
ibm.com/redbooks

 Front cover

WebSphere J2EE
Application Development
for the IBM iSeries Server

Bob Maatta
Luis Aused
Cliff Liang

Biswanath Panigrahi
Lowell Thomason
Fernando Zuliani

Build and deploy J2EE compliant
applications for WebSphere 4.0

Use Application Developer to build
iSeries servlets, JSPs, and EJBs

Learn how to interface to
legacy applications

International Technical Support Organization

WebSphere J2EE Application Development for the IBM
~ iSeries Server

May 2002

SG24-6559-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 2002)

This edition applies to Version 4, Release 0, of WebSphere Application Server Advanced Edition for iSeries,
Program Number 5733-WA4, and Version 4, Release 0, of WebSphere Application Server Advanced Single
Server Edition for iSeries, Program Number 5733-WS4, for use with the OS/400 V5R1.

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Notices” on page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team that wrote this redbook. xi
Special notice . xiii
Comments welcome. xiv

Chapter 1. Introduction to J2EE. 1
1.1 Java 2 Enterprise Edition (J2EE) . 2

1.1.1 J2EE platform technologies . 4
1.1.2 J2EE 1.2 required standard extension APIs . 5
1.1.3 J2EE package levels in WebSphere . 5

1.2 J2EE containers . 6
1.3 J2EE components . 7

1.3.1 Client-side components . 7
1.3.2 Server-side components: Servlets . 8
1.3.3 JavaServer Pages: Separating presentation logic . 8
1.3.4 Server-side components: EJBs. 8

1.4 J2EE services . 9
1.4.1 Java Naming Directory Interface. 9
1.4.2 Java Database Connectivity . 10
1.4.3 Security . 10
1.4.4 Transactions (JTA and JTS) . 11
1.4.5 JavaBean Activation Framework (JAF). 12

1.5 J2EE communication . 13
1.5.1 Remote method invocation (RMI/IIOP) . 13
1.5.2 Java Messaging Service . 13
1.5.3 JavaMail . 14

1.6 J2EE packaging and deployment . 14
1.6.1 J2EE deployment descriptor . 15

1.7 J2EE platform roles . 17
1.8 J2EE additional resources . 19

Chapter 2. Servlet and JSP development using VisualAge for Java 21
2.1 Servlet support in WebSphere Advanced Edition 4.0 . 22

2.1.1 IBM development environments for WebSphere applications 22
2.2 Introduction to servlets . 23

2.2.1 Simple servlet example . 25
2.3 Setting up VisualAge for Java to develop and test servlets . 26

2.3.1 Loading the required features . 26
2.3.2 Using the WebSphere Test Environment . 27
2.3.3 Testing the servlet under VisualAge for Java Enterprise Edition 4.0 28
2.3.4 Exporting class files to a JAR file . 28

2.4 Using JDBC to access an iSeries database . 29
2.4.1 The architecture of the sample application . 30
2.4.2 JDBCCatalogSupport class. 31
2.4.3 JDBCItemCatalog class . 32
2.4.4 Testing the application in the scrapbook. 34
© Copyright IBM Corp. 2002. All rights reserved. iii

2.4.5 ItemServlet class. 36
2.4.6 Running the ItemServlet inside VisualAge for Java . 39
2.4.7 Exporting the servlet from VisualAge for Java . 41

2.5 Database connection pools . 41
2.5.1 DataSource version . 41
2.5.2 Running the ItemPoolServlet inside VisualAge for Java . 49
2.5.3 Exporting the ItemPoolServlet servlet from VisualAge for Java 52

2.6 JSP support in WebSphere Version 4.0 . 52
2.6.1 JSP life cycle. 52
2.6.2 JSP design . 54
2.6.3 JSP servlet interface example. 55
2.6.4 Running the CallJSP servlet inside VisualAge for Java . 57
2.6.5 Exporting the CallJSP servlet from VisualAge for Java . 59

2.7 Session management . 59
2.7.1 Session tracking solutions . 59
2.7.2 HttpSession interface . 62
2.7.3 ItemSessionServlet example. 64
2.7.4 Running the ItemSessionServlet servlet inside VisualAge for Java 71
2.7.5 Exporting the ItemSessionServlet from VisualAge for Java 74

Chapter 3. WebSphere V4.0 assembly and deployment tools 75
3.1 WebSphere 4.0 application packaging overview . 76
3.2 Application Assembly Tool overview . 77
3.3 Application packaging and deploying scenario . 78

3.3.1 Packaging MyHelloWorldServlet. 79
3.3.2 Installing the MyHello Web module under the Single Server 83
3.3.3 Packaging ItemServlet . 88
3.3.4 Installing the ItemServlet Web module on the Single Server 91
3.3.5 Running ItemServlet from an HTML file . 93
3.3.6 Packaging ItemPoolServlet . 98
3.3.7 Installing the ItemPool Web module on the Single Server 99
3.3.8 Packaging and deploying CallJSP . 100
3.3.9 Packaging and deploying ItemSessionServlet . 102
3.3.10 Installing the OrderEntry application on Advanced Edition 102
3.3.11 Packaging the MyHelloWorldApp enterprise application 107
3.3.12 Installing the MyHelloWorldApp application on Advanced Edition 120
3.3.13 Testing the MyHelloWorldApp application . 121
3.3.14 Packaging the OrderEntryApp enterprise application . 123
3.3.15 Installing the OrderEntryApp application on Advanced Edition. 136
3.3.16 Testing the OrderEntryApp application . 139

Chapter 4. Introduction to WebSphere Studio Application Developer. 145
4.1 WebSphere Studio Application Developer overview . 146
4.2 Getting started with Application Developer . 149

4.2.1 Navigating in Application Developer . 150
4.2.2 Importing resources . 153
4.2.3 Customizing Application Developer . 155

4.3 Working with Java code . 167
4.3.1 Adding new methods . 167
4.3.2 Compiling Java code. 168
4.3.3 Running the Java code . 169
4.3.4 Exporting the Java code . 173

4.4 Conclusion . 174
iv WebSphere J2EE Application Development for the iSeries Server

Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application
Developer . 175

5.1 Migrating code from VisualAge for Java . 176
5.2 Migrating the OrderEntry WAR file . 177

5.2.1 Importing a WAR file . 177
5.2.2 Building the project and modifying the project’s properties. 179
5.2.3 Exploring the enterprise application structure in Application Developer 182
5.2.4 Testing the servlets . 185

5.3 Developing a new application with Application Developer . 195
5.3.1 New OrderEntry application logic . 196
5.3.2 Building the application . 198
5.3.3 Building the OrderEntry application with Application Developer 199

5.4 Conclusion . 213

Chapter 6. Introduction to Enterprise JavaBeans . 215
6.1 The Enterprise JavaBeans specification . 216
6.2 Enterprise JavaBeans architecture definition . 216
6.3 How EJB technology fits into the Java architecture . 217
6.4 Why EJB is important . 218
6.5 Leveraging Java and EJB technology. 218
6.6 EJB architectural overview . 219

6.6.1 The EJB server . 220
6.6.2 Types of components . 222
6.6.3 Component content. 222

6.7 EJB roles . 224
6.7.1 Enterprise JavaBean provider. 224
6.7.2 Application assembler . 225
6.7.3 Application deployer . 226
6.7.4 Server provider . 226
6.7.5 Container provider . 226

6.8 Using EJB technology on the iSeries server . 226
6.8.1 Overview of Java for the iSeries server . 227
6.8.2 EJB technology on the iSeries server . 228

6.9 EJB interoperability with other distributed architectures . 228
6.9.1 CORBA . 228
6.9.2 Component Object Model (COM) . 228
6.9.3 IBM WebSphere Business Components. 229

6.10 Conclusion . 229

Chapter 7. Overview of the OrderEntry application . 231
7.1 The ABC Company . 232
7.2 The ABC Company database . 232
7.3 A customer transaction . 232
7.4 Application flow . 233
7.5 Customer transaction flow. 234
7.6 Database table structure . 239
7.7 OrderEntry application database layout . 240
7.8 Database terminology . 243

Chapter 8. iSeries EJB application development scenario . 245
8.1 OrderEntry application architecture with objects . 246
8.2 Business data: Entity Enterprise JavaBeans . 248

8.2.1 Database access: Using a connection pool . 248
8.2.2 Persistence: Container or bean managed. 250
 Contents v

8.2.3 Container-managed persistence . 250
8.2.4 Bean-managed persistence . 251

8.3 Business processes: Session Enterprise JavaBeans . 251
8.3.1 Three-tier versus two-tier architecture . 251
8.3.2 Stateless or stateful beans . 252
8.3.3 Order Entry example . 252
8.3.4 Stateless session bean: OrderPlacement . 252
8.3.5 Stateful session bean: OrderEntryClerk . 257

8.4 Conclusion . 262

Chapter 9. Developing EJBs with Application Developer . 265
9.1 Bottom-up mapping . 266

9.1.1 Creating an EJB project . 266
9.1.2 Importing a schema . 266
9.1.3 Creating the entity EJB from the imported schema. 272
9.1.4 Defining getter methods as read-only . 276
9.1.5 Deploying the Stock bean in the WebSphere Test Environment 277

9.2 Top-down mapping . 288
9.2.1 Adding methods to the Stock bean . 292
9.2.2 Mapping the Stock bean . 293
9.2.3 Deploying the stock bean and testing . 296

9.3 Meet-in-the-middle mapping . 296
9.3.1 Creating the stock enterprise bean . 296
9.3.2 Adding the methods . 301
9.3.3 Mapping the stock bean . 302
9.3.4 Deploying and testing the enterprise bean . 306

9.4 Developing a bean-managed persistence (BMP) entity bean 307
9.4.1 Testing the BMP bean . 314

9.5 Conclusion . 314

Chapter 10. Building Java applications with Enterprise JavaBeans 315
10.1 Developing the HelloWorld EJB application . 316

10.1.1 Creating the HelloWorld bean in Application Developer 316
10.1.2 Creating a servlet that uses the EJB. 322
10.1.3 Creating a Java client application that uses the EJB . 328

10.2 Building Java applications with Application Developer . 332
10.2.1 The ItemsDb class . 332
10.2.2 Using the ItemsDb class . 339

10.3 Building servlets . 340
10.4 Migration from EJB version 1.0 to version 1.1 . 344
10.5 Installing the OrderEntry application on the server . 345

10.5.1 Generating the OrderEntry enterprise application. 345
10.5.2 Deploying . 347

10.6 Conclusion . 349

Chapter 11. Interfacing to legacy applications. 351
11.1 Interfacing to legacy applications . 352
11.2 Modifying the RPG application . 352

11.2.1 Processing the submitted order . 352
11.3 Enhancing the Java application . 354

11.3.1 Changing the CartServlet servlet . 354
11.3.2 Changing the ItemsDb class . 357
11.3.3 Changing the OrderPlacement session bean . 357

11.4 Using data queues to interface to legacy applications . 363
vi WebSphere J2EE Application Development for the iSeries Server

11.4.1 Interfacing to data queues from EJBs . 363
11.4.2 The writeDataQueue method . 364

11.5 Using MQSeries to interface to legacy applications . 366
11.5.1 The MQCon class . 367
11.5.2 Including MQSeries in the OrderEntry application . 370
11.5.3 Changing the ItemsDb class . 373
11.5.4 Changing the OrderPlacement session bean . 374

11.6 Using XML to interact with applications . 379
11.6.1 Using XML . 379

11.7 Conclusion . 390

Chapter 12. The Command package . 393
12.1 The IBM Framework for e-business . 394
12.2 Distributed Java applications . 395
12.3 The Command package . 395

12.3.1 The Command interface . 396
12.3.2 Facilities for creating commands. 397

12.4 Creating a command. 398
12.4.1 Benefits of the Command package framework . 398
12.4.2 Using the EJBCommandTarget class . 399
12.4.3 Creating the GetCustomerCmdEJB command . 399
12.4.4 Using the GetCustomerCmdEJB command . 403

12.5 Creating your own command targets . 406
12.5.1 Constructing the GetCustomerCmd command and its target 406
12.5.2 The OrderPlacementCmd command . 412

12.6 Applying the Model-View-Controller architecture . 414
12.6.1 Re-designing the OrderEntry application using the MVC architecture 414

12.7 Conclusion . 423

Appendix A. Additional material . 425
Locating the Web material . 425
Using the Web material . 425

System requirements for downloading the Web material . 425
How to use the Web material . 426

Related publications . 427
IBM Redbooks . 427

Other resources . 427
Referenced Web sites . 428
How to get IBM Redbooks . 428

IBM Redbooks collections. 428

Abbreviations and acronyms . 429

Index . 431
 Contents vii

viii WebSphere J2EE Application Development for the iSeries Server

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

e (logo)®
AFP™
AS/400®
AS/400e™
Balance®

Redbooks (logo)™
DB2®
FFST™
IBM®
iSeries™

MQSeries®
Net.Data®
OS/400®
Perform™
Redbooks™

S/390®
SP™
VisualAge®
WebSphere®
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus Word Pro Domino™

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x WebSphere J2EE Application Development for the iSeries Server

Preface

WebSphere Application Server 4.0 delivers the Java 2 Enterprise Edition (J2EE)
implementation. It is the IBM strategic Web application server and a key IBM ~ iSeries
product for enabling e-business applications. The iSeries server and WebSphere Application
Server are a perfect match for hosting e-business applications.

You can build J2EE applications using WebSphere Studio Application Developer – a new IBM
application development environment. This is a follow-on product for VisualAge for Java and
WebSphere Studio. It combines the best of these products into one integrated development
environment.

This IBM Redbook shows customers, business partners, and ISVs how to build and deploy
iSeries J2EE applications and how to use them to access iSeries resources. It also shows
you how to use your iSeries server as a Java server. It is written for anyone who wants to use
Java servlets, JavaServer Pages, and Enterprise JavaBeans on the iSeries server.

This redbook provides many practical programming examples with detailed explanations of
how they work. The examples were developed using VisualAge for Java Enterprise Edition
4.0 and WebSphere Studio Application Developer 4.02. They were tested using WebSphere
Application Server 4.0.2 Advanced Edition and Advanced Edition Single Server. To effectively
use this book, you should be familiar with the Java programming language and
object-oriented application development.

Throughout this redbook, we show and discuss code snippets from example programs. The
example code is available for download. To understand this code better, download the files, as
explained in Appendix A, and use them as a reference.

You can learn how to install, configure, and administer WebSphere 4.0 in an iSeries
environment by referring to the complementary redbook WebSphere 4.0 Installation and
Configuration on the IBM ~ iSeries Server, SG24-6815.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization Rochester Center.

Bob Maatta is a Consulting Software Engineer at the IBM International
Technical Support Organization, Rochester Center. He is the ITSO
technical leader for iSeries e-business application development. He
writes extensively and develops and teaches IBM classes worldwide
on all areas of iSeries client/server and e-business application
development. He has worked on numerous computer platforms
including S/390, S/38, AS/400, and personal computers. In his

Note: This Redbook reflects the IBM ~ iSeries server name. Throughout this
Redbook, we use the shortened version “iSeries” to refer to both AS/400e and iSeries
servers.
© Copyright IBM Corp. 2002. All rights reserved. xi

assignment, he specializes in Java programming and the IBM WebSphere Application Server.
He is a Sun Certified Java Programmer and a Sun Certified Java Developer. He is a graduate
of Michigan Technology University in Houghton, Michigan.

Luis Aused is an IT Specialist for IBM Global Services Spain. He has
worked for IBM for over six years. He has developed several
applications for the iSeries server, including a data warehouse
application for an Insurance company. In the last two years, he
developed several e-business applications for WebSphere on the IBM
~ zSeries platform that interface with DB2 and MQSeries. His
areas of expertise include e-business application development, the
iSeries server, WebSphere, VisualAge for Java, and DB2. He holds a
degree in physics from Complutense University, Madrid, Spain.

Cliff Liang is a Senior Consultant at ASTECH Solutions, Inc., a
Toronto based consulting firm and IBM Business Partner. Before
joining ASTECH Solutions, Inc. in 2001, he worked at IBM China as a
Senior IT Specialist for the iSeries brand. His expertise includes the
iSeries server, database performance, Java, and the IBM Framework
for e-business. He is a graduate of the University of Science &
Technology in China with a bachelor’s degree in electrical
engineering.

Biswanath Panigrahi is an Advisory IT Specialist working in
PartnerWorld for Developers at Bangalore, India. He works with the
iSeries brand and is responsible for supporting Techline for
ASEAN/SA. He has worked at IBM for over four years and has over
five years of professional IT experience. He currently specializes in
creating e-business solutions and Web enabling existing application
using various development tools. His area of expertise include the
iSeries server, WebSphere Application Server, Domino, Java,
client/server programming, and Web-based development. He holds a
master’s degree in computer application from Orissa University of
Agriculture and Technology, Bhubaneswar, India.

Lowell Thomason is a Staff Software Engineer at the IBM iSeries
Software Support Center in Rochester, Minnesota. He is responsible
for supporting AS/400 and iSeries e-business applications for both
U.S. and international customers. He has four years of experience in
technical support, problem determination, customer relations,
application development, custom coding, and e-commerce solutions.
He holds a bachelor of science degree in computers from Mayville
State University, Mayville, North Dakota. His areas of expertise
include WebSphere Application Server, Java, Net.Data, HTML, and
SQL.
xii WebSphere J2EE Application Development for the iSeries Server

Fernando Zuliani is an IBM Certified Consulting IT Specialist focused
on the technical sales and support of the WebSphere Suite of
Products. His job is to support the Americas, with specific focus on
Latin American sales. He has 14 years of experience with IBM. In his
current job, he performs WebSphere Proof-of-Concept (POC)
scenarios for customers in IBM Latin America. These POC scenarios
consist of in-depth workshops with presentations and hands-on
exercises that map to customer needs. He has presented extensively
at IBM events worldwide.

Thanks to the following people for their invaluable contributions to this project:

Jim Beck
Mike Burke
Larry Hall
Dan Hiebert
Kevin Paterson
George Silber
Art Smet
Frances Stewart
Mike Turk
Lisa Wellman
IBM Rochester Laboratory

Special notice
This publication is intended to help anyone who wants to use IBM WebSphere Application
Server Version 4.0 Advanced Edition or WebSphere Application Server Version 4.0 Advanced
Single Server Edition in the iSeries environment. The information in this publication is not
intended as the specification of any programming interfaces that are provided by the IBM
WebSphere Application Server Advanced Edition product. See the PUBLICATIONS section
of the IBM Programming Announcement for the IBM WebSphere Application Server Standard
Edition product for more information about what publications are considered to be product
documentation.
 Preface xiii

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your comments about
this or other Redbooks in one of the following ways:

� Use the online Contact us review Redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829
xiv WebSphere J2EE Application Development for the iSeries Server

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to J2EE

Java 2 Platform, Enterprise Edition (J2EE) defines a standard that applies to all aspects of
architecting and developing multi-tier server-based applications. It defines a standard
architecture composed of an application model, a platform for hosting applications, a
compatibility test suite (CTS), and a reference implementation.

The primary concern of J2EE is the platform specification. It describes the runtime
environment for a J2EE application. This environment includes application components,
containers, resource manager drivers, and databases. The elements of this environment
communicate with a set of standard services that are also specified.

J2EE makes all Java enterprise APIs and functionality available and accessible in an
integrated manner. This integration helps to simplify complex problems in the development,
deployment, and management of multi-tier server-centric enterprise solutions. WebSphere
Application Server Version 4.0 is fully J2EE 1.2 compliant.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 Java 2 Enterprise Edition (J2EE)
The Java 2 platform is a Sun specification for enterprise application development. Sun
licenses the technology of J2EE to other companies, also known as the Web Technology
Providers, such as IBM. Figure 1-1 shows the three editions that make up the Java 2 platform.

Figure 1-1 Java 2 platform editions

Each of the platforms are explained here:

� Java 2 Platform, Micro Edition (J2ME)

A highly optimized Java runtime environment targeting a wide range of consumer
products, including pagers, cellular phones, screen phones, digital set-top boxes, and car
navigation systems.

� Java 2 Platform, Standard Edition (J2SE)

The essential Java 2 SDK, tools, runtimes, and APIs for developers writing, deploying, and
running applets and applications in the Java programming language. It includes earlier
Java Development Kit versions JDK 1.1 and JRE 1.1.

� Java 2 Platform, Enterprise Edition (J2EE)

Combines a number of technologies in one architecture with a comprehensive Application
Programming Model and compatibility test suite for building enterprise-class server-side
applications.

Java 2 Enterprise Edition is a set of related specifications, a single standard for
implementing and deploying enterprise applications. J2EE is an extension of the Java 2
Platform, Standard Edition. J2EE makes all Java enterprise APIs and functionality
available and accessible in an integrated manner. Companies can use J2EE as a
reference to identify product capabilities before they invest in a technology provider
vendor. As shown in Figure 1-2, the standard includes:

– An Application Programming Model for enterprise application developers and
architects.

– A platform to run the applications.

– A compatibility test suite to verify that a platform complies with the standard.

Java Technology
Enabled Services

Java Technology
Enabled Desktop

Workgroup
 Server

High-End
 Server

 Micro
Edition

Standard
 Edition

Enterprise
 Edition
2 WebSphere J2EE Application Development for the iSeries Server

– A reference implementation to show the capabilities of J2EE and provide an
operational definition.

– Containers that are run-time environments that provide components with specific
services. For example, Web containers provide run-time support to clients by
processing requests by invoking JavaServer Page (JSP) files and servlets and
returning results from the components to the client. Similarly, Enterprise JavaBean
(EJB) containers provide automated support for transaction and state management of
enterprise bean components, as well as lookup and security services.

Figure 1-2 J2EE architecture

The J2EE specification is a consensus and collaboration from numerous major enterprise
software vendors. The current J2EE specification level is 1.3. Since this redbook covers
WebSphere Application Server 4.0, which supports J2EE 1.2, we focus on the WebSphere
Application Server 4.0 supported J2EE 1.2 level. WebSphere 4.0 supports some of the J2EE
1.3 specification.

Benefits of J2EE
J2EE defines a simple standard that applies to all aspects of architecting and developing
large scale applications. J2EE naturally encourages the adoption of a multiple tier
architecture and a strict separation between business logic and the presentation layer.

In addition, the architectural approach suggested by the J2EE standards lends itself to the
implementation of highly scalable infrastructures. An example is WebSphere Application
Server 4.0, where the application workload can be transparently distributed across a number
of concurrent processes or even across a number of parallel systems. J2EE also provides the
technology to facilitate the integration of existing applications with newly developed J2EE
applications.

The specifications are generic enough to allow an end user to choose among a wide array of
middleware, tools, hardware, operating systems, and application designs. J2EE has created a
whole new market for application servers, development tools, connectors, and components.

Multi-tier application environments
The J2EE specification supports a distributed application model. Applications can be spread
across multiple platforms or tiers. Typically, we divide J2EE applications into three tiers. The
J2EE application parts as shown in Figure 1-3 are presented in the J2EE components.

Tools Application Programming Model

A
pp

le
ts

Ja
va

B
e a

n s

Java 2 SDK, Standards Edition
CORBA RMI Database Naming / Directory

C
on

ne
ct

or
sEJBs JSPs Servlets

Container

Transactions

Messaging Mail
Chapter 1. Introduction to J2EE 3

� The first tier contains the presentation logic. Typically this is a done by a servlet or
JavaServer Page.The middle tier contains the business logic. Typically this is controlled by
servlets or Enterprise JavaBeans.

� The third tier contains the database and legacy applications.

� Clients typically interface to the application through a Web browser, a Java application, or
a pervasive computing device.

Figure 1-3 Multi-tier application environments

1.1.1 J2EE platform technologies
From a pure technological standpoint, you can recognize three areas (shown in Figure 1-4)
within the J2EE specifications.

Components
Components are provided by the
application developers and include
servlets, JavaServer Pages, and
Enterprise JavaBeans. These
components live inside J2EE
containers that are provided by the
middleware vendors, such as IBM with
the WebSphere Application Server. A
J2EE container needs to provide
support for a number of services and
communications. See 1.3, “J2EE
components” on page 7, for details.

Services
The services are functions that are
accessible to the components via a
standard set of APIs. For example, a

component has to access a relational database by using the Java Database Connectivity
(JDBC) APIs, while it can use the Java Naming Directory Interface (JNDI) APIs to access the

Communication

J2EEC
om

po
ne

nt
s Services

Figure 1-4 J2EE Platform technologies
4 WebSphere J2EE Application Development for the iSeries Server

naming services. These APIs need to be supported by the container. Each level of the J2EE
specification calls for supporting a specific level of each set of APIs. For example, the current
level of J2EE supported by WebSphere 4.0 is 1.2. This implies support for JDBC level 2.0.
See 1.4, “J2EE services” on page 9.

Communication
The essence of J2EE is the definition of a distributed, object-oriented infrastructure.
Components need to communicate with each other in this distributed world. Therefore, the
containers need to provide the appropriate communication mechanisms to make this happen.
Examples of communications included in the J2EE standards are RMI/IIOP for remote
method calls, JavaMail for programmatic access to e-mail, and Java Messaging Service
(JMS) for accessing messaging technologies. Refer to 1.5, “J2EE communication” on
page 13, for more details.

1.1.2 J2EE 1.2 required standard extension APIs
J2EE application components run in runtime environments provided by the containers that
are part of the J2EE platform. The J2EE platform supports four separate types of containers
(Figure 1-5), one for each J2EE application component type. The containers include
application client containers, applet containers, Web containers for servlets and JSPs, and
Enterprise JavaBean containers.

The J2EE platform also includes a number of Java standard extensions. Table 1-1 indicates
which standard extensions are required to be available in each type of container. It also
shows the required version of the standard extension.

Table 1-1 J2EE 1.2 required standard APIs

1.1.3 J2EE package levels in WebSphere
Table 1-2 shows the details of servlet, JSP, and EJB changes included in the J2EE
component level of WebSphere.

API Applet Application client Web EJB

JDBC 2.0 N Y Y Y

JTA 1.0 N Y Y Y

JNDI 1.2 N N Y Y

Servlet 2.2 N Y Y N

JSP 1.1 N N Y N

EJB 1.1 N Y (1) Y (2) Y

RMI/IIOP 1.0 N Y Y Y

JMS 1.0 N Y Y Y

JavaMail 1.1 N N Y Y

JAF 1.0 N N Y Y

(1) - Application clients can only use the enterprise bean client APIs.
(2) - Servlets and JSP pages can only use the enterprise bean client APIs.
Chapter 1. Introduction to J2EE 5

Table 1-2 J2EE component API levels in WebSphere

Table 1-3 show the details of JDBC, JTA/JTS, JNDI, JAF, XML4J, and XSL changes included
in J2EE Services level of WebSphere.

Table 1-3 J2EE service API levels in WebSphere

Table 1-4 shows the details of RMI/IIOP, JMS, and Java Mail changes included in the J2EE
communication level of WebSphere.

Table 1-4 J2EE communication API levels in WebSphere

WebSphere 4.0 JDK level
WebSphere 4.0 implements JDK level 1.3, while WebSphere 3.5 used JDK 1.2.2. One of its
major benefits is improved performance. The IBM Java Runtime Environment (JRE) 1.3
provides up to a 22 percent improvement over the JRE 1.2.2. Improvements in the JVM, JIT
compiler, garbage collection, and threads management account for the performance
improvements.

1.2 J2EE containers
Containers provide the runtime support for the application components. A container provides
a total view of the underlying J2EE APIs to the application components. Interposing a
container between the application components and the J2EE services allows the container to
inject services defined by the components' deployment descriptors, such as declarative
transaction management, security checks, resource pooling, and state management.

API WAS 3.5.2+ WAS 4.0

Servlet 2.1, 2.2 2.2

JSP 0.91, 1.0, 1.1 1.1

EJB 1.0 1.1

API WAS 3.5.2+ WAS 4.0

JDBC 1.0, 2.0 2.0

JTA/JTS 1.0, 1.0.1, 1.1 1.1

JNDI 1.2 1.2.1

JAF N/A 1.0

XML4J 2.0.15 3.1.1

XSL 1.0.1 2.0

API WAS 3.5.2+ WAS 4.0

RMI/IIOP 1.0 1.0

JMS 1.0.1 1.0.1

Java Mail N/A 1.1

Note: WebSphere Application Server 4.0 also includes some J2EE 1.3 features such and
J2C and JMS Transaction (JMS/XA).
6 WebSphere J2EE Application Development for the iSeries Server

Each component runs inside a container that is provided by the J2EE platform provider. A
typical J2EE product provides a container for each application component type: application
client container, applet container, Web component container, and enterprise bean container
as shown in Figure 1-5. The services that are offered depend on the type of container.

1.3 J2EE components
Components are provided by application developers and include applets, servlets,
JavaServer Pages, and Enterprise JavaBeans. These components live inside J2EE
containers. A J2EE container needs to provide support for a number of services and
communications. Figure 1-5 shows the J2EE component object model.

Figure 1-5 J2EE components

1.3.1 Client-side components
Application clients and applets are components that run on the client.

Application clients
Client-side components are Java programs that are typically graphical user interface (GUI)
programs that run on a desktop computer. Application clients offer a user similar experience
to that of native applications and have access to all of the facilities of the J2EE middle tier.

Client-side components run inside a J2EE compliant client container. A client container
provides security, communication and other required J2EE services. Application clients can
interact with:

� EJBs through RMI/IIOP
� Web components through HTTP/HTTPS
Chapter 1. Introduction to J2EE 7

The deployment of client side components is platform specific, since details are unspecified
by the J2EE specifications.

Applets
Applets are GUI components that typically run in a Web browser. They can run in a variety of
other applications or devices that support the applet programming model. Applets can be
used to provide user interfaces for J2EE applications.

Applets were Java's first attempt to solve some of the problems created by the common
gateway interface (CGI) programming model. They created an entirely new set of challenges
including network bandwidth requirements, poor performance, security, and lack of function.
They are not widely accepted. Servlets provide an alternative to applets.

1.3.2 Server-side components: Servlets
Servlets are Java classes that allow application logic to be embedded in the HTTP
request-response process.The J2EE 1.2 specification requires support for the servlet 2.2
API, as described in Table 1-1 on page 5. For more details about servlets, see 2.2,
“Introduction to servlets” on page 23.

1.3.3 JavaServer Pages: Separating presentation logic
JSPs enable server-side scripting using Java. Server-side scripting is not an alternative to
client-side scripting. Client-side scripting, JavaScript or Java applets, is important for
performing input validity tests and other computation eliminating interaction with the server.

Although it is certainly possible to create a servlet that "does everything" (controller, model,
and view logic), this is highly undesirable from both an initial coding and a maintenance
perspective. JSPs provide a clean way to separate the View parts (presentation logic) from
the rest of the Web application:

� This means that Java programmers can focus on building highly valuable, reusable
component frameworks in the object space, and don’t have to deal with HTML.

� Web developers can focus on building a catchy, attractive Web site, and don't have to deal
with the discipline of programming. Even better, they can own the JSPs, eliminating the
problem of programmers and Web designers tromping on each others' work.

� The JSP specification allows an <HTML> oriented syntax, with clear <BEAN> tags to help
the Web designer understand how to inject dynamic content from the Java components
running in the object space.

JSPs are responsible for generating the output HTML going back to the Web client. They
bridge the gap between Java and HTML, because the source JSP code is parsed and
converted to pure a Java servlet, and then loaded and run just like any other servlet under the
control of WebSphere. The only responsibility of this JSP/servlet is to generate output HTML,
fulfilling the role of the View part of the application. For more information about JSPs, see 2.6,
“JSP support in WebSphere Version 4.0” on page 52.

The J2EE 1.2 specification requires support for JSP 1.1, as described in Table 1-1 on page 5.

1.3.4 Server-side components: EJBs
The Enterprise JavaBean standard is a server-side Java-based component architecture for
building multi-tier, distributed object applications. Components are pre-developed application
code used to assemble applications.
8 WebSphere J2EE Application Development for the iSeries Server

EJBs have the same programming model as the client-side JavaBeans programming model,
which makes it easy for Java programmers to use EJBs to build applications. By building
reusable business objects as EJBs, programmers can focus on pure business logic and let
the open standards based (EJB specification) EJB server manage the way the EJBs are
mapped back to persistent data stores.

The J2EE 1.2 specification requires support for EJB 1.1, as described in Table 1-1 on page 5.
For more information about Enterprise JavaBeans, see Chapter 6, “Introduction to Enterprise
JavaBeans” on page 215.

1.4 J2EE services
The services are functions that are accessible to the components through a standard set of
APIs. For example, a component has to access a relational database by using the JDBC
APIs, while it can use the JNDI APIs to access the naming services. These APIs need to be
supported by the container. Each level of the J2EE specification calls for supporting a specific
level of each set of APIs. For example, the current level of J2EE supported by WebSphere 4.0
is 1.2, which requires support for JDBC level 2.0.

1.4.1 Java Naming Directory Interface
JNDI is an integral part of J2EE to lookup J2EE objects and resources. JNDI APIs provide
naming and directory functionality to Java programs, allowing components to store and
retrieve named Java objects. Naming services provide name-to-object mappings.

JNDI is independent of any specific directory access protocol, allowing easy deployment of
new directory services and manipulation of Java instances by name.

Containers provide two levels of naming schemes:

� Global: The actual JNDI namespace.
� Local: Read-only, accessible to components. Local names are bound to their global

counterparts at deployment.

The J2EE 1.2 specification requires support for the JNDI 1.2 specification, as described in
Table 1-1 on page 5. WebSphere 4.0 provides an integrated JNDI 1.2 compliant name
service.

Using JNDI
To access its naming context, a component creates a javax.naming.InitialContext object.

WebSphere 4.0 provides a new naming service named
com.ibm.websphere.naming.WsnInitialContextFactory. WebSphere 3.5.2+ uses
com.ibm.ejs.ns.jndi.CNInitialContextFactory. It is deprecated in WebSphere 4.0.

System-provided objects, such as UserTransaction objects, are stored in java:comp/env in
the JNDI name space. User-defined objects are stored in subcontexts of java:comp/env. Here
are a couple of examples:

� java:comp/env/ejb
� java:comp/env/jdbc
Chapter 1. Introduction to J2EE 9

1.4.2 Java Database Connectivity
JDBC provides database-independent connectivity to a variety of data stores. The J2EE 1.2
specification requires:

� JDBC 2.0 Core APIs: Basic database services
� JDBC 2.0 Extension APIs: Advanced functionality

– Connection Pooling
– Transactional capabilities

The JDBC 2.0 Core and Extension APIs are supported in WebSphere 3.5 and above.
Functionality is provided by a combination of WebSphere Application Server and a compliant
JDBC driver.

1.4.3 Security
J2EE access control involves authentication to verify the user's identity:

� Basic authentication: The Web server authenticates a principal using the user name and
password obtained from the Web client.

� Digest authentication: User name and a password are transmitted in an encrypted form.

� Form-based authentication: The Web container can provide an application-specific form
for logging in.

� Certificate authentication: The client uses a public key certificate to establish its identity
and maintain its own security context.

J2EE access control also involves authorization to determine if the user has permission to
access the requested resource:

� Authorization is based on roles, which contain users or groups of users.
� Permissions are mapped by the deployer.

The security runtime consists of three core components, as shown in Figure 1-6.

A security plug-in is attached to a Web server. The plug-in performs initial security checks
when users request Web resources, such as HTML files or servlets, from Web browsers over
HTTP. The security plug-in challenges the Web client to authenticate, and contacts the EJS
Web Collaborator to check the client's authentication information and check authorization.

An EJS Web collaborator is attached to every application server that contains a Web
container. For every method call to a servlet, the EJS Web collaborator contacts the security
application to perform the authorization check.

An EJS security collaborator is attached to every application server that contains an
Enterprise JavaBean container. For every method call to an enterprise bean, the security
collaborator contacts the security application to perform the authorization check and enforce
the delegation policy.
10 WebSphere J2EE Application Development for the iSeries Server

Figure 1-6 Security architecture

For more information on J2EE security in the iSeries environment, see Chapter 6 in the
redbook WebSphere 4.0 Installation and Configuration on the IBM ~ iSeries Server,
SG24-6815.

1.4.4 Transactions (JTA and JTS)
The Java Transaction API (JTA) allows applications to access transactions in a manner that is
independent of specific implementations. JTA specifies standard Java interfaces between a
transaction manager and the parties involved in a distributed transaction system:

� The transactional application
� The J2EE server
� The manager that controls access to the shared resources affected by the transactions

The J2EE 1.2 specification requires support for JTA 1.0, as described in Table 1-1 on page 5.

Java Transaction Service (JTS) specifies the implementation of a transaction manager that
supports JTA and implements the Java mapping of the Object Management Group Object
Transaction Service 1.1 specification. A JTS transaction manager provides the services and
management functions required to support transaction demarcation, transactional resource
management, synchronization, and propagation of information that is specific to a particular
transaction instance.

JTA is the API, and JTS is the implementation. JTA is oriented at application developers, and
JTS is oriented at middleware providers.
Chapter 1. Introduction to J2EE 11

There are two ways to start a transaction:

� Programmatic: In the Java code, using the javax.transaction.UserTransaction
interface.

� Declarative: Using EJB Container Managed Transaction.

Container-managed transactions
The EJB container is responsible for managing transaction boundaries, dictated by the
transaction attribute modes specified for the EJB method as defined in the EJB deployment
descriptor. Two transactional specifiers, the transaction attribute and the isolation attribute,
are set in the deployment descriptor. The values chosen for these specifiers give the
container the information it needs to generate the support code.

The transaction attributes are:

� Required: Use client transaction context, if present; otherwise create a new one.

� Required New: Always create a new transaction.

� Not supported: Don't propagate the client transaction, if present.

� Supported: Use the client transaction, if present.

� Mandatory: Use the client transaction, if present; otherwise, throw a
TransactionRequiredException exception.

� Never: If client has transaction, throw an exception (new in EJB 1.1)

Concurrent transaction isolation is dictated by the isolation level. The isolation level is no
longer in the EJB 1.1 specification. However, WebSphere Application Server 4.0 continues to
support the isolation level as an IBM extension. The isolation levels that are supported are
Read, Repeatable-Read, Read-Committed, and Serializable.

Two JDBC drivers are available for the iSeries server that support JTA 1.0:

� IBM Toolbox for Java JDBC driver:
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

� IBM Developer Kit for Java (native JDBC driver):
com.ibm.db2.jdbc.app.DB2StdXADataSource

When running on the iSeries server, such as under WebSphere Application Server, use the
native driver. It performs better. The toolbox JDBC driver should be used to access iSeries
database tables from remote systems.

1.4.5 JavaBean Activation Framework (JAF)
JAF is a MIME type support used by JavaMail to handle data in e-mail messages. It’s not
intended for typical application use. However, advanced e-mail interactions may require using
it. Refer to 1.5.3, “JavaMail” on page 14.

The J2EE 1.2 specification requires support for JAF 1.0, as described in Table 1-1 on page 5.
12 WebSphere J2EE Application Development for the iSeries Server

1.5 J2EE communication
The essence of J2EE is the definition of a distributed, object-oriented infrastructure.
Components need to communicate with each other in this distributed world. Therefore, the
containers need to provide the appropriate communication mechanisms to make this happen.
An example of the communications included in the J2EE standards are RMI/IIOP for remote
method calls, JavaMail for programmatic access to e-mail, and JMS for accessing messaging
technologies.

1.5.1 Remote method invocation (RMI/IIOP)
Remote method invocation (RMI) turns local method calls into remote method calls. From an
application view, it just makes a method call. The infrastructure handles calling the remote
method and receiving the response. EJB clients use remote method invocation over Internet
Inter-ORB Protocol (RMI/IIOP) to communicate with other EJBs.

RMI support provides the rmic compiler, which generates:

� Client and server stubs that work with any Object Request Broker (ORB).

� An IDL file compatible with the RMI interface. To create a C++ server object, an
Application Component Provider uses an IDL compiler to produce the server stub and
skeleton for the server object.

� A CORBA API and ORB.

An Application Component Provider defines the interface of a remote object in Interface
Definition Language (IDL). Then it uses an IDL compiler to generate client and server stubs
that connect object implementations to an ORB, a library that enables CORBA objects to
locate and communicate with one another. ORBs communicate with each other using the
Internet Inter-ORB Protocol (IIOP).

The J2EE 1.2 specification supports RMI/IIOP level 1.0, as described in Table 1-1 on page 5.

1.5.2 Java Messaging Service
Java Messaging Service is a reliable interface for asynchronously sending and receiving
messages. Messaging communication is:

� Peer to peer: Any client can send/receive messages to or from another client.

� Loosely coupled: The sender and receiver do not have to be available at the same time
to communicate.

� Asynchronous: A JMS provider can deliver messages to a client as they arrive; a client
does not have to request messages in order to receive them.

� Reliable: The JMS API can ensure that a message is delivered once and only once.
Lower levels of reliability are available for applications that can afford to miss messages or
receive duplicate messages.

� Point-to-point messaging: A client sends a message to the message queue of another
client. Each message has one receiver.

� Publish-subscribe messaging: Clients subscribe to a well-known node called a topic. All
subscribers receive a message sent to the topic. The topic adjusts as publishers and
subscribers activate and deactivate.
Chapter 1. Introduction to J2EE 13

The J2EE 1.2 specification requires support for JMS 1.0, as described in Table 1-1 on page 5.
JMS 1.0 requires JMS transactions interacting with a single JMS resource provider only
(one-phase commit). J2EE 1.3 requires support for distributed JMS Transaction (JMS/XA)
two-phase commit. WebSphere Application Server Version 4.0 Advanced Edition supports
JMS/XA. JMS/XA is not available in WebSphere Application Server Version 4.0 Advanced
Single Server Edition. JMS/XA requires MQSeries.

1.5.3 JavaMail
JavaMail provides APIs for reading, composing, and sending e-mail. The APIs model a mail
system, allowing Web components to interact with an e-mail system.

APIs require service providers to implement specific protocols:

� Send Mail: SMTP
� Receive/Store Mail: POP3, IMAP
� JAF to handle non-plain text mail content (MIME, URL, file attachments)

The J2EE 1.2 specification requires support for JavaMail 1.1, as described in Table 1-1 on
page 5.

1.6 J2EE packaging and deployment
J2EE components are grouped in modules. End each module has its own deployment
descriptor. Applications can include one or more modules, as shown in Figure 1-7 and as
explained here:

� EJB modules group related EJBs in a single module and are packaged in Java Archive
(JAR) files. The EJB JAR file contains all the EJBs and a deployment descriptor.

� Web modules group servlet class files, JSPs, HTML files, and images. They are packaged
in Web Application Archive (WAR) files. The WAR file contains the Web components and a
deployment descriptor.

� Application client modules are also packaged in Java Archive (JAR) files. The application
client JAR contains all the Java classes of the application client and a deployment
descriptor.

A J2EE application is packaged in an Enterprise Archive (EAR) file. The application has a
deployment descriptor that allows configuration to a specific container’s environment when
deployed, as shown in Figure 1-7.
14 WebSphere J2EE Application Development for the iSeries Server

Figure 1-7 J2EE packaging

For more information about deploying J2EE applications, see Chapter 3, “WebSphere V4.0
assembly and deployment tools” on page 75.

1.6.1 J2EE deployment descriptor
Deployment descriptors are used to communicate the needs of application components to the
deployer. The deployment descriptor is a contract between the application component
provider or assembler and the deployer. The application component provider or assembler is
required to specify the application component's external resource requirements, security
requirements, environment parameters, and so on in the component's deployment descriptor.
The J2EE product provider is required to provide a deployment tool that interprets the J2EE
deployment descriptors and allows the deployer to map the application component's
requirements to the capabilities of a specific J2EE product and environment.

A modules’s deployment descriptor, an XML-based file, dictates interaction with the container.
The deployment descriptor describes the components of the module and the environment
that the container is to provide for the components. Each module and ear file has a
deployment descriptor.

When using the IBM WebSphere Software Platform foundation and tools, such as
WebSphere Application Assembly Tool (AAT) or WebSphere Studio Application Developer,
the deployment descriptor can be automatically created and verified by the WebSphere
deployment tools.

The deployment descriptor can also be manually created or edited. However, this is not
recommended because it is tedious and error prone.
Chapter 1. Introduction to J2EE 15

EJB deployment descriptor
The deployment descriptor file associated with EJB components is named ejb-jar.xml. There
is only one deployment descriptor for all the EJBs in the JAR file. Previously, in the EJB 1.0
specification, each enterprise bean had its own deployment descriptor.

The EJB deployment descriptor defines the following information for each EJB:

� Home interface, remote interface and bean name
� For session beans, the session type
� For entity beans, the persistence type

For container-managed persistence (CMP), the primary key and container managed fields

� Transaction type
� Environment entries
� EJB references

The EJB deployment descriptor defines the following common assembly information:

� The security roles used in the EJB, the mapping of roles to methods

� For container managed transactions, the mapping of EJB methods to transaction
attributes

WAR deployment descriptor
The deployment descriptor file associated with Web application components (WAR) is named
web.xml. It defines the following information.

� Servlets, JSP, static resources: Servlet URL pattern, class/file, attributes
� Security constraints: For each URL pattern, the assigned security roles for methods
� Login configuration
� EJB and resource references
� Security roles for this Web module

EAR deployment descriptor
The deployment descriptor file associated with an enterprise application (EAR) modules is
named application.xml. It defines the following information:

� All the modules packages in the EAR file: EJB, WAR, Application Client
� Defined security roles

Figure 1-8 shows an EAR deployment descriptor example that defines modules for EJB and
Web components.
16 WebSphere J2EE Application Development for the iSeries Server

Figure 1-8 Enterprise application (EAR) deployment descriptor example

1.7 J2EE platform roles
It is important to understand the J2EE roles because it helps to better understand the
WebSphere tooling and how it addresses the separation of roles. Figure 1-9 and the following
list describe the J2EE roles with a distinct focus on products, applications, and runtime:

� Product provider: The company that designs and makes available for purchase the J2EE
platform, APIs, and other features defined in the J2EE specification. Product providers are
typically operating system, database system, application server, or Web server vendors
who implement the J2EE platform. IBM is a J2EE product provider with WebSphere 4.0.

� Tools provider: The person or company who makes development, assembly, and
packaging tools used by component providers, assemblers, and deployers. IBM is a Tool
Provider with VisualAge for Java and WebSphere Studio Application Developer.

� Component provider: The company or person who creates Web components, enterprise
beans, applets, or application clients for use in J2EE applications.

� Application assembler: The company or person who gets application component JAR
files from component providers and assembles them into a J2EE application EAR files.
The assembler or deployer can edit the deployment descriptor directly or use tools that
correctly add and edit XML tags. A software developer performs the following tasks to
deliver an EAR file containing the J2EE application:

– Assembles EJB JAR and Web components (WAR) files created in the previous phases
into a J2EE application (EAR) file.

– Specifies the deployment descriptor for the J2EE application.

– Verifies that the contents of the EAR file are well formed and comply with the J2EE
specification.

� Deployer: Deploys or installs the J2EE application (.ear) into the J2EE server platform.

� System administrator: Administers the computing and networking infrastructure where
J2EE applications run, and oversees the runtime environment.
Chapter 1. Introduction to J2EE 17

Figure 1-9 J2EE platform roles

Figure 1-10 describes the J2EE packaging and deployment tasks associated with the J2EE
roles:

� Application component provider: Specifies component deployment descriptors and
packages components into modules.

� Application assembler: Resolves dependencies between deployment descriptor
elements in different modules and assembles modules into larger deployment units.

� Deployer: Customizes deployment descriptor elements for the environment and installs
deployment units into servers.

Figure 1-10 J2EE packaging and deployment tasks
18 WebSphere J2EE Application Development for the iSeries Server

1.8 J2EE additional resources
You can find additional J2EE information, such as the J2EE Specification, J2EE Blueprints,
J2EE Reference Implementation, Java PetStore application, and articles and discussions on
J2EE at: http://java.sun.com/j2ee
Chapter 1. Introduction to J2EE 19

http://java.sun.com/j2ee

20 WebSphere J2EE Application Development for the iSeries Server

Chapter 2. Servlet and JSP development
using VisualAge for Java

Servlets are server side Java programs that run inside request/response-oriented servers,
such as WebSphere Application Server, and extend them in some manner. For example, a
servlet may be responsible for taking data in an HTML order entry form and applying the
business logic used to update a company's order database. Servlets are to servers as applets
are to browsers.

JavaServer Pages (JSP) extend the servlet architecture. They provide an easy way to
separate business logic from the presentation of information. They allow you to access
server-side components from Web pages while separating the presentation of dynamic
content from the generation of that content. You do not need to know the Java programming
language to use JavaServer Pages. JSPs give you the ability to access the feature set of Java
in an easy-to-use tagging framework that generates dynamic content for the Web.

This chapter covers iSeries servlet and JSP application development for the WebSphere
Application Server V4.0 environment using VisualAge for Java. The servlet and JSP support
are the same for WebSphere Application Server Version 4.0 Advanced Single Server Edition
and WebSphere Application Server Version 4.0 Advanced Edition.

2

© Copyright IBM Corp. 2002. All rights reserved. 21

2.1 Servlet support in WebSphere Advanced Edition 4.0
Like version 3.5, the WebSphere Application Server 4.0 environment exists independently of
the HTTP server using its resources. WebSphere Application Server 4.0 also provides an
embedded HTTP server. This internal HTTP server can be used for testing purposes but
should not be used in a production environment (Figure 2-1.)

Figure 2-1 WebSphere V4.0: Typical servlet scenarios

As you look at Figure 2-1, notice how WebSphere Application Server works. For both
WebSphere Application Server Version 4.0 Advanced Single Server Edition and WebSphere
Application Server Version 4.0 Advanced Edition, if you are using an external HTTP server,
there is an additional step in the process. This step is the Web server interface to the
application server. In this case, the HTTP server and Java application server run as separate
jobs in separate subsystems. If you use the internal HTTP server, there is only the application
server running in its subsystem.

WebSphere Application Server V4.0 implements the Java Servlet 2.2 and JavaServer Pages
1.1 specification. The JavaServer Web Development Kit (JSWDK) is the reference
implementation for the JavaServer Pages technology and the Java servlet API. The JSWDK
is available at no charge from the Sun Microsystems Web site. For a complete definition of the
Sun Java servlet and JSP API specification, refer to the Sun online documentation at the
following Web sites:

� http://java.sun.com/products/servlet/2.2/
� http://java.sun.com/products/jsp

2.1.1 IBM development environments for WebSphere applications
There are a number of IBM application development environments that can be used for
developing WebSphere applications. Two of the most popular ones for an iSeries environment
are:

� VisualAge for Java Enterprise Edition 4.0: Provides a servlet and Enterprise JavaBean
development environment

Browser

Browser

Web
Server

Embedded
Web

Server

Billing
System

Servlet

Bean

JSP File

DB2

Data Access
Bean

JDBC

Presentation
(HTML,XML)

Business
Logic (Java)

Business
Logic (Java)

HTTP

HTTP

HTTPS

or

AS/400 HTTP
Server

WebSphere Application Server

AS/400 HTTP
Server
22 WebSphere J2EE Application Development for the iSeries Server

http://java.sun.com/products/servlet/2.2/
http://java.sun.com/products/jsp

� WebSphere Studio Version V4.0: Provides a combined development environment for
servlets and JSPs

In writing this chapter, we used VisualAge for Java Enterprise Edition 4.0 as our development
environment. We required the ability to easily integrate servlets with both the IBM Toolbox for
Java classes and Enterprise JavaBeans. While IBM WebSphere Studio is a simpler tool to
use to achieve servlet/JSP generation, it would have required us to manually modify the
generated servlets and import them into VisualAge for Java for integration into our ultimate
integrated JSP, servlet, and EJB environment.

We also used a new IBM development tool – WebSphere Studio Application Developer V4.0
(Application Developer). It integrates the functionalities of both VisualAge for Java and
WebSphere Studio and provides an advanced development environment for J2EE application
development. It improves your productivity by providing an easy way to package J2EE
compliant applications. We use Application Developer to build Web applications in Chapter 5,
“Building Java servlets and JSPs with WebSphere Studio Application Developer” on page
175.

2.2 Introduction to servlets
Before you develop servlet applications, you need some background information about
the basic concepts behind servlets. Figure 2-2 shows an overview of the servlet
architecture and how servlets communicate with a browser. Communication between a
browser and a servlet application follows this sequence:

1. The client (browser) sends a request to the HTTP server.
2. The HTTP server forwards the request to the servlet.
3. The servlet receives the request and generates a response by accessing resources and

passes the response back to the HTTP server. The response usually contains HTML or
other data that can be processed by the client.

4. The HTTP server sends the response to the calling client (browser).
5. The browser renders the data.

Figure 2-2 Servlet architecture

Servlets are modules that run inside request/response-oriented servers, such as the IBM
WebSphere Application Server for iSeries. The servlets extend the servers in some manner.
For example, a servlet may be responsible for taking data from an HTML order form and
applying the company’s business logic to update a company's order database.
Chapter 2. Servlet and JSP development using VisualAge for Java 23

Servlets can provide services for HTTP servers or extensions to HTTP servers. They can
perform functions that are equivalent to CGI programs, server-side includes, and server-side
APIs (NSAPI and ISAPI). Servlets can also be used as a powerful substitution for CGI scripts.
Although servlets can provide services outside of the HTTP environment, the HTTP servlet is
of most interest.

Servlet support is provided in two packages:

� javax.servlet.*: Provides support for generic, protocol-independent servlets
� javax.servlet.http.*: Provides support for HTTP-specific functionality

The classes and interfaces are organized as shown in Figure 2-3.

Figure 2-3 Servlet hierarchy

Servlets are a standard extension to Java, which means that servlets are part of the Java
language, but they are not part of the core Java API. Therefore, while they may work with any
Java Virtual Machine, servlet classes may not be bundled with all Java Virtual Machines.

You can obtain the two packages that are required to develop servlets, javax.servlet and
javax.servlet.http, at the Javasoft Web site at: http://www.javasoft.com

With VisualAge for Java, these packages are available in the Sun JSDK class libraries
project.

Servlets are usually used in the HTTP environment. For this reason, the HttpServlet class is
extended, which, in turn, extends the GenericServlet class. To respond to a client request, the
HttpServlet must be extended and override one or more of the following methods:

� doGet(): To support HTTP GET requests
� doPost(): To support HTTP POST requests
� doDelete(): To support HTTP DELETE requests
� doPut(): To support HTTP PUT requests

Usually, a servlet only overrides the doGet() and doPost() methods.

Interface

Servlet

Class

Class

Generic Servlet
implements

HttpServlet
extends

extends
UserServlet

Override one or more of.......
* doGet ()
* doPost ()
* service ()
*

* doGet ()
* doPost ()
* service ()
*

Class
24 WebSphere J2EE Application Development for the iSeries Server

http://www.javasoft.com

2.2.1 Simple servlet example
When accessed from a Web browser, the servlet in Example 2-1 generates the HTML page
shown in Example 2-2.

Example 2-1 MyHelloWorldServlet
package nservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyHelloWorldServlet extends javax.servlet.http.HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<html>");
out.println("<head><title>My Hello World</title></head>");
out.println("<body>");
out.println("<P><CENTER>Hello World </P>");
out.println("</body></html>");
out.close();

}
}

Example 2-2 Hello World HTML source
<html>
<head><title>Hello World</title></head>
<body>
<P><CENTER>Hello World</P>
</body></html>

The code starts with three import statements. The java.io package is a standard package in
the core Java platform. However, the two other packages, javax.servlet and javax.servlet.http,
are particular to the servlet API. The javax.servlet package provides the general classes and
interfaces for servlets. The javax.servlet.http package provides HTTP-specific classes and
interfaces for servlets.

This servlet extends the javax.servlet.http.HttpServlet and overrides the doGet() method. By
extending the abstract HttpServlet class of the javax.servlet.http package, the servlet gains
access to specialized methods for handling the HTTP protocol. Since HttpServlet is an
abstract class, classes that extend the HttpServlet class must override at least one method of
the HttpServlet class. MyHelloWorldServlet overrides the doGet() method.

When the server receives a GET request for the servlet, the server calls the service()
method of the servlet, passing it two objects as parameters:

� HttpServletRequest (the request object)
� HttpServletResponse (the response object)
Chapter 2. Servlet and JSP development using VisualAge for Java 25

The service() method of the servlet routes the GET request to the doGet() method of the
servlet. The servlet communicates with the server and ultimately with the client through these
request and response objects.

The HttpServletRequest object represents the request of the client. This object supplies the
servlet with methods to retrieve HTTP protocol specified header information, the parameters
for this request, information about the client, and so forth.

The HttpServletResponse object represents the servlet response to the client. The servlet
invokes the methods of the response object to send the response that it has prepared back to
the client. The servlet can also use these methods to set HTTP response headers.

The servlet then calls the getWriter() method of the response object to get a print writer for
writing formatted text responses. It uses the returned PrintWriter object to generate the HTML
text.

When the servlet is called from the browser, you see the servlet output as shown in
Figure 2-4.

Figure 2-4 MyHelloWorldServlet running on the iSeries server

2.3 Setting up VisualAge for Java to develop and test servlets
VisualAge for Java offers an Integrated Development Environment (IDE). It provides some
very useful capabilities for developing and testing servlets and JavaServer Pages.

VisualAge for Java Enterprise Edition 4.0 provides a test version of the WebSphere
Application Server. It is called the WebSphere Test Environment (WTE). It includes an
application server that is integrated right into the integrated development environment. It
includes a servlet engine, a persistent name server, a JSP execution monitor, and a
DataSource configuration wizard.

2.3.1 Loading the required features
To work with VisualAge for Java, you must first load the necessary features from the
repository into the VisualAge for Java work space. To perform a feature installation, follow
these steps:

1. Select File-> Quick Start-> Features-> Add Features.

2. Select the following features:

– IBM WebSphere Test Environment
– IBM Enterprise Toolkit for AS/400

3. Click OK to load the features into the workspace.
26 WebSphere J2EE Application Development for the iSeries Server

2.3.2 Using the WebSphere Test Environment
To use the WebSphere Test Environment in VisualAge for Java 4.0, complete the following
steps:

1. Install VisualAge for Java Enterprise Edition, Version 4.0. Then, install VisualAge for Java
Enterprise Edition’s latest patches. During the Feature Install installation process, you are
prompted to indicate the document root on your system (the document root is where your
Web resources, including HTML files and JSP files, are stored). Because there is minimal
error checking, make sure that the document root directory exists and is valid.

2. After the installation process is completed, restart VisualAge for Java. The features are
automatically imported into the repository.

3. Launch the WebSphere Application Server Test Environment. To do this, in the VisualAge
for Java Workbench, select Workspace-> Tools-> WebSphere Test Environment
(Figure 2-5).

Figure 2-5 Starting the WebSphere Test Environment

4. The WebSphere Test Environment starts. Since this is the first time that it is started, it will
take more time than normal to start. Be patient.

5. Once the WTE starts, as shown in Figure 2-6, you can click Start Servlet Engine to start
the servlet engine.

Note: If you want to change the document root later, you can change it in the
doc.properties file. This file is located in the \ide\project_resources\IBM WebSphere
Test Environment\properties\server\servlet\httpservice\ subdirectory.
Chapter 2. Servlet and JSP development using VisualAge for Java 27

Figure 2-6 Starting Servlet Engine

You can now test servlets inside VisualAge for Java. You can use the VisualAge for Java
debugger to monitor and debug the servlet Java code interactively.

2.3.3 Testing the servlet under VisualAge for Java Enterprise Edition 4.0
Once the WebSphere Test Environment starts and the servlet engine is active, you can run
the servlet in a Web browser. The servlet, JSP files, and HTML files from the designated
document root can be served. To run the MyHelloWorldServlet, enter either of the following
URLs:

http://127.0.0.1:8080/servlet/nservlets.MyHelloWorldServlet
http://localhost:8080/servlet/nservlets.MyHelloWorldServlet

The MyHelloWorld servlet page appears as shown in Figure 2-7.

Figure 2-7 The MyHelloWorldServlet class

2.3.4 Exporting class files to a JAR file
In WebSphere Application Server V3.5, you can export the class files to the iSeries Integrated
File System (IFS) directly and deploy them into the WebSphere Application Server
environment. In WebSphere Application Server V4.0, however, this is not supported. You use
the WebSphere Application Assembly Tool (AAT) to create a J2EE Web application that can
28 WebSphere J2EE Application Development for the iSeries Server

be installed on WebSphere Application Server 4.0. For the Java classes in VisualAge for
Java, we first export the files to a JAR file and then we can use it as the source for AAT. See
Chapter 3, “WebSphere V4.0 assembly and deployment tools” on page 75, for more
information about using AAT.

Here is how to export Java classes into a JAR file:

1. Select the MyHelloWorldServlet class file in the VisualAge for Java workbench.

2. Right-click and select Export.

3. In the Export SmartGuide, select the Jar File radio button.

4. On the next page, enter the JAR file name and directory (here we store it in
c:\wsws\wsws.jar), as shown in Figure 2-8.

5. Click Finish. The JAR file is stored on the local drive.

In Chapter 3, “WebSphere V4.0 assembly and deployment tools” on page 75, we use AAT to
assemble it into a J2EE Web application.

Figure 2-8 Exporting Java classes into a JAR file

2.4 Using JDBC to access an iSeries database
This example builds a servlet that uses JDBC to access a database table on the iSeries
server. The table that we access is named ITEM. It has the columns shown in Table 2-1. It is
found in a library named APILIB.
Chapter 2. Servlet and JSP development using VisualAge for Java 29

Table 2-1 Item file description

Figure 2-9 shows the output of the servlet. Please note that, by calling the servlet in this
manner, the HTTP request that the servlet receives is the default GET request.

Figure 2-9 The results of running ItemServlet

2.4.1 The architecture of the sample application
This section shows you the benefit of a proper application architecture. That is, you can use
the same functionality for applets, servlets, and applications with only minor changes. To
demonstrate this, we structure the example application as shown in Figure 2-10.

Column name Column description Length Decimals Type

IID Item ID 6 0 Character

INAME Item Name 24 0 Character

IPRICE Price 5 2 Packed

IDATA Item Information 50 0 Character
30 WebSphere J2EE Application Development for the iSeries Server

Figure 2-10 Application architecture

The application consists of multiple packages:

� access: This package contains the JDBCItemCatalog class that is responsible for
database access. The database access is implemented using JDBC. The class contains
one method to connect to the database, connectToDB(), and two methods, getRecord()
and getAllV(), to retrieve data from the databases.

� nservlets: This package contains classes that provide the end-user interface. The servlet
examples implement the HttpServlet abstract class. The ItemServlet class in this package
manages all the user interface-oriented work, such as getting and interpreting the user
requests that are received in the form of HTTP requests and generating the response in
the form of HTML. To obtain the items information that is included in the generated HTML,
the ItemServlet class forwards the database access work to the JDBCItemCatalog class.

2.4.2 JDBCCatalogSupport class
The JDBCCatalogSupport class is the super class for the JDBC-based access classes. It
adds a few methods that are shared among several JDBC-based access classes.

JDBCCatalogSupport.getRows() method
Only one JDBCCatalogSupport method is relevant for the JDBCItemCatalog class. The
getRows() method is shown in Example 2-3.

Example 2-3 JDBCCatalogSupport.getRows() method
public java.util.Vector getRows(java.sql.ResultSet aResultSet) {

java.util.Vector aDataVector = new Vector();

try {

while (aResultSet.next()) {
String[] data = new String[4];
data[0] = aResultSet.getString(1); // Item ID
data[1] = aResultSet.getString(2); // Item Name
data[2] = aResultSet.getBigDecimal(3, 2).toString(); // price
data[3] = aResultSet.getString(4); // Item Information
// add the data element (String[]) to the vector
aDataVector.addElement(data);

ItemServlet applets

applet packagenservlet package

end user
interface

access
package

another
class

JDBCItemsCatalog
class

data access

JDBCCatalogSupport
Chapter 2. Servlet and JSP development using VisualAge for Java 31

}
} catch (SQLException ex) {...}
return aDataVector;

}

To make our code more generic in nature, we use vectors to pass information. The getRows()
method accepts an SQL ResultSet object and returns a vector. It loops through the ResultSet
object. Each row of the ResultSet object is converted into an array of strings. The array of
strings is added to the vector.

2.4.3 JDBCItemCatalog class
The JDBCItemCatalog class extends JDBCCatalogSupport and defines three private
variables as shown in Example 2-4:

� dbConnection: A java.sql.Connection object that represents a session with a specific
database. Within the context of a Connection object, SQL statements are executed and
results are returned.

� psAllRecord: A java.sql.PreparedStatement object that represents a precompiled SQL
statement that is stored in the PreparedStatement object. This object can then be used to
efficiently run this statement multiple times. We use this PreparedStatement object to
retrieve all the Item database rows.

� psSingleRecord: A java.sql.PreparedStatement object used to retrieve one row from the
Item database.

Example 2-4 JDBCItemCatalog class

package access;

import java.util.*;
import java.sql.*;

public class JDBCItemsCatalog extends JDBCCatalogSupport{

private java.sql.Connection dbConnection;
private java.sql.PreparedStatement psAllRecord;
private java.sql.PreparedStatement psSingleRecord;
.
.
.

}

JDBCItemCatalog.connectToDB() method
The connectToDB() method (Example 2-5) handles the connection to the iSeries server.

Example 2-5 JDBCItemCatalog.connectToDB() method
public String connectToDB(String url, String userid, String password,String driver) {

// Create a properties object for JDBC connection
Properties jdbcProperties = new Properties();

// Set the properties for the JDBC connection
32 WebSphere J2EE Application Development for the iSeries Server

jdbcProperties.put("user", userid);
jdbcProperties.put("password", password);
jdbcProperties.put("naming", "sql");
jdbcProperties.put("errors", "full");
jdbcProperties.put("date format", "iso");
jdbcProperties.put("extended dynamic", "true");
jdbcProperties.put("package", "ServTest");

try {
try {
Driver dr = (Driver)Class.forName(driver).newInstance();

} catch (Exception ex) {... return "cannot register JDBC driver";}

dbConnection = DriverManager.getConnection(url, jdbcProperties); //toolbox

psAllRecord = dbConnection.prepareStatement("select * from item");
psSingleRecord = dbConnection.prepareStatement(

 "SELECT * FROM ITEM WHERE IID = ?");

} catch (SQLException ex) {... return "connection failed sql exception";}
return "connection successful";

}

The connectToDB() method accepts the four parameters shown in Table 2-2 and returns a
String containing a short information message to indicate a successful connection or an error
message.

Table 2-2 The parameters of the JDBC driver

To make it easier to manage the properties of the JDBC connection, we use a
java.util.Properties object and set the different JDBC connection properties, such as SQL
naming convention, date format, and so on.

Before a JDBC connection can be made, you need to load the JDBC driver and register it with
the driver manager. These two operations can be done in one statement:

Class.forName(driver);

The JDBC documentation states, “When a Driver class is loaded, it should create an instance
of itself and register it with the DriverManager.”

The next step is to use the driver manager to get a JDBC connection. We use the
prepareStatement() method of the connection object to create two SQL-prepared
statements. One SQL statement (psALLRecord) is used to retrieve all the rows from the ITEM
table, and the second (psSingleRecord) is used to retrieve one row from the ITEM table. To
choose the specific row dynamically, while gaining the performance benefits of compiled SQL
statements, we use a parameter marker in the SQL statement.

Parameter Description JDBC driver Example

url A database URL in the form
jdbc:subprotocol:subname

Toolbox jdbc:as400://as05/APILIB

Native jdbc:db2://as05/APILIB

userid A valid user ID

password A valid password

driver The name of the class that implements
the JDBC driver to use

Toolbox com.ibm.as400.access.AS400JDBCDriver

Native com.ibm.db2.jdbc.app.DB2Driver
Chapter 2. Servlet and JSP development using VisualAge for Java 33

JDBCItemCatalog.getAllV() method
The getAllV() method executes the SQL query previously prepared in the psAllRecord
preparedStatement object and uses the getRows() method inherited from the
JDBCCatalogSupport class (Example 2-6) to convert the returned result set into a vector.

Example 2-6 JDBCItemCatalog.getAllV() method
public java.util.Vector getAllV() {

java.util.Vector aDataVector = new Vector();
java.sql.ResultSet aResultSet = null;
try {

aResultSet = psAllRecord.executeQuery();
aDataVector = getRows(aResultSet);

} catch (SQLException ex) {
ex.printStackTrace();

}
return aDataVector;

}

JDBCItemCatalog.getRecord() method
The getRecord() method sets the part number value for the parameter marker using the
setString() method of the psSingleRecord preparedStatement object. Then, it executes the
SQL query and uses the getRows() method, shown in Example 2-7, to convert the returned
result set into a vector.

Example 2-7 JDBCItemCatalog.getRecord() method

public java.util.Vector getRecord(String partNo) {

java.util.Vector aDataVector = new Vector();
java.sql.ResultSet aResultSet = null;
try {

psSingleRecord.setString(1, partNo);
aResultSet = psSingleRecord.executeQuery();
aDataVector = getRows(aResultSet);

} catch (SQLException ex) {
ex.printStackTrace();

}
return aDataVector;

}

2.4.4 Testing the application in the scrapbook
Before we implement the servlet, we want to make sure the data access bean works properly.
There is a function in VisualAge for Java called the scrapbook, which can be used to test the
class without a user interface.

We open the scrapbook from the Workbench window menu and enter the code shown in
Example 2-8.
34 WebSphere J2EE Application Development for the iSeries Server

Example 2-8 Code in scrapbook

access.JDBCItemsCatalog aItemsCatalog = new access.JDBCItemsCatalog();
aItemsCatalog.connectToDB("jdbc:as400://system/teamxx","user","password",
 "com.ibm.as400.access.AS400JDBCDriver");
java.util.Vector itemsVector = aItemsCatalog.getAllV();
java.util.Enumeration items = itemsVector.elements();
while (items.hasMoreElements()) {
 String[] aItem = ((String[]) items.nextElement());
 System.out.println(aItem[0] + " " + aItem[1] + " " + aItem[2] + " " + aItem[3]);
}

Let’s go through the code. First, it creates a new instance of the JDBCItemsCatalog class
named aItemsCatalog. Then it executes the connectToDB method of the JDBCItemsCatalog
class. Once connected, it executes the getAllV method of the JDBCItemsCatalog class to
retrieve all the rows from the Items Table and return them in a vector named itemsVector.
Then it uses the Enumeration nextElement method to read each row from an Enumeration
and store the information in a String array named aItem and print them on the console.

As shown in Figure 2-11, to execute this code, we need to enter the valid values for:

� URL
� User
� Password
� JDBC driver

Figure 2-11 Scrapbook in VisualAge for Java

We open the Console window of VisualAge for Java (from Window menu) to see the output
messages.

We select all the text and press either Ctrl-E to run the code or use the pop-up menu and
select the Run option. As shown in Figure 2-12, you see the rows retrieved from the database
and displayed on the console, which means the data access bean works.
Chapter 2. Servlet and JSP development using VisualAge for Java 35

Figure 2-12 Console results for the scrapbook test

2.4.5 ItemServlet class
The ItemServlet class shown in Example 2-9 is the servlet implementation. It imports the
generic servlet support package, javax.servlet, and the HTTP servlet support package,
javax.servlet.http. This class extends the SuperServlet support class.

The SuperServlet class is a support class that we provide in the nservlets package. We use it
to help control the logging of messages and to read information from an external properties
file. It provides these methods:

� getServerRoot(): Returns the base URL of the server upon which this servlet is running,
making it easy to dynamically build URLs.

� flexLog(): Writes a log entry either to the servlet log or to the system log as defined in the
class initialization.

� getMainPropertiesFile(): Returns a Properties object loaded from the config.properties
file.

� outputHeader(): Writes the HTML Header to the specified PrintWriter.

The ItemServlet class keeps a reference to the JDBCItemsCatalog class that does all the
database-related work.

Example 2-9 ItemServlet class
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class ItemServlet extends SuperServlet {
36 WebSphere J2EE Application Development for the iSeries Server

private access.JDBCItemsCatalog aJDBCItemsCatalog;
}

ItemServlet.init() method
The init() method is called automatically only once during the servlet life cycle by
WebSphere Application Server when it loads the servlet. It is guaranteed to finish before any
service requests are accepted. After successful initialization, WebSphere does not call the
init() method again, unless it reloads the servlet after it has unloaded and destroyed it.

The init() method shown in Example 2-10 starts by calling super.init (config) and
passing it a ServletConfig object. This call is very important because the init method should
save the ServletConfig object so that it can be returned by the getServletConfig method.
Calling the super.init() method saves a reference to the config object for future use.

Example 2-10 ItemServlet.init() method
public void init(ServletConfig config) throws ServletException {

super.init(config);
aJDBCItemsCatalog = new access.JDBCItemsCatalog();
String url = getInitParameter("url");
String userid = getInitParameter("user");
String password = getInitParameter("password");
String driver = getInitParameter("driver");

if ((url == null) || (userid == null) || (driver == null) || (password == null)) {

 throw new ServletException("Could not retrieve all the Initial Parameters, cannot
 continue");

}
String returnValue = aJDBCItemsCatalog.connectToDB(url, userid, password, driver);
log("ItemServlet: return from connect = " + returnValue);
return;

}

To connect to the database, we perform these steps:

1. Load the initial parameters for the database URL, user ID, password, and JDBC driver.
2. Connect to the database using the JDBCItemsCatalog.connectToDB() method.

The javax.servlet.GenericServlet.getInitParameter() method returns a string containing
the value of the named initialization parameter. Or it may return null if the requested
parameter does not exist.

After the init() method returns successfully, the ItemServlet servlet is loaded, the database
connection is set, and the two SQL-prepared statements are prepared. The servlet service
method is now ready to accept requests from the doPost() method.

ItemServlet.doPost() method
The doPost() method shown in Example 2-11 is called by the servlet service() method to
service HTTP POST requests. This method performs the following steps:

1. Sets the response MIME type to text/html.

2. Gets the response PrintWriter to write the HTML output.

3. Gets the value of the request partno input parameter.
Chapter 2. Servlet and JSP development using VisualAge for Java 37

The value can be *ALL to indicate that you want to get all the items from the table or a
specific item number. If the parameter is null, it defaults to *ALL.

4. Writes the HTML header.

This work is done by the outputHeader() method from the SuperServlet class.

5. Retrieves the data from the database by handing the work to the proper JDBCItemsCatalog
method.

If the partno parameter is *ALL, the getAllV() method is called. Otherwise, the
getRecord() method is called. In both cases, a vector of String arrays is returned. Each
String array describes one item and includes item ID, name, price, and description.

6. Writes the HTML body by calling the outputItemInformation() method.

Example 2-11 ItemServlet.doPost method
public void doPost(HttpServletRequest request, HttpServletResponse response) throws
IOException {

// set the MIME type to text/html
response.setContentType("text/html");
// create the output stream
PrintWriter out = response.getWriter();
try {

// get the value from the input field named partno (see HTML file)
// and check if value is valid

//Only get the first parameter
String parameter = null;
if ((request.getParameter("partno")) == null)

parameter = "*ALL";
else

parameter = request.getParameter("partno");
Vector parts = null;
flexLog("ItemServlet: parameter passed in from HTML is: " + parameter);
// write the HTML header to the output stream
outputHeader(out, getServletInfo());
// retrieve all data from the database
if (parameter.toUpperCase().equals("*ALL")) {

parts = aJDBCItemsCatalog.getAllV();
} else

parts = aJDBCItemsCatalog.getRecord(parameter);

// write the HTML table to the output stream
outputItemInformation(out, parts);
out.close();
return;

} catch (Throwable e) {
printError(out, e);

}
} // end of doPost()
38 WebSphere J2EE Application Development for the iSeries Server

ItemServlet.doGet method
The doGet() method, shown in Example 2-12, forwards the HTTP GET requests to the
doPost method. Since GET is the default HTTP request, invoking the servlet from a URL,
such as http://sysname:port/webapp/OrderEntry/ItemServlet, causes the doGet() method
to be called. The doGet() method then calls the doPost() method. In this case, the partno
parameter is null and defaults to *ALL, which eventually creates an HTML page with
information about all the items in the Item file.

Example 2-12 ItemServlet.doGet() method
public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException {

doPost(request,response);
return;

}

ItemServlet.outputItemInformation() method
The method presented in Example 2-13 generates HTML pages that contain a
four-column-wide table and populates this table with information from the parts Vector
parameter.

Example 2-13 ItemServlet.outputItemInformation() method

private void outputItemInformation(PrintWriter out, Vector partsVector) throws IOException
{

flexLog("ItemServlet: outputItemInformation()...");
Enumeration parts = partsVector.elements();
out.println("<TABLE BORDER>");
out.println("<P><CENTER>Here are the results of your

 query:</P>");
out.println("<TR>");
out.print("<TH>ITEM ID</TH><TH>Item Name</TH><TH>Price</TH><TH>Description</TH>");
out.println("</TR>");
while (parts.hasMoreElements()) {

String[] aPart = ((String[]) parts.nextElement());
out.print("<TD>" + aPart[0] + "</TD>");
out.print("<TD>" + aPart[1] + "</TD>");
out.print("<TD><CENTER>$" + aPart[2] + "</CENTER></TD>");
out.print("<TD>" + aPart[3] + "</TD>");
//out.print("<TD><CENTER>" + aPart[4] + "</CENTER></TD>");
out.println("</TR>");

}; // end while
out.println("</TABLE>");
out.println("</BODY></HTML>");
flexLog("ItemServlet: outputItemInformation() executed.");

} // end outputPartsInformation()

2.4.6 Running the ItemServlet inside VisualAge for Java
Once we finish the code, we can test the ItemServlet inside VisualAge for Java. The
ItemServlet is different than the MyHelloWorld servlet because it uses initial parameters to set
runtime values.
Chapter 2. Servlet and JSP development using VisualAge for Java 39

VisualAge for Java uses an XML file named default_app.webapp to control running servlets in
the WebSphere Test Environment. We need to update it to reflect our system parameters. It is
found in the <VAJ install root>\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\default_app\servlets directory.

1. Locate the default_app.webapp file, and open it with a text-based editor (like Notepad).
2. Add the XML tags for the ItemServlet.

See Example 2-14.

Example 2-14 Adding a servlet to the default_app.webapp file

<servlet>
 <name>ItemServlet</name>
 <description>Item Servlet</description>
 <code>nservlets.ItemServlet</code>
 <servlet-path>/webapp/OrderEntry/ItemServlet</servlet-path>
 <init-parameter>
 <name>url</name>
 <value>jdbc:as400://AS05/apilib</value>
 </init-parameter>
 <init-parameter>
 <name>driver</name>
 <value>com.ibm.as400.access.AS400JDBCDriver</value>
 </init-parameter>
 <init-parameter>
 <name>user</name>
 <value>team43</value>
 </init-parameter>
 <init-parameter>
 <name>password</name>
 <value>win4ibm</value>
 </init-parameter>
 <autostart>true</autostart>
 </servlet>

We make sure the parameters like iSeries server name, userid, and password are correct. We
save the changes and stop the WebSphere Test Servlet Engine in the WebSphere Test
Environment Control Center. Once it is stopped, select Servlet Engine-> Edit Class Path.
Ensure that IBM Enterprise Toolkit for AS/400 and WebSphere Workshop (the project that
includes the access and nservlets packages) are selected. Restart the Servlet Engine.

Open a browser to access the servlet from the following URL:

http://localhost:8080/webapp/OrderEntry/ItemServlet

The result is shown in Figure 2-13.
40 WebSphere J2EE Application Development for the iSeries Server

Figure 2-13 Servlet output

2.4.7 Exporting the servlet from VisualAge for Java
Similar to MyHelloWorldServlet, before we deploy to WebSphere Application Server V4.0, we
need to export the code into a JAR file. The JAR file can be used by the Application Assembly
Tool to build a Web application. In the VisualAge for Java Workbench, select the access and
nservlets packages (use the Ctrl key to select both) and export them. The steps are similar
with the steps in 2.3.4, “Exporting class files to a JAR file” on page 28. We export to a JAR file
named wswsitem.jar. In Chapter 3, “WebSphere V4.0 assembly and deployment tools” on
page 75, we use AAT to create a Web application that we install in WebSphere Application
Server 4.0.

2.5 Database connection pools
It is essential to understand and feel comfortable using database connection pools when
creating servlets that run under WebSphere Application Server Version 4.0 Advanced Edition
or WebSphere Application Server Version 4.0 Advanced Single Server Edition.

WebSphere Application Server 4.0 uses the JDBC 2.0 core and optional packages (formerly
JDBC 2.0 standard extension) style and APIs for database connection pooling. Both iSeries
JDBC drivers, the native and IBM Toolbox for Java drivers, are JDBC 2.0 compliant.

2.5.1 DataSource version
Here is a simple example that shows how to use DataSource objects. As shown in
Example 2-15, the class is named DataBaseConnectivity.
Chapter 2. Servlet and JSP development using VisualAge for Java 41

Example 2-15 DataSource example: Imports and variable definitions
package WebSphereV3;

import java.sql.*;
import java.util.*;
import javax.sql.*;
import com.ibm.ejs.dbm.jdbcext.*;
import javax.naming.*;

public class DataBaseConnectivity
{
 // Hard code datasource connectivity information. The information
 // could be brought in at runtime (from an external property file
 // identified) or passed into a method .

 // Use to communicate with connection manager.

 static String userId = "Jeff";
 static String userPassword = "Jeff";
 static String v3DataSourceName = "jdbc/MyDataSource";
 private Context v3Ctx = null;
 private DataSource v3DS = null;
 private Connection dataConn = null;

Example 2-15 shows the import statements for the DataSource support. These are explained
in Table 2-3.

Table 2-3 DataSource packages

Notice the two objects required to support the new JDBC 2.0 style lookup for the DataSource
support:

� Context: Used to access the Java servers JNDI naming service.
� DataSource: Used to define the data source.

For simplification, we set the properties using variables.

Example 2-16 shows the default constructor method.

Example 2-16 DataSource example: Retrieving a JDBC connection from the DataSource
public DataBaseConnectivity()
{
 try
 {
 Hashtable parms = new Hashtable();
 parms.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");
 v3Ctx = new InitialContext(parms);
 v3DS = (DataSource)v3Ctx.lookup(v3DataSourceName);

Import statement Description

javax.sql This package provides the JDBC DB2 optional package support for JNDI
and distributed transaction support.

com.ibm.ejs.dbm.jdbcext This package provides WebSphere connection pooling support. This
package is deprecated in WebSphere 4.0, but is still used in VisualAge
for Java.
42 WebSphere J2EE Application Development for the iSeries Server

 dataConn= v3DS.getConnection(userId, userPassword);
 }
 catch (Exception e)
 {
 System.out.println("DataBaseConnectivity Exception occurred: (Build connection) " +
 e.getMessage());
 e.printStackTrace(System.out);
 }
}

Note the following points as shown in Example 2-16:

� We use JNDI to access the DataSource (or any other object) from the naming space. We
create a Hashtable object to hold the necessary parameters to access the naming space.

� We specify com.ibm.ejs.ns.jndi.CNInitialContextFactory as the Context factory object we
want to use. VisualAge for Java 4.0 does not support the new WebSphere 4.0 Context
Factory (com.ibm.websphere.naming.WsnInitialContextFactory), so we need to use this
Context factory to test inside VisualAge for Java. WebSphere Studio Application
Developer V4.0 supports the new WebSphere 4.0 Context factory.

WebSphere Application Server 4.0 supports both context factories, although
CNInitialContextFactory is deprecated.

� We get a Context object for the EJS JNDI interface.

� Using the Context object, we do a JNDI lookup for the logical name of the DataSource.

� The Context lookup returns a Java object, which we cast to a DataSource object. All
DataSource names exist in the “jdbc” subcontext of the root.

As shown in Example 2-17, we use the getConnection() method to get the JDBC connection.

Example 2-17 DataSource example getConnection method
public Connection getConnection() throws Exception, SQLException
{
 try
 {
 if (!dataConn.isClosed())
 {
 // Get valid new data connection, if this one has been closed.
 dataConn = v3DS.getConnection(userId, userPassword);
 System.out.println("getConnection: Data Connection rebuilt");
 return dataConn;
 }
 else
 {
 return dataConn;
 }
 }
 catch (SQLException sqle)
 {
 System.out.println("getConnection: SQL Exception caught " + sqle.getMessage());
 sqle.printStackTrace();
 throw sqle;
 }
 catch (Exception e)
 {
 System.out.println("getConnection: Exception caught " + e.getMessage());
Chapter 2. Servlet and JSP development using VisualAge for Java 43

 e.printStackTrace();
 throw e;
 }
}

When the JDBC connection is requested, we ensure that we still have the exclusive use of the
connection and that it has not been reclaimed by the DataSource or closed by the caller. If the
connection has been closed, we attempt to request a new connection. The WebSphere
Application Server Version 4.0 DataSource objects have associated time-outs that you can
change if you have long running servlets.

JDBCCatalogSupport class
Next, we change the JDBC example discussed in 2.4, “Using JDBC to access an iSeries
database” on page 29, to use DataSource connection pooling support. We start by adding
DataSource support into the JDBCCatalogSupport class and its sub-class JDBCPoolCatalog
as illustrated in Figure 2-14.

Figure 2-14 Connection pool example

The JDBCCatalogSupport class is the super class for the JDBC-based access classes. It has
a few methods that are shared among several JDBC-based access classes.

We start with import statements required for the DataSource support as shown in
Example 2-18.

Example 2-18 Import statements
package access;

import java.util.*;
import java.sql.*;
import javax.sql.*;
import com.ibm.ejs.dbm.jdbcext.*;
import javax.naming.*;

Since we now work directly with JDBC connections, we enhance the freeConnection and
getConnection methods to take advantage of this. As shown in Example 2-19, the
freeConnection method now simply closes the JDBC connection and the underlying
DataSource connection pooling mechanism reclaims the connection.
44 WebSphere J2EE Application Development for the iSeries Server

Example 2-19 The freeConnection method
public void freeConnection(Connection dataConn)
{
 try
 {
 if (!dataConn.isClosed())
 {
 dataConn.close();
 }
 }
 catch (SQLException e)
 {
 System.out.println("release connection: " + e.getMessage());
 }
 return;

As shown in Example 2-20, within the getConnection method, we now return a JDBC
connection object. Notice that the parameter list now consists of the DataSource object and a
user ID and password only.

Example 2-20 The getConnection method
public Connection getConnection(DataSource v3DS, String userId, String userPassword)
{
 Connection dataConn = null;
 try
 {
 System.out.println("JDBCPoolCatalog: retrieving connection");
 dataConn = v3DS.getConnection(userId, userPassword);
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 return dataConn;
}

Only one JDBCCatalogSupport method is relevant for the JDBCPoolCatalog class. The
getRows() method is shown in Example 2-21.

Example 2-21 JDBCCatalogSupport.getRows() method
/**
 * getAll method comment.
 */
public java.util.Vector getRows(java.sql.ResultSet aResultSet) {

java.util.Vector aDataVector = new Vector();
try {

//System.out.println("JDBCCatalogCatalog: getRows");
while (aResultSet.next()) {

String[] data = new String[4];
data[0] = aResultSet.getString(1); // Item ID
data[1] = aResultSet.getString(2); // Item Name
data[2] = aResultSet.getBigDecimal(3).toString(); // price
Chapter 2. Servlet and JSP development using VisualAge for Java 45

data[3] = aResultSet.getString(4); // Item Information
// add the data element (String[]) to the vector
aDataVector.addElement(data);

}
} catch (SQLException ex) {

ex.printStackTrace();
}
return aDataVector;

}

The getRows() method accepts an SQL ResultSet object and returns a vector. It loops
through the ResultSet object. Each row of the ResultSet object is converted into an array of
strings. The array of strings is added to the vector.

JDBCPoolCatalog class
Next, we look at the JDBCPoolCatalog class. We start with import statements to match those
required for the DataSource support as shown in Example 2-22.

Example 2-22 The JDBCPoolCatalog class
package access;

import java.util.*;
import java.sql.*;
import javax.sql.*;
import com.ibm.ejs.dbm.jdbcext.*;
import javax.naming.*;

public class JDBCPoolCatalog extends JDBCCatalogSupport
{
 private String connUserId = null;
 private String connUserPassword = null;
 private Context v3Ctx = null;
 private DataSource v3DS = null;

We use the connectToDB() method, shown in Example 2-23, to get the JDBC connection. We
pass in the DataSource name, the user ID, and password.

Example 2-23 The connectToDB method
public String connectToDB(String dataSourceName, String userid, String password)
{
 try
 {
 connUserId = userid;
 connUserPassword = password;
 Hashtable parms = new Hashtable();
 parms.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");
 v3Ctx = new InitialContext(parms);
 v3DS = (DataSource) v3Ctx.lookup(dataSourceName);
 }
 catch (Exception e)
 {
 System.out.println("JDBCPoolCatalog: (ConnectToDB) " + e.getMessage());
46 WebSphere J2EE Application Development for the iSeries Server

 e.printStackTrace(System.out);
 return "connection unsuccessful";
 }
 System.out.println("connected successfully");
 return "connection successful";
}

In reference to Example 2-23, note these points:

� We use JNDI to get access to the DataSource (or any other object) from the naming
space. We create a Hashtable object to hold the necessary parameters to access the
naming space.

� We specify com.ibm.ejs.ns.jndi.CNInitialContextFactory as the Context factory object we
want to use.

� We get a Context object for the EJS JNDI interface.

� Using the Context object, we run a JNDI lookup for the logical name of the DataSource.

� The Context lookup returns a Java object, which we cast to a DataSource object. All
Datasource names exist in the "jdbc" subcontext of the root.

In the getAllV() method shown in Example 2-24, we call the getConnection() method to get
the JDBC connection.

Example 2-24 The getAllV method
public java.util.Vector getAllV()
{
 java.util.Vector aDataVector = new Vector();
 java.sql.ResultSet aResultSet = null;
 Connection dataConn = null;
 try
 {
 dataConn = getConnection(v3DS, connUserId, connUserPassword);
 }
 catch (Exception e)
 {
 System.out.println("Exception caught: " + e.getMessage());
 e.printStackTrace();
 // throw e;
 }
 PreparedStatement psAllRecord = null;
 try
 {
 psAllRecord = dataConn.prepareStatement("select * from ITEM");
 aResultSet = psAllRecord.executeQuery();
 aDataVector = getRows(aResultSet);
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if (null != psAllRecord)
 {
Chapter 2. Servlet and JSP development using VisualAge for Java 47

 psAllRecord.close();
 }
 freeConnection(dataConn);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 return aDataVector;
}

Example 2-25 shows the getRecord method.

Example 2-25 The getRecord method
public java.util.Vector getRecord(String partNo)
{
 java.util.Vector aDataVector = new Vector();
 java.sql.ResultSet aResultSet = null;
 Connection dataConn = getConnection(v3DS, connUserId, connUserPassword);
 PreparedStatement psSingleRecord = null;
 try
 {
 psSingleRecord = dataConn.prepareStatement("SELECT * FROM ITEM WHERE IID = ?");
 psSingleRecord.setString(1, partNo);
 aResultSet = psSingleRecord.executeQuery();
 aDataVector = getRows(aResultSet);
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if (null != psSingleRecord)
 {
 psSingleRecord.close();
 }
 freeConnection(dataConn);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 return aDataVector;
}

Finally, we show the servlets that use the JDBCPoolCatalog class. Example 2-26 shows the
init() method for the ItemPoolServlet.
48 WebSphere J2EE Application Development for the iSeries Server

Example 2-26 The init method
/public void init(ServletConfig config) throws ServletException
{
 super.init(config, SuperServlet.SYSTEM);
 aJDBCItemCatalog = new access.JDBCPoolCatalog();

 // Get JDBC properties
 String datasource = getInitParameter("datasource");
 String userid = getInitParameter("user");
 String password = getInitParameter("password");
 flexLog("DatSource: " + datasource);
 flexLog("UserID: " + userid);
 flexLog("Password: " + password);
 String returnValue = aJDBCItemCatalog.connectToDB(datasource, userid, password);
 flexLog("ItemPoolServlet: return from connect = " + returnValue);
 return;
}

We set the servlet initialization parameters to retrieve the name of the DataSource object and
pass this, along with the user ID and password, into the database connection method.

2.5.2 Running the ItemPoolServlet inside VisualAge for Java
Running this servlet inside VisualAge for Java is similar to the ItemServlet discussed earlier.
We need to set up the initial parameters for data source, user, and password. But before that,
we configure the data source in the VisualAge for Java WebSphere Test Environment.

We start the WebSphere Test Environment if it is not already started. Click the Persistent
Name Server and start it. Once it is started, select DataSource Configuration to add a new
data source, as shown in Figure 2-15.

Figure 2-15 DataSource configuration

On the following page (shown in Figure 2-16), we create the DataSource named NativeDS
and specify the following parameters:
Chapter 2. Servlet and JSP development using VisualAge for Java 49

� DataSource name: NativeDS
� Database Driver: com.ibm.as400.access.AS400JDBCDriver
� Database URL: jdbc:as400://sysname/teamxx

We replace sysname with the name of the iSeries server, and replace teamxx with the
correct library name.

Figure 2-16 Add DataSource window

The new DataSource appears in the WebSphere Test Environment Control Center as shown
in Figure 2-17.

Figure 2-17 DataSource Configuration

Similar to the process in 2.4.6, “Running the ItemServlet inside VisualAge for Java” on
page 39, we need to update the default_app.webapp file to reflect the correct DataSource
name, user ID and password with a text editor (like Notepad). This is shown in Example 2-27.
50 WebSphere J2EE Application Development for the iSeries Server

Example 2-27 The default_app.webapp file

<servlet>
 <name>ItemPoolServlet</name>
 <description>ItemPoolServlet</description>
 <code>nservlets.ItemPoolServlet</code>
 <servlet-path>/webapp/OrderEntry/ItemPoolServlet</servlet-path>
 <init-parameter>
 <name>datasource</name>
 <value>jdbc/NativeDS</value>
 </init-parameter>
 <init-parameter>
 <name>user</name>
 <value>Team43</value>
 </init-parameter>
 <init-parameter>
 <name>password</name>
 <value>win4ibm</value>
 </init-parameter>
 <autostart>false</autostart>
 </servlet>

Once we save the file, we return to the VisualAge for Java WebSphere Test Environment and
stop and restart the servlet engine. Now we can access the servlet via the following URL:

http://localhost:8080/webapp/OrderEntry/ItemPoolServlet

You see the results of the query as shown in Figure 2-18.

Figure 2-18 ItemPoolServlet
Chapter 2. Servlet and JSP development using VisualAge for Java 51

2.5.3 Exporting the ItemPoolServlet servlet from VisualAge for Java
Similar to ItemServlet, before we deploy our new servlet to WebSphere Application Server
V4.0, we have to export it into a JAR file that can be used by the Application Assembly Tool to
build a Web application. In the VisualAge for Java Workbench, select the access and
nservlets packages and export them to a JAR file. See 2.3.4, “Exporting class files to a JAR
file” on page 28. We export to a file named wswspool.jar.

2.6 JSP support in WebSphere Version 4.0
WebSphere Application Server 4.0 (both Advanced Single Server Edition and Advanced
Edition) implements the Sun Microsystems JavaServer Pages Specification 1.1 and removes
the support for the JSP 0.91 and 1.0 specifications. For JSP files written to the 0.91
specification, you must migrate them to the JSP 1.1 specification. There are functional
differences between the tags in the JSP 1.0 and JSP 1.1 specification. You do not need to
migrate pages written to the JSP 1.0 specification to the newer JSP 1.1 specification to
deploy them in WebSphere Application Server V4.0.

For a complete definition of the Sun JSP specification, refer to the Sun online documentation
at: http://java.sun.com/products/jsp/download.html

2.6.1 JSP life cycle
The JSP life cycle is similar to the standard servlet life cycle. JSPs are compiled into servlets
by a JSP engine and are then run by the standard servlet engine on the server platform. For
those working with JSPs for the first time, it can be difficult to visualize just what is happening,
when, and where. To help you understand this better, refer to the activity diagram in
Figure 2-19, which explains the typical JSP life cycle.

Note: The diagram is by no means exhaustive. You should refer to the WebSphere
documentation and JSP specification for further details.

Activity diagrams: The activity diagram format is a simplified Unified Modeling Language
(UML) activity diagram. The vertical columns are called swim lanes and denote one strand
of application processing. This process can be a single object, a Java thread, or even a
user.

Concurrent (or nearly concurrent) processes are shown side by side in swim lanes.
Horizontal bars, or synchronization bars, are used to show points where application flow
diverges into separate lanes or converges back again. In this example, a good illustration
of this is in lane 3, where the JSP is compiled if it is not already compiled.

In this case, the swim lanes segregate actions that are performed by a particular section of
the application architecture. Timing is top to bottom and includes some degree of
parallelism. For a good, quick introduction to UML notation, see UML Distilled: A Brief
Guide to the Standard Object Modeling Language by Martin Fowler.
52 WebSphere J2EE Application Development for the iSeries Server

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

Figure 2-19 Activity diagram showing the JSP life cycle

The steps shown in the activity diagram in Figure 2-19 are explained here in greater detail:

1. At the client side browser, the user enters a URL that references a JSP file. The JSP file
goes to the Web server (in this example, it is HTTP server for iSeries, but it could be any
other iSeries-based Web server) and requests the named page.

2. When the HTTP server receives a request for a JSP, it passes that request to WebSphere
Application Server. WebSphere Application Server passes the request to the JSP engine
(PageCompile). Depending on the application architecture used, one of two courses of
action take place:

– If the JSP is the first page of an application, or the page only contains HTML, the JSP
is invoked (steps 3, 3a, and 4), the HTML is generated (step 6), and a page is served to
the client. In this case, the JSP is a little different from a normal HTML page.

– If the page contains input controls, and the browser request is an action, the page is
processed by the JSP and servlet engines as described below.

WebSphere
Chapter 2. Servlet and JSP development using VisualAge for Java 53

3. The served page may contain input fields and buttons. We assume here that the user
performs a task, such as filling in the item number and clicking the List all items button in
the ItemServlet example.

4. The JSP engine receives the process request. If the JSP has not yet been compiled, or
the JSP has changed since the last time it was compiled (based on a file time stamp), step
3a occurs, and the JSP is compiled into a servlet.

5. From this point, the JSP is a servlet and is processed exactly like any other servlet.

6. Any data access that is typically carried out by data access JavaBeans is performed in the
iSeries Java Virtual Machine. The results are returned to the JSP or servlet.

7. If any access was requested, the JSP or servlet receives the results of the data access.
Otherwise, it receives a request to produce an output based on a bean passed within the
data. The JSP or servlet then generates an HTML file based on the logic contained within
the data results or bean.

8. The HTML is returned to the HTTP server and presented to the client browser.

9. The client browser only deals with the HTML from the Web server. Therefore, the user is
unaware of the complexity of the operations being carried out on the server, making the
client browser truly a thin client.

After it is compiled, the servlet is stored in memory on the server. When subsequent requests
for that page are made, the server checks to see if the JSP file has changed. If it has not
changed, the server uses the servlet stored in memory to generate the response to the client.
Because the compiled servlet is stored in memory, the response is very fast. If the JSP file
has changed, the server automatically recompiles the page file and replaces the servlet in
memory. As with standard servlets, if the initial load time is long, the JSP can be compiled
and loaded at server system start time.

2.6.2 JSP design
For simplification of National Language Support (NLS) or the good design strategy of
separating the presentation layer from the business logic, perform business logic within a
servlet and pass the response data to a JavaServer Page for display as shown Figure 2-20.

Figure 2-20 Servlet and JSP architecture

Browser
Web

Server

HTTP

HTTPS

or

iSeries HTTP
Server

WebSphere Application Server

Servlet

Bean

English
JSP File

DB2

Data Access
Bean

JDBC

Presentation
(HTML,XML)

Business
Logic (Java)

Business
Logic (Java)

Italian
JSP File

German
JSP File

Japanese
JSP File
54 WebSphere J2EE Application Development for the iSeries Server

Under the servlet 2.1 and 2.2 API, the setAttribute method of the HttpServletRequest class
is used to pass objects between a servlet and a JSP. A new interface,
javax.servlet.requestDisplatcher, is used for each servlet or JSP to forward the response. and
request objects to the specific servlet or JSP. This is similar to servlet filtering and shares
some of the same restrictions. If a servlet retrieves a ServletOutputStream object or
PrintWriter object from its response object, then an IllegalStateException exception is thrown
in the application.

2.6.3 JSP servlet interface example
This section looks at a very simple example that demonstrates how a servlet interfaces with a
JSP. In this example, CallJSP is a servlet that passes information to a JSP named
outputjsp.jsp for display. As shown in Figure 2-21, the user client calls the CallJSP servlet. It
creates an object named DataBean, which it passes to the outputjsp JavaServer Page.
DataBean is a very simple class that provides methods to set a value and get a value. The
JSP displays the information (that is passed to it) back to the user client.

Figure 2-21 Servlet calling a JSP

Example 2-28 shows the doGet method of the CallJSP servlet.

Example 2-28 First part of the doPost method of the ItemJSPServlet
public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, java.io.IOException {

System.out.println(“Inside CallJSP”);
 DataBean dataBean = null; // Create an instance of DataBean

try {
dataBean = (DataBean) Beans.instantiate(this.getClass().getClassLoader(),

 "nservlets.DataBean");
} catch (Exception ex) {

throw new ServletException("CallJSP: doGet: Can't create bean of class DataBean: " +
ex.getMessage());

}
// Set some Bean properties (content generation)

iSeries Web Application Server
WebSphere Application Server

Web browser
client
Chapter 2. Servlet and JSP development using VisualAge for Java 55

if (request.getParameter("value") == null)
dataBean.setValue1("Something Important");

else
dataBean.setValue1(request.getParameter("value"));

request.setAttribute("dataBean", dataBean);
RequestDispatcher rd = getServletContext().getRequestDispatcher("/outputjsp.jsp");
rd.forward(request, response);

}

This method performs the following actions:

� Instantiates an object named dataBean, which is based on the DataBean class from the
nservlets package.

� Uses the DataBean setValue1() method to set the information to be passed to the JSP. If
the CallJSP servlet is called with a parameter, it passes the parameter value in the
dataBean object. Otherwise, it passes the default value of Something Important.

� Uses the setAttribute() method of the HttpServlet request object to set the object to
pass to the JSP.

� Creates a RequestDispatcher object named rd using the ServletContext
getRequestDispacher() method setting the name of the JSP to call.

� Uses the forward method of the request dispatcher object to call the JSP passing the
request and response objects.

Example 2-29 shows the source of the JSP .91 version of the outputjsp.jsp JavaServer Page.

Example 2-29 Contents of the 0.91 version of outputjsp.jsp
<BEAN name="dataBean" type="nservlets.DataBean" create="no" scope="request">
</BEAN>

<HTML>
<HEAD><TITLE>Simple JSP with Bean</TITLE></HEAD>
<BODY>
<CENTER>
<CENTER><IMG SRC="/html/as400.gif" BORDER=2 X-SAS-UseImageWidth X-SAS-UseImageHeight
HEIGHT=120 WIDTH=120></CENTER>

<%
out.println("The value of the parameter is " + dataBean.getValue1());

%>

</CENTER>
</BODY>
</HTML>

This JSP performs these tasks:

� Defines a Bean named dataBean based on the nservlets.DataBean class. A parameter of
create=no is used because the Bean is passed to the JSP by the servlet in the request
object.

� Uses HTML tags to display a graphic.

� Uses a JSP scriplet to create Java code that uses the DataBean getValue1() method to
retrieve and display the information passed in the dataBean object.
56 WebSphere J2EE Application Development for the iSeries Server

When running the JSP on WebSphere Application Server V4.0, it fails with a compiler syntax
error because WebSphere V4.0 only implements the JSP 1.1 specification. You should
migrate the JSP page to be compatible with the JSP processor of WebSphere Application
Server. Example 2-30 shows the JSP page we use after modification.

Example 2-30 Contents of the 1.1 version of outputjsp.jsp
<jsp:useBEAN id="dataBean" class="nservlets.DataBean" scope="session" create="no" />

<HTML>
<HEAD><TITLE>Simple JSP with Bean</TITLE></HEAD>
<BODY>
<CENTER>
<CENTER><IMG SRC="as400.gif" BORDER=2 X-SAS-UseImageWidth X-SAS-UseImageHeight HEIGHT=120
WIDTH=120></CENTER>

<%
System.out.println("Inside outputjsp");
nservlets.DataBean theDataBean = (nservlets.DataBean) request.getAttribute("dataBean");
out.println("The value of the parameter is " + theDataBean.getValue1());

%>

</CENTER>
</BODY>
</HTML>

2.6.4 Running the CallJSP servlet inside VisualAge for Java
Similar to the process in 2.4.6, “Running the ItemServlet inside VisualAge for Java” on
page 39, we need to update the default_app.webapp file in VisualAge for Java test
environment with a text editor (like Untapped). This is shown in Example 2-31.

Example 2-31 The default_app.webapp file

<servlet>
 <name>CallJSP</name>
 <description>CallJSP</description>
 <code>nservlets.CallJSP</code>
 <servlet-path>/webapp/OrderEntry/CallJSP</servlet-path>

<autostart>false</autostart>
</servlet>

Once we save the file, we copy the outputjsp.jsp file into the <VAJ install
root>\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\default_app\web directory. The WebSphere Test Environment looks for the
JSP file in this directory. This next part may be a bit more challengine. Since we use a image
file in the JSP (as400.gif), we must also copy this file to the directory. However, because the
context for this application is /webapp/OrderEntry, we cannot simply copy the image file to the
Chapter 2. Servlet and JSP development using VisualAge for Java 57

Web directory because the http server will not find it according to the context. We have to
create a subdirectory under the Web directory named webapp. We then create a subdirectory
under the webapp directory named OrderEntry. Now we copy the image file into the
OrderEntry directory, as shown in Figure 2-22.

Figure 2-22 Copying the image into WebSphere Testing Environment

We restart the servlet engine in the WebSphere Test Environment and access the servlet by
using the following URL:

http://localhost:8080/webapp/OrderEntry/CallJSP

The result is shown in Example 2-23.

Figure 2-23 CallJSP result

We could change the URL to:

http://localhost:8080/webapp/OrderEntry/CallJSP?value=Test

In this case, we see the result page in which the message becomes:

The value of the parameter is Test
58 WebSphere J2EE Application Development for the iSeries Server

2.6.5 Exporting the CallJSP servlet from VisualAge for Java
Similar to ItemServlet, before we deploy our new servlet to WebSphere Application Server
V4.0, we have to export it into JAR file that can be used by the Application Assembly Tool to
build a Web application. In the VisualAge for Java Workbench, select the access and
nservlets packages (use the Ctrl key to select both) and export them to a JAR file. See 2.3.4,
“Exporting class files to a JAR file” on page 28. We export to a file named wswsjsp.jar.

We don’t include the JSP file in the JAR file. Later, we use AAT to add it into the Web
application.

2.7 Session management
A session is a series of requests and their associated responses originating from the same
user, at the same browser. HTTP is a stateless protocol. This means each request that
arrives carries only its own request context. The individual requests are not related. This
causes problems when we want to develop stateful applications. For example, for an
online shopping application, we may surf different Web pages and decide to buy items
from several different pages. Without session tracking, we would have to pay for each
item individually. This is not natural. We want to put all the goods into a shopping cart and
pay for them one time.

Sessions can be used to solve this problem. We can use a session object to store and
maintain a Web “shopping cart”. A shopping cart is a good example of using session tracking.

2.7.1 Session tracking solutions
There are several ways to maintain a state across a series of requests. For all of them, the
basic theory is simple, that is to send a token back and forth for the identity, as shown in
Figure 2-24.

Figure 2-24 Session tracking

Now the question is where to put the token in the HTTP data stream. According to the HTTP
frame shown as Figure 2-25, we can put this token either in the HTTP body, header, or Start
Line (URL).

Server
Client

Response

Request
Chapter 2. Servlet and JSP development using VisualAge for Java 59

Figure 2-25 HTTP frame

There are three common approaches for session tracking:

� Hidden fields
� Cookies
� URL rewriting

Hidden fields
Hidden HTML fields are not displayed by the browser. They are displayed when you choose
the option to view the HTML source. Hidden fields are declared with the attribute named type
set to hidden as shown in the following code fragment:

<input type="hidden" name="partno" value=" " size=10 maxlength=10>

A servlet can generate HTML with hidden input fields. When the browser submits the HTML
page, the information in the hidden HTML fields is available to the program that handles the
HTTP request.

The main advantage of using hidden fields for session tracking is their simplicity. They do not
require any user authentication, and they are supported on most, if not all, of the browsers.

Their main disadvantage is that, by their nature, they will work only for a sequence of
dynamically generated HTML.

As you can see from the previous code fragment, there is an overhead defining a hidden
field for each value you want to persist across a series of requests and the type of
information that each such input field can hold is limited to textual information.

Start Line

Message Header

CRLF

Message Body

Request-Line [Method][URI][Version]
Get /file.html HTTP/1.0
Get /image.gif HTTP/1.0

Status-Line [Version][Status Code][Reason]
HTTP/1.0 200 Document Follows
HTTP/1.0 401 Not Authorized to ...

General, Response, Request and Entity
Request

Connection: Keep-Alive
Uesr-Agent: Mozilla/4.5[en]
Host:AS05
Accept::image/gif, image/x-xbitmap...
Accept-Language: en
Accept-Encoding: gzip

Response
Server: IBM_HTTP_Server/1.2...
Date Sun, 10 Feb 2002 12:00:00GMT
Content-Type: text/html
Content-Length: 501
Connection: Keep-Alive

<html>
<head>
<title>This is testing by Cliff </title>
</head>...
60 WebSphere J2EE Application Development for the iSeries Server

In addition, hidden fields are transmitted between the client and the server, when you really
need them only at the server side. A solution to these deficiencies can be to use just one
hidden input field that holds the session ID, and use it as a key to access the session state
information from a database file located on the server.

Cookies
Cookie technology was developed by the Netscape Communications Corporation. This
technology enables a Web server to store and retrieve information from the client. When
the cookie information is sent to the server, it is put in the HTTP header.

A Web server generates a cookie using the Set-Cookie header as part of the HTTP response.
The cookie holds a single-name value pair and a few attributes that describe the cookie
properties, such as its version and the range of URLs for which it is valid. Upon receiving a
cookie, the browser stores it and includes it in any future HTTP requests made to the
originating server, according to rules that match the cookie’s attributes and the requested
URL.

The convenience class javax.servlet.http.Cookie represents a cookie and makes it easier to
handle cookies within a servlet.

You create a cookie with the constructor:

javax.servlet.http.Cookie(name, value)

Then, you add it to the HTTP response with the method:

javax.servlet.http.HttpServletResponse.addCookie(cookie)

The addCookie method can be called multiple times to set more than one cookie. Browsers
are expected to support only 20 cookies per host, of at least 4 KB each, so it is not a good
practice to use many cookies.

The Cookie class provides getter and setter methods to retrieve and set the cookie value and
attributes. As with HTML form hidden fields, even though the information stored in the cookie
is needed on the server, it is stored on the client. This requires that it be sent to the server
with each request. This is not a big problem, because the cookie size and number is limited.
But, you may consider storing the session ID in a cookie and keeping the session state data
on the server.

Since cookies are part of the HTML header, as for all HTML header fields, you need to add all
the cookies to the response object before getting the PrintWriter object.

Cookies provide a nice way to implement sessions, but they suffer from some problems, for
example, some users, either by choice or mandate, cannot receive cookies from Web sites.
Also most browsers allow users to turn off the ability to receive cookies. Under this situation,
an alternative technique, known as URL encoding, is available for passing user session IDs
between the user and the Web application server instance.

URL rewriting
URL rewriting is a technique that embeds client-specific tokens within the URL of each
request. For example, we can access our callJSP servlet by the URL:

http://sysname:port/OrderEntry/callJSP

We can also pass a specific value to the servlet by changing the URL to:

http://sysname:port/OrderEntry/callJSP?value=hello
Chapter 2. Servlet and JSP development using VisualAge for Java 61

This request sends the parameter value to the Web container; the container can obtain the
value from this URL and do further processing. This kind of approach is called URL rewriting
since it changes the URL to include client specific tokens. If we are working on an online
shopping application, we do not want to put confidential information on the URL. In the Sun
Servlet API specification, a parameter named jsessionid is available. It send the session
identifier back and forth, while the actual session information is stored on the server.

URL rewriting requires the developer to use special encoding APIs and to set up the site page
flow to avoid losing the encoded information. For example, if a servlet returns HTML directly
to the requester (without using a JSP page), the servlet calls the following API to encode the
returning content:

out.println(“<a href=\””);
out.println(response.encodeURL(“/OrderEntry/ItemServlet”));
out.println(“\”>Item Servlet”);

URL rewriting limits the flow of site pages exclusively to dynamically generated pages (such
as pages generated by servlets and JSPs). WebSphere inserts the session ID into dynamic
pages, but cannot insert it into static pages (.htm or .html pages).

2.7.2 HttpSession interface
The javax.servlet.http.HttpSession interface is implemented by WebSphere Application
Server to provide session support. Under the covers, HttpSession information is maintained
either by using cookies or by URL rewriting as described previously. The WebSphere
Administrative Console is used to enable session support using URL rewriting or cookies.

For example, in WebSphere Application Server Version 4.0 Advanced Edition, you can select
the server from the left pane of the console and click the Services tab in the right pane as
shown in Figure 2-26. There are some session services you can edit. Select Session
Manager Service and click Edit Properties.

Figure 2-26 Editing Session Manager properties
62 WebSphere J2EE Application Development for the iSeries Server

The Session Manager Service page displays. Under the General tab, you can enable the
cookies support or URL rewriting support. It is possible to select both cookie support and
URL rewriting support at the same time. In this case, cookies are used and preferred over
URL rewriting.

Major changes in the servlet 2.2 API
In the servlet 2.2 API, session scoping is per Web application. Servlets in different Web
applications running in the same servlet engine cannot share session information. In the
servlet 2.1 API, session scoping is per servlet engine.

HTTPSession deprecation includes:

� getValue(String) replaced by getAttribute(String)
� getValueNames() replaced by getAttributeNames()
� putValue(String, Object) replaced by setAttribute(String, Object)
� removeValue(String) replaced by removeAttribute(String)

Creating sessions
You create a session by using the following method:

javax.servlet.http.HttpServletRequest.getSession(create)

If the value of the boolean parameter create is false, the method returns the current valid
session associated with the request, if one exists. Otherwise, it returns null. If the value of
create is true and a session does not exist, it is created.

Creating a session means that the server generates a unique session ID and sends it to the
client browser as a cookie or by means of URL rewriting. The browser is expected to return
this session ID on all subsequent requests made to this server from the same browser. This
identifies the request as part of the session.

Using the HttpSession object
Once a session is created, values can be saved in the session object or retrieved from the
session object, using either of the following two methods:

javax.servlet.http.HttpSession.setAttribute(name, value)
javax.servlet.http.HttpSession.getAttribute(name)

The setAttribute() method accepts a String for the name of the value and a Java object for
the value. The getAttribute() method accepts a String for the name and it returns an object.
Multiple values can be written to, or read from, the session. The getAttributeNames()
method can be used to retrieve an Enumeration of names associated with a session. This
Enumeration can be used to retrieve the objects themselves.

Objects can also be removed from the Session object by using:

javax.servlet.http.HttpSession.removeAttribute(name)

If there is a requirement that the sessions persist across server shutdowns, or they are used
in a session cluster environment (where one WebSphere Application Server plays the role of
a sessions server), the Java objects that you save to a session should implement the
Serializable interface.
Chapter 2. Servlet and JSP development using VisualAge for Java 63

Invalidating sessions
Sessions exist until they are invalidated. Invalidating sessions is done automatically by
WebSphere Application Server, if the session was not used for more than the Invalidate Time
value, which defaults to 30 minutes. Sessions can also be manually invalidated by a call to the
invalidate() method:

javax.servlet.http.HttpSession.invalidate()

2.7.3 ItemSessionServlet example
To demonstrate the use of sessions, we develop a shopping cart type application that uses
session objects to hold an instance of a shopping cart and a vector of items queried from the
database. Figure 2-27 shows the design of the application.

For this application, we use a Java ShoppingCart class that represents, as its name implies, a
shopping cart. A ShoppingCart object holds the items that we choose to buy. This class is
fully described later. For this context, it is enough to know about three methods that are
implemented by this class:

� The ShoppingCart() constructor is used to create an instance of a ShoppingCart object.

� The setItems(items) method is used to set the content of the shopping cart.

� The getItems() method returns a Vector object that represents the content of the
shopping cart.

Figure 2-27 ItemSessionServlet diagram

Figure 2-27 shows the flow of the application. The application starts when the user is
presented with the Query Screen HTML page. When the user clicks the Search button, the
following sequence of jobs is performed:

Search

Item #

Query Screen
(HTML)

Add to Cart

Item List
(HTML generated)

Action =
ItemSessionServlet
Input = item# or *all

Session
Item List
Shopping

Cart

Creates item list
in session

Continue

Shopping Cart
(HTML generated)

Shopping Cart
1 xxxxx
1 xxxxx

Action = CartServlet
Input = checked boxes

Creates or adds
to shopping cart

in session

Action = ItemSessionServlet
Input = continue

Servlet with Session Object

*all
xxxxx 1

Here are the results:

xxxxx 1
xxxxx 1

Search Again

Show Cart

Action = CartServlet
Input = show cart
64 WebSphere J2EE Application Development for the iSeries Server

1. A session object is created.

2. The Item file is queried according to the user selection (either for a specific item or all the
items).

3. The vector that contains the items is placed in the Session object.

4. The Item list HTML, shown in Figure 2-28, is generated and sent to the user browser.

Figure 2-28 Item list HTML page

From the Item List HTML page, the user can choose any one of the following steps:

� Click the Search Again button to return to the Query Screen HTML page.

� Click the Add to Cart button, which triggers the following sequence of execution.

a. The CartServlet is invoked.

b. The vector of items is retrieved from the session.

c. The shopping cart object is retrieved from the session. If one does not exist, a newly
created shopping cart is added to the session.

d. The items that are selected by the user in the HTML page are added to the shopping
cart.

e. The Shopping Cart HTML page is generated, as displayed in Figure 2-29, and sent to
the user.

� Clicking Show Cart button, which triggers the same sequence of execution as in the
previous option, except for adding the selected item to the cart.

� From the Shopping Cart HTML page, the user only has the option to click the Continue
button that invokes the ItemSessionServlet again.
Chapter 2. Servlet and JSP development using VisualAge for Java 65

Figure 2-29 Shopping cart HTML page

ItemSessionServlet class
The ItemSessionServlet class is based on the ItemPoolServlet class. It is modified to use a
Session object. Only those modifications are described.

As shown in Example 2-32, the class imports the ShoppingCart class described previously. It
implements a shopping cart.

Example 2-32 ItemSessionServlet class

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import shopData.ShoppingCart.*;

public class ItemSessionServlet extends SuperServlet {
private access.JDBCPoolCatalog aJDBCPoolCatalog;

}

ItemSessionServlet.doPost() method
The ItemSessionServlet.doPost() method processes the HTML POST requests to this
servlet. The request can come from two different sources, including:

� From the Query Screen HTML page, in which case we want to retrieve the items data from
the database, and save them to the Session object.

� From the Shopping Cart HTML page after the user clicks the Continue button, in which
case we get the Vector of items from the Session object.
66 WebSphere J2EE Application Development for the iSeries Server

This logic is implemented with the if statements shown in Example 2-33.

Example 2-33 ItemSessionServlet parameter processing

if (parameter.toUpperCase().equals("CONTINUE")) {
flexLog("Continue shopping");
parts = (Vector) session.getAttribute("ItemSessionServlet.parts");

} else {
// retrieve all data from the database
if (parameter.toUpperCase().equals("*ALL")) {

parts = aJDBCPoolCatalog.getAllV();
} else {

parts = aJDBCPoolCatalog.getRecord(parameter);
}

Why can we use a single parameter to check whether you click the Continue button or you
input the part No. in the HTML page? That’s because we give the Continue button a name
“partno”, the same as the input field in HTML page.

Note how a Session object is created, as shown in Example 2-34, using the
getSession() method with the create parameter set to true. This is done because we
want to create a session if one does not exist (if this is the first time we are on the Item
List HTML page).

Example 2-34 ItemSessionServlet doPost method

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException {

flexLog("do Post in ItemSessionServlet");
boolean create = true;
// Get the Session object
HttpSession session = request.getSession(create);
// set the MIME type to text/html
response.setContentType("text/html");
// create the output stream
PrintWriter out = response.getWriter();
try {

// get the value from the input field named partno (see HTML file)
// and check if value is valid
//Only get the first parameter
String parameter = null;
if ((request.getParameter("partno")) == null) // partno not passed into servlet=>

 //set to *ALL
{

parameter = "*ALL";
} else {

parameter = request.getParameter("partno");
}

Vector parts = null;
flexLog("ItemSessionServlet: parameter passed in from HTML is: " + parameter);
// write the HTML header to the output stream
outputHeader(out, getServletInfo());

// retrieve all data from the session info if called from shopping cart
// parts is a vector which each element is a string array length 4 with
Chapter 2. Servlet and JSP development using VisualAge for Java 67

// item id, item name, price, and item information each of the string elements.

// If it isn't a CONTINUE, you need to go to the database and retrieve.

if (parameter.toUpperCase().equals("CONTINUE")) {
flexLog("Continue shopping");
parts = (Vector) session.getAttribute("ItemSessionServlet.parts");

} else {
// retrieve all data from the database
if (parameter.toUpperCase().equals("*ALL")) {

parts = aJDBCPoolCatalog.getAllV();
} else {

parts = aJDBCPoolCatalog.getRecord(parameter);
}

// save the vector to the Session Data
flexLog("Putting the parts list in the session object; number of parts = : "+

 parts.size());
session.setAttribute("ItemSessionServlet.parts", parts);

flexLog("Now the table goes up");
// write the HTML table to the output stream
outputItemInformation(out, parts);
out.close();

} catch (Throwable e) {...
}

} // end of doPost()\

ItemSessionServlet.outputItemInformation() method
The ItemSessionServlet.outputItemInformation() method generates the Item List HTML
page. As shown in Figure 2-28, two different servlets can be invoked from this generated
HTML file. This is why two HTML FORM tags are generated. The form that invokes the
CartServlet contains two buttons, one to add items to the cart, and the second just to show
the cart. The two buttons share the same name "command," but they have different values
that are checked in the CartServlet.

We add a Select check box to each item line to enable the user to choose the items to
purchase, shown as Example 2-35.

Example 2-35 ItemSessionServlet outputItemInformation() method

private void outputItemInformation(PrintWriter out, Vector partsVector)
throws IOException {

flexLog("ItemSessionServlet: outputItemInformation()...");
Enumeration parts = partsVector.elements();

// Add to cart button will invoke the cart servlet.
out.println("<FORM METHOD=POST ACTION=\"/webapp/OrderEntry/CartServlet\" >");
out.println("<CENTER>");
out.println("<TABLE BORDER>");
out.println("<P><CENTER>Here are the results of your

 query:</P>");
out.println("<TR>");
out.print("<TH>Select</TH><TH>ITEM ID</TH><TH>ItemName</TH>

 <TH>Price</TH><TH>Quantity</TH>");
out.println("</TR>");
int i = 0;
68 WebSphere J2EE Application Development for the iSeries Server

while (parts.hasMoreElements()) {
String[] aPart = ((String[]) parts.nextElement());
out.print("<TD><CENTER><INPUT TYPE = checkbox name = index value = " + i + "

 ></CENTER></TD>");
out.print("<TD>" + aPart[0] + "</TD>");
out.print("<TD>" + aPart[1] + "</TD>");
out.print("<TD><CENTER>$" + aPart[2] + "</CENTER></TD>");
out.print("<TD><CENTER>1</CENTER></TD>");
out.println("</TR>");
i++;

}; // end while
out.println("</TABLE>");
out.println("</CENTER>");
out.print("<P><CENTER><INPUT TYPE=submit value=\"Add to Cart\" name=\"command\">");
out.println("<INPUT TYPE=submit value=\"Show Cart\" name=\"command\"></CENTER>");
out.println("</FORM>");

// Continue Shopping button - just go back to main HTML page
out.println("<FORM action=\"/itemSessionservlet.html\" method=\"GET\">");
out.println("<P><INPUT TYPE=submit value=\"Search Again\" name=\"command\">");
out.println("</CENTER>");
out.println("</FORM>");
out.println("</BODY></HTML>");
flexLog("ItemSessionServlet: outputItemInformation() executed.");

} // end outputPartsInformation()

CartServlet class
The CartServlet class is responsible for adding the selected items (stored in the session) to
the cart and displaying the cart content by generating an HTML page.

Most of the work is done by the doPost() method, which is described in the following section.

CartServlet.doPost() method
The cartServlet.doPost() method, shown in Example 2-36, starts by getting the Session
object associated with the HTTP request. In this case, the value of the create parameter of
the getSession() method is set to false, because the session should already have been
created by ItemSessionServlet. If the session does not exist, it is an indication of some kind of
problem.

Next, the method tries to retrieve the vector that contains the items from the session. Since all
the values saved in the session object are shared among all servlets in the session, it is
common practice to prefix the session value name with the servlet name to avoid naming
collisions. This is why the vector that contains the items name is prefixed with
ItemSessionServlet.

Example 2-36 CartServlet doPonst() method

public void doPost(HttpServletRequest request, HttpServletResponse response) throws
IOException {

flexLog("CartServlet: doPost");

// Session should already be available
boolean create = false;
// Get the Session object

HttpSession session = request.getSession(create);
Chapter 2. Servlet and JSP development using VisualAge for Java 69

// set the MIME type to text/html
response.setContentType("text/html");

// create the output stream
PrintWriter out = response.getWriter();
try {

// Get the list of the parts queried from the database from the session object.
flexLog("Getting the items from the session");
Vector parts = (Vector) session.getAttribute("ItemSessionServlet.parts");
if (parts == null) {

flexLog("parts is null!");
} else {

flexLog("Parts retrieved successfully from session, it has " + parts.size() + "
 elements");

}

//Get the command parameter to determine if this is an add or a show cart
String parameter = request.getParameter("command");
flexLog("CartServlet: parameter passed in from ItemSessionServlet is: " +

 parameter);
String[] value = request.getParameterValues("index");
ShoppingCart cart = (ShoppingCart) session.getAttribute("shopcart.selected");

if (cart == null) {
cart = new ShoppingCart();
flexLog("cart did not exist in session at this time");

} else {
flexLog("cart retrieved from session successfully, it has " +

 cart.getItems().size() + " elements");
}

// If "Add to Cart" was selected and items are checked, add the items to the cart
if ((parameter.equalsIgnoreCase("Add to Cart")) && (value != null)) {

int j = 0;
for (int i = 0; i < value.length; i++) {

j = Integer.parseInt(value[i]);
flexLog("i: " + i + " value: " + j);
String[] data = (String[]) parts.elementAt(j);
CartItem aCartItem = new CartItem(data[0], data[1], data[2], data[3], new

 Integer(1));
cart.getItems().addElement(aCartItem);

}

// save the vector to the Session Data
session.setAttribute("shopcart.selected", cart);

}

// write the HTML header to the output stream
outputHeader(out, getServletInfo());

// write the HTML table to the output stream
outputItemInformation(out, cart);
out.close();

} catch (Throwable e) {
printError(out, e);

}
} // end of doPost()
70 WebSphere J2EE Application Development for the iSeries Server

This servlet can either add the items to the cart and display the cart, or just display the
cart. This functionality is determined according to the value of the command parameter. If
the command parameter value is Add to cart, after adding the items to the cart, the cart is
saved again to the session object.

2.7.4 Running the ItemSessionServlet servlet inside VisualAge for Java
Similar to the servlet testing previously in VisualAge for Java, we need to update the
default_app.webapp file in the VisualAge for Java test environment with a text editor (like
Notepad). This is shown in Example 2-37.

Example 2-37 The default_app.webapp file

<servlet>
 <name>ItemSessionServlet</name>
 <description>ItemSessionServlet</description>
 <code>nservlets.ItemSessionServlet</code>
 <servlet-path>/webapp/OrderEntry/ItemSessionServlet</servlet-path>

<init-parameter>
 <name>user</name>
 <value>Team43</value>
 </init-parameter>
 <init-parameter>
 <name>password</name>
 <value>win4ibm</value>
 </init-parameter>
 <init-parameter>
 <name>datasource</name>
 <value>jdbc/NativeDS</value>
 </init-parameter>

<autostart>false</autostart>
</servlet>
<servlet>
 <name>CartServlet</name>
 <description>CartServet</description>
 <code>nservlets.CartServlet</code>
 <servlet-path>/webapp/OrderEntry/CartServlet</servlet-path>
 <autostart>false</autostart>
 </servlet>

Once we save the property file, we copy the HTML page, itemsessionservlet.html file, into the
<VAJ install root>\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web directory. It is used to accept input as
shown as Example 2-38. We restart the servlet engine of the WebSphere Test Environment.

Example 2-38 ItemSessionServlet.html page

<HTML>
<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
 <META NAME="GENERATOR" CONTENT="Mozilla/4.04 [en] (WinNT; I) [Netscape]">
 <TITLE>Items Retrieval</TITLE>
<!--This file created 3:28 PM 2/11/98 by Claris Home Page version 2.0-->
<X-SAS-WINDOW TOP=79 BOTTOM=699 LEFT=12 RIGHT=845>
</HEAD>
Chapter 2. Servlet and JSP development using VisualAge for Java 71

<BODY BGCOLOR="#C0C0C0">
<FORM method="POST" action="/webapp/OrderEntry/ItemSessionServlet">
<CENTER><IMG SRC="as400.gif" BORDER=2 X-SAS-UseImageWidth X-SAS-UseImageHeight HEIGHT=120
WIDTH=120></CENTER>
<CENTER>
<HR SIZE="5"></CENTER>
<CENTER>Enter *ALL to get all items
from the catalog</CENTER>
<CENTER>or</CENTER>
<CENTER>Enter the item number to
get only one item from the catalog</CENTER>
<CENTER>Press the Button to retrieve
the items</CENTER>
<CENTER> </CENTER>
<CENTER><TABLE BORDER=0 WIDTH="50%" HEIGHT="1" >
<TR>
<TD WIDTH="169" HEIGHT="14">
<DIV ALIGN=right>Item Number or *ALL </DIV>
</TD>
<TD WIDTH="118" HEIGHT="14"><!-- Add the input field after this line -->
 <INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10 MAXLENGTH=10>--></TD>
</TR>
<TR>
<TD WIDTH="169"></TD>
<TD WIDTH="118"><INPUT TYPE="submit" NAME="Submit" VALUE="Get Items Information"></TD>
</TR>
</TABLE></CENTER>
<CENTER>
<HR SIZE="5"></CENTER>
</FORM>

This file uses the servlet <I>ItemServlet</I> to retrieve information
from the AS/400 system

<HR SIZE=5 WIDTH="100%">
</BODY>
</HTML>

Now we access the ItemSessionServlet application by entering the following URL:

http://localhost:8080/ItemSessionServlet.html

The input HTML page appears as shown in Figure 2-30.
72 WebSphere J2EE Application Development for the iSeries Server

Figure 2-30 ItemSessionServlet input page

We click the Get Items Information button. It shows all the items that we can select, as
shown in Figure 2-31. We select several items and click the Add to Cart button.

Figure 2-31 ItemSessionServlet selection page

The next page (Figure 2-32) shows the items we selected in a shopping cart. You can click
Continue to select more items.
Chapter 2. Servlet and JSP development using VisualAge for Java 73

Figure 2-32 ItemSessionServlet shopping cart

2.7.5 Exporting the ItemSessionServlet from VisualAge for Java
Similar to ItemServlet, before we deploy our new servlet to WebSphere Application Server
V4.0, we have to export it into JAR file that can be used by the Application Assembly Tool to
build a Web application.

In the VisualAge for Java Workbench, select the access, nservlets, and shopData packages
(use the Ctrl key to select all three) and export them to a JAR file. See 2.3.4, “Exporting class
files to a JAR file” on page 28. We export to a file named wswssession.jar.
74 WebSphere J2EE Application Development for the iSeries Server

Chapter 3. WebSphere V4.0 assembly and
deployment tools

In Chapter 2, “Servlet and JSP development using VisualAge for Java” on page 21, we
developed several servlet and JSP applications and tested them inside VisualAge for Java
V4.0. We exported the servlet examples from VisualAge for Java into JAR files:

� wsws.jar: MyHelloWorldServlet
� wswsitem.jar: ItemServlet
� wswspool.jar: ItemPoolServlet
� wswsjsp.jar: CallJSP
� wswssession.jar: ItemSessionServlet

Tools that are not J2EE compliant, like VisualAge for Java 4.0, cannot package applications
into the proper format for installation under WebSphere Application Server 4.0. It is necessary
to use a tool, like the Application Assembly Tool (AAT), to package them into J2EE format
before they can be installed. This chapter explains how to use AAT to do this.

3

© Copyright IBM Corp. 2002. All rights reserved. 75

3.1 WebSphere 4.0 application packaging overview
WebSphere Application Server Version 4.0 is fully J2EE 1.2 compliant. To deploy an
application on WebSphere Application Server 4.0, we cannot simply copy the servlet or JSP
files into the server directory. J2EE requires that all your code, whether it is EJBs, JSPs,
servlets, image files, JAR files, and so on, be packaged into modules with deployment
descriptors provided for each module.

There are three types of modules in J2EE:

� Web module: This is a deployable archive file tat includes Java servlets, JSP pages, JAR
files, HTML files, images, and so on. We call this file a Web Archive file or WAR file. The
extension of the file is .war. There is a deployment descriptor file, web.xml in the WEB-INF
directory of the archive that contains the deployment description for the WAR file.

� EJB module: This is a deployable archive file that includes EJBs and the associated JAR
files. The extension of the file is .jar. The deployment descriptor, ejb-jar.xml is also
included in the META-INF directory of the archive.

� Client module: This is a JAR file that contains Java client classes and a deployment
descriptor named application-client.xml.

A J2EE enterprise application consists of one or more of these three modules packaged into
an Enterprise Archive (EAR) file. The EAR file also contains an XML file named aplication.xml
that describes the application. The extension of the EAR file is .ear.

For enterprise applications running on WebSphere Application Server Version 4.0, we also
package some WebSphere specific extensions into the EAR file, which are not included in the
J2EE specification. Examples include transaction isolation attributes, Web application
reloading, file serving, and servlet invoker by classname information. These extensions
generate additional deployment descriptors, like ejb-jar.xml, ibm-ejb-jar-ext.xmi, and
ibm-ejb-jar-bnd.xmi.

The complete picture of WebSphere 4.0-based application packaging is shown in Figure 3-1.
To deploy applications developed with VisualAge for Java, WebSphere Studio, or other
non-J2EE compliant tools, we need to package them into Web modules, EJB modules, client
modules, and eventually enterprise archive files. IBM provides a tool to help with this process.
It is called the IBM Application Assembly Tool and is available in WebSphere Version 4.0.
76 WebSphere J2EE Application Development for the iSeries Server

Figure 3-1 WebSphere 4.0-based application packaging

3.2 Application Assembly Tool overview
Application Assembly Tool is a graphical user interface (GUI) tool provided with WebSphere
V4.0 to perform application assembly for WebSphere applications. The process for AAT
consists of two steps:

1. Create archive files that contain all of the files that belong to a specific application. The
archive files can be WAR files, EJB modules, and client modules.

2. Configure the runtime behavior of the application. This generates the XML-based
deployment descriptors that list the contents and characteristics of the modules and
contain instructions for how the modules are deployed in the runtime environment.

AAT has rich functions. Some of the following features are very useful for building applications
that will be deployed on WebSphere 4.0:

� Create/Edit J2EE applications (EARs) from J2EE modules.
� Create/Edit J2EE modules.

– Web modules (.war files) for servlets, JSPs, HTML
– EJB modules (.jar files) for EJB and associated JAR files
– Client modules (.jar files) for Java application client classes

� Modify the deployment descriptor information.
� Modify the binding information attributes.
� Modify the IBM extension attributes.
� Convert EJB JAR files from the EJB 1.0 specification to the EJB 1.1 specification.

AAT is shipped with the WebSphere 4.0 client support. Because it does not run on the iSeries
server, you must install it on a workstation.

To start AAT, open a command prompt session and change directories to the <WebSphere
install>\AppServer\bin directory, enter assembly to start the AAT.

Enterprise
Bean

Client
Class

Web
DD

Client
DD

Servlet

EJB
Module
.JAR file

Web
Module

.WAR file

Client
Module
.JAR file

J2EE
Application
.EAR file

IBM
Bindings

IBM
Extensions

IBM
Bindings

IBM
Bindings

IBM
Extensions

Schema
Map

Schema
Attributes

Application
DD

JSP HTML,
GIF, etc.

Table
Creation

EJB
DD

IBM
Bindings

IBM
Extensions
Chapter 3. WebSphere V4.0 assembly and deployment tools 77

The AAT welcome page displays as shown in Figure 3-2. You can click one of the icons to
directly go to the specific function, or click Cancel to use the main menu.

Figure 3-2 Application Assembly Tool welcome page

From the main menu, you can either use the menu items or simply click the smarticons, as
shown in Figure 3-3.

Figure 3-3 Application Assembly Tool smarticons

Some icons are greyed out. This means these icons take effect only if you invoke some
specific functions.

3.3 Application packaging and deploying scenario
In this section, we package the JAR files created with VisualAge for Java using AAT. The JAR
files are:

Create New
Application
EJB Module
Web Module
Application Client

Wizards

Verify

Generate Code for Deployment

Properties

View Descriptor
78 WebSphere J2EE Application Development for the iSeries Server

� wsws.jar: Contains MyHelloWorldServlet
� wswsitem.jar: Contains ItemServlet
� wswspool.jar: Contains ItemPoolServlet
� wswsjsp.jar: Contains CallJSP servlet

We package the JAR files into Web applications and deploy the Web applications on
WebSphere Application Server. We test the deployed applications using the internal
WebSphere HTTP server.

We also build an enterprise application based on the EJB code developed in Chapter 8,
“iSeries EJB application development scenario” on page 245. We go through the steps of
building individual EJB modules, Web modules, and client modules, and then generate the
EAR file. We deploy it on WebSphere Application Server Version 4.0 Advanced Edition and
test it through the internal WebSphere HTTP server.

3.3.1 Packaging MyHelloWorldServlet
Here are the steps to deploy the MyHelloWorldServlet example:

1. Start the Application Assembly Tool.

2. Once the welcome page displays, select Web Module and click OK.

3. In the Application Assembly window, right-click Web Components and select New
(Figure 3-4).

Figure 3-4 Creating a new Web component

4. In the New Web Component window (Figure 3-5), enter MyHelloWorld as the Component
name. Select the Servlet radio button and click the Browse button to add the servlet
name.
Chapter 3. WebSphere V4.0 assembly and deployment tools 79

Figure 3-5 Creating a new Web component

5. In the Select file for Class name window, click Browse to locate the JAR file
(c:\wsws\wsws.jar) that you exported from VisualAge for Java. In our example, we placed
the JAR files in the wsws directory.

6. After you select the JAR file, you return to the Select file for Class name window
(Figure 3-6). Select the nservlets package in the left pane and then select the
MyHelloWorldServlet.class file in the right pane (make sure you select the class file).
Click OK.
80 WebSphere J2EE Application Development for the iSeries Server

Figure 3-6 Selecting the servlet class file

This takes you back to New Web Component window. The window now contains a
component name and a class name as shown in Figure 3-7.

Figure 3-7 New Web Component window
Chapter 3. WebSphere V4.0 assembly and deployment tools 81

7. Click OK to save the settings. Now you see MyHelloWorld listed as a Web Component, as
shown in Figure 3-8.

Figure 3-8 AAT with a Web Component

8. Create a servlet mapping that is similar to an alias in WebSphere 3.5 for this servlet.
Right-click Servlet Mapping in the left panel and select New. The New Servlet Mapping
window displays, as shown in Figure 3-9.
82 WebSphere J2EE Application Development for the iSeries Server

Figure 3-9 Setting servlet mappings

9. Enter MyHello for the URL pattern and select MyHelloWorld as the servlet. Click OK to
save the settings.

10.The configuration of MyHelloWorldServlet is complete. It is time to deploy the Web
application. Select File-> Save As. We save our work in the wsws directory as wsws.war.

Next we use the WebSphere Application Server Version 4.0 Advanced Single Server Edition
Administrative Console to install the Web module so it can be run under WebSphere
Application Server Single Server.

3.3.2 Installing the MyHello Web module under the Single Server
To begin, start the Web-based console. Then follow these steps:

1. Click the plus (+) sign in front of Nodes to reveal the topology. You see the iSeries server
name for Node name. Drill down to the next level and click Enterprise Applications. All
the installed applications are displayed, as shown in Figure 3-10.
Chapter 3. WebSphere V4.0 assembly and deployment tools 83

Figure 3-10 Enterprise applications in WebSphere 4.0 Single Server Edition

2. Install the Web module from this page. Click the Install button to start the process. When
the Application Installation Wizard page displays, use the Browse button to locate the
wsws.war file in the wsws directory. As shown in Figure 3-11, enter MyHelloWorld for both
Application Name and Context Root and click Next.

Figure 3-11 Installing a Web Module under WebSphere 4.0 Single Server Edition
84 WebSphere J2EE Application Development for the iSeries Server

3. Click Next again when you see the Specifying Virtual Host names and Precompiled JSP
option for the Web Modules page. When you see the confirmation dialog, click the Finish
button.

4. Click the Save button on the top of this page to save the configuration. Select the Save
Configuration radio button and click OK, as shown in Figure 3-12.

Figure 3-12 Saving the configuration for WebSPhere 4.0 Single Server Edition

5. Stop and restart the application server to make the application available. Select
Application Servers in the left pane and click Stop in the right pane, as shown in
Figure 3-13.

Figure 3-13 Stopping the application server

6. You may see the warning dialog, shown in Figure 3-14. Click OK and wait for the
application to stop. You will lose the session in your browser.
Chapter 3. WebSphere V4.0 assembly and deployment tools 85

Figure 3-14 The warning dialog when stopping the application server

7. Start WebSphere Application Server. Open an iSeries 5250 session and ensure that your
application server has ended. You can use the WRKACTJOB command to check the
QEJBAES4 subsystem. Then follow these steps:

a. Enter qsh to start a Qshell session.

b. Enter the following command to change directories:

cd /qibm/proddata/webasaes4/bin

c. Enter the following command to start the WebSphere instance (where yourinstance is
the name the WebSphere instance):

strwasinst -instance yourinstance

8. Once the application server starts, test the new Web application. Open a browser session
and enter the URL as:

http://sysname:port/MyHelloWorld/MyHello

Replace sysname with your server name and port with the internal WebSphere HTTP
server port. Figure 3-15 shows the results.
86 WebSphere J2EE Application Development for the iSeries Server

Figure 3-15 MyHello Servlet

9. If you want to use an external HTTP server to test this application, you need to re-generate
the Web server plug-in configuration.

From the Administrative Console, expand Nodes and drill down to Application Servers.
Expand Application Servers and select the instance application server in the left pane. In
the properties page on the right, click Web Server Plug-in Configuration, as shown in
Figure 3-16.

Figure 3-16 Web Server Plug-in configuration

10.Click Generate on the Web Server Plug-in Configuration page. It re-generates the plug-in
configuration for the external HTTP server.
Chapter 3. WebSphere V4.0 assembly and deployment tools 87

Now we can access our application by the external HTTP port:

http: //sysname:port/MyHelloWorld/MyHello

Here sysname is the iSeries server name and port is the external HTTP server port.

3.3.3 Packaging ItemServlet
Next, we package ItemServlet into a Web module with Application Assembly Tool. This is very
similar to the steps in 3.3.1, “Packaging MyHelloWorldServlet” on page 79. We focus on the
differences here.

1. Start Application Assembly Tool.

2. Click Cancel on the AAT welcome page.

3. From the main menu, select File-> Open to open the wsws.war file in the wsws directory.
This WAR file was created in 3.3.1, “Packaging MyHelloWorldServlet” on page 79.

4. Right-click Web Components and select New to add a new component.

5. Enter ItemServlet in the input field for Component Name and locate the ItemServlet.class
from the wswsitem.jar file for the class name. The result should look like the example in
Figure 3-17.

Figure 3-17 Adding a Web Component for ItemServlet

6. Click OK to save the settings.

7. Create the Servlet Mapping by right-clicking the Web component and selecting New. We
enter ItemServlet for the URL pattern and select ItemServlet for the servlet.

Tip: If the HTTP server fails to find the servlet, you may need to restart the external HTTP
server.
88 WebSphere J2EE Application Development for the iSeries Server

Once we finish this, we see the difference from the MyHelloWorld application. ItemServlet
uses initialization parameters for userid, password, JDBC url and JDBC driver.

8. Now we configure the parameters through AAT. Select Web Components->ItemServlet.

a. Right click Initialization Parameters and select New.

b. As shown in Figure 3-18, enter driver as the Parameter Name and
com.ibm.db2.jdbc.app.DB2Driver as the Parameter Value. Click Apply.

Figure 3-18 Setting the initialization parameters

 Use the same technique to enter the following parameter values:

• User: Your user ID

• Password: Your password

• URL: jdbc:db2://sysname/library where sysname is the iSeries server name and
library is the library name for the ITEM table.

A total of four parameters are configured as shown in Figure 3-19.
Chapter 3. WebSphere V4.0 assembly and deployment tools 89

Figure 3-19 Setting the initialization parameters

9. ItemServet uses some classes from the access package. The next step to add these
supporting classes. Select Files-> Class Files-> Add Files.

10.In the Add Files window, click Browse to locate the wswsitem.jar file in the wsws directory.

11.Select the access package in the left pane and then select all the classes in the right
pane. To do this, simply select the first class and then, holding down the Shift key, click to
select the last class. All classes are then selected, as shown in Figure 3-20.

12.Click Add to add the files.
90 WebSphere J2EE Application Development for the iSeries Server

Figure 3-20 Adding the supporting classes

13.Using the same technique, add the SuperServlet class to the supporting classes. To do
this, click the nservlets package in the left pane, click the SuperServlet.class file in the
right pane, and click Add.

14.Click OK to save the settings and return to the AAT main page.

15.Now the ItemServlet is complete. We can export it to a WAR file. Select File-> Save As
and save the work in the wsws directory as wsws.war. Click Yes to the confirmation dialog
and exit AAT.

3.3.4 Installing the ItemServlet Web module on the Single Server
We have done most of the work with AAT. The installation on WebSphere Application Server
is relatively simple and similar to the steps in 3.3.2, “Installing the MyHello Web module under
the Single Server” on page 83.

1. Open the WebSphere Administrative Console through the browser. Click the plus (+) sign
in front of Nodes. Drill down to Enterprise Applications and click it. Then click the Install
button on the right pane.

2. In the Application Installation Wizard page, use the Browse button to locate the wsws.war
file for the Path. Enter OrderEntry for both Application Name Context Root (it’s case
sensitive), as shown in Figure 3-21. Click the Next button.
Chapter 3. WebSphere V4.0 assembly and deployment tools 91

Figure 3-21 Installing a Web module under WebSphere Single Server Edition

3. Click the Next button again on the Specifying Virtual Host names and precompiled JSP
option for Web Modules dialog.

4. Click Finish on the confirmation dialog.

5. Don’t forget to click the Save button on top of the page to save the settings.

6. As in 3.3.2, “Installing the MyHello Web module under the Single Server” on page 83, you
should stop and restart the application server to make the application available.

7. After the server is restarted, access the application by entering the following URL:

http://sysname:port/OrderEntry/ItemServlet

Here sysname is the iSeries server name and port is the internal HTTP server. The results
are shown in Figure 3-22.
92 WebSphere J2EE Application Development for the iSeries Server

Figure 3-22 ItemServlet running on the iSeries

If you want to use the external HTTP server, follow steps in 3.3.2, “Installing the MyHello Web
module under the Single Server” on page 83.

3.3.5 Running ItemServlet from an HTML file
So far, we have accessed the servlet directly from the browser. In most cases, the interface
we deal with is an HTML page or JSP page. In this section, we use an HTML page for data
input. When you click the Submit button, the data is sent to the ItemServlet, and the servlet
accesses and displays the database information.

The HTML page is shown in Example 3-1.

Example 3-1 ItemServlet.html page

<HTML>
<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
 <META NAME="GENERATOR" CONTENT="Mozilla/4.04 [en] (WinNT; I) [Netscape]">
 <TITLE>Items Retrieval</TITLE>
<!--This file created 3:28 PM 2/11/98 by Claris Home Page version 2.0-->
<X-SAS-WINDOW TOP=79 BOTTOM=699 LEFT=12 RIGHT=845>
</HEAD>
<BODY BGCOLOR="#C0C0C0">
<FORM method="POST" action="/OrderEntry/ItemServlet">
<CENTER><IMG SRC="as400.gif" BORDER=2 X-SAS-UseImageWidth X-SAS-UseImageHeight HEIGHT=120
WIDTH=120></CENTER>
<CENTER>
<HR SIZE="5"></CENTER>
<CENTER>Enter *ALL to get all items
from the catalog</CENTER>
Chapter 3. WebSphere V4.0 assembly and deployment tools 93

<CENTER>or</CENTER>
<CENTER>Enter the item number to
get only one item from the catalog</CENTER>
<CENTER>Press the Button to retrieve
the items</CENTER>
<CENTER> </CENTER>
<CENTER><TABLE BORDER=0 WIDTH="50%" HEIGHT="1" >
<TR>
<TD WIDTH="169" HEIGHT="14">
<DIV ALIGN=right>Item Number or *ALL </DIV>
</TD>
<TD WIDTH="118" HEIGHT="14"><!-- Add the input field after this line -->
 <INPUT TYPE="text" NAME="partno" VALUE="*ALL" SIZE=10 MAXLENGTH=10>--></TD>
</TR>
<TR>
<TD WIDTH="169"></TD>
<TD WIDTH="118"><INPUT TYPE="submit" NAME="Submit" VALUE="Get Items Information"></TD>
</TR>
</TABLE></CENTER>
<CENTER>
<HR SIZE="5"></CENTER>
</FORM>

This file uses the servlet <I>ItemServlet</I> to retrieve information
from the AS/400 system

<HR SIZE=5 WIDTH="100%">
</BODY>
</HTML>

In the FORM tag, the ItemServlet is specified to process the request from this HTML page.
The input field “partno” has a default value of *ALL, which means if you don’t enter a value,
the servlet will retrieve all records from the ITEM table.

Next we use AAT to add the HTML file to the Web archive file (wsws.war):

1. Use AAT to open the wsws.war file.

2. Select Files-> ResourceFiles-> Add Files, as shown in Figure 3-23.
94 WebSphere J2EE Application Development for the iSeries Server

Figure 3-23 Adding HTML pages to WAR file

3. As shown in Figure 3-24, locate the directory that includes the HTML pages and images.
Click the directory on the left pane, and select all the files in the right pane. Click Add to
add these files, and click OK to save the settings.

4. In the main AAT window, select File-> Save to save the changes to the wsws.war Web
module.

Figure 3-24 Adding HTML pages into the Web module
Chapter 3. WebSphere V4.0 assembly and deployment tools 95

5. Before re-deploying this Web module on WebSphere Application Server, uninstall the old
OrderEntry application. Open the browser-based WebSphere console.

6. Select Nodes and drill down until you can select Enterprise Applications in the left pane.

7. Select the OrderEntry application in the right panel and click Stop. SeeFigure 3-25.

Figure 3-25 Stopping the OrderEntry application

8. Once the application is stopped, select the OrderEntry application and click Uninstall.

9. On the next page, accept the defaults as shown in Figure 3-26 and click Uninstall again.
96 WebSphere J2EE Application Development for the iSeries Server

Figure 3-26 Uninstalling the OrderEntry application

10.We uninstalled the OrderEntry application from WebSphere Application Server. Now, we
install it again. The steps to install the application are exactly the same as those explained
3.3.4, “Installing the ItemServlet Web module on the Single Server” on page 91. After you
install the application, don’t forget to restart the server.

11.Now you can access the HTML page by entering the following URL:

http://sysname:port/OrderEntry/ItemServlet.html

Here sysname is the iSeries server name and port is the internal HTTP server port. The
page shown in Figure 3-27 appears.
Chapter 3. WebSphere V4.0 assembly and deployment tools 97

Figure 3-27 HTML page in OrderEntry application

12.The default value for Part No. is *ALL. We can change it to different value, for example
000001 and click the Get Items Information button. The record is returned from
ItemServlet and displayed on the browser as shown in Figure 3-28.

Figure 3-28 Query result from ItemServlet

3.3.6 Packaging ItemPoolServlet
Packaging ItemPoolServlet into the Web module with Application Assembly Tool requires
almost the same steps as those in 3.3.3, “Packaging ItemServlet” on page 88.
98 WebSphere J2EE Application Development for the iSeries Server

We add it to the wsws.war file. We define a new Web component named ItemPoolServlet to
point to the servlet named nservlets.ItemPoolServlet in the wswspool.jar file. We then define
a Servlet Mapping that maps ItemPool to the ItemPoolServlet component.

Then we define the initialization parameters for the ItemPoolServlet component. Three
parameters are required as listed in Table 3-1.

Table 3-1 ItemPoolServlet initialization parameters

Finally we add supporting classes by selecting Files-> Classes Files->Add Files. We add all
the classes from the access package of the wswspool.jar file.

3.3.7 Installing the ItemPool Web module on the Single Server
The process to install ItemPool Web module on WebSphere Application Server is similar to
the one outlined in 3.3.4, “Installing the ItemServlet Web module on the Single Server” on
page 91.

We first stop the OrderEntry application and uninstall it. We then install the OrderEntry
application again according to the steps in 3.3.4, “Installing the ItemServlet Web module on
the Single Server” on page 91.

Before we stop the server and restart it, we need to create the JDBC driver for iSeries and
define the data source used by the ItemPool application. An example of creating a data
source for WebSphere Application Server Version 4.0 Advanced Single Server Edition is
shown in Chapter 3 in the redbook WebSphere 4.0 Installation and Configuration on the IBM
~ iSeries Server, SG24-6815.

After creating the data source, we stop and restart the server according to the steps in 3.3.4,
“Installing the ItemServlet Web module on the Single Server” on page 91. After the server is
started, we access the ItemPool application by using the following URL:

http://sysname:port/OrderEntry/ItemPool

The output is shown in Figure 3-29.

Name Value

datasource jdbc/NativeDS

user A valid user ID

password A valid password
Chapter 3. WebSphere V4.0 assembly and deployment tools 99

Figure 3-29 ItemPool result page

3.3.8 Packaging and deploying CallJSP
Packaging CallJSP into a Web module with Application Assembly Tool is similar to the
process that is explained in 3.3.6, “Packaging ItemPoolServlet” on page 98. We do not go
through it in detail here.

After you define the component and Servlet Mapping, you must add supporting classes,
which include the DataBean class in the nservlets package. To add JSP pages into a Web
module, select Files->Resource Files->Add Files as shown in Figure 3-30.
100 WebSphere J2EE Application Development for the iSeries Server

Figure 3-30 Adding JSP pages into the Web module

Select the directory that includes the outputjsp.jsp page and add it into this Web module.
Save the new WAR file.

The process to install it on WebSphere Application Server is exactly the same as the one that
is explained in 3.3.7, “Installing the ItemPool Web module on the Single Server” on page 99.
After the installation, restart the server and access the application by using the following URL:

http://sysname:port/OrderEntry/callJSP

The result page is shown as Figure 3-31.
Chapter 3. WebSphere V4.0 assembly and deployment tools 101

Figure 3-31 The callJSP result page

You can also call it with a parameter, such as:

http://sysname:port/OrderEntry/callJSP?value=hello

3.3.9 Packaging and deploying ItemSessionServlet
Since the steps of packaging and deploying ItemSessionServlet are similar to the steps that
are outlined in the previous sections, we do not go through them again. The Session Manager
of WebSphere is enabled to support cookies by default, so it is not necessary to make any
changes to WebSphere Application Server settings.

3.3.10 Installing the OrderEntry application on Advanced Edition
In this section, we install the Web application under WebSphere Application Server Version
4.0 Advanced Edition. We use the Advanced Edition Administrative Console, which is not
browser based, but a client application.

1. To start the Advanced Edition console, open a workstation command prompt window and
change directory as shown here:

cd \<WebSphere install>\AppServer\bin

2. Enter the following command to start the WebSphere Administrative Console:

adminclient sysname port

Here sysname is name of iSeries server name and port is the administrative server port.
Wait until you see the message Console Ready in the Administrative Console, as shown in
Figure 3-32. Now, you can start to deploy the code.
102 WebSphere J2EE Application Development for the iSeries Server

Figure 3-32 Administrative Console for WebSphere Application Server Version 4.0 Advanced Edition

3. Since the OrderEntry application needs a data source to access the iSeries database, we
need to define a data source. For information about how to create a data source, see
Chapter 3 in the redbook WebSphere 4.0 Installation and Configuration on the IBM
~ iSeries Server, SG24-6815.

4. Install the OrderEntry application using the Administrative Console. To do this, copy the
wsws.war file from the local workstation drive to the IFS directory (named wsws) on the
iSeries. The console can now access this file for the installation.

5. On the console, select the wizards icon and click Install Enterprise Application, as
shown in Figure 3-33.
Chapter 3. WebSphere V4.0 assembly and deployment tools 103

Figure 3-33 Creating an enterprise application

6. The Install Enterprise Application Wizard page appears as shown in Figure 3-34. Make
sure the Install stand-alone module radio button is selected. Click the Browse button
next to Path to locate the wsws.war file in the wsws IFS directory. Enter OrderEntry for
Application name and /OrderEntry for the Context root.

Figure 3-34 Specifying the application

7. Once you enter all these parameters, click the Next button, until you see the Completing
the Application Installation window as shown in Figure 3-35. Click Finish and then OK on
the confirmation dialog to install the application.
104 WebSphere J2EE Application Development for the iSeries Server

Figure 3-35 Completing the application installation

8. Stop and restart the application server to make the application available. As shown in
Figure 3-36, right-click the server and select Stop. After it stops, select Start to start it
again.

Figure 3-36 Stopping and starting the application server

9. Once the application server is ready, we can test through either the internal HTTP server
or an external HTTP server. For the external HTTP server, there is an additional step to
perform. You must re-generate the plug-in configuration. To do this, use the topology pane
on the left to display the node, right-click and select Regen Webserver Plugin, as shown
in Figure 3-37. A completion message shows if the re-generation is successful.
Chapter 3. WebSphere V4.0 assembly and deployment tools 105

Figure 3-37 Re-generating the Web server plug-in

10.Test the OrderEntry application by entering the following URL:

http://sysname:port/OrderEntry/ItemServlet

Here sysname is the name of iSeries server and port is the internal or external HTTP
server port for the WebSphere Advanced Edition server instance. The output is displayed
in the browser, as shown in Figure 3-38.

Figure 3-38 ItemServlet result

Tip: If the external HTTP server fails to find the servlet, you may need to restart the
HTTP server.
106 WebSphere J2EE Application Development for the iSeries Server

We can also test ItemPool or callJSP by using the following URLs:

http://sysname:port/OrderEntry/ItemPool
http://sysname:port/OrderEntry/callJSP

3.3.11 Packaging the MyHelloWorldApp enterprise application
Deploying applications that contain EJBs is different than deploying applications that contain
only servlets or JSPs. They must be deployed using EAR files.

In Chapter 10, “Building Java applications with Enterprise JavaBeans” on page 315, we
develop the MyHelloWorldApp application, which uses Java clients, servlets, and EJBs. We
use WebSphere Studio Application Developer for the development. With Application
Developer, it is not necessary to go through Application Assembly Tool to package the
modules. Application Developer is capable of creating EAR files directly that can be deployed
on WebSphere Application Server 4.0.

Since Application Developer is a new tool, many Java developers still work with non-J2EE
compliant tools like VisualAge for Java to develop EJB-based applications. In this case, AAT
is the next step to create an EAR file for deployment on WebSphere Application Server 4.0. In
this section, we show how to combine EJBs, servlets, and Java applications into an .ear file.

Here, it is understood that we have already developed the same MyHelloWorldApp
application with VisualAge for Java 4.0 and now want to deploy it. We follow these steps:

1. Export the EJB part. As shown in Figure 3-39, click the EJB tab in VisualAge for Java.
Select the EJB group, and then right-click and select Export-> EJB 1.1 JAR.

Figure 3-39 Exporting the EJB group to the EJB 1.1 Jar

Export to the MyEJBs.jar file in the wsws directory. We export both class and Java source
into the JAR file.
Chapter 3. WebSphere V4.0 assembly and deployment tools 107

2. Export the EJB client application. Just like exporting servlets, simply right-click the
HelloWorldClient application and select Export, as shown in Figure 3-40. Save it as
HelloWorldClient.jar in the wsws directory.

Figure 3-40 Exporting HelloWorldClient to a JAR file

3. Export the servlet. We select the HelloEJBServlet servlet and save it to
HelloEJBServlet.jar file in the wsws directory.

We now have three JAR files:

– MyEJBs.jar: Includes all the EJBs
– HelloWorldClient.jar: Includes the EJB client application
– HelloEJBServlet.jar: Includes the servlet

4. Create an enterprise application based on these three JAR files. We create modules for
each JAR file and then bundle them together. Figure 3-41 shows the flow we follow to
create the enterprise application:

a. Create an EJB module from the EJBs exported from VisualAge for Java (MyEJBs.jar).

b. Create an Application client module from the applications exported from VisualAge for
Java (HelloWorldClient.jar).

c. Create a Web module from the servlets exported from VisualAge for Java
(HelloEJBServlet.jar).

d. Combine the modules into an enterprise application.

e. Deploy the Enterprise Application in WebSphere Application Server 4.0. We deploy to
WebSphere Application Server Version 4.0 Advanced Edition.
108 WebSphere J2EE Application Development for the iSeries Server

Figure 3-41 Creating an enterprise application

Creating the EJB module for MyEJBs.jar
First we create an EJB module to hold the EJBs that we exported. Then we follow these
steps:

1. Start Application Assembly Tool (AAT). In the welcome page, click Cancel.

2. Open the MyEJBs.jar file in the wsws directory.

3. Select Session Beans-> MyHelloWorld as shown in Figure 3-42.

EJB Module

Appl Client
Module

Web
Module

Enterprise
Application

EJB

EJB

MyEJBs.jar

Class

Class
HelloWorldClient.jar

Servlet

Servlet

HTML

Image

HelloEJBServlet.jar

Deployed_MyEJBs.jar

MyHelloWorldClient.jar

HelloEJBServlet.war

Deploy

MyHelloWorldApp.ear
Chapter 3. WebSphere V4.0 assembly and deployment tools 109

Figure 3-42 Adding EJBs

4. You can now see the details about the EJB. Select the Bindings tab and make sure that
the JNDI name is MyHelloWorld.

5. We need to generate the EJB deployment code. This includes all the remote method
invocation (RMI) code necessary to allow the EJB to communicate through an RMI/IIOP
interface. Select File-> Generate Code for Deployment. In the Generate code for
deployment window (Figure 3-43), click the Generate Now button.
110 WebSphere J2EE Application Development for the iSeries Server

Figure 3-43 Generating code for deployment

6. While the code generation is being processed, the Generate Now button is grayed out.
Wait for the code generation to finish. When it is done, scroll down the messages pane
and ensure that you have no errors.

7. Close the Generate code for deployment window and check the wsws directory for
Deployed_MyEJBs.jar file. It contains all the code necessary to actually run the EJBs.

Creating the client module for HelloWorldClient.jar
Next, we create a client application to hold the Java application. Follow these steps:

1. In AAT, select File-> Wizards->Create Application Client Wizard.

2. In the wizard page (Figure 3-44), enter MyHelloWorldClient for Display Name and
x:\wsws\MyHelloWorldClient.jar for File Name. Replace x with the drive letter where the
wsws directory is stored. Then click Next.
Chapter 3. WebSphere V4.0 assembly and deployment tools 111

Figure 3-44 Creating a client module for MyHelloWorldClient.jar

3. In the Create Client Application: Adding Files window, click Add to display the Add File
window.

4. In the Add Files window (Figure 3-45), click the Browse button to locate the
HelloWorldClient.jar file in the wsws directory.

Figure 3-45 Selecting the client program

5. Select the HelloWorldClient.class file in the right pane and click Add to add it to the
selected files pane. Click OK to return to the previous page and then click Next.

6. In the Specifying Additional Application Client Module Properties window (Figure 3-46),
we need to specify the main class that client container can invoke. Click the Browse
button.
112 WebSphere J2EE Application Development for the iSeries Server

Figure 3-46 Specifying additional application properties

7. In the Select file for Main class window, select the HelloWorldClient.class file and click
OK. We now see that the Main Class has been filled in. Click Next.

8. In the Choosing Application Icons window, click Next again.

9. Once you see the Adding EJB References window, click the Add button. The Add EJB
References window appears (Figure 3-47).

Figure 3-47 Adding EJB references
Chapter 3. WebSphere V4.0 assembly and deployment tools 113

10.Enter MyHelloWorld in the Name field. Click the Browse button next to Home to locate the
Deployed_MyEJBs.jar. As shown in Figure 3-48, select MyHelloWorldHome.class as
the Home interface class and click OK.

Figure 3-48 Selecting MyHelloWorldHome.class for Home

11.Use the same technique to select MyHelloWorld.class as the Remote Interface from
Deployed_MyEJBs.jar file. Make sure the EJB type is set to Session.

12.As shown in Figure 3-49, the EJB Home, Remote, and Type parameters are set. Click OK
to save the settings.

Figure 3-49 EJB references result
114 WebSphere J2EE Application Development for the iSeries Server

13.In the Create Application Client Wizard window, click Next.

14.Click Next again on the Adding Resource References window.

15.Click Finish to create the EJB application client module.

16.Set the EJB bindings for the client application. In the AAT window, click EJB References
on the left pane and click the Bindings tab on the right for the MyHelloWorld bean. As
shown as Figure 3-50, enter MyHelloWorld for the JNDI name and click Apply.

17.The application client is now complete. We save it by selecting File-> Save to save the
work as MyHelloWorldClient.jar in the wsws directory.

Figure 3-50 Setting the bindings for an application client

Creating a Web module for HelloEJBServlet.jar
Next, we create a Web module that contains the HelloEJBServlet:

1. Select File-> New-> Web Module.

2. In the main AAT window, right-click Web Components and select New to create a
component based on HelloEJBServlet.

3. In the New Web Component window, shown as Figure 3-51, enter HelloEJBServlet for
Component name. Click the Browse button to locate the HelloEJBServlet.jar file in the
wsws directory.
Chapter 3. WebSphere V4.0 assembly and deployment tools 115

Figure 3-51 Creating a new Web component in AAT

4. In the Select file for classname window, shown as Figure 3-52, select the
HelloEJBServlet.class servlet from tservlets package. Click OK.

Figure 3-52 Selecting the file for classname
116 WebSphere J2EE Application Development for the iSeries Server

5. The New Web Component window now contains a component name and a Class name.
Click OK to save the settings.

6. Define the Servlet Mappings. We define HelloEJBServlet as the URL pattern for the
HelloEJBServlet servlet.

7. Define the EJB references:

a. Right-click EJB Reference and select New.

b. In the EJB Reference window, shown as Figure 3-53, enter MyHelloWorld in the Name
field.

c. Click the Browse button next to Home. Locate the Deployed_MyEJBs.jar file in the
wsws directory.

d. Select MyHelloWorldHome.class for Home interface.

e. Use the same technique to select MyHelloWorld.class for Remote interface.

f. Make sure the Type is Session.

g. Click the Bindings tab. Enter MyHelloWorld as the JNDI name, and click OK to save
the settings.

Figure 3-53 Setting the EJB references

8. The Web module packaging is complete. Select File-> Save As to save it as
HelloEJBServlet.war in the wsws directory.

Creating the MyHelloWorldApp enterprise application
We now have three modules:

� Deployed_MyEJBs.jar as the EJB module
� MyHelloWorldClient.jar as the client module
� HelloEJBServlet.war as a Web module
Chapter 3. WebSphere V4.0 assembly and deployment tools 117

We also set the EJB local bindings in the Web module and client modules. We need to
assemble them together as an enterprise application:

1. In AAT, select File->Wizard -> Create Application Wizard.

2. In the main Create Application wizard window (Figure 3-54), enter MyHelloWorldApp for
Display Name and x:\wsws\MyHelloWorldApp.ear for File Name. Replace x with the drive
letter where the wsws directory is stored.

Figure 3-54 Specifying enterprise application properties

3. Keep clicking the Next button until you reach the Adding EJB Modules window. Click Add
and locate the Deployed_MyEJBs.jar file in the wsws directory. Click Open.

In the Confirm values window, shown as Figure 3-55, leave Alternate DD blank
(represents an alternate Deployment Descriptor). Click OK and then Next.

Figure 3-55 Confirming the values for the EJB modules

4. Add the Web modules. In the Adding Web Modules window, use the same technique to
select the HelloEJBServlet.war file in the wsws directory. When the Confirm values
window (Figure 3-56) appears, leave Alternate DD blank and enter /HelloWorld for the
Context root. Click OK and then Next.
118 WebSphere J2EE Application Development for the iSeries Server

Figure 3-56 Confirming the values for Web modules

5. In the Adding Application Clients Modules window, use the same technique to select the
MyHelloWorldClient.jar file in the wsws directory. When the Confirm values window
(Figure 3-57) appears, leave Alternate DD blank. Click OK and then Next.

Figure 3-57 Confirming values for client modules

6. We have now added the three modules. Click Finish to save the settings.

7. You return to the AAT main window with the newly created enterprise application, as
shown in Figure 3-58. Click the Bindings tab and set the application name to
MyHelloWorldApp. Click Apply to save the change.

Figure 3-58 Setting the bindings for enterprise applications

8. Save the configuration by selecting File-> Save to save it to the MyHelloWorldApp.ear file
in the wsws directory.
Chapter 3. WebSphere V4.0 assembly and deployment tools 119

3.3.12 Installing the MyHelloWorldApp application on Advanced Edition
In this section, we install the MyHelloWorldApp enterprise application on WebSphere
Application Server Version 4.0 Advanced Edition using the Administrative Console.

1. Copy the MyHelloWorldApp.ear file from our local drive to the iSeries IFS wsws directory,
so the Administrative Console can access it when creating enterprise applications.

2. As in 3.3.10, “Installing the OrderEntry application on Advanced Edition” on page 102,
open a command prompt window to start the Administrative Console. Wait until you see
the Console Ready in the Console message.

3. In the Console, select the wizard icon and click Install Enterprise Application.

4. The Specifying the Application or Module window (Figure 3-59) appears. Make sure that
the Install Application radio button is selected. Click the Browse button next to Path to
locate the MyHelloWorldApp.ear in the wsws directory. Enter MyHelloWorldApp for the
Application name.

Figure 3-59 Specifying the application parameters

5. Keep clicking Next until you reach the Completing the Application Installation window
(Figure 3-60). Click Finish to complete the installation. Click No to the Regenerate the
application dialog and click OK on the confirmation dialog.
120 WebSphere J2EE Application Development for the iSeries Server

Figure 3-60 Completing the application installation

6. As in 3.3.10, “Installing the OrderEntry application on Advanced Edition” on page 102,
stop and restart the application server. To support this new application with an external
HTTP server, you must regenerate the plug-in configuration.

3.3.13 Testing the MyHelloWorldApp application
Now that we have successfully installed the MyHelloWorldApp application on WebSphere
Application Server Version 4.0 Advanced Edition, we need to test it. Since we have two kinds
of EJB clients – application clients and servlets – we test both of them.

Testing the application client
Open a workstation command prompt session and change the directory to:

\<WebSphere install>\AppServer\bin

Enter the following command:

launchclient x:\wsws\myhelloworldapp.ear -CCBootstrapHost=sysname -CCBootstrapPort=port

Here x is the drive where the wsws directory is stored, sysname is the name of iSeries server,
and port is the administrative server bootstrap port.

As shown in Figure 3-61, if everything is working, the following messages are written to the
command session:

Running the J2EE Application Client HelloEJB Sample
--lookup was successful
--narrow was successful
--create was successful
Message from HelloEJB: Hello from teamxx
HelloClient ran successfully
Chapter 3. WebSphere V4.0 assembly and deployment tools 121

Figure 3-61 Running the application client for MyHelloWorldApp

Testing the servlet
Now we test the servlet. Open a browser and enter the URL:

http://sysname:port/HelloWorld/HelloEJBServlet

Here sysname is the name of iSeries server and port is your HTTP server port (it can be
either an external HTTP server port or internal HTTP server port).

If everything works properly, the message appears in the browser, as shown in Figure 3-62.

Figure 3-62 Testing servlet for MyHelloWorldApp

To view the output from the System.out.println statements, we can look in the WebSphere log
file that is located in the /QIBM/UserData/WebASAdv4/xxxx/logs directory (xxxx is your
WebSphere instance name). Use a workstation editor to view the ServerName_stdout.log file
and scroll to the end of the file. As shown in Figure 3-63, you see the messages from the
servlet.
122 WebSphere J2EE Application Development for the iSeries Server

Figure 3-63 WebSphere log file

Now we have finished installing and testing the MyHelloWorldApp enterprise application.

3.3.14 Packaging the OrderEntryApp enterprise application
In Chapter 10, “Building Java applications with Enterprise JavaBeans” on page 315, we
develop another enterprise application, OrderEntryApp, which integrates Java clients,
servlets, and EJBs. The MyHelloWorldApp application is very simple and only uses only one
session bean. In OrderEntryApp, we use multiple session beans and entity beans (both
container-managed persistence and bean-managed persistence) to simulate a more complex
transaction-based application. It is shown in Figure 3-64.

Figure 3-64 OrderEntryApp diagram

OrderEntryClerk

 SB

OrderPlacement

 SB

ItemEB

CustomerEB

StockEB

OrderEB

DistrictEB

Application
Applet
Servlet/JSP
non-Java
 Visual Basic

 CORBA Appl

Client

Item Table
Customer Table
Stock Table
District Table
Order Table

Order Line Table
Chapter 3. WebSphere V4.0 assembly and deployment tools 123

OrderEntryClerk and OrderPlacement are session beans. ItemEB, CustomerEB, StockEB,
OrderEB, and DistrictEB are entity beans. We use Java applications and servlets as EJB
clients. We can also treat session beans as clients of entity beans, where session beans
represent business logic and entity beans represent data. When we package the application
with AAT, we configure the bindings for Java application clients and servlets to find the EJBs.
We also need to configure the bindings for session beans to find the entity beans.

Assume we have developed the OrderEntryApp application with VisualAge for Java 4.0, not
with WebSphere Studio Application Developer. Application Developer is capable of packaging
.ear files directly. We export our code into JAR files. We create four JAR files:

� OrderEntryBeans.jar: Includes all the EJB beans
� OrderEntryClient.jar: Includes the EJB client application
� OrderEntryWar.jar: Includes the servlet
� nonejb.jar: Includes supporting classes for the EJBs

Next, we create an enterprise application based on these JAR files. We create modules for
each JAR file and then bundle them together.

Figure 3-65 shows the flow of the application packaging. Since the packaging process is very
similar with the one explained in 3.3.11, “Packaging the MyHelloWorldApp enterprise
application” on page 107, we only focus on the differences for the OrderEntryApp application.

Figure 3-65 Creating OrderEntryApp enterprise application

Creating the EJB module for OrderEntryBeans.jar
As in “Creating the EJB module for MyEJBs.jar” on page 109, start AAT and then follow these
steps:

1. Open the OrderEntryBeans.jar file.

2. Select Session Beans-> OrderEntryClerk. You see the details of the bean as shown in
Figure 3-66.

EJB Module

Appl Client
Module

Web
Module

Enterprise
Application

EJB

EJB

OrderEntryBeans.jar

Class

Class
OrderEntryClient.jar

Servlet

Servlet

HTML

Image

OrderEntryWar.jar

Deployed_OrderEntryBeans.jar

MyOrderEntryClient.jar

OrderEntryServlet.war

Deploy

OrderEntryApp.ear
124 WebSphere J2EE Application Development for the iSeries Server

Figure 3-66 OrderEntryClerk Session Bean

3. Click the Bindings tab and make sure the JNDI name is OrderEntryClerk.

4. Repeat this for the OrderPlacement session bean and make sure the JNDI name is
OrderPlacement.

5. Use the same technique to select the Customer, District, Item, Order, and Stock entity
beans under Entity Beans, and make sure their JNDI names are Customer, District,
Item, Order, and Stock respectively.

6. Add EJB references. Because the OrderEntryClerk session bean invokes the
OrderPlacement session bean for placing orders in our application, add this reference for
OrderEntryClerk. Select Session Beans-> OrderEntryClerk-> EJB References-> New.
As shown in Figure 3-67, enter OrderPlacement for Name and click the link pulldown to
select the OrderPlacement bean. Then click OK.
Chapter 3. WebSphere V4.0 assembly and deployment tools 125

Figure 3-67 Adding a EJB reference for OrderEntryClerk

7. As shown in Figure 3-68, select EJB References-> OrderPlacement-> Bindings. Enter
OrderPlacement for the JNDI Name and click Apply.

Figure 3-68 Setting the EJB reference bindings
126 WebSphere J2EE Application Development for the iSeries Server

8. The OrderPlacement session bean invokes entity beans such as Customer, District,
Order, and Stock in the application. We need to add EJB references for all these entity
beans to the OrderPlacement session bean. Select Session Beans-> OrderPlacement->
EJB References-> New. Use the same technique to add EJB references to the
OrderPlacement bean for the following EJBs:

– Customer
– District
– Order
– Stock

Figure 3-69 shows the detailed EJB references for the OrderPlacement bean. Don’t forget
to click the Bindings tab to set the JNDI name for each EJB reference.

Figure 3-69 OrderPlacement EJB references

9. Add supporting classes into the module for the EJBs. Right-click Files and select Add
Files. In the Add Files window, shown as Figure 3-70, click the Browse button to locate
the nonejb.jar file in the wsws directory. Select all the files in the interfaces package and
click Add. Then click OK to return to the main AAT window.
Chapter 3. WebSphere V4.0 assembly and deployment tools 127

Figure 3-70 Adding the supporting classes

10.Generate the deployed code. Select File-> Generate Code for Deployment. In the
Generate code for deployment window (Figure 3-71), leave Working Directory as the
default. The EJBs use classes from other packages like:

– IBM Toolbox for Java (jt400.jar)
– Application supporting classes(nonejb.jar)
– WebSphere Command package (ace.jar)

We need to add them into the classpath with the following entry so they can be found:

x:\jt400\jt400.jar;x:\wsws\nonejb.jar;x:\WebSphere\AppServer\lib\ace.jar

Here x is the workstation drive on which these files are stored.

We click the Generate Now button to generate the deployed code. Wait for the code
generation to finish. When it is done, scroll down the messages and make sure that you
have no errors.

11.Close the Generate code for deployment window. Check the wsws directory. There is a
new file named Deployed_OrderEntryBeans.jar, which contains all the code necessary to
actually run the EJBs.
128 WebSphere J2EE Application Development for the iSeries Server

Figure 3-71 Generating code for deployment

Creating the client module for OrderEntryClient.jar
In AAT, follow these steps:

1. Select File-> Wizards-> Create Application client Wizard. On the following page
(Figure 3-72), enter OrderEntryClient for Display Name and
x:\wsws\MyOrderEntryClient.jar for File name (replace x with the drive letter where the
wsws directory is stored). Click Next.

Figure 3-72 Creating the client module for OrderEntryApp
Chapter 3. WebSphere V4.0 assembly and deployment tools 129

2. On the Create Client Application Add Files window, click the Add button. On the Add Files
window, click Browse to locate the OrderEntryClient.jar file in the wsws directory. As
shown in Figure 3-73, select all the files from the EJBApplications package and click Add.
Use the same technique to add all the files from the Support package. Click OK to return
to the Add Files window.

Figure 3-73 Adding class files into client module

3. Click Next. In the Specifying Additional Application Client Module Properties window, click
Browse. Select the OrderEntryWdwJ.class from the EJBApplications package as the
Main class as shown in Figure 3-74. Click OK. You return to the previous page.

Figure 3-74 Specifying the main class for the client module

4. Keep clicking Next until you reach the Adding EJB References window. Click Add and on
the following page, enter OrderEntryClerk in the Name field. Click Browse next to Home
130 WebSphere J2EE Application Development for the iSeries Server

to locate the Deployed_OrderEntryBeans.jar file in the wsws directory. As shown in
Figure 3-75, select the OrderEntryClerkHome.class file and click OK.

Figure 3-75 Adding the Home interface for EJB reference

Use the same technique to set the OrderEntryClerk class file for the Remote interface.

5. Now we have set all the values for EJB reference. As shown in Figure 3-76, make sure
that Type is set to Session.

Figure 3-76 Setting the EJB reference

6. Keep clicking Next until you see a Finish button. Click it to finish the settings.
Chapter 3. WebSphere V4.0 assembly and deployment tools 131

7. In the AAT main window, click EJB References on the left pane and click the Bindings
tab for the OrderEntryClerk bean. As shown in Figure 3-77, enter OrderEntryClerk for
JNDI name and click Apply to save the settings.

Figure 3-77 Setting the bindings for EJB references

8. The Application Client is now complete. Select File-> Save to save the work in the wsws
directory as MyOrderEntryClient.jar.

Creating a Web module for OrderEntryWar.jar
In AAT, follow these steps:

1. Select File-> New-> Web Module. In the AAT main window, right-click Web Components
and select New to create a new component. In the New Web Component window, enter
ItemSessionServlet for the Component name. Click Browse next to Class name to add
the servlet class.

2. In the Select file class name window, click the Browse button to locate the
OrderEntryWar.jar file in the wsws directory. Select ItemSessionServlet.class in the
tservlets package as the servlet, as shown in Figure 3-78. Click OK to finish the selection.
132 WebSphere J2EE Application Development for the iSeries Server

Figure 3-78 Selecting the file for classname

3. You return to the New Web Component window. Click OK the save the settings.

4. Create a new servlet mapping. We use ItemSessionServlet as the URL pattern and
select ItemSessionServlet as the servlet.

5. Since this servlet invokes the OrderEntryClerk Session Bean for the transactions, we need
to add EJB References for it. Using the same steps in “Creating the client module for
OrderEntryClient.jar” on page 129, we create an EJB reference to the OrderEntryClerk
session bean and also make sure the Bindings value is set to OrderEntryClerk.

6. ItemSessionServlet uses initialization parameters for userid, password, system name, and
bootstrap port. We need to configure them.

a. Select Web Components-> ItemSessionServlet-> Initialization Parameters-> New.
Add the parameter Name/Value pairs as listed in Table 3-2.

Table 3-2 ItemSessionServlet initialization parameters

b. Select File-> Save As to save the work in the wsws directory as
OrderEntryServlet.war.

c. Since we use another servlet named CartServlet for shopping cart processing, follow
the same procedure to add the CartServlet.

Name Value

userid A valid user ID

password A valid password

system iSeries server name

port WebSphere Application Server bootstrap port
Chapter 3. WebSphere V4.0 assembly and deployment tools 133

i. Add a new Web Component CartServlet to point to CartServlet in tservlets package
(same as with defining ItemSessionServlet).

ii. Create a new Servlet Mapping called CartServlet to specify the CartServlet
component.

iii. Because CartServlet invokes the OrderPlacement session bean for transactions, we
need to add a new EJB reference for CartServlet. Using the same technique as for
creating an EJB reference to the OrderEntryClerk session bean, we create an EJB
reference called OrderPlacement to point to OrderPlacement session bean. We set
the binding as OrderPlacement.

iv. CartServlet also uses initialization parameters when calling the init() method. The
parameters are the same as those for ItemSessionServlet. Following the same
steps, we define the initial parameters of userid, password, system and port for
CartServlet.

7. We need to add the supporting classes for the Web module. In AAT, expand Files in the
left pane, right-click Class Files, and then select Add Files, as shown in Figure 3-79.

Figure 3-79 Adding additional class files for the Web module

8. In the Add files window, click the Browse button to locate the OrderEntryWar.jar file in the
wsws directory. Select all the files from the ShopData package and click Add. Use the
same technique to add all the files from the Support and tservlets package. Click OK to
complete the settings.

9. Select File-> Save to save the work. Now we have finished the tasks for the Web module.
A new file called OrderEntryServlet.war is created in the wsws directory.
134 WebSphere J2EE Application Development for the iSeries Server

Creating an enterprise application for the OrderEntryApp
Now we have the following three modules:

� Deployed_OrderEntryBeans.jar for EJBs
� MyOrderEntryClient.jar for application client
� OrderEntryServlet.war for servlets

Based on these files, we create the enterprise application using AAT:

1. In AAT, select File-> Wizards-> Create Application Wizard. In the Create Application
Wizard initial page (Figure 3-80), enter OrderEntryApp for Display name and
x:\wsws\OrderEntryApp.ear for File Name. Replace x with the workstation drive letter.

Figure 3-80 Creating OrderEntryApp enterprise application

2. Keep clicking Next until the Adding EJB Modules window appears. Click Add to add the
Deployed_OrderEntryBeans.jar file from the wsws directory. When the Confirm values
dialog (Figure 3-81) appears, leave Alternate DD blank and click OK.

Figure 3-81 Confirming the values for adding EJB modules

3. Click Next and in the Adding Web Modules window. Click Add to add the
OrderEntryServlet.war file. In the Confirm values window, as shown in Figure 3-82, leave
Alternative DD blank, enter /OrderEntry2 for Context root, and click OK.
Chapter 3. WebSphere V4.0 assembly and deployment tools 135

Figure 3-82 Confirming the values for adding Web modules

4. Click Next. In the Adding Application Clients Modules window, click Add to add the
MyOrderEntryClient.jar file. In the confirm value window, leave Alternate DD blank and
click OK.

5. Click Next and then click Finish to complete the settings.

6. In the AAT main window, click the OrderEntryApp application in left pane and click the
Bindings tab in the right pane. Fill in the Enterprise application name with OrderEntryApp,
as shown in Figure 3-83. Click Apply to save the changes.

Figure 3-83 Setting the bindings for OrderEntryApp

7. Select File-> Save to save the file. A new file named OrderEntryApp.ear is created in the
wsws directory. This is the file where we can install on WebSphere Application Server 4.0.

3.3.15 Installing the OrderEntryApp application on Advanced Edition
In this section, we install the OrderEntryApp enterprise application on WebSphere Application
Server Version 4.0 Advanced Edition with the Administrative Console.

1. Copy the OrderEntryApp.ear file from our local drive to the iSeries IFS wsws directory.
Now, the Administrative Console can access it when creating enterprise applications.
136 WebSphere J2EE Application Development for the iSeries Server

2. In the Console, select the wizard icon and select Install Enterprise Application. The
Specifying the Application or Module window (Figure 3-84) appears. Make sure that the
Install Application radio button is selected. Click the Browse button next to Path to locate
the OrderEntryApp.ear in the wsws directory. Enter OrderEntryApp for the Application
name.

Figure 3-84 Installing the application

3. Keep clicking Next until you reach the Specifying the Default Datasource for EJB Modules
window. Click the Select Datasource button and select the NativeDS Datasource. Enter a
user ID and password (twice) and click OK.

4. Click Next. In the Specifying Data Sources for individual CMP beans window, select all
three of the CMP beans. Click the Select Datasource button. Then select the NativeDS
Datasource. Enter a user ID and password (twice) and click OK. Now we have a Data
Source for each CMP bean as shown in Figure 3-85.

Note: We use the NativeDS DataSource. See Chapter 3 in the redbook WebSphere
4.0 Installation and Configuration on the IBM ~ iSeries Server, SG24-6815, for
information on how to create a DataSource.
Chapter 3. WebSphere V4.0 assembly and deployment tools 137

Figure 3-85 Specifying data sources for CMP beans

5. Keep clicking Next until you reach the Completing the Application Installation window.
Click Finish to install the application. When the Regenerate the application dialog
appears, click No.

6. Now we have successfully installed the OrderEntryApp enterprise application on
WebSphere Application Server Version 4.0 Advanced Edition. We need to stop the server.
Before we restart it, we set up the classpath for this application. The application server
needs to find the classes in the IBM Toolbox for Java. As shown in Figure 3-86, select the
application server and click the JVM Settings tab in the right pane. Add the following files
to the Classpaths settings and click Apply.

– /QIBM/ProdData/Java400/jt400ntv.jar
– /QIBM/ProdData/http/public/jt400/lib/jt400.jar
138 WebSphere J2EE Application Development for the iSeries Server

Figure 3-86 Setting the classpath

Restart the server to make the new application available. For an external HTTP server, we
need to regenerate the Web server plug-ins.

3.3.16 Testing the OrderEntryApp application
Now we have successfully installed the OrderEntryApp application on WebSphere Application
Server Advanced Edition. The next step is to test it.

Since we have two kinds of EJB clients – application clients and servlets – we test both of
them.

Testing the application client
To test the application client, follow these steps:

1. Open a workstation command prompt session and change the directory to the
\<WebSphere install>\AppServer\bin directory. Enter the following command:

launchclient x:\wsws\orderentryapp.ear port -CCBootstrapHost=sysname
-CCBootstrapPort=port

Here x is the drive where the wsws directory is stored, sysname is the name of iSeries
server, and port is the administrative server bootstrap port.

2. Once the client application window (Figure 3-87) appears, select Connect-> Connect.
Enter the iSeries server name, user ID, and password in the signon dialog, and click OK.
Chapter 3. WebSphere V4.0 assembly and deployment tools 139

Figure 3-87 Running the client application

3. Once you successfully sign on (a status message indicates this), click the List Customers
button, select one customer, and click OK.

4. Click the List Items button, select an item, and click OK. Dismiss the List Items window.
Return to the main window, enter a quantity for the selected item, and click the Add Item
button. As shown in Figure 3-88, this item is added to the list. You can keep adding new
items.
140 WebSphere J2EE Application Development for the iSeries Server

Figure 3-88 Adding an item to the list

5. Click the Submit button to place an order. As shown in Figure 3-89, if everything works
correctly, an order number is returned to the Status field.

Figure 3-89 A successful order placement
Chapter 3. WebSphere V4.0 assembly and deployment tools 141

Testing the servlet
To test the servlet, follow these steps:

1. Open a browser to access the servlet by entering the URL:

http://sysname:port/OrderEntry2/ItemSessionServlet

Here sysname is the iSeries server name, and port is the external (or internal) HTTP
server port.

If everything works properly, the item list shown in Figure 3-90 appears.

Figure 3-90 Testing the servlet

2. Select some items and click the Add to Cart button to add them to the shopping cart.

3. After viewing the shopping cart, click the Check Out button. As shown in Figure 3-91,
enter a customer number (0001 to 0010) and click the Place Order button.
142 WebSphere J2EE Application Development for the iSeries Server

Figure 3-91 Placing an order

If everything works successfully, we see a confirmation message as shown in Figure 3-92.

Figure 3-92 A successful order

We have successfully run the OrderEntryApp transaction application in WebSphere
Application Server Version 4.0 Advanced Edition.
Chapter 3. WebSphere V4.0 assembly and deployment tools 143

144 WebSphere J2EE Application Development for the iSeries Server

Chapter 4. Introduction to WebSphere
Studio Application Developer

This chapter provides an introduction to WebSphere Studio Application Developer. It is a
follow-on product to VisualAge for Java and WebSphere Studio. It provides many of the key
VisualAge for Java and WebSphere Studio capabilities, plus it adds many new capabilities. It
helps you build and test J2EE compliant applications. We also refer to it as Application
Developer.

The purpose of this chapter is to get you started with WebSphere Studio Application
Developer. We walk you through some simple examples to show you how to navigate in
Application Developer and how to customize your workspace. We show you how to do more
complex examples – such as building, testing, and deploying servlets, JavaServer Pages, and
Enterprise JavaBeans – in other chapters of this redbook.

4

© Copyright IBM Corp. 2002. All rights reserved. 145

4.1 WebSphere Studio Application Developer overview
WebSphere Studio Application Developer is the follow-on technology for WebSphere Studio,
Professional and Advanced Editions and VisualAge for Java Enterprise Edition. These new
tools support the end-to-end development, testing, and deployment of e-business
applications.

The new WebSphere Studio products are designed from the ground up to meet the
requirements for all new types of applications. These requirements include:

� Open standards
� Java
� XML
� Web Services
� Testing
� Varying levels of integration with other components and ISV products
� Pluggability
� Expandability
� Role-based development
� Increased usability for all users
� Enhanced team support
� Increased speed to market

Application Developer provides integrated development tools for all e-business development
roles. These roles include Web developers, Java developers, business analysts, application
architects, and enterprise application programmers.

Application Developer brings together the most popular features of WebSphere Studio
"Classic", and VisualAge for Java and combines them with the advantages of the latest
technology, providing open standards, tool integration, more flexibility, and the ability to tie in
existing applications.

Figure 4-1 shows all the tasks you can manage with Application Developer.
146 WebSphere J2EE Application Development for the iSeries Server

Figure 4-1 Building a J2EE Application with Application Developer

Java features
� Ships with JDK 1.3
� Pluggable runtime JDK support per project

– Specify JRE and rt.jar for running/building/debugging

� Incremental saves
� Java code snippet support (scrapbook)
� Task Sheet (All Problems Page)
� Code Assist
� JDI-based debugger

– One debugger for local/remote debugging

� Run code with errors
� Refactoring support

– Rename/move support for method/class/packages
– Fixes all dependencies for renamed element
– Method extraction

J2EE features
� Full J2EE 1.2 Support
� WAR/EAR deployment support
� All metadata exposed as XMI
� Enhanced Unit Test Environment for J2EE

– IBM WebSphere Application Server or Apache Tomcat
– Create multiple projects with different Unit Test configurations/instances

• Version Unit Test Environment
• Share Unit Test Environment configuration across developers

Server Side DevelopmentServer Side Development

Typical Activities
Build EJBs
Develop XML Components
Build Web Services
Generate Enterprise Access
Unit Testing/Debugging

Perspectives Typically Used
J2EE, Data, XML, Web

Client Side DevelopmentClient Side Development

Typical Activities
Generate Web Application
Templates
Customize Generated HTML,JSP
Customize Servlet
Unit Testing/Debugging

Output
Interfaces exposed as JavaBeans
for Client Side Activities
JAR files

Perspectives Typically Used
Web

Output
Web Archives (WAR)

Application AssemblyApplication Assembly

Output
Enterprise Archives (EAR)

Testing/Debug Testing/Debug

DeploymentDeployment

WebSphere Studio Application DeveloperWebSphere Studio Application Developer
Chapter 4. Introduction to WebSphere Studio Application Developer 147

� Object-oriented mapping for EJBs

– Top-down/bottom-up/meet-in-the-middle

� Updated EJB Test Client

– HTML-based
– J2EE Programming model
– Built-in JNDI Registry Browser

� Enterprise Connectors (separate plug-in offering)

– JCA Connector based

� Built-in J2EE perspective provides the useful views for the EJB/J2EE developer

Web features
� HTML/JSP editing

– WYSIWYG page design, source editing, page preview

� WAR import/export
� Links View (Relations)

– View HTML/JSP and all links referenced in HTML/JSP

� Parsing/link management

– Automatically fix links when resources are moved/renamed

� Built-in servlet, database, JavaBean wizards

– Quick generation of HTML/Servlet/JSP

� Built-in JSP debugger
� Site-style and template support
� Built-in Web perspective provides the useful views for HTML/JSP developer

XML features
� Built-in XML tooling provides integrated tools/perspectives to create XML-based

components:

– DTD Editor

• Visual tool for working with DTDs
• Create DTDs from existing documents
• Generate an XML Schema from a DTD
• Generate JavaBeans for creating/manipulating XML documents
• Generate an HTML form from a DTD

– XML Schema Editor

• Visual tool (Design/Source) for working with an XML Schema
• Generate DTDs from an XML Schema
• Generate JavaBeans for creating/manipulating XML documents

– XML Source Editor

• DTD/Schema validation
• Code Assist for building XML documents

� Additional XML Tools:

– XML Mapping Editor

• Generate XSL to map XML between DTDs/schemas
148 WebSphere J2EE Application Development for the iSeries Server

– XSL Trace Editor

• Trace XSL transformation
• Examine relationships between the result node, the template rule, and the source

node

– XML to/from relational databases

• Generate XML, XSL, XSD from an SQL query

– RDB/XML Mapping Editor

• Map columns in a table to elements and attributes in an XML document

• Generate a Database Access Definition (DAD) script to compose/decompose XML
documents to/from a database

• DAD is used with DB2 XML Extender

� Built-in XML perspective provides the useful views for the XML developer

Web Services features
� Easily consume/construct Web Services:

– Discover

• Browse UDDI registry to locate existing Web Services
• Generate JavaBean Proxy for existing Web Services

– Create/transform new Web Services from JavaBeans, databases, and so on
– Deploy Web Service to WebSphere or Tomcat for testing
– Test (via a built-in test client) immediately local/remote Web Services
– Publish Web Services to UDDI registry

Relational Database features
� Relational Schema Center

– Provides views geared for database administrators (DBAs) to:

• Create Databases
• Create Tables/Views/Indexes/Keys
• Generate DDL

– Online and offline support for working with databases

• Metadata generated as XMI

� SQL Query Builder

– Visually construct SQL statements

• Insert, update, delete, select supported

– Metadata generated as XMI
– SQL/XML mapping

� Built-in Data perspective provides the useful views for DBAs

4.2 Getting started with Application Developer
Next we help you get started with Application Developer. We provide step-by-step instructions
to show how to perform some general tasks with WebSphere Studio Application Developer.
These tasks are:
Chapter 4. Introduction to WebSphere Studio Application Developer 149

� Navigating in Application Developer
� Importing resources
� Customizing Application Developer

4.2.1 Navigating in Application Developer
In Application Developer, there are several ways to see your project. You must choose one
method or the other, depending of the role you are playing at the time. These views are called
perspectives. To work with perspectives, follow these steps:

1. Start Application Developer by clicking Start-> Programs-> IBM WebSphere Studio
Application Developer-> IBM WebSphere Studio Application Developer.

Application Developer starts in the J2EE perspective (this is the default perspective) as
shown in Figure 4-2.

Figure 4-2 J2EE perspective

2. Click the Open perspective button.

3. Look at the predefined selection of perspectives in the pop-up menu and select Other.

4. Select Help and click OK as shown in Figure 4-3.

Open perspective
button

Perspectives
toolbar

J2EE icon

Tabs
150 WebSphere J2EE Application Development for the iSeries Server

Figure 4-3 Select Perspective

The Help perspective contains the help information for the tool; you can explore any topic.
Notice that the perspective has three tabs:

– By type...
– By feature...
– Search

The first two tabs have information ordered by those two references. The last one is for
searching any topic that you want in the tool help information.

5. Click the Search tab. Enter Testing EJB in the search text field (you have to replace Enter
search string in the search text field) as shown in Figure 4-4.

Figure 4-4 Searching in the help perspective

Click GO.

6. After some time, you see all the topics that contain the string Testing EJB. You can browse
through the search results. Notice that the search facility highlights the search string in the
text. Click the Advanced button located under the search text field.

7. Select the Search headings only check box as shown in Figure 4-5.
Chapter 4. Introduction to WebSphere Studio Application Developer 151

Figure 4-5 Advanced search

Click OK to set this option and close the window.

8. Click GO again.

9. Now you see only a subset of the references you had before. Observe the differences in
the search results.

Next, we open the Java perspective by following these steps:

1. Select Perspective-> Open-> Other from the menu (Figure 4-6). Select Java from the list
and click OK. This is an alternative method of opening a perspective.

Figure 4-6 Opening Other perspective from the menu

Notice that now the Java icon is in the perspective toolbar. You can see all the icons when
you select the perspective as shown in Figure 4-3.

2. In the Java perspective, you can develop Java code for your application, as we do later in
this chapter.

You can return to the help perspective by clicking the help icon in the perspective. You see
that Application Developer remembers the last search you did.

3. Right-click the Java perspective button on the perspective toolbar. Select Close, as
shown in Figure 4-7. This closes the Java perspective.

Figure 4-7 Closing the Java perspective
152 WebSphere J2EE Application Development for the iSeries Server

4.2.2 Importing resources
When working with Application Developer, you can import code from previous Java
developments. You can import Java code or JAR files to an existing project. We explain how
to do this in the following steps:

1. Switch to the J2EE perspective by clicking the J2EE perspective button in the perspective
toolbar.

2. Create a Java project by selecting File-> New-> Other from the menu, as shown in
Figure 4-8.

Figure 4-8 Creating a new Java project

3. Click Java in the left pane of the pop-up window and select Java Project in the right pane.
There is also a button on the toolbar in the Java perspective to perform this task. Click
Next as shown in Figure 4-9.

Figure 4-9 Selecting the Java project to create

4. Enter JUnit as the project name. Click Finish as shown in Figure 4-10.
Chapter 4. Introduction to WebSphere Studio Application Developer 153

Figure 4-10 Clicking Finish to create the Java project

Application Developer switches to the Java perspective. Now we are going to import a JAR
file:

1. Select File-> Import from the menu.

2. Select Zip file and click Next as shown in Figure 4-11.

Figure 4-11 Importing a JAR file
154 WebSphere J2EE Application Development for the iSeries Server

3. Click Browse next to the Zip file field, and navigate to the zip file. We use the JAR file
junit37src.jar.

4. Click Open.

5. Click Browse next to the Folder field. The JAR file is found in the <Application Developer
install directory>\plugins\org.eclipse.jdt.ui.examples.projects\archive\junit\ directory.

6. Select JUnit and click OK as shown in Figure 4-12.

Figure 4-12 Selecting the folder for importing the JAR file

7. Click Finish as shown in Figure 4-13.

Figure 4-13 Clicking Finish to import the JAR file

4.2.3 Customizing Application Developer
Now we show you how to customize some of the options of Application Developer to make it
more suitable to your personal preferences. Follow these steps:
Chapter 4. Introduction to WebSphere Studio Application Developer 155

1. Click Window-> Preferences to open the Preferences window as shown in Figure 4-14.

Figure 4-14 The Preferences window

2. One of the most interesting options is the automatic build. It is enabled by default. You can
deselect Perform build automatically on resource modification to disable it. If you do
this, you need to invoke the build/rebuild project option from the Application Developer
menu every time you need to compile the code in your project.

3. Expand the Workbench tree. Select Perspectives. J2EE is the default perspective. You
can select the perspective you want to be your default one. For example, select the Web
perspective and click Make Default as shown in Figure 4-15.
156 WebSphere J2EE Application Development for the iSeries Server

Figure 4-15 Changing the default perspective

4. Select Fonts from the workbench tree. You can change the default font as shown in
Figure 4-16.

Figure 4-16 Default fonts

5. Click Server. On the Server Preferences panel, you can configure the behavior of
Application Developer when you run your application on a server, as shown in Figure 4-17.
Chapter 4. Introduction to WebSphere Studio Application Developer 157

Figure 4-17 Server preferences

6. Select Web Browser. Here you can choose the settings for the browser. You can choose
the internal or another browser for testing as shown in Figure 4-18.

Figure 4-18 Web Browser preferences

Click OK. Application Developer saves and applies your changes to the environment.

There are many more preferences that you can set.
158 WebSphere J2EE Application Development for the iSeries Server

Now we work some with the editors. Follow these steps:

1. Switch to the Java perspective if you are in a different one. You should see a window
similar to the one shown in Figure 4-19.

Figure 4-19 Java perspective

2. To create more space for your Java file editor, you can move the Outline view to a different
location:

a. Click the Outline title bar and drag it to the bottom of the Packages view. The cursor
changes its shape as you drag the view through the different areas of the window.

b. When the cursor changes its shape to an arrow, release the mouse button. You see a
window similar to the one shown in Figure 4-20.

Outline view
Chapter 4. Introduction to WebSphere Studio Application Developer 159

Figure 4-20 Moving the Outline view

When you move the views, you can obtain three different cursors as shown in Table 4-1.

Table 4-1 Different cursors

Now we continue working with the Java perspective. Follow these steps:

1. In the Java perspective, select the Packages view, and then expand the JUnit tree.

By default, Application Developer shows, in the tree, the library and JAR files that are part
of the project build path.

2. To change this behavior, open the Packages view menu by clicking the down arrow on the
title bar as shown in Figure 4-21.

Cursor shape Description

The view is added to the border that points the arrow.

The view is set where you release the cursor; you can resize it however you want.
The view will be as a different window.

This is the stacked folders icon. The view is added to a pane with other views. Then,
you can select any view with a tab.

Place for editors
160 WebSphere J2EE Application Development for the iSeries Server

Figure 4-21 The Package view menu

3. There is a check mark next to Show Referenced Libraries. If you click Show Referenced
Libraries, the referenced libraries are removed.

When you are programming, there are some places that you frequently go to. You can
bookmark these places, so you can access them very quickly. Follow these steps to create a
bookmark:

1. Open the Bookmarks view by clicking Perspective-> Show View-> Other.

2. Expand the Basic tree and select Bookmarks. Click OK as shown in Figure 4-22.

Figure 4-22 Opening the Bookmarks view

3. Now you see the bookmark view in the Java perspective. You can add this new view to the
same set of views as Navigator by dragging it into the Navigator view and having the
correct cursor as shown in Table 4-1. See Figure 4-23.

Referenced
Libraries
Chapter 4. Introduction to WebSphere Studio Application Developer 161

Figure 4-23 The Bookmarks view

4. Now we convert the bookmarks view to a fast view. Click the Bookmarks title bar and drag
it to the perspective toolbar. As you move your cursor over the perspective toolbar, the
cursor changes its shape to the stacked folders icon.

Release the mouse button. You see a new icon on the toolbar as shown in Figure 4-24.

Figure 4-24 The Bookmarks view icon

Now we can add some bookmarks:

1. Expand the junit.samples package in the package view.

2. Open VectorTest.java by double-clicking the file in the tree. Application Developer opens
the file in the Java editor view.

3. Place the cursor on any line in the file.

4. Right-click the marker bar, which is the gray left band before the line. Select Add
Bookmark as shown in Figure 4-25.

Bookmarks
view icon
162 WebSphere J2EE Application Development for the iSeries Server

Figure 4-25 Adding a bookmark

5. Enter a name in the pop-up window. As an alternative, you can highlight any text in the file
and then right-click and select Add Bookmark. In this case, the highlighted text is the
bookmark name.

6. Click OK as shown in Figure 4-26.

Figure 4-26 Setting the bookmark name

A bookmark icon is added to the marker bar as shown in Figure 4-27.

Figure 4-27 The added bookmark icon

7. Open any other file from the JUnit project.

8. Click the Bookmark view icon on the perspective toolbar. This opens the Bookmark view.

Bookmark
Icon
Chapter 4. Introduction to WebSphere Studio Application Developer 163

9. Right-click the bookmark and select Go to File from the pop-up menu, as shown in
Figure 4-28. The tool switches to the location of your bookmark.

Figure 4-28 Going to a bookmark

10.To close the bookmark view, click outside of the view or click the underscore icon on the
Bookmark title bar.

If you are used to developing Java applications with VisualAge for Java, you can get a
VisualAge for Java behavior for displaying Java code. Follow these steps:

1. Open any Java file and click anywhere in the Java editor view.

2. Click the Show Source of Selected Element Only button as shown in Figure 4-29.

3. In the Outline view, select the element (method or variable) that you want to display.

You see only the selected method or variable in the Java editor view, as with VisualAge for
Java.
164 WebSphere J2EE Application Development for the iSeries Server

Figure 4-29 Show Source of Selected Element Only button

Now we add the Navigator view to the perspective. In this view, you see all the folders and
objects of your application. This view is common for all perspectives. Follow these steps:

1. Click Perspective-> Show View-> Other in the main menu.

2. Expand Basic.

3. Select Navigator.

4. Click OK as shown in Figure 4-30.

Figure 4-30 Opening the Navigator view

You see the Navigator view added to the bottom right part of the Application Developer
window (Figure 4-31).
Chapter 4. Introduction to WebSphere Studio Application Developer 165

Figure 4-31 The Navigator view

You can browse all the folders from this view.

Now we save the Java perspective by following these steps:

1. From the main menu, select Perspective-> Save As.

2. Enter the new name or leave Java. Click OK as shown in Figure 4-32.

Figure 4-32 Saving the customized perspective

3. If the perspective already exists, you are prompted with a confirmation window as shown
in Figure 4-33. Click Yes if you want to overwrite it.

Figure 4-33 Confirmation window for overwriting a perspective
166 WebSphere J2EE Application Development for the iSeries Server

4.3 Working with Java code
With Application Developer, you can work with Java code as we explain in the previous topic.
In this section, we learn more about some other basic actions on working with Java code. Of
course, for working with the Java code, the best perspective is the Java perspective. We show
you how you can:

� Add new methods, classes, packages
� Compile Java code
� Run code
� Export Java code

4.3.1 Adding new methods
To add a new method, follow these steps:

1. Open the Java perspective.

2. Expand the JUnit tree in the Packages view.

3. Expand the junit.samples package.

4. Open VectorTest.java by double-clicking the file name in the tree.

5. Scroll to the very bottom of the file in the editor view.

6. Add the following text just before the closing bracket:

public void test() {

7. On the next line, start typing System., and press Ctrl-spacebar to invoke the content assist
tool, as shown in Figure 4-34.

Figure 4-34 Using code assistant (Ctrl-spacebar)

8. Select out and press Enter.
Chapter 4. Introduction to WebSphere Studio Application Developer 167

9. You can perform the same step to select the println(String) method in the PrintStream
class.

10.Enter Java with Application Developer as the parameter for the println() method.

11.Enter ; at the end of the line. The text you enter should look like Example 4-1.

Example 4-1 The test method

public void test()
{

System.out.print("Java with Application Developer");

12.Save the file by pressing Ctrl-S. You see one error in the Task view, as shown in
Figure 4-35.

Figure 4-35 The unmatched error task

13.Double-click the error in the Task view. Application Developer displays the line in error as
shown in Figure 4-35.

14.Click test() in the Outline view (lower-left corner of the window).

15.Add a closing bracket for the test() method.

16.Save the file. The error is gone.

4.3.2 Compiling Java code
As you have noticed, Application Developer automatically performs the build as you save the
file. This feature is controlled by the Perform build automatically on resource modification
option in the Preferences window.
168 WebSphere J2EE Application Development for the iSeries Server

You can build the project at any time. Follow these steps:

1. Right-click JUnit in the Packages view.

2. Select Build Project as shown in Figure 4-36. The Rebuild Project option re-compiles all
classes in the project.

Figure 4-36 Building the Java project

4.3.3 Running the Java code
Next we run the Java program. Follow these steps:

1. Change the project’s properties:

a. Right-click JUnit. Select Properties as shown in Figure 4-37.

Figure 4-37 Opening the project properties

b. Select Launcher.

c. From the Run/Debug pull-down menu, select Java Application as shown in
Figure 4-38.

d. Click OK.
Chapter 4. Introduction to WebSphere Studio Application Developer 169

Figure 4-38 Selecting Java Application as the default launcher

2. Expand the junit.textui package.

3. Double-click TestRunner.java.

Notice the running icon next to the class name in the Outline view. This icon indicates that
the class contains a main() method and can be run as shown in Figure 4-39.

Figure 4-39 The TestRunner class

Running icon
Run buttonDebug button
170 WebSphere J2EE Application Development for the iSeries Server

4. Click the Run button on the toolbar.

Application Developer switches to the Debug perspective and reports an error (look for the
error message in the Console view).

Figure 4-40 The debug perspective

5. Switch to the Java perspective.

6. Right-click TestRunner.java in the Packages view.

7. Select Properties.

8. In the Program Arguments field on the Execution Arguments properties page, type
junit.samples.VectorTest as shown in Figure 4-41. This argument indicates which class
should be tested by TestRunner.java.
Chapter 4. Introduction to WebSphere Studio Application Developer 171

Figure 4-41 The Program Arguments window

9. Click OK.

10.Click the Run button again.

Application Developer switches to the Debug view. This time the test runs with no errors.

11.Go back to the Java perspective and change the Execution Arguments property to
junit.samples.AllTests.

12.Run TestRunner.java again.

Under Console, you see the line you added to the VectorTest class as shown in Figure 4-42.

Figure 4-42 The TestRunner output
172 WebSphere J2EE Application Development for the iSeries Server

4.3.4 Exporting the Java code
The last step is to export the JUnit project. Follow these steps:

1. Click File-> Export on the menu.

2. Select JAR file and click Next as shown in Figure 4-43.

Figure 4-43 Exporting a JAR file

3. Select the check box next to the JUnit project.

4. Make sure that the Export generated class files and resources and Export java
source files and resources check boxes are selected.

5. Enter c:\temp\junit.jar in the Select the export destination field.

6. Click Finish as shown in Figure 4-44.
Chapter 4. Introduction to WebSphere Studio Application Developer 173

Figure 4-44 Finishing the export of the JAR file

4.4 Conclusion
WebSphere Studio Application Developer combines the functionality that was found in
VisualAge for Java and the earlier WebSphere Studio product. However, many new features
were added. It supports perspectives that allow you to work with your applications from
different views.

For example, the J2EE perspective allows you work in an environment customized for building
J2EE compliant applications. Application Developer allows you to export your applications
directly into J2EE compliant formats, such as enterprise archive (EAR) files and Web archive
(WAR) files. You can install these files as enterprise applications in WebSphere Application
Server 4.0 without using the WebSphere Application Assembly Tool.

This chapter introduced you to Application Developer. We walked you through some simple
examples to show you how to navigate in Application Developer and customize your
workspace.
174 WebSphere J2EE Application Development for the iSeries Server

Chapter 5. Building Java servlets and JSPs
with WebSphere Studio
Application Developer

WebSphere Studio Application Developer is an optimized J2EE application development
platform. It is evolved from VisualAge for Java Enterprise Edition and WebSphere Studio
Advanced Edition. It inherits some of the best features of VisualAge for Java and WebSphere
Studio and adds many new features.

Many developers are still working on VisualAge for Java and WebSphere Studio. When they
move to Application Developer, an important task is to smoothly migrate their code to this new
environment.

In this chapter, we migrate the code developed with VisualAge for Java in Chapter 2, “Servlet
and JSP development using VisualAge for Java” on page 21, to Application Developer. We
also explain how to build new applications with Application Developer.

5

© Copyright IBM Corp. 2002. All rights reserved. 175

5.1 Migrating code from VisualAge for Java
In Chapter 2, “Servlet and JSP development using VisualAge for Java” on page 21, we
develop the Java code with VisualAge for Java. We export the code into JAR files that are
used by the Application Assembly Tool.

In Chapter 3, “WebSphere V4.0 assembly and deployment tools” on page 75, we use the
WebSphere Application Assembly Tool (AAT) to assemble the Java code, JSPs, and images
into a WAR file. A WAR file can be deployed on WebSphere Application Server 4.0.

Application Developer can migrate code from either JAR files or WAR files, as shown in
Figure 5-1. Since these two file formats have some differences, Application Developer treats
them differently.

Figure 5-1 Migrating code from VisualAge for Java to Application Developer

Since a WAR file has gone through AAT, all the configuration tasks like servlet mappings,
initial parameters, adding supporting classes, adding JSP pages, and so on have already
been done. In fact, a WAR file is a ready-to-go Web application. When migrating WAR files
into Application Developer, we simply import them. All the settings are already there, and the
IBM extended configuration files for WebSphere (XML files) are ready. When you develop
Web applications for WebSphere Application Server 4.0 with VisualAge for Java and want to
migrate code into Application Developer, we recommend that you to generate a WAR file with
AAT first. Then, import the WAR file into Application Developer.

If you develop Java applications for non-J2EE compliant servers, like Apache Tomcat or
WebSphere 3.5, you may not use AAT. For this situation, just export the Java code into JAR
files. Then import it into Application Developer. You have to configure the servlet mappings,
parameters, JSPs, and so on in Application Developer.

In this chapter, we import a WAR file named Wsws_Appweb.war into Application Developer. It
contains the Java code developed in Chapter 2, “Servlet and JSP development using
VisualAge for Java” on page 21.

Tip: The completed applications developed for this chapter are available for download from
the ITSO Web site as explained in Appendix A, “Additional material” on page 425.

VisualAge for Java

Export Jar file

Application Developer

Jar file

AAT

Import

Export

Im
port

WAR file
176 WebSphere J2EE Application Development for the iSeries Server

5.2 Migrating the OrderEntry WAR file
Now we start to work on the OrderEntry application in Application Developer. Since we
already wrote the code with VisualAge for Java and assembled it into WAR file with AAT, we
can reuse this code in our new development environment.

5.2.1 Importing a WAR file
If you want to keep your application development environments separated in Application
Developer, you can create a new workspace to store the application artifacts for each
environment. To do this, follow these steps:

1. Create a new directory in the file system. Here we call the workspace directory itsoad.
From a command line window, type:

md x:\itsoad
x:\<Application Developer install directory>\wsappdev -data x:\itsoad

Here x is the drive letter and <Application Developer install directory> is the path where
you installed Application Developer. By default, it is x:\Program Files\IBM\Application
Developer.

It may be worth creating a shortcut on your Windows desktop for launching the command
in the future. The default parameters to launch Application Developer used by the start
menu icon revert your settings back to the default workspace in the installation directory.

2. Once Application Developer is started, click the down arrow next to the Open The New
Wizard button, as shown in Figure 5-2.

Figure 5-2 Creating an enterprise application project

We select Enterprise Application Project. Another way to do this is to click Other and
select J2EE in the left pane and Enterprise Application Project in the right pane of the
pop-up window.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 177

3. In the Enterprise Application Project Creation window, as shown in Figure 5-3, we enter
Wsws_App as the name of the project. We deselect Application Client project name and
EJB project name because we don’t work on EJBs in this chapter. But we select Web
project name and then click Finish.

Figure 5-3 Enterprise application project creation wizard

Once the project is created, Application Developer automatically switches to the J2EE
perspective and shows the new project under Enterprise Applications.

4. We import the WAR file into the Wsws_AppWeb project. Click the Navigator tab and
select the Wsws_AppWeb project. Click File-> Import, and the Import window appears
as shown in Figure 5-4. Select WAR file from the available options and click Next.

Figure 5-4 Importing a WAR file

5. In the Import Resources from a WAR File window (Figure 5-5), we click the Browse button
next to the WAR file field and navigate to the WAR file. We select the Overwrite existing
resources without warning check box; otherwise, Application Developer asks if you want
178 WebSphere J2EE Application Development for the iSeries Server

to overwrite one of the XML files it has created for the Wsws_App project. Finally, we click
Finish.

Figure 5-5 Importing the wsws.war file

6. In the Application Developer main window, click the Navigator view and expand
Wsws_AppWeb-> webApplication-> WEB-INF-> lib.

7. We select Wsws_AppWeb_classes.jar, if it exists, right-click it, and select Delete. This
JAR file is deleted.

5.2.2 Building the project and modifying the project’s properties
This section explains how to build the project and modify its properties. We follow these steps:

1. We set the application context root. The context root defines the logical root for all of the
application’s files. To invoke ItemServlet.html, in the browser, we enter:

http://sysname:port/<context root>/ItemServlet.html

2. We right-click the Wsws_AppWeb project in the Navigator view and select Properties.

3. In the Properties window, shown as Figure 5-6, we click Web in the left pane and replace
Wsws_AppWeb with OrderEntry as the context root. We click OK and then click Yes in the
pop-up window asking whether we want to change links based on the new value for the
context root.

Note: Application Developer places all the original class files from the Web application in
this JAR file. If we update the Web application and try to test the changes, we don’t see the
changes because Application Developer uses the original JAR file for testing.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 179

Figure 5-6 Modifying the application context root

4. We delete the Wsws_AppWeb_classes.jar file and add the context root.

5. We compile the whole project. This may be an optional step if you left the Perform build
automatically on resource modification option selected. We select Wsws_AppWeb in
the Navigator view, right-click, and select Rebuild Project.

Application Developer compiles and validates all files within the project. As a result of the
build, we see many errors and warnings in the task view (bottom portion of the Application
Developer window). If we double-click any error, Application Developer opens the file with
the error. All errors are visible in the marker area of the editor window.

6. We can filter some unnecessary warnings. Click the Filter button in the task view’s toolbar
(circled in Figure 5-7).
180 WebSphere J2EE Application Development for the iSeries Server

Figure 5-7 Clicking the filter button

7. In the Filter Tasks windows, select the options that are shown in Figure 5-8 and click OK.
The number of items shown in the Task view decreases.

Figure 5-8 Selecting filter options

8. Most of the errors indicate that the Java compiler cannot resolve some packages and
classes. All of them are part of the IBM Toolbox for Java. We need to add the IBM Toolbox
for Java JAR file to the classpath.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 181

We select the Wsws_AppWeb project in the Navigator view, right-click, and select
Properties. In the Properties window, shown as Figure 5-9, we select Java Build Path
and the tabbed window appears in the right pane. We click the Libraries tab and then click
the Add External JARs button.

Figure 5-9 Adding external JAR files into the classpath

In the JAR selection window, we navigate to the directory where jt400.jar is stored. In our
example, we place it into the c:\jt400 directory. We select the jt400.jar file. Click Open to
select it and then click OK in the Properties window.

9. Now we can rebuild the project. If you left the Perform build automatically on resource
modification option selected, it automatically rebuilds the project. All errors should
disappear.

5.2.3 Exploring the enterprise application structure in Application Developer
Application Developer follows the J2EE specification in the way it handles enterprise projects.
Any EJB jar or WAR file you import into Application Developer has to be part of an enterprise
application project. Next, we explore the structure of an enterprise application in Application
Developer:

1. We open the J2EE perspective and switch to the J2EE view. This view explores the
Application Developer resources from the J2EE specification point of view.

2. We expand the Enterprise Applications tree. We see the Wsws_App application.
Expand this application and all the modules that are part of the application (Web, EJB, or
application client) are displayed. In this case, there is only one module –
Wsws_AppWeb.war.
182 WebSphere J2EE Application Development for the iSeries Server

3. We right-click Wsws_App and select Open With-> Application Editor. Application
Developer opens the application.xml file, which is the deployment descriptor (DD) for this
application. This is shown in Figure 5-10.

Figure 5-10 Deployment descriptor for Wsws_App

4. In the left pane, we expand Web Modules and see the Order Entry Application Module
This name is defined in AAT. We select this module, right-click and select Open with->
Web.xml.editor. Application Developer opens the Deployment Descriptor (DD) for the
Web module (WAR file).

5. As shown in Figure 5-11, click the Servlets tab on the bottom portion of the Web.xml
editor and select ItemServlet from the list. The editor displays the Java class that
implements this servlet and the servlet’s URL mapping.

Note: URL mapping is what you enter in the Web browser window as the servlet’s
name under the context root of the application. It is the same concept as servlet
mappings in AAT. Consider this example:

http://sysname:port/OrderEntry/ItemServlet
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 183

Figure 5-11 Deployment descriptor for a Web module

6. We click the Initialization button. The new pop-up window (Figure 5-12) lets us add or
remove the initialization parameters for the servlet. In this case, these parameters include
user name, password, URL of the database, and the JDBC driver class name. You can
change the parameters to values appropriate for your system and click OK.

Figure 5-12 Initial parameters for ItemServlet

7. We repeat the steps for ItemPoolServlet to change the initial parameters. We can click the
Source tab and view the XML source for the parameters we modified with the web.xml
editor. If all the changes are correct, we press the Ctrl-S key combination to save the
web.xml file. Now the servlets are ready for testing.
184 WebSphere J2EE Application Development for the iSeries Server

5.2.4 Testing the servlets
Now we can test the servlets. We close all the open files in Application Developer and save
them if necessary.

ItemServlet testing
The ItemServlet application has an HTML page for data input. We need to run it instead of
running the servlet itself:

1. In Application Developer, we open the J2EE perspective and select the Navigator view.

2. We expand Wsws_AppWeb-> webApplication, right-click ItemServlet.html, and select
Run on Server. A new pop-up Publishing window appears showing the progress of the
publishing task. Once it is finished, the WebSphere Test Environment Server automatically
starts, and the perspective is switched to the Server perspective, as shown in Figure 5-13.

Figure 5-13 The server view

3. The embedded browser starts with the input HTML page displayed. We click the Get
Items Information button in the browser. We see an error screen in the Web browser and
the exception stack (Figure 5-14) in the Console view. The important line is highlighted.

Figure 5-14 Exception stack in the Console view

[2/20/02 11:22:24:466 CST] 275feb9c SystemOut U cannot register JDBC driver
java.lang.ClassNotFoundException: com.ibm.as400.access.AS400JDBCDriver

at java.net.URLClassLoader.findClass(URLClassLoader.java:205)
at java.lang.ClassLoader.loadClass(ClassLoader.java:325)
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 185

4. The WebSphere Test Environment cannot find the JDBC driver class which is part of the
jt400.jar file. We need to add it to the server classpath.

a. We select the Servers view from one of the tabs in the lower portion of the Application
Developer window. We right-click the server instance and select Stop. You can also
click the Stop button on the Server view toolbar. This is shown in Figure 5-15.

Figure 5-15 Stopping the WebSphere test server in Application Developer

b. After this server stops, we expand the Server Instances tree in the Server
Configuration view (lower-left portion of the Application Developer window). We
double-click WebSphere v4.0 Test Environment and select the Paths tab in the editor
window.

c. As shown in Figure 5-16, we click the Add External JARs button and navigate to the
directory where the jt400.jar file is stored. We select it and click Open. We use the
same technique to add the j2ee.jar file as an external JAR file. It is found in the
\Program Files\IBM\Application Developer\plugins\
com.ibm.etools.websphere.runtime\lib directory. We close the file in the editor window
and click Yes on the pop-up window to save the changes.

Stop button
186 WebSphere J2EE Application Development for the iSeries Server

Figure 5-16 Adding external JAR files into the classpath

5. Now we can restart the server by clicking the Start the Server button on the title bar of the
Server view. When the server is ready, we see the Server Default Server open for
e-business line in the Console view.

6. We expand Wsws-AppWeb-> webApplication, right-click ItemServlet.html, and select
Run on Server. When the input HTML page appears, we click the Get Items Information
button. We see the list of items from the iSeries database table as shown in Figure 5-17.

Figure 5-17 ItemServlet result page
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 187

ItemPoolServlet testing
To test the ItemPoolServlet class, we need to create a DataSource in the WebSphere Test
Environment:

1. We open the Server perspective, expand the Server Configuration tree in the Server
Configuration view, and double-click WebSphere Administrative Domain. Application
Developer opens the server configuration file in the editor view as shown in Figure 5-18.

Figure 5-18 WebSphere Administration Domain configuration

2. We select the Data source tab in the editor view. We click Add next to the JDBC driver list
box and enter the parameters as shown in Figure 5-19, where the full name for the
Implementation class name field is
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource. Then we click OK.

Figure 5-19 JDBC driver parameters
188 WebSphere J2EE Application Development for the iSeries Server

3. The IBM Toolbox for Java JDBC driver has been added and highlighted. We click the Add
button next to the Data Source defined in the JDBC driver selected above box. We fill in
the fields as shown in Figure 5-20 and then click OK.

Figure 5-20 Data Source parameters

4. Finally, we specify the target system where the database tables are located. We click Add
next to the Resource properties defined in the data source selected above box. We fill in
the parameters as shown in Figure 5-21. We make sure the system name, in the Value
field, is correct and click OK.

Figure 5-21 Data source property dialog box

5. We use the same technique to add a resource property named libraries. We set the value
to the name of the iSeries library that holds the tables, apilib.

6. We save the file by pressing the Ctrl-S key combination. The ItemPoolServlet is ready for
testing. We select the Server view by clicking the Server tab in the lower right part of the
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 189

Application Developer window. It informs you that you have made some changes and you
have to republish your project (see Figure 5-22).

Figure 5-22 The Server view

7. We click the Publish to the server button and then click Finish. We click OK in the
Publishing pop-up window.

8. Now we can start the server by clicking the Start the server button.

9. When the server is ready, we expand Wsws_AppWeb -> webApplication, right-click
ItemPool.html, and select Run on Server.

10.We see the input HTML page. Then we click the Get Items Information button and
retrieve the data.

Working with HTML files in Application Developer
Since Application Developer is evolved from VisualAge for Java Enterprise Edition and
WebSphere Studio Advanced Edition, it inherits the page designing capabilities, which makes
it an integrated Web application development environment. Next we work with Page Designer
in Application Developer:

1. In Application Developer, we switch to the Web perspective and expand
Wsws_AppWeb-> webApplication. We double-click ItemServlet.html. Then Page
Designer is invoked with the HTML page shown in Figure 5-23.

Publish to server
190 WebSphere J2EE Application Development for the iSeries Server

Figure 5-23 ItemServlet.html in Page Designer

2. In the Page Designer view, we place the cursor just below the line that reads: Press the
Button to retrieve the items. We select Insert-> Form and Input Fields-> Submit
Button from the menu.

3. In the pop-up window, as shown in Figure 5-24, we enter Submit in the Name box and Get
All Items in the Label box.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 191

Figure 5-24 Adding a Submit button

4. Now we have a Submit button that invokes the ItemServlet servlet and retrieves all the
data. We have to pass the part number as a parameter. We use JavaScript to do this.

a. We click the Event button. In the pop-up Edit Event window, we select OnClick from
the Event list. We click the Script button.

b. The new pop-up Script window allows us to create a custom Java script. We enter the
body of the setPart function as shown in Figure 5-25 and click OK.
192 WebSphere J2EE Application Development for the iSeries Server

Figure 5-25 JavaScript function

c. In the Script box of the Edit Event window, we enter the following code that calls the
setPart JavaScript function when we click the Submit button:

javascript:setPart(’*ALL’)

d. We click the Add button. The Edit Event window looks like the example in Figure 5-26.
We click OK.

Figure 5-26 The Edit Event window

e. We click OK in the Attribute window to add the new button to the page.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 193

f. Since this new button retrieves all items from the database table, we can remove the
default value *ALL for the Part Number field. We double-click the Part Number text field
(where you see *ALL) in the Page Designer view. Then we delete *ALL from the initial
value box and click OK. We press Ctrl-S to save the file. Now the page looks like the
example in Figure 5-27.

Figure 5-27 Modified ItemPool.html page

5. We can test the new HTML page using the same steps as those outlined in “ItemServlet
testing” on page 185. To retrieve all the item data, we click the new Get All Items button.
We can also retrieve information for a single item using the Get Items Information button.
Valid values are in the range 000001 - 000100.

Exporting an EAR file
After the modification of the OrderEntry application, we can deploy it on WebSphere
Application Server 4.0. Application Developer is capable of generating J2EE standard
enterprise applications, so we don’t need to go through the Application Assembly Tool.

1. In Application Developer, we select File-> Export from the menu.

2. In the pop-up Export window, we select EAR file and click Next.

3. In the EAR Export window, as shown in Figure 5-28, we select Wsws_App from the What
resources do you want to export? pull-down list. We enter x:\temp\Wsws_App.ear in the
Where do you want to export resources to? input field. We select the Export source file
check box and click Finish.
194 WebSphere J2EE Application Development for the iSeries Server

Figure 5-28 Exporting an EAR file

The Wsws_App.ear file is placed in the temp directory. It is ready for deployment on
WebSphere Application Server 4.0.

5.3 Developing a new application with Application Developer
In 5.2, “Migrating the OrderEntry WAR file” on page 177, we imported the OrderEntry WAR
file into Application Developer. The application was originally developed using VisualAge for
Java. This is a convenient way to migrate from VisualAge for Java to Application Developer.

In this section, we use Application Developer to develop a new application. The new
application is a Web-based version of the RPG OrderEntry application described in 7.1, “The
ABC Company” on page 232.

You may have already noticed that, in the ItemSessionServlet example shown in 2.7.3,
“ItemSessionServlet example” on page 64, we hard code all the output pages in the servlet. If
you want to change anything about the presentation, such as font size, images and so on, you
have to change the code of the servlet. The reason for this is that VisualAge for Java does not
have the capability of building JSP pages with What You See Is What You Get (WYSIWYG)
tools. We either have to hard code the page in the servlet, or integrate VisualAge for Java with
WebSphere Studio to build the JSP pages. This makes the example more complicated.

A popular Web application model is to use a logical three-tier model. The first tier is a
presentation tier that typically consists of a graphical user interface shown in a browser. The
middle tier is business tier where we build the business logic. The third tier is the data tier that
contains the application data.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 195

This architecture takes advantage of each Web component. We use JSPs for the
presentation layer. We use servlets and EJBs to control the application flow and to implement
the business logic. This is known as Model-View-Controller architecture. Figure 5-29 shows
the application design.

Figure 5-29 Web application 3-tier architecture

We build the new OrderEntry application using JSPs, servlets, and JavaBeans. We do not
use Enterprise JavaBeans. For an example that uses JSPs, servlets, and EJBs, see
Chapter 10, “Building Java applications with Enterprise JavaBeans” on page 315. Since
Application Developer has an integrated environment for all these Web components, all the
tasks like designing, testing, and exporting can be done within it.

5.3.1 New OrderEntry application logic
The application logic is similar with the ItemSessionServlet example in 2.7.3,
“ItemSessionServlet example” on page 64, but we use JSPs for presentation of the
information. We also add the ability to actually place an order.

When we call the servlet, it uses a JavaBean to retrieve all the available items from the Item
table. It passes the result to a JSP page through a session object. The JSP page is
responsible for showing the items in a browser. This is shown in Figure 5-30.

Browser
Client

HTML
JavaScript

JSPs/Servlets

Interaction
Control

JSPs

 Page
Construction

Business
 Logic

Legacy
Systems

3rd Party
Applications

C
O

N
N

E
C

TO
R

S

DataJava classes
Beans
EJBs

JDBC/SQLJ

Presentation Tier Business Tier Data Tier
196 WebSphere J2EE Application Development for the iSeries Server

Figure 5-30 Item JSP page

Once we select some items, enter numbers in the quantity field, and enter the customer
number, the Add to Cart button and Show Cart button are enabled. Clicking these buttons,
invokes a controller servlet. It sends the shopping data and customer data to another JSP
page for display as shown in Figure 5-31.

Figure 5-31 Shopping cart JSP
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 197

We can either click the Continue Shopping button to go back the item JSP page or update
the customer information by clicking the related button. Once we are ready to check out, we
click the Check Out button. This invokes the controller servlet again. The controller servlet
calls the JavaBeans to perform order processing and shows the transaction result on a JSP
page as shown in Figure 5-32.

Figure 5-32 Transaction result page

5.3.2 Building the application
We build three new JSPs for presentation:

� StartOrderEntry.jsp to show all the items you can add to the shopping cart
� OutputCart.jsp to show the shopping cart content and customer information
� Checkout.jsp to show the transaction result

We build two new servlets for logic control:

� StartOrderEntryServlet to create new a session object and retrieve the available items
from the Items table

� OrderEntryControllerServlet to control all the actions from the JSP pages

We build four new JavaBeans for the business process:

� Customer to contain the customer information
� JDBCPoolCustomer to retrieve customer information from the Customer table and return

the Customer bean
� OrderDetail to contain the order detail information
� OrderProcess to handle the order placement process

We reuse some existing beans in the access, shopData, and support packages:

� Items, which contains the item detail
� CartItem, which contains the item detail in the shopping cart
198 WebSphere J2EE Application Development for the iSeries Server

� ShoppingCart, which represents shopping cart data
� JDBCPoolCatalog, which retrieves all items from the database

The architecture for our new application is shown in Figure 5-33. The StartOrderEntryServlet
is used to retrieve item data and pass it to StartOrderEntry.jsp. All the action control is done
by the OrderEntryControllerServlet, which passes different data beans back and forth through
a session object.

Figure 5-33 New shopping cart application architecture

The new project is based on the project we created in 5.2, “Migrating the OrderEntry WAR
file” on page 177. We add the JavaBeans, JSPs, and servlets to the project.

5.3.3 Building the OrderEntry application with Application Developer
We switch to the Java perspective. By default, Application Developer shows the library and
JAR files that are part of the project build path. To change this behavior, we open the
Packages view menu by clicking the down arrow on the title bar. As shown in Figure 5-34, we
deselect Show Referenced Libraries.

Note: The Customer and OrderDetail beans already exist in the Support package. Since
our new Customer and OrderDetail beans are different, we create new beans instead of
using the old ones. We create them in the access package.

StartOrderEntryServlet

Data

StartOrderEntry.jsp

OrderEntryControllerServlet
OutputCart.jsp

Checkout.jsp

JDBCPoolCatalog

Items

Items

CartItem

ShoppingCart

CartItem

Transaction Number

JDBCPoolCustomer

OrderProcess

Customer

OrderDetail
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 199

Figure 5-34 The Package view menu

Customer bean
We follow these steps:

1. We add the JavaBeans to the project. We expand the source folder in the left pane,
right-click the access package, and select New-> Class.

2. In the Java Class window, shown in Figure 5-35, we enter Customer for Name, remove
java.lang.Object from Superclass, and click the Add button next to the Extended
interfaces field.

Figure 5-35 Creating the Customer class

3. In the Extended Interfaces Selection window, shown in Figure 5-36, we select
Serializable as the interface name and java.io as the package name. We click OK and
the interface is added into the Extended Interface input field. We click Finish.
200 WebSphere J2EE Application Development for the iSeries Server

Figure 5-36 Adding an interface

4. The Customer object is created in the access package and the source is opened
automatically. In the source window, we add the following line of code just below package
access:

import java.math.*;

5. We define the private variables that represent customer information. Example 5-1 shows
the private variables that we add.

Example 5-1 Variable definition for Customer class

private String id;
private String lastName;
private String firstName;
private String init;
private String address1;
private String address2;
private String city;
private String state;
private String postCode;
private String phonenumber;
private String wid;
private String did;

6. For all the variables defined, we want to define setter and getter methods. Application
Developer provides a function to do this. In the Outline window shown in Figure 5-37, we
right-click in each field and select Generate Getter and Setter.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 201

Figure 5-37 Generating Getter and Setter methods

7. Setter and getter methods are created for each private variable. We need to modify one
getter method, getDid(). The Did variable is defined as numeric in the database. When
we call getDid() from other classes, we want to an int returned. The method is changed
as shown in Example 5-2.

Example 5-2 getDid() method

public int getDid() {
return Integer.parseInt(did);

}

8. We also need to build a constructor for this class. We pass the constructor a String array. It
interprets the array and moves the data to the corresponding private variables.
Example 5-3 shows the constructor code.

Example 5-3 Constructor for Customer class

public Customer(String[] custInfo) {
id = custInfo[0];
lastName = custInfo[1];
firstName = custInfo[2];
init = custInfo[3];
address1 = custInfo[4];
address2 = custInfo[5];
city = custInfo[6];
state = custInfo[7];
postCode = custInfo[8];
phonenumber=custInfo[9];
wid=custInfo[10];
did=custInfo[11];
202 WebSphere J2EE Application Development for the iSeries Server

OrderDetail bean
We use the same technique to build the OrderDetail class. Since the steps are very similar,
we do not go through it in detail. Example 5-4 shows the code for the OrderDetail class.

Example 5-4 OrderDetail class

package access;
import java.math.*;
import java.io.*;

public class OrderDetail implements Serializable {
String itemID = null;
float itemAmount = 0;
int itemQty = 0;
int lineNumber = 0;
public OrderDetail(){

super();
}
public OrderDetail (String itemID, float itemAmount, int itemQty) {

 this.itemID = itemID;
 this.itemAmount = itemAmount;
 this.itemQty = itemQty;

}

public float getItemAmount() { return itemAmount;}
public String getItemID() { return itemID; }
public int getItemQty() { return itemQty; }
public int getLineNumber() { return lineNumber; }
public void setLineNumber(int ln) {lineNumber = ln;}

}

The Customer and OrderDetail beans represent customer and order detail information. They
are passed back and forth by the servlets and JSPs. Once you select items and click the
Check Out button, the OrderDetail bean is filled in by the controller servlet. For the customer
bean, customer information is retrieved from the Customer table. We build an access bean,
JDBCPoolCustomer, which connects to the database table and retrieves the data for the
Customer bean.

JDBCPoolCustomer class
For the JDBCPoolCustomer class, we use JDBCCatalogSupport as the super class because
we want to reuse some of its functions. We add three methods to the class:

� connectToDB(datasource, userid, password) looks up the data source name using JNDI
APIs.

� getCustomerByID(id) retrieves Customer data from the Customer table using a Customer
ID key and returns a Customer bean.

� setCustomer(String[]) updates the Customer table with new customer information.

The connectToDB method functions are similar to the functions we described in 2.5.1,
“DataSource version” on page 41. The getCustomerbyID(id) and setCustomer(String[])
methods use the data source retrieved in the connectToDB() method to connect to the
database table. Example 5-5 shows part of the code of the getCustomerbyID(id) method.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 203

Example 5-5 getCustomerbyID() method

try {
dataConn1 = getConnection(v3DS, connUserId, connUserPassword);
} catch (Exception e) {
System.out.println("JDBCPoolCustomer: “+ e.getMessage());

e.printStackTrace();
}
try {
psSingleRecord = dataConn1.prepareStatement("SELECT CLAST, CFIRST, CINIT,

 CADDR1, CADDR2, CCITY, CSTATE, CZIP, CPHONE, CWID, CDID FROM CSTMR WHERE CID = ?");
psSingleRecord.setString(1, customerID);
aResultSet = psSingleRecord.executeQuery();
if (aResultSet.next()){

String[] acustomerData = new String[12];
acustomerData[0]=customerID;
for (int i=1; i<=11;i++)

acustomerData[i]=aResultSet.getString(i);
customer=new access.Customer(acustomerData);

}
dataConn1.close();

} catch (SQLException ex) {
ex.printStackTrace();

}

return customer;

Now, the Customer, OrderDetail, Item beans, JDBCPoolCustomer, and JDBCPoolCatalog
access classes are complete. We are ready to test them. Since we haven’t created the
servlets and JSPs to invoke these classes yet, we use the Application Developer Scrapbook
to test the Customer bean.

Testing the Customer bean in the scrapbook
We click the Create a Scrapbook Page icon as shown in Figure 5-38. In the pop-up window,
we select the access package, enter mytest as the File name, and click Finish.
204 WebSphere J2EE Application Development for the iSeries Server

Figure 5-38 Creating a scrapbook page

A new scrapbook page, named mytest.jpage, is created in the access package. We
double-click this file. In the source code area, we enter the code shown in Figure 5-39.

Figure 5-39 Code in the scrapbook page

We select all the code in the scrapbook and click the Run the Selected Code button as
shown in Figure 5-40. The result is displayed on the console.

 String[] custinfo=new String[12];
 custinfo[0]="0001";
 custinfo[1]="Liang";
 custinfo[2]="Cliff";
 custinfo[3]=" ";
 custinfo[4]="15010 Yonge Street";
 custinfo[5]="";
 custinfo[6]="Aurora";
 custinfo[7]="ON";
 custinfo[8]="L4G 1M6";
 custinfo[9]="905-727-2384";
 custinfo[10]="0001";
 custinfo[11]="000001";
 access.Customer customer=new access.Customer(custinfo);

 System.out.println(customer.getId()+" " +customer.getFirstName()
 +" "+customer.getInit() +" "+customer.getLastName());
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 205

Figure 5-40 Running code in the scrapbook

OrderProcess class
The OrderProcess class is very similar to the JDBCPoolCustomer class. This class
encapsulates the order placement process. The logic to place an order is to:

1. Access the District table to retrieve the next order number.
2. Increase the next order number by one and write it back to the District table.
3. Retrieve the shopping cart from the session object. For each item in the cart, retrieve the

item ID, item quantity, and item amount. Deduct the quantity from the quantity in stock
field of the Stock table.

4. Insert a new record into the Order Line table with the order details.
5. Insert a order summary into the Orders table.
6. Update the customer balance in the Customer table.

This logic is placed in the placeOrder() method. We do not go through this in detail.

StartOrderEntryServlet servlet
The StartOrderEntryServlet servlet is the entry point of this application. It accepts a request
from the browser, retrieves all the items from the Item table, creates a new session object,
and puts the list of items in it. Finally, it forwards the request to the StartOrderEntry JSP. After
this, all the flow control is done by another servlet, OrderEntryControllerServlet.

1. In Application Developer, we switch to the Web perspective.

2. We right-click the nservlets package and select New-> Servlet.

3. In the Create the Servlet Class window, shown in Figure 5-41, we enter
StartOrderEntryServlet as the servlet Name. We replace javax.servlet.http.HttpServlet
with SuperServlet in the Superclass field because we want to use some functions defined
in nservlets.SuperClass. We select the init(), doPost(), and doGet() methods in the
Which method stubs would you like to create? option and click Next.
206 WebSphere J2EE Application Development for the iSeries Server

Figure 5-41 Creating StartOrderEntryServlet

4. The next window, Define the Servlet in the Deployment Descriptor File, allows you to
define the servlet initial parameter settings (see Figure 5-42). We select the Add to
web.xml option and leave the values in Display name and Mappings fields untouched. We
click the Add button next to Init Parameters and add the name/value pairs listed in
Table 5-1.

Table 5-1 StartorderEntryServlet initialization parameters

The StartOrderEntryServlet servlet is created in the nservlets package and the source
code window is automatically opened.

Name Value

userid A valid iSeries user ID

password A valid iSeries password

datasource jdbc/NativeDS2
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 207

Figure 5-42 Defining the servlet in the deployment descriptor file

5. We add the following import statements to the servlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

6. In the init() method of this servlet, we instantiate a JDBCPoolCatalog object that is used
to connect to the database. We retrieve the initial parameters and invoke the
connectToDB() method, which looks up the JDBC data source. Example 5-6 shows part of
the code of the init() method.

Example 5-6 init() method of StartOrderEntryServlet

super.init(config, SuperServlet.SYSTEM);
aJDBCPoolCatalog=new access.JDBCPoolCatalog();
String datasource = getInitParameter("datasource");

 String userid = getInitParameter("userid");
 String password = getInitParameter("password");

flexLog("DataSource: " + datasource);
flexLog("UserID: " + userid);
flexLog("Password: " + password);
if ((datasource == null)||(userid == null)||(password == null)) {

flexLog("StartOrderEntryServlet:");
throw new ServletException("Could not retrieve");

}
String returnValue = aJDBCPoolCatalog.connectToDB(datasource, userid, password);
if (!returnValue.equals("connection successful")) {

throw (new ServletException("Unable to connect to DB"));
208 WebSphere J2EE Application Development for the iSeries Server

} else {
flexLog("StartOrderEntryServlet: return”);

}
return;

7. In the doGet() method, we pass control to the doPost method. This way we only need to
add logic to the doPost() method.

8. In the doPost() method, we create the session object and invoke the getAllV() method of
JDBCPoolCatalog to retrieve the items from database. We put the data into the session
object and forward the request to the StartOrderEntry JSP. Example 5-7 shows part of the
code of the doPost() method.

Example 5-7 doPost() method of StartOrderEntryServlet

 HttpSession session = request.getSession(false);
 if (session != null)
 session.invalidate();

session = request.getSession(true);
response.setContentType("text/html");
response.setHeader("Pragma", "no-cache");
PrintWriter out = response.getWriter();

 if (null == session) {... }
 try {
 Vector items = null;

try {
 items = aJDBCPoolCatalog.getAllV();

} catch (Exception e) {
 System.out.println("...... ");

}
 session.setAttribute("sessionlist.items", items);
 response.sendRedirect(response.encodeRedirectURL("StartOrderEntry.jsp"));

StartOrderEntry.jsp
Since the StartOrderEntryServlet forwards the request to the StartOrderEntry JSP, we need
to build the JSP page:

1. Still in the Web perspective, we right-click webApplication in the left pane and select
New-> JSP File. In the pop-up window, we enter StartOrderEntry for File Name and click
Finish. The StartOrderEntry.jsp file is created under the webApplication folder.

2. We do not go through how to design JSP pages in this section. We just simply click the
Source tab for the JSP and input the code there. The JSP code checks the session object
and picks up the item data from the session. It then creates a table to show all the data in
the browser. It displays an input field for customer ID and three buttons for the tasks of
adding items to the shopping cart, showing the shopping cart and resetting the values.
Each action we invoke in the JSP page is routed to the OrderEntryControllerServlet
servlet. Example 5-8 shows some of the code of the StartOrderEntry JSP.

Example 5-8 Code of StartOrderEntry.jsp

<%@ page import="java.util.* "%>
<%

HttpSession mySession = request.getSession(false);
Vector itemVector = (Vector)(mySession.getAttribute("sessionlist.items"));
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 209

String custID = (String)(mySession.getAttribute("customerID"));
%>
<html><head>
....

<form method="POST" name="orderEntryForm" action="/OrderEntry/OrderEntryControllerServlet">
<INPUT TYPE="hidden" NAME="action" VALUE="default">
<CENTER>
<table border="1" width="72%" cellspacing="0" cellpadding="0">
...

<% if (itemVector != null) { %>
<% for (int i = 0; i < itemVector.size(); i ++) { %>
<% String[] aPart = ((String[]) itemVector.elementAt(i)); %>
<tr>
 <td width="8%" valign="middle" align="center"><CENTER><INPUT TYPE=checkbox

name=index value="<%= i %>" onclick="incrementNumChecked()"></CENTER></td>
</table>

...

3. Now we can run StartOrderEntryServlet in Application Developer. We right-click the
servlet and select Run On Server. Application Developer automatically starts the
WebSphere 4.0 Test server and shows the result in the embedded browser. Figure 5-43
shows the output of the JSP.

Figure 5-43 Running StartOrderEntryServlet in the WebSphere Test Environment
210 WebSphere J2EE Application Development for the iSeries Server

OrderEntryControllerServlet servlet
The OrderEntryControllerServlet servlet is a very important part of our application. It acts as
the gateway and control center. All the requests from the JSPs come into this servlet. It
decides which function should be called. All the data coming from the access classes is sent
to this servlet, which forwards the data to the JSPs through the session object.

Creating OrderEntryControllerServlet is similar with creating StartOrderEntryServlet. It also
needs initial parameters such as userid, password, and data source. It extends SuperServlet
instead of extending HttpServlet directly.

The action control part is in the doPost() method. It calls different functions based on the
action value returned from the JSP page. Example 5-9 shows part of the code of the doPost()
method.

Example 5-9 doPost() method for OrderEntryControllerServlet

if (action.equals("AddToCart")) {
 addToCart(session, request, response, customerID);
 } else
 if (action.equals("ShowCart")) {
 displayCart(customerID, response, session);
 } else
 if (action.equals("CheckOut")) {
 placeOrder(session, response);
 response.sendRedirect(response.encodeRedirectURL("Checkout.jsp"));
 } else
 if (action.equals("UpdateCustomerInformation")) {
 session.setAttribute("custUpdateFlag", "false");
 updateCustomer(request, response, session);
 } else
 if (action.equals("ContinueShopping")) {

 response.sendRedirect
 (response.encodeRedirectURL("StartOrderEntry.jsp"));
 } else
 if (action.equals("ShopSomeMore")) {

Vector itemVector =
(Vector) (session.getAttribute("sessionlist.items"));

String custID = (String) (session.getAttribute("customerID"));
 if (session != null)
 session.invalidate();

 session = request.getSession(true);
 session.setAttribute("sessionlist.items", itemVector);
 session.setAttribute("customerID", custID);

 response.sendRedirect(response.
 encodeRedirectURL("StartOrderEntry.jsp"));

If we click the Add to Cart button or the Show Cart button in the StartOrderEntry JSP, the
controller servlet calls the addToCart() method and the displayCart() methods respectively.
We add these methods.

The addToCart() method is used to add the items you select into the shopping cart and to put
the shopping cart into the session object. It first retrieves the selected items from the session
object. It moves them into the CartItem bean and puts it into the session object. Example 5-10
shows the key part of the addToCart() method.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 211

Example 5-10 Code of addToCart() method

Vector parts = (Vector) session.getAttribute("sessionlist.items");
String[] value = request.getParameterValues("index");
String[] quantity = request.getParameterValues("quantity");
if (value != null) {

int j = 0;
for (int i = 0; i < value.length; i++) {

j = Integer.parseInt(value[i]);
String[] data = (String[]) parts.elementAt(j);
Integer qty = new Integer (quantity[j]);
CartItem aCartItem = new CartItem(data[0], data[1], data[2], data[3], qty);
cart.getItems().addElement(aCartItem);

}
session.setAttribute("shopcart.selected", cart);
displayCart(customerID, response, session);

The displayCart() method is used to assemble the shopping cart data and customer
information together and forward them to a JSP page. Recall that in the StartOrderEntry
page, you need to input customer ID. The customer detail is retrieved based on this ID. Since
the shopping cart is already in the session object, we only need to retrieve customer data
from the database. The method then puts the customer information into the session object
and forwards the request to OutputCart JSP. This JSP page is responsible for retrieving data
from the session object and presenting it in the browser. Example 5-11 shows some of the
code in the displayCart() method.

Example 5-11 Code in displayCart() method

aJDBCPoolCustomer = new access.JDBCPoolCustomer();
access.Customer customer=null;
String returnValue = aJDBCPoolCustomer.connectToDB(..);
....
customer = aJDBCPoolCustomer.getCustomerByID(newCustID);
session.setAttribute("customerObj", customer);
session.setAttribute("cFirstName", customer.getFirstName());
session.setAttribute("cMiddleInitials", customer.getInit());
session.setAttribute("cLastName", customer.getLastName());
session.setAttribute("cAddressLine1", customer.getAddress1());
session.setAttribute("cAddressLine2", customer.getAddress2());
session.setAttribute("cCity", customer.getCity());
session.setAttribute("cState", customer.getState());
session.setAttribute("cZip", customer.getPostCode());
session.setAttribute("cPhone", customer.getPhonenumber());

wid=customer.getWid();
did=customer.getDid();

try {
response.sendRedirect(response.encodeRedirectURL("OutputCart.jsp"));

 }
 catch (Exception ex){

System.out.println(ex.getMessage());
 }

There are two other key methods – placeOrder() and updateCustomer(). The placeOrder()
method invokes the function to create an order transaction. The updateCustomer() method
calls the setCustomer() method of JDBCPoolCustomer to update the customer information.
212 WebSphere J2EE Application Development for the iSeries Server

Now the OrderEntryControllerServlet servlet is complete. We add OutputCart.jsp and
Checkout.jsp into the Web application using the same technique as in “StartOrderEntry.jsp”
on page 209. We do not go through these JSP pages in detail. They are basically used to
present the results of the shopping cart, customer information, and transactions.

Exporting to an EAR file
After completing the OrderEntry application, we can deploy it on WebSphere Application
Server 4.0. Application Developer is capable of generating J2EE standard enterprise
applications, so we don’t need to go through the Application Assembly Tool. The steps are
exactly same as “Exporting an EAR file” on page 194.

5.4 Conclusion
In this chapter, we used Application Developer to build J2EE compliant applications. We
migrated the examples created in Chapter 2, “Servlet and JSP development using VisualAge
for Java” on page 21, to Application Developer. We also created a new application using
Application Developer. Application Developer allows you to export directly to war and ear
formats. You do not need to use the Application Assembly Tool.
Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer 213

214 WebSphere J2EE Application Development for the iSeries Server

Chapter 6. Introduction to Enterprise
JavaBeans

JavaBeans have become widely accepted in the Java programming community as the way to
create the client side for applications. JavaBeans allow application programmers to create
reusable components and build applications with those components. The flexibility and
ease-of-use associated with the component model, and the tools that use JavaBeans, have
helped application developers greatly. Extending this concept to the server side, business
components add considerable complexity. Developers must address the following items:

� Persisting the component data in a data source
� Distributing the components across a network
� Managing transactions
� Building the necessary security required by business applications

The Enterprise JavaBeans (EJB) technology provides a logical extension to the JavaBeans
concept. It is targeted at server-tier business logic development. It provides interfaces that
insulate the programmer from the complexities and dependencies that are unique to a
platform.

EJB technology is critical for the development of robust, Java-based business applications on
the iSeries server. This chapter discusses the basics of EJB technology, what it offers
application developers, its key features, and how EJB technology fits into the iSeries
environment.

6

© Copyright IBM Corp. 2002. All rights reserved. 215

6.1 The Enterprise JavaBeans specification
Business applications that support a wide variety of users within or across business domains
are usually very complex. The complexity of the domain requires application developers to
understand the underlying domain technology and the business domain sufficiently to design
and implement applications. Advancements in technology have increased the capabilities
that can be integrated into business applications. At the same time, the new technology has
increased the complexity of application development.

The EJB specification was defined by Sun Microsystems Inc. to address the issues
concerned with developing applications. The mission of the EJB specification is to define an
architecture for application development, which accomplishes the following goals:

� Make it easier to write business applications: By separating the business application
from system services, the application developer can focus on the needs of the business
application. This includes the business logic and the representation of business data.

� Increase manageability of the systems environment: By keeping the business logic
and business data in a server environment, the application code is centrally managed.
Administration of the application environment is simplified, which allows easier distribution
of enhancements, fixes, and extensions to the business application.

� Promote reuse: By defining business objects as components, an application developer
can create new components, reuse existing components, or purchase components. By
using existing components or purchasing components, the application developer
assembles the application rather than developing and testing new code.

Version 1.1 of the EJB specification defines the fundamental mission and concepts for
creating enterprise server applications. Subsequent versions of the EJB specification will
expand and fine tune the specification to define all aspects of the EJB environment.

6.2 Enterprise JavaBeans architecture definition
The Enterprise JavaBeans architecture defines the fundamental concepts for Java
server-based business applications. The architecture defined in the EJB specification,
version 1.1, is available from Sun Microsystems on the Internet at:
http://www.java.sun.com/products/ejb/

The EJB architecture is a component-based architecture for the development and
deployment of server-based business applications. It allows the separation of business
applications from the underlying system services. The following list breaks these statements
down to help unravel the definition of the EJB architecture:

� Component based: The EJB architecture uses the concept of components to represent
business objects, business logic, or business tasks within the application.

� Architecture: The EJB architecture provides the structure for developing Java-based,
object-oriented business applications. It is not a tool for building these business
applications. However, it is an architecture for defining the application components.

� Development and deployment: The EJB architecture is Java-based, which allows many
existing Integrated Development Environments (IDE) to support creating and testing of the
components. The application developer selects from a variety of tools that support the
EJB specification and provides the services needed by the application. The details of
deployment are separated from the business components. Therefore, deployment
considerations are customized to the needs of the business environment without affecting
the business components.
216 WebSphere J2EE Application Development for the iSeries Server

http://www.java.sun.com/products/ejb/

� Server-based business application: In recent years, there has been a movement
toward client/server computing-based environments, with increasing portions of the
application residing on the client. The server is given the role of a data repository. By
returning the application to the server, the ability to manage the application is simplified.
The EJB specification allows you to distribute the application components across multiple
servers to meet scalability and business structure needs.

� Separation of the business application from the underlying system services: With
the EJB architecture, the application server environment manages and supports the
system services. This removes the requirement for the business application to deal with
low-level application programming interfaces (APIs) to perform its functions. However,
these low-level APIs are still available, and the application can use them.

Since the beginning of Java, EJB architecture has mainly been used for client-side
processing and Internet-based applications. It is being accepted as the standard for building
object-oriented business applications in Java. Many server vendors are using this
specification to define server environments, which is making the EJB specification a reality.
Many businesses are now using Java and the EJB technology for building and deploying
business applications on servers.

6.3 How EJB technology fits into the Java architecture
EJB technology complements and extends the existing Java architecture. This technology
extends the promise of Java by providing an application server environment that handles
system services that would otherwise be handled by the application code. This allows EJB
technology to extend the ease-of-use of Java by allowing the application developer to focus
on business applications and let the application server focus on system services.

The JavaBeans and Enterprise JavaBeans technology may seem to be on a collision course,
but they actually complement each other. JavaBeans technology defines a component model
with conventions that enable development tools to examine a JavaBean’s components to
determine its capabilities. The development tools expose the properties and capabilities of a
JavaBean to application developers. The application developer sets bean properties or
connects the beans methods to other JavaBeans. Many JavaBeans components that exist
today are used in graphical interface development.

EJB technology does not implement the same interfaces as JavaBean technology, nor does it
follow the JavaBean event model. This technology has its own component model with distinct
interfaces and conventions. It supports representing business logic and business data within
an application environment. EJB components are intended for the server side of business
applications, while JavaBeans components fit nicely with the client-side of the application. To
be complete, the EJB component model includes an application server environment that
provides the necessary services to secure the application, provide transactions, and persist
business data.

EJB technology allows business applications to take advantage of the Internet, intranet, and
extranet by making it easier to extend existing business applications. EJB technology
provides extensions to the Java language that are needed before business application
developers take Java seriously.
Chapter 6. Introduction to Enterprise JavaBeans 217

6.4 Why EJB is important
EJB technology is important to both application providers and the businesses that use their
applications. The Java language allows application providers to develop applications that are
platform independent. This is valuable to application users because it allows them to select
the software they need, independent of the hardware platform, that fits their business
environment. If a user has a mixture of hardware, they can still run the same application in
these different environments. At the same time, the application developer does not need
multiple versions of the same application, with each version tuned to the specific platform.

This allows the application developers to focus on the business problem they are trying to
solve and let the EJB server handle system services. EJB technology allows the developer to
define the deployment environment at installation time, rather than when the application is
designed. This allows the developer to customize the application to the business domain,
instead of to both the business domain and the specific hardware platform system.

Keeping the business logic and data on the server ensures that every user is working with the
same master data and the same business logic. This also provides the application user better
protection of intellectual assets that have been incorporated within the application. Servers,
especially the iSeries server, have better security packages than many client systems. When
a business is connected to the Internet, ensuring that corporate data and intelligence is safe
from unauthorized access is important.

The Java language, as the application development language of choice, is the stated
direction of IBM. The IBM Server division is moving forward to make Java its language of
choice. Many computer industry leaders have committed to making Java the language of
electronic business, the Internet, and business applications. By moving to Java and EJB
technology, application providers position themselves for the future.

6.5 Leveraging Java and EJB technology
Java increases the productivity of developers who write applications and simplifies
maintenance. The very nature of object-oriented technologies provides the basis for this
statement. As a language, Java has taken the best of other object-oriented languages and
applied various safeguards to minimize the problems programmers have experienced in the
past. EJB technology makes developing applications with Java measurably easier. It hides all
the system services details that are present when dealing with Java directly.

The EJB component model defines the infrastructure for creating an environment that
separates system services from application business logic. The EJB server and EJB
container deal with all the system service infrastructure included in the following list:

� Transactions
� Persistence
� Resources
� Security

This allows applications access to all of these services without dealing with their complexity.
The application development activity is made easier, so the developer can focus on business
logic application development.

The EJB component model represents business logic and business data as components.
Business data is reused within the same domain in various aspects of the business. For
example, assume the customer information is used in the following ways:
218 WebSphere J2EE Application Development for the iSeries Server

� In an OrderEntry application when a customer places or updates an order
� In accounting for creating invoices
� In marketing for target advertising campaigns

By creating the customer as a component, the applications that support these different
organizations use the same customer component, which minimizes development and testing.
As the development team identifies and creates a repository of business object components,
they begin to assemble applications to satisfy different end-user requirements.

EJB technology also leverages existing applications currently running business
environments. It allows the extension of existing applications to provide new and additional
functions for the business. The EJB specification identifies Common Object Request Broker
Architecture (CORBA) as the means to provide inter-operability between different
programming languages. This allows applications written in different languages, possibly
running on different platforms, to interact with each other.

Even without CORBA, EJB objects can be used to wrapper existing application logic. For
example, you can wrapper Component Object Model (COM) objects as EJB components and
use them as part of a Java application.

6.6 EJB architectural overview
The EJB specification consists of these two major units:

� Components

– Entity beans
– Session beans

� Services

– EJB container
– EJB server

Figure 6-1 shows the relationship between entity beans and session beans.

Figure 6-1 EJB architecture overview
Chapter 6. Introduction to Enterprise JavaBeans 219

Entity and session beans are explained here:

� Entity beans: These components represent business objects and contain business data.
Because an entity bean contains business data, its contents are persisted for later use.
Entity beans often reflect a row within an application database. An entity bean has
methods to manage its data (get and set methods) and can support business logic
pertaining to its business data.

� Session beans: These objects perform business processes or tasks within a business
process. A client uses a session bean to complete a particular task. Session beans are
transient (their data is not persisted) and only exist for the life of the transaction. Session
beans usually perform such activities as obtaining or storing business data by using the
entity beans or performing business logic that is maintained separately from the business
data.

6.6.1 The EJB server
In the EJB architecture, system services can be broken down into two distinct areas, which
are often linked: the enterprise bean server and the enterprise bean container.

Figure 6-2 shows the relationship between the EJB container and the EJB server.

Figure 6-2 EJB system services providers

EJB container
EJB containers serve as the means to insulate the enterprise bean developer from the
specifics of the EJB server services such as transaction management, security, and object
distribution. It provides a simple interface for the enterprise bean and accesses the system
services for it. This interface is referred to as the component contract for the Enterprise
JavaBean.

The container is defined as a separate mechanism from the EJB server. The clarity of this
separation is at the discretion of the tool vendor. The container manages Enterprise
JavaBean objects. It manages the life cycle of the object (creation, maintenance, and
deletion), implements the security for the object, and coordinates distributed transactions
involving the object. By performing these activities, the container eliminates the need for bean
developers to concern themselves with these issues.
220 WebSphere J2EE Application Development for the iSeries Server

EJB server
The EJB server allows the application developer to obtain the system services required by
the application without directly dealing with lower level APIs. Figure 6-3 shows the
architecture of the EJB server.

Figure 6-3 The EJB server

The EJB server carries the majority of the burden of dealing with the system environment by
managing and coordinating the allocation of resources to the application. The following list
describes the key system services (APIs) that the application server supports:

� Security: In the EJB component model, security is both granular and flexible. It is granular
because it is configured at the component level or at the method level. It is flexible
because it is configured outside the application code by using utilities provided by the
application server provider.

� Transactions: In the EJB component model, transactions take two basic forms, which are
explained in the following list. It is important to notice that the EJB specification does not
specifically distinguish between these two forms. This breakdown is to simplify the
explanation.

– Database transactions: Database transactions are granular and are configured by
settings in the component. Database transactions reflect state changes in the
component that are reflected in the database.

– Business transactions: Business transactions represent business processes or tasks
that can involve a variety of components and business logic. Business transactions
often encapsulate changes to many of the components involved in the transaction.

� Persistence: The EJB architecture eliminates the need for the components to deal with
the persistence mechanism. Using JDBC as the database management technology, the
application server interacts with a wide variety of data stores on the market today.

The EJB server supports these capabilities and manages many of the resources that are
common within a Java application. These resources include thread pools and the caching of
objects. It is important to notice that many of the low-level APIs associated with Java
programming are hidden from the application developer.
Chapter 6. Introduction to Enterprise JavaBeans 221

The EJB server provider is typically a company that produces middleware or a company that
produces operating systems, such as IBM. Currently, there is no standard for the interface
between a container and an EJB server. This may be introduced in a later release of the EJB
specification. The EJB server provider often provides a container as well. EJB server support
is currently available on the iSeries server with WebSphere Application Server Advanced
Edition, BEA WebLogic Application Server, BlueStone Software’s Sapphire/Web, and
Novera’s jBusiness.

6.6.2 Types of components
The components (entity beans and session beans) break down into more discrete groupings:

� Container-managed entity beans: Delegate the reading and writing of bean attributes to
the persistent datastore to the container that holds them. This allows the bean provider to
set up a mapping schema from the bean attributes to the database columns outside of the
entity bean itself. It also allows the entity bean developer to keep the persistence details
separate from the business object (entity bean). Greater flexibility is achieved because the
persistence information may be modified without affecting the entity bean. This makes the
bean more reusable and portable.

� Bean-managed entity beans: Support the situation where the bean developer needs to
have more control over persisting a bean. Bean-managed entity beans allow the bean
provider to control the reading and writing of the bean attributes to the database. This
gives the bean provider greater flexibility in providing their own persistence strategy. This
can include persisting to a variety of databases or file types or providing nested database
transactions. All the code necessary to map the beans attributes to the database are part
of the bean itself.

Session beans are transient objects and perform operations on behalf of the client, such as
accessing the database through the entity bean or performing business logic. Session beans
can be involved in a transaction. However, they may not be recoverable in the case of a
system crash. A session bean is stateless or stateful:

� Stateless session beans: Perform activities for the client, but do not maintain any data.
They can perform business logic and calculations. However, no instance variables are
defined within the bean.

� Stateful session beans: Have data and maintain that data for the life of a transaction. If
this data must be persisted, it must be forwarded to entity beans. Stateful session beans
minimize the amount of interaction between the client and the server, making the
application more efficient. However, it is imperative that any data that needs preserving is
captured and forwarded.

Entity beans and session beans provide the heart of the business application by representing
both the business objects (data) and the business logic (processes and tasks).

6.6.3 Component content
A component consists of interfaces, the class, any required utility classes, and a deployment
descriptor. Previous discussion of the components focused on the class itself. However, in a
distributed environment, a component is accessed through its interfaces. As defined in the
following list, each component has two interfaces:

Note: Entity beans are either container managed or bean managed. Session beans are
stateful or stateless.
222 WebSphere J2EE Application Development for the iSeries Server

� Home interface: Contains the methods for creating, deleting, and locating (finding) a
particular instance of a bean.

� Remote interface: Contains the business methods that may be performed on a bean. The
client interacts with the remote interface for the entity or session bean.

One of the key advantages of using EJBs is how easy it is to customize a bean component.
The deployment descriptor provides the means to make this possible. Figure 6-4 shows how
deployment descriptors are used.

Figure 6-4 EJB deployment descriptors

Each Enterprise JavaBean class requires a deployment descriptor. The deployment
descriptors are used to establish the runtime service settings for an enterprise bean. These
settings tell the EJB container how to manage and control the enterprise bean. The settings
can be set at application assembly or application deployment time.

The deployment descriptor specifies how to create and maintain an Enterprise Bean object. It
defines, among other things, the enterprise bean class name, the JNDI name space that
represents the container, the Home interface name, the Remote interface name, and the
Environment Properties object name. It also specifies transaction semantics and security
rules that should be applied to the Enterprise Bean. These settings are described in the
following list:

� Bean JNDI Name
� Enterprise Bean Class Name
� Home Interface Class Name
� Remote Interface Class Name
� Environment Properties
� Reentrancy
� Control Descriptor (per bean or per method)

– Run As Mode (Client, System, Specified Identity)
– Isolation Level (Read committed, Read uncommitted, Repeatable read, Serializable)
– Transaction Attribute (Bean Managed, Mandatory, Not Supported, Required, Requires

New, Supports)
Chapter 6. Introduction to Enterprise JavaBeans 223

� Access Control Entry (per bean or per method)

– Method name
– Identities

� (Entity Only)

– Container Managed Fields
– Primary Key Class Name

� (Session Only)

– Session Time-out
– State Management Type (Stateful or Stateless)

These are the key settings found within the deployment descriptor. They provide flexible use
of a component by customizing the component at runtime.

6.7 EJB roles
The EJB specification identifies various application development and deployment roles. Both
tool vendors and application providers have a variety of opportunities to take advantage of
EJB technology and play an active part in providing applications using the technology. The
EJB specification in the following list identifies these major roles:

� Enterprise JavaBean provider
� Application assembler
� Application deployer
� Server provider
� Container provider

6.7.1 Enterprise JavaBean provider
As shown in Figure 6-5, the Enterprise JavaBean provider provides the components for
building business applications. Domain expertise is a critical characteristic of these providers.
The objective is to create business components that are usable in a variety of business
applications. The components implement a business process or a business object. EJB
technology allows the provider to focus on business needs so they can develop components,
without needing extensive knowledge of the system services.
224 WebSphere J2EE Application Development for the iSeries Server

Figure 6-5 EJB provider

6.7.2 Application assembler
As shown in Figure 6-6, the application assembler, who is also an expert in the business
domain, constructs the application. They are typically responsible for building the user
interfaces for the application and providing the additional classes needed to complete the
application. The assembler can customize Enterprise JavaBeans by changing the
deployment information contained in the deployment descriptor.

Figure 6-6 EJB assembler and deployer
Chapter 6. Introduction to Enterprise JavaBeans 225

6.7.3 Application deployer
The application deployer is responsible for deploying the application in a specific system
environment. The deployer is usually an expert on the function and features of the platform,
as well as the supporting technologies. The deployer maps the application to the platform
environment and can make adjustments for items, such as security and the data store. The
deployer can customize the Enterprise JavaBeans by changing the deployment information.

6.7.4 Server provider
The EJB specification divides the server functions into two components: the server and the
container. The EJB server provider produces the middleware (server) that communicates
between the platforms operating system environment and the container or bean managed
beans. The middleware, created by the server provider, provides the management system
services shown in the following list:

� Distributed transactions
� Object distribution
� Security
� Data persistence

The server provider can elect to include the container as part of their product.

6.7.5 Container provider
The container provider produces the EJB container that insulates the Enterprise JavaBean
developer from the specifics of the EJB server services, such as transaction management,
security, and persistence. The container provider ensures that the container provides a
simple interface to the Enterprise JavaBean. The container accesses system services for the
EJB.

6.8 Using EJB technology on the iSeries server
The Java programming language provides numerous advantages as an application
development language. For the iSeries server, the main focus of Java application
development has been client/server oriented. Because the iSeries server does not have a
native graphical user interface, it is not optimized for the display of client windows and
graphics. In the client/server environment, the iSeries server normally plays the role of a
server. The Java programs run on the client and access the iSeries database using the
iSeries host server programs.

Starting with OS/400 V4R2, Java programs can run on the iSeries server. The main
disadvantage in using Java for developing business applications is the extra programming
required to manage the services required for the runtime environment.

EJB technology provides the means to make Java a viable language for iSeries business
application development. It focuses on server-side Java. EJB technology returns the focus of
the application developer to the business application. The developer does not deal with
system-level services. The iSeries server provides a secure and scalable environment for
running Java applications, while EJB application servers provide server and container
support.
226 WebSphere J2EE Application Development for the iSeries Server

6.8.1 Overview of Java for the iSeries server
The Java environment for the iSeries server is Java-compatible, which means it conforms to
the Sun standard and can run 100% pure Java code without modification or re-compilation.
The Java Virtual Machine (JVM) is implemented in the iSeries machine interface (MI),
providing a high degree of integration with the underlying system. The integrated JVM
includes an advanced garbage collection algorithm that improves Java performance and
scalability. In addition to the integrated, compatible runtime, the iSeries Developer Kit for Java
provides the additional commands, tools, and classes needed for Java development on the
iSeries server.

Like other Java environments, Java source code files on the iSeries server are ASCII text files
stored in the integrated file system. These are compiled into platform-independent class files
(also stored in the IFS) that are interpreted by the JVM at runtime. The Java environment for
iSeries also includes a Java transformer that further optimizes Java class files and is used to
create permanent, optimized 64-bit iSeries program objects.

The Qshell Interpreter is also required for Java development on the iSeries server. Qshell is a
command interpreter, based on POSIX and X/Open standards. It provides the Java
development tools that are typically required for program development. With a few exceptions,
the Java tools support the syntax and options available on most Java platforms.

Figure 6-7 shows the different pieces that comprise the Java environment on the iSeries
server.

Figure 6-7 Java environment on the iSeries server

java.awt.peer
java.awt.image

java.awt
java.applet

java.util
java.io

java.net

java.lang

 Class
File

Java
class files

(classes.zip)

JV1 Base Product

Qshell commands
&

Development Tools

RunJava

CrtJvaPgm

DltJvaPgm

...

JV1
Option 4

1.1.8

CL & Operations
Navigator Commands

java

javac

ajar

...

java.awt.peer
java.awt.image

java.awt
java.applet

java.util
java.io

java.net

java.lang

 Class
File

Java
class files

(classes.zip)

JV1
Option 3

1.2.2 java.awt.peer
java.awt.image

java.awt
java.applet

java.util
java.io

java.net

java.lang

 Class
File

Java
class files

(classes.zip)

JV1
Option 5

1.3

Java Service Pgm

OX

Binder

AI

Bytecode
Transform

Interpreter

Runtime,
control

structures

Java Virtual
Machine

Concurrent Garbage Collector

 Interface, Class, Object instances

SLIC Native Methods

Direct
Execution

Code

Glue Code

Perm Class

Remote
AWT

Debug
IFS raw I/O

Timer

Some threads

...

SLIC

...
Chapter 6. Introduction to Enterprise JavaBeans 227

The integrated JVM is part of the System Licensed Internal Code (SLIC) on the iSeries server
that is installed on every system. The iSeries Developer Kit for Java is packaged as a
separate, no-charge Licensed Program Product (LPP) that must be installed on the iSeries
server. The Qshell Interpreter is an OS/400 option that must be installed.

6.8.2 EJB technology on the iSeries server
An EJB server runs as an application above OS/400 on the iSeries server. For the most part,
current EJB servers are written in Java and require the iSeries Developer Kit for Java on the
system. The iSeries strategy is to support application servers that deliver back-end systems
integration and business-to-business e-commerce opportunities.

6.9 EJB interoperability with other distributed architectures
The EJB architecture supports distribution using the standard Java remote method invocation
(RMI). Every enterprise bean has a home interface and a remote interface that declare the
methods a client can indirectly invoke on the enterprise bean. The objects that implement
these interfaces are Java RMI remote objects provided by the container. At runtime, the client
receives a reference to the home or remote object, and invokes methods on that reference.
The EJB container intercepts the method request and provides services before passing the
request on to the enterprise bean. The communication between the references (or stubs) on
the client and the objects on the server is defined by the Java RMI specification.

6.9.1 CORBA
In addition to distributed object support using RMI, the EJB architecture also provides for EJB
servers based on the Common Object Request Broker Architecture. Through standard EJB to
CORBA mapping, an Interface Definition Language (IDL) interface can be generated from the
remote interface. This mapping can be implicit when RMI over IIOP is used.

In addition to on-the-wire interoperability, CORBA-based EJB servers are required to use the
OMG COS Naming Service for publishing and resolving the EJB home interface objects. The
OMG Object Transaction Service is also required for transaction support in a CORBA-based
EJB server.

These requirements allow a non-Java CORBA client to access enterprise beans using a
CORBA-based EJB server. The client can use both CORBA and EJB objects within a
transaction, and the transaction can span multiple CORBA-based EJB servers. WebSphere
Application Server Version 4.0 Advanced Edition does not support CORBA clients.

6.9.2 Component Object Model (COM)
The EJB architecture provides no specific support for Microsoft’s Component Object Model.
However, it is possible to wrap the client interface to an enterprise bean with a COM object to
make it accessible from Visual Basic or Visual C++. Conversely, it is possible to wrap a COM
object to make it accessible from Java.

There are a number of products available that provide COM to Java interface support.
WebSphere Enterprise Edition 4.0 and Linar’s J-Integra such products. They provide
COM-Java bridging tools. You can access ActiveX components as if they were Java objects.
You can also access pure Java objects as if they were ActiveX components.

For more information about J-Integra, see: http://www.linar.com/
228 WebSphere J2EE Application Development for the iSeries Server

http://www.linar.com/

6.9.3 IBM WebSphere Business Components
IBM WebSphere Business Components are easy-to-use software implementation packages.
These components support these features:

� Provide a coherent set of functions
� Can be independently developed and delivered
� Can be composed from other components
� Have explicit and well-specified interfaces for the component services they provide and

require

IBM has developed WebSphere Business Components to help you reduce development time,
create applications that operate across diverse infrastructures, and deliver value to your
company faster with a whole project solution.

6.10 Conclusion
The Enterprise JavaBean architecture provides a component model for server applications.
With EJBs, you have rapid application development and the rich graphical interfaces of a
client, without sacrificing the thin client manageability and the security of a server. EJBs
accomplish this by making it easy to partition an application into a user interface and the
business logic. The user interface can be specified in a client application (written in Java,
Visual Basic, PowerBuilder, and so on) or in HTML using a Java servlet. The server-side
business logic is packaged as Enterprise JavaBean components. Enterprise JavaBeans are
easily deployed anywhere on the network, reused within other business applications running
on disparate platforms, and easily managed from a remote console.

Enterprise JavaBean technology is not a tool to build applications. Rather, it is the
architecture for defining components that can be used with a variety of tools. A stated goal of
the EJB specification is to be the standard component architecture for building distributed
object-oriented business applications in the Java programming language. Enterprise
JavaBeans make it possible to build distributed applications by combining components
developed using tools from different vendors.
Chapter 6. Introduction to Enterprise JavaBeans 229

230 WebSphere J2EE Application Development for the iSeries Server

Chapter 7. Overview of the OrderEntry
application

This chapter explains the RPG OrderEntry application example. This application is
representative of a commercial application. However, it does not include all of the necessary
error handling that a business application requires.

This chapter also introduces the application and specifies the database layout. In Chapter 10,
“Building Java applications with Enterprise JavaBeans” on page 315, the RPG OrderEntry
application is converted to a Web-enabled application. The goal is to use the existing RPG
application to service both the Web application and the host 5250 application.

7

© Copyright IBM Corp. 2002. All rights reserved. 231

7.1 The ABC Company
The ABC Company is a wholesale supplier with one warehouse and 10 sales districts. Each
district serves 3,000 customers (30,000 total customers for the company). The warehouse
maintains stock for the 100,000 items sold by the Company.

Figure 7-1 illustrates the company structure (warehouse, district, and customer).

Figure 7-1 The company structure

7.2 The ABC Company database
The company runs its business with a database. This database is used in a mission-critical,
online transaction processing (OLTP) environment. The database includes tables with the
following data:

� District information (next available order number, tax rate, and so on)
� Customer information (name, address, telephone number, and so on)
� Order information (date, time, shipper, and so on)
� Order line information (quantity, delivery date, and so on)
� Item information (name, price, item ID, and so on)
� Stock information (quantity in stock, warehouse ID, and so on)

7.3 A customer transaction
A customer transaction occurs based on the following series of events:

1. Customers telephone one of the 10 district centers to place an order.

2. The district customer service representative answers the telephone, obtains the following
information, and enters it into the application:

– Customer number
– Item numbers of the items the customer wants to order
– The quantity required for each item

3. The customer service representative may prompt for a list of customers or a list of parts.

4. The application then performs the following actions:
232 WebSphere J2EE Application Development for the iSeries Server

a. Reads the customer last name, customer discount rate, and customer credit status
from the Customer Table (CSTMR).

b. Reads the District Table for the next available district order number. The next available
district order number increases by one and is updated.

c. Reads the item names, item prices, and item data for each item ordered by the
customer from the Item Table (ITEM).

d. Checks if the quantity of ordered items is in stock by reading the quantity in the Stock
Table (STOCK).

5. When the order is accepted, the following actions occur:

a. A new row is inserted into the Order Table to reflect the creation of the new order
(ORDERS).

b. A new row is inserted into the Order Line Table to reflect each item in the order.

c. The quantity is reduced by the quantity ordered.

d. A message is written to a data queue to initiate order printing.

7.4 Application flow

The RPG OrderEntry application consists of the following components:

� ORDENTD (Parts Order Entry): Display File
� ORDENTR (Parts Order Entry): Main RPG processing program
� PRTORDERP (Parts Order Entry): Print File
� PRTORDERR (Print Orders): RPG server job
� SLTCUSTD (Select Customer): Display file
� SLTCUSTR (Select Customer): RPG SQL stored procedure
� SLTPARTD (Select Part): Display file
� SLTPARTR (Select Part): RPG stored procedure

Figure 7-2 show the RPG application flow. ORDENTR is the main RPG program. It is
responsible for the main line processing. It calls two supporting RPG programs that are used
to prompt for and select end-user input. They are SLTCUSTR, which handles selecting a
customer, and SLTPARTR, which handles selecting part numbers. PRTODERR is an RPG
program that handles printing customer orders. It reads order records that were placed in a
data queue and prints them in a background job.

Note: To download the sample code used in this redbook, please refer to Appendix A,
“Additional material” on page 425, for more information.
Chapter 7. Overview of the OrderEntry application 233

Figure 7-2 RPG application flow

7.5 Customer transaction flow
The following scenario walks through a customer transaction and shows the application flow.
By understanding the flow of the iSeries application, you can understand the changes made
to this application to support a graphical client.

Starting the application
To start the application, the customer follows this series of steps:

1. The customer calls the main program from an OS/400 command line:

CALL ORDENTR

When the OrderEntry application is started, the Parts Order Entry display (Figure 7-3)
appears.
234 WebSphere J2EE Application Development for the iSeries Server

Figure 7-3 Parts Order Entry display

2. When the Parts Order Entry display appears, the user has two options:

– Type a customer number and press the Enter key
– End the program by pressing either F3 or F12.

If they do not know their customer number, the user can press F4 to view a window
containing a list of available customers.

Figure 7-4 Select Customer display

3. The user presses F12 to remove the window and return to the initial panel, or scrolls
through the items in the list until they find the customer they want. They indicate their
choice by typing a 1 in the option field and pressing the Enter key. The selected customer
is then returned to the initial panel (Figure 7-5).

 Parts Order Entry

 Type choices, press Enter.
 2=Change

 Customer number Order number :

 F3=Exit F4=Prompt F6=Accept Order F12=Cancel

 Select Customer

 Type choices, press Enter.
 1=Select

 Opt Customer
 OAKLEY, Annie O
 BARBER, Elizabeth A
 Pork, Piggy B
 WILLIS, NEIL U
 Mullen-Schultz, Gary C
 MAATTA, Bob W
 FAIR, JIM J
 COULTER, SIMON S
 GOUDET, PIERRE W
 LLAMES, Joe L
 More...
 F12=Cancel
Chapter 7. Overview of the OrderEntry application 235

Figure 7-5 Parts Order Entry display

4. After selecting a customer from the list, or typing a valid customer number and pressing
the Enter key, the customer details are shown and an order number is assigned. An
additional prompt is displayed, which allows the user to type a part number and quantity.

If the user does not know the part number, they can press F4 to view a window containing
a list of available parts (Figure 7-6).

Figure 7-6 Select Part display

5. The user presses F12 to remove the window and return to the initial panel, or scrolls
through the items in the list until they find the part they want. They type a 1 in the option
field and press the Enter key to indicate their choice. The selected part is returned to the
initial panel (Figure 7-7).

 Parts Order Entry

 Type choices, press Enter.
 2=Change

 Customer number 0001 Order number : 3548
 Customer name : OAKLEY, Annie O
 Address : 00001 Ave. ABC
 Bldg 00001
 City : Des_Moines_ IO 07891-2345

 Opt Part Description Qty

 F3=Exit F4=Prompt F6=Accept Order F12=Cancel

 Select Part

 Type choices, press Enter.
 1=Select

 Opt Part Description Qty
 000001 WEBSPHERE REDBOOK 318
 000002 Radio_Controlled_Plane 7
 000003 Change_Machine 37
 000004 Baseball_Tickets 899
 000005 Twelve_Num_Two_Pencils 1,720
 000006 Over_Under_Shotgun 1,310
 000007 Feel_Good_Vitamins 37
 000008 Cross_Country_Ski_Set 55
 000009 Rubber_Baby_Buggy_Wheel 114
 000010 ITSO REDBOOK SG24-2152 297
 More...
 F12=Cancel
236 WebSphere J2EE Application Development for the iSeries Server

Figure 7-7 Parts Order Entry

6. They select a customer from the list, or type a valid customer number and press the Enter
key. Then the part and quantity ordered are added to the list section below the part entry
fields (Figure 7-8).

Figure 7-8 Part Order Entry display

7. The user may type 2 beside an entry in the list to change the order. When the user
presses the Enter key, a window appears that allows the order line to be changed
(Figure 7-9).

 Parts Order Entry

 Type choices, press Enter.
 2=Change

 Customer number 0001 Order number : 3550
 Customer name : OAKLEY, Annie O
 Address : 00001 Ave. ABC
 Bldg 00001
 City : Des_Moines_ IO 07891-2345

 Opt Part Description Qty
 000008 Cross_Country_Ski_Set 2

 F3=Exit F4=Prompt F6=Accept Order F12=Cancel

 Parts Order Entry

 Type choices, press Enter.
 2=Change

 Customer number 0001 Order number : 3551
 Customer name : OAKLEY, Annie O
 Address : 00001 Ave. ABC
 Bldg 00001
 City : Des_Moines_ IO 07891-2345

 Opt Part Description Qty

2 000008 Cross_Country_Ski_Set 2
 000001 WEBSPHERE REDBOOK 1

 Bottom
 F3=Exit F4=Prompt F6=Accept Order F12=Cancel
Chapter 7. Overview of the OrderEntry application 237

Figure 7-9 Changing the order quantity

8. The user can choose to press F12 to cancel the change, press F4 to list the parts, or type
a new part identifier or different quantity. Pressing the Enter key validates the part identifier
and quantity. If they are valid, the order line is changed in the list, and the window is
closed. The completed order is shown Figure 7-10.

Figure 7-10 Completed order

9. Figure 7-11 shows you the quantity for Cross Country Ski Set is changed to 1. When the
order is complete, the user presses F6 to update the database. Then, an order is placed in
the data queue for printing.

 Change Selected Order

 000008 Cross_Country_Ski_Set 1

 F4=Prompt F12=Cancel

 Parts Order Entry

 Type choices, press Enter.
 2=Change

 Customer number 0001 Order number : 3551
 Customer name : OAKLEY, Annie O
 Address : 00001 Ave. ABC
 Bldg 00001
 City : Des_Moines_ IO 07891-2345

 Opt Part Description Qty

 000008 Cross_Country_Ski_Set 1
 000001 WEBSPHERE REDBOOK 1

 Bottom
 F3=Exit F4=Prompt F6=Accept Order F12=Cancel
238 WebSphere J2EE Application Development for the iSeries Server

Figure 7-11 Printed order

The printed order (Figure 7-11) is created by a batch process. It shows the customer details
and the items, quantities, and cost of the order.

7.6 Database table structure
The ABC Company database has eight tables:

� District
� Customer
� Order
� Order Line
� Item
� Stock
� Warehouse
� History

The relationship among these tables is shown in Figure 7-12.

 Display Spooled File
 File : PRTORDERP Page/Line 1/2
 Control Columns 1 - 78
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 ABC Company - Part Order
 OAKLEY, Annie O Order Nbr: 3551
 00001 Ave. ABC Order Date: 3-27-2001
 Bldg 00001
 Des_Moines_ IO 07891-2345
 Part Description Quantity Price Discount Amount
 ==
 000008 Cross_Country_Ski_Set 1 $ 93.00 .1140 $92.89
 000001 WEBSPHERE REDBOOK 1 $ 30.00 .1140 $29.96

 Order total: $122.85
 ==============

 Bottom
 F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
Chapter 7. Overview of the OrderEntry application 239

Figure 7-12 Table relationships

7.7 OrderEntry application database layout
The sample application uses the following tables of the database:

� District
� Customer
� Order
� Order line
� Stock
� Item (catalog)

The following tables describe, in detail, the layout of the database.
240 WebSphere J2EE Application Development for the iSeries Server

Table 7-1 District Table Layout (Dstrct)

Table 7-2 Customer Table Layout (CSTMR)

Field name Real name Type Length

DID District ID Decimal 3

DWID Warehouse ID Character 4

DNAME District Name Character 10

DADDR1 Address Line 1 Character 20

DADDR2 Address Line 2 Character 20

DCITY City Character 20

DSTATE State Character 2

DZIP Zip Code Character 10

DTAX Tax Decimal 5

DYTD Year to Date Balance Decimal 13

DNXTOR Next Order Number Decimal 9

Primary Key: DID and DWID

Field name Real name Type Length

CID Customer ID Character 4

CDID District ID Decimal 3

CWID Warehouse ID Character 4

CFIRST First Name Character 16

CINIT Middle Initials Character 2

CLAST Last Name Character 16

CADDR1 Address Line 1 Character 20

CCREDT Credit Status Character 2

CADDR2 Address Line 2 Character 20

CDCT Discount Decimal 5

CCITY City Character 20

CSTATE State Character 2

CZIP Zip Code Character 10

CPHONE Phone Number Character 16

CBAL Balance Decimal 7

CCRDLM Credit Limit Decimal 7

CYTD Year to Date Decimal 13
Chapter 7. Overview of the OrderEntry application 241

Table 7-3 Order Table Layout (ORDERS)

Table 7-4 Order Line Table Layout (ORDLIN)

CPAYCNT Payment Decimal 5

CDELCNT Delivery Qty Decimal 5

CLTIME Time of Last Order Numeric 6

CDATA Customer Information Character 500

Primary Key: CID, CDID, and CWID

Field name Real name Type Length

Field name Real name Type Length

OWID Warehouse ID Character 4

ODID District ID Decimal 3

OCID Customer ID Character 4

OID Order ID Decimal 9

OENTDT Order Date Numeric 8

OENTTM Order Time Numeric 6

OCARID Carrier Number Character 2

OLINES Number of Order Lines Decimal 3

OLOCAL Local Decimal 1

Primary Key: OWID, ODID, and OID

Field name Real name Type Length

OID Order ID Decimal 9

ODID District ID Decimal 3

OWID Warehouse ID Character 4

OLNBR Order Line Number Decimal 3

OLSPWH Supply Warehouse Character 4

OLIID Item ID Character 6

OLQTY Quantity Ordered Numeric 3

OLAMNT Amount Numeric 7

OLDLVD Delivery Date Numeric 6

OLDSTI District Information Character 24

Primary Key: OLWID, OLDID, OLOID, and OLNBR
242 WebSphere J2EE Application Development for the iSeries Server

Table 7-5 Item Table Layout (ITEM)

Table 7-6 Stock Table Layout (Stock)

7.8 Database terminology
This redbook concentrates on the use of the iSeries server as a database server in a
client/server environment. In some cases, we use SQL to access the iSeries database. In
other cases, we use native database access.

Field name Real name Type Length

IID Item ID Character 6

INAME Item Name Character 24

IPRICE Price Decimal 5

IDATA Item Information Character 50

Primary Key: IID

Field name Real name Type Length

STWID Warehouse ID Character 4

STIID Item ID Character 6

STQTY Quantity in Stock Decimal 5

STDI01 District Information Character 24

STDI02 District Information Character 24

STDI03 District Information Character 24

STDI04 District Information Character 24

STDI05 District Information Character 24

STDI06 District Information Character 24

STDI07 District Information Character 24

STDI08 District Information Character 24

STDI09 District Information Character 24

STDI10 District Information Character 24

STYTD Year to Date Decimal 9

STORDERS Number of orders Decimal 5

STREMORD Number of remote orders Decimal 5

STDATA Item Information Character 50

Primary Key: STWID and STIID
Chapter 7. Overview of the OrderEntry application 243

The terminology used for the database access is different in both cases. In Table 7-7, you find
the correspondence between the different terms.

Table 7-7 Database terminology

iSeries native SQL

Library Collection, schema

Physical file Table

Field Column

Record Row

Logical file View or index
244 WebSphere J2EE Application Development for the iSeries Server

Chapter 8. iSeries EJB application
development scenario

This chapter discusses how the example RPG application discussed in Chapter 7, “Overview
of the OrderEntry application” on page 231, can be implemented using EJB components. The
application architecture is detailed by identifying the objects, using Unified Modeling
Language (UML) diagrams. These objects are identified as entity and session beans. This
chapter discusses the reasons behind these selections, the implementation details of these
choices, and how these EJB components are used to create various types of applications.

8

© Copyright IBM Corp. 2002. All rights reserved. 245

8.1 OrderEntry application architecture with objects
This architecture example assumes that the database tables already exist and that an object
architecture is built surrounding them. Initially, it is important to name the identifiable objects
in the application. A variety of methods exist for creating an object-oriented application. One
common way is to describe the process and highlight the nouns, as a starting point for
identifying the objects.

In our example, a customer resides in a particular district. The customer contacts an order
entry clerk to place an order for one or more items. Each item appears as an order detail line
in the order. Before the order can be placed, the order entry clerk checks to see if there is
enough of the item in stock.

This list of objects corresponds to the tables identified in Chapter 7, “Overview of the
OrderEntry application” on page 231, which also identify the fields contained in the tables. An
object diagram corresponding to these tables is shown in Figure 8-1.

Figure 8-1 Application object diagram

In Figure 8-1, we make one further refinement. We separated out an address object to hold
the common address information that is required by the customer and the district.
246 WebSphere J2EE Application Development for the iSeries Server

This list of objects represents all of the tables. However, the description includes another
noun – the order entry clerk (OrderEntryClerk). This object becomes important in the next
step of identifying objects, which is to identify the relationships between the objects. The
OrderEntryClerk is an object with the primary purpose of acting on other objects. The
relationships between the identified objects are either containment or use relationships.
Figure 8-2 shows all of the objects that were previously identified and the relationships
between them.

Figure 8-2 Object relationships

Both the customer and the district class contain an address. This provides reuse, one of the
key benefits of object-oriented programming. As shown later in this chapter, reuse, as a goal,
may need to be overlooked to gain other advantages, such as using some of the
programming facilities. The order contains a collection of order details. Because the order
entry clerk initially takes down the order information, it also needs to contain a collection of
order details (OrderDetails). This collection of order details is used as a parameter when
calling the method necessary to create a new order.

The use relationships primarily involve the OrderEntryClerk, as well. The OrderEntryClerk
acts on several different objects. It retrieves a list of customers when the order is initiated.
Later, when an order is placed, it verifies the existence of a specific customer. It also retrieves
a list of items to be ordered. As requests for creating order details are received by the
OrderEntryClerk, it checks the stock availability of the item being ordered. After all of the
order details are created, the order is placed through the OrderEntryClerk.
Chapter 8. iSeries EJB application development scenario 247

To this point, all of the actions that have been described reflect only as reads of the database
tables. Placing the order is the activity that involves writing to the tables represented by the
objects. Because this is a complex task and represents a business transaction,
OrderPlacement is represented as a separate object. The OrderPlacement object also acts
on several different objects. It creates a new order object. Because it receives a collection of
order details as a parameter, it merely passes them on to the order for them to be created.
The OrderPlacement object also retrieves the next order number from the district, updates the
customer balances, and reduces the stock quantity. All of these updates are completed as a
single unit of activity and, therefore, are encapsulated in a transaction, as shown later in this
chapter.

The objects described in this section serve one of two purposes. They either represent data
that is maintained in a table, or they represent actions on the data or business tasks. These
two types of objects correspond to entity and session beans, respectively.

8.2 Business data: Entity Enterprise JavaBeans
This section discusses the entity enterprise beans we developed for our example application.
It also highlights some of the key topics we address in writing them.

Entity beans are persistent objects that represent data stored in some persistent fashion,
such as a database or an existing legacy application. When you modify the variables for the
bean, you modify the data in the database. In our case, the persistent store is the relational
database on the iSeries server.

Our analysis identified the following five entity beans:

� Stock
� Item
� Customer
� Order
� District

8.2.1 Database access: Using a connection pool
In our example application, we use connection pools to optimize performance. Connection
pools are commonly used because creating a new JDBC connection is time consuming and
uses system resources. With a pool, WebSphere Application Server creates connection
objects when the server starts. When a bean needs a connection to the database, it gets one
from the pool. When the bean is done with the connection, it returns it to the pool.

The way you return a WebSphere Application Server connection to the pool is to call the
connection close method, for example, con.close(). This works because a connection is
actually a class that wrappers a JDBC connection.

Using WebSphere connection pools
To optimize performance in the enterprise bean data access methods, the developer should
not use the java.sql DriverManager getConnection(String url) method to get a JDBC
connection to the database. The developer should take advantage of the WebSphere
Application Server connection pools defined in the DataSource Configuration object. For
information about creating data sources, see Chapter 3 in the redbook WebSphere 4.0
Installation and Configuration on the IBM ~ iSeries Server, SG24-6815. The code in
Example 8-1 shows this technique.
248 WebSphere J2EE Application Development for the iSeries Server

Example 8-1 Using a DataSource
import javax.naming.*;
import javax.sql.*;
import java.sql.*;
........
DataSource ds;
try {

InitialContext initCtx = new InitialContext();
String dataSourceName = (String)initCtx.lookup(“java:comp/env/dataSourceName”);
ds = (DataSource) initCtx.lookup("jdbc/” + dataSourceName);
}

..........
Connection con = ds.getConnection();
Statement stmt = con.createStatement();
.........
ds.close()

DataSources can be found by looking them up in the WebSphere Application Server JNDI
naming space. To use a DataSource, you must:

1. Get an instance of the local iSeries javax.naming.InitialContext object.

2. Use its lookup() method, specifying jdbc/<data source name> as a parameter, to get an
instance of DataSourceBean in a variable of type javax.sql.DataSource.

3. Use the DataSourceBean getConnection() method to get a JDBC connection out of the
DataSource connection pool.

4. When you are done with the connection, use the java.sql.Connection close() method to
put the connection back in the pool.

The name of the DataSource should be externalized, because it is not likely that you will know
it during bean development. A good technique is to place the DataSource name in an
environment variable of the bean deployment descriptor. It can be changed at deployment
time.

Figure 8-3 shows how to set the environment variable in Application Developer:

1. Right-click the project and select Open with-> EJB Editor.
2. Select the Environment tab.
3. Select the bean and click Add to add the environment variables.

Note: If you are working on WebSphere Application Server Advanced Edition 3.5, the
DataSource is a variable of type com.ibm.ejs.dbm.jdbcext.javax.sql.DataSource.
Chapter 8. iSeries EJB application development scenario 249

Figure 8-3 Setting environment variables in Application Developer

8.2.2 Persistence: Container or bean managed
After you identify your entity beans, you must decide whether to use container-managed
persistence (CMP) or bean-managed persistence (BMP). Use CMP, unless you want to do
something it does not support, because CMP is much simpler to implement.

The common reasons for using BMP are:

� Performance
� Complex entity/database mapping

In our example, we use BMP in the Order bean to achieve maximum performance. The
underlying data is stored in two tables: order (ORDERS) and order line (ORDLIN). It may also
be used many times during the placement of an order. For a complete description of the
applications tables, see 7.6, “Database table structure” on page 239.

Another reason to reject CMP is that the bean data is stored in a legacy application rather
than in a database.

In our example, we also use BMP for the Customer bean because the Customer bean
contains an Address object, which contains fields that need persisting.

8.2.3 Container-managed persistence
In our example, the Stock, Item, and District beans use container-managed persistence
(CMP). This means that we rely on WebSphere Application Server to update the Stock, Item,
and District database tables any time we change the data in our entity bean. In Chapter 9,
“Developing EJBs with Application Developer” on page 265, we use the Stock bean to
describe how to implement CMP.

Note: As a bean developer, you must choose which form of persistence to use. It is not
possible to write an entity bean that can be switched from BMP to CMP at deployment
time. Changing from one form of persistence to the other requires changes in your source
code for the bean.
250 WebSphere J2EE Application Development for the iSeries Server

8.2.4 Bean-managed persistence
When you create an entity bean that uses bean-managed persistence, you take responsibility
for the code that inserts, selects, updates, and deletes data from the underlying database or
other persistent storage mechanism by implementing four life-cycle methods (listed below).

In the simplest case where a bean instance represents one row in a database table, the
responsibilities of the methods are summarized in the following list:

� ejbCreate: Uses the client-supplied arguments to perform the following tasks:

– Insert a new record in the database.
– Set the instance variables for the bean.
– Return an instance of the primary key for the bean.

� ejbLoad: Uses the primary key associated with the instance to perform the following
tasks:

– Retrieve the record from the database.
– Update the bean instance variables from the database.

� ejbStore: Updates the database record using the values in the instance variables of the
bean.

� ejbRemove: Deletes the database record.

The container is responsible for calling these methods at the appropriate time to maintain the
synchronization between the bean and the underlying database.

In addition to the life-cycle methods, you must implement the ejbFindByPrimaryKey method
and any other finder methods that you want to define. The container calls this method when
the client calls findByPrimaryKey on the home interface.

When you use bean-managed persistence, you are not limited to storing a bean as a single
row in a table. For example, the Order bean in our example application gets its data from two
tables and several rows. You are not even limited to storing your data in a database.
Regardless of the how the data is stored, the basic function of the four methods remains the
same.

8.3 Business processes: Session Enterprise JavaBeans
This section discusses the session enterprise beans that we develop for our example
application. It also highlights some of the key topics addressed in writing them. Session
beans are non-persistent objects that run on the server and implement business logic.

Our example uses two session beans:

� OrderEntryClerk
� OrderPlacement

8.3.1 Three-tier versus two-tier architecture
Session beans allow you to easily implement a three-tier architecture. The traditional
client/server architecture is a two-tiered architecture in which there are many clients and a
single database. The clients often implement the business logic as well as the user interface.
In a three-tiered architecture, business logic is moved out of the many clients and into a
session bean running in an EJB server. The clients talk to the session bean and the bean
talks to the databases.
Chapter 8. iSeries EJB application development scenario 251

This architecture makes the client code smaller and easier to maintain. You can change the
business logic without redistributing any client code. More importantly, this architecture lets
you share business logic across different types of clients. If you implement your business
logic in a bean, you can use that same bean in a Java application, an applet, a servlet, or a
non-Java application as shown in Figure 8-4.

Figure 8-4 Three-tier architecture

8.3.2 Stateless or stateful beans
A stateless session bean allows you to write code that runs on the server and can be reused
by many clients. However, the stateless session bean does not remember anything about the
client between method invocations. In fact, if your client calls two methods of a stateless
session bean, there is no guarantee that both methods are called on the same object in the
server.

Conversely, a stateful session bean remembers information between method calls. To use a
trivial example, a stateful session bean can have two methods – setName and getName. A
client can pass a name to the bean using setName and retrieve that name in another call using
getName.

8.3.3 Order Entry example
In our example application, the OrderPlacement bean is a stateless session bean, and the
OrderEntryClerk bean is a stateful session bean. The OrderPlacement bean encapsulates
the business logic to place an order. The OrderEntryClerk encapsulates the ordering process.
The OrderEntryClerk bean is used by GUI programs such as Java applications or applets.
The OrderPlacement bean is used by the OrderEntryClerk bean to actually place the order.

8.3.4 Stateless session bean: OrderPlacement
The OrderPlacement bean encapsulates the business logic to place an order in a method
named placeOrder().

The source code for the OrderPlacement bean consists of the following four components:

� Deployment descriptor: The ejb-jar.xml file that contains attribute and environment
settings that define how the container invokes enterprise bean functions

OrderEntryClerk
 SB

OrderPlacement
 SB

ItemEB

CustomerEB

StockEB

OrderEB

DistrictEB

Application
Applet
Servlet/JSP
non-Java
 Visual Basic
 CORBA Appl

Client

Database

Order Entry Application EJBs

Item Table
Customer Table
Stock Table
District Table
Order Table
Order Line Table
252 WebSphere J2EE Application Development for the iSeries Server

� OrderPlacementHome: The home interface for the bean

� OrderPlacement: The remote interface for the bean

� OrderPlacementBean: The implementation of the bean

Deployment descriptor
Every enterprise bean must have a deployment descriptor that contains settings for the bean
attributes. There are two different types of attributes – bean-level and method-level.

A bean-level attribute is an attribute that applies to the entire bean, and it has a single value
for the enterprise bean. A method-level attribute can be set on a single bean method. If a
method-level value is specified, that value is used. If there is no method-level value, the
bean-level value is used.

To see the deployment descriptor for the OrderPlacement bean, select the project
ToWebSphere in the J2EE perspective. Right-click and select Open With-> EJB Editor.
Select the Beans tab and click OrderPlacement. Figure 8-5 shows the settings used in our
example beans.

Figure 8-5 OrderPlacementBean properties

We define the OrderPlacement bean as a stateless session bean using the type option value
in the deployment descriptor as shown in Figure 8-5. This tells our container that it does not
need to assign one instance of the OrderPlacement bean to each client. Instead, it can create
a pool. For example, there may be one hundred clients connected to the server, but only five
call placeOrder at any one time. In this case, the EJB container only creates five instances of
the OrderPlacement bean.
Chapter 8. iSeries EJB application development scenario 253

The Environment tab of the deployment descriptor, shown in Figure 8-6, allows you to enter
information that is specific to the bean. This is useful to externalize values that depend on the
specific deployment environment. The placeOrder method of the OrderPlacementBean class
uses a data queue to pass order information to other applications. We use the deployment
descriptor to externalize the name of the data queue.

Figure 8-6 OrderPlacement bean properties environment tab

Home interface (OrderPlacementHome)
As shown in Figure 8-7, the home interface for a session bean does not have any finder
methods. They don’t exist because a session bean does not represent an entity in a
persistent datastore that you can locate.

Figure 8-7 OrderPlacement home interface
254 WebSphere J2EE Application Development for the iSeries Server

Remote interface (OrderPlacement)
We define the business methods of the bean in the remote interface. In the case of the
OrderPlacement bean, there is only the placeOrder method. As shown in Figure 8-8, three
versions of the placeOrder method are available, depending on the parameters passed by the
client.

Figure 8-8 OrderPlacement remote interface

Bean implementation (OrderPlacementBean)
We use the OrderPlacementBean class, shown in Figure 8-9, to implement the EJB
SessionBean interface, the create method from the home interface, and the business logic.

Figure 8-9 OrderPlacementBean

The SessionBean interface, together with the create method from the home interface, defines
the bean instance life cycle. As you can see in Example 8-2, very little happens in these
methods. In fact, the only work that is done is in the setSessionContext method.

Example 8-2 Session bean life-cycle methods
// private variables
private transient SessionContext ctx;
private transient Properties props;
// Implementation of methods required by the SessionBean interface.
Chapter 8. iSeries EJB application development scenario 255

public void ejbActivate() {
}

public void ejbRemove() {
}

public void ejbPassivate() {
}

// Implementation of create methods defined in home interface OrderPlacementHome
public void ejbCreate () {
}

The business logic is implemented in the placeOrder method. As shown in Example 8-3,
placeOrder uses the District, Stock, Order, and Customer entity beans to perform much of its
processing. It also uses the private method, writeDataQueue, to write the order to the data
queue. We use an iSeries batch program to read the data queue entries and print order
information.

Example 8-3 The placeOrder method processing
public float placeOrder(String wID, int dID, String cID, Vector orderLines) throws
javax.ejb.EJBException {

float oID = 0;
try {

//The InitialContext will let us retrieve references to the entity beans we need.
InitialContext initCtx = new InitialContext();

//Get the Order Number from the District entity bean.
DistrictHome dHome = (DistrictHome) initCtx.lookup("District");
DistrictKey districtID = new DistrictKey(dID, wID);
District district = (District) dHome.findByPrimaryKey(districtID);
int oIDint;
oIDint = district.getNextOrderId(true);

//'true' tells the District to increment the order id.
oID = oIDint;

//Update the Stock level for each item in an order line using the Stock entity bean
StockHome sHome = (StockHome) initCtx.lookup("Stock");
Enumeration lines = orderLines.elements();
float orderTotal = 0;
while (lines.hasMoreElements()) {

OrderDetail od = (OrderDetail) lines.nextElement();
String itemID = od.getItemID();
int itemQty = od.getItemQty();
orderTotal += od.getItemAmount();

//Calculate the order total while we are going through the orders.
StockKey stockID = new StockKey(wID, itemID);
//StockKey stockID = new StockKey(itemID, wID);
Stock stock = (Stock) sHome.findByPrimaryKey(stockID);
stock.decreaseStockQuantity(itemQty);

}
//Save the Order to the database by creating an Order entity bean
OrderHome oHome = (OrderHome) initCtx.lookup("Order");
oHome.create(wID, dID, cID, oID, orderLines);
//Update the Customer records using the Customer entity bean
CustomerHome cHome = (CustomerHome) initCtx.lookup("Customer");
CustomerKey customerID = new CustomerKey(cID);
Customer customer = (Customer) cHome.findByPrimaryKey(customerID);
256 WebSphere J2EE Application Development for the iSeries Server

customer.updateBalance(orderTotal);
//Write the order to the data queue.
try {

writeDataQueue(wID, dID, cID, oID);
} catch (Exception e) {

System.out.println("WriteDataQueue error: " + e.getMessage());
throw new EJBException(e.getMessage());

} System.out.println("before the final catch");
} catch (Exception e) {

throw new EJBException(e.getMessage());
}
 System.out.println("outside the main try block" + oID);
return oID;

}

8.3.5 Stateful session bean: OrderEntryClerk
The OrderEntryClerk encapsulates the ordering process. We define the OrderEntryClerk
bean as a stateful session bean to use it as an order clerk. This bean keeps a record of who
the customer is and what items they want to order.

The source code for the OrderClerk bean consists of the following four components:

� Deployment descriptor: The ejb-jar.xml file that contains attribute and environment
settings that define how the container invokes enterprise bean functions

� OrderEntryClerkHome: The interface for the bean

� OrderEntryClerk: The remote interface for the bean

� OrderEntryClerkBean: The implementation of the bean

Deployment descriptor
To see the deployment descriptor for the OrderEntryClerk bean, select the project
ToWebSphere in the J2EE perspective. Right-click and select Open With-> EJB Editor.
Select the Beans tab and click OrderEntryClerk. Figure 8-10 shows the settings used in our
bean.
Chapter 8. iSeries EJB application development scenario 257

Figure 8-10 OrderEntryClerkBean properties

We define the OrderEntryClerk bean as a stateful session bean using the type option value
attribute value in the deployment descriptor as shown in Figure 8-10. This tells our container
that it needs to assign an instance to each client and that it needs to store the non-transient
variables of the bean across method calls.

The Environment tab of the deployment descriptor, shown in Figure 8-11, allows you to enter
information specific to the bean. This is useful to externalize values that depend on the
specific deployment environment. We use the deployment descriptor to externalize the name
of the DataSource.
258 WebSphere J2EE Application Development for the iSeries Server

Figure 8-11 OrderEntryClerkBean properties environment tab

OrderEntryClerkBean
We use the OrderEntryClerkBean class, shown in Figure 8-12, to implement the EJB
SessionBean interface, the create method from the home interface, and the business logic.
The SessionBean interface, together with the create method from the home interface, defines
the bean instance life cycle.
Chapter 8. iSeries EJB application development scenario 259

Figure 8-12 OrderEntryClerkBean

Implementing a state
As a bean developer, use the following steps to implement a state:

1. Define non-transient variables in your bean.
2. Initialize these variables in the ejbCreate methods.
3. Use these variables in the business logic.

The bean state consists of any variables we define that are not transient. As shown in
Example 8-4, the OrderEntryClerk bean has two variables that maintain the bean’s state.

Example 8-4 Defining state variables
// Following is the state in this stateful session bean

public String custID;
public Vector items;

As shown in Example 8-5, we initialize these variables in the ejbCreate method. In our
example, ejbCreate does not take any arguments. If we write the example differently, where
the client passes the customer ID in as an argument when creating the bean, we set custID to
the provided argument.

Example 8-5 Initializing values
public void ejbCreate() throws javax.ejb.CreateException,java.rmi.RemoteException {

try {
InitialContext initCtx = new InitialContext();
String dataSourceName = (String)initCtx.lookup(“java:comp/env/dataSourceName”);
260 WebSphere J2EE Application Development for the iSeries Server

ds = (DataSource) initCtx.lookup("jdbc/" + dataSourceName);
}
catch (Exception e) {

throw new RemoteException("Error in ejbCreate: " + e.getMessage());
}
items = new Vector();
custID = null;
isDirty = true;

}

We use these variables in the business methods. The three methods related to the bean state
are:

� setCustomer (Example 8-6)
� addOrderLine (Example 8-7)
� placeOrder (Example 8-8)

In the setCustomer method, we set the value of custID.

Example 8-6 The setCustomer method
public void setCustomer(String cid) throws RemoteException
{

if (verifyCustomer(cid))
{
custID = cid;
}

else
{
throw new CpwejbException("Customer id " + cid + " not valid");
}

}

In the addOrderLine method as shown in Example 8-7, we add another OrderDetail object to
the items vector. These are the items that we want to order.

Example 8-7 The addOrderLine method
public void addOrderLine(String iid, int quantity) throws RemoteException {

if (custID == null) {
throw new RemoteException("OrderEntryClerkBean: Customer ID must be set first");

}
Item item = null;
try {

InitialContext initCtx = new InitialContext();
Object homeObject = initCtx.lookup("Item");
ItemHome home = (ItemHome)
javax.rmi.PortableRemoteObject.narrow((org.omg.CORBA.Object) homeObject,
com.ibm.itso.roch.wasaejb.ItemHome.class);
ItemKey itemK = new ItemKey(iid);
item = home.findByPrimaryKey(itemK);

}
catch (Exception e) {

throw new RemoteException(e.getMessage());
}

Chapter 8. iSeries EJB application development scenario 261

OrderDetail ol = new OrderDetail(iid, item.getItemPrice() * quantity, quantity);
items.addElement(ol);

}

The placeOrder method is responsible for placing an order. As shown in Example 8-8, it uses
the OrderPlacement EJB’s placeOrder method to actually place the order.

Example 8-8 The placeOrder method
public String placeOrder() throws RemoteException
{

String orderNumber = null;
if (custID == null) {

throw new CpwejbException("OrderEntryClerkBean: Hey buddy!
Customer ID must be set first");

}
if (items.size() == 0) {

throw new CpwejbException("OrderEntryClerkBean:
What are you thinking! No order lines!");

}
try {

InitialContext initCtx = new InitialContext();
OrderPlacementHome home = (OrderPlacementHome) initCtx.lookup("OrderPlacement");
OrderPlacement placement = home.create();
float number = placement.placeOrder(whid, did, custID, items);
orderNumber = Float.toString(number);
orderNumber = orderNumber.substring(0, orderNumber.length() - 2);
// Clear out the state of the session bean at this point
items = new Vector();
custID = null;

}
catch (Exception e) {

throw new RemoteException(e.getMessage());
}
return orderNumber;

}

The OrderEntryClerk bean also implements several methods that pertain to activities that a
clerk performs, but does not use its state:

� The findAllCustomers method retrieves a list of customers from the server.
� The findAllItems method retrieves a list of items from the server.
� The findRangeOfItems method retrieves a subset of items from the server.
� The verifyCustomer method verifies that a customer number is valid.
� The getCustomerForOrder method retrieves the customer number for an order.
� The getItemsForOrder method retrieves the order lines for an order.

These methods are used by client applications. See Chapter 10, “Building Java applications
with Enterprise JavaBeans” on page 315, for details about how we use these methods.

8.4 Conclusion
This chapter covered the architecture and design of the Enterprise JavaBeans that are used
in this redbook.
262 WebSphere J2EE Application Development for the iSeries Server

Our analysis identified the following five entity beans:

� Stock
� Item
� Customer
� Order
� District

In this chapter, we designed the following two session beans:

� OrderEntryClerk
� OrderPlacement

We also covered the following design decisions:

� Whether to use container managed or bean-managed persistence for the entity beans
� Whether to use stateful or stateless session beans

We covered key code snippets and control file settings that we used in implementing our
beans. The entire source of all the beans is available for download from our Web site as
explained in Appendix A, “Additional material” on page 425.

Now that our Enterprise JavaBeans are designed and written, we are ready to use them in
applications. These applications are demonstrated in Chapter 10, “Building Java applications
with Enterprise JavaBeans” on page 315. This chapter demonstrates the power of using
Enterprise JavaBeans. After they are written and deployed on a server, such as the iSeries
server, client programmers can use them with very little knowledge of how the beans actually
work.

The client programmer only has to know what methods the Enterprise JavaBeans support
and how to call them. All the difficult work is done by the bean writer or the Java server.
Another key advantage is that whether you are writing a Java application, a Java applet, a
Java servlet, or even a Visual Basic program, it always works the same way. You only need
to call the methods provided by the Enterprise JavaBeans to handle the application
processing.
Chapter 8. iSeries EJB application development scenario 263

264 WebSphere J2EE Application Development for the iSeries Server

Chapter 9. Developing EJBs with
Application Developer

The objective of this chapter is to show you how to develop Enterprise JavaBeans using
Application Developer. This chapter focuses on entity bean creation and testing.

Entity beans with container-managed persistence (CMP) fields must be mapped to database
tables in order to persist the data that the bean represents. You map entity beans to database
tables by creating a map. Maps are used to generate the SQL and other supporting code
needed to make enterprise beans persistent. The EJB to RDB mapping wizard supports the
following techniques for mapping enterprise beans to database tables:

� Bottom-up mapping: In this approach, the CMP enterprise bean and the mapping
between the table and CMP fields are automatically generated.

� Top-down mapping: This approach assumes that you already have existing enterprise
beans. The enterprise bean design determines the database design.

� Meet-in-the-middle: In this approach, it is assumed that you have existing enterprise
beans and a database schema. You do a meet-in-the-middle mapping by matching fields
in enterprise beans to fields in the database table.

For an introduction to Enterprise JavaBeans, refer to Chapter 6, “Introduction to Enterprise
JavaBeans” on page 215.

9

© Copyright IBM Corp. 2002. All rights reserved. 265

9.1 Bottom-up mapping
When application developers move to the Enterprise JavaBeans technology, it is most likely
that they want to map any new entity beans to legacy data.

This section shows how Application Developer can automatically generate a Stock entity
bean from the existing Stock database table. We use the Stock table from the RPG
OrderEntry application discussed in Chapter 7, “Overview of the OrderEntry application” on
page 231.

9.1.1 Creating an EJB project
An EJB project is a logical module that allows you to manage your enterprise beans. To
create an EJB project, follow these steps:

1. In the J2EE view of the J2EE perspective, select File-> New-> EJB Project.

2. Enter a project name.

3. Type or select the Enterprise Application project name to which this EJB project will be
added. If the Enterprise Application does not exist, it is created.

4. Click Next. You can also click Finish at this point to create a default EJB project if you
have no module dependencies or build settings to specify.

9.1.2 Importing a schema
The first step is to create a database schema that is used to create the Enterprise JavaBean.
A schema is a representation of a database. On the iSeries server, we call it a library or
collection. A schema map is a set of definitions for all the attributes that match all the columns
for a database table, view, or SQL statement. You can create a schema based on an existing
iSeries table. Follow these steps to create the Stock table schema:

1. Click the Open Perspective button on the perspective toolbar as shown in Figure 9-1.
266 WebSphere J2EE Application Development for the iSeries Server

Figure 9-1 Open perspective

2. Select the Data perspective. A window appears like the example in Figure 9-2.

Figure 9-2 Data perspective

3. Ensure that the DB Explorer view is selected. Then right-click anywhere on this view and
select New Connection as shown in Figure 9-3.
Chapter 9. Developing EJBs with Application Developer 267

Figure 9-3 New Connection

4. Complete the Database connection dialog as shown in Figure 9-4.

Figure 9-4 Database connection
268 WebSphere J2EE Application Development for the iSeries Server

Enter the following parameters:

– Connection name: testcon or any other name

– Database: This is the datasource name that we use to connect to the iSeries server

– userid: A valid iSeries user ID

– password: A valid password

– Database Vendor Type: DB2 UDB for iSeries, V5R1 or V4R5 depending on your
iSeries server

– JDBC Driver: Other DB2 UDB for iSeries driver

– JDBC driver class: com.ibm.as400.access.AS400JDBCDriver

– Class location: The location of the IBM Toolbox for Java jt400.jar file

– Connection URL: jdbc:as400://SystemName

5. Click the Finish button. The connection is established and the DB Explorer shows all the
libraries on the server that you are authorized to.

6. Locate the library that contains the tables. Select the Stock table. Right-click and select
Import to Folder as shown in Figure 9-5.

Figure 9-5 Importing the Stock table schema

7. The Import to folder window appears. Click the Browse button next to the Folder as shown
in Figure 9-6 and select your project. Then click OK.

Attention: The DB Explorer view represents the physical schema inside the database,
and no modification can be made.
Chapter 9. Developing EJBs with Application Developer 269

Figure 9-6 Import to the Folder

8. Select the Database and Schema from the drop-down list and click Finish as shown
Figure 9-7. Click Yes to All to any dialog messages.

Figure 9-7 Import to Folder

9. Go to the Navigator view. It’s interesting to spend some time looking at the files generated
in the project for the imported schema. This allows us to view how Application Developer
has stored the metadata that represents the schema as shown in Figure 9-8.
270 WebSphere J2EE Application Development for the iSeries Server

Figure 9-8 Imported database schema in a project

10.Application Developer creates a separate xmi file for each table in the schema with the file
extension .tblxmi. It also creates an XML file for the schema with a .schxmi extension.
Each of these files has its own editor. Double-click the file to open the editor. These files
are also copied into the bin directory of the project for inclusion in the EJB JAR file.

11.Switch to the J2EE perspective. The database schema appears under Databases as
shown in Figure 9-9.

Figure 9-9 J2EE perspective for database schema
Chapter 9. Developing EJBs with Application Developer 271

12.Double-click the Stock table schema and then select the Primary Key tab on the Stock
table editor as shown in Figure 9-10.

Figure 9-10 Stock table schema browser

The schema browser could not find a primary key for the Stock table. The Application
Developer wizard can generate a key descriptor only for files with primary key constraints.
STOCK is a keyed physical file, but it does not have any primary key constraints.

13.To manually add the key descriptor for the Stock table, select the fields (STWID and
STIID) and move them to the right pane using the >> button.

14.Close the schema browser and save the changes.

9.1.3 Creating the entity EJB from the imported schema
Now the schema is generated for the STOCK table and is imported to our working project.
Follow these steps to create the Stock bean from the schema:

1. Under the EJB modules in the J2EE perspective, select the working project. In this case,
we use ItsoEjb as our project. Right-click and select Generate-> EJB to RDB Mapping
as shown in Figure 9-11.
272 WebSphere J2EE Application Development for the iSeries Server

Figure 9-11 Generating EJB to RDB Mapping

2. The mapping wizard opens as shown in Figure 9-12. Since no EJBs are currently defined
in the project, only Bottom Up is enabled. Select the Bottom Up radio button and select
the Open mapping editor after completion check box. Click Next.

Figure 9-12 EJB to RDB mapping wizard
Chapter 9. Developing EJBs with Application Developer 273

3. Leave the Prefix for generated EJB classes field blank as shown in Figure 9-13. In this
case, we use com.ibm.itso.roch.wasaejb as the package name. By leaving the Prefix for
generated EJB class field blank, the wizard uses the table names defined in the schema.
Click the Finish button.

Figure 9-13 Creating a new EJB/RDB mapping

When Application Developer completes the Create EJB to RDB mapping, the mapping file
Map.mapxmi is opened in the J2EE perspective as shown in Figure 9-14.

Figure 9-14 EJB to RDB editor

The top half of the editor shows the EJB and table definitions, and the bottom half shows how
the contained fields and columns are mapped to each other. If you need to open this file again
in the future, you must switch to the Navigator view and double-click the Map.mapxmi file.
274 WebSphere J2EE Application Development for the iSeries Server

Investigating the generated files
Again, it’s worth spending some time navigating and reviewing the generated files from the
Create EJB to RDB mapping wizard. The J2EE and Navigator views of the generated files in
the project are shown in Figure 9-15.

Figure 9-15 J2EE and Navigator perspectives

EJB classes review
You see four Java classes for the Stock EJB generated in the J2EE perspective:

� StockHome: The home interface. This is a factory that is used to create and find the
instances of the Stock EJB.

� Stock: The remote interface. This class determines which methods can be remotely
invoked.

� StockBean: The implementation class. This is where the logic is defined for the methods
in the Stock EJB.

� StockKey: The key class. This is used to represent a unique key for the entity bean.

Each of these classes appears in the Navigator view as .java files in the package folder
defined in the mapping wizard.

Generated EJB metadata
The Navigator view as shown in Figure 9-15 also shows the xmi files generated by the
mapping wizard in the EJB project:

� ejb-jar.xml: The deployment descriptor for this EJB module

� ibm-ejb-jar-bnd.xmi: WebSphere bindings for the EJB module

� ibm-ejb-jar-ext.xmi: WebSphere extensions for the EJB module

� Map.mapxmi: The mappings between the EJB and the database schema
Chapter 9. Developing EJBs with Application Developer 275

This is different from VisualAge for Java, where the metadata is stored internally inside the
repository.

9.1.4 Defining getter methods as read-only
Application developer does not, by default, mark all getter methods in the EJB as read-only.
This is an important step for obtaining reasonable performance from entity EJBs because it
prevents the application server from writing the contents of the EJB back to the datastore
after each get method is invoked. To set the getter methods as read-only, follow these steps:

1. Select the ItsoEjb project in the J2EE view of the J2EE perspective. Right-click and select
Open With-> EJB Extension Editor.

2. Click the Methods tab and select the Stock bean. Click the + sign next to Stock to expand
it and then expand Remote methods to view all the methods in the remote interface as
shown in Figure 9-16.

Figure 9-16 Setting EJB get methods to read only

3. Select the getter methods one by one and change the Access intent for each to READ
from the drop-down list as shown in Figure 9-17.
276 WebSphere J2EE Application Development for the iSeries Server

Figure 9-17 Setting the getter methods to read only

4. After you are done with all the methods, save and close the editor.

9.1.5 Deploying the Stock bean in the WebSphere Test Environment
In this section, we take you through the steps to define a JDBC data source for the EJB. We
then validate and test the EJB.

Binding the Stock EJB to a JDBC data source
Each CMP EJB module must be assigned a JDBC data source reference in order for its CMP
entities to persist correctly. Use the following steps to bind the data source:

1. Select the ItsoEjb project under the EJB module in the J2EE view of the J2EE
perspective. Right-click and select Open With-> EJB Extension Editor.

2. Select the Bindings tab. Then click your project and complete the data source information
for the ItsoEjb module. Enter the JNDI name for the data source name used while creating
the schema. Also enter a valid user ID and password as shown in Figure 9-18.
Chapter 9. Developing EJBs with Application Developer 277

Figure 9-18 Defining a JDBC data source for an EJB module

3. Save the changes by selecting File-> Save EJB Extension Editor.

Generating the deployed code
In this section, we show you the steps to generate the deployed code to support execution
under WebSphere Application Server:

1. Switch to the J2EE view in the J2EE perspective and select the EJB module.

2. Right-click the EJB module and select Generate-> Deploy and RMIC code from the
menu as shown in Figure 9-19.
278 WebSphere J2EE Application Development for the iSeries Server

Figure 9-19 Generating the deployed code

3. Select the Stock check box and click Finish as shown in Figure 9-20.

Figure 9-20 Generating the deployed code for the Stock EJB

This option launches the command line ejbdeploy tool to generate the deployed code.

4. Switch back to the Navigator view in the J2EE perspective and open your project. Under
the ejbModule folder, you can see the deployed code for the Stock EJB.

Testing the Stock entity EJB
Now that we have generated the deployed code for the Stock bean, we can test it. We test it in
the Application Developer WebSphere Test Environment.
Chapter 9. Developing EJBs with Application Developer 279

1. Switch to the Server perspective. If you do not have the icon on the toolbar, select the
Open perspective button and select the Server perspective.

Once the server perspective is open, the window looks like the example shown in
Figure 9-21.

Figure 9-21 Server perspective

2. Right-click the WebSphere Administrative Domain under Server Configurations and
select Add Project. Select the project as shown in Figure 9-22.

Figure 9-22 Adding the project to the server configuration

You can now see the project listed under the WebSphere Administrative Domain.

3. Double-click WebSphere Administrative Domain. Application Developer opens the
server configuration file in the editor view.

4. Select the Data source tab as shown in Figure 9-23.
280 WebSphere J2EE Application Development for the iSeries Server

Figure 9-23 Data source tab in the server configuration

5. Click Add next to the JDBC driver list box.

6. Enter the parameters as shown in Figure 9-24, where the full name for the Implementation
class name field is com.ibm.as400.access.AS400JDBCConnectionPoolDataSource.

Figure 9-24 JDBC driver parameters

7. Specify the folder where the IBM Toolbox for Java jt400.jar file is stored in the Class path
field.

8. Click OK.

9. Click Add next to the Data Source defined in the JDBC driver selected above box.

10.Fill in the fields as shown in Figure 9-25. Make sure that the JNDI name is the same name
as that defined in “Binding the Stock EJB to a JDBC data source” on page 277.
Chapter 9. Developing EJBs with Application Developer 281

Figure 9-25 Datasource parameter window

11.Click OK.

12.We need to specify the target system where the database tables are located. Click Add
nest to the Resource properties defined in the data source selected above box.

13.Fill in the parameters as shown in Figure 9-26. Replace the value field with your iSeries
server name.

Figure 9-26 Data source property dialog box

14.Click OK. Save changes by pressing Ctrl-S.

15.Start the server by selecting WebSphere v4.0 Test Environment in the Server Control
Panel View and right-click. Select Start from the menu, or you can click the run icon as
shown in Figure 9-27.

Note: In this example, we use the iSeries library specified in the user ID value of the
data source. If you want to use a different library, you can specify a second resource
property. The name of the property is libraries, and the value contains the library to
use.
282 WebSphere J2EE Application Development for the iSeries Server

Figure 9-27 Starting the server

It takes some time to start so please be patient. Look for the Server Default Server open
for e-business message in the console view or a started status in the server control
panel view.

16.Switch back to the J2EE perspective and select the project under EJB modules.
Right-click and select Run on Server.

17.The EJB Test Client opens. The first step is to see if the Stock bean has been added to the
JNDI namespace. Click the JNDI Explorer link on the EJB Test Client as shown
Figure 9-28.

Figure 9-28 Home page for the EJB Test Client

In the EJB Test Client, you see the JNDI names as shown in Figure 9-29.
Chapter 9. Developing EJBs with Application Developer 283

Figure 9-29 Exploring the JNDI names

18.You can see StockHome in the namespace. Click the StockHome link. This invokes the
EJB in the test client as shown in Figure 9-30.

Figure 9-30 EJB page for the Stock EJB

19.Expand the EJB references tree until you see the methods available on the home
interface (create and findByPrimaryKey).

20.Click the findByPrimaryKey method. You see the findByPrimaryKey method open in the
parameter pane in the right pane as shown in Figure 9-31.
284 WebSphere J2EE Application Development for the iSeries Server

Figure 9-31 The findByPrimaryKey method

21.On the parameter frame, click the Constructor drop-down list and select
com.ibm.itso.roch.wasaejb.StockKey(java.lang.String,java.lang.Sring) as shown in
Figure 9-32.

Figure 9-32 Creating the parameter for the findByPrimaryKey method

22.This link invokes a page that prompts for the key constructor parameter. Enter 0001 for
stwid (stock warehouse ID) and 000001 for stiid (stock item ID). This forms the key of an
existing row in the STOCK file.

23.Click the Invoke and Return button as shown in Figure 9-33.
Chapter 9. Developing EJBs with Application Developer 285

Figure 9-33 Invoking the findByPrimaryKey method

24.In the resulting screen, click the Invoke button to complete the call on the
fndByPrimaryKey method.

25.In the results pane, you see an instance of the Stock remote interface returned from the
server. Click the Work with Object button as shown in Figure 9-34.

Figure 9-34 Stock remote method

26.The EJB remote interface matching the Stock Key value appears in the EJB reference
tree in the left frame. Expand the Stock remote interface to display the methods
available on the Stock EJB remote interface.

27.Click the BigDecimal getStqty() method as shown in Figure 9-35.
286 WebSphere J2EE Application Development for the iSeries Server

Figure 9-35 Remote methods of Stock EJB

28.On the parameter pane, click the Invoke button.

The results pane displays the stock quantity for the stock key selected as shown in
Figure 9-36.

Figure 9-36 Results from the getStockQuantity method

29.We can repeat the same steps to test the other remote methods.

We have now tested the Stock entity EJB using the EJB container in the WebSphere Test
Environment in Application Developer.
Chapter 9. Developing EJBs with Application Developer 287

9.2 Top-down mapping
This approach assumes that you already have existing enterprise beans. In this approach, the
enterprise bean design determines the database design.

After you finish defining your enterprise beans, you can generate a schema and map. They
are used to create the database table used to persist the entity bean data.

A set of tables are generated to support the CMP entities inside the EJB project. In these
tables, each column corresponds to a CMP field of the enterprise bean, and the generated
mapping maps the field to the column. Relationship associations are mapped to foreign-key
relationships.

In the previous section, you saw how easy it is to generate the CMP entity bean directly from
the iSeries database table to which you want to map it. However, this technique has a couple
of disadvantages:

� One property is generated in the entity bean for every field in the database file.
� The property names are exactly the same as the field names in the iSeries table.

Perform the following steps to perform top-down mapping:

1. Switch to the J2EE View of J2EE perspective, and create a new EJB project as explained
in 9.1.1, “Creating an EJB project” on page 266. We name it ManualMap.

2. You can see the ManualMap module under the EJB Modules. Right-click EJB Module and
select New-> Enterprise Bean from the menu as shown in Figure 9-37.

Figure 9-37 Creating Enterprise Beans

3. In the create EJB window complete these tasks. Use Figure 9-38 as a reference.

a. Enter Stock in the Bean name field.

b. Select ManualMap in the EJB project field.

c. Select the Entity bean with container-managed persistence (CMP) fields radio
button.
288 WebSphere J2EE Application Development for the iSeries Server

d. Type the default package name as com.ibm.itso.roch.wasaejb. The names for the
home interface, remote interface, and key class are automatically generated.

Figure 9-38 Create Enterprise Bean wizard

e. Click Next to move to the Enterprise Bean Details window as shown in Figure 9-39.

f. Click the Add button next to CMP attributes.

Figure 9-39 Create Enterprise Bean wizard

4. The create CMP attribute window appears as shown Figure 9-40. The key to the Stock
table is composed of warehouse ID and item ID. First, we create a field for the warehouse
ID. Enter a meaningful name for the warehouse ID field in the Field Name field.
Chapter 9. Developing EJBs with Application Developer 289

5. Because the warehouse ID field type is of type CHAR, select java.lang.String in the Type
field drop-down list. Because it is part of the STOCK file key, select the Key field check
box. Click the Apply button and continue adding the other fields.

Figure 9-40 Creating persistent fields

6. Repeat the same process for the other character key field, item ID.

7. As explained in 9.1, “Bottom-up mapping” on page 266, the automatic generation of an
entity bean from an iSeries table takes care of the mapping between database types and
Java types. In our new example, we control the mapping. Refer to the JDBC
documentation for a correct mapping. Table 9-1 shows the mapping of the most common
database types.

Table 9-1 iSeries types to Java types mapping

8. Add the quantity and year-to-date fields. Refer to Figure 9-41 for an example.

Figure 9-41 Creating a quantity CMP field

iSeries type SQL type Java type

CHAR CHAR java.sql.String

PACKED DECIMAL java.math.BigDecimal

ZONED NUMERIC java.math.BigDecimal

DATE DATE java.sql.Date

BINARY INTEGER int

FLTDBL FLOAT float

FLTDBL DOUBLE double
290 WebSphere J2EE Application Development for the iSeries Server

a. For the quantity and yearToDate field, enter java.math.BigDecimal in the Type field
drop-down list. You can use the Browse... button to help find the class you need. The
mapping database fields are of type PACKED.

b. Deselect the Key Field check box.

c. Select the Access with getter and setter methods check box. The setter and getter
methods are then automatically generated in the StockBean class.

d. Optionally, you can select the Promote getter and setter methods to remote
interface check box to have them in the Stock remote interface as well.

9. When you finish adding fields to the Stock entity bean, click Cancel on the create CMP
attributes window and then click Finish on the create EJB window as shown in
Figure 9-42.

Figure 9-42 Creating the Stock enterprise bean

Once the Stock bean is created, you can see the implementation of its classes and methods
as shown in Figure 9-43.
Chapter 9. Developing EJBs with Application Developer 291

Figure 9-43 Stock bean implementation

Note the meaningful names for the fields, unlike the bottom-up mapping example.

9.2.1 Adding methods to the Stock bean
To add a user-defined method, follow these steps:

1. Switch to the J2EE View in the J2EE perspective. Drill down the tree to see the Stock
bean under the ManualMap module.

2. Expand the StockBean to display StockBean, StockHome, Stock, and StockKey as
shown in Figure 9-44.

Figure 9-44 J2EE perspective of StockBean in the ManualMap module

3. Right-click StockBean and select Open With-> Enterprise Bean Java Editor.

4. To add a user-defined method, enter the code in the Enterprise bean Java editor. To add
an increaseStockQuantity method, add the code shown in Figure 9-45.
292 WebSphere J2EE Application Development for the iSeries Server

Figure 9-45 The increaseStockQuantity() method code

5. Declare that the method throws a javax.ejb.EJBException exception. Keep in mind that
BigDecimal is not the same type as int, so you must convert it before using it.

6. After adding a method, right-click anywhere in the editor and click Save. Add the methods
to the remote interface by right-clicking the method in outline view and selecting
Enterprise Bean-> Promote to Remote Interface as shown in Figure 9-46.

Figure 9-46 Promoting a method to the remote interface

7. Add another method to decrease the quantity, named decreaseStockQuantity, using the
same technique.

8. Close the Stock bean and save your work.

9.2.2 Mapping the Stock bean
Before you deploy the Stock bean, you must create a mapping and schema. To do this follow
these steps:

1. Switch back to the J2EE view of the J2EE perspective. Right-click ManualMap under EJB
modules and select Generate-> EJB to RDB mapping.

2. The Creating a new EJB/RDB mapping window appears. Select the Top-down radio
button and select the Open mapping editor after completion check box as shown in
Figure 9-47. Click Next.

public void increaseStockQuantity(int qty) throws javax.ejb.EJBException{
quantity= new java.math.BigDecimal(quantity.intValue() + qty);
}

Chapter 9. Developing EJBs with Application Developer 293

Figure 9-47 Creating a new EJB/RDB mapping for ManualMap

3. In the EJB/RDB Mapping dialog, select DB2 UDB for iSeries, V5R1 for Target database.
Enter the Database name and Schema name that was imported earlier in 9.1.2,
“Importing a schema” on page 266. This is shown in Figure 9-48.
294 WebSphere J2EE Application Development for the iSeries Server

Figure 9-48 Creating a new EJB/RDB mapping for ManualMap

4. Click Finish to generate the mapping. Spend some time investigating the Map.mapxmi
files to see whether the mapping is correct. Also navigate to see the files generated as
explained in 9.1.3, “Creating the entity EJB from the imported schema” on page 272.

5. After the schema is generated, in the Navigator view of the J2EE perspective, expand the
tree structure until you find the .tblxmi file for the schema in the ManualMap project. This
is the schema generated by top-down mapping.

6. Double-click the .tblxmi file to open it in the table editor as shown in Figure 9-49.

Figure 9-49 Schema in the table editor
Chapter 9. Developing EJBs with Application Developer 295

If you want to change the column name or types, you can do so in the table editor.

7. After any change, save your work by pressing Ctrl-S.

8. In the Navigator view, locate the Table.ddl file. This file contains the generated data
definition language (DDL) statements that create the table on the iSeries server. The DDL
source is shown in Figure 9-50.

Figure 9-50 The DDL generated for top-down mapping

9. Copy the script from the Table.dll file and run it on the iSeries server to create the table
and schema. You can do this with interactive SQL or with Operations Navigator.

10.You are now ready to test. Before testing, you need to point the data source to the new
schema. If you are working on an existing schema, check to ensure that the data source in
the WebSphere Test Environment points to your schema.

9.2.3 Deploying the stock bean and testing
To deploy and test the stock bean created by manual mapping follow the steps shown in
9.1.5, “Deploying the Stock bean in the WebSphere Test Environment” on page 277.

9.3 Meet-in-the-middle mapping
In the meet-in-the-middle approach of mapping enterprise beans to database tables, it is
assumed that you have existing enterprise beans and a database schema. You can perform
meet-in-the-middle mapping by matching by name, by type, or no matching.

In this approach, you map each field of the enterprise bean to the corresponding column of a
table within the selected schema. This technique provides an alternative technique to map
CMP entity beans to existing database tables. The objective is to create a Stock entity bean
whose properties map to only some of the iSeries STOCK table columns and use meaningful
property names.

Manual mapping is generally the preferred way to create CMP entity beans because it gives
the developer the most control over how the object-relational mapping takes place.

9.3.1 Creating the stock enterprise bean
In this approach, we first create the Stock Enterprise bean and to add the methods to the
bean. To create the Stock Enterprise bean, follow these steps:

1. Switch to the J2EE View of the J2EE perspective, and create a new EJB project as
explained in 9.1.1, “Creating an EJB project” on page 266. We name it MiddleMeet.
296 WebSphere J2EE Application Development for the iSeries Server

2. You can see the MiddleMeet module under the EJB Modules. Right-click EJB Module
and select New-> Enterprise Bean from the menu as shown in Figure 9-51.

Figure 9-51 Creating an enterprise bean

3. In the create EJB window complete these tasks.

a. Enter Stock in the Bean name field.

b. Select MiddleMeet in the EJB project field.

c. Select Entity bean with container-managed persistence (CMP) fields in the
Beantype drop-down list.

d. Enter the default package name as com.ibm.itso.roch.wasaejb. The names for the
home interface, remote interface, and key class are automatically generated.

e. Click Next to move to the next screen.

f. Click the Add button next to the CMP attributes fields of the bean as shown in
Figure 9-52.
Chapter 9. Developing EJBs with Application Developer 297

Figure 9-52 Create Enterprise Bean wizard

4. The create CMP Attribute window appears as shown Figure 9-53. Enter a meaningful
name for the Warehouse ID field in the Field Name field.

5. Because the warehouse ID field type in the Stock table is of type CHAR, select
java.lang.String in the Type field drop-down list. Because it is part of the STOCK file key,
select the Key field check box. Click the Apply button and continue adding the other
fields.

Figure 9-53 Creating persistent fields

6. Repeat the same process for the other character key field, item id. The item ID field in the
Stock file is of type CHAR. Select java.lang.String in the Field type drop-down list. Select
the Key field check box.

7. As explained in 9.1, “Bottom-up mapping” on page 266, the automatic generation of an
entity bean from an iSeries table takes care of the mapping between database types and
Java types. In our new example, we control the mapping. Refer to the JDBC
documentation for a correct mapping. Table 9-1 on page 290 shows the mapping of the
most common database types.

8. Add the rest of the fields to the Stock bean. They are not primary key fields, so deselect
the Key field check box. The fields to add are shown in Table 9-2.
298 WebSphere J2EE Application Development for the iSeries Server

Table 9-2 Stock bean fields

Figure 9-54 shows an example of adding the stockQuantity field.

Figure 9-54 Creating the stockQuantity CMP field

a. For the all the fields, select java.math.BigDecimal in the Field type drop-down list. You
can use the Browse... button to help find the class you need. The mapping database
fields are of type PACKED.

b. Deselect the Key Field check box.

c. Select the Access with getter and setter methods check box. The setter and getter
methods are then automatically generated in the StockBean class.

d. Optionally, you can select the Promote getter and setter methods to remote
interface check box to have them in the Stock remote interface as well.

9. When you finish adding the fields to the Stock entity bean, click Cancel on the create
persistent field window and then click the Finish button on the Create an Enterprise Bean
window as shown in Figure 9-55.

Description Table column Bean field name Java type

Order Quantity STORDRS orderQuantity BigDecimal

Remaining Order
Quantity

STREMORD remOrderQuantity BigDecimal

Stock Quantity STQTY stockQuantity BigDecimal

Year to Date STYTD yearToDate BigDecimal
Chapter 9. Developing EJBs with Application Developer 299

Figure 9-55 Creating a Stock enterprise bean

Once the Stock bean is created, you can see the implementation of its classes and methods
as shown in Figure 9-56.

Figure 9-56 Stock bean implementation

Note the meaningful names for the fields unlike in bottom-up mapping. Once the bean is
created, we are ready to map the bean to the schema.
300 WebSphere J2EE Application Development for the iSeries Server

9.3.2 Adding the methods
To add the user defined methods, follow the steps as explained in “Adding methods to the
Stock bean” on page 292. In this section, we create more user-defined methods:

1. We add the following methods:

– void decreaseRemOrderQuantity(int qty)
– void decreaseStockQuantity(int qty)
– void decreaseOrderQuantity(int qty)
– void decreaseYearToDate(int qty)
– void increaseOrderQuantity(int qty)
– void increaseRemOrderQuantity(int qty)
– void increaseStockQuantity(int qty)
– void increaseYearToDate(int qty)

Figure 9-57 shows a code example of how to write the logic for the methods.

Figure 9-57 decreaseOrderQuantity() method logic

2. After you add a method, right-click anywhere on the editor and click Save. Add the
methods to the remote interface by right-clicking the method in outline view and selecting
Enterprise Bean-> Promote to Remote Interface.

After the methods are added to the remote interface of the bean, the outline view looks like
the example in Figure 9-58.

Figure 9-58 Outline view of the Stock bean

public void decreaseOrderQuantity(int qty) throws javax.ejb.EJBException{
orderQuantity = new java.math.BigDecimal(orderQuantity.intValue() - qty);
}

Chapter 9. Developing EJBs with Application Developer 301

9.3.3 Mapping the stock bean
In the meet-in-the-middle approach of mapping enterprise beans to database tables, it is
assumed that you have existing enterprise beans and a database schema. We now have the
enterprise bean. To create the mapping, follow these steps:

1. The first action is to import the schema of the Stock table from the iSeries database table
into your working project as explained in 9.1.2, “Importing a schema” on page 266. Once
the schema is imported, the enterprise been and schema are ready.

2. Switch back to the J2EE view of the J2EE perspective. Select the project under EJB
modules and select Generate-> EJB to RDB mapping.

3. The Create a new EJB/RDB Mapping window (Figure 9-59) appears. Select the Meet In
The Middle radio button and select the Open mapping editor after completion check
box. Click Next.

Figure 9-59 Creating EJB/RDB mapping for meet-in-the-middle

4. On the window (Figure 9-60), select the Match By Name, and Type radio button and click
Finish.
302 WebSphere J2EE Application Development for the iSeries Server

Figure 9-60 Creating EJB/RDB mapping with match by name and type

Once the mapping is generated, you can see that no fields are mapped as shown in
Figure 9-61.

Figure 9-61 Meet in the middle mapping

5. We need to manually map the existing fields in the Stock enterprise bean to the columns
in the Stock database schema. We follow these steps:

a. Select MiddleMeet (Project Name) in the lower pane of the map editor and click the
Show both mapped and unmapped objects icon (Figure 9-62).
Chapter 9. Developing EJBs with Application Developer 303

Figure 9-62 Show both the mapped and unmapped objects

b. A plus (+) sign appears next to the project name in the lower pane. Click it to expand
the tree to view the enterprise bean and all the fields as shown in Figure 9-63.

Figure 9-63 Manual mapping for the bean

c. Select the Stock bean in the lower left pane and select the schema in the lower right
pane.

d. Select the warehouseId field of the bean on the left side. Click the drop-down list and
select the STWID column from the schema as shown in Figure 9-64.
304 WebSphere J2EE Application Development for the iSeries Server

Figure 9-64 Mapping the warehouseId field

e. Repeat these steps to map the other fields listed in Table 9-3.

Table 9-3 Stock bean to Stock table mapping

Once all the fields are mapped, the map editor looks like the example in Figure 9-65.

Figure 9-65 Completed mapping for the Stock bean

6. Be aware that iSeries Stock table fields that are not mapped to Stock bean properties
must be null capable fields. Otherwise, inserts through the Stock bean create() method
fail. Add the following code to the ejbCreate() method:

Stock bean field Stock table field

itemId STIID

stockQuantity STQTY

yearToDate STYTD

orderQuantity STORDRS

remOrderQuantity STREMORD
Chapter 9. Developing EJBs with Application Developer 305

stockQuantity = new java.math.BigDecimal(0.0);
yearToDate = new java.math.BigDecimal(0.0);
orderQuantity = new java.math.BigDecimal(0.0);
remOrderQuantity = new java.math.BigDecimal(0.0);

7. Save the changes by selecting File-> Save Map.mapxmi.

9.3.4 Deploying and testing the enterprise bean
To deploy the Stock bean created by manual mapping, follow the steps shown in 9.1.5,
“Deploying the Stock bean in the WebSphere Test Environment” on page 277. Beside testing
the getStockQuantity() method as discussed earlier, invoke the other new methods added in
meet-in-the-middle mapping:

1. Once the getStockQuantity method returns the stock quantity value, select the
increaseStockQuantity() method to increase the stock quantity in the iSeries Stock table
through the CMP Stock entity bean.

2. In the parameters pane, enter a value of the quantity to be increased and click the Invoke
button as shown Figure 9-66.

Figure 9-66 Invoking the increaseStockQuantity() method

3. Invoke the getStockQuantity() method to see that the increase to stock quantity has
occurred as shown in Figure 9-67.
306 WebSphere J2EE Application Development for the iSeries Server

Figure 9-67 Invoking the getStockQuantity method

4. You can also query iSeries STOCK table using interactive SQL or Operations Navigator
and see if there is an increase in the stock quantity.

5. Repeat the same procedure to try the other methods.

9.4 Developing a bean-managed persistence (BMP) entity bean
After discussing all the possible alternatives to develop and deploy a container-managed
persistence entity bean, let’s look at bean-managed persistence entity beans. You may want
to develop BMP entity beans for two main reasons:

� Performance
� Complex entity/database mapping

BMP application development is more complicated. Application Developer helps you create
BMP beans, but you must handle persistence in the code.

In this example, we use an existing project that we created earlier called ItsoEjb. Once the
working project is ready, follow these steps:

1. Switch to the J2EE view in the J2EE perspective. Right-click the ItsoEjb project and select
New-> Enterprise Bean as shown in Figure 9-68.
Chapter 9. Developing EJBs with Application Developer 307

Figure 9-68 Creating an enterprise bean

2. In the create EJB window, complete these tasks. Use Figure 9-69 as a reference.

a. Enter Customer in the Bean name field.

b. Select ItsoEjb for the EJB project field.

c. Select Entity bean with bean-managed persistence (BMP) fields from the Beantype
drop-down list.

d. Enter the default package name as com.ibm.itso.roch.wasaejb. The names for the
home interface, remote interface, and key class are automatically generated.

e. Click the Next button.
308 WebSphere J2EE Application Development for the iSeries Server

Figure 9-69 Creating the Customer CMP bean

3. The EJB attribute window appears. Add the packages as shown in Figure 9-70. Click the
Add Type and Add Package buttons next to Add import statements to the bean class to
find the package and type you want to add.

Figure 9-70 Adding import statements to the Customer bean
Chapter 9. Developing EJBs with Application Developer 309

4. Click the Finish button to generate the bean. At this point, its worth spending some time to
see the files generated. In the J2EE perspective, you see that CustomerHome, Customer
and CustomerBean are automatically generated with all the methods required by the
Enterprise JavaBeans specifications. This is shown in Figure 9-71.

Figure 9-71 Customer bean and methods

You still have the ability to add methods to the remote and home interfaces. However no
fields, no key fields, and no field setter and getter methods are generated. They must be
created manually by the developer. Just as creating methods to enforce business rules is a
developer responsibility, so is entity data persistence.

5. We add the following code:

a. We update the ejbCreate() method of the Customer Bean class to insert a new record
in the iSeries Customer table. The ejbCreate() method is shown in Example 9-1.

Example 9-1 ejbCreate code for customer CMP bean

public com.ibm.itso.roch.wasaejb.CustomerKey ejbCreate(String custID, String fN, String lN,
String phone) throws javax.ejb.CreateException, javax.ejb.EJBException {

// Get a DataSource
try {
// get a reference to the DataSource.

InitialContext initCtx = new InitialContext();
String dataSourceName =

 (String)initCtx.lookup("java:comp/env/dataSourceName");
ds = (DataSource) initCtx.lookup("jdbc/" + dataSourceName);

}
catch (Exception e) {

throw new javax.ejb.CreateException("Error in ejbCreate: " + e.getMessage());
}

310 WebSphere J2EE Application Development for the iSeries Server

// Set Field Variables
ivCustID = custID;
ivFirstName = fN;
ivLastName = lN;
ivPhone = phone;
ivAddress = new Address();
isDirty = true;
// Use a JDBC connection to insert a row into the customer data base
Connection con = null;
Statement stmt = null;
try {
// get a connection from the dataSource, generate SQL to insert this

 row into the database.
con = ds.getConnection();
stmt = con.createStatement();
String stmtString = "insert into CSTMR (cid, cfirst, clast,

 cphone) " + "values
 ('" + ivCustID + "', '" + ivFirstName
 + "', '" + ivLastName + "', '" + ivPhone + "')";

if (stmt.executeUpdate(stmtString) != 1) {
throw new CreateException ("JDBC did not create a customer row");
}
// Create the primary key object and return it.
CustomerKey cID = new CustomerKey();
cID.primaryKey = ivCustID;
return cID;
} catch (CreateException ce) {

throw ce;
}
catch (SQLException sqe) {

throw new CreateException (sqe.getMessage());
}
finally {

try {
// close the statement and return the connection to the pool

stmt.close();
releaseConnection(con);

}
catch (Exception ignore) {}

}
}

b. We update the ejbLoad() method to retrieve data from the Customer table and place it
in the bean properties. Example 9-2 shows the ejbLoad() method.

Example 9-2 ejbLoad() code for customer CMP bean

public void ejbLoad() throws javax.ejb.EJBException {
try {

InitialContext initCtx = new InitialContext();
String dataSourceName =

 (String)initCtx.lookup("java:comp/env/dataSourceName");
ds = (DataSource) initCtx.lookup("jdbc/" + dataSourceName);

}
catch (Exception e) {
throw new EJBException("Error in ejbCreate: " + e.getMessage());
}
try {

// use the "refresh" method to populate the fields.
Chapter 9. Developing EJBs with Application Developer 311

refresh((CustomerKey) getEntityContext().getPrimaryKey());
} catch (FinderException fe) {

throw new EJBException(fe.getMessage());
}

}

c. We update the ejbStore() method to update a row in the Customer table from the
bean’s properties. Example 9-3 shows the ejbStore method.

Example 9-3 ejbStore() code for customer bean

public void ejbStore() throws javax.ejb.EJBException {
Connection con = null;
Statement stmt = null;
try {
 // Use JDBC to update a row in the data base
 con = ds.getConnection();
 stmt = con.createStatement();
 // modify the statement below for proper SQL
 String statement = "update CSTMR set";
 if (ivFirstName != null) {

 statement += " cfirst = '" + ivFirstName + "'";
 }
 if (ivLastName != null) {

 statement += ", clast = '" + ivLastName + "'";
 }
 if (ivInits != null) {

 statement += ", cinit = '" + ivInits + "'";
 }
 if (ivPhone != null) {

 statement += ", cphone = '" + ivPhone + "'";
 }
 if (ivAddress.ivAddressLine1 != null) {

 statement += ", caddr1 = '" + ivAddress.ivAddressLine1 + "'";
 }
 if (ivAddress.ivAddressLine2 != null) {

 statement += ", caddr2 = '" + ivAddress.ivAddressLine2 + "'";
 }
 if (ivAddress.ivCity != null) {

 statement += ", ccity = '" + ivAddress.ivCity + "'";
 }
 if (ivAddress.ivState != null) {

 statement += ", cstate = '" + ivAddress.ivState + "'";
 }
 if (ivAddress.ivZip != null) {

 statement += ", czip = '" + ivAddress.ivZip + "'";
 }
 if (ivCreditLimit != 0) {

 statement += ", ccrdlm = " + ivCreditLimit;
 }
 if (ivBalance != 0) {

 statement += ", cbal = " + ivBalance;
 }
 if (ivYearToDateBalance != 0) {

 statement += ", cytd = " + ivYearToDateBalance;
 }
 statement += " where cid = '" + ivCustID + "'";
 int i = 0;
 i = stmt.executeUpdate(statement);
312 WebSphere J2EE Application Development for the iSeries Server

 if (i == 0) {
throw new EJBException ("ejbStore: CustomerBean (" + ivCustID + ") not

 updated");
 }
}
catch (EJBException re) {
 throw re;
}
catch (SQLException sqe) {
 throw new EJBException (sqe.getMessage());
}
finally {
 try {

stmt.close();
releaseConnection(con);

 }
 catch (Exception ignore) {}
}

}

d. We update the ejbRemove() method to delete a row from the Customer table.
Example 9-4 shows the ejbRemove() method.

Example 9-4 ejbRemove() code for customer bean

public void ejbRemove() throws java.rmi.RemoteException, javax.ejb.RemoveException {
Connection con = null;
Statement stmt = null;
try {
// Use JDBC to delete the row from the data base. HINT: the primary

 key is in the EntityContext.
con = ds.getConnection();
CustomerKey pk = (CustomerKey) getEntityContext().getPrimaryKey();
stmt = con.createStatement();
int i = stmt.executeUpdate("delete from CSTMR where cid = '" +

 pk.primaryKey + "'");
if (i == 0) {

throw new EJBException ("CustomerBean " + pk.primaryKey + "
 not found");

}
}
catch (EJBException re) {

throw re;
}
catch (SQLException sqe) {

throw new RemoteException (sqe.getMessage());
}
finally {
 try {

stmt.close();
releaseConnection(con);

 }
 catch (Exception ignore) {}
}

}

Chapter 9. Developing EJBs with Application Developer 313

9.4.1 Testing the BMP bean
Testing the BMP is the same as testing the CMP beans. We follow these steps:

1. Generate the deployed code for the Customer Bean using Application Developer. Start the
WebSphere Test Environment and test the Customer Bean as explained in 9.1.5,
“Deploying the Stock bean in the WebSphere Test Environment” on page 277.

2. Invoke the create (String, String, String, String) method to create a record in
Customer database table on the iSeries server.

3. Create a new customer record with the following value:

2204 Dean Ascheman 5233726

4. Return to the home interface in the test client. Retrieve the row just added using the finder
and getter methods.

5. Close the test client.

9.5 Conclusion
In this chapter, we discussed the different application development scenarios with respect to
container-managed persistence and bean-managed persistence entity Enterprise
JavaBeans.

We covered the following application development scenarios:

� Bottom-up CMP entity bean mapping
� Top-down CMP entity bean mapping
� Meet-in-the-middle CMP entity bean mapping
� Developing a BMP entity bean
314 WebSphere J2EE Application Development for the iSeries Server

Chapter 10. Building Java applications with
Enterprise JavaBeans

This chapter discusses building iSeries Java applications using Enterprise JavaBeans. We
use the Enterprise JavaBeans described in Chapter 8, “iSeries EJB application development
scenario” on page 245, to provide access to iSeries resources. In this chapter, we go through
the following types of application development scenarios:

� Java applications
� Java servlets

We begin by developing a simple HelloWorld EJB. Then we develop a servlet and a Java
client application which use the HelloWorld bean. Next we develop the OrderEntry
application, which uses the entity and session beans developed earlier.

10
© Copyright IBM Corp. 2002. All rights reserved. 315

10.1 Developing the HelloWorld EJB application
In this section, we start by developing the HelloWorld Enterprise JavaBean using Application
Developer. We then test it using the WebSphere Test Environment under Application
Developer. The objective of this section is to take you through the complete development of
an EJB session bean and the development of a Java client application and servlet that use
the HelloWorld EJB.

In this section, we:

� Use Application Developer to create the HelloWorld session bean.
� Test the HelloWorld session bean inside Application Developer.
� Develop a Java client application which uses the HelloWorld bean.
� Develop a servlet which uses the HelloWorld bean.
� Install the Enterprise application under WebSphere Application Server on the iSeries

server.
� Test the enterprise application running on the iSeries server.

10.1.1 Creating the HelloWorld bean in Application Developer
We begin our discussion by creating a simple HelloWorld EJB session bean. To do this, we
follow these steps:

1. In the J2EE view of the J2EE perspective, select File->New->EJB Project.

2. Enter HelloWorldTest as the project name.

3. Type or select the enterprise application project name to which this EJB project will be
added as a module. If the enterprise application does not exist, it is created.

4. Click Next. You can also click Finish at this point to create a default EJB project if you
have no module dependencies or build settings to specify.

5. Under the EJB modules in the J2EE perspective, select your working project. In this case
we use HelloWorldTest as our project.

6. Right-click the project and select New-> Enterprise Bean.

7. In the Create an Enterprise bean window, enter the information as shown in Table 10-1.

Table 10-1 Creating an enterprise bean values

If you want to place the EJB in a unique package, you define the package as shown in
Figure 10-1. Otherwise, the Default package of “root” is used.

Name Value

Bean Name HelloWorld

EJB Project HelloWorldTest

Bean type Session Bean
316 WebSphere J2EE Application Development for the iSeries Server

Figure 10-1 Creating the HelloWorld bean

8. Click Next to display the Enterprise Bean Details window as shown in Figure 10-2.

Figure 10-2 Create an Enterprise Bean wizard

9. Click the Finish button to create the HelloWorld bean. It’s worth spending some time to
navigate the files generated by Application Developer as shown in Figure 10-3.
Chapter 10. Building Java applications with Enterprise JavaBeans 317

Figure 10-3 J2EE/Navigator view of the HelloWorld bean

Notice what Application Developer has generated:

– HelloWorldHome is the home interface for the bean.
– HelloWorld is the remote interface.
– HelloWorldBean is the implementation of the bean.

Also in the Navigator view, you can see the .class files and .java files generated under the
package defined while creating the bean.

10.We write a business method that returns a string that reads “Hello from ITSO”. To add a
method, double-click HelloWorldBean.java to open it. Enter the code shown in
Example 10-1 at the end of the file, before the final “}”.

Example 10-1 The printHello method

public String printHello() throws javax.ejb.EJBException{ return("Hello from ITSO");
}

11.After you add the method, save the file by selecting File-> Save-> HelloWorldBean.java
from the menu.

12.Add the following import statement to both the HelloWorldBean.java and HelloWorld.java
files:

import javax.ejb.EJBException;

13.Add the printHello() method to the remote interface of the bean by right-clicking the
method in the outline view. Then select Enterprise Bean-> Promote to Remote
Interface as shown in Figure 10-4.
318 WebSphere J2EE Application Development for the iSeries Server

Figure 10-4 Adding the printHello() method to the remote interface

14.While in the Navigator view, expand the tree for the MyHelloWorld project to see the
ejb-jar.xml file under the META-INF folder. Double-click the ejb-jar.xml file. This is the
deployment descriptor.

15.In the deployment descriptor, click the Beans tab and select the HelloWorld bean. Ensure
the bean is a Stateless session bean as shown in Figure 10-5.

Figure 10-5 Deployment descriptor for the HelloWorld bean

16.Press Ctrl-S to save the settings, if necessary.

17.To register HelloWorld in the JNDI namespace, switch to the J2EE view. Select the EJB
project. Then right-click and select Open with-> EJB Extension Editor.

18.In the EJB Extension Editor, click the Bindings tab and select the HelloWorld bean under
HelloWorldTest. Enter HelloWorld in the JNDI name field on the right side of the page as
shown in Figure 10-6.
Chapter 10. Building Java applications with Enterprise JavaBeans 319

Figure 10-6 JNDI namespace

19.Save the changes by selecting File-> Save EJB Extension Editor. You can also press
Ctrl-S.

20.Generate the deployed code by right-clicking the HelloWorld bean in the J2EE
perspective and selecting Generate Deployed Code.

21.To test the EJB, right-click the HelloWorldTest EJB project and select Run on Server.

If the test server is not started, it is now started. Look for the “Server Default Server
open for e-business” message in the console view or a started status in the server
control panel view.

22.The EJB Test Client opens. The first step is to see if the HelloWorld EJB has been added
to the JNDI namespace. Click the JNDI Explorer link on the EJB Test Client as shown
Figure 10-7.

Figure 10-7 Home page for the EJB Test Client

23.You can see HelloWorldHome in the namespace. Click the HelloWorld link to look up the
EJB home for the selected item. Once the instance of the EJB home is found, the window
shown in Figure 10-8 appears in the test client.
320 WebSphere J2EE Application Development for the iSeries Server

Figure 10-8 EJB page for the HelloWorld bean

24.Expand the EJB references tree for the bean until you see the create methods available
in the home interface.

25.Click the create method. You see the create method open in the parameter pane, on the
right-hand side, as shown in Figure 10-9.

Figure 10-9 Invoking the create method

26.In the parameters frame, click the Invoke button to create an instance of the HelloWorld
EJB.

27.Click the Work with Object button in the results pane. You see the remote interface of the
bean under the EJB reference.

28.Expand the remote interface of the bean and select the printHello() method as shown in
Figure 10-10.
Chapter 10. Building Java applications with Enterprise JavaBeans 321

Figure 10-10 Invoking the printHello() method

29.In the parameters pane, click the Invoke button. Once the method runs, you see the
output “Hello from ITSO” in the results pane as shown in Figure 10-11.

Figure 10-11 Results of the HelloWorld EJB

10.1.2 Creating a servlet that uses the EJB
The objective in this section is to create a servlet that uses the HelloWorld bean created in the
previous section. To create a servlet that accesses the HelloWorld EJB, we use the following
steps:

1. Switch to the Web perspective. Right-click anywhere and select New->Web Project as
shown in Figure 10-12.
322 WebSphere J2EE Application Development for the iSeries Server

Figure 10-12 Creating a Web project

2. In the create a Web project window, enter the information as shown in Table 10-2.

Table 10-2 Creating the Web project

3. Click the Next button as shown in Figure 10-13.

Figure 10-13 Defining the Web project

Name Value

Project Name MyHelloWorldWeb

Enterprise Application project name HelloWorldTestApp (select the application which
has the HelloWorld bean

Context root Hello
Chapter 10. Building Java applications with Enterprise JavaBeans 323

4. In the Module Dependencies window, select the HelloWorldTest.jar check box and click
Finish as shown in Figure 10-14. This updates the runtime classpath and the Java project
build.

Figure 10-14 Module dependencies

Once the Web project is created, the navigator view looks like the example in
Figure 10-15.

Figure 10-15 Generated files after the Web project is created

It’s worth spending some time to review the files generated by Application Developer. For
Web application development, the key files managed in a Web project are:

– web.xml: The deployment descriptor for the Web module. This file contains general
information on servlet mapping, security information, and the Web page.

– ibm-web-bnd.xml: The WebSphere bindings for the Web application. This file
contains bindings to references used at the Web module level.
324 WebSphere J2EE Application Development for the iSeries Server

– ibm-web-ext.xml: This file is used by WebSphere to support additional options beyond
the J2EE specification such as reloading intervals, the default error page, if file serving
is allowed, and if servlet invoking are enabled in the Web module.

– Master.css: This is the default cascading style sheet that the Application Developer
page designer uses for any new HTML or JSP pages.

– .classpath: Application Developer uses this file to store metadata about the build path
for the project when compiling Java classes and executing Java applications. Do not
edit this file directly. To change the path information, simply click the properties context
menu for the project and modify the Java Build Path item.

5. Select the MyHelloWorldWeb project. Right-click and select New-> Other-> Web->
Servlet from the menu. Click Next.

6. The Create the Servlet Class window (Figure 10-16) appears. Enter the package name as
tservlets and the servlet name as HelloTestServlet. Deselect the doPost check box.
Click the Finish button.

Figure 10-16 Creating the servlet class

7. Double-click and open the HelloTestServlet.java file. Enter the code as shown in
Example 10-2 in the doGet method.

Example 10-2 The doGet method

PrintWriter out = response.getWriter();
HelloWorldHome home = null;

try {
Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");
Chapter 10. Building Java applications with Enterprise JavaBeans 325

InitialContext initCtx = new InitialContext(p);
 // Look up the EJB

Object o = initCtx.lookup("java:comp/env/HelloWorld");
System.out.println(" -- lookup was successful");
home = (HelloWorldHome) javax.rmi.PortableRemoteObject.narrow(o,
HelloWorldHome.class);
System.out.println(" -- narrow was successful");
HelloWorld myEJB = home.create();
System.out.println(" -- create was successful");
// call methods
String msg = myEJB.printHello();
System.out.println("Message from Hello EJB: " + msg);
out.println("Message from Hello EJB: " + msg);
// destroy ejb
myEJB.remove();
System.out.println("HelloServlet ran successfully.");

} catch (EJBException e) {
out.println("remoteException " + e.getMessage());
e.printStackTrace();
} catch (NullPointerException e) {
if (home == null)
out.println("noHome " + e.getMessage());
else
e.printStackTrace();
} catch (Exception e) {

out.println("generalException " + e.getMessage());
e.printStackTrace();

} finally {
out.close();

}

8. Add the import statements shown in Example 10-3.

Example 10-3 Adding the import statements

import com.ibm.itso.roch.ejbtest.HelloWorld.*;
import java.util.*;
import javax.naming.*;
import java.rmi.RemoteException;
import java.io.*;

9. Review the servlet code. Here is what it does:

a. Creates a Properties object to hold the values required to create an InitialContext
object. The InitialContext object is actually the naming service. When it is instantiated,
it uses the name of the service provider and the URL where it is located. In this
example, we use the IBM WebSphere JNDI naming service.

b. Creates an InitialContext object using the properties object that we created.

c. After the InitialContext object is created, the home interface for the bean must be
located. We accomplish this through a method call to the lookup method of the
InitialContext object. The home interface for the bean is located by name. The
application programmer only needs to know the name of the interface and the class
type it returns.

d. Because the InitialContext object returns any type that is registered with it, the
application programmer must cast to the correct type. We use the static method
326 WebSphere J2EE Application Development for the iSeries Server

narrow() to cast the java.lang.Object returned by the lookup method to the correct
home interface type. The narrow() method takes the object to be narrowed and the
class of the EJB home object be returned as parameters.

e. We use the home interface to create an instance of the HelloWorld EJB, which we
name myEJB.

f. The myEJB object can be used to call the methods defined in the Remote interface.
We use it to call the printHello method.

g. We display the value returned by the printHello method in the browser. We use the
out.println method to do this.

h. We remove the EJB.

10.Save the file by selecting File -> Save HelloTestServlet.java file. Make sure that you have
no errors.

11.The notation java:comp/env defines that the lookup is to a local reference of HelloWorld
instead of an entity in the global JNDI namespace. We map this using the reference
definition in the deployment descriptor.

Figure 10-17 Editing the web.xml file

a. Switch to the Navigator view and select the web.xml file (Figure 10-17).

b. Double-click to open it in the editor.

c. Select the References tab.

d. Select the EJB References radio button and click Add to add a reference to the
HelloWorld EJB.

e. Use the values shown in Table 10-3.

Table 10-3 EJB reference values

Name Value

EJB Reference HelloWorld

Type Session

Home com.ibm.itso.roch.ejbtest.HelloWorld.
HelloWorldHome

Remote com.ibm.itso.roch.ejbtest.HelloWorld.HelloWorld

JNDI Name HelloWorld
Chapter 10. Building Java applications with Enterprise JavaBeans 327

f. Press Ctrl-S to save your work.

12.Switch back to the Web perspective. Select the MyHelloWorldWeb project, right-click,
and select Properties.

13.Make sure that the EJB project is added in the classpath. If it is not, add it now as shown in
Figure 10-18.

Figure 10-18 Java Build Path

14.Expand the MyHelloWorldWeb project by selecting MyHelloWorldWeb->
webApplication-> WEB-INF-classes-> tservlets.

15.Right-click HelloTestServlet.class and select Run on Server.

The Web browser opens and displays the message, “Message from Hello EJB: Hello from
ITSO.”

10.1.3 Creating a Java client application that uses the EJB
The objective in this section is to create a client application that uses the HelloWorld bean
created in 10.1.1, “Creating the HelloWorld bean in Application Developer” on page 316. To
create a Java application that accesses the HelloWorld EJB, we follow these steps:

1. Switch to the Java perspective. Right-click and create a new Java project named
MyHelloWorldClient.

2. Right-click the project and select New-> Class.

3. In the Java Class window, enter the package name and the class name as shown in
Figure 10-19.
328 WebSphere J2EE Application Development for the iSeries Server

Figure 10-19 Creating a Java class

4. Select the public static void main(String[] args) check box. Click Finish to create the
Java program.

5. Double-click to open the HelloWorldClient.java file and enter the code shown in
Example 10-4 in the main method.

Example 10-4 Client application logic

try {
// Get the J2EE name space context
Properties p = new Properties();
p.put(
Context.INITIAL_CONTEXT_FACTORY,"com.ibm.websphere.naming.WsnInitialContextFactory");

String provider_url = args[0];
p.put(Context.PROVIDER_URL, "iiop://" + provider_url);
InitialContext initCtx = new InitialContext(p);

// Look up the EJB
System.out.println("Before lookup " + "url = " + provider_url);
Object o = initCtx.lookup("HelloWorld");
MyHelloWorldHome home =
 (HelloWorldHome) javax.rmi.PortableRemoteObject.narrow(o, HelloWorldHome.class);
MyHelloWorld myEJB = home.create();

// Retrieve the text message from the EJB
String msg = myEJB.printHello();
System.out.println();
System.out.println("Message from Hello EJB: " + msg);
System.out.println();
System.out.println("HelloClient ran successfully.");

}
catch (Throwable t) {

t.printStackTrace();
Chapter 10. Building Java applications with Enterprise JavaBeans 329

}
//Required if prompted by security
System.exit(0);

6. Add the import statements shown in Example 10-5. The code is similar to the servlet
created in 10.1.2, “Creating a servlet that uses the EJB” on page 322.

Example 10-5 Adding import statements

import com.ibm.itso.roch.ejbtest.HelloWorld.*;
import java.util.*;
import javax.naming.*;

7. Save the work. You still see some errors, but we can resolve them by setting properties for
the Java build.

8. Right-click MyHelloWorldClient and select Properties.

9. We need to set the Java Build Path for the client application. Select Java Build Path in the
properties window. In the right pane, select the Projects tab and select the EJB project as
shown in Figure 10-20.

Figure 10-20 Java Build Path

10.Click the Libraries tab and select Add External Jars.

11.Locate the j2ee.jar file and add it to the libraries list. It is found in the <AD install>\plugins\
com.ibm.etools.websphere.runtime\lib directory.

12.Select Launcher. In the right pane, select Java Application from the drop-down list.

13.Click OK to close the Properties dialog and save your changes.

14.Right-click HelloWorldClient.java and select Properties.
330 WebSphere J2EE Application Development for the iSeries Server

15.Type localhost in the Program Arguments text box as shown in Figure 10-21.

Figure 10-21 Properties for the client application

16.Click OK and save the work.

17.Make sure the server is running. Click the Run button on the toolbar.

18.Select Java Application.

19.Application Developer switches to the Debug view. You see the following messages in the
Console view:

Running the J2EE Application Client HelloEJB Sample
Before lookup url = localhost
-- lookup was successful
-- narrow was successful
-- create was successful

Attention: There are two Java Runtime Environments (JRE) that come with Application
Developer. The Workbench is run by the one found in <install-dir>\jre. A second JRE is
provided by WebSphere that is a prerequisite to run WebSphere applications. Java
projects and J2EE application client projects use the workbench's JRE by default. You
get the java.lang.NoClassDefFoundError: com/ibm/rmi/iiop/GIOPVersionException
exception when you try to obtain the InitialContext.

You need to switch the JRE of your Java projects or J2EE application client projects to
use WebSphere's JRE:

a. Open the Window-> Preference dialog. Under the Java section, select Installed
JREs.

b. Add a new JRE. The JRE home directory is
<install-dir>\plugins\com.ibm.etools.server.jdk\jre.

c. Open the Properties dialog of the project. Select JRE. Select Use custom JRE for
launching and the newly added JRE.
Chapter 10. Building Java applications with Enterprise JavaBeans 331

Message from HelloEJB: Hello from ITSO
HelloClient ran successfully.

10.2 Building Java applications with Application Developer
In this section, we use Application Developer to build a Java application similar to the RPG
OrderEntry application discussed in Chapter 7, “Overview of the OrderEntry application” on
page 231. To make it easy to reuse the classes that we build for our application, we separate
the access to the iSeries server from the graphical user interface. We create a package
named Support, which contains a number of support classes.

Figure 10-22 shows the classes contained in the Support package. The ItemsDb class is
responsible for all access to the iSeries server. It uses the Enterprise JavaBeans described in
Chapter 8, “iSeries EJB application development scenario” on page 245, to access the
iSeries server.

Figure 10-22 The Support package

The following list shows the other Support package classes that are supporting classes for
applications:

� Customer: An object-oriented representation of a Customer table row
� Item: An object-oriented representation of an Item table row
� Order: An object-oriented representation of an Order table row
� OrderDetail: An object-oriented representation of an OrderLine table row

10.2.1 The ItemsDb class
This section investigates the ItemsDb class. It provides a level of abstraction for client
applications. The goal is to allow client applications to use the Enterprise JavaBeans without
having to deal with the implementation details and complexity. We look at how the ItemsDb
class accesses the iSeries resources. The following key methods are provided:

� The getInitialContext method creates an InitialContext object.

� The connect method establishes a connection to the Java server.

� The getAllCustomers method retrieves a list of customers from the server.

� The getItems method retrieves a list of items from the server.
332 WebSphere J2EE Application Development for the iSeries Server

� The findRangeOfItems method retrieves a subset of items from the server.

� The verifyCustomer method verifies that a customer number is valid.

� The confirmOrder method places and confirms an order.

� The submitOrder method places and confirms an order using a shopping cart.

� The connectStateless method establishes a stateless connection to the Java server for
servlets.

� The submitOrderStateless method places an order given a customer ID and a shopping
cart.

All the methods in the ItemsDb class, except connectStateless and submitOrderStateless,
use the OrderEntryClerk session Enterprise JavaBean to access iSeries resources. The
stateless methods use the OrderPlacement stateless session EJB.

Our intent is to create an access
class that is capable of running on
its own. That is, you can use it even
without any user interfaces. As
shown in Figure 10-23, the
advantage of this approach is that
you can use the access class in
any context. For example, you can
use a graphical user interface
(GUI) on top of the access class
when you want to create a
stand-alone Java application. You
also use exactly the same class
when you want to develop a Java servlet. In this case, replace the GUI frontend with a layer
that is capable of running as a servlet. You can also implement a distributed application where
some parts of the application run on a server. Our implementation using Enterprise
JavaBeans is an example of this. When we call the methods of the Enterprise JavaBeans, we
are actually running code on the server.

Separating the layers properly and using a clean and well-defined interface between the
layers is important if you want to take advantage of object orientation.

To use Enterprise JavaBeans in an application, you must be able to access them. The way a
client program accesses enterprise beans is defined by two interfaces:

� Home interface
� Remote (EJBObject) interface

The home interface contains methods that describe how you can instantiate an enterprise
bean object. The remote interface, by comparison, defines the methods of an enterprise bean
that can be accessed by your user program. To access an enterprise bean, your user
program goes through the following steps:

1. Obtains a context to the name server (name service context).

2. Looks up the home of the enterprise bean using the name service context.

3. Creates an enterprise bean instance from the enterprise bean home, which returns an
enterprise bean proxy object.

4. Accesses the remote methods of the enterprise bean instance through an enterprise bean
proxy object. Each call to the enterprise bean proxy object is a remote call that can throw
an exception, such as javax.ejb.EJBException.

Figure 10-23 Interface to the ItemsDb class
Chapter 10. Building Java applications with Enterprise JavaBeans 333

Import statements
Example 10-6 shows the class description for the ItemsDb class. You must import classes
from the javax.naming, javax.ejb, and java.rmi packages to use Enterprise JavaBeans. You
must also import the interfaces for the Enterprise JavaBeans that you use. They are found in
the com.ibm.itso.roch.wasejb package.

Example 10-6 The ItemsDb class description
import java.math.*;
import java.util.*;
import com.ibm.itso.roch.wasejb.*;
import javax.ejb.*;
import javax.naming.*;
import java.rmi.RemoteException;
import java.rmi.Remote;
import java.util.*;
import java.io.*;
public class ItemsDb extends java.lang.Object {

The getInitialContext method
To use the Java server and the Enterprise JavaBeans, you need to access the Java server’s
Java Naming Directory Interfaces (JNDI) naming service. This is done by instantiating an
InitialContext object. You use the getInitialContext method to create the InitialContext
object. The code is shown in Example 10-7.

Example 10-7 The getInitialContext method
public static Context getInitialContext() throws Exception {

Properties p = new Properties();
try {

p.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.websphere.naming.WsnInitialContextFactory");

p.put(Context.PROVIDER_URL, "iiop://" +
 getSystemName() + ":" + getPort());

System.out.println("port: " + getPort());
System.out.println("user: " + getUserId());
System.out.println("password: " + getPassword());
System.out.println("system: " + getSystemName());
InitialContext cx = new InitialContext(p);
return cx;

} catch (Exception e) {
System.out.println("error creating Context " + e.getMessage());
e.printStackTrace();
throw (e);

}
}

The InitialContext object is actually the naming service. When it is instantiated, it uses the
name of the service provider and the URL where it is located. In this example, we use the IBM
WebSphere Advanced Edition JNDI naming service. We pass in the name of the server and
the TCP/IP port number in the URL. Optionally, you can use a user ID and password. It is
important to notice that this is a user ID and password for the naming service provider, not for
the system. This is not the same as the iSeries user profile security.
334 WebSphere J2EE Application Development for the iSeries Server

The connect method
The connect method is used to connect to the Java server. The connect method is shown in
Example 10-8.

Example 10-8 The connect method
public String connect() throws Exception {

 try{
Context ctx = getInitialContext();
java.lang.Object tempObject= ctx.lookup("OrderEntryClerk");
OrderEntryClerkHome home =
(OrderEntryClerkHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) tempObject,
com.ibm.itso.roch.wasaejb.OrderEntryClerkHome.class);
clerk = (OrderEntryClerk) home.create();
} catch (FinderException fe) {
System.out.println ("Could not find order clerk " + fe.getMessage());
return ("Could not find order clerk " + fe.getMessage());
} catch (Throwable t) {
System.out.println ("Could not connect " + t.getMessage());
return ("Could not connect " + t.getMessage());
}
System.out.println("Connected to " + getSystemName() +":" + getPort());
return "Connected to " + getSystemName() +":" + getPort();

}

You call the getInitialContext method to create an InitialContext object. After the
InitialContext object is created, the home interface for the bean must be located. You
accomplish this through a method call to the lookup method of the InitialContext object.

The home interface for the bean is located by name. The application programmer only needs
to know the name of the interface and the class type that is returned. Because the
InitialContext object returns any type that is registered with it, the application programmer
must cast to the correct type.

You use the static narrow() method to cast the java.lang.Object returned by the lookup
method to the correct home interface type. The narrow() method takes the object to be
narrowed and the class of the EJB home object to be returned as parameters. We use the
home interface to create an instance of the OrderEntryClerk EJB, which we name clerk. The
clerk object knows how to do many things associated with the order entry system. For
example, the clerk can perform the following tasks:

� Return a list of items from the Item table
� Return a list of customers from the Customer table
� Validate a customer number
� Create an order on the iSeries server

We use the OrderEntryClerk object named clerk to handle the application processing.

The getAllCustomers method
The getAllCustomers method retrieves all the rows from the iSeries Customer table.
Example 10-9 shows the code.
Chapter 10. Building Java applications with Enterprise JavaBeans 335

Example 10-9 The getAllCustomers method

public java.util.Vector getAllCustomers() {
java.util.Vector tempCust = new java.util.Vector();
try {

tempCust = clerk.findAllCustomers();
} catch (Exception e) {

System.out.println("::::::::::::::: Unexpected Error :::::::::::::::");
e.printStackTrace();

}

return tempCust;

To retrieve all customers, you call the OrderEntryClerk’s findAllCustomers() method. It
returns a vector containing information for all customers. The vector contains a String array
element for each customer in the Customer table. The String array contains entries that
correspond to the fields in the rows of the Customer table. You return the vector to the caller
of this method.

The getItems method
The getItems method retrieves all rows from the iSeries Item table. Example 10-10 shows
the code.

Example 10-10 The getItems method
public java.util.Vector getItems() {

try {
ejbItems = clerk.findAllItems();

} catch (Exception e) {
System.out.println("::::::::::::::: Unexpected Error :::::::::::::::");
e.printStackTrace();

}
System.out.println("all items returned");
return ejbItems;

}

To retrieve all items, you call the OrderEntryClerk’s getItems() method. It returns a vector
containing all items. The vector contains a String array element for each item in the Item table.
The String array contains entries that correspond to the fields in the rows of the Item table.
You return the vector to the caller of this method.

The findRangeOfItems method
The findRangeOfItems method retrieves a subset of rows from the Items table.
Example 10-11 shows the code.

Example 10-11 The findRangeOfItems method
public java.util.Vector findRangeOfItems(String itemnoMin, String itemnoMax) {

try {
ejbItems = clerk.findRangeOfItems(itemnoMin,itemnoMax);
} catch (Exception e) {

System.out.println("::::::::::::::: Unexpected Error :::::::::::::::");
e.printStackTrace();
336 WebSphere J2EE Application Development for the iSeries Server

}
System.out.println("all items returned");
return ejbItems;

}

To retrieve a subset of items, you call the OrderEntryClerk’s findRangeOfItems method. You
pass it parameters containing the value of the first item and the value of the last item to return.
It returns a vector containing all items within the range. You return the vector to the caller of
this method.

The verifyCustomer method
The verifyCustomer method verifies that a customer number contains a valid row in the
Customer table. Example 10-12 shows the code.

Example 10-12 The verifyCustomer method
public boolean verifyCustomer(String customerId)
{

boolean isValid = false;
System.out.println("isValid = " + isValid);
try
{

isValid = clerk.verifyCustomer(customerId);
 System.out.println("isValid = " + isValid);
if (isValid)
 validCustomerId = customerId;

}
catch (Exception e)
{

return isValid;
}
return isValid;

}

To verify that a customer exists in the Customer table, you call the OrderEntryClerk’s
verifyCustomer method. You pass it a parameter containing the customer number. It returns
a boolean that is true or false, depending on whether the customer is valid. You return the
boolean to the caller of this method.

The submitOrder method
When you are ready to submit an order for processing on the iSeries server, you use the
ItemsDb submitOrder method. It, in turn, uses methods provided by the OrderEntryClerk
bean. Example 10-13 shows the code.

Example 10-13 The submitOrder method
public String submitOrder(Order anOrder) throws Exception {

try {
OrderDetail orderLine = null;
//set the customer number
clerk.setCustomer(anOrder.getCustomer().getId().toString());
BigDecimal orderLineCount = new BigDecimal(anOrder.getOrderDetails().size());
for (java.util.Enumeration itemE = anOrder.getOrderDetails().elements();

 itemE.hasMoreElements();) {
Chapter 10. Building Java applications with Enterprise JavaBeans 337

orderLine = (OrderDetail) itemE.nextElement();
clerk.addOrderLine(orderLine.getItem().getId(),

 orderLine.getQuantity());
}
// place the order
String orderNumber = clerk.placeOrder();
return orderNumber;

} catch (Exception e) {
throw (e);

}
}

We use the following steps to submit an order:

1. Set the name of the customer using the setCustomer method.

2. Pass in as parameters, the item number and the quantity for each item you want to order
using the addOrderLine method of the OrderEntryClerk.

3. Place the order using the placeOrder method of the OrderEntryClerk. It returns the order
number of the order that is created.

4. Return the order number to the caller of this method.

The submitOrder methods demonstrates one of the key advantages of using Enterprise
JavaBean technology. You only need to know what the bean does and how to interface to it.
Do not be concerned with the details of how it accomplishes its task. If you want to implement
the order processing logic in your application without using Enterprise JavaBeans, the
application code is much more complex because you must provide the code that does the
database access and order processing.

The stateless methods
To properly support servlet clients, we provide two stateless methods in the ItemsDb class
that don’t use the OrderEntryClerk session bean at all – connectStateless and
submitOrderStateless. The only constraint to using these methods is that the
connectStateless method must be called before the submitOrderStateless method. These
methods are similar to the connect and submitOrder methods, but use the OrderPlacement
session bean (stateless) instead of the OrderEntryClerk session bean.

The connectStateless method (Example 10-14) provides a connection to the
OrderPlacement session bean.

Example 10-14 The connectStateless method
public String connectStateless() throws Exception {

try {
Context ctx = getInitialContext();
java.lang.Object tempObject= ctx.lookup("java:comp/env/OrderPlacement");

OrderPlacementHome home = (OrderPlacementHome)javax.rmi.PortableRemoteObject.narrow(
 (org.omg.CORBA.Object) tempObject,

 com.ibm.itso.roch.wasaejb.OrderPlacementHome.class);
OrderPlacer = (OrderPlacement) home.create();

} catch (FinderException fe) {
System.out.println("Could not find order placer " + fe.getMessage());
return ("Could not find order placer " + fe.getMessage());
} catch (Throwable t){
338 WebSphere J2EE Application Development for the iSeries Server

t.printStackTrace();
return ("Could not connect " + t.getMessage());

}
return "Connected to " + getSystemName() + ":" + getPort();

}

The submitOrderStateless method, shown in Example 10-15, is used by a client application
to place an order. It calls the placeOrder method of the OrderPlacement session bean. The
input parameters for this method are a string containing the customer ID and a vector
containing the items to order. It returns the order number of the new order.

Example 10-15 The submitOrderStateless method
public int submitOrderStateless(String CustID, Vector OrderLines) throws Exception {

int returnvalue;
try {

returnvalue = (int)OrderPlacer.placeOrder("0001", "1", CustID, OrderLines);
} catch (Exception e) {

throw (e);
}
return returnvalue;

}

10.2.2 Using the ItemsDb class
Now let’s put it all together. First, we run the ItemsDb class using only scripts in the
Application Developer Scrapbook. We create a new instance of the ItemsDb class and call its
connect method. The ItemsDb class also provides methods to set values for the user ID,
password, TCP/IP port, and system name.

Example 10-16 Testing the ItemsDb class in the Application Developer Scrapbook
Support.ItemsDb aItemsDb = new Support.ItemsDb();
aItemsDb.setUserId("cpwejb");
aItemsDb.setPassword("cpwejb400");
aItemsDb.setPort("900");
aItemsDb.setSystemName("localhost");
aItemsDb.connect();

To run the code (Example 10-16) in the Application Developer Scrapbook, select and
highlight it, right-click, and select Run. To help test the code, we write messages to the Java
console using the System.out.println method. In this example, we connect to the Java
server running on the local system and listening on port 900. If the server is active and the
security information is valid, we see the following message on the Java console.

Connected to localhost:900

If this is successful, we try to retrieve information from the Customer table on the server. To
accomplish this, we use the getAllCustomers method from the ItemsDb class. Example 10-17
shows the code.
Chapter 10. Building Java applications with Enterprise JavaBeans 339

Example 10-17 Retrieving customers using the scrapbook
Support.ItemsDb aItemsDb = new Support.ItemsDb();
aItemsDb.setUserId("cpwejb");
aItemsDb.setPassword("cpwejb400");
aItemsDb.setPort("900");
aItemsDb.setSystemName("localhost");
aItemsDb.connect();
java.util.Vector customerList = aItemsDb.getAllCustomers();
for (java.util.Enumeration e = customerList.elements(); e.hasMoreElements();) {

String[] array = (String[]) e.nextElement();
System.out.println(array[0] + " " + array[1]);

}

If this is successful, we retrieve the rows from the Customer table and display the first two
fields for each row on the Java console. The getAllCustomers method returns a vector. The
vector contains a String array element for each customer in the Customer table. The String
array contains entries that correspond to the fields in the rows of the Customer table. For
each String array element, we print the first two array elements. Example 10-18 shows the
Java console output.

Example 10-18 Displaying the customer file rows on the Java console
Connected to localhost:900
0001 OAKLEY
0002 BARBER
0003 ABLE
0004 WILLIS
0005 MULLEN-SCHULTZ
0006 MAATTA
0007 FAIR
0008 COULTER
0009 GOUDET
0010 LLAMES

In this section, we tested the ItemsDb class without using a graphical user interface. In the
next section, we build a servlet based OrderEntry application. We use the ItemsDb class to
access the iSeries server.

10.3 Building servlets
Servlets are inherently multithreaded. Recall that stateful session beans are used to maintain
a state for one client. Even if multiple Web users may be accessing the servlet, multithreading
makes it appear as if the servlet is one client. A state is not automatically maintained across
method calls for each Web client. This means that if you’re going to use a stateful session
bean, you have to explicitly manage that connection.

The easiest and usually best way to connect servlets to session beans is to manage state
information within the servlet, using stateless beans to perform business tasks. The stateless
methods in the ItemsDb class do this.

As shown in Figure 10-24, we use two servlets. They are found in the tservlets package. They
are ItemSessionServlet and CartServlet.
340 WebSphere J2EE Application Development for the iSeries Server

Figure 10-24 OrderEntry servlet architecture

ItemSessionServlet
The ItemSessionServlet servlet is fairly simple. It displays a list of the items available for
ordering. It also allows the user to select items to add to their shopping cart. The connection
occurs in exactly the same way as we saw previously in the application using the ItemsDb
class.

CartServlet
The CartServlet servlet is a command-driven servlet that supports adding items to a
shopping cart and placing an order. It uses the ItemsDb class to actually place the order.

Servlet application flow
The application flow happens like this:

1. When the ItemSessionServlet is started, it connects to the OrderEntryClerk session bean
using the ItemsDb class. It maintains this object, so all threads use the same object.

2. When a user executes the ItemSessionServlet, it causes the doPost() method to run. The
doPost() method executes the getAllItems() method of the ItemsDb class. It returns a
vector of items that is used to populate the items table displayed on the form. This is
shown in Figure 10-25.

xxxx 1

xxxx 1

xxxx 1

Here are the results Shopping Cart

1 xxxx

1 xxxx

Add to Cart Shopping
Cart

Continue

Place Order

ItemSessionServlet CartServlet

OrderPlacment EJB

ItemsDB

ItemsDB

OrderEntryClerk EJB

Session
Item List
Shopping cart

creates or adds
to shopping cart
in session
Chapter 10. Building Java applications with Enterprise JavaBeans 341

Figure 10-25 The ItemSession servlet

3. The user selects the items they want to order and clicks the Add to Cart button on the
form (Figure 10-26).

Figure 10-26 Add to Cart button

4. This posts the form to the CartServlet using the Add to Cart command. The form shown in
Figure 10-27 appears. The CartServlet creates a shopping cart object in the servlet
session object.
342 WebSphere J2EE Application Development for the iSeries Server

Figure 10-27 The servlet shopping cart

5. When the user is done shopping, they can click the Check Out button on the form to place
an order. This action passes the Check Out command to the CartServlet servlet.

6. The CartServlet servlet posts a verification form, shown in Figure 10-28, and requests a
customer number.

Figure 10-28 CartServlet servlet

7. The user enters a customer number and clicks the Place Order button. This causes the
placeOrder method, shown in Example 10-19, to be called. It calls the connectStateless
and submitOrderStateless methods in the ItemsDb class, which in turn, connect to the
OrderPlacement session bean (which is stateless) and submit the order.
Chapter 10. Building Java applications with Enterprise JavaBeans 343

Example 10-19 The placeOrder method in CartServlet
private void placeOrder(PrintWriter out, ShoppingCart cart, String custID) throws
IOException {

 flexLog("CartServlet: placeOrder()...");
Vector OrderLines = new Vector();

Vector cartItems = cart.getItems();
if (cartItems.size() > 0) {

for (int i = 0; i < cartItems.size(); i++) {
CartItem citem = (CartItem) cartItems.elementAt(i);
com.ibm.itso.roch.cpwejb.interfaces.OrderDetail thisOrderDetail

 = new com.ibm.itso.roch.cpwejb.interfaces.OrderDetail(citem.getItemId(),
 Float.valueOf(citem.getPrice().replace('$','0')).floatValue(),
 1);

OrderLines.addElement(thisOrderDetail);
}; // end for
try{

 ItemsDB MyItemsDB = new ItemsDb();
MyItemsDB.connectStateless();
out.println("<H3>Your order has been processed.</H3>
");
out.println("Order number : ");
out.println(MyItemsDB.submitOrderStateless(custID, OrderLines));
out.println("

Thanks for your business");
out.flush();

}
catch (Exception e) {

e.printStackTrace();
out.println(e.getMessage());

}
}

}

10.4 Migration from EJB version 1.0 to version 1.1
This section describes features that are new or have changed in the EJB 1.1 specification. It
also discusses migration issues for enterprise beans written to version 1.0 of the EJB
specification. We mainly concentrate on the changes we made to the code while migrating the
OrderEntry application from version 1.0 to version 1.1.

From the client's perspective, enterprise beans written to version 1.1 of the EJB specification
appear nearly identical to enterprise beans written to version 1.0. From the application
developer's perspective, the following changes need to be made to make enterprise beans
written to version 1.0 of the EJB specification compatible with version 1.1 of the specification:

� Enterprise beans written to version 1.1 of the EJB specification are registered in a different
part of the JNDI namespace. For example, a client can look up the initial context of a
version 1.0 enterprise bean in JNDI by using the initialContext.lookup() method as
follows:

initialContext.lookup("com/ibm/Hello")

The JNDI lookup for the equivalent version 1.1 enterprise bean is:

initialContext.lookup("java:comp/env/ejb/Hello")

� The return value of the ejbCreate() method must be modified for all entity beans using
CMP. The ejbCreate() method is now required to return the same type as the primary
key; the actual value returned must be null.
344 WebSphere J2EE Application Development for the iSeries Server

� You must define and implement an ejbCreate() method for each way in which you want a
new instance of an enterprise bean to be created. For each ejbCreate() method that you
provide for an entity bean, you must also define a corresponding ejbPostCreate()
method. Each ejbCreate() and ejbPostCreate() method pair must correspond to a
specific create() method in the home interface that has the same number and types of
arguments.

� The EJBContext getEnvironment() method is deprecated. Use the JNDI naming context
java:comp/env to access the enterprise beans environment. For example, the code in
version 1.0 looks like this:

ds = (DataSource) initCtx.lookup("jdbc/” +
getEntityComtext().getEnvironment().getProperty(“dataSourceName”);

The EJB version 1.1 of the code looks like this:

String dataSourceName = (String)initCtx.lookup(“java:comp/env/dataSourceName”);
ds = (DataSource) initCtx.lookup("jdbc/” + dataSourceName);

� Throwing the java.rmi.RemoteException exception from the bean implementation is
deprecated in version 1.1. This exception should be replaced by the
javax.ejb.EJBException or a more specific exception such as the
javax.ejb.CreateException. The javax.ejb.EJBException class inherits from
javax.ejb.RuntimeException and does not need to be explicitly declared in the throws
clause. Declare the javax.ejb.EJBException exception in the remote and home interfaces,
as required by RMI.

10.5 Installing the OrderEntry application on the server
In this section, we install the OrderEntryApp enterprise application on WebSphere Application
Server Advanced Edition using the Administrative Console. We export the .ear file from
Application Developer and then deploy it on the WebSphere Application Server Version 4.0
Advanced Edition.

10.5.1 Generating the OrderEntry enterprise application
To generate the OrderEntry enterprise application file, follow these steps:

1. Select File-> Export from the Application Developer main screen.

2. The Export window appears as shown in Figure 10-29. Click Next.
Chapter 10. Building Java applications with Enterprise JavaBeans 345

Figure 10-29 Exporting an Enterprise Application project

3. In the next window, select the OrderEntryApp resource from the drop-down list for the
What resource do you want to export? field.

4. Enter a local folder for the Where do you want to export the resources to? field. Click
Finish as shown in Figure 10-30.

Figure 10-30 EAR export window
346 WebSphere J2EE Application Development for the iSeries Server

Once the OrderEntry application is exported, you can see the file in your local folder.

10.5.2 Deploying
First we copy the OrderEntryApp.ear file from our local drive to the iSeries IFS. We use the
wsws directory. The Administrative Console can now access it when creating enterprise
applications. To install the EAR file, follow these steps:

1. Open a command prompt window to start the Administrative Console. Wait until you see
the message Console Ready in the Console.

2. In the Console, select the wizard icon and click Install Enterprise Application. The
Specifying the Application or Module window displays, as shown in Figure 10-31. Make
sure that the Install Application radio button is selected. Click the Browse button next to
Path to locate the OrderEntryApp.ear file in the wsws directory. Enter OrderEntryApp for
the Application name.

Figure 10-31 Installing the application

3. Keep clicking Next until you see the Specifying the Default Datasource for EJB Modules
window. Click the Select Datasource button. Select the NativeDS Datasource. Enter a
user ID and password (twice) and click OK.

4. Click Next. In the Specifying Data Sources for individual CMP beans window, select all
three of the CMP beans.

5. Click the Select Datasource button. Then select the NativeDS Datasource.

6. Enter a user ID and password (twice) and click OK. Now we have a Data Source for each
CMP bean as shown in Figure 10-32.

Note: We use a data source named NativeDS. For information on how to create a data
source for WebSphere Application Server 4.0, see the redbook WebSphere 4.0
Installation and Configuration on the IBM ~ iSeries Server, SG24-6815.
Chapter 10. Building Java applications with Enterprise JavaBeans 347

Figure 10-32 Specifying Data Sources for CMP beans

7. Keep clicking Next until you see the Completing the Application Installation window.

8. Click Finish to install the application. When the Regenerate the application dialog
displays, click No.

9. Now we have successfully installed the OrderEntryApp enterprise application on
WebSphere Application Server Version 4.0 Advanced Edition. We need to stop the server.
Before we restart it, we set up the classpath to find the IBM Toolbox for Java classes used
by this application. As shown as Figure 10-33, click the server in the console. Click the
JVM Settings tab in the right pane. Add the following JAR files to the Classpath Settings
and click Apply:

– /QIBM/ProdData/Java400/jt400ntv.jar
– /QIBM/ProdData/http/public/jt400/lib/jt400.jar
348 WebSphere J2EE Application Development for the iSeries Server

Figure 10-33 Setting the classpath

10.Restart the server to make the new application ready. For an external HTTP server, you
need to regenerate the Web server plug-ins.

11.Finally test the application and see if everything works properly. To test the application,
open the browser and enter the following URL:

http://systemname:port/OrderEntry2/ItemSessionServlet

Replace systemname with the name of your iSeries server and the port with the HTTP
port number.

10.6 Conclusion
In this chapter, the focus of discussion was to create EJB applications using Application
Developer. We discussed the steps to create a simple session EJB and then develop a servlet
and application that uses the bean.

We also discussed the OrderEntry application in detail. It is an EJB-based version of the RPG
OrderEntry application discussed in Chapter 7, “Overview of the OrderEntry application” on
page 231.
Chapter 10. Building Java applications with Enterprise JavaBeans 349

350 WebSphere J2EE Application Development for the iSeries Server

Chapter 11. Interfacing to legacy applications

When developing new e-business applications, you need to consider using already existing
applications. In many cases, you have applications written in traditional iSeries languages
that perform complex business logic. Rather than re-writing these applications to Java, you
may want to interface with them from your new Java-based Web applications.

This chapter discusses using Enterprise JavaBeans to interface with legacy applications. In
this case, we interface with the OrderEntry application discussed in Chapter 7, “Overview of
the OrderEntry application” on page 231.

Sometimes you need some services from other applications that do not reside on your
system. You can reach these applications using middleware software such as MQSeries. We
show an example of using MQSeries to interface from Enterprise JavaBeans to other
applications.

11
© Copyright IBM Corp. 2002. All rights reserved. 351

11.1 Interfacing to legacy applications
There are a number of available options to call an existing traditional application from Java.
Some of the most commonly used options are:

� Distributed Program Call support is available with IBM Toolbox for Java. You can pass
parameters to and receive parameters back from an existing iSeries program. You must
handle all conversions between the Java and iSeries format.

� Program Call Markup Language (PCML) is a tag language that helps you call iSeries
programs while writing less Java code. PCML is based on XML, a tag syntax that you use
to describe the input and output parameters for iSeries programs. PCML enables you to
define tags that fully describe iSeries programs that will be called by your Java application.

� Data queues are iSeries objects that can be used to store data. They are convenient for
passing information between applications. If you use a data queue to interface between a
Java program and an existing iSeries non-Java program, you must handle data
conversions.

� Java Native Interface (JNI) for Java is part of the Java Development Kit (JDK). JNI allows
Java programs that run in a Java Virtual Machine (JVM) to operate with applications that
are written in other languages such as C, C++, and RPG. The IBM Toolbox classes are
easier to program than JNI. The advantage of JNI is that both the calling program and the
called program run in the same process (job). The other methods start a new process.
This makes JNI calls faster at start-up time and less resource intensive.

11.2 Modifying the RPG application
This section offers details about the transition of the RPG code on the host. The changes are
made to allow the application to run in one of two modes: as a native application with 5250
display interaction or in conjunction with the OrderEntryClerk Enterprise JavaBean.

11.2.1 Processing the submitted order
The iSeries server RPG program that handles a request to submit an order is ORDENTR.
When the OrderEntry application is run from an iSeries server 5250 session (no Java client),
ORDENTR is the entry point of the application. It displays the 5250 windows that correspond
to the Order Entry window in the Java client version. As shown in Figure 11-1, we use the IBM
Toolbox for Java Distributed Program Call interface to call the ORDENTR program from the
OrderEntryClerk EJB.
352 WebSphere J2EE Application Development for the iSeries Server

Figure 11-1 Calling the RPG program from an EJB

The ORDENTR program must be changed so that it recognizes the fact that it is being
invoked from Java. First, the number of parameters are ascertained through the program
status data structure using the following statements:

D PgmStsDS SDS
D NbrParms *PARMS

If the number of parameters is greater than zero, it is assumed that the program has been
invoked as a distributed program.

Since the Java client passes in two parameters, two data structures are declared that map to
the parameters. The Enterprise JavaBean passes two strings. The first string is nine
characters representing the customer ID (four characters) and the number of detail entries
(five characters). A data structure named CustDS is declared for this first parameter using the
following statements:

D CustDS DS
D CustNbr LIKE(CID)
D OrdLinCnt 5 0

The second parameter is a string that represents a contiguous grouping of detail entries.
Each entry has a length of 40, and there are a maximum of 50 entries. A data structure
named OrderMODS is declared for this parameter using the following statements:

D OrderMODS DS OCCURS(50)
D PartNbrX LIKE(IID)
D PartDscX LIKE(INAME)
D PartPriceX 5 2
D PartQtyX 5 0

An entry parameter list is added to the initialization subroutine. This ensures that the data
structures are loaded with the parameter values passed in using the following statements:

C *ENTRY PLIST
C PARM CustDS
C PARM OrderMODS
Chapter 11. Interfacing to legacy applications 353

As in the other RPG programs, the USROPN keyword is added to the file specification since
the file is not opened when invoked as a distributed program. The portion of the file
specification with the USROPN keyword is added using the following statements:

 ...WORKSTN SFILE(ORDSFL:SflRrn) USROPN

The mainline logic of the program is changed to check the number of parameters. If there are
parameters, a new subroutine called CmtOrder2 is invoked, and all display file processing is
bypassed using the following statements:

C IF NbrParms > *ZERO
C EXSR CmtOrder2
C EXSR EndPgm
C ENDIF

The CmtOrder2 subroutine is similar to the original CmtOrder subroutine. However, it
retrieves the order information from the CustDS and OrderMODS data structures rather than
from the display file and sub-file records.

11.3 Enhancing the Java application
The Program Call feature of IBM Toolbox for Java allows a Java program to directly execute
any non-interactive program object (*PGM) on the iSeries, passing parameters and returning
results through parameters. The Java developer must use the data conversion classes from
IBM Toolbox for Java to convert input parameters from the Java format to an iSeries data type
and convert output parameters from the iSeries format to a Java format.

The advantage of using the Distributed Program Call classes is that native non-interactive
programs can be executed in your Java application unchanged. Native program calls can also
result in better performance of your Java application when compared with JDBC. In addition,
this interface can call programs on the iSeries that do more than just database access. For
example, a Java application can call a program that starts nightly job processing, saves
libraries to tape, or sends or receives data via communication lines.

11.3.1 Changing the CartServlet servlet
The CartServlet is the responsible for showing the customer’s cart with the selected items
and allowing the customer to place an order. In the original application, the CartServlet uses
EJBs to do the placement of the order. We change the CartServlet servlet to interface with
the RPG program.

Adding the Place Order RPG option
We change the CartServlet to provide a second option for placing an order. As shown in
Figure 11-2, we add a new button labeled Place Order RPG. Clicking this button calls the
RPG program to place the order.
354 WebSphere J2EE Application Development for the iSeries Server

Figure 11-2 Placing an order

As shown in Example 11-1, the outputOrderForm method in the CartServlet program is
updated to display the new button.

Example 11-1 The updated outputOrderForm method

private void outputOrderForm(PrintWriter out, ShoppingCart cart) throws IOException {
flexLog("CartServlet: outputOrderForm()...");
try{out.println("<CENTER>");

out.println("<H3> Please verify the following order and enter your customer
 ID</H3>");

out.println("<FORM METHOD=POST ACTION=\"/OrderEntry2/ItemSessionServlet\" >");
out.println("<CENTER>");
outputCartTable(out, cart);
out.println("
<INPUT TYPE=submit value=\"Continue Shopping\" name=\"partno\">");
out.println("</CENTER>");
out.println("</FORM>");
out.println("<FORM METHOD=POST ACTION=\"/OrderEntry2/CartServlet\" >");
out.println("Enter your Customer ID:<INPUT TYPE=TEXT name=\"custid\">

");
out.println("<INPUT TYPE=submit value=\"Place Order\" name=\"command\">");
out.println("<INPUT TYPE=submit value=\"Place Order RPG\" name=\"command\">");
out.println("</CENTER>");
out.println("</BODY></HTML>");
flexLog("CartServlet: outputOrderForm() executed.");

} catch (Exception e) {
e.printStackTrace();
flexLog(e.getMessage());

}
} // end outputItemInformation()
Chapter 11. Interfacing to legacy applications 355

Managing Place Order input in CartServlet
Why can we use a single parameter to check whether you click the Place Order or Place
Order RPG button? It is because we give both buttons the name command. We check the
value of the command button to determine which button was clicked. When the customer
clicks the Place Order RPG button, the CartServlet receives the input through the doPost
method. The value of the parameter determines what to do. As shown in Example 11-2, if the
value is Place Order RPG, the doPost method calls the placeOrderRPG method.

Example 11-2 Changing the doPost method

else if (parameter.equalsIgnoreCase("Place Order RPG")){
String custID = request.getParameter("custid");
if (null == custID) custID="";

 // Make sure next order is clean
 session.invalidate();
 placeOrderRPG(out, cart, custID);

}

Creating the placeOrderRPG method
The placeOrderRPG method is shown in Example 11-3.

Example 11-3 The CartServlet placeOrderRPG method

private void placeOrderRPG(PrintWriter out, ShoppingCart cart, String custID) throws
IOException {

 flexLog("CartServlet: placeOrder()...");
Vector OrderLines = new Vector();

Vector cartItems = cart.getItems();
if (cartItems.size() > 0) {

for (int i = 0; i < cartItems.size(); i++) {
CartItem citem = (CartItem) cartItems.elementAt(i);
com.ibm.itso.roch.cpwejb.interfaces.OrderDetail thisOrderDetail

= new com.ibm.itso.roch.cpwejb.interfaces.OrderDetail(citem.getItemId(),
 Float.valueOf(citem.getPrice().replace('$','0')).floatValue(),
 1);

OrderLines.addElement(thisOrderDetail);
}; // end for
try{

MyItemsDB.connectStateless();
out.println("<FORM METHOD=\"get\"

 ACTION=\"/OrderEntry2/ItemSessionServlet\">");

out.println("<H3>Your order has been processed by an RPG program.</H3>
");
out.println("Order number : ");
out.println(MyItemsDB.submitOrderStatelessRPG(custID, OrderLines));
out.println("

Thanks for your business

");

out.println("

<INPUT TYPE=submit value=\"Shop Some More...\"
 name=\"command\">");

out.flush();
}
catch (Exception e) {
356 WebSphere J2EE Application Development for the iSeries Server

e.printStackTrace();
out.println(e.getMessage());

}
}

}

This method retrieves the items from the shopping cart and adds them to a vector. It uses the
ItemsDb class to interface with the OrderPlacement EJB. An instance of the ItemsDb class
named MyItemsDB is instantiated. The MyItemsDB object submitOrderStatelessRPG method
is called to submit the order to the server. The customer number and the vector containing the
items to order are passed to this method. The submitOrderStatelessRPG method returns the
order number, and it is displayed on the browser.

11.3.2 Changing the ItemsDb class
We add a new method to the ItemsDb class named submitOrderStatelessRPG.

Example 11-4 The ItemDb submitOrderStatelessRPG method

public int submitOrderStatelessRPG(String CustID, java.util.Vector OrderLines) throws
Exception {

int returnvalue;
try {

returnvalue = (int)OrderPlacer.placeOrderRPG("0001", 1, CustID, OrderLines);
} catch (Exception e) {

throw (e);
}
return returnvalue;

}

OrderPlacer is an instance of the OrderPlacement session EJB. We call its placeOrderRPG
method. Four parameters are passed in. The warehouse ID and district ID are set to “0001”
and 1 respectively. The customer number and a vector containing the items to order are
passed in. If everything works successfully, the placeOrderRPG method returns the order
number of the order created.

11.3.3 Changing the OrderPlacement session bean
Now we need to enhance the OrderPlacement session bean to call the RPG program to place
an order. We add a new method to the OrderPlacement bean named placeOrderRPG. This is
the method that is called from the ItemsDb class as we saw in the previous topic. We also add
a new internal method to OrderPlacement named submitOrder(String header, String
detail). The submitOrder method contains the actual IBM Toolbox for Java calls. It is called
from the placeOrderRPG method. It cannot be called from a client application because we do
not add it to the remote interface.

First, we use Application Developer to externalize the name of the program to call. We also
store the iSeries user ID and password to use when creating the AS400 object. To add these
values to the bean properties, follow these steps:

1. In the WebSphere Application Developer, open the J2EE perspective, as shown in
Figure 11-3.
Chapter 11. Interfacing to legacy applications 357

Figure 11-3 Opening the J2EE perspective

2. In the J2EE view, expand EJB Modules.

3. Right-click the ToWebSphere EJB Module and select Open With-> EJB Editor as shown
in Figure 11-4.

Figure 11-4 Opening the EJB Editor

4. Go to the Environment pane.

5. Select the OrderPlacement EJB and click the Add button.

6. Select (New Variable) and change it to dataSourceName.

7. Select the value column for the dataSourceName property and enter NativeDS.

8. Add the variables as shown in Table 11-1.

Table 11-1 Properties for OrderPlacement EJB

Figure 11-5 shows the EJB editor with all the environment variables.

Environment variable Type Value

DataQueueName String /QSYS.LIB/TEAM41.LIB/ORDERS.DTAQ

library String TEAM41

program String ORDENTR

user String A valid user ID

password String A valid password
358 WebSphere J2EE Application Development for the iSeries Server

Figure 11-5 EJB Editor - Environment pane

The placeOrderRPG method
Now we create the placeOrderRPG method as shown in Example 11-5.

Example 11-5 The placeOrderRPG method

public float placeOrderRPG(String wID, int dID, String cID, java.util.Vector orderLines)
throws EJBException {

System.out.println("into placeOrderRPG");
String orderNumber = null;
String custID = cID;
Vector items = orderLines;
try {

// Maximum of 50 order lines
String numLines = null;
if (items.size() >= 10)

numLines = "000" + Integer.toString(items.size());
else

numLines = "0000" + Integer.toString(items.size());
String header = custID + numLines;
String details = null;
InitialContext initCtx = new InitialContext();
ItemHome iHome = (ItemHome) initCtx.lookup("Item");
for (int i = 0; i < items.size(); i++) {

OrderDetail od = (OrderDetail) items.elementAt(i);
Item item = iHome.findByPrimaryKey(new ItemKey(od.getItemID()));
String qty;
if (od.getItemQty() < 10)

qty = "0000" + Integer.toString(od.getItemQty());
else

qty = "000" + Integer.toString(od.getItemQty());
StringBuffer priceBuffer = new StringBuffer(5);
String priceString = Float.toString(item.getItemPrice());
int decimalPosition = priceString.indexOf('.');
String priceString1 = priceString.substring(0, decimalPosition);
String priceString2 = priceString.substring(decimalPosition + 1);
if (priceString2.length() == 1) {

priceString2 += "0";
}
priceString = priceString1 + priceString2;
for (int j = 0; j < 5 - priceString.length(); j++) {
Chapter 11. Interfacing to legacy applications 359

priceBuffer.append('0');
}
priceBuffer.append(priceString);
// set the name making sure trailing blanks are there
StringBuffer nameBuffer = new StringBuffer(24);
nameBuffer.append(item.getItemName());
for (int j = nameBuffer.length() + 1; j < 25; j++) {

nameBuffer.append(' ');
}
if (details == null)

details = od.getItemID() + nameBuffer + priceBuffer + qty;
else

details += od.getItemID() + nameBuffer + priceBuffer + qty;
}
// call the submitOrder method to place the order
orderNumber = submitOrder(header, details);
// Clear out the state of the session bean at this point
items = new Vector();
custID = null;

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return Float.parseFloat(orderNumber);

}

The placeOrderRPG method is responsible for calling the submitOrder method, which contains
the actual IBM Toolbox for Java code that calls the RPG program.

Before we call the submitOrder method, we set two parameters:

� The first parameter is a string that is a concatenation of the customer ID and the number
of entries in the order. This data is fixed in length. The first four bytes are designated for
the customer ID, while the last five bytes are for the number of entries. This character data
will be interpreted as two separate zoned numeric fields on the iSeries server. These nine
bytes of data are the first nine bytes in the string returned by the Order.toString()
method.

� The second parameter is a block of character data that represents an array corresponding
to the order information. Each element in the array corresponds to an item to be ordered.
Each row is a fixed length String with the different elements of an entry beginning at the
following offsets:

– item id: offset 0
– item desc: offset 6
– item qty: offset 30
– item price: offset 35

The submitOrder method
Calling a native iSeries program using The IBM Toolbox for Java Distributed Program Call
class involves the following steps:

1. Connect to the iSeries server by creating an AS400 object.

2. Create a ProgramCall object.

3. Define and initialize a ProgramParameter array for passing parameters to and from the
called program.

4. Use the Data Conversion classes to convert input parameter values from the Java to
iSeries format.
360 WebSphere J2EE Application Development for the iSeries Server

5. Use the setProgram method to specify the qualified name of the program to call and
parameters to use.

6. Execute the program using the run method.

7. If the run method fails, obtain detailed error information via AS400Message objects.

8. Retrieve output parameters using the getOutputData method of the ProgramParameter
object.

9. Convert the output parameter values using the data conversion classes.

The data conversion classes provide the capability to convert numeric and character data
between the iSeries and Java formats. Conversion may be needed when accessing iSeries
data from a Java program. The data conversion classes support the conversion of various
numeric formats and between various EBCDIC code pages and unicode.

The AS400DataType is an interface that defines the methods required for data conversion. A
Java program uses data types when individual pieces of data need to be converted.
Conversion classes exist for the following types of data:

� Numeric
� Text (character)
� Composite (numeric and text)

The data description classes build on the data conversion classes to convert all fields in a
record with a single method call. The RecordFormat class allows the program to describe
data that makes up a DataQueueEntry, ProgramCall parameter, a record in a database file
accessed through record-level access classes, or any buffer of iSeries data. The Record
class allows the program to convert the contents of the record and access the data by field
name or index.

The IBM Toolbox for Java provides classes for building on the data types classes to handle
converting data one record at a time instead of one field at a time. For example, suppose a
Java program reads data off a data queue. The data queue object returns a byte array of
iSeries data to the Java program. This array can potentially contain many types of iSeries
data. The application can convert one field at a time out of the byte array by using the data
types classes. Or, the program can create a record format that describes the fields in the byte
array. That record then does the conversion.

Record format conversion can be useful when you are working with data from the program
call, data queue, and record-level access classes. The input and output from these classes
are byte arrays that can contain many fields of various types. Record format converters can
make it easier to convert this data between the iSeries format and Java format.

Conversion with the record format uses three classes:

� Field description classes identify a field or parameter with a data type and a name.
� A record format class describes a group of fields.
� A record class joins the description of a record (in the record format class) with the actual

data.

The submitOrder method, shown in Example 11-6, uses the IBM Toolbox for Java Distributed
Program Call class (DPC) to call the RPG program named ORDENTR. It passes two
parameters to the ORDENTR program. The first parameter contains information about the
customer. The second parameter contains information about the items to order. The RPG
program contains all the logic for creating an order and updating the appropriate tables.
Chapter 11. Interfacing to legacy applications 361

Example 11-6 The submitOrder method
private String submitOrder(String header, String detail) throws

 java.rmi.RemoteException {
String newOrder = null;
try {

 AS400 as400 = new AS400("localhost",
 mySessionCtx.getEnvironment().getProperty("user"),
 mySessionCtx.getEnvironment().getProperty("password"));

 ProgramCall ordEntrPgm = new ProgramCall(as400);
 QSYSObjectPathName pgmName = new

 QSYSObjectPathName(mySessionCtx.getEnvironment().getProperty("library"),
 mySessionCtx.getEnvironment().getProperty("program"), "PGM");

 ProgramParameter[] parmList = new ProgramParameter[2];
// set the first parameter which is the order header
 AS400Text text1 = new AS400Text(9);
 byte[] headerInfo = text1.toBytes(header);
 parmList[0] = new ProgramParameter(headerInfo, 9);
 AS400Text text2 = new AS400Text(detail.length());
 byte[] detailInfo = text2.toBytes(detail);
 parmList[1] = new ProgramParameter(detailInfo);
 ordEntrPgm.setProgram(pgmName.getPath(), parmList);
 if (ordEntrPgm.run() != true) {

 // If you get here, the program failed to run.
 // Get the list of messages to determine why
 // the program didn't run.
 AS400Message[] messageList = ordEntrPgm.getMessageList();
 throw new CpwejbException("OrderEntryClerkBean: " +

 messageList[0].getText());
 }

 newOrder = ((String) (new AS400Text(9).toObject(parmList[0].getOutputData(),
 0))).substring(0, 4);

} catch (Exception e) {
 throw new RemoteException("Error submitting order: " + e.getMessage());

 }
return newOrder;
}

We first create an AS400 object. The system name is localhost. Using the properties that we
retrieve from the deployment descriptor, we set the user ID and password.

Next, we set the name of the program to call. Again we use properties to set these values.
Before we call the program, we set two parameters:

� The first parameter is a string that is a concatenation of the customer ID and the number
of entries in the order.

� The second parameter is a block of character data that represents an array corresponding
to the order information.

After we run the program, we check to see whether the program is a success or failure. If the
program fails, we retrieve the error messages. If it is successful, the new order number is
returned in the first parameter. We return it to our caller.

In this example, an RPG program is called from an Enterprise JavaBean. The server must
find the RPG program. This is accomplished by changing the current library for the user
profile that calls the program to the library containing the program. In this case, the RPG
program in stored in a library named TEAM41.
362 WebSphere J2EE Application Development for the iSeries Server

11.4 Using data queues to interface to legacy applications
A data queue is a system object that exists on the iSeries server. Data queues have the
following characteristics:

� They can be accessed by many jobs simultaneously.

� They can be used to hold data being passed back and forth between jobs.

� Messages on a data queue are free format; fields are not required like they are in a
database.

� The data queue is a fast means of communications between jobs on the iSeries server.
This makes it an excellent way to communicate or synchronize iSeries jobs.

� The messages on a data queue can be ordered in one of three ways:

– LIFO: The last message (newest) placed on the data queue is the first message taken
off of the queue.

– FIFO: The first message (oldest) placed on the data queue is the first message taken
off of the queue.

– KEYED: Each message on the data queue has a key associated with it. A message
can only be taken off of the queue by requesting the key associated with it.

The DataQueue classes allow Java programs to interact with iSeries data queues. They
provide a complete set of interfaces for accessing the iSeries data queues from your Java
program. It is an excellent way to communicate between Java programs and iSeries
programs. You can write the iSeries program in any language.

A required parameter of each data queue object is the AS400 object that represents the
iSeries server that has the data queue or where the data queue is to be created. Using the
data queue classes causes the AS400 object to connect to the server. Each data queue
object requires the integrated file system path name of the data queue. The type for the data
queue is DTAQ.

11.4.1 Interfacing to data queues from EJBs
As shown in Figure 11-6, we
use data queue support to
interface between the
OrderPlacement enterprise
bean and an RPG program
named PRTORDERP. The RPG
program prints order requests.

The OrderPlacement bean
places order information on an
iSeries data queue each time it
places an order. PRTORDERP
is a never-ending RPG program
that runs in the batch
subsystem. It waits for entries to
appear on the data queue.
When an entry appears, it uses
the information to create a print
request. The output produced
by PRTORDERP is shown in
Figure 11-7.

Figure 11-6 Using data queues to interface with RPG
Chapter 11. Interfacing to legacy applications 363

Figure 11-7 A printed order

Figure 11-8 shows the deployment descriptor used to externalize the name of the data queue.
This helps us avoid having to make program changes when we want to change the name of
the data queue.

Figure 11-8 Setting the data queue name

11.4.2 The writeDataQueue method
We add the writeDataQueue method to the OrderPlacement EJB. It is called from the
placeOrder method. It places the order information on the data queue so it can be read and
printed by the RPG program. We do not add the writeDataQueue method to the remote
interface because we do not want to make it available to client programs. It can only be called
by methods of the OrderPlacement EJB. See Example 11-7.

 Display Spooled File
 File : PRTORDERP Page/Line 1/2
 Control Columns 1 - 78
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 ABC Company - Part Order
 OAKLEY, Annie O Order Nbr: 3551
 00001 Ave. ABC Order Date: 2-27-2002
 Bldg 00001
 Des_Moines_ IO 07891-2345
 Part Description Quantity Price Discount Amount
 ==
 000008 Cross_Country_Ski_Set 1 $ 93.00 .1140 $92.89
 000001 WEBSPHERE REDBOOK 1 $ 30.00 .1140 $29.96

 Order total: $122.85
 ==============

 Bottom
 F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
364 WebSphere J2EE Application Development for the iSeries Server

Example 11-7 The writeDataQueue method
private void writeDataQueue(String wID, int dID, String cID, float oID) throws

Exception {
 AS400 as400 = new AS400("localhost", "*current", "*current");
 CharacterFieldDescription as4CustomerID = new
 CharacterFieldDescription(new AS400Text(4), "customerID");
 PackedDecimalFieldDescription as4DistrictID = new
 PackedDecimalFieldDescription(new AS400PackedDecimal(3,0), "districtID");
 CharacterFieldDescription as4WarehouseID = new
 CharacterFieldDescription(new AS400Text(4), "warehouseID");
 PackedDecimalFieldDescription as4OrderID = new
 PackedDecimalFieldDescription(new AS400PackedDecimal(9,0), "orderID");
 String dataQueueName = props.getProperty("DataQueueName");
 DataQueue dqOutput = new DataQueue(as400, dataQueueName);

 RecordFormat rfOutput = new RecordFormat();
 rfOutput.addFieldDescription(as4CustomerID);
 rfOutput.addFieldDescription(as4DistrictID);
 rfOutput.addFieldDescription(as4WarehouseID);
 rfOutput.addFieldDescription(as4OrderID);
// Create wrappers for dID and oID because setField only works on objects.

 BigDecimal dIDObject = new BigDecimal(dID);
 BigDecimal oIDObject = new BigDecimal(oID);
// Set up the data queue entry field values
 Record recordOutput = rfOutput.getNewRecord();
 recordOutput.setField("customerID", cID);
 recordOutput.setField("warehouseID", wID);
 recordOutput.setField("orderID", oIDObject);
 recordOutput.setField("districtID", dIDObject);
// Send the data queue entry
 dqOutput.write(recordOutput.getContents());
 return;

} }

The AS400 object allows special values for system name, user ID, and password when the
Java program is running on the iSeries Java Virtual Machine. They are localhost for system
name and *current for user ID and password.

When you run a program on the iSeries JVM, be aware of some special values and other
considerations:

� If the system name, user ID, or password is not set on the AS400 object, the AS400 object
connects to the current system by using the user ID and password of the job that started
the Java program.

� The special value, localhost, can be used as the system name. In this case, the AS400
object connects to the current system.

� The special value, *current, can be used as the user ID or password on the AS400 object
when the Java program is running on the JVM of one iSeries server and is accessing
resources on another iSeries server. In this case, the user ID and password of the job that
started the Java program on the source system are used when connecting to the target
system.

� The Java program cannot set the password to "*current" if you are using record-level
access. When you use record-level access, "localhost" is valid for system name and
"*current" is valid for user ID. However, the Java program must supply the password.

� The value *current works only on systems running at Version 4 Release 3 (V4R3) and
later. The password and user ID must be specified on systems running at V4R2.
Chapter 11. Interfacing to legacy applications 365

In this example, we use record format conversion. It can be useful when you are working with
data from data queues. The input and output from these classes are byte arrays that can
contain many fields of various types. Record format converters can make it easier to convert
this data between the iSeries format and the Java format.

We show the call to write the entry to the data queue. Since we have set up a record format to
handle the data conversions. We only have to set the fields of the record format before writing
the entry to the data queue.

11.5 Using MQSeries to interface to legacy applications
MQSeries is a middleware product that runs on many platforms. It uses queues to allow
applications to interface with other applications. It is similar to iSeries data queue support.
However, data queue support only runs on the iSeries server. With MQSeries, you can
interface to applications running on many different environments, including the iSeries server.
The applications can be on the same system or different systems.

This section shows you how to send data to an MQSeries queue using Java application
programming interfaces (APIs). These APIs allow you to integrate your application with any
other application that can read messages from an MQSeries queue. We change the
application discussed in 11.4, “Using data queues to interface to legacy applications” on
page 363, to use an MQSeries queue instead of a data queue. This allows us to send the
order information to any platform capable of running MQSeries.

The MQSeries API classes are included in the com.ibm.mq.jar file. To use MQSeries in
Application Developer, you must add this file to the Java Build Path of your project properties.
To run an application using MQSeries on WebSphere Application Server, you need to add
this file to the classpath, as shown in Figure 11-9.

Figure 11-9 Including the com.ibm.mq.jar file in the JVM settings
366 WebSphere J2EE Application Development for the iSeries Server

You can download this file from:
http://www.iseries.ibm.com/developer/ebiz/mqseries/mqjava400.html

When you use the MQSeries API, you must understand these concepts:

� Hostname is the machine that allocates the MQSeries server. This machine can be the
same one that is running your application or a different one.

� Queue Manager provides message queueing services for applications.

� Channel connects an MQSeries client to a queue manager on a server system and
transfers MQ calls and responses.

� Queue is an MQSeries object. Clients can put messages on, and get messages from, a
queue.

11.5.1 The MQCon class
To encapsulate all the MQSeries APIs, we create a class that provides all the functionality
that applications require. To make application methods easier to write, all the MQSeries
functions are found in this class.

Declaration of the MQCon class
First we import the classes that are included into the com.ibm.mq package. We create the
variables that define the MQSeries objects. These objects are hostname, queue manager,
channel, and the queue. We also declare a queue manager object. The MQCon class is
defined as shown in Example 11-8.

Example 11-8 The MQCon class definition

import com.ibm.mq.*;

public class MQCon
{

private String hostname;
private String qManager;
private String channel;
private String queue;

private MQQueueManager qMgr;

The MQCon constructor
The constructor for the MQCon class (Example 11-9) accepts the values of the declared
variables. When you create an MQCon object, you pass in hostname, queue manager,
channel, and queue. In the constructor these parameters are set to the class variables. We
also need to set the hostname and the channel for the MQSeries environment. We set two
environment transport properties.

Example 11-9 The MQCon constructor

public MQCon(String hostname_, String qManager_, String channel_, String queue_)
{

super();
Chapter 11. Interfacing to legacy applications 367

http://www.iseries.ibm.com/developer/ebiz/mqseries/mqjava400.html

hostname = hostname_;
qManager = qManager_;
channel = channel_;
queue = queue_;

MQEnvironment.hostname = hostname;
MQEnvironment.channel = channel;
MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,MQC.TRANSPORT_MQSERIES);

}

Connecting to the queue manager
We create a method to make the connection to the queue manager (Example 11-10). This
method can be used when you need to interact with MQSeries. The method returns true if the
connection is successful. You must handle an MQException that can be thrown when trying to
connect to the queue manager.

Example 11-10 The connectTOQM method

public boolean connectTOQM()
{

boolean res = true;
try
{

qMgr = new MQQueueManager(qManager);
System.out.println("connected");

}
catch (MQException ex)
{

res = false;
String resS = "ERROR MQSeries : Completion Code " + ex.completionCode +

 " Reason Code " + ex.reasonCode;
System.out.println(resS);

}
return res;

}

Putting messages in a queue
To put messages in the queue, we create a method named putMQ (Example 11-11). This
method receives the message through a parameter. If the message is sent to the queue
correctly, the method returns the message ID. If an error occurs, the method returns
“ERROR” and an explanation of the error.

The method connects to the queue manager using the connectTOQM method. Then it opens
the queue using simple options. A MQMessage instance is created, and we can write
messages to it. Finally, we close the queue, disconnect from the queue manager, and return
the message ID value.

Example 11-11 The putMQ method

public byte[] putMQ(String msg)
{

byte[] res;
try
368 WebSphere J2EE Application Development for the iSeries Server

{
if (this.connectTOQM())
{

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |
 MQC.MQOO_OUTPUT;

MQQueue mqQueue = qMgr.accessQueue(queue,
 openOptions);

MQMessage mqMsg = new MQMessage();
mqMsg.writeUTF(msg);

MQPutMessageOptions pmo = new MQPutMessageOptions();
mqQueue.put(mqMsg, pmo);
System.out.println("MQCon.putMQ():Message:<<" +

new String(mqMsg.messageId) + ">>" +
msg + "=");

res = mqMsg.messageId;

mqQueue.close();
qMgr.disconnect();

}
else
{

res = new String("ERROR MQSeries connection:" + msg).getBytes();
}

}
catch (MQException ex)
{

res = new String("ERROR MQSeries : Completion Code " + ex.completionCode +
 " Reason Code " + ex.reasonCode).getBytes();

System.out.println(res);
}
catch (java.io.IOException ex)
{

res = new String("ERROR MQSeries IO:"+ ex).getBytes();
System.out.println(res);

}
return res;

}

Reading messages
We also create a method named getMQ (Example 11-12). This method is not necessary for
our application, but we include it to show how to get a message from a queue. This method
receives the message Id of the message to read.

The method connects to the queue manager using the connectTOQM method. A MQMessage
instance is created. We read the message using the readUTF method. Finally, we close the
queue, disconnect from the queue manager, and return the message.

Example 11-12 The getMQ method

public String getMQ(byte[] msgId)
{

String res = "ERROR";

try
Chapter 11. Interfacing to legacy applications 369

{
if (this.connectTOQM())
{

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |
 MQC.MQOO_OUTPUT;

MQQueue mqQueue = qMgr.accessQueue(queue,
 openOptions);

MQMessage retrievedMessage = new MQMessage();
retrievedMessage.messageId = msgId;

MQGetMessageOptions gmo = new MQGetMessageOptions();

mqQueue.get(retrievedMessage, gmo);
res = retrievedMessage.readUTF();

System.out.println("MQCon.getMQ():Message:<<" +
new String(retrievedMessage.messageId) + ">>" +
res + "=");

mqQueue.close();
qMgr.disconnect();

}
else
{

res = "ERROR MQSeries connection";
}

}
catch (MQException ex)
{

res = "ERROR MQSeries : Completion Code " + ex.completionCode +
 " Reason Code " + ex.reasonCode;

System.out.println(res);
}
catch (java.io.IOException ex)
{

res = "ERROR MQSeries IO:"+ ex;
System.out.println(res);

}

return res;
}

11.5.2 Including MQSeries in the OrderEntry application
In this section, we show how to include MQSeries calls in the OrderEntry application.

Changing the CartServlet servlet
The CartServlet is the responsible of showing the customer’s cart with the selected items and
allowing the customer to place an order. We change the CartServlet servlet to use the
MQSeries interface.
370 WebSphere J2EE Application Development for the iSeries Server

Showing the Place Order MQ option
We add a new button to the CartServlet output form. It allows customers to place and order
and have the order information placed on a MQSeries queue. This interface is similar to the
data queue example discussed in 11.4, “Using data queues to interface to legacy
applications” on page 363. The difference is that data queues only work on the iSeries server,
while MQSeries works on many platforms. The new form is shown in Figure 11-10.

Figure 11-10 The place order page

Example 11-13 shows the updated outputOrderForm method. We add a new button with a
type of submit and a value of Place Order MQ.

Example 11-13 The outputOrderForm

private void outputOrderForm(PrintWriter out, ShoppingCart cart) throws IOException {
flexLog("CartServlet: outputOrderForm()...");
try{out.println("<CENTER>");

out.println("<H3> Please verify the following order and enter your customer
 ID</H3>");

out.println("<FORM METHOD=POST ACTION=\"/OrderEntry2/ItemSessionServlet\" >");
out.println("<CENTER>");
outputCartTable(out, cart);
out.println("
<INPUT TYPE=submit value=\"Continue Shopping\" name=\"partno\">");
out.println("</CENTER>");
out.println("</FORM>");
out.println("<FORM METHOD=POST ACTION=\"/OrderEntry2/CartServlet\" >");
out.println("Enter your Customer ID:<INPUT TYPE=TEXT name=\"custid\">

");
out.println("<INPUT TYPE=submit value=\"Place Order\" name=\"command\">");
out.println("<INPUT TYPE=submit value=\"Place Order RPG\" name=\"command\">");
out.println("<INPUT TYPE=submit value=\"Place Order MQ\" name=\"command\">");
out.println("</CENTER>");
out.println("</BODY></HTML>");
flexLog("CartServlet: outputOrderForm() executed.");

} catch (Exception e) {
Chapter 11. Interfacing to legacy applications 371

e.printStackTrace();
flexLog(e.getMessage());

}
} // end
outputItemInformation()

Managing the Place Order input in CartServlet
We use a single parameter to check whether you click the Place Order, the Place Order
RPG, or the Place Order MQ button. This is because we give all the buttons the name
command. We check the value of the command button to determine which button was clicked.
When the customer clicks the Place Order MQ button, the CartServlet receives the input
through the doPost method. The value of the parameter determines what to do. As shown in
Example 11-14, if the value is “Place Order MQ”, the doPost method calls the placeOrderMQ
method.

Example 11-14 Changing the doPost method

else if (parameter.equalsIgnoreCase("Place Order MQ")){
String custID = request.getParameter("custid");
if (null == custID) custID="";

 // Make sure next order is clean
session.invalidate();
placeOrderMQ(out, cart, custID);

}

The placeOrderMQ method
To process the order with the RPG program, we create a new method. This method is called
placeOrderMQ and is shown in Example 11-15.

Example 11-15 The placeOrderMQ method in CartServlet

private void placeOrderMQ(PrintWriter out, ShoppingCart cart, String custID) throws
IOException {

 flexLog("CartServlet: placeOrderMQ()...");
Vector OrderLines = new Vector();

Vector cartItems = cart.getItems();
if (cartItems.size() > 0) {

for (int i = 0; i < cartItems.size(); i++) {
CartItem citem = (CartItem) cartItems.elementAt(i);
com.ibm.itso.roch.cpwejb.interfaces.OrderDetail thisOrderDetail

= new com.ibm.itso.roch.cpwejb.interfaces.OrderDetail(citem.getItemId(),
 Float.valueOf(citem.getPrice().replace('$','0')).floatValue(),
 1);

OrderLines.addElement(thisOrderDetail);
}; // end for
try{

MyItemsDB.connectStateless();
out.println("<FORM METHOD=\"get\"

 ACTION=\"/OrderEntry2/ItemSessionServlet\">");

out.println("<H3>Your order has been processed and sent to an MQ queue.</H3>

");
372 WebSphere J2EE Application Development for the iSeries Server

out.println("Order number : ");
out.println(MyItemsDB.submitOrderStatelessMQ(custID, OrderLines));
out.println("

Thanks for your business

");

out.println("

<INPUT TYPE=submit value=\"Shop Some More...\"
 name=\"command\">");

out.flush();
}
catch (Exception e) {

e.printStackTrace();
out.println(e.getMessage());

}
}

}

This method retrieves the items from the shopping cart and adds them to a vector. It uses the
ItemsDb class to interface with the OrderPlacement EJB. An instance of the ItemsDb class
named MyItemsDB is instantiated. The MyItemsDB object submitOrderStatelessMQ method
is called to submit the order to the server. The customer number and the vector containing the
items to order is passed to this method. The submitOrderStatelessMQ method returns the
order number; it is displayed on the browser.

11.5.3 Changing the ItemsDb class
As we saw in the previous section, the CartServlet uses an instance of the ItemDb class to
place an order. We add the submitOrderStatelessMQ method (Example 11-16) to this class.

Example 11-16 The submitOrderStatelessMQ method

public int submitOrderStatelessMQ(String CustID, java.util.Vector OrderLines) throws
Exception {

int returnvalue;
try {

returnvalue = (int)OrderPlacer.placeOrderMQ("0001", 1, CustID, OrderLines);
} catch (Exception e) {

throw (e);
}
return returnvalue;

}

OrderPlacer is an instance of the OrderPlacement session EJB. We call its placeOrderMQ
method. Four parameters are passed in. The warehouse ID and district ID are set to “0001”
and 1 respectively. The customer number and a vector containing the items to order are
passed in. If everything works successfully, the placeOrderMQ method returns the order
number of the order created.
Chapter 11. Interfacing to legacy applications 373

11.5.4 Changing the OrderPlacement session bean
We need to enhance the OrderPlacement session bean to send a message to an MQSeries
queue after placing the order. We add a new method to the OrderPlacement bean named
placeOrderMQ. This is the method that is called from the ItemsDb submitOrderStatelessMQ
method. We also add a new internal method to the OrderPlacement EJB named writeMQ. The
writeMQ method creates an instance of an MQCon object in order to send the message to the
queue. The writeMQ method is called from the placeOrderMQ method. It cannot be called from
a client application because we do not add it to the remote interface.

We use Application Developer to externalize the name of the MQSeries resources such as
hostname, queue manager, channel, and queue. To add these values to the bean properties,
follow these steps:

1. In the WebSphere Application Developer, open the J2EE perspective, as shown in
Figure 11-11.

Figure 11-11 Opening the J2EE perspective

2. In the J2EE view, expand EJB Modules.

3. Right-click the ToWebSphere EJB Module and select Open With-> EJB Editor, as shown
in Figure 11-12.

Figure 11-12 Opening the EJB Editor

4. Go to the Environment pane.

5. Select the OrderPlacement EJB and click the Add button.

6. Select (New Variable) and change it to hostname.
374 WebSphere J2EE Application Development for the iSeries Server

7. Select the value column for the hostname property and enter the name of the server that
contains the MQSeries server.

We add the environment variables shown in Table 11-2.

Table 11-2 Properties for OrderPlacement EJB

Figure 11-13 shows the EJB Editor with our values.

Figure 11-13 OrderPlacement MQSeries properties

Now we create the placeOrderMQ method as shown in Example 11-17. This method is similar
to the original placeOrder method. The only difference is we call the MQSeries interface
instead of the data queue interface.

Example 11-17 The placeOrderMQ method.

public float placeOrderMQ(String wID, int dID, String cID, Vector orderLines) throws
EJBException {

float oID = 0;
try {

//The InitialContext will let us retrieve references to the entity beans we need.
InitialContext initCtx = new InitialContext();

 //Get the Order Number from the District entity bean.
DistrictHome dHome = (DistrictHome) initCtx.lookup("District");
DistrictKey districtID = new DistrictKey(dID, wID);
District district = (District) dHome.findByPrimaryKey(districtID);

 int oIDint;
oIDint = district.getNextOrderId(true); //'true' tells the District to increment the

 order id.
oID = oIDint;

Environment variable Type Value

hostname String The name of the machine that contains the MQServer

qmanager String The name of the Queue Manager

channel String The name of the Channel

queue String The name of the queue
Chapter 11. Interfacing to legacy applications 375

//Update the Stock level for each item in an order line using the Stock entity bean
StockHome sHome = (StockHome) initCtx.lookup("Stock");
Enumeration lines = orderLines.elements();
float orderTotal = 0;
while (lines.hasMoreElements()) {

OrderDetail od = (OrderDetail) lines.nextElement();
String itemID = od.getItemID();
int itemQty = od.getItemQty();
orderTotal += od.getItemAmount(); //Calculate the order total while we are going

 through the orders.
StockKey stockID = new StockKey(wID, itemID);
//StockKey stockID = new StockKey(itemID, wID);
Stock stock = (Stock) sHome.findByPrimaryKey(stockID);
stock.decreaseStockQuantity(itemQty);

}
 //Save the Order to the database by creating an Order entity bean
OrderHome oHome = (OrderHome) initCtx.lookup("Order");
oHome.create(wID, dID, cID, oID, orderLines);
 //Update the Customer records using the Customer entity bean
CustomerHome cHome = (CustomerHome) initCtx.lookup("Customer");
CustomerKey customerID = new CustomerKey(cID);
Customer customer = (Customer) cHome.findByPrimaryKey(customerID);
customer.updateBalance(orderTotal);
//Write the order to the MQ queue.
try {
 writeMQ(wID, dID, cID, oID);

} catch (Exception e) {

System.out.println("writeMQ error: " + e.getMessage());
throw new RemoteException(e.getMessage());

}

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return oID;

}

The writeMQ method, shown in Example 11-18, uses the MQCon class to send the message
to MQSeries. First, the MQSeries resource names are obtained from the OrderPlacement
properties using the InitialContex object. We create an String object that contains the order
data. A new MQCon instance is created. We put the order on the queue using the putMQ
method.

Example 11-18 The writeMQ method
private void writeMQ(String wID, int dID, String cID, float oID) throws Exception
{

InitialContext initCtx = new InitialContext();

String hostname = (String)initCtx.lookup("java:comp/env/hostname");
String channel = (String)initCtx.lookup("java:comp/env/channel");
String qmanager = (String)initCtx.lookup("java:comp/env/qmanager");
String queue = (String)initCtx.lookup("java:comp/env/queue");

String order= wID + "=" + dID + "=" + cID + "=" + oID;
MQCon mqcon = new MQCon(hostname, qmanager, channel, queue);
376 WebSphere J2EE Application Development for the iSeries Server

byte[] res = mqcon.putMQ(order);
System.out.println(new String(res));

}

With the writeMQ method, we only put a message into a queue. MQSeries can send the
message to a program on the same system or another system. This is controlled by the
hostname variable.

Testing the MQSeries application
In the OrderEntry application, we place an order using the Place Order MQ button as shown
in Figure 11-14.

Figure 11-14 Using the Place Order MQ button

The application returns an order confirmation message as shown in Figure 11-15. The order
information has also been placed on the MQSeries queue. MQSeries can route the message
to a program on the iSeries server or to another platform.

Figure 11-15 Order sent to the MQSeries queue message

For the MQSeries server, we use a Windows 2000 workstation. We can see the message in
the queue browser as shown in Figure 11-16.
Chapter 11. Interfacing to legacy applications 377

Figure 11-16 The message in the MQSeries queue

We select the message from the browser and click the Properties button. If we select the
Data pane, we see the order data as shown in Figure 11-17.

Figure 11-17 The message properties with the order data

For further information about using MQSeries from a Java application, refer to MQSeries:
Using Java, SC34-5456.
378 WebSphere J2EE Application Development for the iSeries Server

11.6 Using XML to interact with applications
The previous sections explained how to send messages to another application using
MQSeries or data queues. Sometimes these messages are difficult to read because they
became an array of characters without any meaning. The receiver of these messages needs
to know the exact structure of the data. With XML, we can send messages that include the
structure of the data. This makes it easier for the receiver of the message to process it. Also,
the message may be read by many receivers. Each one can read only the information it
needs.

You can send an XML file as a message through a queue. You need to convert the file into a
String object and then send it to the queue.

This section shows how to create XML messages and send them through MQSeries or data
queues. We enhance the OrderEntry application and change the information we send to the
MQSeries queue to use XML.

11.6.1 Using XML
For interacting with XML, we need to create XML files and write Java code that manages the
information in these files. There are several ways to handle XML with Java code:

� Document Object Model (DOM): DOM defines a set of interfaces to access
tree-structured XML documents. The root of the inheritance tree is a Node, that defines
the necessary methods to navigate and manipulate the tree-structure of XML documents.

� Simple API for XML (SAX): SAX is an event-driven lightweight API for accessing XML
documents and extracting information from them. It cannot be used to manipulate the
internal structures of XML documents. As the document is parsed, the application using
SAX receives information about the various parsing events.

We use DOM in our example.

The XML file
First, we create an XML file with the structure of the data we want to send. In this file, we
include all the fields in the order record that we place on the MQSeries queue. Remember
that the order information we send contains four fields: warehouse id, district id, customer
number, and order number. The order.XML file is shown in Example 11-19.

Example 11-19 The order.xml file

<?xml version="1.0" encoding="UTF-8"?>
 <order>
 <warehouse>warehouse</warehouse>
 <district>district</district>
 <customer>customer</customer>
 <orderNum>orderNum</orderNum>
 </order>

To create this file with Application Developer, follow these steps:

1. In the main menu, click Perspective-> Open-> XML as shown in Figure 11-18.
Chapter 11. Interfacing to legacy applications 379

Figure 11-18 Opening the XML perspective

2. In the Navigator view, right-click the folder that will contain the XML file. Then, in the
pop-up menu, select New-> XML File as shown in Figure 11-19.

Figure 11-19 Creating an XML file

3. Select Create XML file from scratch as shown in Figure 11-20 and click Next.

Figure 11-20 Selecting Create XML file from scratch
380 WebSphere J2EE Application Development for the iSeries Server

4. Enter order.xml as the name of the XML file, as shown in Figure 11-21, and click Finish.

Figure 11-21 XML file name

5. Once the XML file is created the XML editor opens. This editor has two views, Design and
Source. In the Design view, the XML is represented graphically, and in the Source view,
we see the XML code itself.

Change to the Design view in the XML editor as shown in Figure 11-22.

Figure 11-22 Design view in the XML editor

6. Right-click the XML element and in the pop-up menu, select Add after-> New element as
shown in Figure 11-23.
Chapter 11. Interfacing to legacy applications 381

Figure 11-23 Creating a new element in an XML file

7. Enter order as the Element Name in the New Element window and click OK as shown in
Figure 11-24.

Figure 11-24 New Element window

The XML editor looks like the example in Figure 11-25.

Figure 11-25 The order element in the XML editor

8. Right-click the order element, and in the pop-up menu, select Add Child-> New Element
as shown in Figure 11-26.
382 WebSphere J2EE Application Development for the iSeries Server

Figure 11-26 Adding a child element

9. Enter warehouse as the new element name and click OK.

Now we have a child element of the order element as shown in Figure 11-27.

Figure 11-27 Child added to the order element

10.In the right column, enter warehouse as the element value as shown in Figure 11-28.

Figure 11-28 Entering the value of the warehouse element

11.As we did with warehouse, we add district, customer, and numorder as child elements as
shown in Figure 11-29.
Chapter 11. Interfacing to legacy applications 383

Figure 11-29 The order.xml file in the Design view

12.Save the file by pressing Ctrl-S.

Now we can switch to the Source view to see the actual XML source. This is shown in
Figure 11-30.

Figure 11-30 The order.xml file in the source view

The XmlDoc class
For this example, we create a Java class that encapsulates the XML interface methods. The
XmlDoc class is a simple class that contains the code we use to interface with XML in our
application. The XmlDoc class uses the DOM interface.

XmlDoc declaration and constructor
There are a number of packages we need to import in order to use the DOM parsers. See
Example 11-20. The first two are common Java packages. The other three packages are
needed in order to use DOM. We declare a private document called doc. This is the root node
of the tree of our XML document.

Example 11-20 XmlDoc declaration and constructor

import java.io.*;
import java.util.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.InputSource;

public class XmlDoc
{

private org.w3c.dom.Document doc = null;

public XmlDoc() {
384 WebSphere J2EE Application Development for the iSeries Server

super();
}

Parsing the XML document
First, we need to get the document tree. A document tree is a tree representation of a
well-formed XML document. This is called parsing the XML document. We use the
parseXmlUri method (Example 11-21) to do this. The input String uri parameter contains the
path and the name of the XML file. We instantiate an org.w3c.dom.Document object that we
put into the doc variable declared in the class definition.

Example 11-21 The parseXmlUri method

public boolean parseXmlUri(String uri)
{

boolean parsed = true;

try
{

DocumentBuilderFactory dF = DocumentBuilderFactory.newInstance();
DocumentBuilder DOMBuilder = dF.newDocumentBuilder();
doc = DOMBuilder.parse(uri);

}
catch (Exception e)
{

parsed = false;
System.out.println("XmlDoc.parseXmlUri(String):Not parsed:"+e);

}
return parsed;

}

We also include another method, the parseXmlString method (Example 11-22), to parse an
XML document. In this case, the input parameter is a String that contains the XML file itself.
This is useful when you receive an XML file from an input source such as MQSeries.

Example 11-22 The parseXmlString method

public boolean parseXmlString(String xmlString)
{

boolean parsed = true;

StringReader sr = new StringReader(xmlString);
InputSource iSrc = new InputSource(sr);
try
{

DocumentBuilderFactory dF = DocumentBuilderFactory.newInstance();
DocumentBuilder DOMBuilder = dF.newDocumentBuilder();
doc = DOMBuilder.parse(iSrc);

}
catch (Exception e)
{

parsed = false;
System.out.println("XmlDoc.parseXmlString(String):not parsed:"+e);
Chapter 11. Interfacing to legacy applications 385

}
return parsed;

}

One of these two methods is the first method we call when using the XmlDoc class. If we get
a true return, we have the DOM tree in the doc object.

Changing the values of the XML tree
Once we get the XML DOM tree in our private doc object, we need to put the values of the
order into the XML fields. For example, customer will became a real customer ID, not the word
“customer” as it is in the XML file. We create a method called setValuesXML. This method has
a java.util.Properties object as an input parameter and calls the setValuesXML(Node,
Properties) method as shown in Example 11-23.

Example 11-23 The setValuesXML(java.util.Properties) method

public void setValuesXML(java.util.Properties data)
{

setValuesXML(getDoc(),data);
}

A second method, setValuesXML(Node, Properties), contains the code for changing the
XML tree. Using a recursive algorithm, it goes through the whole tree and changes all the
values of the nodes as shown in Example 11-24.

Example 11-24 The setValuesXML(Node, java.util.Properties) method

private void setValuesXML(Node node, java.util.Properties data)
{

int type = node.getNodeType();
switch (type)
{

case Node.DOCUMENT_NODE:
{

setValuesXML(((Document)node).getDocumentElement(), data);
break;

}
case Node.ELEMENT_NODE:
{

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)
 setValuesXML(children.item(i), data);

}
break;

}
case Node.TEXT_NODE:
{

String valor =
 data.getProperty(node.getParentNode().getNodeName(),node.getNodeValue());

node.setNodeValue(valor);
break;
386 WebSphere J2EE Application Development for the iSeries Server

}
}

}

We put all the information that we want to change as properties in the Properties object. For
example, the XML file contains a field named customer. We update the customer property
with the value of the customer:

orderProp.put("customer","0001");

Recursion is used in case the node is a DOCUMENT_NODE, to go through all the possible
children of an ELEMENT_NODE. When a TEXT_NODE is found, we change its value to the
value included in the Properties object.

Converting the XML data into a String object
When the XML tree is populated with the correct values, we need to convert it into a String
object in order to send it as a message to a data queue or an MQSeries queue. We obtain a
String object using the toString() method. This is shown in Example 11-25.

Example 11-25 The toString() method

public String toString()
{

String sDoc = "";
sDoc = toString(getDoc(),sDoc);
return sDoc;

}

The toString() method calls a second toString method. This second method is a private
method and accepts two parameters. The first parameter is an XML node, and the second is
the String we want to create. Again we use a recursive algorithm to go through the XML tree
and get all the nodes and add them to the String object. The returned String object contains
the XML document. The toString(Node, String) method is shown in Example 11-26.

Example 11-26 The toString(Node, String) method

private String toString(Node node, String sDoc)
{

int type = node.getNodeType();
switch (type)
{

case Node.DOCUMENT_NODE:
{

sDoc = sDoc +
toString(((Document)node).getDocumentElement(), sDoc);

break;
}
case Node.ELEMENT_NODE:
{

sDoc = sDoc + "<" + node.getNodeName();
NamedNodeMap attrs = node.getAttributes();
for (int i=0; i< attrs.getLength(); i++)
{

Node attr = attrs.item(i);
sDoc = sDoc + " " + attr.getNodeName() +
Chapter 11. Interfacing to legacy applications 387

 "=\"" + attr.getNodeValue() +
 "\"";

}
sDoc = sDoc + ">";

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)
 sDoc = toString(children.item(i), sDoc);

}
break;

}
case Node.TEXT_NODE:
{

sDoc = sDoc + node.getNodeValue();
break;

}
}
if (type == Node.ELEMENT_NODE)
{

sDoc = sDoc +"</" + node.getNodeName() + ">";
}
return sDoc;

}

Other methods
It may be useful to place all the data contained in an XML file into a Properties object. For
that, we create the toProperties() method. This method has a further call to a private
toProperties method (Example 11-27).

Example 11-27 The toProperties() method

public Properties toProperties()
{

Properties data= new Properties();
toProperties(doc, data);
return data;

}

The toProperties(Node, Properties) method again uses a recursive algorithm to retrieve
the data. It goes through the whole DOM tree and puts a property into the Properties object
when it finds a TEXT_NODE node.

Example 11-28 The toProperties(Node, Properties) method

private void toProperties(Node node, Properties data)
{

int type = node.getNodeType();
switch (type)
{

case Node.DOCUMENT_NODE:
{

toProperties(((Document)node).getDocumentElement(), data);
388 WebSphere J2EE Application Development for the iSeries Server

break;
}
case Node.ELEMENT_NODE:
{

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)
 toProperties(children.item(i), data);

}
break;

}
case Node.TEXT_NODE:
{

data.put(node.getParentNode().getNodeName(),node.getNodeValue());
break;

}
}

}

Enhancing the OrderEntry application with XML
Now we can use of the XmlDoc class in our OrderEntry application. We follow these steps:

1. Open the J2EE perspective.

2. Expand EJB Modules.

3. Expand the ToWebSphere EJB Module.

4. Expand the OrderPlacement EJB.

5. Double-click OrderPlacementBean to open it.

6. We add the writeMQXml method as shown in Example 11-29.

7. We change the OrderPlacement EJB placeOrderMQ method to call the writeMQXml method
after placing an order.

Example 11-29 The writeMQXml method

private void writeMQXml(String wID, int dID, String cID, float oID) throws Exception
{

InitialContext initCtx = new InitialContext();

String hostname = (String)initCtx.lookup("java:comp/env/hostname");
String channel = (String)initCtx.lookup("java:comp/env/channel");
String qmanager = (String)initCtx.lookup("java:comp/env/qmanager");
String queue = (String)initCtx.lookup("java:comp/env/queue");

XmlDoc xmlDoc = new XmlDoc();
xmlDoc.parseXmlUri("order.xml");

Properties orderProp = new Properties();
orderProp.put("warehouse",wID);
orderProp.put("district",dID);
orderProp.put("customer",cID);
orderProp.put("ordernum",oID);

xmlDoc.setValuesXML(orderProp);
Chapter 11. Interfacing to legacy applications 389

String orderXml = xmlDoc.toString();

MQCon mqcon = new MQCon(hostname, qmanager, channel, queue);
byte[] res = mqcon.putMQ(orderXml);

}

The writeMQXml method receives the order information as input parameters. The logic of the
writeMQXml method is:

1. Obtain an instance of the XmlDoc class named xmlDoc.
2. Call the parseXMlUri method to parse the order.xml XML file.
3. Add the input parameters as properties to a Properties object named orderProp.
4. Call the setValuesXML method passing in the Properties object to set the values of the

order in the XML document.
5. Convert the XML document to a String object.
6. Place the String object on an MQSeries queue.

The name of the XML file contains the complete path its location on the server. In this case, it
is in the root of the WebSphere instance directory. If you run the application again and browse
the messages in the MQSeries server queue, you see the XML file in it as shown in
Figure 11-31.

Figure 11-31 The XML message in the MQSeries queue

11.7 Conclusion
This chapter showed you how Enterprise JavaBeans can interface with other applications.

The IBM Toolbox for Java provides many options for interfacing to legacy applications:

� Distributed Program Call (DPC)
� Data Queues
� Program Control Markup Language (PCML)
390 WebSphere J2EE Application Development for the iSeries Server

We added a new method to the OrderEntryClerk EJB named placeOrderRPG. It uses the
Distributed Program Call interface to call the ORDENTR RPG program to place an order. A
client program can call this method to interface with the RPG program. It doesn’t need to
know the details about how the Distributed Program Call interface works. The implementation
details are handled by the OrderEntryClerk bean.

We added a new writeDataQueue method to the OrderPlacement EJB. It uses the data queue
support to interface with the PRTORDERP RPG program. This method is used internally by
the OrderPlacement bean. Whenever its placeOrder method is called to place an order, it in
turn, calls the writeDataQueue method. The PRTORDERP RPG program reads the entries off
the data queue and prints an order request document. Data queue support only works on the
iSeries server.

We added a new writeMQ method to the OrderPlacement EJB. It uses MQSeries queues
support to interface with a MQSeries Queue Manager and place messages on MQSeries
queues. MQSeries allows you to interface with applications running on any platform that
supports MQSeries.

We also showed an example that uses XML. XML is useful for passing information from one
application to another. An XML document contains not only the data, but a description of what
the data means.
Chapter 11. Interfacing to legacy applications 391

392 WebSphere J2EE Application Development for the iSeries Server

Chapter 12. The Command package

In this chapter, we modify the EJB-based OrderEntry application to use the Command
package. It provides a framework that can improve distributed application performance by
providing a mechanism for collecting sets of requests and submitting them as a unit of work.
The objective is to reduce the number of individual remote calls. This architecture is very
helpful for a 3-tier distributed environment as recommended by the IBM Framework for
e-business. In this environment, application logic and business services are separated into
components that communicate with each other across a network. Application developers
must be aware of the performance impacts of distributing application components across a
network.

12
© Copyright IBM Corp. 2002. All rights reserved. 393

12.1 The IBM Framework for e-business
As shown in Figure 12-1, IBM Framework for e-business is at the core of the IBM e-business
software strategy. IBM developed the Framework for e-business to help customers build, run,
and manage successful e-business applications. When customers adopt the Framework, they
adopt a proven methodology, products, and tools.

Figure 12-1 IBM Framework for e-business

Generally speaking, the Framework is a distributed computing model, which assumes that
e-business applications comprise multiple executable program modules that run on different
hardware and software platforms linked by networking. This model is designed to support
clients with high-function Web application and enterprise servers. The Framework for
e-business architecture provides a full range of services for developing and deploying
e-business applications. Because it is based on industry standards, the Framework has the
ability to “plug and play” multiple components provided by any vendor.

Figure 12-2 shows the e-business application model.

Figure 12-2 The e-business application model
394 WebSphere J2EE Application Development for the iSeries Server

The architecture is composed of the following key elements:

� Clients based on a Web browser or Java applet model that enables universal access to
Framework applications and on-demand delivery of application components.

� A network infrastructure that provides such services as TCP/IP, directory, and security
whose capabilities can be accessed via open, standard interfaces, and protocols.

� Application server software that provides a platform for e-business applications and
includes an HTTP server, database and transaction services, mail and groupware
services, and messaging services.

� Application integration that allows disparate applications to communicate and provides
Web access to existing data and applications.

� A Web application programming environment that provides the server-side Java
programming environment for creating dynamic and robust e-business applications.

� e-business application services that provide higher level application specific functionality
to facilitate the creation of e-business solutions.

� Systems management functions that accommodate the unique management
requirements of network computing across all elements of the system, including users,
applications, services, infrastructure, and hardware.

� Development tools to create, assemble, deploy, and manage applications.

12.2 Distributed Java applications
Distributed applications are defined by the ability to use remote resources as if they were
local. However, this remote work affects the performance of distributed applications.
Distributed applications can improve performance by using remote calls sparingly. If a server
does several tasks for a client, the application can run more efficiently if the client bundles
requests together, which reduces the number of individual remote calls. The Command
package provides a mechanism for collecting sets of requests to be submitted as a unit.

In addition to giving you a way to reduce the number of remote invocations a client makes, the
Command package provides a generic way of making requests. A client instantiates the
command, sets its input data, and tells it to run. The Command infrastructure determines the
target server and passes a copy of the command to it. The server runs the command, sets
any output data, and copies it back to the client. The package provides a common way to
issue a command, locally or remotely, and independently of the server's implementation. Any
server (an enterprise bean, a Java Database Connectivity (JDBC) server, a servlet, and so
on) can be a target of a command if the server supports Java access to its resources and
provides a way to copy the command between the client's JVM and its own JVM.

This chapter demonstrates how to use the Command framework in the OrderEntry
application. The Model-View-Controller architecture is applied to the application to improve
the encapsulation of business logic and provide a separation between the modules.

12.3 The Command package
A Web application is essentially a series of interactions between a client and a particular Web
site. When the client and server run on different JVMs, the Web application needs to enable
remote method invocation (RMI) via server-specific protocols. This can become considerably
inefficient in terms of both time and resource, particularly when crossing a network.
Chapter 12. The Command package 395

The command bean infrastructure allows a command to be run within the environment of a
target server. Therefore, multiple accesses by the command to server resources avoid
distributed overhead. Any server can be a target if it supports Java access to its resources
and provides a protocol to copy the command bean between a Web application JVM and the
command server JVM.

Command beans allow the server side of the Web application to be partitioned into efficient
units of interaction. The Web application parts, such as the interaction controller and user
interface logic, are independent of the style of the command bean's implementation and
independent of where the command bean is physically executed.

Command beans that execute locally (in other words, in the same JVM as the Web
application) simply implement the Command interface. If a command bean is to execute
remotely on another server, it implements the TargetableCommand interface, which is an
extension of the Command interface that allows for remote execution. This is done by
extending the TargetableCommandImpl class. Regardless of whether the command bean
executes locally or remotely, the JSP or servlet executes the command bean in the same way.
If it is conceivable that a command could ever be remote, then it should implement the
TargetableCommand interface. Then a change in deployment does not cause a source code
change.

With the release of WebSphere 3.5, the Command model is formalized in the Command
package (com.ibm.websphere.command) and extended to accommodate command shipping
(called TargetableCommand). The concept behind command shipping is to intercept
execute() methods, ship the command to a better execution point, execute it, and then ship it
back to the caller.

WebSphere 3.5.3 introduces a command target for EJBs named EJBCommandTarget. This is
the command target for commands that are executed on an EJB server. It uses a server-side
entity bean to allow concurrent access by different transactions to execute a command on the
server.

The WebSphere Command support is available for both WebSphere Application Server
Version 4.0 Advanced Edition and WebSphere Application Server Version 4.0 Advanced
Single Server Edition.

12.3.1 The Command interface
The most basic features of the Command framework are specified in the Command interface,
which extends java.io.Serializable. It contains the following three abstract methods:

� execute()
� isReadyToCallExecute()
� reset()

These methods control the life cycle of a command. When a command has been instantiated,
it is in the new state. Running a command often requires a set of input properties. The
isReadyToCallExecute() method can be used to check whether the requirement of input has
been satisfied. It is called on the client side before the command is passed to the server for
execution. If the isReadyToCallExecute() method returns true, the command is in the
initialized state, and the execute() method is ready to be invoked. After the execute()
method is successfully run, the command goes from the initialized state to the executed
state. This is demonstrated in Figure 12-3.
396 WebSphere J2EE Application Development for the iSeries Server

The reset() method retains the previously set input properties, but resets the output
properties of the object back to the original values prior to any execute calls (such as, null or
0). It converts the command from an executed state back to the initialized state. Resetting the
output properties prevents exposing outdated output values of previous command executions
to later executions.

Resetting the same command instance is convenient if there are several complex input
properties that do not need to be changed for the next invocation. This reuse also avoids the
overhead of instantiation and garbage collection.

Figure 12-3 The Command life cycle

12.3.2 Facilities for creating commands
The steps to write a command are:

1. Create a command interface.
2. Implement the command.
3. Implement the target.

In practice, most commands implement the TargetableCommand interface, which allows the
command to be executed remotely. Example 12-1 shows the structure of a command
interface for a targetable command.

Example 12-1 The structure of an interface for a targetable command
...
import com.ibm.websphere.command.*;
public interface MyCommand extends TargetableCommand {
 // Declare application methods here
}

The interface TargetableCommand extends com.ibm.websphere.command.Command. In
addition to the three methods described previously, the TargetableCommand interface
declares the methods shown in Table 12-1.

Table 12-1 TargetableCommand methods

Methods Purpose

setCommandTarget() Specifies the target object of a command.

getCommandTarget() Returns the target object of a command.

setCommandTargetName() Specifies the target name to a command.

getCommandTargetName() Returns the target name of a command.
Chapter 12. The Command package 397

The performExecute() method is the only method that must be implemented by the
application developer. The others have been implemented in the TargetableCommandImpl
class in the same package, which also implements the execute() method declared in the
Command interface.

As we have discussed, a targetable command extends the TargetableCommand interface,
which allows the client to direct a command to a particular server. The TargetableCommand
interface and the TargetableCommandImpl class provide two ways for a client to specify a
target:

� setCommandTarget() method: Allows the client to set the target object directly on the
command

� setCommandTargetName() method: Allows the client to refer to the server by name, an
approach that is useful when the client is not directly aware of server objects.

A targetable command also has corresponding getCommandTarget() and
getCommandTargetName() methods.

A command needs to identify its target. Because there is more than one way to specify the
target and because different applications can have different requirements, the Command
package does not specify a selection algorithm. Instead, it provides a TargetPolicy interface
with one method, getCommandTarget(), and a default implementation. This allows applications
to devise custom algorithms for determining the target of a command when appropriate. The
TargetableCommandImpl abstract class provides two methods for setting and returning the
target policy associated with the command:

� void setTargetPolicy(com.ibm.websphere.command.TargetPolicy)
� com.ibm.websphere.command.TargetPolicy getTargetPolicy()

12.4 Creating a command
In this section, we create a simple command named GetCustomerCmdEJB. The purpose of
this command is to retrieve customer information using the Command framework. In this
example, we use the EJBCommandTarget class. It is a command target for commands that
target Enterprise JavaBeans on an EJB server.

12.4.1 Benefits of the Command package framework
As shown in the previous chapters, the Customer entity bean has methods for retrieving any
customer record from the corresponding database table. We could simply obtain an instance
of the bean by invoking the findByPrimaryKey() method and then retrieving all the
information we need about that customer through getter methods. However, this is not
efficient, especially when the client and the EJB run on different JVMs. This is because it

hasOutputProperties() Indicates whether the command has output that must be copied back
to the client. The implementation class also provides the
setHasOutputProperties() method, for setting the output of this
method. By default, the hasOutputProperties() method returns true.

setOutputProperties() Saves the output values from the command for return to the specific
client.

performExecute() Encapsulates the application specific work. It is called by the
execute() method declared in the Command interface.

Methods Purpose
398 WebSphere J2EE Application Development for the iSeries Server

requires multiple RMI calls. As illustrated in the Figure 12-4, if we rely on the getter methods
on the Customer bean, each of these calls is a remote call. With the approach of command
shipping, which allows bundling of these calls, we greatly reduce the remote calls and
improve performance.

Figure 12-4 Comparing the original method to the command method

12.4.2 Using the EJBCommandTarget class
In this example, we use the EJBCommandTarget class. The EJBCommandTarget class is
provided by the WebSphere Command framework to allow us to run a command in a
designated server without providing our own command target implementation.

The EJBCommandTarget object serves as a wrapper for an EJB command target. The
CommandServerEntityBean is the WebSphere implementation of the EJB CommandTarget
class. It is a stateless bean managed persistent bean, so there is no database table
associated with this bean. The command developer can set the EJBCommandTarget object
as the target for a command. The WebSphere Application Server administrator deploys the
CommandServerEntityBean into the application server where the command is executed.

12.4.3 Creating the GetCustomerCmdEJB command
In this section, we define the GetCustomerCmdEJB interface that extends the
TargetableCommand class. It defines the business logic methods of the command, as shown
in Example 12-2.
Chapter 12. The Command package 399

Example 12-2 The GetCustomerCmdEJB interface
import com.ibm.websphere.command.*;
import com.ibm.itso.roch.wasaejb.*;

public interface GetCustomerCmdEJB extends TargetableCommand{
String getAddressLine1();
String getAddressLine2();
String getCity();
Customer getCustomer();
String getFirstName();
String getMiddleInitials();
String getPhone();
String getState();
String getZip();
void setCustomer(Customer cust);

}

The GetCustomerCmdEJBImpl class extends the TargetableCommandImpl and implements
the GetCustomerCmd interface as shown in Example 12-3.

Example 12-3 Definition of the GetCustomerCmdEJBImpl class
import java.lang.reflect.*;
import com.ibm.websphere.command.*;
import com.ibm.itso.roch.wasaejb.*;
import javax.naming.*;
import java.rmi.RemoteException;
import java.util.*;

public class GetCustomerCmdEJBImpl extends TargetableCommandImpl implements
 GetCustomerCmdEJB {

private Customer customer = null;

private String customerID = null;
private String firstName = null;
private String lastName = null;
private String middleInitials = null;

private String addressLine1 = null;
private String addressLine2 = null;
private String city = null;
private String state = null;
private String zip = null;
private String phone = null;

private float creditLimit = 0;
private float balance = 0;
private float yearToDateBalance = 0;

}

We place the GetCustomerCmdEJB interface and the GetCustomerCmdEJBImpl class, as
well as the other command-related interfaces or classes described in this chapter, into the
OrderEntryCommandPkg package.
400 WebSphere J2EE Application Development for the iSeries Server

To implement the business logic defined in the GetCustomerCmdEJB interface, we add the
methods defined in the GetCustomerEJBCmd interface to the GetCustomerCmdEJBImpl
class as shown in Example 12-4.

Example 12-4 Implementation of the methods defined in the GetCustomerCmdEJB interface
public String getFirstName(){

return firstName;
}
public String getMiddleInitials(){

return middleInitials;
}
public String getLastName(){

return lastName;
}
public String getAddressLine1(){

return addressLine1;
}
public String getAddressLine2(){

return addressLine2;
}
public String getCity(){

return city;
}
public String getState(){

return state;
}
public String getZip(){

return zip;
}
public String getPhone(){

return phone;
}
public void setCustomer(Customer cust){

customer = cust;
}
public Customer getCustomer(){

return customer;
}

The most important method in the GetCustomerCmdEJBImpl class that needs to be
implemented is the performExecute() method. We define this method as shown in
Example 12-5.

Example 12-5 The performExecute() method in the GetCustomerCmdEJBImpl class
public void performExecute() throws Exception {
try {
 Context initCtx = getInitialContext();
 CustomerHome customerHome = (CustomerHome) initCtx.lookup("Customer");
 CustomerKey custKey = new CustomerKey(customerID);
 customer = (Customer) customerHome.findByPrimaryKey(custKey);
 customerID = customer.getCustomerID();
 firstName = customer.getFirstName();
 lastName = customer.getLastName();
 middleInitials = customer.getMiddleInitials();
 addressLine1 = customer.getAddressLine1();
Chapter 12. The Command package 401

 addressLine2 = customer.getAddressLine2();
 city = customer.getCity();
 state = customer.getState();
 zip = customer.getZip();
 phone = customer.getPhone();
 setHasOutputProperties(true);
} catch (Exception ex) {
 ex.printStackTrace();
 throw ex;
 }
}

The performExecute() method should be programmed using the server programming model.
The other methods should be programmed as if server facilities are not available.

We obtain an InitialContext object and look up the home interface of the Customer EJB. We
use the findByPrimaryKey method to obtain an instance of the Customer bean.

The last method in the GetCustomerCmdEJBImpl class that must be implemented is the
isReadyToCallExecute() method as shown in Example 12-6. It tells the Command
infrastructure when the execute() method is ready to be invoked.

Example 12-6 The isReadyToCallEexecute() method in the GetCustomerCmdEJBImpl class
public boolean isReadyToCallExecute() {

if (customerID != null)
 return true;
else
 return false;

}

As discussed previously, implementation of the reset() method is optional. It helps to reuse
the command and to save the overhead of instantiating a new command and garbage
collecting the old instance. We define the reset() method as shown in Example 12-7.

Example 12-7 The reset() method in the GetCustomerCmdEJBImpl class

public void reset() {
customer = null;
customerID = null;
firstName = null;
lastName = null;
middleInitials = null;
addressLine1 = null;
addressLine2 = null;
String city = null;
String state = null;
String zip = null;
String phone = null;
creditLimit = 0;
balance = 0;
yearToDateBalance = 0;

}

402 WebSphere J2EE Application Development for the iSeries Server

To accept a command, the target must implement the CommandTarget interface. In this
example, the EJBCommandTarget class implements the CommandTarget interface. The
Command package provides mechanisms for determining where to run the command.

A target policy associates a command with a target. Later, you will see how to use a target
policy to associate the getCustomerCmdEJB command with the EJBCommandTarget class
as its target. The the implementor of the CommandTarget interface (the EJBCommandTarget
class, in our example) is responsible for ensuring the proper execution of a command in the
desired target server environment. EJBCommandTarget is a command target for commands
that are executed in an EJB server. It provides the client-side RMI/IIOP stub for the
server-side entity bean that runs the command on the server.

12.4.4 Using the GetCustomerCmdEJB command
We test the GetCustomerCmdEJB command using a JSP and servlet. The servlet
demonstrates how to use the command from a client application. We follow these steps:

1. Create a JavaServer Page file named RetrieveCustomerInfo.jsp. It displays an HTML page
that allows a user to enter a customer ID.

2. After the user enters a customer ID and clicks the Submit button, the JSP invokes the
GetCustomerServlet class. It creates an instance of the GetCustomerCmdEJB command,
setting its target as EJBCommandTarget.

3. The command is executed on the iSeries EJB server.

4. The command is returned to the client with customer information. The customer
information is displayed on the browser.

The JSP and servlet code are for the purpose of testing the remote execution of the
command. They are not a part of the OrderEntry application. Later we show how to use the
commands in the OrderEntry application. Example 12-8 shows the JSP code.

Example 12-8 The RetrieveCustomerInfo.jsp that takes a customer ID from user input
<html><head>
<title>Retrieve Customer Information</title>
</head><body><center>

<p></p>
<p></p>

<p>Please enter Customer ID
below:

<form method="POST" action="/OrderEntry2/GetCustomerServlet">
 <p align="center"> <input type="text" name="CustomerID" size="20">

 <input type="submit" value="Submit" name="Submit"><input type="reset" value="Reset"
name="Reset"></p>

</center></form></body></html>

The action of the Submit button is to execute GetCustomerServlet, which is installed in the
OrderEntry Web application.

Example 12-9 shows the code for the init() method for the GetCustomerServlet class.
Chapter 12. The Command package 403

Example 12-9 The code for the GetCustomerServlet init method
public void init(ServletConfig config) throws ServletException {
 getCustCmd = new GetCustomerCmdEJBImpl();
 policy = (TargetPolicyDefault) getCustCmd.getTargetPolicy();
 policy.registerCommand(
 "OrderEntryCommandPkg.GetCustomerCmdEJBImpl",
 "com.ibm.websphere.commandUtil.EJBCommandTarget");
}

In the init() method, we create an instance of the GetCustomerEJBImpl class named
getCustCmd. We create a new TargetPolicyDefault object named policy and register the
EJBCommandTarget class as the command target for the GetCustomerCmdEJB command.
Since targetable commands can be run remotely in another JVM, the Command package
provides mechanisms for determining where to run the command. A target policy associates
a command with a target and is specified through the TargetPolicy interface.

We can design customized target policies by implementing this interface, or we can use the
provided TargetPolicyDefault class. If we use this default implementation, the command
determines the target by looking through an ordered sequence of four options:

1. The CommandTarget value
2. The CommandTargetName value
3. A registered mapping of a target for a specific command
4. A defined default target

If it finds no target, it returns null.

The TargetPolicyDefault class provides methods for managing the assignment of commands
with targets (registerCommand, unregisterCommand, and listMappings), and a method for
setting a default name for the target (setDefaultTargetName). The default target name is
com.ibm.websphere.command.LocalTarget, where LocalTarget is a class that runs the
command's performExecute method locally.

Example 12-10 shows the code for the doPost() method.

Example 12-10 Code for the GetCustomerServlet doPost method
public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String newCustID = request.getParameter("CustomerID");
 getCustCmd = new GetCustomerCmdEJBImpl(policy);
 try {
 getCustCmd.setCustomerID(newCustID);
 getCustCmd.execute();
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Get Customer Information Servlet</title></head>");
 out.println("<body>");
 out.println(
 "<p><center>"
 + getCustCmd.getFirstName()
 + " "
 + getCustCmd.getLastName()
404 WebSphere J2EE Application Development for the iSeries Server

 + "</p>");
 out.println("</body></html>");
 out.close();
}

In the doPost method, we create an instance of the command, called getCustCmd. We
initialize the command’s parameters and execute it. This causes the performExecute method
of the command to be invoked.

Since we registered EJBCommandTarget as the target for the command, the command is
copied to the target server. The server runs the command, sets any output data, and copies it
back to the client. When this is finished, the returned command contains the required
customer information.

Assume the application has been deployed on WebSphere Application Server, run the
RetrieveCustomerInfo JSP file by opening a browser session and entering:

http://sysname:port/OrderEntry2/RetrieveCustomerInfo.jsp

Enter a customer ID in the entry field and click Submit. The display appears like the example
in Figure 12-5.

Figure 12-5 Entering the customer ID in the JSP file

If it works correctly, we see the first name and last name of the customer displayed on the
browser (Figure 12-6). The servlet demonstrates that a command can be shipped to and
executed on the EJB server, as well as carry any outputs back to the client.

Figure 12-6 Displaying the customer information
Chapter 12. The Command package 405

12.5 Creating your own command targets
The Command framework provides a number of ways to create and implement commands.
This section examines additional ways to use commands with Enterprise JavaBeans. Rather
than using the EJBCommandTarget implementation, we can design commands that directly
interface with our EJBs. You will see an example of using a custom target policy
(CustomTargetPolicy).

We create a command named GetCustomerCmd, which is similar to GetCustomerCmdEJB,
but directly interfaces with the Customer EJB. We also create the OrderPlacementCmd
command, which uses the OrderPlacement session bean to place orders.

12.5.1 Constructing the GetCustomerCmd command and its target
The overall design in this example is to first construct an instance of the command, look up
the Customer bean, and instantiate an instance of it using the findByPrimaryKey() method.
Then a reference to this Customer object is assigned to the command so that the bean
instance becomes the command target. The command is copied to the target server. The
server runs the command, sets any output data, and copies it back to the client. When this is
finished, the returned command copy contains the needed customer information.

First, we define the GetCustomerCmd interface that extends TargetableCommand. It defines
the business logic methods of the command as shown in Example 12-11.

Example 12-11 The GetCustomerCmd interface
import com.ibm.websphere.command.*;
import com.ibm.itso.roch.wasaejb.*;

public interface GetCustomerCmd extends TargetableCommand{
String getAddressLine1();
String getAddressLine2();
String getCity();
Customer getCustomer();
String getFirstName();
String getMiddleInitials();
String getPhone();
String getState();
String getZip();
void setCustomer(Customer cust);

}

The GetCustomerCmdImpl class extends TargetableCommandImpl and implements the
GetCustomerCmd interface as shown in Example 12-12.

Example 12-12 GetCustomerCmdImpl and its variables declaration
import java.lang.reflect.*;
import com.ibm.websphere.command.*;
import com.ibm.itso.roch.wasaejb.*;
import javax.naming.*;
import java.rmi.RemoteException;
import java.util.*;

public class GetCustomerCmdImpl extends TargetableCommandImpl implements GetCustomerCmd {
406 WebSphere J2EE Application Development for the iSeries Server

private Customer customer = null;

private String customerID = null;
private String firstName = null;
private String lastName = null;
private String middleInitials = null;

private String addressLine1 = null;
private String addressLine2 = null;
private String city = null;
private String state = null;
private String zip = null;
private String phone = null;

private float creditLimit = 0;
private float balance = 0;
private float yearToDateBalance = 0;

}

Now the question is how to initialize a GetCustomerCmdImpl instance. We define the
constructor of the class as shown in Example 12-13. This constructor references a
TargetPolicy object as a parameter. Then it calls the setTargetPolicy() methods inherited
from the TargetableCommandImpl class to set the target policy, which associates the
command with a specified target object.

Example 12-13 Constructor of the GetCustomerCmpImpll
public GetCustomerCmdImpl(CommandTarget target, TargetPolicy targetPolicy) {

setTargetPolicy (targetPolicy);
}

As discussed earlier, there is more than one way to specify a command target. In this
application, we adopt the approach of defining our own CustomTargetPolicy class that
implements the TargetPolicy and the Serializable interfaces. Example 12-14 shows the
definition of the CustomTargetPolicy used for targetting the Customer entity bean.

Example 12-14 Definition of CustomTargetPolicy used by the Customer command
import java.io.*;
import java.util.*;
import java.beans.*;
import com.ibm.websphere.command.*;

public class CustomTargetPolicy implements TargetPolicy, Serializable{

public CommandTarget getCommandTarget (TargetableCommand command) {
CommandTarget target = null;
try {

target = (CommandTarget) Beans.instantiate(null,
"com.ibm.itso.roch.wasaejb.CustomerBean");

}
catch (java.io.IOException ioEx){

ioEx.printStackTrace();
}

Chapter 12. The Command package 407

catch (ClassNotFoundException cnfEx){
cnfEx.printStackTrace();

}
return target;

}
}

In the getCommandTarget() method, we use the static instantiate() method of the beans
class defined in the java.beans package to search for CustomerBean and to instantiate an
instance of it. A reference to the instance is returned. This instance becomes the target of the
GetCustomerCmd command. As shown in Example 12-13, a reference of a
CustomTargetPolicy object is passed into the GetCustomerCmdImpl constructor so the
command knows its target of execution.

To implement the business logic defined in the GetCustomerCmd interface, we add the
methods defined in the GetCustomerCmd interface to the GetCustomerCmdImpl class as
shown in Example 12-15.

Example 12-15 Implementation of the methods defined in the GetCustomerCmd interface
public String getFirstName(){

return firstName;
}
public String getMiddleInitials(){

return middleInitials;
}
public String getLastName(){

return lastName;
}
public String getAddressLine1(){

return addressLine1;
}
public String getAddressLine2(){

return addressLine2;
}
public String getCity(){

return city;
}
public String getState(){

return state;
}
public String getZip(){

return zip;
}
public String getPhone(){

return phone;
}
public void setCustomer(Customer cust){

customer = cust;
}
public Customer getCustomer(){

return customer;
}

Next, we create the performExecute() method. We define this method as shown in
Example 12-16. We explain the invocation of this method later when we discuss how the
command is used in the OrderEntry application.
408 WebSphere J2EE Application Development for the iSeries Server

Example 12-16 The performExecute() method in the GetCustomerCmdImpl class
public void performExecute() throws Exception {

Customer customer = getCustomer();
customerID = customer.getCustomerID();
firstName = customer.getFirstName();
lastName = customer.getLastName();
middleInitials = customer.getMiddleInitials();
addressLine1 = customer.getAddressLine1();
addressLine2 = customer.getAddressLine2();
city = customer.getCity();
state = customer.getState();
zip = customer.getZip();
phone = customer.getPhone();

}

The last method in the GetCustomerCmdImpl class that must be implemented is
isReadyToCallExecute() as shown in Example 12-17. It tells the Command infrastructure
when the execute() method is ready to be invoked.

Example 12-17 The isReadyToCallExecute() method in the GetCustomerCmdImpl class
public boolean isReadyToCallExecute() {

if (customer != null)
return true;

else
return false;

}

As discussed earlier, implementation of the reset() method is optional. It helps to reuse the
command and to save the overhead of instantiating a new command and garbage collecting
the old instance. We define the reset() method as shown in Example 12-18.

Example 12-18 The reset() method in the GetCustomerCmdImpl class
public void reset() {

customer = null;
customerID = null;
firstName = null;
lastName = null;
middleInitials = null;
addressLine1 = null;
addressLine2 = null;
String city = null;
String state = null;
String zip = null;
String phone = null;
creditLimit = 0;
balance = 0;
yearToDateBalance = 0;
targetPolicy = new TargetPolicyDefault();

}

Chapter 12. The Command package 409

To accept a command, the target must implement the CommandTarget interface. The
implementor of the CommandTarget interface (the Customer entity bean in this example) is
responsible for ensuring the proper execution of a command in the desired target server
environment. Therefore, before we ship the command to its target server for execution, we
have to modify the CustomerBean entity bean so that it implements the CommandTarget
interface and its single executeCommand() method as shown in Example 12-19. Note this
method must be added to the remote interface so that it can be seen by the client. Further, we
need to re-generate the deployed code and deploy the modified Customer bean to the server
to replace the original Customer bean.

Example 12-19 Implementation of the CommandTarget interface by the CustomerBean
...
import com.ibm.websphere.command.*;
import OrderEntryCommandPkg.*;

public class CustomerBean implements EntityBean, CommandTarget {
// Original code

public TargetableCommand executeCommand (TargetableCommand command) throws
RemoteException, CommandException {

 try {
 command.performExecute();
 }

catch (Exception ex) {
if (ex instanceof RemoteException) {

 RemoteException remoteException = (RemoteException) ex;
 if (remoteException.detail != null){

 throw new CommandException (remoteException.detail);
 }
 throw new CommandException (ex);

 }
 }
 if (command.hasOutputProperties()) {

return command;
 }
 return null;

}
 // Original code
}

As shown, this method references a TargetableCommand as a parameter and returns it after
calling the peformExecute() method of the command. Therefore, we can put all the business
logic in the performExecute() method. The Command package infrastructure will copy the
command to the target server where the performExecute() method is invoked.

Using the GetCustomerCmd command in the OrderEntry application
Now that the command has been initialized and its target is set, we are ready to ship the
command to the target server for execution. The Command package provides a convenient
way to do this.

1. We simply call the execute() method in the command. Remember execute() is defined in
the Command interface and is implemented in the TargetableCommandImpl class.

2. When execute() is invoked, a copy of the command is shipped to its target server. The
executeCommand() method on the target will be called automatically.
410 WebSphere J2EE Application Development for the iSeries Server

3. After that, the command is shipped back to the client. In our example, the Customer
command is copied to the Customer bean, populated with the customer information, and
carried back by the Command infrastructure to the client site where the command was
instantiated.

To use the command in the context of the OrderEntry
application, we create a Java servlet called
OrderEntryControllerServlet. We place this servlet and
the others described in this chapter into a package
called tservlets (Figure 12-7). The details of the
OrderEntryControllerServlet servlet and the
Model-View-Controller architecture are discussed later.
For now, we focus on how to run the GetCustomerCmd
command.

The init() method of the OrderEntryControllerServlet
first obtains an initial context object by calling the
getInitialContext() method. It then looks up the
CustomerHome home interface (Example 12-20). Therefore, after the servlet is started, a
reference to the CustomerHome is already available.

Example 12-20 The init() and the getInitialContext() methods in the OrderEntryControllerServlet
public void init(ServletConfig config) throws ServletException {

super.init(config, SuperServlet.SYSTEM);
system = config.getInitParameter("system");
userid = config.getInitParameter("userid");
password = config.getInitParameter("password");
port = config.getInitParameter("port");

Context initCtx = null;
try{

initCtx = getInitialContext();
}
catch (Exception ex) {

System.out.println ("Error in getting initial context: " + ex.getMessage());
}
try {

cHome = (CustomerHome) initCtx.lookup("Customer");
}
catch (NamingException ne) {

System.out.println("Error in looking up Customer entity bean: " + ne.getMessage());
 }
}

private static Context getInitialContext() throws Exception {
Properties p = new Properties();
try {

p.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.ejs.ns.jndi.CNInitialContextFactory");

p.put(Context.PROVIDER_URL, "iiop://" + getSystem() + ":" + getPort());
InitialContext cx = new InitialContext(p);
return cx;

}
catch (Exception e) {

System.out.println("Error creating Context " + e.getMessage());
e.printStackTrace();
throw (e);

Figure 12-7 The tservlets package
Chapter 12. The Command package 411

}
}

Example 12-21 shows how to instantiate and run the GetCustomerCmd command:

1. We declare an instance of the command and obtain a reference to the remote Customer
bean by calling the private method getCustomerByID().

2. We obtain a new CustomTargetPolicy object and instantiate a GetCustomerCmd
command by passing the new CustomTargetPolicy instance into the
GetCustomerCmdImpl constructor.

3. After the command is created, we call the setCustomer() method followed by the
execute() method. As described earlier, calling the execute() method on a targetable
command automatically invokes the executeCommand() method on the target object.
Therefore, when the command is copied back to the client, it contains the customer
information we need.

Example 12-21 Example code of how to run the customer command from a servlet
...

GetCustomerCmd getCustCmd = null;
com.ibm.itso.roch.wasaejb.Customer customer = null;
try {

customer = getCustomerByID(newCustID);
}
catch (RemoteException re){
 System.out.println(re.getMessage());
}
CustomTargetPolicy customPolicy = new CustomTargetPolicy();
getCustCmd = new GetCustomerCmdImpl(customPolicy);
try{

getCustCmd.setCustomer(customer);
getCustCmd.execute();

}
catch (Exception e) {
 System.out.println(e.getMessage());
}
getCustCmd.reset();

...

The update customer command
We create a second command that works with the Customer EJB. It is named
UpdateCustomerCmd. Its implementation is done in the UpdateCustomerCmdImpl class.
They are placed in the OrderEntryCommandPkg. The purpose of this command is to update
customer information based on information passed in from a client application. It is similar to
the GetCustomerCmd command and provides the same advantages.

12.5.2 The OrderPlacementCmd command
This command is designed to place an order by invoking the OrderPlacement session bean.
The constructor of the OrderPlacementCmdImpl class (Example 12-22) is similar to the
constructor of the GetCustomerCmdImpl class in that they both set the command target by
instantiating a TargetPolicy object. After setting the command target, it obtains the next order
ID by calling the getNextOrderID() private method and looks up the OrderPlacement bean by
invoking the lookupOrderPlacement() method.
412 WebSphere J2EE Application Development for the iSeries Server

Example 12-22 The constructor of the OrderPlacementCmdImpl class
public OrderPlacementCmdImpl(CommandTarget target) {

TargetPolicy targetPolicy = new CustomTargetPolicy2();
setTargetPolicy (targetPolicy);

// Get the next order id
try {

getNextOrderID();
}
catch (RemoteException re){

System.out.println ("Fail to get next order id: " + re.getMessage());
}
lookupOrderPlacement();

}

Example 12-23 and Example 12-24 show the getNextOrderID() method and the
lookupOrderPlacement method, respectively.

Example 12-23 The getNextOrderID() method
private void getNextOrderID() throws RemoteException {

com.ibm.itso.roch.wasaejb.District district = null;
Context initCtx = null;
DistrictHome dHome = null;

// Get the initial context
try{

initCtx = getInitialContext();
}
catch (Exception ex) {

System.out.println ("Error in getting initial context: " + ex.getMessage());
}
// Look up District
try {

dHome = (DistrictHome) initCtx.lookup("District");
}
catch (NamingException ne) {

System.out.println("Error in looking up District entity bean: " + ne.getMessage());
}

// Find by primary key for District
try {

DistrictKey distKey = new DistrictKey(dID, wID);
district = (com.ibm.itso.roch.wasaejb.District) dHome.findByPrimaryKey(distKey);

}
catch (Exception e) {

throw new RemoteException(e.getMessage());
}
// Return the next order id
nextOrderID = district.getNextOrderId(true);

}

Chapter 12. The Command package 413

Example 12-24 The lookupOrderPlacement() method
private void lookupOrderPlacement () {

Context initCtx = null;
OrderPlacementHome opHome = null;
try{

initCtx = getInitialContext();
}
catch (Exception ex) {
 System.out.println ("Error in getting initial context: " + ex.getMessage());
}
try {

opHome = (OrderPlacementHome)initCtx.lookup("OrderPlacement");
}
catch (NamingException ne){

System.out.println ("Error in looking up OrderPlacement: " + ne.getMessage());
}
try {

orderPlacement = opHome.create();
}
catch (Exception ex){

System.out.println ("Error in creating orderPlacement: " + ex.getMessage());
}

}

After we instantiate an instance of the OrderPlacementCmdImpl class, the instance already
contains a new order ID and a reference to the remote OrderPlacement session bean. This is
a modification to the original Order Entry design. We separate getting the new order ID from
the order placement processing to avoid the situation where the District table is locked while
the order placement is in process. Example 12-25 shows the performExecute() method. It
simply executes the placeOrder() method on the target, which is the OrderPlacement bean
instance.

Example 12-25 The performExecute() method in the OrderPlacementCmdImpl class
public void performExecute() throws Exception {
 orderPlacement.placeOrder(wID, dID, customerID, orderLines, nextOrderID);

}

12.6 Applying the Model-View-Controller architecture
This section looks at the Model-View-Controller (MVC) architecture. It explains how to apply it
to the OrderEntry application and how the Command framework fits into the picture. The logic
of the OrderEntry application is similar with the application we developed in 5.3, “Developing
a new application with Application Developer” on page 195, with Application Developer. The
difference is that we use normal Java classes to access the database in that chapter, while
here we use Enterprise JavaBeans.

12.6.1 Re-designing the OrderEntry application using the MVC architecture
The MVC architecture was designed to reduce the programming effort required to build
systems that make use of multiple, synchronized presentations of the same data. Its central
characteristics are that the model, the controllers, and the views are treated as separate
entities, and that changes made to the model should be reflected automatically in the views.
414 WebSphere J2EE Application Development for the iSeries Server

We can readily apply the MVC framework to a Web application. The idea is to split the
application into three sections. A servlet handles any requests from the browser and acts as a
controller. We put the business logic (the model) in Enterprise JavaBeans. Finally, we use
JavaServer Pages to display the view. Figure 12-8 provides a high level overview of this
architecture.

Figure 12-8 The Model-View-Controller architecture

To apply the MVC architecture to the OrderEntry application, we use one servlet, the
OrderEntryControllerServlet servlet, to handle all the user requests passed from the Web
browser. Example 12-26 shows the doPost() method for this servlet.

Example 12-26 The doPost() method of the OrderEntryControllerServlet class
public void doPost(HttpServletRequest request, HttpServletResponse response) throws

IOException {
HttpSession session = request.getSession(false);
response.setContentType("text/html");
response.setHeader("Pragma","no-cache");
response.setHeader("Cache-Control","no-cache, must-revalidate");

String action = null;
String customerID = null;
action = request.getParameter("action");
customerID = request.getParameter("customerID");

PrintWriter out = response.getWriter();

if (session == null) {
out.println("<BIG>Session object not available: getSession returned null.</BIG>");
return;

}
if (action.equals("AddToCart")){

addToCart(session, request, response, customerID);
}
else if (action.equals("ShowCart")){

displayCart(customerID, response, session);

Web
(HTTP)
Server

“Thin” client
(HTML only)

HTML Output

<HTML>
<BODY>

<BODY>

<HTML>
Chapter 12. The Command package 415

 }
else if (action.equals("CheckOut")){

placeOrder(session, response);
}
else if (action.equals("UpdateCustomerInformation")){

updateCustomer(request, response, session);
}
else if (action.equals("ContinueShopping")){

response.sendRedirect(response.encodeRedirectURL("StartOrderEntry.jsp"));
}
else if (action.equals("ShopSomeMore")){

Vector itemVector = (Vector)(session.getAttribute("sessionlist.items"));
String custID = (String)(session.getAttribute("customerID"));
if (session != null)

session.invalidate();

session = request.getSession(true);
session.setAttribute("sessionlist.items", itemVector);
response.sendRedirect(response.encodeRedirectURL("StartOrderEntry.jsp"));

}
}

This servlet performs various tasks depending on the requested action by the user. For
example, if the user wants to purchase their selected items, the doPost() method calls the
placeOrder() method. It processes the order and redirects the screen to the CheckOut
JavaServer Page. The CheckOut JSP displays a message Your order has been processed,
along with the order number. Therefore, the OrderEntryControllerServlet plays a role as a
controller. It invokes the appropriate EJBs at run time to handle business logic and delegates
the presentation logic to the JSPs.

We now discuss, in detail, the MVC-based version of the OrderEntry application that
incorporates the techniques of the Command package. The application starts by calling a
servlet named StartOrderEntryServlet. This servlet is different from the
OrderEntryControllerServlet servlet and does not play the role of a controller. It simply
invokes the OrderEntryClerk session bean to obtain all the available items that can be
ordered. Once the item list is available, it calls the StartOrderEntry JSP to display these items,
as shown in Figure 12-9.
416 WebSphere J2EE Application Development for the iSeries Server

Figure 12-9 Displaying the available items using the StartOrderEntry JSP

The user is prompted to enter their customer ID if they want to order any items. The Add To
Cart and Show Cart buttons are disabled until the user enters their customer ID and selects at
least one item.

If the user clicks the AddToCart button, a hidden field named action in the StartOrderEntry
JSP is assigned the value AddToCart. Therefore, when the OrderEntryControllerServlet is
invoked, it knows what action the user wants to perform. As shown in Example 12-26, the
doPost() method calls the addToCart() method in response to the AddToCart action.
Example 12-27 shows the addToCart() method.

Example 12-27 The addToCart () method in the OrderEntryControllerServlet
private void addToCart(HttpSession session, HttpServletRequest request, HttpServletResponse
response, String customerID){

ShoppingCart cart=null;
try{

cart = (ShoppingCart) session.getAttribute("shopcart.selected");
}
catch (ClassCastException c){}

if (cart == null) {
cart = new ShoppingCart();
flexLog("cart did not exist in session at this time");

}
else {

flexLog("cart retrieved from session successfully, it has " + cart.getItems().size()
 + " elements");
Chapter 12. The Command package 417

}

Vector parts = (Vector) session.getAttribute("sessionlist.items");

String[] value = request.getParameterValues("index");
String[] quantity = request.getParameterValues("quantity");

if (value != null) {
int j = 0;
for (int i = 0; i < value.length; i++) {

j = Integer.parseInt(value[i]);
String[] data = (String[]) parts.elementAt(j);

Integer qty = new Integer (quantity[j]);
CartItem aCartItem = new CartItem(data[0], data[1], data[2], data[3], qty);
cart.getItems().addElement(aCartItem);

}
session.setAttribute("shopcart.selected", cart);
displayCart(customerID, response, session);

}
}

The addToCart method reads the selected items and their quantities from the user inputs and
adds each item to the shopping cart, which is a vector of the CartItem objects. Then it calls
the displayCart() method to display the selected items and the customer information as
shown in Figure 12-10.

Figure 12-10 Displaying the selected items and the customer contact information
418 WebSphere J2EE Application Development for the iSeries Server

The displayCart() method in the OrderEntryControllerServlet (Example 12-28) first obtains
the Customer bean instance based on the customer ID. Then it retrieves the customer
information using the GetCustomerCmd command, which we discussed earlier. Finally, it
directs the outputs to the OutputCart JSP to display the shopping cart content and the
customer contact information.

Example 12-28 The displayCart() method in the OrderEntryControllerServlet
private void displayCart (String newCustID, HttpServletResponse response, HttpSession
session){

session.setAttribute("custUpdateFlag", "false");
if (newCustID != null && ! newCustID.equals("")) {

session.setAttribute("customerID", newCustID);
GetCustomerCmd getCustCmdImpl = null;
com.ibm.itso.roch.wasaejb.Customer customer = null;

try {
customer = getCustomerByID(newCustID);
session.setAttribute("customerObj", customer);

}
catch (RemoteException re){

System.out.println(re.getMessage());
}

CustomTargetPolicy customPolicy = new CustomTargetPolicy();
getCustCmdImpl = new GetCustomerCmdImpl(customPolicy);

try{
getCustCmdImpl.setCustomer(customer);
getCustCmdImpl.execute();

}
catch (Exception e) {
 System.out.println(e.getMessage());
}

session.setAttribute("cFirstName", getCustCmdImpl.getFirstName());
session.setAttribute("cMiddleInitials", getCustCmdImpl.getMiddleInitials());
session.setAttribute("cLastName", getCustCmdImpl.getLastName());
session.setAttribute("cAddressLine1", getCustCmdImpl.getAddressLine1());
session.setAttribute("cAddressLine2", getCustCmdImpl.getAddressLine2());
session.setAttribute("cCity", getCustCmdImpl.getCity());
session.setAttribute("cState", getCustCmdImpl.getState());
session.setAttribute("cZip", getCustCmdImpl.getZip());
session.setAttribute("cPhone", getCustCmdImpl.getPhone());

getCustCmdImpl.reset();
}
try {

response.sendRedirect(response.encodeRedirectURL("/OutputCart.jsp"));
}
catch (Exception ex){

System.out.println(ex.getMessage());
}

}

Chapter 12. The Command package 419

If the user wants to update their contact information, they can enter the new data and then
click the Update Customer Information button. In response to this request, the
OrderEntryControllerServlet invokes the updateCustomer() method (Example 12-29).

Example 12-29 The updateCustomer() method in the OrderEntrControllerServlet class
private void updateCustomer (HttpServletRequest request, HttpServletResponse response,
HttpSession session){

String custID = (String)(session.getAttribute("customerID"));

String firstName = request.getParameter("firstName");
String middleInitials = request.getParameter("middleInitials");
String lastName = request.getParameter("lastName");
String addressLine1 = request.getParameter("addressLine1");
String addressLine2 = request.getParameter("addressLine2");
String city = request.getParameter("city");
String state = request.getParameter("state");
String zip = request.getParameter("zip");
String phone = request.getParameter("phone");

UpdateCustomerCmd updateCustCmdImpl = null;
com.ibm.itso.roch.wasaejb.Customer customer =

(com.ibm.itso.roch.wasaejb.Customer)session.getAttribute("customerObj");

CustomTargetPolicy customPolicy = new CustomTargetPolicy();
updateCustCmdImpl = new UpdateCustomerCmdImpl(customer, customPolicy);

updateCustCmdImpl.setFirstName(firstName);
updateCustCmdImpl.setMiddleInitials(middleInitials);
updateCustCmdImpl.setLastName(lastName);
updateCustCmdImpl.setAddressLine1(addressLine1);
updateCustCmdImpl.setAddressLine2(addressLine2);
updateCustCmdImpl.setCity(city);
updateCustCmdImpl.setState(state);
updateCustCmdImpl.setZip(zip);
updateCustCmdImpl.setPhone(phone);

try{
updateCustCmdImpl.setCustomer(customer);
updateCustCmdImpl.execute();
session.setAttribute("custUpdateFlag", "true");

session.setAttribute("cFirstName", firstName);
session.setAttribute("cMiddleInitials", middleInitials);
session.setAttribute("cLastName", lastName);
session.setAttribute("cAddressLine1", addressLine1);
session.setAttribute("cAddressLine2", addressLine2);
session.setAttribute("cCity", city);
session.setAttribute("cState", state);
session.setAttribute("cZip", zip);
session.setAttribute("cPhone", phone);

}
catch (Exception ex) {

System.out.println(ex.getMessage());
}
try {

response.sendRedirect(response.encodeRedirectURL("/OutputCart.jsp"));
}

420 WebSphere J2EE Application Development for the iSeries Server

catch (Exception ex){
System.out.println(ex.getMessage());

}
}

Similar to the retrieval of customer information, we use a command named
UpdateCustomerCmd to update the customer contact information. The approach allows us to
reset all the customer data when we ship the command to the Customer entity bean and run
it on the server. It saves many RMI calls compared to directly calling the setter methods on
the Customer bean. Example 12-30 shows the performExecute() method in the
UpdateCustomerCmdImpl class.

Example 12-30 The performExecute() method in the UpdateCustomerCmdImpl class
public void performExecute() throws Exception {

Customer customer = getCustomer();
customer.setFirstName(firstName);
customer.setLastName(lastName);
customer.setMiddleInitials(middleInitials);

customer.setAddressLine1(addressLine1);
customer.setAddressLine2(addressLine2);
customer.setCity(city);
customer.setState(state);
customer.setZip(zip);
customer.setPhone(phone);

}

After we update the customer information, the message Your contact information has been
updated appears on the same screen (Figure 12-11).
Chapter 12. The Command package 421

Figure 12-11 Displaying a message indicating the successful update of customer information

At this point, if the user wants to check out their items by clicking the Check Out button, the
doPost() method in the OrderEntryControllerServlet calls the placeOrder() method shown in
Example 12-31 to process the order.

Example 12-31 The placeOrder() method in the OrderEntryControllerServlet
private void placeOrder (HttpSession session, HttpServletResponse response) throws
IOException {

OrderPlacementCmdImpl opCmdImpl = new OrderPlacementCmdImpl(null);

Vector orderLines = new Vector();
ShoppingCart cart = (ShoppingCart)session.getAttribute("shopcart.selected");
String custID = (String)session.getAttribute("customerID");
Vector cartItems = cart.getItems();

if (cartItems.size() > 0) {
for (int i = 0; i < cartItems.size(); i++) {

CartItem citem = (CartItem) cartItems.elementAt(i);

com.ibm.itso.roch.cpwejb.interfaces.OrderDetail thisOrderDetail
= new com.ibm.itso.roch.cpwejb.interfaces.OrderDetail(citem.getItemId(),

Float.valueOf(citem.getPrice().replace('$','0')).floatValue(),
citem.getItemQuantity().intValue());

orderLines.addElement(thisOrderDetail);
}
opCmdImpl.setOrderLines (orderLines);
422 WebSphere J2EE Application Development for the iSeries Server

opCmdImpl.setCustomerID (custID);
}
try {

opCmdImpl.execute();
session.setAttribute("orderNumber", opCmdImpl.getNewOrderID() + "");
response.sendRedirect(response.encodeRedirectURL("/CheckOut.jsp"));

}
catch (Exception ex){

ex.printStackTrace();
}

}

As we previously discussed, we process the order request through the OrderPlacementCmd
command. After the command is successfully run on the OrderPlacement session bean, the
program sets the new order ID as a session variable and displays it on the next screen using
the CheckOut JSP (Figure 12-12).

Figure 12-12 Displaying the order number

Finally, if the user wants to shop for more items, they can select the Shop Some More...
button. In response to this, the OrderEntryControllerServlet terminates the existing session,
re-initiates a new session, and associates with it the item list. It then redirects the page to the
StartOrderEntry JSP.

12.7 Conclusion
There are two major problems that the Command framework attempts to address. One
problem is performance. The granularity of artifacts on the server (such as objects, tables,
procedure calls, files, and so on) often causes a single client-initiated business logic request
to involve several round-trip messages between the client and server. This might entail extra
calls to perform the business task and then impose additional calls to retrieve the results of
that task.
Chapter 12. The Command package 423

If the client and target server are not in the same JVM, these calls go between processes and
are, therefore, expensive in terms of computer resources. If the calls must go over a network,
they are even more costly. To prevent unnecessary delays and improve application
performance, it is advantageous to perform a business task in as few interactions between the
client and server sides as is natural to the task. Command beans provide the necessary
building blocks to achieve this.

A second problem is that there are several possible styles for how business logic can be
implemented. This includes EJB, JDBC direct database access, JDBC access to stored
procedures, the Common Connector Framework, file system access, and so on. In addition to
different implementation programming models, each of these styles has a different way to
invoke a request to execute business logic. Because the Command framework is generic and
extensible, it can hide all these different types of server invocation mechanisms under a
simple and uniform mechanism.

We used the Command framework to enhance the OrderEntry application. First, we used the
GetCustomerCmd command to bundle multiple client requests together to retrieve
information with greater efficiency. Second, we applied a similar approach to updating
customer information and processing order requests.
424 WebSphere J2EE Application Development for the iSeries Server

Appendix A. Additional material

This Redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this Redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246559

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the Redbook
form number SG246559.

Using the Web material
The additional Web material that accompanies this Redbook includes the following files:

File name Description
sg246559ins.zip A zip file that contains all the example applications
SG246559.dat VisualAge for Java code in a repository file
readme.pdf Instructions for restoring the programming examples

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB is required for download material
Operating System: Windows 98, NT, or 2000
Processor: 300 MHZ or higher
Memory: 128 MB

A

© Copyright IBM Corp. 2002. All rights reserved. 425

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder. Read the file named readme.pdf to view information about how
to restore the program code to VisualAge for Java and the iSeries server.
426 WebSphere J2EE Application Development for the iSeries Server

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this Redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 428.

� WebSphere 4.0 Installation and Configuration on the IBM ~ iSeries Server,
SG24-6815

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

Other resources
These publications are also relevant as further information sources:

� Work Management Guide, SC41-5306

� MQSeries: Using Java, SC34-5456

� Englander, Robert. Developing JavaBeans. Sebastopol, CA, O'Reilly & Associates, 1997
(ISBN 1-56592-289-1).

� Flanagan, David. Java in a Nutshell: A Desktop Quick Reference. O'Reilly & Associates,
1999 (ISBN 1-56592-487-8).

� Flanagan, David. Java Enterprise in a Nutshell: A Desktop Quick Reference. O'Reilly &
Associates, 1999 (ISBN 1-56592-483-5).

� Fowler, Martin.UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Publishing Co., 1999 (ISBN 0-20165-783-X).

� Monson-Haefel, Richard. Enterprise JavaBeans. O’Reilly & Associates, 2000 (ISBN
1-56592-869-5).

� Morgan, Bryan. Java Developer's Reference. Sams, 1996 (ISBN 1-57521-129-7).

� Taylor, David. Object Technology: A Manager's Guide. Addison-Wesley Publishing Co.,
1997 (ISBN 0-20130-994-7).
© Copyright IBM Corp. 2002. All rights reserved. 427

Referenced Web sites
These Web sites are also relevant as further information sources:

� Javasoft home page: http://www.javasoft.com

� JavaServer Page specifications: http://java.sun.com/products/jsp/download.html

� Servlet specifications: http://java.sun.com/products/servlet/2.2/

� Enterprise JavaBeans home page: http://www.java.sun.com/products/ejb

� Linar J-Intrega homepage: http://www.linar.com

� MQSeries Application Development Considerations for iSeries Solutions:
http://www.iseries.ibm.com/developer/ebiz/mqseries/mqjava400.html

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy from the
Redbooks Web Site

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) from this
Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes
just a few chapters will be published this way. The intent is to get the information out much
quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
Site for information about all the CD-ROMs offered, updates and formats.
428 WebSphere J2EE Application Development for the iSeries Server

http://www.javasoft.com
http://java.sun.com/products/jsp/download.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://java.sun.com/products/servlet/2.2/
http://www.java.sun.com/products/ejb
http://www.linar.com
http://www.iseries.ibm.com/developer/ebiz/mqseries/mqjava400.html

ronyms
IAFP Advanced Function Printing

ASP Active Server Pages

APA All Points Addressable

AWT Abstract Window Toolkit

CA Certificate Authority

CORBA Common Object Request
Broker Architecture

COM Component Object Model

CGI Communications Gateway
Interface

CPW Commercial Processing
Workload

DAX Data Access Builder

DCM Digital Certificate Manager

DDM Distributed Data
Management

DLL Dynamic link library

DPC Distributed Program Call

EAB Enterprise Access Builder

EJB Enterprise JavaBeans

FFST First Failure Support
Technology

GUI Graphical user interface

GWAPI Go Web Server API

HTML Hypertext Markup Language

HTTP Hypertext Transmission
Protocol

HTTPS Hypertext Transmission
Protocol Secure

IBM International Business
Machines Corporation

ICAPI IBM Connection API

IDE Integrated development
environment

IDL Interface Definition
Language

IIOP Internet inter-ORB protocol

IP Internet Protocol

Abbreviations and ac
© Copyright IBM Corp. 2002. All rights reserved.
ITSO International Technical
Support Organization

JAR Java archive

JDBC Java database connectivity

JDK Java Development Toolkit

JFC Java Foundation Classes

JIT Just in Time Compiler

JPDC Java Performance Data
Converter

JSP JavaServer Pages

JVM Java Virtual Machine

LDAP Lightweight Directory
Access Protocol

MI Machine interface

MIME Multi-purpose Internet Mail
Extensions

MVC Model-View-Controller

NSAPI Netscape API

ODBC Open database connectivity

OOA Object oriented analysis

OOD Object oriented design

OOP Object oriented
programming

ORB Object Request Broker

PEX Performance Explorer

PCML Program Call Markup
Language

PDML Panel Definition Markup
Language

PTDV Performance Trace Data
Visualizer

PTF Program temporary fix

RAD Rapid Application
Development

RAWT Remote Abstract Windowing
Toolkit

RMI Remote method invocation

SCS SNA Character Set
 429

SLIC System Licensed Internal
Code

S-MIME Secure Multi-purpose
Internet Mail Extensions

SNA System Network Architecture

SSL Secure Sockets Layer

TCP Transmission Control
Protocol

TIMI Technology Independent
Machine Interface

UML Unified Methodology
Language

URL Universal Resource Locator

VCE Visual Composition Editor

WAS WebSphere Application
Server

WWW World Wide Web

XML Extensible Markup Language
430 WebSphere J2EE Application Development for the iSeries Server

Index

Symbols
*current 365
*PGM 354

A
AAT (Application Assembly Tool) 15, 28, 41, 52, 59,
74–77, 88
ABC Company 232

customer transaction 232
database 232

access package 31
ace.jar 128
ActiveX components 228
activity diagram 52
addCookie method 61
address object 246
adminclient 102
Administrative Console 102
Apache Tomcat 147, 149, 176
applets 7–8
application assembler 17–18, 225
Application Assembly Tool (AAT) 15, 28, 41, 52, 59,
74–77, 88
application client 7
application component provider 18
application deployer 226
Application Developer 145–146, 175, 177, 357

automatic build 156
creating an XML file 379
customizing 155
Debug perspective 171
default perspective 156
EJB Test client 283
exporting an EAR file 194
exporting Java code 173
exporting to an EAR file 213
Filter button 180
getting started 149
Help perspective 151
HTML files 190
import code 153
importing a schema 266
initialization parameters 184
J2EE specification 182
JRE 331
migration 195
navigation 150
overview 146
Page Designer 190
Run button 171
running Java code 169
Scrapbook 204
VisualAge for Java behavior 164
XML Source view 384
© Copyright IBM Corp. 2002. All rights reserved.
application.xml 16, 183
application-client.xml 76
architecture of sample servlet application 30
architecture, 2-tier versus 3-tier 251
AS400 object 357, 360, 362–363, 365
AS400DataType 361
AS400JDBCConnectionPoolDataSource 12, 188, 281
AS400JDBCDriver 50, 185
AS400Message 361
asynchronous communication 13
authentication 10
authorization 10
automatic build 156

B
basic authentication 10
BEA WebLogic Application Server 222
bean component content 222
bean component types 222
bean implementation (OrderPlacementBean) 255
bean managed 222
bean-level attributes 253
bean-managed persistence (BMP) 123, 251, 307
BigDecimal 290, 293
BINARY 290
BlueStone Software 222
BMP (bean-managed persistence) 123, 307
bookmark 162–163
bootstrap port 121
bottom-up mapping 148, 265–266
building Java applications 340

using Enterprise JavaBeans 315
building servlets 340
business data 248
business processes 251
business tier 195
business transaction 221

C
CallJSP 100
CallJSP servlet 55
cannot register JDBC driver 185
CartItem 198
CartServlet 340, 354, 370, 372–373
CartServlet class 69
CartServlet servlet 341
CCBootstrapHost 139
CCBootstrapPort 139
certificate authentication 10
channel 367
CHAR 290
CheckOut JSP 423
Checkout.jsp 198
child element 383
 431

class files 28
Class.forName 33
client module 76
client-side component 7
CMP (container-managed persistence) 16, 123, 265
CNInitialContextFactory 43, 47
Code Assist 147–148
collection 266
Column 244
COM (Component Object Model) 219, 228
com.ibm.mq package 367
com.ibm.mq.jar 366
command bean 396
command creation 398
Command interface 396

execute() method 396
isReadyToCallExecute() method 396
reset() method 396

Command package 128, 395–396
framework 395
framework benefits 398

CommandTarget interface 403
Common Object Request Broker Architecture (CORBA)
219, 228
communication 5
compatibility test suite (CTS) 1–2
component contract 220
Component Object Model (COM) 219, 228
component provider 17
components 4, 7
confirmOrder method 333
connect method 332, 335
connection pool 41
connection pooling mechanism 44
connectStateless method 333, 338
connectTOQM method 368–369
container 6
container managed 222
container provider 226
container-managed persistence (CMP) 16, 123, 265
container-managed transaction 12
content assist tool 167
Context object 42
context root 84, 180, 183
controller 8, 211
controller servlet 197, 203
cookies 60–63
CORBA (Common Object Request Broker Architecture)
219, 228
creating a command 397–398
CSTMR 241
CTS (compatibility test suite) 1
current library 362
cursor shape 160
custom target policy 406
Customer class 332
Customer JavaBean 198
Customer table 239, 248
Customer Table Layout (CSTMR) 241
customer transaction 232

D
Data Conversion classes 360
data definition language (DDL) 149, 296
data queue 233, 254, 256, 352, 361, 364, 371, 375, 387

interfacing to legacy applications 363
writeDataQueue method 364

data tier 195
Database Access Definition (DAD) 149
database access with a connection pool 248
database administrator (DBA) 149
database connection pool 41
database terminology 243
database transaction 221
DataBean class 55
DataQueue classes 363
DataQueueEntry 361
DataSource 26, 41–43, 47, 49–50, 137, 188, 208, 249,
277, 347

connection pooling mechanism 44
object 42
servlet example 41
version 41

DataSourceBean 249
datastore 254
DATE 290
DB2 XML Extender 149
DB2Driver 89
DB2StdXADataSource 12
DBA (database administrator) 149
dbConnection variable 32
DDL (data definition language) 149, 296
debugger 147
DECIMAL 290
default font 157
default perspective 156
default_app.webapp 40, 57
Deployed_MyEJBs.jar 114
Deployed_OrderEntryBeans.jar 135
deployer 17–18
deployment descriptor 15, 17, 118, 223, 249, 252–253,
257, 319, 364

example 16
development environment for WebSphere 22
digest authentication 10
distributed application model 3
distributed applications 395
distributed Java applications 395
distributed object architectures 228
Distributed Program Call 352, 361
Distributed Program Call class 354
distributed transaction 226
District 414
District table 239, 248
District Table Layout (Dstrct) 241
Document Object Model (DOM) 379, 384, 386, 388
document root 27
DOCUMENT_NODE 387
doDelete() method 24
doGet() method 24
DOM (Document Object Model) 379, 384, 386, 388
432 WebSphere J2EE Application Development for the iSeries Server

doPost() method 24
doPut() method 24
DOUBLE 290
double 290
Dstrct 241
DTAQ 363
DTD 148

Editor 148

E
EAR 16–17, 76–77, 79, 147, 174, 194
EAR (Enterprise Archive) file 14
EAR file export 194, 213
EBCDIC 361
EJB 148

component model 218
migration to version 1.1 344
roles 224

application assembler 225
application deployer 226
container provider 226
Enterprise JavaBean provider 224

server architecture 221
specification 224
technology on the iSeries server 226

EJB 1.1 5
EJB container 219–220
EJB interoperability 228
EJB module 76
EJB server 219–221
EJB server provider 226
EJB specification 216
EJB technology

in the Java architecture 217
on the iSeries server 228

EJB Test Client 283, 320
EJB to RDB mapping 272, 274–275, 293
EJBCommandTarget 396
EJBCommandTarget class 399, 404
ejbCreate() method 251, 310, 344
ejbdeploy tool 279
EJBException 318, 345
ejb-jar.xml 16, 76, 252, 257, 275, 319
ejbLoad method 251, 311
ejbRemove method 251, 313
ejbStore method 251, 312
ELEMENT_NODE 387
e-mail 5
encodeURL 62
Enterprise Archive (EAR) file 14
Enterprise JavaBean 215, 315

application development scenario 315
architecture 216, 219
components 219
container 220
contract 220
provider 224
services 219
specification 216, 224

entity beans 219–220, 222

application development scenario 248
bean-managed persistence 222, 251
container-managed persistence 222

entity Enterprise JavaBeans 248
environment variable 249
execute() method 396
executeCommand() method 410
exporting class files to iSeries IFS 28

F
field 244
Field description classes 361
FIFO 363
filter warnings 180
findAllCustomers method 262
findAllItems method 262
findByPrimaryKey 251
findRangeOfItems method 262, 333, 336
flexLog() method 36
FLOAT 290
float 290
FLTDBL 290
foreign-key 288
form-based authentication 10

G
garbage collection 6
GenericServlet 37
getAllCustomers method 332, 335
getAllItems method 341
getAttribute 63
getAttributeNames 63
getCommandTarget() method 398
getCommandTargetName() method 398
getCustCmd 404–405
GetCustomerCmd command 412
GetCustomerCmdEJB command 398–399, 403
GetCustomerCmdEJB interface 399
GetCustomerCmdEJBImpl class 400–401
GetCustomerCmdImpl 412
GetCustomerEJBCmd interface 401
GetCustomerEJBImpl 404
getCustomerForOrder method 262
getInitialContext method 332, 335
getItems method 332, 336
getItemsForOrder method 262
getMainPropertiesFile() method 36
getMQ method 369
getRequestDispacher() method 56
getServerRoot() method 36
getServletConfig method 37
getter 276
getter methods 201–202
getValue 63
getValueNames 63
getWriter() method 26
GIOPVersionException 331
 Index 433

H
Hashtable 47
Hashtable object 43
hasOutputProperties() method 398
HelloEJBServlet.jar 108
HelloTestServlet 325
HelloWorld EJB 316
HelloWorldClient.jar 108
Help perspective 151
Help Search tab 151
hidden fields 60
History table 239
home interface 223, 333
home interface (OrderPlacementHome) 254
hostname 367
HTTP server 22
HTTP/HTTPS 7
HttpServlet class 24
HttpServletRequest 25–26
HttpServletResponse 25–26
HttpSession Interface 62
HttpSession object 63

I
IBM Developer Kit for Java 12
IBM Enterprise Toolkit for AS/400 26
IBM Framework for e-business 393–394
IBM Toolbox for Java 12, 128, 181, 189, 352, 360–361
IBM WebSphere Business Components 229
ibm-ejb-jar-bnd.xmi 275
ibm-ejb-jar-ext.xmi 275
ibm-web-bnd.xml 324
ibm-web-ext.xml 325
IDE 26
IDL (Interface Definition Language) 13, 228
IIOP (Internet inter-ORB protocol) 228
IllegalStateException 55
IMAP 14
implementing a state 260
import statement 334
incremental save 147
index 244
InitialContext object 326, 334
int 290
INTEGER 290
integrated development environment (IDE) 216
Interface Definition Language (IDL) 13, 228
interfacing to legacy applications 351
Internet Inter-ORB Protocol 13
Internet shopping application 315
interoperability 228
iSeries database 29
iSeries Developer Kit for Java 227–228
iSeries EJB application development scenario 245
iSeries server

EJB technology 226, 228
Java environment 227

isolation level 12
isReadyToCallExecute() method 396, 402

Item 243
Item class 332
Item EJB 250
Item table 29, 239, 248
Item Table Layout (ITEM) 243
ItemPool.html 190
ItemPoolServlet 49, 184, 188
Items 198
ItemsDb class 332, 341, 373

connect method 335
findRangeOfItems 336
getAllCustomers method 335
getAllItems method 341
getInitialContext method 334
getItems method 336
submitOrder method 337
using without a GUI 339
verifyCustomer method 337

ItemServlet 183
ItemServlet class 36
ItemServlet on iSeries 41, 52, 59, 74
ItemServlet.doGet method 39
ItemServlet.doPost() method 37
ItemServlet.init() method 37
ItemServlet.outputItemInformation() method 39
ItemSessionServlet 340
ItemSessionServlet class 64
ItemSessionServlet servlet 341
ItsoEjb module 277

J
J2C 6
J2EE 3–4, 23, 28, 75, 182

communication 13
component object model 7
components 4, 7
container 6
containers 6–7
features 147
package levels in WebSphere 5
packaging 14
platform technology 4
roles 17
services 4, 9

J2EE (Java 2 Enterprise Edition) 1–2
J2EE 1.2 3, 5, 147
J2EE 1.3 3, 6
J2EE communication 5
J2EE perspective 153, 178
j2ee.jar 330
J2ME (Java 2 Micro Edition) 2
J2SE (Java 2 Standard Edition) 2
JAF (JavaBean Activation Framework) 12, 14
JAF 1.0 5
JAR (Java Archive) file 14
Java

applications 315
architecture with EJB technology 217
code export 173
features 147
434 WebSphere J2EE Application Development for the iSeries Server

running code 169
Java 2 Enterprise Edition (J2EE) 2
Java 2 Micro Edition (J2ME) 2
Java 2 Platform, Enterprise Edition (J2EE) 1
Java 2 Standard Edition (J2SE) 2
Java applications 315
Java Archive (JAR) file 14
Java Build Path 182
Java Database Connectivity (JDBC) 10
Java for the iSeries server 227
Java Messaging Service (JMS) 13
Java Naming Directory Interface (JNDI) 9, 334
Java Native Interface (JNI) 352
Java perspective 152, 166–167, 171
Java Transaction API (JTA) 11
Java Transaction Service (JTS) 11
java.io 25
java.rmi package 334
JavaBean Activation Framework (JAF) 12, 14
JavaBean Proxy 149
JavaBeans 215
JavaMail 5, 12–14
JavaMail 1.1 5
JavaScript 192–193
JavaServer Pages (JSP) 21

separating presentation logic 8
JavaServer Web Development Kit (JSWDK) 22
Javasoft Web site 24
javax.ejb package 334
javax.naming package 334
javax.servlet 24–25
javax.servlet.http 24–25
javax.sql 42
JCA 148
JDBC 9, 41, 208, 248, 277, 290, 298, 395

accessing an iSeries database 29
JDBCCatalogSupport 31
JDBCItemCatalog 32

JDBC (Java Database Connectivity) 10
JDBC 2.0 5, 41
JDBC 2.0 Core APIs 10
JDBC 2.0 Extension APIs 10
JDBC driver 184
JDBC level 2.0 5
JDBCCatalogSupport 203
JDBCCatalogSupport class 31, 44
JDBCCatalogSupport.getRows() method 31
JDBCItemCatalog class 32
JDBCItemCatalog.connectToDB() method 32
JDBCItemCatalog.getAllV() method 34
JDBCItemCatalog.getRecord() method 34
JDBCPoolCatalog 199, 209
JDBCPoolCatalog class 46
JDBCPoolCustomer JavaBean 198
JDI based debugger 147
JDK

performance improvements 6
JDK 1.3 147
J-Integra 228
JMS 5, 13

asynchronous 13
loosely coupled 13
peer to peer 13
point-to-point messaging 13
publish-subscribe messaging 13
reliable 13

JMS (Java Messaging Service) 13
JMS 1.0 5
JMS Transaction (JMS/XA) 6, 14
JMS/XA (JMS Transaction) 6, 14
JNDI 4, 43, 110, 115, 125, 127, 132, 148, 203, 223, 277,
319, 326, 334, 344

Global 9
Local 9

JNDI (Java Naming Directory Interface) 9, 47, 334
JNDI 1.2 5
JNDI Explorer 283, 320
JNDI namespace 327
JNI (Java Native Interface) 352
JRE 6, 147, 331
jsessionid 62
JSP

design 54
life cycle 52
specification 52
support in WebSphere Version 3.5 52

JSP 0.91 52
JSP 1.1 5, 57
JSWDK (JavaServer Web Development Kit) 22
jt400.jar 128, 138, 182, 186, 269, 348
jt400ntv.jar 138, 348
JTA (Java Transaction API) 11
JTA 1.0 5
JTS (Java Transaction Service) 11
JUnit 153, 163, 167, 169, 173
junit.samples package 167
junit.samples.AllTests 172
junit37src.jar 155

K
key descriptor 272
KEYED 363

L
launchclient 121, 139
launcher 169
legacy applications 4, 351–352

using data queues to interface 363
libraries resource property 189, 282
library 244
life cycle of a JSP 52
life-cycle methods 251, 255
LIFO 363
Linar J-Integra 228
Links View 148
localhost 365
LocalTarget 404
logical file 244
loosely coupled communication 13
 Index 435

M
Map.mapxmi 275
mapping 265

bottom-up 266
meet-in-the-middle 296
top-down 288

Master.css 325
meet-in-the-middle mapping 148, 265, 296
metadata 147, 149, 270, 275–276, 325
META-INF folder 319
method-level attributes 253
Microsoft 228
middleware 3–4, 11, 351, 366
MIME 14, 37
Model-View-Controller (MVC) architecture 196, 395,
411, 414, 416
MQCon class 367, 376
MQException 368
MQMessage instance 368
MQSeries 351, 366, 370, 374, 379, 385, 387, 390–391

Channel 367
Hostname 367
Queue 367
Queue Manager 391

multithreaded 340
multi-tier application environment 3
MVC (Model-View-Controller) architecture 196, 414, 416
MyEJBs.jar 108
MyHelloWorldClient. 328
MyHelloWorldClient.jar 115
MyHelloWorldServlet 28, 79
MyOrderEntryClient.jar 135

N
narrow() method 327, 335
National Language Support 54
NativeDS 49, 99, 347, 358
Navigator view 165
Netscape 61
nonejb.jar 124, 127–128
Novera 222
nservlets package 31
null capable fields 305
NUMERIC 290

O
object diagram 246
OMG COS Naming Service 228
Open perspective button 150
Operations Navigator 296
ORDENTR 233–234, 352–353, 361
Order class 332
order entry clerk 247
order information format 360
Order Line table 239
Order Line Table Layout (ORDLIN) 242
Order table 239, 248
Order Table Layout (ORDERS) 242
order.XML file 379

OrderDetail 203
OrderDetail class 332
OrderDetail JavaBean 198
OrderEntry application 231

application flow 233
architecture with objects 246
customer transaction 232
customer transaction flow 234
database 232
database layout 240
database table structure 239
starting the application 234

OrderEntryApp enterprise application 123, 136
OrderEntryBeans.jar 124
OrderEntryClerk 124–125, 132–133, 247, 257, 352, 416
OrderEntryClerk EJB 251–252, 257, 333, 335, 337

business methods 261
ejbCreate method 260
implementing state 260

OrderEntryClerk session bean 338
OrderEntryClerkBean 257
OrderEntryClerkBean class 259
OrderEntryClerkHome 257
OrderEntryClient.jar 124
OrderEntryCommandPkg package 400
OrderEntryControllerServlet 198, 206, 209, 211, 411,
415–416, 419
OrderEntryServlet.war 135
OrderEntryWar.jar 124
OrderPlacement 124, 253, 412, 414
OrderPlacement EJB 251–252

deployment descriptor 253, 258
home interface 254
implementation 259
placeOrder method 256
remote interface 255

OrderPlacement object 248
OrderPlacementBean 253
OrderPlacementBean (bean implementation) 255
OrderPlacementCmdImpl 412
OrderPlacementHome 253
OrderPlacementHome (home interface) 254
OrderProcess 206
OrderProcess JavaBean 198
ORDERS 242
ORDERS table 250
ORDLIN 242
ORDLIN table 250
Outline view 164
OutputCart 212
OutputCart.jsp 198
outputHeader() method 36
outputOrderForm method 371

P
PACKED 290
Page Designer 190–191, 194
PageCompile 53
parseXmlString method 385
parsing 148
436 WebSphere J2EE Application Development for the iSeries Server

PCML (Program Call Markup Language) 352
peer-to-peer communication 13
performance 250
performExecute() method 398, 401–402, 405, 408, 421
permissions 10
persistence 218, 221, 226, 250

bean-managed 250
container-managed 250

perspectives 150
physical file 244
Place Order RPG button 356
placeOrderMQ method 372–375, 389
point-to-point messaging 13
POP3 14
POSIX 227
presentation layer 196
presentation logic 8
presentation tier 195
primary key constraints 272
printHello() method 321
PrintStream class 168
PrintWriter 26, 36–37, 55, 61
processing the submitted order 352
product provider 17
Program Call feature 354
Program Call Markup Language (PCML) 352
ProgramCall 361
ProgramCall object 360
ProgramParameter array 360
ProgramParameter object 361
Properties object 387–388, 390
proxy 333
PRTORDERP 363
PRTORDERP RPG program 363
psAllRecord variable 32
psSingleRecord variable 32
publish-subscribe messaging 13
putMQ method 368, 376
putValue 63

Q
QEJBAES4 subsystem 86
Qshell Interpreter 227
queue 367
queue manager 367

R
RDB/XML Mapping Editor 149
read-only methods 276
readUTF method 369
record 244
Record class 361
record format class 361
RecordFormat class 361
record-level access 361, 365
recursive algorithm 386–387
Redbooks Web Site 428
refactoring support 147
referenced libraries 161

Regen Webserver Plugin 105
registerCommand 404
Relational Database 149
Relational Schema Center 149
reliable messaging communication 13
remote interface 223, 333
remote interface (OrderPlacement) 255
remote method invocation (RMI) 13, 228, 399
remote method invocation over Internet Inter-ORB Proto-
col (RMI/IIOP) 13
RemoteException 345
removeAttribute 63
removeValue 63
RequestDispatcher 56
reset() method 396, 402, 409
ResultSet 46
RetrieveCustomerInfo.jsp 403, 405
RMI (remote method invocation) 13, 228, 399
RMI/IIOP 5, 7, 13, 403
RMI/IIOP (remote method invocation over Internet In-
ter-ORB Protocol) 13
RMI/IIOP 1.0 5
rmic compiler 13
roles 10
Row 244
RPG 195, 233, 245, 332, 349, 361
RPG application 352
RPG application flow 234
RPG OrderEntry application 231

application flow 233
components 233
customer transaction 232
customer transaction flow 234
database 232
database layout 240
database table structure 239
starting the application 234

run method 361

S
Sapphire/Web 222
SAX (Simple API for XML) 379
schema 148, 244, 266, 269–270, 272, 274, 295–296,
300, 302, 304
schema map 266
schxmi 271
scrapbook 34, 147, 204–205, 339
scriplet 56
security 3, 10, 218, 221, 226
security architecture 10
Security Collaborator 10
server provider 226
serverName resource property 189, 282
server-side component

EJB 8
servlets 8

services 4
Servlet 2.2 5
servlet application flow 341
servlet example 25
 Index 437

Servlet Mapping 82, 99–100
servlet testing 28
ServletConfig 37
ServletOutputStream object 55
servlets 8, 315, 340

architecture 23, 30
interface with RPG 41
introduction 23
loading required features 26
server() method 25

session 59, 62, 199, 206, 212
creating 63
invalidating 64
tracking 59

session bean 219–220, 222, 251
enhancing 354
stateful 222, 252
stateless 222, 252

session Enterprise JavaBean 251
session scoping 63
setAttribute 63
setAttribute() method 55–56
setCommandTarget() method 398
setCommandTargetName() method 398
setOutputProperties() method 398
setProgram method 361
setTargetPolicy 398
setter methods 201–202
setValuesXML method 386
ShoppingCart 199
Simple API for XML (SAX) 379
SLIC (System Licensed Internal Code) 228
SLTCUSTR 233
SLTPARTR 233
SMTP 14
SQL 149
SQL Query Builder 149
standard extension API 5
StartOrderEntry 206, 209, 212
StartOrderEntry JSP 423
StartOrderEntry.jsp 198
StartOrderEntryServlet 198, 206, 210, 416
state 260, 340
state implementation 260
stateful entity bean 222
stateful session bean 222, 252, 257, 340
stateless entity bean 222
stateless methods 338
stateless protocol 59
stateless session bean 222, 252–253
Stock 243
Stock EJB 250, 275
Stock table 239, 248
Stock Table Layout (Stock) 243
StockBean 275
StockHome 275
StockKey 275
subcontexts 9
submitOrder method 333, 337, 357, 360
submitOrderStateless method 333, 338–339

submitOrderStatelessMQ method 373–374
submitOrderStatelessRPG method 357
submitted order 352
Sun JSDK class libraries 24
Sun Microsystems Inc 216
super 37
SuperServlet 36, 38, 91, 206, 211
Support package 332

Customer class 332
Item class 332
Order class 332
OrderDetail 332
OrderDetail class 332

swim lane 52
system administrator 17
System Licensed Internal Code (SLIC) 228

T
Table 244
target policy 403
TargetableCommand interface 397–398
TargetableCommandImpl 398
TargetableCommandImpl class 398
TargetPolicy interface 398
TargetPolicyDefault class 404
TargetPolicyDefault object 404
tblxmi 271, 295
TestRunner.java 170–171
TEXT_NODE 387–388
three-tier architecture 251
three-tier model 195
tier 4, 7, 251

data 195
presentation 195

Tomcat 176
tools provider 17
top-down mapping 148, 265, 288
topic 13
transaction 12, 218, 221, 226

business 221
database 221

transaction attribute
Mandatory 12
Never 12
Not supported 12
Required 12
Required New 12
Supported 12

transaction isolation 12
TransactionRequiredException 12
two-tier architecture 251

U
UDDI 149
UML (Unified Modeling Language) 52, 245
Unified Modeling Language (UML) 52, 245
uninstall 96
unregisterCommand 404
UpdateCustomerCmd 412, 421
438 WebSphere J2EE Application Development for the iSeries Server

UpdateCustomerCmdImpl 412, 421
URL encoding 61
URL mapping 183
URL rewriting 60–63
UserTransaction objects 9

V
VectorTest.java 167
verifyCustomer method 262, 333, 337
versioning 147
View 244
VisualAge for Java 21, 26–27, 75, 107, 124, 146, 164,
175, 195, 276

changing the document root 27
VisualAge for Java Enterprise Edition 3.0 22
VisualAge for Java Enterprise Edition 3.5 22, 26

testing the servlet 28
VisualAge for Java Scrapbook 339

W
WAR 16–17, 91, 148, 174, 177, 183
WAR (Web Application Archive) 14
WAR files 14
Warehouse table 239
Web Application Archive (WAR) 14
Web container 10
Web features 148
Web module 76
Web perspective 148
Web Server Plug-in 87
Web Services 146, 149
web.xml 16, 76, 207, 324
Web.xml editor 183
WebLogic 222
WebSphere 3.5 176, 396
WebSphere 4.0 JDK level 6
WebSphere Administrative Domain 188
WebSphere application development environment 22
WebSphere Application Server 3

servlet support 22
WebSphere Application Server Advanced Edition 3.5
222

connection pools 248
JSP support 21
servlet support 21

WebSphere Application Server Version 3.5 JSP support
52
WebSphere Business Components 229
WebSphere connection pool 248
WebSphere Enterprise Edition 4.0 228
WebSphere package levels for J2EE 5
WebSphere Studio 23, 175
WebSphere Studio Application Developer 107, 145–146
WebSphere Test Environment (WTE) 26–27, 279, 287
workspace 177
writeDataQueue method 364
writeMQ method 374
writeMQXml method 389–390
WsnInitialContextFactory 43

wsws.jar 75, 79
Wsws_App 178, 183
wswsitem.jar 75, 79
wswsjsp.jar 75, 79
wswspool.jar 75, 79
wswssession.jar 75
WTE (WebSphere Test Environment) 26, 279, 287
WYSIWYG 148, 195

X
X/Open 227
XMI 147, 149
xmi 275
xmi file 271
XML 15, 17, 40, 146, 148, 179, 379–380, 384–385,
390–391
XML child element 383
XML document 385
XML editor 381
XML element 381
XML features 148
XML file creation 379
XML Schema Editor 148
XML Source Editor 148
XML tree 386
XmlDoc class 384, 386, 389
XSL 148
XSL Trace Editor 149

Z
Zip file 154
ZONED 290
 Index 439

440 WebSphere J2EE Application Development for the iSeries Server

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

W
ebSphere J2EE Application Developm

ent

®

SG24-6559-00 ISBN 0738425117

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

WebSphere J2EE
Application Development
for the IBM iSeries Server

Build and deploy J2EE
compliant
applications for
WebSphere 4.0

Use Application
Developer to build
iSeries servlets, JSPs,
and EJBs

Learn how to
interface to legacy
applications

WebSphere Application Server 4.0 delivers the Java 2 Enterprise
Edition (J2EE) implementation. It is the IBM strategic Web application
server and a key IBM ~ iSeries product for enabling e-business
applications. The iSeries server and WebSphere Application Server are
a perfect match for hosting e-business applications.

You can build J2EE applications using WebSphere Studio Application
Developer – a new IBM application development environment. This is
the follow-on product for VisualAge for Java and WebSphere Studio. It
combines the best of these products into one integrated development
environment.

This IBM Redbook shows you how to build and deploy iSeries J2EE
applications and how to use them to access iSeries resources. It also
shows you how to use your iSeries server as a Java server. It is written
for anyone who wants to use Java servlets, JavaServer Pages, and
Enterprise JavaBeans on the iSeries server.

This redbook provides many practical programming examples with
detailed explanations of how they work. The examples were developed
using VisualAge for Java Enterprise Edition 4.0 and WebSphere Studio
Application Developer 4.02. They were tested using WebSphere
Application Server 4.0.2 Advanced Edition and Advanced Edition Single
Server. To effectively use this book, you should be familiar with the
Java programming language and object-oriented application
development.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Special notice
	Comments welcome

	Chapter 1. Introduction to J2EE
	1.1 Java 2 Enterprise Edition (J2EE)
	1.1.1 J2EE platform technologies
	1.1.2 J2EE 1.2 required standard extension APIs
	1.1.3 J2EE package levels in WebSphere

	1.2 J2EE containers
	1.3 J2EE components
	1.3.1 Client-side components
	1.3.2 Server-side components: Servlets
	1.3.3 JavaServer Pages: Separating presentation logic
	1.3.4 Server-side components: EJBs

	1.4 J2EE services
	1.4.1 Java Naming Directory Interface
	1.4.2 Java Database Connectivity
	1.4.3 Security
	1.4.4 Transactions (JTA and JTS)
	1.4.5 JavaBean Activation Framework (JAF)

	1.5 J2EE communication
	1.5.1 Remote method invocation (RMI/IIOP)
	1.5.2 Java Messaging Service
	1.5.3 JavaMail

	1.6 J2EE packaging and deployment
	1.6.1 J2EE deployment descriptor

	1.7 J2EE platform roles
	1.8 J2EE additional resources

	Chapter 2. Servlet and JSP development using VisualAge for Java
	2.1 Servlet support in WebSphere Advanced Edition 4.0
	2.1.1 IBM development environments for WebSphere applications

	2.2 Introduction to servlets
	2.2.1 Simple servlet example

	2.3 Setting up VisualAge for Java to develop and test servlets
	2.3.1 Loading the required features
	2.3.2 Using the WebSphere Test Environment
	2.3.3 Testing the servlet under VisualAge for Java Enterprise Edition 4.0
	2.3.4 Exporting class files to a JAR file

	2.4 Using JDBC to access an iSeries database
	2.4.1 The architecture of the sample application
	2.4.2 JDBCCatalogSupport class
	2.4.3 JDBCItemCatalog class
	2.4.4 Testing the application in the scrapbook
	2.4.5 ItemServlet class
	2.4.6 Running the ItemServlet inside VisualAge for Java
	2.4.7 Exporting the servlet from VisualAge for Java

	2.5 Database connection pools
	2.5.1 DataSource version
	2.5.2 Running the ItemPoolServlet inside VisualAge for Java
	2.5.3 Exporting the ItemPoolServlet servlet from VisualAge for Java

	2.6 JSP support in WebSphere Version 4.0
	2.6.1 JSP life cycle
	2.6.2 JSP design
	2.6.3 JSP servlet interface example
	2.6.4 Running the CallJSP servlet inside VisualAge for Java
	2.6.5 Exporting the CallJSP servlet from VisualAge for Java

	2.7 Session management
	2.7.1 Session tracking solutions
	2.7.2 HttpSession interface
	2.7.3 ItemSessionServlet example
	2.7.4 Running the ItemSessionServlet servlet inside VisualAge for Java
	2.7.5 Exporting the ItemSessionServlet from VisualAge for Java

	Chapter 3. WebSphere V4.0 assembly and deployment tools
	3.1 WebSphere 4.0 application packaging overview
	3.2 Application Assembly Tool overview
	3.3 Application packaging and deploying scenario
	3.3.1 Packaging MyHelloWorldServlet
	3.3.2 Installing the MyHello Web module under the Single Server
	3.3.3 Packaging ItemServlet
	3.3.4 Installing the ItemServlet Web module on the Single Server
	3.3.5 Running ItemServlet from an HTML file
	3.3.6 Packaging ItemPoolServlet
	3.3.7 Installing the ItemPool Web module on the Single Server
	3.3.8 Packaging and deploying CallJSP
	3.3.9 Packaging and deploying ItemSessionServlet
	3.3.10 Installing the OrderEntry application on Advanced Edition
	3.3.11 Packaging the MyHelloWorldApp enterprise application
	3.3.12 Installing the MyHelloWorldApp application on Advanced Edition
	3.3.13 Testing the MyHelloWorldApp application
	3.3.14 Packaging the OrderEntryApp enterprise application
	3.3.15 Installing the OrderEntryApp application on Advanced Edition
	3.3.16 Testing the OrderEntryApp application

	Chapter 4. Introduction to WebSphere Studio Application Developer
	4.1 WebSphere Studio Application Developer overview
	4.2 Getting started with Application Developer
	4.2.1 Navigating in Application Developer
	4.2.2 Importing resources
	4.2.3 Customizing Application Developer

	4.3 Working with Java code
	4.3.1 Adding new methods
	4.3.2 Compiling Java code
	4.3.3 Running the Java code
	4.3.4 Exporting the Java code

	4.4 Conclusion

	Chapter 5. Building Java servlets and JSPs with WebSphere Studio Application Developer
	5.1 Migrating code from VisualAge for Java
	5.2 Migrating the OrderEntry WAR file
	5.2.1 Importing a WAR file
	5.2.2 Building the project and modifying the project’s properties
	5.2.3 Exploring the enterprise application structure in Application Developer
	5.2.4 Testing the servlets

	5.3 Developing a new application with Application Developer
	5.3.1 New OrderEntry application logic
	5.3.2 Building the application
	5.3.3 Building the OrderEntry application with Application Developer

	5.4 Conclusion

	Chapter 6. Introduction to Enterprise JavaBeans
	6.1 The Enterprise JavaBeans specification
	6.2 Enterprise JavaBeans architecture definition
	6.3 How EJB technology fits into the Java architecture
	6.4 Why EJB is important
	6.5 Leveraging Java and EJB technology
	6.6 EJB architectural overview
	6.6.1 The EJB server
	6.6.2 Types of components
	6.6.3 Component content

	6.7 EJB roles
	6.7.1 Enterprise JavaBean provider
	6.7.2 Application assembler
	6.7.3 Application deployer
	6.7.4 Server provider
	6.7.5 Container provider

	6.8 Using EJB technology on the iSeries server
	6.8.1 Overview of Java for the iSeries server
	6.8.2 EJB technology on the iSeries server

	6.9 EJB interoperability with other distributed architectures
	6.9.1 CORBA
	6.9.2 Component Object Model (COM)
	6.9.3 IBM WebSphere Business Components

	6.10 Conclusion

	Chapter 7. Overview of the OrderEntry application
	7.1 The ABC Company
	7.2 The ABC Company database
	7.3 A customer transaction
	7.4 Application flow
	7.5 Customer transaction flow
	7.6 Database table structure
	7.7 OrderEntry application database layout
	7.8 Database terminology

	Chapter 8. iSeries EJB application development scenario
	8.1 OrderEntry application architecture with objects
	8.2 Business data: Entity Enterprise JavaBeans
	8.2.1 Database access: Using a connection pool
	8.2.2 Persistence: Container or bean managed
	8.2.3 Container-managed persistence
	8.2.4 Bean-managed persistence

	8.3 Business processes: Session Enterprise JavaBeans
	8.3.1 Three-tier versus two-tier architecture
	8.3.2 Stateless or stateful beans
	8.3.3 Order Entry example
	8.3.4 Stateless session bean: OrderPlacement
	8.3.5 Stateful session bean: OrderEntryClerk

	8.4 Conclusion

	Chapter 9. Developing EJBs with Application Developer
	9.1 Bottom-up mapping
	9.1.1 Creating an EJB project
	9.1.2 Importing a schema
	9.1.3 Creating the entity EJB from the imported schema
	9.1.4 Defining getter methods as read-only
	9.1.5 Deploying the Stock bean in the WebSphere Test Environment

	9.2 Top-down mapping
	9.2.1 Adding methods to the Stock bean
	9.2.2 Mapping the Stock bean
	9.2.3 Deploying the stock bean and testing

	9.3 Meet-in-the-middle mapping
	9.3.1 Creating the stock enterprise bean
	9.3.2 Adding the methods
	9.3.3 Mapping the stock bean
	9.3.4 Deploying and testing the enterprise bean

	9.4 Developing a bean-managed persistence (BMP) entity bean
	9.4.1 Testing the BMP bean

	9.5 Conclusion

	Chapter 10. Building Java applications with Enterprise JavaBeans
	10.1 Developing the HelloWorld EJB application
	10.1.1 Creating the HelloWorld bean in Application Developer
	10.1.2 Creating a servlet that uses the EJB
	10.1.3 Creating a Java client application that uses the EJB

	10.2 Building Java applications with Application Developer
	10.2.1 The ItemsDb class
	10.2.2 Using the ItemsDb class

	10.3 Building servlets
	10.4 Migration from EJB version 1.0 to version 1.1
	10.5 Installing the OrderEntry application on the server
	10.5.1 Generating the OrderEntry enterprise application
	10.5.2 Deploying

	10.6 Conclusion

	Chapter 11. Interfacing to legacy applications
	11.1 Interfacing to legacy applications
	11.2 Modifying the RPG application
	11.2.1 Processing the submitted order

	11.3 Enhancing the Java application
	11.3.1 Changing the CartServlet servlet
	11.3.2 Changing the ItemsDb class
	11.3.3 Changing the OrderPlacement session bean

	11.4 Using data queues to interface to legacy applications
	11.4.1 Interfacing to data queues from EJBs
	11.4.2 The writeDataQueue method

	11.5 Using MQSeries to interface to legacy applications
	11.5.1 The MQCon class
	11.5.2 Including MQSeries in the OrderEntry application
	11.5.3 Changing the ItemsDb class
	11.5.4 Changing the OrderPlacement session bean

	11.6 Using XML to interact with applications
	11.6.1 Using XML

	11.7 Conclusion

	Chapter 12. The Command package
	12.1 The IBM Framework for e-business
	12.2 Distributed Java applications
	12.3 The Command package
	12.3.1 The Command interface
	12.3.2 Facilities for creating commands

	12.4 Creating a command
	12.4.1 Benefits of the Command package framework
	12.4.2 Using the EJBCommandTarget class
	12.4.3 Creating the GetCustomerCmdEJB command
	12.4.4 Using the GetCustomerCmdEJB command

	12.5 Creating your own command targets
	12.5.1 Constructing the GetCustomerCmd command and its target
	12.5.2 The OrderPlacementCmd command

	12.6 Applying the Model-View-Controller architecture
	12.6.1 Re-designing the OrderEntry application using the MVC architecture

	12.7 Conclusion

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Abbreviations and acronyms
	Index
	Back cover

