet
communication:

1. All properties must be registered with the cooperative broker. This can be
done by using the declarative approach which includes the creation of a Web

Using
Programmatic

Approach

Using
Declarative
Approach

1. Import pbportlet.jar

2. Update web.xml

Include
C2A:encodeProperty

Tag

Create WSDL

Update portlet.xml
or

or

Yes

No

4. Publish Properties

Enable
Wires?

3. Register
Properties

Execute
changedProperties()

Method

Execute
registerProperties()

Method

744 IBM Rational Application Developer V6 and Portal Tools

Service Description Language (WSDL) file and the configuration of the portlet
deployment descriptor. To register properties programmatically, you can use
the property broker API. Please note that registration of properties can only
be done during the event phase of the request-response cycle.

2. Notify the property broker about property changes. The easiest way to
achieve this is to include the encodeProperty tag in your JavaServer Page. As
an alternative, in the programmatic approach, you will use the
changedProperties() method to publish properties.

Also, in the programmatic approach, you have to configure a wire before you
publish properties. Figure 24-4 shows how to develop target portlets.

Figure 24-4 Steps to create a target cooperative portlet

To get information about changed properties, target portlets register properties
and, optionally, actions with the property broker. When using the declarative
approach both properties and actions are always registered. When using the
programmatic approach, you can register properties without any actions.

In addition, during runtime process such programmatic target portlets are notified
about property changes by using the setProperties method from the
PropertyListener interface instead of the actionPerformed method.

24.2.1 Registering and publishing properties
For a portlet to be a source of data, programmers can use a custom JSP tag
library to flag sharable data on their output pages. The tags require a data type to

Using
Programmatic

Approach

Using
Declarative
Approach

1. Import pbportlet.jar

2. Update web.xml

3. Register Properties
or Actions

4. Get Updated
Properties

Evaluate Properties in
setProperties() or
actionPerformed()

Method

Execute
registerProperties() or

registerActions()
Method

Evaluate Action String
in actionPerfomed()

Method

Create WSDL

Update portlet.xml
or

or

 Chapter 24. IBM API declarative cooperative portlets 745

be specified as well as a specific value corresponding to an instance of this type.
If you want to use wires source portlets, you must register properties by using a
declarative or programmatic approach.

Target portlets associate their actions with an input property which has been
declared as an XML type. The actions are declared using WSDL, with a custom
binding extension which specifies the mapping from the abstract action
declaration to the actual action implementation. Associated with each action is a
single input parameter described by an XML type and zero or more output
parameters, each described by an XML type. Each input or output parameter
encapsulates exactly one property. The input property's type is used for
matching the action to sources, and its value is filled in when the end user
triggers the action using Click-to-Action. The output parameters, if specified, are
used to automatically trigger other compatible actions (ones which can consume
the same type) on other wired portlets every time the action executes (this may
be used to trigger chains of related actions).

Note: The location of the WSDL file is configured as a portlet parameter.

24.2.2 Struts integration
Portlets developed using Struts can take advantage of the property broker by
following the steps of sample scenario with the following differences:

� In the web.xml file

– modify servlet class to com.ibm.wps.pb.wrapper.PortletWrapper

– Add an initialization parameter named c2a-application-portlet-class
with value com.ibm.wps.portlets.struts.WpsStrutsPortlet.

� Struts actions need to be declared in a WSDL file by setting the type attribute
on the action element to struts.

<portlet:action name=”/nnnStruts.do” type=”struts” caption=”caption.text”
description=”description.text”/>

24.2.3 Internationalization
To support translation for captions and descriptions associated with shared
properties, portlets must provided resource bundles in the appropriate location in
the WAR file. For IBM portlets, the resource file name to be used can be

Note: You can download a sample code available as additional materials
using cooperative portlets with struts. See Appendix A, “Additional material”
on page 1003.

746 IBM Rational Application Developer V6 and Portal Tools

specified using a configuration parameter in the portlet.xml file called c2a-nls-file.
The value should be the file name, including the package but omitting the
.properties suffix. See Example 24-4 on page 763.

For portlets using the programmatic approach for registration, setTitleKey()
and setDescriptionKey() methods can be used to set caption and descriptions
respectively.

24.3 Sample scenario (IBM portlets)
The sample application shown in this section is based on the HRPortlet from
Chapter 22, “Accessing JDBC databases from portlet applications” on page 669.
Two different versions of the HRPortlet will be used, as follows:

� The source cooperative portlet HRPortlet displays a list of jobs.

� The target cooperative portlet Employee Details Portlet displays a list of
employees working in the same department.

Using the cooperative portlet technology, users can select a department number
from the source cooperative portlet. After that, WebSphere Portal updates the
target portlet displaying all employees from the selected department.

24.3.1 Description
This sample scenario provides step-by-step exercises to create a portlet project
to work as a Click-to-Action source portlet. You will also create a portlet project to
act as a source Click-to-Action portlet. You will create, deploy and run the portlet
application. This exercise will allow you to understand the techniques used to
develop portlets with Click-to-Action features using the C2A declarative
approach.

Cooperative portlets subscribe to a model for declaring, publishing, and sharing
information with each other using the WebSphere Portal property broker. Portlets
subscribe to the broker by publishing typed data items, or properties, that they
can share, either as a provider or as a recipient.
� The portlet that provides a property is called the source portlet.
� The properties that the source portlet publishes are called output properties.
� The portlet that receives a property is called the target portlet.
� The properties that are received by the target are called input properties.

The target portlets optionally provide actions to process the properties that they
receive. Action processing in target portlets does not need to distinguish
between an action initiated within its own portlet area and an action initiated by
the transfer of a portlet property value. Each action is associated with a single

 Chapter 24. IBM API declarative cooperative portlets 747

input parameter and zero or more output parameters, which provide information
to the action about the objects in which the property value should be bound, such
as the request or the session. Each parameter is associated with exactly one
property. Parameters associated with input properties are called input
parameters, while those associated with output properties are called output
parameters. Instead of actions, the target portlet can receive property changes
directly through the PropertyListener interface.

At runtime, the property broker matches the data type of output properties from a
source portlet with the data type of input properties from one or more target
portlets. If a match is determined, the portlets are capable of sharing the
property. The actual transfer of the property can be initiated by one of the
following methods:

� A user launches a Click-to-Action event from an icon on the source portlet.
The icon presents a pop-up menu containing the list of targets for the action.
After the user selects a specific target, the property broker delivers the data to
the target in the form of the corresponding portlet action. Using the
Click-to-Action delivery method, users can transfer data with a simple click
from a source portlet to one or more target portlets, causing the target to react
to the action and display a new view with the results. The user can also
broadcast the property to all portlets on the page that have declared an action
associated with a matching input property.

� A user holds down the Ctrl key while clicking an action and chooses to have
the selection saved persistently as a connection between two portlets, called
a wire. If a wire is present the next time the user clicks the icon, no selection
menu is shown. Instead, the wired action(s) is/are automatically fired.
Subsequent updates to that property are transferred without further deliberate
user choice. Wires can also be created using the Portlet Wiring Tool.

� The source portlet can perform a programmatic publish of properties to the
broker when it determines that property values have changed. Such property
values are transferred to the target(s) only if wires have been created.

Cooperative portlets can be source portlets, target portlets, or both.

� Source portlets identify to the property broker properties which they are able
to share with other portlets.

� Target portlets identify to the property broker actions which are able to
process properties contributed by other portlets.

748 IBM Rational Application Developer V6 and Portal Tools

Figure 24-5 Click-to-Action architecture

The sequence flow for this sample scenario is as follows:

1. At portlet initialization time, the C2A wrapper processes any action WSDL file
associated with the application portlet and registers the actions with the C2A
broker.

2. During the render phase of a request cycle, JSPs associated with C2A source
portlets are processed. The custom C2A tags produce calls to the C2A
broker, which examines the type information to determine matching actions.
The broker generates additional code to create an icon to be used to display a
pop-up menu of actions, and adds code to dispatch actions on portlets upon
user selection from the menu.

3. After all render phase portlet callbacks are complete, the WebSphere Portal
core assembles the response page and returns it to the client (for example, a
browser).

4. When the user clicks the C2A icon for a source, he or she sees a menu of
compatible actions (on the page) and selects one.

Source portlet

Target portlet

2.2 Process JSP tag

C2A
Source
Portlet

4
User
chooses
action
from menu

S

Browser

5 Send request6 Process action

1
Register
actionsC2A

Target
Portlet

2.1
Render
view

3
Return
response T

2.3
Perform match,
generate menu
code

C2A
Broker

WebSphere
Portal
Core

Wrapper

JSP

Wrapper

Action
WSDL

 Chapter 24. IBM API declarative cooperative portlets 749

5. The client (for example, a browser) generates a new request containing the
chosen source and action information and sends it to the WebSphere Portal
Server.

6. The WebSphere Portal Core delivers the action to the target portlet. The
action is intercepted by the wrapper, which may interact with the broker to
further process the request before delivering the action to the target.

All portlet actions are intercepted by the wrapper; however, actions which are
invoked through direct interaction with the portlet (as opposed to interaction
through the C2A menus) are passed through transparently to the portlet. In more
advanced scenarios, such as the broadcast and scatter mentioned earlier, there
will be more interactions between the wrappers and the broker to determine the
appropriate target set and deliver the right data to the targets.

24.3.2 Source cooperative portlet
In this section, you will create a cooperative source portlet using the wizard.

You can also import an existing portlet project and execute the following tasks to
enable it to act as a Click-to-Action source portlet using the declarative approach:

1. Import the original portlet if it is not in your workspace. In this scenario, the
JDBC portlet (HRPortlet) from Chapter 22, “Accessing JDBC databases from
portlet applications” on page 669 will be used.

2. You will import the property broker jar file (pbportlet.jar).

3. You will update web.xml to refer to the property broker classes.

a. The servlet class entry should specify the
com.ibm.wps.pb.wrapper.PortletWrapper class in the property broker:

<servlet-class>com.ibm.wps.pb.wrapper.PortletWrapper</servlet-class>

b. The original portlet application class should also be specified in the
c2a-application-portlet-class initialization parameter. For example:

<init-param>
<param-name>c2a-application-portlet-class</param-name>
<param-value>hrportlet.HRPortlet</param-value>
</init-param>

4. You will update the JSP for View mode to include Click-to-Action menus.

Figure 24-6 on page 751 illustrates the source cooperative portlet for this sample
scenario.

750 IBM Rational Application Developer V6 and Portal Tools

Figure 24-6 Cooperative portlets - sample scenario

Create a C2A source portlet
Follow these steps to create a new portlet project:

1. Select File → New → Portlet Project

2. In the Portlet Project window:

– Specify HRPortlet as the portlet name

– Select WebSphere Portal V5.1 as the target server.

Click Next.

view.jsp

C2A
Broker

HRPortlet

view.jsp

wsdl

C2A
Wrapper web.xml

Employee
Details

C2A
Wrapper

Source C2A portlet

Target C2A portlet

web.xml

portlet
xml

 Chapter 24. IBM API declarative cooperative portlets 751

Figure 24-7 Create a new portlet project

3. In the next window, select Basic portlet as the Portlet Type. Click Next.

4. In the Features window, leave all Web project features unchecked. Click
Next.

5. In the Portlet Settings window, select Change code generation options and
enter HRPortlet as the Class prefix instead of HRPortletPortlet. Click Next.

6. In the Event Handling window, check Enable cooperative source and Add
Click-to-Action taglib. Uncheck the rest of the options.

752 IBM Rational Application Developer V6 and Portal Tools

Figure 24-8 Enable cooperative source

7. Click Next until the last window where you have to check Add Edit mode in
Additional modes. Click Finish.

Examining the generated code
Now take a minute to review the code generated by the wizard:

1. In the Project Explorer panel, expand the HRPortlet\Java Resources folder;
you will see the property broker jar file (pbportlet.jar) has been imported.

 Chapter 24. IBM API declarative cooperative portlets 753

Figure 24-9 pbportlet.jar

2. Select web.xml under the HRPortlet\WebContent\WEB-INF folder and open
it. Select the Servlets tab and check the following values:

– Servlet class: com.ibm.wps.pb.wrapper.PortletWrapper

– The value of Initialization param c2a-application-portlet-class is the
portlet name including the package: hrportlet.HRPortlet

Figure 24-10 Reviewing web.xml file

3. Close the web.xml file.

754 IBM Rational Application Developer V6 and Portal Tools

4. In the Project Explorer, expand HRPortlet\WebContent\hrportlet\jsp\html
and double-click HRPortletView.jsp. You will see the c2a.tld taglib included
in the file:

<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>

Importing the HRPortlet portlet
The HRPortlet portlet from the JDBC chapter (see Chapter 22, “Accessing JDBC
databases from portlet applications” on page 669) will be used as a base for this
sample scenario.

Unzip the HRPortlet.war and import or copy the following files into the directory
containing the application. Be sure to import or copy them in the right directory,
when you are prompted to overwrite existing files click yes:

� In HRPortlet\JavaSource\hrportlet copy all the files of the hrportlet folder.

� Copy the utilities folder in HRPortlet\JavaSource.

� In HRPortlet\WebContent\hrportlet\jsp\html copy HRPortletEdit.jsp and
HRPortletView.jsp.

� Copy the images folder in the HRPortlet\WebContent directory

� Copy the database folder in the HRPortlet\WebContent\WEB-INF directory

� Copy dbbeans.jar in the HRPortlet\WebContent\WEB-INF\lib directory.

In Rational Application Developer, right-click in the HRPortlet project and select
Refresh.

You will see your directory structure with the new files. Some errors appear; to fix
them, open, for example, the HRPortletViewBean.java file under the
HRPortlet\Java Resources\JavaSource\hrportlet directory, right-click the Java
editor and select Source → Organize Imports. This should fix the errors.

Update JSP for C2A enablement

Since we replaced the existing HRPortletView.jsp containing the c2a.tld taglib,
we need to include it now. You also need to include the c2a.tld taglib if you are
enabling an existing portlet project as a source cooperative portlet.

1. In the Project Explorer, expand HRPortlet/Web Content/hrportlet/jsp/html
and double-click HRPortletView.jsp.

 Chapter 24. IBM API declarative cooperative portlets 755

Figure 24-11 Selecting HRPortalView.jsp

2. In the JSP editor, switch to the Source tab.

Note: Source portlets can publish their output properties by inserting tags
from a custom JSP library in their JSPs. A JSP tag library is provided to allow
source properties to be identified in JSPs.

3. In the third line of this JSP, include the following line:

<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>

For example, see Figure 24-12.

Figure 24-12 Adding tag library c2a.tld

4. Two JSP tags can be used to declare output properties in the source portlet:

– <c2a:encodeProperty/>

Uses source data and type information to insert markup that displays the
icon, generating a pop-up menu.

– <c2a:encodeProperties/>

756 IBM Rational Application Developer V6 and Portal Tools

Used to enclose normal HTML markup and one or more encodeProperty
tags with the markup. This tag is provided to support the scatter scenario,
where a user can optionally send more than one unit of data to target
portlets.

You will now declare the output properties. Scroll down to the following lines:

<TD>
<P><%=results.getCacheValueAt(row, col)%></P>

</TD>

Change the line so it looks as follows:

<P>
<C2A:encodeProperty

name="<%=results.getColumnName(col).toString()+\"Param\"%>"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="<%=results.getColumnName(col)%>"
value="<%=results.getCacheValueAt(row, col).toString()%>" />
<%=results.getCacheValueAt(row, col)%>

</P>

Note: As you can see, the table column name is used as an output property
type. Therefore, a target portlet using the specified namespace should
provide an inbound property with this name.

Save all your files (you can use Ctlr-S).

Implementing a wire
To prepare the source cooperative portlet to establish a persistent connection
with the target cooperative portlet do the following steps:

1. Instead of inserting the C2A:encodeProperty tag manually, use the Palette
panel provided by Rational Application Developer. This will create a wsdl file
and update the portlet.xml to specify the path for that wsdl file. You need to
open the HRPortletView.jsp to see the Palette contents. Figure 24-13 on
page 758 shows this Palette.

Note: At this time, you have your source cooperative portlet enabled for
Click-to-Action but you will not be able to establish a wire between source and
target portlets.

 Chapter 24. IBM API declarative cooperative portlets 757

Figure 24-13 Palette

In HRPortletView.jsp scroll down to the following lines and locate the cursor
after the <P> tag:

<TD>
<P><%=results.getCacheValueAt(row, col)%></P>

</TD>

2. Right-click Click to Action Output Property and click Insert in the popped
menu.

Figure 24-14 Insert Click-to-Action output property in a jsp

3. The window illustrated in Figure 24-15 on page 759 appears. Enter the
following values:

a. Data type: DEPT_NO

b. Namespace: http://www.ibm.com/wps/c2a/examples/hrdetails

c. Source portlet: HRPortlet portlet

Click OK.

758 IBM Rational Application Developer V6 and Portal Tools

Figure 24-15 Inserting Click-to-Action output property

4. The following code has been generated in the jsp:

<C2A:encodeProperty type="DEPT_NO"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
name="DEPT_NO"></C2A:encodeProperty>

Change the HRPortletView.jsp code to display the C2A menu in the DEPT_NO
column. Example 24-1 shows the snippet code for jsp, note that some
attributes have been modified.

Example 24-1 Snippet code for jsp

for(int col=1; col<=results.getColumnCount(); col++) { %>
<TD><P>
<% if (results.getColumnName(col).equalsIgnoreCase("DEPT_NO")) { %>

<C2A:encodeProperty
name="DEPT_NOParam"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="DEPT_NO"
value="<%=results.getCacheValueAt(row, col).toString()%>" />

<% } %>
<%=results.getCacheValueAt(row, col)%>
</P></TD>

<% }

5. Under the HRPortlet\WebContent\wsdl folder, you can see the
HRPortletportlet.wsdl generated. Open this file and modify its content as
indicated in Example 24-2.

Example 24-2 WSDL file associated to source cooperative portlet

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HRPortletportlet_Service"

targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:portlet="http://www.ibm.com/wps/c2a"

 Chapter 24. IBM API declarative cooperative portlets 759

xmlns:tns="http://www.ibm.com/wps/c2a/examples/hrdetails"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>

<xsd:schema
targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails">

<xsd:simpleType name="DEPT_NO">
<xsd:restriction base="xsd:string"></xsd:restriction>

</xsd:simpleType>
</xsd:schema>

</types>
<message name="DEPT_NO_Response">

<part name="DEPT_NO_Output" type="tns:DEPT_NO" />
</message>
<portType name="HRPortletportlet_Service">

<operation name="HRPortletportlet">
<output message="tns:DEPT_NO_Response" />

</operation>
</portType>
<binding name="HRPortletportlet_Binding"

type="tns:HRPortletportlet_Service">
<portlet:binding />
<operation name="HRPortletportlet">

<portlet:action type="simple"/>
<output>

<portlet:param name="DEPT_NOParam" partname="DEPT_NO_Output"
boundTo="request-parameter" caption="Department ID" description="Department
ID"/>

</output>
</operation>

</binding>
</definitions>

The wsdl file registers the output property DEPT_NOParam. The value simple of
the type attribute in the <portlet:action> element indicates a simple portlet
action String is used.

6. If you open the portlet.xml file, you will also see that a reference to wsdl file
has been included as a parameter under the concrete portlet application.

Example 24-3 Referencing wsdl file in portlet.xml

<config-param>
<param-name>c2a-action-descriptor</param-name>
<param-value>/wsdl/HRPortletportlet.wsdl</param-value>

</config-param>

760 IBM Rational Application Developer V6 and Portal Tools

24.3.3 Target cooperative portlet
In this section, you will create a target cooperative portlet using the wizard and
import source files from HRPortlet. This target portlet will execute a fixed SQL
statement with a variable where clause.

The code for the target portlet class must meet the following requirements:

� The action must be implemented either as a portlet action or a Struts action.
For portlet actions, you should use the simple action Strings rather than the
deprecated DefaultPortletAction class.

� Portlet actions must accept a single parameter. The parameter may appear
as a request parameter, a request attribute, a session attribute, or an action
attribute (deprecated), as specified in the action declaration or registration.

The HRPortlet is already prepared for this situation, so only a few changes are
needed in the portlet class code.

Figure 24-16 illustrates the target cooperative portlet for this sample scenario.

Figure 24-16 Cooperative portlets - sample scenario

To create the target portlet project, proceed as follows:

1. In Rational Application Developer, select File → New → Portlet Project.

view.jsp

C2A
Broker

HRPortlet

view.jsp

wsdl

C2A
Wrapper web.xml

Employee
Details

C2A
Wrapper

Source C2A portlet

Target C2A portlet

web.xml

portlet
xml

 Chapter 24. IBM API declarative cooperative portlets 761

2. In the Create a Portlet Project window, enter a project name of
EmployeeDetailsPortlet and select WebSphere Portal V5.1 as the target
server. Click Next.

3. In the Portlet Type window, select the Basic portlet. Click Next.

4. In the next window, uncheck the Web diagram feature and click Next.

5. In the Portlet Settings window, select Change code generation options and
enter the following values:

– Package prefix: hrportlet

– Class prefix: HRPortlet

Click Next.

Figure 24-17 Portlet Settings page

6. In the Event Handling window, check Enable cooperative target in the
Cooperative Portlets section. Click Next.

7. Click Next again and in the last window check Add Edit mode in Additional
modes.

8. Click Finish.

762 IBM Rational Application Developer V6 and Portal Tools

Reviewing the code generated by the wizard for the target
portlet

Look at the code generated by the wizard:

� In the Project Explorer panel, expand the EmployeeDetailsPortlet\Java
Resources folder; you will see the property broker jar file (pbportlet.jar) has
been imported.

� Open the web.xml file and select the Servlets tab. Select the
hrportlet.HRPortlet servlet and check the following entries:

– servlet class: com.ibm.wps.pb.wrapper.PortletWrapper

– There is an initialization parameter configured with name
c2a-application-portlet-class and value hrportlet.HRPortlet.

� Open portlet.xml. Under the concrete portlet application, you will see
configuration parameters to locate the wsdl file and resource file for
internationalization support.

Example 24-4 Configuration parameters in concrete portlets

<config-param>
<param-name>c2a-action-descriptor</param-name>
<param-value>/hrportlet/wsdl/HRPortletC2A.wsdl</param-value>

</config-param>
<config-param>

<param-name>c2a-nls-file</param-name>
<param-value>hrportlet.nls.HRPortletC2A</param-value>

</config-param>

For IBM portlets, the c2a-nls-file configuration parameter is used to specify
the resource file name. The value should be the file name, including the
package but omitting the .properties suffix.

� A WSDL file named HRPortletC2A.wsdl has been created.

Modifying the generated code
Import the source files from HRPortlet project as you did in “Importing the
HRPortlet portlet” on page 755.

After importing the files you need to modify the wsdl with actions that can
process the data transferred using C2A.

� Open the HRPortletC2A.wsdl file under
EmployeeDetailsPortlet\WebContent\hrportlet\wsdl folder. In the editor,
switch to the Source tab and enter the following code shown in Example 24-5
on page 764.

 Chapter 24. IBM API declarative cooperative portlets 763

Note: You can also download the sample code available as additional
materials. See Appendix A, “Additional material” on page 1003.

Example 24-5 HRPortletC2A.wsdl file

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="HRPortlet_Service"

targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:portlet="http://www.ibm.com/wps/c2a"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.ibm.com/wps/c2a/examples/hrdetails"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<xsd:schema

targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails">
<xsd:simpleType name="DEPT_NO">

<xsd:restriction base="xsd:string" />
</xsd:simpleType>

</xsd:schema>
</types>

<message name="HRPortlet_Request">
<part name="HRPortlet_RequestPart" type="tns:DEPT_NO" />

</message>

<portType name="HRPortlet_Service">
<operation name="hrportlet.HRPortletFormAction">
<input message="tns:HRPortlet_Request" />
</operation>

</portType>

<binding name="HRPortlet_Binding" type="tns:HRPortlet_Service">
<portlet:binding />
<operation name="hrportlet.HRPortletFormAction">

<portlet:action name="hrportlet.HRPortletDetailsAction" type="simple"
caption="show.all.employees" description="Get all employees for specified
department id" />

<input>
<portlet:param name="DEPT_NOParam"

partname="HRPortlet_RequestPart" caption="department.ID"
description="department.id.for.retrieving.details" />

</input>
</operation>

</binding>
</definitions>

764 IBM Rational Application Developer V6 and Portal Tools

The namespace and type associated with the input parameter matches the
source declaration usign the encodeProperty tag in the JSP file of the source
portlet.If the source and target portlets were placed on the same page, the
C2A broker would detect a match.

� Open HRPortletC2A.properties under the EmployeeDetailsPortlet\Java
Resources\JavaSource\hrportlet\nls folder. Add the following key-value pairs
to localize text of the HRPortlet C2A portlets captions.

Example 24-6 Including new captions in resource bundles

localized text of the HRPortlet c2a portlets captions
Get.all.employees.for.specified.department.id=Get all employees for specified
department id
department.ID=Department ID (HRPortlet)
department.id.for.retrieving.details=Department ID for retrieving details
show.all.employees=Show all employees from this department.

� The last step is to update the actionPerformed() method in the portlet class. In
this scenario, you will use a special action string.

a. Open the HRPortlet.java file from the EmployeeDetailsPortlet project.

b. Insert the lines shown in Example 24-7 at the end of the actionPerformed()
method.

Example 24-7 The hrportlet.HRPortletDetailsAction updates the SQL string

if (actionString.equals("hrportlet.HRPortletDetailsAction")) {
HRPortletSessionBean bean = this.getSessionBean(request);
bean.setSqlString(

"select * from employee where workdept='"
+ (String) request.getParameter("DEPT_NOParam")
+ "'");

}

9. Save all your files; you can use Ctrl-S.

24.3.4 Running the cooperative portlets
Execute the following steps to run the cooperative portlets scenario:

1. To run the projects in Rational Application Developer, it is necessary to add
the portlet project to the test environment:

a. On Servers panel, right-click WebSphere Portal V5.1 Test Environment.

b. Select Add and remove projects.

 Chapter 24. IBM API declarative cooperative portlets 765

Figure 24-18 Adding a project to the test environment

c. In the next window, move HRPortletEAR and EmployeeDetailsPortletEAR
to the right to configure them on the server.

d. Click Finish.

2. If the Cloudscape sample database has not been populated, run the batch file
to populate the test database to be used in this scenario. Click
C:\HRproject\database\CreateCloudTable.bat to do this.

Note: You can also download the sample code available as additional
materials. See Appendix A, “Additional material” on page 1003.

3. Next, click the Project Explorer tab to see your project again.

4. Right-click HRPortlet. Then click Run → Run on Server. Select
WebSphere Portal V5.1 Test Environment server and click Finish. This will
load your project into the test environment so that you can view it in the
Rational Application Developer Web browser. It may take a minute or two for
this process to complete.

5. You will now see your newly created portlets project running in the Web
browser. You need to add EmployeeDetailsPortlet to the same page of
HRPortlet to test the cooperation.

6. Click Edit Page.

Figure 24-19 Edit Page to add portlets

7. In the Edit Layout window, you can see that the page contains HRPortlet.
Click Add portlets button and search EmployeeDetailsPortlet from the list.

8. When you find it, check the EmployeeDetailsPortlet and click OK.

9. Now you will see the two portlets in the Edit Layout window. Click Done.

766 IBM Rational Application Developer V6 and Portal Tools

10.Switch to Edit mode in HRPortlet (c2a source portlet).

11.Enter the following information and click Submit.

– Database: jdbc:db2j:C:\HRproject\database\WSSAMPLE

– User: db2admin

– Password: db2admin

– SQL: select * from jobs

Figure 24-20 HRPortlet portlet in Edit mode

12.The HRPortlet now displays the jobs table, including a cooperative portlet
menu in the DEPT_NO column. Before you can use this menu, you have to
configure the data source in EmployeeDetailsPortlet.

 Chapter 24. IBM API declarative cooperative portlets 767

Figure 24-21 HRPortlet displays a cooperative menu in DEPT_NO column

13.Switch to Edit mode in EmployeeDetailsPortlet (c2a target portlet).

14.Enter the following information and click Submit. It is not necessary to enter
an SQL command here, because it is built during the processing of the
cooperative menu.

– Database: jdbc:db2j:C:\HRproject\database\WSSAMPLE

– User: db2admin

– Password: db2admin

Note: There is no need to enter an SQL statement (optional).

15.In the source cooperative portlet View mode, click a DEPT_NO column, for
example C01 or A00.

16.Click Show all employees from this department (see Figure 24-22 on
page 769).

Note: The EmployeeDetailsPortlet (target portlet) should now display all
employees in the selected department.

768 IBM Rational Application Developer V6 and Portal Tools

Figure 24-22 EmployeeDetailsPortlet displays all employees from same department

17.Now select another department and hold Ctrl key while clicking a
Click-to-Action icon. You will be prompted with the dialog illustrated in
Figure 24-23

Figure 24-23 Dialog to establish a wire

18.Select Yes. A persistent connection between the two portlets is created. This
connection is called wire.

19.The next time you click the icon, no selection menu is shown, the wire action
is automatically fired.

20.Select Edit Page and click the Wires tab. Figure 24-24 on page 770 shows
the new wire.

Click1

Click2

 Chapter 24. IBM API declarative cooperative portlets 769

Figure 24-24 Portlet Wiring Tool

Wire type is personal; that means its effect would be manifested only for the
creator. If, in the menu shown in Figure 24-23 on page 769, you had selected
Yes, all users, a global wire would have been created. Global wire means
that wire effects are visible to all users who can view the page and portlets.

770 IBM Rational Application Developer V6 and Portal Tools

Chapter 25. IBM API programmatic
cooperative portlets

This chapter discusses advanced cooperative portlet topics.

After reading this chapter, you will be able to:

� Develop source cooperative portlets using a programmatic approach to
publish properties.

� Develop target cooperative portlets using a programmatic approach to
publish properties.

� Develop source cooperative portlets broadcasting data to two or more
portlets.

25

Note: The sample scenario included in this chapter requires that you have
read Chapter 24, “IBM API declarative cooperative portlets” on page 741. You
can also download the sample code available as additional materials. See
Appendix A, “Additional material” on page 1003.

© Copyright IBM Corp. 2005. All rights reserved. 771

25.1 Publishing properties programmatically
As mentioned in Chapter 24, “IBM API declarative cooperative portlets” on
page 741, each action in a cooperative portlet is associated with a single input
parameter and zero or more output parameters that provide information to the
action about the objects in which the property value should be bound, such as
the request object or the session object.

Each parameter is associated with exactly one property. Parameters associated
with input properties are called input parameters, while those associated with
output properties are called output parameters. Instead of actions, target portlets
can receive property changes directly through the PropertyListener interface.

The actual transfer of the property can be initiated by one of the following
methods:

1. A user launches a Click-to-Action event from an icon on the source portlet.
The icon presents a pop-up menu containing the list of targets for the action.
After the user selects a specific target, the property broker delivers the data to
the target in the form of the corresponding portlet action.

2. A user presses the Ctrl key while clicking an action and chooses to have the
selection saved persistently as a connection between two portlets, called a
wire.

3. The source portlet can perform a programmatic publish of properties to the
broker, when it determines that property values have changed. Such property
values are transferred to the target(s) only if wires have been created.

The property broker provides APIs to give developers more control over how
portlets handle the input and output properties. In general terms, the
programmatic approach might be a better option over the declarative approach
when the portlet needs to do the following:

� Activate or deactivate actions for a session.

� Change the portlet state but not requiring the portlet to react immediately.

� Publish output properties using the changedProperties() method.

� Register actions programmatically instead of declaring them in a WSDL file.
This may be necessary when the action or property is not known at

Note: Cooperative portlets using the programmatic approach require that you
create a wire; for details about creating wires, see 25.5.4, “Wire portlets” on
page 793 and 25.4, “Wiring tool” on page 778. This is because property
values are transferred to the target portlets only if wires have been created.

772 IBM Rational Application Developer V6 and Portal Tools

development time, such as when a portlet is generated by a builder
application.

� Generate markup content directly in the portlet rather than using JSPs.

The following packages are provided for portlets to publish properties to the
property broker programmatically:

� com.ibm.wps.pb.property
� com.ibm.wps.pb.portlet
� com.ibm.wps.pb.service

25.2 Portlet event handling
The portlet programming model involves an event phase and a render phase in
each request-response cycle.

� The event phase is when the property broker delivers notifications to
cooperative portlets and when the cooperative portlets can notify the property
broker of property value changes. During the event phase, an action may be
delivered on one portlet. If the property broker is used, this may result in other
actions being triggered on other portlets.

� The event phase is followed by the render phase, in which each portlet is
asked to return markup, which is then aggregated in a single page. The
markup may embed actions which can be invoked by the user. The page is
then returned to the client (such as a browser).

At any point during the event phase, a portlet may explicitly publish the value of
an output property to the property broker by invoking the changedProperties()
method. This is an alternative to the declaration of output parameters for actions
and binding the output parameter values to the request or session when the
action is invoked. This may happen in the following cases:

� In the callback method associated with the start of the event phase
(beginEventPhase method)

� In the invocation of the setProperties() method in a target portlet

� In the portlet action method invocation

The publishing calls are dealt with by the property broker in the same manner as
output parameters of actions: wires associated with output properties are
examined and the property values propagated using the information in the target
end of the wire.

 Chapter 25. IBM API programmatic cooperative portlets 773

Note: The process may continue recursively; however, the property broker
detects loops and breaks them. Also, during the event phase of the subsequent
request, the action is invoked on the corresponding target portlet or portlets.

Figure 25-1 illustrates a simplified version of cooperative portlets implemented
using the programmatic approach.

Figure 25-1 Sample summary of a programmatic approach

In the general case using a programmatic approach, the source portlet needs to
implement the following:

1. Specify the C2A wrapper in the web.xml descriptor as explained in
Chapter 24, “IBM API declarative cooperative portlets” on page 741.

2. The property broker attribute needs to be initialized; this can be done in the
initConcrete() method.

3. The portlet will need to register its output properties by using the
registerProperties() method. This can be done by implementing a
beginEventPhase() method so the portlet is notified when the event phase
starts.

Note: The EventPhaseListener interface requires that you also provide the
endEventPhase() method. If needed, some cleanup can be done in this
method.

4. The source portlet publishes its output properties, for example when
processing an action in the actionPerformed() method.

In a similar way, the target portlet needs to be updated as follows:

1. Update web.xml with wrapper
2. initConcrete()

Iinitialize property attribute
3. beginEventPhase()

If needed:
register output properties

4. actionPerformed()
createProperty()
createPropertyValue()
changedProperties()

Source portlet

1. Update web.xml with wrapper
2. initConcrete()

Initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet

Property
Broker

Services

774 IBM Rational Application Developer V6 and Portal Tools

1. Specify the C2A wrapper in the web.xml descriptor as explained in
Chapter 24, “IBM API declarative cooperative portlets” on page 741.

2. The property broker attribute needs to be initialized; this can be done in the
initConcrete() method.

3. The portlet will need to register its input properties by using the
registerProperties() method. This can be done by implementing a
beginEventPhase() method so the portlet is notified when the event phase
starts.

4. The target portlet implements the setProperties() method to be notified of
property changes reported by other source portlets.

Note: The target portlet must implement the PropertyListener interface.

25.2.1 PropertyListener interface
This interface is implemented for cooperative portlets using the programmatic
approach. This interface may optionally be implemented by portlets. It is an
alternate mechanism by which interested portlets may be notified of changed
properties.

Other options are to be notified through portlet actions (the actionPerformed
method of the ActionListener interface), or Struts actions. The PropertyListener
interface may be implemented by portlets that only wish to update their current
state based on property changes, rather than execute an action immediately.

Note: The PropertyListener interface requires that you implement the
setProperties method to be notified of property changes.

setProperties
Invoked by the Property Broker to deliver new property values which were
changed in the current event cycle of the current request. The Property Broker
may be notified of such changes when a portlet invokes the changedProperties
in the PropertyBrokerService interface (explicit notification), or when a portlet
action which has declared output parameters is invoked (implicit notification).

This method is only invoked during the event phase. Since multiple explicit or
implicit property change notifications may be made during an event cycle, one or
more setProperties calls may be invoked on a single portlet instance during a
single event cycle. The runtime may batch property values from multiple
changedProperties calls in a single setProperties call. All properties are
guaranteed to be delivered before the first endEventPhase call is delivered,
which marks the start of the render phase.

 Chapter 25. IBM API programmatic cooperative portlets 775

Source cooperative portlets report property changes may be made by using the
changedProperties method.

changedProperties method
This method publishes changes in properties and may be used during the
portlet's event phase only. This includes the beginEventPhase method of the
EventPhaseListener interface, the actionPerformed method of the ActionListener
interface, and the setProperties method of the PropertyListener interface.

All properties must have been registered earlier, implicitly or explicitly. A simpler
alternative to explicitly invoking this method is often applicable. For example,
declare output parameters for registered actions (either programmatically or via
an WSDL declaration). In this case, the action may bind the values of the output
parameters on invocation, and at runtime the values will be transferred as if the
changedProperties method had been explicitly invoked.

25.2.2 EventPhaseListener interface
This interface allows developers to get control of the portlet before the portlet
receives a notification of a changed property.

This interface provides the following methods.

beginEventPhase method
At any point during the event phase, a portlet may explicitly publish the value of
an output property to the property broker by invoking the changedProperties()
method. This is an alternative to the declaration of output parameters for actions
and binding the output parameter values to the request or session when the
action is invoked. This may happen in the callback method associated with the
start of the event phase (beginEventPhase()), in the invocation of the
setProperties() method, or in the portlet action method invocation.

Such publish calls are dealt with by the property broker in the same manner as
output parameters of actions: wires associated with output properties are
examined and the property values propagated using the information in the target
end of the wire. To register properties, you will use the beginEventPhase method
of EventPhaseListener, because only during the event phase is it possible to
register and unregister properties.

endEventPhase method
The property broker guarantees the completion of all property value notifications
to target portlets by the end of the event phase, whether through portlet actions
or through the special setProperties() method. The end of the event phase is
indicated by the invocation of the endEventPhase() method.

776 IBM Rational Application Developer V6 and Portal Tools

During the render phase of each request cycle, source portlets can write visual
controls representing source data to their output stream. The end user interacts
with the visual control in the response to trigger one or more actions on other
portlets on the page. During the event phase of the subsequent request, the
action is invoked on the corresponding target portlet or portlets.

25.3 Broadcasting source data
Using the broadcast feature of the cooperative broker, users can send the same
data to all portlets on the page with matching actions. The target cooperative
portlet of a broadcast can use the declarative or programmatic approach to
publish properties.

To include the broadcast menu item to the HRPortlet, proceed as follows:

1. Open the JSP HRPortlet/Web Content/hrportlet/jsp/html/HRPortletView.jsp.

2. In the encodeProperty tag, include the broadcast attribute so it looks as
shown in Example 25-1.

Example 25-1 The broadcast attribute enables the broadcast feature.

<TD><P>
<% if (results.getColumnName(col).equalsIgnoreCase("DEPT_NO")) { %>

<C2A:encodeProperty
name="DEPT_NOParam"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="DEPT_NO"
value="<%=results.getCacheValueAt(row, col).toString()%>"
broadcast="true"/>

<% } %>
<%=results.getCacheValueAt(row, col)%>

</P></TD>

3. Test the application as described in the last chapter. You need to include
HRPortlet, EmployeeDetailsPortlet and DepartmentDetailsPortlet in the same
page. Do not forget to enter the database attribute in the Edit mode of both
the Employee and Department Details Portlets.

4. From the cooperative portlet menu, choose Invoke all actions. Now both
details portlets display the details of the selected department number.

 Chapter 25. IBM API programmatic cooperative portlets 777

Figure 25-2 Choose Invoke all actions to broadcast the data to all portlets

25.4 Wiring tool
The portlet wiring tool allows you to view the properties that portlets on the page
can send or receive. If a match is available between two portlets, you can create
a wire between the two portlets. Existing wires may also be deleted using the
tool. This is an alternative to the wire creation or deletion while interacting with
the portlets using the Ctrl key.

The wiring tool allows wires to be created in situations which are not handled by
the interactive approach. For example, the tool does not require the existence of
Click-to-Action menus to initiate wire creation, and can be used to create multiple
wires from a single source property (using the interactive approach, a single
source can be wired to a single target or all targets, not an arbitrary subset). Wire
creation or deletion is subject to the access control checks.

Figure 25-3 Creating wires programmatically using Portlet Wiring Tool

778 IBM Rational Application Developer V6 and Portal Tools

WebSphere Portal V5.1 includes the Portlet Wiring Tool as part of the product
and deployed to the Page Customizer.

25.5 Sample scenario
In this section, a sample scenario is provided to illustrate how to develop
cooperative portlets using the programmatic approach.

25.5.1 Declarative source cooperative portlet
In this scenario, you will implement a combined scenario where the source
cooperative portlet uses the declarative approach to interact with a target
cooperative portlet using the programmatic approach. The sample scenario is
shown in Figure 25-4.

Figure 25-4 A sample scenario using a combined approach

Creating a source portlet by importing the HRPortlet portlet
The HRPortlet portlet from Chapter 24, “IBM API declarative cooperative
portlets” on page 741 will be used as a base for this scenario. This portlet will be
enabled to act as a source cooperative portlet in this scenario. You will need to
import this portlet if it is not in your workspace.

Follow these steps to import this portlet if it is not in your workspace:

1. Import the WAR file by selecting File → Import.

2. Select the WAR file and click Next.

Source portlet (declarative)

1. Update web.xml with wrapper
2. initConcrete()

Initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet (programmatic)

Property
Broker

Services

1. Update web.xml with wrapper
2. Update JSP with c2a tags

view.jsp

HRPortlet C2A
Wrapper

 Chapter 25. IBM API programmatic cooperative portlets 779

3. In the WAR Import window, enter the following information:

a. WAR file: browse to C:\LabFiles\HRPortlet.war.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See
Appendix A, “Additional material” on page 1003.

b. Web project: HRPortlet.

c. Target server: select WebSphere Portal V5.1.

d. EAR project: HRPortletEAR.

e. Click Finish to import the WAR file.

Figure 25-5 Import HRPortlet.war file

4. Make sure the web.xml descriptor has been updated with the c2a wrapper.

5. Make sure the PortletView.jsp has been updated with the c2a tags and c2a
tag library. See Example 25-2.

Example 25-2 C2a library and tags

<%@ page contentType="text/html" import="java.util.*, hrportlet.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>

780 IBM Rational Application Developer V6 and Portal Tools

...
<TD><P>

<% if (results.getColumnName(col).equalsIgnoreCase("DEPT_NO")) { %>
<C2A:encodeProperty
name="DEPT_NOParam"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="DEPT_NO"
value="<%=results.getCacheValueAt(row, col).toString()%>" />

<% } %>
<%=results.getCacheValueAt(row, col)%>

</P></TD>

6. Save your files (or press Ctrl-S to save the files).

25.5.2 Enabling the portlet for target C2A programmatic
In this section, you will import a second copy of the HRPortlet and update it to
support Click-to Action as a target cooperative portlet using the programmatic
approach. This target portlet will execute a fixed SQL statement with a variable
where clause.

The code for the target portlet class must meet the following requirements:

� The action must be implemented either as a portlet action or a Struts action.
For portlet actions, you should use the simple action Strings rather than the
deprecated PortletAction class.

� Portlet actions must accept a single parameter. The parameter may appear
as a request parameter, a request attribute, a session attribute, or an action
attribute (deprecated), as specified in the action declaration or registration.

The HRPortlet is already prepared for this situation, so only a few changes are
needed in the portlet class code. Figure 25-6 on page 782 illustrates the target
cooperative portlet for this sample scenario.

 Chapter 25. IBM API programmatic cooperative portlets 781

Figure 25-6 Cooperative portlets - programmatic sample scenario (target portlet)

Creating a target portlet by importing HRPortlet portlet
To import a second version of the HRPortlet, follows these steps:

1. From the main menu, select File → Import to import the original HRPortlet.

2. Choose WAR file, click Next and configure as follows:

a. Browse to the location of the HRPortlet.war file in
c:\LabFiles\HRPortlet.war.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See
Appendix A, “Additional material” on page 1003.

b. As the Web Project, enter DepartmentDetailsPortlet.

c. Select WebSphere Portal V5.1 as target server.

d. Enter DepartmentDetailsPortletEAR as the EAR project.

e. Click Finish.

Source portlet (declarative)

1. Update web.xml with wrapper
2. initConcrete()

Initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet (programmatic)

Property
Broker

Services

1. Update web.xml with wrapper
2. Update JSP with c2a tags

view.jsp

HRPortlet C2A
Wrapper

782 IBM Rational Application Developer V6 and Portal Tools

Figure 25-7 Import a second version of HRPortlet (target c2a portlet)

3. Since the HRPortlet and DepartmentDetailsPortlet portlet applications use the
same UID, a warning message will appear in the Problems pane.

 Chapter 25. IBM API programmatic cooperative portlets 783

Figure 25-8 Duplicate UID messages

4. To fix this problem, expand
DepartmentDetailsPortlet/WebContent/WEB-INF in the Project Explorer
view. Double-click portlet.xml.

784 IBM Rational Application Developer V6 and Portal Tools

Figure 25-9 Selecting portlet.xml

5. In the portlet deployment descriptor editor, select Portlet Application and
change the last digit of the UID for this portlet application. For example, in this
sample scenario, the last digit was 0 and it was changed to 1.

Figure 25-10 Changing a digit in portlet application UID

 Chapter 25. IBM API programmatic cooperative portlets 785

6. In a similar way, select Concrete Portlet Application and change the last
digit before the last dot of the UID to give it the same value as in the previous
step.

Figure 25-11 Changing digit in concrete portlet application UID

7. Change the portlet name and portlet title to DepartmentDetailsPortlet portlet
to identify the portlet when you run the application.

8. Save your changes.

9. Make sure the web.xml descriptor has been updated with the c2a wrapper.

10.If HRPortlet/WebContent/wsdl/HRPortlet.wsdl file exists delete it. When you
delete this file an error appears in portlet.xml file. Open portlet deployment
descriptor and delete the following config param to fix the error:

<config-param>
<param-name>c2a-action-descriptor</param-name>
<param-value>/wsdl/HRPortletportlet.wsdl</param-value>

</config-param>

11.Save your changes.

Updating the DepartmentDetailsPortlet
In this section, you will update the portlet to act as a target C2A portlet using the
programmatic approach. The DepartmentDetailsPortlet is a copy of the
HRPortlet and it will register the DEPT_NO property by using the property broker
API instead of a WSDL file used in the declarative approach.

Follow these steps to update the portlet class to publish the property and create
call back methods to recognize the property changes:

786 IBM Rational Application Developer V6 and Portal Tools

1. Open the file DepartmentDetailsPortlet/Java
Resources/JavaSource/hrportlet/HRPortlet.java.

2. Update the class definition so it implements the PropertyListener and
EventPhaseListener interfaces.

public class HRPortlet extends PortletAdapter implements PropertyListener,
EventPhaseListener, ActionListener

Note: The setProperties method of the PropertyListener interface receives
updates of property values. To register properties, you will use the
beginEventPhase method of the EventPhaseListener interface, since only
during the event phase is it possible to register and unregister properties.

3. Insert the following two new class attributes so the code looks like this:

public class HRPortlet extends PortletAdapter implements PropertyListener,
EventPhaseListener, ActionListener {

PropertyBrokerService pbService;
PortletConfig portletConfig;

Note: pbService is an interface to the property broker and portletConfig
stores the portlet config.

4. Update the init method so it looks as shown in Example 25-3.

Example 25-3 Update init method to obtain portlet configuration

public void init(PortletConfig portletConfig) throws UnavailableException {
super.init(portletConfig);
this.portletConfig=portletConfig;

}

5. Insert the initConcrete method shown in Example 25-4 to initialize the
property broker attribute.

Example 25-4 Initialize property broker

public void initConcrete(PortletSettings settings)
throws UnavailableException {
try {

pbService =
(PropertyBrokerService) getPortletConfig()

.getContext()

.getService(
PropertyBrokerService.class);

} catch (PortletServiceUnavailableException e) {
throw new UnavailableException("Could not locate

PropertyBrokerService.");
} catch (PortletServiceNotFoundException e) {

 Chapter 25. IBM API programmatic cooperative portlets 787

throw new UnavailableException("Could not locate
PropertyBrokerService.");

}
}

6. For simplicity, create the registerPropertiesIfNecessary method to register the
property we are interested in.

Note: This method performs the same as the WSDL file when using the
declarative approach. Notice also that you need to specify a direction of
Property.IN. In addition, actions are not registered (which is possible using
the registerActions method) in this scenario. In other words, this portlet will be
invoked by the property broker using the setProperties method instead of
actionPerformed.

Example 25-5 registerPropertiesIfNecessary method

private void registerPropertiesIfNecessary(PortletRequest request)
throws PropertyBrokerServiceException {
PortletSettings settings = request.getPortletSettings();
Property[] properties = pbService.getAllProperties(request, settings);
if (properties == null || properties.length == 0) {

PortletContext context = getPortletConfig().getContext();
//not registered, register now
properties = new Property[1];
properties[0] = PropertyFactory.createProperty(settings);
properties[0].setName("DEPT_NOParam");
properties[0].setDirection(Property.IN);
properties[0].setType("DEPT_NO");

properties[0].setNamespace("http://www.ibm.com/wps/c2a/examples/hrdetails");
properties[0].setTitleKey("HRDetails.Department");
properties[0].setDescriptionKey("Display department details");
pbService.registerProperties(request, settings, properties);

}
}

7. Add the beginEventPhase and endEventPhase methods, which are callback
methods called during the event phase.

Example 25-6 The beginEventPhase methods registers the property if necessary

public void beginEventPhase(PortletRequest request) {
try {

registerPropertiesIfNecessary(request);
}
catch (Throwable e) {

e.printStackTrace();
}

788 IBM Rational Application Developer V6 and Portal Tools

}
public void endEventPhase(PortletRequest request) {
}

8. Add the setProperties method. Using this method, the class is notified about
property changes.

Example 25-7 setProperties updates the sql statement

public void setProperties(
PortletRequest request,
PropertyValue[] properties) {
PortletSession session = request.getPortletSession();
HRPortletSessionBean sessionBean = getSessionBean(request);
for (int i = 0; i < properties.length; i++) {

System.out.println(properties[i].toString());
if (properties[i].getProperty().getName().equals("DEPT_NOParam")) {

String value = (String)properties[i].getValue();
if (value.equals("*"))

sessionBean.setSqlString("select * from department");
else

sessionBean.setSqlString(
"select * from department where deptno='"

+ value
+ "'");

}
}

}

9. Right-click anywhere in the Java editor and select Source → Organize
Imports to include the missing import statements. In the Organize Imports
dialog, choose to import the following classes:

a. com.ibm.wps.pb.service.PropertyBrokerService
b. org.apache.jetspeed.portlet.service.PortletServiceUnavailableException
c. com.ibm.wps.pb.service.PropertyBrokerServiceException
d. com.ibm.wps.pb.property.Property
e. org.apache.jetspeed.portlet.PortletContext
f. com.ibm.wps.pb.property.PropertyFactory
g. com.ibm.wps.pb.property.PropertyValue

10.Save and close the HRPortlet.java file.

25.5.3 Running the cooperative portlets
Execute the following steps to run the cooperative portlets scenario:

1. To run the project you can use a previously created test server or you can
create a new server. Follow these steps:

 Chapter 25. IBM API programmatic cooperative portlets 789

a. In Servers panel, right-click WebSphere Portal V5.1 Test Environment.

b. Select Add and remove projects to add your project to the Test
Environment (see Figure 25-12); add HRPortletEAR and
DepartmentDetailsPortletEAR to the right panel, Configured projects, by
selecting them in Available projects panel and clicking the Add button.

Figure 25-12 Adding a project to the Test Environment

2. If the Cloudscape sample database has not been populated, run the batch file
to populate the test database to be used in this scenario. Click
C:\HRproject\database\CreateCloudTable.bat to do this.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix A,
“Additional material” on page 1003.

3. In Project Explorer panel, right-click HRPortlet. Then click Run → Run on
Server. Select WebSphere Portal V5.1 Test Environment from the server
list and click Finish. This will load your projects into the Test Environment so
that you can view them in the Rational Application Developer internal Web
browser. It may take a minute or two for this process to complete.

790 IBM Rational Application Developer V6 and Portal Tools

4. You will now see your newly created portlets project running in the Web
browser in two different pages. You need to add DepartmentDetailsPortlet to
the same page of HRPortlet to test the cooperation.

a. Click Edit Page.

Figure 25-13 Edit Page to add portlets

b. In the Edit Layout window you can see that the page contains HRPortlet.
Click Add portlets button and search DepartmentDetailsPortlet from the
list.

c. When you find it check the DepartmentDetailsPortlet and click OK.

d. Now you will see the two portlets in the Edit Layout window. Click Done.

5. Switch to Edit mode in HRPortlet (c2a source portlet).

6. Enter the following information and click Submit.

– Database: jdbc:db2j:C:\HRProject\database\WSSAMPLE
– User: db2admin
– Password: db2admin
– SQL: select * from jobs

Note: You need to enable base portlets for portal administration and
customization in server configuration options.

 Chapter 25. IBM API programmatic cooperative portlets 791

Figure 25-14 HRPortlet portlet in Edit mode

7. The HRPortlet now displays the jobs table, including a cooperative portlet
menu in the DEPT_NO column. Before you can use this menu, you have to
configure the data source in DepartmentDetailsPortlet.

Figure 25-15 HRPortlet displays a cooperative menu in the DEPT_NO column

8. Switch to Edit mode in DepartmentDetailsPortlet (c2a target portlet).

9. Enter the following information and click Submit. It is not necessary to enter
an SQL command here, because it is built during the processing of the
cooperative menu.

792 IBM Rational Application Developer V6 and Portal Tools

– Database: jdbc:db2j:C:\HRProject\database\WSSAMPLE
– User: db2admin
– Password: db2admin

Note: There is no need to enter an SQL statement (optional).

10.In the source portlet View mode, click the c2a icon in the DEPT_NO column,
for example B01.

11.Click the c2a menu again to send the changed property to C2A.

Figure 25-16 Cooperative portlets

25.5.4 Wire portlets
In this section, you will wire the source and target portlets for C2A. To create a
wire it is necessary the wsdl file exists in the source portlet (HRPortlet portlet)
declaring the properties that this portlet is going to share.

Follow these steps:

1. Make sure the HRPortlet/WebContent/wsdl/HRPortlet.wsdl file exists and
portlet deployment descriptor contains the following config parameter:

<config-param>
<param-name>c2a-action-descriptor</param-name>
<param-value>/wsdl/HRPortlet.wsdl</param-value>

</config-param>

2. Select one of the C2A menu items but this time press the Ctrl key during the
selection.

3. A new dialog opens asking whether to Automate the action in future.
Select Yes.

 Chapter 25. IBM API programmatic cooperative portlets 793

Figure 25-17 Pressing Ctrl key during menu selection to create a wire

4. Click Yes to activate the wire.

5. Try other departments again.

6. Press the Ctrl key again when using C2A to disable the wire.

Note: Wiring can also be accomplished by using the Portlet Wiring Tool.

25.5.5 Enabling HRPortlet for programmatic source C2A
In this section, you will be required to enhance the source C2A portlet application
to implement the programmatic approach. Figure 25-18 illustrates the source
cooperative portlet for this sample scenario.

Figure 25-18 Cooperative portlets - programmatic sample scenario (source portlet)

You will update HRPortlet to change property data using the programmatic
approach. You will also insert a button in the HRPortlet page to offer the display
of department details in the DepartmentDetailsPortlet (C2A target portlet).

1. Update web.xml with wrapper
2. initConcrete()

Initialize property attribute
3. beginEventPhase()

If needed:
register output properties

4. actionPerformed()
createProperty()
createPropertyValue()
changedProperties()

Source portlet

1. Update web.xml with wrapper
2. initConcrete()

Initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet

Property
Broker

Services

794 IBM Rational Application Developer V6 and Portal Tools

Notice that in this portlet, you will need to register the DEPT_NO property using
the Property.OUT direction. In addition, the update of the property will be done in
the actionPerformed method.

Note: The sample scenario included in this chapter requires that you download
the sample code available as additional materials. See Appendix A, “Additional
material” on page 1003.

Proceed as follows to update the HRPortlet:

1. Open the file HRPortlet/Java Resources/JavaSource/hrportlet/HRPortlet.java.

2. Update the class definition so it implements the EventPhaseListener interface:

public class HRPortlet extends PortletAdapter implements
EventPhaseListener, ActionListener {

Note: The beginEventPhase method of the EventPhaseListener interface is
used to register the output properties; this is because it is only possible to
register and unregister properties during the event phase.

3. At the beginning of this class, insert two new class attributes so the code
looks like this:

public class HRPortlet extends PortletAdapter implements
EventPhaseListener, ActionListener {
PropertyBrokerService pbService;
PortletConfig portletConfig;

Note: pbService is an interface to the property broker and portletConfig
stores the portlet configuration.

4. Change the init method so it looks as follows:

public void init(PortletConfig portletConfig) throws
UnavailableException {

super.init(portletConfig);
this.portletConfig=portletConfig;

}

5. Add the following initConcrete method to initialize the property broker
attribute.

Example 25-8 The initConcrete method initializes the property broker attribute

public void initConcrete(PortletSettings settings)
throws UnavailableException {
try {

pbService =
(PropertyBrokerService) getPortletConfig()

.getContext()

.getService(
PropertyBrokerService.class);

 Chapter 25. IBM API programmatic cooperative portlets 795

} catch (PortletServiceUnavailableException e) {
throw new UnavailableException("Could not locate

PropertyBrokerService.");
} catch (PortletServiceNotFoundException e) {

throw new UnavailableException("Could not locate
PropertyBrokerService.");

}
}

6. For simplicity, you will now add a new method called
registerPropertiesIfNecessary to register the property we are interested in.

Example 25-9 Register a new output property

private void registerPropertiesIfNecessary(PortletRequest request)
throws PropertyBrokerServiceException {
PortletSettings settings = request.getPortletSettings();
Property[] properties = pbService.getAllProperties(request, settings);
if (properties == null || properties.length == 0) {

PortletContext context = getPortletConfig().getContext();
//not registered, register now
properties = new Property[1];
properties[0] = PropertyFactory.createProperty(settings);
properties[0].setName("DEPT_NOParam");
properties[0].setDirection(Property.OUT);
properties[0].setType("DEPT_NO");

properties[0].setNamespace("http://www.ibm.com/wps/c2a/examples/hrdetails");
properties[0].setTitleKey("HRDetails.Department");
properties[0].setDescriptionKey(

"Display department details");
pbService.registerProperties(request, settings, properties);

}
}

7. Implement the eventPhaseListener interface by inserting the
beginEventPhase and endEventPhase methods, which are callback methods
invoked during the event phase. The beginEventPhase invokes the method to
register the output property DEPT_NOParam.

Note: The endEventPhase method does nothing in this scenario but needs to
be included in the interface.

Example 25-10 beginEventPhase and endEventPhase methods

public void beginEventPhase(PortletRequest request) {
try {

registerPropertiesIfNecessary(request);
}
catch (Throwable e) {

796 IBM Rational Application Developer V6 and Portal Tools

e.printStackTrace();
}

}
public void endEventPhase(PortletRequest request) {

}

8. For simplicity, insert a new method with name changeProperty to notify the
broker about a changed property value. This method uses the
changedProperties method to notify property changes.

Example 25-11 Notify the broker of a property value change

private void changeProperty(PortletRequest request, String value) {
System.out.println("send data");
PortletSettings settings = request.getPortletSettings();
if (pbService != null) {

try {
Property p = PropertyFactory.createProperty(settings);
p.setName("DEPT_NOParam");
p.setDirection(Property.OUT);
p.setType("DEPT_NO");
p.setNamespace("http://www.ibm.com/wps/c2a/examples/hrdetails");
PropertyValue[] pva = new PropertyValue[1];
pva[0] = PropertyFactory.createPropertyValue(p, value);
pbService.changedProperties(request, getPortletConfig(), pva);

} catch (Exception e) {
e.printStackTrace();

}
}

}

9. At the end of the actionPerformed method, include the following code to
invoke the internal changeProperty method and notify the output property
change.

Example 25-12 Invoke method to notify the property value change

if (actionString.equals("DisplayAllDepartmentDetails")) {
this.changeProperty(request, "*");

}

10.Right-click anywhere in the Java editor and select Source → Organize
Imports to include the missing import statements. In the Organize Imports
dialog, choose to import the following class:

a. com.ibm.wps.pb.service.PropertyBrokerService
b. org.apache.jetspeed.portlet.service.PortletServiceUnavailableException
c. com.ibm.wps.pb.service.PropertyBrokerServiceException

 Chapter 25. IBM API programmatic cooperative portlets 797

d. com.ibm.wps.pb.property.Property
e. org.apache.jetspeed.portlet.PortletContext
f. com.ibm.wps.pb.property.PropertyFactory
g. com.ibm.wps.pb.property.PropertyValue

11.Save and close the updated source cooperative portlet HRPortlet.java file.

12.Update the HRPortletView.jsp to insert a new action button offering to display
department details from all departments. Open the HRPortletView.jsp file and
insert the following code at the end of the file and before the </BODY> tag.

Note: The action name is DisplayAllDepartmentDetails and it will be
processed in the actionPerformed method. See Example 25-13.

Example 25-13 New button to offer display of all department details

<p align="center">
<FORM method="post"
action="<portletAPI:createReturnURI><portletAPI:URIAction
name='DisplayAllDepartmentDetails'/></portletAPI:createReturnURI>"">
<INPUT type="submit" name="submit" value="Display all department details">
</FORM>
</p>

13.Optionally, preview the JSP and see the new button.

14.Save and close the file.

15.Since the source portlet is now using programmatic approach, if there is a
HRPortlet/WebContent/wsdl/HRPortlet.wsdl file, delete it and its reference in
portlet.xml file. Save and close the file.

25.5.6 Running the programmatic source portlet
Follow these steps to run the updated scenario:

1. Right-click HRPortlet and select Run → Run on Server. Select WebSphere
Portal V5.1 Test Environment from the server list and click Finish.

2. Click the Display all department details button. The
DepartmentDetailsPortlet displays all department details, as shown in
Figure 25-19 on page 799.

798 IBM Rational Application Developer V6 and Portal Tools

Figure 25-19 Department Details Portlet displays details from all department

3. A portlet wire is required. Try the Display all department details button
before and after adding the portlet wire.

Important: The method changedProperties() will only trigger events on wired
targets. If no wires exist for the published properties, it has no effect.

 Chapter 25. IBM API programmatic cooperative portlets 799

800 IBM Rational Application Developer V6 and Portal Tools

Chapter 26. JSR 168 cooperative portlets

This chapter describes how to implement the cooperative portlets paradigm
using JSR 168 compliant portlets. You will find step-by-step instructions to
enable JSR 168 portlets to work in a Cooperative Portlets environment.

The sample scenario included in this chapter illustrates the following:

� Enable a JSR 168 portlet to act as a source cooperative portlet
� Enable a JSR 168 portlet to act as a target cooperative portlet
� Use the wiring tool to wire JSR 168 Cooperative Portlets
� Run the sample scenario in the Portal Test Environment

26

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: JSR 168
� Application type: MVC

© Copyright IBM Corp. 2005. All rights reserved. 801

26.1 Overview
These are some considerations when implementing cooperative portlets using
JSR 168 compliant portlets:

� The only way JSR 168 portlets communicate is using wires. Client-to-Action
(C2A) is not supported.

� A JSR 168 portlet cannot be wired to an IBM API portlet. You only can create
wires between portlets of the same standard.

� There is no c2a tag library for JSR 168 portlets

a. Implementing a WSDL is the only way for JSR 168 portlets to provide
information about properties and actions to the property broker.

b. JSR 168 portlets must use the setProperties() method to publish
properties to the broker.

� JSR 168 portlets only support the declarative approach to register properties
and actions. The programmatic approach cannot be used as it is only
available for IBM API portlets.

The typical sequence flow for cooperative portlets using JSR 168 compliant
portlets is illustrated in Figure 26-1.

Figure 26-1 Typical processing flow

WebSphere
Portal

Datastore

Property
Broker

WebSphere
Portal core Portlet

Wiring Tool

Portlet A Filter

WSDL

Portlet B Filter

WSDL

Portlet actions
Portlet properties
Portlet wires

1

Browser

Portal Page

Portlet B (target)

Portlet A (source)

2

3

4

5

6 7

1 1 6

1

2

8

802 IBM Rational Application Developer V6 and Portal Tools

Make sure you understand the message flow by walking through the following
steps illustrated in Figure 26-1 on page 802:

1. Cooperative portlets deployment:

a. WSDL files are processed at deployment time

b. Action and property metadata stored persistently in the portal datastore

2. Wiring:

a. User (administrator) selects instances of cooperative portlets on a portal
page and creates one or more wires between them

b. Wiring information is also stored persistently in the portal datastore

3. User submits action in source portlet (Portlet A)

4. Portal engine receives the request:

a. Determines that an action needs to be invoked

b. Passes action to portlet container

c. Portlet container delivers action to the source portlet

5. The portlet updates its state and produces new values for output parameters.

a. Action filter determines the presence of output parameters

b. For each active wire, it triggers an action invocation on the target portlet
(Portlet B) through the portal container

6. Portal container delivers action(s) on the target portlet(s)

7. After action processing terminates:

a. Render processing begins

b. Portlet container delivers render method invocations

8. Portal collects markup from each portlet and generates the portal page.

26.2 Source cooperative portlet
In this section, you will execute the following tasks to enable a JSR 168 portlet as
a source cooperative portlet using the declarative approach:

� Import the portlet if it is not in your workspace.

� Declare exchange capabilities using WSDL.

� Update the portlet.xml file to point to the WSDL file.

� Update the portlet as follows:

– In the init() method add a reference to the property broker service

 Chapter 26. JSR 168 cooperative portlets 803

– In the processAction() method, send the output properties

– In the doView() method, check if the wire is active.

� Update the JSP for View mode to create dynamic links.

26.2.1 Importing the HRPortlet168 portlet
You will enable the HRPortlet168 portlet to act as a source cooperative portlet.
Follow these steps to import this portlet into your workspace:

1. Select File → Import. In the import panel select WAR file. Click Next.

2. Enter the following information:

a. WAR file: browse to C:\LabFiles\JDBC168\HRPortlet168.war

b. Web project: enter HRPortlet168

c. Target server: select WebSphere Portal V5.1

d. Select Add module to an EAR project

e. EAR project: HRPortlet168EAR

3. Verify that you selected WebSphere Portal V5.1 as the target and click
Finish.

Figure 26-2 Importing the original portlet HRPortlet168

804 IBM Rational Application Developer V6 and Portal Tools

4. Click Yes if you are prompted to switch to the Web perspective.

26.2.2 Internationalization
In this section you will do the following:

� Change the portlet titles. Since you are using the same portlet version as
source and target, it is recommended that you change the portlet titles to
avoid confusion (English and Default bundles).

� Add key value pairs for the following (English and Default bundles):

– department.ID
– show.all employees (English bundle):

Execute the following steps to add this support to the cooperative source portlet:

1. In HRPortlet168 → Java Resources → JavaSource → hrportlet168.nl →
HRPortlet168Resource.properties, add the entries highlighted in
Example 26-11 on page 818.

Example 26-1 Target portlet HRPortlet168Resource.properties (Default)

en Resource Bundle
#
filename: HRPortlet168Resource_en.properties
Portlet Info resource bundle example
javax.portlet.title=HRPortlet168 Source
javax.portlet.short-title=
javax.portlet.keywords=

department.ID=department ID
show.all.employees=Show all employees from this department

2. In HRPortlet168 → Java Resources → JavaSource → hrportlet168.nl →
HRPortlet168Resource_en.properties, add the entries highlighted in
Example 26-12 on page 819.

Example 26-2 Target portlet HRPortlet168Resource_en.properties (English)

en Resource Bundle
#
filename: HRPortlet168Resource_en.properties
Portlet Info resource bundle example
javax.portlet.title=HRPortlet168 Source
javax.portlet.short-title=
javax.portlet.keywords=

department.ID=department ID

 Chapter 26. JSR 168 cooperative portlets 805

show.all.employees=Show all employees from this department

26.2.3 Declaring exchange capabilities using WSDL
You must declare the exchange capabilities of this portlet using a WSDL file. The
WSDL file for the source portlet is provided for you as additional materials.
Follow these steps to create the WSDL file:

1. From the Project Explorer view, right-click the HRPortlet168\WebContent
folder and select New → Folder.

2. Type wsdl for the Folder name field and click Finish.

3. The directory structure should look as illustrated in Figure 26-3.

Figure 26-3 New wsdl folder

4. Right-click the wsdl folder just created and choose Import... → File system
from the context menu.

5. Browse the directory where the HRPortlet168.wsdl file is located and select
this file. The WSDL file is provided as additional material in the following
directory:

c:\LabFiles\Cooperative Portlets\JSR168\HRPortlet168.wsdl

6. Select the HRPortlet168.wsdl to be imported.

7. Make sure the Create selected folders only option is checked.

8. Click Finish.

806 IBM Rational Application Developer V6 and Portal Tools

Figure 26-4 Importing wsdl file

9. Example 26-3 illustrates the HRPortlet168.wsdl file

Example 26-3 WSDL file for HRPortlet168 portlet

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DeptResults_Service"
 targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:portlet="http://www.ibm.com/wps/c2a"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ibm.com/wps/c2a/examples/hrdetails"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <xsd:schema targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails">
 <xsd:simpleType name="DEPT_NO">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
</types>

 Chapter 26. JSR 168 cooperative portlets 807

<message name="GetResultsMessageNameResponse">
 <part name="dept_Id" type="tns:DEPT_NO"/>
</message>

<portType name="DeptResults_Service">
 <operation name="dept_Detail">
 <output message="tns:GetResultsMessageNameResponse"/>
 </operation>
</portType>

<binding
 name="DeptResultsBinding"
 type="tns:DeptResults_Service">
 <portlet:binding/>
 <operation name="dept_Detail">
 <portlet:action name="departmentList" type="standard"
caption="show.all.employees" description="Get.Results.for.specified.sql.string"
 actionNameParameter="ACTION_NAME"/>
 <output>
 <portlet:param name="DEPT_NO" partname="dept_Id"

boundTo="request-parameter" caption="department.ID"/>
 </output>
 </operation>
</binding>
</definitions>

10.Review the wsdl file:

– The syntax used in this WSDL file is the standard WSDL with some
custom extensions for cooperative portlets.

– The <binding> tag is extended to associate portlet actions with operations.

– The elements prefixed with portlet: are part of the custom WSDL
extension schema.

– For each operation, the portlet action name must be provided using the
name attribute of the action tag.

– For each operation parameter, the action parameter name must be
provided using the name attribute of the param tag.

– The boundTo attribute may be used to specify where the parameter will be
bound, the options are request-parameter, request-attribute,
session-attribute or action-attribute.

– In this wsdl file you see that this portlet declares a single action called
departmentList, using the portlet:action element.

– The type attribute standard indicates that it will be implemented as a
standard portlet action (JSR 168).

808 IBM Rational Application Developer V6 and Portal Tools

– Other type attribute options are:

i. default: indicates a DefaultPortletAction object is used

ii. simple: indicates a simple portlet action String is used

iii. struts: indicates a Struts action is used

iv. standard-struts: indicates a struts action is used with a JSR portlet.

– The portlet:param element identifies that the action has an output
parameter. The name and boundTo attributes need to take into account in
processAction method.

26.2.4 Updating the portlet deployment descriptor
You will need to update the portlet deployment descriptor (portlet.xml) to include
a reference to the WSDL file using the portlet preference parameter called
com.ibm.portal.propertybroker.wsdllocation.

Execute the following steps:

1. In the Project Explorer view, expand HRPortlet168/WebContent/WEB-INF
and double-click in portlet.xml.

2. In the Portlets tab:

a. Select the HRPortlet168

b. Scroll down to the Persistent Preference Store section

3. Add the following portlet preference:

a. Name: com.ibm.portal.propertybroker.wsdllocation

b. Value: /wsdl/HRPortlet168.wsdl

 Chapter 26. JSR 168 cooperative portlets 809

Figure 26-5 Preference

4. In the Source tab, visually verify the new added preference as highlighted in
Example 26-4.

Example 26-4 Updating portlet deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
id="hrportlet168.HRPortlet168.8d364d6120">

<portlet>
<portlet-name>HRPortlet168</portlet-name>
<display-name>HRPortlet168</display-name>
<display-name xml:lang="en">HRPortlet168</display-name>
<portlet-class>hrportlet168.HRPortlet168</portlet-class>
<init-param>

<name>wps.markup</name>
<value>html</value>

</init-param>
<expiration-cache>0</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>

</supports>
<supported-locale>en</supported-locale>
<resource-bundle>hrportlet168.nl.HRPortlet168Resource</resource-bundle>
<portlet-info>

<title>HRPortlet168</title>
</portlet-info>

810 IBM Rational Application Developer V6 and Portal Tools

<portlet-preferences>
<preference>

<name>com.ibm.portal.propertybroker.wsdllocation</name>
<value>/wsdl/HRPortlet168.wsdl</value>

</preference>
</portlet-preferences>

</portlet>
</portlet-app>

Note: The portlet descriptor (portlet.xml) should always point to the location of
the WSDL file so that Portal will register the portlet properties at initialization
time and when the portlet is deployed.

5. If you select the Problems tab, you will find that the WSDL file gives you two
warning messages; this is not a problem.

6. Save and close the portlet.xml file.

26.2.5 Updating the HRPortlet168 portlet code
The following steps describe the updates you need to make in the HRPortlet168
source cooperative portlet code:

1. From the Project Explorer view, open the HRPortlet168 portlet. Double-click
HRPortlet168/Java
Resources/JavaSource/hrportlet168/HRPortlet168.java

2. Make sure you include the following import statements:

import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.portal.portlet.service.PortletServiceHome;
import com.ibm.portal.propertybroker.service.PropertyBrokerService;

3. Declare two new variables: pbService and pbServiceAvailable:

PropertyBrokerService pbService = null;
boolean pbServiceAvailable = false;

4. Update the init method to obtain a reference to the property broker services
as highlighted in Example 26-5:

Example 26-5 Obtaining a reference to the property broker service

public void init(PortletConfig portletConfig) throws PortletException, UnavailableException {
super.init(portletConfig);

try {
Context ctx = new InitialContext();
PortletServiceHome serviceHome = (PortletServiceHome)

ctx.lookup("portletservice/com.ibm.portal.propertybroker.service.PropertyBrokerService");

 Chapter 26. JSR 168 cooperative portlets 811

pbService =
(PropertyBrokerService)serviceHome.getPortletService(com.ibm.portal.propertybroker.service.Prop
ertyBrokerService.class);

pbServiceAvailable = true;
}catch(Throwable t) {

getPortletContext().log("OrderDetailPortlet could not find property broker service!");
}

}

Note: The boolean variable pbServiceAvailable will set to true only if the
service is available. This variable can be used to guard access to IBM-only
services (WebSphere Portal) and it can be used to ensure that the portlet can
still function in other environments where the service is not available.

5. You need to declare three new variables: ACTION_NAME, DEPARTMENT_LIST and
DEPT_NO as follows:

public static final String ACTION_NAME = "ACTION_NAME";
public static final String DEPARTMENT_LIST = "departmentList";
public static final String DEPT_NO = "DEPT_NO";

6. In the processAction method, publish an output property, as highlighted in
Example 26-6. The property must be set as an attribute (setAttribute) in the
request as configured in the WSDL.

Example 26-6 Publishing the output property

public void processAction(ActionRequest request, ActionResponse response)
throws PortletException, java.io.IOException {

//Add action string handler here
HRPortlet168SessionBean sessionBean = getSessionBean(request);

if(request.getPortletMode().equals(PortletMode.EDIT)) {
String dbname = (String) request.getParameter("dbname");
String userid = (String) request.getParameter("userid");
String password = (String) request.getParameter("password");
String sqlstring = (String) request.getParameter("sqlstring");
sessionBean.setDbName(dbname);
sessionBean.setUserId(userid);
sessionBean.setPassword(password);
sessionBean.setSqlString(sqlstring);
if(request.getPortletMode().equals(PortletMode.EDIT))

response.setPortletMode(PortletMode.VIEW);
}
if(request.getParameter(FORM_SUBMIT) != null) {

// Set form text in the session bean
sessionBean = getSessionBean(request);
if(sessionBean != null)

sessionBean.setFormText(request.getParameter(TEXT));
}

812 IBM Rational Application Developer V6 and Portal Tools

// add this code
String actionName = request.getParameter(ACTION_NAME);
String dept_number = request.getParameter(DEPT_NO);
if (actionName != null && actionName.equalsIgnoreCase(DEPARTMENT_LIST))

{
request.getPortletSession().setAttribute(ACTION_NAME,

DEPARTMENT_LIST);
request.setAttribute(DEPT_NO, dept_number);

}
// end of added code

}

7. Save your files.

8. Review the code:

– Here is where you need to take into account the attributes name and
boundTo of portlet:param element mentioned previously in Example 26-3
on page 807.

– The name attribute of portlet:action element must match with the request
parameter to determine the action name (departmentList in our example).

– When the action matches it sets the value of output parameter
(DEPT_NO).

– Depending on the value of boundTo attribute, the variable will be set as:

• request attribute, if the value of boundTo attribute is request-attribute

• session attribute, if the value of boundTo attribute is session

• request parameter, if the value of boundTo attribute is
request-parameter. This is the default value for this attribute.

9. In the Project Explorer view:

a. Open the HRPortlet168ViewBean bean located in HRPortlet168/Java
Resources/JavaSource/hrportlet168/.

b. Add a variable to indicate if the department code property is wired to an
active action and add its corresponding getter and setter methods.

c. Necessary changes on HRPortlet168ViewBean bean are highlighted in
Example 26-7.

Example 26-7 Setting an indicator on HRPortlet168ViewBean

package hrportlet168;
import com.ibm.db.beans.*;

public class HRPortlet168ViewBean {
private DBSelect resultFromDatabase;
// add this code

 Chapter 26. JSR 168 cooperative portlets 813

private boolean deptIDActive;

public boolean isDeptIDActive() {
return deptIDActive;

}

public void setDeptIDActive(boolean deptIDActive) {
this.deptIDActive = deptIDActive;

}
// end of added code

public DBSelect getResultFromDatabase() {
return resultFromDatabase;

}

public void setResultFromDatabase(DBSelect resultFromDatabase) {
this.resultFromDatabase = resultFromDatabase;

}
}

10.Save the HRPortlet168ViewBean.java file.

11.Return to HRPortlet168 portlet code and add the following code to the doView
method to inform the JSP whether or not the service is available and there are
wires active so that dynamic links should be shown.

Example 26-8 Set the indicator value in doView method

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, IOException {

response.setContentType(request.getResponseContentType());
HRPortlet168SessionBean sessionBean = getSessionBean(request);
if(sessionBean==null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;

}
String sqlstring = sessionBean.getSqlString();
if (sqlstring != null && !sqlstring.equals("")) {

String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();
HRPortlet168ViewBean viewBean = new HRPortlet168ViewBean();
SQLUtilities sqlUtility = new SQLUtilities();
try {

sqlUtility.execute(userid, password, sqlstring);
} catch (SQLException e) {

e.printStackTrace();
}
sqlUtility.populateData(viewBean);

814 IBM Rational Application Developer V6 and Portal Tools

// add this code
if (pbServiceAvailable == true) {

try {
viewBean.setDeptIDActive(pbService.areWiresActive(request,

DEPT_NO));
} catch (Exception e) {

}
}
// end of added code
request.setAttribute(VIEW_BEAN, viewBean);

}
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(getJspFilePath(request, VIEW_JSP));
rd.include(request,response);

}

12.Review the added code:

– The areWiresActive method of the PropertyBrokerService interface tests if
a property is currently wired to active actions.

– It receives the following:

• PortletRequest object for the current portlet request
• The name of the property to check.

13.Save the HRPortlet168.java file.

26.2.6 Updating the JSP to generate a link
In this section you will update the HRPortlet168View.jsp located in
HRPortlet168/WebContent/hrportlet168/jsp/html to generate links in the
DEPT_NO column.

1. In HRPortlet168View.jsp replace the code:

<TD>
<p><%=results.getCacheValueAt(row, col)%></p>

</TD>

with the code shown in Example 26-9. The code illustrates how to generate a link
when the boolean variable, indicating that the property is wired to an action, is
true.

Example 26-9 Generating a link in the HRPortlet168View.jsp

<TD>
<%-- If the output property "deptNo" is wired with active actions, then set a link to trigger
action--%>

 Chapter 26. JSR 168 cooperative portlets 815

<% if (results.getColumnName(col).equalsIgnoreCase(HRPortlet168.DEPT_NO) &&
viewBean.isDeptIDActive()) {

PortletURL actionURL = renderResponse.createActionURL();
actionURL.setParameter(HRPortlet168.DEPT_NO, (String)results.getCacheValueAt(row, col));
actionURL.setParameter(HRPortlet168.ACTION_NAME, HRPortlet168.DEPARTMENT_LIST);

%>
<A href="<%= actionURL%>">

<p><%=results.getCacheValueAt(row, col)%></p>

<% } else { %>

<p><%=results.getCacheValueAt(row, col)%></p>
<% } %>
</TD>

2. Save your files.

Note: Ignore the warnings indicating that there are unhandled exception types
(SQLException). This is because there are no try and catch sections in the code.

26.3 Target cooperative portlet
In this section, you will import a second copy of the HRPortlet168 and update it to
support cooperation as a target portlet. This portlet will execute a fixed SQL
statement with a variable where clause.

Execute the following steps:

1. To import a second version of the HRPortlet168, proceed as described in
“Importing the HRPortlet168 portlet” on page 804, replace the HRPortlet168
Web project name with HRDetails168 and the EAR project with
HRDetails168EAR.

Note: Make sure you select WebSphere Portal V5.1 as a target server.

816 IBM Rational Application Developer V6 and Portal Tools

Figure 26-6 Importing a second version of the portlet

2. HRPortlet168 and the new HRDetails168 portlet application use the same
UID so it will cause an error executing the portlets. To fix this problem follow
these steps:

a. Expand the HRDetails168/WebContent/WEB-INF folder and double-click
in portlet.xml.

b. Change the portlet UID to avoid duplicates. In the portlet deployment
descriptor editor, select the Source panel and change the last digit of the
UID of this portlet. For example, in this scenario, the last digit is 0 and you
will change it to 1, as highlighted in Example 26-10.

Example 26-10 Changing a digit in portlet application ID

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
id="hrportlet168.HRPortlet168.8d364d6121">

<portlet>
<portlet-name>HRPortlet168</portlet-name>
<display-name>HRPortlet168</display-name>
<display-name xml:lang="en">HRPortlet168</display-name>
<portlet-class>hrportlet168.HRPortlet168</portlet-class>

 Chapter 26. JSR 168 cooperative portlets 817

<init-param>
<name>wps.markup</name>
<value>html</value>

</init-param>
<expiration-cache>0</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>

</supports>
<supported-locale>en</supported-locale>
<resource-bundle>hrportlet168.nl.HRPortlet168Resource</resource-bundle>
<portlet-info>

<title>HRPortlet168</title>
</portlet-info>

</portlet>
</portlet-app>

3. Save your changes.

26.3.1 Internationalization
In this section, you will do the following:

� Change the portlet titles. Since you are using the same portlet version as
source and target, it is recommended that you change the portlet titles to
avoid confusion (English and Default bundles).

� Add key value pairs for the following (English and Default bundles):

– department.ID
– show.all employees (English bundle):

Execute the following steps to add this support to the cooperative target portlet:

1. Target portlet. In HRDetails168 → Java Resources → JavaSource →
hrportlet168.nl → HRPortlet168Resource.properties, add the entries
highlighted in Example 26-11.

Example 26-11 Target portlet HRPortlet168Resource.properties (Default)

en Resource Bundle
#
filename: HRPortlet168Resource_en.properties
Portlet Info resource bundle example
javax.portlet.title=HRPortlet168 Target
javax.portlet.short-title=
javax.portlet.keywords=

department.ID=department ID

818 IBM Rational Application Developer V6 and Portal Tools

show.all.employees=Show all employees from this department

2. Target portlet. In HRDetails168 → Java Resources → JavaSource →
hrportlet168.nl → HRPortlet168Resource_en.properties, add the entries
highlighted in Example 26-12.

Example 26-12 Target portlet HRPortlet168Resource_en.properties (English)

en Resource Bundle
#
filename: HRPortlet168Resource_en.properties
Portlet Info resource bundle example
javax.portlet.title=HRPortlet168 Target
javax.portlet.short-title=
javax.portlet.keywords=

department.ID=department ID
show.all.employees=Show all employees from this department

26.3.2 Declaring exchange capabilities using WSDL
The following updates are needed in order to enable the HRDetails168 to work
as a target cooperative portlet.

1. From the Project Explorer view right-click the HRDetails168\WebContent
folder and select New → Folder.

2. Type wsdl for the Folder name field and click Finish.

3. Right-click the wsdl folder just created and choose Import... → File system
from the context menu.

4. Browse the directory where the HRDetails168.wsdl file is located and select
this file. The WSDL file is provided as additional material in the following
directory:

c:\LabFiles\Cooperative Portlets\JSR168\HRDetails.wsdl

5. Select the HRDetails168.wsdl to be imported.

6. Make sure the Create selected folders only option is checked.

 Chapter 26. JSR 168 cooperative portlets 819

Figure 26-7 Importing HRDetails.wsdl

7. Click Finish.

8. Example 26-13 illustrates the HRDetails168.wsdl file.

Example 26-13 HRDetails168.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DeptResults_Service"
 targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:portlet="http://www.ibm.com/wps/c2a"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ibm.com/wps/c2a/examples/hrdetails"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <xsd:schema targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails">
 <xsd:simpleType name="DEPT_NO">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>

820 IBM Rational Application Developer V6 and Portal Tools

 </xsd:schema>
</types>

<message name="GetResultsMessageNameRequest">
 <part name="dept_Id" type="tns:DEPT_NO"/>
</message>

<portType name="DeptResults_Service">
 <operation name="dept_Detail">
 <input message="tns:GetResultsMessageNameRequest"/>
 </operation>
</portType>

<binding
 name="DeptResultsBinding"
 type="tns:DeptResults_Service">
 <portlet:binding/>
 <operation name="dept_Detail">
 <portlet:action name="departmentList" type="standard"
caption="show.all.employees" description="Get.Results.for.specified.sql.string"
 actionNameParameter="ACTION_NAME"/>
 <input>
 <portlet:param name="DEPT_NO" partname="dept_Id"
caption="department.ID"/>
 </input>
 </operation>
</binding>
</definitions>

Note: Here the departmentList action has an input parameter element named
DEPT_NO.

26.3.3 Updating the portlet deployment descriptor
You will need to update the portlet deployment descriptor (portlet.xml) to include
a reference to the WSDL file using the portlet preference parameter called
com.ibm.portal.propertybroker.wsdllocation.

Execute the following steps:

1. In the Project Explorer view, expand HRDetails168/WebContent/WEB-INF
and double-click in portlet.xml.

Note: While the number of output parameters associated with an action is
unlimited, input parameters can only be received one at a time in the
processAction() method.

 Chapter 26. JSR 168 cooperative portlets 821

2. In the Portlets tab:

a. Select the HRPortlet168

b. Scroll down to the Persistent Preference Store section

3. Add the following portlet preference:

a. name: com.ibm.portal.propertybroker.wsdllocation

b. value: /wsdl/HRDetails168.wsdl

4. The portlet.xml with the new reference to the WSDL file is illustrated in
Example 26-14.

Example 26-14 Update HRDetails168 portlet.xml file

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
id="hrportlet168.HRPortlet168.8d364d6121">

<portlet>
<portlet-name>HRPortlet168</portlet-name>
<display-name>HRPortlet168</display-name>
<display-name xml:lang="en">HRPortlet168</display-name>
<portlet-class>hrportlet168.HRPortlet168</portlet-class>
<init-param>

<name>wps.markup</name>
<value>html</value>

</init-param>
<expiration-cache>0</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>

</supports>
<supported-locale>en</supported-locale>
<resource-bundle>hrportlet168.nl.HRPortlet168Resource</resource-bundle>
<portlet-info>

<title>HRPortlet168</title>
</portlet-info>
<portlet-preferences>

<preference>
<name>com.ibm.portal.propertybroker.wsdllocation</name>
<value>/wsdl/HRDetails168.wsdl</value>

</preference>
</portlet-preferences>

</portlet>
</portlet-app>

822 IBM Rational Application Developer V6 and Portal Tools

5. From the Project Explorer view, open the HRPortlet168 portlet located in:

/HRDetails168/Java Resources/JavaSource/hrportlet168/HRPortlet168.java

6. Include the following import statements in the HRPortlet168 portlet:

import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.portal.portlet.service.PortletServiceHome;
import com.ibm.portal.propertybroker.service.PropertyBrokerService;

7. Declare two new variables: pbService and pbServiceAvailable:

PropertyBrokerService pbService = null;
boolean pbServiceAvailable = false;

8. In the same way as with the source portlet, update the init method to obtain
a reference to the property broker services as highlighted in Example 26-15:

Example 26-15 Obtaining a reference to the property broker service

public void init(PortletConfig portletConfig) throws PortletException, UnavailableException {
super.init(portletConfig);

try {
Context ctx = new InitialContext();
PortletServiceHome serviceHome = (PortletServiceHome)

ctx.lookup("portletservice/com.ibm.portal.propertybroker.service.PropertyBrokerService");
pbService =

(PropertyBrokerService)serviceHome.getPortletService(com.ibm.portal.propertybroker.service.Prop
ertyBrokerService.class);

pbServiceAvailable = true;
}catch(Throwable t) {

getPortletContext().log("OrderDetailPortlet could not find property broker service!");
}

}

9. You need to declare three new variables: ACTION_NAME, DEPARTMENT_LIST and
DEPT_NO as follows:

public static final String ACTION_NAME = "ACTION_NAME";
public static final String DEPARTMENT_LIST = "departmentList";
public static final String DEPT_NO = "DEPT_NO";

10.Update the processAction method to receive the property value. as
highlighted in Example 26-16.

Example 26-16 Receiving a property value in processAction method

public void processAction(ActionRequest request, ActionResponse response)
throws PortletException, java.io.IOException {

HRPortlet168SessionBean sessionBean = getSessionBean(request);
if(request.getPortletMode().equals(PortletMode.EDIT)) {

String dbname = (String) request.getParameter("dbname");

 Chapter 26. JSR 168 cooperative portlets 823

String userid = (String) request.getParameter("userid");
String password = (String) request.getParameter("password");
String sqlstring = (String) request.getParameter("sqlstring");
sessionBean.setDbName(dbname);
sessionBean.setUserId(userid);
sessionBean.setPassword(password);
sessionBean.setSqlString(sqlstring);

}
if(request.getParameter(FORM_SUBMIT) != null) {

sessionBean = getSessionBean(request);
if(sessionBean != null)

sessionBean.setFormText(request.getParameter(TEXT));
}
// add this code
String actionName = request.getParameter(ACTION_NAME);
if (actionName != null && actionName.equalsIgnoreCase(DEPARTMENT_LIST))

{
String dept_number = (String)request.getParameter(DEPT_NO);
request.getPortletSession().setAttribute(ACTION_NAME,

DEPARTMENT_LIST);
HRPortlet168SessionBean bean = getSessionBean(request);
bean.setSqlString("select * from employee where workdept='" +

dept_number + "'");
}
// end of added code

}

Note: The input parameter DEPT_NO is retrieved as request parameter because
boundTo attribute has been omitted in the WSDL file.

26.4 Running the cooperative portlets
Before you run the scenario in the Portal test Environment, you will need to
populate the database and create a data source required by the portlet
application.

26.4.1 Populating the sample database
If the Cloudscape sample database has not been populated, run the batch file to
populate the test database to be used in this scenario. For example:

1. Create the c:\HRproject\database\ directory.

2. From c:\Labfiles\JDBC168\ folder, copy the following files to this directory:

– CreateCloudTable.bat

824 IBM Rational Application Developer V6 and Portal Tools

– Tables.sql

3. Edit the provided CreateCloudTable.bat file and make sure the paths for
variables JAVA_HOME and DB2J_LIB point to the correct location. For
example, in this sample scenario, these directories (java and lib) can be found
at <RAD_root>\runtimes as shown in Example 26-17.

Example 26-17 Sample CreateCloudTable.bat file

set JAVA_HOME=C:\Progra~1\IBM\Rational\SDP\6.0\runtimes\base_v51\java
set DB2J_LIB=C:\Progra~1\IBM\Rational\SDP\6.0\runtimes\base_v51\cloudscape\lib
set
CLASSPATH=%DB2J_LIB%\db2j.jar;%DB2J_LIB%\db2jtools.jar;%DB2J_LIB%\db2jcview.jar
;%DB2J_LIB%\jh.jar
%JAVA_HOME%\bin\java -Dij.connection.myconn=jdbc:db2j:WSSAMPLE;create=true
-Dcloudscape.system.home=%DB2J_LIB% -ms16m -mx32m com.ibm.db2j.tools.ij
Tables.sql

4. Save and close the file.

5. Open a command window and change to the directory where these files are.

6. Execute the CreateCloudTable.bat to create and populate the sample
database (WSSAMPLE).

7. After executing the batch file, the WSSAMPLE folder is created in the
c:\HRproject\database.

8. Display the directory to make sure WSSAMPLE was created.

26.4.2 Creating a data source
Before you run the HRPortlet168, you will need to create the DataSource used
by the SQLUtility to establish the connection to the database.

For example, in the Web perspective:

1. Select the Server view in located on the bottom center of the workspace.

2. Double-click the WebSphere Portal V5.1 Test Environment. This will open
the Server config editor.

Note: Right-click the server view to create a new instance of the WebSphere
Portal V5.1 Test Environment if you do not have one already.

3. Select the Data source tab.

4. In the Server Settings section, select Cloudscape JDBC Driver from the
JDBC provider list.

5. Click Add... from the Data source defined in the JDBC provider selected
above.

 Chapter 26. JSR 168 cooperative portlets 825

Figure 26-8 Create Data Source

6. In the Create a Data source window, select Cloudscape JDBC provider and
data source V5. Click Next.

7. Enter the following values for the Modify Data Source window.

– Name: WSSample
– JNDI Name: jdbc/WSSample

826 IBM Rational Application Developer V6 and Portal Tools

Figure 26-9 Data Source modifications

8. Click Next.

9. Select databaseName from Resource Properties, enter
C:\HRproject\database\WSSAMPLE as the value (or the path where the
database is stored).

 Chapter 26. JSR 168 cooperative portlets 827

Figure 26-10 Create resource properties

10.Click Finish.

11.Close the Server configuration editor.

12.A window will prompt you if you want to save changes. Select Yes.

26.4.3 Running and wiring the cooperative portlets
Execute the following steps to prepare the cooperative portlets scenario:

1. By default, WebSphere Portal Test Environment enables multiples pages
when deploying portlet projects. For cooperative portlets you need the
portlets on the same page. You also need administration capabilities to
execute the wiring tool. Therefore you need to configure these options:

a. In the Servers tab, double-click the WebSphere Portal Test Environment

b. Select Portal Options as shown in Figure 26-11 on page 829.

i. Check the option Enable base portlets for portal administration and
customization.

Important: As a general rule, make sure there are no other connections
active to the database you plan to use as this could create conflict errors.

828 IBM Rational Application Developer V6 and Portal Tools

ii. Uncheck the option Enable multiple pages when deploying portlet
projects.

Figure 26-11 Portal options

2. Save the configuration and close the editor.

3. Add the portlet projects to the WebSphere Portal V5.1 Test Environment
server:

a. Right-click the server and select Add and remove projects.

b. From the list of available projects, select HRPortlet168 and click Add > to
add this project to the list of configured projects on the right side.

c. Repeat the same steps to add the HRDetails168 project.

d. Click Finish.

4. Right-click HRPortlet168. Then click Run → Run on server, select
WebSphere Portal V5.1 Test Environment server and click Finish.

Note: This will load your project into the test environment so that you can
view it in Rational Application Developer internal browser. It may take few
minutes for this process to complete.

5. Wiring. Click Edit Page and you will see the two portlets in the Edit Layout
page.

 Chapter 26. JSR 168 cooperative portlets 829

6. Click the Wires tab. You will see different combos to select a source portlet, a
property to send, a target portlet and a property or action to receive. If you
select Global wire, that means that their effects are manifested to all users
that can view the page and portlets.

Figure 26-12 Portlet Wiring Tool

7. Select the following values:

a. HRPortlet168 as the Source Portlet.

b. Sending combo: select department ID.

c. HRPortlet168 as the Target Portlet.

d. Receiving combo: select Show all employees, department ID.

e. Check Global wire.

f. Click Add wire.

830 IBM Rational Application Developer V6 and Portal Tools

Figure 26-13 Portlet Wiring Tool

8. You will now see the new wire as shown in Figure 26-14.

Figure 26-14 Portlet Wiring Tool with new wire

9. Click Done.

10.Switch to Edit mode in HRPortlet168 Source portlet by clicking the pencil icon
in the top right-hand corner of the portlet.

11.Enter the following information and click Submit:

a. User: db2admin

 Chapter 26. JSR 168 cooperative portlets 831

b. Password: db2admin

c. SQL: select * from jobs

Figure 26-15 Portlet Wiring Tool with new wire

12.The HRPortlet168 Source portlet now displays the jobs table, including links
in the DEPT_NO column. Before you can use the links, you have to configure
the user and password in HRDetails168 portlet.

13.Switch to Edit mode in HRDetails168 (HRPortlet168 Target) portlet by clicking
the pencil icon in the top right-hand corner of the portlet.

14.Enter the following information and click Submit:

a. User: db2admin

b. Password: db2admin

c. It is not necessary to enter an SQL statement.

15.In the source cooperative portlet View mode, click a DEPT_NO column link,
for example C01.

832 IBM Rational Application Developer V6 and Portal Tools

Figure 26-16 Running HRPortlet168 portlet

16.You will see all the employees for this department listing in HRDetails168
portlet.

Figure 26-17 HRDetails168 portlet displays all employees for same department

 Chapter 26. JSR 168 cooperative portlets 833

834 IBM Rational Application Developer V6 and Portal Tools

Chapter 27. Struts cooperative portlets

This chapter describes how to implement cooperative portlets with Struts portlets
using the JSR 168 API. Two Struts portlets (source and target) will be used to
implement a messaging communication path to allow the Struts portlets to share
information at execution time.

27

Note: The portlet application described in this chapter has the following
characteristics:

� Portlet API: JSR 168
� Application type: Struts

© Copyright IBM Corp. 2005. All rights reserved. 835

27.1 Overview
In this scenario, two different versions of the same portlet, called Echo portlet, are
used. You will change the portlet UID of one of the portlets to be able to run the
two portlets in the Portal Test Environment. As and option, you will also change
the portlet name and the portlet title to visually identify the portlets.

The Echo portlet has a simple form that allows the user to enter a message.
When the message is submitted, it is displayed back on the same portlet. In this
scenario, the portlets will be enhanced to work in a cooperative portlet
environment.

The following portlets are used:

� The source cooperative portlet, named EchoSource, shows a form to submit a
message and will be enhanced to send the message to the Cooperative
Portlets property broker.

� The target cooperative portlet, named EchoTarget, will be enhanced to
receive the message from the Cooperative Portlets property broker and
display it.

Note: The Cooperative Portlets property broker uses Struts Actions to notify
input properties.

The sample scenario is illustrated in Figure 27-1. The Struts source portlet
publishes (broadcasts) an output property and the Struts target portlet receives
the message.

Figure 27-1 Cooperative Portlets sample scenario

Property
Broker

WebSphere
Portal Core Portlet Wiring

Tool

Echo
Source Filter

WSDL

Filter

WSDL

Echo Target

Message

1
Message

Message

Message

2

3

4

836 IBM Rational Application Developer V6 and Portal Tools

This scenario shows various cooperative portlet concepts in Struts portlets using
the JSR 168 API.For example:

� You will enable portlet cooperation using a declarative approach. For JSR 168
compliant portlets, WSDL is the only way to provide information about portlet
actions as programmatic cooperative portlets are not available for JSR 168
portlets.

� You will create wires between cooperative portlets using the Portlet Wiring
Tool. This is the only way to connect JSR 168 compliant portlets as
Click-to-Action is not available for JSR 168 portlets.

27.2 Source cooperative portlet
In this section, you will execute the following tasks to enable a source portlet for
cooperative portlets using the declarative approach:

1. Import the Echo portlet. This Struts portlet is provided as additional material
and we assume that it has been downloaded to the following directory:

c:\LabFiles\Struts Cooperative Portlets\

2. Declare exchange capabilities using WSDL.

3. Update the portlet descriptor (portlet.xml) file to refer to the WSDL file.

4. Update the welcome struts action to get a reference to the property broker
service.

5. Add internationalization of captions and descriptions.

27.2.1 Importing the Echo portlet
Follow these steps to import the Echo portlet:

1. Select File → Import. In the import panel select WAR file and click Next.

2. In the next window, enter the following information:

a. WAR file: browse to C:\LabFiles\Struts Cooperative Portlets\Echo.war

b. Web project: enter EchoSource

c. Target server: select WebSphere Portal V5.1

d. Select Add module to an EAR project

e. EAR project: EchoSourceEAR

3. Click Finish.

 Chapter 27. Struts cooperative portlets 837

It is recommended that you change the portlet title to be able to identify the
portlets since they will be deployed on the same page. Follow these steps for
each resource bundle:

1. Open the resource bundles (EchoPortletResource properties file), located in
the EchoSource/Java Resources/JavaSource/echo.nl directory.

2. Add a title in the line javax.portlet.title. For example:

javax.portlet.title=Echo Source portlet

3. Save the file and close the editor.

27.2.2 Declaring exchange capabilities using WSDL
You must declare the exchange capabilities of this portlet using a WSDL file.
Follow these steps to create the WSDL file:

1. From the Project Explorer view, right-click the EchoSource\WebContent
folder and select New → Folder.

2. Type wsdl for the Folder name field and click Finish.

3. The directory structure should look as illustrated in Figure 27-2.

Figure 27-2 New wsdl folder

4. Right-click the wsdl folder just created and choose Import... → File system
from the context menu.

5. Browse the directory where the EchoSource.wsdl file is located and select
this file. The WSDL file is provided as additional material of this redbook.

838 IBM Rational Application Developer V6 and Portal Tools

6. Make sure you check the Create selected folders only option and click
Finish.

Figure 27-3 Importing wsdl file

7. Example 27-1 illustrates the EchoSource.wsdl file.

Example 27-1 WSDL file for EchoSource portlet

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DeptResults_Service"
 targetNamespace="http://www.ibm.com/wps/c2a/examples/echosource"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:portlet="http://www.ibm.com/wps/c2a"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ibm.com/wps/c2a/examples/echosource"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <xsd:schema targetNamespace="http://www.ibm.com/wps/c2a/examples/echosource">
 <xsd:simpleType name="inmsg">

 Chapter 27. Struts cooperative portlets 839

 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
</types>

<message name="GetResultsMessageNameResponse">
 <part name="input_msg" type="tns:inmsg"/>
</message>

<portType name="Message_Service">
 <operation name="msg_Detail">
 <output message="tns:GetResultsMessageNameResponse"/>
 </operation>
</portType>

<binding name="MessageBinding" type="tns:Message_Service">
 <portlet:binding/>
 <operation name="msg_Detail">
 <portlet:action name="/welcome.do" type="standard-struts"
actionNameParameter="spf_strutsAction" caption="show.message"
description="Get.Message.from.user"/>
 <output>
 <portlet:param name="inmsg" partname="input_msg"

boundTo="request-parameter" caption="in.message"/>
 </output>
 </operation>
</binding>

</definitions>

The syntax used in this file is the standard WSDL with some custom extensions
for cooperative portlets. The <binding> tag is extended to associate portlet
actions with operations. The elements prefixed with portlet: are part of the
custom WSDL extension schema:

� For each operation:

– The portlet action name must be provided using the name attribute of the
action tag.

– The type attribute must be set as standard-struts to indicate that it is a
struts action used with a JSR portlet. Other type attribute options are
standard (indicates a standard portlet action, invoked using processAction
method), default (indicates a DefaultPortletAction object is used), simple
(indicates a simple portlet action String is used) and struts (indicates a
Struts action is used).

840 IBM Rational Application Developer V6 and Portal Tools

– The actionNameParameter attribute always must be set as
spf_strutsAction to indicate the property broker to use a special binding
to support Struts actions.

In the above file you see that this portlet declares a single action called
/welcome.do, using the portlet:action element.

<portlet:action name="/welcome.do" type="standard-struts"
actionNameParameter="spf_strutsAction" caption="show.message"
description="Get.Message.from.user"/>

� For each operation parameter:

– The portlet:param element identifies that the action has an output
parameter.

– The action parameter name must be provided using the name attribute of
the param tag.

– The boundTo attribute may be used to specify where the parameter will be
bound, the options are request-parameter, request-attribute,
session-attribute or action-attribute.

– Each operation parameter appears as a child element of a <input> or
<output> tag, to specify if it is a parameter consumed or produced by the
portlet action, respectively.

In the above file, you see that this portlet has produced a parameter named
inmsg.

<output>
<portlet:param name="inmsg" partname="input_msg"

boundTo="request-parameter" caption="in.message"/>
</output>

27.2.3 Updating the portlet deployment descriptor
You need to update the portlet deployment descriptor to include a reference to
the WSDL file using the portlet preference parameter called
com.ibm.portal.propertybroker.wsdllocation.

1. In the Project Explorer view, expand EchoSource/WebContent/WEB-INF
and double-click in portlet.xml.

2. Click the Source tab and add the code highlighted in Example 27-2.

Example 27-2 Updating portlet deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app

xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 Chapter 27. Struts cooperative portlets 841

xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"

id="echo.EchoPortlet.0190a47430">
<portlet>
.....

<portlet-preferences>
<preference>

<name>com.ibm.struts.portal.page.view.html</name>
<value>index.jsp</value>

</preference>
<preference>

<name>com.ibm.portal.propertybroker.wsdllocation</name>
<value>/wsdl/EchoSource.wsdl</value>

</preference>
</portlet-preferences>

</portlet>
</portlet-app>

3. Save and close the portlet.xml file.

27.2.4 Updating the EchoSource portlet code
The next steps describe the changes you have to make to the EchoSource portlet
code:

1. Open the EchoSource portlet double-clicking in EchoSource/Java
Resources/JavaSource/echo.actions/EchoAction.java from the Project
Explorer view.

2. You will set an attribute in the session object to indicate whether the
Cooperative Portlets service must be initialized or not. Include the following
import statement:

import javax.portlet.PortletSession;

3. In EchoAction class, declare two new variables (pbService and
pbServiceAvailable).

Example 27-3 Declaring variables

public class EchoAction extends StrutsAction {

PropertyBrokerService pbService = null;
boolean pbServiceAvailable = false;

4. Modify the execute method to obtain a reference to the property broker only
the first time the method is invoked. For purposes of this sample, you will use
the portlet session to set an attribute the first time the method is invoked and
avoid referencing the property broker for successive method invocations.

842 IBM Rational Application Developer V6 and Portal Tools

JSR 168 portlets using cooperation should be programmed so that they
perform correctly in other containers other than IBM Portal container. A good
practice is to use a boolean variable that indicates if the
PropertyBrokerService interface is available. The variable
pbServiceAvailable will set to true only if the service is available. This
variable can be used to guard accesses to IBM-only services and it is used to
ensure that the portlet can still function in environments where the service is
unavailable.

Example 27-4 Obtaining a reference to the property broker service

public ActionForward execute(ActionMapping mapping, ActionForm form,
PortletRequest request, PortletResponse response) throws Exception {

PortletSession session = request.getPortletSession(true);
if (session.getAttribute("INIT")==null) {

System.out.println("obtaining a reference to the property broker
services ======");

session.setAttribute("INIT","INIT");
try {

Context ctx = new InitialContext();
PortletServiceHome serviceHome =

(PortletServiceHome)ctx.lookup("portletservice/com.ibm.portal.propertybroker.se
rvice.PropertyBrokerService");

pbService =
(PropertyBrokerService)serviceHome.getPortletService(com.ibm.portal.propertybro
ker.service.PropertyBrokerService.class);

pbServiceAvailable = true;
} catch(Throwable t){

System.out.println("Echo portlet could not find property broker
service!");

}
}
System.out.println("executing action======");
UserBean userBean = (UserBean) form;
if (userBean.getInmsg()== "")

userBean.setInmsg("No message");
else

userBean.setInmsg("Message received: " + userBean.getInmsg());
ActionForward forward = mapping.findForward("result");
return forward;

}

5. Save the EchoSource.java file.

 Chapter 27. Struts cooperative portlets 843

27.2.5 Internationalization
To support translation of captions and descriptions associated with shared
properties or actions you need to provide resource bundles in the appropriate
location in the WAR file. These captions and descriptions are shown when you
create wires using the Portlet Wiring Tool. For JSR 168 compliant portlets, the
resource file is specified using the resource-bundle parameter located in the
portlet deployment descriptor (portlet.xml file), for example:

<resource-bundle>echo.nl.EchoPortletResource</resource-bundle>

Caption and description attributes of the portlet:action and portlet:param
elements in WSDL file specify the name of the key in the resource bundles where
the value of these attributes is to be retrieved. For example:

<portlet:action name="/welcome.do" type="standard-struts"
actionNameParameter="spf_strutsAction" caption="show.message"
description="Get.Message.from.user"/>
<output>

<portlet:param name="inmsg" partname="input_msg"
boundTo="request-parameter" caption="in.message"/>
</output>

The values of these attributes are obtained from the appropriate resource bundle
(EchoPortletResource properties file), located in the EchoSource/Java
Resources/JavaSource/echo.nl directory. For example:

Example 27-5 EchoPortletResource.properties.

#
PortletInfo Resource Bundle
#
javax.portlet.title=Echo portlet Source
javax.portlet.short-title=
javax.portlet.keywords=

show.message=Show message
in.message=Input message
Get.Message.from.user=Get message from user

27.3 Target cooperative portlet
In this section, you will import a second copy of the Echo portlet and update it to
support cooperation as a target portlet.

844 IBM Rational Application Developer V6 and Portal Tools

27.3.1 Importing the Echo portlet
Follow these steps to import the Echo portlet:

1. Select File → Import. In the import panel, select the WAR file and click Next.

2. In the next window, enter the following information:

a. WAR file: browse to C:\LabFiles\Struts Cooperative Portlets\Echo.war

b. Web project: enter EchoTarget

c. Target server: select WebSphere Portal V5.1

d. Select Add module to an EAR project

e. EAR project: EchoTargetEAR

3. Click Finish.

The EchoSource and EchoTarget portlet applications use the same UID so it will
cause an error executing the portlets. To fix this problem expand
EchoTarget/WebContent/WEB-INF folder and open the portlet deployment
descriptor file (portlet.xml). In the portlet deployment descriptor editor, select
Source panel, change the last digit of the UID for this portlet application and
save your changes.

For example, in this sample scenario, the last digit was 0 and it was changed to
1, as highlighted in Example 27-6.

Example 27-6 Changing a digit in portlet application ID

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app

xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
id="echo.EchoPortlet.0190a47431">
<portlet>
.....
</portlet>

</portlet-app>

It is recommended that you change the portlet title to identify each portlet when
they will be on the same page. Follow these steps for each resource bundle:

1. Open the resource bundles (EchoPortletResource properties file), located in
the EchoTarget/Java Resources/JavaSource/echo.nl directory.

2. Add a title in the line javax.portlet.title. For example:

 Chapter 27. Struts cooperative portlets 845

javax.portlet.title=Echo Target portlet

3. Save the file.

27.3.2 Declaring exchange capabilities using WSDL
You must declare the exchange capabilities of this portlet using a WSDL file.
Follow these steps to create the WSDL file:

1. From the Project Explorer view, right-click the EchoTarget\WebContent
folder and select New → Folder.

2. Type wsdl for the Folder name field and click Finish.

3. The directory structure should look as illustrated in Figure 27-4.

Figure 27-4 New wsdl folder

4. Right-click the wsdl folder just created and choose Import... → File system
from the context menu.

5. Browse the directory where the EchoTarget.wsdl file is located and select this
file. The WSDL file is provided as additional material of this redbook.

Be sure to check the Create selected folders only option and click Finish.

846 IBM Rational Application Developer V6 and Portal Tools

Figure 27-5 Importing wsdl file

6. Example 27-7 illustrates the EchoTarget.wsdl file.

Example 27-7 EchoTarget.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DeptResults_Service"
 targetNamespace="http://www.ibm.com/wps/c2a/examples/echosource"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:portlet="http://www.ibm.com/wps/c2a"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ibm.com/wps/c2a/examples/echosource"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <xsd:schema targetNamespace="http://www.ibm.com/wps/c2a/examples/echosource">
 <xsd:simpleType name="inmsg">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>

 Chapter 27. Struts cooperative portlets 847

 </xsd:simpleType>
 </xsd:schema>
</types>

<message name="GetResultsMessageNameRequest">
 <part name="input_msg" type="tns:inmsg"/>
</message>

<portType name="Message_Service">
 <operation name="msg_Detail">
 <input message="tns:GetResultsMessageNameRequest"/>
 </operation>
</portType>

<binding
 name="MessageBinding"
 type="tns:Message_Service">
 <portlet:binding/>
 <operation name="msg_Detail">
 <portlet:action name="/welcome.do" type="standard-struts"
actionNameParameter="spf_strutsAction" caption="show.message"
description="Get.Message.from.user"/>
 <input>
 <portlet:param name="inmsg" partname="input_msg" caption="in.message"/>
 </input>
 </operation>
</binding>
</definitions>

7. Update the portlet.xml to include a reference of WSDL file, as highlighted in
Example 27-8.

Example 27-8 Updating portlet deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app

xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
id="echo.EchoPortlet.0190a47431">
<portlet>
.....

<portlet-preferences>
<preference>

<name>com.ibm.struts.portal.page.view.html</name>
<value>index.jsp</value>

</preference>
<preference>

848 IBM Rational Application Developer V6 and Portal Tools

<name>com.ibm.portal.propertybroker.wsdllocation</name>
<value>/wsdl/EchoTarget.wsdl</value>

</preference>
</portlet-preferences>

</portlet>
</portlet-app>

8. Save and close the portlet.xml file.

27.3.3 Updating the EchoTarget portlet code
The next steps show the changes you have to make in EchoTarget portlet code:

1. From the Project Explorer view, open the EchoTarget portlet located in
/EchoTarget/Java Resources/JavaSource/echo.actions/EchoAction.java

2. Be sure to include the following import statement:

import javax.portlet.PortletSession;

3. In EchoAction class, declare two new variables (pbService and
pbServiceAvailable).

Example 27-9 Declaring variables.

public class EchoAction extends StrutsAction {

PropertyBrokerService pbService = null;
boolean pbServiceAvailable = false;

4. Modify the execute method to obtain a reference to the property broker only
the first time the method is invoked. For purposes of this sample, we use the
portlet session to set an attribute the first time the method is invoked and
avoid to reference the property broker for successive method invocations.

JSR 168 portlets using cooperation should be programmed so that they
perform correctly in other containers than IBM container. A good practice is to
use a boolean variable that indicates if the PropertyBrokerService interface is
available. The variable pbServiceAvailable will set to true only if the service
is available. This variable can be used to guard accesses to IBM-only
services and it is used to ensure that the portlet can still function in
environments where the service is unavailable.

Example 27-10 Obtaining a reference to the property broker service

public ActionForward execute(ActionMapping mapping, ActionForm form,
PortletRequest request, PortletResponse response) throws Exception {

PortletSession session = request.getPortletSession(true);
if (session.getAttribute("INIT")==null) {

 Chapter 27. Struts cooperative portlets 849

System.out.println("obtaining a reference to the property broker
services ======");

session.setAttribute("INIT","INIT");
try {

Context ctx = new InitialContext();
PortletServiceHome serviceHome =

(PortletServiceHome)ctx.lookup("portletservice/com.ibm.portal.propertybroker.se
rvice.PropertyBrokerService");

pbService =
(PropertyBrokerService)serviceHome.getPortletService(com.ibm.portal.propertybro
ker.service.PropertyBrokerService.class);

pbServiceAvailable = true;
} catch(Throwable t){

System.out.println("Echo portlet could not find property broker
service!");

}
}
System.out.println("executing action======");
UserBean userBean = (UserBean) form;
if (userBean.getInmsg()== "")

userBean.setInmsg("No message");
else

userBean.setInmsg("Message received: " + userBean.getInmsg());
ActionForward forward = mapping.findForward("result");
return forward;

}

5. Save the EchoSource.java file.

27.3.4 Internationalization
To support translation of the captions and descriptions associated with shared
properties or actions you need to provide resource bundles in the appropriate
location in the WAR file. These captions and descriptions are shown when you
create wires using the Portlet Wiring Tool. For JSR 168 compliant portlets, the
resource file is specified using the resource-bundle parameter located in the
portlet deployment descriptor (portlet.xml file), for example:

<resource-bundle>echo.nl.EchoPortletResource</resource-bundle>

Caption and description attributes of the portlet:action and portlet:param
elements in WSDL file specify the name of the key in the resource bundles where
the value of these attributes is to be retrieved. For example:

<portlet:action name="/welcome.do" type="standard-struts"
actionNameParameter="spf_strutsAction" caption="show.message"
description="Get.Message.from.user"/>
<input>

850 IBM Rational Application Developer V6 and Portal Tools

<portlet:param name="inmsg" partname="input_msg" caption="in.message"/>
</input>

The values of these attributes are obtained from the appropriate resource bundle
(EchoPortletResource properties file), located in EchoTarget/Java
Resources/JavaSource/echo.nl directory. For example:

Example 27-11 EchoPortletResource.properties

#
PortletInfo Resource Bundle
#
javax.portlet.title=Echo portlet Source
javax.portlet.short-title=
javax.portlet.keywords=

show.message=Show message
in.message=Input message
Get.Message.from.user=Get message from user

27.4 Running the cooperative portlets
Execute the following steps to run the cooperative portlets scenario:

1. Add the portlet projects to the WebSphere Portal V5.1 Test Environment
server:

a. Right-click the server and select Add and remove projects.

b. From the list of available projects, select EchoSource and click the Add >
button to add this project to the list of configured projects on the right side.
Repeat the same steps to add the EchoTarget project.

c. Click Finish.

2. In the Servers section, double-click the WebSphere Portal V5.1 Test
Environment.

Figure 27-6 WebSphere Portal V5.1 Test Environment

3. In Portal Options, do the following:

 Chapter 27. Struts cooperative portlets 851

– Select the option Enable base portlets for portal administration and
customization. This option is necessary to create wires.

– Uncheck the option Enable multiple pages when deploying portlet
projects. This allows you to deploy both the EchoSource and the
EchoTarget portlets on the same page.

Figure 27-7 Portal options in WebSphere Portal V5.1 Test Environment

4. Save the changes.

5. From the Project Explorer view, right-click EchoSource project. Then click
Run → Run on server, select WebSphere Portal V5.1 Test Environment
server and click Finish. This will load your project into the test environment
so that you can view it in Rational Application Developer Web browser. It may
take few minutes for this process to complete.

6. Now you will see the two portlets in the browser. Click Edit Page and select
the Wires tab to make the cooperation happen at runtime. You will see
different combos to select a source portlet, a property to send, a target portlet
and a property or action to receive. If you select Global wire that means that
their effects are manifested to all users that can view the page and portlets.

7. Select the following values:

852 IBM Rational Application Developer V6 and Portal Tools

– Source Portlet: Echo Source portlet
– Sending: Input message
– Target Portlet: Echo Target portlet
– Receiving: Show message, Input message.
– Check Global wire
– Click Add wire

Figure 27-8 Portlet Wiring Tool

8. You will see the new wire as shown in Figure 27-9 on page 854.

 Chapter 27. Struts cooperative portlets 853

Figure 27-9 New wire

9. Click Done.

10.Enter a message in the Echo Source portlet, for example: Testing
cooperative portlets.

11.Click Submit.

12.The message will be echo back in the source portlet and sent to the Echo
Target portlet.

854 IBM Rational Application Developer V6 and Portal Tools

Figure 27-10 Sending a message

 Chapter 27. Struts cooperative portlets 855

856 IBM Rational Application Developer V6 and Portal Tools

Chapter 28. Accessing Web Services
from portlet applications

This chapter contains an overview and a sample scenario of how to create a
sample portlet project that will work as a Web Service client that interacts with a
Web Service. The Web Service client portlet is created using the wizard provided
by the Rational Application Developer V6. The sample scenario in this chapter
will allow you to understand the technique used to develop portlets that retrieve
information using Web Services

28

© Copyright IBM Corp. 2005. All rights reserved. 857

28.1 Overview
There are two things that need to be done in order to access a Web Service
through a portlet. The first is have access to a Web Service either through UDDI
registry, WSDL URL or running in the Rational Application Developer workspace.
And the second is create a portlet that provides access to this Web Service. In
Rational Application Developer V6 Web Service Client portlet applications are
developed within Faces portlet projects and a wizard is provided to adding Web
Services to Faces portlet pages.

Figure 28-1 shows how portlet applications can be easily integrated with existent
Web Services without the need to write extra code.

Figure 28-1 Accessing Web Services from portlet applications

28.2 Sample scenario
In this section, the process to develop a Web Service client portlet accessing a
local Web Service is describe. The following tasks will be performed:

1. Develop a sample Web Service from a JavaBean. This Web Service will be
used to test and run the Web Service client portlet. The following tasks are
required:

a. Create a Dynamic Web project and import an existing JavaBean class.

Rational Application
Developer

WPS V5.1
 Test Environment

Web Service
Client
Portlet

Operational System

SOAP
&

HTTP

Prime
Generator

Web Service

WAS V5.1
 Test Environment

858 IBM Rational Application Developer V6 and Portal Tools

b. Use the available wizards in Rational Application Developer V6, to
transform this JavaBean into a Web Service so it can be accessed from
portlet applications.

2. Using the wizards provided by Rational Application Developer V6, create a
Web Services client portlet project to access the sample Web Service.

28.2.1 Creating a Web Service
In this section are described the two process needed to create the Web Service.
Also, a TestClient is created in order to test the Web Service and to make sure
the Web Service is working before create the portlet client.

Creating a Dynamic Web Project
1. If not already running, start the Rational Application Developer V6; click Start

→ Programs → IBM Rational → IBM Rational Application Developer
V6.

2. Select File → New → Dynamic Web Project.

Figure 28-2 Dynamic Web project

3. In the Dynamic Web Project window, click the Show Advanced>> button.

4. Enter the following values:

– Name: PrimesWebService
– Servlet version: 2.3
– Target Server: Websphere Application Server V5.1

Leave the other values as default.

Note: This sample scenario requires of a Web Services be available. A java
bean sample code can be downloaded from additional materials. Also, the
generated Web Service and a test client are available. See Appendix A,
“Additional material” on page 1003.

 Chapter 28. Accessing Web Services from portlet applications 859

Figure 28-3 Dynamic Web Project window

5. Click Next.

6. In the Features window, deselect the Web Diagram.

860 IBM Rational Application Developer V6 and Portal Tools

Figure 28-4 Features window

7. Click Next.

8. In the Select a Page Template for the Web Site window, check the Use a
default Page Template for the Web site box.

9. Select A_blue.htpl.

 Chapter 28. Accessing Web Services from portlet applications 861

Figure 28-5 Select a Page Template for the Web Site window

10.Click Finish.

Creating a Package for the Java Bean class
1. In the Project Explorer, expand the PrimesWebService under Dynamics

Web Project.

2. Expand the JavaResources folder.

3. Right-click the JavaSource folder.

4. Select New → Package.

5. In the Java Package window, enter com.itso as the Name value.

6. Click Finish.

862 IBM Rational Application Developer V6 and Portal Tools

Importing the JavaBean
The Primes java bean is a java class that contains a getPrime() method. This
method receive a number of digits and returns a prime number with the specified
length of digits. This is the method that concerns this scenario.

When executing this method, try generating prime numbers of 20 or fewer digits
to avoid long computations. A short version of the prime number generator is
shown in Example 28-1.

Example 28-1 Primes.java

package com.itso;
import java.math.BigInteger;

public class Primes {

private static final BigInteger ZERO = new BigInteger("0");
private static final BigInteger ONE = new BigInteger("1");
private static final BigInteger TWO = new BigInteger("2");
private String prime = "";

..........

..........

..........

public String getPrime(int numDigits) {

BigInteger start = random(numDigits);
start = nextPrime(start);

return start.toString();
}

To review this class, once imported, double-click Primes.java under
PrimesWebService/JavaResources/JavaSource/com/itso.

1. Right-click the com.itso new package under the
PrimesWebService/JavaResources/JavaSource/ in the ProjectExplorer view.

2. From the context menu, select Import...

 Chapter 28. Accessing Web Services from portlet applications 863

Figure 28-6 Right-click new package

3. In the Select window, select File System from the Select an import source
field.

4. Click Next.

5. In the File System window, click the Browse... button right next to the From
directory field and select the directory where download the Primes.java file.

6. Select the directory on the left column; this will show the files contained in that
directory.

7. Select the Primes.java file on the right column, by checking the box next to it.

8. Make sure the PrimesWebService/JavaSource/com/itso value is already
entered in the Into folder field. If not, click the Browse... button right next to
this field and select this value.

864 IBM Rational Application Developer V6 and Portal Tools

Figure 28-7 File System import window

9. Click Finish.

Creating the Web Service and the TestClient
In this section, a Web Service is created in the PrimesWebService project that
was created in the previous section.The wizards provided by Rational Application
Developer V6 will be used to do this. Once created, the Web Service will be
published and invoked to be executed by the PrimesWebServiceClient in a
WebSphere Application Server V5.1 Test Environment.

1. From the main menu, select File → New → Others...

2. In the Select Wizard window, scroll down the Wizards field until you see the
Web Service folder.

 Chapter 28. Accessing Web Services from portlet applications 865

3. Expand the Web Services folder.

4. Select the Web Services wizard.

Figure 28-8 Select Web Service wizard

5. Click Next.

6. In the Web Services window, enter the following values:

– Web Service type: Java Bean Web Service.
– Check the Start Web service in Web Project box.
– Check the Generate a Proxy box.
– Client proxy type: Java proxy.
– Check the Test the Web service box.

Leave the rest of the values as default.

866 IBM Rational Application Developer V6 and Portal Tools

Figure 28-9 Web Services window

7. Click Next.

8. In the Object Selection Page, click the Browse files... button.

Figure 28-10 Object Selection page

9. Select Primes.java from PrimesWebService/JavaSource/com/itso.

 Chapter 28. Accessing Web Services from portlet applications 867

Figure 28-11 Select Primes.java class

10.Click OK.

11.Verify the value in the Bean field in the Object Selection Page window.

Figure 28-12 Bean value

12.Click Next.

13.In the Service Deployment Configuration window, accept the default values:

a. Server-Side Deployment Selection:

• Web service runtime: IBM WebSphere
• Server: WebSphere V5.1 Test Environment @ localhost
• J2EE version: 1.3
• Service project: PrimesWebService
• EAR project: PrimesWebServiceEAR

b. Client-Side Environment Selection:

• Web service runtime: IBM WebSphere
• Server: WebSphere V5.1 Test Environment @ localhost
• J2EE version: 1.3
• Client type: Web
• Client project: PrimesWebServiceClient
• EAR project: PrimesWebServiceClientEAR

868 IBM Rational Application Developer V6 and Portal Tools

Figure 28-13 Service Deployment Configuration window

14.Click Next.

15.Click Next in the Service Endpoint Interface Selection window.

16.In the Web Service Java Bean Identity window, deselect the all the methods
except the getPrime(int) method. Leave the rest as default.

 Chapter 28. Accessing Web Services from portlet applications 869

Figure 28-14 Select getPrimes(int)

17.Click Next.

18.Leave defaults in Web Service Test Page window, click Next.

19.Leave defaults in Web Service Proxy Page window.

870 IBM Rational Application Developer V6 and Portal Tools

Figure 28-15 Web Service Proxy Page window

20.Click Next.

21.In the Web Service Client Test window, deselect all the methods except the
getPrime(int) method. Leave the rest values as default.

 Chapter 28. Accessing Web Services from portlet applications 871

Figure 28-16 Web Service Client Test window

22.Click Next.

23.In the Web Service Publication window, leave the default values.

872 IBM Rational Application Developer V6 and Portal Tools

Figure 28-17 Web Service Publication window

24.Click Finish.

25.A Web browser will open within the Rational Application Server workspace as
shown in Figure 28-18.

Figure 28-18 PrimesWebServiceClient

26.Click the getPrime(int) method link.

 Chapter 28. Accessing Web Services from portlet applications 873

Figure 28-19 getPrime(int) method

27.Enter a value in the numDigits field and click the Invoke button. This will show
the result as illustrated in Figure 28-20.

Figure 28-20 Result od invoke getPrime(int) method

Every time you invoke this Web Service to generate a prime number, you will
probably get a different result.

28.2.2 Creating a Web Services client portlet
Once the Web Service is ready, a Web Services client portlet to access the prime
number generator Web Service will be created. Web Service Client portlet

874 IBM Rational Application Developer V6 and Portal Tools

applications are developed within Faces portlet projects. Rational Application
Developer provides tool support for adding Web Services to Faces portlet pages.

Creating a Portlet Project
1. From the main menu, select File → New → Portlet Project.

Figure 28-21 Create a new Portlet project

2. In the Portlet Project window, click the Show Advanced >> button.

3. Enter the following values:

– Name: WSClientPortlet
– WebSphere Portal version: 5.1
– Servlet version: 2.3
– Target server: WebSphere Portal V5.1 stub
– EAR project: WSClientPortletEAR
– Context Root: WSClientPortlet

 Chapter 28. Accessing Web Services from portlet applications 875

Figure 28-22 Project Portlet window

4. Click Next.

5. In the Portlet Type window, select Faces portlet.

876 IBM Rational Application Developer V6 and Portal Tools

Figure 28-23 Portlet Type window

6. Click Next.

7. In the Features window, deselect Web Diagram.

 Chapter 28. Accessing Web Services from portlet applications 877

Figure 28-24 Features window

8. Click Next.

9. In the Portlet Settings window, leave defaults.

10.Click Next.

11.In the Miscellaneous window, leave defaults

12.Click Finish.

13.The WSClientPortletView.jsp will open in the JSP Editor, from the palette
select the Web Service item under the Data drawer.

878 IBM Rational Application Developer V6 and Portal Tools

Figure 28-25 Select Web Services form the palette

14.Drag and Drop the Web Service item form the palette to the
WSClientPortletView.jsp.

Figure 28-26 Drag and drop the Web Service item

 Chapter 28. Accessing Web Services from portlet applications 879

15.The Web Service Discovery Home window will show. Click the Web Services
from your workspace link.

Figure 28-27 Web Service Discovery Home

16.The Web Service information is shown, click the Primes.wsdl link.

Figure 28-28 Web Services from your workspace

17.In Web Service from a known URL, select the Port:Primes from the Web
Services Information field.

Important: The WebSphere Application Server V5.1 Test Environment must
be running in order to access the Web Service during the wizard process.

880 IBM Rational Application Developer V6 and Portal Tools

Figure 28-29 Web Services from a know URL

18.Click the Add to Project button.

19.The Add Web Service window will open. Leave defaults. The class
com.itso.PrimesProxy and the method getPrime(int) of the class for the Web
Service should already be enter in the Select a Web Service and Select a
method field respectively.

Figure 28-30 Web Service class and method

 Chapter 28. Accessing Web Services from portlet applications 881

20.Click Next.

21.In the Import From window, leave the default values. This information is used
to construct the form where the needed values for the getPrimes method will
be entered.

Figure 28-31 Import form configuration

22.Click Next.

23.In Result From, leave the default values. These values are going to be used
to construct the form where the result will be shown.

882 IBM Rational Application Developer V6 and Portal Tools

Figure 28-32 Result form configuration

24.Click Finish.

25.The JSP Editor will open showing the WSClientPortletView.jsp. From the
main menu, select File → Save.

Figure 28-33 Resulting WSClientPortletView.jsp file

Testing the WSClientPortlet
1. In the Project Explorer view, right-click in the WSClientPortlet.

2. Select Run → Run on Server...

 Chapter 28. Accessing Web Services from portlet applications 883

3. In the Define a New Server window, select WebSphere Portal V5.1 Test
Environment.

4. Click Finish.

5. Once the server starts, a Web browser will open within the workspace,
showing the WSClientPortlet in the WPS V5 Test Environment server.

Figure 28-34 WSClientPortlet running on UTE

6. Enter a value in the NumDigits field and click the Submit button.

Figure 28-35 Results of Submit a value

7. The result is shown in the PrimesProxyGetPrimeResultBean field.

884 IBM Rational Application Developer V6 and Portal Tools

Chapter 29. Web Services for Remote
Portlets (WSRP)

This chapter contains an overview and a sample scenario of how to configure
Producer and Consumer portal servers to support Web Services for Remote
Portlets (WSRP) with IBM WebSphere Portal V5.1.

29

© Copyright IBM Corp. 2005. All rights reserved. 885

29.1 Overview
The Web Services for Remote Portlets (WSRP) standard allows the integration
of remote content and Web applications into an end-user portal, simplifying the
effort of portal administrators in selecting and including a rich variety of remote
content and applications from external sources into their portals without no
programming effort.

Some terms used in WSRP are:

� Producer: is a portal that provides one or more portlets as WSRP services
and makes them available to Consumers.

� Consumer: is a portal that invokes WSRP services from Producer portals and
integrates them to be used by its users.

� Users: use remote portlets integrated in their Consumer portals.

� Remote portlets: standard portlets that have been published to be WSRP
services by a Producer.

As illustrated in Figure 29-1, desktop browsers connected to the Consumer
portal server can have access to the following portlets:

� Local portlets in Consumer portal

� Remote portlets in Producer portal

Figure 29-1 Accessing remote portlets

HTTP (SOAP)

Local
 Portlets

Producer Portal

Remote
Portlets

"JSR 168"
 Portlets

Consumer Portal

Local
Portlets

HTTP (HTML)

Consumer Users

886 IBM Rational Application Developer V6 and Portal Tools

WSRP services are presentation-oriented, providing the application data and the
presentation layer of the portlet. On the other hand, Web Services are
data-oriented, providing just the application data, as shown in Figure 29-2.

Figure 29-2 A comparison of Web Services and WSRP

WSRP standard defines a set of interfaces provided by Producer portals to be
exposed to the Consumers. These WSRP interfaces are described in a Web
Services Description Language (WSDL) document accessed by the Consumer
portal. It provides information to Consumers about how to bind to the Producer.

The interfaces are:

� Service Description: is a self-description of the Producer, its capabilities and
its available portlets. It provides further information to Consumers about the
Producer and its properties. This interface is mandatory.

Presentation
Layer

00101101 11001110 10001111
10001111 00101101 11001110
11001110 10001111 00101101
00101101 11001110 10001111
10001111 00101101 11001110
11001110 10001111 00101101

Data

Producer Portal

Consumer Portal

Web Services

Presentation
Layer

00101101 11001110 10001111
10001111 00101101 11001110
11001110 10001111 00101101
00101101 11001110 10001111
10001111 00101101 11001110
11001110 10001111 00101101

Data

Producer Portal

Consumer Portal

WSRP

 Chapter 29. Web Services for Remote Portlets (WSRP) 887

� Markup: is an interface to get and process interactions with markup
fragments. It allows to get portlet markups from the Producer and submit
portlet requests from Consumer users. This interface is mandatory.

� Portlet Management: defines operations for cloning, customizing and deleting
portlets. It allows to customize and manage remote portlets preferences in
Consumer portals. This interface is optional.

� Registration: an optional interface for Consumers registration in a Producer
portal. It allows Producer to identify each Consumer.

The following is an example of a WSDL document (Example 29-1).

Example 29-1 WSDL document sample

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="urn:oasis:names:tc:wsrp:v1:wsdl"
xmlns:bind="urn:oasis:names:tc:wsrp:v1:bind"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <import namespace="urn:oasis:names:tc:wsrp:v1:bind"
location="wsrp_v1_bindings.wsdl" />
 <wsdl:service name="WSRPService">
 <wsdl:port binding="bind:WSRP_v1_Markup_Binding_SOAP" name="WSRPBaseService">
 <soap:address
location="http://wps51rem.itso.ral.ibm.com:9081/wsrp/WSRPBaseService" />
 </wsdl:port>
 <wsdl:port binding="bind:WSRP_v1_ServiceDescription_Binding_SOAP"
name="WSRPServiceDescriptionService">
 <soap:address
location="http://wps51rem.itso.ral.ibm.com:9081/wsrp/WSRPServiceDescriptionServ
ice" />
 </wsdl:port>
 <wsdl:port binding="bind:WSRP_v1_PortletManagement_Binding_SOAP"
name="WSRPPortletManagementService">
 <soap:address
location="http://wps51rem.itso.ral.ibm.com:9081/wsrp/WSRPPortletManagementServi
ce" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

29.2 Implementing WSRP in WebSphere Portal
WebSphere Portal Version 5.1 provides support for the WSRP standard enabling
portal administrators to provide portlets as WSRP services and integrate WSRP

888 IBM Rational Application Developer V6 and Portal Tools

services as remote portlets. These remote portlets act in the same manner as
local JSR 168 portlets in the Consumer portal, regardless of how they are
implemented on the Producer portal.

To implement WSRP with WebSphere Portal is necessary to do the following
tasks:

� For Producer portals:

– Provide or withdraw a portlet.

� For Consumer portals:

– Register an existing Producer in the Consumer portal.
– Consume a WSRP service provided by the Producer.

For purposes of this scenario we have two WebSphere Portal V5.1 servers, one
of them acting as a Provider server and the other one acting as a Consumer
server. We will show the necessary steps to implement remote portlets on these
servers.

29.2.1 Tasks for Producer portals
Producers can provide portlets to be available remotely to Consumers or can
cancel this service. To provide or withdraw a portlet, portal administrators can
use the Manage Portlets portlet or use the XML configuration interface.

In this section we explain the common way to provide and withdraw a portlet in
WebSphere Portal, that is using the Manage Portlets portlet.

Note: For information about providing or withdrawing a portlet using the XML
configuration interface see the WebSphere Portal InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wp51help

Providing a portlet using the Manage Portlets admin portlet
To explain how to provide a portlet we will use a sample portlet named
ActionEvent, however, you could use any installed portlet in your Producer
portal.

1. Log in as an administrator user of the Producer portal.

2. Select Administration →Portlet Management →Portlets.

3. In the Manage Portlets portlet, search the portlet you want to provide
(ActionEvent portlet for this example) and click Provide portlet.

Note: WebSphere Application Server Version 5.1.1 Cumulative Fix 1 is
required to use WSRP with WebSphere Portal.

 Chapter 29. Web Services for Remote Portlets (WSRP) 889

http://publib.boulder.ibm.com/infocenter/wp51help

Figure 29-3 Selecting a portlet to be provided

4. Click Yes to provide the portlet.

Figure 29-4 Confirming the operation

5. A message will appear indicating that the portlet was successfully provided. A
check will appear in the Provided column of the portlet.

890 IBM Rational Application Developer V6 and Portal Tools

.

Figure 29-5 The portlet has been provided as a Web service

Withdrawing a portlet using the Manage Portlets portlet
To withdraw a portlet that has been previously provided, follow these steps:

1. Log in as an administrator user of the Producer portal.

2. Select Administration →Portlet Management →Portlets. In the Manage
Portlets portlet search the portlet you want to withdraw and click Withdraw
portlet.

Figure 29-6 Selecting a portlet to be withdrawn

3. Click Yes to withdraw the portlet. A message will appear indicating that the
portlet was successfully withdrawn.

 Chapter 29. Web Services for Remote Portlets (WSRP) 891

Figure 29-7 The portlet has been withdrawn

29.2.2 Tasks for Consumer portals
In this section we describe the tasks performed by Consumer portals to integrate
WSRP services as remote portlets. The following tasks are required in the
Consumer portal in order to enable remote portlets for local use:

� Register an existing Producer portal
� Consume the WSRP service

Registering an existing Producer portal
Registering a Producer portal allows the Producer to be known to the Consumer
and make available it list of WSRP services that could be consumed by the
Consumer portal.

The following scenarios are possible when you try to create a Producer:

� The Consumer has online access to the Producer: in this scenario is possible
to use both Web Service Configuration portlet or the XML configuration
interface to create the Producer registration in the Consumer portal.
Depending the type of Producer you want to create, you have the following
options:

– The Producer does not require registration.

– The Producer requires registration. In this case the Producer could be
enable or not for WSRP registration

� The Consumer works offline with the Producer: in this case is possible to use
only the XML configuration interface to create a Producer.

892 IBM Rational Application Developer V6 and Portal Tools

At the moment of this publication, WebSphere Portal does not support WSRP
registration interfaces for Producers, however, Consumers can handle Producers
that support this interface.

In this section we explain how to create a Producer that does not require
registration, using the Web Service Configuration portlet.

Note: For information about registering Producer portals using the XML
configuration interface, see the WebSphere Portal InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wp51help

1. Log in as an administrator user of the Consumer portal.

2. Select Administration →Portlet Management →Web Services and click
New Producer.

Figure 29-8 Creating a new Producer

3. Enter a name and the URL for the WSDL service definition of the Producer. A
description and user attributes are optional.

In WebSphere, the WSDL of the Producer is located at the following URL:

http://<Producer portalhost>:<port>/<wp_contextRoot>/wsdl/wsrp_service.wsdl

For this example, we use the following values:

– Title: WPS51-Remote
– URL:

http://wps51rem.itso.ral.ibm.com:9081/wps/wsdl/wsrp_service.wsdl

Click OK.

 Chapter 29. Web Services for Remote Portlets (WSRP) 893

http://publib.boulder.ibm.com/infocenter/wp51help
http://wps51rem.itso.ral.ibm.com:9081/wps/wsdl/wsrp_service.wsdl

Figure 29-9 New Producer information

4. The new Producer portal will appear in the list.

894 IBM Rational Application Developer V6 and Portal Tools

Figure 29-10 The Producer has been created

Consuming a WSRP service
This task allows you to integrate WSRP services from registered Producers into
the Consumer portal and interact with them as they were local portlets. To
consume a WSRP service, portal administrators can use both the Manage Web
Modules portlet or the XML configuration interface.

In this section we explain how to use the Manage Web Modules portlet to
integrate a remote portlet.

1. Log in as an administrator user of the Consumer portal.

2. Select Administration →Portlet Management →Web Modules and click
Consume.

 Chapter 29. Web Services for Remote Portlets (WSRP) 895

Figure 29-11 Consuming a WSRP service

3. Select a Producer (the Producer created in “Registering an existing Producer
portal” on page 892).

896 IBM Rational Application Developer V6 and Portal Tools

Figure 29-12 Choosing a Producer

4. Select the Web service you want to integrate from the Producer selected
previously. Click OK.

Figure 29-13 Choosing a Web service

5. The remote portlet has been integrated into the Consumer portal and it is
available like any other local portlet.

 Chapter 29. Web Services for Remote Portlets (WSRP) 897

Remote portlets appear in WebSphere Portal Consumers under the name
RP:[<remote portlet name>], for example RP:[ActionEvent portlet]. You can
see remote portlets selecting the option Administration →Portlet
Management →Portlets and searching for all the portlets whose title starts with
the prefix RP, as shown in Figure 29-14.

Figure 29-14 Remote portlets in a Consumer server

29.2.3 Testing the scenario
To test this scenario, you should add the integrated remote portlet to a page of
the Consumer portal. Follow these steps to add the ActionEvent remote portlet to
the Welcome page:

1. Login into the Consumer portal with an user with sufficient access rights to
modify a page. For example, you can login as a portal administrator user.

2. Navigate to the Welcome page and click Edit Page.

3. Click Add Portlets in the container where you want to add the portlet.

4. Search the ActionEvent remote portlet (named RP:[ActionEvent portlet]),
check the box next to it and click OK.

5. Click Done. The Welcome page is displayed the ActionEvent remote portlet.

Figure 29-15 The ActionEvent remote portlet

898 IBM Rational Application Developer V6 and Portal Tools

6. Navigate through the portlet and validate that it works as expected.

Figure 29-16 Using the ActionEvent remote portlet

29.3 Security
Web Services for Remote Portlets (WSRP) standard does not specify additional
security mechanism, therefore the same security considerations than for other
kinds of Web services may be applied for WSRP.

In WebSphere Portal implementation of WSRP the following security options can
be configured:

Security using Secure Socket Layer (SSL)
Secure Socket Layer (SSL) is a protocol that enables secure message
communication between servers and clients over the Internet. In a SSL
authentication, the server exchanges the server certificate with the client and,
optionally, the client exchanges the client certificate with the server. This
certificate exchange is for purposes of verify both server and client (optional)
identities.

Using SSL for WSRP with WebSphere Portal allows authentication of Producer
portals, as well as authentication of Consumer portals if Client Certificate
Authentication is used. The following scenarios are supported, as shown in
Figure 29-17 on page 900:

1. Producers authentication, using SSL in Producer portals.

2. Producers and Consumers authentication, using SSL with Client Certificate
Authentication in Producers and Consumer portals.

 Chapter 29. Web Services for Remote Portlets (WSRP) 899

3. Consumer authentication for portal users, using SSL.

4. Consumer and portal user authentication (if supported), using SSL with Client
Certificate Authentication in Consumer portals and portal users.

Figure 29-17 SSL scenarios for WSRP with WebSphere Portal

LTPA token authentication
Lightweight Third Party Authentication is an IBM proprietary protocol that uses
cryptography to support security in a distributed environment. LTPA allows
authentication of the end users using LTPA token forwarding.

When a client authenticates to a Consumer portal using the LTPA authentication
mechanism, a unique LTPA token is created for this client and it is used for all
client requests of that session. This token is stored in a browser cookie to
support SSO with other LTPA enabled application servers and it contains
information about the cookie domain, user information, digital signature and date
of expiration. The Consumer portal forwards the client LTPA token to the
Producer who has to have the same LTPA keys that the Consumer.

Note: For more information about implementing SSL between a producer
portal and a consumer portal see the WebSphere Portal InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wp51help

Consumer Portal
Users Consumer Portal

(WebSphere Portal 5.1)
Producer Portal

(WebSphere Portal 5.1)

SSL (1)
SSL with Client
Certificate Authentication
(2)

SSL (3)
SSL with Client
Certificate Authentication
(4)

Note: For more information about LTPA configuration for WSRP with
WebSphere Portal see the WebSphere Portal InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wp51help

900 IBM Rational Application Developer V6 and Portal Tools

http://publib.boulder.ibm.com/infocenter/wp51help
http://publib.boulder.ibm.com/infocenter/wp51help

Chapter 30. Portlet debugging

Rational Application Developer provides a powerful debugger tool for
suspending launches, stepping through the program code, and examining the
contents of variables. This chapter gives you a brief introduction to the
techniques used to debug portlets and discusses how to detect error during
compile and runtime.

30

© Copyright IBM Corp. 2005. All rights reserved. 901

30.1 Overview
For software development, we can distinguish two different kinds of errors:

� Compile errors appear during compile and are thrown by the Java compiler. A
typical example for this type of error is an improperly typed method or class
name. This type of error can be found very easily because the compiler
checks the code and presents a meaningful message.

� There are also runtime errors, which cannot be found by the compiler; thus
they appear only during runtime. An example might be a loop stepping
through an array with a size smaller than the loop variable. These kinds of
errors are typically fixed using a debugger.

30.2 Sample scenario
This section provides a sample scenario to illustrate how to fix compile and
runtime errors in portlets using the debug functions provided by Rational
Application Developer. You will use the portlet used in Chapter 6, “IBM Portlet
API portlet development” on page 203 as a base for this scenario. These
activities will allow you to understand the techniques used to debug portlets.

30.2.1 Fixing compile errors
In this section, an example is provided to illustrate a Java code validation. An
invalid character will be entered in the Java code to introduce an error and
illustrate the correction process.

Rational Application Developer provides different validators for different types of
project resources, for example XML, HTML or Java files. In general, a validator is
a process which validates a certain resource. It can be invoked manually (code
validation is explicitly invoked by the user) or automatically (it occurs whenever a
resource changes or is saved). After the validation process is finished, it displays
the results of the validation in the Problems view.

To customize the validation settings of a project, right-click it from the Project
Explorer view and select Properties. In the Validation page, you can disable all
or only certain validators, as shown in Figure 30-1 on page 903.

902 IBM Rational Application Developer V6 and Portal Tools

Figure 30-1 Validators

To create a compile error, proceed as follows:

1. In the Project Explorer view, select ActionEvent → Java Resources →
JavaSource → actionevent → ActionEventPortlet.java as shown in
Figure 30-2 on page 904. Double-click the Java file; it will open in the editor in
the upper right-hand portion of the screen. If the file is already opened, scroll
to the top.

 Chapter 30. Portlet debugging 903

Figure 30-2 Double-click ActionEventPortlet.java to open

2. In the editor window, you should see a declarative statement:

public class ActionEventPortlet extends PortletAdapter implements
ActionListener

3. Place the letter x at the beginning of this statement to create an error. See
Figure 30-3.

Figure 30-3 Incorrect public class declaration

4. Press Ctrl-S to save this file.

5. The compilation process fails due to the error you introduced. In the Problems
view in the lower right-hand portion of the screen, an error message appears,
as shown in Figure 30-4 on page 905.

904 IBM Rational Application Developer V6 and Portal Tools

Figure 30-4 Result of saving an incorrect Java file

6. Double-click the red error icon in the Problems view. The problem area in the
code will be highlighted.

Tip: If you cannot see the whole error message in the Problems view
because of its length, move over the red error symbol to the left of the Java
editor. A small help window appears with the whole error message.

7. Remove the letter x before public statement to return the code to its original
condition. Press Crtl-S. The code will be validated again, and the error
message will disappear from the Problems view.

8. Close the editor by clicking the X on the ActionPortlet.java tab.

30.2.2 Debugging a portlet application
In this sample scenario, you will set a breakpoint, start WebSphere Portal Test
Environment in Debug mode and modify the value of a variable.

1. In the Project Explorer view, select ActionEvent → Java Resources →
JavaSource → actionevent → ActionEventPortlet.java as shown in
Figure 30-5 on page 906. Double-click the Java file to edit it.

 Chapter 30. Portlet debugging 905

Figure 30-5 Select ActionEventPortlet.java to open it

2. The editor will open in the upper right-hand corner of the screen.

3. In this portlet class, there are five methods:

– init
– doView
– doEdit
– actionPerformed
– getJspExtension

4. In the actionPerfomed method, you will set a breakpoint. Place the cursor on
the setAttribute statement as highlighted on Example 30-1.

Example 30-1 Setting a breakpoint

public void actionPerformed(ActionEvent event) throws PortletException {
if(getPortletLog().isDebugEnabled())

getPortletLog().debug("ActionListener - actionPerformed called");
String actionString = event.getActionString();
PortletRequest request = event.getRequest();
if(actionString.equalsIgnoreCase(ACTION_RED)){

String value = "Action RED";
PortletData portData = request.getData();
try{

portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}

906 IBM Rational Application Developer V6 and Portal Tools

if(actionString.equalsIgnoreCase(ACTION_BLUE)){
String value = "Action BLUE";
PortletData portData = request.getData();
try{

portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}
}

5. Right-click the context bar to the left of the setAttribute statement, then
select Toggle Breakpoint from the context menu as shown in Figure 30-6.

Figure 30-6 Adding a breakpoint

6. After setting the breakpoint, you should see a blue dot on the marker bar, that
means the breakpoint is enabled. Enabled breakpoints are shown with a
checkmark overlay after their class has been loaded by the Java VM.

If the breakpoint is disabled, it will not cause threads to suspend and is
indicated with a white circle.

Note: This is the statement where the actionPerformed method has
identified the action and set an attribute (setAttribute) in the request object;
the attribute is to be rendered later in View mode.

 Chapter 30. Portlet debugging 907

Figure 30-7 Breakpoint mark

7. Click the Servers tab. If the WebSphere Portal V5.1 Test Environment has
been started, right-click and select Stop and wait until you see the message
indicating that WebSphere Portal has stopped.

8. Once the Test Environment is stopped, right-click ActionEvent from the
Project Explorer view, then select Debug on Server...

Figure 30-8 Debug the portlet on Test Environment

9. Select WebSphere Portal V5.1 Test Environment and click Finish.

908 IBM Rational Application Developer V6 and Portal Tools

Figure 30-9 Debug on WebSphere Portal V5.1 Test Environment

10.Click the Debug button at the upper-right corner of the workbench to change
to the Debug perspective. It will look as shown in Figure 30-10 on page 910.

Note: Starting WebSphere Portal Test Environment in debug mode will
take a few minutes.

 Chapter 30. Portlet debugging 909

Figure 30-10 Debug perspective of Portal running the ActionEvent portlet

11.The portlet will run on the built-in browser shown in the middle left panel (in
the Debug perspective) or the upper right panel (in the Portal perspective).

12.Now click Edit icon to select an action.

910 IBM Rational Application Developer V6 and Portal Tools

Figure 30-11 Change the portlet to Edit mode

13.Select the Red Action button; remember that the breakpoint has been set in
this action path (actionPerformed method).

14.The action (Red Action) will now execute up to the breakpoint you have
previously set. When the breakpoint is reached, the Java editor displays the
code and the statement with the breakpoint is highlighted.

Figure 30-12 Debugger stops execution at the breakpoint

 Chapter 30. Portlet debugging 911

15.Place the cursor in the context bar where the breakpoint is located and
right-click to select Toggle Breakpoint from the context menu to remove the
break. Take a moment to examine the code before proceeding.

16.From the Debug perspective, select the Variables tab.

17.Locate the variable with name value.

18.Select the value variable (value=Action <FONT
color=\"#ff0000\">RED), then right-click it and select Change
Value... from the context menu.

Figure 30-13 Changing the variable value in the Variables view

19.Enter Action GREEN as the new value.
Click OK.

Figure 30-14 Change value

912 IBM Rational Application Developer V6 and Portal Tools

20.Click the Resume icon located in the Debug tab (green triangle on the left
side of the toolbar icons) to let the portlet continues its execution.

Figure 30-15 Click the Resume icon to resume the execution of the portlet

21.Select the Web browser tab from the display toolbar in the middle left panel
of the screen. The result of the action will be displayed.

Note that the action displayed in View mode is now Action GREEN ...was
selected ! (and not Action RED ...was selected ! as originally shown).

Figure 30-16 The ActionEvent portlet displaying a new variable value

 Chapter 30. Portlet debugging 913

914 IBM Rational Application Developer V6 and Portal Tools

Chapter 31. Remote Server Attach

This chapter provides an overview and a sample scenario to test and debug
portlet projects running on a remote WebSphere Portal Server. The topics
presented in this chapter will allow you to understand the techniques and the
configuration required to test and debug portlets remotely.

31

© Copyright IBM Corp. 2005. All rights reserved. 915

31.1 Overview
Testing and debugging portlets are tasks that involve running portlets on a
server, either on the test environment server within the workbench (local), or on a
separate portal server (remote).

A WebSphere Portal Server Attach is a server type that allows Rational
Application Developer tool to attach to a remote WebSphere Portal Server
already started, so that you can run and debug a portlet application running on a
remote WebSphere Portal system accessible through a network connection.

The sample development workstation and the remote Portal server are illustrated
in Figure 31-1.

Figure 31-1 Remote Server Attach

In order to debug a portlet on a remote server, the following main task must be
performed:

1. Prepare the WebSphere Portal server to work in debug mode.
2. Create a user on the WebSphere Portal server for the developer that will be

performing debug tasks (optional).
3. Create a WebSphere Portal Server Attach on the Rational Application

Developer workbench.
4. Run and debug a portlet on the remote WebSphere Portal server.

Figure 31-2 on page 917 shows how portlets are debugged on a remote server.

Rational Application
Developer v6
Sample portlets

Development

IBM WebSphere
Application Server v5.1
IBM WebSphere Portal v5.1

Runtime

Remote Server Attach

916 IBM Rational Application Developer V6 and Portal Tools

Figure 31-2 Debugging a portlet on Remote Server Attach

31.2 Sample scenario
In this scenario, we debug a portlet on a remote WebSphere Portal server V5.1.
We will use the ActionEvent portlet created in Chapter 6, “IBM Portlet API portlet
development” on page 203 and provided as additional material of this redbook.

The remote WebSphere Portal server and the Rational Application Developer
run on separate machines.

31.2.1 Preparing Remote Portal server to debug
The following configurations are needed to configure WebSphere Portal Server
to start in debug mode

1. Start the WebSphere Application server by clicking Start → Programs →
IBM WebSphere → Application Server → Start the Server.

2. Once WebSphere Application Server has started, open the Administrative
Console. In a Web browser, enter http://localhost:9090/admin

3. Log on to the console as an administrative user, for example wpsadmin.

4. In the left pane, expand Servers and select Application Servers.

Debug Perspective

Rational Application
Developer V6
Portal Tools

Remote WebSphere
Portal Server

Sample Portlet
application

WPS defult port: 9081

debug port: 7777

Web Browser
 Portlet Toolkit label

user/portlet page

Sample Portlet

 Chapter 31. Remote Server Attach 917

Figure 31-3 Application Server link

5. In the Application Servers page, select WebSphere_Portal.

Figure 31-4 Application Server Page

6. In the Additional Properties section, scroll down and select Debugging
Service.

Figure 31-5 Debugging Service link

7. On the Debugging Services page do the following:

918 IBM Rational Application Developer V6 and Portal Tools

– Select the Startup check box.

– Leave the default value for the JVM debug port (7777).

– Enter the following JVM debug arguments:

-Djava.compiler=NONE -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777

Figure 31-6 Debugging Service page

8. Click Ok

9. Click the Save link.

10.Click the Save button to apply changes to the master configuration.

11.Configuring the debugging service should also configure the JVM. Review
this by doing the following:

a. In the Administrative console of the WebSphere Application Server,
expand Servers → Application Servers and select WebSphere_Portal

b. Click Process Definition link in Additional Properties and scroll down to
select Java Virtual Machine.

c. In the General Properties section, verify the following:

• The Debug Mode check box must be selected.

• The Debug arguments must be:

-Djava.compiler=NONE -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777

 Chapter 31. Remote Server Attach 919

Figure 31-7 Java Virtual Machine page

12.Logout from WebSphere Application Server Administrative console.

13.Stop the WebSphere Application Server by clicking Start → Programs →
IBM WebSphere → Application Server → Stop the Server.

14.Start the WebSphere Application Server

15.Restart the WebSphere Portal server.

– Stop the Portal server by clicking Start → Programs → IBM WebSphere
→ Portal Server → Stop the Server.

– Start the Portal server by clicking Start → Programs → IBM
WebSphere → Portal Server → Start the Server. Wait a few minutes for
Portal to be started (open for e-business message).

31.2.2 Creating Remote Portal server users
It is recommended that you create necessary users on the remote portal if you
want to test or debug portlets with multiple users on the same remote portal
server. A user ID and password for a WebSphere Portal should be created for
each portlet developer that will debug on a remote server. This user must be
created manually and the required edit permissions are automatically added. The
user ID is also part of the label of the preview page where the portlet is shown in
debug time.

For this scenario, we will use the administrator user wpsadmin.

Note: The address value must match with the value enter in the previous
procedure. For this scenario the default value 7777 is used.

920 IBM Rational Application Developer V6 and Portal Tools

31.2.3 Creating a WebSphere Portal Server Attach
On the Rational Application Developer machine, follows these steps to create a
WebSphere Portal Server Attach:

1. Open the Rational Application Developer and select File → New → Other...

2. Select Server → Server and click Next.

Figure 31-8 Select a Wizard window

3. In the Define a New Server window, enter the following values:

– Host Name: the hostname of the remote portal server, in our scenario it is
wps51.itso.ral.ibm.com

– Select the server type: WebSphere Portal V5.1 Server Attach

 Chapter 31. Remote Server Attach 921

Figure 31-9 Define a New Server window

4. Click Next.

5. In the Server Ports window, leave the default values. Note that the JVM port
value must be equal to the JVM debug port entered in the WebSphere
Application Server of the remote portal. Click Next.

Figure 31-10 Server Ports window

6. In the next window, set the values according to the remote WebSphere Portal
server configuration. You must enter the WebSphere Portal administrator
user and the user you want to log on to the server for running the portlets
(wpsadmin for this scenario).

922 IBM Rational Application Developer V6 and Portal Tools

Figure 31-11 WebSphere Portal Settings

7. Click Next.

8. Leave the default values for the Publishing Settings window. This is
information needed only for portal projects. Click Next.

Note: The WebSphere Portal Install location field is only used for portal
projects and is not covered in this scenario.

 Chapter 31. Remote Server Attach 923

Figure 31-12 Publishing Settings

9. Click Finish. A new portal entry is added to the servers view.

Figure 31-13 New WebSphere Portal Server Attach

31.2.4 Debugging a portlet on WebSphere Portal Server Attach
This section shows how to debug a portlet on a WebSphere Portal Server Attach.
We use the ActionEvent portlet created in Chapter 6, “IBM Portlet API portlet
development” on page 203.

Note: For more information about debugging functionality on Rational
Application Developer, see Chapter 30, “Portlet debugging” on page 901.

Import the ActionEvent portlet provided as additional material for this redbook
and follow these steps:

1. Open the ActionEvent portlet by double-clicking in ActionEvent/Java
Resources/JavaSource/actionevent/ActionEventPortlet.java from the Project
Explorer view.

924 IBM Rational Application Developer V6 and Portal Tools

2. Go to the actionPerformed method and select the line highlighted in
Example 31-1.

Example 31-1 Setting a breakpoint

public void actionPerformed(ActionEvent event) throws PortletException {
if(getPortletLog().isDebugEnabled())

getPortletLog().debug("ActionListener - actionPerformed called");
String actionString = event.getActionString();
PortletRequest request = event.getRequest();
if(actionString.equalsIgnoreCase(ACTION_RED)){

String value = "Action RED";
PortletData portData = request.getData();
try{

portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}
if(actionString.equalsIgnoreCase(ACTION_BLUE)){

String value = "Action BLUE";
PortletData portData = request.getData();
try{

portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}
}

3. Set a breakpoint in the line portData.setAttribute("value", value); by
selecting the code line, right-clicking the marker bar (first left column of the
JSP Editor) and selecting Toggle Breakpoint, as shown in Figure 31-14 on
page 926.

 Chapter 31. Remote Server Attach 925

Figure 31-14 Set a breakpoint

4. A new breakpoint marker will appear on the marker bar. Enabled breakpoints
are identificated with a blue circle.

Figure 31-15 Breakpoint mark

5. From the Project Explorer view, right-click the ActionEvent project and select
Debug → Debug on Server...

926 IBM Rational Application Developer V6 and Portal Tools

Figure 31-16 Debug on server

6. In the Define a New Server window, select WebSphere Portal V5.1 Server
Attach.

 Chapter 31. Remote Server Attach 927

Figure 31-17 Debug on WebSphere Portal V5.1 Server Attach

7. Click Finish. It may take few minutes for this process to complete.

8. An internal Web browser will open within the workspace and the portlet will be
shown.

928 IBM Rational Application Developer V6 and Portal Tools

Figure 31-18 Portlet running on WebSphere Portal V5.1 Server Attach

9. Click the portlet edit icon to change the portlet mode.

Figure 31-19 Change the portlet to Edit mode

10.Click the Red Action button.

11.If the following message box appears, click Yes.

 Chapter 31. Remote Server Attach 929

Figure 31-20 Launch the Debug perspective

12.The Debug perspective will be open and since the breakpoint is reached, the
Java editor displays the code and the statement with the breakpoint
highlighted.

Figure 31-21 Debug Perspective

13.In the Variables tab, right-click value=”Action <FONT
color=”#ff0000”>RED and select Change value...

930 IBM Rational Application Developer V6 and Portal Tools

Figure 31-22 Right-click the value variable

14.In the Set Value window, change the value to:

Action GREEN

as shown in Figure 31-23.

Figure 31-23 Change value

15.Click OK.

16.From the Debug tag, click the Resume button to let the portlet continues its
execution.

 Chapter 31. Remote Server Attach 931

Figure 31-24 Resume portlet execution

17.View the internal Web browser where the portlet is shown. Note that the
action displayed in View mode is now Action GREEN ...was selected !

Figure 31-25 ActionEvent portlet

31.3 Defining Web browsers and emulator devices
Rational Application Developer provides an internal Web browser as part of the
workbench on Windows platform. If you want to configure external Web browsers
or device emulators to display your projects, do the following:

1. In the Rational Application Developer, select Window → Preferences →
Internet → Web browser.

932 IBM Rational Application Developer V6 and Portal Tools

2. You can add a new Web browser or device emulator by providing a name, the
location of the executable program and any parameter you want to pass to
the Web browser or device emulator.

3. You can edit the values for an existing Web browser by selecting it and
clicking the Edit button

4. You can delete a Web browser or device emulator entry by clicking the
Remove button.

5. Select the check in the left side of the Web browser entry to indicate Rational
Application Developer to use this browser.

Figure 31-26 Installed Web browsers option

 Chapter 31. Remote Server Attach 933

934 IBM Rational Application Developer V6 and Portal Tools

Chapter 32. Updating a portal layout

This chapter discusses a sample scenario of a Portal project, recommendations
and related issues. In this sample scenario, an existing WebSphere Portal Server
V5.1 configuration will be imported into the Rational Application Developer V6
Portal project to allow modifications of the layout of the portal configuration. The
updated Portal project will then be tested in the WebSphere Portal V5.1 Test
Environment. The sample scenario will allow you to understand the benefits of
this new feature provided in this release.

32

© Copyright IBM Corp. 2005. All rights reserved. 935

32.1 Overview
Importing a Portal configuration from an existing Portal site is one of several
ways available to create a new Portal project. It is also a recommended practice
since the new and updated configuration will overwrite the original Portal
configuration of the Portal site where the deployment takes place; in this way,
part of the default original configuration can be lost.

In this section, you will be guided to execute the following tasks:

� Create a connection to the Portal server

� Import a WebSphere Portal Server V5.1 configuration

� Modify the Layout navigation by creating additional labels, pages, etc.

� Modify the Layout content areas by adding new columns and a portlet to a
page

� Change the page look and feel to use a different theme

� Test the new configuration on the WebSphere Portal V5.1 Test Environment

The development workstation components for this scenario can be seen in
Figure 32-1 on page 937.

936 IBM Rational Application Developer V6 and Portal Tools

Figure 32-1 Development workstation

32.2 Creating a Portal server connection
You will need to create a server connection to be used by the Portal configuration
to import, export and deploy functions.

As illustrated in Figure 32-1, a WebSphere Portal server with host name wps51 is
used on a second machine. Therefore, the current machine where Rational
Application Development V6 is running must have network access to this server
machine.

For example, execute the following steps to gain access to the Portal server:

IBM Rational
Application Developer
V6.0
Portal Tools V6.0 for
Rational Application
Developer
Portal Project

IBM WebSphere Portal V5.1 Test
Environment

Development Runtime

Run on Server

Import

WebSphere Portal Server V5.1

Runtime

Note: Although a connection is required when invoking the import wizard, the
connection can also be created as part of the import wizard process.

 Chapter 32. Updating a portal layout 937

1. For this scenario, a Map Network Drive connecting to the WebSphere Portal
Server V5.1 machine is created. This connection will use W as the drive
letter.

Note: Use the proper user ID and password to access the Portal server
machine.

Figure 32-2 Mapping Portal server network drive

2. If not already running, start the Rational Application Developer; select Start
→ Programs → IBM Rational → IBM Rational Application Developer
V6.0 → Rational Application Developer.

3. Select New → Other from the File menu.

4. In the Select a wizard window, drag down to the Server folder and expand it.

5. Select Server.

938 IBM Rational Application Developer V6 and Portal Tools

Figure 32-3 Select the Server create wizard

6. Click Next to define the server.

7. In the Define a New Server window, enter the following values:

a. Host name: wps51. This is the host name of the WebSphere Portal server
you want to import into Rational Application Development.

b. Select the server Type: WebSphere Portal V5.1 for Import, Export &
Deploy.

 Chapter 32. Updating a portal layout 939

Figure 32-4 Define the target WebSphere Portal server

8. Click Next.

9. In the WebSphere Portal Settings windows:

a. Except for Install location, accept default values for the fields.

b. Install location: enter the location where WebSphere Portal is installed. In
this sample scenario, the correct location is:

w:\WebSphere\PortalServer

Note: If your portal server uses values other than the default values, you
must enter the proper paths for the fields shown in Figure 32-5 on
page 941.

940 IBM Rational Application Developer V6 and Portal Tools

Figure 32-5 Portal settings

10.Click Next.

11.In the Publishing Settings windows, enter the following values:

a. Transfer method can be local or FTP. For this scenario, select the following
transfer method:

Local Copy

b. Web application:

w:\WebSphere\AppServer\installedApps\wps51\wps.ear

c. Library:

w:\WebSphere\PortalServer\shared\app

 Chapter 32. Updating a portal layout 941

Figure 32-6 Publish Settings

12.Click Finish to create the server. The Add and Remove Projects configuration
window is not needed to configure for the Import, Export & Deploy server
connection.

13.The newly created server can now be seen in the Servers view, as illustrated
in Figure 32-7.

Figure 32-7 New server has been created

942 IBM Rational Application Developer V6 and Portal Tools

32.3 Importing the WebSphere Portal server
configuration

Once the connection to the Portal server has been configured, you will need to
create a new Portal Project. In addition, it is recommended that instead of
starting with a new configuration, you import and deploy from the same existing
WebSphere Portal server.

Note: Deploying a configuration that differs from the current configuration could
result in a partial lost of the portal default layout and functionality since most of
the current configuration will be overwritten.

Follow this procedure to import a portal site from the WebSphere Portal server:

1. Select File → Import.

2. From the Select window, choose Portal and click Next.

3. In the Import Portal Project window, enter the following values:

a. In Select the portal server that you want to use, select the WebSphere
Portal V5.1 for Import, Export & Deploy @ wps51 server that we
created in the previous process.

b. In Portal project, enter TestPortalServer.

Figure 32-8 New Portal Project

 Chapter 32. Updating a portal layout 943

4. Click Finish.

5. You will be prompted with a message indicating that this process may take a
long time and it should not be interrupted.

6. Click Yes to continue.

7. A status bar at the bottom of the current window shows the process status as
shown in Figure 32-9.

Figure 32-9 Importing the target server configuration

8. When the process finishes you can verify that TestPortalServer has been
created in the Dynamic Web Projects folder. Also, the following EAR files
have been created in the Enterprise Applications folder:

– TestPortalServerEAR
– TestPortalServerPortletsEAR

944 IBM Rational Application Developer V6 and Portal Tools

Figure 32-10 Test Portal server

32.4 Modifying the Portal Navigation and Layout
Now that the Portal configuration has been imported into Rational Application
Development, you will make the following modifications:

� Navigation section. Add new labels and pages.

� Layout. Modify the portlet content areas within a portal page and change the
themes.

Adding navigation
Execute the following instructions:

1. Expand the TestPortalServer under Dynamic Web Projects by clicking the
plus symbol next to it and double-click Portal Configuration.

 Chapter 32. Updating a portal layout 945

Figure 32-11 Portal configuration

2. The Portal Designer editor will open in the center of the workbench. This view
serves as the design editor for your portal project. The Portal configuration
shows the WebSphere Portal Server V5.1 layout as illustrated in
Figure 32-12.

Figure 32-12 WebSphere Portal server configuration

3. Add a new Label next to the Welcome page

a. Click Label from the palette to create a new label.

b. Drag it to the portal configuration on the Portal Designer and next to the
Welcome label as shown in Figure 32-13 on page 947.

946 IBM Rational Application Developer V6 and Portal Tools

Figure 32-13 Drag a label to the portal configuration

c. In the Properties view, select the Title tab.

d. Change the Title from New Label to WebSphere as shown in Figure 32-14.

Figure 32-14 Changing the Label name

e. Select File → Save to save the new values.

4. Create a new page

a. In the Outline view, right-click the WebSphere label you just created.

b. Select Insert Page → As Child.

Tip: Once you position the cursor arrow, a plus symbol appears meaning that
you can create the label at that location.

 Chapter 32. Updating a portal layout 947

Figure 32-15 Inserting a new page as a child

5. When a New Page is created the Outline takes you to the Layout root node,
change to the Navigation root node so you can see the result hierarchy for the
WebSphere label. For WebSphere Portal V5.1 portal projects, Content Root is
the root navigation node. Select New Page in the outline view.

Figure 32-16 WebSphere Portal root node

6. In the properties view, select Title tab and change the Title from New Page to
Sample.

948 IBM Rational Application Developer V6 and Portal Tools

Figure 32-17 Changing the name of a page

7. Select File → Save to save the new values. The resulting hierarchy will now
look as shown in Figure 32-18.

Figure 32-18 Resulting hierarchy

Changing the page layout
Execute the following steps:

1. Select the previously created Sample page.

2. Highlight the existing column where it says Place portlet here.

Note: When a new page is created a Parent Row and a Child Column are
automatically created.

3. From the Palette, select Column and drag it next to the current column in the
page, as shown in Figure 32-19 on page 950. Notice the black vertical mark

 Chapter 32. Updating a portal layout 949

next to the highlighted column indicating where the new column will be
placed.

Figure 32-19 Adding a new column to a page

4. After adding the second column, the result should look as illustrated in
Figure 32-20.

Figure 32-20 Resulting page layout

5. Select File → Save.

Note: The column widths can be changed using the mouse pointer, or by
setting new values in the Properties view.

32.5 Adding portlets
A portlet will be added to the new page. First of all, the portlet needs to be added
to the workbench. The portlet that will be used for this sample scenario is a
simple portlet that was previously created. The portlet name is HelloWorld and is
available as WAR file.

Importing a portlet
Execute the following steps to import the HelloWorld sample portlet:

1. Select File → Import

2. From the Select window, select WAR file.

950 IBM Rational Application Developer V6 and Portal Tools

3. Click Next.

4. In the WAR Import window enter the following values:

a. WAR file. The location of the portlet WAR file. For example:

c:\LabFiles\Portal Project\HelloWorld.war

b. Web Project. This field will be automatically set when the WAR file is
selected. HelloWorld in this sample scenario.

c. Target server: WebSphere Portal V5.1 stub.

d. Take defaults for other values.

5. Click Finish.

6. Select File → Save

Adding portlets using the Drag and Drop feature
Execute the following steps to add the HelloWorld sample portlet:

1. In the Portal Designer select the Sample page.

2. Select Portlet from the palette and drag it to the left column, as shown in
Figure 32-21.

Figure 32-21 Dragging portlets

3. The Insert Portlet dialog box appears, select the HelloWorld portlet.

Note: All portlets associated with the workspace will appear in the Insert
Portlet dialog box.

 Chapter 32. Updating a portal layout 951

Figure 32-22 Select Portlet window

4. Click OK and select File → Save.

32.6 Additional ways to add portlets
In this section we illustrate other alternatives to add portlets to a page. If you do
not want to review this, skip to 32.7, “Testing the updated portal configuration” on
page 954.

Using the Insert menu option
The following procedure can be used to add portlets to a page using this method:

1. Select a Page from the Portal Designer.

2. Highlight the column by clicking where you want the portlet.

Tip: Adding portlets to a page can also be done by right-clicking the
column or row where the portlet is to placed and selecting the Insert
Portlet option.

952 IBM Rational Application Developer V6 and Portal Tools

Figure 32-23 Highlighted column

3. From the menu bar, click Insert → Portlet → As Child...

Figure 32-24 Adding a portlet from Insert menu

4. The Insert Portlet dialog box appear, select the portlet.

5. Click OK.

6. Select File → Save

Using a column right-click
The following procedure can be used to add portlets to a page using this method:

1. Select the page.

2. Highlight the column where you want the portlet.

3. Right-click the column and select the Insert Portlet → As Child...

4. The Insert Portlet dialog box appears, select the portlet.

5. Click OK.

6. Select File → Save.

 Chapter 32. Updating a portal layout 953

Using the Outline view
The following procedure can be used to add portlets to a page using this method:

1. In the Layout node of the Outline view, select the column.

2. Right-click the column and select the Insert Portlet → As Child...

Figure 32-25 Adding portlets from the layout node in the Outline view

3. The Insert Portlet dialog box appears, select the portlet.

4. Click OK.

5. Select File → Save.

32.7 Testing the updated portal configuration
A Portal Project can be tested and debugged locally in the Local Test
Environment or in a Remote Server Attach server. In this sample scenario, the
updated Portal Project TestPortalServer will be locally tested using the Local
Test Environment for WebSphere Portal Server V5.1. If you need more details
about this topic see for example the Rational Application Developer’s Help
Contents.

Follow this procedure to test the portal project:

1. From Project Explorer, right-click TestPortalServer.

954 IBM Rational Application Developer V6 and Portal Tools

2. Select Run → Run on Server...

Figure 32-26 Run on Server

3. In the Define a New Server window select WebSphere Portal V5.1 Test
Environment. Click Finish.

Figure 32-27 Select the Portal Test Environment Server

4. A Repair Server Configuration will appear, click OK.

 Chapter 32. Updating a portal layout 955

Figure 32-28 Repair Server Configuration

5. The internal Web browser will open within the Rational Application Developer
workbench, showing the Portal Server Welcome page.

Figure 32-29 WebSphere Portal Server V5.1 Welcome page

6. Click the WebSphere page you created.

Figure 32-30 WebSphere page

7. The new label, page and current theme are shown.

Note: When you run a portal project in the local Portal Test Environment,
some portlets may display error messages.

956 IBM Rational Application Developer V6 and Portal Tools

Figure 32-31 Portal page and added portlet

8. Stop the Portal server. In the Servers view right-click the WebSphere Portal
V5.1 Test Environment and select Stop.

32.8 Applying themes
In this section you will apply new Themes to your Portal Project.

1. Select the WebSphere label from the Portal Configuration.

2. In the Properties view select the Label tab.

3. Click the Theme list box to display it and select the Finance theme.

Figure 32-32 Label properties

4. Wait for the Portal Configuration to display the change.

 Chapter 32. Updating a portal layout 957

Figure 32-33 Finance theme

5. Select File → Save to save the new property values.

6. From Project Explorer right-click the TestPortalServer and select Run →
Run on Server...

7. In the Define a New Server window select WebSphere Portal V5.1 Test
Environment

8. Click Finish. Wait until the browser is started showing the WebSphere Portal
Server again.

9. Select the WebSphere label. The Finance theme that you previously selected
will now be shown.

Figure 32-34 Page showing the Finance theme

Note: Child pages for this label will also be displayed with the Finance
theme.

958 IBM Rational Application Developer V6 and Portal Tools

10.Stop the server. In the Servers view right-click the WebSphere Portal V5.1
Test Environment and select Stop.

Applying the Corporate theme (optional)
As an option, repeat the previous procedure to apply the Corporate theme to the
Portal Configuration.

1. In the Label properties, select the Corporate theme.

2. After applying the Corporate theme, the page should look as shown in
Figure 32-35.

Figure 32-35 Corporate theme

3. Test again the Portal Project, the result should look as illustrated in
Figure 32-36.

Figure 32-36 Page with the selected Corporate theme

 Chapter 32. Updating a portal layout 959

960 IBM Rational Application Developer V6 and Portal Tools

Chapter 33. Creating new portal themes

This chapter guides you through the process of creating and modifying new
themes to customize the look and feel of a Portal site with Rational Application
Developer V6. The sample scenario from Chapter 32, “Updating a portal layout”
on page 935 will be used to apply new themes generated and it will then be
tested in a WebSphere Portal V5.1 server.

33

© Copyright IBM Corp. 2005. All rights reserved. 961

33.1 Overview
In this section, you will be guided to execute the following tasks:

� Create a new theme

� Edit a new theme.

� Edit styles

� Apply new themes and skins.

� Test the new configuration on WebSphere Portal V5.1 Test Environment.

� Export and publish the Portal project from Rational Application Developer to
WebSphere Portal.

33.2 Creating a new theme
Themes provide the look and feel of a portal site. Rational Application Developer
provides a basic set of themes and skins. You can use these for your site, or you
can use them as base to create new themes and skins to design a unique
appearance for your site.

In this sample scenario, we use the Corporate theme provided by RAD to create
a new Theme. Follow these steps:

1. From the Project Explorer, right-click the TestPortalServer portal project.

2. Select New → Theme.

3. In the New Theme window, enter MyCorp as title and select Corporate as the
source theme.

962 IBM Rational Application Developer V6 and Portal Tools

Figure 33-1 Creating a New Theme window

4. Click Next.

5. In the Select Skins window, do the following:

a. Select Shadow, Outline, Clear and Fade as skins allowed for this theme.

b. Select the Outline skin and click Set as Default Skin.

c. Click Finish.

 Chapter 33. Creating new portal themes 963

Figure 33-2 Select skins for the theme

6. As a result you should find a new theme entry in the folder Themes under
TestPortalServer, as shown in Figure 33-3 on page 965. The associated files
will be under PortalContent\themes\html\MyCorp.

964 IBM Rational Application Developer V6 and Portal Tools

Figure 33-3 Generated new Theme

33.3 Editing a theme
To edit the MyCorp theme using Rational Application Developer, follow these
steps:

1. From the Project Explorer, double-click MyCorp located in Dynamic Web
Projects → TestPortalServer → Themes.

2. The Page Designer will show the Default.jsp file.

 Chapter 33. Creating new portal themes 965

Figure 33-4 Default.jsp file

3. By default, the Page Designer shows the JSP tags with symbols. You can
hide these tags as follows:

a. From the menu, select Window → Preferences → Web Tools → Page
Design → Editing Symbols.

b. Select None and click OK as illustrated in Figure 33-5 on page 967.

966 IBM Rational Application Developer V6 and Portal Tools

Figure 33-5 Editing symbol preferences

4. Remove the following design elements from the theme using the Page
Design:

a. Select My Favorites combo box and press the Delete key.

b. Repeat this procedure to delete the little blue icon (to the right of My
Favorites combo box).

c. Repeat the same procedure to delete the label Go (to the right of the blue
icon).

 Chapter 33. Creating new portal themes 967

Figure 33-6 Delete My Favorites combo box, blue icon and Go label

5. Select File → Save.

6. Use the File system option to import two images that will be used in this
scenario:

a. Select File → Import → File system.

b. Select the files d-w_logo.gif and line.gif as shown in Figure 33-7 on
page 969.

c. Click Finish to import the files into the following subdirectory:

TestPortalServer\PortalContent\themes\html\MyCorp

968 IBM Rational Application Developer V6 and Portal Tools

Figure 33-7 Importing graphics

7. Change the background image:

a. Get to the Switch Active Document, right-clicking the Design area of the
Default.jsp file and select Switch Active Document.

b. Right-click the current background image.

Figure 33-8 Select background image

c. Select Style → Show Applied Styles.

Background Image

 Chapter 33. Creating new portal themes 969

Figure 33-9 Show Applied Styles option

d. In the Style view right-click <<<table
class=”wpsToolbarBannerBackground”>>>

e. Select Edit.

Figure 33-10 Edit the class

f. You can view the active properties of the selected class by clicking
>>Preview Properties button.

g. Leave the default values in the Edit Style window and click OK.

970 IBM Rational Application Developer V6 and Portal Tools

Figure 33-11 Class properties

h. Leave the style that appears selected by default in the Select one style
window and click OK.

Figure 33-12 Select one style

i. In the Set Style Properties window, select Background and modify the
following values :

• Color: #FFFFFF

• Image: browse to the
TestPortalServer\themes\html\MyCorp\d-w_logo.gif

• Repeat: No repeat

• Top: Center

 Chapter 33. Creating new portal themes 971

Figure 33-13 Changing Properties

j. Click OK.

k. Also notice that the Styles.css file has been opened in the Page
Designer.

l. Select File → Save all

8. The resulting new style should looks as shown in Figure 33-14.

Figure 33-14 Resulting style after changing the WPSToolbarBannerBackground class

972 IBM Rational Application Developer V6 and Portal Tools

9. Change the PlaceBarInclude.jsp:

a. Select the Switch Active Document to switch to PlaceBarInclude.jsp

Figure 33-15 Switch to PlaceBarInclude.jsp

b. Right-click the purple row of the theme, select Style → Show Applied
Styles from context menu.

Tip: Selecting the Source tab of the Page Designer, you will see the JSP
selected in the Switch Active Document. In this Editor you can also select any
of the embedded JSP to edit it, except the Control.jsp of Skins.

 Chapter 33. Creating new portal themes 973

Figure 33-16 Show Applied Styles

c. In Styles view right-click <<<table class=”wpsPlaceBar”>>> and select
Edit.

974 IBM Rational Application Developer V6 and Portal Tools

Figure 33-17 Edit the class

d. Leave the default values in the Edit Style window and click OK.

e. Leave the style that appears selected by default in the Select one style
window and click OK.

f. In the Set Style Properties window, select Background and modify the
following values :

• Image: browse to the
TestPortalServer\themes\html\MyTheme\line.gif

• Repeat: Repeat Horizontally

 Chapter 33. Creating new portal themes 975

Figure 33-18 Changing properties

g. Click OK.

h. Select File → Save all

10.The resulting new style should looks as shown in Figure 33-19.

Figure 33-19 Resulting style after changing the wpsPlaceBar class

33.4 Editing Styles
To edit a style sheet, follow these steps:

1. Edit the Unselected Label Bar.

a. Change to the Style.css file next to the Default.jsp in the Page Designer
section. The Style.css file should be opened as a result of the steps
followed in section “Editing a theme” on page 965. If not, you can open it

976 IBM Rational Application Developer V6 and Portal Tools

from TestPortalServer\PortalContent\Project
Explorer\themes\html\MyCorp\ie\en\Style.css.

Figure 33-20 Edit the style sheet

b. Right-click the Unselected Label style rule and select Edit Style Rule
[.wpsUnSelectedPlace, .wpsUnSelectedPlace:visited,
.wpsUnSelectedPlace:hover, .wpsUnSelectedPlace:active]... option,
as shown in Figure 33-21 on page 978.

Note: The themes\html\MyCorp\ie\en\Style.css file is the default style
sheet. In case you need to modify any other style sheet, you can find it
in the themes root. For example, in our scenario the themes root is:

TestPortalServer\PortalContent\Project Explorer\themes\html\MyCorp

 Chapter 33. Creating new portal themes 977

Figure 33-21 Edit Style Rule

c. In the Set Style Properties window, do the following:

• Select Background and change the value Color to #d6cfe7.

Figure 33-22 Background

• Select Font and change the value Color to #969696.

978 IBM Rational Application Developer V6 and Portal Tools

Figure 33-23 Font

• Select Border and change the value Color (right and left) to #d6cfe7.

Figure 33-24 Border color

d. Click OK.

 Chapter 33. Creating new portal themes 979

2. Edit the Unselected Label Link.

a. Right-click the Unselected Label Link style rule and select Edit Style
Rule [.wpsUnSelectedPlaceLink, .wpsUnSelectedPlaceLink:visited,
.wpsUnSelectedPlaceLink:hover, .wpsUnSelectedPlaceLink:active]...
option.

b. In the Set Style Properties window, do the following:

• Select Background and change the value Color to #d6cfe7.

Figure 33-25 Background

• Select Font and change the value Color to #969696.

980 IBM Rational Application Developer V6 and Portal Tools

Figure 33-26 Font

c. Click OK.

d. Select File → Save to save the Styles.css file.

3. Edit a Skin.

a. Select the Switch Active Document to select Control.jsp
(/TestPortalServer/PortalContent/skins/html/clear/Control.jsp).

Note: Notice how the corresponding embedded element is highlighted in
the editor, when you mouse over the jsp files in the list.

 Chapter 33. Creating new portal themes 981

Figure 33-27 Select Control.jsp

b. Click the Title row of the skin by moving the mouse next to the left margin
of the skin until a black arrow appears, as shown in Figure 33-28 on
page 983.

982 IBM Rational Application Developer V6 and Portal Tools

Figure 33-28 Skin Title row

c. The properties for this element are already active in the properties view. In
the Background option change the value of Color to #e5eff7.

Figure 33-29 Properties

d. Select File → Save to save the changes.

4. The final theme should look like Figure 33-30 on page 984.

 Chapter 33. Creating new portal themes 983

Figure 33-30 MyTheme

33.5 Applying MyCorp theme
Execute the following steps:

1. Open the Portal Configuration under the TestPortalServer portal project.

1. Select the WebSphere label (next to the Welcome label).

2. In the Properties view, select the Label tab.

3. Click the Theme list box and select MyCorp at the bottom of the list of
available themes.

984 IBM Rational Application Developer V6 and Portal Tools

Figure 33-31 Label Properties

4. Wait for the Portal Configuration to display the change.

Figure 33-32 Applied Theme

5. Select File → Save.

33.6 Applying a Skin
Execute the following steps:

1. Select the HelloWorld portlet from the WebSphere page

2. In Properties view, click the Skin list box to display the available skins.

3. Select Clear from the list of skins.

Note: Note how the child pages for this labels are also displayed with the
new theme.

 Chapter 33. Creating new portal themes 985

Figure 33-33 Skin Properties

4. Wait for the Portal Configuration to display the change.

Figure 33-34 Applied Skin

5. Select File → Save.

33.7 Testing the new Portal Project
A portal project can be tested or debugged in a Local Test Environment or in a
Remote Server Attach server. In this sample scenario, the portal project
TestPortalServer will be locally tested using the Local Test Environment for
WebSphere Portal Server V5.1.

To test a portal project, follow this steps:

1. From the Project Explorer, right-click TestPortalServer.

2. Select Run → Run on Server....

986 IBM Rational Application Developer V6 and Portal Tools

Figure 33-35 Run on Server

3. In the Define a New Server window, select WebSphere Portal V5.1 Test
Environment.

 Chapter 33. Creating new portal themes 987

Figure 33-36 Select Test Environment Server

4. Click Finish.

5. If a Repair Server Configuration message appears, click OK.

Figure 33-37 Repair Server Configuration

6. A Web browser will open within the Rational Application Developer
workbench showing the Portal Server Welcome page.

988 IBM Rational Application Developer V6 and Portal Tools

Figure 33-38 WebSphere Portal Server V5.1 Welcome page

7. Select the WebSphere page.

Figure 33-39 WebSphere page

8. The new themes and skins are shown in the WebSphere Portal V5.1
(Figure 33-40).

Figure 33-40 Portal page result

 Chapter 33. Creating new portal themes 989

9. In the Servers view, right-click the WebSphere Portal V5.1 Test
Environment.

10.Select Stop.

33.8 Publishing the Portal Project
Once all the modifications and the new design elements have been tested in the
development environment, you should publish them to a Portal Site. To publish a
Portal Project into a WebSphere Portal server, two activities are needed. First,
export the portal project configuration using the Export Wizard, to generate the
files required to publish to the Portal Site. Secondly, manually publish the
changes into the Portal server.

Exporting the Portal Project
1. In the Project Explorer, right-click TestPortalServer.

2. Select Export → Export...

990 IBM Rational Application Developer V6 and Portal Tools

Figure 33-41 Select Export

3. Select Portal Project Deploy Set from Select window and click Next.

 Chapter 33. Creating new portal themes 991

Figure 33-42 Portal Project Deploy Set

4. In the Portal Project Export window, enter the following values:

• Portal Project EAR: TestPortalServer

• Destination: c:\PortalProject

• Select the portal server that you want to use: WebSphere Portal V5.1
Import, Export & Deploy. This is the portal connection created in the
scenario described in Chapter 32, “Updating a portal layout” on
page 935.

Important: Do not attempt to manually deploy the exported files to a portal
server other than the one you selected in step 4. The generated files contain
information from this portal server and the procedure will not work in other
servers.

992 IBM Rational Application Developer V6 and Portal Tools

5. Click Finish.

6. Click Yes in the message box that appears alerting the following: This
process may take a long time and should not be interrupted. Do you
wish to continue?

The following files are generated by the Export wizard:

� WPS.ear
� Deployproject.xml for deployment portal configuration.
� DeployInstructions.txt file with instructions for deploying to a server.

These files could also be included:

� WAR files for each portlet project used in the portal project.
� DeployPortlets.xml script for deploying portlets.

Figure 33-43 Files Created

33.9 Deploying the Portal Project
Follow these steps to deploy a Portal Project in WebSphere Portal server.

Note: Even the Export wizard does not automatically update your project
with server information, it needs to communicate with the portal server
during export.

 Chapter 33. Creating new portal themes 993

1. Copy the generated files in a directory of the server where WebSphere Portal
is running.

2. Open the DeployInstruccions.txt from the destination directory where the
exported files where created.

Figure 33-44 Open the DeployInstructions file

3. The DeployInstructions.txt file should contain information as shown in
Example 33-1.

Example 33-1 DeployInstructions.txt file

(C) Copyright IBM Corporation 2004. All Rights Reserved.

This file provides instructions for deploying an IBM Rational Application
Developer Portal Project to a portal server.

Important Note: These instructions are to be used only for deploying to server
wps51 and should not be used with a different portal server.
Information specific to server wps51 has been included in the configuration
files.
Both the WebSphere Application Server and the WebSphere Portal server must be
running to successfully complete these steps.

Important: You can deploy the project only into the Portal server specified in
the RAD Export wizard.

994 IBM Rational Application Developer V6 and Portal Tools

Each step must be successfully completed before starting subsequent steps.

Step 1
 Open a command prompt and change directories to the Deployment Manager bin
directory. For example, c:\WebSphere\DeploymentManager\bin, or if the
Deployment Manager is not installed:
 c:\WebSphere\appserver\bin.
 Copy the wps.ear that was exported by IBM Rational Application Developer to
this directory.
 Use the wsadmin command to update the WebSphere Portal EAR. This action will
automatically cause the application to be synchronized across each node in the
cluster.

 Windows: wsadmin.bat -user <admin_user_id> -password <admin_password> -c
"$AdminApp install wps.ear {-update -appname wps}"

 Unix: wsadmin.sh -user <admin_user_id> -password <admin_password> -c
"$AdminApp install wps.ear {-update -appname wps}"

 where:

 <admin_user_id> is the administrator's user ID
 <admin_password> is the administrator's password

 Note: Updates to the configuration of a WebSphere Portal cluster must
occur on the Deployment Manager and resynchronized with the other nodes in the
cluster.

 If updates are made to individual nodes in the cluster, the updates will
be lost when the master configuration on the Deployment Manager resynchronizes
with the nodes again.

Step 2
 Copy each of the portlet application WAR files to <wps_home>\installableApps
on your server.

 The following is a list of portlet application WAR files that you must copy:
 HelloWorld.war

Step 3
 Copy DeployPortlets.xml to <wps_home>\bin and execute the following
XMLAccess command from the same location

 Windows: xmlaccess -in DeployPortlets.xml -user <WpsAdminUser> -pwd
<WpsAdminPassword>

 Unix: xmlaccess.sh -in DeployPortlets.xml -user <WpsAdminUser> -pwd
<WpsAdminPassword>

 Chapter 33. Creating new portal themes 995

Step 4
 Copy DeployProject.xml to <wps_home>\bin and execute the following XMLAccess
command from the same location

 Windows: xmlaccess -in DeployProject.xml -user <WpsAdminUser> -pwd
<WpsAdminPassword>

 Unix: xmlaccess -in DeployProject.xml -user <WpsAdminUser> -pwd
<WpsAdminPassword>

Step 5
 To ensure that string changes in the project are correctly used by the
portal server, copy the following list of properties files from the 'nls'
directory
 to '<wps_home>/shared/app/nls', where <wps_home> is the installed location
of WebSphere Portal server.
 CSRes.properties
 CSRes_ar.properties
 CSRes_cs.properties
 CSRes_da.properties
 CSRes_de.properties
 CSRes_el.properties
 CSRes_en.properties
 CSRes_es.properties
 CSRes_fi.properties
 CSRes_fr.properties
 CSRes_hu.properties
 CSRes_it.properties
 CSRes_iw.properties
 CSRes_ja.properties
 CSRes_ko.properties
 CSRes_nl.properties
 CSRes_no.properties
 CSRes_pl.properties
 CSRes_pt.properties
 CSRes_pt_BR.properties
 CSRes_ro.properties
 CSRes_ru.properties
 CSRes_sv.properties
 CSRes_th.properties
 CSRes_tr.properties
 CSRes_uk.properties
 CSRes_zh.properties
 CSRes_zh_TW.properties

Step 6
 Browse to the portal server administration pages. Using the administrative
portlets, set access control as needed on the deployed configuration.

996 IBM Rational Application Developer V6 and Portal Tools

Note:
If the portal server is configured to use a HTTP port other than port 80,
append the parameter '-url <portal config url>' to the XMLAccess commands where
<portal config url> is of the form 'http://host:port/wps/config'.

For more information refer to the following topics in WebSphere Portal
InfoCenter:
 Administering your portal\XML configuration interface
 Designing your portal\Deploying customized themes and skins
 Designing your portal\Customizing the portal

4. To Verify that WebSphere_Portal and Server1 are running, open a command
window, and change to directory c:\WebSphere\AppServer\bin

5. Type the command serverStatus -all

Figure 33-45 Verify Servers status

6. If any of the servers is stopped, enter startServer and the name of the
server.

Example 33-2 Starting server1

c:\WebSphere\AppServer\bin>startServer server1

or

Example 33-3 Starting PortalServer

c:\WebSphere\AppServer\bin>startServer WebSphere_Portal

In case portal security is enabled also add to the command the suffix -user user
-password password.

 Chapter 33. Creating new portal themes 997

7. Once both servers are running, continue with the steps specified in the
DeployInstruction.txt file. Copy the wps.ear file created by the Export
wizard to c:\WebSphere\AppServer\bin

8. Update the WebSphere Portal EAR using the wsadmin command as shown:

wsadmin.bat -user wpsadmin -password wpsadmin -c "$AdminApp install
wps.ear {-update -appname wps}"

Figure 33-46 wsadmin command

9. Copy the HelloWorld.war portlet application WAR file to
c:\WebSphere\PortalServer\installableApps on your server.

10.Copy DeployPortlets.xml and DeployProject.xml to
c:\WebSphere\ProtalServer\bin

11.Execute the following XMLAccess command from
c:\WebSphere\ProtalServer\bin

xmlaccess -in DeployPortlets.xml -user wpsadmin -pwd wpsadmin -url
http://wps51.itso.ral.ibm.com:9081/wps/config

Important: It is recommendable that back up your Portal in case you want to
return the original configuration.

998 IBM Rational Application Developer V6 and Portal Tools

Figure 33-47 Deploy portlets

12.Execute the following XMLAccess command from
c:\WebSphere\ProtalServer\bin

xmlaccess -in DeployProject.xml -user wpsadmin -pwd wpsadmin -url
http://wps51.itso.ral.ibm.com:9081/wps/config

Figure 33-48 Deploy Project

13.Copy the properties files from the 'nls' directory to
c:\WebSphere\PortalServer\shared\app\nls

14.Stop the server.

 Chapter 33. Creating new portal themes 999

c:\WebSphere\AppServer\bin\stopServer WebSphere_Server

15.Start the server.

c:\WebSphere\AppServer\bin\startServer WebSphere_Server

16.In a Web browser enter the Portal Server url to open the site. For example,
http://wps51.itso.ral.ibm.com:9081/wps/portal. The Welcome portal
page will be displayed.

17.Login to the portal by enter the user wpsadmin and password wpsadmin. The
portal should look as Figure 33-49. Notice that the WebSphere page was
created as part of the sample scenario described in Chapter 32, “Updating a
portal layout” on page 935.

Figure 33-49 Portal page

18.Click WebSphere Page. The page will be shown with the MyCorp theme.

1000 IBM Rational Application Developer V6 and Portal Tools

Figure 33-50 WebSphere page with MyCorp theme

 Chapter 33. Creating new portal themes 1001

1002 IBM Rational Application Developer V6 and Portal Tools

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246681

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246681.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246681.zip Zipped code samples

A

© Copyright IBM Corp. 2005. All rights reserved. 1003

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 30 GB minimum
Operating System: Windows
Processor: 1 Ghz or higher
Memory: 1 GB or higher

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

1004 IBM Rational Application Developer V6 and Portal Tools

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 1007. Note that some of the documents referenced here
may be available in softcopy only.

� Rational Application Developer V6 Programming Guide, SG24-6449

� IBM WebSphere Portal V5 A Guide for Portlet Application Development,
SG24-6076

� IBM WebSphere Portal for Multiplatforms V5.1 Handbook, SG24-6689

� IBM WebSphere Everyplace® Access Version 4.3 Handbook for Developers,
SG24-7015-01

� IBM WebSphere Everyplace Access V5 Handbook for Developers and
Administrators Volume I: Installation and Administration, SG24-6462

� IBM WebSphere Everyplace Access V5 Handbook for Developers and
Administrators Volume II: Application Development, SG24-6463

� IBM WebSphere Everyplace Access V5 Handbook for Developers and
Administrators Volume III: E-Mail and Database Synchronization, SG24-6676

� IBM WebSphere Everyplace Access V5 Handbook for Developers and
Administrators Volume IV: Advanced Topics, SG24-6677

� WebSphere Portal V5.0 Production Deployment and Operations Guide,
SG24-6391

� IBM WebSphere Portal for Multiplatforms V5 Handbook, SG24-6098

� WebSphere Portal on z/OS®, SG24-6992

� Patterns: Portal Search Custom Design, SG24-6881

� Develop and Deploy a Secure Portal Solution Using WebSphere Portal V5
and Tivoli Access Manager V5.1, SG24-6325

� Deploying a Secure Portal Solution on Linux Using WebSphere Portal V5.0.2
and Tivoli Access Manager V5.1, REDP-9121

� WebSphere Portal Collaboration Security Handbook, SG24-6438

© Copyright IBM Corp. 2005. All rights reserved. 1005

� WebSphere Portal Server and DB2 Information Integrator: A Synergistic
Solution, SG24-6433

� Document Management Using WebSphere Portal V5.0.2 and DB2 Content
Manager V8.2, SG24-6349

� Portal Application Design and Development Guidelines, REDP-3829

� IBM WebSphere Application Server V5.1 System Management and
Configuration, WebSphere Handbook Series, SG24-6195

� IBM WebSphere V5.1 Performance, Scalability, and High Availability,
WebSphere Handbook Series, SG24-6198

Other publications
These publications are also relevant as further information sources:

� IBM WebSphere Portal security solutions white paper, Integrating
WebSphere Portal software with your security infrastructure, G325-2090,
available at:

ftp://ftp.software.ibm.com/software/websphere/pdf/WS_Portal_Security_G325-2
090-01.pdf

� Troubleshooting Pickers in Collaborative Portlets, Technote 1157249

� Troubleshooting Automatic Detection of your Mail File with the Different
Collaborative Portlets, Technote 1157029

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM WebSphere Portal for Multiplatforms Version 5.1 Information Center

http://publib.boulder.ibm.com/pvc/wp/510/ent/en/InfoCenter/index.html

� WebSphere Application Server V5.1 Information Center

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

� WebSphere Portal product documentation

http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html

� WebSphere Portal Catalog

http://catalog.lotus.com/wps/portal/portal

� WebSphere Portal zone for developers

http://www.ibm.com/websphere/developer/zones/portal

1006 IBM Rational Application Developer V6 and Portal Tools

ftp://ftp.software.ibm.com/software/websphere/pdf/WS_Portal_Security_G325-2090-01.pdf
http://publib.boulder.ibm.com/pvc/wp/510/ent/en/InfoCenter/index.html
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html
http://catalog.lotus.com/wps/portal/portal
http://www.ibm.com/websphere/developer/zones/portal

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
� IBM Support and downloads

ibm.com/support

� IBM Global Services

ibm.com/services

 Related publications 1007

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

1008 IBM Rational Application Developer V6 and Portal Tools

Index

A
Abstract and concrete portlet applications 155
accessibility 7
Accessing resource bundles in JSPs 382
Accessing resource bundles in portlets 381
Action Event Handling 145
Action events 50
ActionEvent 142, 208, 889
ActionEvent portlet 208
ActionForm 417
ActionListener 141–142
ActionServlet 417
actionURL 362
active credential 635
Add action request handler 649
Add configure mode 650
Add edit mode 650
Add form sample 649
Add portlets 952
addCookie 360
addDataHeader 360
addHeader 360
addIntHeader 360
Adjusting Portal resource bundles 391
administrator 253, 889, 891
Administrators 19
allows 339
Apache Jetspeed 9
applets 355
application components 450
architecture 9
Attribute storage summary 145
Authentication 5
Authorization 5

B
B2E 4
Basic Portlet 54
Basic portlet (JSR 168) 649
benefits 935
bidi 152, 364
Building a war file 171
Business to Business 4, 8

© Copyright IBM Corp. 2005. All rights reserved.
Business to Consumer 4, 8
Business to Employee 4, 8

C
c2a.tld 146
cache 337
calculator project 552
call center application 594
Canonical Portal URLs 35
Cascading Style Sheets 353
Cascading style sheets 366
cHTML 355
classes 18
Clear 985
Click-to-Action 837
Click-to-Action tag 594
Client Certificate Authentication 899
client portlet 606
Collaboration 5, 17
collections 18
Commons-Logging interface 444
Compile errors 902
components 436
concrete-portlet-app 337
config-param 339
configuration 936
Connection 435
Consume 892
Consumer portal 885–886
Consumer portals 889
containsHeader 360
Content Management 5, 16, 36
Content management 5
content.tld 147
ContentAccessService 618–619
Controller 174
cooperative broker 777
cooperative portlet 772
Cooperative Portlets 741

beginEventPhase() 774
broadcast 777
broadcasting 771
broadcasts 836

 1009

C2A wrapper 775
callback method 773
changedProperties() 772
Click-to-Action architecture 749
Click-to-Action event 772
Click-to-Action menus 778
combined scenario 779
Ctrl key 772
declarative approach 837
deployment descriptor 841
encodeProperty 745
encodeProperty tag 777
event phase 773
exchange capabilities 838
Import Resources from a WAR File 780
input parameters 772
Internationalization 844
internationalization 837
JSR 168 portlets 837
messaging communication 835
method invocations 849
output parameters 772
Overview 742
portlet code 842
Portlet Messaging 743
portlet.xml 844
programmatic approach 771, 774
Programming model 744
property broker 772, 836
PropertyBrokerService 843
PropertyListener 745
Register and publish properties 745
registerProperties() 774
resource bundle 844
Run the cooperative portlets 765
sample scenario 779
setProperties() 773
source 836
Source cooperative portlet 750
Steps to program a source cooperative portlet
744
Struts Actions 836
Struts portlets 835
target 836
Target cooperative portlet 761
Web Service Description Language 744
WebSphere Portal Property Broker 743
wires 837
WSDL 838

WSDL file 844
Cooperative portlets 335, 741
core 365
Create the Service Factory 623
createReturnURI 147
createURI 148
credential slots 632
Credential Vault 335, 630, 641, 648

administrative slot 633
Credential slots 633
Credentials objects 635
Import a protected servlet application 644
portlet private slot 633
private keys 630
shared slot 633
SSL client certificates 630
system slot 633
user credentials 630
Using passive credentials 667
Vault segments 632

Credential Vault Portlet Service 631
credentials 630
CredentialVaultService 617
cryptography 900
CSS 353, 366
CSS file 424
current 937
custcmd 423
Custom developed portlets 41
Custom Services 620
Customizable portlets from a vendor 41

D
dataAttribute 148
Database service 12
dataLoop 149
Debug a portlet application 905
debugger 902
declarative approach 744
Default.jsp 969
define a parameter 599
defineObjects 361
Delegators 19
Demilitarized Zone 10
deployment concerns 115
deployment descriptor 336, 435
design 990
Design area 969

1010 IBM Rational Application Developer V6 and Portal Tools

dir 364
Directory service 11
Directory services 5
doctype 336
Document Categories 36
documents 3
doView 643
drag and drop 595
Dynamic Web Projects 944

E
e-commerce 6
Edit mode 594
edit mode 446
Editing a theme 965
Editing Styles 976
Editors 19
e-learning 6
encodeNameSpace 150
encodeRedirectURL 359
encodeRedirectUrl 359
encodeURI 150
encodeURL 360
Enterprise portal 48
Event Handling 118
event handling 773
execute method 849
Export Wizard 990
extend.tld 147
extranet 10

F
Faces 594
Faces Portlet 54
Faces portlet (JSR 168) 553
Faces portlets

broadcast 518
Click-to-Action 602
commandButton tag 521
component classes 525
components 518
core tag library 518
Create 594
database access 518
event 525
event handlers 518
Event Processing 518
listener model 525

listeners 518
managed bean 524
message tag 521
navigation rules 521
Render Response 517
rendering model 525
tag library 518
validation model 525
validators 518
Web service client 607
WSDL Binding Details 610

feature 935
Features page 554
First generation portals 3
first generation portals 3
flushBuffer 360
Flyweight pattern 21
fmt 365
Forms 369
Fourth generation portals 3
framework 51

G
generations of portal technology 3
getAttribute 359
getAttributeNames 359
getAuthType 359
getBufferSize 360
getCharacterEncoding 358, 360
getContentLength 358
getContentType 358
getcontextPath 359
getCookies 359
getDateHeader 359
getEncodeURL 355
getHeader 359
getHeaderNames 359
getHeaders 359
getInputStream 358, 618
getIntHeader 359
getLocale 359
getLocales 359
getMarkup 618
getMethod 359
getOutputStream 360
getParameter 359
getParameterMap 359
getParameterNames 359

 Index 1011

getParameterValues 359
getPathInfo 358
getProtocol 358
getQueryString 358
getreader 358
getRealPath 358
getRemoteAddr 358
getRemoteHost 358
getRequestDispatcher 359
getRequestedSessionId 359
getRequestURI 358
getRequestURL 358
getScheme 359
getServerName 359
getServerPort 359
getServletPath 358
getSession 359
getURL 618
getWriter 360
Global Forwards 437

H
high availability 10
Highlights 31
Highlights in WebSphere Portal V5 31
Host integration 6
HTML form 208
HTTP Servers 11
HttpBasicAuth 643

I
IBM Portlet API 50
IBM Rational Application Developer 51
IBM Styles 370
IBM tags 364
IFRAME 354
images 18
include 618
include() method 356
InfoCenter 53, 893
infrastructure 15
init 147, 643
Insert 952
Internationalization 6–7, 551
Internet 10
Inter-Portlet Communication 118
isCommited 360
isRequestedSessionIdFromCookie 359

isRequestedSessionIdFromURL 359
isRequestedSessionIdFromUrl 359
isRequestedSessionIdValid 359
isSecure 359

J
J2EE technology 48
Java Community Process 12
Java Standard Tag Library 365
Java-based pluggable modules 49
JavaBean 594
JavaScript 355
JavaServer Faces portlets

accessibility 512
applications 511
Apply request values 514
behavior 512
configuration file 514
converters 515
event handlers 515
event-driven 513
faces-config.xml 514
internationalization 512
Invoke Application 517
Invoke application 514
Java Beans 514
life cycle 514
main components 512
model 511
Model-View-Controller 512
MVC 512
presentation 512
Process validators 514
Render response 514
Restore component tree 514
reusable user interface 512
server-side events 511
technology 512
Update model values 514
validation errors 517
validators 515
Web container 513

JDBC 669, 703
create a database connection 675
DB Servers view 681, 713
Importing the WAR file 692, 727
Overview 690, 725, 962

Jetspeed implementation 13

1012 IBM Rational Application Developer V6 and Portal Tools

JSF 335
JSF portlet project 555
JSP editor 439
JSP tags 353, 360, 966
JSPs 353
JSR 168 355, 557
JSR 168 API

administrator 253
Deployment descriptors 251
life cycle 251
Listeners 251
local variables 254
multiple threads 254
Objects 251
parameters 252
portlet deployment descriptor 252
Portlet Modes 251
Portlet windows 252
portletPreferences object 252
PortletRequest 254
PortletResponse 254
web.xml 252
Window States 251

JSR 168 compliant portlets 844
JSR 168 portlets 618, 843, 849
JSTL 365

L
Label 984
labels 945
Layout 18
layout 18
Lightweight Third Party Authentication 900
Listeners 145
Load balancing 11
Local Test Environment 986
locale 365
log 152
logging 444
logging facility 444
LTPA 900
LTPA token 900

M
Managed Bean 551
Managers 19
menu option 952
menu.tld 147

message 51
Message events 51
Messaging 335
Mode 23
Model 174
Model View Control (MVC) architecture 23
Model-View-Controller 21, 174, 208
ModeModifier 144
Modes 50
multiple devices 9
multiple sources 48
MVC 23

Model, View and Control 23
MyFirstStruts 431

N
name 364
namespace 363
National Language Support

Accessing resource bundles in JSPs 382
Accessing resource bundles in portlets 381
Adjusting Portal resource bundles 391
Creating Resource Bundles in WebSphere Stu-
dio 376
NLS administration 386
NLS best practices 392
Portal NLS administration 390
Portlet NLS administration 386
Sample scenario 393
Setting NLS titles 390
Translating Resource Bundles 379
Translating whole resources 383
Working with characters 392

navigation 551, 945
next-generation desktop 5
NLS administration 373, 386
NLS best practices 373, 392

O
OCS 13
online access 892
Open Content Syndication 12
Open standards 12
Organization for the Advancement of Structured In-
formation Standards 12
original 936
Overview 1

Aggregation Module 15

 Index 1013

Authentication Server 15
Authorization 33
Click-To-Action 39
Client to remote application 42
comparison of V4.x permission with V5.x roles
19
credentials 9
Customer Relationship Management 41
database structures 16
Document Categories and Summaries 36
e-Business needs 4
Enabling for Communities 32
Enterprise Resource Planning 41
Event Broker 32
events 9
evolution process 3
First generation portals 3
Fourth generation portals 3
General Infrastructure 32
generations of portal technology 3
high availability 10
J2EE platform 4
J2EE Security 33
Jetspeed implementation 9
LDAP 16
Member Subsystem 33
model-view-controller 23
Open Source Portal 9
Overview 4
Page content 14
page structure 14
page structure. 14
Permissions 19
Portal concepts 18
Portal Document Manager 36
Portal engine 14–15
Portal Install 32
Portal Servlet 15
portal technology 4
Portlet container 15
portlet container 26
Portlet events and messaging 26
portlets 8, 14
Presentation services 14
profile information 9
Property Broker 32
remote content 9
Reverse Proxy Security Server 11
Roles 19

Search 35
Second generation portals 3
Security services 16
services 16
Site Analysis 17
Skins 20
SSO Functionality 33
Struts Portlet Framework 37
Themes 20
Third generation portals 3
Transcoding 37
Transcoding Technology 16
User and Group Management 16
WebSphere Portal 15–16

P
Page 18
Page Aggregation 118
Page Designer 966
page designer 418
page layout 558, 595
Page transformation 16
pages 945
palette 434–435
Palette view 434
param 364
Parameter summary 168
passive credentials 636
patterns 1
PCs to PDAs 48
person.tld 147
Personalization 6, 16
Pervasive computing 6
PlaceBarInclude.jsp 973
Portal access control 34
portal administrator 20
Portal Configuration 984, 986
Portal configuration 945
Portal Designer 952
Portal Document Manager 36
Portal Framework 7–8
portal layout 935
Portal NLS administration 390
Portal page 48
portal page 48
Portal project

Adding portlets 950
Apply new themes and skins 962

1014 IBM Rational Application Developer V6 and Portal Tools

Change 936
configuration 936
Create 936
Deploy 939
Edit a new theme 962
Edit styles 962
Editing a theme 965
Export 939
Host name 939
Import 936, 939
Import a portlet 950
Label 946
Layout 936, 945
look and feel 962
Modify 936
Navigation 945
new label 946
new themes 961
page layout 949
portal server 940
portlets 952
publish 962
scenario 936
server connection 937
Test 936
wizard 937

portal project 962
Portal services 16
Portal technology 1–2
portal themes 961
Portal Toolkit 40
Portal Tools 52
Portals

First generation portals 3
Second generation portals 3
Third generation portals 3

portals 1, 3
Portlet 18, 49, 121
portlet 337
Portlet API 115, 120

Abstract and concrete portlet applications 155
Action Event Handling 145
ActionEvent 142
ActionListener 142
Attribute storage summary 145
Building a war file 171
Client 125
Configure 119
Control 24–25

Create the Service Factory 623
Custom Services 620
Define the Service 620
destroy(PortletConfig config) 137
destroyConcrete(PortletSettings settings) 136
Edit 119
Event Handling 118
Help 119
Hierarchy 120
Implement the Service 621
init(PortletConfig config) 135
initConcrete(PortletSettings settings) 135
Inter-Portlet Communication 118
Listeners 145
login(PortletRequest request) 136
logout(PortletSession session) 136
Mode 23
Model 24–25
Model View Control architecture 23
ModeModifier 144
Page Aggregation 118
Parameter summary 168
Portlet 121
Portlet deployment 155
Portlet JSPs 146
Portlet life cycle 115
Portlet lifecycle 134
Portlet messaging 145
Portlet MVC architecture 24
Portlet MVC Sample 25
Portlet Services 146
Portlet Tag Library 147
portlet terms 22
Portlet window 22
portlet.xml 160
PortletAdapter 121
PortletApplicationSettings object 129
PortletApplicationSettingsAttributesListener
141
PortletConfig object 126
PortletContext object 127
PortletData object 130
PortletException 132
PortletLog object 131
PortletPageListener 138
PortletRequest 121
PortletResponse 123
PortletSession object 124
PortletSessionListener 139

 Index 1015

PortletSettings object 128
PortletSettingsAttributesListener 141
PortletTitleListener 137
PortletURI 133, 142
PortletWindow object 132
PropertyListener 145
Real Estate 117
Register the Service 623
Security 119
service(PortletRequest request, PortletRe-
sponse response) 136
Servlets vs. Portlets 117
State 22
Test the service 624
UID Guidelines 171
UnavailableException 132
User object 133
View 24–25, 119
web.xml 157
Web.xml and Portlet.xml relationship 170
What is a portlet 116
What is a Portlet Application 116
WindowListener 140

Portlet application 18, 116
Portlet applications 49
Portlet debugging 901

Fix compile errors 902
Portlet deployment 155
portlet development 593
Portlet events 50
Portlet life cycle 115, 134
Portlet lifecycle 134
Portlet messaging 145, 226, 743
Portlet messaging versus cooperative portlets 743
Portlet modes

Configure 50
Edit 50
Help 50
View 50

portlet modes 254
Portlet MVC architecture 24
Portlet MVC sample 25
Portlet NLS Administration 386
Portlet NLS administration 386
Portlet Project 594
Portlet Project (JSR 168) 648
Portlet Project (JSR168) 552
portlet services 617
Portlet solution patterns 41

Portlet states 50
Maximized 50
Minimized 50
Normal 50

portlet terms 22
Portlet to remote application 42
Portlet to Web application 43
Portlet window 22
Portlet Wiring Tool 844
portlet wiring tool 778
portlet.tld 146
portlet.xml 160
PortletAction 208
portlet-app 336
PortletApplicationSettings object 129
PortletApplicationSettingsAttributesListener 141
portletConfig 361
PortletConfig object 126
PortletContext object 127
PortletData object 130
PortletException 132
PortletLog object 131
portletMode 362–363
portlet-name 337
PortletPageListener 138
PortletRequest 121
PortletResponse 123
Portlets 21

Portlet 121
Portlet API 120
Portlet deployment 155
Portlet JSPs 146
Portlet life cycle 134
Portlet MVC architecture 24
Portlet MVC Sample 25
Portlet Services 146
portlet terms 22
Portlet window 22
portlet.xml 160
PortletAdapter 121
PortletApplicationSettings object 129
PortletApplicationSettingsAttributesListener
141
PortletConfig object 126
PortletContext object 127
PortletData object 130
PortletException 132
PortletLog object 131
PortletPageListener 138

1016 IBM Rational Application Developer V6 and Portal Tools

PortletRequest 121
PortletResponse 123
PortletSession object 124
PortletSessionListener 139
PortletSettings object 128
PortletSettingsAttributesListener 141
PortletTitleListener 137
PortletURI 133, 142
PortletWindow object 132
Servlets versus Portlets 117
Web.xml and Portlet.xml relationship 170
What is a Portlet Application? 116
WindowListener 140

portlets 421
PortletSession object 124
PortletSessionListener 139
PortletSettings 128
PortletSettingsAttributeListener 141
PortletSettingsAttributesListener 141
PortletTitleListener 137
PortletURI 133, 142
Privileged Users 19
processAction 643
Producer 889
Producer portal 886
Producer portals 889
product installation 53
programmatic approach 745
properties 18
properties view 983
PropertyBrokerService 617

R
RAD 962
rates 18
Rational Application Developer 51, 430, 988
recommendations 935
Redbooks Web site 1007

Contact us xxii
Register 892
Register the Service 623
registration 892
relational database 689, 724
remote content 9
Remote Portlets 899
Remote portlets

Consumer 886
Local portlets 886

Markup 888
portals 889
Portlet Management 888
Producer 886
Registration 888
sample scenario 885
Service Description 887
standard portlets 886
Users 886
withdraw a portlet 889
WSDL 887

removeAttribute 359
render action 356
render method 356
renderRequest 361
renderResponse 361
RenderResponse object 355
renderURL 361
reset 360
resetBuffer 360
Resource bundles 373
Resources 171
Resume 913
retrieve credentials 641
Reverse proxy 11
Rich Site Summary 12
RSS 12
Run on Server 443
runtime errors 902

S
Samples Gallery 54
Search 6, 16
search and taxonomy 7
search functionality 35
Second generation portals 3
secure 362–363
secure servlet 644
SecureCredentialSlot 649
SecureServletEAR 645
Security 899
security options 899
security server 11
sendError 360
sendRedirect 360
server configuration 943
Servers 11
Service Provider Interface 34

 Index 1017

ServletResponse 123
Servlets 353
servlets 421
Servlets versus portlets 117
Servlets vs. Portlets 117
Set Style Properties 971
setAttribute 359
setBufferSize 360
setCharacterEncoding 358
setContentLength 360
setContentType 360
setDataHeader 360
setHeader 360
setIntHeader 360
setLocale 360
setProperties 775
setStatus 360
Setting NLS titles 390
settingsAttribute 149
settingsLoop 149
simple action Strings 761
Single Sign-On 630
site analytics 7
Site usage 6
Skin 985–986
Skin Properties 986
Skins 963
skins 963
sql 366
SSL 11, 899
SSL support 11
SSO 900
Standard MVC architecture 23
State 22
store credentials 641
Struts 335, 429, 836
Struts Action 420
struts action 837
Struts applications 430

Struts Portlet Framework 38
Struts portlet configuration 430
Struts Portlet Framework 54
Struts portlets

Action phase 420
ActionForm 416
actions 421
ActionServlet 417
application development 419
business logic 416

components 417
configuration file 417
controller 416
CSS file 424
execute method 423
external applications 416
forwards 422
framework 415
IBM Portlet API 420
Initialization 420
Internationalization 418
JSP tags 418
JSR 168 API 420
legacy systems 416
life cycle 418
Logic 418
look and feel 424
mappings 423
Markup support 424
model 416
modular applications 416
portlet communication 420
portlet framework 415
portlet life cycle 418
processing 422
Render phase 420
render phase 422
rendering 421
Tag libraries 418
tags 424
view 416

struts_source 420
struts-config.xml 436
style sheet 976
stylesheet.css 560
Stylesheets 423
supports 338
Switch Active Document 969
symbols 966
Syndicated content 12

T
TAM 11
target portlet application 782
Target server 645
techniques 901
technology 3
Test Environment 52, 648

1018 IBM Rational Application Developer V6 and Portal Tools

Test the service 624
TestPortalServer 962, 984, 986
text 152
The Portlet Wiring Tool 40
theme 963, 965, 983–984
themes and skins 989
Third generation portals 3
Title 947
Tooling 17
top 420
Transcoding technology 37
Translating Resource Bundles 379
Translating whole resources 373, 383
translation 850
Tutorials Gallery 55

U
UID Guidelines 171
URIAction 148
URIParameter 148
URL 35
URL Generation, Processing and Mappings 35
URL Mappings 35
user 891
User object 133
User-friendly Portal URLs 35
Users 19
Using resource bundles 373

V
validators 551
value 364
value change events 551
var 362–363
vault segment 632
View 174
View mode 643

W
WAR file 844
Web browser 988
Web deployment descriptors 426
Web Diagram 434
Web perspective 644
Web service 606
Web Service client 857
Web Service Description Language 744

Web Services 17, 857, 887
JavaBean 859
Sample scenario 858
wizard 858
WSDL 858

Web Services Client
Create a Web Services client portlet 874

Web Services Description Language 887
Web Services for Remote Portals 12
Web Services for Remote Portlets 885
web.xml 157, 337, 435
Web-based content 8
WEB-INF 433
WebSEAL 11
WebSphere 1
WebSphere Portal 18, 54, 899, 990
WebSphere Portal Property Broker 743
WebSphere Portal V5.1 885
What is a portlet 116
What is a Portlet Application 116
Window events 51
WindowListener 140
windowState 361, 363
wizard 430
wizards 434
WML 355
workbench 52, 988
Working with characters 373, 392
WpsStrutsPortlet 433
WSRP 366, 885, 899
WSRP services 887
WSRP styles 366

X
xml 365
XML feed 49

 Index 1019

1020 IBM Rational Application Developer V6 and Portal Tools

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

IBM
 Rational Application Developer V6

Portlet Application Developm
ent and

Portal Tools

®

SG24-6681-00 ISBN 073849352X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM Rational Application Developer V6
Portlet Application Development
and Portal Tools

Learn how to develop
MVC, Struts and
JavaServer Faces
portlet applications

Learn about IBM
Portlet API and the
JSR 168 standard
API

Access Web Services
and secure Web
applications

This IBM Redbook provides an overview and hands-on scenarios
to help you design, develop and implement portlet applications
using Rational Application Developer V6.0 and the provided
Portal Tools. The sample scenarios included in this redbook
target Business-to-Employee (B2E) enterprise applications, but
most of the scenarios presented will also apply to
Business-to-Consumer (B2C) applications.

You will find step-by-step examples and scenarios showing
ways to integrate your enterprise applications into an IBM
WebSphere Portal environment using the WebSphere Portal APIs
provided by the Portal Tools to develop portlets. You will also
learn how to extend your portlet capabilities to use advanced
functions such as cooperative portlets, internationalization,
action events, using the Credential Vault to enable Single
Sign-On, Web Services, remote portlets, portal design and
portlet debugging capabilities. Elements of the Portlet API and
the standard JSR168 API are described and sample code is
provided. The scenarios included in this redbook can be used to
learn about portlet programming and as a basis for your own
portlet applications. You will also find scenarios describing
recommended ways to develop portlets and portlet applications
that follow the MVC design pattern, the Struts framework and
JavaServer Faces technology.

Basic knowledge of Java technologies such as servlets,
JavaBeans, EJBs, JavaServer Pages (JSPs), as well as of XML
applications and the terminology used in Web publishing, is
assumed.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Overview
	1.1 Portal evolution
	1.1.1 The generations of portal technology

	1.2 Overview
	1.2.1 What is a portal?
	1.2.2 Enablement for portals
	1.2.3 The WebSphere Portal framework
	1.2.4 WebSphere Portal architecture
	1.2.5 WebSphere Portal tooling

	1.3 WebSphere Portal
	1.3.1 Portal concepts
	1.3.2 Portlets
	1.3.3 The model-view-controller (MVC) design pattern
	1.3.4 Standard MVC architecture
	1.3.5 Portlet MVC architecture
	1.3.6 Portlet MVC sample
	1.3.7 WebSphere Portal runtime: the portlet container
	1.3.8 Page aggregation

	1.4 Highlights in WebSphere Portal V5.1
	1.4.1 Portal install
	1.4.2 General infrastructure
	1.4.3 Event broker
	1.4.4 Member subsystem
	1.4.5 Authentication
	1.4.6 Authorization
	1.4.7 URL generation, processing and mappings
	1.4.8 Search
	1.4.9 Content management
	1.4.10 Transcoding
	1.4.11 Struts Portlet Framework
	1.4.12 JSF Portlet Runtime
	1.4.13 User interface
	1.4.14 Cooperative portlets (Click-To-Action)
	1.4.15 Portal Toolkit

	1.5 Portlet solution patterns
	1.6 Building a war file

	Chapter 2. Developing Portal applications
	2.1 Portal overview
	2.1.1 Portal concepts and definitions
	2.1.2 IBM WebSphere Portal
	2.1.3 IBM Rational Application Developer

	2.2 Developing applications for WebSphere Portal
	2.2.1 Portal samples and tutorials
	2.2.2 Development strategy
	2.2.3 Portal tools for developing portals
	2.2.4 Portal tools for developing portlets
	2.2.5 Portal tools for testing and debugging portlets
	2.2.6 Portal tools for deploying and managing portlets
	2.2.7 Enterprise Application Integration Portal tools
	2.2.8 Coexistence and migration of tools and applications

	2.3 Portal development scenario
	2.3.1 Preparing for the sample
	2.3.2 Creating a portal project
	2.3.3 Adding and modifying a portal page
	2.3.4 Creating and modifying two portlets
	2.3.5 Adding portlets to a portal page
	2.3.6 Running the project in the test environment

	Chapter 3. Portlet development platform sample installation
	3.1 Prerequisites
	3.1.1 Hardware requirements
	3.1.2 Software requirements

	3.2 Rational Application Developer and Portal Tools
	3.3 WebSphere Portal V5.1 Test Environment
	3.4 Configuration of the Test Environment
	3.5 WebSphere Test Environment V5.1 (optional)

	Chapter 4. IBM Portlet API
	4.1 IBM portlets
	4.2 IBM portlet application
	4.3 Servlets versus portlets
	4.4 Portlet modes
	4.5 Portlet states
	4.6 Core objects
	4.6.1 Hierarchy
	4.6.2 Portlet
	4.6.3 PortletAdapter
	4.6.4 PortletRequest
	4.6.5 PortletResponse
	4.6.6 PortletSession object
	4.6.7 Client
	4.6.8 PortletConfig object
	4.6.9 PortletContext object
	4.6.10 PortletSettings object
	4.6.11 PortletApplicationSettings object
	4.6.12 PortletData object
	4.6.13 PortletLog object
	4.6.14 PortletException
	4.6.15 UnavailableException
	4.6.16 PortletWindow object
	4.6.17 User object
	4.6.18 PortletURI

	4.7 Portlet life cycle
	4.8 Listeners
	4.8.1 PortletTitleListener
	4.8.2 PortletPageListener
	4.8.3 PortletSessionListener
	4.8.4 WindowListener
	4.8.5 PortletSettingsAttributeListener
	4.8.6 PortletApplicationSettingsAttributesListener

	4.9 Action event handling
	4.9.1 ActionListener
	4.9.2 ActionEvent
	4.9.3 PortletURI
	4.9.4 ModeModifier

	4.10 Attribute storage summary
	4.11 Portlet JSPs
	4.11.1 Portlet tag library
	4.11.2 Portlet events and messaging

	4.12 Portlet deployment
	4.12.1 web.xml
	4.12.2 portlet.xml
	4.12.3 Parameter summary
	4.12.4 Descriptors relationship (web.xml and portlet.xml)
	4.12.5 UID guidelines

	4.13 Resources

	Chapter 5. A first portlet application
	5.1 Sample scenario
	5.2 Creating the portlet project
	5.2.1 Using the Portlet Project wizard

	5.3 Configuring the test environment
	5.4 Running the portlet project
	5.5 Modifying the portlet project and verifying changes
	5.5.1 Changing the JSP used for the View mode
	5.5.2 Adding a JavaBean

	Chapter 6. IBM Portlet API portlet development
	6.1 About action events
	6.2 Development scenario
	6.3 Creating the portlet project
	6.4 Configuring your project in the test environment
	6.5 Examining and modifying the source code
	6.6 Running your project in the test environment

	Chapter 7. Portlet messaging
	7.1 Portlet messaging
	7.2 MessageListener
	7.3 MessageEvent
	7.4 DefaultPortletMessage
	7.5 PortletMessage
	7.6 Sample scenario
	7.6.1 Description
	7.6.2 Sending a message
	7.6.3 Creating the target portlet
	7.6.4 Running the portlet application

	7.7 Broadcasting messages

	Chapter 8. JSR 168 API
	8.1 JSR overview
	8.1.1 Number of portlet instances
	8.1.2 Portlet windows
	8.1.3 Thread safety

	8.2 JSR 168 comparison to servlets
	8.3 JSR 168 portlet modes
	8.4 JSR 168 Portlet window states
	8.5 Core JSR 168 objects
	8.5.1 interface javax.portlet.Portlet
	8.5.2 class javax.portlet.GenericPortlet
	8.5.3 interface javax.portlet.PortletURL
	8.5.4 interface javax.portlet.PortletContext
	8.5.5 interface javax.portlet.PortletRequest
	8.5.6 interface javax.portlet.ActionRequest
	8.5.7 interface javax.portlet.RenderRequest
	8.5.8 interface javax.portlet.PortletResponse
	8.5.9 interface javax.portlet.ActionResponse
	8.5.10 interface javax.portlet.RenderResponse
	8.5.11 interface javax.portlet.PortalContext
	8.5.12 interface javax.portlet.PortletPreferences
	8.5.13 interface javax.portlet.PreferencesValidator
	8.5.14 interface javax.portlet.PortletConfig
	8.5.15 interface javax.portlet.PortletSession

	8.6 JSR 168 Portlet life cycle
	8.6.1 Instantiation
	8.6.2 Initialization
	8.6.3 Request handling
	8.6.4 End of service

	8.7 Portlet caching
	8.7.1 Remote cache

	8.8 Listeners
	8.8.1 HttpSessionBindingListener
	8.8.2 ServletContextListener
	8.8.3 ServletContextAttributeListener
	8.8.4 HttpSessionListener
	8.8.5 HttpSessionAttributeListener

	8.9 Deployment descriptors
	8.9.1 Portlet.xml declaration
	8.9.2 portlet-app - required, can occur only once
	8.9.3 portlet - can occur zero or more times
	8.9.4 custom-portlet-mode - can occur zero or more times
	8.9.5 custom-window-state - can occur zero or more times
	8.9.6 user-attribute - can occur zero or more times
	8.9.7 security-constraint - can occur zero or more times

	8.10 JSR 168 limitations in WebSphere Portal

	Chapter 9. JSR 168 portlet development
	9.1 Overview
	9.2 Creating a JSR 168 portlet project
	9.2.1 Creating a basic JSR 168 portlet
	9.2.2 Examining the generated portlet

	9.3 Updating the generated portlet
	9.3.1 Modifying the session bean
	9.3.2 View mode
	9.3.3 Edit mode
	9.3.4 Configure mode
	9.3.5 Updating the portlet descriptor (portlet.xml)
	9.3.6 Modifying the MySimplePortletPortletPreferenceValidator class

	9.4 Running the portlet
	9.4.1 Executing the portlet

	Chapter 10. Migrating to JSR 168
	10.1 Modifying the deployment descriptor
	10.1.1 doctype
	10.1.2 portlet-app
	10.1.3 concrete-portlet-app
	10.1.4 portlet
	10.1.5 portlet-name
	10.1.6 web.xml
	10.1.7 cache
	10.1.8 supports
	10.1.9 allows
	10.1.10 config-param
	10.1.11 Locale settings

	10.2 Modifying the Java source
	10.2.1 Package
	10.2.2 Superclass
	10.2.3 doXXX methods
	10.2.4 actionPerformed
	10.2.5 ActionEvent
	10.2.6 Logging
	10.2.7 JSP includes
	10.2.8 PortletData and PortletSettings
	10.2.9 namespace
	10.2.10 portlet URLs

	10.3 Modifying the JSP source
	10.3.1 taglib
	10.3.2 portletAPI:init
	10.3.3 namespace
	10.3.4 Creating URLs
	10.3.5 portletAPI:text
	10.3.6 encodeURL
	10.3.7 CSS

	10.4 Struts
	10.5 JSF
	10.6 Portlet services
	10.7 Messaging

	Chapter 11. Using JSPs and servlets
	11.1 Overview
	11.1.1 Generating output

	11.2 RequestDispatcher
	11.2.1 PortletContext.getRequestDispatcher
	11.2.2 PortletContext.getNamedDispatcher
	11.2.3 PortletRequestDispatcher.include

	11.3 JSP tags
	11.3.1 defineObjects
	11.3.2 renderURL
	11.3.3 actionURL
	11.3.4 namespace
	11.3.5 param
	11.3.6 IBM tags
	11.3.7 JSTL

	11.4 Cascading style sheets (CSS)
	11.4.1 WSRP Styles
	11.4.2 IBM styles

	Chapter 12. Internationalization
	12.1 Resource bundles
	12.1.1 Creating resource bundles in Rational Application Developer
	12.1.2 Translating resource bundles
	12.1.3 Accessing resource bundles in portlets
	12.1.4 Accessing resource bundles in JSPs

	12.2 Translating whole resources
	12.3 JSR 168 API considerations
	12.4 Dynamically changing the language
	12.5 NLS administration
	12.5.1 Portlet NLS administration
	12.5.2 Portal NLS administration
	12.5.3 Setting NLS titles
	12.5.4 Supporting a new language

	12.6 Working with characters
	12.7 NLS best practices
	12.8 Sample scenario: NLS bundles
	12.8.1 NLS bundles
	12.8.2 Accessing NLS bundles from JSPs
	12.8.3 Running the NLS scenario
	12.8.4 Accessing NLS bundles in Java portlets

	12.9 Sample scenario: translating whole resources
	12.10 Dynamically changing the language

	Chapter 13. Struts portlets
	13.1 Overview
	13.2 The Struts portlet framework
	13.2.1 Struts applications
	13.2.2 Changes to Struts JSPs
	13.2.3 Configuration files
	13.2.4 Creating link tags in Struts

	Chapter 14. Creating Struts portlets with the IBM Portlet API
	14.1 Overview
	14.2 Creating Struts applications with IBM portlet API
	14.2.1 Creating a Portlet project
	14.2.2 Inspecting the Struts portlet project
	14.2.3 Designing the application
	14.2.4 Realizing the application components
	14.2.5 Adding logging support
	14.2.6 Adding support to Edit mode
	14.2.7 Realizing the new application components
	14.2.8 Adding internationalization support

	14.3 Messaging
	14.4 Migration

	Chapter 15. Struts portlet development using the JSR 168 API
	15.1 Overview
	15.2 Message flow
	15.3 Creating a Portlet project
	15.3.1 Inspecting the Struts portlet project

	15.4 Designing the application (View mode)
	15.4.1 Realizing the application components
	15.4.2 Realizing the index.jsp page
	15.4.3 Realizing the notConfigured.jsp
	15.4.4 Realizing the Form Bean
	15.4.5 Realizing configured.jsp
	15.4.6 Editing the resources file
	15.4.7 Realizing the welcome action mapping
	15.4.8 Running the Struts portlet

	15.5 Designing the application (Edit mode)
	15.6 Realizing the Edit mode application components
	15.6.1 Realizing the editBean
	15.6.2 Realizing index.jsp
	15.6.3 Realizing the saveConfiguration action

	15.7 Adding new keys to the resources file
	15.8 Running the portlet
	15.9 Adding internationalization support
	15.9.1 Portlet application View mode internationalization
	15.9.2 Struts framework internationalization support
	15.9.3 Editing the Portlet deployment descriptor
	15.9.4 Testing the new locale

	15.10 Adding logging support to the application

	Chapter 16. JavaServer Faces portlets
	16.1 Overview
	16.1.1 Life cycle of a JSF page

	16.2 A simple JSF application
	16.2.1 Creating the pages
	16.2.2 Defining navigation rules
	16.2.3 Developing the beans

	16.3 User interface component model
	16.3.1 User interface component classes
	16.3.2 Component rendering model
	16.3.3 Conversion model
	16.3.4 Event and listener model
	16.3.5 Validation model

	16.4 Navigation model
	16.5 Backing bean management
	16.6 JSF in portlets
	16.6.1 JSF portlet runtime
	16.6.2 Mapping between portlet phases and JSF phases
	16.6.3 Welcome page and navigation in JSF portlets
	16.6.4 Programming guidelines
	16.6.5 Limitations in JSF portlets

	16.7 Migration

	Chapter 17. JavaServer Faces portlet development
	17.1 The calculator application
	17.2 Creating the project
	17.2.1 Inspecting the JSF portlet project

	17.3 Creating the page layout
	17.4 Implementing component attributes and validation
	17.4.1 Testing the validation

	17.5 Binding the front end to the calculator
	17.5.1 Testing the binding

	17.6 Invoking the business logic of the calculator
	17.6.1 Implementing an error page

	17.7 Implementing page navigation
	17.8 Implementing a validator
	17.9 Implementing a value change event
	17.10 Implementing internationalization
	17.10.1 Internationalization of standard validator messages

	Chapter 18. Additional Faces portlet sample scenarios
	18.1 The call center application
	18.1.1 Creating the project
	18.1.2 Creating the page layout
	18.1.3 Defining a parameter for the list
	18.1.4 Creating a detail portlet
	18.1.5 Linking the portlets
	18.1.6 Testing the application

	18.2 The Web service client portlet
	18.2.1 Creating the project
	18.2.2 Creating a new Web service client
	18.2.3 Creating the page layout
	18.2.4 Testing the application

	Chapter 19. Portlet services
	19.1 Portlet services
	19.1.1 ContentAccessService
	19.1.2 Custom services

	19.2 Accessing portlet services
	19.2.1 Accessing a portlet service in an IBM portlet
	19.2.2 Accessing a portlet service in a JSR 168 portlet

	Chapter 20. Credential Vault Service
	20.1 Overview
	20.1.1 Credentials

	20.2 Credential Vault organization
	20.2.1 Vault segments
	20.2.2 Credential slots

	20.3 Working with the CredentialVaultService
	20.3.1 Acquiring a reference to the CredentialVaultService
	20.3.2 Using the CredentialVaultService

	20.4 Credential objects
	20.4.1 Passive credential objects
	20.4.2 Active credential objects
	20.4.3 Storing credential objects in the PortletSession

	Chapter 21. The Credential Vault
	21.1 Sample scenario
	21.2 Importing a secure servlet application
	21.3 Using active credentials
	21.3.1 Creating the Credential Vault portlet application
	21.3.2 Reviewing the generated code
	21.3.3 Updating the generated portlet
	21.3.4 Running the portlet

	21.4 Using passive credentials

	Chapter 22. Accessing JDBC databases from portlet applications
	22.1 Creating a portlet project
	22.1.1 Creating HRPortlet

	22.2 Creating a sample database
	22.2.1 Creating the WSSAMPLE database
	22.2.2 Creating a connection
	22.2.3 Creating an SQL statement
	22.2.4 Generating Java classes

	22.3 Sample scenario
	22.3.1 Overview
	22.3.2 Importing the WAR file
	22.3.3 Reviewing the portlet code
	22.3.4 Running the HRPortlet application

	Chapter 23. Accessing JDBC databases using Data Source in standard portlets
	23.1 Data Source overview
	23.2 Creating a JSR 168 portlet project
	23.2.1 Creating HRPortlet

	23.3 Creating a sample database
	23.3.1 Creating a connection
	23.3.2 Creating an SQL statement
	23.3.3 Generating Java classes

	23.4 Sample scenario
	23.4.1 Overview
	23.4.2 Importing the WAR file
	23.4.3 Reviewing the portlet code
	23.4.4 Creating the Data Source
	23.4.5 Running the HRPortlet168 application

	Chapter 24. IBM API declarative cooperative portlets
	24.1 Overview
	24.1.1 The WebSphere Portal property broker
	24.1.2 Property broker runtime components

	24.2 IBM Portlets for cooperation
	24.2.1 Registering and publishing properties
	24.2.2 Struts integration
	24.2.3 Internationalization

	24.3 Sample scenario (IBM portlets)
	24.3.1 Description
	24.3.2 Source cooperative portlet
	24.3.3 Target cooperative portlet
	24.3.4 Running the cooperative portlets

	Chapter 25. IBM API programmatic cooperative portlets
	25.1 Publishing properties programmatically
	25.2 Portlet event handling
	25.2.1 PropertyListener interface
	25.2.2 EventPhaseListener interface

	25.3 Broadcasting source data
	25.4 Wiring tool
	25.5 Sample scenario
	25.5.1 Declarative source cooperative portlet
	25.5.2 Enabling the portlet for target C2A programmatic
	25.5.3 Running the cooperative portlets
	25.5.4 Wire portlets
	25.5.5 Enabling HRPortlet for programmatic source C2A
	25.5.6 Running the programmatic source portlet

	Chapter 26. JSR 168 cooperative portlets
	26.1 Overview
	26.2 Source cooperative portlet
	26.2.1 Importing the HRPortlet168 portlet
	26.2.2 Internationalization
	26.2.3 Declaring exchange capabilities using WSDL
	26.2.4 Updating the portlet deployment descriptor
	26.2.5 Updating the HRPortlet168 portlet code
	26.2.6 Updating the JSP to generate a link

	26.3 Target cooperative portlet
	26.3.1 Internationalization
	26.3.2 Declaring exchange capabilities using WSDL
	26.3.3 Updating the portlet deployment descriptor

	26.4 Running the cooperative portlets
	26.4.1 Populating the sample database
	26.4.2 Creating a data source
	26.4.3 Running and wiring the cooperative portlets

	Chapter 27. Struts cooperative portlets
	27.1 Overview
	27.2 Source cooperative portlet
	27.2.1 Importing the Echo portlet
	27.2.2 Declaring exchange capabilities using WSDL
	27.2.3 Updating the portlet deployment descriptor
	27.2.4 Updating the EchoSource portlet code
	27.2.5 Internationalization

	27.3 Target cooperative portlet
	27.3.1 Importing the Echo portlet
	27.3.2 Declaring exchange capabilities using WSDL
	27.3.3 Updating the EchoTarget portlet code
	27.3.4 Internationalization

	27.4 Running the cooperative portlets

	Chapter 28. Accessing Web Services from portlet applications
	28.1 Overview
	28.2 Sample scenario
	28.2.1 Creating a Web Service
	28.2.2 Creating a Web Services client portlet

	Chapter 29. Web Services for Remote Portlets (WSRP)
	29.1 Overview
	29.2 Implementing WSRP in WebSphere Portal
	29.2.1 Tasks for Producer portals
	29.2.2 Tasks for Consumer portals
	29.2.3 Testing the scenario

	29.3 Security

	Chapter 30. Portlet debugging
	30.1 Overview
	30.2 Sample scenario
	30.2.1 Fixing compile errors
	30.2.2 Debugging a portlet application

	Chapter 31. Remote Server Attach
	31.1 Overview
	31.2 Sample scenario
	31.2.1 Preparing Remote Portal server to debug
	31.2.2 Creating Remote Portal server users
	31.2.3 Creating a WebSphere Portal Server Attach
	31.2.4 Debugging a portlet on WebSphere Portal Server Attach

	31.3 Defining Web browsers and emulator devices

	Chapter 32. Updating a portal layout
	32.1 Overview
	32.2 Creating a Portal server connection
	32.3 Importing the WebSphere Portal server configuration
	32.4 Modifying the Portal Navigation and Layout
	32.5 Adding portlets
	32.6 Additional ways to add portlets
	32.7 Testing the updated portal configuration
	32.8 Applying themes

	Chapter 33. Creating new portal themes
	33.1 Overview
	33.2 Creating a new theme
	33.3 Editing a theme
	33.4 Editing Styles
	33.5 Applying MyCorp theme
	33.6 Applying a Skin
	33.7 Testing the new Portal Project
	33.8 Publishing the Portal Project
	33.9 Deploying the Portal Project

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

