
Redbooks

Front cover

External Procedures,
Triggers, and User-Defined
Functions on IBM DB2 for i
Hernando Bedoya

Fredy Cruz

Daniel Lema

Satid Singkorapoom

International Technical Support Organization

External Procedures, Triggers, and User-Defined
Functions on IBM DB2 for i

April 2016

SG24-6503-03

© Copyright International Business Machines Corporation 2001, 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Fourth Edition (April 2016)

This edition applies to V5R1, V5R2, and V5R3 of IBM OS/400 and V5R4 of IBM i5/OS, Program Number
5722-SS1.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
Authors. xii
Now you can become a published author, too! . xiv
Comments welcome. xiv
Stay connected to IBM Redbooks .xv

Summary of changes . xvii
April 2016, Fourth Edition. xvii

IBM Redbooks promotions . xix

Chapter 1. Introducing IBM DB2 for i . 1
1.1 An integrated relational database . 2
1.2 DB2 for i overview . 2

1.2.1 DB2 for i basics . 3
1.2.2 Stored procedures, triggers, and user-defined functions . 4

1.3 DB2 for i sample schema . 5

Chapter 2. Stored procedures, triggers, and user-defined functions for an Order Entry
application . 9

2.1 Order Entry application overview . 10
2.2 Order Entry database overview. 11
2.3 Stored procedures and triggers in the Order Entry database . 16

2.3.1 Stored procedures . 16
2.3.2 Triggers. 17
2.3.3 User-defined functions . 17

Chapter 3. Stored procedures . 19
3.1 Introduction . 20
3.2 Stored procedure types. 23

3.2.1 SQL stored procedures. 24
3.2.2 External stored procedure. 24

3.3 Registering stored procedures . 25
3.3.1 CREATE PROCEDURE . 25
3.3.2 DECLARE PROCEDURE . 27

3.4 System catalog tables . 31
3.4.1 SYSROUTINES catalog . 32
3.4.2 SYSPARMS catalog . 32

3.5 Procedure signature and procedure overloading . 33
3.6 Deleting or replacing stored procedures . 33

3.6.1 Using a command line to drop a procedure . 34
3.6.2 Dropping overloaded procedures . 35

3.7 Authorization and adopted authority . 35
3.8 Returning result sets from stored procedures . 36

Chapter 4. External stored procedures . 39
4.1 Registering external stored procedures . 40
 Contents iii

4.1.1 Registering an external procedure with System i Navigator 40
4.2 Parameter styles in external stored procedures . 45

4.2.1 SQL parameter style . 46
4.2.2 DB2SQL parameter style . 47
4.2.3 GENERAL WITH NULLS parameter style . 47
4.2.4 GENERAL parameter style . 47

4.3 Coding external stored procedures . 48
4.3.1 Coding for SQL parameter style . 48
4.3.2 Coding the DB2SQL parameter style . 54
4.3.3 Coding the GENERAL WITH NULLS parameter style . 57

4.4 Returning result sets from external procedures . 60
4.4.1 Coding external stored procedures that return cursor result sets 61
4.4.2 Coding external stored procedures that return array result sets 67

4.5 CLI client program that calls a procedure that returns multiple result sets 68
4.6 Moving into production (save and restore) . 73
4.7 The Order Entry application: Stored procedure examples . 74

4.7.1 Calling a stored procedure . 75
4.7.2 Sample stored procedure: SQL RPG version . 81

4.8 External stored procedure that uses a service program . 83
4.9 RPG IV example for an external stored procedure . 86

4.9.1 External stored procedure that writes to a data queue . 87
4.9.2 External stored procedure that reads from a data queue 88
4.9.3 Calling external stored procedures from the Run SQL Scripts utility 89

Chapter 5. Java stored procedures . 91
5.1 Prerequisites . 93
5.2 Coding DB2 for i Java stored procedures . 93

5.2.1 Parameter styles . 93
5.2.2 Data type compatibility . 96
5.2.3 Database connection in a Java stored procedure. 96
5.2.4 Returning result sets in Java stored procedures. 97

5.3 Coding examples . 99
5.3.1 Compilation of Java code . 104
5.3.2 Where to place Java classes . 106
5.3.3 Creating Java programs . 107

5.4 Registering Java stored procedures . 108
5.4.1 Registering Java stored procedures with System i Navigator. 109
5.4.2 Using the Run SQL Scripts utility . 112
5.4.3 Using the native interface . 113

5.5 Calling Java stored procedures. 114
5.6 Using SQL NULL. 117
5.7 SQLJ procedures to manipulate JAR files . 119

5.7.1 SQLJ.INSTALL_JAR. 120
5.7.2 SQLJ.REMOVE_JAR . 122
5.7.3 SQLJ.REPLACE_JAR . 123
5.7.4 SQLJ.UPDATEJARINFO . 123
5.7.5 SQLJ.RECOVERJAR . 123

5.8 Additional considerations . 124
5.8.1 Moving into production (save and restore) . 124

5.9 GetSuppliers example: Implementation with no result sets. 125
5.9.1 Stored procedure: GetSupplier . 125
5.9.2 Java client: ClientGetSupplier . 127
5.9.3 Java GUI client: ClientGetSupplierGUI . 132
iv External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5.10 GetSupplierRS example: Implementation with result sets . 132
5.10.1 GetSupplierRS stored procedure with the JAVA parameter style. 133
5.10.2 GetSupplierRS stored procedure with the DB2GENERAL parameter style . . . 135
5.10.3 Java clients: ClientGetSupplier and ClientGetSupplierGUI. 138

5.11 Problem determination . 138
5.11.1 Debugging. 139
5.11.2 Tracing . 140

Chapter 6. Stored procedure error handling . 143
6.1 Database error reporting strategy . 144

6.1.1 User-defined errors and warnings. 144
6.1.2 Consistent error handling . 144

6.2 Error handling in SQL stored procedures . 145
6.2.1 Condition and handler declaration . 145
6.2.2 SIGNAL and RESIGNAL. 149
6.2.3 SQLCODE and SQLSTATE variables in the SQL procedure 153
6.2.4 Returning values by using the RETURN statement . 154
6.2.5 GET DIAGNOSTICS. 154
6.2.6 Error handling in nested compound statements . 156
6.2.7 Use nested compound statements for better performance. 164

6.3 Error handling in external stored procedures . 164
6.3.1 Checking the stored procedure completion status . 165
6.3.2 GENERAL and GENERAL WITH NULLS parameter styles 169

6.4 Error handling in Java stored procedures . 169
6.5 Retrieving user-defined errors in a client application . 173

6.5.1 Retrieving error conditions in a JDBC client . 174
6.5.2 Retrieving error conditions from an ODBC or CLI client 176

6.6 Transaction management in stored procedures . 179
6.6.1 Transaction management terminology . 179
6.6.2 Transactional behavior . 180
6.6.3 SQL statements for controlling transactions . 182
6.6.4 Transaction management in compound statements . 184

6.7 External stored procedures and commitment control . 186
6.7.1 Activation group . 186
6.7.2 Savepoints . 189

6.8 Several practical examples . 190
6.8.1 SQL stored procedure example . 190
6.8.2 External stored procedure example . 192
6.8.3 Java stored procedure example . 194
6.8.4 C++ client code that uses ODBC . 196
6.8.5 Java example client code . 199
6.8.6 Results for the example programs . 200

Chapter 7. Database triggers . 203
7.1 Trigger concepts . 204
7.2 Types of triggers in DB2 for i. 206

7.2.1 SQL triggers . 206
7.2.2 External triggers . 207

7.3 Enabling and disabling a trigger . 207
7.4 Displaying and reviewing trigger information . 208

7.4.1 Using System i Navigator to view the properties of a trigger 209
7.4.2 Displaying trigger information . 209
7.4.3 Printing trigger information . 210
 Contents v

7.5 System catalog tables . 211
7.6 Authorization and adopted authorities on triggers. 214
7.7 Renaming and copying . 215

Chapter 8. External triggers . 217
8.1 Defining a trigger . 218

8.1.1 ADDPFTRG . 219
8.1.2 Using System i Navigator to add an external trigger. 222

8.2 Trigger program structure . 226
8.2.1 Trigger buffer for RPG . 229
8.2.2 Trigger buffer for COBOL . 230
8.2.3 Trigger buffer for C . 231
8.2.4 Using the trigger buffer . 232

8.3 Trigger feedback to application programs. 234
8.3.1 Commitment control and triggers . 240

8.4 Designing trigger programs. 242
8.4.1 Order Entry application scenario. 243
8.4.2 Audit trail trigger example programs . 244
8.4.3 Updating a trigger on the Order Header file program examples 260
8.4.4 Softcoding the trigger buffer example . 280
8.4.5 Changing the record that fired a trigger . 289

8.5 Applications and triggers: Design considerations . 295
8.6 Recommendations . 300

Chapter 9. Triggers, referential integrity, and constraints. 303
9.1 Transaction isolation and recovery . 304
9.2 Trigger journal entries . 305
9.3 Triggers and referential integrity . 305
9.4 Comparing referential integrity and triggers . 305

9.4.1 Using triggers to implement referential integrity rules . 305
9.5 Constraints and triggers: Ordering the actions . 306

9.5.1 Insert operations . 307
9.5.2 Update operations. 307
9.5.3 Delete operations . 307

9.6 Triggers, referential integrity, and commitment control . 310
9.6.1 When the application is not running commitment control 310
9.6.2 When the application runs under commitment control . 310

9.7 Referential integrity, triggers, and journal entries . 311

Chapter 10. User-defined functions. 313
10.1 Introduction . 314
10.2 Nature of user-defined functions . 315

10.2.1 User-defined scalar functions . 315
10.2.2 User-defined table functions . 316

10.3 Type of user-defined functions . 316
10.3.1 Sourced UDFs . 316
10.3.2 SQL UDFs. 317
10.3.3 External UDFs. 318

10.4 Creating user-defined functions . 319
10.4.1 CREATE FUNCTION . 319
10.4.2 Modifying a UDF . 324
10.4.3 Dropping a UDF . 324

10.5 Resolving a UDF . 325
10.5.1 UDF overloading and function signature. 325
vi External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

10.5.2 Parameter matching and promotion . 326
10.5.3 Function path and the function selection algorithm. 327

10.6 System catalog tables . 329
10.6.1 SYSROUTINES catalog . 329
10.6.2 SYSPARMS catalog . 330

10.7 Authorization and adopted authority . 331
10.8 Transaction management considerations . 331
10.9 Coding considerations. 331

Chapter 11. External user-defined functions . 333
11.1 User-defined function considerations . 334
11.2 Registering an external UDF. 334

11.2.1 Registering an external UDF with System i Navigator 334
11.2.2 Registering a Java UDF with System i Navigator . 341

11.3 Parameter styles in external UDFs . 346
11.3.1 SQL parameter style . 347
11.3.2 DB2SQL parameter style . 347
11.3.3 GENERAL parameter style . 349
11.3.4 GENERAL WITH NULLS parameter style . 349
11.3.5 DB2GENERAL parameter style . 349
11.3.6 JAVA parameter style . 350

11.4 Scratchpad in UDFs and UDTFs. 350
11.5 UDF and UDTF calling sequence . 350
11.6 Coding an external UDF . 351

11.6.1 Coding the SQL parameter style. 352
11.6.2 Coding the DB2SQL parameter style . 357
11.6.3 Coding the GENERAL parameter style. 361
11.6.4 Coding the GENERAL WITH NULLS parameter style 364
11.6.5 Coding the DB2GENERAL parameter style . 365
11.6.6 Coding the JAVA parameter style . 367

11.7 Error handling in external UDFs . 368
11.7.1 Error handling with the DB2SQL parameter style . 369
11.7.2 Error handling with the DB2GENERAL parameter style 372

11.8 Pointer arithmetic and the scratchpad. 375
11.8.1 Debugging external UDFs. 376

11.9 Coding example for an external user-defined table function. 381

Appendix A. Sample ILE C program that uses the QDBRTVFD API. 393
Sample ILE C program that uses the QDBRTVFD API . 394

Appendix B. Order Entry application: Detailed flow . 399
Program flow for the Insert Order Header program . 400
Program description for the Insert Order Header program. 401
Program flow for the Insert Order Detail program . 401
Program description for the Insert Order Detail program . 403
Program flow for the Finalize Order program. 404
Program description for the Finalize Order program . 405

Appendix C. Additional material . 407
Locating the web material . 407
Using the web material. 407

System requirements for downloading the web material . 408
Downloading and extracting the web material . 408
 Contents vii

Related publications . 409
IBM Redbooks publications . 409

Other resources . 409
Referenced websites . 409
Help from IBM . 410
viii External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2001, 2016. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

DB2®
DB2 Universal Database™
DRDA®
eServer™
i5/OS™
IBM®

Integrated Language Environment®
Language Environment®
Lotus®
Operating System/400®
OS/400®
Redbooks®

Redbooks (logo) ®
System i®
VisualAge®
WebSphere®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

http://www.ibm.com/legal/copytrade.shtml

Preface

Procedures, triggers, and user-defined functions (UDFs) are the key database software
features for developing robust and distributed applications. IBM Universal Database™ for i
(IBM DB2® for i) supported these features for many years, and they were enhanced in V5R1,
V5R2, and V5R3 of IBM® OS/400® and V5R4 of IBM i5/OS™.

This IBM Redbooks® publication includes several of the announced features for procedures,
triggers, and UDFs in V5R1, V5R2, V5R3, and V5R4. This book includes suggestions,
guidelines, and practical examples to help you effectively develop IBM DB2 for i procedures,
triggers, and UDFs. The following topics are covered in this book:

� External stored procedures and triggers

� Java procedures (both Java Database Connectivity (JDBC) and Structured Query
Language for Java (SQLJ))

� External triggers

� External UDFs

This publication also offers examples that were developed in several programming languages,
including RPG, COBOL, C, Java, and Visual Basic, by using native and SQL data access
interfaces.

This book is part of the original IBM Redbooks publication, Stored Procedures, Triggers, and
User-Defined Functions on DB2 Universal Database for iSeries, SG24-6503-02, that covered
external procedures, triggers, and functions, and also SQL procedures, triggers, and
functions. All of the information that relates to external routines was left in this publication. All
of the information that relates to SQL routines was rewritten and updated. This information is
in the new IBM Redbooks publication, SQL Procedures, Triggers, and Functions on DB2 for i,
SG24-8326.

This book is intended for anyone who wants to develop IBM DB2 for i procedures, triggers,
and UDFs. Before you read this book, you need to know about relational database technology
and the application development environment on the IBM i server.

Note: With the release of IBM i5/OS V5R4, the name of DB2 Universal Database for
iSeries changed to DB2 for i.
© Copyright IBM Corp. 2001, 2016. All rights reserved. xi

Authors
This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Rochester Center.

Hernando Bedoya is an IT Specialist at the IBM ITSO, in Rochester,
Minnesota. He writes extensively and teaches IBM classes worldwide
in all areas of DB2 for i. Before Hernando joined the ITSO more than
six years ago, he worked for IBM Colombia as an IBM AS/400 IT
Specialist performing presales support for the Andean countries. He
has 24 years of experience in the computing field and taught database
classes in Colombian universities. He holds a Master in Computer
Science degree from EAFIT, Colombia. His areas of expertise are
database technology, application development, and data
warehousing.

Fredy Cruz is the Independent Software Vendor (ISV) Coordinator at
IBM Colombia. He helps developers with infrastructure migration over
software, including IBM WebSphere® and DB2 on both Linux on IBM
System i® and i5/OS. He also teaches ISVs and clients about the
utilities and technologies that relate to this task. His responsibilities are
to show clients, IBM System i sales representatives, and IBM System i
technical representatives how to implement the new utilities in the IBM
System i environment. His areas of expertise include working with the
Linux and Microsoft Windows environments on the System i platform,
DB2 and WebSphere in OS/400, i5/OS, and Linux, and IBM Lotus®
over the OS/400 and i5/OS environment.

Daniel Lema is an IT Architect at IBM Andean, with 15 years of
experience. Several of his projects include working with Business
Intelligence, database modeling, and extract, transform, and load
(ETL) modeling and implementation, with experience in the Banking
Data Warehouse Model and the banking industry. Previously, he
worked as a sales specialist for the Midrange Server Product Unit
(formerly the AS/400 Product Unit), helping clients and salespeople to
design AS/400 and DB2/400 solutions. He was a lecturer in
Information Management and Information Technology Planning in the
Graduate School at EAFIT University and other Colombian
universities. He is also an Information Systems Engineer and is
working on earning an Applied Mathematics Master degree at EAFIT
University, where he finished his academic activities.

Satid Singkorapoom is an Advisory Product Specialist for the IBM
System i Sales unit of IBM Thailand. He has 16 years of experience
with System i products. He holds a Master of Computer Engineering
degree from the Asian Institute of Technology in Thailand. His areas of
expertise include DB2 for i technology, SQL and System i performance
analysis and tuning, System i logical partitioning, SAP on System i
Technical Infrastructure, and System i hardware architecture. He
coauthored five IBM Redbooks publications and three DB2 technical
training materials from ITSO Rochester over the past 13 years. He
also teaches System i clients regularly about various product
technology updates, SQL performance analysis and tuning, OS/400
for SAP deployment, and System i administration.
xii External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

This book is based on projects that were conducted in 1994, 1997, 2000, 2001, and 2006 by
the ITSO Rochester Center.

The following individuals were advisors of the projects:

Michele Chilanti
Jarek Miszczyk
ITSO Poughkeepsie Center

The following authors were involved in the previous editions of this book:

Christophe Delponte
IBM Belgium

Cintia Marques
IBM Brazil

Thelma Bruzadin
ITEC Brazil

Hernando Bedoya
IBM Colombia

Roger H.Y. Leung
IBM Hong Kong

Oh Sun Kang
IBM Korea

Suparna Murthy
Deepak Pai
IBM India

Clarice Rosa
IBM Italy

Teresa Kan
Kent Milligan
IBM Rochester

Alex Metzler
IBM Switzerland

Claus Weiss
IBM Toronto Lab

Vijay Marwaha
IBM US
 Preface xiii

Thanks to the following people for their invaluable contributions to this project:

Mark Anderson
John Eberhard
Mietek Konczyk
Jarek Miszczyk
Kent Milligan
Kathy Passe
Jon Triebenbach
IBM Rochester

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xv

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xvi External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Summary of changes

This section describes the technical changes that were made in this edition of the book and in
previous editions. This edition might also include minor corrections and editorial changes that
are not identified.

Summary of Changes
for SG24-6503-03
for External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i
as created or updated on April 1, 2016.

April 2016, Fourth Edition

This revision includes the following new and changed information.

New information
This publication includes several of the announced features for procedures, triggers, and
UDFs in V5R1, V5R2, V5R3, and V5R4. This book includes suggestions, guidelines, and
practical examples about how to effectively develop IBM DB2 for i procedures, triggers, and
UDFs. The following topics are covered in this book:

� External stored procedures and triggers

� Java procedures (both Java Database Connectivity (JDBC) and Structured Query
Language for Java (SQLJ))

� External triggers

� External UDFs

This publication also offers examples that were developed in several programming languages,
including RPG, COBOL, C, Java, and Visual Basic, by using native and SQL data access
interfaces.

Changed information
This book is part of the original IBM Redbooks publication, Stored Procedures, Triggers, and
User-Defined Functions on DB2 Universal Database for iSeries, SG24-6503-02, that covered
external procedures, triggers, and functions and also SQL procedures, triggers, and
functions. All of the information that relates to external routines was left in this publication. All
of the information that relates to SQL routines was rewritten and updated. It is in the new IBM
Redbooks publication, SQL Procedures, Triggers, and Functions on DB2 for i, SG24-8326.
© Copyright IBM Corp. 2001, 2016. All rights reserved. xvii

xviii External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1. Introducing IBM DB2 for i

This chapter includes the following topics:

� An integrated relational database
� DB2 for i overview
� DB2 for i sample schema

1

Note: With the release of IBM i5/OS V5R4, the name of DB2 Universal Database for
iSeries changed to DB2 for i.
© Copyright IBM Corp. 2001, 2016. All rights reserved. 1

1.1 An integrated relational database
Integration is one of the major elements of differentiation of the IBM i on Power Systems
server in the information technology marketplace. The advantages and drawbacks of fully
integrated systems were the subject of endless disputes in the last few years. The success of
the AS/400 system, iSeries server, and the IBM i on Power Systems server indicates that
integration is still considered one of the premier advantages of this platform. Security,
communications, data management, backup, and recovery: All of these vital components
were designed in an integrated way on the AS/400 system, iSeries server, and IBM i on
Power Systems server. They work according to a common logic with a common user
interface. They fit together perfectly because all of them are part of the same software, the
IBM Operating System/400® (OS/400), IBM i5/OS, or IBM i.

The integrated relational database manager was always one of the most significant facilities
that the IBM i on Power Systems server provided to users. Relying on a database manager
that is integrated into the operating system means that virtually all of the user data on the
IBM i on Power Systems server is stored in a relational database and that the access to the
database is implemented by the operating system itself. Certain database functions are
implemented at a low level in the IBM i on Power Systems server architecture, while other
database functions are even performed by the hardware.

Several years ago, a survey pointed out that a significant percentage of iSeries server clients
did not even know that all of their business data was stored in a relational database. This
reaction might sound strange if you think that we consider the integrated database as one of
the main technological advantages of the IBM i on Power Systems platform. Thousands of
clients use, manage, back up, and restore a relational database every day without even
knowing that they installed it on their systems. This level of transparency was possible by the
integration and by the undisputed ease of use of this platform. These key elements caused
the success of the AS/400 and iSeries server database system in the marketplace.

During the last few years, each new release of OS/400 enhanced DB2 for i with a dramatic set
of new functions. As a result of these enhancements, the IBM i server is one of the most
functionally rich relational platforms in the industry.

DB2 for i is a member of the DB2 Universal Database family of products, which includes DB2
Universal Database for OS/390 and DB2 for i. The DB2 Universal Database family is the IBM
proposal in the marketplace of relational database systems and guarantees a high degree of
application portability and a sophisticated level of interoperability among the various platforms
that participate in the family.

1.2 DB2 for i overview
This section provides a quick overview of the major features of DB2 for i. You can obtain a full
description of the functions that are mentioned in this section in several IBM manuals, for
example:

� Database Programming, SC41-5701
� SQL Reference, SC41-5612
2 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

1.2.1 DB2 for i basics
The major distinguishing characteristic of the DB2 for i database manager is that it is part of
the operating system. Most of your IBM i on Power Systems server data is stored in the
relational database. Although the IBM i server also implements other file systems in its
design, the relational database on the IBM i server is the most commonly used database by
the clients. Your relational data is stored in the database, plus typical non-relational
information, such as the source of your application programs.

Physical files and tables
Data on the IBM i server is stored in objects that are called physical files. Physical files
consist of a set of records with a predefined layout. Defining the record layout means that you
define the data structure of the physical file in terms of the length and the type of data fields
that participate in that particular layout.

These definitions can be made through the native data definition language of DB2 for i, which
is called data description specifications (DDS). If you are familiar with other relational
database platforms, you are aware that the most common way to define the structure of a
relational database is by using the data definition statements that are provided by the
Structured Query Language (SQL). This capability is also possible on the IBM i server. The
SQL terminology can be mapped to the native DB2 for i terminology for relational objects. An
SQL table is equivalent to a DDS-defined physical file. We use both terms interchangeably in
this book. Similarly, table rows equate to physical file records for DB2 for i, and SQL columns
are synonymous with record fields.

Logical files, SQL views, and SQL indexes
By using DDS, you can define logical files on your physical files or tables. Logical files
provide a different view of the physical data, allowing column subsetting, record selection,
joining multiple database files, and so on. Logical files can also provide physical files with an
access path when you define a keyed logical file. Access paths can be used by application
programs to access records directly by key or for ensuring uniqueness.

Similar concepts exist on the SQL side. An SQL view is almost equivalent to a native logical
file. The selection criteria that you can apply in an SQL view is much more sophisticated than
in a native logical file. An SQL index provides a keyed access path for the physical data in the
same way as a keyed logical file. Still, SQL views and indexes are treated differently than
native logical files by DB2 for i, and they cannot be considered the same.

Database file refers to any DB2 for i file, such as a logical or physical file, an SQL table, or
view. Any database files can be used by applications to access DB2 for i data.

Terminology
Because DB2 for i evolved from the built-in database that was present in the iSeries and the
AS/400 before SQL was widely used, IBM i uses different terminology than SQL to refer to
database objects.
Chapter 1. Introducing IBM DB2 for i 3

The terms and their SQL equivalents are in Table 1-1. The terms are used interchangeably
throughout this book.

Table 1-1 Cross-reference of SQL terms and IBM i terms

1.2.2 Stored procedures, triggers, and user-defined functions
The main purpose of this book is to describe, in detail and with practical examples, the
support of stored procedures, triggers, and user-defined functions (UDFs) in DB2 for i.

Stored procedures
A stored procedure is an ordinary program that can be called by an application with an SQL
CALL statement. The stored procedure can be called locally or remotely. A remote stored
procedure provides the most advantages:

� It reduces traffic across the communication line.

� It splits the application logic and encourages an even distribution of the computational
workload.

� It provides an easy way to call a remote program.

DB2 for i supports two types of stored procedures:

� SQL stored procedures
� External procedures

Database triggers
Triggers are user-written programs that are associated with database tables. You can define
a trigger for update, delete, and insert operations. Whenever the operation takes place,
regardless of the interface that is changing the data, the trigger program is automatically
activated by DB2 for i and executes its logic. In this way, you can implement complex rules at
the database level with total independence from the application environment. You can use
triggers for various purposes in your database design.

Two examples are data validation and audit trail creation. DB2 for i supports two types of
triggers:

� SQL triggers
� External triggers

SQL term IBM i term

Table Physical file

View Non-keyed logical file

Index Keyed logical file

Column Field

Row Record

Schema Library, collection, or schema

Log Journal

Isolation level Commitment control level
4 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

User-defined functions and user-defined table functions
UDFs and user-defined table functions (UDTFs) are user-written programs that enrich the
functionality of the database manager by adding new functions to the set of built-in functions.

UDFs are scalar functions, which receive parameters, perform operations, and return a
unique value, such as converting Fahrenheit to Celsius degrees or calculating the net present
value when provided the final amount, monthly payment, number of payments, and interest
rate.

UDTFs are functions that return a table for a certain set of parameters instead of a single
scalar value, such as the top k performing salesperson or the projected currency exchange
rates between an initial and final date for a specific pair of currencies.

DB2 for i supports three types of UDFs:

� SQL UDFs
� External UDFs
� Sourced UDFs

1.3 DB2 for i sample schema
Within the code of OS/400 V5R1M0, a stored procedure creates a fully functioning database.
This database contains tables, indexes, views, aliases, and constraints. It also contains data
within these objects.

The database also helps with problem determination because the program ships with the
OS/400 V5R1M0 code. By calling a simple program, you can create a duplicate of this
database on any system that is running V5R1M0. This capability enables clients and support
staff to work on the same database for problem determination.

Working on the same database provides the ability for clients around the world to see the new
functionality at V5R1M0. It also simplifies the setup environment for the workshops that are
created in the future for use by the client.

You create the database by issuing the following SQL statement:

CALL QSYS.CREATE_SQL_SAMPLE('SAMPLEDBXX')
Chapter 1. Introducing IBM DB2 for i 5

You can find this statement in the example pull-down list box of the Run SQL Scripts window
(Figure 1-1).

Figure 1-1 Example display that shows the schema CREATE statement

As a group, the tables include information that describes employees, departments, projects,
and activities. This information makes up a sample database that demonstrates the features
of DB2 for i.

Note: The schema name must be uppercase. This sample schema is also used in future
DB2 for i documentation.
6 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

An entity-relationship (ER) diagram of the database is shown in Figure 1-2.

Figure 1-2 Sample schema: ER diagram

The tables are listed:

� Department Table (DEPARTMENT)
� Employee Table (EMPLOYEE)
� Employee Photo Table (EMP_PHOTO)
� Employee Resume Table (EMP_RESUME)
� Employee to Project Activity Table (EMPPROJACT)
� Project Table (PROJECT)
� Project Activity Table (PROJACT)
� Activity Table (ACT)
� Class Schedule Table (CL_SCHED)
� In Tray Table (IN_TRAY)

Indexes, aliases, and views are created for many of these tables. The view definitions are not
included here. Three other tables are created that are not related to the first set:

� Organization Table (ORG)
� Staff Table (STAFF)
� Sales Table (SALES)

Note: Several of the examples in this book use the sample database that was described.
Chapter 1. Introducing IBM DB2 for i 7

8 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 2. Stored procedures, triggers, and
user-defined functions for an
Order Entry application

This chapter describes how a simple Order Entry application can take advantage of the
stored procedures, triggers, and user-defined functions (UDFs) support that is available with
DB2 for i. It describes the complete application, in terms of logical flow and database
structure. You can obtain the actual implementation of this application in the specific chapters
that use this application scenario to show how to use the DB2 Universal Database for iSeries
stored procedures, triggers, and UDFs.

By presenting an application scenario, we intend to show how the stored procedures, triggers,
and UDFs in DB2 Universal Database for iSeries can be applied to a real-life environment,
and the technical implications of using those functions. For this reason, the application might
seem simplistic in certain respects (for example, the user interface or specific design
choices). We present a simple, easy-to-understand scenario that includes most of the
aspects that are described throughout this book.

We chose to develop the various components of the application by using different
programming languages to show how the various languages can interact with DB2 Universal
Database for iSeries.

This chapter covers the following topics:

� Order Entry application overview
� Order Entry database overview
� Stored procedures and triggers in the Order Entry database

2

© Copyright IBM Corp. 2001, 2016. All rights reserved. 9

2.1 Order Entry application overview
The Order Entry application that is shown in Figure 2-1 represents a simple solution for an
office stationery wholesaler.

Figure 2-1 Application overview: Interaction of the DB2 Universal Database for iSeries functions

This application has the following characteristics:

� The wholesale company runs a main office and several branch offices.

� A requirement of the branch offices is their autonomy and independence from the main
office.

� Therefore, data is stored in a distributed relational database. Information about customers
and orders are stored at the branch office. The central system keeps information about the
stock and suppliers.

� A main requirement of this company is the logical consistency of the database. All orders,
for example, must relate to a customer, and all of the products in the inventory must relate
to a supplier.

Insert Order
Header

Insert Order
Detail

Finalize
Order

RI Remote

SP Remote

2
P

C

Remote System
 (Head Office)

Local System
(Branch Office)

Order
Detail

Order
Header

Sales/
Customer

Restart

TRI

Update

INV

Customer

Supplier

Stock

RI

RI

TRI

RI

LEGEND

RI REFERRAL INTEGRITY
CONSTRAINT

TRI TRIGGER

2PC

SP STORED PROCEDURE

TWO PHASE COMMIT
10 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

� The sales representative contacts the customer over the telephone. Each sales
representative is assigned a pool of customers. According to the policy of the sales
division of this company, a sales representative is allowed to place orders only for a
customer of his pool. This policy is needed to guarantee a fair distribution of the
commissions on the sales representative’s turnover. This requirement can be effectively
enforced by using a trigger program that automatically checks the relationship between a
customer and the sales representative when the order is placed. (See 8.4.2, “Audit trail
trigger example programs” on page 244.)

� When the sales representative places an order, the sales representative first introduces
general data, such as the order date and the customer code. This process generates a
row in the Order Header table.

� The sales representative then inserts one or more items for that specific order. If the
specific item is out of stock, we want the application to look in the inventory for an
alternative article. The inventory is organized in categories of products and, on this basis,
the application performs a search. Because the inventory table is remote, we use an IBM
Distributed Relational Database Architecture (DRDA®) connection between the systems.
In addition, because the process of searching the inventory might involve many accesses
to the remote database, a stored procedure is called to carry out this task.

� When the item or a replacement is identified, the inventory is updated, and a row is
inserted in the local order detail table.

� We want to release the inventory row to allow other people to place a new order for the
same product. We commit the transaction now. DB2 Universal Database for iSeries
ensures the consistency of the local and remote databases, thanks to the two-phase
commitment control support.

� When all order items are entered, the order is finished and a finalizing order program is
called. This program can perform the following functions:

– Add the total amount of the order to the Customer table to reflect the customers’
turnover.

– Update the total revenue that is produced by the sales representative from this
customer.

– Update the total amount of the order in the Order Header table.

� An update event of the Order Header table starts another trigger program that writes the
invoice immediately at the branch office.

� The “atomic” logical transaction is completed when a single item in the order is inserted to
reduce the locking exposures. If the system or the job fails, we must be able to detect
incomplete orders, which can be done when the user restarts the application. A simple
restart procedure will check for orders with the total equal to zero (not “finalized”). These
orders are deleted and the stock quantity of all of the items is increased by the amount that
we reserved during the order placement. We can also present a choice menu to the user,
asking whether the incomplete orders need to be finalized.

2.2 Order Entry database overview
The Order Entry application is based on a distributed database. Each branch office location
keeps all of the data that relates to its own customers in its local database. The information
about the items that are available in the warehouse is stored in the remote database at the
head office.
Chapter 2. Stored procedures, triggers, and user-defined functions for an Order Entry application 11

The local database consists of these tables, as shown in Figure 2-2:

� CUSTOMER table: Contains the information that relates to the customers
� ORDERHDR table: With the data that relates to where the Order items are stored
� ORDERDTL table: Where each row represents a Detail of an Order
� SALESCUS table: Keeps the relationship between a sales representative and the

customers for whom that sales representative is authorized to place orders

The central database consists of two tables:

� STOCK table: Contains information about the contents of the warehouse
� SUPPLIER table: Contains information that relates to the suppliers

Figure 2-2 shows an Entity-Relationship chart of the database model.

Figure 2-2 Order Entry database model
12 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Table 2-1 through Table 2-8 on page 15 show the row layouts for the tables of both the local
and central databases.

Table 2-1 shows the CUSTOMER table.

Table 2-1 CUSTOMER table

Table 2-2 shows the ORDERHDR table.

Table 2-2 ORDERHDR table

Table 2-3 shows the ORDERDTL table.

Table 2-3 ORDERDTL table

Field name Alias Type Description

CUSTOMER_NUMBER CUSBR CHAR(5) Customer number

CUSTOMER_NAME CUSNAM CHAR(20) Customer name

CUSTOMER_TELEPHONE CUSTEL CHAR(15) Customer phone
number

CUSTOMER_FAX CUSFAX CHAR(15) Customer fax number

CUSTOMER_ADDRESS CUSADR CHAR(20) Customer address

CUSTOMER_CITY CUSCTY CHAR(20) Customer city

CUSTOMER_ZIP CUSZIP CHAR(5) Customer ZIP code

CUSTOMER_CRED_LIM CUSCRD DEC(11,2) Customer credit limit

CUSTOMER_TOT_AMT CUSTOT DEC(11,2) Customer total amount

Field name Alias Type Description

ORDER_NUMBER ORHNBR CHAR(5) Order number

CUSTOMER_NUMBER CUSBR CHAR(5) Customer number

ORDER_DATE ORHTE DATE Order date

ORDER_DELIVERY ORHDLY DATE Order delivery date

ORDER_TOTAL ORHTOT DEC(11,2) Order total

ORDER_SALESREP SRNBR CHAR(10) Sales
representative
number

Field name Alias Type Description

ORDER_NUMBER ORHNBR CHAR(5 Order number

PRODUCT_NUMBER PRDNBR CHAR(5) Product number

ORDERDTL_QUANTITY ORDQTY DEC(5,0) Order detail quantity

ORDERDTL_TOTAL ORDTOT DEC(9,2) Order detail total
Chapter 2. Stored procedures, triggers, and user-defined functions for an Order Entry application 13

Table 2-4 shows the SALESREP table.

Table 2-4 SALESREP table

Table 2-5 shows the SALESCUS table.

Table 2-5 SALESCUS table

Table 2-6 shows the SUPPLIER table.

Table 2-6 SUPPLIER table

Table 2-7 shows the STOCK table.

Table 2-7 STOCK table

Field name Alias Type Description

SALESREP_NUMBER SRNBR CHAR(10) Sales representative number

SALESREP_NAME SRNAM CHAR(20) Sales representative name

SALESREP_TELEPHONE SRTEL CHAR(15) Sales representative telephone number

SALESREP_CITY SRCTY CHAR(20) Sales representative city

SALESREP_MANAGER SRMGR CHAR(10) Sales representative manager, who is also
a sales representative

Field name Alias Type Description

SALESREP_NUMBER SRNBR CHAR(10) Sales representative number

CUSTOMER_NUMBER CUSBR CHAR(5) Customer number

SALES_AMOUNT SRAMT DEC(11,2) Sales representative total amount for this
customer

Field name Alias Type Description

SUPPLIER_NUMBER SPLNBR CHAR(5) Supplier number

SUPPLIER_NAME SPLNAM CHAR(20) Supplier name

SUPPLIER_TELEPHONE SPLTEL CHAR(15) Supplier phone number

SUPPLIER FAX SPLFAX CHAR(15) Supplier fax number

SUPPLIER ADDRESS SPLADR CHAR(20) Supplier address

SUPPLIER_CITY SPLCTY CHAR(20) Supplier city

SUPPLIER_ZIP SPLZIP CHAR(5) Supplier ZIP code

Field name Alias Type Description

PRODUCT_NUMBER PRDNBR CHAR(5) Product number

PRODUCT_DESC PRDDES CHAR(20) Product description

PRODUCT_PRICE PRDPRC DEC(7,2) Product unit price

PRODUCT_AVAIL_QTY PRDQTY DEC(5,0) Product available quantity

SUPPLIER_NUMBER SPLNBR CHAR(4) Supplier number

PRODUCT_CATEGORY PRDCAT CHAR(4) Product category

PROD_MIN_STOCK_QTY PRDQTM DEC(5,0) Product minimum stock quantity
14 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Table 2-8 shows the STOCKPIC table.

Table 2-8 STOCKPIC table

Our database also contains several views that are primarily used by stored procedures.
These views are listed in Table 2-9 through Table 2-11.

Table 2-9 shows the SALES view.

Table 2-9 SALES view

Table 2-10 shows the TOTALSALES view.

Table 2-10 TOTALSALES view

Table 2-11 shows the YEARSALES view.

Table 2-11 YEARSALES view

Field name Alias Type Description

PRODUCT_NUMBER PRDNBR CHAR(5) Product number

PRODUCT_PICTURE PRDPIC BLOB Product picture

Field name Type Description

YEAR INTEGER Order year

MONTH INTEGER Order month

SUPPLIER_NAME CHAR(20) Supplier name

SALES DECIMAL(11,2) Sales

Field name Type Description

YEAR INTEGER Order year

MONTH INTEGER Order month

SUPPLIER_NAME CHAR(20) Supplier name

TOTALSALES DECIMAL(11,2) Total sales

Field name Type Description

YEAR INTEGER Order year

SUPPLIER_NAME CHAR(20) Supplier name

TOTALSALES DECIMAL(11,2) Total sales
Chapter 2. Stored procedures, triggers, and user-defined functions for an Order Entry application 15

2.3 Stored procedures and triggers in the Order Entry database
Figure 2-3 shows the Order Entry database structure and the tables to which triggers are
defined.

Figure 2-3 Order Entry application database structure

The main objective of presenting this application scenario with this specific database design
is to show how the stored procedures and triggers that are provided with DB2 Universal
Database for iSeries can be used and how they can work together in a single application. We
analyze Figure 2-3 from each function’s standpoint.

2.3.1 Stored procedures
Figure 2-3 shows a stored procedure that is associated to the remote physical table, STOCK.
The purpose of this procedure is to update the available quantity in the STOCK table and to
look for a replacement when the required product is not available.

This function was implemented in a stored procedure to speed up performance. Instead of
issuing several SQL statements from the local system, we call the stored procedure and wait
for the result. This implementation reduces the network traffic and simplifies the logic of the
client application.

LOCAL SYSTEM

REMOTE SYSTEM

TWO PHASE COMMIT

SUPPLIER SPLNBR

PK

STOCK PRDNBR SPLNBR

PK

FK

LEGEND: PK - PRIMARY KEY
FK - FOREIGN KEY

 STORED
PROCEDURE

CUSTOMER

SALESREP SRNBR CUSNBR

CUSNBR

PK

Update
Trigger

ORHBR CUSNBR

PK
FK

Update
Trigger

Insert
Trigger

ORHBR PRDNBR

ORDERHDR

ORDERDTL

PK

FK
16 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

2.3.2 Triggers
As shown in Figure 2-3 on page 16, we defined three trigger programs (two trigger programs
in the ORDERHDR table and one trigger program in the CUSTOMER table). In our scenario,
note these points:

� When a sales representative inserts a new order for a certain customer, we want to check
that the sales representative is authorized to work with that customer. In addition, we want
to track any attempts to violate the rule.

� When the order is completed and accepted by the customer, we want to print the related
invoice.

� If the total amount of an order exceeds 90% of the customer credit limit, a fax is sent to the
customer or a message is inserted into the job log. If the customer belongs to a privileged
group, which is recognized by a customer number that starts with the digit 9, the credit
limit is automatically increased by 30%.

Because we want these functions performed each time that an ORDERHDR insertion, an
ORDERHDR update, or a CUSTOMER update occurs, we associate an Insert trigger and an
Update trigger to the ORDERHDR table and an Update trigger to the CUSTOMER table.

2.3.3 User-defined functions
UDFs were used to enhance the business logic that is illustrated with the following examples:

� A casting UDF is required to convert from the DECIMAL(8) date representation to DATE.
This hypothetical company has other existing systems that store several dates as 8-digit
decimals in the YYYYMMDD format. To enhance the support of DB2 for i, a UDF was
added to support the casting function. If the input parameter contains an invalid date,
another requirement is to return a null value and signal a user-defined warning message
with SQLSTATE 01HDI.

� A table UDF is required to show a certain number of top-performing salespeople.
Chapter 2. Stored procedures, triggers, and user-defined functions for an Order Entry application 17

18 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 3. Stored procedures

This chapter explains how you can take advantage of stored procedures when you develop a
distributed application. Stored procedures provide a standard way to call an external
procedure from within an application by using an SQL statement.

This chapter describes the following topics:

� Introduction
� Stored procedure types
� Registering stored procedures
� System catalog tables
� Procedure signature and procedure overloading
� Deleting or replacing stored procedures
� Authorization and adopted authority
� Returning result sets from stored procedures

3

© Copyright IBM Corp. 2001, 2016. All rights reserved. 19

3.1 Introduction
The invocation of a stored procedure is treated as a regular external call. The application
waits for the stored procedure to terminate, and parameters can be passed back and forth.
Stored procedures can be called locally (on the same system where the application runs) and
remotely on a different system. However, stored procedures are useful in a distributed
environment because they can considerably improve the performance of distributed
applications by reducing the traffic of information across the communication network.

For example, if a client application needs to perform several database operations on a remote
server, you can choose between issuing many different database requests from the client site
and calling a stored procedure. In the first case, you start a window with the remote system
every time that you issue a request. If you call a stored procedure instead, only the call
request and the parameters flow on the line. In addition, the server system executes part of
the logic of your application with potential performance benefits at the client site.

Your programming productivity can be improved by using stored procedures when you
develop distributed applications. Stored procedures are the easiest way to perform a remote
call and to distribute the execution logic of an application program.

Stored procedures can be used for many application purposes:

� Distributing the logic between a client and a server
� Performing a sequence of operations at a remote site
� Combining the results of query functions at a remote site
� Controlling access to database objects
� Performing non-database functions

We look at a typical example where stored procedures can be effective. A company runs its
business on a server at the headquarters and on client systems at every branch office. A user
at a branch office is working with an invoice clearance application, which must update three
tables on the server:

� The invoice table is named INVOICE.
� The customer table is named CUSTOMER.
� The accounts receivable balance table is named ARBLNCE.

An invoice record is flagged with a “clearance” marker. Then, the corresponding CUSTOMER
record is updated by deducting the invoice amount from the current account receivable total
amount. Finally, the account receivable balance record must be updated, also.
20 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Figure 3-1 shows a distributed application for the invoice clearance process that was
implemented without resorting to stored procedures. The client system must access the
server database several times for every update event, sending and receiving data across
communication lines for every request. In addition, all of the application logic is implemented
at the client site.

Figure 3-1 Distributed application without stored procedures

UPDATE
INVOICE

 UPDATE
CUSTOMER

 UPDATE
ARBLNCE

Client System Server

INVOICE

CUSTOMER

ARBLNCE
Chapter 3. Stored procedures 21

Figure 3-2 shows how we can take advantage of stored procedures to develop this
application.

Figure 3-2 Distributed application with stored procedures

The same application functions can be performed by calling a single stored procedure that
runs at the server site. The communications window is greatly reduced, and the network
resources are better balanced by splitting the application logic.

Modularity in application development is also encouraged by using stored procedures. This
modularity facilitates application maintenance and improves code reusability.

It is useful to compare stored procedures to other tools and techniques for distributed
application development, such as Distributed Relational Database Architecture (DRDA) SQL,
distributed data management (DDM) Submit Remote Command (SBMRMTCMD), and
triggers:

� With DRDA SQL, the application logic is fully implemented at the application requester
site. Stored procedures are the natural extension for DRDA applications because you can
use them to easily split the application logic.

� The Submit Remote Command (SBMRMTCMD) command submits a control language (CL)
command by using distributed data management (DDM) support to run on the target
system. A user at a client system can use the SBMRMTCMD command to perform object
management operations rather than running remote applications. You might also want to
submit user-written commands or programs to run on the target system, but you face the
following restrictions:

– The target (server) system cannot send any parameters to the source (client) system.
Only a generic return code is sent back to signal whether the remote execution
completed successfully.

– Any changes in database tables that were made by the server application on the server
system cannot be committed or rolled back by the client application.

UPDATE
INVOICE

 UPDATE
CUSTOMER

 UPDATE
ARBLNCE

CUSTOMER

ARBLNCE

INVOICE

Client System Server

EXEC SQL

CALL INVCLR (:INVNO,
:AMT, :STATUS)

END-EXEC

INVCLR

BRANCH HEADQUARTERS
22 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

� Triggers are user-written programs that are associated with a table. Unlike stored
procedures, they are almost independent from applications because they are
automatically executed either before or after a database change. Stored procedures need
to be called explicitly by the SQL CALL statement.

Triggers receive from the database manager a standard parameter list, which is input only,
and they cannot pass any information back to the application through the parameter list.
Therefore, when the trigger ends abnormally, the application must receive an error
message or an SQLCODE and handle it. Stored procedures can receive input/output
parameters and use them to communicate with the client application.

Triggers can be used to enforce business rules. Stored procedures are used mainly to
improve the performance of distributed applications and the productivity of application
development. Stored procedures can return result sets, which makes them flexible and
efficient in client/server environments.

For more information about triggers, see Chapter 8, “External triggers” on page 217.

Table 3-1 summarizes the comparison of stored procedures, triggers, UDFs, and DRDA SQL
for distributed applications.

Table 3-1 Comparing stored procedures, triggers, UDFs, and DRDA SQL

3.2 Stored procedure types
Stored procedures can be divided into two categories:

� SQL stored procedures
� External stored procedures

Stored procedure Trigger UDFs DRDA SQL

Invocation Execution of SQL
CALL statement

Database I/O As a function in an
SQL statement

Execution of a single
remote SQL statement
at a time

Environment Distributed or
non-distributed
applications

Distributed or
non-distributed
applications

Distributed or
non-distributed
applications

Distributed Relational
Database

Language Any high-level
language (HLL)
program, including
Java (might include
SQL)

Any HLL program
(might include SQL) -
No Java support

Any HLL program,
including Java (might
include SQL)

Embedded SQL and
Interactive SQL

Conversation
method

Explicit 2-way
parameter passing

Implicit system
parameter passing

Explicit 2-way
parameter passing

Application requester
(AR) sends an SQL
request, and application
server (AS) sends an
SQL request

Advantage Performance
improvement. Easy
program invocation.
Capable of returning
result sets.

Automated consistent
process. Performance
improvement.

Functionality
improvement.
Extends object
support.

Easier programming.
Common SQL interface
to other IBM platforms
and platforms that are
not IBM.
Chapter 3. Stored procedures 23

3.2.1 SQL stored procedures
SQL stored procedures are written in the SQL language, which makes it easier to port stored
procedures from other database management systems (DBMS) to the IBM i server and from
the IBM i server to other DBMS. Implementation of the SQL stored procedures is based on
procedural SQL that is standardized in SQL99. For more details about SQL stored
procedures, see SQL Procedures, Triggers, and Functions on DB2 for i, SG24-8326.

3.2.2 External stored procedure
An external stored procedure is written by the user in one of the programming languages on
the IBM i server. You can compile the host language programs to create *PGM objects or a
Service Program. To create an external stored procedure, the source code for the host
language must be compiled so that a program object is created. Then, the CREATE
PROCEDURE statement is used to tell the system where to find the program object that
implements this stored procedure. The stored procedure that is registered in the following
example returns the name of the supplier with the highest sales in a specific month and year.
The procedure is implemented in IBM Integrated Language Environment® (ILE) RPG with
embedded SQL:

c/EXEC SQL
c+ CREATE PROCEDURE HSALE
c+ (IN YEAR INTEGER ,
c+ IN MONTH INTEGER ,
c+ OUT SUPPLIER_NAME CHAR(20) ,
c+ OUT HSALE DECIMAL(11,2))
c+ EXTERNAL NAME SPROCLIB.HSALES
c+ LANGUAGE RPGLE
c+ PARAMETER STYLE GENERAL
c/END_EXEC

The following SQL CALL statement calls the external stored procedure, which returns a
supplier name with the highest sales:

c/EXEC SQL
c+ CALL HSALE(:PARM1, :PARM2, :PARM3, :PARM4)
c/END-EXEC

An external stored procedure might contain no SQL statements. For example, you can create
a stored procedure that uses the native interface to access the DB2 Universal Database for
iSeries data.

The IBM i server implementation of external stored procedures is described in detail in
Chapter 4, “External stored procedures” on page 39.

Java stored procedures
Java stored procedures were first introduced in the IBM i server, starting with V4R5, as a
particular case of external stored procedures that were limited to not being able to return
result sets. Starting with V5R1, the support of result sets was added to Java stored
procedures. Growing interest in Java and its portability across platforms makes Java stored
procedures an interesting option to consider. The IBM i server implementation of Java stored
procedures is described in detail in Chapter 5, “Java stored procedures” on page 91.
24 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

3.3 Registering stored procedures
Before a stored procedure can be called by a client program, it must be registered with the
database by using the DECLARE PROCEDURE or the CREATE PROCEDURE statement.
The stored procedure can also be defined by using either of these statements. The CREATE
PROCEDURE statement differs from the DECLARE PROCEDURE statement because it
adds procedure and parameter definitions to the system catalog tables (SYSROUTINES and
SYSPARMS). This way, a stored procedure becomes available for any client program that is
running on the local or the remote system.

Because the information about the stored procedure is stored in the system catalog tables,
the CREATE PROCEDURE needs to be performed only one time in the lifetime of a stored
procedure. Use the DROP PROCEDURE statement to delete the stored procedure catalog
information entry. The DECLARE PROCEDURE statement is not frequently used. It is mainly
for temporary registration of stored procedures. For a detailed description of the CREATE
PROCEDURE, refer to SQL Reference, SC41-5612.

3.3.1 CREATE PROCEDURE
The CREATE PROCEDURE statement can be used to create any of the two types of stored
procedures. This statement can be issued interactively, or it can be embedded in an
application program. After a procedure is registered, it can be called from any interface that
supports the SQL CALL statement.

During stored procedure creation, you can control characteristics that affect the way that the
stored procedure is identified in DB2 Universal Database for iSeries or its behavior. This
section explains several characteristics.

SPECIFIC specific-name
DB2 for i identifies each stored procedure with a specific name that, combined with the
specific schema, must be unique in the system. This requirement gains importance because
multiple stored procedures with the same name but different signatures must have different
specific names.

If you do not provide a specific name, DB2 for i generates one automatically. If the SQL
procedure name is longer than 10 characters, this name can be used to specify the C
program name instead of DB2 generating one automatically, as shown in the following
example:

CREATE PROCEDURE SAMPLE.ALLOCATECOSTS(...)
...
SPECIFIC ALLOCATECOSTS_3PARMS
...
Chapter 3. Stored procedures 25

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
You can use these options to set limits about what the stored procedure can use. The options
are described in Table 3-2.

Table 3-2 SQL statements in stored procedures

SET OPTION
The SET OPTION clause gives you more control over how the SQL stored procedures are
created. You can control the following options with SET OPTION:

� OUTPUT: Specifies whether a listing file is required. If it is set to *PRINT, it generates two
listing spool files: one file for the intermediate C code and another file for the
corresponding precompiled C code.

� DBGVIEW: Controls the level of debug information that is contained in the program object.
The default is none, but you can set *STMT, *LIST, or *SOURCE values. *STMT allows the
compiled module object to be debugged by using program statement numbers and
symbolic identifiers. *LIST generates the listing view for debugging the compiled module
object. You can use *SOURCE to debug the generated program or module at the SQL
statement level.

� TGTRLS: Defines the target release of the operating system in which you intend to use
the stored procedure.

� DATFMT: Specifies the format for dates.

� DATSEP: Specifies the date separator.

� TIMFMT: Specifies the format for times.

Attribute Description

CONTAINS SQL The stored procedure contains SQL. It can contain the following information
only:

� Non-executable statements (such as DECLARE statements)

� CALL statements to procedures with the NO SQL or CONTAINS SQL
attribute

� FREE LOCATOR

� SET RESULT SET

� SET assignment and VALUES INTO if only variables or constants are
referenced

� COMMIT, ROLLBACK, or SET TRANSACTION

� CONNECT, DISCONNECT, RELEASE, or SET CONNECTION

NO SQL The stored procedure does not contain SQL statements.

READS SQL DATA The stored procedure possibly reads data by using SQL. It can contain SQL
statements except for the following statements:

� COMMIT, ROLLBACK, or SET TRANSACTION

� CONNECT, DISCONNECT, RELEASE, or SET CONNECTION

� DELETE, INSERT, or UPDATE

� ALTER TABLE, COMMENT ON, any CREATE, DROP, GRANT, LABEL
ON, RENAME, or REVOKE statement

MODIFIES SQL
DATA

The stored procedure possibly modifies data by using SQL. It can contain SQL
statements except for the following statements:

� COMMIT, ROLLBACK, or SET TRANSACTION

� CONNECT, DISCONNECT, RELEASE, or SET CONNECTION
26 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

� TIMSEP: Specifies the time separator.

� DECMPT: Specifies the decimal point value (can be *POINT, *COMMA, *SYSVAL, or
*JOB).

� SRTSEC: Specifies the sort sequence table to be used for string comparisons in SQL
statements.

� LANGID: Specifies the language identifier to be used when SRTSEQ(*LANGIDUNQ) or
SRTSEQ(*LANGIDSHR) is specified.

� ALWCPYDTA: Specifies whether a copy of the data can be used in a SELECT statement.
The possible values are *YES, *NO, and *OPTIMIZE (default). It influences the optimizer
access plan for SELECT statements.

� ALWBLK: Specifies whether the database manager can use record blocking and the
extent to which blocking can be used for read-only cursors.

� DLYPRP: Specifies whether the dynamic statement validation for a PREPARE statement
is delayed until an OPEN, EXECUTE, or DESCRIBE statement is run. Delaying validation
improves performance by eliminating redundant validation.

� USRPRF: Specifies the user profile that is used when the compiled program object and
SQL package object are run, including the authority that the program object or SQL
package has for each object in static SQL statements. The profile of either the owner or
the user is used to control access to objects.

� DYNUSRPRF: Specifies the user profile that is used for dynamic SQL statements.

The following example shows the use of several of the options in a stored procedure creation:

CREATE PROCEDURE ITERATOR2()
LANGUAGE SQL
SET OPTION TGTRLS = V4R5M0, OUTPUT = *PRINT, SRTSEQ=*LANGIDUNQ, LANGID=ESP
BEGIN
 ins_loop:
 FOR each_department AS
 c1 CURSOR FOR
 SELECT deptno, deptname, admrdept
 FROM sampledb02.department
 WHERE deptno <> 'D11'
 ORDER BY deptno
 DO
 INSERT INTO sampledb02.deptnew (deptno, deptname, admrdept)
 VALUES (deptno, deptname, admrdept);
 END FOR;
END;

OUTPUT and DBGVIEW are of great value when you debug an application. For more
information about these values, see the online help for the Run SQL Statement (RUNSQLSTM)
command.

3.3.2 DECLARE PROCEDURE
DECLARE PROCEDURE is a kind of temporal procedure definition in which the stored
procedure is declared in a program. Originally, you were only able to embed it in an
application program as a static SQL statement. However, starting in V5R1 (and we advise
that you look for the latest iSeries/IBM i Access Open Database Connectivity (ODBC) driver
available), DECLARE PROCEDURE can be used as a dynamic SQL statement in an ODBC
program.
Chapter 3. Stored procedures 27

With the DECLARE PROCEDURE, you avoid catalog lookup for procedure information, which
in certain cases, represents a performance improvement.

Several differences exist in the syntax of DECLARE PROCEDURE compared with CREATE
PROCEDURE, as you can see in Example 3-1.

Example 3-1 DECLARE PROCEDURE

EXEC SQL
DECLARE GETSUPPLIERSDB2GENERAL PROCEDURE (
 IN YEAR INTEGER,
 IN MONTH INTEGER,
 IN RANK INTEGER)
PARAMETER STYLE DB2GENERAL
RESULT SETS 2
LANGUAGE JAVA
EXTERNAL NAME 'GetSupplierResultSetDB2GENERAL!GetSupplierRS';

Notice the difference in the order of the tokens (line that is highlighted in bold) compared to
the equivalent CREATE PROCEDURE GETSUPPLIERSDB2GENERAL.

The C++ program sample in Example 3-2 shows how to use DECLARE PROCEDURE from
an ODBC program.

Example 3-2 DECLARE PROCEDURE from an ODBC program

#include <windows.h>
#include <sqlext.h>
#include <stdio.h>
#include <iostream.h>

// Define The DeclarExample Class
class DeclarExample
{
 // Attributes
 public:
 SQLHANDLE EnvHandle;
 SQLHANDLE ConHandle;
 SQLHANDLE DclStmtHandle;
 SQLHANDLE SpStmtHandle;
 SQLRETURN rc;
 // Operations
 public:
 DeclarExample(); // Constructor
 ~DeclarExample(); // Destructor
 SQLRETURN declareSP();
 SQLRETURN executeSP();
 SQLRETURN printError(SQLHDBC, SQLHSTMT);
};

// Define The Class Constructor
DeclarExample::DeclarExample()
{
 // Initialize The Return Code Variable
 rc = SQL_SUCCESS;
 // Allocate An Environment Handle
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &EnvHandle);
 // Set The ODBC Application Version To 3.x
 if (rc == SQL_SUCCESS)
 rc = SQLSetEnvAttr(EnvHandle, SQL_ATTR_ODBC_VERSION,
28 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 (SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
 // Allocate A Connection Handle
 if (rc == SQL_SUCCESS)
 rc = SQLAllocHandle(SQL_HANDLE_DBC, EnvHandle, &ConHandle);
}

// Define The Class Destructor
DeclarExample::~DeclarExample()
{
 // Free SQL Statements Handle
 if (SpStmtHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_STMT, SpStmtHandle);
 if (DclStmtHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_STMT, DclStmtHandle);
 // Free The Connection Handle
 if (ConHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_DBC, ConHandle);
 // Free The Environment Handle
 if (EnvHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_ENV, EnvHandle);
}

SQLRETURN DeclarExample::declareSP()
{
 // Declare The Local Memory Variables
 SQLRETURN rc;
 SQLCHAR SQLStmt[512];

 // Declare the procedure to avoid catalog lookups
 strcpy((char *)SQLStmt, "DECLARE dlema.dosomething PROCEDURE ()"); 1
 strcat((char *)SQLStmt, "PARAMETER STYLE DB2GENERAL LANGUAGE JAVA "); 1
 strcat((char *)SQLStmt, "EXTERNAL NAME 'ClassName!MethodName'"); 1
 cout << "Procedure to prepare:" << endl;
 cout << SQLStmt << endl;
 rc = SQLPrepare(DclStmtHandle, SQLStmt, SQL_NTS); 2
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 {
 printError(ConHandle, DclStmtHandle);
 }
 return(rc);
}

SQLRETURN DeclarExample::executeSP()
{

// Declare The Local Memory Variables
SQLRETURN rc;
SQLCHAR SQLStmt[256];

// Prepare the statement to call the procedure
 strcpy((char *) SQLStmt, "CALL dlema.dosomething()");
 rc = SQLPrepare(SpStmtHandle, SQLStmt, SQL_NTS); 3
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 {
 printError(ConHandle, SpStmtHandle);
 return(rc);
 }

//calling stored procedure
rc = SQLExecute(SpStmtHandle);
Chapter 3. Stored procedures 29

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO)){
printError(ConHandle, SpStmtHandle);

}
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {

rc = SQLEndTran(SQL_HANDLE_DBC, ConHandle, SQL_ROLLBACK);
}
else {

rc = SQLEndTran(SQL_HANDLE_DBC, ConHandle, SQL_COMMIT);
cout << "Stored procedure call completed successfully." << endl;

}
return(rc);

}

SQLRETURN DeclarExample::printError (SQLHDBC hdbc, SQLHSTMT hstmt) {
SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER sqlcode;
SQLSMALLINT length;
SQLRETURN rc;

while ((rc = SQLError(SQL_NULL_HENV, hdbc, hstmt,

sqlstate, &sqlcode, buffer, SQL_MAX_MESSAGE_LENGTH + 1,
&length) == SQL_SUCCESS) || rc == SQL_SUCCESS_WITH_INFO)

{
cout << "SQLSTATE: " << sqlstate << endl;
cout << "SQLCODE : " << sqlcode << endl;
cout << "Error msg : " << buffer << endl;
cout <<"----------------------------- " << endl << endl;

}
 return(SQL_ERROR);
}

/*---*/
/* The Main Function */
/*---*/
int main()
{
 // Declare The Local Memory Variables
 SQLRETURN rc = SQL_SUCCESS;
 SQLCHAR ConnectStr[128] = "DSN=QDSN_AS23;UID=TEAM01;PWD=PWDTEAM1;";

 // Create An Instance Of The DeclarExample Class
 DeclarExample declarExample;

 // Connect to the sample database
 if (declarExample.ConHandle != NULL)
 {
 rc = SQLDriverConnect(declarExample.ConHandle, NULL, ConnectStr, SQL_NTS,
 NULL, 0, NULL, SQL_DRIVER_NOPROMPT);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 {
 declarExample.printError(declarExample.ConHandle,
 declarExample.SpStmtHandle);
 return(rc);
 }

 // set autocommit off
 rc = SQLSetConnectAttr(declarExample.ConHandle, SQL_ATTR_AUTOCOMMIT,
 (SQLPOINTER) SQL_AUTOCOMMIT_OFF, SQL_IS_UINTEGER);
 // Allocate An SQL Statement Handlers
30 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 rc = SQLAllocHandle(SQL_HANDLE_STMT, declarExample.ConHandle,
 &declarExample.DclStmtHandle);
 rc = SQLAllocHandle(SQL_HANDLE_STMT, declarExample.ConHandle,
 &declarExample.SpStmtHandle);

 // Now declare the stored procedure to be used
 declarExample.declareSP();

// Execute the previously declared stored procedure
 rc = declarExample.executeSP();
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
 {
 declarExample.printError(declarExample.ConHandle,
 declarExample.SpStmtHandle);
 }
 }

 // Return To The Operating System
 return(rc);
}

Keep in mind that DECLARE PROCEDURE is a nonstandard SQL command that will not be
enhanced. If you are interested in portability, you must avoid the use of the DECLARE
PROCEDURE statement.

3.4 System catalog tables
The database manager maintains a set of tables that contain information about the data in
each relational database. These tables are collectively known as the catalog. The catalog
tables store information about every routine (procedure or function) that is registered with the
database:

� Tables
� User-defined functions
� Distinct types
� Parameters
� Procedures
� Packages
� Views
� Indexes
� Aliases
� Constraints
� Triggers
� Languages that are supported by DB2 for i

Notes: The following notes refer to Example 3-2 on page 28:

1 We assemble the DECLARE PROCEDURE statement. The DECLARE PROCEDURE
statement syntax is different from the CREATE PROCEDURE syntax.

2 The statement that was assembled in 1 is then prepared. It is not executed, only
prepared.

3 Now, we are ready to create and use statements that call to the stored procedure that
is declared in 2.
Chapter 3. Stored procedures 31

Every CREATE PROCEDURE statement, including the registration with System i Navigator,
generates entries in the SYSROUTINES and SYSPROCS catalog tables. This section shows
how to view the stored procedure information by using the SYSROUTINES catalog, the
SYSPROCS view, and the SYSPARMS view.

3.4.1 SYSROUTINES catalog
All stored procedures that are registered with the CREATE PROCEDURE statement or that
use System i Navigator are stored in the SYSROUTINES catalog. For a detailed description
of the catalog views, see SQL Reference, SC41-5612.

The following SQL statement displays the content of SYSROUTINES:

select * from qsys2.sysroutines;

The result includes information about all procedures and functions that are registered on DB2
Universal Database for iSeries. The number of returned rows can be large on a busy
production system. Always try to narrow the scope of your query. The following SELECT
statement retrieves relevant information about stored procedures that are registered in the
SPROCLIB library:

select specific_schema,routine_name,routine_type,routine_body,parameter_style from
qsys2.sysroutines where routine_schema = 'SPROCLIB' and routine_type =
'PROCEDURE';

If you run this statement in the Run SQL Scripts utility, the query results viewer displays the
stored procedure details, as shown in Figure 3-3.

Figure 3-3 Stored procedures in SPROCLIB library

If the stored procedure of interest is located at a specific schema or collection, the schema or
collection catalog can be used instead:

select specific_schema, routine_name, routine_type, routine_body, parameter_style
from myschema.sysroutines where routine_type = ‘PROCEDURE’;

3.4.2 SYSPARMS catalog
The SYSPARMS catalog contains one row for each parameter of a stored procedure that
was created by the CREATE PROCEDURE statement. For the detailed layout of this
catalog, see SQL Reference, SC41-5612. The SYSPARMS catalog contains parameters for
both UDFs and stored procedures.

Note: The SYSROUTINES catalog contains information about both stored procedures and
user-defined functions (UDFs). You can use the SYSPROCS catalog view to work with
stored procedures. The SYSFUNCS catalog view contains the information for the UDFs.
32 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Assume that you want to retrieve the parameter details for all instances of the SELPGMRES
stored procedure that are in the SPROCLIB library. You can run the following SQL statement to
display the required information:

select * from qsys2/sysparms where Specific_schema='SPROCLIB'

3.5 Procedure signature and procedure overloading
DB2 for i supports the concept of procedure overloading. Procedure overloading means that
you can have two or more procedures with the same name in the same library, schema, or
collection, provided they have different signatures. The signature of a procedure can be
defined as a combination of the qualified name and the number of parameters in the
procedure.

No two procedures in the library can have the same signature. Therefore, no two procedures
with the same name and the same number of parameters can coexist in the same library.

For example, the following two stored procedures can coexist in the same library:

MyStorProc(char(5), int)
MyStorProc(int)

However, these two procedures cannot exist in the same library:

MyStorProc(char(5))
MyStorProc(int)

Procedure overloading is the reason why the RESTORE commands avoid overlaying existing
stored procedures. If you try to restore a stored procedure to a library, where the same named
procedure exists, the system registers a new procedure instance rather than overlaying the
existing one. For more information, see 4.6, “Moving into production (save and restore)” on
page 73.

3.6 Deleting or replacing stored procedures
When you create a procedure, its signature must be unique to register the procedure in the
catalog. As described in 3.5, “Procedure signature and procedure overloading” on page 33,
the signature of a procedure is defined based on the combination of the qualified name and
the number of the parameters of the procedure.

Important: The stored procedure signature differs from the UDF signature. The UDF
signature consists of a name, number, and types of parameters. The following two UDFs
can coexist in the same library:

myUDF(char(5))
myUDF (int)

For a detailed description of UDFs, see Chapter 10, “User-defined functions” on page 313.

Note: The CREATE PROCEDURE statement does not have a replace option. For this
reason, if you want to re-create or delete an existing procedure, use the DROP
PROCEDURE statement.
Chapter 3. Stored procedures 33

3.6.1 Using a command line to drop a procedure
Several ways are available to drop a stored procedure from the IBM i server:

� In the traditional “green screen” environment, start the interactive SQL (ISQL) session with
the command:

STRSQL NAMING(*SQL)

At the ISQL prompt, type the following SQL statement:

DROP PROCEDURE library.procedure-name

Figure 3-4 shows the message that is issued after the procedure is successfully deleted.

Figure 3-4 Dropping a procedure in an interactive SQL session

� In the System i Navigator environment, in the right panel of the main System i Navigator
window, right-click the procedure that you want to drop, and select the Delete option, as
shown in Figure 3-5. A window opens that shows the stored procedure object that is
selected for deletion. Confirm that this procedure is the procedure that you want to delete,
and click Delete.

Figure 3-5 Deleting a stored procedure

In the Run SQL Scripts utility, insert the DROP PROCEDURE library.procedure-name statement
in the workable area. Then, from the menu bar, select Run → All.

 Enter SQL Statements

Type SQL statement, press Enter.
 > DROP PROCEDURE ordapplib.caseproc
 DROP PROCEDURE statement complete.
===>

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys
34 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The system catalog tables, SYSROUTINES and SYSPARMS, are updated when a DROP
PROCEDURE statement is executed. In the SYSROUTINES table, a row is deleted that
corresponds to the information of the deleted procedure. In the SYSPARMS table, the number
of deleted rows depends on the number of parameters that are defined in the procedure.

3.6.2 Dropping overloaded procedures
Dropping overloaded procedures can be tricky. Because the procedure name is overloaded, it
is not sufficient to supply its name on the DROP PROCEDURE statement. Two methods can
be used to correctly resolve the overloaded name.

Assume that you created the following two stored procedures:

create procedure myStoredProc(p1 int)
language sql
specific spint
BEGIN
 IF (P1 = 0 OR P1 = 1) THEN UPDATE DUMMY SET COL1 = P1 ;
 END IF ;
END;

create procedure myStoredProc(p1 int, p2 char)
language sql
specific spintchar
BEGIN
 IF (P1 = 0 OR P1 = 1) THEN UPDATE DUMMY SET COL1 = P2;
 END IF ;
END;

To drop the second procedure, you need to use one of the following methods:

� Specify the specific procedure name:

drop specific procedure spintchar;

� Include the parameter types on the DROP PROCEDURE statement:

drop procedure myStorproc(int, char);

3.7 Authorization and adopted authority
When a stored procedure is called by the client program, the statements in the stored
procedure are executed with the authorities of the calling user or the authorities of the user,
plus the authorities of the owner of the program object that corresponds to that stored
procedure, depending on how it was defined in the USRPRF attribute for that program object.

When USRPRF is set to *USER, the statements inside the program object use only the
invoking user authorities. When USRPRF is set to *OWNER, the statements are executed
with the authorities of the calling user, plus the authorities of the owner of the program object.

As a complement, a mechanism is available that is called adopted authorities. Adopted
authority is whether a program inherits the authorities of its caller program, depending on the
Use Adopted Authorities (USEADPAUT) parameter for the program object. The adopted
authorities mechanism is effective only if USRPRF is set to *OWNER.
Chapter 3. Stored procedures 35

Table 3-3 summarizes the effects of authorization and adopted authorities.

Table 3-3 Description of authorization and adopted authorities

Authorities and adopted authorities provide mechanisms for improving security. These
mechanisms might include giving access to sensitive objects to one user or maybe a
controlled set of users, and then making those users the owners of the programs (including
stored procedure programs, except for Java stored procedures) that access and modify them.
Then, the other users can be granted execution authorities only to those programs, without
giving them access to data objects, such as application tables.

For example, in a bank application, you do not want to grant access to account tables for each
cashier (which can be risky). Instead, you grant them execution authority on the clerk
front-end banking application.

3.8 Returning result sets from stored procedures
An SQL stored procedure can call another procedure, which in turn calls another procedure in
a chain, which is called a nested SQL procedure. A facility is available for you to specify to
which calling procedure the result sets of a specific called procedure are returned, which is
called the returnability attribute.

Authorization
(USRPRF)

Adopted authorities
(USEADPAUT)

Description

*OWNER *YES The program uses authorization from both the user and
the program owner profiles. In addition, it inherits the
authorities of the caller program.

*NO The program uses authorization from both the user and
the program owner profiles. But, it does not inherit the
authorities of the calling program.

*USER *YES or *NO The program only uses the user profile authorities.
36 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Starting in V5R3, two new syntaxes were added to DB2 for i SQL. These syntaxes provide
flexibility in designing whether the result set of a stored procedure, which is called in nested
procedures, is returned to the immediate calling procedure or to the calling procedure that is
at the beginning of the calling chain, as shown in Figure 3-6.

Figure 3-6 Returning result sets to a caller versus to a client

You can return result sets to a caller or client by adding either of the following returnability
attributes to the DECLARE CURSOR or SET RESULT SET statement:

� WITH RETURN TO CALLER, which returns result sets to the immediate caller

Consider the following examples:

– DECLARE c1 CURSOR FOR WITH RETURN TO CALLER SELECT * FROM t1
– SET RESULT SETS WITH RETURN TO CALLER FOR ARRAY :array1 FOR :hv1 ROWS

� WITH RETURN TO CLIENT, which returns result sets to the procedure at the beginning of
the calling chain

The result sets are invisible to all of the intermediate procedures in the chain. Consider the
following examples:

– DECLARE c1 CURSOR FOR WITH RETURN TO CLIENT SELECT * FROM t1
– SET RESULT SETS WITH RETURN TO CLIENT FOR CURSOR x1

Before V5R3, a stored procedure always returns its result sets to its immediate caller. Starting
in V5R2, RETURN TO CALLER is still a default returnability attribute if DECLARE CURSOR
or SET RESULT SET does not have the returnability attribute syntax explicitly specified.

Important: You must install the latest Database Group program temporary fix (PTF).
Chapter 3. Stored procedures 37

38 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 4. External stored procedures

Stored procedures can be written in two ways on DB2 for i. One approach is described as
SQL stored procedures. This approach is based on procedural extensions to the SQL
language. This approach, which is highly used by other database management system
(DBMS) providers, is documented in SQL Procedures, Triggers, and Functions on DB2 for i,
SG24-8326. The other approach, which is described as external stored procedures, is based
on high-level languages (HLLs) that you are familiar with, such as C, CL, RPG, and COBOL.

External stored procedures are coded in one of the high-level languages that are available on
the IBM i server. If you want to perform complex sophisticated processing, or plan to reuse
code that exists, external stored procedures are the best choice for you.

This chapter describes external stored procedures that are written in high-level languages
other than Java. It explains how to register and code external store procedures. It also
reviews the difference in coding external store procedures in relation to the different
parameter styling that is supported by DB2 for i and how to invoke external stored procedures
and handle errors.

External stored procedures can also be written in Java. Due to intrinsic differences in this
approach, they are described as Java stored procedures, which are described in Chapter 5,
“Java stored procedures” on page 91.

All of the benefits of the stored procedures that are described in Chapter 3, “Stored
procedures” on page 19 also apply to external stored procedures.

This chapter describes the following topics:

� Registering external stored procedures
� Parameter styles in external stored procedures
� Coding external stored procedures
� Returning result sets from external procedures
� CLI client program that calls a procedure that returns multiple result sets
� Moving into production (save and restore)
� The Order Entry application: Stored procedure examples
� External stored procedure that uses a service program
� RPG IV example for an external stored procedure

4

© Copyright IBM Corp. 2001, 2016. All rights reserved. 39

4.1 Registering external stored procedures
Before you can use an external stored procedure, it must be registered within the database.
You can use the CREATE PROCEDURE statement or System i Navigator to register an
external stored procedure. When an external stored procedure is registered with the
database, entries are made into the system catalog tables. These tables store information
about every routine (procedure or function) that is registered with the database. The
information that is recorded in these tables is described in 3.4, “System catalog tables” on
page 31.

When you register an external stored procedure, you must specify the name of the procedure,
the number of parameters, and the data type and length of the parameters. In most cases,
you also specify the input/output type of the parameter and the parameter passing style. This
chapter describes the different parameter passing styles in 4.2, “Parameter styles in external
stored procedures” on page 45. Apart from accepting input parameters and returning output
parameter values, a stored procedure can return a number of rows to the calling program in
the form of a result set. The external program can implement the result set as an array of
values, or it can open an SQL cursor and return it as a result set. This chapter describes the
different coding techniques for result sets in 4.4, “Returning result sets from external
procedures” on page 60.

The external program that is executed when the external stored procedure is called by the
CALL statement needs to be a *PGM object that is compiled with the Activation Group
parameter *CALLER. The external program can contain host language statements and SQL
statements.

An external stored procedure can be called by an application program that runs on the same
IBM i server, where the stored procedure resides. Or, it can be called across the network by a
client program. The client program can run on a workstation and communicate with the server
through programming interfaces, such as Open Database Connectivity (ODBC), ActiveX Data
Object (ADO), Java Database Connectivity (JDBC), and Structured Query Language for Java
(SQLJ). It can also run on another server machine and communicate through Distributed
Relational Database Architecture (DRDA).

Examples of client programs that can call the external stored procedure are described in 4.5,
“CLI client program that calls a procedure that returns multiple result sets” on page 68.

4.1.1 Registering an external procedure with System i Navigator
For example, we describe the creation of the High_Sales external stored procedure. This
procedure accepts year of type INTEGER and month of type INTEGER as input parameters.
It returns Supplier_Name of type CHAR(20) and H_Sales of type DECIMAL(11,2). The
returned values contain data for the supplier with the highest total sales in a specific year and
month. The parameter passing style that is used is GENERAL. These input and output
parameters are based on the columns of the TOTALSALE view. For the detailed structure of
this view, see 2.2, “Order Entry database overview” on page 11.

Important: A service program cannot be registered as an external stored procedure.

Note: Certain IBM i interfaces, such as STRSQL and System i Navigator, allow programs
to be called without registering the program first. However, we recommend that you always
register the programs as external stored procedures.
40 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

This section shows how to create an external stored procedure by using the System i
Navigator New External Procedure window. The required steps are listed:

1. In System i Navigator, expand Databases and the database folder for which the external
procedure will be registered. Expand the Libraries object. You see all of the libraries in
your library list. Right-click the library in which you want to create the external stored
procedure, and select New → Procedure → External, as shown in Figure 4-1.

Figure 4-1 Creating an external stored procedure by using the Create procedure window
Chapter 4. External stored procedures 41

2. The New External Procedure window (Figure 4-2) opens in which you perform the
following actions.

On the General tab, type the name of the procedure, a description, and the specific name
of the external stored procedure. If you do not enter the specific name, it defaults to the
name of the procedure. The specific name is used by the database manager to uniquely
identify a stored procedure within a library.

Other parameters can be defined at this time. For example, you can define whether an
automatic commit must be performed when the stored procedure returns control to the
callers, whether the stored procedure must run at an inner savepoint level, and the
maximum number of result sets that the stored procedure will return.

Figure 4-2 New external procedure
42 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

3. Click the Parameters tab and follow these steps:

a. Click Insert. Type the name of the parameter.

b. Choose the data type of the parameter from the pull-down list box. Enter the length of
the parameter, if required. Select the input/output type of the parameter as shown in
Figure 4-3.

c. Choose the parameter style. Click Simple, no null values allowed. If you do not
choose the parameter style, the default value is SQL.

Figure 4-3 Defining input/output parameters
Chapter 4. External stored procedures 43

4. Click the External Program tab and follow these steps:

a. Type the name of the external program to execute when this external stored procedure
is called by using an SQL CALL statement. If you do not enter the external program
name, the default value is the name of the external stored procedure. Choose the
library name and the language of the external program, as shown in Figure 4-4. If you
leave the language field empty, the system tries to guess the implementation language.
The default value for this field is Integrated Language Environment (ILE) C.

b. Click OK to register the stored procedure.

Figure 4-4 External program name, library, and language

The corresponding SQL CREATE PROCEDURE statement is shown:

CREATE PROCEDURE ORDAPPLIB.Hsales(
 IN Year INTEGER,
 IN Month INTEGER,
 OUT Supplier_Name CHAR(20),
 OUT Hsale DECIMAL(11,2))
LANGUAGE RPGLE
EXTERNAL NAME ORDAPPLIB.HSALES
MODIFIES SQL DATA
PARAMETER STYLE GENERAL
44 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

After the successful completion of the window, refresh the contents of the ORDAPPLIB library by
clicking the Refresh icon in the toolbar. You now see the HSALES stored procedure icon in
the list of the objects, as shown in Figure 4-5.

Figure 4-5 A new stored procedure

4.2 Parameter styles in external stored procedures
You can specify several different parameter styles for an external stored procedure. On the
invocation of the external stored procedure, DB2 Universal Database for iSeries passes a
number of parameters to the procedure in addition to those parameters that are specified on
the parameter list. The number and type of additional parameters that are passed depends on
the parameter style. You can specify the required parameter style when the procedure is
created. DB2 Universal Database for iSeries supports four parameter styles:

� SQL parameter style
� DB2SQL parameter style
� GENERAL WITH NULLS parameter style
� GENERAL parameter style

Before V4R4, only GENERAL and GENERAL WITH NULLS parameter styles were
supported. The SQL parameter style was added in V4R4, and the DB2SQL parameter style
was added in V4R5. Now, the SQL parameter style is the default parameter style in the DB2
Universal Database family for compatibility purposes.

This section explains the number and type of parameters that are passed with each
parameter style. Later in this chapter, we provide examples for each of these parameter
styles.
Chapter 4. External stored procedures 45

4.2.1 SQL parameter style
The list of parameters that are received by the external stored procedure, when the SQL
parameter style is specified in the procedure definition, is shown:

IN |OUT |INOUT argument (repeated),
INOUT argument indicator variables,
OUT SQLSTATE,
IN procedure name
IN specific name
OUT diagnostic message

The parameters are explained in the following list:

� Arguments: The input, output, and input/output parameters that are passed from the
calling program to an external stored procedure. The order in which you specify the
argument types (IN | OUT | INOUT) is not relevant.

� Argument indicator: The NULL indicator for each input argument and output argument. If a
NULL value was passed for an argument, the corresponding indicator variable contains -1.
If a valid value is passed, the indicator variable contains 0. The function can test the value
of an argument indicator. Before you use the input parameter in the external stored
procedure, check the null indicator. If the corresponding argument contains a null, be sure
to take corrective action. Every output parameter has a corresponding null indicator that is
passed back to the calling program. In the calling program, you can check whether a null
value was returned in the output parameter.

� SQLSTATE: The output parameter, which is defined as CHAR(5), that corresponds to the
SQLSTATE in SQL. This value is set by the external stored procedure to signal a
successful execution, warning, or error to the calling program. If the SQLSTATE is not set
to any of the defined values that are shown in the following list, the calling program
receives the SQLSTATE 39001, which indicates an invalid SQLSTATE. The external
program can set this output parameter to one of the following values:

– 00000: Successful execution, no errors.

– 01Hxx: Warning. The trailing xx value is any two digits or uppercase letters. It results in
SQLCODE 462 from SQL.

– 38yxx: Error condition y can be any letter or number. The next two characters xx are
any two digits or uppercase letters to indicate the error. It results in SQLCODE -443
from SQL.

� Procedure name: A fully qualified procedure name. This parameter is an input parameter,
which is defined as VARCHAR(517).

� Specific name: The specific name of the function. This parameter is an input parameter,
which is defined as VARCHAR(128).

� Diagnostic message: The message text that can contain a customized error message. You
can set the diagnostic message only when you set the SQLSTATE parameter. For system
errors, such as record locked or a referential constraint violation, it is set to the first 70
characters of the system message. This parameter is an output parameter that is defined
as VARCHAR(70).

Note: In V4R5, the diagnostic message is a character array that has the length in the
first position. In V5R1, this format changed and the message is a null terminated string.
46 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

4.2.2 DB2SQL parameter style
The DB2SQL style is a superset of the SQL parameter style. When DBINFO is specified in
the CREATE PROCEDURE, it indicates to DB2 Universal Database for iSeries to pass the
DBINFO structure that contains the following fields:

� Relational database name
� Authorization ID
� Coded character set identifier (CCSID)
� Version and release
� Platform

If NO DBINFO is specified in the CREATE PROCEDURE, this style is equal to SQL
parameter style. For more information about the parameters that are passed, see the include
sqludf in the appropriate source file. For example, for C, sqludf is in QSYSINC/H.

4.2.3 GENERAL WITH NULLS parameter style
The list of parameters that are received by the external stored procedure for the GENERAL
WITH NULLS parameter style is listed:

IN | OUT | INOUT argument [repeated],
INOUT argument indicator variables,

The parameters are explained in the following list:

� Arguments: The input, output, and input/output (both) parameters that are passed from
the calling program to an external stored procedure.

� Argument indicator: The NULL indicator for each argument. If a NULL value was passed
for the corresponding argument, the indicator variable contains -1. If a valid value is
passed, the indicator variable contains 0. The function can test the value of an argument
indicator. Before you use the input parameter in the external stored procedure, check the
null indicator. If the corresponding argument contains a NULL value, take corrective
action.

4.2.4 GENERAL parameter style
The list of parameters is received by the external stored procedure, when the GENERAL style
is specified. See the following example:

IN | OUT | INOUT argument [repeated]

The argument parameters consist of input, output, and input/output parameters that are
passed from the calling program to an external stored procedure.

Note: The maximum number of parameters that are allowed in the CREATE PROCEDURE
statement is limited by the programming language that is used to implement the stored
procedure. For a procedure that was created with the SQL parameter style, the additional
implicit parameters are included in the calculation.
Chapter 4. External stored procedures 47

4.3 Coding external stored procedures
An external stored procedure does not differ significantly from any other high-level language
program that you already write. The difference is that it is registered to the DB2 Universal
Database for iSeries, as described in 4.1, “Registering external stored procedures” on
page 40, and the way that it receives and returns results both as parameters and as result
sets.

A result set is an open cursor that is returned by a stored procedure. Result sets are the
mechanism that stored procedures use for returning multiple row results. One stored
procedure can return none, one, or multiple result sets, but at any time, a calling program can
have only 100 procedures with result sets that are waiting to be fetched.

This section explains the differences in stored procedures code in relation to the parameter
style that is used and the details about returning result sets and error handling.

4.3.1 Coding for SQL parameter style
This section looks at examples of how to code external stored procedures with the SQL
parameter style. It also demonstrates how the parameters that are passed by DB2 Universal
Database for iSeries to the external stored procedure can be used within the procedure.

In the Order Entry database that is used throughout this book, we define the ORDERHDR
and the CUSTOMER tables. A referential constraint is established between the CUSTOMER
table and the ORDERHDR table. The CUSTOMER table is the parent table, with the parent
key CUSNBR. The ORDERHDR table is the dependent table with the foreign key CUSNBR.
The delete rule is *RESTRICT.

Assume that you want to delete a particular customer from the CUSTOMER table. To
accomplish this task, you implement an external stored procedure, which is called
CusNumDel, by using the SQL parameter style. This external stored procedure accepts one
input parameter, the customer number (CUSNBR) of type CHAR(5). The external stored
procedure executes an SQL DELETE statement to delete the record for the passed customer
number from the CUSTOMER table. If the customer with this customer number has an order
in the ORDEHDR table, or the customer number to be deleted has a dependency in the
ORDERHDR table, an error occurs. Otherwise, the deletion is successful. If an error occurs, it
must be returned to the calling program so that it is aware that the customer record deletion
failed.

We examine the CREATE PROCEDURE statement for the CusNumDel external stored
procedure in Example 4-1. The numbered sections are explained further in the following list.

Example 4-1 CREATE PROCEDURE statement for the CusNumDel external stored procedure

CREATE PROCEDURE PROCLIB/CUSNUMDEL(
 IN CUSNBR CHAR(5)) 1
SPECIFIC CUSNUMDEL 2
LANGUAGE C 3
EXTERNAL NAME SPROCLIB/CUSNUMDEL 4
MODIFIES SQL DATA 5
PARAMETER STYLE SQL 6
48 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

CREATE PROCEDURE statement explanation
The following explanation refers to Example 4-1 on page 48:

1 We qualify the procedure name with the library name, SPROCLIB, in this case. We use the
system-naming convention. If you do not qualify the procedure name in the CREATE
PROCEDURE statement, the procedure is created in the current library. The procedure
takes one input parameter CUSNBR of type CHARACTER(5). If a procedure exists with
the same name, but a different number of parameters in the destination library, collection,
or schema, the CREATE PROCEDURE statement will execute successfully. In this
situation, the stored procedure name is overloaded.

2 The SPECIFIC NAME clause of the CREATE PROCEDURE statement. Every procedure
that was created on the IBM i server needs a specific name. This name must be unique in
the specific library. This clause is optional. If you do not specify a certain name for the
procedure, the system will generate a specific name. Normally, the specific name is the
same as the procedure’s name. However, if a procedure with the specific name exists, the
system generates a unique name.

3 The LANGUAGE clause of the CREATE PROCEDURE statement. The LANGUAGE
clause specifies the language that was used to implement the external stored procedure.
In our case, it is Integrated Language Environment (ILE) C. This information helps the
database to pass parameters to the external stored procedure in the format that is
required by the programming language. External stored procedures can be written in any
of the following languages:

– CL
– COBOL
– COBOLLE
– FORTRAN
– Java
– PL/I
– RPG
– RPGLE
– C
– C++
– REXX

The LANGUAGE clause is optional. If it is not specified, the system tries to retrieve the
attributes of the program object that is specified in the EXTERNAL NAME clause and set
the clause. If the program object does not exist, or if the attribute is not present, the
language is defaulted to ILE C.

4 The EXTERNAL NAME clause of the CREATE PROCEDURE statement. It is the name of
the external program that is called when the external stored procedure is called from the
calling program with SQL CALL. In this example, SPROCLIB is the name of the library in
which the program resides. CUSNUMDEL is the name of the program to be executed. The
program does not need to exist at the time of the creation of the external stored procedure,
but it must be created before the stored procedure is called for the first time. This clause is
optional. If it is not specified, the system assumes that the name of the program is the
same as the name of the stored procedure, provided that it is a valid system name that is
not longer than 10 characters. Two different stored procedures can point to the same
external program name. An external program must be a *PGM object. It cannot be an ILE
service program.
Chapter 4. External stored procedures 49

5 The NO/READS/MODIFIES/CONTAINS SQL DATA clause of the CREATE PROCEDURE
statement. Here, you specify the kind of SQL statements that the procedure will execute.
For a detailed description of the valid SQL statements for a certain clause, see SQL
Reference, SC41-5612.

6 The PARAMETER STYLE clause of the CREATE PROCEDURE statement. For external
stored procedures, this clause can be set to one of four values:

– SQL
– DB2SQL
– GENERAL WITH NULLS
– GENERAL

DB2 Universal Database for iSeries passes additional parameters apart from the arguments
that are defined in the CREATE PROCEDURE statement, based on the parameter style that
is specified.

Now, we examine the external program CUSNUMDEL that is referred to in the CREATE
PROCEDURE statement. We describe the parameters that DB2 Universal Database for
iSeries sends to the program and how the program uses these parameters. This program was
written in ILE C with embedded SQL. The CUSNUMDEL external program accepts the
customer number as the input argument. The SQL DELETE statement is executed. Any
errors or successful deletion is returned to the calling program by using the SQLSTATE output
parameter. The SQLSTATE is set to "38IRC" when a delete rule is violated. When SQLSTATE
is set by the external program, the diagnostic message is also returned to the calling program.

Example 4-2 shows how the external stored procedure with the SQL parameter style is
coded. The numbered areas are further explained in the following list.

Example 4-2 Coding of an external procedure with the SQL parameter style

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <recio.h>
EXEC SQL INCLUDE SQLCA ;
EXEC SQL BEGIN DECLARE SECTION;
 char v_custno[5];
 short int v_custno_ind;
EXEC SQL END DECLARE SECTION;

main(int argc,char *argv[]) {
 unsigned char statevar[5];
 unsigned char errmc[70];

 EXEC SQL
 WHENEVER SQLERROR GO TO Error_Handler;
 struct procname{ short int length;
 unsigned char data[139];
 }procname_var;
 struct specname{ short int length;
 unsigned char data[128];
 }specname_var;
 struct outmsgtxt{ short int length;
 unsigned char data[70];
 }outmsgtxt_var={20,"referential const "};
 strncpy(v_custno,argv[1],5); /* receives customer number to be deleted */ 1
 v_custno_ind=*(short int*)argv[2]; /* customer number null indicator */ 2
 procname_var=*(struct procname*)argv[4]; /* process name */ 4
50 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 specname_var=*(struct specname*)argv[5]; /* specific name of the SP. */ 5
 if (v_custno_ind == -1) /* if customer number is null, terminate */
 exit(0);

 /* customer number is deleted */
 EXEC SQL
 DELETE FROM orentlib.customer WHERE cusnbr=:v_custno;

 /* SQL status is prepared to be returned as a parameter */
 strncpy(statevar,"00000",5);
 strncpy(argv[3],statevar,5);
 /* Stored procedure completes */
 exit(0);

/* on error... */
Error_Handler:
 /* retrieve SQLSTATE describing the error */
 strncpy(statevar,sqlca.sqlstate,5);
 if(sqlca.sqlcode=-532) { /* If the error is caused by a RI violation */
 puts(statevar);
 strncpy(statevar,"38IRC",5);
 strncpy(argv[3],statevar,5); 3
 strncpy(errmc,
 "referential constraint exists. Customer cannot be deleted",45);
 strncpy(outmsgtxt_var.data,errmc,45);
 memcpy((void *)argv[6],(void *) &
 outmsgtxt_var,sizeof(outmsgtxt_var.data)); 3
 } else { /* any other error */
 strncpy(statevar,"38999",5);
 strncpy(argv[3],statevar,5);
 strncpy(errmc,"This is an unhandled error. Check the program",47);
 strncpy(outmsgtxt_var.data,errmc,47);
 memcpy((void *)argv[6],(void *)&outmsgtxt_var,sizeof(outmsgtxt_var));
 }
}

Code sample notes
The procedure name CUSNUMDEL is the name of the source file member and the name of
the *PGM object, which is referred to in the CREATE PROCEDURE statement as shown:

EXTERNAL NAME SPROCLIB.CUSNUMDEL

The external program that is coded in any host language needs to be complied with the
Activation Group parameter as *CALLER. The following explanations refer to the numbers
that are shown in Example 4-2 on page 50:

1 The CUSNUMDEL procedure accepts an input parameter of type CHAR(5), which is the
customer number to delete from the CUSTOMER table.

2 This parameter is a null indicator for the input parameter. Whenever a null value is passed
into the program on input, the input null indicator contains -1. If the input parameter is a
valid value, the null indicator is 0.

3 Parameter that contains the fully qualified name of the procedure.
Chapter 4. External stored procedures 51

4 Parameter with the specific name of the procedure that was called. The specific name can
be used when the procedure is overloaded. Even if the procedure names are the same,
the specific names must be unique.

5 The next two parameters are SQLSTATE and the message text. They are used together.
The parameter can be used to signal an error or warning condition to the calling program.
The procedure can also set the message text output parameter to a customized error
message. However, the message text parameter is returned back to the calling program
only if the SQLSTATE is set to "38yxx". In our program, we execute the SQL DELETE
statement for the non-null customer number that is passed as the input parameter. If the
customer number that we are trying to delete from the CUSTOMER table has a dependent
row in the ORDEHDR table, the SQL DELETE will fail and generate SQLCODE=-532 and
SQLSTATE=23001. This SQLSTATE cannot be directly returned to the calling program in
the SQLSTATE output parameter because it will be treated by the database runtime as an
invalid state. The database will set the sqlca.sqlstate variable to "39001" and the
sqlca.sqlcode to -463, which indicates an invalid SQL status. In our case, the SQLSTATE
output parameter is set to the user-defined value that signals the error condition. In the
following code snippet, you can see that the SQLSTATE output parameter is set to
"38IRC". When the SQLSTATE is set to a value that matches the pattern "38yxx", the
diagnostic message text is also returned to the calling program Error_Handler:

strncpy(statevar,sqlca.sqlstate,5);
 if(sqlca.sqlcode=-532) {
 puts(statevar);
 strncpy(statevar,"38IRC",5);
 strncpy(argv[3],statevar,5);
 strncpy(errmc,"referential constraint exists cannot delete",45);
 strncpy(outmsgtxt_var.data,errmc,45);
 memcpy((void *)argv[6],(void *)&outmsgtxt_var,sizeof(outmsgtxt_var.data));
 } else {
 strncpy(statevar,"38999",5);
 strncpy(argv[3],statevar,5);
 strncpy(errmc,"This is an unhandled error. Check the program",47);
 strncpy(outmsgtxt_var.data,errmc,47);
 memcpy((void *)argv[6],(void *)&outmsgtxt_var,sizeof(outmsgtxt_var));
 }

For a detailed description of error handling, see Chapter 5, “Java stored procedures” on
page 91.

The CUSNUMDEL program was created as a *PGM object. In this case, CUSNUMDEL is a
program that was written in C with embedded SQL statements. It is compiled into the
*MODULE object, and then the *MODULE object is bound into a *PGM object so that we can
specify the activation group parameter as *CALLER.

The following control language (CL) commands are used to compile and bind the
CUSNUMDEL program:

CRTSQLCI OBJ(SPROCLIB/CUSNUMDEL) SRCFILE(QCSRC/SPROCLIB)
SRCMBR(CUSNUMDEL) OUTPUT(*PRINT) DBGVIEW(*SOURCE)
CRTPGM PGM(SPROCLIB/CUSNUMDEL) ACTGRP(*CALLER)
52 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Calling the external stored procedure with SQL parameter style
The SQL CALL statement invokes the external stored procedure as shown in Example 4-3. In
the calling client program, you can use sqlca.sqlstate or SQLSTATE to check for the error
condition that occurred within the stored procedure. If the sqlca.sqlstate matches the pattern
"38yxx", the corresponding diagnostic message text can be retrieved from the sqlca.errmc
field.

Example 4-3 Calling the external stored procedure with the SQL parameter style

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <decimal.h>
#include <recio.h>
#define SIZE 5
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
 char inpvar[5];
 short int inindicator;
EXEC SQL END DECLARE SECTION;
void main(void)
{
 int res1,res2;
 unsigned char errmc[70];
 unsigned char mstatevar[5];
 EXEC SQL
 WHENEVER SQLERROR GOTO printmsg;
 EXEC SQL
 WHENEVER SQLWARNING GOTO printnomsg;
 strcpy(inpvar,"99999");
 puts(inpvar);
 EXEC SQL
 CALL sproclib.cusnumdel(:inpvar);
 strncpy(mstatevar,SQLSTATE,5);
 printf("The SQLSTATE returned from the Stored procedure:%s\n",mstatevar);
 exit(0);
 printmsg:
 strncpy(mstatevar,SQLSTATE,5);
 res1=strncmp(mstatevar,"37999",5);
 res2=strncmp(mstatevar,"38999",5);
 if ((res1 > 0) && (res2 <= 0))
 {
 printf("The SQLSTATE returned from the Stored procedure:%s \n",mstatevar);
 strncpy(errmc,sqlca.sqlerrmc,69);
 printf("The message text :%s \n",errmc);
 }
 else
 {
 printf("The invalid SQLSTATE set in the Stored procedure: \n");
 }
 exit(1);
 printnomsg:
 strncpy(mstatevar,SQLSTATE,5);
 printf("The Stored procedure returned a warning:\n");
 printf("The SQLSTATE returned from the Stored procedure:%s\n",mstatevar);
 exit(0);
}
Chapter 4. External stored procedures 53

4.3.2 Coding the DB2SQL parameter style
This section looks at examples of how to code the external stored procedure with the
DB2SQL parameter style when DBINFO is specified. When the DB2SQL parameter style is
used in combination with NO DBINFO, it has the same effect as coding with the SQL
parameter style.

Following the same example that is shown in 4.3.1, “Coding for SQL parameter style” on
page 48, assume that we are required to modify the CusNumDel external stored procedure to
record a trace row in table DELCTL with the notification to the user, time stamp, and deleted
customer number.

We examine the CREATE PROCEDURE statement for the CusNumDel2 external stored
procedure:

CREATE PROCEDURE PROCLIB.CUSNUMDEL2 (
 IN CUSNBR CHAR(5))
SPECIFIC CUSNUMDEL2
LANGUAGE C
EXTERNAL NAME SPROCLIB.CUSNUMDEL2
MODIFIES SQL DATA
PARAMETER STYLE DB2SQL
DBINFO

Table 4-1 DBINFO fields

Note: In the call statement that is shown in bold, we do not specify extra parameters for the
SQL parameter style. They are implicitly passed to the stored procedure by the SQL
runtime.

Note: For the lines in bold in the previous example, PARAMETER STYLE DB2SQL in
combination with DBINFO instructs DB2 Universal Database for iSeries to pass the
DBINFO data structure that contains the fields that are described in Table 4-1.

Field Data type Description

Relational database VARCHAR(128) The name of the current server (as it is displayed in
WRKRDBDIRE).

Authorization ID VARCHAR(128) The runtime authorization ID.

Coded character set
identifier (CCSID
Information)

INTEGER
INTEGER
INTEGER
INTEGER
CHAR(8)

The CCSID information of the job. For more details, see
SQL Reference, SC41-5612.

Target column Not applicable for a call to a procedure.

Version and release CHAR(8) The version, release, and modification level of the
database manager.

Platform INTEGER The server’s platform type.
54 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Now, we examine the external program CUSNUMDEL2 that is referred to in the CREATE
PROCEDURE statement (see Example 4-4). This program is similar to the CUSTNUMDEL
that was exposed earlier. However, it differs in that it uses the Authorization ID that was
received as part of the DBINFO data structure and adds a row in the DELCTL table.

Example 4-4 External program CUSNUMDEL2

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <recio.h>
/* sqludf.h contains UDF data structures that gives a very good */
/* compatibility level between DB2 UDB platforms, including */
/* sqludf_dbinfo, which is the data structure for DBINFO */
#include <sqludf.h> 1

EXEC SQL INCLUDE SQLCA ;
EXEC SQL BEGIN DECLARE SECTION;
 char inputvar[5];
 short int inpindicator;
 /* the following data structure is to contain the user ID of the */
 /* user calling the stored procedure, using traditional VARCHAR */
 /* structure */
 struct {
 short useridlen;
 char useridtxt[128];
 } user_id; 2
EXEC SQL END DECLARE SECTION;

/* parameter 1: user defined parameter */
/* parameter 2: Null indicator for the user-defined parameter */
/* parameter 3: Output parameter for SQLSTATE */
/* parameter 4: Fully qualified procedure name */
/* parameter 5: Specific name */
/* parameter 6: Output parameter for message text */
/* parameter 7: DBINFO data structure. */
main(int argc,char *argv[])
{
 unsigned char statevar[5];
 unsigned char errmc[70];
 EXEC SQL
 WHENEVER SQLERROR GO TO Error_Handler;
 struct procname { short int length;
 unsigned char data[139];
 } procname_var;
 struct specname { short int length;
 unsigned char data[128];
 } specname_var;
 struct msgtxt { short int length;
 unsigned char data[70];
 } msgtxt_var;
 struct outmsgtxt{ short int length;
 unsigned char data[70];
 } outmsgtxt_var={20,"referential const "};
 /* The sqludf_dbinfo structure is predefined in the sqludf.h */
 /* include file. Variable dbinfo is used to receive the */
 /* DBINFO data structure */
 struct sqludf_dbinfo dbinfo; 3

 strncpy(inputvar,argv[1],5);
Chapter 4. External stored procedures 55

 inpindicator=*(short int*)argv[2];
 procname_var=*(struct procname*)argv[4];
 specname_var=*(struct specname*)argv[5];

 /* retrieving DBINFO */
 dbinfo = *(struct sqludf_dbinfo*)argv[7]; 4

 /* retrieving the user id from DBINFO data structure */
 user_id.useridlen = dbinfo.authidlen; 5
 strncpy(user_id.useridtxt, dbinfo.authid, dbinfo.authidlen); 5

 EXEC SQL
 DELETE FROM ORDAPPLIB.CUSTOMER WHERE CUSNBR=:inputvar;

 /* inserting control row in DELCTL */
 EXEC SQL
 INSERT INTO ORDAPPLIB.DELCTL (CUSNBR, LAST_MOD_USR, LAST_MOD_TS)
 VALUES (:inputvar, :user_id, CURRENT TIMESTAMP); 6

 strncpy(statevar,"00000",5);
 strncpy(argv[3],statevar,5);
 exit(0);

Error_Handler:
 strncpy(statevar,sqlca.sqlstate,5);
 if(sqlca.sqlcode=-532)
 {
 puts(statevar);
 strncpy(statevar,"38IRC",5);
 strncpy(argv[3],statevar,5);
 strncpy(errmc,"referential constraint exists cannot delete",45);
 strncpy(outmsgtxt_var.data,errmc,45);
 memcpy((void *)argv[6],
 (void *)&outmsgtxt_var,
 sizeof(outmsgtxt_var.data));
 }
 else
 {
 strncpy(statevar,"38999",5);
 strncpy(argv[3],statevar,5);
 strncpy(errmc,"this is an unhandled error check the program",46);
 strncpy(outmsgtxt_var.data,errmc,46);
 memcpy((void *)argv[6],
 (void *)&outmsgtxt_var,
 sizeof(outmsgtxt_var));
 }
}
56 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Code sample notes
The procedure that is named CUSNUMDEL2 (Example 4-4 on page 55) is similar to
CUSNUMDEL, but it uses the DBINFO data structure to get the user ID that invokes this
stored procedure and tracks it on the DELCTL table. We highlight the differences:

1 The CUSNUMDEL2 uses the DBINFO data structure that is common to other DB2
Universal Database platforms. This data structure is defined in the sqludf.h include file.
For other programming languages, corresponding include files are in the QSYSINC library.
For example, member SQLUDF in QSYSINC/QRPGLESRC can be copied into ILE RPG
programs.

2 VARCHAR data structure to store user ID.

3 Here, we defined a variable that is called DBINFO that is based on the structure
db2udf_dbinfo. This structure is predefined in sqludf.h.

4 DBINFO is passed to the stored procedure program after the SQL parameters that were
introduced in 4.3.1, “Coding for SQL parameter style” on page 48.

5 The caller user ID is in DBINFO in VARCHAR style. For details about the information that
is available in DBINFO, see the sqludf.h include file.

6 This line inserts a new line into the DELCTL table.

Calling an external stored procedure with the DB2SQL parameter style
No difference exists between a DB2SQL and an SQL parameter style external stored
procedure from the caller program’s perspective. For details about calling an external stored
procedure with DB2SQL parameter style and how to use SQLSTATE to check for possible
error conditions that occurred within the stored procedure, see “Calling the external stored
procedure with SQL parameter style” on page 53.

4.3.3 Coding the GENERAL WITH NULLS parameter style
This section looks at an example of how to code an external stored procedure with the
GENERAL WITH NULLS parameter style.

Two tables, ORDERHDR and ORDERDTL, are in our Order Entry database. A referential
constraint is defined between the ORDERHDR table and the ORDERDTL table. The
ORDERHDR table is the parent table, with the parent key ORHNBR. The ORDERDTL table is
the dependent table, with the foreign key ORHNBR.

Assume that you want to insert the specific order detail values into the ORDERDTL table. To
accomplish this task, we implement these values as an external stored procedure
ORDDETINS by using the GENERAL WITH NULLS parameter style. This external stored
procedure accepts four input parameters to insert into the ORDERDTL table:

� The order number ORHNBR CHAR(5)
� The product number PRDNBR CHAR(5)
� The order detail quantity ORDQTY DECIMAL(5,0)
� The order detail total ORHTOT DECIMAL(5,0)

The external stored procedure accepts the input parameters and executes an SQL INSERT
statement to add a row to the ORDERDTL table. If the order number ORHNBR to be inserted
into the ORDERDTL table does not have an order with this order number in the ORDEHDR
table, an error occurs. Otherwise, the insertion is successful. If an error occurs, it must be
returned to the calling program, indicating the failure of the order detail insertion.
Chapter 4. External stored procedures 57

We examine the CREATE PROCEDURE statement for the ORDDETINS external stored
procedure. The numbered sections are explained in the following list:

CREATE PROCEDURE SPROCLIB.ORDDETINS(
 IN ORHNBR CHAR(5),
 IN PRDNBR CHAR(5),
 IN ORDQTY DECIMAL(5,0),
 IN ORDTOT DECIMAL(9,2),
 OUT SQLST CHAR(5)) 1
SPECIFIC ORDDETINS
LANGUAGE RPGLE
EXTERNAL NAME SPROCLIB.ORDDETINS 2
MODIFIES SQL DATA
PARAMETER STYLE GENERAL WITH NULLS 3

CREATE PROCEDURE statement explanation
The following notes refer to the previous example:

1 We qualify the procedure name with the library name SPROCLIB in this case. We use the
system-naming convention. If you do not qualify the procedure name in the CREATE
PROCEDURE statement, the procedure is created in the current library. The procedure
takes four input parameters: ORHNBR of type CHARACTER(5), PRDNBR of type
CHARACTER(5), ORDQTY of type DECIMAL(11,2), and ORDTOT of type DECIMAL
(11,2). An output parameter was defined: SQLST of type CHAR(5).

2 The EXTERNAL NAME clause of the CREATE PROCEDURE statement. The external
program is a *PGM object.

3 The PARAMETER STYLE clause. DB2 Universal Database for iSeries passes indicators
as additional parameters, apart from the input and output arguments that are defined in
the CREATE PROCEDURE statement. When the stored procedure is registered by using
System i Navigator, the parameter style Simple, allow null values must be selected.

Now, we examine the external program ORDDETINS that is referred to in the previous
CREATE PROCEDURE statement. This program is written in ILE RPG with embedded SQL.

The ORDDETINS external program accepts the order number, product number, order
quantity, and the order quantity total for the ordered product as the input arguments. The SQL
INSERT statement is executed. If the order number that is passed to the stored procedure
does not exist in the ORDERHDR table, the insert statement fails because the referential
integrity constraint is enforced. The error or successful insertion status is returned to the
calling program by using the sqlstate output parameter.

The code sample in Example 4-5 illustrates how the external stored procedure with the
GENERAL WITH NULLS parameter style is coded. The numbered areas are further
explained in the following list.

Example 4-5 External stored procedure with the GENERAL WITH NULLS parameter style

 dindds ds
 dindd1 1 2B 0
 dindd2 3 4B 0
 dindd3 5 6B 0
 dindd4 7 8B 0
 doutdd s 1b 0
 c *entry plist
 c parm ordnbr 5 1
 c parm prdnbr 5 1
 c parm ordqty 5 0 1
 c parm ordtot 9 2 1
58 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 c parm state 5 2
 c parm indds 3
 c parm outdd 3
 C/EXEC SQL
 C+ WHENEVER SQLERROR GOTO ERROR
 C/END-EXEC
 c/EXEC SQL
 c+ INSERT INTO ORDENTLIB.ORDERDTL(ORHNBR, PRDNBR, ORDQTY, ORDTOT)
 c+ VALUES(:ORDNBR, :PRDNBR, :ORDQTY, :ORDTOT)
 C/END-EXEC
 c eval state='00000'
 c goto END
 c ERROR TAG
 c if SQLCOD=-530
 c eval state='38IRC'
 c else
 c eval state='38999'
 c endif
 c END TAG
 c eval *inlr=*ON

Code sample notes
The following notes refer to Example 4-5 on page 58:

1 The ORDDETINS program accepts the first four input parameters, which will be inserted
into the ORDERDTL table. DB2 Universal Database for iSeries passes the corresponding
number of indicator variables as additional parameters to the procedure.

2 The last parameter is an output parameter SQLState. The parameter can be used to
signal an error or warning condition on return to the calling program. In our program, we
execute the INSERT statement for the order number that is passed as the input parameter.
The order number that we are trying to insert into the ORDERDTL table might not match
the value in the orhnbr primary key column of the ORDEHDR table. In this case, the SQL
INSERT will fail, generating SQLCODE=-530 and SQLSTATE=23503.

3 These parameters are null indicators for input and output parameters. Whenever a null
value is passed into the program on input, the input null indicator contains -1. Because
four input parameters are used, four indicators are associated with these parameters.

The ORDDETINS program was created as a *PGM object in RPG with embedded SQL
statements. It is compiled into a *MODULE object, and then the *MODULE object is bound
into the *PGM object, which allows us to specify the activation group parameter as *CALLER.

The following CL commands are used to compile and bind the ORDDETINS program:

CRTSQLRPGI OBJ(SPROCLIB/ORDDETINS) SRCFILE(QCSRC/SPROCLIB) OPTION(*SQL)
SRCMBR(ORDDETINS) OUTPUT(*PRINT) DBGVIEW(*SOURCE) OPTION(*SQL)
CRTPGM PGM(SPROCLIB/ORDDETINS) ACTGRP(*CALLER)

Calling the external stored procedure
To invoke the external stored procedure, use the CALL statement, as shown in Example 4-6.
In the calling program or the client program, you can use the output parameter to check
whether an error occurred within the stored procedure.

Example 4-6 Call to the external stored procedure

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
Chapter 4. External stored procedures 59

#include <decimal.h>
#include <recio.h>

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
 char OrdNbr[5];
 char PrdNbr[5];
 decimal(5,0) OrdQty;
 decimal(9,2) OrdTot;
 char state[5];
 short int ind1;
 short int ind2;
 short int ind3;
 short int ind4;
 short int ind5;
EXEC SQL END DECLARE SECTION;
void main(void) {
 EXEC SQL WHENEVER SQLERROR GOTO printmsg;
 EXEC SQL WHENEVER SQLWARNING GOTO printnomsg;
 printf("Enter the ORDERDETAILS:\n\n");

 EXEC SQL CALL SPROCLIB.ORDDETINS(:OrdNbr :ind1, :PrdNbr :ind2,
 :OrdQty :ind3, :OrdTot :ind4, :state :ind5);
 printf("The SQLSTATE returned from the Stored procedure:%s\n",state);
 exit(0);
printmsg:
 if((strncmp(state,"37999",5) > 0) &&
 (strncmp(state,"38999",5) <= 0))
 printf("The SQLSTATE returned from the Stored procedure:%s \n",state);
 else
 printf("The invalid SQLSTATE set in the Stored procedure:%s \n",state);
 exit(1);
printnomsg:
 printf("The Stored procedure returned a warning:\n");
 printf("The SQLSTATE returned from the Stored procedure:%s\n",state);
 exit(0);
}

4.4 Returning result sets from external procedures
Until now, we described coding external stored procedures with different parameter styles
and input/output parameters. These programs returned only stand-alone output values.
However, you can also return a result set from an external stored procedure. Two ways are
available to return a result set:

� Cursor result set
� Array result set

The following section describes these two methods. Examples are included to show how to
code an external stored procedure that returns multiple result sets.

Note: The code that is shown in bold illustrates how to use the user-defined SQL state that
is set by the external stored procedure that is registered with the GENERAL WITH NULLS
parameter style.
60 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

When the external stored procedure is created with the CREATE PROCEDURE statement or
by using the System i Navigator New Procedure window, you must specify the number of
result sets that must be returned to the calling program. An invoker must use JDBC, ODBC, or
the command-line interface (CLI) when they call a procedure that returns result sets. The
System i server has no embedded SQL support for handling result sets.

4.4.1 Coding external stored procedures that return cursor result sets
In this section, we return to our task of identifying the best and the worst suppliers in the
Order Entry database.

The Order Entry database contains the ORDERHDR table. The primary key of the
ORDERHDR table is the ORHNBR (order number) column. For every order number in the
ORDERHDR table, one or more rows are in the ORDERDTL table, for the same order
number. The ORDERDTL table contains the order number (ORHNBR) of the order that is
present in the ORDERHDR table and a product number (PRDNBR) that identifies the
products to be supplied for that order.

Every product has a name, price, and supplier number. The product details are in the STOCK
table. Every supplier has a supplier name, supplier number, and supplier address. The
supplier details are in the SUPPLIER table. For details about the database layout, see 2.2,
“Order Entry database overview” on page 11. Now, assume that you want to identify n
suppliers with the highest sales in a certain year and month. At the same time, you also want
to retrieve n suppliers with the lowest sales in a certain year and month. You can implement
this business logic by coding a stored procedure that returns multiple result sets.

You can pass three parameters: year, month, and rank. If the value of the rank parameter is
10, for example, the stored procedure will return a list of 10 suppliers with the highest sales in
a certain month and year as the first result set. You also see a list of 10 suppliers with the
lowest sales in a certain month and year as the second result set.

The first two parameters, year and month, are input (IN) parameters. The third parameter,
rank, is an input/output (INOUT) parameter. On the stored procedure invocation, it contains
the number of suppliers to be returned in the two result sets. On the return, the stored
procedure sets this parameter to a value that indicates the actual number of available rows in
the result sets (might be fewer than the requested number). If the month is not specified, the
program returns two supplier lists (the best and the worst) for the whole year, rather than for a
certain month in a year.

To implement this scenario, we used three views: SALES, TOTALSALE, and YEARSALE that
are created on the ORDERHDR, SUPPLIER, and the STOCK tables.

We examine the CREATE PROCEDURE statement for the Get_Supplier_Rs external stored
procedure, which returns multiple result sets. The numbered sections are explained further in
the following list:

CREATE PROCEDURE SPROCLIB.Get_Supplier_Rs(1
 IN year INTEGER, 1
 IN month INTEGER, 1
 INOUT rank INTEGER) 1
RESULT SETS 2 2
SPECIFIC Get_Supplier_Rs
LANGUAGE RPGLE
EXTERNAL NAME SPROCLIB.SELPGMRESR
MODIFIES SQL DATA
PARAMETER STYLE SQL 3
Chapter 4. External stored procedures 61

CREATE PROCEDURE statement explanation
The following notes refer to the previous example.

1 We qualify the procedure name with the library name, which in this case, is the library
SPROCLIB. We use the system-naming convention. If you do not qualify the procedure
name in the CREATE PROCEDURE statement, the procedure is created in the current
library. The procedure accepts two input parameters and one INOUT parameter rank.

2 The number of result sets that are returned from the procedure.

3 The parameter style is SQL.

Now, we examine the external program SELPGMRESR, which is referred to in the previous
CREATE PROCEDURE statement. This program is written in ILE RPG with embedded SQL.
The SELPGMRESR external program accepts the year, month, and rank as the input
arguments. The stored procedure can be called with the SQL CALL statement. The source for
the SELPGMRESR is shown in Example 4-7.

Example 4-7 SELPGMRESR source code

 dCounter1 s 10i 0 inz(0)
 dCounter2 s 10i 0 inz(0)
 dtemp s 10i 0 inz(0)
 dfsqlcod s 5i 0 inz(0)
 dhsales s 11p 2
 dyear s 10i 0
 dmonth s 10i 0
 drank s 10i 0
 dindds ds
 dindd1 1 2b 0
 dindd2 3 4b 0
 dindd3 5 6b 0
 doutdd s 1b 0
 dsqlstate s 5a
 dprocname s 138a varying
 dspecname s 128a varying
 dmsgtxt s 70a varying
 c *entry plist
 c parm year
 c parm month
 c parm rank
 c parm indds
 c parm outdd
 c parm sqlstate
 c parm procname
 c parm specname
 c parm msgtxt
 c/exec sql
 c+ declare alt0 scroll cursor for 1
 c+ select totalsales
 c+ from suparna1/totalsale
 c+ where year=:year and month=:month
 c+ order by totalsales desc
 c/end-exec
 c/exec sql
 c+ declare alt1 cursor for 5
 c+ select supplier_name,totalsales
 c+ from suparna1/totalsale
 c+ where year=:year and month=:month and totalsales>= :hsales
 c+ order by totalsales desc
 c/end-exec
 c*
62 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 c/exec sql
 c+ declare alt2 scroll cursor for
 c+ select totalsales
 c+ from suparna1/yearsale
 c+ where year=:year
 c+ order by totalsales desc
 c/end-exec
 c/exec sql
 c+ declare alt3 cursor for
 c+ select supplier_name,totalsales
 c+ from suparna1/yearsale
 c+ where year=:year and totalsales>= :hsales
 c+ order by totalsales desc
 c/end-exec
 c/exec sql
 c+ declare alt4 scroll cursor for 2
 c+ select totalsales
 c+ from suparna1/totalsale
 c+ where year=:year and month=:month
 c+ order by totalsales
 c/end-exec
 c/exec sql
 c+ declare alt5 cursor for 7
 c+ select supplier_name,totalsales
 c+ from suparna1/totalsale
 c+ where year=:year and month=:month and totalsales<= :hsales
 c+ order by totalsales
 c/end-exec
 c*
 c/exec sql
 c+ declare alt6 scroll cursor for
 c+ select totalsales
 c+ from suparna1/yearsale
 c+ where year=:year
 c+ order by totalsales
 c/end-exec
 c/exec sql
 c+ declare alt7 cursor for
 c+ select supplier_name,totalsales
 c+ from suparna1/yearsale
 c+ where year=:year and totalsales<= :hsales
 c+ order by totalsales
 c/end-exec
 c if (month=0)
 c/exec sql
 c+ open alt2
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c dow ((sqlcod<>100) and (Counter1<rank))
 c/exec sql
 c+ fetch from alt2
 c/end-exec
 c eval Counter1=Counter1+1
 c enddo
 c if (sqlcod=100)
 c eval Counter1=Counter1-1
 c eval fsqlcod=1
 c eval temp=rank
 c eval rank=Counter1
 c endif
Chapter 4. External stored procedures 63

 c/exec sql
 c+ close alt2
 c/end-exec
 c/exec sql
 c+ open alt2
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c/exec sql
 c+ fetch relative :rank from alt2 into :hsales
 c/end-exec
 c if (fsqlcod=1)
 c eval rank=temp
 c endif
 c/exec sql
 c+ close alt2
 c/end-exec
 c/exec sql
 c+ open alt3
 c/end-exec
 c/exec sql
 c+ open alt6
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c dow ((sqlcod<>100) and (Counter2<rank))
 c/exec sql
 c+ fetch from alt6
 c/end-exec
 c eval Counter2=Counter2+1
 c enddo
 c if (sqlcod=100)
 c eval fsqlcod=1
 c eval Counter2=Counter2-1
 c eval temp=rank
 c eval rank=Counter2
 c endif
 c/exec sql
 c+ close alt6
 c/end-exec
 c/exec sql
 c+ open alt6
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c/exec sql
 c+ fetch relative :rank from alt6 into :hsales
 c/end-exec
 c if (fsqlcod=1)
 c eval rank=temp
 c endif
 c/exec sql
 c+ close alt6
 c/end-exec
 c/exec sql
 c+ open alt7
 c/end-exec
 c/exec sql
 c+ set result sets cursor alt3,cursor alt7 9
 c/end-exec
 c
 c if Counter1>Counter2
 c eval rank=Counter1
64 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 c else
 c eval rank=Counter2
 c endif
 c else
 c/exec sql
 c+ open alt0
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c dow ((sqlcod<>100) and (Counter1<rank)) 3
 c/exec sql
 c+ fetch from alt0
 c/end-exec
 c eval Counter1=Counter1+1
 c enddo
 c if (sqlcod=100)
 c eval fsqlcod=1
 c eval Counter1=Counter1-1
 c eval temp=rank
 c eval rank=Counter1
 c endif
 c/exec sql
 c+ close alt0
 c/end-exec
 c/exec sql
 c+ open alt0
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c/exec sql
 c+ fetch relative :rank from alt0 into :hsales 4
 c/end-exec
 c if (fsqlcod=1)
 c eval rank=temp
 c endif
 c/exec sql
 c+ close alt0
 c/end-exec
 c/exec sql
 c+ open alt1
 c/end-exec
 c/exec sql
 c+ open alt4
 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c dow ((sqlcod<>100) and (Counter2<rank))
 c/exec sql
 c+ fetch from alt4
 c/end-exec
 c eval Counter2=Counter2+1
 c enddo
 c if (sqlcod=100)
 c eval fsqlcod=1
 c eval Counter2=Counter2-1
 c eval temp=rank
 c eval rank=Counter2
 c endif
 c/exec sql
 c+ close alt4
 c/end-exec
 c/exec sql
 c+ open alt4
Chapter 4. External stored procedures 65

 c/end-exec
 c* in this loop -fetch all the rows in the resultant set into var:array
 c/exec sql
 c+ fetch relative :rank from alt4 into :hsales
 c/end-exec
 c if (fsqlcod=1)
 c eval rank=temp
 c endif
 c/exec sql
 c+ close alt4
 c/end-exec
 c/exec sql
 c+ open alt5
 c/end-exec
 c/exec sql
 c+ set result sets cursor alt1,cursor alt5 6 8
 c/end-exec
 c if Counter1>Counter2
 c eval rank=Counter1
 c else
 c eval rank=Counter2
 c endif
 c endif
 c return

Code sample notes
The external program name SELPGMRESR (Example 4-7 on page 62) is a *PGM object,
which is referred to in the CREATE PROCEDURE statement in the following way:

external name SPROCLIB/SELPGMRESR

The following numbers refer to the numbers in Example 4-7 on page 62:

1 To find the total number of suppliers in a certain year and month, we declare the SELECT
cursor. To find n highest total sales, we use the ORDER BY clause in the DECLARE
CURSOR statement. We ORDER BY total sales in descending order. Therefore, the
highest total sales value is in the first row of the resultant table when the cursor is opened.

2 To find the n lowest total sales, we use the ORDER BY clause in the DECLARE CURSOR
statement. We ORDER BY total sales in ascending order. Therefore, the lowest total sales
value is in the first row of the resultant table when the cursor is opened.

3 The cursor might return fewer rows than the requested value of RANK. The exact number
of rows that can be returned is calculated in a counter that is increased until SQLCODE =
100.

4 The cursor might retrieve any number of rows, but the procedure returns only n rows,
where n is the value of the third parameter RANK. The FETCH RELATIVE statement is
used to retrieve the “cutoff” sales value into the hsales variable. Because we use the
FETCH RELATIVE statement, the cursor must be declared as a scrollable cursor.

5 The nth total sales value that was fetched from the ALT0 cursor is used in the ALT1 cursor
to create a result set that contains records for the n highest total sales.

6 This cursor ALT1 is opened and returned as a result set.

7 Similarly, the nth total sales value that is fetched from the ALT4 cursor is used in the ALT5
cursor to create a result set that contains records for the n lowest total sales.
66 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

8 This cursor ALT5 is opened and returned as the second result set.

9 When the month is not entered by the user, the procedure returns the n highest total sales
and the n lowest total sales for the whole year rather than for a specific month within a
year. To cover this case, we use a different set of cursors. The result sets are returned in
ALT3 and ALT7 cursors.

The SELPGMRESR program was created as a *PGM object. In this case, if SELPGMRESR
is a program that is written in C with embedded SQL statements, it is compiled into a
*MODULE object. Then, the *MODULE object is bound into the *PGM object so that we can
specify the activation group parameter as *CALLER.

Calling stored procedures that return multiple result sets
To invoke the external stored procedure, use the SQL CALL statement from the client
program. The CLI client programs that are written in RPGLE and C are provided in the
download package. The CLI C client program that can be used to call this external stored
procedure is explained in 4.4, “Returning result sets from external procedures” on page 60.

4.4.2 Coding external stored procedures that return array result sets
This section shows how to code an array result set. The external stored procedure must be
registered by using either the CREATE PROCEDURE statement or the System i Navigator
New Procedure window. The number of result sets that are returned must be set to 1. An
external stored procedure that returns an array result set can return only one result set.

Example 4-8 shows the correct CREATE PROCEDURE statement.

Example 4-8 CREATE PROCEDURE statement

CREATE PROCEDURE SPROCLIB.SELPGMARR(
 IN orhnbr CHAR(5))
RESULT SETS 1
LANGUAGE RPGLE
EXTERNAL NAME SPROCLIB.SELPGMARR
READS SQL DATA
PARAMETER STYLE GENERAL

The ORDERDTL table contains the order detail entries for every order number in the
ORDERHDR table. For every order number in the ORDERHDR table, a number of rows are in
the ORDERDTL table with the same order number, but with different product numbers.
Assume that we want to retrieve all rows with the same order number from the ORDERDTL
table.

You can process the ORDERDTL table as a file and return the rows as an array result set.
The ORDERDTL file is processed in input mode for read only to retrieve records with the
order number ORHNBR that is passed as an input parameter. The records are retrieved until
end of file (EOF). The retrieved records are placed in an array as they are retrieved. On EOF,
the array result set is returned to the client program. See Example 4-9.

Example 4-9 ORDERDTL that is processed as a file and returns rows as an array result set

forderdtl if e K disk rename(orderdtl:norderdtl)
di s 3 0
dproduct ds occurs(5) 1
dnumber 5
c *entry plist
c parm ordnbr 5
c eval i=0
Chapter 4. External stored procedures 67

c *LOVAL SETLL norderdtl
c read norderdtl
c dow not(%eof)
c if orhnbr=ordnbr
c eval i=i+1
c i occur product
c move prdnbr product
c endif
c read norderdtl
c enddo
c* in this loop -fetch all the rows in the resultant set into var:array
c/exec sql
c+ set result sets array :product for :i rows 2
c/end-exec
c return

Sample code notes
The following notes refer to Example 4-9 on page 67:

1 The data structure declaration to hold the rows of the array result set while the rows are
read from the ORDERDTL file.

2 The SET RESULT SETS ARRAY: array FOR: count ROWS returns an array result set with a
number of rows.

The following CL commands are used to compile and bind the SELPGMARR program:

CRTSQLRPGI OBJ(SPROCLIB/SELPGMARR) SRCFILE(QCSRC/SPROCTLIB)
(SRCMBR(SELPGNRES) OUTPUT(*PRINT) DBGVIEW(*SOURCE)
CRTPGM PGM(SPROCLIB/SELPGMARR) ACTGRP(*CALLER)

To invoke the external stored procedure from a client program, use the SQL CALL statement.
The result set that is returned from the procedure is shown in Figure 4-6.

Figure 4-6 An array result set that is returned from SELPGMARR

4.5 CLI client program that calls a procedure that returns multiple result sets

When your client application calls a local or remote stored procedure, your client application
must be connected to the target remote system at run time. You can use the SQL CONNECT
or SET CONNECTION statements to connect to a database. You can also specify the
database name explicitly at compile time by using the compiler parameter called Relational
Database (RDB). When you run an application program that is compiled with a Relational
Database name, it is implicitly connected to the database that is specified in the parameter.
This database can be either local or remote.

If you will call a remote stored procedure, remember to create an SQL package on the remote
system. The SQL package is needed to call remote stored procedures.
68 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

In 4.4, “Returning result sets from external procedures” on page 60, we implemented an
example that returns multiple result sets. In this section, we examine the CLI program that is
written in ILE C, which calls the Get_Supplier_Rs stored procedure and displays the multiple
result sets that are returned by the stored procedure. We present the most important parts of
the CLI program. The complete listing of the CLI C source and the listing of the RPG version
are available for download from the web. The CLI C client program is called GETSUPPRS,
and the CLI RPG client is called GETSUPPRSR.

We now examine the CLI C client program. See Example 4-10. The client program is created
as a *PGM object.

Example 4-10 CLI C client program

#include <stdio.h>
/****variable declaration***************/
..................
/****program *****/
 printf("Please enter the name of the server to connect :\n");
 gets(Chr_ServerName);
 printf("Please enter th User Id :\n");
 gets(Chr_UserId);
 printf("Please enter the Pass Word :\n");
 gets(Chr_PassWord);
/**connect ************/
 Nmi_ReturnCode = Fun_Connect(&Hnd_Henv, &Hnd_Hdbc,
 Chr_ServerName, Chr_UserId, Chr_PassWord);
 if (Nmi_ReturnCode != SQL_SUCCESS)
 {
 strcpy(Chr_UserMessage, "Error Connecting to the sever");
 Nmi_ReturnCode = Fun_PrintError();
 exit(-1);
 }

 strcpy(Chr_SqlStatement001, "call "); 1
 strcat(Chr_SqlStatement001, Chr_Libname);
 strcat(Chr_SqlStatement001, " .");
 strcat(Chr_SqlStatement001, Chr_Procedure);
 strcat(Chr_SqlStatement001, "(");
 strcat(Chr_SqlStatement001, "?");
 strcat(Chr_SqlStatement001, ", ?");
 strcat(Chr_SqlStatement001, ", ?");
 strcat(Chr_SqlStatement001, ")");

 Nmi_ReturnCode = SQLPrepare(Hnd_Hstmt, Chr_SqlStatement001, SQL_NTS);
 if (Nmi_ReturnCode != SQL_SUCCESS)
 {
 Nmi_CleanUpCode = 4;
 strcpy(Chr_UserMessage, "Error in Preparing the statement");
 Nmi_ReturnCode = Fun_PrintError();
 exit(-1);
 }

 Nmi_PcbValue=0;
 Nmi_ReturnCode = SQLBindParameter(Hnd_Hstmt, 1, SQL_PARAM_INPUT, 2
 SQL_INTEGER,SQL_INTEGER,
 sizeof(Nmpd_Year),0,
 (SQLPOINTER) &Nmpd_Year,
 sizeof(Nmpd_Year),
 (SQLINTEGER *) &Nmi_PcbValue);

 }
Chapter 4. External stored procedures 69

 Nmi_ReturnCode = SQLExecute(Hnd_Hstmt);

 Nmi_ReturnCode = SQLBindCol(Hnd_Hstmt, 1, SQL_CHAR, 3
 (SQLPOINTER) Chr_Supplier_Name,
 sizeof(Chr_Supplier_Name),
 (SQLINTEGER *) &Nmi_PcbValue);
 if (Nmi_ReturnCode != SQL_SUCCESS)
 {
 Nmi_CleanUpCode = 4;
 strcpy(Chr_UserMessage, "Error in Binding the Column Supplier Name");
 Nmi_ReturnCode = Fun_PrintError();
 exit(-1);
 }

 Nmi_ReturnCode = SQLBindCol(Hnd_Hstmt, 2, SQL_DECIMAL,
 (SQLPOINTER) &Nmpd_Totalsales,
 (SQLINTEGER) ((256 * 11) + 2),
 (SQLINTEGER *) &Nmi_PcbValue);
 if (Nmi_ReturnCode != SQL_SUCCESS)
 {
 Nmi_CleanUpCode = 4;
 strcpy(Chr_UserMessage, "Error in Binding the Column Totalsales");
 Nmi_ReturnCode = Fun_PrintError();
 exit(-1);
 }

 printf("The No of rows returned %d:\n", Nmpd_Rank);
 printf("The List of Supplier with %d Best Totalsales:\n");

 while (Nmi_ReturnCode == SQL_SUCCESS)
 {
 Nmi_ReturnCode = SQLFetch(Hnd_Hstmt); 4
 if (Nmi_ReturnCode == SQL_SUCCESS)
 {
 printf("The value of Supplier Name is %s\n", Chr_Supplier_Name);
 printf("The value of Total Sales is %D(11,2)\n",
 Nmpd_Totalsales);
 printf("\n\n");
 }
 }
/*check for more result sets*********/
 Nmi_ReturnCode = SQLMoreResults(Hnd_Hstmt); 5
 if ((Nmi_ReturnCode == SQL_ERROR) ||
 (Nmi_ReturnCode == SQL_INVALID_HANDLE))
 {
 Nmi_CleanUpCode = 4;
 strcpy(Chr_UserMessage, "Error in Getting result set data");
 Nmi_ReturnCode = Fun_PrintError();
 exit(-1);
 }
 if (Nmi_ReturnCode == SQL_NO_DATA_FOUND)
 {
 Nmi_ReturnCode = Fun_CleanUp004(&Hnd_Henv, &Hnd_Hdbc, &Hnd_Hstmt);
 printf("There are no more result result sets\n");
 exit(0) ;
 }
 /**Bind columns for the result set***************/
 Nmi_ReturnCode = SQLBindCol(Hnd_Hstmt, 1, SQL_CHAR, 5
 (SQLPOINTER) Chr_Supplier_Name,
70 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 sizeof(Chr_Supplier_Name),
 (SQLINTEGER *) &Nmi_PcbValue);
............
 printf("The No of rows returned %d\n", Nmpd_Rank);
 printf("The List of Supplier with %d Worst TotalSales:\n");

 while (Nmi_ReturnCode == SQL_SUCCESS)
 {
 Nmi_ReturnCode = SQLFetch(Hnd_Hstmt);
 if (Nmi_ReturnCode == SQL_SUCCESS)
 {
 printf("The value of Supplier Name is %s\n", Chr_Supplier_Name);
 printf("The value of Total Sales is %D(11,2)\n",
 Nmpd_Totalsales);
 printf("\n\n");
 }
 }
/*check for more result sets*********/

 Nmi_ReturnCode = Fun_CleanUp004(&Hnd_Henv, 6
 &Hnd_Hdbc,
 &Hnd_Hstmt);

}

Code sample notes
The following notes refer to Example 4-10 on page 69:

1 The CALL statement is prepared with parameter markers. All of the parameters, the name
of the procedure to execute, and the library name are taken as input from the user.
Therefore, this CLI program can be used to execute any stored procedure that is written in
C, RPGLE, SQL, or Java that implements the business logic that is explained in 4.4,
“Returning result sets from external procedures” on page 60.

2 The SQLBindParameter () function binds the parameter to the parameter markers before
the SQLExecute function is executed.

3 The SQLBindCol () function binds the columns of the result set. For every column of the
result set, the correct SQLBindCol function must be executed.

4 After the SQLBindCol, the SQLFetch function retrieves the column values from the
returned result set. SQLFetch executes until no more rows are in the result set.

5 We check for more result sets with the SQLMoreResults function. If more than one result
set is identified, the sequence of SQLBindCol and SQLFetch calls must be repeated.

6 After the second result set is retrieved, we check again for more result sets. The result
depends on the number of result sets that are returned by the stored procedure. Finally,
the program releases all of the handlers that it acquired and disconnects from the server.
Chapter 4. External stored procedures 71

The results of executing the GETSUPPRS program are shown in Figure 4-7.

Figure 4-7 The CLI C client output

Debugging a stored procedure
The external stored procedures that are called from the client program can be debugged as
any other native ILE C program. To enable debugging, ensure that you compile the stored
procedure with DBGVIEW set to *SOURCE, as shown in the following example:

CRTSQLRPGI OBJ(SPROCLIB/SELPGMRESR) SRCFILE(QCSRC/SPROCTLIB) SRCMBR(SELPGMRESR)
OUTPUT(*PRINT) DBGVIEW(*SOURCE)
CRTPGM PGM(SPROCLIB/SELPGMRESR) ACTGRP(*CALLER)

You can start the debug session with the Start Debug CL command as shown:

STRDBG PGM(SPROCLIB/SELPGMRESR)

 The No of rows returned 4:
 The List of Suppliers with 4 Best Totalsales:
 The value of Supplier Name is Black
 The value of Total Sales is 8800.00

 The value of Supplier Name is Red
 The value of Total Sales is 7345.00

 The value of Supplier Name is Blue
 The value of Total Sales is 3150.00

 The value of Supplier Name is Yellow
 The value of Total Sales is 1200.00

 The No of rows returned 4
 The List of Suppliers with 4 Worst TotalSales:

 ===>
 The value of Supplier Name is Yellow
 The value of Total Sales is 1200.00

 The value of Supplier Name is Blue
 The value of Total Sales is 3150.00

 The value of Supplier Name is Red
 The value of Total Sales is 7345.00

 The value of Supplier Name is Black
 The value of Total Sales is 8800.00

 There are no more result result sets
 Press ENTER to end terminal session.
72 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The stored procedure source is now loaded in a debug session. Set the required breakpoints,
and press F12 to return to the CL prompt. Now, you can run the CLI client with the following
call:

CALL GETSUPPRS

The program execution stops after the control is passed to the stored procedure and the first
breakpoint is reached.

4.6 Moving into production (save and restore)
While you deploy a database application to a production system, you need to save and
restore objects, such as external programs, that were registered as stored procedures.
Depending on the type of stored procedure and external program that implements that stored
procedure, additional actions might be required to make the stored procedure available on the
target system.

When CREATE PROCEDURE is used to create an external stored procedure that is
associated with an ILE external program, an attempt is made to save the stored procedure’s
attributes in the associated program object. If the *PGM object is saved and then restored to
this system or another system, the catalogs are automatically updated with those attributes,
subject to the following restrictions:

� The external program library must not be QSYS or QSYS2.
� The external program must be an ILE *PGM object.
� The external program must contain at least one SQL statement.

If the external program object is an original program model (OPM) or an ILE with no
embedded SQL statements, you need to register the program as a procedure with the
CREATE PROCEDURE statement. The SQL Development Kit does not need to be installed
on the target system. You can also use one of the following SQL interfaces:

� System i Navigator
� WRKQMQRY
� RUNSQLSTM CL command
� A program that uses an ODBC, a JDBC, or a CLI interface

If the external object is an ILE program and contains at least one SQL statement, DB2
Universal Database for iSeries automatically tries to register the correct stored procedure.
However, several topics require your attention:

� The external procedure is registered in the target library that is specified by the RESTORE
command, regardless of the CREATE PROCEDURE source.

� If the matching external procedure is not in the catalogs, DB2 Universal Database for
iSeries automatically registers the program as a stored procedure.

� If the matching external procedure is in the catalogs with the same signature (same
number of parameters), the program is restored, but the catalog information is not
updated. This method works fine if the CREATE PROCEDURE statement did not change.
However, if the statement changed, it is your responsibility to execute the DROP
PROCEDURE statement.

� If the matching external procedure is in the catalogs and the signature is different (which
means different parameters), the program object is restored and the catalog information is
updated.
Chapter 4. External stored procedures 73

In general, be careful when you restore a stored procedure with a modified number or type of
parameters because the restore operation might overlay the program object for an existing
procedure that shares the signature. If the procedure exists in the target library or system and
the number of parameters or the data type of the parameters changed, a DROP
PROCEDURE statement must be performed before the restore operation.

4.7 The Order Entry application: Stored procedure examples
In our application scenario, we use a stored procedure to perform composite operations on
the inventory database file at the remote site. When the client program inserts the items for
the order, the remote inventory is referenced for every item in the order, and the available
quantity for the product is updated at the remote site. If the product that we are requesting is
not available, the inventory is searched for a replacement. If the inventory lookup and update
completed successfully, a record is inserted in the local order detail file. Finally, the
transaction is committed to free the inventory record from the locks. In this scenario, we
exploit DB2 Universal Database for iSeries two-phase commit.

We decided to implement the inventory lookup and update through a stored procedure
because the search for an alternative item can involve many database accesses on the
remote inventory file. This processing can be carried out entirely at the server site where the
general inventory resides. The stored procedure accepts these parameters:

� PARM1: INOUT, for product number (PRDNBR)
� PARM2: IN, for ordered quantity (ORDQTA)
� PARM3: OUT, for product description (PRDDES)
� PARM4: OUT, for product price (PRDPRC)

The stored procedure scans the inventory for replacements if the original item is not available.
If no replacement can be identified, the product description (PARM3) is returned as NULL.
The stored procedure was defined in the CREATE PROCEDURE statement as SIMPLE
CALL WITH NULLS. The SIMPLE CALL WITH NULLS clause is synonymous with GENERAL
WITH NULLS and it is provided for the compatibility with other platforms.

Even though four parameters are specified in the CALL statement of our calling program
(INSDET), the stored procedure (STORID) must define five parameters for an additional
indicator array parameter that is passed due to defining SIMPLE CALL WITH NULLS on the
DECLARE PROCEDURE statement. In both INSDET and STORID programs, the additional
indicator variable parameter is defined as a data structure (INDDS) with four 2-digit binary
subfields: IND1, IND2, IND3, and IND4. However, we use only IND1 and IND3 in our
program.

If the stored procedure identifies the corresponding product record and its quantity is
sufficient, it is updated, and its description and price are passed back through PARM3 and
PARM4. The indicators IND1 and IND3 are set to 0.

If no record is identified, IND1 is set to -1, which means that PARM1 has a NULL value. When
returning to the calling program, this indicator must be tested. If it has a value of -1, an error
message is displayed.

If the item is identified but its quantity is not sufficient, an alternative with the same product
category is searched. We assume that only the first match is passed back to the calling
program even though several alternatives might exist with the required quantity in stock. The
alternative product description and price are passed back to the calling program.
74 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

After the item is found and the order detail row is inserted in the local file, the local and remote
changes can be committed or rolled back by the client application by using two-phase
commit.

For details about our application scenario, see Chapter 2, “Stored procedures, triggers, and
user-defined functions for an Order Entry application” on page 9.

4.7.1 Calling a stored procedure
The listing in Example 4-11 is an RPG version of the Insert Detail (INSDET) client program
with embedded SQL statements.

Example 4-11 RPG version of the Insert Detail client program

 **
 * *
 * T4249RIDT Program Overview: *
 * --------- Insert Order Detail Items *
 * in Order Entry Application *
 * using DRDA-2 *
 * 2-Phase Commit *
 * Stored Procedure *
 * RI on Order Detail Table *
 * *
 **
 * *
 * This program takes input from previous program T4249CINS: *
 * customer number, order number. Order items are entered *
 * from screen: product number, quantity. *
 * DRDA-2 connection is established to a remote system to *
 * call a stored procedure, which updates the STOCK file *
 * located at the head office (remote system) with the *
 * ordered quantity. If quantity is not available, an *
 * alternative item is searched. If there is no alternative *
 * available, this is indicated with a negative value in *
 * the corresponding indicator variable of the parameter. *
 * If quantity could be updated, connection is established *
 * to the local system for inserting an order detail record. *
 * Referential integrity rules check insert violation (see *
 * documentation before coding statements below). *
 * A Distributed Unit of Work (DUW) in this program (using *
 * DRDA-2) includes an update on the remote system by the *
 * stored procedure and a record insert on the local system. *
 * This DUW can be rolled back, using PF keys. If not, *
 * 2-phase commitment control commits the logical transact. *
 * *
 **
 * *
 * ZURICH is local database system *
 * ROCHESTER is remote database system *
 * *
 **
 * *
 * Indicator usage: *
 * 03 F03 Exit/Finalize Order *
 * 11 F11 Cancel Item *
 * 12 F12 Cancel Order *
 * 22 2nd EXFMT with info. *
 * 51 1st CONNECT local *
 * 63 Duplicate product ordered *
Chapter 4. External stored procedures 75

 * 64 RI Constraint *
 * 65 Product not found *
 * 66 No alternative *
 * 67 This is an alternative *
 * 77 To bypass first commit statement *
 * *
 ==
 FINSDETD CF E WORKSTN
 *
 **
 * These are the fields for the indicator variables, used *
 * by the stored procedure, to indicate the content of *
 * the passed parameters: *
 **
 *
 IINDDS DS
 I B 1 20IND1
 I B 3 40IND2
 I B 5 60IND3
 I B 7 80IND4
 *
 **
 * The following parameters are input from the previous *
 * program (ORDHDR), which created the order header data, *
 * and output to the next programs: finalize order, cancel *
 * order or main: *
 **
 *
 C *ENTRY PLIST
 C PARM CUSNBR 5 Customer #
 C PARM ORDNBR 5 Order #
 C PARM DODCUM 112 Order cumulativ
 C PARM RTNCDE 1 Return code
 *
 C Z-ADD0 DODCUM
 C MOVE '0' RTNCDE
 C MOVE '0' *IN77
 *
 C BEGIN TAG
 *
 **
 * The following 2-Phase Commit for local and remote system *
 * is only executed, if the conditions are met, *
 * according to the indicators described above. *
 * The first COMMIT after one DUW therefore is done only after *
 * the ordered quantity has been deducted from STOCK file on *
 * the remote system and the first order record has been *
 * inserted correctly in the ORDERDTL file on the local system.*
 * Every item record for an order is committed, because *
 * of releasing the record lock on STOCK file. *
 * Note: SQL COMMIT in the program starts commitment control *
 * for the activation group automatically: *
 **
 *
 C *IN11 IFEQ '0'
 C *IN12 ANDEQ'0'
 C *IN64 ANDEQ'0'
 C *IN65 ANDEQ'0'
 C *IN77 ANDEQ'1'
 C/EXEC SQL
76 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 C+ COMMIT
 C/END-EXEC
 C END
 C MOVE '1' *IN77
 *
 C MOVE *BLANK DPRDNR
 C Z-ADD0 DQUANT
 *
 C EXFMTINSDT1 1st display
 *
 C *IN03 IFEQ '1'
 C GOTO SETLR
 C END
 C MOVE '0' RTNCDE
 *
 **
 * -- Connection to the REMOTE database: -- *
 * At start of the program DRDA connection mgmt. establishes *
 * connection automatically to the remote sys. according to *
 * the relational database specified in the compil. parameter *
 * in command CRTSQLxxx RDB(....). Therefore this program *
 * is connected to remote database ROCHESTER already. *
 * For further remote reconnections SET CONNECTION is used: *
 **
 C*
 C/EXEC SQL
 C+ SET CONNECTION ROCHESTER -- After 1.conn
 C/END-EXEC remote
 *
 **
 * The CALL of the stored procedure (at the remote system) *
 * is prepared. The indicator variables are set to zero: *
 **
 *
 C MOVE DPRDNR PARM1 5 Prod. #
 C MOVE *ZERO IND1 -1=no prod fnd
 C MOVE DQUANT PARM2 50 Ordered quant
 C MOVE *BLANK PARM3 20 Prod descriptio
 C MOVE *ZERO IND3 -1=no alternat.
 C MOVE *ZERO PARM4 72 Prod price
 *
 **
 * The stored procedure is declared, which is optional. *
 * A performance advantage is gained by doing so: *
 **
 *
 C/EXEC SQL
 C+ DECLARE P1 PROCEDURE (:PARM1 INOUT CHAR (5), :PARM2 IN DEC (5,
 C+ 0), :PARM3 OUT CHAR (20), :PARM4 OUT DEC (7, 2))(EXTERNAL NAME
 C+ ORDENTLIB/STORID LANGUAGE RPG SIMPLE CALL WITH NULLS)
 C/END-EXEC
 *
 **
 * The stored procedure is called at the remote system, *
 * because connection to remote (DB) system is established: *
 **
 *
 C/EXEC SQL
 C+ CALL P1(:PARM1:IND1, :PARM2, :PARM3:IND3, :PARM4)
 C/END-EXEC
Chapter 4. External stored procedures 77

 *
 **
 * Return from stored procedure. The indicator variables *
 * for PARM1 and PARM3 contain -1, if no data can be passed *
 * from the stored procedure to this calling program. *
 * This is checked in the following statements: *
 **
 *
 C IND1 IFLT *ZERO Item not found
 C MOVE '1' *IN65
 C MOVE *BLANK PARM3
 C MOVE *ZERO PARM4
 C ELSE
 C IND3 IFLT *ZERO No alternative
 C MOVE '1' *IN66
 C MOVE *BLANK PARM3
 C END
 C END
 *
 C PARM1 IFNE DPRDNR Alternat. item
 C MOVE '1' *IN67
 C END
 *
 **
 * Product details are moved from parameters of the stored *
 * procedure to field variables of this calling program: *
 **
 *
 C MOVE PARM1 DPRDNR Product #
 C MOVE PARM3 DDESCR Description
 C MOVE PARM4 DPRICE Price
 *
 **
 * -- Connection to the LOCAL database: -- *
 * At this point, connection to the local database is estab- *
 * lished. For the first time in the execution of the program *
 * the CONNECT statement has to be executed. *
 * The connection to the local database then goes to dormant *
 * state, after connecting to the remote DB (above) again. *
 * For further local re-connections SET CONNECTION is used: *
 **
 *
 C *IN51 IFEQ '0' 1st Connect
 C/EXEC SQL -- Local
 C+ CONNECT TO ZURICH
 C/END-EXEC
 C MOVE '1' *IN51 After 1.Conn
 C ELSE Local
 C/EXEC SQL
 C+ SET CONNECTION ZURICH
 C/END-EXEC
 C END
 C *IN65 IFEQ '0' Item found
 C *IN66 ANDEQ'0' Altern avail
 C DPRICE MULT DQUANT DITTOT Item total
 C DITTOT ADD DODCUM DODCUM Cumulative
 *
 **
 * An order detail record is inserted in the local database, *
 * if referential integrity rules are not violated, i.e. *
78 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 * the primary key of ORDERDTL file must be unique, and/or a *
 * corresponding order number must exist in the ORDERHDR *
 * parent file. Otherwise an SQL error message is sent from *
 * database management: *
 **
 *
 C/EXEC SQL
 C+ INSERT INTO ORDENTL/ORDERDTL (ORHNBR, PRDNBR, ORDQTY, ORDTOT)
 C+ VALUES(:ORDNBR, :DPRDNR, :DQUANT, :DITTOT)
 C/END-EXEC
 C END
 *
 C SQLCOD IFEQ -803 Duplicate key
 C SETON 63
 C EXSR SUBTR
 *
 **
 * If primary key constraint is detected (duplicate key) *
 * update of order quantity in STOCK file on remote system *
 * is rolled back by 2-phase commitment control management: *
 **
 *
 C/EXEC SQL
 C+ ROLLBACK
 C/END-EXEC
 C GOTO BEGIN
 C END
 C*
 C SQLCOD IFEQ -530 RI Constraint
 C MOVE '1' RTNCDE
 C SETON 64
 C EXSR SUBTR
 *
 **
 * If ORDERHDR parent file does not have corresponding *
 * order number (RI rule violated), *
 * update of order quantity in STOCK file on remote system *
 * is rolled back by 2-phase commitment control management: *
 **
 *
 C/EXEC SQL
 C+ ROLLBACK
 C/END-EXEC
 C GOTO BEGIN
 C END
 C SETON 22
 *
 C EXFMTINSDT1 2nd display
 *
 C SETOF 2267
 *
 C *IN03 IFEQ '1' End
 C GOTO SETLR
 C END
 C MOVE '0' RTNCDE
 *
 C *IN11 IFEQ '1' Cancel Item
 C EXSR SUBTR
 C MOVE '1' RTNCDE
 *
Chapter 4. External stored procedures 79

 **
 * If customer does not agree with alternative item, the order *
 * item can be canceled by pressing PF11. *
 * The update of order quantity in STOCK file on remote system *
 * and the insert of the record in ORDERDTL file on local sys. *
 * is rolled back by 2-phase commitment control management: *
 **
 *
 C/EXEC SQL
 C+ ROLLBACK
 C/END-EXEC
 C END
 *
 C *IN12 IFEQ '1' Cancel order
 *
 **
 * If customer does not agree with alternative item, the whole *
 * order can be canceled by pressing PF12. *
 * A cancel order program is called by the main program, *
 * according to the return code passed on RETRN. The called *
 * program deletes one record in ORDERHDR file, one or more *
 * records in ORDERDTL file, and updates the STOCK file *
 * accordingly. *
 **
 *
 C MOVE '1' RTNCDE
 *
 **
 * The update of order quantity in STOCK file on remote system *
 * and the insert of the record in ORDERDTL file on local sys. *
 * are rolled back by 2-phase commitment control management *
 * for the last item entered:
 **
 *
 C/EXEC SQL
 C+ ROLLBACK
 C/END-EXEC
 C RETRN
 C END
 *
 C GOTO BEGIN
 *
 C SETLR TAG
 *
 **
 * If PF3 is pressed, order entry has finished. All *
 * connections are released in order to save on resources: *
 **
 *
 C/EXEC SQL
 C+ RELEASE ALL
 C/END-EXEC
 *
 **
 * The following COMMIT statement activates previous RELEASE: *
 **
 *
 C/EXEC SQL
 C+ COMMIT
 C/END-EXEC
80 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 C RETRN
 *
 * --
 C SUBTR BEGSR
 **
 * The accumul. order total on the display has to be adjusted: *
 **
 C SUB DITTOT DODCUM
 C ENDSR

4.7.2 Sample stored procedure: SQL RPG version
The code listing in Example 4-12 shows the SQL RPG version of the stored procedure.

Example 4-12 SQL RPG version of the stored procedure

 F***
 F* This is the stored procedure called by T4249RADT which processes
 F* order detail records, and runs on the remote system where
 F* the inventory file (STOCK) locates.
 F* This program updates the available quantity of the product
 F* which customer orders, if there is enough quantity to meet
 F* the ordered quantity.
 F* If there is not enough quantity, an alternative within
 F* same category will be searched and if found, the alternative
 F* record will be updated and returned to the calling program
 F* instead the customer-ordered product.
 F* The change to the file is committed or rolled back by
 F* 2-phase commitment control.
 F***
 I*
 I* The CALL type of this stored procedure was defined as
 I* "SIMPLE CALL WITH NULLS" on the DECLARE PROCEDURE statement
 I* in the calling program. Therefore an additional indicator
 I* variable parameter is passed to this stored procedure.
 I* Since the calling program defines four parameters on the
 I* DECLARE PROCEDURE statement, the indicator parameter has four
 I* 2-digit Binary variables.
 I*
 I* This data structure defines an additional indicator parameter.
 I*
 IINDDS DS
 I B 1 20IND1
 I B 3 40IND2
 I B 5 60IND3
 I B 7 80IND4
 I*
 C* Five parameters should be defined.
 C*
 C *ENTRY PLIST
 C PARM PARM1 5 Product Number
 C PARM PARM2 50 Ordered Qty.
 C PARM PARM3 20 Product Desc.
 C PARM PARM4 72 Product Price
 C PARM INDDS Indicator Parm.
 C*
 C MOVE *ZERO WQTA 50
 C MOVE *BLANK WCAT 4
 C*
 C* If the product number is not found, the program sets
Chapter 4. External stored procedures 81

 C* IND1 to "-1", which means "NULL", and it is checked
 C* by the calling program when it returns.
 C* And the other parameters have to be cleared in order to
 C* prevent the previous values from being passed back to the
 C* calling program.
 C*
 C/EXEC SQL
 C+ DECLARE ALT0 CURSOR FOR
 C+ SELECT PRDDES,PRDPRC,PRDQTA,PRDCAT
 C+ FROM ORDENTR/STOCK
 C+ WHERE PRDNBR = :PARM1
 C+ FOR UPDATE OF PRDQTA
 C/END-EXEC
 C*
 C/EXEC SQL
 C+ OPEN ALT0
 C/END-EXEC
 C*
 C/EXEC SQL
 C+ FETCH ALT0 INTO :PARM3, :PARM4, :WQTA, :WCAT
 C/END-EXEC
 C*
 C SQLCOD IFEQ 100
 C MOVE -1 IND1
 C MOVE *ZERO IND3
 C MOVE *BLANK PARM3
 C MOVE *ZERO PARM4
 C GOTO DONE0
 C END
 C*
 C* If the available quantity is enough to meet the ordered
 C* quantity, the product record is updated and the product
 C* information is passed back to the calling program.
 C* All indicator variables are set to *ZERO.
 C*
 C WQTA IFGE PARM2
 C WQTA SUB PARM2 LEFTQ 50
 C/EXEC SQL
 C+ UPDATE ORDENTR/STOCK SET PRODUCT_AVAIL_QTY = :LEFTQ
 C+ WHERE CURRENT OF ALT0
 C/END-EXEC
 C MOVE *ZERO IND1
 C MOVE *ZERO IND3
 C GOTO DONE0
 C END
 C*
 C* If there is not enough quantity for the original product
 C* an alternative within same product category number is
 C* searched.
 C* We assume that we'll pass back only the first one to the
 C* calling program even though there may be several alternatives
 C* in the STOCK file.
 C*
 C/EXEC SQL
 C+ DECLARE ALT1 CURSOR FOR
 C+ SELECT PRDNBR,PRDDES,PRDPRC,PRDQTA
 C+ FROM ORDENTR/STOCK
 C+ WHERE PRDCAT = :WCAT AND
 C+ PRDQTA >= :PARM2
 C+ FOR UPDATE OF PRDQTA
82 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 C/END-EXEC
 C*
 C/EXEC SQL
 C+ OPEN ALT1
 C/END-EXEC
 C*
 C/EXEC SQL
 C+ FETCH ALT1 INTO :PARM1, :PARM3, :PARM4, :WQTA
 C/END-EXEC
 C*
 C SQLCOD IFEQ 100
 C MOVE -1 IND3
 C MOVE *ZERO IND1
 C MOVE *BLANK PARM3
 C MOVE *ZERO PARM4
 C GOTO DONE1
 C END
 C*
 C WQTA SUB PARM2 LEFTQ
 C/EXEC SQL
 C+ UPDATE ORDENTR/STOCK SET PRODUCT_AVAIL_QTY = :LEFTQ
 C+ WHERE CURRENT OF ALT1
 C/END-EXEC
 C*
 C MOVE *ZERO IND1
 C MOVE *ZERO IND3
 C*
 C DONE1 TAG
 C/EXEC SQL
 C+ CLOSE ALT1
 C/END-EXEC
 C*
 C RETRN
 C*
 C DONE0 TAG
 C/EXEC SQL
 C+ CLOSE ALT0
 C/END-EXEC
 C*
 C RETRN

4.8 External stored procedure that uses a service program
In V5R3, you can declare an external stored procedure that uses an OS/400 service program
object. This object provides more deployment flexibility for external stored procedures. We
provide an example of how to use this support. We use example program codes
(Example 4-13) from 3.5.4, “Using an ILE Service Program,” of Who Knew You Could Do That
with RPG IV? A Sorcerer’s Guide to System Access and More, SG24-5402.

Example 4-13 Source codes of the NameOfDay and DayOfWeek subprocedures

 * NameOfDay and DayOfWeek subprocedures
 *--
H Nomain

 * Prototype for subprocedure DayOfWeek
D DayOfWeek PR 1 0
D InputDate D Datfmt(*ISO)
Chapter 4. External stored procedures 83

 * Prototype for subprocedure DayName
D NameOfDay PR
D InputDate D Datfmt(*ISO)
D DayName 9A

 * Days of the week name table - note no field names are required
D NameData DS 4
D 9 Inz('Monday')
D 9 Inz('Tuesday')
D 9 Inz('Wednesday')
D 9 Inz('Thursday')
D 9 Inz('Friday')
D 9 Inz('Saturday')
D 9 Inz('Sunday')
 * Define the array as an overlay of the DS name
D Name 9 Dim(7) Overlay(NameData) 4A

 * SubProcedure: NameOfDay (Name of the Day)
 * The subprocedure accept a valid date (format *ISO) and return
 * a string representing the name of the day

P NameOfDay B Export

D NameOfDay PI 1
D WorkDate D Datfmt(*ISO) 2
D DayName 9A 5

C EVAL DayName = Name(DayOfWeek(Workdate)) 3
 * Return Name(DayOfWeek(Workdate))
 * Return DayName

P E

 * SubProcedure: DayOfWeek (Day of the Week)
 * The subprocedure accept a valid date (format *ISO) and return
 * a number (1 digit) representing the day of the week
 * (Monday = 1, ... , Sunday = 7)

P DayOfWeek B Export

D DayOfWeek PI 1 0 3A
D WorkDate D Datfmt(*ISO) 3A

 * Stand Alone Fields
D AnySunday S D Inz(D'1995-04-02')
D WorkNum S 7 0
D WorkDay S 1 0

C WorkDate Subdur AnySunday WorkNum:*D
C WorkNum Div 7 WorkNum
C Mvr WorkDay
C If WorkDay < 1
C Return WorkDay + 7
C Else
C Return WorkDay
C Endif

P E
84 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The following explanations refer to the numbers in Example 4-13 on page 83.

These example program codes are of two subprocedures that are named NameOfDay (1)
and DayOfWeek (3A). The subprocedure NameOfDay is the entry point of the external stored
procedure that you will create. Therefore, from the external procedure, you make a program
call to the NameOfDay subprocedure (1) together with a value for its input parameter
WorkDate (2), which is a text string of an ISO date format, for example, ‘yyyy-mm-dd’.

Then, the subprocedure NameOfDay internally calls another subprocedure that is named
DayOfWeek (3 and 3A). It also receives the WorkDate input parameter and calculates a return
value as a pointer for the Name variable (4A) to help select the name of day from the data
structure NameData (4). The resulting name of day text string is then passed to the output
parameter DayName (3 and 5).

With these source codes and assuming that all objects are created in the library that is named
SQLLIB, you use the following CL commands to create the service program object:

CRTRPGMOD MODULE(SQLLIB/NAMEOFDAY) SRCFILE(SQLLIB/QRPGLESRC) SRCMBR(NAMEOFDAY)
CRTSRVPGM SRVPGM(SQLLIB/NAMEOFDAY) EXPORT(*ALL)

You now can register the service module as an external stored procedure:

CREATE PROCEDURE SQLLIB.NAMEOFDAY (
IN WorkDate DATE, OUT Dayname CHARACTER(9)) B
LANGUAGE RPGLE
SPECIFIC SQLLIB.NAMEOFDAY
NOT DETERMINISTIC
NO SQL
CALLED ON NULL INPUT
EXTERNAL NAME 'SQLLIB/NAMEOFDAY(NAMEOFDAY)' A
PARAMETER STYLE GENERAL WITH NULLS;

At line A, SQLLIB/NAMEOFDAY represents the service program object while (NAMEOFDAY)
is the entry point name that represents the subprocedure NameOfDay that is to be invoked.

After the external stored procedure is declared, you can use the Run SQL Scripts utility to try
the procedure call with the output parameter that is displayed in the Messages tab of the
window. The output parameter Dayname (B) must be specified with a question mark (?) value
when the procedure is called, as shown in the following example and in Figure 4-8 on
page 86:

CALL SQLLIB.NAMEOFDAY('2005-11-25', ?) ;
Chapter 4. External stored procedures 85

Figure 4-8 shows the call for the external stored procedure NAMEOFDAY and its results.

Figure 4-8 Calling the external stored procedure NAMEOFDAY and its results

For more information about the RPG IV subprocedure, see Chapter 3, “Subprocedures,” in
Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and
More, SG24-5402.

4.9 RPG IV example for an external stored procedure

We provide examples of RPG IV programs that write to and read from a data queue, which
you can register as external stored procedures. These RPG programs use the OS/400
application programming interfaces (APIs) SNDDTAQ and RCVDTAQ. For a detailed
description of these APIs, see 5.2.2, “List of data queue APIs,” of Who Knew You Could Do
That with RPG IV? A Sorcerer’s Guide to System Access and More, SG24-5402. The
example codes in the following sections are from 5.2.3, “Programming with data queue APIs,”
of the same book.

Assume that all program objects and the data queue are created in a library that is named
SQLLIB and that the data queue name is DTAQFIFO for this example.
86 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

First, you create a data queue (with a 40-byte maximum length) with the following control
language (CL) command:

CRTDTAQ DTAQ(SQLLIB/DTAQFIFO) MAXLEN(40)

Now, you create the programs and register them as external stored procedures as explained
in the following section.

4.9.1 External stored procedure that writes to a data queue
You create a bound RPG program object from the program code that is shown in
Example 4-14.

Example 4-14 Program example WRTDTAQ for writing a text string to a data queue

 * Prototype for API QSNDDTAQ - Send To a Data Queue
D SndDtaQ PR EXTPGM('QSNDDTAQ')
D DataQueueNam 10A Const
D DataQueueLib 10A Const
D DataLength 5P 0 Const
D DataBuffer 32767A Const Options(*Varsize)
 *--
 * Prototype definitions
D WRTDTAQ PR
D DQname 10A
D DQlib 10A
D DataSnd 40A

 * Program variable definitions
D WRTDTAQ PI
D DQname 10A 1
D DQlib 10A 2
D DataSnd 40A 3
 *--
 * Write data to data queue names DTAQFIFO in library SQLLIB
C CallP SndDtaQ(DQname : DQlib
C : %Len(%Trim(DataSnd)) : DataSnd)
 *
C Eval *InLR = *On

The program in Example 4-14 takes three input parameters:

� The data queue name (DQname at 1)
� The data queue library (DQlib at 2)
� The text string to be written to the data queue (DataSnd at 3 - 40 bytes maximum)

With these source codes, you create a program object of this example, which is named
WRTDTAQ, by using the following command:

CRTBNDRPG PGM(SQLLIB/WRTDTAQ) SRCFILE(SQLLIB/XXXX) DFTACTGRP(*NO) ACTGRP (QILE)

After the program object is created, you register it as an external stored procedure by using
the following SQL statement:

CREATE PROCEDURE SQLLIB.WRTDTAQ (
IN DQNAME CHAR(10) , IN DQLIB CHAR(10) , IN TEXTSTRING CHAR(40))
LANGUAGE RPGLE
SPECIFIC SQLLIB.WRTDTAQ
NOT DETERMINISTIC
NO SQL
Chapter 4. External stored procedures 87

CALLED ON NULL INPUT
EXTERNAL NAME 'SQLLIB/WRTDTAQ'
PARAMETER STYLE GENERAL WITH NULLS ;

We now move to the second program that reads from the data queue.

4.9.2 External stored procedure that reads from a data queue
You create a bound RPG program object from the program code that is shown in
Example 4-15.

Example 4-15 Program example RDDTAQ to read a text string from a data queue

 * Prototype for API QRCVDTAQ - Received From a Data Queue
D RcvDtaQ PR EXTPGM('QRCVDTAQ')
D DataQueueNam 10A Const
D DataQueueLib 10A Const
D DataLength 5P 0
D DataBuffer 32767A Options(*Varsize)
D WaitTime 5P 0 Const
 *--
 * Prototype definitions
DRDDTAQ PR
D DQname 10A
D DQlib 10A
D Output 40A
 *
 * Program variable definitions
DRDDTAQ PI
D DQname 10A A
D DQlib 10A B
D Output 40A C2
D DataRcv S 40A D1
D Length S 5P 0
D WaitTime C 5
 *--
 * Read from datat queue DTAFIFO in library SQLLIB
 *
C CallP RcvDtaQ(DQname : DQlib : Length
C : DataRcv : WaitTime) D2
C eval Output = DataRcv C1
C Eval *InLR = *On

The program in Example 4-15 takes two input parameters: Data queue name (DQname at A)
and Data queue library (DQlib at B). The text string that is read from the data queue (DataRcv
at D1 and D2) is passed to the output parameter (Output at C1 and C2).

You create a program object of this example, which is named RDDTAQ, by using the following
command:

CRTBNDRPG PGM(SQLLIB/RDDTAQ) SRCFILE(SQLLIB/XXXX) DFTACTGRP(*NO) ACTGRP (QILE)

After the program object is created, register it as an external stored procedure by using the
following SQL statement:

CREATE PROCEDURE SQLLIB.RDDTAQ (
IN DQNAME CHAR(10), IN DQLIB CHAR(10), OUT OUTPUTTEXT CHAR(40))
LANGUAGE RPGLE
SPECIFIC SQLLIB.RDDTAQ
88 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

NOT DETERMINISTIC
NO SQL
CALLED ON NULL INPUT
EXTERNAL NAME 'SQLLIB/RDDTAQ'
PARAMETER STYLE GENERAL WITH NULLS ;

You can now use the registered external stored procedures, WRTDTAQ and RDDTAQ.

4.9.3 Calling external stored procedures from the Run SQL Scripts utility
You can call these sample external stored procedures to test them by issuing the CALL
statement from Run SQL Scripts utility of System i Navigator:

CALL SQLLIB.WRTDTAQ('DTAQFIFO', 'SQLLIB', 'Hello data queue 1') ;

CALL SQLLIB.RDDTAQ('DTAQFIFO', 'SQLLIB', ?) ;

This utility can display the value of the output parameter of the stored procedure for you in its
Messages tab, as shown in Figure 4-9.

Figure 4-9 Calling external stored procedures WRTDTAQ and RDDTAQ and their results

Consider the following points:

� The data queue name and its library name must be entered in uppercase.

� The output parameter of the RDDTAQ procedure must be specified with the NULL value
when it is called. You can type the question mark (?) to represent a NULL value.

Note: This technique is a useful way to use an external procedure to access an OS/400
object (that is not SQL) from an SQL stored procedure.
Chapter 4. External stored procedures 89

90 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 5. Java stored procedures

This chapter describes the Java stored procedures implementation on the IBM i server. It also
compares the support that is provided by the IBM i server with the implementations on other
DB2 platforms. The combination of Java and a powerful database server, such as IBM DB2
for i, can result in a scalable and robust software solution. From the implementation point of
view, Java stored procedures are simply another type of external stored procedure.

We expect that you are already familiar with Java, especially because this book provides a
detailed description of the Java stored procedure implementation. For a more detailed
description of how to use Java on the IBM i server, see Building Java Applications for the
iSeries Server with VisualAge for Java, SG24-6245.

The current implementation of Java stored procedures on the IBM i server aims to provide the
same level of support as other DB2s. For more information about Java stored procedures on
the DB2 Universal Database platform, see 5.10, “GetSupplierRS example: Implementation
with result sets” on page 132.

This chapter focuses on the four fundamental tasks that are involved in the creation of and
use of a stored procedure:

� How to code it
� How to deploy it in the database
� How to define it as a stored procedure
� How to call it

It illustrates each step with simple examples and describes problem determination tools. This
chapter also outlines the major considerations for the current implementation on the IBM i
server. Finally, it provides a more elaborate example of a stored procedure that is called
GetSupplier.

The following topics are covered in this chapter:

� Prerequisites
� Coding DB2 for i Java stored procedures
� Coding examples
� Registering Java stored procedures
� Calling Java stored procedures
� Using SQL NULL

5

© Copyright IBM Corp. 2001, 2016. All rights reserved. 91

� SQLJ procedures to manipulate JAR files
� Additional considerations
� GetSuppliers example: Implementation with no result sets
� GetSupplierRS example: Implementation with result sets
� Problem determination
92 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5.1 Prerequisites
Two required products are needed for Java stored procedure support on the IBM i server:

� 5769-SS1 V4R5M0 Operating System/400 or higher
� 5769-JV1 V4R5M0 Developer Kit for Java or higher

5.2 Coding DB2 for i Java stored procedures
A Java stored procedure corresponds to a method in a Java class that meets several
requirements that are explained in this section.

Before we start with a detailed explanation of how to code this method, we need to describe
briefly two different parameter styles that are supported on the DB2 for i. The parameter style
that is chosen for a Java stored procedure determines how the Java method exchanges
parameters with the SQL runtime and how result sets are returned to the SQL runtime. It also
has important implications for the portability of your code.

5.2.1 Parameter styles
DB2 for i supports two parameter styles for Java stored procedures:

� JAVA (conforms to the SQL3 standard)
� DB2GENERAL (is provided for compatibility with other DB2 Universal Database platforms)

JAVA parameter style
In this parameter style, the Java method must be defined as a public static void method.
The following Java code template illustrates a Java class with two methods that we define in a
later step as two Java stored procedures:

public class SomeStoredProcs {
 public static void myStoredProc(...) {
 // SP implementation
 }
 public static void anotherStoredProc(...) {
 // SP implementation
 }
}

This first example shows that a single Java class can contain the implementation of many
stored procedures. If one of its methods is not defined as public static void, this method
cannot be used as a Java stored procedure.

Stored procedures can use input, output, and inout parameters. Unfortunately, Java does not
have the notion of output or inout parameters. Therefore, the adopted convention is that
output (and inout) parameters are represented in the Java method by an array of size one.

Important: We strongly recommend that you install the latest database fix pack (SF99105)
that is available for your system.
Chapter 5. Java stored procedures 93

This convention and the way that result sets are returned are the main characteristics of the
JAVA parameter style stored procedures. The following example illustrates how to define the
methods that correspond to stored procedures with input, output, and inout parameters. For
illustration purposes, we placed the various types of parameters in distinct methods. In an
actual scenario, a stored procedure and its corresponding method are likely to use a mix of
several types of parameters (IN, INOUT, and OUT):

public class SomeStoredProcs {
 public static void myInputSP(String myInputP1, int myInputP2) {
 // some code
 }
 public static void myOutputSP(String[] myOutputP1, int[] myOutputP2) {
 // some code
 myOutputP1[0] = "This is a string that will be returned as output parameter";
 myOutputP2[0] = 1; // this returns an integer value
 }
 public static void myInoutSP(String myInoutP1,int myInoutP2) {
 String receivedString = myInoutP1;
 int receivedInt = myInoutP2;
 // some more code
 myInoutP1[0] = "This is a string that will be returned as output parameter";
 myInoutP2[0] = 1; // or whatever value
 }
}

The SQL NULL value can be passed to a stored procedure only when the corresponding Java
data type can have a null reference value, which works for String, byte[], BigDecimal, Date,
Time, TimeStamp, Double, Float, Integer, and Long, but it does not work for the scalar data
types: boolean, byte, short, int, long, float, and double. You can pass an SQL NULL value to a
stored procedure if the corresponding Java data type is, for example, a String, but not if it is
an int. In the implementation of Java stored procedures on the DB2 platform, it is impossible
to test whether, for example, an SQL INTEGER parameter that is passed to the Java stored
procedure by using the JAVA parameter style is NULL. The Structured Query Language for
Java (SQLJ) standard describes an optional feature to circumvent this problem, but it is not
currently implemented on the DB2 platform. With the DB2GENERAL parameter style, it is
possible to test variables of any type to see whether their value is NULL.

For portability reasons, consider the use of the JAVA parameter style because it is supported
by most database platforms.

DB2GENERAL parameter style
This parameter style is specific to the DB2 platform and it is not a part of the Java Database
Connectivity (JDBC) or SQLJ standard. It was first introduced in Version 5 of DB2 Universal
Database.

Important: The type of parameters that you choose for your procedure is important
because you must choose a Java data type that can be mapped to an SQL data type.
Otherwise, your Java method is simply ignored by the database. For more information
about the compatibility of data types, see Table 5-1 on page 96.

Note: The binary large objects (character large object (CLOB), binary large object (BLOB),
and double byte large object (DBCLOB)) cannot be passed as parameters of the Java
stored procedure in this implementation of the JAVA parameter style on the IBM i server.
94 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The class that contains one or more methods that will be defined as stored procedures must
extend the com.ibm.db2.app.StoredProc class. This class is provided in the
db2routines_classes.jar file in the integrated file system (IFS) in the
/QIBM/ProdData/OS400/Java400/ext directory. The method that corresponds to the Java
stored procedure must be defined. A public void method as illustrated:

public class SomeStoredProcs extends StoredProc {
 public void myStoredProc(...) {
 // SP implementation
 }
 public void anotherStoredProc(...) {
 // SP implementation
 }
}

The output parameters are declared similar to the input parameters (no array convention
used), but they must be set by the set() method of the StoredProc class before the method
returns, as shown in the following code example:

public class SomeStoredProcs extends StoredProc {
 public static void myInputSP(String myInputP1, int myInputP2) {
 // SP implementation
 }
 public static void myOutputSP(String myOutputP1, int myOutputP2) {
 // some code
 set(1, "This is a string that will be returned as output parameter");
 set(2, 1); // this returns an integer value
 }
 public static void myInoutSP(String myInoutP1, int myInoutP2) {
 String receivedString = myInoutP1[0];
 int receivedInt = myInoutP2[0];
 // some code
 set(1, "This is a string that will be returned as output parameter";)
 set(2, 1); // this returns an integer value
 }
}

The Java data types that are used for the parameters must be compatible with SQL data
types. For more information about data type compatibility, see Table 5-1 on page 96.

Use the DB2GENERAL parameter style to check whether the value of any parameter that is
received by the stored procedure is SQL NULL with the isNull() method that is provided in
the StoredProc class.

The large object (LOB), binary large object (BLOB), and character large object (CLOB) data
can be accessed directly through the com.ibm.db2.app.Lob, com.ibm.db2.app.Blob, and
com.ibm.db2.app.Clob classes that are contained in the same db2routines_classes.jar file
as the StoredProc class.

Note: The stored procedure interface that is provided by System i Navigator to define
stored procedures does not support the DB2GENERAL parameter style.
Chapter 5. Java stored procedures 95

5.2.2 Data type compatibility
Table 5-1 summarizes the compatibilities between the SQL and Java data types, depending
on the parameter style convention that is used.

Table 5-1 Data type compatibilities

5.2.3 Database connection in a Java stored procedure
The Java code can interact with the database as any other Java program, but the database
connection can be established with the local database by using the current user ID only. Both
the JDBC and SQLJ interfaces can be used to access the database.

SQL data type Java type (JAVA parameter style) Java type (DB2GENERAL
parameter style)

SMALLINT short (Not nullable) short

INTEGER int (Not nullable) int

BIGINT long (Not nullable) long

DECIMAL(p, s) BigDecimal (Nullable) BigDecimal

NUMERIC(p, s) BigDecimal (Nullable) BigDecimal

REAL or FLOAT(p) float (Not nullable) float

DOUBLE PRECISION or
FLOAT or FLOAT(p)

double (Not nullable) double

CHARACTER(n) String (Nullable) String

VARCHAR(n) String (Nullable) String

VARCHAR(n) FOR BIT DATA N/A com.ibm.db2.app.Blob

GRAPHIC(n) String (Nullable) String

VARGRAPHIC(n) String (Nullable) String

DATE Date (Nullable) String

TIME Time (Nullable) String

TIMESTAMP Timestamp (Nullable) String

CLOB N/A com.ibm.db2.app.Clob

BLOB N/A com.ibm.db2.app.Blob

DBCLOB N/A com.ibm.db2.app.Clob
96 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

JDBC
The method to connect to the database depends on the parameter style convention that is
used:

� Java: The JDBC connection object is instantiated by the default DriverManager. The
regular Java applications must load the DriverManager before they can instantiate a
connection to the database. However, in a Java stored procedure, a default DriverManager
is provided by the database runtime. The syntax is shown:

Connection con = DriverManager.getConnection("jdbc:default:connection");

� DB2GENERAL: JDBC creates the connection object to the DB2 for i database with the
getConnection() method that is provided by StoredProc. The following code example
illustrates the syntax:

Connection con = getConnection();

SQLJ
For SQLJ, the idea of a connection is replaced by the concept of a context. It is also
necessary to distinguish between the two parameter styles:

� JAVA: Use the ExecutionContext class as shown in the following example:

ExecutionContext ec = DefaultContext.getDefaultContext().getExecutionContext();

� DB2GENERAL: You must explicitly create the DefaultContext object with the
getDefaultContext method, as shown in the following code example:

DefaultContext ctx = DefaultContext.getDefaultContext();
 if (ctx == null)
 { Connection con = getConnection ();
 ctx = new DefaultContext(con);
 DefaultContext.setDefaultContext(ctx);
 }

5.2.4 Returning result sets in Java stored procedures
Starting in V5R1, Java stored procedures in DB2 for i supported returning result sets. How
result sets are declared and coded in the stored procedure differs significantly depending on
the parameter style that is used.

Returning result sets in JAVA parameter style stored procedures
In stored procedures with the JAVA parameter style, the result sets are declared as output
parameters at the end of the parameter list. The number of result sets must be explicitly
declared in the CREATE PROCEDURE (or DECLARE PROCEDURE) statement. A stored
procedure that receives an integer parameter, returns a string parameter, and returns two
result sets will be declared to DB2 for i in the following manner:

CREATE PROCEDURE SPWITHTWORESULTSETS (IN INTEGER, OUT VARCHAR(50)) 1
EXTERNAL NAME MyClass!myJavaStoredProcedure
PARAMETER STYLE JAVA 2
RESULT SETS 2 3
LANGUAGE JAVA

The Java method to implement this stored procedure looks like this example:

import java.sql.*;
public class SomeStoredProcs {

public static void myJavaStoredProcedure(
int myInputInteger,
Chapter 5. Java stored procedures 97

String[] myOutputString,
ResultSet[] myFirstResultSet, 4
ResultSet[] mySecondResultSet) 4{
// SP implementation
...
myFirstResultSet[0] = stmt1.executeQuery(qry1); 5
...
mySecondResultSet[0] = stmt2.executeQuery(qry2); 5

}
}

Returning result sets in DB2GENERAL style stored procedures
To return a result set in procedures that use the DB2GENERAL parameter style, the result
set, and responding statement, must be left open at the end of the procedure. The result set
that is returned must be closed by the client application. If multiple results sets are returned,
they are returned in the order in which they were opened. The RESULT SETS in CREATE
PROCEDURE establish the maximum number of result sets. For example, the following
stored procedure returns two results sets:

CREATE PROCEDURE RETURNTWORESULTSETS ()
EXTERNAL NAME Sample2!returnTwoResultSets
PARAMETER STYLE DB2GENERAL 1
RESULT SETS 2 2
LANGUAGE JAVA

Example 5-1 shows the Java method that implements this stored procedure.

Example 5-1 Java method that implements the CREATE PROCEDURE

import java.sql.*;
import com.ibm.db2.app.*; 3 // StoredProc and associated classes

public class sample2 extends StoredProc 4
{

 /**
 * Java Stored procedure with DB2GENERAL style Parameters
 * that execute TWO predefined statements
 *
 */
 public void returnTwoResultSets () throws Exception 5
 {
 // get caller's connection to the database; inherited from StoredProc
 Connection con = getConnection(); 6
 Statement stmt1 = con.createStatement();

Notes: The following numbered notes refer to the numbers in the previous example:

1 In the CREATE PROCEDURE, the result sets are not declared as parameters. The
parameters are declared in the usual way.

2 Result sets in stored procedures with the JAVA parameter style differ significantly from
result sets in stored procedures with the DB2GENERAL parameter style.

3 The number of result sets must be defined explicitly in the JAVA parameter style stored
procedures.

4 In the method, result sets are declared as output parameters.

5 In the implementation, the result sets are returned just as any other output parameter,
assigning a result set object to the correct parameter vector.
98 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 String sql1 = "SELECT EMPNO FROM SAMPLEDB02.EMPLOYEE WHERE HIREDATE < '1980-01-01'";
 stmt1.execute(sql1); 7
 Statement stmt2 = con.createStatement();
 String sql2 = "SELECT EMPNO FROM SAMPLEDB02.EMPLOYEE WHERE SALARY > 50000";
 stmt2.execute(sql2); 7
 }
}

5.3 Coding examples
The simple example that is described in this section refers to the CUSTOMER table, which is
part of our test database.

We present several versions of two Java stored procedures, depending on how the stored
procedure interacts with the database, either by using JDBC or SQLJ:

� Java stored procedure with the JAVA parameter style: It inserts a row into the CUSTOMER
table. The input parameters are the columns of the table, and the output parameter is the
number of inserted rows. We provide an explanation of two versions of this example:

– JavaInsertCus that uses JDBC to connect and work with the database
– JavaSQLJInsertCus that uses SQLJ to interact with the database

� Java stored procedure with DB2GENERAL parameter style: It counts the number of
customers in a specific city. The input parameter is the name of the city, and the output
parameter is the number of customers within the city. Three versions of this example are
described:

– DB2CusInCity that uses JDBC
– DB2SQLJCusInCity that uses SQLJ and an SQLJ iterator for internal processing
– DB2SQLJCusInCity2 that uses SQLJ and where the SQLJ iterator is replaced by the

SELECT INTO statement

Because the stored procedures that are used in these examples have output parameters, we
cannot call them directly from an interactive interface, such as the 5250 Interactive SQL or the
Run SQL Scripts utility, both of which are available in System i Navigator. We created a Java
application that is named Client that calls the stored procedures, receives the results, and
displays them.

Notes: The following notes refer to the numbers in the stored procedure and in
Example 5-1 on page 98:

1 The DB2GENERAL parameter style is defined for the Java stored procedure. This
parameter style can be used with Java stored procedures only.

2 The defined maximum number of result sets.

3 This import file contains StoredProc and DB2GENERAL classes and interfaces that are
required for coding DB2GENERAL stored procedures and user-defined functions
(UDFs).

4 Classes that contain the DB2GENERAL stored procedures must expand the
com.ibm.db2.app.StoredProc class.

5 In contrast with Java classes, DB2GENERAL stored procedures do not declare result
sets as parameters.

6 Standard connection for DB2GENERAL parameter style stored procedure.

7 In the implementation, result sets are the cursors that remain open when the method
returns.
Chapter 5. Java stored procedures 99

JavaInsertCus and JavaSQLJInsertCus examples
The JDBC implementation of the JavaInsertCus stored procedure is described in this section.
Example 5-2 shows the JavaInsertCus stored procedure.

Example 5-2 JavaInsertCus stored procedure

import java.sql.*; 1
public class JavaInsertCus 2
{

public static void JavaInsertCus (3
String s1, String s2, String s3, String s4, String s5,
String s6, String s7, java.math.BigDecimal bd1,
java.math.BigDecimal bd2, int[] insertCount) 4

throws SQLException, Exception
{

Connection con =
DriverManager.getConnection("jdbc:default:connection"); 5

PreparedStatement stmt = null;
String sql;
sql = "INSERT INTO CUSTOMER VALUES(?,?,?,?,?,?,?,?,?)";
stmt = con.prepareStatement(sql);
stmt.setString(1, s1);
stmt.setString(2, s2);
stmt.setString(3, s3);
stmt.setString(4, s4);
stmt.setString(5, s5);
stmt.setString(6, s6);
stmt.setString(7, s7);
stmt.setBigDecimal(8, bd1);
stmt.setBigDecimal(9, bd2);
insertCount[0] = stmt.executeUpdate(); 6
try
{

if (stmt != null) stmt.close();
if (con != null) con.close();

} catch (SQLException e) { /* ignore */ }; 7
}

}

100 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

We can now compare the JDBC version with its much more compact SQLJ counterpart,
JavaSQLJInsertCus (Example 5-3).

Example 5-3 JavaSQLJInsertCus

import java.sql.*;
import sqlj.runtime.*; 1
import sqlj.runtime.ref.*; 1

public class JavaSQLJInsertCus
{

public static void JavaSQLJInsertCus (String s1, String s2, String s3,
String s4, String s5, String s6, String s7, java.math.BigDecimal bd1,
java.math.BigDecimal bd2, int[] insertCount)

throws SQLException, Exception
{

ExecutionContext ec =
DefaultContext.getDefaultContext().getExecutionContext(); 2

#sql {
INSERT INTO CUSTOMER VALUES(:s1,:s2,:s3,:s4,:s5,:s6,:s7,:bd1,:bd2)

}; 3
insertCount[0] = ec.getUpdateCount(); 4

}
}

Notes: The following numbered notes refer to Example 5-2 on page 100:

1 Import of the standard JDBC application programming interface (API).

2 The class must be defined as public.

3 The method to be defined as the stored procedure must be declared as public static
void. More than one method can be in the class. The method can have any name. It
does not need to match the name of the class.

4 Input parameters are defined just as any parameter in a Java method. The output
parameter, insertCount, is defined as an array of integers.

5 We obtain the default connection from the Driver Manager. The URL
“jdbc:default:connection” must always be used in a Java stored procedure with the
JAVA parameter style.

6 After we receive all parameters, we use them to prepare an Insert statement, and
execute it. Then, we place the return code from the executeUpdate method into the first
element of the array that is declared in the parameters. It is returned as an output
parameter. This array cannot be used to return multiple values. Only the first element
will be assigned.

7 Error handling is described in Chapter 5, “Java stored procedures” on page 91.
Chapter 5. Java stored procedures 101

DB2CusInCity, DB2SQLJCusInCity, and DB2SQLJCusInCity2 examples
Example 5-4 illustrates the DB2GENERAL parameter style. The first version of this stored
procedure uses a JDBC connection to the database. The numbers are explained in the
following notes.

Example 5-4 DB2GENERAL parameter style

import java.sql.*;
import com.ibm.db2.app.*; 1

class DB2CusInCity extends StoredProc 2
{

public void DB2CusInCity (String s, int i) throws Exception 3
{

Connection con = getConnection(); 4
PreparedStatement ps = null;
ResultSet rs = null;
String sql;
sql = "SELECT Count(*) FROM CUSTOMER WHERE (CUSTOMER_CITY = ?)";
ps = con.prepareStatement(sql);
ps.setString(1, s);
rs = ps.executeQuery();
rs.next();
set(2, rs.getInt(1)); 5
if (rs != null) rs.close();
if (ps != null) ps.close();
if (con != null) con.close();

}
}

Notes: In the following numbered notes, we describe the features in Example 5-3 on
page 101 that are specific only to SQLJ. However, comments 1 through 4 that were made
for the JDBC version apply to this example, as well.

1 These classes are always needed when you want to use SQLJ.

2 The execution context from the default context gives us access to special variables,
such as environment variables that are set after the execution of the SQLJ statement.
With SQLJ and the JAVA parameter style, the connection exist implicitly. The JDBC
version requires the use of the getConnection method.

3 The SQLJ statement is simply an SQL statement that is embedded in Java. It will be
translated in JDBC API calls by the SQLJ translator.

4 We use the getUpdateCount method on the ExecutionContext object to set the count
variable. It contains the number of rows that were inserted by the SQL statement. It
corresponds to the return value that is passed by the JDBC executeUpdate method that
was shown in the previous version of this example.
102 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The following versions of this stored procedure use SQLJ to access the database. The
comments that were made for the previous version also apply to these versions. We
emphasize only the differences.

DB2SQLJCusInCity is an SQLJ version of DB2CusInCity. It uses a result set to obtain the
number of customers in a specific city.

Example 5-5 DB2SQLJCusInCity

import java.sql.*;
import com.ibm.db2.app.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

#sql iterator DB2SQLJCusInCity_C (int); 1

class DB2SQLJCusInCity extends StoredProc
{

public void DB2SQLJCusInCity (String s, int i)
throws SQLException, Exception

 {
DB2SQLJCusInCity_C c; 2
DefaultContext ctx = DefaultContext.getDefaultContext(); 3
if (ctx == null)
{

Connection con = getConnection ();
ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

}
#sql c = { SELECT Count(*) FROM CUSTOMER WHERE (CUSTOMER_CITY = :s) }; 4
#sql { Fetch :c into :i}; 4
c.close(); 4
set(2, i);

}
}

Notes: The following notes refer to Example 5-4 on page 102:

1 We import the StoredProc class. This statement also imports the CLOB, BLOB, and other
associated classes.

2 In the DB2GENERAL parameter style, we must subclass the StoredProc class when
we define a Java stored procedure.

3 In the definition of the method, no distinction is made between the input and output
parameters. They are all potentially inout parameters.

4 We instantiate the connection to the database with the getConnection method that is
provided by the StoredProc class.

5 Any output or inout parameter must be set by the set method of StoredProc to return
its value to the caller. The first argument of this method refers to the position of the
considered parameter in the method signature, and the second argument indicates
its value.
Chapter 5. Java stored procedures 103

The last SQLJ version uses a simpler way to obtain the number of customers. The result set
is replaced by a SELECT INTO statement. The corresponding code of DB2SQLJCusInCity2
is shown in Example 5-6.

Example 5-6 Corresponding code of DB2SQLJCusInCity2

import java.sql.*;
import com.ibm.db2.app.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

class DB2SQLJCusInCity2 extends StoredProc
{

public void DB2SQLJCusInCity2 (String s, int i) throws SQLException, Exception
 {

DefaultContext ctx = DefaultContext.getDefaultContext();
if (ctx == null)
{

Connection con = getConnection ();
ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

}
#sql { SELECT Count(*) INTO :i FROM CUSTOMER WHERE (CUSTOMER_CITY = :s) };
set(2, i);

}
}

5.3.1 Compilation of Java code
CLASSPATH is the key environment variable to compile a Java program. Depending on the
imports that are made in the Java code, you need to modify CLASSPATH so that it points at the
.jar files or .zip files that are required by these imports.

Notes: The following notes refer to Example 5-5 on page 103:

1 SQLJ defines a cursor as an iterator. It must be declared before the class and it is
transformed at compilation in a Java class. We declare that the cursor will contain one
column of type int.

2 We declare “c” as an instance of type iterator. We use it like a cursor in the embedded
SQL.

3 With the DB2GENERAL parameter style, we must explicitly specify that we are running
in the default context.

4 The cursor is processed as an embedded SQL program.

Note: With SQLJ, we can use the SELECT INTO statement, which is not possible with
JDBC. SQLJ uses JDBC underneath, so the SELECT INTO statement will be transformed
in a result set and fetched with the next method as in our JDBC version.
104 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Table 5-2 summarizes the files that are needed for different programming styles.

Table 5-2 Required files in the classpath

All of these files are in the IFS in the /QIBM/ProdData/OS400/Java400/ext directory. If you
decide to compile on the IBM i server, the db2_classes.jar file that contains the DB2 native
driver and the JDBC API are automatically added to the classpath. If you prefer to compile on
your personal computer, you must specify all of these files in your classpath.

You compile your Java code by using the javac command when the stored procedure uses
only JDBC to connect to the database. This approach results in one .class file. When SQLJ is
used, the compilation command is sqlj. This approach creates one .ser file, two .class files,
and one additional .class file for each iterator.

JavaInsertCus and JavaSQLJInsertCus examples
Before you compile your Java code for these examples, you need to set up your classpath so
that it points to the JDBC and SQLJ classes. To facilitate our tests, we decided to compile on
the personal computer and copied the IBM i server db2_classes.jar,
db2routines_classes.jar, translator.zip, and runtime.zip files on the local disk of our
personal computer in the D:\as400_classes directory. Our classpath is set with the command
that is shown:

set CLASSPATH= %CLASSPATH%;D:\as400_classes\db2_classes.jar; 1
 D:\as400_classes\translator.zip;D:\as400_classes\runtime.zip 2

You can now compile your .java and .sqlj files that contain the stored procedures with the
commands that are listed in Table 5-3.

Table 5-3 Compilation commands and their output files

Parameter style Database connection File that is required in the classpath

JAVA JDBC db2_classes.jar

JAVA SQLJ db2_classes.jar, translator.zip, and
runtime.zip

DB2GENERAL JDBC db2_classes.jar and
db2routines_classes.jar

DB2GENERAL SQLJ db2_classes.jar, db2routines_classes.jar,
translator.zip, and runtime.zip

Notes: The following notes refer to numbers in the previous example:

1 The db2_classes.jar file contains the JDBC driver and the JDBC classes. Your original
classpath (%CLASSPATH%) must already point to the Java Developer’s Kit (JDK)
classes.

2 The translator.zip file provides the SQLJ translator (or precompilator). The
runtime.zip file contains the Java runtime support for SQLJ.

Compilation commands Result files

javac JavaInsertCus.java JavaInsertCus.class

sqlj JavaSQLJInsertCus.sqlj JavaSQLJInsertCus.java, JavaSQLJInsertCus.class,
JavaSQLJInsertCus_SJProfile0.ser, and
JavaSQLJInsertCus_SJProfileKeys.class
Chapter 5. Java stored procedures 105

DB2CusInCity, DB2SQLJCusInCity, and DB2SQLJCusInCity2 examples
The classpath and compilation considerations are similar to those considerations that were
made for the JAVA parameter style example. The difference is the additional .jar file that
contains the StoredProc class db2routines_classes.jar in the classpath. Our classpath is
set with the following command:

set CLASSPATH= %CLASSPATH%;D:\as400_classes\db2_classes.jar;
 D:\as400_classes\db2routines_classes.jar;
 D:\as400_classes\translator.zip;
 D:\as400_classes\runtime.zip

The compilation of the .java and .sqlj files, which contain the stored procedures, produces
the files that are shown in Table 5-4.

Table 5-4 Compilation commands and their results

5.3.2 Where to place Java classes
The compiled code must be loaded into the /QIBM/UserData/OS400/SQLLib/Function
function directory of the IBM i server.

The process of deploying the compiled code into the function directory depends on where the
code was compiled. If it was compiled on a Windows workstation, you can take advantage of
IBM i server NetServer and map the function directory as a network drive on your machine.

Note: We assume that a version of the sqlj precompiler is installed on your workstation in
advance. In our case, it was a part of our test DB2 Universal Database for the Microsoft
Windows NT installation and was in the \SQLLIB\bin directory.

Compilation commands Result files

javac DB2CusInCity.java DB2CusInCity.class

sqlj DB2SQLJCusInCity.sqlj DB2SQLJCusInCity.java
DB2SQLJCusInCity.class
DB2SQLJCusInCity_C.class
DB2SQLJCusInCity_SJProfile0.ser
DB2SQLJCusInCity_SJProfileKeys.class

sqlj DB2SQLJCusInCity2.sqlj DB2SQLJCusInCity2.java1

DB2SQLJCusInCity2.class
DB2SQLJCusInCity2_SJProfile0.ser
DB2SQLJCusInCity2_SJProfileKeys.class

1The .java file that was produced by the sqlj precompilation confirms that a result set and the
next() method are used for the SELECT INTO implementation, as described in
“DB2CusInCity, DB2SQLJCusInCity, and DB2SQLJCusInCity2 examples” on page 102.
106 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

JavaInsertCus and JavaSQLJInsertCus examples
Copy the JavaInsertCus.class file for the JDBC type stored procedure. Copy the
JavaSQLJInsertCus.class, JavaSQLJInsertCus_SJProfile0.ser, and
JavaSQLJInsertCus_SJProfileKeys.class files for the SQLJ type stored procedure into the
IFS function directory of the IBM i server (/QIBM/UserData/OS400/SQLLib/Function), as
shown in Figure 5-1.

Figure 5-1 Copying the Java code into the IBM i server Function directory

DB2CusInCity, DB2SQLJCusInCity, and DB2SQLJCusInCity2 examples
In this example, apart from the .java file that was produced by the SQLJ precompilation, we
copy all other files that result from the compilation into the Function directory of the IBM i
server.

5.3.3 Creating Java programs
After you compile the Java stored procedure and deploy it on the IBM i server, you might
improve the Java code performance by using the Create Java Program (CRTJVAPGM)
command. The CRTJVAPGM command uses bytecodes to create a Java program that contains
optimized native instructions for the IBM i server and associates the Java program object with
the class file. To create the optimized Java program for the DB2CusInCity class, use the
following control language (CL) command:

CRTJVAPGM CLSF(Db2CusInCity.class) OPTIMIZE(40)
Chapter 5. Java stored procedures 107

5.4 Registering Java stored procedures
The last step before you complete the Java stored procedure is to identify the code that you
loaded in the Function directory as a Java stored procedure and to register it in the system
catalog (SYSROUTINES and SYSPARMS system tables). Use the CREATE PROCEDURE
SQL statement. The syntax of this statement was extended to allow the new type of stored
procedures. Figure 5-2 details the new syntax of the CREATE PROCEDURE statement.

Figure 5-2 CREATE PROCEDURE syntax

 >>-CREATE--PROCEDURE--procedure-name---------------------------->

 >-----+---+>
 '-(--+---+---)--'
 | .-,---. |
 | V .-IN----. | |
 '-------+-------+---+----------------+--data-type--+------------------+----+--'
 +-OUT---+ '-parameter-name-' | |
 '-INOUT-' '-AS LOCATOR-------'

 >-----+--+-------------->
 | .-DYNAMIC-. |
 '-+---------+--RESULT--+-SET--+---integer--'
 '-SETS-'

 >-----+----------------------------+---------------------------->
 | |
 '-LANGUAGE-------+-C-------+-'
 +-C++-----+
 +-CL------+
 +-COBOL---+
 +-COBOLLE-+
 +-FORTRAN-+
 +-JAVA----+
 +-PLI-----+
 +-REXX----+
 +-RPG-----+
 +-RPGLE---+
 '-SQL-----'

 >-----+--------------------------+------------------------------>
 '-SPECIFIC--specific-name--'

 .-NOT DETERMINISTIC-------. .-MODIFIES SQL DATA--.
 >-----+-------------------------+---+--------------------+------>
 '-DETERMINISTIC-----------' +-NO SQL-------------+
 +-CONTAINS SQL-------+
 '-READS SQL DATA-----'

 .-FENCED-----. .-CALLED ON NULL INPUT-------.
 >-----+------------+---+----------------------------+----------->
 '-NOT FENCED-'

 .-NO DBINFO--.
 >-----+-external-procedure-body-+---+------------+-------------><
 '-procedure-body----------' '-DBINFO-----'

 external-procedure-body

 .-EXTERNAL-----------------------------------.
 |---+---+------------>
 '-EXTERNAL NAME--external-program-name--'

 .-PARAMETER STYLE-. .-SQL----------------.
 >-----+-----------------+----+--------------------+-------------|
 +-DB2SQL-------------+
 | |
 +-DB2GENERAL---------+
 | |
 +-GENERAL------------+
 +-GENERAL WITH NULLS-+
 '-JAVA---------------'
108 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The most important options in the syntax in Figure 5-2 on page 108 are described:

� RESULT SET: This clause is supported for Java stored procedures, starting with the V5R1
implementation of Java stored procedures.

� LANGUAGE: Java. The external program is written in Java.

� PARAMETER STYLE: DB2GENERAL or JAVA. These values can be used only when the
Java language is specified.

� EXTERNAL NAME: A Java class and a method can now be specified. They are separated
by an exclamation point (!) or by a period (.). The use of the exclamation point (!) was
introduced by the DB2GENERAL parameter style. The use of the period (.) is part of the
SQLJ standard. For example, you can specify either TheClass!theMethod or
TheClass.theMethod. Only the name of the method can be specified, not the method and
its parameters.

5.4.1 Registering Java stored procedures with System i Navigator
For the JAVA parameter style, the Java stored procedure can be defined with the System i
Navigator New External Procedure window. The required steps are listed:

1. In System i Navigator, expand Database Libraries. Right-click the library in which you
want to create the Java stored procedure and select New → Procedure → External. See
Figure 5-3.

Figure 5-3 Creating a Java stored procedure

Note: You do not specify the class path name because all Java stored procedure
classes must reside in the /QIBM/UserData/OS400/SQLLib/Function directory.
Chapter 5. Java stored procedures 109

2. The New External Procedure window (Figure 5-4) opens. On the General tab, enter the
name for the new stored procedure. You can also enter a description and a value for a
specific name. Click OK.

Figure 5-4 Creating a Java stored procedure: The General tab
110 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

3. Click the Parameters tab. Choose the Java parameter style, and click Insert to add the
parameters, as shown in Figure 5-5.

Figure 5-5 Creating a Java stored procedure: The Parameters tab

Note: The DB2GENERAL parameter style Java stored procedures cannot be
registered by using System i Navigator.
Chapter 5. Java stored procedures 111

4. Click the External Program tab of the window. Choose a Java method, and enter the
name of the class and the name of the method separated by an exclamation point (!) or a
period (.) as indicated in Figure 5-6. Click OK.

Figure 5-6 Creating a Java stored procedure: The External Program tab

The Java procedure registration is now complete.

5.4.2 Using the Run SQL Scripts utility
Loading the classes into the Function directory does not mean that DB2 for i is ready to use
the new stored procedures. First, we must register our methods in the Java classes as stored
procedures with the CREATE PROCEDURE SQL statement.
112 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

In the example in Figure 5-7, we execute these statements in the Run SQL Scripts utility. To
access the utility from the main System i Navigator window, right-click Database, and select
Run SQL Scripts.

Figure 5-7 Creating the stored procedures in the Run SQL Scripts utility

The execution of these statements updates the system catalog, adding the two new stored
procedures and their parameters in the SYSROUTINES and SYSPARMS tables.

5.4.3 Using the native interface
This time, we use the 5250 session to create (register) our stored procedures. Rather than
using an Interactive SQL session, you can write the statements in a source physical file. The
content of the example source file is shown:

CREATE PROCEDURE DB2CUSINCITY(IN S CHAR(20), OUT I INTEGER)
LANGUAGE JAVA PARAMETER STYLE DB2GENERAL NOT FENCED
EXTERNAL NAME 'DB2CUSINCITY!DB2CUSINCITY';

CREATE PROCEDURE DB2SQLJCUSINCITY(IN S CHAR(20), OUT I INTEGER)
LANGUAGE JAVA PARAMETER STYLE DB2GENERAL NOT FENCED
EXTERNAL NAME 'DB2SQLJCUSINCITY!DB2SQLJCUSINCITY';

CREATE PROCEDURE DB2SQLJCUSINCITY2(IN S CHAR(20), OUT I INTEGER)
LANGUAGE JAVA PARAMETER STYLE DB2GENERAL NOT FENCED
EXTERNAL NAME 'DB2SQLJCUSINCITY2!DB2SQLJCUSINCITY2';

To execute the CREATE PROCEDURE statement that is contained in the source file, you can
use the following RUNSQLSTM CL command:

RUNSQLSTM SRCFILE(MYLIBRARY/QSQLSRC) SRCMBR(CRT_SP) COMMIT(*NONE)

Note: We do not qualify the stored procedure names with a library (schema) name. If the
current naming convention for the Run SQL Scripts session is *SQL, the stored procedures
are registered in the library with the same name as the current user profile for this session.
If the naming convention is *SYS, the stored procedures are registered in the current
library.
Chapter 5. Java stored procedures 113

5.5 Calling Java stored procedures
A Java stored procedure is similar to any other stored procedure, and it can be called from
any programming interface that supports the SQL CALL function. The convention that the
output parameters in the JAVA parameter style must be defined as arrays affects only the
Java method code. From the calling process point of view, no difference exists between an
output parameter that is returned by a Java stored procedure and an output parameter that is
returned by a stored procedure that is written in other programming languages.

JavaInsertCus and JavaSQLJInsertCus examples
To test our Java stored procedures, we use the client application in Example 5-7 that calls our
JDBC and SQLJ Java stored procedures.

Example 5-7 Client application to call JDBC and SQLJ Java stored procedures

import java.math.*; 1
import java.sql.*;
import com.ibm.as400.access.*; 2

class Client
{static
 {try
 {System.out.println ();
 System.out.println (" Java Stored Procedure Sample");
 Class.forName ("com.ibm.as400.access.AS400JDBCDriver").newInstance ();
 }
 catch (Exception e)
 {System.out.println ("\n Error loading AS400JDBCDriver...\n");
 e.printStackTrace ();
 }
 }
 public static void main (String argv[])
 { Connection con = null;
 CallableStatement ps;
 String sql;
 try
 { String url = "jdbc:as400://AS400WS 3
 if (argv.length == 0) {
 con = DriverManager.getConnection(url);
 }
 else if (argv.length == 2) {String userid = argv[0]; String passwd = argv[1];
 con = DriverManager.getConnection(url, userid, passwd);
 }
 else {System.out.println("\nUsage: java spbjavaclient [username password]\n");
System.exit(0);
 }

 sql = "Call JAVAINSERTCUS (?,?,?,?,?,?,?,?,?,?)";
 ps = con.prepareCall(sql); 4
 ps.setString(1, "00002");
 ps.setString(2, "Josephina Kissinger");
 ps.setString(3, "xx-00-1-7777788");
 ps.setString(4, "xx-00-1-7777778");
 ps.setString(5, "2nd Avenue NW");
 ps.setString(6, "Calentina");
 ps.setString(7, "22457");
 ps.setBigDecimal(8, new BigDecimal("2000000"));
 ps.setBigDecimal(9, new BigDecimal("500.5"));
 ps.registerOutParameter(10, Types.INTEGER); 5
 ps.execute();
114 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 System.out.println("There was " + ps.getInt(10) + " record inserted.");

 sql = "Call JAVASQLJINSERTCUS (?,?,?,?,?,?,?,?,?,?)"; 6
 ps = con.prepareCall(sql);
 ps.setString(1, "00004");
 ps.setString(2, "David Rosenborrow");
 ps.setString(3, "xx-00-73-124578");
 ps.setString(4, "xx-00-73-123456");
 ps.setString(5, "Main Street");
 ps.setString(6, "Calentina");
 ps.setString(7, "22457");
 ps.setBigDecimal(8, new BigDecimal("123456789.11"));
 ps.setBigDecimal(9, new BigDecimal("987654321.99"));
 ps.registerOutParameter(10, Types.INTEGER);
 ps.execute();
 System.out.println("There was " + ps.getInt(10) + " record inserted.");

 if (ps != null) ps.close();
 if (con != null) con.close();
 }
 catch (Exception e)
 { e.printStackTrace ();
 }
 }
}

The output of the client is shown:

 Java Stored Procedure Sample
There was 1 record inserted.
There was 1 record inserted.

The output indicates that the stored procedures were successfully executed.

Notes: The following notes refer to the numbers in Example 5-7 on page 114:

1 The java.math.* classes are needed for the BigDecimal Java type that corresponds to
the SQL DECIMAL type.

2 These classes contain the toolbox JDBC driver.

3 The URL to connect to the IBM i server where the stored procedures were defined.

4 The Java stored procedure is called with a callable statement like any other stored
procedure. The caller is not aware that the stored procedure is written in Java.

5 The internal definition as an array for the output parameter is transparent to the caller.

6 A similar call is used for the SQLJ type Java stored procedure.
Chapter 5. Java stored procedures 115

DB2CusInCity, DB2SQLJCusInCity, and DB2SQLJCusInCity2 examples
Our same client application calls the new stored procedures that illustrate the DB2GENERAL
parameter style, as shown in Example 5-8.

Example 5-8 New stored procedures that illustrate the DB2GENERAL parameter style

import java.math.*;
import java.sql.*;
import com.ibm.as400.access.*;

class Client
{static
 {try
 {System.out.println ();
 System.out.println (" Java Stored Procedure Sample");
 Class.forName ("com.ibm.as400.access.AS400JDBCDriver").newInstance ();
 }
 catch (Exception e)
 {System.out.println ("\n Error loading AS400JDBCDriver...\n");
 e.printStackTrace ();
 }
 }
 public static void main (String argv[])
 { Connection con = null;
 CallableStatement ps;
 String sql;
 try
 { String url = "jdbc:as400://AS400WS";
 if (argv.length == 0) {
 con = DriverManager.getConnection(url);
 }
 else if (argv.length == 2) {String userid = argv[0]; String passwd = argv[1];
 con = DriverManager.getConnection(url, userid, passwd);
 }
 else {System.out.println("\nUsage: java spbjavaclient [username password]\n");
 System.exit(0);
 }

 sql = "Call DB2CUSINCITY (?,?)";
 ps = con.prepareCall(sql);
 String city = "Calentina";
 int nbrCusInCity = 0;
 ps.setString(1, city);
 ps.registerOutParameter(2, Types.INTEGER);
 ps.execute();
 System.out.println(ps.getInt(2) + " person(s) found in " + city + ".");

 sql = "Call DB2SQLJCUSINCITY (?,?)";
 ps = con.prepareCall(sql);
 city = "Calentina";
 nbrCusInCity = 0;
 ps.setString(1, city);
 ps.registerOutParameter(2, Types.INTEGER);
 ps.execute();
 System.out.println(ps.getInt(2) + " person(s) found in " + city + ".");

 sql = "Call DB2SQLJCUSINCITY2 (?,?)";
 ps = con.prepareCall(sql);
 city = "Calentina";
 nbrCusInCity = 0;
 ps.setString(1, city);
116 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 ps.registerOutParameter(2, Types.INTEGER);
 ps.execute();
 System.out.println(ps.getInt(2) + " person(s) found in " + city + ".");

 if (ps != null) ps.close();
 if (con != null) con.close();
 }
 catch (Exception e)
 { e.printStackTrace ();
 }
 }
}

The output of this client is as expected:

 Java Stored Procedure Sample
2 person(s) found in Calentina.
2 person(s) found in Calentina.
2 person(s) found in Calentina.

5.6 Using SQL NULL
The theory that concerns SQL NULL values was presented in 5.2, “Coding DB2 for i Java
stored procedures” on page 93. This section compares two stored procedures by using the
JAVA and DB2GENERAL parameter styles: JAVASPNULL and DB2SPNULL. These two
procedures receive two parameters, a character string, and an integer. They insert them in
the table, which is called T, that is created with the following SQL statement:

CREATE TABLE T(S CHAR (5), I INTEGER)

Both columns of the table are NULL capable.

The code of JAVASPNULL is shown in Example 5-9.

Example 5-9 JAVASPNULL code

import java.sql.*;

public class javaspnull
{public static void javaspnull (String s, int i) throws SQLException, Exception
 {Connection con = DriverManager.getConnection("jdbc:default:connection");
 PreparedStatement ps = null;
 String sql;
 sql = "insert into t(s,i) values(?,?)";
 ps = con.prepareCall(sql);
 if (s == null) 1
 {ps.setNull(1, Types.CHAR);} 2
 else {ps.setString(1, s);}
 ps.setInt(2, i); 3
 ps.executeUpdate();
 try {if (ps != null) ps.close();
 if (con != null) con.close();
 } catch (SQLException e) { /* ignore */ };
 }
}

Chapter 5. Java stored procedures 117

Example 5-10 shows the code of DB2SPNULL.

Example 5-10 DB2SPNULL code

import java.sql.*;
import com.ibm.db2.app.*;

public class db2spnull extends StoredProc
{public void db2spnull (String s, int i) throws SQLException, Exception
 {Connection con = getConnection();
 PreparedStatement ps = null;
 String sql;
 sql = "insert into t(s,i) values(?,?)";
 ps = con.prepareCall(sql);
 if (isNull(1)) 1
 {ps.setNull(1, Types.CHAR);} 2
 else {ps.setString(1, s);}
 if (isNull(2)) 3
 {ps.setNull(2, Types.INTEGER);} 4
 else {ps.setInt(2, i);}
 ps.executeUpdate();
 try {if (ps != null) ps.close();
 if (con != null) con.close();
 } catch (SQLException e) { /* ignore */ };
 }
}

Notes: The following notes refer to the numbers in Example 5-9 on page 117:

1 With the JAVA parameter style, we test whether an object instance (“s”) has a null
reference to know whether the passed parameter was an SQL NULL value.

2 If an SQL NULL value was passed, we use the setNull method to prepare our insert
SQL statement.

3 A null integer cannot be passed to a stored procedure by using the JAVA parameter
style. If a null integer is passed to a stored procedure, SQL error code -20205 is
signaled to the caller.

Notes: The following notes refer the numbers in Example 5-10:

1 With the DB2GENERAL parameter style, we test whether a parameter has an SQL
NULL value with the isNull method that is implemented by the StoredProc class. Its
argument refers to the position of the parameter in the method definition. It returns
TRUE if the value is NULL.

2 We use the same setNull method to prepare our insert SQL statement as described in
the JAVA parameter style.

3 We use the isNull method to check whether the integer parameter has an SQL NULL
value.

4 We can insert a NULL value for the integer parameter, which is impossible with the
JAVA parameter style.
118 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

After we create the two stored procedures that correspond to the two Java methods, we call
them with the SQL statements in the Interactive SQL session, as shown in Figure 5-8.
Passing NULL as an integer results in an error. The javaspnull user-defined function or
procedure has an input argument with a null value.

Figure 5-8 Passing NULL values to the Java stored procedures

We receive the output that is shown in Figure 5-9 that confirms the previous comments.

Figure 5-9 NULL values were inserted by the Java stored procedures

5.7 SQLJ procedures to manipulate JAR files
Java stored procedures (and Java user-defined functions) can use Java classes that are
stored in Java JAR files. To use a JAR file, a jar-id must be associated with the JAR file.

Starting with V5R1, the system provides stored procedures in the SQL schema that allow
jar-ids and JAR files to be manipulated. These procedures allow JAR files to be associated
with stored procedures.

We briefly explain the following stored procedures:

� SQLJ.INSTALL_JAR
� SQLJ.REPLACE_JAR
� SQLJ.REMOVE_JAR
� SQLJ.UPDATEJARINFO
� SQLJ.RECOVERJAR

To use these stored procedures, we need INSERT, UPDATE, DELETE, and SELECT
privileges for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables and
*EXECUTE authority on library QSYS2. We also need the correct authorities to the affected
JAR file and the /QIBM/UserData/OS400/SQLLib/Function/jar/schema directory, where
schema is the schema of the jar-id. For more information, see the SQL Programming Guide,
SC41-5611. Adopted authority cannot be used for these authorities.

 Enter SQL Statements

Type SQL statement, press Enter.
 > CREATE TABLE T(S CHAR (5), I INTEGER)
 Table T created in DIECD.
 > call javaspnull(NULL, 0)
 CALL statement complete.
 > call db2spnull(NULL, NULL)
 CALL statement complete.
 > call javaspnull(NULL, NULL)
===> select s,i from t

 Display Data
 Data width : 21
 Position to line Shift to column
+....1....+....2.
 S I
 - 0
 - -
 ******** End of data ********
Chapter 5. Java stored procedures 119

5.7.1 SQLJ.INSTALL_JAR
The SQLJ.INSTALL_JAR stored procedure installs a JAR file in DB2 for i. This JAR file can be
used in subsequent CREATE PROCEDURE statements.

The SQLJ.INSTALL_JAR stored procedure requires three parameters:

� jar-url: The URL that contains the JAR file to be installed or replaced. The only URL
schema that is supported is “file:”.

� jar-id: The JAR identifier in the database to be associated with the file that is specified by
the jar-url. The jar-id will use SQL naming, and the JAR file will be installed in the
schema or library that is specified by the implicit or explicit qualifier.

� deploy: The value that is used to describe the install_action of the deployment descriptor
file. If this integer is a nonzero value, the install_action of a deployment descriptor file must
be executed at the end of the install_jar procedure. The current version of DB2 for i
supports a value of zero only.

When a JAR file is installed, DB2 for i registers the JAR file in the SYSJAROBJECTS system
catalog. It also extracts the names of the Java class files from the JAR file and registers each
class in the SYSJARCONTENTS system catalog. DB2 for i copies the JAR file to a
jar/schema subdirectory of the /QIBM/UserData/OS400/SQLLib/Function directory. DB2 for i
gives the new copy of the JAR file the name that is in the jar-id clause.

Example
We create a sample JAR file by using the following command in the Qshell interface that is
provided by OS/400:

jar -cvf sample.jar sample*.class

The following command is issued from an SQL interactive session:

CALL SQLJ.INSTALL_JAR(‘file:/home/dlema/JavaTest/sample.jar’, ‘mysample_jar’, 0)

The sample.jar file that is in the /home/dlema/JavaTest directory is installed in DB2 for i with
the name of MYSAMPLE_JAR. Subsequent SQL commands that use the samples.jar file refer to
it with the name of MYSAMPLE_JAR.

If we review the contents of the /QIBM/UserProd/OS400/SQLLib/Function/jar/DLEMA, we see
the MYSAMPLE_JAR file. The .../jar/DLEMA directory was automatically created by the
SQLJ.INSTALL_JAR stored procedure.

Important: A JAR file that was installed by DB2 for i in a subdirectory of
/QIBM/UserData/OS400/SQLLib/Function must not be modified. Instead, remove or replace
an installed JAR file.
120 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

If we examine the contents of QSYS2.SYSJAROBJECTS, we can see our recently installed
JAR file, as shown in Figure 5-10.

Figure 5-10 QSYS2.SYSJAROBJECTS contents after the installation of the MYSAMPLE JAR file
Chapter 5. Java stored procedures 121

The QSYS2.SYSJARCONTENTS table has a row for each class inside the installed JAR files,
as shown in Figure 5-11.

Figure 5-11 QSYS2.SYSJARCONTENTS after the installation of the MYSAMPLE JAR file

5.7.2 SQLJ.REMOVE_JAR
The SQLJ.REMOVE_JAR stored procedure removes a JAR file into DB2 for i. The
SQLJ.REMOVE_JAR stored procedure requires two parameters:

� jar-id: The JAR identifier that is associated with the JAR file to remove from the
database.

� undeploy: The value that is used to describe the install_action of the deployment
descriptor file. If this integer is a nonzero value, the remove_actions of a deployment
descriptor file must be executed at the end of the install_jar procedure. The current version
of DB2 for i supports a value of zero only.

Example
The following command is issued from an SQL interactive session:

CALL SQLJ.REMOVE_JAR(‘mysample_jar’, 0)

The entries in QSYS2.SYSJAROBJECTS and QSYS2.SYSJARCONTENTS will be deleted
and the /QIBM/UserData/OS400/SQLLib/Function/jar/schema/MYSAMPLE.jar will be deleted,
but the ...jar/schema directory will remain.
122 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5.7.3 SQLJ.REPLACE_JAR
The SQLJ.REPLACE_JAR stored procedure replaces a JAR file into DB2 for i. The
SQLJ.REPLACE_JAR stored procedure requires two parameters:

� jar-url: The URL that contains the JAR file to replace. The only URL schema supported
in “file:”.

� jar-id: The JAR identifier that is associated with the JAR file to remove from the
database.

Example
The following command is issued from an SQL interactive session:

CALL SQLJ.REPLACE_JAR(‘file:/home/dlema/JavaTest/mysample.jar’, ‘mysample_jar’)

The current JAR file that is referred to by the jar-id mysample_jar is replaced with the new
mysample.jar file in the specified directory.

5.7.4 SQLJ.UPDATEJARINFO
The SQLJ.UPDATEJARINFO stored procedure updates the CLASS_SOURCE column of the
SYSJARCONTENTS catalog table. This procedure is not part of the SQLJ standard, but it is
used by the DB2 for i stored procedure builder.

The SQLJ.UPDATEJARINFO stored procedure requires three parameters:

� jar-id: The JAR identifier to update.

� class-id: The package qualified class name of the class to update.

� jar-url: The URL that contains the JAR file with which to update the JAR file. The only
URL schema that is supported in “file:”.

Example
The following command is issued from an SQL interactive session:

CALL SQLJ.UPDATEJARINFO(‘mysample_jar’, ‘mypackage.myclass’,
‘file:/home/dlema/JavaTest/mypackage/myclass.class’)

The JAR file that is associated with the jar-id, mysample_jar, is updated with a new version
of the mypackage.myclass class. The new version of the class is obtained from the file
/home/dlema/JavaTest/mypackage/myclass.class.

5.7.5 SQLJ.RECOVERJAR
The SQLJ.RECOVERJAR stored procedure takes the JAR file that is stored in the
SYSJAROBJECTS catalog and restores it to the
/QIBM/UserData/OS400/SQLLib/Function/jar/schema/jar_id.jar file.

The SQLJ.RECOVERJAR stored procedure requires the jar-id parameter, which is the JAR
identifier to recover.

Example
The following command is issued from an SQL interactive session:

CALL SQLJ.RECOVERJAR(‘mysample_jar’)
Chapter 5. Java stored procedures 123

The JAR file that is associated with the jar-id, mysample_jar, is updated with the contents
from the SYSJARCONTENT table. The file is copied to the
/QIBM/UserData/OS400/SQLLib/Function/jar/jar_schema/mysample_jar.jar file.

5.8 Additional considerations
This section focuses on important topics that are specific to the current implementation of
Java stored procedures on the IBM i server.

General considerations are listed:

� Built-in functions: The built-in functions that are described in the SQLJ routines standard
were introduced in V5R1. SQLJ.ALTER_JAR_PATH is not supported yet.

� Result set: Result sets are supported as of V5R1.

� Adopted authority: The authority of the current user is used. No support exists for the
concept of adopted authority.

� Threads: Java stored procedures must not create additional threads.

� Java Developer’s Kit (JDK): Java stored procedures automatically use the latest version
of the Java Developer’s Kit that is installed on the IBM i server.

� Connection: The only possible connection is to the current database so that no connect,
disconnect, or set connect SQL statements can be used by the stored procedures.

� Commitment control: All actions take place in the current transaction in the same
commitment definition as the caller. No COMMIT or ROLLBACK can be executed.

� Privileges: The REVOKE and GRANT SQL statements cannot be used to allow or deny a
user the privilege of executing a Java stored procedure. The user must be granted or
denied authority to the underlying Java class file to impose execution privileges for the
Java stored procedure.

Unicode and character conversion
Java always processes character data in Unicode. When the character is not stored in
Unicode, a character conversion must be performed on any input and output of character data
between Java and the database. This conversion affects performance, but the effect can be
avoided by storing the character data directly in Unicode coded character set identifier
(CCSID) 13488.

Consider two important consequences before you use this approach. If the character data is
stored in Unicode, a character conversion is required for the applications that do not
manipulate the data in Unicode. The Unicode has double-byte encoding so that two bytes are
required per character in place of one byte for a single-byte character set. For large tables, a
significant increase in DASD requirements occurs. The performance of a Java application
might improve when the character data is stored in Unicode. In this case, consider changing
the character data to Unicode only when the data is exclusively or almost exclusively used by
JDBC applications and when the additional DASD requirements are not a concern.

5.8.1 Moving into production (save and restore)
While you deploy a database application to a production system, you need to save and
restore objects, such as external programs, that were registered as stored procedures.
Depending on the type of stored procedure and external program that implement that stored
procedure, additional actions might be required to make the stored procedure and external
program available on the target system.
124 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

For Java stored procedures, you can save the .class or .jar files that implement Java stored
procedures to a save file or any other media and then restore it to the production system in
the /QIBM/UserData/OS400/SQLLib/Function library. The Java code that is loaded in a
Function directory in the IFS must be saved by the SAV command. When you restore the
classes of Java stored procedures into the Function directory, you must manually re-create
the procedure with the CREATE PROCEDURE statement because the system catalog is not
updated automatically. Therefore, a CREATE PROCEDURE must be performed for each
restored Java stored procedure.

For performance reasons, you also want to perform a CRTJVAPGM with OPTIMIZE(40).

5.9 GetSuppliers example: Implementation with no result sets
The V4R5 implementation of Java stored procedures does not support result sets. In the Java
version of this stored procedure, we circumvent this limitation by storing the content of the two
result sets in a String object and returning it as an output parameter.

Because the result sets in Java stored procedures are supported in V5R1, in 5.10,
“GetSupplierRS example: Implementation with result sets” on page 132, we illustrate how the
Java stored procedure can return the result sets to the calling process.

5.9.1 Stored procedure: GetSupplier
The business logic of this example is described in 4.4.1, “Coding external stored procedures
that return cursor result sets” on page 61. The stored procedure returns two result sets
containing the list of n best and n worst suppliers and their total sales amount for a specific
month in a year or for the whole year.

Code overview
First, we introduce the code of the GetSupplier Java class, as shown in Example 5-11.

Example 5-11 GetSupplier Java class

import java.sql.*;

public class GetSupplier
{public static void GetSupplier (int year, int month, int[] rank, String[] suppliers) 1
 throws SQLException, Exception
 {Connection con = DriverManager.getConnection("jdbc:default:connection");
 PreparedStatement ps = null;
 ResultSet rs = null;
 String sql;
 int rowCount;
 suppliers[0] = "";

 // best suppliers 2
 if (month < 1) 3
 {
 sql = "SELECT supplier_name, totalsales FROM yearsale WHERE (year = ?) “ +
 "ORDER BY totalsales DESC";
 }
 else
 {
 sql = "SELECT supplier_name, totalsales FROM totalsale “ +
 "WHERE ((year = ?) “AND (month = ?)) ORDER BY totalsales DESC";
 }
 ps = con.prepareStatement(sql);
Chapter 5. Java stored procedures 125

 ps.setInt(1, year);
 if (month > 0) {ps.setInt(2, month);}
 rs = ps.executeQuery();
 rowCount = 0;
 while ((rs.next()) && (rowCount<rank[0]))
 {
 suppliers[0] = suppliers[0] + rs.getString(1).trim() + "/" +
 rs.getBigDecimal(2, 0) + "/"; 4
 rowCount++; 5
 }
 if (rowCount != rank[0]) {rank[0] = rowCount;}
 try {if (rs != null) {rs.close();}
 } catch (SQLException e) { /* ignore */ };

 // worse suppliers 6
 if (month < 1)
 {
 sql = "SELECT supplier_name, totalsales FROM yearsale " +
 "WHERE (year = ?) ORDER BY totalsales ASC";
 }
 else
 {
 sql = "SELECT supplier_name, totalsales FROM totalsale " +
 "WHERE ((year = ?) AND (month = ?)) ORDER BY totalsales ASC";
 }
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0) ps.setInt(2, month);
 rs = ps.executeQuery();
 rowCount = 0;
 while ((rs.next()) && (rowCount<rank[0]))
 {
 suppliers[0] = suppliers[0] + rs.getString(1).trim() + "/" +
 rs.getBigDecimal(2, 0) + "/";
 rowCount++;
 }
 if (rowCount > rank[0]) {rank[0] = rowCount;}

 try {if (rs != null) {rs.close();}
 if (ps != null) ps.close();
 if (con != null) con.close();
 } catch (SQLException e) { /* ignore */ };
 }
}

126 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Now, we can compile and then copy the GetSupplier class to the Function directory on the
IBM i server.

Stored procedure creation
We register our stored procedure with the following CREATE PROCEDURE SQL statement:

CREATE PROCEDURE GET_SUPPLIER (in year integer, in month integer,
 inout rank integer, out suppliers varchar(1000))
LANGUAGE JAVA PARAMETER STYLE JAVA NOT FENCED
EXTERNAL NAME 'GetSupplier!GetSupplier';

In the following section and in 5.9.3, “Java GUI client: ClientGetSupplierGUI” on page 132, we
describe the Java clients that are used to call this Java stored procedure. ClientGetSupplier is
a text version, while ClientGetSupplierSwing is a graphical user interface (GUI) version of the
Java client.

5.9.2 Java client: ClientGetSupplier
This client application is intended to call the GetSupplier stored procedures that are written in
any language on both DB2 for i and DB2 Universal Database on other platforms. This client
application also displays the result sets or the equivalent string output parameter.

This client code is text-based, so its size is limited. You can review its details in Example 5-12.

Example 5-12 ClientGetSupplier client code

import java.math.*;
import java.util.*;
import java.io.*;
import java.sql.*;
import COM.ibm.db2.jdbc.app.*; 1
import com.ibm.as400.access.*; 2

class ClientGetSupplier
{ public static void main (String argv[])
 {Properties props = new Properties();
 Connection con = null;
 CallableStatement cs;
 int rankCount;
 boolean returnsRS;

Notes: The following notes refer to the numbers in Example 5-11 on page 125:

1 The suppliers is the new output parameter that is used to return the concatenation of all
suppliers and their corresponding total sales amount. The rank is an inout parameter
that passes the requested number of the suppliers. It returns the actual number of
suppliers that is returned by the stored procedure.

2 The suppliers variable contains the list of the best suppliers first, followed by the list of
the worst suppliers.

3 The input parameter month contains 0 if we want the data for the whole year, and a
value of 1 - 12 if we want the data for a specific month.

4 Each token in the suppliers is separated by a forward slash (/).

5 We count the number of the best suppliers that are available so that we can return the
actual number of suppliers in the inout parameter rank.

6 We follow the same logic to include the worst suppliers in the suppliers String.
Chapter 5. Java stored procedures 127

 String sql;
 String suppliers = "";
 try
 {props.load(new BufferedInputStream(new FileInputStream("logon.properties"))); 3
 String dbDriver = props.getProperty("dbDriver");
 String dbUrl = props.getProperty("dbUrl");
 String dbUser = props.getProperty("dbUser").trim();
 String dbPassword = props.getProperty("dbPassword").trim();
 String yearS = props.getProperty("year");
 int year = Integer.parseInt(yearS);
 System.out.println("Year : " + year);
 String monthS = props.getProperty("month");
 int month = 0;
 try {month = Integer.parseInt(monthS);}
 catch(NumberFormatException nfe) {}
 System.out.println("Month : " + month);
 String rankS = props.getProperty("rank");
 int rank = Integer.parseInt(rankS);
 System.out.println("Rank : " + rank);
 String storedProc = props.getProperty("storedProc");
 System.out.println("Stored procedure : " + storedProc);
 String returnsRSS = props.getProperty("returnsResultSet");
 if (returnsRSS..toUpperCase().startsWith("Y")) {returnsRS = true;}
 else {returnsRS = false;} 4
 Class.forName(dbDriver);
 con = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 System.out.println("got connection");

 if (returnsRS) // we handle a stored procedure returning 2 result set 5
 { sql = "Call " + storedProc + " (?,?,?)";
 cs = con.prepareCall(sql);
 cs.setInt(1, year);
 cs.setInt(2, month);
 cs.setInt(3, rank); 6
 cs.registerOutParameter(3, Types.INTEGER); 6
 cs.execute();
 rank = cs.getInt(3);
 System.out.println();
 System.out.println("Available rank is : " + rank);
 System.out.println();
 boolean cursor;
 ResultSet brs = cs.getResultSet(); // best suppliers result set 7
 if (brs != null)
 { System.out.println("The best suppliers are :");
 System.out.println("------------------------");
 cursor = brs.next(); 8
 while (cursor)
 { System.out.println(brs.getString(1).trim() + " with a total sale of "
 + brs.getBigDecimal(2, 0)); 9
 cursor = brs.next();
 }
 cs.getMoreResults(); 10
 ResultSet wrs = cs.getResultSet(); // the worst suppliers result set 11
 if (wrs != null) 12
 // or we could test for UpdateCount() = -1 and MoreResult = false
 { System.out.println();
 System.out.println("The worse suppliers are :");
 System.out.println("------------------------");
 cursor = wrs.next();
 while (cursor)
128 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 { System.out.println(wrs.getString(1).trim() + " with a total sale of "
+ wrs.getBigDecimal(2, 0)); 13
 cursor = wrs.next();
 }
 }
 else {System.out.println("There is no second result.");}
 }
 else {System.out.println("There is no result set.");}
 }

 else // we handle a stored procedure returning a string 14
 { sql = "Call " + storedProc + " (?,?,?,?)";
 cs = con.prepareCall(sql);
 cs.setInt(1, year);
 cs.setInt(2, month);
 cs.setInt(3, rank);
 cs.registerOutParameter(3, Types.INTEGER);
 cs.registerOutParameter(4, Types.VARCHAR); 15
 cs.execute();
 rank = cs.getInt(3);
 suppliers = cs.getString(4); 15
 System.out.println();
 System.out.println("Available rank is " + rank);
 String[] suppliersAndSales = getTokens(suppliers); 16
 System.out.println();
 System.out.println("The best suppliers are :");
 System.out.println("------------------------");
 for (int i=0; i<rank; i++)
 { rankCount = i+1;
 System.out.println(suppliersAndSales[2*i] + " with a total sale of " +
 suppliersAndSales[(2*i) + 1]); 17
 }
 System.out.println();
 System.out.println("The worst suppliers are :");
 System.out.println("-------------------------");
 for (int i=0; i<rank; i++)
 { rankCount = i+1;
 System.out.println(suppliersAndSales[(2*rank) + (2*i)] + " with a total sale of " +
 suppliersAndSales[(2*rank) + (2*i) + 1]); 17
 }
 }

 if (cs != null) cs.close();
 if (con != null) con.close();
 }
 catch (Exception e)
 { e.printStackTrace (); }
 }

 private static String[] getTokens(String enteredString)
 {String[] enteredValues = null;
 try
 {StringTokenizer enteredStringTokenizer = new StringTokenizer(enteredString, "/",
false);
 enteredValues = new String[enteredStringTokenizer.countTokens()];
 int j = 0;
 while (enteredStringTokenizer.hasMoreTokens())
 {enteredValues[j++] = enteredStringTokenizer.nextToken();
 }
 }
Chapter 5. Java stored procedures 129

 catch (Exception e)
 { e.printStackTrace(); }
 return enteredValues;
 }
}

Notes
The following numbered notes refer to the numbers in Example 5-12 on page 127:

1 and 2 The client can access both DB2 for i and DB2 Universal Database on other
platforms. The classpath must contain the toolbox driver for the IBM i server
(jt400.jar) and the db2java.zip classes for DB2 Universal Database, as
presented in 5.10, “GetSupplierRS example: Implementation with result sets” on
page 132. If you want to access only one of the two platforms, you can omit the
corresponding import statement.

3 The application reads the required information to connect to the DB2 platform and
to call the stored procedure from the properties file that is called logon.properties.
The properties dbDriver, dbUrl, dbUser, and dbPassword are used to connect to the
database by using the JDBC driver. The storedProc property indicates the name of
the stored procedure to call. The SQL naming convention is used to find the stored
procedure. The returnsResultSet property is set to Yes if the stored procedure
returns two result sets. The returnsResultSet property is set to No for the Java
stored procedure on the IBM i server that returns the suppliers output parameter
that contains the results. The last three properties are the input parameters that are
passed to the stored procedure. The content of the properties file is shown in the
following example:

#logon properties
dbDriver=COM.ibm.db2.jdbc.app.DB2Driver
dbDriver=com.ibm.as400.access.AS400JDBCDriver
dbUrl=jdbc:db2:db2local
dbUrl=jdbc:as400://AS400WS
dbUser=db2admin
dbPassword=db2admin
storedProc=GET_SUPPLIER
returnsResultSet=No
year=1999
month=3
rank=2

4 and 5 We differentiate between the stored procedure that returns two result sets and the
stored procedure that returns the suppliers parameter instead.

6 When we call a stored procedure with an inout parameter in a Java client, we first
set its value as an input parameter and then declare that it is also an output
parameter. Even if a Java stored procedure considers a result set as an output
parameter, the corresponding client that calls it does not declare the result set as a
parameter.

7 We get the result set that is returned by the stored procedure with the
getResultSet() method of the CallableStatement class.

8 We can now handle this result set as any other result set that is returned by the
executeQuery() method of the Statement class.
130 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

9 We read each supplier and its corresponding total sales amount from the result set
and display the information. An SQL decimal data type is mapped to the BigDecimal
Java type. Also, we do not want to receive any scale digits as indicated by the
second parameter of the getBigDecimal() method.

10 The getMoreResults() method from the Statement class closes the current result
set that was received with the previous getResultSet() method. It also tries to open
the next result. It returns true if another result set is available.

11 Now that the statement is positioned at the next result set, we can access it by
using the getResultSet() method.

12 If the getMoreResults() method fails, it returns false and the result of the
getResultSet() method is null.

13 We fetch the records and read the columns of the second result set as we did for
the first result set.

14 In this second part of the application, we handle the IBM i server Java stored
procedures that return a parameter that contains the concatenated string that
represents the two result sets. Our next task is to decompose the received String
and to display it.

15 We register and receive the fourth parameter.

16 Each element of the String is separated from the next element by a special
character that allows us to use the StringTokenizer class from the java.util
package. We put each element in a String array.

17 We display the elements from this array.

With our classpath pointing to the driver implementations that are referred to in 1 and 2 and
with the logon.properties file in our current directory, we compile and execute the
ClientGetSupplier class. The results are shown:

Year : 1999
Month : 3
Rank : 2
Stored procedure : GET_SUPPLIER
got connection

Available rank is 2

The best suppliers are :

Black with a total sale of 8800
Red with a total sale of 7345

The worst suppliers are :

Yellow with a total sale of 1200
Blue with a total sale of 3150

We now compare the output of this client with the GUI client.
Chapter 5. Java stored procedures 131

5.9.3 Java GUI client: ClientGetSupplierGUI
The Java GUI client that is presented in this section interacts with the user through a visual
interface. We can enter the information that was placed in the logon.properties file in the
previous section and display the results that are returned by the stored procedure. The GUI
interface is similar to that of the Visual Basic client, and it is not presented in detail. It was
developed with IBM VisualAge® for Java (JDK 1.1.8).

Figure 5-12 shows how it works.

Figure 5-12 ClientGetSupplierGUI displays the IBM i server Java stored procedure results

This same GUI client is used to call the external SQL and Java stored procedures that were
created on the IBM i server and the stored procedures that were created on DB2 Universal
Database V6.1. We first enter the user, password, and JDBC URL to connect to the database
that we want. When we are connected, we enter the stored procedure that we want to execute
and its parameters. Then, we call it by clicking Query.

5.10 GetSupplierRS example: Implementation with result sets
A Java stored procedure on IBM i server V5R1 or DB2 Universal Database Version 6 and
later can return result sets. In this section, we present a GetSupplierRS Java stored
procedure that returns two result sets: the best suppliers and the worst suppliers.

Black
Red
Blue
Yellow

Yellow
Blue
Red
Black
132 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5.10.1 GetSupplierRS stored procedure with the JAVA parameter style
Example 5-13 shows the GetSupplierRS stored procedure with the JAVA parameter style.
The numbered lines are explained in the following notes.

Example 5-13 GetSupplierRS stored procedure with the JAVA parameter style

import java.math.*;
import java.sql.*;

public class GetSupplierRS
{public static void GetSupplierRS (int year, int month, int[] rank,
 ResultSet[] bestSuppliers, ResultSet[] worstSuppliers) 1
 throws SQLException, Exception
 {Connection con = DriverManager.getConnection("jdbc:default:connection");
 PreparedStatement ps = null;
 PreparedStatement ps2 = null;
 ResultSet rs = null;
 String sql;
 int rowCount;
 BigDecimal bestRankTotalSales = new BigDecimal("0");
 BigDecimal worstRankTotalSales = new BigDecimal("0");

 // we get the total sales amount of the best suppliers 2
 if (month < 1)
 {sql = "SELECT totalsales FROM yearsale WHERE (year = ?) ORDER BY totalsales DESC";}
 else
 {sql = "SELECT totalsales FROM totalsale WHERE ((year = ?) AND (month = ?))
ORDER BY totalsales DESC";}
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0) {ps.setInt(2, month);}
 rs = ps.executeQuery();
 rowCount = 0;
 while ((rs.next()) && (rowCount<rank[0]))
 { bestRankTotalSales = rs.getBigDecimal(1, 2);
 rowCount++;
 }
 if (rowCount != rank[0]) {rank[0] = rowCount;}
 try {if (rs != null) {rs.close();}
 } catch (SQLException e) { /* ignore */ };

 // we get the total sales amount of the worst suppliers 3
 if (month < 1)
 {sql = "SELECT totalsales FROM yearsale WHERE (year = ?) ORDER BY totalsales ASC";}
 else
 {sql = "SELECT totalsales FROM totalsale WHERE ((year = ?)
AND (month = ?)) ORDER BY totalsales ASC";}
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0) {ps.setInt(2, month);}
 rs = ps.executeQuery();
 rowCount = 0;
 while ((rs.next()) && (rowCount<rank[0]))
 { worstRankTotalSales = rs.getBigDecimal(1, 2);
 rowCount++;
 }
 if (rowCount > rank[0]) {rank[0] = rowCount;}
 try {if (rs != null) {rs.close();}
 } catch (SQLException e) { /* ignore */ };
Chapter 5. Java stored procedures 133

 if (month < 1) 4
 {
 sql = "SELECT supplier_name, totalsales FROM yearsale “ +
 “WHERE ((year = ?) AND (totalsales >= ?)) “ +
 “ORDER BY totalsales DESC";
 }
 else
 {
 sql = "SELECT supplier_name, totalsales FROM totalsale “ +
 “WHERE ((year = ?) AND (month = ?) AND (totalsales >= ?)) “ +
 “ORDER BY totalsales DESC";
 }
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0)
 {ps.setInt(2, month);
 ps.setBigDecimal(3, bestRankTotalSales);
 }
 else {ps.setBigDecimal(2, bestRankTotalSales);}
 bestSuppliers[0] = ps.executeQuery(); 5
 if (month < 1) 6
 {
 sql = "SELECT supplier_name, totalsales FROM yearsale “ +
 “WHERE ((year = ?) AND (totalsales <= ?)) “ +
 “ORDER BY totalsales ASC";
 }
 else
 {
 sql = "SELECT supplier_name, totalsales FROM totalsale “ +
 “WHERE ((year = ?) AND (month = ?) AND (totalsales <= ?)) “ +
 “ORDER BY totalsales ASC";
 }
 ps2 = con.prepareStatement(sql);
 ps2.setInt(1, year);
 if (month > 0)
 {
 ps2.setInt(2, month);
 ps2.setBigDecimal(3, worstRankTotalSales);
 }
 else
 {
 ps2.setBigDecimal(2, worstRankTotalSales);
 }
 worstSuppliers[0] = ps2.executeQuery(); 7
 }
}

134 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Stored procedure creation
We register our stored procedure with the following CREATE PROCEDURE SQL statement:

CREATE PROCEDURE GET_SUPPLIER_RS (in year integer, in month integer,
 inout rank integer)
DYNAMIC RESULT SETS 2 LANGUAGE JAVA PARAMETER STYLE JAVA FENCED
EXTERNAL NAME 'GetSupplierRS!GetSupplierRS';

5.10.2 GetSupplierRS stored procedure with the DB2GENERAL parameter
style

Example 5-14 shows the GetSupplierRS stored procedure with the DB2GENERAL parameter
style. The numbered lines are explained in the following notes.

Example 5-14 GetSupplierRS stored procedure with the DB2GENERAL parameter style

import java.math.*;
import java.sql.*;
import com.ibm.db2.app.*; 1

public class GetSupplierResultSetDB2GENERAL extends StoredProc 2
{
 public void GetSupplierRS (int year, int month, int rank) 3
 throws SQLException, Exception
 {
 Connection con = getConnection(); 4

Notes: The following numbered notes refer to the numbers in Example 5-13 on page 133:

1 In the Java language, a result set is simply an instance of the java.sql.ResultSet
class. A result set is considered to be similar to another variable. When a result set is
returned by a Java stored procedure by using the JAVA parameter style, it is declared
as any other output parameter, an array of size one. In our example, we declare that the
method returns two result sets: bestSuppliers and worstSuppliers.

2 Because we want to return the first n and the last n suppliers, we first calculate the total
sales amount that was achieved by the nth best and the nth worst suppliers. Afterward,
we retrieve two result sets. The first result set contains the suppliers with totalsales
higher than or equal to the value for the nth best supplier. The rank is passed to the
procedure as an input parameter.

3 The second result set contains the suppliers with totalsales less than or equal to the
value for the nth worst supplier.

4 Now that we have the value of the totalsales amount for the nth best supplier
(bestRankTotalSales), we build the SQL SELECT statement that returns the first result
set.

5 We get the result set with the executeQuery() method and assign it to the output
parameter. The result set (or cursor) is automatically opened.

6 We follow the same logic to get the second result set that returns the worst suppliers.

7 We assign the second result set to the second output parameter.

Note: In DB2 Universal Database, the Java stored procedure returns result sets only if
FENCED is used in the CREATE PROCEDURE SQL statement. The specification of NOT
FENCED prevents the stored procedure from returning any result set, but no error
message is issued as a warning. In DB2 for i, this parameter is provided only for
compatibility with other platforms, and it has no effect.
Chapter 5. Java stored procedures 135

 PreparedStatement ps = null;
 PreparedStatement ps2 = null;
 ResultSet rs = null;
 String sql;
 int rowCount;
 BigDecimal bestRankTotalSales = new BigDecimal("0");
 BigDecimal worstRankTotalSales = new BigDecimal("0");

 // we get the total sales amount of the best suppliers 2
 if (month < 1)
 {
 sql = "SELECT totalsales FROM ordapplib.yearsale WHERE (year = ?) " +
 "ORDER BY totalsales DESC";
 }
 else
 {
 sql = "SELECT totalsales FROM ordapplib.totalsales WHERE ((year = ?) " +
 “AND (month = ?)) "ORDER BY totalsales DESC";
 }
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0)
 {
 ps.setInt(2, month);
 }
 rs = ps.executeQuery();
 rowCount = 0;
 while ((rs.next()) && (rowCount<rank))
 {
 bestRankTotalSales = rs.getBigDecimal(1);
 rowCount++;
 }
 if (rowCount != rank)
 {
 rank = rowCount;
 }
 try {if (rs != null) {rs.close();}
 } catch (SQLException e) { /* ignore */ };

 // we get the total sales amount of the worst suppliers
 if (month < 1)
 {
 sql = "SELECT totalsales FROM ordapplib.yearsale WHERE (year = ?) " +
 "ORDER BY totalsales ASC";
 }
 else
 {
 sql = "SELECT totalsales FROM ordapplib.totalsale WHERE ((year = ?) " +
 "AND (month = ?)) ORDER BY totalsales ASC";
 }
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0) {ps.setInt(2, month);}
 rs = ps.executeQuery();
 rowCount = 0;
 while ((rs.next()) && (rowCount<rank))
 { worstRankTotalSales = rs.getBigDecimal(1);
 rowCount++;
 }
 if (rowCount > rank) {rank = rowCount;}
136 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 try {if (rs != null) {rs.close();}
 } catch (SQLException e) { /* ignore */ };

 if (month < 1)
 { sql = "SELECT supplier_name, totalsales FROM ordapplib.yearsale WHERE ((year = ?) "
+
 "AND (totalsales >= ?)) ORDER BY totalsales DESC";}
 else
 { sql = "SELECT supplier_name, totalsales FROM ordapplib.totalsale WHERE ((year = ?) "
+
 "AND (month = ?) AND (totalsales >= ?)) ORDER BY totalsales DESC";}
 ps = con.prepareStatement(sql);
 ps.setInt(1, year);
 if (month > 0)
 { ps.setInt(2, month);
 ps.setBigDecimal(3, bestRankTotalSales);
 }
 else {ps.setBigDecimal(2, bestRankTotalSales);}
 ps.execute();

 if (month < 1)
 { sql = "SELECT supplier_name, totalsales FROM ordapplib.yearsale WHERE " +
 "((year = ?) AND (totalsales <= ?)) ORDER BY totalsales ASC";
 }
 else
 { sql = "SELECT supplier_name, totalsales FROM ordapplib.totalsale WHERE " +
 "((year = ?) AND (month = ?) AND (totalsales <= ?)) ORDER BY totalsales ASC";
 }
 ps2 = con.prepareStatement(sql);
 ps2.setInt(1, year);
 if (month > 0)
 { ps2.setInt(2, month);
 ps2.setBigDecimal(3, worstRankTotalSales);
 }
 else
 { ps2.setBigDecimal(2, worstRankTotalSales);
 }
 ps2.execute();
 set(3, rank); // returns number of retrieved rows 5
 }
}

Notes: The main differences from the JAVA parameter style version are listed. The
numbered notes refer to the numbers in Example 5-14 on page 135:

1 Import file that contains the StoredProc superclass.

2 A stored procedure class that contains DB2GENERAL stored procedures must extend
the com.ibm.db2.app.StoredProc class.

3 Methods that conform to DB2GENERAL stored procedures are not static. IN, OUT, and
INOUT parameters are defined as an input parameter (no array convention used).

4 Connection is established by the getConnection() method that is inherited from the
StoredProc class.

5 OUT and INOUT parameters are returned by the set method that is inherited from the
StoredProc class.
Chapter 5. Java stored procedures 137

Stored procedure creation
We register our stored procedure with the following CREATE PROCEDURE SQL statement:

CREATE PROCEDURE GET_SUPPLIER_RS_DB2GENERAL
(in year integer, in month integer, inout rank integer)
DYNAMIC RESULT SETS 2 LANGUAGE JAVA PARAMETER STYLE DB2GENERAL FENCED
EXTERNAL NAME 'GetSupplierResultSetDB2GENERAL!GetSupplierRS';

5.10.3 Java clients: ClientGetSupplier and ClientGetSupplierGUI
We use the Java clients that are presented in 5.9.2, “Java client: ClientGetSupplier” on
page 127 and 5.9.3, “Java GUI client: ClientGetSupplierGUI” on page 132 to test whether
they work with the Java stored procedure that was created both on DB2 Universal Database
V6.1 and on DB2 for i. The result is displayed in Figure 5-13.

As shown in Figure 5-13, the same client can be used to call stored procedures that are
written in different languages and on different platforms. The same satisfactory results were
also obtained with the text version ClientGetSupplier.

Figure 5-13 Results of the Java stored procedure on DB2 Universal Database V6.1

5.11 Problem determination
This section focus on the debugging and the tracing possibilities of Java stored procedures.

Note: In DB2 Universal Database, the Java stored procedure returns result sets only if
FENCED is used in the CREATE PROCEDURE SQL statement. The specification of NOT
FENCED prevents the stored procedure from returning any result set, but no error
message is issued as a warning. In DB2 for i, this parameter is provided only for
compatibility with other platforms, and it has no effect.

Black
Red
Blue

Yellow
Blue
Red
138 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5.11.1 Debugging

At first glance, debugging might seem slightly complicated because it requires the Java virtual
machine (JVM) to be started when you try to access the source. We learned that the easiest
way to debug was in a client/server environment. The following steps outline the process that
we used in this environment:

1. Compile the Java stored procedure that you want to debug so that the class contains the
debugging information. The compilation parameter is -g, for example:

javac -g MyClass.java

2. Copy the .java source file with its corresponding .class file in the IBM i server Function
directory /Qibm/UserData/OS400/SQLLib/Function.

3. Identify the full name of the job where the Java stored procedure will be executed. If you
use the Java toolbox to connect to the IBM i server, the job is QZDASOINIT. The easiest
way to find the correct job is to use the command:

WRKOBJLCK OBJ(USERID) OBJTYPE(*USRPRF)

Here, USERID is the user ID that was used to connect to the IBM i server. Document the job
number and user profile.

4. Start to service the job that you identified in step 3, for example, run this command:

STRSRVJOB JOB(076853/QUSER/QZDASOINIT)

5. Ensure that the JVM was started in this job. For example, the client can call a dummy Java
stored procedure that does nothing and then wait until you set up the debugging.

6. Debug for the class that you want, for example:

STRDBG CLASS(myClass)

7. If everything is alright, you now see the Java source file on your 5250 emulation. You can
step through it and add breakpoints in the same way that add them with any other
traditional language.
Chapter 5. Java stored procedures 139

Figure 5-14 shows the added breakpoint.

Figure 5-14 Java stored procedure debugging

8. After the breakpoint is set, leave the debug window by pressing F12, and let your client
execute the Java stored procedure. For example, our client is waiting for a key to be
pressed before it calls the stored procedure.

9. On the 5250 emulation, the debug panel displays, and you can now debug your Java code.

10. After the debugging is completed, stop your debug and service sessions by using these
two CL commands:

ENDDBG
ENDSRVJOB

5.11.2 Tracing
The trace level component can be used to trace the actions that are performed by the OS/400
module that is responsible for the Java stored procedures support. However, its interpretation
can be difficult and needs to be directed to IBM Support Services.

The trace is enabled by adding the environment variable QIBM_COMPONENT_TRACE_LEVEL with a
value of 'SQJAVA,3' to the job where the Java stored procedure is executed. The trace is
disabled by removing this environment variable.

After the trace is taken, it can be dumped with the CL command DMPUSRTRC either to STDOUT
or to a file in QTEMP.

 Display Module Source

 Class file name: spbjavasp2b
 1 /**
 2 * JDBC Stored Procedure SPBJAVASP2B
 3 */
 4 import java.sql.*; // JDBC classes
 5
 6 public class spbjavasp2b
 7 {public static void spbjavasp2b (int i) throws SQLException, Excepti
 8 {// Get connection to the database
 9 Connection con = DriverManager.getConnection("jdbc:default:con
 10 PreparedStatement stmt = null;
 11 int updateCount;
 12 String sql;
 13 sql = "UPDATE T SET I = ?";
 14 stmt = con.prepareStatement(sql);
 15 stmt.setInt(1, i);
 More...
 Debug . . .

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
 F12=Resume F17=Watch variable F18=Work with watch F24=More keys
 Breakpoint added to line 14.
140 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Illustration
To make it easier to start the trace, stop it, and obtain a spooled file when you work from an
SQL interface, we created two CL programs that we defined as two external stored
procedures: SPTRACEON and SPTRACEOFF. The first program is used to start the trace.
The second program is used to stop the trace and output it to a spooled file before the QTEMP
library is cleaned. Now, we can easily call the first stored procedure to enable the tracing,
then call the Java stored procedure that we want to trace. Then, we call the last stored
procedure to stop the tracing and obtain the spooled file.

The code that makes up the SPTRACEON procedure is shown:

PGM
ADDENVVAR ENVVAR(QIBM_COMPONENT_TRACE_LEVEL) +
 VALUE('SQJAVA,3')
MONMSG MSGID(CPFA980) EXEC(CHGENVVAR +
 ENVVAR(QIBM_COMPONENT_TRACE_LEVEL) +
 VALUE('SQJAVA,3'))
ENDPGM

The SPTRACEOFF code is shown:

PGM
DMPUSRTRC
CPYF FROMFILE(QTEMP/QAP0ZDMP) TOFILE(*PRINT)
RMVENVVAR ENVVAR(QIBM_COMPONENT_TRACE_LEVEL)
MONMSG MSGID(CPFA981)
ENDPGM

The trace can be useful, for example, when the signature of the CREATE PROCEDURE SQL
statement does not correspond to the signature of the Java method in the class. For example,
the JavaInsertCus method in the previous example might incorrectly be defined with the
following SQL statement:

CREATE PROCEDURE JAVAINSERTCUS(in s1 char(5), in s2 char(20), in s3 char(15),
in s4 char(15), in s5 char(20), in s6 char(20), in s7 char(5),
in bd1 decimal(11,2), in bd2 decimal(11,2), out insertCount char(5))
LANGUAGE JAVA PARAMETER STYLE JAVA NOT FENCED EXTERNAL NAME
'JavaInsertCus!JavaInsertCus';

At execution time, the SQL interface first checks whether the parameters that were passed by
the SQL CALL match those parameters that were declared by the CREATE PROCEDURE
statement. If yes, the system tries to locate the JavaInsertCus method in the JavaInsertCus
class with the corresponding parameters. This last step will fail with SQLException SQL0443:
Trigger program or external routine detected an error. No more information is available
about the cause of the error. It can prove difficult to determine what went wrong. By taking a
component-level trace, you can see that GetMethodID failed when it looked for the
ConvertUnicode method with a specific signature in the ConvertUnicode class.

Note: The insertCount parameter (highlighted in bold in the preceding code) in the Java
method is defined as an integer, but the CREATE PROCEDURE statement executes
successfully.
Chapter 5. Java stored procedures 141

The trace is partially shown in Figure 5-15 and is further explained in the following notes.

Figure 5-15 Component level trace of a Java stored procedure

 70 0000001A:042576 SQLT_SQLEJ.SQLT_SQLEJ_CALLSTP_DLL: code 60 description JNI GetMethodID
failed. class: 1
 71 0000001A:042624 SQLT_SQLEJ.SQLT_SQLEJ_CALLSTP_DLL: 13 bytes of internal data
 72 0000001A:042688 E733F80762:C343F0 L:000D Buffer Data EBCDIC
 73 0000001A:042800 E733F80762:C343F0 4A617661 496E7365 72744375 73 *¢/./.>..........*
 74 0000001A:042896 E733F80762:C345F0 L:000D Buffer Data ASCII
 75 0000001A:043000 E733F80762:C345F0 D181A581 C995A285 99A3C3A4 A2 *JavaInsertCus...*2
 76 0000001A:043056 SQLT_SQLEJ.SQLT_SQLEJ_CALLSTP_DLL: code 61 description JNI GetMethodID failed. method:3
 77 0000001A:043096 SQLT_SQLEJ.SQLT_SQLEJ_CALLSTP_DLL: 13 bytes of internal dat
 78 0000001A:043168 E733F80762:C343FE L:000D Buffer Data EBCDIC
 79 0000001A:043240 E733F80762:C343F0 4A61 *..............¢/*
 80 0000001A:043344 E733F80762:C34400 7661496E 73657274 437573 *./.>............*
 81 0000001A:043440 E733F80762:C34630 L:000D Buffer Data ASCII
 82 0000001A:043544 E733F80762:C34630 D181A581 C995A285 99A3C3A4 A2 *JavaInsertCus...*4
 83 0000001A:043600 SQLT_SQLEJ.SQLT_SQLEJ_CALLSTP_DLL: code 62 description JNI GetMethodID failed. signature:5
 84 0000001A:043648 SQLT_SQLEJ.SQLT_SQLEJ_CALLSTP_DLL: 192 bytes of internal data
 85 0000001A:043712 E733F80762:C34420 L:00C0 Buffer Data EBCDIC
 86 0000001A:043824 E733F80762:C34420 284C6A61 76612F6C 616E672F 53747269 *.<¦/./.%/>......*
 87 0000001A:043944 E733F80762:C34430 6E673B4C 6A617661 2F6C616E 672F5374 *>..<¦/./.%/>....*
 88 0000001A:045656 E733F80762:C34440 72696E67 3B4C6A61 76612F6C 616E672F *..>..<¦/./.%/>..*
 89 0000001A:045768 E733F80762:C34450 53747269 6E673B4C 6A617661 2F6C616E *....>..<¦/./.%/>*
 90 0000001A:045888 E733F80762:C34460 672F5374 72696E67 3B4C6A61 76612F6C *......>..<¦/./.%*
 91 0000001A:046000 E733F80762:C34470 616E672F 53747269 6E673B4C 6A617661 */>......>..<¦/./*
 92 0000001A:046112 E733F80762:C34480 2F6C616E 672F5374 72696E67 3B4C6A61 *.%/>......>..<¦/*
 93 0000001A:046232 E733F80762:C34490 76612F6C 616E672F 53747269 6E673B4C *./.%/>......>..<*
 94 0000001A:046344 E733F80762:C344A0 6A617661 2F6D6174 682F4269 67446563 *¦/./._/.........*
 95 0000001A:046464 E733F80762:C344B0 696D616C 3B4C6A61 76612F6D 6174682F *._/%.<¦/./._/...*
 96 0000001A:046576 E733F80762:C344C0 42696744 6563696D 616C3B5B 4C6A6176 *......._/%.$<¦/.*
 97 0000001A:046688 E733F80762:C344D0 612F6C61 6E672F53 7472696E 673B2956 */.%/>......>....*
 98 0000001A:046792 E733F80762:C34670 L:00C0 Buffer Data ASCII
 99 0000001A:046904 E733F80762:C34670 4DD39181 A5816193 81958761 E2A39989 *(Ljava/lang/Stri*6
100 0000001A:047016 E733F80762:C34680 95875ED3 9181A581 61938195 8761E2A3 *ng;Ljava/lang/St*
101 0000001A:047136 E733F80762:C34690 99899587 5ED39181 A5816193 81958761 *ring;Ljava/lang/*
102 0000001A:047248 E733F80762:C346A0 E2A39989 95875ED3 9181A581 61938195 *String;Ljava/lan*
103 0000001A:047368 E733F80762:C346B0 8761E2A3 99899587 5ED39181 A5816193 *g/String;Ljava/l*
104 0000001A:047480 E733F80762:C346C0 81958761 E2A39989 95875ED3 9181A581 *ang/String;Ljava*
105 0000001A:047592 E733F80762:C346D0 61938195 8761E2A3 99899587 5ED39181 */lang/String;Lja*
106 0000001A:047712 E733F80762:C346E0 A5816193 81958761 E2A39989 95875ED3 *va/lang/String;L*
107 0000001A:047824 E733F80762:C346F0 9181A581 619481A3 8861C289 87C48583 *java/math/BigDec*
108 0000001A:047944 E733F80762:C34700 89948193 5ED39181 A5816194 81A38861 *imal;Ljava/math/*
109 0000001A:048056 E733F80762:C34710 C28987C4 85838994 81935EBA D39181A5 *BigDecimal;[Ljav*7

Notes: The following notes refer to the numbers in Figure 5-15:

1 and 2 Indicate that a problem occurred in finding a method in the JavaInsertCus
class.

3 and 4 The JavaInsertCus method cannot be found in the JavaInsertCus class.

5 The JavaInsertCus method has the signature that is described in 6 through 7
and cannot be found.
142 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 6. Stored procedure error handling

We can see error handling from two different, but complementary, points of view. From the
server point of view, we are interested in how to report errors to the caller and how to manage
errors that occur inside a procedure. From the client perspective, we are interested in how to
retrieve error and warning conditions.

We review how to manage and report database error conditions. We also review how to
manage database error and warning conditions on the client side.

Even if the tips and techniques that are shown in this chapter relate specifically to stored
procedures on DB2 for i, many of the concepts closely relate to user-defined functions
(UDFs).

This chapter covers the following topics:

� Database error reporting strategy
� Error handling in SQL stored procedures
� Error handling in external stored procedures
� Error handling in Java stored procedures
� Retrieving user-defined errors in a client application
� Transaction management in stored procedures
� External stored procedures and commitment control
� Several practical examples

6

© Copyright IBM Corp. 2001, 2016. All rights reserved. 143

6.1 Database error reporting strategy
In the DB2 Universal Database family of database managers, two variables are used by the
database management system (DBMS) to return feedback that we must be familiar with:
SQLCODE and SQLSTATE. SQLCODE is the original way in which DB2 reports error and
warning conditions. Each DBMS provider developed its own error code structure, making it
difficult to build portable code that manages error conditions. But in SQL92, the error
conditions were standardized for all of us. That standardized error condition code is called
SQLSTATE. Now, we have a platform-independent error code structure.

When DB2 Universal Database for iSeries encounters an error, the SQLCODE that is
returned is negative, and the first two digits of the SQLSTATE are different from '00', '01', and
'02'. If SQL encounters a warning (but it is a valid condition) while it processes the SQL
statement, the SQLCODE is a positive number and the first two digits of the SQLSTATE are
'01' (warning condition) or '02' (no data condition). When the SQL statement is processed
successfully, the SQLCODE that is returned is 0, and the SQLSTATE is '00000'.

6.1.1 User-defined errors and warnings
User-defined errors are certain conditions in an application that are defined as errors by the
business logic rather than by the runtime environment. For example, a business rule might
exist in your company that total compensation for an employee cannot exceed the
compensation of the employee’s manager. Therefore, a database routine (stored procedure
or user-defined function (UDF)) is used to modify the compensation needs to check whether
the new value complies with this company regulation. If the new value exceeds the limit, the
routine needs to signal an error to the calling process.

The SQLSTATE error messages are five-character codes in which the first two characters
represent the nature of the error or warning, which is also called error class, and the last
three characters represent the detailed error condition, which is also called error subclass.
When the first two characters are “38”, the error condition is caused by an external function,
which means a UDF, a stored procedure, or a trigger. It is commonly accepted to code
user-defined SQLSTATES in the form 38yxx. The y can be any letter or number, and the xx is
any two digits or uppercase letters, taking care not to use one of the predefined SQLSTATES,
such as 38502. (The external function is not allowed to execute SQL statements.) For more
information about SQLCODEs and SQLSTATEs, see DB2 Universal Database for iSeries
SQL Messages and Codes, which is available at this website:

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/info/rzala/rzalamst.pdf

You can also define user-defined warnings in a consistent way by using SQLSTATEs 01Hxx.

6.1.2 Consistent error handling
Currently, a growing number of development establishments deal with heterogeneous
environments where existing applications need to be enhanced so that they can interact with
newer solutions. Therefore, it is critical that you adopt a consistent approach for user-defined
error handling that can be used across various stored procedure types. The major benefit of
the proposed methodology is that the client application can be isolated from the
implementation details of a stored procedure. At a certain point, an existing RPG stored
procedure can be rewritten in SQL or Java with no implications for the client code.
144 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/info/rzala/rzalamst.pdf

6.2 Error handling in SQL stored procedures
This section describes different types of error handling statements for the SQL stored
procedure:

� Condition and handler declarations
� SIGNAL and RESIGNAL statement
� SQLCODE and SQLSTATE variables
� GET DIAGNOSTICS EXCEPTION

6.2.1 Condition and handler declaration
The following typical situations require explicit error handling:

� In a sequential FETCH, record not found means that the cursor reached the end of the file.
� In an INSERT, duplicate key values or check constraint inconsistencies exist.
� In a DELETE, a referential integrity violation occurred.
� In an UPDATE, a check constraint violation occurred.
� In a SELECT, a row is not found.

You can handle these situations by declaring condition variables and a handler for each
condition. Use the condition declaration to declare a meaningful condition name for a
corresponding SQLSTATE value. The following example illustrates how to code condition
declarations:

DECLARE record_not_found
 CONDITION FOR '02000';
DECLARE check_constraint_error
 CONDITION FOR '23513';

The first condition declaration is called record_not_found, and it corresponds to SQLCODE
+100, which has an SQLSTATE of '02000'. The second condition declaration is called
check_constraint_error, and it corresponds to SQLCODE -545 and to SQLSTATE '23513'.
This error occurs when an UPDATE or INSERT violates a check constraint that was defined
for one of the fields.

Note: SQLSTATE uses reserved ranges for user-defined errors and warnings. For a
consistent approach to error handling, you must use one of the following values:

� 00000: Successful execution.

� 01Hxx: Warning. The trailing two characters xx can be any digits or uppercase letters. It
results in SQLCODE +462 from the SQL runtime.

� 38yxx: Error condition. The y is an uppercase letter between I and Z, and xx is any two
digits or uppercase letters. It results in SQLCODE -443 from the SQL runtime.

For external stored procedures, sometimes you might be tempted to use a different
SQLSTATE to be returned to the calling client. This approach will not work. You can set the
SQLSTATE only to the values that are specified here. Otherwise, the calling program
receives sqlstate 39001, which indicates an invalid SQLSTATE.
Chapter 6. Stored procedure error handling 145

To use a condition name, you need to declare a handler. A condition handler is an SQL
statement that is executed when an exception or completion condition occurs within the body
of a compound statement. The actions that are specified in a handler can be any SQL
statement, including a compound statement. The scope of a handler is limited to the
compound statement in which it is defined. A handler declaration associates a handler with
an exception or completion condition in a compound statement.

Three types of condition handler are available:

� CONTINUE: When this condition is specified, after the SQL statement in the handler
successfully executes, the control is returned to the SQL statement that follows the SQL
statement that raised the exception.

� EXIT: If EXIT is specified, after the SQL statements in the handler are successfully
executed, the control is returned to the end of the compound statement that defines the
handler.

� UNDO: When UNDO is specified, a rollback operation is performed within the compound
statement. Then, the handler is invoked. When the handler is invoked successfully, control
is returned to the end of the compound statement that defines the handler.

For the conditions that can cause a handler to be invoked, the DB2 SQL procedural language
defines three general conditions that are associated with different SQLSTATEs. An
SQLSTATE is a five-character string that is contained in the DB2 Communications Area (DB2
CA). The DB2 runtime sets this value each time that an SQL statement is executed.
SQLSTATEs are consistent across all DB2 platforms. The general conditions are listed:

� SQLEXCEPTION specifies that the handler is invoked when an SQL exception occurs.
SQLEXCEPTION corresponds to an SQLSTATE with a class value other than '00', '01',
and '02'. The SQLSTATE class is defined by its first two characters.

� SQLWARNING specifies that the handler is invoked when an SQL warning occurs.
SQLWARNING corresponds to SQLSTATE class '01'.

� NOT FOUND specifies that the handler is invoked when a NOT FOUND condition occurs.
NOT FOUND corresponds to SQLSTATE class '02'.

In addition, you can provide handlers for a specific condition. For example, you might declare
a handler for SQLSTATE '02505', which corresponds to the duplicate key exception. A code
snippet illustrates the handler:

DECLARE EXIT HANDLER FOR '02505'
 BEGIN
 GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT ;
 INSERT INTO jm_debug (SQLTEXT, T1) VALUES (' Level2 - Exit Handler
 for DUPLICATE_KEY: Error message: ' || SQLERRM, CURRENT TIMESTAMP) WITH NC;
 END ;

The code fragment shows an exit handler for a specific SQL exception. It is invoked when a
duplicate key violation occurs in the compound statement that contains the handler.

A better programming technique is to declare a condition name for a specific SQLSTATE to
avoid hardcoding a particular SQLSTATE on a handler declaration. That way, the source code
becomes easier to read and maintain. Consider the following code fragment:

DECLARE DUPLICATE_KEY CONDITION FOR SQLSTATE '02505' ;
DECLARE EXIT HANDLER FOR DUPLICATE_KEY ...

Important: The UNDO handler can be defined only in an ATOMIC compound statement.
146 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The condition declaration associates a meaningful, descriptive name with the SQLSTATE that
it represents.

The following code snippet shows a typical block of statements at the beginning of a stored
procedure to handle special conditions:

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET v_sqlcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR SQLWARNING
SET v_sqlcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR NOT FOUND
SET v_sqlcode = SQLCODE;

The handlers are invoked, starting from the most specific to the most generic. Assume that
you have the following two declarations:

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION1
SET v_sqlcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR 2

SQLSTATE ’23505’,
SQLSTATE ‘23510’,
SQLSTATE ‘23511’,
SQLSTATE ‘23512’,
SQLSTATE ‘23513’

SET chk_constr_violation = TRUE;

If a check constraint is violated, firing any of the SQLSTATEs that are defined in the list, the
handler in 2 is invoked. The generic handler for an SQL exception in 1 is called for all other
exception states.

The following example defines all key elements of the compound control statement, condition,
and handler:

DECLARE not_found
 CONDITION FOR '02000';
DECLARE c1 CURSOR FOR
 SELECT cusnbr, cuscrd
 FROM ordapplib.customer;
DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;

In the example, the handler declaration sets the variable at_end to 1 if the condition not_found
is true. The condition not_found occurs when SQLSTATE is equal to '02000'. After the variable
at_end is set to 1, the control is returned to the SQL statement that follows the SQL statement
that raised the condition.

Notes:

� If an unhandled SQL exception occurs within an SQL procedure, the execution of the
procedure is terminated, and the SQLCODE is returned to the caller.

� The support of the definition of handlers for multiple conditions was added in V5R2.
Chapter 6. Stored procedure error handling 147

Consider the following example:

DECLARE c1 CURSOR FOR
 SELECT cusnbr, cuscrd
 FROM ordapplib.customer;
DECLARE UNDO HANDLER FOR SQLEXCEPTION
 SET errmsg = 'ERROR, ROLLBACK WAS ISSUED';

In this example, the handler is not associated with a condition declaration. Instead, if the error
is an exception, the procedure rolls back (UNDO) all of the transactions that were performed
in the compound statement, and errmsg is set to 'ERROR, ROLLBACK WAS ISSUED'. The control
is returned to the end of the compound statement.

We are ready to complete our procedure. See Example 6-1.

Example 6-1 Error handling example

CREATE PROCEDURE CREDITP
 (IN i_perinc DECIMAL(3,2),
 INOUT o_numrec DECIMAL(5,0))
 LANGUAGE SQL
BEGIN atomic
 DECLARE proc_cusnbr CHAR(5);
 DECLARE proc_cuscrd DECIMAL(11,2);
 DECLARE numrec DECIMAL(5,0);
 DECLARE at_end INT DEFAULT 0;
 DECLARE not_found CONDITION FOR '02000';
 DECLARE c1 CURSOR FOR
 SELECT cusnbr, cuscrd
 FROM ordapplib.customer;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 SET numrec = 0;
 OPEN c1;
 FETCH c1 INTO proc_cusnbr, proc_cuscrd;
 WHILE at_end = 0 DO
 SET proc_cuscrd = proc_cuscrd +(proc_cuscrd * i_perinc);
 UPDATE ordapplib.customer
 SET cuscrd = proc_cuscrd
 WHERE CURRENT OF c1;
 SET numrec = numrec + 1;
 FETCH c1 INTO proc_cusnbr, proc_cuscrd;
 END WHILE;
 SET o_numrec = numrec;
 CLOSE c1;
END

In certain cases, you might need to execute more than one statement on the DECLARE of the
handler, as shown in the following code snippet in Example 6-2.

Example 6-2 Compound statement in error handlers

BEGIN
DECLARE SQLSTATE char(5);
DECLARE PrvSQLState char(5) DEFAULT ‘00000’;
DECLARE ExceptState int;
148 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN
SET PrvSQLState = SQLSTATE;
SET ExceptState = TRUE;

END;
...
END

DB2 Universal Database for iSeries before V5R2 did not support nested compound
statements. However, you can circumvent this limitation by coding a “dummy” loop that
performs the same function as the previous example by using the following approach in
Example 6-3.

Example 6-3 Multiple statements in error handlers before V5R2

BEGIN
DECLARE SQLSTATE char(5);
DECLARE PrvSQLState char(5) DEFAULT ‘00000’;
DECLARE ExceptState int;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
ExceptHandler: LOOP

SET PrvSQLState = SQLSTATE;
SET ExceptState = TRUE;
LEAVE ExceptHandler;

END LOOP;
...
END;

6.2.2 SIGNAL and RESIGNAL
The SQL Persistent Stored Module (PSM) database language supports two programming
constructs that can be used to handle the user-defined errors: SIGNAL and RESIGNAL.

 The SIGNAL statement signals an error or warning condition explicitly. It causes an error or
warning to be returned with the specified SQLSTATE, with the message text. If a handler is
defined to handle the exception, the handler is called immediately by the SIGNAL statement,
as shown in Example 6-4.

Example 6-4 Raising an error by using the SIGNAL statement

CREATE PROCEDURE G10()
 LANGUAGE SQL
BEGIN
 DECLARE c1 CONDITION FOR SQLSTATE '38001';
 DECLARE CONTINUE HANDLER FOR C1
 INSERT INTO RESULT(proc,res) VALUES ('exec of G10','EXIT handler
 fired');
 INSERT INTO result(proc,res) VALUES ('exec of G10','START of Proc');
 SIGNAL SQLSTATE '38001';/*the handler will be fired by this statement*/
 INSERT INTO result(proc,res) VALUES ('exec of G10','END of Proc');
END;
Chapter 6. Stored procedure error handling 149

After the G10 procedure is called, you can see the entries log in the result table (Figure 6-1).

Figure 6-1 Results from the G10 procedure

If no handler is defined to catch the SQLSTATE in the SIGNAL statement, the exception is
propagated to the caller, as shown in Example 6-5.

Example 6-5 Raising error by using SIGNAL statement - variation

CREATE PROCEDURE G11()
 LANGUAGE SQL
BEGIN
 DECLARE c1 CONDITION FOR SQLSTATE '38001';

 INSERT INTO result(proc,res) VALUES ('exec of G11','START of Proc');
 SIGNAL SQLSTATE '38001'; /*the handler will be fired by this statement*/
 INSERT INTO result(proc,res) VALUES ('exec of G11','END of Proc');
END;

After calling the G11 procedure, you see the entries log in the result table (Figure 6-2).

Figure 6-2 Results from the G11 procedure

In the second case, the SQLSTATE is returned back to the caller application by placing the
value in the SQLCA of the invoker. For example, this embedded SQL RPGLE program can
retrieve and display the returned SQLSTATE from the G11 SQL procedure:

C/EXEC SQL
C+ CALL G11 ()
C/END-EXEC
C SQLSTT DSPLY
C MOVE *ON *INLR

Any valid SQLSTATE value can be used in the SIGNAL statement. You are not limited to the
sqlstates of the '38yxx' class. However, for consistency reasons, we recommend that you use
the '38yxx' sqlstate pattern also for SQL stored procedures. The additional advantage of this
methodology is that it prevents the unintentional use of an SQLSTATE value that might be
defined by the database manager in a future release.

The RESIGNAL statement can be coded only as part of the SQL PSM condition handler. The
RESIGNAL statement is used to resignal an error or warning condition. It returns SQLSTATE
and SQL message text to the invoker.

The use of the RESIGNAL statement without an operand causes the identical condition to be
passed outward. A RESIGNAL statement with an operand causes the original condition to be
replaced with the new condition that you specified.
150 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

See Example 6-6.

Example 6-6 Raising errors by using SIGNAL and RESIGNAL statements

CREATE PROCEDURE G8()
LANGUAGE SQL
BEGIN
 DECLARE not_found_text CHAR(70);
 DECLARE CONTINUE HANDLER FOR SQLSTATE '38TNF'
 BEGIN 1
 INSERT INTO result(proc,res) values('exec of G8',
 'ErrHandler Fired');
 RESIGNAL SQLSTATE '38TNF' SET MESSAGE_TEXT=not_found_text; 2
 INSERT INTO result(proc,res) values('exec of G8',
 'Stmt after resignal'); 3
 END; 1
 SET not_found_text = 'Part number not found!';

 INSERT INTO result(proc,res) values('exec of G8','Start');
 SIGNAL SQLSTATE '38TNF';
 INSERT INTO result(proc,res) values('exec of G8','After signal 38TNF');
 INSERT INTO result(proc,res) values('exec of G8','End');
END;

After calling the G8 procedure, you see the entries log in the result table (Figure 6-3).

Figure 6-3 Result from the G8 procedure

The following embedded SQL RPGLE program illustrates how to retrieve the user-defined
SQLSTATE and the error message text that are returned from the G8 SQL procedure:

DErrMsg S 52A
C/EXEC SQL
C+ CALL G8 ()
C/END-EXEC
C SQLSTT DSPLY
C EVAL ErrMsg=%subst(SQLERM:1:52)
C ErrMsg DSPLY
C MOVE *ON *INLR

Notes: The following notes refer to Example 6-6 on page 151:

1 In previous versions to V5R2, nested compound statements are not supported and
must be replaced by a dummy LOOP.

2 This RESIGNAL statement overrides the system message for SQLSTATE 02000 “Row
not found” with “Part number not found!”

3 After the RESIGNAL command is fired, the stored procedure returns the specified
signal to the caller application immediately. No statements that follow the RESIGNAL
are executed.
Chapter 6. Stored procedure error handling 151

If the SQL store procedure returns the user-defined SQLSTATE and error message, the
SQLCODE is set to -438 to indicate an error condition or +438 to indicate a warning. The
native Java Database Connectivity (JDBC), the toolbox JDBC, and the Open Database
Connectivity (ODBC) drivers monitor for those SQLCODEs, retrieve the user-defined
SQLSTATE from the SQLCA, return its value to the caller, and return the user-defined error
message.

We look at several practical examples. We start with an SQL stored procedure that is
implemented in SQL Persistent Stored Modules (SQL/PSM). The routine is called MODSAL,
and it is used to modify an employee’s salary. The personal data for employees, such as serial
number, compensation details, and department number, is stored in the EMPLOYEE table.
The DEPARTMENT table, in turn, contains the department information, including the
departmental manager’s serial number. The rows in EMPLOYEE and DEPARTMENT are
related by the department number.

The MODSAL SQL stored procedure implements a business rule that the total compensation
of an employee must not exceed the compensation of its manager. The routine’s logic checks
if the rule is not compromised. If so, it signals an error condition to the calling process. The
SIGNAL/RESIGNAL statements are used to pass the user-defined errors to the calling
process. The routine accepts two parameters: employee number of type CHAR(5) and salary
change of type DECIMAL(9,2). See Example 6-7. The numbered sections are explained
further in the following list.

Example 6-7 Stored procedure that uses SIGNAL and RESIGNAL

create procedure db2user.modsal (in i_empno char(6), in i_salary dec(9,2))
language SQL

begin atomic

declare v_job char(8);
declare v_salary dec(9,2);
declare v_bonus dec(9,2);
declare v_comm dec(9,2);
declare v_mgrno char(6);
declare v_mgrcomp dec(9,2);
-- Retrieve compensation details for an employee from employee table,
-- join by department number to department table to retrieve the
-- manager's employee number, use scalar subselect to retrieve manager's
-- compensation.
declare c1 cursor for
 select job, salary, bonus, comm, d.mgrno,
 select (salary+bonus+comm) from employee where empno = d.mgrno)
 as mgrcomp
 from employee e, department d
 where empno = i_empno and e.workdept = d.deptno;
-- Declare handlers for user-defined error sql states
declare exit handler for sqlstate '38S01' 2
 resignal sqlstate '38S01'
 set message_text ='MODSAL: Compensation exceeds the limit.';

declare exit handler for sqlstate '02000' 3
signal sqlstate '38S02'
 set message_text='MODSAL: Invalid employee number.';
[end callout B]

open c1;
fetch c1 into v_job, v_salary, v_bonus, v_comm, v_mgrno, v_mgrcomp;
close c1;
152 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

-- check, if the new compensation within the limit
if (i_empno <> v_mgrno) and ((v_salary + i_salary + v_bonus + v_comm) >= v_mgrcomp)
 then signal sqlstate '38S01'; 1
end if;

update employee set salary = v_salary + i_salary where empno = i_empno;

end

Code sample notes
The following notes refer to Example 6-7 on page 152:

1 If the business rule is compromised, sqlstate '38S01' is signaled. The control is transferred
to the error handler that is defined for this state. The SIGNAL might include the message
text and it might be signaled directly to the invoker.

2 This error handler that is defined for the '38S01' sqlstate signals the user-defined error
condition. The RESIGNAL statement is used to reset the return sqlstate to '38S01'. It also
sets the diagnostic message. After the RESIGNAL is fired, the stored procedure
immediately returns the specified error to the caller. Upon return, the sqlcode is set to
-438. Unlike the external stored procedure, the entire sqlerrmc element of the SQLCA area
is available for the customized message. No truncation of the user-defined error message
text occurs with SQL stored procedures.

3 The sqlstate '02000' is returned to the SQL SP if no data for the employee number is
passed as the first parameter. This condition can be thrown either by the FETCH or
searched UPDATE statement. The error handler handles this condition by signaling
sqlstate '38S02' to the caller.

6.2.3 SQLCODE and SQLSTATE variables in the SQL procedure
It might be useful to examine and manipulate the SQLCODE and SQLSTATE values in your
SQL procedure. To access the SQLCODE and SQLSTATE values, you must declare the
following SQL variables in the SQL procedure body:

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;

After the variables are declared, DB2 Universal Database for iSeries sets these local
variables after the execution of each SQL statement. Because the local SQLCODE and
SQLSTATE variables are reset after each statement, their values must be copied to other
local variables. The following example shows the use of condition handlers to assign the
values of the SQLSTATE and SQLCODE variables to local variables:

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET retcode=SQLCODE;
DECLARE CONTINUE HANDLER FOR SQLWARNING SET retcode=SQLCODE;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET retcode=SQLCODE;
Chapter 6. Stored procedure error handling 153

6.2.4 Returning values by using the RETURN statement
A return value can be used to return a program code to a caller application. For example, you
can use the return value to inform the caller application whether the SQL procedure
completed successfully. In Example 6-8, if no records were updated, the procedure returns
-1. Otherwise, it returns 0 to represent success.

Example 6-8 Usage of the RETURN statement in SQL stored procedures

CREATE PROCEDURE more_credit(city char(20))
LANGUAGE SQL
BEGIN
 DECLARE num_records INTEGER;
 UPDATE CUSTOMER SET cuscrd=cuscrd * 1.05 WHERE CUSCTY= city;
 GET DIAGNOSTICS num_records = ROW_COUNT;
 IF (num_records > 0) then
 RETURN 0;
 ELSE
 RETURN -1;
 END IF;
END

The RETURN value can be examined by the caller with the GET DIAGNOSTIC statement.
See “RETURN_STATUS” on page 155 for a coding example. You can also retrieve the return
value directly from the SQLCA area by reading the value of sqlerrd[0].

6.2.5 GET DIAGNOSTICS
The GET DIAGNOSTIC statement can be used in several ways. The following sections
explain the possible forms of this statement.

EXCEPTION
The GET DIAGNOSTICS EXCEPTION statement is used to access information that is
associated with an error or warning from the SQLCA of the procedure. In most cases, it is
used as the first statement in a handler to determine what happened. For example, the error
handling procedure in Example 6-9 writes SQLSTATE and the error message text to the
errorlog table.

Example 6-9 Usage of GET DIAGNOSTICS in SQL PSL

CREATE PROCEDURE GetDiag()
LANGUAGE SQL
BEGIN
 DECLARE msgtxt CHAR(70);
 DECLARE msgtxtlen INTEGER;
 DECLARE PrevSQLState CHAR(5);
 DECLARE SQLSTATE CHAR(5); 1
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS EXCEPTION 1
 msgtxt=MESSAGE_TEXT, msgtxtlen=MESSAGE_LENGTH;
 SET PrevSQLState=SQLSTATE;
 INSERT INTO errorlog VALUES(PrevSQLState,msgtxt); 2

Note: The RETURN value is supported in the latest open source JDBC driver. For more
information, see this website:

https://ibm.biz/Bd4c5V
154 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

https://ibm.biz/Bd4c5V

 END;
 INSERT INTO result(proc,res) values('exec of GetDiag','Start');
 INSERT INTO unknown values('TEST'); 3
END;

ROW_COUNT
ROW_COUNT is a new feature, available since V4R4, of the GET DIAGNOSTICS statement.
Use it to retrieve the number of rows that are affected by an INSERT, UPDATE, or DELETE
statement. The numrec procedure that is shown in Example 6-10 is used to increase the
credit of a customer in the city of Rochester by 5%. GET DIAGNOSTIC is used to assign the
number of records that are updated to a variable num_records, which might, in turn, be
returned to the caller application.

Example 6-10 Usage of ROW_COUNT in SQL PSL

CREATE PROCEDURE numrec(OUT num_records INTEGER)
LANGUAGE SQL
BEGIN
 UPDATE CUSTOMER SET cuscrd=cuscrd * 1.05 WHERE CUSCTY=’ROCHESTER’;
 GET DIAGNOSTICS num_records=ROW_COUNT;
 ...
END

This implementation differs slightly from other database implementations because it is not
affected by SELECT.

RETURN_STATUS
The RETURN_STATUS is used to examine the return value of the previous CALL statement
to an SQL procedure. The update_total procedure that is shown in Example 6-11 attempts to
increase the credit limit for all customers in Rochester.

Example 6-11 Usage of RETURN_STATUS in SQL PSL

CREATE PROCEDURE update_total(IN cusnbr char(5))
LANGUAGE SQL
BEGIN
 DECLARE retval INTEGER DEFAULT 0;
 ...
 SET retval = 0;
 IF (cus_total + new_purchase < cus_credit) THEN
 CALL more_credit(’ROCHESTER’); 1

Notes: The following notes refer to Example 6-9 on page 154:

1 Every SQL statement implicitly sets the SQLSTATE variable, if it is declared.

2 When the error handler is invoked, it writes an entry to the error log. In this example, the
error log entry reads:

'42704','UNKNOWN in ORDENTLIB type *FILE not found.'.

3 The INSERT statement tries to insert a row into a non-existing table. This action
invokes an SQL error, which is handled by the error handler.

Important: GET DIAGNOSTICS EXCEPTION is one statement that does not reset the
SQL state (which is a field in the SQLCA structure). Therefore, GET DIAGNOSTICS
EXCEPTION must generally be the first statement in a condition handler, followed
immediately by an assignment statement that saves the SQLState value to a local variable.
Chapter 6. Stored procedure error handling 155

 GET DIAGNOSTIC retval = RETURN_STATUS; 2
 IF retval <> 0 THEN
 GOTO BadNews; 3
 END IF;
 END IF;
 ...
 BadNews:
 RETURN -1;
END

6.2.6 Error handling in nested compound statements
When nested compound statements are used, each compound statement has its own scope
for variable definitions and for its condition definitions and error handlers. Example 6-12
illustrates the scope of different error handlers.

Example 6-12 Error handlers in nested compound statements

CREATE PROCEDURE ERROR_HANDLERS(IN PARAM INTEGER)
LANGUAGE SQL
SET OPTION DBGVIEW=*SOURCE, OUTPUT=*PRINT
BEGIN

DECLARE I INTEGER;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE EXIT HANDLER FOR

SQLSTATE VALUE '38H02',
SQLSTATE VALUE '38H04',
SQLSTATE VALUE '38HI4',
SQLSTATE VALUE '38H06'

BEGIN
DECLARE TEXT VARCHAR(70);
SET TEXT = SQLSTATE || ' RECEIVED AND MANAGED BY OUTER ERROR HANDLER' ;
RESIGNAL SQLSTATE VALUE '38HE0'
SET MESSAGE_TEXT = TEXT;

END;
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE '38H03'
RESIGNAL SQLSTATE VALUE '38HI3'
SET MESSAGE_TEXT = '38H03 MANAGED BY INNER ERROR HANDLER';

DECLARE EXIT HANDLER FOR SQLSTATE VALUE '38H04'
RESIGNAL SQLSTATE VALUE '38HI4'
SET MESSAGE_TEXT = '38H04 MANAGED BY INNER ERROR HANDLER';

DECLARE EXIT HANDLER FOR SQLSTATE VALUE '38H05'
RESIGNAL SQLSTATE VALUE '38HI5'
SET MESSAGE_TEXT = '38H05 MANAGED BY INNER ERROR HANDLER';

CASE PARAM
WHEN 1 THEN

SIGNAL SQLSTATE VALUE '38H01'
SET MESSAGE_TEXT = 'EXAMPLE 1: ERROR SIGNALED FROM INNER COMPOUND STMT';

WHEN 2 THEN
SIGNAL SQLSTATE VALUE '38H02'

Notes: The following notes refer to Example 6-11 on page 155:

1 The more_credit SQL procedure is called with the city parameter set to 'ROCHESTER'.

2 The GET DIAGNOSTIC statement is used to retrieve the return value directly after the
call statement executes.

3 If the return value indicates an error, the control is transferred to the error handling
block.
156 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

SET MESSAGE_TEXT = 'EXAMPLE 2: ERROR SIGNALED FROM INNER COMPOUND STMT';
WHEN 3 THEN

SIGNAL SQLSTATE VALUE '38H03'
SET MESSAGE_TEXT = 'EXAMPLE 3: ERROR SIGNALED FROM INNER COMPOUND STMT';

WHEN 4 THEN
SIGNAL SQLSTATE VALUE '38H04'
SET MESSAGE_TEXT = 'EXAMPLE 4: ERROR SIGNALED FROM INNER COMPOUND STMT';

ELSE
SET I = 1; /*Don't do anything */

END CASE;
END;
CASE PARAM
WHEN 5 THEN

SIGNAL SQLSTATE VALUE '38H05'
SET MESSAGE_TEXT = 'EXAMPLE 5: ERROR SIGNALED FROM OUTER COMPOUND STMT';

WHEN 6 THEN
SIGNAL SQLSTATE VALUE '38H06'
SET MESSAGE_TEXT = 'EXAMPLE 6: ERROR SIGNALED FROM OUTER COMPOUND STMT';

ELSE
SET I = 1; /*Don't do anything */

END CASE;
END;

The expected behavior of error handlers in nested compound statements is described in
Table 6-1.

Table 6-1 Expected behavior of error handlers in nested compound statements

PARAM value Expected behavior

1 Error 38H01 is fired from the internal compound statement. That error is not
handled by any error handler and it will be passed back to the caller program.

2 Error 38H02 is fired from the internal compound statement. That error is not
managed by any error handler in the internal compound statement, but it is handled
by an error handler in the external error handler, which will fire error 38HE0 that will
be passed back to the caller.

3 Error 38H03 is fired from the internal compound statement. That error is managed
by an error handler in the internal compound statement, firing error 38HI3. This new
error will not be handled by any error handler and will be received by the caller.

4 Error 38H04 is fired from the internal compound statement. That error will be
managed by an error handler in the internal compound statement, firing error
38HI4. Error 38HI4 will be managed by the error handler in the external error
handler, firing error 38HE0 to the caller.

5 Error 38H05 is fired in the external compound statement. This error will not be
managed by any error handler, and the error will be passed back to the caller.

6 Error 38H06 is fired in the external compound statement. This error will be
managed by the external error handler, which will fire error 38HE0 to the caller.

7 The stored procedure will terminate without errors.
Chapter 6. Stored procedure error handling 157

In the following snippet, when statement (stmt) 2 causes a NOT FOUND condition, the defined
handler captures the exception. After the defined handler finishes its operation, it exits the
nested compound exception, not the whole program, and continues with stmt 4.

...
BEGIN

DECLARE EXIT HANDLER FOR NOT FOUND
SET I=1; /* DON’T DO NOTHING */

stmt 1
stmt 2 /* FIRING NOT FOUND CONDITION */
stmt 3

END;
stmt 4
...

To illustrate the behavior of condition handlers in nested compound statements further, we
examine one more stored procedure that is named p_nested_test(). This procedure
manipulates data in a sample table called COFFEES. First, the routine calculates the average
price of coffee brands that are contained in the table. Then, it inserts a new row.

Example 6-13 shows the source code listing of the procedure. The numbered lines are
explained after the example.

Example 6-13 p_nested_test() procedure

CREATE PROCEDURE SQLTUTOR.P_NESTED_TEST (IN P_TABLE_NAME VARCHAR(128),
 OUT P_ERROR_IND_OUT CHARACTER(1))
LANGUAGE SQL
SPECIFIC P_NESTED_TEST
Level_1 :
BEGIN -- Main Procedure Body; Level-1 Compound Statement
DECLARE V_REF_CURSOR_TEXT VARCHAR (1024) ;
DECLARE V_SQL_STMT_EXEC1 VARCHAR (1024) ;
DECLARE SQLERRM VARCHAR (4000) DEFAULT '' ;
DECLARE V_AVG_PRICE DOUBLE PRECISION ;
DECLARE V_ROWS_INSERTED INTEGER DEFAULT 0 ;
DECLARE OBJECT_NOT_FOUND CONDITION FOR SQLSTATE '42704' ;
DECLARE COFFEES_QUERY_FAILED CONDITION FOR SQLSTATE '70010' ;
DECLARE COFFEES_UNKNOWN_AVG_PRICE CONDITION FOR SQLSTATE '70019' ;
DECLARE COFFEES_INSERT_FAILED CONDITION FOR SQLSTATE '70020' ;
DECLARE C_GET_COFFEES CURSOR FOR V_CUR_STMT ;
-- Exit handler scoped to the main procedure body
DECLARE EXIT HANDLER FOR SQLEXCEPTION --[2.3] & [3.2}
BEGIN
 GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT ;
 SET P_ERROR_IND_OUT = 'Y' ;
 INSERT INTO JM_DEBUG (SQLTEXT)
 VALUES ('Level_1-Exit Handler for sqlexception: Message : '
 || SQLERRM) WITH NC ;
 RESIGNAL ;
END ;
-- Level_1 compound statement body starts here
SET V_REF_CURSOR_TEXT = 'SELECT avg(price) FROM ' || TRIM (P_TABLE_NAME) ;
PREPARE V_CUR_STMT FROM V_REF_CURSOR_TEXT ;
INSERT INTO JM_DEBUG (SQLTEXT)
 VALUES ('Level_1-Main Procedure Body: V_CUR_STMT prepared');
-- Level_2_1 compound statement
Level_2_1:
 BEGIN
 -- exit handler scoped to compound statement Level_2_1
 DECLARE EXIT HANDLER FOR SQLEXCEPTION --[2.2]
158 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 BEGIN
 GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT ;
 INSERT INTO JM_DEBUG (SQLTEXT)
 VALUES (' Level_2_1-Exit Handler for Select: Message: '
 || SQLERRM) WITH NC ;
 SIGNAL COFFEES_QUERY_FAILED SET MESSAGE_TEXT = SQLERRM ;
 END ;
 -- continue handler scoped to scoped to compound statement Level_2_1
 DECLARE CONTINUE HANDLER FOR COFFEES_UNKNOWN_AVG_PRICE --[1.2]
 BEGIN
 GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT ;
 INSERT INTO JM_DEBUG (SQLTEXT)
 VALUES (' Level_2_1-Handler for SQLSTATE 70019: Message: '
 || SQLERRM) WITH NC ;
 SET V_AVG_PRICE = 0.0 ;
 END ;
 -- Level_2_1 compound statement body starts here
 OPEN C_GET_COFFEES ; --[2.1]
 FETCH C_GET_COFFEES INTO V_AVG_PRICE ;
CLOSE C_GET_COFFEES ;
 IF V_AVG_PRICE IS NULL THEN --[1.1]
 SIGNAL COFFEES_UNKNOWN_AVG_PRICE
 SET MESSAGE_TEXT = 'Unknown avg price of coffee.' ;
 END IF ;
 INSERT INTO JM_DEBUG (SQLTEXT) --[1.3]
 VALUES (' Level_2_1 - Body: v_avg_price = '
 || TRIM (CHAR (V_AVG_PRICE))) WITH NC ;
 END Level_2_1;
 -- Level_1 body resumes here
INSERT INTO JM_DEBUG(SQLTEXT)
 VALUES ('Level_1-Resuming processing after end of Level_2_1 compound statement.')
WITH NC ;
SET V_SQL_STMT_EXEC1 = 'INSERT INTO ' || TRIM (P_TABLE_NAME)
 || ' VALUES(10, ''Colombian Supreme'', 10, 9.95, 1000, 1000)' ;

Level_2_2:
BEGIN
 -- exit handler scoped to compound statement Level_2_1
 DECLARE EXIT HANDLER FOR OBJECT_NOT_FOUND
 BEGIN
 GET DIAGNOSTICS EXCEPTION 1 SQLERRM = MESSAGE_TEXT ;
 INSERT INTO JM_DEBUG (SQLTEXT)
 VALUES (' Level_2-2-Handler for Insert: Message: '
 || SQLERRM) WITH NC ;
 SIGNAL COFFEES_INSERT_FAILED SET MESSAGE_TEXT = SQLERRM ;
 END;
 -- Level_2_2 compound statement body starts here
 EXECUTE IMMEDIATE V_SQL_STMT_EXEC1 ; --[3.1]
 GET DIAGNOSTICS V_ROWS_INSERTED = ROW_COUNT ;
 INSERT INTO JM_DEBUG (SQLTEXT)
 VALUES (' Level_2-2-Main Body: ' || TRIM(CHAR(V_ROWS_INSERTED))
 || ' row(s) inserted in COFFEES.') WITH NC ;
 END Level_2_2;
-- Level_1 body resumes here
INSERT INTO JM_DEBUG (SQLTEXT)
VALUES ('Level_1-Resuming processing after end of Level_2_2 compound statement.') WITH NC
;
SET P_ERROR_IND_OUT = 'N' ;
END level_1;
Chapter 6. Stored procedure error handling 159

The procedure contains four handlers:

� An exit handler is defined in the Level_1 compound statement:

The scope of this handler is the entire stored procedure body.

� An exit and a continue handler are defined in the Level_2_1 compound statement.

The scope of these handlers is limited to the compound statement in which they were
declared.

� An exit handler is defined in the Level_2_2 compound statement.

The scope of this handler is limited to the compound statement in which it was declared. It
is not visible to the statements that are contained in Level_2_1.

� To facilitate the analysis, we trace the flow of the control during the execution by writing
messages into a separate table named jm_debug. This method is a common debugging
technique that is used by SQL Procedural Language (SQL PL) developers.

Consider the following test scenarios for the stored procedure execution to see how various
programming constructs interact.

Test scenario 1
In this scenario, the COFFEE table initially contains no rows. We call the procedure with the
following parameters:

CALL P_NESTED_TEST('COFFEES', ' ');

The first parameter is an input value that contains the name of the table to manipulate. The
second parameter is an output parameter, and it returns an error indicator value ('N' for no
errors, and 'Y' when errors occurred). The invocation completes successfully with error
indicator set to 'N'. The jm_debug contains the entries that are shown in Figure 6-4.

Figure 6-4 Message file from Test scenario 1

The execution proceeds successfully until the IF statement at [1.1] in Example 6-13 on
page 158 is reached in compound statement Level_2_1. Because the COFFEES table is
empty now, the V_AVG_PRICE variable is set to NULL (unknown). It causes the
COFFEES_UNKNOWN_AVG_PRICE signal to fire. This error condition corresponds to a
custom SQLSTATE of '70019'. (See the condition declarations section in the main stored
procedure body.) The DB2 runtime first tries to locate a condition handler for this particular
condition within the Level_2_1 compound statement. It finds a continue handler at [1.2]. The
handler is invoked, and the V_AVG_PRICE is set. The control is returned to statement [1.3],
which is the next statement after the SIGNAL statement that raised the exception. The
execution successfully continues until the end of the main procedure body is reached.
Compound statement Level_2_2 inserts a new row into COFFEES.
160 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

This example illustrates how to use a custom SQLSTATE and a continue handler to deal with
user-defined error conditions in SQL PL. User-defined errors are certain conditions in an
application that are defined as errors by the business logic rather than errors that are
generated by DB2 for i or OS/400. In our case, the business rule is that the unknown value of
the average coffee price is not allowed.

Test scenario 2
This time, we call the stored procedure with an intentionally corrupted first parameter:

CALL P_NESTED_TEST('CO$$EES', ' ');

The stored procedure returns with the following error messages:

SQL State: 70010
Vendor Code: -438
Message: [SQL0438] CO$$EES in SQLTUTOR type *FILE not found.

The jm_debug contains the entries that are shown in Figure 6-5.

Figure 6-5 Message file from Test scenario 2

After invocation, the execution proceeds until the OPEN cursor statement is reached at [2.1]
in Example 6-13 on page 158. Because the table name is corrupted, the DB2 runtime fails to
find the corresponding table object, and it throws an SQL exception with SQLSTATE '42704',
which indicates that the table was not found. Because the Level_2_1 compound statement
does not contain a handler for that specific condition, a general handler for all exceptions is
invoked at [2.2].

The handler writes a debug row and resignals the error with the COFFEES_QUERY_FAILED
condition that is mapped to custom SQLSTATE '70010'. The control is transferred to the end of
the compound statement Level_2_1 and returns to the main procedure body. The error
condition that is signaled in Level_2_1 is pending, so now the runtime tries to locate an
appropriate handler in the Level_1 compound statement (main procedure body). No handler
exists for a specific condition COFFEES_QUERY_FAILED, but the runtime finds the general
exception handler at [2.3]. After the handler writes a debug message into jm_debug, the
handler resignals the error condition that is returned to the caller and concludes in the error
messages that were shown.

Test scenario 3
We call the stored procedure again with the following parameter:

CALL P_NESTED_TEST('COFFEES', ' ');

The stored procedure returns with the following error messages:

SQL State: 23505
Vendor Code: -803
Message: [SQL0803] Duplicate key value specified.
Chapter 6. Stored procedure error handling 161

The jm_debug contains the entries that are shown in Figure 6-6 on page 162.

Figure 6-6 Message file from Test scenario 3

After the invocation, the execution proceeds until the EXECUTE IMMEDIATE statement is
reached at [3.1] in Example 6-13 on page 158. The first column of the COFFEES table is
defined as the primary key. The row with the key value 10 in the first column exists because it
was inserted when Test scenario 1 was run. Therefore, the DB2 runtime throws a duplicate
key exception that corresponds to SQLSTATE '23505'.

First, the DB2 runtime tries to locate a handler for this specific condition in the compound
statement Level_2_2. It finds none. Then, the runtime searches for a general handler, which
also does not exist in Level_2_2. Control returns to the main procedure body with the pending
error condition. Now, the runtime locates the general handler for SQL exceptions and invokes
it at [3.2]. After the handler writes a debug message, the handler resignals the original error
that was thrown in the inner Level_2_2 compound statement.

Using a nested error handler to avoid locks
We use a nested error handler to avoid locks that are caused by cursors that are left open.
The open cursor operation results in a read lock that is held over the data space. This lock is
required to preserve the integrity of the open cursor structure that points to that data space.
The open cursor is not implicitly closed upon the return from a stored procedure. Under
certain circumstances, the described behavior can result in locks that persist while a specific
job (activation group) is active.

Under the described circumstances, locks can persist while a certain job (activation group) is
active. We illustrate this situation with an example.

We run the procedure that is shown in Example 6-14 from the Run SQL Scripts utility of
System i Navigator.

Example 6-14 Example with cursor left open

create procedure testopencurs()
language sql
p1: begin
declare v_cof_name varchar(32);
declare c1 cursor for
 SELECT cof_name FROM COFFEES;
declare exit handler for sqlexception
 resignal ; 4

OPEN c1; 1
FETCH c1 into v_cof_name;
COMMIT HOLD; 2
SIGNAL SQLSTATE '70000'

Note: The following required program temporary fixes (PTFs) deliver support for condition
handlers in the complex nested compound statements that we describe in this section:

� V5R2: SI17232 and SI17233
� V5R3: SI18929
162 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

set message_text='Exit before cursor closed'; 3
CLOSE c1;
END p1;

The following notes refer to Example 6-14 on page 162:

� Cursor c1 is opened at 1.

� At 2, the transaction is committed with hold so that the cursors are not closed.

� At 3, an exception is signaled so that control is transferred to the exit handler at 4. The exit
handler resignals the exception, and the procedure returns to the caller. The cursor c1 is
still left open.

You cannot use the Run SQL Script utility to explicitly close this cursor. To remove the lock,
you must close the connection, which releases the QZDASOINIT job that is associated with
your Run SQL Scripts session.

To avoid this situation, you need to explicitly close the cursor in the stored procedure. The
code example in Example 6-15 illustrates how to explicitly close the cursor in the stored
procedure with the nested error handler.

Example 6-15 Avoid leaving the cursor open

create procedure testopencurs()
language sql
p1: begin
declare v_cof_name varchar(32);
declare c1 cursor for
 SELECT cof_name FROM COFFEES;
declare exit handler for sqlexception 1
begin
 declare i int;
 declare continue handler for sqlstate '24501' 3
 set i =0;
 close c1; 2
 resignal;
end;
OPEN c1;
FETCH c1 into v_cof_name;
COMMIT HOLD;
CLOSE c1;
SIGNAL SQLSTATE '70000'
set message_text='Exit after cursor closed';
END p1;

The following notes refer to Example 6-15:

� The handler intercepts the signal at 1.

� At 2, we attempt to close the cursor. If the cursor is open, the close succeeds and the
resignal is executed. If the cursor is already closed, the statement at 2 throws an SQL
exception with the SQL state of '24501', which is intercepted by the inner continue handler
at 3.

� After the exception is ignored, the control returns to the next statement after 2, which is
resignal.

� The SET statement in the nested handler is used as a workaround for a “do nothing”
statement that currently does not exist in SQL PL.
Chapter 6. Stored procedure error handling 163

6.2.7 Use nested compound statements for better performance
You need to use nested compound statements to localize exception handling and cursors. If
certain handlers are specified, code is generated to check to see whether the error occurred
after each statement. Code is also generated to close cursors and process savepoints if an
error occurs in a compound statement. In routines with a single compound statement with
multiple handlers and multiple cursors, code is generated to handle these situations after
every SQL statement. If you scope the handlers and cursors to a nested compound
statement, the handlers and cursors are only checked within the nested compound
statement. The following code snippet illustrates this idea:

...
GENERAL: BEGIN

 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 INNERLABEL: BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE ‘22H11’
 DECLARE C1 CURSOR FOR SELECT CUSTOMER_NAME FROM CUSTOMER;
 OPEN C1
 CLOSE C1
 OPEN C1
 END INNERLABEL

 ...

In the previous code snippet, SQLSTATE = 22H11 is only checked in the INNERLABEL
compound statement.

6.3 Error handling in external stored procedures
External stored procedures must also manage error conditions. Ideally, all errors are trapped
and corrective action is taken when it is required in the stored procedure. However, situations
occur when it is not possible to handle the error condition within the stored procedure. In
these cases, the stored procedure propagates the error condition to the calling program.

To return a user-defined SQL state and error message, an external stored procedure needs
to use the SQL or DB2SQL parameter style. If the SQL parameter style is specified by an
external stored procedure, DB2 for i passes to the routine several parameters in addition to
those parameters that are specified on the parameter list, as explained in 4.2.1, “SQL
parameter style” on page 46. The DB2SQL parameter style is an extension to the SQL
parameter style because the SQL extra parameters are passed to the external procedure in
addition to the DBINFO data structure, as explained in 4.2.2, “DB2SQL parameter style” on
page 47.

The SQL parameter style has the following structure:

IN | OUT | INOUT argument [repeated],
INOUT Argument indicator [repeated - one for each argument],
OUT Sqlstate,
IN Procedure name,
IN Specific name,
OUT Diagnostic message

Important: If the external stored procedure completes with an error, the states of the
output parameters are undefined. No guarantee exists that the returned values are valid.
164 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Two parameters are especially interesting for user-defined error handling:

� Sqlstate: This output parameter can be set by the external stored procedure to signal a
successful execution, warning, or error condition. For valid SQLSTATEs, see 6.1,
“Database error reporting strategy” on page 144.

� Diagnostic message: This output parameter can be set to a customized error message.

6.3.1 Checking the stored procedure completion status
When the stored procedure is called and the control returns to the calling program, the
completion status of the stored procedure is stored in the SQLCA area. You can check for the
correct SQLCODE, SQLSTATE, error message length, and the error message text.

You can use the SQL parameter style for more flexibility. SQLSTATE can be set within the
external stored procedure with the message text.

SQL and DB2SQL parameter style
This section shows how error handling is easier with the SQL parameter style. All errors that
occur within the stored procedure can be handled within the stored procedure, depending on
the business logic that is implemented by the stored procedure. When a stored procedure is
called by a program, the calling program checks the completion status. As described in 4.3.1,
“Coding for SQL parameter style” on page 48, a stored procedure can return an output
parameter that contains SQLSTATE, with the message text that describes the error that
occurred.

The PRODPIC table contains pictures of the products that exist in the STOCK table. The
PRODPIC table contains a PROD_PICTURE column. This column stores the picture of the
product. The picture in this column can be in one of the widely accepted formats, such as GIF,
JPG, or BMP. The data type of the column is binary large object (BLOB). We created a stored
procedure that can be used to insert a new product picture into the PRODPIC table. The
stored procedure accepts two parameters: the product number and the integrated file system
(IFS) file name that contains the picture of the product. Possible errors that can occur during
the stored procedure execution are listed:

� IFS file not found
� Table STOCKPIC not found
� Other errors

We illustrate both error handling and error correction within the stored procedure. A warning
message is displayed if a severe error is encountered and corrected. We return an SQL state
in the form of '38yxx' if a severe error is encountered, but it cannot be corrected. The severe
error conditions, with a diagnostic message text, are returned to the calling program.

Important: Sometimes, you might be tempted to set sqlstate to the value that is returned
to the stored procedure by the SQL runtime to pass it on to the calling client. This approach
will not work. You can set sqlstate only to the values that are previously specified.
Otherwise, the calling program receives sqlstate 39001, which indicates an invalid sqlstate.
Chapter 6. Stored procedure error handling 165

The possible error conditions and the corresponding SQLSTATE and message text are listed
in Table 6-2.

Table 6-2 Errors

Examine the CREATE PROCEDURE statement for the INSPIC procedure in Example 6-16.
The numbered sections are explained in the following list.

Example 6-16 INSERTPIC external stored procedure creation

CREATE PROCEDURE SPROCLIB/INSPIC(1
 IN prdnbr CHAR(5), 1
 IN filename CHAR(50)) 1
SPECIFIC INSPIC
LANGUAGE C
EXTERNAL NAME SPROCLIB/insertpic
MODIFIES SQL DATA
PARAMETER STYLE SQL 2

CREATE PROCEDURE notes
The following notes refer to the numbers in Example 6-16:

1 This section is the external stored procedure that is called INSPIC with two input
parameters.

2 We use the SQL parameter style.

Examine the source of INSERTPIC, which is referred to in the CREATE PROCEDURE
statement that is shown in Example 6-16. This procedure uses the product number and the
file name where the picture is stored as the input parameters. The picture is inserted into the
PRODPIC table. The code sample in Example 6-17 illustrates how error handling can be
effectively implemented with the SQL parameter style.

Example 6-17 INSERTPIC external stored procedure C source

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

 EXEC SQL INCLUDE SQLCA;
 char dummy[5];
 EXEC SQL
 WHENEVER SQLERROR GOTO ErrorHandler;
void main(int argc, char **argv)
{

 EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE IS BLOB_FILE pict_file;
 char fname[255];
 char prdnum[6];
 EXEC SQL END DECLARE SECTION;
 unsigned char statevar[5];
 unsigned char errmc[70];
 struct outmsgtxt{ short int length;

Error condition SQLSTATE Message text

IFS file not found 38TNT IFS file not found

STOCKPIC table not found 01HTC N/A

Any other errors 38999 Unhandled error condition
within the stored procedure
166 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 unsigned char data[70];
 }outmsgtxt_var, inmsgtxt_var;
 strcpy(prdnum, argv[1]);
 strcpy(pict_file.name, argv[2]);
 inmsgtxt_var = *(struct outmsgtxt *)argv[8];
 pict_file.name_length = strlen(pict_file.name);
 pict_file.file_options = SQL_FILE_READ;

 EXEC SQL
 INSERT INTO ordentlib/PRODPIC(product_number,product_picture)
 VALUES(:prdnum, :pict_file);
 if ((sqlca.sqlcode ==0)) 5
 {
 strncpy(statevar,"00000",5);
 strncpy(argv[5],statevar,5); 1
 exit(0);
 }
 ErrorHandler:
 if ((sqlca.sqlcode ==-204)) 3
 {
 EXEC SQL
 CREATE TABLE PRODPIC(PRODUCT_NUMBER FOR COLUMN PRDNBR
 CHAR(5) NOT NULL WITH DEFAULT, PRODUCT_PICTURE FOR COLUMN PRDPIC
 BLOB(1 M)) ;
 EXEC SQL
 INSERT INTO PRODPIC (product_number,product_picture) 4
 VALUES(:prdnum, :pict_file);
 strncpy(statevar,"01HTC",5);
 strncpy(argv[5],statevar,5);
 exit(0);
 }
 if ((sqlca.sqlcode ==-452))
 {
 strncpy(statevar,"38FNT",5); 2
 strncpy(argv[5],statevar,5);
 strncpy(errmc,"IFS file not found",18);
 strncpy(outmsgtxt_var.data,errmc,18);
 outmsgtxt_var.length = 18;
 *(struct outmsgtxt *) argv[8] = outmsgtxt_var;
 exit(1);
 }
 else
 {
 strncpy(statevar,"38999",5);
 strncpy(argv[5],statevar,5); 1
 strncpy(errmc,"unhandled exception",21);
 strncpy(outmsgtxt_var.data,errmc,21); 1
 outmsgtxt_var.length = 21;
 *(struct outmsgtxt *) argv[8] = outmsgtxt_var;
 }
 exit(1);
 }
Chapter 6. Stored procedure error handling 167

Code sample notes
The following notes refer to the numbers in Example 6-17 on page 166:

1 The SQLSTATE and the message text output parameters are used to return the different
errors from the stored procedure to the calling program.

2 If the IFS file does not exist, the insertion fails. The program logic checks for SQLCODE=
-452, which corresponds to SQLSTATE='428IA'. This SQLSTATE cannot be directly
returned to the calling program. If you return SQLSTATE='428IA', it is treated as an invalid
SQLSTATE, and the calling program SQLCA.SQLSTATE contains '39001'. We set the
SQLSTATE output parameter to a user-defined value. Because the severity of the error is
high, we set the SQLSTATE to '38FNT'. The message text explains the error condition.

3 If the PRODPIC table does not exist in the library, the INSERT statement fails. The
program logic checks for SQLCODE= -204, which corresponds to SQLSTATE='42704'.
This error condition is handled within the stored procedure, and error correction occurs. If
the insertion fails because the table did not exist, the PRODPIC table is created within the
stored procedure. Any errors that occur on the execution of the CREATE TABLE statement
are returned to the calling program with an SQLSTATE of '38999' and the related message
text.

4 After the table is created, the values are inserted into the table.

5 On the successful execution, the stored procedure returns the SQLSTATE that is set to
“00000” to the calling program.

The calling program checks for the different error conditions after the SQL CALL statement by
using SQLWHENEVER or a conditional structure, such as IF-THEN_ELSE or CASE
statements. The code in Example 6-18 shows the errors that were handled in the calling
program.

Example 6-18 Client C program that calls a stored procedure and recovers error information

#include<stdio.h>
#include <string.h>
#include <stdlib.h>
#include<ctype.h>
#include <decimal.h>
#include <recio.h>
#define SIZE 5
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
 char productnum[5];
 char filename[50];
EXEC SQL END DECLARE SECTION;
void main(void)
{
 int res1,res2;
 unsigned char mstatevar[5];
EXEC SQL
 WHENEVER SQLERROR GOTO printmsg;
EXEC SQL
 WHENEVER SQLWARNING GOTO printnomsg;
printf("Enter the Product number:\n");
gets(productnum);
printf("Enter the Product picture filename with path :\n");
gets(filename);

 EXEC SQL
 call sproclib/inspic(:productnum , :filename);
 strncpy(mstatevar,SQLSTATE,5);
 printf("The SQLSTATE returned from the Stored procedure:%s\n",mstatevar);
168 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 exit(0);
printmsg:
printf("The SQLCODE returned:%i\n", sqlca.sqlcode);
strncpy(mstatevar,SQLSTATE,5);
res1=strncmp(mstatevar,"37999",5);
res2=strncmp(mstatevar,"38999",5);
 if((res1 > 0) && (res2 <= 0))
 {
printf("The user-defined SQLSTATE returned from SP:%s\n",mstatevar);
printf(" The error message:%s\n", sqlca.sqlerrmc);
 }
 else
 {
 printf("The SQLSTATE returned from SP:%s \n",mstatevar);
 }
 exit(1);
printnomsg:
strncpy(mstatevar,SQLSTATE,5);
printf("The Stored procedure returned a warning:\n");
printf("The SQLSTATE returned from the Stored procedure:%s\n",mstatevar);
exit(0);
}

6.3.2 GENERAL and GENERAL WITH NULLS parameter styles
External stored procedures that are defined with the GENERAL and the GENERAL WITH
NULLS parameter styles have no specific way to return error conditions. The GENERAL and
GENERAL WITH NULLS parameter styles were provided as a mechanism of reusing an
existing procedure, and they were not necessarily designed as database stored procedures.
Most of the procedures report their error conditions through an output parameter, such as the
example in 4.3.3, “Coding the GENERAL WITH NULLS parameter style” on page 57.

6.4 Error handling in Java stored procedures
The Java language allows great flexibility in defining and throwing user-defined exceptions.
The concept of database error handling in a Java stored procedure is based on the same
error handling strategy that is used for any other errors in Java by using the TRY and CATCH
blocks.

If a Java exception is thrown within a TRY block and one of the following CATCH statements
handles it, the Java stored procedure is not interrupted, and its execution continues after the
CATCH block.

If a Java exception is not caught, it is returned to the caller. The message that is passed back
to the caller depends on the type of exception that is thrown in the Java method, and on
whether it was an SQLException.

You can use the SQLException class to define an exception with virtually any sqlcode and
sqlstate. However, upon return from a Java stored procedure, the DB2 for i runtime handles
only certain return codes. For consistency reasons, we recommend that you adopt a similar
approach to the approach that is presented in 6.2, “Error handling in SQL stored procedures”
on page 145. While you throw the SQLException for a user-defined error condition, you can
set the sqlcode to -438 and the sqlstate to a state of class '38yxx'. This way, the error
condition is correctly recognized by the database runtime and passed back to the calling
process.
Chapter 6. Stored procedure error handling 169

You also can use the SQLWarning class, which is an extension of the SQLException class, to
manage warnings.

Table 6-3 is a guideline for setting the SQL return codes to values that can be handled
correctly by client code that is written in any programming language. It summarizes the
mapping possibilities mapping between a Java exception that is returned to the caller and its
corresponding SQLException that is returned to the caller.

Table 6-3 Mapping between Java exceptions and SQLExceptions

When the SQLCODE of the Java SQLException is 0, the client code assumes that the Java
stored procedure executed without any errors or warnings. The only trace that a Java
SQLException was thrown is message MCH74A0, which is logged in the job log of the server
job that executed the stored procedure.

If the SQLCODE of the Java SQLException is positive, the message that corresponds to the
DB2 Universal Database for iSeries SQLCODE is logged in the job log. If the caller is a Java
client, a Java SQL warning is returned with the SQLSTATE and the SQLCODE of the Java
SQL exception. Therefore, you can create your own Java stored procedure with, for example,
an SQL code of +438 (stored procedure that signaled an error). And, you can create an
SQLSTATE that is defined at your convenience, for example, '01ABC'. Then, you can use the
getWarnings() method in the Java client to retrieve your user-defined SQLSTATE and resolve
the issue.

If the SQLCODE of the SQLException is negative and the SQLCODE is a valid DB2 Universal
Database for iSeries value, the related message is logged in the job log. If the client is a Java
program, an SQLException is returned with SQLCODE and SQLSTATE values as set by the
Java stored procedure.

Any unhandled Java exception is returned to the caller as a generic SQLException with SQL
code -443 and the user-defined SQL state of 38501.

Consistent error handling for SQL and Java stored procedures
If you work with a heterogeneous environment with SQL stored procedures, SQL, or DB2SQL
parameter style external stored procedures, and Java stored procedures, we strongly
recommend that you adopt a consistent approach to handle errors.

Assume that you use the following RESIGNAL statement in an SQL stored procedure to
return a 'file not found' condition to the caller:

DECLARE EXIT HANDLER FOR file_not_found
RESIGNAL SQLSTATE '38TNT' SET MESSAGE_TEXT = 'IFS file not found.';

Java exception SQLCODE of the
Java
SQLException

Result in a
returned
SQLException

SQLCODE of the
returned
SQLException

SQLSTATE of the
returned
SQLException

java.sql.SQLException > 0 or = 0 No No SQLException No SQLException

java.sql.SQLException < 0 Yes SQLCODE of the Java
SQLException

SQLSTATE of the
Java SQLException

Any other exception N/A Yes -443 '38501'

Important: The message of the SQLEXCEPTION that is returned to the caller is always
the message that is associated with the IBM i server SQLCODE. It does not refer to the
original message of the Java exception.
170 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The SQLCODE is set by the database runtime to -438 on the return from the SQL stored
procedure. Both the JDBC and ODBC drivers monitor this SQL return code and pass the
user-defined SQL state and error message to the client application.

The equivalent Java SQLException can be defined as shown:

if (e instanceof FileNotFoundException) throw
 new SQLException("IFS file not found.", "38TNT", -438);

For the Java stored procedure, the user-defined error message is overlaid with the system
error message that is associated with the -438 error code. If no system message for this error
code is on your IBM i server, you can define the message with the following control language
(CL) command:

ADDMSGD MSGID(SQL0438) MSGF(QSQLMSG) MSG(’Stored procedure signaled an error’)

Error handling example
In 4.2.1, “SQL parameter style” on page 46, we explain that Java stored procedures on the
IBM i server can pass large object (LOB) parameters only when you use the DB2GENERAL
parameter style. However, the Java stored procedure can use character large object (CLOB) or
binary large object (BLOB) classes internally if the JDBC 2.0 driver is used. It is also possible
to handle BLOB without using the BLOB class, but by using an InputStream, as shown in the
following example.

This illustration features a Java stored procedure, LoadPicture, which is used for loading files
(pictures of the products) into the table PRODPIC. The procedure receives two parameters:
product number and the file path of the picture in the IFS. If the file is not found in the IFS, a
Java SQLException is raised and returned to the caller as a Java SQLWarning with a specific
user-defined SQLSTATE that indicates the special condition. For the C-embedded SQL
version of this stored procedure, see 6.3, “Error handling in external stored procedures” on
page 164. The code of this stored procedure is presented in Example 6-19.

Example 6-19 Java stored procedure that reports error and warning conditions

import java.sql.*;
import java.io.*; 1
public class LoadPicture {

 public static void loadPicture (String imageId, String imageFile)
 throws SQLException, Exception {

 Connection con = DriverManager.getConnection("jdbc:default:connection");
 Statement s = null;
 PreparedStatement ps = null;
 File f = null;
 InputStream is = null;
 boolean tableCreated = false;
 try {
 ps = con.prepareStatement("INSERT INTO PRODPIC VALUES(?, ?)"); 2
 }

Note: We refer to the open source version of the JDBC driver that is available for
download:

https://ibm.biz/Bd4c5V

For the ODBC functionality, you need to ensure that you loaded the latest version of the
iSeries (IBM i) Access Express Service Pack on your workstation. We also recommend
that you install the latest database fix pack on your IBM i server.
Chapter 6. Stored procedure error handling 171

https://ibm.biz/Bd4c5V

 catch(SQLException ex) { 3
 if (ex.getErrorCode() == -204)
 // or (e.getSQLState().equals("42704")) 4
 { // the table doesn't exist, we create it
 s = con.createStatement();
 s.executeUpdate("CREATE TABLE PRODPIC " + 5
 "(PRODUCT_NUMBER FOR COLUMN PRDNBR CHAR (5)" +
 "NOT NULL WITH DEFAULT," +
 "PRODUCT_PICTURE FOR COLUMN PRDPIC BLOB (1 M))");
 tableCreated = true;
 ps = con.prepareStatement("INSERT INTO PRODPIC VALUES(?, ?)");
 }
 else {
 throw ex; 6
 }
 }
 f = new File(imageFile.trim()); 7
 int filelength = (int) f.length();
 try {
 is = new FileInputStream(f); 7
 }
 catch(IOException e) {
 if (e instanceof FileNotFoundException)
 throw new SQLException("IFS file not found.", "38FNT", -438); 8
 }
 ps.setString(1, imageId);
 ps.setBinaryStream(2, is, filelength); 9
 ps.executeUpdate();
 if (tableCreated)
 throw new SQLException("Table created and insert successful.",
 "01HTC", 438); 10
 }
}

172 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The SQL statement to create the stored procedure is shown:

CREATE PROCEDURE LOADPICTURE
(in id CHAR(5), in image CHAR(100))
LANGUAGE JAVA PARAMETER STYLE JAVA NOT FENCED
EXTERNAL NAME 'LoadPicture!loadPicture';

Now that the stored procedure is registered, we can call it with the JDBC client
ClientLoadPicture. Its code is shown in 6.5.1, “Retrieving error conditions in a JDBC client” on
page 174.

6.5 Retrieving user-defined errors in a client application
The ODBC, Toolbox JDBC, and native JDBC drivers support user-defined error messages.
The drivers test the sqlcode field in the SQLCA area. If the sqlcode field contains either -443
or -438, the SQLSTATE and the diagnostic message are retrieved from the SQLCA. Then, the
client application can access these values by using standard error handling code.

Notes: The following notes refer to Example 6-19 on page 171:

1 Imports File and FileInputStream classes.

2 Prepares the statement that inserts one record in the file. This statement fails if the
table does not exist.

3 An SQLException with a negative SQLCODE of -204 is thrown if the table does not
exist. We can catch this exception and test for the SQLCODE to create the table.

4 Rather than checking the SQLCODE that might differ for different databases, we can
check the SQLSTATE, which is more portable. The value '42074' indicates that the table
is not found and corresponds to SQLCODE -204 on the IBM i server.

5 Table was created that contains the pictures, if it was not found.

6 If a non-handled SQLException is thrown, it is thrown to the caller.

7 A FileInputStream, which is based on the file path that is received as a parameter, is
created in the IFS.

8 If this path does not exist or the file is not found, a FileNotFoundException is generated.
Because this exception is not a SQLException, it results in an SQLEXCEPTION with
SQLCODE -443 that is returned to the caller. This exception is a generic exception that
does not provide the caller process with the cause of the failure. To provide the caller
with more descriptive error information, we catch the generic exception and throw our
own customized SQLException. We choose the negative SQLCODE -438, which
indicates that a serious error condition occurred in the stored procedure. Also, we
create our own SQLSTATE '38FNT', where FNT is a user-defined portion of the
SQLSTATE. Now, the caller application can test for the SQLSTATE that was returned by
the stored procedure and get the information that the IFS path passed as a parameter
to the stored procedure that was not valid.

9 The FileInputStream class is set up to correspond to the BLOB column in the table.

10 If the target table was created, the stored procedure signals a warning (SQLException
with a positive SQLCODE). We choose the SQLCODE +438, which indicates that the
stored procedure signaled an error. We create the SQLSTATE '01HCT', where CT stands
for create table.
Chapter 6. Stored procedure error handling 173

6.5.1 Retrieving error conditions in a JDBC client
A Java client, whether it is a JDBC client or a Structured Query Language for Java (SQLJ)
client, uses the TRY and CATCH blocks to manage errors, including database error
conditions. Two predefined classes are available to manage database errors:
java.sql.SQLException and java.sql.SQLWarning. SQLException is an extension of the
Exception class and SQLWarning is an extension of SQLException.

SQLException has useful methods for retrieving related information, such as getErrorCode()
and getSQLState(). The getErrorCode() method retrieves the vendor-specific error code,
which in the DB2 Universal Database family is the SQLCODE. The getSQLState() method
retrieves the SQL92 standardized SQLSTATE.

SQLException is thrown by stored procedures when an error condition is reached. SQLWarning
does not throw an exception. As shown in the example, SQLWarning can be retrieved with the
getWarnings() method that is associated with the SQL statement. The following example
shows how to manage both error and warning conditions.

Example 6-20 shows a JDBC client that retrieves error conditions.

Example 6-20 Java client program that recovers error or warning information

import java.util.*;
import java.io.*;
import java.sql.*;
import com.ibm.as400.access.*;

class ClientLoadPicture {
 public static void main (String argv[])
 {
 Properties props = new Properties();
 Connection con = null;
 CallableStatement cs = null;

 try
 {
 props.load(new BufferedInputStream(new FileInputStream("piclogon.properties")));
 String dbDriver = props.getProperty("dbDriver"); 1
 String dbUrl = props.getProperty("dbUrl");
 String dbUser = props.getProperty("dbUser").trim();
 String dbPassword = props.getProperty("dbPassword").trim();
 String sp = props.getProperty("sp");
 String pictureID = props.getProperty("pictureID");
 String pictureFile = props.getProperty("pictureFile");
 Class.forName(dbDriver).newInstance();
 try
 {
 con = DriverManager.getConnection(dbUrl, dbUser, dbPassword);

 cs = con.prepareCall("CALL dummy()");
 cs.execute();

 cs = con.prepareCall("CALL " + sp + "(?,?)");

Note: From the client application point of view, no difference exists between the native DB2
for i runtime errors and the user-defined error conditions. The user-defined errors are
displayed as another SQL runtime error. This capability is useful in client/server
environments, where the retrieval of native IBM i errors can be cumbersome or impractical.
174 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 cs.setString(1, pictureID);
 cs.setString(2, pictureFile);

 cs.execute(); 2
 SQLWarning w = cs.getWarnings(); 3
 if (w == null)
 System.out.println("Stored procedure executed without warning.");
 else
 {
 System.out.println("Stored procedure executed with warning.");
 System.out.println("The warning is : " + w.toString()); 4
 System.out.println("And an ErrorCode : " + w.getErrorCode());
 System.out.println("With a SQLState : " + w.getSQLState());
 System.out.println("Message : " + w.getMessage ());
 }

 if (cs != null) cs.close();
 if (con != null) con.close();
 System.exit(0);
 }
 catch (SQLException e) 5
 {
 System.out.println("Here's the e.toString() : " + e.toString()); 6
 System.out.println("Vendor code : " + e.getErrorCode());
 System.out.println("SQLState : " + e.getSQLState());
 System.out.println("Message : " + e.getMessage ());
 System.exit(1);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 System.exit(1);
 }
 }
}

Chapter 6. Stored procedure error handling 175

6.5.2 Retrieving error conditions from an ODBC or CLI client
Whenever any ODBC or DB2 command-line interface (CLI) function is called, a return code is
returned to the application to indicate the success or failure of the attempted operation. If the
operation fails, the application can call the SQLError() function to determine the cause of the
error. The SQLError() function returns three values to the application for each error that
occurred:

� Native error code
� SQLSTATE
� Error message text

Notes: The following notes refer to Example 6-20 on page 174:

1 The application reads the information that it needs to connect to the DB2 platform and
to call the stored procedure from a properties file that is called "piclogon.properties".
The contents of this file are shown:

piclogon properties
dbDriver=com.ibm.as400.access.AS400JDBCDriver
dbUser=db2admin
dbPassword=db2admin
dbUrl=jdbc:as400://AS400WS
sp=LOADPICTURE
pictureID=00004
pictureFile=/pictures/A004.jpg

The dbDriver, dbUrl, dbUser, and dbPassword properties are used to connect JDBC to
the database. The property sp indicates the name of the stored procedure. The last two
properties, pictureID and pictureFile, are the two input parameters that are passed
to the stored procedure.

2 The stored procedure is executed after its two parameters are established.

3 The first warning or SQLException with a positive SQLCODE that can be returned by
the stored procedure is retrieved.

4 All of the information that is contained in the warning is retrieved and displayed.

5 Any SQLException (with a negative SQLCODE) that occurred during the execution of
the stored procedure is retrieved.

6 The information that is contained in this exception is retrieved and displayed.
176 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Based on the values that are returned, the application determines the course of action.
Table 6-4 provides the list of possible codes that can be returned by the function.

Table 6-4 DB2 CLI function return codes

When the called function returns any code, other than SQL_SUCCESS, the application can
call the SQLError function to determine the cause of the error.

Additional SQLCODE and SQLSTATE codes
In addition to the already familiar SQLSTATE classes, the DB2 ODBC and CLI drivers can
generate their own error conditions that are of class HY. That is, SQLSTATEs, such as HYxxx,
correspond to errors that occurred in the DB2 ODBC or CLI driver. The SQLCODE for an
error that is generated by DB2 ODBC or CLI is -9999.

Retrieving error codes and messages
Whenever an error condition occurs, the application must call the SQLError() function to
retrieve the error information. The application must pass the following arguments to the
function:

� The handle to the environment. If this handle is not available, you can pass the value
SQL_NULL_HENV. This value is defined in the sqlcli.h header file.

� The handle to the connection. If this handle is not available, the application can pass
SQL_NULL_HDBC. This value is defined in the sqlcli.h header file.

� The handle to the statement. If this handle is not available, the application can pass the
value SQL_NULL_HSTMT. This value is available in the sqlcli.h header file.

� The pointer to a character buffer to contain the SQLSTATE.

� The pointer to an integer buffer to contain the native error code.

� The pointer to a character buffer to contain the error message text.

Return codes Explanation

SQL_SUCCESS The function completed successfully. No additional SQLSTATE
information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, but with a warning or other
information. The application can call the SQLError() function to
determine the SQLSTATE and the native error code. The
SQLSTATE code has the class “01”.

SQL_NO_DATA_FOUND This return code is mostly associated with query results. The
function completed successfully but it cannot find any relevant data.

SQL_ERROR The function call failed due to a problem. To determine the cause of
the failure, the application can call the SQLError() function. The
function retrieves the SQLSTATE, native error code, and error
message text.

SQL_INVALID_HANDLE The function failed because an invalid environment handle,
connection handle, or statement handle was sent as an argument
to a function.
Chapter 6. Stored procedure error handling 177

� The size of the buffer that contains the error message text. This size is ideally set to the
value SQL_MAX_MESSAGE_LENGTH + 1. This value is defined in the sqlcli.h header file.

� The pointer to a small integer buffer that contains the number of bytes that the function
returned after execution. See Example 6-21.

Example 6-21 CLI client program that recovers an error condition

SQLHENV Hnd_Henv;
SQLHDBC Hnd_Hdbc;
SQLHSTMT Hnd_Hstmt
SQLRETURN Nmi_ReturnCode;

int PrintError(SQLHENV Hnd_Henv, SQLHDBC Hnd_Hdbc,
 SQLHSTMT Hnd_Hstmt);

void main() {
 Nmi_ReturnCode = SQLAllocEnv(&Hnd_Henv);
 if (Nmi_ReturnCode != SQL_SUCCESS) {
 PrintError(SQL_NULL_HENV, SQL_NULL_HDBC, SQL_NULL_HSTMT);
 exit(-1);
 }

 Nmi_ReturnCode = SQLAllocConnect(Hnd_henv, &Hnd_Hdbc);
 if (Nmi_ReturnCode != SQL_SUCCESS) {
 PrintError(Hnd_Henv, SQL_NULL_HDBC, SQL_NULL_HSTMT);
 exit(-1);
 }

...
 (Processing Tasks)

...
 Nmi_ReturnCode = SQLAllocStmt(Hnd_Hdbc, &Hnd_Hstmt);
 if (Nmi_ReturnCode != SQL_SUCCESS) {
 PrintError(Hnd_Henv, Hnd_Hdbc, SQL_NULL_HSTMT);
 exit(-1);
 }

...
 Nmi_ReturnCode = SQLExecute(Hnd_Hstmt);
 if (Nmi_ReturnCode != SQL_SUCCESS) {
 PrintError(Hnd_Henv, Hnd_Hdbc, Hnd_Hstmt);
 exit(-1);
 }

...
 (Termination Tasks)
 ...
}

int PrintError(SQLHENV henv, SQLHDBC hdbc, SQLHSTMT hstmt) {
 SQLRETURN returncode;
 SQLCHAR sqlstate[SQL_SQLSTATE_SIZE];
 SQLINTEGER NativeErrorCode;
 SQLCHAR MessageText[SQL_MAX_MESSAGE_LENGTH + 1];
 SQLSMALLINT numbytes;

 /* --- Retrieve the SQLSTATE, Native Error Code, Message text ---
 returncode = SQLError(henv, hdbc, hstmt, sqlstate,
 &NativeErrorCode, MessageText,
 sizeof(MessageText), &numbytes);
 if (returncode != SQL_SUCCESS) {
 printf("Could not retrieve error information\n");
 return(-1);
178 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 }

 /* --- Dsiplay the Error Information --- */
 printf("The SQLSTATE is %s\n", sqlstate);
 printf("The Native Error Code is %d\n", NativeErrorCode);
 printf("Error Message:\n");
 printf("%s\n", MessageText);
 return(returncode);

For an ODBC client code example that retrieves error conditions that occurred in the stored
procedure, see 6.8.4, “C++ client code that uses ODBC” on page 196.

6.6 Transaction management in stored procedures
When you run stored procedures, you can update several rows in one table or even update a
number of rows in different tables. What happens when a failure occurs on the server side (in
this case, the IBM i server) and rows were supposed to be updated, but they were not?

Journaling, commitment control, and the recently introduced savepoints play a major role in
error handling that many IBM i clients underutilize. With the original transaction model of the
IBM i, programmers used a mechanism that allowed them to confirm (commit) or reverse (roll
back) database changes. In this way, if the program reaches a point in which a user-defined
error condition is detected, all database changes can be voluntarily rolled back to the
previous commit point or to the original state. Savepoints enhanced the transaction model by
providing more granularity in the transaction control.

As a principle of design, stored procedures, and also triggers and user-defined functions,
must stay independent from caller or firing processes. For this reason, we, as designers and
programmers, must carefully plan for an error-handling strategy that does not ruin the caller or
firing process work.

In this section, we describe the transaction management strategies that are available in
stored procedures. We start with transaction management terminology.

6.6.1 Transaction management terminology
A transaction is a set of operations to complete at one time as though they are a single
operation. A transaction must be fully completed, or not performed at all. An example of a
transaction is the transfer of funds from a savings account to a checking account. To the user,
this action is a single transaction. However, more than one change occurs to the database
because both the savings account and checking account are updated. It is unacceptable for
your checking account to be debited while your savings account is not credited.

Commitment control is a function so that you can define and process a group of changes to
resources, such as database files or tables, as a logical unit of work (LUW). A logical unit of
work is defined as a group of individual changes to objects on the system that must appear as
a single atomic change to the user. Users and application programmers might think of an
LUW as a transaction. Commitment control ensures that either the entire group of individual
changes occur on all systems that participate in the LUW or that none of the changes occurs.
Chapter 6. Stored procedure error handling 179

The savepoint is a marker or milestone within a transaction to which data and schema
changes can be undone. The nested savepoint is a model where a savepoint can be defined
within an existing savepoint versus a linear model where savepoints are not nested. The
savepoint level is the atomic context for which a rollback or release outside of the level is not
allowed by the user application. Savepoints were first introduced in DB2 Universal Database
for iSeries in V5R2.

The isolation level is the level of reinforcement of the transactional behavior of the database
for a particular activation group. *NONE is a level in which transactional behavior is not
reinforced. Other possible values are read uncommitted (UR), cursor stability (CS),
repeatable read (RR), and read stability (RS). Be careful when you read IBM i literature
because several of these terms have different meanings for authors that are familiar with
other platforms. For more information, see SQL Reference, SC41-5612.

6.6.2 Transactional behavior
While the isolation level is set up in a value different than *NONE, we can see the scenarios
that are shown in Figure 6-7.

Figure 6-7 Transactional scenarios

In Figure 6-7, you see the following scenarios:

� The procedure reaches a COMMIT statement. All SAVEPOINTs are released and the
changes in the database become permanent. It is similar to a confirmation that the
completion of the transaction is reached. A new transaction or unit of work is initiated.

� The system crashes before it reaches a COMMIT or ROLLBACK statement. In this
scenario, all operations are reversed until the beginning of the transaction or unit of work,
as illustrated in the first part of Figure 6-7.

Insert Insert Insert Insert Insert Insert Insert Insert Insert ROLLBACK

Type text
Type text Type text

Type text

Insert Insert Insert Insert Insert Insert Insert Insert Insert ROLLBACK

Type text

Begin

transaction

Type text

Savepoint A
Type text

Type text

Crash

Insert Insert Insert Insert Insert Insert Insert Insert ROLLBACK TO SAVEPOINT B

Type text
Type text Type text

Type text

A. Crashing scenario

B. Application causes a rollback

C. Application causes a rollback to a specific savepoint

Savepoint B
Savepoint C

Begin

transaction Savepoint A
Savepoint B

Savepoint C

Begin

transaction Savepoint A
Savepoint B

Savepoint C
180 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

� The procedure reaches a ROLLBACK statement. All SAVEPOINTs are released and the
changes in the database are reversed until the beginning of the transaction or unit of work,
as illustrated in the second part of Figure 6-7 on page 180.

� The procedure reaches a ROLLBACK TO SAVEPOINT statement. The changes to the
database are reversed until the specified savepoint as illustrated in the third part of
Figure 6-7 on page 180. In the figure, savepoint B was not released but savepoint C was
released.

All SQL programs execute as part of an application process. In OS/400, an application
process is called a job. An application process is made up of one or more activation groups.
Each activation group involves the execution of one or more programs. Programs run under a
non-default activation group or the default activation group.

Nested savepoints
Nested savepoints are implemented through savepoint levels, which are name spaces for
savepoint names. A savepoint level is implicitly created and ended by specific events as
shown in Table 6-5.

Table 6-5 Events that initiate and terminate savepoint levels

When a savepoint level ends, all active savepoints that are established within the current
savepoint level are automatically released. Any open cursors, Data Definition Language
(DDL) actions, or data modifications are inherited by the parent savepoint level and are
subject to any savepoint-related statements that are issued within the parent savepoint level.

Note: The activation group of the Integrated Language Environment (ILE) C program that
is generated by the execution of the SQL CREATE PROCEDURE statement is always set
to *CALLER. Therefore, an SQL procedure always runs in the same activation group as the
program that calls it. If the SQL procedure COMMITs any changes, all changes within this
activation group are committed.

Savepoint level is initiated when Savepoint level terminates when

A new unit of work is started. A COMMIT or ROLLBACK is issued.

A trigger is invoked. The trigger completes.

A user-defined function is invoked. The user-defined function completes.

A stored procedure is invoked, and the stored
procedure was created with the NEW
SAVEPOINT LEVEL clause.

The stored procedure returns to the caller.

A BEGIN is part of an ATOMIC compound SQL
statement.

An END is part of an ATOMIC compound SQL
statement.
Chapter 6. Stored procedure error handling 181

In scenario D in Figure 6-8, only statements in stored procedure A are rolled back. All
statements in the main stored procedure are committed. In scenario E, the COMMIT
statement in the stored procedure A confirms all statements since the beginning of the unit of
work, no matter what the savepoint level in which they were performed is. The external
rollback affects all statements that occurred after that commit. In scenario F, the ROLLBACK
statement in stored procedure A backs out database operations that are performed in
procedures B and C.

Figure 6-8 Nested savepoints

6.6.3 SQL statements for controlling transactions
The DB2 Universal Database for iSeries stored procedures support the following SQL
statements for the transaction management:

� COMMIT
� SAVEPOINT
� ROLLBACK and ROLLBACK TO SAVEPOINT
� RELEASE SAVEPOINT
� SET TRANSACTION

Type text

Savepoint B

Insert Update Delete

Type text

Begin

transaction

D. Nested savepoint with partial rollback

Insert Update Insert Delete Call A Delete COMMITUpdate

Type text

Savepoint A

Insert Update Insert Delete ROLLBACK

Type text

Savepoint A

Insert Update Insert Delete COMMIT

Type text

Begin

transaction

E. Which statements are really rolled back?

Insert Update Insert Delete Call A Delete ROLLBACKUpdate

Type text

Begin

transaction

F. Nested savepoint with partial rollback affecting inner levels

Insert Update Insert Delete Call A Delete COMMITUpdate

Type text

Savepoint A

Insert Update Call B Delete ROLLBACK
182 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

COMMIT
The COMMIT statement ends a unit of work and commits the database changes that were
made by that unit of work.

SAVEPOINT
The SAVEPOINT statement is used to establish a milestone into the current LUW. A name for
the savepoint must be supplied. You can optionally specify whether that savepoint name must
be unique. If yes, the savepoint cannot be reused with the stored procedure and procedures,
triggers, and UDFs that it is called or fired by.

A savepoint that is set with a SAVEPOINT that did not include the UNIQUE keyword can be
reused in the same savepoint level in a subsequent SAVEPOINT statement, without needing
to explicitly release the original savepoint. In this case, the second savepoint replaces the
original savepoint with the same name.

ROLLBACK and ROLLBACK TO SAVEPOINT
The ROLLBACK statement is used to back out the database to the beginning of the current
transaction or to a specific savepoint. When the ROLLBACK TO SAVEPOINT is used, the
database is backed out to the last savepoint. A specific savepoint can be specified as in the
following example:

...
INSERT INTO MYLIB.TRACE_TABLE VALUES (‘FIRST INSERTED ROW’);
SAVEPOINT savepoint_A;
INSERT INTO MYLIB.TRACE_TABLE VALUES (‘SECOND INSERTED ROW’);
SAVEPOINT savepoint_B;
INSERT INTO MYLIB.TRACE_TABLE VALUES (‘THIRD INSERTED ROW’);
SAVEPOINT savepoint_C;
INSERT INTO MYLIB.TRACE_TABLE VALUES (‘FOURTH INSERTED ROW’);
...
ROLLBACK TO SAVEPOINT savepoint_B;
...

In this case, table TRACE_TABLE will be inserted with the first and second rows, but the third
and fourth rows will be rolled back. Savepoint_B will not be released. It will continue to exist
after the ROLLBACK TO SAVEPOINT statement is executed.

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement releases a previously established savepoint name for
reuse. After a savepoint name is released, a rollback to that savepoint name is no longer
possible.

SET TRANSACTION
The SET TRANSACTION statement sets the isolation level for the current unit of work. We
start by defining what the isolation level is. The isolation level that is used during the execution
of SQL statements determines the degree to which the activation group is isolated from
concurrently executing activation groups. The isolation level is specified as an attribute of an
SQL program or SQL package, and it applies to the activation groups that use the SQL
package or SQL program. DB2 Universal Database for iSeries provides the means of
specifying the isolation level through the COMMIT parameter on the CRTSQLxxx, STRSQL, and
RUNSQLSTM commands.
Chapter 6. Stored procedure error handling 183

The SET TRANSACTION statement can be used to override the isolation level within a unit of
work. When the unit of work ends, the isolation level returns to its value at the beginning of
the unit of work. In the SELECT, SELECT INTO, INSERT, UPDATE, DELETE, and DECLARE
CURSOR statements, you can specify the isolation level by using an isolation clause. The
isolation level is in effect only for the execution of the statement that contains the isolation
clause. An example of the SET TRANSACTION statement is shown:

SET TRANSACTION ISOLATION LEVEL UR

This statement sets the isolation level to READ UNCOMMITTED, which is the equivalent to
*CHG. For more information, see SQL Reference, SC41-5612.

6.6.4 Transaction management in compound statements
You can use compound statements to group other statements together in an SQL procedure.
Every compound statement starts with a BEGIN clause and ends with an END clause. In the
BEGIN clause, you can specify the keyword ATOMIC. ATOMIC indicates that if an error occurs in
the compound statement, all SQL statements in the compound statement are rolled back. If
NOT ATOMIC is specified, it indicates that an error within the compound statement does not
cause the compound statement to be rolled back, and it is the programmer’s responsibility to
code the recovery code for the procedure.

Example 6-22 illustrates the use of commitment control statements within a compound SQL.

Example 6-22 Commitment control statements within a compound SQL

CREATE PROCEDURE CREDITP
 (IN i_perinc DECIMAL(3,2),
 INOUT o_numrec DECIMAL(5,0))
 LANGUAGE SQL
 BEGIN 1
 DECLARE proc_cusnbr CHAR(5);
 DECLARE proc_cuscrd DECIMAL(11,2);
 DECLARE numrec DECIMAL(5,0);
 DECLARE at_end INT DEFAULT 0;
 DECLARE not_found
 CONDITION FOR '02000';
 DECLARE c1 CURSOR FOR
 SELECT cusnbr, cuscrd
 FROM ordapplib.customer;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 SET numrec = 0;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 ROLLBACK; 2
 OPEN c1;
 FETCH c1 INTO proc_cusnbr, proc_cuscrd;
 WHILE at_end = 0 DO
 SET proc_cuscrd = proc_cuscrd +(proc_cuscrd * i_perinc);
 UPDATE ordapplib.customer
 SET cuscrd = proc_cuscrd
 WHERE CURRENT OF c1;
 SET numrec = numrec + 1;

Important: If ATOMIC is specified, the COMMIT and ROLLBACK statements must not be
specified in the compound statement, and the tables must be journaled.

If UNDO is specified in the declaration of a handler in a compound statement, ATOMIC
must be specified in the BEGIN clause.
184 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 FETCH c1 INTO proc_cusnbr, proc_cuscrd;
 END WHILE;
 SET o_numrec = numrec;
 CLOSE c1;
 COMMIT; 3
 END

Example 6-23 presents equivalent code, but the code uses BEGIN ATOMIC instead (1).The
error handler that causes a ROLLBACK and the commit statement are not present in this
example.

Example 6-23 Commitment control statements that use BEGIN ATOMIC

CREATE PROCEDURE CREDITP_ATOMIC
 (IN i_perinc DECIMAL(3,2),
 INOUT o_numrec DECIMAL(5,0))
 LANGUAGE SQL
 BEGIN ATOMIC 1
 DECLARE proc_cusnbr CHAR(5);
 DECLARE proc_cuscrd DECIMAL(11,2);
 DECLARE numrec DECIMAL(5,0);
 DECLARE at_end INT DEFAULT 0;
 DECLARE not_found
 CONDITION FOR '02000';
 DECLARE c1 CURSOR FOR
 SELECT cusnbr, cuscrd
 FROM ordapplib.customer;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 SET numrec = 0;
 OPEN c1;
 FETCH c1 INTO proc_cusnbr, proc_cuscrd;
 WHILE at_end = 0 DO
 SET proc_cuscrd = proc_cuscrd +(proc_cuscrd * i_perinc);
 UPDATE ordapplib.customer
 SET cuscrd = proc_cuscrd
 WHERE CURRENT OF c1;
 SET numrec = numrec + 1;
 FETCH c1 INTO proc_cusnbr, proc_cuscrd;
 END WHILE;
 SET o_numrec = numrec;
 CLOSE c1;
 END

Notes: The following notes refer to Example 6-22 on page 184:

1 The BEGIN clause does not have the ATOMIC keyword.

2 ROLLBACK is issued if an SQL EXCEPTION exists. In this case, all of the updates to
the CUSTOMER file are reversed.

3 After the cursor is closed, the procedure COMMITs all of the changes to the file.
Chapter 6. Stored procedure error handling 185

Difference between V5R1 and V5R2 ATOMIC compound statement
Because savepoints were introduced in V5R2, the behavior of atomic compound statements
changed slightly. In V5R1, a BEGIN ATOMIC compound statement caused an implicit commit
when the procedure reached the END statement. Therefore, a stored procedure that contains
an atomic compound statement will automatically commit the database changes that the
caller program performed before the caller program called it. In the same way, if the atomic
compound statement encounters a non-monitored error condition, it will cause an implicit
ROLLBACK, backing out also those database changes that were performed by the caller
before the caller called the stored procedure.

With the new savepoint support, the atomic compound statement approach is to implicitly
start a new savepoint name level and set up a savepoint at the beginning. That savepoint is
released when the compound statement reaches the END statement. This approach leaves
the commitment responsibility to the caller, and it still allows the compound statement to be
atomic. If the stored procedure reaches an unmonitored error condition, it will implicitly
execute a ROLLBACK TO SAVEPOINT, backing out only the database changes that are
performed inside the stored procedure.

This small behavioral change increases the usability of atomic compound statements in
stored procedures, triggers, and UDFs because the side effect of committing operations
outside the scope of the procedure is easily avoided now.

Consider the following stored procedure:

CREATE PROCEDURE ATOMIC01()
LANGUAGE SQL
BEGIN ATOMIC
 INSERT INTO TEST VALUES ('ATOMIC01', CURRENT TIMESTAMP, 'Row inserted in ATOMIC01');
END ;

CREATE PROCEDURE CALLER()
LANGUAGE SQL
BEGIN
 INSERT INTO TEST VALUES ('CALLER', CURRENT TIMESTAMP,
 'Row inserted before calling ATOMIC01');
 CALL ATOMIC01;
 INSERT INTO TEST VALUES ('CALLER', CURRENT TIMESTAMP,
 'Row inserted after calling ATOMIC01');
 ROLLBACK;
END ;

After you execute the stored procedure CALLER in V5R2, the TEST table is empty, if it was
empty before execution. In V5R1, the TEST table is not empty.

6.7 External stored procedures and commitment control
The following paragraphs describe how you can preserve the integrity of transactions where
stored procedures perform data changes, either on the local site or on a remote system.

6.7.1 Activation group

The scope for the transaction or UOW is the activation group. Therefore, if both the caller and
stored procedure programs are running on the same activation group, changes that are
performed by both programs belong to the same transaction. A commit that is performed in
the stored procedure will also commit changes that were previously performed by the caller
program, which usually we want to avoid.
186 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

This situation is illustrated in Figure 6-9.

Figure 6-9 Caller and stored procedure in the same activation group

Type text

Begin

transaction

Insert row 1 Call SP1 ROLLBACKInsert row 3

Insert row 2

Scenario 1: Caller and stored procedure on the same UOW scope
No commit or rollback in the stored procedure

Type text

Begin

transaction

Insert row 1 Call SP1 ROLLBACKInsert row 3

Insert row 2 COMMIT

Scenario 2: Caller and stored procedure on the same UOW scope
Commit performed in the stored procedure

Type
text

Savepoint A

Insert row 2 ROLLBACK

Type
text Begin

transaction

Insert row 1 Call SP1 COMMITInsert row 3

Scenario 3: Caller and stored procedure on the same UOW scope
Rollback performed in the stored procedure
Chapter 6. Stored procedure error handling 187

Although scenario 1 is acceptable, scenarios 2 and 3 are considered to be the result of an
ill-designed application.

When the caller application and the stored procedure run on different activation groups, they
act as separate transactions. The commit or rollback in one of them does not affect the
operations that are performed by the other, as shown in Figure 6-10.

Figure 6-10 External stored procedure that is running in a different activation group

If your stored procedure is an original program model (OPM) program that is running at the
remote system, it will always run in the default activation group and in the same commitment
definition as the calling application.

Type text

Begin

transaction

Insert row 1 Call SP1 ROLLBACKInsert row 3

Insert row 2 COMMIT

Scenario 4: Caller and stored procedure on separate UOW scope
Rollback in the caller, commit in the stored procedure

Type text

Begin

transaction

Insert row 1 Call SP1 COMMITInsert row 3

Insert row 2 ROLLBACK

Scenario 5: Caller and stored procedure on separate UOW scope
Commit in the caller, rollback in the stored procedure
188 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Figure 6-11 shows a local stored procedure that shares the commitment definition.

Figure 6-11 Local stored procedure that shares the commitment definition

Figure 6-12 shows a local stored procedure in a separate commitment definition.

Figure 6-12 Local stored procedure in a separate commitment definition

6.7.2 Savepoints
Savepoints were first introduced in DB2 Universal Database for iSeries in V5R2, extending
the functionality of the commitment control. With the savepoints, the level of control on
transactions that involve stored procedures is greatly improved, as shown in 6.6.2,
“Transactional behavior” on page 180.

Note: If you create an ILE program with the default compilation attributes of option 14 on
the WRKMBRPDM display, your ILE program might end up running as a separate
activation group. Consult the specific ILE language programmer’s guide. Use a two-step
compilation process, and create the module first with option 15. Then, create the program
by using the CRTPGM ACTGRP(*CALLER) parameter.

Calling Pgm Stored Proc

Change
Change
 .
 .

Change
 .
 .
COMMIT

Same Commitment Definition

The COMMIT statement
commits all changes, even
though they are performed
by the calling program.

Calling Pgm Stored Proc

Change
Change
 .
 .

Change
 .
 .
COMMIT

Different Commitment Definition

The COMMIT statement
commits only the changes
performed by the stored
procedure.
Chapter 6. Stored procedure error handling 189

A new clause was added to the CREATE PROCEDURE SQL statement, NEW SAVEPOINT
LEVEL. By default, when an external stored procedure is created, it is defined to run on the
same SAVEPOINT level as the caller. When the clause NEW SAVEPOINT LEVEL is used, a
new savepoint level is initiated. In this way, the savepoint names that are set in the stored
procedure will not conflict with existing savepoint names in the caller application.

The COMMIT or ROLLBACK statements are allowed for a local stored procedure. However, if
the stored procedure runs in a separate commitment control definition, any COMMIT and
ROLLBACK statements that are issued within the stored procedure affect only the changes
that are performed by the stored procedure itself. The application cannot commit and roll back
those changes.

6.8 Several practical examples
We present three similar versions of stored procedures:

� SQL stored procedure
� External stored procedure
� Java stored procedure

We also present two versions of client code: C++ client code and Java client code.

Because these versions of stored procedures use a consistent error handling approach, you
can see how easily you can change from one to another with transparency from the client
point of view.

6.8.1 SQL stored procedure example
We start with an SQL stored procedure. The routine is called MODSAL, and it is used to
modify an employee’s salary. The personal data for employees, such as serial number,
compensation details, and department number, is stored in the EMPLOYEE table. The
DEPARTMENT table, in turn, contains the department information, including the department
manager’s serial number. The records in EMPLOYEE and DEPARTMENT are related by the
department number. The MODSAL stored procedure implements a business rule that the
total compensation of an employee must not exceed the compensation of their manager. The
routine’s logic checks whether the rule is compromised. If it is, an error condition is signaled to
the calling process.

The code snippet in Example 6-24 illustrates how to set the user-defined errors in an external
stored procedure. The routine accepts two parameters: employee number of type CHAR(5)
and salary change of type DECIMAL(9,2). The numbered sections are explained in the
following list.

Important: The only supported interface to work with savepoints is through SQL
statements.
190 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Example 6-24 shows how to set user-defined errors in an external stored procedure.

Example 6-24 Setting user-defined errors in an external stored procedure

create procedure db2user.modsal (in i_empno char(6), in i_salary dec(9,2))
language SQL

begin atomic

declare v_job char(8);
declare v_salary dec(9,2);
declare v_bonus dec(9,2);
declare v_comm dec(9,2);
declare v_mgrno char(6);
declare v_mgrcomp dec(9,2);

declare c1 cursor for
 select job, salary, bonus, comm, d.mgrno,
 (select (salary+bonus+comm) from employee where empno = d.mgrno) as mgrcomp
 from employee e, department d
 where empno = i_empno and e.workdept = d.deptno;
declare exit handler for sqlstate '38S01' 2
 resignal sqlstate '38S01'
 set message_text ='MODSAL: Compensation exceeds the limit.';
declare exit handler for sqlstate '02000' 3
 signal sqlstate '38S02'
 set message_text='MODSAL: Invalid employee number.';

open c1;
fetch c1 into v_job, v_salary, v_bonus, v_comm, v_mgrno, v_mgrcomp;
close c1;

if (i_empno <> v_mgrno) and ((v_salary + i_salary + v_bonus + v_comm) >= v_mgrcomp)
 then signal sqlstate '38S01'; 1
end if;

update employee set salary = v_salary + i_salary where empno = i_empno;

end

Code sample notes
The following notes refer to Example 6-24 on page 191:

1 If the business rule is compromised, sqlstate '38S01' is signaled. The control is transferred
to the error handler that is defined for this state.

2 The error handler that is defined for the '38S01' sqlstate signals the user-defined error
condition. The RESIGNAL statement is used to reset the return sqlstate to '38S01'. It also
sets the diagnostic message. After the RESIGNAL is fired, the stored procedure
immediately returns the specified error to the caller. On return, sqlcode is set to -438.
Unlike the external stored procedure, the entire sqlerrmc element of the SQLCA area is
available for the customized message. No message is truncated in SQL stored
procedures.

3 The sqlstate '02000' is returned to the SQL SP if no data for the employee number is
passed as the first parameter. This condition can be thrown either by the FETCH or
searched UPDATE statement. The error handler handles this condition by signaling
sqlstate '38S02' to the caller.
Chapter 6. Stored procedure error handling 191

6.8.2 External stored procedure example
Example 6-25 presents an external stored procedure that is implemented in C-embedded
SQL. The routine is called MODSALC. It is functionally equivalent to the SQL stored
procedure MODSAL that was presented in 6.8.1, “SQL stored procedure example” on
page 190.

Example 6-25 External stored procedure that is implemented in C-embedded SQL

#pragma nosigtrunc
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqludf.h>
#include <decimal.h>

EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ErrorHandler;

void main(int argc, char **argv)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char i_empno[7]; /* input parm - employee number */
 decimal(9,2) i_salary; /* input parm - salary change */
 char v_job[9]; /* job description */
 decimal(9,2) v_salary; /* current salary */
 decimal(9,2) v_bonus; /* current bonus */
 decimal(9,2) v_comm; /* current commission */
 char v_mgrno[7]; /* manager's employee number */
 decimal(9,2) v_mgrcomp; /* manager's total compensation */
 EXEC SQL END DECLARE SECTION;
 unsigned char errmc[SQLUDF_MSGTEXT_LEN + 1];
 Strcpy(i_empno,(char*)argv[1]);
 i_salary = *((decimal(9,2) *)argv[2]);
 /* retrieve current job and compensation data for an employee
 with the compensation data for his/her manager */
 EXEC SQL
 DECLARE C1 CURSOR FOR
 select job, salary, bonus, comm, d.mgrno,
 (select (salary+bonus+comm) from employee where empno = d.mgrno)
 from employee e, department d
 where empno = :i_empno and e.workdept = d.deptno;

 EXEC SQL
 OPEN C1;
 EXEC SQL
 fetch C1 into :v_job,:v_salary,:v_bonus,:v_comm,:v_mgrno,:v_mgrcomp;
 if (sqlca.sqlcode == 100)
 {
 /* signal sqlstate 38S02 */ 3
 strcpy(argv[5],"38S02");
 strcpy(errmc,"Invalid employee number.");
 strcpy(argv[8], errmc);
 exit(1);
 }
 EXEC SQL
 CLOSE C1;

 if((strncmp(i_empno,v_mgrno,6) != 0) &&
 ((v_salary+i_salary+v_bonus+v_comm)>=v_mgrcomp))
 {
192 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 /* signal sqlstate 38S01 */ 1
 strcpy(argv[5],"38S01");
 strcpy(errmc,"Compensation exceeds the limit.");
 strcpy(argv[8], errmc);
 exit(1);
 }
 EXEC SQL
 update employee set salary = :v_salary+:i_salary
 where empno = :i_empno;
 exit(0);

 ErrorHandler:
 /* signal sqlstate 38S00 for SQL runtime errors */ 2
 strcpy(argv[5],"38S00");
 sprintf(errmc,"Native SQL: code=%5d state=%5s\n",
 sqlca.sqlcode, sqlca.sqlstate);
 strcpy(argv[8], errmc);
 exit(1);
 }

Use the following CL commands to create the stored procedure program object:

CRTCMOD MODULE(DB2USER/MODSALC) SRCFILE(DB2USER/QCSRC)
CRTPGM PGM(DB2USER/MODSALC) ACTGRP(*CALLER)

After the program object is created, it needs to be registered as a stored procedure with this
SQL statement:

CREATE PROCEDURE db2user.ModSalC(IN i_empno char(6),
 IN i_salary dec(9,2))
LANGUAGE C
EXTERNAL NAME db2user.modsalc
MODIFIES SQL DATA
PARAMETER STYLE SQL
Chapter 6. Stored procedure error handling 193

Code sample notes
The following notes refer to Example 6-25 on page 192:

1 If the business rule is compromised, the stored procedure sets sqlstate to '38S01'. It also
sets the diagnostic message to indicate the reason of the error condition.

2 This error handler is a “catch-all” error handler for native SQL errors. The SQL exceptions
that are not handled by the external procedure’s logic are not passed back to the calling
process. On return, the sqlstate is set to '00000', which means successful completion.
Therefore, the external procedure needs to take the correct action. In our case, we set the
sqlstate to '38S00', so we make sure that the procedure call fails with the -443 sqlcode.
The diagnostic message is used to return native sqlcode and sqlstate.

3 The procedure checks to see whether the employee serial number that was passed as the
first parameter is valid. If no data is identified for a specific employee number, sqlstate is
set to '38S02', and the correct diagnostic message is returned to the caller.

6.8.3 Java stored procedure example
The code sample in Example 6-26 shows the Java implementation of the MODSAL SQL
stored procedure.

Example 6-26 Java implementation of the MODSAL SQL stored procedure

import java.sql.*;
import java.math.*;

public class ModSalJ
 { public static void modSalJ (String i_empno, BigDecimal i_salary)
 throws SQLException
 { Connection con = DriverManager.getConnection("jdbc:default:connection");
 String v_job = null;
 BigDecimal v_salary = null;
 BigDecimal v_bonus = null;
 BigDecimal v_comm = null;
 String v_mgrno = null;
 BigDecimal v_mgrcomp = null;
 String stmt = null;
 PreparedStatement ps = null;
 PreparedStatement psu = null;
 try {
 stmt = "select job, salary, bonus, comm, d.mgrno, ";
 stmt = stmt +
"(select (salary+bonus+comm) from employee where empno = d.mgrno) as mgrcomp";
 stmt = stmt + " from employee e, department d";

Note: In an external stored procedure, the full message text will probably not be
accessible to the calling process. Generally, the sqlerrmc field of the SQLCA area is
used by the SQL runtime to return the customized error message. However, if the SQL
parameter style is specified, the SQL runtime uses a portion of sqlerrmc to return other
information, such as the procedure’s name and schema. The message text itself is
placed in the sqlerrmc field as the sixth token. Due to the necessary truncation, the
message that is passed back contains no more than 30 characters. You can maximize
the returned message length by using short procedure names. This way, more bytes in
the sqlerrmc element are left for the diagnostic message. The alternate approach is to
use the user-defined sqlstate value that is returned to the client to determine (for
example, through a table lookup) the error message to present to the user. In this case,
the error message mapping is performed by the client application.
194 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 stmt = stmt + " where empno = ? and e.workdept = d.deptno";

 ps = con.prepareStatement(stmt);
 ps.setString(1, i_empno);
 boolean cursor;
 ResultSet rs = ps.executeQuery();
 cursor=rs.next();
 if (cursor)
 {
 v_job = rs.getString(1);
 v_salary = rs.getBigDecimal(2);
 v_bonus = rs.getBigDecimal(3);
 v_comm = rs.getBigDecimal(4);
 v_mgrno = rs.getString(5);
 v_mgrcomp = rs.getBigDecimal(6);
 ps.close();
 }
 else
 {
 // signal slq state 38S02
 throw new
 SQLException("Invalid employee number.", "38S02", -438); 2
 }
 if (i_empno.compareTo(v_mgrno) != 0
 &&
(((v_salary.add(i_salary)).add(v_bonus)).add(v_comm)).compareTo(v_mgrcomp)>=0)
 {
 // signal SQL state 38S01
 throw new
 SQLException("Compensation exceeds the limit.", "38S01", -438); 1
 }
 v_salary = v_salary.add(i_salary);
 stmt = "update employee set salary=? where empno = ?";
 psu = con.prepareStatement(stmt);
 psu.setBigDecimal(1, v_salary);
 psu.setString(2, i_empno);
 psu.executeUpdate();
 psu.close();
 }
 catch(SQLException ex)
 { // we're not handling here
 throw ex; 3
 }
 }
}

Chapter 6. Stored procedure error handling 195

Code sample notes
The following notes refer to Example 6-26 on page 194:

1 The SQLException is thrown to signal that the business rule was compromised. The
sqlstate is set to '38S01', and the sqlcode is set to -438. Formally, a Java procedure is an
external stored procedure. Therefore, you can also set the sqlcode to -443, that is, to the
error code that is used by the database runtime to indicate error conditions in an external
routine. In our methodology, we decided to take advantage of the Java language flexibility
to return -438 rather than -443. Because both codes are correctly handled by the
database runtime, we opted for the solution that provides an entire diagnostic message
buffer.

2 If the employee number that was passed as a parameter is invalid, an SQLException is
thrown to signal that an error condition occurred in the stored procedure.

3 All potential SQL runtime errors, with the user-defined error conditions, are caught by this
CATCH block and thrown again so that they are returned to the caller.

6.8.4 C++ client code that uses ODBC
Example 6-27 shows how the SQL errors that are returned from a stored procedure can be
retrieved and presented in a C++ client that connects to the IBM i database server through an
Open Database Connectivity (ODBC) connection.

Example 6-27 SQL errors that are presented in a C++ client that connects to the IBM i

#include <windows.h>
#include <SQL.h>
#include <sqlext.h>
#include <stdio.h>
#include <iostream.h>
#include <time.h>

// Define The ModifySalary Class
class ModifySalary
{
 // Attributes
 public:
 SQLHANDLE EnvHandle;
 SQLHANDLE ConHandle;
 SQLHANDLE SpStmtHandle;
 SQLRETURN rc;
 // Operations
 public:
 ModifySalary(); // Constructor
 ~ModifySalary(); // Destructor
 SQLRETURN executeSP(char *, SQLDOUBLE);
 SQLRETURN printError(SQLHDBC, SQLHSTMT);
};

// Define The Class Constructor
ModifySalary::ModifySalary()
{
 // Initialize The Return Code Variable
 rc = SQL_SUCCESS;
 // Allocate An Environment Handle
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &EnvHandle);
 // Set The ODBC Application Version To 3.x
 if (rc == SQL_SUCCESS)
 rc = SQLSetEnvAttr(EnvHandle, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
196 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 // Allocate A Connection Handle
 if (rc == SQL_SUCCESS)
 rc = SQLAllocHandle(SQL_HANDLE_DBC, EnvHandle, &ConHandle);
}

// Define The Class Destructor
ModifySalary::~ModifySalary()
{
 // Free The SQL Statement Handle
 if (SpStmtHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_STMT, SpStmtHandle);
 // Free The Connection Handle
 if (ConHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_DBC, ConHandle);
 // Free The Environment Handle
 if (EnvHandle != NULL)
 SQLFreeHandle(SQL_HANDLE_ENV, EnvHandle);
}

SQLRETURN ModifySalary::executeSP(char * i_empno, SQLDOUBLE salary)
{
 // Declare The Local Memory Variables
 SQLRETURN rc;
 char empno[7];
 SQLINTEGER cbValue;

 strcpy((char *)empno, i_empno);
 // Bind the output parameter for the stored procedure
 cbValue = SQL_NTS;
 rc=SQLBindParameter(SpStmtHandle, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

 6, 0, (SQLCHAR *) empno, sizeof(empno), (SQLINTEGER *) &cbValue);
 rc=SQLBindParameter(SpStmtHandle, 2, SQL_PARAM_INPUT, SQL_C_DOUBLE,
 SQL_DECIMAL, 9, 2, &salary, sizeof(salary), NULL);
 //calling stored procedure
 rc = SQLExecute(SpStmtHandle);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) 1

{printError(ConHandle, SpStmtHandle);
}

 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
rc = SQLEndTran(SQL_HANDLE_DBC, ConHandle, SQL_ROLLBACK);

 else
{rc = SQLEndTran(SQL_HANDLE_DBC, ConHandle, SQL_COMMIT);
cout << "Stored procedure call completed successfully." << endl;}

 return(rc);
}

SQLRETURN ModifySalary::printError (SQLHDBC hdbc, SQLHSTMT hstmt)
{
 SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];
 SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
 SQLINTEGER sqlcode;
 SQLSMALLINT length;
 SQLRETURN rc;

while ((rc = SQLError(SQL_NULL_HENV, hdbc, hstmt, 2

sqlstate,&sqlcode,buffer, SQL_MAX_MESSAGE_LENGTH + 1,
&length)) == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)

{
cout << "SQLSTATE: " << sqlstate << endl;
Chapter 6. Stored procedure error handling 197

cout << "SQLCODE : " << sqlcode << endl;
cout << "Error msg : " << buffer << endl;
cout <<"----------------------------- " << endl << endl;

}
 return(SQL_ERROR);
}

/*---*/
/* The Main Function */
/*---*/
int main()
{
 // Declare The Local Memory Variables
 SQLRETURN rc = SQL_SUCCESS;
 SQLCHAR ConnectStr[128] = "DSN=PWDROCH;UID=db2user;PWD=db2pwd;";
 SQLCHAR SQLStmt[255];
 char i_empno[7];
 SQLDOUBLE i_salary;

 // Create An Instance Of The ModifySalary Class
 ModifySalary modifySalary;

 // Connect to the sample database
 if (modifySalary.ConHandle != NULL)
 {
 rc = SQLDriverConnect(modifySalary.ConHandle, NULL, ConnectStr, SQL_NTS,

 NULL, 0, NULL, SQL_DRIVER_NOPROMPT);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

{modifySalary.printError(modifySalary.ConHandle,
 ModifySalary.SpStmtHandle);
 return(rc);
 }
 cout << "Successfully connected ..." << endl;
 cout <<"Enter employee number :" << endl;
 cin >> i_empno;

 cout << "Enter salary delta :" <<endl;
 cin >> i_salary;
 // set autocommit off
 rc = SQLSetConnectAttr(modifySalary.ConHandle, SQL_ATTR_AUTOCOMMIT,
 (SQLPOINTER) SQL_AUTOCOMMIT_OFF, SQL_IS_UINTEGER);
 // Allocate An SQL Statement Handle
 rc = SQLAllocHandle(SQL_HANDLE_STMT, modifySalary.ConHandle,
 &modifySalary.SpStmtHandle);
 // Now prepare the procedure call statement
 //strcpy((char *) SQLStmt, "CALL db2user.modsalC(?,?)");
 //strcpy((char *) SQLStmt, "CALL db2user.modsal(?,?)");
 strcpy((char *) SQLStmt, "CALL db2user.modsalJ(?,?)");
 rc = SQLPrepare(modifySalary.SpStmtHandle, SQLStmt, SQL_NTS);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) 1

{modifySalary.printError(modifySalary.ConHandle,
 modifySalary.SpStmtHandle);
 return(rc);

}
 rc = modifySalary.executeSP((char *)i_empno, i_salary);
 if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) 1

{modifySalary.printError(modifySalary.ConHandle,
 modifySalary.SpStmtHandle);}
 }
198 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 // Return To The Operating System
 return(rc);
}

Code sample notes
The following notes apply to Example 6-27 on page 196:

1 If an error condition exists, the printError method is invoked to manage that error
condition.

2 While SQL errors exist, retrieve them and print the relevant information.

6.8.5 Java example client code
Example 6-28 shows the Java version of the client code. It illustrates how to handle errors
that are returned from the stored procedure call.

Example 6-28 Handing errors that are returned from a stored procedure call

import java.math.*;
import java.util.*;
import java.io.*;
import java.SQL.*;
import com.ibm.as400.access.*;

class ModifySalary
{ public static void main (String argv[])
 {Properties props = new Properties();
 Connection con = null;
 CallableStatement ps;
 String SQL;

 try
 {props.load(new BufferedInputStream(new
 FileInputStream("modifysalary.properties")));
 String dbDriver = props.getProperty("dbDriver");
 String dbUrl = props.getProperty("dbUrl");
 String dbUser = props.getProperty("dbUser").trim();
 String dbPassword = props.getProperty("dbPassword").trim();
 String empno = props.getProperty("empno");
 System.out.println("Employee Number: " + empno);
 String salaryDeltaS = props.getProperty("salaryDelta");
 BigDecimal salaryDelta = new BigDecimal(salaryDeltaS);
 System.out.println("Salary Delta: " + salaryDelta.toString());
 System.out.println("Decimal Scale: " + salaryDelta.scale());
 String storedProc = props.getProperty("storedProc");
 System.out.println("Stored procedure : " + storedProc);
 Class.forName(dbDriver);
 con = DriverManager.getConnection(dbUrl, dbUser, dbPassword);
 System.out.println("got connection");

 try {
 SQL = "Call " + storedProc + " (?, ?)";
 ps = con.prepareCall(SQL);
 ps.setString(1, empno);
 ps.setBigDecimal(2, salaryDelta);
 ps.execute();
 System.out.println("Stored procedure call completed successfully.");
 if (ps != null) ps.close();
 if (con != null) con.close();
Chapter 6. Stored procedure error handling 199

 }
 catch (SQLException ex)
 {
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " +ex.getMessage());
 System.out.println("Vendor code: " + ex.getErrorCode ());
 ex = ex.getNextException ();
 System.out.println ("");
 }
 }
 }
 catch (Exception e) {
 e.printStackTrace ();
 }
 }
}

The ModifySalary.java attributes are managed by the following properties file:

#logon properties
dbDriver=com.ibm.as400.access.AS400JDBCDriver
#dbDriver=com.ibm.db2.jdbc.app.DB2Driver

dbUser=db2user

dbPassword=db2pwd

dbUrl=jdbc:as400://pwdroch
#dbUrl=jdbc:db2://*LOCAL

empno=000220
salaryDelta=3000.00

#storedProc=DB2USER.MODSALC
storedProc=DB2USER.MODSAL
#storedProc=DB2USER.MODSALJ

6.8.6 Results for the example programs
The user-defined errors that are returned by a stored procedure are mostly consistent across
all supported stored procedure types. The test results that are displayed by the sample client
for different implementations of the MODSAL stored procedure are presented next. In the test
scenario, we try to set the salary for the employee '000220' so that the total compensation
violates the company regulation, which results in an SQL error.

Results for the MODALC (C-embedded SQL)
The results are shown:

Enter employee number :
000220
Enter salary delta :
3000.00
SQLSTATE: 38S01
SQLCODE : -443
Error msg : [IBM][Client Access Express ODBC Driver (32-bit)]Compensation exceeds
the lim
200 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

In this case, the original message was truncated. The SQL return code is set to -443.

Results for MODSAL (SQL PSM)
The results are shown:

SQLSTATE: 38S01
SQLCODE : -438
Error msg : [IBM][Client Access Express ODBC Driver (32-bit)]MODSAL: Compensation
exceeds the limit.

The entire diagnostic message was returned. The SQL return code is set to -438.

Results for MODSALJ (Java)
The results are shown:

SQLSTATE: 38S01
SQLCODE : -438
Error msg : [IBM][Client Access Express ODBC Driver (32-bit)]MODSALJ: Compensation
exceeds the limit.

The entire diagnostic message was returned. The SQL return code is set to -438.
Chapter 6. Stored procedure error handling 201

202 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 7. Database triggers

Triggers represent one of the most powerful features of IBM DB2 for i. This chapter introduces
the concept of triggers, when they can be used, and the types of triggers that are supported
by DB2 for i.

This chapter describes the following topics:

� Trigger concepts
� Types of triggers in DB2 for i
� Enabling and disabling a trigger
� Displaying and reviewing trigger information
� System catalog tables
� Authorization and adopted authorities on triggers
� Renaming and copying

7

© Copyright IBM Corp. 2001, 2016. All rights reserved. 203

7.1 Trigger concepts
Triggers are application-independent. They are user-written programs that are activated by
the database manager when a data change is performed in the database. Triggers are mainly
intended for monitoring database changes and taking appropriate actions. The main
advantage of using triggers, instead of calling the program from within an application, is that
triggers are activated automatically, regardless of the interface that generated the data
change.

In addition, after a trigger is in place, application programmers and users cannot circumvent
it. When a trigger is activated, the control shifts from the application program to the database
manager. The operating system executes your coded trigger program to perform the actions
that you designed. The application waits until the trigger ends and then gains control again.

Triggers can cause other triggers to be called. In the example that is shown in Figure 7-1,
when you update TABLE1, a trigger is activated and updates the database table, TABLE2.
This operation causes a second trigger to run.

Figure 7-1 Trigger overview

It is important to identify the database tables that must be monitored and the events that need
to call the triggers, remembering that a trigger is called every time that the event happens. We
recommend that you think of triggers as part of your database design, rather than as a
function that relates to a specific application.

Users Application
Program

Database

Database Update TABLE1

. . .

WRITE TABLE4

READ TABLE1

UPDATE TABLE1

. . .

. . .

READ TABLE5

WRITE TABLE5

READ TABLE2

UPDATE TABLE2

WRITE TABLE3

. . .

Trigger 1

Trigger 2
204 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

You can use a trigger program for the following purposes:

� Enforcing business rules, regardless of how complex they are

You might want to ensure, for example, that whenever you enter an order in your database,
the customer that you are dealing with has no bad credit history. A trigger that is
associated with the order table can check customer credit history consistently and take
corrective actions.

� Validating data and maintaining an audit trail

You might need to ensure that, whenever a sales representative enters an order, that the
sales representative is assigned to that particular customer. Also, you want to track the
violation attempts. Again, a trigger can be activated on the order table to validate the sales
representative assignment and track the violators in a separate table.

� Integrating existing applications and advanced technologies

Your company sends a confirmation fax to the customers after they accept an order from
you. Triggers can be the ideal solution to integrate your existing Order Entry application
with your facsimile support on the IBM i server. Another example is to send an email to
confirm the order from a customer.

� Preserving data consistency across different database tables

In this case, triggers can complement referential integrity and check constraint support
because they can provide a much wider and more powerful range of data validation and
business actions to be performed when data changes in your database.

Triggers represent a powerful technique to ensure that your database always complies with
your business needs, provides consistent checking, and acts correctly every time that data is
changed.

You can benefit from triggers for several reasons:

� Application independence

DB2 for i activates the trigger program, regardless of the interface that you are using to
access the data. Rules that are implemented by triggers are enforced consistently by the
system rather than by a single application.

� Easy maintenance

If you must change the business rules in your database environment, you need to update
or rewrite the triggers. No change is needed to the applications. (They transparently
comply with the new rules.)

� Code reusability

Functions that are implemented at the database level are automatically available to all
applications that use that database. You do not need to replicate those functions
throughout the different applications.

� Easier client/server application development

Client/server applications take advantage of triggers. In a client/server environment,
triggers can provide a way to split the application logic between the client and the server
system.
Chapter 7. Database triggers 205

In Figure 7-2, you can see how client applications can take advantage of the functions that
are performed by the triggers at the server side. In addition, client applications do not need
specific code to activate the logic at the server side. Application performance can also
benefit from this implementation by reducing data traffic across communication lines.

Figure 7-2 Using triggers in client/server application development

7.2 Types of triggers in DB2 for i
Two types of triggers are available in DB2 for i for database tables. Up to 300 triggers can be
defined for a single table. Before V5R1, you defined up to six triggers only for a single table.
The two types of triggers are shown:

� SQL triggers
� External triggers

7.2.1 SQL triggers
For an SQL trigger, the program that performs the tests and actions is written by using SQL
statements. The SQL CREATE TRIGGER statement provides a way for the database
management system to actively control, monitor, and manage a group of tables whenever an
insert, update, or delete operation is performed. The statements that are specified in the SQL
trigger are executed each time that an insert, update, or delete operation is performed. An
SQL trigger can call stored procedures or user-defined functions (UDFs) to perform additional
processing when the trigger is executed.

Unlike stored procedures, an SQL trigger cannot be directly called from an application.
Instead, an SQL trigger is invoked by the database management system upon the execution
of a triggering insert, update, or delete operation. The definition of the SQL trigger is stored in
the database management system and is invoked by the database management system,
when the SQL table, that the trigger is defined on, is modified. For more information about
SQL triggers, see SQL Procedures, Triggers, and Functions on DB2 for i, SG24-8326.

Client
Application Communication

Line Data Flow

Database Server

No Triggers

UPDATE TABLE1. . .

READ TABLE2. . . .

UPDATE TABLE2

WRITE TABLE3

Client Application Communication
Line Data Flow

Database Server

With Triggers

UPDATE TABLE1. . .

TABLE1

TABLE2

TABLE3

TABLE1

TABLE2

TABLE3

READ TABLE2
UPDATE TABLE2
WRITE TABLE3

Trigger Program
206 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

7.2.2 External triggers
For an external trigger, the program that contains the set of trigger actions can be defined in
any supported high-level language that creates a *PGM object. SQL can be embedded in the
trigger program. To define an external trigger, you must create a trigger program and add it to
a table by using the Add Physical File Trigger (ADDPFTRG) control language (CL) command. Or,
you can add it by using System i Navigator. To add a trigger to a table, you must follow these
steps:

1. Identify the table.
2. Identify the kind of operation.
3. Identify the program that performs the actions that you want.
4. Provide a unique name for the trigger or let the system generate a unique name.

7.3 Enabling and disabling a trigger
Triggers need to be enabled to run. However, you can disable a trigger to work with the table
without causing the trigger to run. This capability can be useful if a long batch processing task
or a large data load occurs. In these cases, it can be beneficial to disable the triggers that are
associated with a table.

To enable or disable a trigger, follow these steps:

1. In System i Navigator, expand your server → Database → Libraries.

2. Right-click the table that contains the trigger that you want to enable or disable. Click
Properties, as shown in Figure 7-3.

Figure 7-3 Properties table
Chapter 7. Database triggers 207

3. In the Table Properties window, click the Triggers tab. Select the trigger that you want to
enable or disable. Click Enable to enable it or Disable to disable the trigger, as shown in
Figure 7-4.

Figure 7-4 Disabling or enabling a trigger

7.4 Displaying and reviewing trigger information
You can use the following methods to assist you in visualizing trigger information:

� System i Navigator to view the properties of a trigger
� The Display File Description (DSPFD) command
� The Print Trigger Programs (PRTTRGPGM) command
208 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

7.4.1 Using System i Navigator to view the properties of a trigger
After you create and define triggers to a table, one way to visualize the properties of a trigger
is to use System i Navigator:

1. In System i Navigator, double-click the SAMPLEDB01 library. The right panel displays all
DB2 for i objects in this library.

2. Find and right-click the SALES table, and select Properties, as shown in Figure 7-3 on
page 207.

3. In the Table Properties window (Figure 7-5), click the Triggers tab. This window shows all
of the triggers that the table defined.

Figure 7-5 Triggers tab

Now, you can select a particular trigger to see its details.

7.4.2 Displaying trigger information
The Display File Description (DSPFD TYPE(*TRG)) command provides a list of the triggers that
are associated with a file. The command provides the following information:

� Number of trigger programs
� Trigger name and library
Chapter 7. Database triggers 209

� Trigger status
� Trigger program names and libraries
� Trigger events
� Trigger times
� Trigger update conditions
� Trigger type
� Trigger mode
� Trigger orientation
� Trigger creation date and time
� Number of trigger update columns
� List of trigger update columns

7.4.3 Printing trigger information
Use the Print Trigger Programs (PRTTRGPGM) command to print a report listing of all of the
trigger programs in a specific library, job library list, user library list, all user libraries on the
system, or all libraries on the system. Figure 7-6 shows how the command is used for library
LIB03.

Figure 7-6 Print Trigger Programs

Figure 7-7 shows the report that is produced by the PRTTRGPGM command for all trigger
programs in library LIB03. All of the triggers belong to the SALES table, and each trigger has
a unique name.

Figure 7-7 Trigger Programs report

You can use this initial report by using CHGRPTONLY(*NO) as a base to evaluate any trigger
programs that exist on your system. Then, you can print the changed report by using
CHGRPTONLY(*YES) regularly to see whether new trigger programs were added to your
system.

 Print Trigger Programs (PRTTRGPGM)

 Type choices, press Enter.

 Library LIB > LIB03
 Changed report only CHGRPTONLY *NO

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

 Trigger Programs (Full Report) Page 1
5722SS1 V5R1M0 010525 ASM23 09/09/01 23:17:28
 Specified library : LIB03
 Allow
 Trigger Trigger Trigger Trigger Trigger Trigger Trigger Repeated
 Library File Name Type Library Program Time Event Condition Change
 LIB03 SALES XTR_COMCALC *SYS LIB03 COMCALC After Insert No
 LIB03 SALES XTR_COMMADJ *SYS LIB03 COMMADJ After Update Change Yes
 * * * Full text of truncated lines * * *
 (There are no objects to list)
210 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

7.5 System catalog tables
Four catalog views that relate to triggers are defined in QSYS2.

SYSTRIGGERS
The SYSTRIGGERS view contains one row for each trigger in an SQL schema, as shown in
Figure 7-8.

Figure 7-8 SYSTRIGGERS sample data
Chapter 7. Database triggers 211

SYSTRIGCOL
The SYSTRIGCOL view contains one row for each column, either implicitly or explicitly
referenced in the WHEN clause or the triggered SQL statements of a trigger, as shown in
Figure 7-9.

Figure 7-9 SYSTRIGCOL sample data
212 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

SYSTRIGDEP
The SYSTRIGDEP view contains one row for each object that is referenced in the WHEN
clause or the triggered SQL statements of a trigger, as shown in Figure 7-10.

Figure 7-10 SYSTRIGDEP sample data
Chapter 7. Database triggers 213

SYSTRIGUPD
The SYSTRIGUPD view contains one row for each column that is identified in the UPDATE
column list, if any, as shown in Figure 7-11.

Figure 7-11 SYSTRIGUPD sample data

For more details about the information that is contained in these views, see Appendix G in
SQL Reference, SC41-5612.

7.6 Authorization and adopted authorities on triggers
For a complete description of authorization and adopted authorities, see SQL Reference,
SC41-5612. Different behavior might be associated with SQL and system naming
conventions. However, SQL triggers will always be generated with USRPRF and
DYNUSRPRF set to *OWNER and USEADPAUT set to *YES, independently of the specified
values in the RUNSQLSTM command or the SET OPTION statement.

A trigger will execute with the adopted authority of the owner of the trigger.

For the deployment of triggers, all users need to be able to run most triggers. Therefore, we
recommend that you generate trigger programs with the authorization set to *OWNER and by
using an owner profile with authorities over the resources that are affected by them.
214 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

7.7 Renaming and copying
Any table (including the subject table) that is referenced in a triggered action can be moved or
renamed. However, the triggered action continues to reference the old name or library. An
error occurs if the referenced table is not found when the triggered action is executed.
Therefore, you need to drop the trigger and re-create the trigger so that it refers to the
renamed table.

If records are copied to a physical file that has an *INSERT trigger program that is associated
with it, the trigger program is called each time that a record is copied to the file. The trigger
program is not called if deleted records are copied. If an error occurs while the trigger
program is running, the copy operation fails. However, records that were successfully copied
before the error occurred remain in the to-file.

We recommend that you use the following steps when you copy records to a table with an
*INSERT trigger program associated with it:

1. Use the CHGPFTRG command or System i Navigator to disable all triggers that are
associated with the target table.

2. Use the CPYF command to copy the records to the target table.

3. Use the CHGPFTRG command or System i Navigator to enable all triggers that are
associated with the target table.

Note: The CHGPFTRG command will fail if the table is open.
Chapter 7. Database triggers 215

216 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 8. External triggers

External triggers are a powerful feature in IBM DB2 for i. This chapter describes several
technical aspects of external triggers. It also provides examples and guidelines to show how
you can take advantage of external triggers in your application environment.

This chapter describes the following topics:

� Defining a trigger
� Trigger program structure
� Trigger feedback to application programs
� Designing trigger programs
� Applications and triggers: Design considerations
� Recommendations

8

© Copyright IBM Corp. 2001, 2016. All rights reserved. 217

8.1 Defining a trigger
On the IBM i server, a trigger program can be developed by using any supported high-level
language (HLL) compiler. You can include SQL statements or any other high-level language.
You can also code a trigger by using the CL. See Figure 8-1.

After the trigger is developed, it can be associated with a physical file/table. The definition has
a file-level scope: If you define a trigger on a multiple member physical file, such as a yearly
sales file with a member for each month, the trigger is activated whenever data is modified in
any member.

Figure 8-1 Activating triggers on the IBM i server

You need to specify the following information when you add a trigger program to a database
table:

� The trigger event is the I/O operation that activates the trigger:

– Insert
– Update
– Delete
– Read (applies to external triggers only)

� The trigger time determines whether the trigger is activated before or after the trigger
event takes place. Late, we describe in detail how this parameter influences the behavior
of DB2 for i. See 9.5, “Constraints and triggers: Ordering the actions” on page 306.

– Before the operation: Before an update, an insert, or a delete operation
– After the operation: After an update, an insert, or a delete operation

� The trigger program is activated for this type of I/O operation.

Java, RPG, COBOL, C, SQL, DFU, . . .

Database Change
 Operation

Physical
File or
TABLE

Trigger

Program

RPG, C, COBOL,
 SQL, . . .

DB2 Universal Database for iSeries
218 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

� Replace trigger:

– Option (*YES): The trigger program is replaced if another trigger has the same
specification.

– Option (*NO): The trigger program is added if no other triggers have the same
specification.

� Allow repeated change specifies whether repeated changes to a record within a trigger are
allowed. This parameter takes effect only when it runs under commitment control. The
options are shown:

– *NO: Repeated changes to a record within a trigger are not allowed.
– *YES: Repeated changes to a record within a trigger are allowed.

When ALWREPCHG(*YES) is specified for the BEFORE INSERT and UPDATE triggers,
the record image can be changed in the trigger buffer.

� The trigger condition parameter is relevant to UPDATE triggers only. The options are
shown:

– *CHANGE: The trigger runs only if the update operation changed the data. If the
update operation leaves the record as it was, the trigger is not activated.

– *ALWAYS: The trigger is always called, even if no field in the record was changed.

� The trigger parameter is relevant to all triggers. The options are shown:

– *GEN: The system generates a trigger name.

– trigger-name: Specify the name of the trigger. The trigger name must be unique to the
library. The trigger name is used to distinguish triggers with the same time and event
values. You can specify a maximum of 128 characters without delimiters or 258
characters with double quotation mark (") delimiters. The case is preserved when
lowercase characters are specified.

Triggers can be added to database tables by using a control language (CL) command or by
using System i Navigator.

8.1.1 ADDPFTRG

The Add Physical File Trigger (ADDPFTRG) command associates a trigger program with a
physical file. When this association is established, DB2 for i calls the trigger program when a
change operation is performed against the physical file, a member of the physical file, and any
logical file that was created over the physical file or views that were created by SQL.
Chapter 8. External triggers 219

See Figure 8-2 and Figure 8-3.

Figure 8-2 Add Physical File Trigger (Part 1 of 2)

Figure 8-3 Add Physical File Trigger (Part 2 of 2)

When you add the trigger to the physical file, the file description is updated to reflect that a
trigger is associated with the file. You can recompile, restore, rename, copy, and delete the
program, and the file description is not affected. For example, when you update the trigger
program, you do not need to remove the trigger and add it again to the physical file. You can
take advantage of this flexibility if you need to change your business rules. Simply recompile
the trigger program. You do not need to modify any applications or change data in your
database. All applications that access this database file immediately comply with the new
rules.

 Add Physical File Trigger (ADDPFTRG)

 Type choices, press Enter.

 Physical file ORDERHDR Name
 Library ORDENTL Name, *LIBL, *CURLIB
 Trigger time *BEFORE *BEFORE, *AFTER
 Trigger event *INSERT *INSERT, *DELETE, *UPDATE...
 Program T4249IADT Name
 Library ORDENTLIB Name, *LIBL, *CURLIB
 Replace trigger *NO *NO, *YES
 Trigger *GEN

 Trigger library *FILE Name, *FILE, *CURLIB
 Allow Repeated Change *NO *NO, *YES
 More...
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

 Add Physical File Trigger (ADDPFTRG)

 Type choices, press Enter.

 Threadsafe THDSAFE *UNKNOWN
 Multithreaded job action MLTTHDACN *SYSVAL
 Trigger update condition TRGUPDCND *ALWAYS

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
220 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

However, if you specify *LIBL when you add the trigger, the actual library name is resolved
and stored in the file description (Figure 8-4).

Figure 8-4 Add Physical File Trigger (combined)

 Add Physical File Trigger (ADDPFTRG)

 Type choices, press Enter.

 Physical file FILE > ORDERHDR
 Library > ORDENTL
 Trigger time TRGTIME > *BEFORE
 Trigger event TRGEVENT > *INSERT
 Program PGM > T4249IADT
 Library *LIBL
 Replace trigger RPLTRG *NO
 Trigger TRG *GEN
 Trigger library TRGLIB *FILE
 Allow Repeated Change ALWREPCHG *NO
 Threadsafe THDSAFE *UNKNOWN
 Multithreaded job action MLTTHDACN *SYSVAL

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
Chapter 8. External triggers 221

In this example, the file description reports the actual library where the trigger is stored. By
using DSPFD TYPE(*TRG), the trigger library is explicitly reported (Figure 8-5).

Figure 8-5 Display File Description

You can define up to 300 trigger programs for the same database table: *BEFORE and
*AFTER insert, delete, update, or read operations.

8.1.2 Using System i Navigator to add an external trigger

By using System i Navigator, you can define system (external) triggers and SQL triggers. In
addition, you can enable, disable, or delete a trigger.

To add a trigger, follow these steps:

1. In the System i Navigator window, expand your server → Database.

2. Choose the database that you are working with and expand its libraries.

3. Click the library that contains the table to which you want to add the trigger.

4. Right-click the table to which you want to add the trigger and select Properties.

5. In the Table Properties window, click the Triggers tab.

6. Select Add external trigger to add an external (system) trigger.

 9/05/01 Display File Description
 DSPFD Command Input
 File : FILE SALES
 Library : LIB03
 Type of information : TYPE *TRG
 File attributes : FILEATR *ALL
 System : SYSTEM *LCL
 File Description Header
 File : FILE SALES
 Library : LIB03
 Type of file : Physical
 File type : FILETYPE *DATA
 Auxiliary storage pool ID : 01
 Trigger Description
 Trigger name : TRG XTR_COMCALC
 Trigger library : LIB03
 Trigger state : STATE *ENABLED
 Trigger status : *OPERATIVE
 Trigger event : TRGEVENT *INSERT
 Trigger time : TRGTIME *AFTER
 Allow repeated change : ALWREPCHG *NO
 Program Name : PGM COMCALC
 Library : LIB03
 Program is threadsafe : THDSAFE *UNKNOWN
 Multithreaded job action : MLTTHDACN *SYSVAL
 Trigger type : *SYS
 Trigger orientation : *ROW
 Trigger creation date and time : 09/04/01 04:38:30
 Number of trigger update columns : 0
222 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The following System i Navigator windows show the steps for adding a system (external)
trigger to a database. Figure 8-6 shows the General tab information that is required to add the
trigger. The data is similar to the data that is required on the ADDPFTRG command (Figure 8-2
on page 220 and Figure 8-3 on page 220).

Figure 8-6 Add External Triggers: General tab
Chapter 8. External triggers 223

Figure 8-7 shows the required information in the Events tab for a trigger. A trigger name and a
library name for the trigger are additional information that is needed for a trigger. If this
information is not provided, the system generates a trigger name and stores it in the same
library as the library of the file to which the trigger is added.

Figure 8-7 Add External Triggers: Events tab
224 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Figure 8-8 shows that the INSERT AFTER trigger was added to the list of triggers for table
SALES in library SAMPLEDB01. It also shows a list of all of the triggers for the table.

Figure 8-8 List of triggers for a table
Chapter 8. External triggers 225

8.2 Trigger program structure

When a trigger is activated, the system automatically provides the program with the following
parameter list:

� Trigger buffer: The trigger buffer has two logical parts:

– Static area:

• A trigger template that contains the physical file name, member name, trigger event,
trigger time, commit lock level, and coded character set identifier (CCSID) of the
current change record and relative record number

• Offsets and lengths of the record areas and null byte maps

This area occupies (in decimal) offset 0 - 95.

– Dynamic area

Areas for the old record and old null byte map, new record, and new null byte map

� Trigger buffer length: The length of the trigger buffer that is provided by DB2 Universal
Database for iSeries

By defining these parameters in your trigger programs, you can take the correct actions
based on the kind of data change that occurred and the characteristics of the job that fired the
trigger. Our code samples show how you can use the information that is passed through the
trigger parameter list. See 8.4, “Designing trigger programs” on page 242.
226 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Table 8-1 describes the trigger buffer structure.

Table 8-1 The trigger buffer structure

Note: The way that we defined the trigger buffer for COBOL and RPG implies that, if you
change the record length of the associated database file, the trigger program must be
modified to run correctly. Alternatively, you can perform a move operation to bring the
record images into your work field variables. Another technique is called softcoding the
trigger buffer. In this case, when the structure of the file changes, you only need to
recompile the trigger program to access the new layout. We show this technique in 8.4.4,
“Softcoding the trigger buffer example” on page 280.

Decimal
offset

Parameter Type Description

0 Physical file name char(10) The physical file that is changed.

10 Physical file library
name

char(10) The library in which the physical file resides.

20 Physical file
member name

char(10) The name of the physical file member.

30 Trigger Event char(1) The event that caused the trigger program to be called. The possible
values can be “1” (Insert), “2” (Delete), “3” (Update), or “4” (Read).

31 Trigger Time char(1) Can be “1” (After) or “2” (Before).

32 Commit level char(1) Reports the commit lock level of the interface that activated the trigger.
The values are “0” (*NONE), “1” (*CHG), “2” (*CS), or “3” (*ALL).

33 Reserved char(3) Reserved.

36 CCSID of data binary(4) The CCSID of the data in the new or the original records. The data is
converted to the job CCSID by the database.

40 Relative record
number

binary(4) Relative record number of the record to be updated or deleted
(*BEFORE triggers) or the relative record number of the record that was
inserted, updated, deleted, or read (*AFTER triggers).

44 Reserved char(4) Reserved.

48 Original record
offset

binary(4) The location of the original record. The offset value is from the beginning
of the trigger buffer. This field is not applicable if the original value of the
record does not apply to the operation, for example, an insert operation.

52 Old record length binary(4) The maximum length is 32,766 bytes.

56 Old record null
map offset

binary(4) The location of the null byte map of the original record. The offset value
is from the beginning of the trigger buffer. This field is not applicable if
the original value of the record does not apply to the change operation,
for example, an insert operation.

60 Old record null
map length

binary(4) The length is equal to the number of fields in the physical file.

64 New record offset binary(4) The location of the new record. The offset value is from the beginning of
the trigger buffer. This field is not applicable if the new value of the
record does not apply to the change operation, for example, a delete
operation.

68 New record length binary(4) The maximum length is 32,766 bytes.
Chapter 8. External triggers 227

The following sections describe the trigger buffer definitions for several programming
languages (RPG, COBOL, and C).

72 New record null
map offset

binary(4) The location of the null byte map of the new record. The offset value is
from the beginning of the trigger buffer. This field is not applicable if the
new value of the record does not apply to the change operation, for
example, a delete operation.

76 New record null
map length

binary(4) The length is equal to the number of fields in the physical file.

80 Reserved char(16) Reserved.

* Original record char(*) A copy of the original physical record before it is updated, deleted, or
read. The original record applies only to update, delete, and read
operations.

* Original record null
byte map

char(*) This structure contains the NULL value information for each field of the
original record. Each byte represents one field. The possible values for
each byte are “0” (Not NULL) or “1” (NULL).

* New record char(*) A copy of the record that is inserted or updated in a physical file as a
result of the change operation. The new record applies only to the
insert or update operations.

* New record null
byte map

char(*) This structure contains the NULL value information for each field of the
new record. Each byte represents one field. The possible values for
each byte are “0” (Not NULL) or “1” (NULL).

Decimal
offset

Parameter Type Description

Important: When the support for the large object (LOB) data types (binary large object
(BLOB), character large object (CLOB), and double-byte character large object (DBCLOB))
was added in V4R4, the support came with a minor restriction. That is, you were not able to
define triggers over a table with LOB columns. In V5R1, this restriction was lifted.

One interesting side effect of this enhancement is that it changed the size of the trigger
buffer that is passed as input to all external trigger programs due to system infrastructure
changes. Trigger programs, which either presumed the overall trigger buffer length will not
change (for example, placing the entire entry in a permanent/unchanging data queue) or
hardcoded their usage of the trigger buffer parameters instead of correctly using the offsets
and lengths that are passed in the trigger buffer, are not affected.

However, for trigger programs that were coded correctly to allow for a change in the trigger
buffer length (second parameter) and access the trigger buffer data (for example, before
and after images and null byte maps) by using the offsets and lengths will continue to
function as expected when they are executed on a V5R1 system.
228 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

8.2.1 Trigger buffer for RPG

Figure 8-9 shows an example of how you can define the trigger buffer.

Figure 8-9 Trigger buffer for RPG programs

 ==
 * Definition of the structure to be passed into the *
 * trigger program = buffer *
 ==
 IPARM1 DS
 I 1 10 FNAME
 I 11 20 LNAME
 I 21 30 MNAME
 I 31 31 TEVEN 1
 I 32 32 TTIME
 I 33 33 CMTLCK 2
 I 34 36 FILL1
 I B 37 400CCSID
 I 41 48 RRN 3
 I B 49 520OLDOFF
 I B 53 560OLDLEN 4
 I B 57 600ONOFF
 I B 61 640ONLEN
 I B 65 680NOFF
 I B 69 720NEWLEN 5
 I B 73 760NNOFF
 I B 77 800NNLEN
 I 81 96 RESV3
 I 97 142 OREC 6
 I 143 148 OOMAP 7
 I 149 194 RECORD 8
 I 195 200 NNMAP 9
 ==
 * LENG = buffer length *
 ==
 IPARM2 DS
 I B 1 40LENG

Notes: The following notes refer to the numbers in Figure 8-9:

1 Trigger event
2 Trigger commit level
3 Relative record number
4 Old record length
5 New record length
6 Old record image
7 Old record null map
8 New record image
9 New record null map
Chapter 8. External triggers 229

8.2.2 Trigger buffer for COBOL

Figure 8-10 shows how you can define the trigger buffer in a COBOL program.

Figure 8-10 Trigger buffer for a COBOL program

 ==
 * PARM 1 = Trigger buffer *

==
 LINKAGE SECTION.
 01 PARM-1.
 03 FILE-NAME PIC X(10).
 03 LIB-NAME PIC X(10).
 03 MEM-NAME PIC X(10).
 03 TRG-EVENT PIC X. 1
 03 TRG-TIME PIC X.
 03 CMT-LCK-LVL PIC X. 2
 03 FILLER PIC X(3).
 03 DATA-AREA-CCSID PIC 9(8) BINARY.
 03 RRN PIC (8) BINARY 3
 03 FILLER PIC X(4).
 03 DATA-OFFSET.
 05 OLD-REC-OFF PIC 9(8) BINARY.
 05 OLD-REC-LEN PIC 9(8) BINARY.4
 05 OLD-REC-NULL-MAP PIC 9(8) BINARY.
 05 OLD-REC-NULL-LEN PIC 9(8) BINARY.
 05 NEW-REC-OFF PIC 9(8) BINARY.
 05 NEW-REC-LEN PIC 9(8) BINARY.5
 05 NEW-REC-NULL-MAP PIC 9(8) BINARY.
 05 NEW-REC-NULL-LEN PIC 9(8) BINARY.
 05 FILLER PIC X(16).
 03 RECORD-JUNK.
 05 OLD-RECORD PIC X(112). 6
 05 OLD-NULL-MAP PIC X(9). 7
 05 NEW-RECORD PIC X(112). 8
 05 NEW-NULL-MAP PIC X(9). 9

 ==
 * PARM 2 = Trigger length *
 ==
 01 PARM-2.
 03 TRGBUF-LEN PIC X(2).

Notes: The following notes refer to the numbers in Figure 8-10:

1 Trigger event
2 Trigger commit level
3 Relative record number
4 Old record length
5 New record length
6 Old record image
7 Old record null map
8 New record image
9 New record null map
230 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

8.2.3 Trigger buffer for C

An include file is in the QSYSINC library for most of the system application programming
interfaces (APIs) that can be used in a C program. The file name is H. If the QSYSINC library is
not available in your system, install the System Openness Includes option of OS/400.
Figure 8-11 shows the trigger buffer definition for a C program that was taken from the
TRGBUF member.

Figure 8-11 Trigger buffer for a C program

/**/
/* INCLUDE NAME : TRGBUF */
/* */
/* DESCRIPTION : The input trigger buffer structure for the */
/* user's trigger program. */
/* */
/* LANGUAGE : ILE C */
/* */
/**/
/**/
/* Note: The following type definition only defines the fixed */
/* portion of the format. The data area of the original */
/* record, null byte map of the original record, the */
/* new record, and the null byte map of the new record */
/* is varying length and immediately follows what is */
/* defined here. */
/**/
 typedef _Packed struct Qdb_Trigger_Buffer {
 char file_name[10];
 char library_name[10];
 char member_name[10];
 char trigger_event[1]; 1
 char trigger_time[1];
 char commit_lock_level[1]; 2
 char reserved_1[3];
 int data_area_ccsid;
 int Current_Rrn; 3
 char reserved_2[4];
 int old_record_offset;6
 int old_record_len; 4
 int old_record_null_byte_map;7
 int old_record_null_byte_map_len;
 int new_record_offset;8
 int new_record_len; 5
 int new_record_null_byte_map;9
 int new_record_null_byte_map_len;
 } Qdb_Trigger_Buffer_t;
Chapter 8. External triggers 231

While we use C, we are not allowed to explicitly define the old record image, the old null map
record image, the new record image, and the new null map record image that we must include
in RPG and COBOL programs because of the different memory allocation techniques of the C
language. If you use C, set a pointer to the record images by using the offsets. You can
access the contents of these areas.

8.2.4 Using the trigger buffer

The following descriptions refer to the most important fields in the trigger buffer, as marked in
the previous examples:

� Trigger Event 1: This field gives you the capability to determine the event that called the
trigger. This information is valuable when a trigger is defined for different events. You might
want to identify the record image to use, depending on the event that activated the trigger.
The system always initializes the offset fields, even if one of them might address
meaningless data. Table 8-2 shows the record images that you receive, depending on the
event.

Table 8-2 Record images and trigger events

� Trigger CMTLVL 2: This field is the commit lock level of the application that caused the
trigger to run. Typically, we do not know whether the interface that activates the trigger
program is running under commitment control. This parameter can be used in triggers
when you want to set the same commit lock level as the transaction that fired the trigger.

Several ways are available to set an isolation level for triggers, depending on the language
that you use. For SQL triggers, you can use the SET TRANSACTION SQL statement. If
both SQL and native data access are in your program, SET TRANSACTION affects only
the SQL statements. Access to data through native interfaces is not affected by SET
TRANSACTION. For information about commitment control and commit lock levels, see
Backup and Recovery, SC41-5304.

For native trigger programs, different considerations apply. By using C, you can
dynamically open a file with or without commitment control. Integrated Language
Environment (ILE) RPG provides a dynamic commitment definition for physical files. You
can associate an RPG variable to the COMMIT keyword on the F specification.

Notes: The following notes refer to the numbers in Figure 8-11 on page 231:

1 Trigger event
2 Trigger commit level
3 Relative record number
4 Old record length
5 New record length
6 Old record image offset
7 Old record null map offset
8 New record image offset
9 New record null map offset

Trigger event Images

*INSERT
*UPDATE
*DELETE

NEW RECORD
NEW/OLD RECORD
OLD RECORD
232 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Most original program model (OPM) languages do not provide a way to dynamically define
commitment control for files. Several ways exist to circumvent this limitation. For example,
you can define the database files in your program twice, one time without and one time
with commitment control.

Open the correct file definition according to the value that is retrieved in the trigger buffer,
for example, by using COBOL/400:

 IDENTIFICATION DIVISION.

 FILE-CONTROL.
 SELECT FILDEFA ASSIGN TO DATABASE-FILEX
 ORGANIZATION IS INDEXED
 ACCESS IS RANDOM
 RECORD KEY IS EXTERNALLY-DESCRIBED-KEY.
 SELECT FILDEFB ASSIGN TO DATABASE-FILEX
 ORGANIZATION IS INDEXED
 ACCESS IS RANDOM
 RECORD KEY IS EXTERNALLY-DESCRIBED-KEY.

 I-O-CONTROL.
 COMMITMENT CONTROL FOR FILDEFA.

 PROCEDURE DIVISION.

 IF CMT-LCK-LVL = '0' THEN 2
 OPEN I-O FILDEFB
 ELSE
 OPEN I-O FILDEFA.

You can also see the example that is provided in “Invoice trigger example in ILE RPG” on
page 270, where an Integrated Language Environment (ILE) RPG program that handles
dynamic commitment control is shown. For a full description of the commitment control
options of the various programming languages, consult the specific language user’s guide
and reference.

Example 8-1 shows part of an RPG trigger program with embedded SQL statements that
shows how to set the correct commit lock level.

Example 8-1 RPG trigger program to set the correct commit lock level

 ===
 * Extracts the commitment control level of the invoking *
 * application and set the same isolation level for the *
 * trigger program *
 ===
 *
 SELECT
 C CMTLCK WHENEQ '0'
 C/EXEC SQL
 C+ SET TRANSACTION ISOLATION LEVEL NO COMMIT
 C/END-EXEC
 C CMTLCK WHENEQ '1'
 C/EXEC SQL
 C+ SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED, READ WRITE
 C/END-EXEC
 *
 C CMTLCK WHENEQ '2'
 C/EXEC SQL
 C+ SET TRANSACTION ISOLATION LEVEL READ COMMITTED, READ WRITE
Chapter 8. External triggers 233

 C/END-EXEC
 C CMTLCK WHENEQ '3'
 C/EXEC SQL
 C+ SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
 C/END-EXEC
 *

For detailed information about the isolation level and SET TRANSACTION, see the SQL
Programming Guide, SC41-5611.

� Trigger relative record number 3: This value is a relative physical address of a row in the
database table. You can use it to quickly retrieve a specific row from a table:

 select * from ordentlib.orderhdr where rrn(ordentlib.orderhdr) = :relnum

� Trigger old record image 5: When a trigger is activated by an update or a delete operation,
the old record image is in this parameter field. In COBOL and RPG, define a storage area
with the same length as the database record length.

� Trigger old null record map 6: This value is the map of the null record fields of your
database file. This character array has the same length as the number of fields in the
database file that is associated to the trigger program. DB2 for i can set each character to
1 (NULL field) or 0 (not NULL).

� Trigger new record image 7: When a trigger is activated by an update or an insert
operation, the new record image is in this parameter field. In COBOL and RPG, define a
storage area with the same length as the database record length.

� Trigger new null record map 8: This value is the map of the null record fields of your
database file. This character array has the same length as the number of fields in the
database file that is associated with the trigger program. DB2 Universal Database for
iSeries can set each character to 1 (NULL field) or 0 (not NULL).

If you use variable length fields, the length of the record images that are provided by DB2
for i is the maximum length that is allowed for the database records. Variable length
character fields are padded with blanks, and a 2-byte binary field with the actual data
length is added in front of every VARCHAR field.

8.3 Trigger feedback to application programs

When you implement your trigger program, you must consider that triggers cannot pass
parameters back directly because trigger programs are activated by the database manager
and they are given an input-only parameter list. If a failure occurs while the trigger program is
running, an appropriate escape message must be signaled before the trigger terminates. The
message can be the original message that is signaled by the system or a user-defined
message that is retrieved from a message file by the trigger program.

If no error message is signaled to the calling program after a trigger fails, the database
manager assumes that the trigger completed successfully and the operation that activated
the trigger completed, also.
234 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

We differentiate between the two cases:

� System-generated error, such as a failure that is encountered when accessing a locked
record

In this case, the system generates an exception that looks for an exception handler in the
trigger. If none is found, the exception traverses the invocation stack in reverse order to
search for an appropriate exception handler. If an exception handler does not handle the
exception, the exception is processed by the system database module that performed the
I/O operation that fired the trigger. The I/O operation fails.

� Failures that are detected by the trigger program

This situation is common in data validity checking. For example, consider the case of an
insert trigger that checks the records that are inserted. When a record is inserted, the
OS/400 module QDBPUT is invoked (Figure 8-16 on page 237). The trigger is displayed in
the invocation stack after the OS/400 module QDBPUT.

If the trigger determines that invalid data is inserted, the insert operation must be rejected.
We can achieve this rejection by sending an escape message to the call stack entry where
QDBPUT is running. For this purpose, use the QMHSNDPM API to signal an escape
message to QDBPUT. You can choose to send a user-defined message back to the
application that fired the trigger.

In both cases, the I/O operation fails, and the application receives an error code. As a result of
the escape message that is signaled by triggers, depending on the language that you use, the
return codes differ:

� SQL application:

SQLCODE = - 443

This code corresponds to the message:

SQL0443, “Trigger program or external procedure detected an error”.

� COBOL language:

File Status = 90

� RPG language

The indicator is turned on, and you receive an RPG1299 message.

� CL:

Message CPF502B, “Error occurred in trigger program” is received.

� C application

The errno variable is set to EIORECERR.

The I/O feedback area is also updated. The field that reports the exception identifier is set to
“CPF502B”.

User messages that are sent by the triggers through the QMHSNDPM API and the CPF502B
message are always in the job log. If the application that activates the trigger happens to run
in an interactive job, the trigger might send a message to the display. We show an example of
this technique in “Audit trail trigger example in COBOL SQL (OPM)” on page 250.

Note: If a trigger error occurs in an SQL application, a message key of the original error is
stored in the SQLERRD(4) field of the SQLCA communication area. The QMHRTVPM API
can be used to return the message description for this message key.
Chapter 8. External triggers 235

If you provide exception handling routines in your trigger programs, after an exception is
handled, the trigger ends normally. If you need to reject the change operation that fired the
trigger, you must signal an escape message from your exception handler to the correct call
stack entry.

It is interesting to see how a trigger failure is reported back to the most common interfaces for
data access on the IBM i server, such as Data File Utility (DFU) and Interactive SQL. The
actual message that is sent to these interfaces is generic in both cases. The user message
that is sent by the trigger is in the job log.

An Interactive SQL insert operation that fails after a trigger signaled an escape message is
shown in Figure 8-12.

Figure 8-12 Escape message that is signaled by a trigger

The SQL interface sends the correct generic SQL message (SQL0443), “Trigger program
or external procedure detected an error”.

The message is sent to the job log by the trigger. In this case, a user-defined message,
“Salesperson not allowed to deal with the customer”, was previously sent by the
QMHSNDPM API (Figure 8-13).

Figure 8-13 User-defined message that is signaled by a trigger

Similarly, if you use DFU, the operation that you perform fails, and the generic message
CPF502B is reported to the interface (Figure 8-14).

Figure 8-14 DFU session

 > UPDATE ORDENTL/ORDERHDR SET CUSTOMER_NUMBER = '00005' WHERE
 ORDER_NUMBER = '12312'
 Trigger program or external procedure detected an error.

 3 > strsql
 Run in debug mode for performance information.
 Salesperson not allowed to deal with customer
 Error occurred in trigger program.
 Error occurred in trigger program.
 Trigger program or external procedure detected an error.

WORK WITH DATA IN A FILE Mode : ENTRY
 Format : ORDERHDR File : ORDERHDR

 ORDER_NUMBER: 00001
 CUSTOMER_NUMBER: 00005
 ORDER_DATE: 2001-01-01
 ORDER_DELIVERY: 2001-01-01
 ORDER_TOTAL: 34000
 SALESREP_NUMBER: ITSCID24
236 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

After you press Enter on this display, you see the exception that is shown in Figure 8-15.

Figure 8-15 Escape message that is signaled to DFU

It is worthwhile to go into more detail to show how the process of signaling a message to the
database interface works. The example in Figure 8-16 relates to our application. We are
reproducing the invocation stack of the application after the trigger is activated.

Figure 8-16 Invocation stack with an OPM trigger

 End Data Entry

 Number of records processed

 Added : 1
 Changed : 0
 Deleted : 0

 Type choice, press Enter.

 End data entry Y Y=Yes, N=No

 F3=Exit F12=Cancel
Message CPF502B was issued.

 Job Call Stack

 Request Program or
 Opt Level Procedure Library Statement Instruction
 QCMD QSYS 0351
 QUICMENU QSYS 00C1
 1 QUIMNDRV QSYS 0455
 2 QUIMGFLW QSYS 0483
 3 QUICMD QSYS 03E4
 QUOCPP QPDA 0541
 QUOMAIN QPDA 0FDD
 4 QUOCMD QSYS 0176
 1 T4249CINS ORDENTLIB 136 00D9
 QSQROUTE QSYS 02F0
 QSQINS QSYS 01C0
 2 QDBPUT QSYS 0193
 3 T4249RADT ORDENTLIB .GET 021D

Notes: The following notes refer to the numbers in Figure 8-16:

1 Application program Order Header Entry inserts a record.
2 This module is the OS/400 module for the insert operation.
3 This program is the trigger program.
Chapter 8. External triggers 237

In the invocation stack, each entry is assigned a call message queue as soon as the call stack
entry is displayed in the job stack. The call message queue is destroyed when the procedure
or program leaves the invocation stack. Several of the messages on the call message queue
are also recorded in the job log. When the trigger is called, the application that caused its
invocation waits until the trigger ends. The trigger becomes part of the application flow. The
trigger is shown in the invocation stack of the job as though the application called it.

The statements in Figure 8-17 from a COBOL program show the parameters to pass to the
QMHSNDPM API to send a message to the DB module that performs the I/O operation.

Figure 8-17 Parameters of the QMHSNDPM API

The following notes refer to the numbers in Figure 8-17.

The parameters that are indicated by 4 are initialized with the message identification and the
message file, which is associated with this message identification. You can use a system
message, or you can create your own message file to signal a message through trigger
programs.

If you create your own message file, ensure that your messages are created by setting
DMPLST = *NONE. Otherwise, your applications generate dump spooled files when they
receive these messages.

The parameter that is indicated by 5 identifies the program message queue entry. If you use
the value * (asterisk), you address the message queue of the procedure that is executing. We
specified “1” for the program stack counter that is indicated by 6 so that the message is sent
to the previous call stack entry, which is QDBPUT. See System API Programming,
SC41-5800, for a description of the usage of this API.

01 SNDPGMMSG.
 03 SND-MSG-ID PIC X(7) VALUE "TRG0005". 4
 03 SND-MSG-FILE PIC X(20) VALUE "ORDMSGF ORDENTLIB".4
 03 SND-MSG-DATA PIC X(30) VALUE "TRIGGER ERROR ".
 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 0.
 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE".
 03 SND-MSG-QUEUE PIC X(10) VALUE "*". 5
 03 SND-PGM-STACK PIC 9(8) BINARY VALUE 1. 6
 03 SND-MSG-KEY PIC X(4) VALUE " ".
 03 SND-ERROR-CODE.
 05 PROVIDED PIC 9(8) BINARY VALUE 66.
 05 AVAILABLE PIC 9(8) BINARY VALUE 0.
 05 EXCEPTION-ID PIC X(7) VALUE " ".
 05 FILLER PIC X(1) VALUE " ".
 05 EXCEPTION-DATA PIC X(50) VALUE " ".
238 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

You might need to call your HLL trigger from a CL program. For example, you need to perform
an OVRDBF SHARE(*YES) as shown in Figure 8-18 before the actual trigger logic is
executed. The CL code is shown in Figure 8-18.

Figure 8-18 CL trigger example

After the trigger is activated, the job call stack is displayed as shown in Figure 8-19.

Figure 8-19 Invocation stack with a CL trigger

You need to specify the correct call stack entry name to the QMHSNDPM API that is
initializing the parameter, which is indicated by 5 in Figure 8-17 on page 238, with the CL
program name CLPGM.

 PGM PARM(&BUF &BUFSIZE)

 DCL VAR(&BUF) TYPE(*CHAR)
 DCL VAR(&BUFSIZE) TYPE(*CHAR) LEN(2)
 OVRDBF FILE(.....) SHARE(*YES)
 CALL PGM(ORDENTLIB/T4249RADT) PARM(&BUF &BUFSIZE)

 ENDPGM

 Job Call Stack

 Request Program or
 Opt Level Procedure Library Statement Instruction
 QCMD QSYS 0351
 QUICMENU QSYS 00C1
 1 QUIMNDRV QSYS 0455
 2 QUIMGFLW QSYS 0483
 3 QUICMD QSYS 03E4
 QUOCPP QPDA 0541
 QUOMAIN QPDA 0FDD
 4 QUOCMD QSYS 0176
 ---> T4249CINS ORDENTLIB 136 00D9
 QSQROUTE QSYS 02F0
 QSQINS QSYS 01C0
 ====>> QDBPUT QSYS 0193
 ---> CLPGM ORDENTLIB 600 000B
 ---> T4249RADT ORDENTLIB .GET 0220
Chapter 8. External triggers 239

Similarly, if you are writing an ILE trigger, every ILE compiler introduces the Program Entry
Procedure (PEP) in front of the user main program (Figure 8-20).

Figure 8-20 Invocation stack with an ILE trigger

In Figure 8-20, you can see the call stack entry after an ILE RPG trigger is activated. The call
stack entry that is shown in bold is the PEP of this specific ILE RPG program. The PEP
message queue name for an RPG program has the format:

_QRNP_PEP_Program name

In our example, the full name is _QRNP_PEP_T4249IADT. Also, see the example in “Audit
trail trigger in ILE RPG - T4249IADT” on page 255. If you use ILE C, the PEP name is always
_C_pep, and it is case-sensitive. (See “Audit trail trigger in ILE C - T4249CCAT” on
page 286.)

8.3.1 Commitment control and triggers

To ensure the best level of data consistency, use commitment control in your applications. If
your database design includes triggers, be aware of the implications of using commitment
control for the resources that are accessed by the trigger programs. To avoid data integrity
potential exposures, triggers and applications need to share the same commitment definition.
In this case, all of the changes that are performed by triggers are committed or rolled back by
the application itself. The safest way to ensure that this commitment or rollback happens is by
compiling your triggers with ACTGRP(*CALLER). Triggers and applications must also share
the same lock level. For more information about handling the commit lock level in trigger
programs, see 8.2, “Trigger program structure” on page 226.

If triggers run in a separate commitment control definition, they must commit or roll back their
changes, because the application cannot commit or roll back their changes. Potential
record-locking and consistency exposures can occur in this situation. If the trigger terminates
normally without committing its changes, the application cannot release the locks on those
records. Use different commitment definitions for triggers and applications only if they are
strictly necessary, which we show in our example. (See “Audit trail trigger in ILE RPG -
T4249IADT” on page 255.)

 Job Call Stack
 Request Program or
 Opt Level Procedure Library Statement Instruction
 QCMD QSYS 0351
 QUICMENU QSYS 00C1
 1 QUIMNDRV QSYS 0455
 2 QUIMGFLW QSYS 0483
 3 QUICMD QSYS 03E4
 QUOCPP QPDA 0541
 QUOMAIN QPDA 0FDD
 4 QUOCMD QSYS 0176
 ----> T4249CINS ORDENTLIB 136 00D9
 QSQROUTE QSYS 02F0
 QSQINS QSYS 01C0
 ===>> QDBPUT QSYS 0193
 _QRNP_PEP_ ... ORDENTLIB
 ----> T4249IADT ORDENTLIB 0000000048
240 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

We now describe what happens to the database changes when a trigger encounters a failure
and ends abnormally. We must consider how DB2 Universal Database for iSeries deals with
the database changes that activate the trigger and with the database changes that are made
by the trigger itself.

Several scenarios are possible, depending on whether triggers and applications are using
commitment control:

� Both the trigger and application use commitment control

In this case, a failure during the trigger program execution causes the automatic rollback
of all changes that were made by the trigger program. The originating change operation is
also rolled back.

All of the changes that relate to the database operation that fired the trigger are treated as
part of an atomic transaction. The system ensures that all of them are either rolled back
together or remain. When the atomic transaction is rolled back, any other database
change that was previously made by the application is not affected. Consider the scenario
in Figure 8-21.

The application that is shown in Figure 8-21 performs database changes, with one of them
firing a trigger. The trigger itself is executing database changes, and an error occurs at the
DELETE statement, which is indicated by the arrow. DB2 Universal Database for iSeries
automatically rolls back all of the changes that are enclosed by the dotted line, but it does
not affect the other operations that are made by the application. The application
determines whether to commit those changes.

Figure 8-21 Atomic transactions with triggers

� Only the application uses commitment control

In this case, all of the changes that are performed by the trigger are not rolled back, but
the change operation that fired the trigger is rejected. Data integrity might be violated in
this situation.

 COMMIT

 UPDATE filea . . . update . . .

 UPDATE fileb . . . insert . . .
..
 INSERT filec . . . delete . . .
..
 if SQLCODE=0 insert . . .
 COMMIT
 else
 ROLLBACK

Application

Trigger
Chapter 8. External triggers 241

� Only the trigger uses commitment control

If the trigger activation group ends for an unexpected exception for which you did not
provide an exception handler, all of the changes that were made by the trigger are
automatically rolled back. If you handle exceptions inside the trigger, this activation group
terminates normally and you need to explicitly issue a rollback operation to bring all of the
changes back. The originating change is canceled only in the case of a BEFORE trigger.

When an OPM trigger fails, the changes that are made by the trigger are not automatically
rolled back. An explicit rollback must always be issued by the trigger to avoid lock
exposure. The originating change is canceled only in the case of a BEFORE trigger.

� The trigger and application do not use commitment control

In this case, the changes that are made by the trigger are not rolled back. The originating
change is canceled in a BEFORE trigger.

Table 8-3 summarizes the behavior of DB2 for i in an unmonitored trigger failure.

Table 8-3 Trigger and commitment control definition

8.4 Designing trigger programs

This section describes specific implementations of trigger programs that fit our Order Entry
application scenario. We show the main advantages of using triggers instead of coding all of
the functions as part of a specific application.

Important: If your triggers modify database data, we suggest that you use commitment
control in both applications and triggers because this method is the safest way to ensure
the integrity of your data.

Application program Trigger program Behavior

COMMIT=YES COMMIT=YES The originating change that is performed by the
application and the changes that are made by the
trigger are rolled back together.

COMMIT=YES COMMIT=NO The change that activated the trigger is rolled back.
The changes that are made by the trigger are not rolled
back.

COMMIT=NO COMMIT=YES After an unhandled exception, the changes that are
made by the trigger are rolled back automatically if the
activation group ends. For OPM triggers, an explicit
rollback operation must be issued.

The originating change is rolled back only in the case
of a BEFORE trigger.

COMMIT=NO COMMIT=YES In the case of an AFTER trigger, all changes are not
rolled back.

In the case of a BEFORE trigger, only the originating
change is rolled back.
242 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

8.4.1 Order Entry application scenario

The main flow of the application is described in Chapter 2, “Stored procedures, triggers, and
user-defined functions for an Order Entry application” on page 9. We focus our attention on
particular functions that can be implemented by trigger programs. Before we describe in detail
each of these trigger programs, we briefly overview the functions that were developed and a
list of the samples that are included in this book. We included three trigger programs in our
scenario:

� Verify salesperson/customer association

This trigger program verifies whether a salesperson is allowed to deal with a specific
customer and logs any attempt to violate the restrictions.

We developed several versions of this program in different languages:

– T4249CADT: SQL COBOL (“Audit trail trigger in COBOL SQL - T4249CADT” on
page 251)

– T4249IADT: Native ILE RPG (“Audit trail trigger in ILE RPG - T4249IADT” on
page 255)

– T4249CCAT: Native ILE C (“Audit trail trigger in ILE C - T4249CCAT” on page 286)

This example is described in detail in 8.4.2, “Audit trail trigger example programs” on
page 244. That section also reports a COBOL version of the application program that fires
the trigger (T4249CADT). This program creates a new order and inserts the new Order
Header in the database.

� Final order check and invoice printing

This trigger program performs several authority checks on updates of the Order Header
and prints the invoice when the grand total is updated. We list the examples in the different
languages:

– T4249CINV: Native COBOL (“Update the trigger on Order Header - T4249CINV” on
page 264)

– T4249IINV: Native ILE RPG (“Invoice trigger in ILE RPG - T4249IINV” on page 271)

– T4249CCIV: ILE C (“Invoice trigger in ILE C - T4249CCIV” on page 276)

In the Order Entry application scenario, this trigger is activated by the program that is
responsible for finalizing the order (FNLORD). An RPG version of this program is also
reported in this section (T4249FNLO). (See “Finalize order program - T4249FNLO” on
page 261.)

� Check customer credit limit

This trigger program prevents the issuance of an order if the customer credit limit is
exceeded and sends a fax to customers who reached 90% of their credit limit. If the
customer is a special customer and they reached 90% of their credit limit, their credit limit
is increased by 30%. This example of a trigger program changes the record that activated
the trigger:

– T4249CCTA: ILE RPG (“ILE RPG trigger program to send a fax - T4249CTA” on
page 282)

– T4249CCTA1: ILE C (“Changing the trigger buffer example” on page 290)

– T4249CCTA2: ILE C (“Calling the trigger program recursively” on page 292)
Chapter 8. External triggers 243

8.4.2 Audit trail trigger example programs

Whenever a new order is created, ensure that the sales representative who takes the order is
authorized to work with that customer. In our sales department, each team of sales
representatives has its own pool of assigned customers. The sales representative uses our
application to place the orders. The first display that the sales representative works with is the
Order Entry input display (Figure 8-22).

Figure 8-22 Order Entry display

 ORDER ENTRY

 ORDER NUMBER: 00001
 CUST. NUMBER: 00003
 ORDER DATE: 2001-05-30
 DELIVERY DATE: 2001-05-30

ENTER = ACCEPT F3=EXIT
244 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

For simplicity, the order number is an input field. In a real application, it is generated by the
system. In our scenario, we prevent duplicate orders due to a unique constraint on the
corresponding database field. It is useful to also report the data description specifications
(DDS) layout of this display file (Figure 8-23).

Figure 8-23 DDS for the display file

If we develop this application in a traditional environment without using any of the advanced
features of DB2 Universal Database for iSeries, we code all of the consistency checks within
the application.

** This is the Order Entry Display File
**
** This covers the take call order header entry
**
 REF(ORDENTREF)
 INDARA
 R ORDER TEXT('ORDER ENTRY')
 ASSUME
 OVERLAY
 CA03(15 'END OF PROGRAM')
 2 35'ORDER ENTRY '
 DSPATR(BL)
 5 3'ORDER NUMBER: '
 ORHNBR R B 5 20CHECK(ME)
 99 ERRMSG('ORDER ALREADY +
 EXISTS' 99)
 DSPATR(HI)
 6 3'CUST. NUMBER: '
 CUSNBR R B 6 20CHECK(ME)
 98 ERRMSG('CUSTOMER NOT FOUND'+
 98)
 97 ERRMSG('ERROR - SEE +
 JOBLOG')
 DSPATR(HI)
 7 3'ORDER DATE: '
 8 3'DELIVERY DATE: '
 ORHDTE 10 B 7 20
 DSPATR(HI)
 ORHDLY 10 B 8 20
 DSPATR(HI)
 R EXITLINE TEXT('EXIT LINE')
 23 3'ENTER = ACCEPT’
 F3 = EXIT'
Chapter 8. External triggers 245

In particular, the Order Header input program must check the Customer/Salesrep relationship
file to ensure that the current user ID that identifies the sales representative is allowed to
place an order for that customer. The pseudocode of this traditional version of the Insert
Order Header program is shown in Figure 8-24.

Figure 8-24 Traditional version of Insert Order Header

In Figure 8-24, all of the data validation for logical consistency is performed by the application
program. By using the DB2 Universal Database for iSeries advanced features, we can easily
delegate the integrity verification (as indicated by 1 in Figure 8-24) to the system,
implementing referential integrity between the CUSTOMER file and the Order Header
(ORDERHDR) file.

We also need to track any violation attempt against our sales organization policy. This check
is performed in the line marked by 2 in Figure 8-24 by the traditional application, which might
lead to security exposures because this business rule can be circumvented by using a
different data input interface, such as Interactive SQL, Data File Utility (DFU), or a different
application. Also, if we need to change the rules, we probably need to modify all of the
existing applications that work with the Order Header file. For this reason, we decided to
implement this check at the database level by developing an insert trigger program. The
layout of the new application is shown in Figure 8-25.

Figure 8-25 Advanced version of Insert Order Header

In Figure 8-25, all of the data verification is performed by the database that is shown by 3
when the insert takes place. The resulting application is more compact and simpler. We need
to check the return code only after the insert operation completes. All of the logic for business
rules enforcement is moved outside of the application, and the logic is executed in any case,
even if we use a different data interface.

 Display input map;
 Read map;
 Initialize grand total to 0;
1 if CUSTOMER_NUMBER not in CUSTOMER file
 send error message;
 else
 retrieve USER PROFILE;
 if USER_PROFILE is not associated to CUSTOMER_NUMBER
2 send error message
 log violation attempt
 else
 insert ORDERHDR
 if duplicate_key
 send error message
 else
 return;

 Display input map;
 Read map;
 Initialize grand total to 0;
3 Insert record in ORDERHDR;
 if I/O error
 show error;
 else
 return;
246 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

In the following example, you can see a COBOL SQL implementation of this procedure. The
operation that activates the trigger and the referential integrity check is marked with 4.
Immediately after the SQL insert, the application checks the SQLCODE for errors and reports
the correct message to the user.

Order Header entry program - T4249CINS
Example 8-2 shows the COBOL SQL implementation of this procedure.

Example 8-2 Order Header entry program - T4249CINS

PROCESS OPTIONS.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. T4249CINS.
 AUTHOR. PROGRAMMER NAME.
 INSTALLATION. ITSC LABORATORY.
 DATE-WRITTEN. APRIL 2001.
 DATE-COMPILED.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-AS400.
 OBJECT-COMPUTER. IBM-AS400.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

 SELECT T4249OHRD ASSIGN TO WORKSTATION-T4249OHRD
 ORGANIZATION IS TRANSACTION
 FILE STATUS IS STATUS-ERR.

 **
 DATA DIVISION.
 FILE SECTION.
 FD T4249OHRD
 LABEL RECORD ARE STANDARD.
 01 DSP01.
 COPY DDS-ALL-FORMATS OF T4249OHRD.

 WORKING-STORAGE SECTION.

 01 DSPFIL-INDICS.
 COPY DDS-ALL-FORMATS-INDIC OF T4249OHRD.

 77 IND-ON PIC 1 VALUE B"1".
 77 IND-OFF PIC 1 VALUE B"0".

 01 JOBA-AREA.
 03 BYTES-RTN PIC 9(8) BINARY VALUE 0.
 03 BYTES-AVAIL PIC 9(8) BINARY VALUE 0.
 03 JOBNAME PIC X(10).
 03 USERNAME PIC X(10).
 03 JOBNUMBER PIC X(6).

 ===
 * Parameters for retrieve job attributes - USERID *
 ===

 01 RTV-JOBA.
 03 RTV-JOB-VAR PIC X(50).
 03 RTV-JOB-LEN PIC 9(8) BINARY VALUE 50.
 03 RTV-JOB-FMT PIC X(8) VALUE "JOBI0400".
 03 RTV-JOB-NAME PIC X(26) VALUE "*".
Chapter 8. External triggers 247

 03 RTV-JOB-ID PIC X(16) VALUE " ".

 01 STATUS-ERR PIC XX.
 01 ORDNUM PIC X(5).
 01 CUSTOMER PIC X(5).
 01 ODATE PIC X(10).
 01 ODLY PIC X(10).
 01 OTOTAL PIC S9(9)V9(2) COMP-3.
 01 INSERTOK PIC 9.

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 LINKAGE SECTION.

 01 CUSTNBR PIC X(5).
 01 ORDNBR PIC X(5).
 01 RTCODE PIC X.
 ==
 This program has three output parameters: Customer numb.
 *Order number and Return code. The return code can be: *
 *Rtcode = 0 - OK Rtcode = 2 - F3 *
 ==
 PROCEDURE DIVISION USING CUSTNBR, ORDNBR, RTCODE.

 DECLARATIVES.
 TRANSACTION-ERROR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE T4249OHRD.

 WORK-STATION-ERROR-HANDLER.
 GOBACK.
 END DECLARATIVES.

 MAIN-LINE SECTION.
 OPEN I-O T4249OHRD.
 PERFORM INITIAZ-HEADER.

 ===
 * Call API to get job attributes and move the *
 * output parameter into the work area *
 ===
 CALL "QUSRJOBI" USING RTV-JOB-VAR,
 RTV-JOB-LEN,
 RTV-JOB-FMT,
 RTV-JOB-NAME,
 RTV-JOB-ID.

 MOVE RTV-JOB-VAR TO JOBA-AREA.
 MOVE "0" TO RTCODE.
 MOVE 0 TO INSERTOK.
 MOVE IND-OFF TO IN15 IN ORDER-I-INDIC.
 WRITE DSP01 FORMAT IS "EXITLINE".
 PERFORM ORDER-ENTRY UNTIL
 IN15 IN ORDER-I-INDIC EQUAL IND-ON OR
 INSERTOK EQUAL 1.

 IF IN15 IN ORDER-I-INDIC = IND-ON THEN
 MOVE "2" TO RTCODE
 ELSE
248 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 IF INSERTOK = 1 THEN
 MOVE "0" TO RTCODE.
 ===
 We are not closing the file because we are overlapping screens
 ===
 * CLOSE T4249OHRD.
 GOBACK.
 ORDER-ENTRY.
 PERFORM WRITE-READ-ORDER.
 MOVE ORHNBR OF ORDER-I TO ORDNUM.
 MOVE CUSNBR OF ORDER-I TO CUSTOMER.
 MOVE ORHDTE OF ORDER-I TO ODATE.
 MOVE ORHDLY OF ORDER-I TO ODLY.
 MOVE ZEROS TO OTOTAL.
 MOVE CUSTOMER TO CUSTNBR.
 MOVE ORDNUM TO ORDNBR.
 IF IN15 IN ORDER-I-INDIC NOT EQUAL IND-ON THEN
 *
 * The program inserts an order in ORDERHDR file.
 *
 EXEC SQL
 INSERT INTO ORDENTL/ORDERHDR VALUES(:ORDNUM, :CUSTOMER,
 :ODATE, :ODLY, :OTOTAL, :USERNAME) :rk.4:erk.
 END-EXEC
 IF SQLCODE EQUAL 0 THEN
 MOVE 1 TO INSERTOK 4
 ELSE
 ==
 * After the insert operation, you should monitor the *
 * following SQLCODEs: *
 * SQL0530(-530) - Referential Integrity violation *
 * SQL0803(-803) - Order Header already exists *
 * SQL0443(-443) - Trigger program signaled an exception *
 ==
 IF SQLCODE EQUAL -530 THEN
 MOVE IND-ON TO IN98 OF ORDER-O-INDIC
 MOVE SPACES TO ORHNBR OF ORDER-O
 MOVE CUSTOMER TO CUSNBR OF ORDER-O
 ELSE
 IF SQLCODE EQUAL -803 THEN
 MOVE IND-ON TO IN99 OF ORDER-O-INDIC
 ELSE
 MOVE IND-ON TO IN97 OF ORDER-O-INDIC.

 INITIAZ-HEADER.
 MOVE SPACES TO ORHNBR OF ORDER-O.
 MOVE SPACES TO CUSNBR OF ORDER-O.
 MOVE "0001-01-01" TO ORHDTE OF ORDER-O.
 MOVE "0001-01-01" TO ORHDLY OF ORDER-O.

 WRITE-READ-ORDER.
 WRITE DSP01 FORMAT IS "ORDER" INDICATORS ARE ORDER-O-INDIC.
 MOVE IND-OFF TO ORDER-I-INDIC ORDER-O-INDIC.
 READ T4249OHRD RECORD INDICATORS ARE ORDER-I-INDIC.

The trigger program that is fired by this application function checks that the sales
representative was assigned to that customer. If this condition is not satisfied, the trigger logs
an entry in an audit file.
Chapter 8. External triggers 249

The pseudocode of the trigger is shown in Figure 8-26.

Figure 8-26 Pseudocode for the audit trail trigger

The commit operation, which is highlighted in bold in Figure 8-26, needs description. We want
to ensure that, whenever a violation occurs, the trigger logs the attempt. For this reason, the
trigger must run in a separate commitment definition, so that the commit operation, which is
highlighted in bold, affects only the insert operation in the audit file. This way, the interface
that originates the violation cannot roll back this log entry. For this special requirement of this
particular application, we want the trigger to run in a different commitment definition. In
general, we recommend that you run your applications and triggers in the same commitment
definition. The application must commit or roll back all of the changes at the end of the logical
transaction. (See 8.3.1, “Commitment control and triggers” on page 240.)

However, if you code your triggers in an OPM language, you cannot force them to use a
separate commitment definition. In this case, avoid using commitment control in triggers,
unless you do not want the application to roll back the changes that are made by your
triggers.

If you are implementing these kinds of triggers in the IBM Integrated Language Environment
(ILE), create the program to run in a named activation group. If your trigger is an SQL trigger,
commitment control is automatically started at the activation group level for you. But, if you
are using the native interface, you must start commitment control for the named activation
group. See “Audit trail trigger example in ILE RPG” on page 255 and “Audit trail trigger
example in ILE C” on page 260.

Audit trail trigger example in COBOL SQL (OPM)
This version of the trigger program must perform uncommitted changes. To create the
program that is shown in the following example, use the command:

CRTSQLCBL PGM(ORDENTLIB/T4249CADT)
SRCFILE(ORDENTLIB/QLBLSRC)
COMMIT(*NONE)

It is interesting to point out that this version of the trigger is enabled to send a message to the
display if the job that activated the trigger is interactive. This technique might be useful if you
want to provide the user with a better understanding of what happened during the trigger
execution. Generally, when a trigger fails, applications send the user a generic message that
references the job log. The trigger program checks for the job type that is highlighted in bold
and opens an appropriate display file to show the message only in the case of an interactive
job.

 Retrieve USERPROFILE;
 Read SalesRep/Customer file;
 if USERPROFILE is associated with CUSTOMER
 return;
 else
 log entry in AUDIT file;
 send escape message to application;
 commit;
 return;
250 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Audit trail trigger in COBOL SQL - T4249CADT
Example 8-3 shows the audit trail trigger in COBOL SQL.

Example 8-3 Audit trail trigger in COBOL SQL - T4249CADT

PROCESS OPTIONS.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. T4249CADT.
 AUTHOR. IBM.
 INSTALLATION. ITSO.
 DATE-WRITTEN. MAY 2001.
 DATE-COMPILED. MAY 2001.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-AS400.
 OBJECT-COMPUTER. IBM-AS400.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT DSPMSGD ASSIGN TO WORKSTATION-DSPMSGD
 ORGANIZATION IS TRANSACTION.
 **
 DATA DIVISION.
 FILE SECTION.
 FD DSPMSGD
 LABEL RECORD ARE STANDARD.
 01 DSP01.
 COPY DDS-ALL-FORMATS OF DSPMSGD.

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION
 END-EXEC.
 01 CUSTOMNBR PIC X(5).
 01 SRNBR PIC X(10).
 01 CHECKVAR PIC S9.
 EXEC SQL END DECLARE SECTION
 END-EXEC.

 01 WINMSG.
 03 MSG1 PIC X(30)
 VALUE "YOU CANNOT DEAL WITH CUSTOMER".
 03 MSG2 PIC X(30)
 VALUE "TRIGGER ERROR - SEE JOBLOG".
 03 MSGDSP PIC X(30).
 ==
 * This is the area to receive the record image *
 ==
 01 ORDER-HEADER.
 03 ORDHNBR PIC X(5).
 03 CUSNBR PIC X(5).
 03 ORHDTE PIC X(10).
 03 ORHDLY PIC X(10).
 03 ORDTOT PIC S9(9)V9(2) COMP-3.
 03 SRNNBR PIC X(10) VALUE " ".

 01 JOBA-AREA.
 03 BYTES-RTN PIC 9(8) BINARY VALUE 0.
 03 BYTES-AVAIL PIC 9(8) BINARY VALUE 0.
 03 JOBNAME PIC X(10).
 03 USERNAME PIC X(10).
Chapter 8. External triggers 251

 03 JOBNUMBER PIC X(6).
 03 INTERNALJID PIC X(16).
 03 JOBSTATUS PIC X(10).
 03 JOBTYPE PIC X(1).

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.
 ===
 * These are the parameters for the API QUSRJOBI *
 * to get job attributes - we need the USERID *
 ===
 01 RTV-JOBA.
 03 RTV-JOB-VAR PIC X(61).
 03 RTV-JOB-LEN PIC 9(8) BINARY VALUE 61.
 03 RTV-JOB-FMT PIC X(8) VALUE "JOBI0400".
 03 RTV-JOB-NAME PIC X(26) VALUE "*".
 03 RTV-JOB-ID PIC X(16) VALUE " ".

 ==
 * These are the parameters needed to signal an *
 * exception inside trigger programs *
 ==
 01 SNDPGMMSG.
 03 SND-MSG-ID PIC X(7) VALUE "TRG0005".
 03 SND-MSG-FILE PIC X(20) VALUE "ORDMSGF ORDENTLIB".
 03 SND-MSG-DATA PIC X(30) VALUE "TRIGGER ERROR ".
 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 0.
 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE".
 03 SND-MSG-QUEUE PIC X(10) VALUE "*".
 03 SND-PGM-STACK PIC 9(8) BINARY VALUE 1.
 03 SND-MSG-KEY PIC X(4) VALUE " ".
 03 SND-ERROR-CODE.
 05 PROVIDED PIC 9(8) BINARY VALUE 66.
 05 AVAILABLE PIC 9(8) BINARY VALUE 0.
 05 EXCEPTION-ID PIC X(7) VALUE " ".
 05 FILLER PIC X(1) VALUE " ".
 05 EXCEPTION-DATA PIC X(50) VALUE " ".

 ==
 * PARM 1 = Trigger Buffer *
 * PARM 2 = Trigger Length *
 ==
 LINKAGE SECTION.
 01 PARM-1.
 03 FILE-NAME PIC X(10).
 03 LIB-NAME PIC X(10).
 03 MEM-NAME PIC X(10).
 03 TRG-EVENT PIC X.
 03 TRG-TIME PIC X.
 03 CMT-LCK-LVL PIC X.
 03 FILLER PIC X(3).
 03 DATA-AREA-CCSID PIC 9(8) BINARY.
 03 FILLER PIC X(8).
 03 DATA-OFFSET.
 05 OLD-REC-OFF PIC 9(8) BINARY.
 05 OLD-REC-LEN PIC 9(8) BINARY.
 05 OLD-REC-NULL-MAP PIC 9(8) BINARY.
 05 OLD-REC-NULL-LEN PIC 9(8) BINARY.
 05 NEW-REC-OFF PIC 9(8) BINARY.
252 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 05 NEW-REC-LEN PIC 9(8) BINARY.
 05 NEW-REC-NULL-MAP PIC 9(8) BINARY.
 05 NEW-REC-NULL-LEN PIC 9(8) BINARY.
 05 FILLER PIC X(16).
 03 RECORD-JUNK.
 05 OLD-RECORD PIC X(46).
 05 OLD-NULL-MAP PIC X(6).
 05 NEW-RECORD PIC X(46).
 05 NEW-NULL-MAP PIC X(6).

 01 PARM-2.
 03 TRGBUF-LEN PIC X(2).
 **
 PROCEDURE DIVISION USING PARM-1, PARM-2.

 MAIN-PROGRAM SECTION.
 START-SECTION.
 ==
 * New record image received from the Database manager*
 * and moving it to the working storage *
 ==

 MOVE NEW-RECORD TO ORDER-HEADER.

 ===
 * Call API to get the job attributes - USERID *
 * and move the receiving contents to working storage *
 ===
 CALL "QUSRJOBI" USING RTV-JOB-VAR,
 RTV-JOB-LEN,
 RTV-JOB-FMT,
 RTV-JOB-NAME,
 RTV-JOB-ID.

 MOVE RTV-JOB-VAR TO JOBA-AREA.

 IF SRNNBR OF ORDER-HEADER EQUAL USERNAME THEN
 MOVE SRNNBR OF ORDER-HEADER TO SRNBR
 MOVE CUSNBR OF ORDER-HEADER TO CUSTOMNBR
 EXEC SQL SELECT 1 INTO &colon.CHECKVAR
 FROM ORDENTL/SALESCUS
 WHERE SALESREP_NUMBER = &colon.SRNBR AND
 CUSTOMER_NUMBER = &colon.CUSTOMNBR

 END-EXEC
 IF SQLCODE = 100 THEN
 PERFORM ERROR-MSG
 ELSE
 NEXT SENTENCE
 ELSE
 PERFORM ERROR-MSG.

 ===
 * If salesperson can deal with the customer just *
 * send a message that the salesperson was found. *
 * Otherwise, we will audit trail and signal exception *
 * so the DB change operation will fail. We are *
 * testing the USERID to ensure that whatever interface*
 * invokes the trigger, the salesperson will be checked*
 ===
Chapter 8. External triggers 253

 CLOSE DSPMSGD.
 GOBACK.

 ERROR-MSG.
 MOVE CUSNBR OF ORDER-HEADER TO CUSTOMNBR.
 MOVE SRNNBR OF ORDER-HEADER TO SRNBR.
 EXEC SQL
 INSERT INTO ORDENTLIB/AUDTFIL (SALESREP_NUMBER,
 CUSTOMER_NUMBER) VALUES(&colon.SRNBR, &colon.CUSTOMNBR)
 END-EXEC.
 **
 * If the insert fails inside trigger program you *
 * should provide the appropriate escape message *
 * signaling an exception to the application *
 **

 IF SQLCODE NOT EQUAL 0 THEN
 MOVE "TRG0003" TO SND-MSG-ID
 MOVE MSG2 TO MSGDSP
 ELSE

 **
 * If salesperson cannot deal with the customer *
 * send an escape message - DB change operation will *
 * not happen *
 **
 MOVE MSG1 TO MSGDSP
 MOVE "TRG0002" TO SND-MSG-ID.
 MOVE "*ESCAPE" TO SND-MSG-TYPE.
 PERFORM SND-MSG.
 SND-MSG.
 ==
 * If the job is interactive, we can send a message *
 * to the screen. *
 ==
 IF JOBTYPE EQUAL "I" THEN
 OPEN I-O DSPMSGD
 MOVE MSGDSP TO MSGFLD OF DSPMSGD-O
 WRITE DSP01 FORMAT IS "DSPMSGD"
 READ DSPMSGD
 CLOSE DSPMSGD
 END-IF.
 ==
 * Using the API to signal back to the application *
 * an escape message in order to make the insert fail. *
 ==
 CALL "QMHSNDPM" USING SND-MSG-ID,
 SND-MSG-FILE,
 SND-MSG-DATA,
 SND-MSG-LEN,
 SND-MSG-TYPE,
 SND-MSG-QUEUE,
 SND-PGM-STACK,
 SND-MSG-KEY,
 SND-ERROR-CODE.

 IF AVAILABLE IS NOT EQUAL 0 THEN
 DISPLAY "QMHSNDPM API ERROR" SND-MSG-ID.
 GOBACK.
254 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Audit trail trigger example in ILE RPG
The following example of the audit trail trigger was implemented by using the ILE RPG
language. As mentioned in the general description (8.4.2, “Audit trail trigger example
programs” on page 244), we want a separate commitment definition for this program. For this
reason, follow these steps:

1. Write an ILE CL program. Enter the command:

STRCMTCTL CMTSCOPE(*ACTGRP)

2. Create the corresponding CL module.

3. Call the CL program from within RPG before any file is opened. Use the User Open
(USROPN) option in the F specs, and open the file explicitly in your program.

4. Create the corresponding RPG module.

5. Create a program that specifies a named activation group.

The following commands are needed to create this program:

CRTRPGMOD MODULE(ORDENTLIB/T4249IADT)
SRCFILE(ORDENTLIB/QRPGILE)
SRCMBR(T4249IADT)

CRTCLMOD MODULE(ORDENTLIB/T4249CTL)
 SRCFILE(ORDENTLIB/QCLSRC)

CRTPGM PGM(ORDENTLIB/T4249IADT)
 MODULE(ORDENTLIB/T4249IADT ORDENTLIB/T4249CTL)
 TEXT(*ENTMODTXT)
 ACTGRP(AUDIT)

Figure 8-27 shows the CL code that is needed to start commitment control in a separate
activation group.

Figure 8-27 Starting a separate commitment definition

The RPG program is shown in the following section.

Audit trail trigger in ILE RPG - T4249IADT
Example 8-4 shows the audit trail trigger in the ILE RPG program.

Example 8-4 Audit trail trigger in ILE RPG - T4249IADT

FSALESCUS IF E K DISK INFDS(FILDS1)
 F INFSR(*PSSR)
 F RENAME(SALESCUS:SALECS)
 FAUDTFIL O E K DISK COMMIT
 F USROPN
 F INFDS(FILDS2)
 FDSPMSGD CF E WORKSTN
 F RENAME(DSPMSGD:DSPM)
 * Program status subroutines
 D FILDS1 DS

PGM
MONMSG MSGID(CPF0000)
STRCMCTL LCKLVL(*CHG) CMTSCOPE(*ACTGRP)
ENDPGM
Chapter 8. External triggers 255

 D FIL1 *FILE
 D REC1 *RECORD
 D OP1 *OPCODE
 D STS1 *STATUS
 D RTN1 *ROUTINE
 ==
 D FILDS2 DS
 D FIL2 *FILE
 D REC2 *RECORD
 D OP2 *OPCODE
 D STS2 *STATUS
 D RTN2 *ROUTINE
 ==
 * Trigger Buffer passed by the system to this PGM *
 ==
 * FNAME = PHYSICAL FILE NAME *
 * LNAME = PHYSICAL FILE LIBRARY *
 * MNAME = MEMBER NAME *
 * TEVEN = TRIGGER EVENT *
 * TTIME = TRIGGER TIME *
 * CMTLCK= COMMIT LOCK LEVEL *
 * FILL1 = RESERVED *
 * CCSID = CCSID *
 * FILL2 = RESERVED *
 * OLDOFF= OFFSET TO THE ORIGINAL RECORD *
 * OLDLEN= LENGTH OF THE ORIGINAL RECORD *
 * ONOFF = OFFSET TO THE ORIGINAL RECORD NULL BYTE MAP*
 * ONLEN = LENGTH OF THE NULL BYTE MAP *
 * NOFF = OFFSET TO THE NEW RECORD *
 * NEWLEN= LENGTH OF THE NEW RECORD *
 * NNOF = OFFSET TO THE NEW RECORD NULL BYTE MAP *
 * NNLEN = LENGTH OF THE NULL BYTE MAP *
 * RESV3 = RESERVED *
 * OREC = OLD RECORD *
 * OOMAP = NULL BYTE MAP OF OLD RECORD *
 * RECORD= NEW RECORD *
 * NMAP = NULL BYTE MAP OF NEW RECORD *
 ==
 D PARM1 DS
 D FNAME 1 10
 D LNAME 11 20
 D MNAME 21 30
 D TEVEN 31 31
 D TTIME 32 32
 D CMTLCK 33 33
 D FILL1 34 36
 D CCSID 37 40B 0
 D FILL2 41 48
 D OLDOFF 49 52B 0
 D OLDLEN 53 56B 0
 D ONOFF 57 60B 0
 D ONLEN 61 64B 0
 D NOFF 65 68B 0
 D NEWLEN 69 72B 0
 D NNOFF 73 76B 0
 D NNLEN 77 80B 0
 D RESV3 81 96
 D OREC 97 142
 D OOMAP 143 148
 D RECORD 149 194
256 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 D NNMAP 195 200
 ==
 * Definition of the length buffer received by trigger*
 ==
 D PARM2 DS
 D LENG 1 4B 0
 *
 ==
 * This is the area to receive the new record image *
 ==
 D NRECORD DS
 D ORHNBR 1 5
 D CUSNBR 6 10
 D ORHDTE 11 20
 D ORHDLY 21 30
 D OTOTAL 31 36P 0
 D SRNBR 37 46
 ==
 * This is the receiving parms from the API QUSRJOBI*
 * Retrieve the job attributes - USERID *
 ==
 D RTVAPI DS
 D BTRN 1 4B 0
 D BAVAIL 5 8B 0
 D JOBNAM 9 18
 D USERID 19 28
 D JOBNBR 29 34
 D JOBID 35 50
 D JOBSTS 51 60
 D JOBTYP 61 61
 ==
 * Outout parameters for QMHSNDPM *
 ==
 D MSGERR DS
 D PROVID 1 4B 0
 D AVAIL 5 8B 0
 D RTNMSG 9 15
 D RSVR 16 16
 D RTNDTA 17 56
 *
 D FLDS DS
 D MSGLEN 1 4B 0
 D PGMSTK 5 8B 0
 D RTVLEN 9 12B 0
 D MSGQLEN 13 16B 0
 D PGMWTT 17 20B 0
 *
 D MSG1 C CONST('S/C NOT ALLOWED ')
 D MSG2 C CONST('TRIGGER ERROR ')
 ===
 * RPG ILE - Call stack entry - signal exception parameters *
 ===
 D LIBNAM C CONST('ORDENTLIB')
 D MSGQNAM C CONST('_QRNP_PEP_T4249IADT')
 D MODNAME C CONST('*NONE *NONE ')
 *
 C *ENTRY PLIST
 C PARM1 PARM PARM1
 C PARM2 PARM PARM2
 ==
Chapter 8. External triggers 257

 * Parameter needed to signal an exception inside triggers*
 ==
 C PLIST1 PLIST
 C PARM MSGID 7
 C PARM MSGF 20
 C PARM MSGDTA 25
 C PARM MSGLEN
 C PARM MSGTYP 10
 C PARM MSGQUE 19
 C PARM PGMSTK
 C PARM MSGKEY 4
 C PARM MSGERR
 C PARM MSGQLEN
 C PARM CSEQUAL 20
 C PARM PGMWTT
 ===
 * Retrieve job attributes - USERID *
 ===
 C PLIST2 PLIST
 C PARM RTVVAR 61
 C PARM RTVLEN
 C PARM RTVFMT 8
 C PARM RTVNAM 26
 C PARM RTVID 16
 *
 C KEYFLD KLIST
 C KFLD SRNBR
 C KFLD CUSNBR
 ===
 * Initialization for *PSSR routine if some *
 * unmonitored errors occur *
 ===
 C MOVEL MSG2 MSGFLD
 C MOVEL 'TRG0005' MSGID
 *
 *
 ===
 * Start a different commitment control definition *
 ===
 C CALLB 'T4249CTL'
 C OPEN AUDTFIL 88
 *
 ===
 * Get job attributes - USERID *
 ===
 C Z-ADD 61 RTVLEN
 C MOVEL 'JOBI0400' RTVFMT
 C MOVEL(P) '*' RTVNAM
 C MOVE ' ' RTVID
 C CALL 'QUSRJOBI' PLIST2
 *
 ===
 * Move THE NEW RECORD RECIEVED BY TRIGGER TO WORK.FLDS*
 ===
 *
 C MOVEL RECORD NRECORD
 *
 C MOVE RTVVAR RTVAPI
 ===
 * This program will check if the salesperson can deal *
258 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 * with the customer - testing first for the USERID *
 * and with the salesperson because another interface *
 * may call the same trigger, and you have to think *
 * about it. Besides that we are checking if they exist*
 * in the SALESCUS file, if they don't trigger program *
 * will signal an exception to the application and DB *
 * change operation will not happen and will audit *
 * trail, otherwise the change will run successfully *
 ===
 C SRNBR IFNE USERID
 C GOTO NTFND
 C END
 *
 C KEYFLD CHAIN SALECS 71
 C *IN71 IFEQ '0'
 C GOTO EOFIN
 C END
 C NTFND TAG
 *
 C WRITE AUDIT 99
 C *IN99 IFEQ *ON
 C MOVEL MSG2 MSGFLD
 C MOVEL 'TRG0005' MSGID
 C ROLBK
 C ELSE
 C MOVEL MSG1 MSGFLD
 C MOVEL 'TRG0002' MSGID
 C COMMIT
 C END
 C EXSR *PSSR
 C EOFIN TAG
 C CLOSE SALESCUS
 C RETURN
 ==
 * Signaling an exception inside trigger program *
 * We check if the job is interactive or not and if it is *
 * we send a message to user before signaling the exception*
 ==
 C *PSSR BEGSR
 C JOBTYP IFEQ 'I'
 C EXFMT DSPM
 C END
 C MOVEL(P) LIBNAM LIB 10
 C MOVEL(P) 'ORDMSGF' ID 10
 C ID CAT(P) LIB MSGF
 C MOVE ' ' MSGDTA
 C Z-ADD 25 MSGLEN
 C MOVEL(P) '*ESCAPE' MSGTYP
 C MOVEL(P) MSGQNAM MSGQUE
 C MOVEL(P) MODNAME CSEQUAL
 C MOVE ' ' MSGDTA
 C Z-ADD 1 PGMSTK
 C Z-ADD 19 MSGQLEN
 C MOVE ' ' MSGKEY
 C Z-ADD 66 PROVID
 C Z-ADD 0 AVAIL
 C MOVE ' ' RTNMSG
 C MOVE ' ' RSVR
 C MOVE ' ' RTNDTA
 C MSGQUE DSPLY
Chapter 8. External triggers 259

 C CALL 'QMHSNDPM' PLIST1
 C AVAIL IFNE 0
 C RTNMSG DSPLY
 C RTNDTA DSPLY
 C END
 C ENDSR

Audit trail trigger example in ILE C
You can use ILE C to start commitment control at the activation group scope by using the
system ANSI C function. Any CL command that is executed by this function runs in the same
activation group as the program that issues the system function.

For the audit trail example in ILE C, see “Softcoding the trigger buffer in ILE C” on page 285.
In addition to the features that are covered by the COBOL and RPG programs, the ILE C
example shows how to softcode the trigger buffer.

8.4.3 Updating a trigger on the Order Header file program examples

Whenever an update takes place on the ORDERHDR file, we want to ensure that the
following conditions are satisfied:

� The record can be updated either by the originator of the order or by QSECOFR.

� QSECOFR can update any field in the Order Header program.

� The originator cannot update the customer field, because we want to prevent an order that
is issued for a customer from being rerouted to another one. See the description in 8.4.2,
“Audit trail trigger example programs” on page 244, about the audit trail trigger.

� If the originator updates the grand total field, the order is complete. We need to generate
the invoice in this case.

Enforcing all of these rules in a traditional environment is difficult, and the enforcement is
restricted to the applications that implement this logic.

In our scenario, we provide an update trigger on the Order Header (ORDERHDR) file to
perform all of these functions. The trigger complements the Order Entry application because,
when the Finalize Order module is called, the grand total is updated and the invoice is
automatically generated. In addition, this trigger ensures that our sales department
organization policy is never violated. The program prevents a sales representative from
placing a “dummy” order for a customer to which they are authorized and then rerouting it to a
different customer later.

In our application scenario, this trigger plays a significant role when the order is submitted.
Then, the procedure that is responsible for finalizing the order (FNLORD) is invoked and
updates the Order Header file with the order grand total. In the following section, you can
follow the logic of this function and look at the operation that fires this trigger, which is
highlighted in bold.
260 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Finalize order program - T4249FNLO
Example 8-5 shows the program to finalize the order.

Example 8-5 Finalize order program - T4249FNLO

F***
F* This program performs the final processing of the order
F* information; updates the grand total in the Order Header
F* and updates the Customer total ordered amount.
F***
FFNLORDD CF E WORKSTN
C *ENTRY PLIST
C PARM PCUSN 5
C PARM PORDN 5
C PARM PORDT 112
C PARM RTNCD 1
C*
C MOVE *BLANK WSR 10
C*
C* If the total order amount is greater than the customer's
C* credit limit, the program displays an error message and
C* returns to the calling program with the return code '1'.
C*
C/EXEC SQL
C+ UPDATE ORDENTL/CUSTOMER
C+ SET CUSTOT = CUSTOT + :PORDT

C+ WHERE CUSNBR = :PCUSN AND
C+ CUSCRD >= :PORDT
C/END-EXEC
C*
C SQLCOD IFEQ 100
C SQLSTT ANDEQ'02000'
C SETON
C MOVE '1' RTNCD
C EXFMTFNLORDR
C RETRN
C END
C*
C/EXEC SQL
C+ SELECT SRNBR INTO :WSR
C+ FROM ORDENTL/ORDERHDR
C+ WHERE ORHNBR = :PORDN
C/END-EXEC
C*
C* The total order amount is added to the sales_rep's amount.
C*
C/EXEC SQL
C+ UPDATE ORDENTL/SALESCUS
C+ SET SRAMT = SRAMT + :PORDT
C+ WHERE SRNBR = :WSR
C/END-EXEC
C*
C* If the sales_rep not found, an error message is displayed,
C* and set return_code to '1'.
C*
C SQLCOD IFEQ 100
C SQLSTT ANDEQ'02000'
C SETON
C MOVE '1' RTNCD
Chapter 8. External triggers 261

C EXFMTFNLORDR
C RETRN
C END
C*
C* The total order amount on ORDERHDR file is updated and
C* this update will fire a trigger program.
C* If the trigger fails, the update also fails and
C* we rollback any record updated previously.
C* The program returns an error code = '1'. to the main.
C*
C/EXEC SQL
C+ UPDATE ORDENTL/ORDERHDR
C+ SET ORHTOT = :PORDT
C+ WHERE ORHNBR = :PORDN
C/END-EXEC
C*
C SQLCOD IFLT 0
C*
C/EXEC SQL
C+ ROLLBACK
C/END-EXEC
C*
C MOVE '1' RTNCD
C SETON
C EXFMTFNLORDR
C RETRN

C END
C*
C MOVE '0' RTNCD
C/EXEC SQL
C+ COMMIT
C/END-EXEC
C*
C RETRN
262 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Invoice trigger example in native COBOL
This version of the trigger program generates a printed invoice. We use the printer file that is
shown in Figure 8-28 to generate the printout.

Figure 8-28 Printer file for printing invoices: T4249INV

Commitment control is not a concern in this case because the invoice is printed and the
trigger performs read-only database access.

To prevent an uncontrolled trigger failure due to possible MCHxxxx errors, such as a Decimal
Data Error, we defined a COBOL exception handler through the QLRSETCE API. The
program is invoked when an exception occurs. The program handles the exception and sends
a meaningful escape message to the interface that generated the originating database
change.

To create this trigger program, enter the following commands:

CRTCBLPGM PGM(ORDENTLIB/T4249CINV)
 SRCFILE(*LIBL/QLBLSRC)
 SRCMBR(*PGM)
CRTCBLPGM PGM(ORDENTLIB/T4249CHDL)
 SRCFILE(*LIBL/QLBLSRC)
 SRCMBR(*PGM)

** This is the Printer file for Order Entry application
**
** This covers the trigger invoice programs
**
 REF(ORDENTREF)
*
 R HEADER

 3 5'ORDER NUMBER: '
 ORHNBR R 3 19
 3 30'CUST. NUMBER: '
 CUSNBR R 3 45
 4 5'ORDER DATE: '
 ORHDTE 10 4 19
 4 30'ORDER TOTAL: '
 ORHTOT R 4 43EDTCDE(6)
 5 5'SALES REP.: '
 SRNBR R 5 19

 R DETAIL

 9 5'PRODUCT NBR'
 PRDNBR R 10 5
 9 20'ORDER QTY'
 ORDQTY R 10 20
 9 40'ORDER TOTAL'
 ORDTOT R 10 40EDTCDE(6)
Chapter 8. External triggers 263

Update the trigger on Order Header - T4249CINV
Example 8-6 shows the program to update the trigger on Order Header.

Example 8-6 Update the trigger on Order Header - T4249CINV

PROCESS OPTIONS.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. T4249CINV.
 AUTHOR. PROGRAMMER NAME.
 INSTALLATION. ITSC LABORATORY.
 DATE-WRITTEN. APRIL 2001.
 DATE-COMPILED.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-AS400.
 OBJECT-COMPUTER. IBM-AS400.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

 SELECT T4249INV ASSIGN TO FORMATFILE-T4249INV
 ORGANIZATION IS SEQUENTIAL
 ACCESS IS SEQUENTIAL.

 SELECT ORDERDTL ASSIGN TO DATABASE-ORDERDTL
 ORGANIZATION IS INDEXED
 ACCESS IS SEQUENTIAL
 RECORD KEY IS EXTERNALLY-DESCRIBED-KEY
 FILE STATUS IS STATUS-ERR.

**
 DATA DIVISION.
 FILE SECTION.
 FD ORDERDTL
 LABEL RECORD ARE STANDARD.
 01 ORDEDTL01.
 COPY DDS-ALL-FORMATS OF ORDERDTL.

 FD T4249INV
 LABEL RECORDS ARE STANDARD.
 01 PRT-REC.
 COPY DDS-ALL-FORMATS-O OF T4249INV.

 WORKING-STORAGE SECTION.

 77 END-OF-FILE PIC X(1) VALUE "0".
 88 NOT-EOF VALUE "0".
 88 EOF VALUE "1".

 01 QTY PIC S9(5).
264 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 01 TOTAL PIC S9(7)V9(2) VALUE ZEROS.
 01 TOTAL-ZON PIC S9(9)V9(2) VALUE ZEROS.

 01 STATUS-ERR PIC XX.
 01 ORDERNBR PIC X(5).

===
* This is the area to receive the New record image *
===
 01 NEW-ORDER.
 03 NORDHNBR PIC X(5).
 03 NCUSNBR PIC X(5).

 03 NORHDTE PIC X(10).
 03 NORHDLY PIC X(10).
 03 NORDTOT PIC S9(9)V9(2) COMP-3.
 03 NORHSR PIC X(10).

===
* This is the area to receive the Old record image *
===
 01 OLD-ORDER.
 03 ORDHNBR PIC X(5).
 03 CUSNBR PIC X(5).
 03 ORHDTE PIC X(10).
 03 ORHDLY PIC X(10).
 03 ORDTOT PIC S9(9)V9(2) COMP-3.
 03 ORHSR PIC X(10).
 01 JOBA-AREA.
 03 BYTES-RTN PIC 9(8) BINARY VALUE 0.
 03 BYTES-AVAIL PIC 9(8) BINARY VALUE 0.
 03 JOBNAME PIC X(10).
 03 USERNAME PIC X(10).
 03 JOBNUMBER PIC X(6).

===
* Parameter passed to the API QUSRJOBI to retrieve*
* the job attributes *
===

 01 RTV-JOBA.
 03 RTV-JOB-VAR PIC X(50).
 03 RTV-JOB-LEN PIC 9(8) BINARY VALUE 50.
 03 RTV-JOB-FMT PIC X(8) VALUE "JOBI0400".
 03 RTV-JOB-NAME PIC X(26) VALUE "*".
 03 RTV-JOB-ID PIC X(16) VALUE " ".

===
* COBOL ERROR HANDLER routine to treat severe *
* errors as MCHXXXX *
===
 01 ERROR-HDL.
 03 ERR-HDL-EXIT PIC X(20) VALUE "T4249CHDL ORDENTLIB".
 03 ERR-HDL-SCOPE PIC X(1) VALUE "C".
 03 ERR-HDL-PGML PIC X(10) VALUE " ".
Chapter 8. External triggers 265

 03 ERR-HDL-PGMN PIC X(20) VALUE "T4249CINV ORDENTLIB".
 03 ERR-HDL-CODE.
 05 PROV PIC 9(8) BINARY VALUE 66.
 05 AVAIL PIC 9(8) BINARY VALUE 0.
 05 EXCEP-ID PIC X(7) VALUE " ".
 05 FILLER PIC X(1) VALUE " ".
 05 EXCEP-DATA PIC X(50) VALUE " ".

==
* Signaling the exception inside trigger *
==
 01 SNDPGMMSG.
 03 SND-MSG-ID PIC X(7) VALUE "TRG0005".
 03 SND-MSG-FILE PIC X(20) VALUE "ORDMSGF ORDENTLIB".
 03 SND-MSG-DATA PIC X(30) VALUE "TRIGGER ERROR ".
 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 0.
 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE ".

 03 SND-MSG-QUEUE PIC X(10) VALUE "*".
 03 SND-PGM-STACK PIC 9(8) BINARY VALUE 1.
 03 SND-MSG-KEY PIC X(4) VALUE " ".
 03 SND-ERROR-CODE.
 05 PROVIDED PIC 9(8) BINARY VALUE 66.
 05 AVAILABLE PIC 9(8) BINARY VALUE 0.
 05 EXCEPTION-ID PIC X(7) VALUE " ".
 05 FILLER PIC X(1) VALUE " ".
 05 EXCEPTION-DATA PIC X(50) VALUE " ".
==
* PARM 1 = TRIGGER BUFFER *
* PARM 2 = TRIGGER LENGTH *
==
 LINKAGE SECTION.
 01 PARM-1.
 03 FILE-NAME PIC X(10).
 03 LIB-NAME PIC X(10).
 03 MEM-NAME PIC X(10).
 03 TRG-EVENT PIC X.
 03 TRG-TIME PIC X.
 03 CMT-LCK-LVL PIC X.
 03 FILLER PIC X(3).
 03 DATA-AREA-CCSID PIC 9(8) BINARY.
 03 FILLER PIC X(8).
 03 DATA-OFFSET.
 05 OLD-REC-OFF PIC 9(8) BINARY.
 05 OLD-REC-LEN PIC 9(8) BINARY.
 05 OLD-REC-NULL-MAP PIC 9(8) BINARY.
 05 OLD-REC-NULL-LEN PIC 9(8) BINARY.
 05 NEW-REC-OFF PIC 9(8) BINARY.
 05 NEW-REC-LEN PIC 9(8) BINARY.
 05 NEW-REC-NULL-MAP PIC 9(8) BINARY.
 05 NEW-REC-NULL-LEN PIC 9(8) BINARY.
 05 FILLER PIC X(16).
 03 RECORD-JUNK.
 05 OLD-RECORD PIC X(46).
 05 OLD-NULL-MAP PIC X(6).
 05 NEW-RECORD PIC X(46).
 05 NEW-NULL-MAP PIC X(6).

 01 PARM-2.
 03 TRGBUF-LEN PIC X(2).
266 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

**
 PROCEDURE DIVISION USING PARM-1, PARM-2.

 DECLARATIVES.
 TRANSACTION-ERROR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON T4249INV
 ORDERDTL.
 ERROR-HANDLER.
 CLOSE T4249INV ORDERDTL.
 CALL "QMHSNDPM" USING SND-MSG-ID,
 SND-MSG-FILE,
 SND-MSG-DATA,
 SND-MSG-LEN,
 SND-MSG-TYPE,
 SND-MSG-QUEUE,
 SND-PGM-STACK,

 SND-MSG-KEY,
 SND-ERROR-CODE.

 IF AVAILABLE IS NOT EQUAL 0 THEN
 DISPLAY "ERROR - QMHSNDPM API" SND-MSG-ID.
 GOBACK.
 END DECLARATIVES.
 MAIN-PROGRAM SECTION.
 START-SECTION.

 OPEN OUTPUT T4249INV INPUT ORDERDTL.
 MOVE ZEROS TO NORDTOT OF NEW-ORDER
 ORDTOT OF OLD-ORDER TOTAL-ZON TOTAL.
===
* This is the new record image. *
===
 MOVE NEW-RECORD TO NEW-ORDER.

===
* This is the old record image. *
===
 MOVE OLD-RECORD TO OLD-ORDER.

===
* Call API COBOL ERROR HANDLER - If MCHXXXX occurs, *
* the routine associated with this API will be called *
===
 CALL "QLRSETCE" USING ERR-HDL-EXIT,
 ERR-HDL-SCOPE,
 ERR-HDL-PGML,
 ERR-HDL-PGMN,
 ERR-HDL-CODE.
==
* Call API to get job attributes - USERID *
==
 CALL "QUSRJOBI" USING RTV-JOB-VAR,
 RTV-JOB-LEN,
Chapter 8. External triggers 267

 RTV-JOB-FMT,
 RTV-JOB-NAME,
 RTV-JOB-ID.
 MOVE RTV-JOB-VAR TO JOBA-AREA.
==
* This is a BEFORE UPDATE trigger program associated to*
* ORDERHDR file. This program will check: *
* - The update is being made by the correct salesperson*
* or by QSECOFR, otherwise trigger will signal an *
* exception and will stop the update operation *
* *
* - QSECOFR can update all values but will not print *
* the invoice. The salesperson can update all the *
* fields but CUSTOMER_NUMBER, and in this case will*
* print the invoice *
* *
* - This provides an example of how to handle both *
* record images inside trigger program. *
==
 IF USERNAME NOT EQUAL "QSECOFR" THEN
 IF NORHSR OF NEW-ORDER EQUAL USERNAME AND
 NCUSNBR OF NEW-ORDER EQUAL CUSNBR OF OLD-ORDER THEN

 PERFORM HEADER-LINE
 PERFORM DETAIL-LINE UNTIL EOF
 ELSE
 MOVE "TRG0002" TO SND-MSG-ID
 PERFORM ERROR-HANDLER.

 CLOSE T4249INV ORDERDTL.
 GOBACK.

 HEADER-LINE.
 MOVE NORDHNBR OF NEW-ORDER TO ORHNBR OF HEADER-O.
 MOVE NCUSNBR OF NEW-ORDER TO CUSNBR OF HEADER-O.
 MOVE NORHDTE OF NEW-ORDER TO ORHDTE OF HEADER-O.
 MOVE NORDTOT OF NEW-ORDER TO TOTAL-ZON.
 MOVE TOTAL-ZON TO ORHTOT OF HEADER-O.
 MOVE NORHSR OF NEW-ORDER TO SRNBR OF HEADER-O.
 WRITE PRT-REC FORMAT IS "HEADER".
 MOVE NORDHNBR OF NEW-ORDER TO ORDERNBR.
 MOVE NORDHNBR OF NEW-ORDER TO ORHNBR OF ORDERDTL.

 DETAIL-LINE.
 READ ORDERDTL NEXT RECORD AT END SET EOF TO TRUE.
 IF ORHNBR OF ORDERDTL EQUAL ORDERNBR AND NOT EOF THEN
 MOVE PRDNBR OF ORDERDTL TO PRDNBR OF DETAIL-O
 MOVE ORDTOT OF ORDERDTL TO TOTAL
 MOVE TOTAL TO ORDTOT OF DETAIL-O
 MOVE ORDQTY OF ORDERDTL TO ORDQTY OF DETAIL-O
 WRITE PRT-REC FORMAT IS "DETAIL".

Exception Handler for T4249CINV - T4249CHDL
PROCESS OPTIONS.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. T4249CHDL.
 AUTHOR. PROGRAMMER NAME.
 INSTALLATION. ITSC LABORATORY.
268 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 DATE-WRITTEN. APRIL 2001.
 DATE-COMPILED.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-AS400.
 OBJECT-COMPUTER. IBM-AS400.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

**
 DATA DIVISION.

 WORKING-STORAGE SECTION.
**
* Message for signaling trigger error *
* This is an escape message sent to the calling *
* program. The objective is signaling the *
* the database manager the change operation must *
* not happen *
**
 01 SNDPGMMSG.
 03 SND-MSG-ID PIC X(7) VALUE "TRG0005".
 03 SND-MSG-FILE PIC X(20) VALUE "ORDMSGF ORDENTLIB".
 03 SND-MSG-DATA PIC X(30) VALUE "TRIGGER ERROR ".
 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 0.

 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE ".
 03 SND-MSG-QUEUE PIC X(10).
 03 SND-PGM-STACK PIC 9(8) BINARY VALUE 1.
 03 SND-MSG-KEY PIC X(4) VALUE " ".
 03 SND-ERROR-CODE.
 05 PROVIDED PIC 9(8) BINARY VALUE 66.
 05 AVAILABLE PIC 9(8) BINARY VALUE 0.
 05 EXCEPTION-ID PIC X(7) VALUE " ".
 05 FILLER PIC X(1) VALUE " ".
 05 EXCEPTION-DATA PIC X(50) VALUE " ".

 LINKAGE SECTION.
**
*This is the parameter list expected by the program that *
*activated the QLRSETCE API. *
**
 01 MSG-RCV-ID PIC X(7).
 01 MSG-RCV-RSP PIC X(6).
 01 MSG-RCV-PGMN PIC X(20).
 01 MSG-RCV-SMSG PIC X(7).
 01 MSG-RCV-TMSG PIC X(50).
 01 MSG-RCV-LENG PIC X(2).
 01 MSG-RCV-CODE PIC X(1).

**
 PROCEDURE DIVISION USING MSG-RCV-ID,
 MSG-RCV-RSP
 MSG-RCV-PGMN,
 MSG-RCV-SMSG,
 MSG-RCV-TMSG,
Chapter 8. External triggers 269

 MSG-RCV-LENG,
 MSG-RCV-CODE.

* Set the program message queue, received by the calling *
* program, telling to which message queue we should signal*
* the escape message *

 MOVE MSG-RCV-PGMN TO SND-MSG-QUEUE.

* Signaling the escape message - DB change operation *
* will be rejected *

 CALL "QMHSNDPM" USING SND-MSG-ID,
 SND-MSG-FILE,
 SND-MSG-DATA,
 SND-MSG-LEN,
 SND-MSG-TYPE,
 SND-MSG-QUEUE,
 SND-PGM-STACK,
 SND-MSG-KEY,
 SND-ERROR-CODE.

 IF AVAILABLE IS NOT EQUAL 0 THEN
 DISPLAY "API ERROR CBHDL" SND-MSG-ID.

 STOP RUN.

Invoice trigger example in ILE RPG
In this version of the trigger program, we generate the invoice information in a database file
rather than printing the invoice directly. The layout of the INVOICE file is the same as the
DETAIL record format of the printer file in the previous paragraph (Figure 8-28 on page 263).
We added one field, which is the order number (ORDNBR).

The example shows how you can dynamically put a database file under commitment control
in ILE RPG. If the originating application runs under commitment control, the invoice trigger
must become part of the application transaction. The application must be able to commit or
roll back all of the records that the trigger inserts in the invoice file.

To accomplish this task, we can use the dynamic commitment definition in the F specifications
that is provided by ILE RPG. The keyword that we need to specify is COMMIT(variable-name).
We also need to specify the USROPN keyword because the COMMIT keyword takes effect only
when the file is opened. We test the CMTLCK field in the trigger buffer data structure and set
the RPG variable to the correct value based on the commitment control lock level of the
application. The file is opened manually with the correct commitment definition.

Because we want to let the application take care of committing or rolling back the entire
transaction, the trigger must share the commitment definition with the application. The trigger
runs in the same activation group and does not issue any commit or rollback statements.
270 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

To create this trigger program, follow these two steps:

CRTRPGMOD MODULE(ORDENTLIB/T4249IINV)
SRCFILE(ORDENTLIB/QRPGILE)
SRCMBR(T4249IINV)

CRTPGM PGM(ORDENTLIB/T4249IINV)
ACTGRP(*CALLER)

Invoice trigger in ILE RPG - T4249IINV
Example 8-7 shows the invoice trigger in ILE RPG.

Example 8-7 Invoice trigger in ILE RPG - T4249IINV

==
 * This is a BEFORE UPDATE trigger program associated to*
 * ORDERHDR file. This program will check that: *
 * - The update is being made by the correct salesperson*
 * or by QSECOFR, otherwise trigger will signal an *
 * exception and will stop the update operation *
 * *
 * - QSECOFR can update all values but will not print *
 * the invoice. The salesperson can update all the *
 * fields but CUSTOMER_NUMBER, and in this case will *
 * print the invoice *
 * *
 * - This provides an example of how to handle both *
 * record images inside trigger program. *
 ==
 *
 FORDERDTL IF E K DISK INFDS(FILDS1)
 F INFSR(*PSSR)
 F RENAME(ORDERDTL:ORDDET)
 ==
 * The RPG variable VAR will determine whether this file will *
 * be opened under commitment control or not. We use the *
 * explicit open option (USROPN) to set the correct value of the*
 * variable VAR before the file is opened. *
 ==
 FINVOICE O A E DISK INFDS(FILDS2)
 F INFSR(*PSSR)
 F USROPN
 F COMMIT(VAR)
 F RENAME(INVOICE:DETAIL)
 ==
 * Exception handling in RPG trigger *
 ==
 DVAR S 1A
 D FILDS1 DS
 D FIL1 *FILE
 D REC1 *RECORD
 D OP1 *OPCODE
 D STS1 *STATUS
 D RTN1 *ROUTINE
 D FILDS2 DS
 D FIL2 *FILE
 D REC2 *RECORD
 D OP2 *OPCODE
 D STS2 *STATUS
 D RTN2 *ROUTINE
Chapter 8. External triggers 271

 ==
 * Definition of the structure to be received by *
 * the trigger program - Buffer *
 ==
 * THE FIELDS DESCRIPTION: *
 * FNAME = PHYSICAL FILE NAME *
 * LNAME = PHYSICAL FILE LIBRARY *
 * MNAME = MEMBER NAME *
 * TEVEN = TRIGGER EVENT *
 * TTIME = TRIGGER TIME *
 * CMTLCK= COMMIT LOCK LEVEL *
 * FILL1 = RESERVED *
 * CCSID = CCSID *
 * FILL2 = RESERVED *
 * OLDOFF= OFFSET TO THE ORIGINAL RECORD *
 * OLDLEN= LENGTH OF THE ORIGINAL RECORD *
 * ONOFF = OFFSET TO THE ORIGINAL RECORD NULL BYTE MAP*
 * ONLEN = LENGTH OF THE NULL BYTE MAP *
 * NOFF = OFFSET TO THE NEW RECORD *
 * NEWLEN= LENGTH OF THE NEW RECORD *
 * NNOF = OFFSET TO THE NEW RECORD NULL BYTE MAP *
 * NNLEN = LENGTH OF THE NULL BYTE MAP *
 * RESV3 = RESERVED *
 * OREC = OLD RECORD *
 * OOMAP = NULL BYTE MAP OF OLD RECORD *
 * RECORD= NEW RECORD *
 * NMAP = NULL BYTE MAP OF NEW RECORD *
 ==
 D PARM1 DS
 D FNAME 1 10
 D LNAME 11 20
 D MNAME 21 30
 D TEVEN 31 31
 D TTIME 32 32
 D CMTLCK 33 33
 D FILL1 34 36
 D CCSID 37 40B 0
 D FILL2 41 48
 D OLDOFF 49 52B 0
 D OLDLEN 53 56B 0
 D ONOFF 57 60B 0
 D ONLEN 61 64B 0
 D NOFF 65 68B 0
 D NEWLEN 69 72B 0
 D NNOFF 73 76B 0
 D NNLEN 77 80B 0
 D RESV3 81 96
 D OREC 97 142
 D OOMAP 143 148
 D RECORD 149 194
 D NNMAP 195 200
 ==
 * Definition of the structure to be received by the *
 * trigger program - BUFFER LENGTH *
 ==
 D PARM2 DS
 D LENG 1 4B 0
 *
 ==
 * These are the work fields to receive the trigger *
272 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 * new record image *
 ==
 D NORDER DS
 D ORHNBR 1 5
 D CUSNBR 6 10
 D ORHDTE 11 20
 D ORHDLY 21 30
 D OTOTAL 31 36P 0
 D SRNBR 37 46
 ==
 * These are the work fields to receive the trigger *
 * old record image *
 ==
 D OORDER DS
 D OORHNB 1 5
 D OCUSNB 6 10
 D OORHDT 11 20
 D OORHDL 21 30
 D OOTOTA 31 36P 0
 D OSRNBR 37 46
 ==
 * This is the work area that will receive the *
 * job attributes retrieved *
 ==
 D RTVAPI DS
 D BTRN 1 4B 0
 D BAVAIL 5 8B 0
 D JOBNAM 9 18
 D USERID 19 28
 D JOBNBR 29 34
 ==
 * Output parameters used in QMHSNDPM API *
 ==
 D MSGERR DS
 D PROVID 1 4B 0
 D AVAIL 5 8B 0
 D RTNMSG 9 15
 D RSVR 16 16
 D RTNDTA 17 26
 *
 D FLDS DS
 D MSGLEN 1 4B 0
 D PGMSTK 5 8B 0
 D RTVLEN 9 12B 0
 D MSGQLEN 13 16B 0
 D PGMWTT 17 20B 0
 ===
 * RPG ILE - Call stack entry - signal exceptions *
 ===
 D LIBNAM C CONST('ORDENTLIB')
 D MSGQNAM C CONST('_QRNP_PEP_T4249IINV')
 D MODNAME C CONST('*NONE *NONE ')
 *
 C *ENTRY PLIST
 C PARM1 PARM PARM1
 C PARM2 PARM PARM2
 *
 ===
 * Signaling exception inside trigger program *
 ===
Chapter 8. External triggers 273

 C PLIST1 PLIST
 C PARM MSGID 7
 C PARM MSGF 20
 C PARM MSGDTA 25
 C PARM MSGLEN
 C PARM MSGTYP 10
 C PARM MSGQUE 19
 C PARM PGMSTK
 C PARM MSGKEY 4
 C PARM MSGERR
 C PARM MSGQLEN
 C PARM CSEQUAL 20
 C PARM PGMWTT
 *
 C KEYS KLIST
 C KFLD ORHNBR
 ===
 * Retrieve job attributes - QUSRJOBI API - USERID *
 ===
 C PLIST2 PLIST
 C PARM RTVVAR 50
 C PARM RTVLEN
 C PARM RTVFMT 8
 C PARM RTVNAM 26
 C PARM RTVID 16
 C CMTLCK IFNE '0'
 C MOVEL '1' VAR
 c '*YES' dsply
 C ELSE
 C MOVEL *BLANKS VAR
 c '*NO' dsply
 C END
 ===
 * Initialize MSGID in case the PSSR is called. *
 ===
 C MOVE 'TRG0005' MSGID
 *
 ===
 * Move new record image received from the input *
 * parameter into the work area *
 ===
 *
 C MOVEL RECORD NORDER
 *
 ===
 * Move old record image received from the input *
 * parameter into the work area *
 ===
 *
 C MOVEL OREC OORDER
 *
 ===
 * Get job attributes - USERID *
 ===
 C Z-ADD 50 RTVLEN
 C MOVEL ' ' RTVVAR
 C MOVE 'JOBI0400' RTVFMT
 C MOVEL(P) '*' RTVNAM
 C MOVE ' ' RTVID
 C CALL 'QUSRJOBI' PLIST2
274 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 C MOVEL RTVVAR RTVAPI
 C SRNBR IFEQ 'QSECOFR'
 C GOTO EOFIN
 C END
 C SRNBR IFNE USERID
 C MOVE 'TRG0002' MSGID
 C EXSR *PSSR
 C GOTO EOFIN
 C END
 *
 C CUSNBR IFEQ OCUSNB
 C OPEN INVOICE
 C MOVEL ORHNBR ORDNBR
 C KEYS SETLL ORDDET
 C *IN99 DOUEQ *ON
 C KEYS READE ORDDET 9899
 C *IN98 IFEQ *ON
 C EXSR *PSSR
 C GOTO EOFIN
 C END
 C *IN99 IFEQ *OFF
 C WRITE DETAIL 81
 C *IN81 IFEQ *ON
 C EXSR *PSSR
 C GOTO EOFIN
 C END
 C END
 C ENDDO
 C END
 C EOFIN TAG
 C close invoice
 C RETURN
 ===
 * Trigger signaling exception *
 ===
 C *PSSR BEGSR
 C MOVEL(P) LIBNAM LIB 10
 C MOVEL(P) 'ORDMSGF' ID 10
 C ID CAT(P) LIB MSGF
 C MOVE ' ' MSGDTA
 C Z-ADD 25 MSGLEN
 C MOVEL(P) '*ESCAPE' MSGTYP
 C MOVEL(P) MSGQNAM MSGQUE
 C MOVE MODNAME CSEQUAL
 C Z-ADD 19 MSGQLEN
 C MOVE ' ' MSGDTA
 C Z-ADD 1 PGMSTK
 C MOVE ' ' MSGKEY
 C Z-ADD 66 PROVID
 C Z-ADD 0 AVAIL
 C MOVE ' ' RTNMSG
 C MOVE ' ' RSVR
 C MOVE ' ' RTNDTA
 C CALL 'QMHSNDPM' PLIST1
 C AVAIL IFEQ 0
 C RTNMSG DSPLY
 C RTNDTA DSPLY
 C END
 C ENDSR
Chapter 8. External triggers 275

Invoice trigger example in ILE C
We coded the same trigger program in ILE C to show how you can manage the dynamic
commitment control by using this language. For a description of commitment control in this
trigger, see “Invoice trigger example in ILE RPG” on page 270. You can use the _Ropen
function to specify whether the file must be opened under commitment control at run time.
Create this program with the following commands:

CRTCMOD MODULE(ORDENTLIB/T4249CCIV)
 SRCFILE(ORDENTLIB/QCSRC)
CRTPGM PGM(ORDENTLIB/T4249CCIV)
 ACTGRP(*CALLER)

Invoice trigger in ILE C - T4249CCIV
Example 8-8 shows the same trigger program in ILE C.

Example 8-8 Invoice trigger in ILE C - T4249CCIV

/*..*/
/*. This is a BEFORE UPDATE trigger program associated with the .*/
/*. ORDERHDR file. The program checks that: .*/
/*. - The update is being made by the originator of the order .*/
/*. or by QSECOFR; in any other case, the trigger stops the .*/
/*. update. .*/
/*. - If the originator of the order updates the grand total, .*/
/*. the invoice is also generated. The originator will not .*/
/*. be able to update the CUSTOMER_NUMBER field. QSECOFR .*/
/*. has the ability to update any field, but no invoice is .*/
/*. generated. .*/
/*..*/
#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

#include <decimal.h>
#include <string.h>
#include <signal.h>

/*..... Externally described files*/
#pragma mapinc("InvoiceFile", "ORDENTL/INVOICE(*ALL)",\
 "both", "d z _P", " ", "inv")
#include "InvoiceFile"

#pragma mapinc("OrderDetail", "ORDENTL/ORDERDTL(*ALL)",\
 "input key", "d z _P", " ", "dtl")
#include "OrderDetail"

/*..... APIs linkage*/
#pragma linkage(QUSRJOBI, OS)
#pragma linkage(QMHSNDPM, OS)
/*...... We defined our own trigger buffer; you can also include
 the system-provided definition QSYSINC/H/TRGBUF*/
typedef _Packed struct { /*.... Trigger Parameter List*/
 char FileName[10];
 char LibName[10];
 char MbrName[10];
 char TrgEvent[1];
 char TrgTime[1];
276 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 char CmtCtlLvl[1];
 char reserved1[3];
 int CCSID;
 char reserved2[8];
 int OldRecordOffset;
 int OldRecordLength;
 int OldRecordNullByteMapOffset;
 int OldRecordNullByteMapLength;
 int NewRecordOffset;
 int NewRecordLength;
 int NewRecordNullByteMapOffset;
 int NewRecordNullByteMapLength;
 } TrgBuf;

typedef _Packed struct { /*.... Record layout*/
 char OrderNumber[5];
 char CustomerNumber[5];
 char OrderDate[10];
 char OrderDelivery[10];
 decimal(11,2) OrderTotal;
 char SalesRep[10];
 } DBFileRec;

void QUSRJOBI(char *, int, char *, char *, char *);
void QMHSNDPM(char *, char *, char *, int, char *, char *, int,
 char *, char *);
void sendMessage(char *);

int checkUpdateValidity(DBFileRec *, DBFileRec *);
 /*.... This procedure returns:
 -1 if the originator is trying to update CUSTOMER_NUMBER
 0 if the originator is not updating the grand total
 1 if the originator is updating the grand total
 ..*/
DBFileRec *NewOrder, *OldOrder; /*.... Old and New Image*/

TrgBuf *TrgBuffer;

inv_INVOICE_both_t Invoice;
dtl_ORDERDTL_i_t OrderDetail;
dtl_ORDERDTL_key_t OrderDetailKey;
static _RFILE *Inv, *OrderDtl;

void main(int argc, char **argv)
{
 _RIOFB_T *InvFB, *OrderDtlFB;

 char JobInfo[86]; /*.... Parameters for QUSRJOBI*/
 int JobInfoLen = 86;
 char JobFmt[8] = "JOBI0100";
 char JobName[26];
 char JobId[16];
 char UserId[10], MsgId[7];
 double OrderTotalD, OrderQtyD, PartialTotalD;
 int UpdateType;
Chapter 8. External triggers 277

 void ExcptHandler(int);

 signal(SIGALL, ExcptHandler);
 memset(JobName, ' ', 26);
 JobName[0] = '*';
 memset(JobId, ' ', 16);

 TrgBuffer = (TrgBuf *) argv[1];

 /*.... Setting the pointers to the storage areas where the
 system keeps the record images*/
 OldOrder = (DBFileRec *) ((char *) TrgBuffer +
 TrgBuffer->OldRecordOffset);
 NewOrder = (DBFileRec *) ((char *) TrgBuffer +
 TrgBuffer->NewRecordOffset);

 /*.... Retrieving the current USERID and checking if this is the
 same who actually issued the order*/
 QUSRJOBI(JobInfo, JobInfoLen, JobFmt, JobName, JobId);
 memcpy(UserId, JobInfo+18, 10);
 if(!strncmp(UserId, "QSECOFR ", 10))
 return; /*.... User is QSECOFR, no further checking or action ...*/
 if(strncmp(UserId, OldOrder->SalesRep, 10) ||
 (UpdateType = checkUpdateValidity(OldOrder, NewOrder)) == -1)
 {
 memcpy(MsgId, "TRG0002", 7);
 sendMessage(MsgId);
 return;
 }
 if (UpdateType == 0)
 return;
 if (*TrgBuffer->CmtCtlLvl == '0')
 /*.... If the application runs without commitment control */
 /*.... open the invoice file with the commit option set to NO*/
 Inv = _Ropen("ORDENTL/INVOICE", "ar commit=N");
 else /*.... otherwise, open the file with commit YES*/
 Inv = _Ropen("ORDENTL/INVOICE", "ar commit=Y");

 /*.... Scanning the Order to produce the Invoice*/

 memcpy(OrderDetailKey.ORDER_NUMBER, NewOrder->OrderNumber, 5);

 /*.... File OrderDtl is opened only if the trigger is being invoked
 for the first time.
 ...*/
 if (OrderDtl == NULL)
 OrderDtl = _Ropen("ORDENTL/ORDERDTL", "rr arrseq=N");

 OrderDtlFB = _Rlocate(OrderDtl, (void *) OrderDetailKey.ORDER_NUMBER,
 5, __KEY_EQ|__DATA_ONLY);
 if (OrderDtlFB->num_bytes == 0)
 {
 exit(1);
 }
278 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 OrderDtlFB =
 _Rreads(OrderDtl, (void *) &OrderDetail, sizeof(OrderDetail),
 __NO_LOCK);

 strncpy(Invoice.ORDNBR, NewOrder->OrderNumber, 5);
 while(OrderDtlFB->num_bytes != EOF &&
 !strncmp(OrderDetail.ORDER_NUMBER, NewOrder->OrderNumber, 5))
 {
 memcpy(Invoice.PRDNBR, OrderDetail.PRODUCT_NUMBER, 5);
 Invoice.ORDQTY = OrderDetail.ORDERDTL_QUANTITY;
 Invoice.ORDTOT = OrderDetail.ORDERDTL_TOTAL;
 InvFB = _Rwrite(Inv, (void *) &Invoice, sizeof(Invoice));
 OrderDtlFB =
 _Rreadn(OrderDtl, (void *) &OrderDetail, sizeof(OrderDetail),
 __NO_LOCK);
 }
 _Rclose(Inv);
}

int checkUpdateValidity(DBFileRec *OldOrder, DBFileRec *NewOrder)
{

 if (strncmp(NewOrder->CustomerNumber, OldOrder->CustomerNumber, 5))
 return -1 ; /*.... Violation*/
 if (NewOrder->OrderTotal != OldOrder->OrderTotal)
 return 1 ; /*.... Print Invoice*/
 return 0 ; /*.... No action*/
}

void sendMessage(char *MsgId)
{
 char MsgFile[20] = "ORDMSGF ORDENTLIB ",
 MsgData[30] = "Trigger Error ",
 MsgType[10] = "*ESCAPE ",
 MsgQueue[10]= "_C_pep ",
 MsgKey[4] = " ";
 struct {
 int provided;
 int available;
 char Excpt[7];
 char filler;
 } ErrorCode;
 int MsgLen = 0, PgmStack = 1;

 ErrorCode.provided = 8;
 QMHSNDPM(MsgId, MsgFile, MsgData, MsgLen, MsgType, MsgQueue,
 PgmStack, MsgKey, (char *) &ErrorCode);
 if(ErrorCode.available)
 {
 printf("Error: %7.7s\n", ErrorCode.Excpt);
 exit(1);
 }
 }
Chapter 8. External triggers 279

void ExcptHandler(int sig)
{
 char MsgId[7];
 memcpy(MsgId, "TRG0005", 7);
 sendMessage(MsgId); /*... Send generic trigger error message*/
 exit(0);
}

8.4.4 Softcoding the trigger buffer example

The trigger program example that is shown in this section illustrates two important concepts:

� Softcoding the trigger buffer
� Changing the trigger buffer

In all of the preceding examples, the structure of the table for which the trigger program is
written is hardcoded inside the trigger program. Therefore, if you change the structure of the
physical file, you also need to change the structure of the physical file inside the trigger
program. This change must be repeated for all of the trigger programs where the structure of
the related table changed. The alternative is that, at the time of writing the trigger program,
you do not hardcode the structure of the table, but you softcode it. That way, if and when you
change the structure of a table, you need to recompile the trigger program only and not
change the trigger program itself.

Softcoding the trigger buffer is a good programming technique because a change in the
physical file’s record can be incorporated by simply recompiling the trigger program.

Softcoding the trigger buffer in ILE RPG
Each customer in our database was assigned a credit limit. This limit is the maximum dollar
amount that the customer can order in one month. We want to notify the customers that they
are approaching their monthly credit limit so that they can either control their orders or apply
to increase their credit limit. The notification must be sent through a fax when the monthly
total for a customer amounts to more than 90% of the credit limit. If the customer is a special
customer, which is recognized because its customer number starts with 9, the trigger program
automatically increases the credit limit by 30%. This increase involves changing the record
that activated the trigger.

If you are dealing with an existing application, integrating this new function without using
triggers involves several modifications to the application code. In a composite environment,
where multiple applications work on the same data, this process might be complex and costly.
Moreover, if you plan to move from a host-based to a client/server environment, you must also
move the logic for the advanced technology integration on the client platform.

By using triggers, you can incorporate this new function with almost no change to existing
applications. Ensure that your programs are monitoring the return code after the database
access, which is common practice among application developers to avoid a failure of the
trigger, which leads to an abnormal end of the application.

Note: The sample code for the softcoded trigger buffer is based on code that originally was
published in Chapter 17 of Database Design and Programming for DB2/400 by Paul Conte.
You can find an improved technique of this approach on pages 320 and 323 in the
SQL/400 Developer’s Guide by Paul Conte and Mike Cravitz.
280 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The example program that we provide monitors the update operations on the CUSTOMER
file. The fax number of the customer is checked whenever the total amount of the purchases
is increased. A blank fax number means that the customer is not provided with this facility. In
this case, an informational message is sent to the job log, but the update occurs anyway.

In our application, this trigger comes up again during the final order information processing
that is performed by the program FNLORD, which is shown in “Finalize order program -
T4249FNLO” on page 261. When the customer information is updated to track the monthly
balance of this specific customer, the trigger checks the fax number and possibly sends the
fax to the customer.

To create this trigger program, enter the following commands:

CRTRPGMOD MODULE(ORDENTLIB/T4249CTA)
SRCFILE(ORDENTLIB/QRPGILE)
SCRMBR(T4249CTA)

CRTPGM PGM(ORDENTLIB/T4249CTA)
ACTGRP(*CALLER)

Data structure with trigger buffer - T4249BUF
Example 8-9 shows the trigger buffer data structure.

Example 8-9 Data structure with trigger buffer - T4249BUF

**
 * TRIGGER BUFFER data structure
 *
 **
D TgBufDs DS 1
D TgFile Like(TypeSysNam)
D TgLib Like(TypeSysNam)
D TgMbr Like(TypeSysNam)
D TgTrgEvt Like(TypeChr)
D TgTrgTime Like(TypeChr)
D TgCmtLvl Like(TypeChr)
D TgReserve1 3A
D TgCcsId Like(TypeBin4)
D TgReserve2 8A
D TgBfrOfs Like(TypeBin4)
D TgBfrLen Like(TypeBin4)
D TgBfrNulOf Like(TypeBin4)
D TgBfrNulLn Like(TypeBin4)
D TgAftOfs Like(TypeBin4)
D TgAftLen Like(TypeBin4)
D TgAftNulOf Like(TypeBin4)
D TgAftNulLn Like(TypeBin4)
D TgBufChr 1 32767A 2
D TgBufAry 1A Overlay(TgBufChr)
D DIM (%Size(TgBufChr))
D
D
D* End of TbBufDs

Note: We do not show, for simplicity, the program that formats the document and sends the
fax to the customer. The program SENDFAX that is invoked in this example is not shown in
this book.
Chapter 8. External triggers 281

ILE RPG trigger program to send a fax - T4249CTA
Example 8-10 shows the ILE RPG trigger program to send a fax.

Example 8-10 ILE RPG trigger program to send a fax - T4249CTA

**
 * This is the trigger program using the technique of
 * Softcoding the trigger buffer.
 **
 *
 **
 * Some standard data type definitions
 *
 **
 D NulTypePtr S *
 D TypeBin4 S 9B 0 Based(NulTypePtr)
 D TypeChr S 1A Based(NulTypePtr)
 D TypeSysNam S 10A Based(NulTypePtr)
 D TypePtr S * Based(NulTypePtr)
 **
 * TRIGGER BUFFER
 * This is the declaration of the trigger buffer
 * It copies the structure from the TRIGBUF member
 **
 /COPY T4249TBUF 1
 **
 * Declarations of the Buffer Length and Pointers to the
 * After and Before Images
 **
 D TgBufLen S Like(TypeBin4)
 D TgBfrPtr S Like(TypePtr)
 D TgAftPtr S Like(TypePtr)
 D TgBufSiz C Const(%Size(TgBufChr))

 * Data Structures for the Before and After images
 *

 D BfCustomer E DS ExtName(Customer)2
 D Prefix(Bf)
 D Based(TgBfrPtr)
 D AfCustomer E DS ExtName(Customer)3
 D Prefix(Af)
 D Based(TgAftPtr)

 * OUTPUT PARAMETERS FOR QMHSNDPM
 *

 D ERROR DS
 D PROVID 1 4B 0

Notes: The following notes refer to Example 8-9 on page 281:

1 The TgBufDs data structure defines the trigger buffer. It is coded in a separate member
so that it can be referenced by all of the ILE RPG trigger programs.

2 The TgBufChr field is the variable part of the trigger buffer. It is declared as a single
character field with the maximum size that is allowed, which is 32767. At the same time, it
is redefined as an array of bytes by using another subfield that is called TbBufAry.
282 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 D AVAIL 5 8B 0
 D RTNMSG 9 15
 D MSGD DS
 D MSGLEN 1 4B 0
 D PGMSTK 5 8B 0
 *
 D LIBNAM C CONST('ORDAPPLIB')
 *

 C* TWO PARAMETERS GO INTO THE TRIGGER PROGRAM

 C *ENTRY PLIST
 C TgBufDs PARM TgBufDs
 C TgBufLen PARM TgBufLen
 **
 * PARAMETERS NEEDED TO SIGNAL AN EXCEPTION INSIDE
 * TRIGGERS
 **
 C PLIST1 PLIST
 C PARM MSGID 7
 C PARM MSGF 20
 C PARM MSGDTA 30
 C PARM MSGLEN
 C PARM MSGTYP 10
 C PARM MSGQUE 10
 C PARM PGMSTK
 C PARM MSGKEY 4
 C PARM ERROR

 * PARAMETER CUSTOMER NUMBER TO SEND A FAX
 *

 C PLIST2 PLIST
 C PARM CUSNBR 5

 * THIS TRIGGER PROGRAM WILL:
 * - RETURN IMMEDIATELY IF THE TOTAL AMOUNT IS NOT
 * BEING UPDATED
 * - IF THE TOTAL AMOUNT IS BEING INCREASED AND REACHED
 * 90% OF THE CREDIT LIMIT
 * * SEND A FAX TO THE CUSTOMER
 * * IF THE CUSTOMER NUMBER STARTS WITH A 9 IS BECAUSE
 * IT IS A VERY IMPORTANT CUSTOMER SO ITS CREDIT LIMIT
 * IS INCREASED BY 30%. THIS REQUIERES TO CHANGE THE
 * AFTER IMAGE BUFFER OF THE RECORD THAT FIRED THIS
 * TRIGGER.
 * - IF THE FAX NUMBER IS *BLANKS , AN INFO MESSAGE
 * IS SENT AND WILL BE FOUND IN THE JOB LOG.
 **

 * LETS EVALUATE THE VALUE OF THE POINTERS FOR THE BEFORE
 * AND AFTER IMAGES 4

 C Eval TgBfrPtr = %Addr(TgBufAry(TgBfrOfs + 1))
 C Eval TgAftPtr = %Addr(TgBufAry(TgAftOfs + 1))
 **
 * IF THE NEW TOTAL IS EQUAL OR LESS THAN THE OLD ONE,
 * GO BACK IMMEDIATELY

 C AfCusTot IFLE BfCusTot
Chapter 8. External triggers 283

 C RETURN
 C ENDIF
 **
 * IF THE NEW TOTAL IS EQUAL OR LESS THAN 90% OF THE
 * CREDIT LIMIT, GO BACK IMMEDIATELY
 **
 C AfCusCrd MULT 0.90 TmCusCrd 11 2
 C AfCusTot IFLE TmCusCrd
 C RETURN
 C ENDIF
 **
 * CHECK IF THE CUSTOMER IS A SPECIAL CUSTOMER,
 * WHOSE CUSNBR STARTS WITH 9
 **
 C 1 SUBST BfCusNbr:1 TypCus 1
 C TypCus IFEQ '9'
 C AfCusCrd Mult 1.3 AfCusCrd 5
 C ENDIF

 * CHECK THAT THE CUSTOMER HAS A FAX NUMBER TO CALL TO
 *

 C AfCusFax IFNE *Blanks
 C MOVE AfCusNbr CUSNBR
 C CALL 'SENDFAX' PLIST2
 C ELSE
 C MOVEL(P) 'TRG0004' MSGID
 C MOVEL(P) LIBNAM LIB 10
 C MOVEL(P) 'ORDMSGF' ID 10
 C ID CAT(P) LIB MSGF
 C Z-ADD 0 MSGLEN
 C MOVEL(P) '*INFO' MSGTYP
 C MOVEL(P) '*' MSGQUE
 C MOVE ' ' MSGDTA
 C Z-ADD 1 PGMSTK
 C MOVE ' ' MSGKEY
 C Z-ADD 0 PROVID
 C Z-ADD 0 AVAIL
 C CALL 'QMHSNDPM' PLIST1
 C AVAIL IFNE 0
 C 'APIER' DSPLY
 C ENDIF
 C ENDIF
 C RETURN
284 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Softcoding the trigger buffer in ILE C
This section shows how to code trigger programs in ILE C that use the trigger buffer
softcoding technique. Consider the following scenario.

Whenever a sales person tries to change a record in the ORDERHDR table or to insert a
record into the ORDERHDR table, we need to check whether that sales person is authorized
to work with the customer that is specified in the record that is inserted or updated. The sales
person ID is assumed to be the user ID of the user who is inserting or updating the record.
The information about the authority of the sales person who is working with the customer is
specified in the SALESCUS table.

Therefore, we retrieve the user ID for the current job and check whether that user ID is
authorized to deal with the specific customer by querying the SALESCUS table.

To create the ILE C trigger program, submit the following commands:

CRTCMOD MODULE(ORDENTLIB/T4249CCAT)
SRCFILE(ORDENTLIB/QCSRC)

CRTPGM PGM(ORDENTLIB/T4249CCAT)
ACTGRP(AUDIT)

Notes: The following notes refer to Example 8-10 on page 282:

1 The /COPY statement incorporates the trigger buffer data structure into the source
member. This approach is a good programming technique because all of the trigger
programs can use it.

2 This data structure is the before image structure of the CUSTOMER record. It is an
externally defined record structure with the same format as the CUSTOMER file. A prefix
is used for every field name (Bf for the before image fields).

3 This data structure is the after image structure of the CUSTOMER record. It is an
externally defined record structure with the same format as the CUSTOMER file. A prefix
is used for every field name (Af for the after image fields). This technique must be used
for every file with a trigger program.

4 The TgBfrPtr pointer variable is set to the address of the first byte in the before image
part of the trigger buffer parameter. This variable is set by getting the address (by using
the %Addr function) of the corresponding byte in the array that was declared to contain
the trigger buffer. This same approach is used for the TgAftPtr pointer variable. After
these two pointers are set, subsequent statements in the trigger program can refer to the
subfields of the BfCustomer and AfCustomer data structures that reference the correct
fields in the trigger buffer.

5 In this statement, the program updates one of the fields of the after image record in the
trigger buffer.
Chapter 8. External triggers 285

Audit trail trigger in ILE C - T4249CCAT
Example 8-11shows the audit trail trigger in ILE C.

Example 8-11 Audit trail trigger in ILE C - T4249CCAT

/*..*/
/*. This is a BEFORE INSERT trigger program associated with the .*/
/*. ORDERHDR file. The program checks that: .*/
/*. - The originator of the order (UserId) is allowed to place .*/
/*. an order for the customer (CUSTOMER_NUMBER). .*/
/*. - If this rule is not satisfied, the trigger logs the .*/
/*. violation attempt and causes the insert to fail. .*/
/*..*/
#include <stdio.h>
#include <stdlib.h>
#include <recio.h>
#include <decimal.h>

#include <string.h>
#include <trgbuf.h> /*..... Header file for trigger buffer*/ 1
/*..... definition

/*..... Externally described files*/

#pragma mapinc("SalesCus", "ORDAPPLIB/SALESCUS(*ALL)",\
 "input key", "d z _P", " ", "sc")
#pragma mapinc("Orderhdr", "ORDAPPLIB/ORDERHDR(*ALL)",\ 2
 "input key", "d z _P", " ", "ord")

#include "SalesCus"
#include "Orderhdr"

/*..... APIs linkage*/
#pragma linkage(QUSRJOBI, OS) 3
#pragma linkage(QMHSNDPM, OS) 4

void QUSRJOBI(char *, int, char *, char *, char *);
void QMHSNDPM(char *, char *, char *, int, char *, char *, int,
 char *, char *);
void sendMessage(char *);

ord_ORDERHDR_i_t *Order; /*.... Record Image*/ 5
sc_SALESCUS_key_t SalesCustomerKey;

Qdb_Trigger_Buffer_t *TrgBuffer; 6

static _RFILE *SalesCus, *Audit;
286 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

_RIOFB_T *SalesCusFB;

void main(int argc, char **argv)
{

 char JobInfo[86]; /*.... Parameters for QUSRJOBI*/
 int JobInfoLen = 86;
 char JobFmt[8] = "JOBI0100";
 char JobName[26];
 char JobId[16];
 char UserId[10], MsgId[7];
 double OrderTotalD, OrderQtyD, PartialTotalD;
 int UpdateType;

 memset(JobName, ' ', 26);
 JobName[0] = '*';
 memset(JobId, ' ', 16);

 TrgBuffer = (Qdb_Trigger_Buffer_t *) argv[1];

 /*.... Setting the pointer to the storage area where the
 system keeps the record image*/
 Order = (ord_ORDERHDR_i_t *) ((char *) TrgBuffer + 7

TrgBuffer->New_Record_Offset);

 /*.... Retrieving the current USERID*/

 QUSRJOBI(JobInfo, JobInfoLen, JobFmt, JobName, JobId); 8
 memcpy(UserId, JobInfo+18, 10);
 if(SalesCus == NULL) /*.... First time*/
 {
 system("STRCMTCTL LCKLVL(*CHG) CMTSCOPE(*ACTGRP)"); 9
 SalesCus = _Ropen("ORDAPPLIB/SALESCUS", "rr arrseq=N");
 }
 if(Audit == NULL)
 Audit = _Ropen("ORDAPPLIB/AUDITFIL", "ar commit=Y");

 strncpy(SalesCustomerKey.SRNBR,
 UserId, 10);
 strncpy(SalesCustomerKey.CUSNBR,
 Order->CUSNBR, 5);

 SalesCusFB = _Rlocate(SalesCus, 10
 (void*) &SalesCustomerKey,
 sizeof(SalesCustomerKey), __KEY_EQ);
 if (SalesCusFB->num_bytes == 0)
 {
 _Rwrite(Audit, (void *) &SalesCustomerKey, 11
 sizeof(SalesCustomerKey));
 _Rcommit("Audit Written");
 sendMessage("ORH0001");
 }
 return;
Chapter 8. External triggers 287

}

void sendMessage(char *MsgId)
{
 char MsgFile[20] = "ORDMSGF ORDAPPLIB ",
 MsgData[30] = "Trigger Error ",
 MsgType[10] = "*ESCAPE ",
 MsgQueue[10]= "_C_pep ",
 MsgKey[4] = " ";
 struct {
 int provided;
 int available;
 char Excpt[7];
 char filler;
 } ErrorCode;
 int MsgLen = 0, PgmStack = 1;

 ErrorCode.provided = 8;
 QMHSNDPM(MsgId, MsgFile, MsgData, MsgLen, MsgType, MsgQueue, 12
 PgmStack, MsgKey, (char *) &ErrorCode);
 if(ErrorCode.available)
 {
 printf("Error: %7.7s\n", ErrorCode.Excpt);
 exit(1);
 }
 }
288 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

8.4.5 Changing the record that fired a trigger

In certain situations, it might be useful to let the trigger program update the record that fired
the trigger program. This option can be helpful in trigger programs that are designed for data
validation and data correction. This section shows how to write trigger programs that change
the record that fired the trigger.

To add a trigger record to a physical file, use the ADDPFTRG CL command. If you need to
change the record that fired the trigger program, you must specify the Allow repeated change
(ALLWREPCHG) parameter of the ADDPFTRG command as *YES.

Two methods exist for changing the record that fired that trigger from within the trigger
program:

� Change the after image of the trigger record in the trigger buffer. In this case, the trigger
must be a BEFORE trigger.

� Update the trigger record by performing another I/O operation by using embedded SQL
statements or by using the normal I/O operations of a high-level language. What really
happens when you use this approach is that the trigger program is invoked recursively
again by the trigger program. This alternative is good when the first method cannot be
used. This method cannot be implemented in languages that do not support recursion.

Notes: The following notes refer to Example 8-11 on page 286:

1 Include the header file trgbuf.h in your ILE C program. You can then use the trigger
buffer that is defined in this header file in the trigger program. Therefore, the need to
code the trigger buffer in the program is eliminated.

2 Use this statement to declare the externally described files in your program. Therefore,
you do not need to code the record structure in your program.

3 This API can retrieve the user ID for the current job into the program.

4 This API can be used to send a message to another program. In the current example,
this API is used to send a message to the database writer to make the write operation
fail if the current sales person is not authorized to work with the customer.

5 Declare a pointer to the record image. This pointer is used to access the contents of
the trigger buffer.

6 Declare a pointer to the trigger buffer. This pointer can be used to move the offsets to
the locations at which the data that is passed to the program is present.

7 Set the pointer to the record structure to the address of the data that was passed to
the program. This example shows the after record image for the ORDERHR table.

8 Call the QUSRJOBI() API to get the user ID for the current job.

9 Start commitment control from within the trigger program by using the system() ILE C
instruction.

10 Query the SALESCUS table to determine whether the current user ID is authorized to
work with the customer that is specified in the record that is written to the database.

11 If the user ID is not authorized, record the violation in the AUDIT file and commit the
changes to the AUDIT file.

12 If the user ID is not authorized to work with the specified customer, call the
QMHSNDPM() API to send a message to the database manager to make the current
operation fail.
Chapter 8. External triggers 289

The Allow repeated change parameter is used only for those programs that change the
trigger buffer. In this case, the trigger program must be a BEFORE trigger for the update and
insert operations. The modified after image is used for the actual insert or update operation in
the associated physical file. It makes no sense to change the trigger buffer on an AFTER
INSERT or UPDATE trigger program because it does not update the database record.

If you use a trigger program that calls itself recursively, consider the following important
points:

� The trigger must be written in a language that supports recursion.

� The trigger must be an AFTER trigger. In this method, you update the trigger record by
using an I/O statement. You cannot update a record before it is written. Therefore, the
trigger must be an AFTER trigger.

� When you insert or update records into tables with attached recursive triggers, set the
isolation level of your program to *NONE because, with any other isolation level, the record
that was inserted or updated is locked unless a commit is issued. Therefore, when the
trigger program tries to update the record, it finds the record locked, and you receive a “file
in use” error.

� You must create the trigger program with activation group *CALLER. If the activation group
of the trigger program differs from the activation group of the program that inserts the
records, the trigger program finds the record locked, and you receive a “file in use” error.

The scenario for the following examples is described in “Softcoding the trigger buffer in ILE
RPG” on page 280. Refer to that section for an ILE RPG code example, which illustrates how
to change an after image buffer. In this section, the ILE C programs are shown.

Changing the trigger buffer example
Example 8-12 shows the code to change the trigger buffer example.

Example 8-12 Changing the trigger buffer example

/* ***
 . This is a BEFORE UPDATE trigger on the CUSTOMER table. If the .
 . the total sales amount for a customer exceeds 90% of the credit.
 . limit on update then this trigger will invoke the fax program. .
 . If the customer is a special customer which is denoted by a .
 . customer number beginning with a '9' then the credit limit is .
 . automatically increased by 30%. This program changes the .
 . after image of the trigger record before it is written to the .
 . database. .
 *** */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <decimal.h>
#include <recio.h>
#include <trgbuf.h>

/* Include externally described files */
#pragma mapinc("Customer", "ORDAPPLIB/CUSTOMER(*ALL)",\
 "input key", "d _P", " ", "cst")
290 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

#include "Customer"

Qdb_Trigger_Buffer_t *TrgBuffer;
cst_CUSTOMER_i_t *NewRec;
cst_CUSTOMER_i_t *OldRec;
decimal(11,2) CheckCrd;
char CustomerNumber[5];

void main(int argc, char **argv)
{
 TrgBuffer = (Qdb_Trigger_Buffer_t *) argv[1];

/* Get the after image of the trigger record */
 NewRec = (cst_CUSTOMER_i_t *) ((char *) TrgBuffer + 1
 TrgBuffer->New_Record_Offset);

/* Get the before image of the trigger record */
 OldRec = (cst_CUSTOMER_i_t *) ((char *) TrgBuffer +
 TrgBuffer->Old_Record_Offset);

/* Get 90% of the credit limit */
 CheckCrd = 0.9 * NewRec->CUSCRD; 2

/* Check if the total sales amount exceeds 90% of credit */
/* limit */
 if (CheckCrd <= NewRec->CUSTOT) 3
 {
 strncpy(CustomerNumber, NewRec->CUSNBR, 5);

/* Check if the customer number begins with a '9' */
 if (NewRec->CUSNBR[0] == '9') 4
 {
/* Change the trigger buffer and increase the credit */
/* limit by 30% */
 NewRec->CUSCRD = NewRec->CUSCRD * 1.3 ; 5
 printf("90 percent of credit limit exceeded:\n");
 printf("Customer - %s\n", CustomerNumber);
 printf("The credit limit has been increased:\n");
 printf("Old Credit limit - %D(11,2)\n", OldRec->CUSCRD);
 printf("New Credit Limit - %D(11,2)\n", NewRec->CUSCRD);
 }
 else
 {
 printf("90 percent of credit limit exceeded:\n");
 printf("Customer - %s\n", CustomerNumber);
 printf("Please Wait... Now Sending Fax...\n");
 printf("Call SENDFAX(NewRec->CUSFAX)\n");
 }
 }

 exit(0);
}

Chapter 8. External triggers 291

Calling the trigger program recursively
Example 8-13 shows the code to call the trigger program recursively.

Example 8-13 Calling the trigger program recursively

/* ***
 . This is a AFTER UPDATE trigger on the CUSTOMER table. If the .
 . the total sales amount for a customer exceeds 90% of the credit .
 . limit on update then this trigger will invoke the fax program. .
 . If the customer is a special customer which is denoted by a .
 . customer number beginning with a '9' then the credit limit is .
 . automatically increased by 30%. This program changes the trigger.
 . record by using an update statement and therefore calls itself .
 . recusively. The NumTimes variable which is a static integer .
 . keeps a record of the number of the times the trigger program .
 . was called .
 *** */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <decimal.h>
#include <recio.h>
#include <trgbuf.h>

/* Include the externally described files */
#pragma mapinc("Customer", "ORDAPPLIB/CUSTOMER(*ALL)",\
 "input key", "d _P", " ", "cst")

#include "Customer"

Qdb_Trigger_Buffer_t *TrgBuffer;
cst_CUSTOMER_i_t *NewRec;
cst_CUSTOMER_i_t *OldRec;
decimal(11,2) CheckCrd;
static decimal(11,2) NewCredit;
static decimal(11,2) OldCrd;
static int NumTimes = 0;
char CustomerNumber[5];
char dummy[5];

EXEC SQL BEGIN DECLARE SECTION;

Notes: The following notes refer to Example 8-12 on page 290:

1 Obtain the address of the after image of the trigger record. This image needs to be
changed.

2 Determine 90% of the credit limit.

3 Determine whether the total sales amount for the customer exceeded 90% of the credit
limit.

4 If 90% of the credit limit is exceeded, determine whether the customer in question is a
special customer by checking whether the customer number begins with 9.

5 If the customer number begins with 9, increase the credit limit by 30%.
292 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 decimal(11,2) NewCrd;
 char CustomerNumber[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void main(int argc, char **argv)
{
 TrgBuffer = (Qdb_Trigger_Buffer_t *) argv[1];

/* Get the after image of the trigger record */
 NewRec = (cst_CUSTOMER_i_t *) ((char *) TrgBuffer + 1
 TrgBuffer->New_Record_Offset);

/* Get the before image of the trigger record */
 OldRec = (cst_CUSTOMER_i_t *) ((char *) TrgBuffer +
 TrgBuffer->Old_Record_Offset);

/* Get 90% of the credit limit */
 CheckCrd = 0.9 * NewRec->CUSCRD; 2

/* Check if total sales amount exceeds 90% of the credit */
/* limit */
 if (CheckCrd <= NewRec->CUSTOT) 3
 {
 strncpy(CustomerNumber, NewRec->CUSNBR, 5);
/* Check if the customer number begins with a '9' */
 if (NewRec->CUSNBR[0] == '9')
 {
/* Is it the first time the trigger program is called */
 if (NumTimes == 0) 4
 {
 NewCrd = NewRec->CUSCRD * 1.3;
 OldCrd = OldRec->CUSCRD;
 NewCredit = NewCrd;
/* Update the trigger record */
 EXEC SQL 5
 update
 ordapplib/customer
 set
 CUSCRD = :NewCrd
 where
 CUSNBR = :CustomerNumber;
 NumTimes++; 6
 }
 }
 else
 {
 printf("In Non - recursive\n");
 printf("90 percent of credit limit exceeded:\n");
 printf("Customer - %s\n", CustomerNumber);
 printf("Please Wait... Now Sending Fax...\n");
 printf("Call SENDFAX(NewRec->CUSFAX)\n");
 gets(dummy);
 }
 }
Chapter 8. External triggers 293

 if (NumTimes != 0)
 {
 printf("90 percent of credit limit exceeded:\n");
 printf("Customer - %s\n", CustomerNumber);
 printf("The credit limit has been increased:\n");
 printf("Old Credit limit - %D(11,2)\n", OldCrd);
 printf("New Credit Limit - %D(11,2)\n", NewCredit);
 gets(dummy);
 }

 exit(0);
}

Notes: The following notes refer to Example 8-13 on page 292:

1 Get the after image of the trigger record that is updated.

2 Determine 90% of the credit limit.

3 Determine whether the total sales amount for the customer exceeded 90% of the credit
limit.

4 Determine whether the time the trigger program is executed for the first time. This
condition is not true if the trigger program is recursively called a second time. Check it to
ensure that the trigger program does not go into an infinite loop. If the trigger program is
called recursively, it is terminated without updating the trigger record for the second time.
To check the number of times that the trigger program was called, we use a static
variable in the program. If the value of this variable is not equal to zero, we assume that
this invocation is not the first invocation of the trigger program. In the first invocation of
the trigger program, we explicitly change the value of the variable from zero to 1.

5 Update the trigger record. This step leads to calling the trigger recursively.

6 If this invocation is the first time that the trigger is called, incrementally increase the
variable that records the number of times that the trigger program is called.
294 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

8.5 Applications and triggers: Design considerations

Be aware of the following list of considerations when you decide to incorporate triggers in your
applications and database design:

� Opening database files SHARE(*YES)

If your trigger will call other programs, you might want to take advantage of the
SHARE(*YES) option for opening common files. However, if your trigger tries to open the
same file that caused the trigger activation with the SHARE(*YES) option, no I/O
operations are allowed on that file. If you want to access and modify data in the same file
that fired the trigger, you must use a separate open data path (OPD) and a full open is
required. See Figure 8-29.

Figure 8-29 SHARE(*YES) example that uses shared open in triggers

Notes: The following notes refer to the numbers in Figure 8-29:

1 These operations fail. You are not allowed to share the same open data path (ODP)
on the file that fired the trigger.

2 These operations succeed. The update trigger is associated with TABLE C. The
update trigger can share the same ODP as the insert trigger on TABLE B. The update
trigger opens TABLE A with the SHARE(*NO) option, which creates a separate ODP
for that file.

Application
 Program

OPEN A SHARE(*YES)

 INSERT INTO A

 *INSERT
Trigger on
 table A

1

OPEN B SHARE(*YES)
 I/O on B

OPEN C SHARE(*YES)
 UPDATE C

OPEN A SHARE(*YES)
 I/O on A

 *UPDATE
 Trigger on
 TABLE C

OPEN B SHARE(*YES)
 I/O on B

OPEN C SHARE(*YES)
 I/O on C
OPEN A SHARE(*NO)
 I/O on A

2

1

2

Chapter 8. External triggers 295

� You cannot perform Distributed Relational Database Architecture (DRDA) access in a
trigger program. In particular, you are not allowed to use the SQL CONNECT statement
and the CL CRTSQLPKG statement in a trigger program.

However, if you need to access and modify data that is at a remote site from within a
trigger, you can open distributed data management (DDM) files or start an Advanced
Program-to-Program Communication (APPC) session with a remote partner program.
When you access remote data in those ways, you can take advantage of the two-phase
commit support that is offered by DB2 Universal Database for iSeries. If the trigger fails
after a remote access was performed and an exception is sent back to the originating
application, the entire transaction is put into a rollback-required state.

In these cases, you must send back an escape message to the calling interface, either by
the system or by the trigger, to ensure that all of the changes are rolled back consistently.

When triggers are activated remotely by a DRDA data change, they are not allowed to
change the current DRDA connection. Consider the scenario in Figure 8-30.

In Figure 8-30, a trigger was fired when the client application issued an update on the
database file TABLE A. Any attempt to access a different location by the trigger will fail at
the points that are marked by an asterisk (*).

Figure 8-30 Changing the DRDA connection in triggers

APPLICATION
 REQUESTER

APPLICATION
 SERVER location 1

SET CONNECTION location1
UPDATE A

UPDATE B

TABLE A

 UPDATE
Trigger on B

SET CONNECTION location1

 *UPDATE
Trigger on
 TABLE A

SET CONNECTION
 location2

*

*

296 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

If you plan to access data that is stored on a remote IBM i server from within a trigger
program, you can use DDM files or start an APPC conversation. In Figure 8-31, you can
see how a trigger can be activated remotely by updating a DDM file. The lower part of the
figure shows how a local trigger can also successfully open a DDM file and perform
remote I/O operations. One of these operations can, in turn, fire a remote trigger.

Figure 8-31 DDM file

SYSTEM X SYSTEM Y UPDATE
 Trigger on A
OPEN DDM file A
. Database Table A
UPDATE DDM file A

OPEN local table B
UPDATE local table B

OPEN DDM file C
UPDATE DDM file C

UPDATE Trigger on B

SYSTEM Z

Database Table C

.

.

 UPDATE
Trigger on C
Chapter 8. External triggers 297

If you need to access multiple locations in the same logical unit of work, the client
application must control the connection switching that is shown in Figure 8-32.

Figure 8-32 Triggers in a DRDA2 application

� Destructive data change within triggers:

The database record that caused the trigger activation is always protected against any
attempt to change it. You are not allowed to modify the record that fired the trigger from
within the trigger itself. This restriction was introduced to avoid possible inconsistencies,
such as a trigger working with a trigger buffer that no longer matches the real data in the
database files.

The restriction also applies in the case of a chain of triggers. The record that activated the
first trigger cannot be modified even by the second trigger.

If both of your triggers and the applications run under commitment control, all of the rows
that are modified by your trigger programs are locked and cannot be changed, not even
through the same ODP that was used to perform the first data change.

Note: In certain cases, you might want to update the record that fired the trigger. For
more information, see 8.4.5, “Changing the record that fired a trigger” on page 289.

APPLICATION
 REQUESTER

APPLICATION
 SERVER location 1

SET CONNECTION
 location 1
UPDATE A
 . . .
SET CONNECTION
 location 2
UPDATE B

TABLE A

.

*UPDATE
 Trigger

APPLICATION
 SERVER location 2

TABLE B *UPDATE
 Trigger
298 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

For example, in Figure 8-33, the records that are marked with 1 are protected until the last
trigger in the chain completes its execution. Therefore, the database I/O operations that
are marked with 2 will result in a failure. In the same example, if both the triggers and the
application are running commitment control, the I/O operation that is marked with 4 will fail.
You cannot use triggers to change the same row more than one time when the triggers are
running under the application’s commitment control definition. However, if the trigger is not
running under the application’s commitment control definition, multiple changes to the
same row are allowed, as indicated by 3.

Figure 8-33 Destructive data change

Table 8-4 summarizes the different levels of protection, depending on the various
commitment control scenarios.

Table 8-4 Various commit scenarios

� ILE procedures cannot be defined as triggers. Only objects of type *PGM can be added to
a physical file. Therefore, service programs cannot be used to define trigger programs.

� Triggers can fire other triggers.

A trigger can perform the same type of I/O operation on the same triggering file and fire a
copy of itself (recursive triggers). Nested triggers are limited to 200 to avoid potentially
infinite loops. This limitation does not apply to recursive DELETE triggers because they
delete all of the records in the file and no risk of an infinite loop exists.

A chain of triggers is a rather common scenario in complex scenarios with multiple
applications, where you might want to implement the common logic independently from
the various applications. Recursive triggers and circular triggers must be coded carefully
to avoid the possibility of generating meaningless loops.

� While a file is open, triggers cannot be added, removed, enabled, or disabled.

� You cannot add a DELETE trigger program to a dependent file in a referential constraint
relationship with a *CASCADE delete rule. Similarly, you cannot add an UPDATE trigger to
a dependent file in a referential constraint relationship with the *SETNULL or *SETDFT
delete rule.

Application program Trigger program Behavior

1 COMMIT(*YES) COMMIT(*YES) All rows are protected.

2 COMMIT(*YES) COMMIT(*NO) Only the change operation is protected.

3 COMMIT(*NO) COMMIT(*NO) Only the change operation is protected.

4 COMMIT(*NO) COMMIT(*YES) Only the change operation is protected.
Triggers can change the same record more
than one time by using the same ODP.

update ROW B ROW B update ROW B
.
update ROW C update ROW A
. . . ROW C
delete ROW A update ROW C
.
update ROW C
. . .

Application
 Program

insert ROW A

Table1

ROW A 1

INSERT Trigger UPDATE TriggerTable2

2

4

1 2

2

3

Chapter 8. External triggers 299

� No trigger is fired if the file is overridden to INHWRT(*YES) (Inhibit Write), even if the
program is defined as a *BEFORE trigger.

� The system changes SEQONLY(*YES) to SEQONLY(*NO).

If the physical file or the dependent logical file is opened for SEQONLY(*YES) and a
trigger is associated with it, the system takes care of changing the open to
SEQONLY(*NO) so that the trigger can be invoked for each record that changed.

� Triggers and object management

Because the trigger library is resolved when the trigger is added to a physical file, be
aware of the following implications:

– Renaming, moving, and recompiling a trigger

These operations can be performed because no “hard” link exists between the trigger
and the database file. If you change the trigger name, delete it, or move it to another
library, the data change operation on the associated file will always fail because the
system cannot locate the trigger program.

– Saving and restoring

When you save a database file, the trigger information is saved in the object
description unless you save it with a target release parameter that indicates an OS/400
release before V3R1. However, the trigger program must be saved separately. You
might find it convenient to create the trigger programs in the same library as the
associated file so that a SAVLIB command can save all of the objects.

– Creating duplicate objects and copying the file

When you use the CRTDUPOBJ command or the CPYF command to create a copy of a
database file in a different library, the trigger information is not changed. If you need to
create a copy of both trigger programs and database files in a different library, consider
the use of the CPYLIB command or the CRTDUPOBJ OBJ(*ALL) command. When you use
CPYLIB, the system updates the trigger library information in the file description if the
triggers and the database file are in the same library.

8.6 Recommendations

This section summarizes several of the recommendations that are presented in this chapter
and includes more considerations about trigger development:

� Create the program with ACTGRP(*CALLER) if the program is running in an ILE
environment to ensure that the trigger runs under the same commitment definition as the
application.

� In an SQL application, use the SET TRANSACTION SQL statement to set the same
isolation level of the SQL trigger program as the application. In native, use the correct file
definition to open the files with or without commitment control at run time, based on the
application commitment definition.

� The trigger inherits the library list of the job that activated it. Do not forget to explicitly
qualify the objects that are referenced inside the trigger with their libraries or to add those
libraries to the library list because you might get a failure, depending on the application
that activates the triggers.

� You might need your trigger programs to run asynchronously, for example, when you want
to trigger a long-running process that must prevent the application from proceeding. For
this purpose, you might use the Submit Job (SBMJOB) command. In this case, applications
cannot expect any kind of feedback from the trigger execution.
300 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

� Security and triggers

Triggers run as part of the job that activated them. Because they might access objects to
which the current user is not authorized, you might create them with the USRPRF(*OWNER)
parameter. Alternatively, because triggers are used to enforce business rules, avoid
granting the *OBJMGMT authorities or the ALTER and REFERENCE SQL privileges to
users that do not strictly need them. Use this precaution to avoid users from easily
circumventing the rules by removing the triggers from the database files.

Also, remove all of the authorities on the trigger program from the public because they are
not necessary for the triggering mechanism. The system can always invoke the trigger,
regardless of which user performs the data change.

� Performance considerations

It is important to consider performance when you decide to implement triggers in your
database design. Triggers are activated by using an external call. Try to evaluate carefully
the trade-off of the performance impact over the benefit of the trigger functions.

Consider these suggestions when you develop trigger programs:

– Avoid compiling an ILE trigger with ACTGRP(*NEW).

– Creating an activation group is expensive. Try to prevent it as much as you can.

– If for a special reason your trigger runs in a separate activation group, remember to
handle all of the exceptions. An unhandled exception will terminate the activation
group, close all of the files, and cause an implicit rollback for the changes that were
made by your trigger.

– Minimize the number of file opens and closes.

– Try to exit a trigger program in the “soft” way. Avoid, if you can, SETON LR in RPG,
STOP RUN in COBOL, and exit() in C. Use this method to leave several files open and
avoid the overhead of opening them again when you get back into the trigger. This
technique is broadly used in our trigger examples. Use a static variable to determine
whether the file needs to be opened. In the C language, define the file pointer as static
and check for the NULL value. In terms of application logic, if you open a file to append
a record at the end or for reading with random positioning, you can avoid closing it.

– For SQL triggers, try to write the statements so that the optimizer chooses a reusable
ODP.

– Use share open in triggers.

If your triggers call other programs and they access the same files, try to share the
open data path by using the share open option. A share open is much faster than a full
open, which will create a new ODP.
Chapter 8. External triggers 301

302 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 9. Triggers, referential integrity, and
constraints

You can use IBM DB2 for i to define both referential integrity constraints and triggers on the
same database table. This chapter explains the coexistence of triggers and referential
integrity, with particular emphasis on the role that is played by commitment control in this
scenario. The chapter starts with a description of transaction isolation and recovery before we
describe the coexistence of triggers and referential integrity in detail.

This chapter describes these topics:

� Transaction isolation and recovery
� Trigger journal entries
� Triggers and referential integrity
� Comparing referential integrity and triggers
� Constraints and triggers: Ordering the actions
� Triggers, referential integrity, and commitment control
� Referential integrity, triggers, and journal entries

9

© Copyright IBM Corp. 2001, 2016 303

9.1 Transaction isolation and recovery
All triggers, when they are activated, perform a SET TRANSACTION statement so that all of
the operations by the trigger are performed with the same isolation level as the application
program that caused the trigger to run. The user might put SET TRANSACTION statements
in an SQL-control-statement in the SQL-trigger-body of the trigger. If the user places a SET
TRANSACTION statement within the SQL-trigger-body of the trigger, the trigger will run with
the isolation level that is specified in the SET TRANSACTION statement, instead of the
isolation level of the application program that caused the trigger to run.

If the application program that caused a trigger to be activated is running with an isolation
level other than No Commit (COMMIT(*NONE) or COMMIT(*NC)), the operations within the
trigger will run under commitment control and not be committed or rolled back until the
application commits its current unit of work.

If ATOMIC is specified in the SQL-trigger-body of the trigger, and the application program that
caused the ATOMIC trigger to be activated is running with an isolation level of No Commit
(COMMIT(*NONE) or COMMIT(*NC)), the operations within the trigger will not be run under
commitment control.

If the application that caused the trigger to be activated is running with an isolation level of No
Commit (COMMIT(*NONE) or COMMIT(*NC)), the operations of a trigger are written to the
database immediately and cannot be rolled back.

If both system triggers that are defined by the Add Physical File Trigger (ADDPFTRG) control
language (CL) command and SQL triggers that are defined by the CREATE TRIGGER
statement are defined for a table, we recommend that the system (external) triggers perform a
SET TRANSACTION statement so that they are run with the same isolation level as the
original application that caused the triggers to be activated.

We also recommend that the system (external) triggers run in the activation group of the
calling application. If the system triggers run in a separate activation group
(ACTGRP(*NEW)), those system triggers will not participate in the unit of the work for the
calling application, nor in the unit of work for any SQL triggers. System triggers that run in a
separate activation group are responsible for committing or rolling back any database
operations that they perform under commitment control. SQL triggers, which are defined by
the CREATE TRIGGER statement, always run in the caller’s activation group.

If the triggering application is running with commitment control, the operations of an SQL
trigger and any cascaded SQL triggers will be captured into a sub-unit of work. If the
operations of the trigger and any cascaded triggers are successful, the operations that are
captured in the sub-unit of work will be committed or rolled back when the triggering
application commits or rolls back its current unit of work. Any system triggers that run in the
same activation group as the caller, and perform a SET TRANSACTION to the isolation level
of the caller, will also participate in the sub-unit of work. If the triggering application is running
without commit control, the operations of the SQL triggers will also run without commitment
control.

If an application that causes a trigger to be activated is running with an isolation level of No
Commit (COMMIT(*NONE) or COMMIT(*NC)), and it issues an INSERT, UPDATE, or
DELETE statement that encounters an error during the execution of the statement, no other
system (external) and SQL triggers will still be activated following the error for that operation.
However, a number of changes will already be performed. If the triggering application is
running with commitment control, the operations of any triggers that are captured in a
sub-unit of work will be rolled back when the first error is encountered, and no additional
triggers will be activated for the current INSERT, UPDATE, or DELETE statement.
304 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

9.2 Trigger journal entries
Applying and removing journal changes on physical files does not cause triggers to be
activated. When a record is changed by a trigger, its corresponding journal entry has a
special marker that identifies that particular change as a result of a trigger action. If your
triggers use journals other than the application journals or if they perform non-database
activity (data queues, messages, data areas, and so on), you cannot find any evidence of the
trigger activity in the application journal. Applying the journal entries on a restored version of
a database file might not lead to the same result as the application execution produces.

In these cases, when you develop a trigger program, we recommend that you code the
appropriate actions to facilitate a possible recovery process. For example, you can send
user-defined journal entries to the application journals by using the QJOSJRNE application
programming interface (API) or the SNDJRNE CL command. These entries might not be applied
or removed, but they at least provide a trail of what happened on the system due to trigger
activity. To fully recover the trigger actions, develop a specific procedure to process these
user-defined journal entries.

For more information about journaling, applying, and removing journal entries, and for a full
description of QJOSJRNE, see Backup and Recovery, SC41-5304.

9.3 Triggers and referential integrity
This section describes these topics:

� Triggers and referential constraints
� Commitment control considerations
� Journal changes with triggers and referential integrity
� Combining triggers and stored procedures

Combining the various DB2 Universal Database for iSeries functions gives you new
advantages in writing your applications in terms of flexibility, performance, and ease of
development and maintenance. This chapter presents several scenarios where different
functions coexist. It also points out interesting technical considerations when you start to
implement your applications.

9.4 Comparing referential integrity and triggers
You can use DB2 Universal Database for iSeries to define both referential constraints and
triggers on the same database file. This chapter explains the coexistence of triggers and
referential integrity with particular regard to the role that is played by commitment control in
this scenario. It also describes how the journal entries reflect the effects of triggers and
referential integrity enforcement and the implications on the recovery process.

9.4.1 Using triggers to implement referential integrity rules
Many different relational database platforms implemented referential integrity by using
system-provided triggers. Generally, this design choice carries a strong limitation. Referential
constraints can be enforced only when data is changed in the database. After a restore
process, for example, the logical consistency of the data in the database might not be
guaranteed. DB2 Universal Database for iSeries implements declarative referential integrity.
Chapter 9. Triggers, referential integrity, and constraints 305

Declarative referential integrity means that data consistency in a referential integrity network
is verified also after a restore operation, after an application of the journal entries, or when a
referential constraint is created in an existing database. The use of triggers to enforce
referential constraint ensures data validation only at a single I/O operation, rather than at the
global contents of the database. Consider this basic difference when business rules are
enforced by using trigger programs.

A practical situation where you might want to use triggers to enforce a referential integrity type
of rule is represented by the UPDATE CASCADE rule, which is not yet provided by DB2
Universal Database for iSeries in the referential constraints definition. For example, in a hotel
management application, you might use the database layout that is shown in Figure 9-1.

Figure 9-1 An UPDATE CASCADE example

In Figure 9-1, the Customers file contains all of the customers that are currently present at the
hotel and reports their room numbers. The Item Detail file contains all of the items that are
charged to the various rooms. If a customer moves from one room to another, we want all of
the items to be charged to the new room number. We need to propagate the update operation
on the Customer file down to the Item Detail file, but no referential integrity rule operates this
way in DB2 Universal Database for iSeries. This constraint can be implemented by a trigger
program that is activated by update operations on the Customer file. The trigger can check
whether the room number changed and update all of the corresponding records in the detail
file.

In general, we recommend that you use declarative referential integrity as much as you can,
as opposed to implementing the same rules by using a trigger program. Use referential
constraints to ensure that your data validity is constantly enforced, even after a restore
operation, and to provide better performance in verifying data relationships because this type
of checking is done by the system at a low level.

9.5 Constraints and triggers: Ordering the actions
When constraints and triggers coexist in the same file, you need to remember how DB2
Universal Database for iSeries orders the various actions. The following description helps you
determine whether to use a RESTRICT or a NOACTION rule and whether to implement a
BEFORE or an AFTER trigger to satisfy your application requirements.

Because DB2 Universal Database for iSeries allows the coexistence of multiple constraints
and triggers in the same file, we must analyze several possible combinations.

Smith, M 557

.............
Johnson 547

557 Room 105

557 Phone 13

547 Room 125

557 Bar 9

547 Phone 7

CUS_NAME ROOM_NBR
Customers

ROOM_NBR SERVICE PRICE DATE
Item Detail
306 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

9.5.1 Insert operations
Insert operations can lead to unique key violations on physical files and to referential integrity
constraint violations on dependent files. As far as referential integrity constraints are
concerned, insert operations will always be successful on parent files.

The following sequence of actions occurs after an insert request in a DB2 Universal Database
for iSeries database file:

1. The *BEFORE trigger is activated.

2. If commitment control is not started, a check constraint is processed now.

3. The record is inserted and any non-constraint checking is performed (for example,
member full).

4. The *AFTER trigger is activated.

5. If the file is a dependent file, any referential constraint is enforced now.

6. If commitment control is started, a check constraint is processed immediately after
referential constraint enforcement.

You can use this method of sequencing the actions to write an INSERT trigger that, for
example, removes or updates a previously existing key value to avoid a duplicate key
exception.

9.5.2 Update operations
Updates are more complex to analyze because they influence data integrity either when they
affect a parent or a dependent file of a referential integrity network. The detailed sequence is
shown:

1. The *BEFORE trigger is activated.

2. If the file is a parent of a *RESTRICT referential constraint, this constraint is enforced.

3. If commitment control is not started, a check constraint is processed now.

4. The record is updated, and any non-constraint checking is performed (for example, invalid
data in the new record image, such as an invalid date format).

5. The *AFTER trigger is activated.

6. If the file is a parent file of a *NOACTION referential constraint, this constraint is enforced.

7. If the file is a dependent file, the constraint is enforced.

8. If commitment control is started, a check constraint is processed immediately after
referential constraint enforcement.

9.5.3 Delete operations
Data integrity can be affected by a delete operation only if it is executed against a parent file.
Delete operations on dependent files are always successful. In addition, delete operations
cannot possibly lead to a violation of unique constraints. DB2 Universal Database for iSeries
acts in this sequence when a delete operation is performed:

1. The *BEFORE trigger is activated.

2. If the file is a parent file of a *RESTRICT delete rule, this constraint is enforced now.

3. If commitment control is not started, a check constraint is processed now.

4. The record is deleted from the database file, and any non-constraint checking is
performed now.
Chapter 9. Triggers, referential integrity, and constraints 307

5. The *AFTER trigger is activated.

6. If the file is a parent file of a *CASCADE delete rule, this constraint is enforced now. If
multiple *CASCADE delete constraints are defined, all of them are enforced now. Even if
several of the files that are affected by the cascade process are parent files with a
*RESTRICT delete rule, all of the matching records are deleted first. Then, the
*RESTRICT delete rule is enforced. In Figure 9-2, you can see how this sequence
influences the result of a delete operation in practice.

Figure 9-2 Rule ordering in a cascade network

The scenario that is shown in Figure 9-2 implements the following business rule: If a
customer is deleted, all of the related orders and invoices must also be deleted.
Alternatively, deleting an invoice that relates to an existing order must be prevented. If an
application deleted a customer record, DB2 Universal Database for iSeries deletes all of
the corresponding invoices and orders. When this process completes, the *RESTRICT
rule in the invoice file is enforced, but by that time, all of the matching orders are already
removed and the operation terminates successfully. If the *RESTRICT rule is enforced
before the *CASCADE rule on the orders file, the whole operation fails.

7. If the file is a parent file of a *SETNULL or *SETDFT delete rule, these constraints are
enforced now.

8. If the file is a parent file of a *NOACTION delete rule, this constraint is enforced now.

9. If commitment control is started, a check constraint is processed immediately after
referential constraint enforcement.

It is important that you keep in mind the following consideration when you decide to combine
triggers and referential integrity constraints in your database. DB2 Universal Database for
iSeries activates the *AFTER triggers before it enforces any referential integrity constraint
with update or delete rules that differ from *RESTRICT. When you develop *AFTER triggers
for your database, you might not always assume that the I/O operation that activated them
already completed successfully when the trigger programs are in execution. The reason is
because the operation might fail later as a result of a referential constraint violation.

Remember:

� No delete triggers can be defined on a file that depends on a referential constraint with
the *CASCADE delete rule.

� No update triggers can be defined on a file that depends on a referential constraint with
the *SETNULL or *SETDFT delete rule.

.

*RESTRICT

ORDDESCR

CUSNBR

.INVNBR CUSNBRORDNBR CUSNBR ORDNBR

CUSNAME CUSADDRESS

CUSTOMER

*CASCADE

ORDERS

*CASCADE

. . . .

INVOICE
308 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

An example of this situation is shown in Figure 9-3.

Figure 9-3 Delete trigger and delete rules

The example that is shown in Figure 9-3 is a slight variation of our application scenario. If we
try to translate the constraints in terms of business rules, we can say that this implementation
allows an application to delete a customer if no orders are outstanding or if all of the orders
are “empty” (that is, with no detail rows). Empty orders might be the result of failures or an
incomplete order cancellation due to application problems. If an application deletes a record
from the customer file, the actions occur in the following sequence:

1. The record is deleted from the Customer file.

2. The AFTER DELETE trigger is activated.

3. DB2 Universal Database for iSeries removes the related records in the Order Header file.

4. The *RESTRICT constraint is enforced now. If any related records are in the Order Detail
file, the entire transaction is rolled back, and the original delete on the Customer file fails.

You might notice that the AFTER DELETE trigger must not assume that the original delete
terminated successfully. Design this trigger carefully. Avoid, for example, any non-database
activity because this kind of operation cannot be rolled back if the subsequent delete cascade
fails.

CUSNBR

00001

.

Customer

*AFTER
 *DELETE
 Trigger
Program

CUSNBR

00001
00001

00005
00004

ORHNBR

00005
00005

ORHNBR

Order Header Order Detail

DELETE *RESTRICTDELETE *CASCADE
Chapter 9. Triggers, referential integrity, and constraints 309

9.6 Triggers, referential integrity, and commitment control
We described the implications of triggers and referential integrity on journaling and
commitment control in 8.3.1, “Commitment control and triggers” on page 240. This section
describes how the integrity of transactions can be preserved when triggers and referential
integrity constraints are both operating on the database.

Triggers, referential integrity, and commitment control interact in different ways, depending on
whether the application that changes the data in the database is running commitment control.
We address these two cases separately.

9.6.1 When the application is not running commitment control
Even if the application runs without commitment control, the system starts a transparent
commitment control cycle whenever rules, other than *RESTRICT, are defined for the
referential constraints of the file that is accessed. Therefore, if a trigger program is activated in
this environment, the commitment control parameter that is passed to the program by DB2
Universal Database for iSeries in the trigger buffer (8.2, “Trigger program structure” on
page 226) is set to a value different from 0, which indicates that commitment control started.

The trigger has no direct way to determine whether commitment control was started by the
system or by the application. If the trigger opens a file with commitment control, according to
the parameter that is received into the trigger buffer, either of the following two situations
occurs:

� The file that is opened by the trigger program has no referential integrity constraints, or it
has *RESTRICT rules only.

In this case, the open fails because no user commitment definition was started. The
system issues an exception (CPF4326). The trigger monitors the exception and reopens
the file without commitment control. All of the changes that are made by the trigger are
uncommitted. (That is, they are immediately permanent.)

� The file that is opened by the trigger program has referential integrity constraints with rules
other than *RESTRICT.

The open succeeds, and the changes fall into the system commitment definition. The
changes that are made by the trigger are automatically rolled back if a failure occurs
before the originating I/O completes.

If the trigger ignores the commitment control parameter and opens the file without
commitment control, the open will always succeed.

If the trigger uses commitment control, it runs in its own commitment definition, which implies
that a failure that is due to the enforcement of a referential integrity constraint does not roll
back any changes that were previously made by the trigger program.

9.6.2 When the application runs under commitment control
In this scenario, the trigger program must use the SET TRANSACTION statement (SQL
triggers) or open any database file with the commitment control option. (See 8.2, “Trigger
program structure” on page 226 for a full description of this topic.) This way, you are
guaranteed the atomicity of the whole transaction. All of the changes that result from the
original database I/O are treated as a single transaction. Triggers must share the commitment
definition with the application. Otherwise, their database changes are not considered a part of
the atomic transaction.
310 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Consider the example in Figure 9-3 on page 309. Assume that the AFTER DELETE trigger
that is defined on the customer file performs database changes. In Figure 9-4, you can see
the flow of the database operations that were caused by delete operation 1.

Figure 9-4 Atomic transaction with triggers and referential integrity

The application in Figure 9-4 runs under commitment control. The trigger program shares the
commitment definition, which you can ensure by compiling the trigger with
ACTGRP(*CALLER) if it is an Integrated Language Environment (ILE) program. The delete
operation fails after the trigger terminated (2) and all of the changes that are included in box 1
are rolled back by the system. The application still can commit or roll back any other previous
change operation (3) that is not affected by the implicit rollback.

Summarizing the previous description, we strongly recommend that you use commitment
control in your applications if the database design includes the coexistence of referential
integrity constraints with rules other than *RESTRICT and triggers at the same time. If this
condition cannot be guaranteed by your application environment, code triggers carefully to
determine whether they are running under the user commitment definition or under the
system commitment definition. Never start commitment control in triggers if the triggers are
created with ACTGRP(*CALLER). It is better to monitor for the correct error message when
you open files under commitment control.

9.7 Referential integrity, triggers, and journal entries
In 9.2, “Trigger journal entries” on page 305, we explained how DB2 Universal Database for
iSeries logs additional information to identify that a journal entry was generated by a
database change that resulted from a trigger action.

This additional information is relevant to those applications that implement a sort of online
system duplication, such as MIMIX, Multiple Systems Software, and Dual System Backup.
Generally, these applications scan the journal receivers and send the record images across
the network to a different system. At the remote site, a partner program receives the record
images and performs the required action, such as inserting, updating, or deleting the records
from the duplicated database.

Application Atomic Transaction

COMMIT

UPDATE f1
.
INSERT f2
.
DELETE from customer
where CUSNBR='00001'
.
IF delete OK THEN
 COMMIT
ELSE
 ROLLBACK

1

Remove rec 00001
 from Customer

Activate *AFTER
 Trigger

Remove rec 00004
 from Order Header
Remove rec 00005
 from Order Header

INSERT f3
. . . .
UPDATE f4
. . . .

1

1

2
3

Chapter 9. Triggers, referential integrity, and constraints 311

These kinds of applications or products can take significant advantage of triggers and
referential integrity from a performance standpoint. The backup database and the production
database are exact copies of each other in terms of definitions, referential constraints, and
triggers. Therefore, the journal entries that are caused by triggers and referential constraints
do not need to be sent across the network. The duplicated application needs to send only the
“real” changes, and the partner program needs to perform only the same operations as the
original application.

The amount of information that flows across the network can be greatly reduced by using this
technique. Consider the example where the deletion of a record from the header causes a
cascade delete on two dependent files. To reproduce the same situation on the hot backup
database, we need to send across the line only the first journal entry that relates to the delete
operation of the record in the header file. In a traditional environment, where referential
integrity is implemented at the application level, all of the journal entries that relate to the
dependent files are also sent.
312 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 10. User-defined functions

This chapter describes the advantages of developing user-defined functions (UDFs) on IBM
DB2 for i as the facility to create scalar or table functions that are similar to other
system-supplied functions that are used in SQL statements.

This chapter describes the following topics:

� Introduction
� Nature of user-defined functions
� Type of user-defined functions
� Creating user-defined functions
� Resolving a UDF
� System catalog tables
� Authorization and adopted authority
� Transaction management considerations
� Coding considerations

10
© Copyright IBM Corp. 2001, 2016. All rights reserved. 313

10.1 Introduction
UDFs are host-language functions to perform customized, often-used tasks in applications.
Programmers use UDFs to modularize a database application, creating a function that can be
used in SQL.

DB2 for i comes with a rich set of built-in functions, but users and programmers might have
requirements that are not covered by them. UDFs play an important role. Users and
programmers can use UDFs to enrich the database manager by providing their own
functions.

UDFs offer the following advantages:

� Customization

Functions that are required by your application that do not exist in the set of DB2 built-in
functions can be created. Whether the function is a simple transformation, a trivial
calculation, or a complex multivariate analysis, you can choose a UDF to do the job.

� Flexibility

You can use functions with the same name in the same library that accept different sets of
parameters.

� Standardization

Many of the programs that you implement use the same basic set of functions, but minor
differences exist in all of the implementations. If you correctly implement your business
logic as a UDF, you can reuse those UDFs in your other applications by using SQL.

� Object-relational support

UDFs also provide additional functions for User-defined Distinct Types (UDTs) that are
created in the database. UDFs act as methods for UDTs. For more information about
UDTs and how UDFs are used to encapsulate methods for them, see DB2 UDB for
AS/400 Object Relational Support, SG24-5409.

� Performance

A UDF can run in the database engine. A UDF is useful for performing calculations in the
database manager server. Another area where performance might improve is working with
large objects (LOBs). UDFs can be used to extract or modify portions of the information
that is contained in a LOB directly in the database manager server instead of sending the
complete LOB to the client side.

� Migration

When you migrate from other database managers, certain built-in functions might not be
defined in DB2 for i. UDFs allow us to create those functions to facilitate the migration
process.
314 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

UDFs are useful for the following reasons:

� Supplement built-in functions

A UDF is a mechanism with which you can write your own extensions to SQL. The built-in
functions that are supplied with DB2 are a useful set of functions, but they might not satisfy
all of your requirements. Therefore, you might need to extend SQL. For example, porting
applications from other database platforms might require coding of certain
platform-specific functions.

� Handle user-defined data types

You can implement the behavior of a user-defined distinct type (UDT) by using UDFs.
When you create a distinct type, the database provides only cast functions and
comparison operators for the new type. You are responsible for providing any additional
behavior. It is best to keep the behavior of a distinct type in the database where all of the
users of the distinct type can easily access it. Therefore, UDFs are the best
implementation mechanism for UDTs.

� Provide function overloading

Function overloading means that two or more functions with the same name can be in the
same library. For example, several instances of the SUBSTR function can accept different
data types as input parameters. Function overloading is a key feature that is required by
object-oriented development.

� Allow code reuse and sharing

Business logic that is implemented as a UDF becomes part of the database, and it can be
accessed by any interface or application by using SQL.

10.2 Nature of user-defined functions
A function is a relationship between a set of input values and a set of result values. When a
function is invoked, a function performs an operation (for example, concatenate) based on the
input and returns a single result or multiple results to the invoker. Depending on the nature of
the return value or values, UDFs can be classified into one of two groups:

� User-defined scalar functions
� User-defined table functions

10.2.1 User-defined scalar functions
User-defined scalar functions are UDFs that return a single scalar value. A function that
returns the temperature in Celsius for a specific temperature in Fahrenheit is a scalar
function. The statement in Example 10-1 uses two different scalar functions (UDTs and
user-defined table functions (UDTFs)) that are combined in the same SELECT statement.

Example 10-1 Scalar UDTs and UDTFs that are combined in the same SELECT statement

SELECT
DEC2DATE(ORDERDATE),
DEC2DATE(SHIPDATE),
WORKINGTIME(ORDERDATE,SHIPDATE),
FROM ORDERS

The scalar functions in the example are DEC2DATE and WORKINGTIME.

DEC2DATE executes two times for each row that is processed by the SELECT statement.
Chapter 10. User-defined functions 315

10.2.2 User-defined table functions
User-defined table functions (UDTFs) are UDFs that can return a set of output values. This
set of output values is known as a table or result set. UDTFs return a table instead of a scalar
value. The following examples are UDTFs:

� A function that returns the names of sales representatives in a specified region

� A function that returns all employees whose annual compensation is higher than the
average of the organizational unit to which they belong

� A function that returns the k most profitable customers is a table UDF

10.3 Type of user-defined functions
UDFs can be divided into three categories:

� Sourced UDFs
� SQL UDFs
� External UDFs

10.3.1 Sourced UDFs
Sourced UDFs are functions that are registered to the database that refer to another function.
In fact, they map to the sourced function, which means that no coding is involved. Nothing
more is required to implement a sourced UDF than to register it to the database by using the
CREATE FUNCTION statement. Sourced UDFs are often used to implement the required
behavior of UDTs.

You can define a sourced UDF over an arithmetical operator, such as +, -, *, /, or ||. This
capability is useful if you want to enable the use of binary operators, such as arithmetic
operations, for UDTs. For example, if you want to add two columns that are defined as UDT
MONEY, the function “+” can be defined as a function “+”(MONEY, MONEY) that returns
MONEY, which is based on the standard “+”(DECIMAL, DECIMAL) that returns DECIMAL.
See Example 10-2.

Example 10-2 Sourced function + for MONEY UDT

CREATE FUNCTION Library/“+”(MONEY, MONEY)
returns MONEY
specific plus00001
source QSYS2/“+”(decimal, decimal);

Note: One useful and important use of a table function is that it can access data in
non-relational objects with SQL. A table function can be written to extract data out of a
stream file in the integrated file system (IFS). Then, the invoking SQL statement can
process that data in the same manner as data from a table that was created by SQL.
316 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

10.3.2 SQL UDFs
SQL UDFs are functions that are written entirely by using procedural SQL language. Their
“code” consists of SQL statements that are embedded within the CREATE FUNCTION
statement. SQL UDFs provide several advantages:

� They are written in SQL, which makes them portable to other database platforms.

� You define the interface between the database and the function by using SQL declares.
You do not need to worry about the details of passing the parameters.

� You can pass large objects (LOBs), datalinks, and UDTs as parameters, and manipulate
them in the function itself.

For example, consider the situation where many tables with columns DECIMAL(8) represent
dates in format YYYYMMDD. Those dates must be converted to DATE. No built-in function
performs the requested operation, but we can use an SQL statement, as shown in
Example 10-3.

Example 10-3 Decimal YYYYMMDD date conversion to DATE format in a SELECT statement

SELECT
DATE(

SUBSTRING(DIGITS(ORDER_DATE), 1, 4) || ‘-’
SUBSTRING(DIGITS(ORDER_DATE), 5, 2) || ‘-’
SUBSTRING(DIGITS(ORDER_DATE), 6, 8)

) AS CONVERTED_DATE
FROM

SOURCE_TABLE

Alternatively, we can define a UDF that converts the DECIMAL to DATE and changes the
previous SELECT statement to the SELECT statement in Example 10-4.

Example 10-4 Select statement that uses a UDF for DECIMAL to DATE conversion

SELECT DEC2DATE(ORDER_DATE) AS CONVERTED_DATE FROM SOURCE_TABLE

The SQL UDF for this conversion is shown in Example 10-5.

Example 10-5 SQL DEC2DATE UDF

CREATE FUNCTION DEC2DATE (
DATEDEC DECIMAL(8, 0))

RETURNS DATE
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION

BEGIN
DECLARE RESULT DATE ;
DECLARE InvalidDate CONDITION FOR '22007';
DECLARE EXIT HANDLER FOR InvalidDate

BEGIN
RETURN CAST(NULL AS DATE);
SIGNAL SQLSTATE '01HDI' SET MESSAGE_TEXT='Invalid date';

END;
Chapter 10. User-defined functions 317

SET RESULT = DATE(
SUBSTRING(DIGITS(DATEDEC),1,4) || '-' ||
SUBSTRING(DIGITS(DATEDEC),5,2) || '-' ||
SUBSTRING(DIGITS(DATEDEC),7,2));

RETURN RESULT;
END ;

Also, SQL UDFs are useful when you want to see the result of a query as a table, for example,
a table of a group of employees in a particular project. The implementation of these SQL
UDFs is described in SQL Procedures, Triggers, and Functions on DB2 for i, SG24-8326.

10.3.3 External UDFs
External UDFs are references to programs and service programs that are written in high-level
languages (HLLs):

� C
� C++
� Integrated Language Environment (ILE) CL
� COBOL
� ILE COBOL
� FORTRAN
� PL/I
� RPG
� ILE RPG
� Java

After the function is registered to the database, the database invokes the program or service
program whenever the function is referenced in a data manipulation language (DML)
statement. As in SQL UDFs, external UDFs can return a scalar value or table.

Work with external UDFs for the following reasons:

� To perform non-database functions
� To access non-relational data
� To reuse existing code
� To use existing skills

For example, you can write an external function that checks whether a binary large object
(BLOB) that is passed contains a picture in GIF format. See Example 10-6.

Example 10-6 Creation of an external function

CREATE FUNCTION Library/ISGIF(BLOB)
returns INTEGER
language C
specific ISGIF0001
no sql
no external action
external name ‘Library/PICTCHECK(fun_CheckPictureType)’
parameter style SQL;
318 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

10.4 Creating user-defined functions
Before a UDF can be recognized and used by the database manager, it must be created by
using the CREATE FUNCTION statement. Use this statement to specify the name and
language of the function. Also, you can use this statement to specify certain behavioral
characteristics, such as whether the function is deterministic, can be used in parallel, or reads
or modifies SQL data.

You can use the DROP FUNCTION statement to delete the function in the catalog information
entry. For more information about the CREATE FUNCTION, see the SQL Reference for
Cross-Platform Development, which is available at this website:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf

10.4.1 CREATE FUNCTION
Use the CREATE FUNCTION statement to define any of the three kinds of UDFs. It can be
embedded in an application program, or issued interactively. It is an executable statement that
can be dynamically prepared.

During UDF creation, you define characteristics that affect how the UDF is identified in DB2
for i. This section explains several ways. For a complete description of the CREATE
FUNCTION command, see the SQL Reference for Cross-Platform Development, which is
available at this website:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf

Function name
The function name names the user-defined function. The combination of name, schema
name, the number of parameters, and the data type of each parameter (without regard for any
length, precision, scale, or coded character set identifier (CSID) attributes of the data type)
must not identify a UDF that exists at the current server.

For SQL naming, the function is created in the specified schema by the implicit or explicit
qualifier. For system naming, the function is created in the schema that is specified by the
qualifier. If no qualifier is specified, the function is created in the current library (*CURLIB). If
no current library exists, the function is created in QGPL.

Parameter-Declaration
Parameter-Declaration specifies the number of input parameters of the function and the data
type of each parameter. Although Parameter-Declaration is not required, you can give each
parameter a name.

The maximum number of parameters that are allowed in CREATE FUNCTION is 90. For
external functions that are created with PARAMETER STYLE SQL, the following information
is included:

� Specified input and result parameters

� Implicit parameters for indicators, SQLSTATE, function name, specific name, and
message text

� Any optional parameters

The maximum number of parameters is also limited by the maximum number of parameters
that are allowed by the licensed program that is used to compile the external program.
Chapter 10. User-defined functions 319

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf
ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf

RETURNS
RETURNS specifies the output of the function.

SPECIFIC specific-name
SPECIFIC specific-name defines a unique name for the function.

When you define multiple functions with the same name and schema but different parameters
(10.5, “Resolving a UDF” on page 325), we recommend that you define a specific name. The
specific name can be used to uniquely identify the function. The specific name can be used
when you source on this function, drop the function, or comment on the function. However,
the function cannot be invoked by its specific name.

The specific name is implicitly or explicitly qualified with a schema name. If a schema name is
not specified on CREATE FUNCTION, the schema name is the same as the explicit or implicit
schema name of the function name (function-name). If a schema name is specified, it must
be the same as the explicit or implicit schema name of the function name. The name,
including the schema name, must not identify the specific name of another function or
procedure that exists at the current server.

If the SPECIFIC clause is not specified, a specific name is generated.

LANGUAGE
LANGUAGE specifies the language interface convention to which the function body is written.
All programs must be designed to run in the server’s environment.

If LANGUAGE is not specified, the LANGUAGE is determined from the program attribute
information that is associated with the external program at the time that the function is
created. The language of the program is assumed to be C if the following characteristics are
true:

� The program attribute information that is associated with the program does not identify a
recognizable language.

� The program cannot be found.

Tip: For the portability of functions across other DB2 Universal Database platforms, do not
use the following data types, which might represent different information on other
platforms:

� FLOAT: Use DOUBLE or REAL instead.
� NUMERIC: Use DECIMAL instead.

Important tip: You can use the SPECIFIC keyword to control the name of the underlying C
program object when an SQL function name is longer than 10 characters.
320 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

DETERMINISTIC or NOT DETERMINISTIC
The DETERMINISTIC or NOT DETERMINISTIC clause specifies whether the function is
deterministic:

� NOT DETERMINISTIC: Specifies that the function will not always return the same result
from successive function invocations with identical input arguments. Specify NOT
DETERMINISTIC if the function contains a reference to a special register or a
non-deterministic function.

� DETERMINISTIC: Specifies that the function will always return the same result from
successive invocations with identical input arguments.

A UDF that returns the temperature in Celsius when the Fahrenheit temperature is provided is
deterministic. No matter under which circumstances the function is called, the function always
returns the same result when the parameter values are equal.

A UDF that accesses a thermometer and returns the temperature is non-deterministic
because it might provide different results even if the received parameters are equal.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
This clause specifies whether the function can execute any SQL statements and, if so, what
type. The database manager verifies that the SQL that is issued by the function is consistent
with this specification:

� CONTAINS SQL: The function does not execute SQL statements that read or modify data.
� NO SQL: The function does not execute SQL statements.
� READS SQL DATA: The function does not execute SQL statements that modify data.
� MODIFIES SQL DATA: The function can execute any SQL statement except those

statements that are not supported in any function.

FENCED or NOT FENCED
The FENCED or NOT FENCED clause specifies whether the function will run in the same
thread as the invoking SQL statement or in a separate thread:

� FENCED: The function will run in a separate thread.
� NOT FENCED: The function might run in the same thread as the invoking SQL statement.

NOT FENCED functions can keep SQL cursors open across individual calls to the
function. Because cursors can be kept open, the cursor position is also preserved
between calls to the function.

A UDF, when it is defined as FENCED, runs in the same job as the SQL statement that
invoked it. However, the UDF runs in a system thread, which is separate from the thread that
runs the SQL statement. By default, UDFs are created as FENCED. For complex UDFs, this
separation is meaningful because it avoids potential problems, such as generating unique
SQL cursor names. A UDF that is created with the NOT FENCED option indicates to the
database that the user is requesting that the UDF can run within the same thread that initiated
the UDF. Unfenced is a suggestion to the database, which can still decide to run the UDF in
the same manner as a fenced UDF.

Tip: The use of UNFENCED versus FENCED UDFs provides better performance because
the original query and the UDF can run within the same thread.
Chapter 10. User-defined functions 321

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This clause specifies whether the function is called if any of the input arguments are null at
execution time:

� RETURNS NULL ON INPUT: Specifies that the function is not invoked if any input
argument is null. The result is the null value.

� CALLED ON NULL INPUT: Specifies that the function will be invoked, if any, or all,
argument values are null, which makes the function responsible for testing for null
argument values. The function can return a null or non-null value.

EXTERNAL ACTION or NO EXTERNAL ACTION
This clause specifies whether the function contains an external action:

� EXTERNAL ACTION: The function performs an external action (outside the scope of the
function program). The function must be invoked with each successive function invocation.
EXTERNAL ACTION must be specified if the function contains a reference to another
function with an external action. An example of an external action is to insert a row to a
table or put an entry on a data queue.

� NO EXTERNAL ACTION: The function does not perform an external action. It does not
need to be called with each successive function invocation.

SCRATCHPAD
SCRATCHPAD specifies whether the function requires a static memory area.

SCRATCHPAD integer
SCRATCHPAD integer specifies that the function requires a persistent memory area of length
integer. The integer can range from 1 to 16000000. If the memory area is not specified, the
size of the area is 100 bytes. If parameter style DB2SQL is specified, a pointer is passed after
the required parameters that points to a static storage area. If PARALLEL is specified, a
memory area is allocated for each user-defined function reference in the statement. If
DISALLOW PARALLEL is specified, only one memory area is allocated for the function.

The scope of a scratchpad is the SQL statement. For each reference to the function in an
SQL statement, one scratchpad exists. For example, assume that function UDFX was defined
with the SCRATCHPAD keyword. Three scratchpads are allocated for the three references to
UDFX in the following SQL statement:

SELECT A, UDFX(A)
 FROM TABLEB
 WHERE UDFX(A) > 103 OR UDFX(A) < 19

If the function is run under parallel tasks, one scratchpad is allocated for each parallel task of
each reference to the function in the SQL statement. This approach can lead to unpredictable
results. For example, if a function uses the scratchpad to count the number of times that it is
invoked, the count reflects the number of invocations by the parallel task and not the SQL
statement. Specify the DISALLOW PARALLEL clause for functions that do not work correctly
with parallelism.

SCRATCHPAD is only allowed with PARAMETER STYLE DB2SQL or PARAMETER STYLE
DB2GENERAL.

NO SCRATCHPAD
NO SCRATCHPAD specifies that the function does not require a persistent memory area.
322 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

FINAL CALL
FINAL CALL specifies whether the function requires special call indication. If PARAMETER
STYLE DB2SQL is specified and FINAL CALL is specified, an additional parameter is passed
to the function that indicates first call, normal call, or final call:

� NO FINAL CALL: Specifies that a final call is not made to the function.

� FINAL CALL: Specifies that a final call is made to the function. To differentiate between
final calls and other calls, the function receives an additional argument that specifies the
type of call. FINAL CALL is only allowed with PARAMETER STYLE DB2SQL or
PARAMETER STYLE DB2GENERAL. The types of calls are shown:

– First call: Specifies the first call to the function for this reference to the function in this
SQL statement. A first call is a normal call. SQL arguments are passed and the
function is expected to return a result.

– Normal call: Specifies that SQL arguments are passed and the function is expected to
return a result.

– Final call: Specifies the last call to the function to enable the function to free resources.
A final call is not a normal call. If an error occurs, the database manager attempts to
make the final call. A final call occurs at these times:

• End of statement: A final call occurs when the cursor is closed for cursor-oriented
statements, or the execution of the statement completed.

• End of a parallel task: A final call occurs when the function is executed by parallel
tasks.

• End of transaction: A final call occurs when normal end of statement processing
does not occur. For example, the logic of an application bypasses closing the
cursor.

Certain functions that use a final call can receive incorrect results if parallel tasks
execute the function. For example, if a function sends a note for each final call to it, one
note is sent for each parallel task instead of one time for the function. Specify the
DISALLOW PARALLEL clause for functions that have inappropriate actions when they
are executed in parallel.

If a commit operation occurs while a cursor that is defined as WITH HOLD is open, a
final call is made when the cursor is closed or the application ends. If a commit occurs
at the end of a parallel task, a final call is made regardless of whether a cursor defined
as WITH HOLD is open.

Committable operations must not be performed during a FINAL CALL because the
FINAL CALL might occur during a close that is invoked as part of a COMMIT operation.

PARALLEL
The PARALLEL parameter indicates whether the function can run in a parallel implementation
of the query (if the optimizer chooses to do so). It applies only when DB2 Symmetric
Multiprocessing (SMP) is installed and activated. The same UDF program can run in multiple
threads at the same time. Therefore, if ALLOW PARALLEL is specified for the UDF, ensure
that it is threadsafe.

The default is DISALLOW PARALLEL, if you specify one or more of the following clauses:

� NOT DETERMINISTC
� EXTERNAL ACTION
� FINAL CALL
� MODIFIES SQL DATA
� SCRATCHPAD
Chapter 10. User-defined functions 323

Otherwise, ALLOW PARALLEL is the default.

User-defined table functions cannot run in parallel. Therefore, DISALLOW PARALLEL must
be specified when you create the function.

DBINFO
DBINFO specifies whether the function requires that the database information is passed:

� DBINFO

DBINFO specifies that the database manager must pass a structure that contains status
information to the function. Detailed information about the DBINFO structure is in the
include file SQLUDF in QSYSINC.H.

DBINFO is only allowed with PARAMETER STYLE DB2SQL or PARAMETER STYLE
DB2GENERAL.

� NO DBINFO

NO DBINFO specifies that the function does not require that the database information is
passed.

PARAMETER STYLE
PARAMETER STYLE specifies the conventions that are used for passing parameters to and
returning the values from functions.

10.4.2 Modifying a UDF
No ALTER statement exists for altering or modifying a UDF. When a change must be made to
an existing UDF, it is necessary to drop and re-create the function.

10.4.3 Dropping a UDF
To drop a UDF by using the SQL interface, use the DROP FUNCTION statement. The DROP
FUNCTION statement references the function by one of the following identifiers:

� Name: For example, DROP FUNCTION myUDF. Name is only valid if one function of that
name exists in that schema. Otherwise, SQLSTATE 42854 ('More than one found') or
SQLSTATE 42704 ('Function not found') is signaled.

� Signature (name and parameters): For example, DROP FUNCTION myUDF(int). The data
type of the parameters must match the data type of the function. Also, if length, precision,
or scale is specified, it must match the function to drop. SQLSTATE 42883 is signaled if a
match to an existing function is not found.

� Specific name: For example, DROP SPECIFIC FUNCTION myFun0001. Because the
SPECIFIC name must be unique for each schema, one function, at most, is found. If the
function is not found, SQLSTATE 42704 (“Function not found”) is signaled.
324 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

To drop a UDF by using System i Navigator, you open the required library, right-click the UDF
that you want to delete, and select Delete. See Figure 10-1.

Figure 10-1 Dropping functions with System i Navigator

If no dependent functions exist, the right panel refreshes, and you can see that the UDF
object was removed from the library.

10.5 Resolving a UDF
Resolving to the correct function to use for an operation is more complicated than other
resolution operations because DB2 Universal Database supports function overloading.
Function overloading means that a user can define a function with the same name as a
built-in function or another UDF on the system. For example, SUBSTR is a built-in function,
but the user can define its own SUBSTR function that takes slightly different parameters.
Therefore, even resolving to a supposedly built-in function still requires that function
resolution is performed. The following sections explain how DB2 for i resolves references to
functions.

10.5.1 UDF overloading and function signature
DB2 for i supports the concept of function overloading. You can have two or more functions
with the same name in the same schema, library, or collection, if they have different
signatures. The signature of a function can be defined as the combination of the qualified
function name and the basic data types of the input parameters of the function.

No two functions on the system can have the same signature. The length and precision of the
input parameters are not considered to be part of the signature. Only the data type of the
input parameters is considered to be part of the signature. Therefore, if a function that is
called DNAME in library SAMPLEDB01 accepts an input parameter of type CHAR(10), you
cannot have another function that is called DNAME in the same SAMPLEDB01 library that
accepts CHAR(12). However, it is possible to have another function DNAME in library
SAMPLEDB01 that accepts an INTEGER value as an input parameter and another one that
accepts SMALLINT. The following examples illustrate the concept of the function signature.
These two functions can exist in the same schema:

SAMPLEDB01.DNAME(int)
SAMPLEDB01.DNAME(smallint)

These two functions cannot exist in the same schema:

DNAME(char(10))
DNAME(char(5))
Chapter 10. User-defined functions 325

Certain data types are considered equivalent when it comes to function signatures. For
example, CHAR and GRAPHIC are treated as the same type from the signature point of view.

The data type of the value that is returned by the function is not considered to be part of the
function signature. Therefore, you cannot have two functions that are called DNAME in library
SAMPLEDB01 that accept input parameters of the same data type, even if they return values of
different data types.

10.5.2 Parameter matching and promotion
When an SQL DML statement references a UDF, the system, at first, tries to find an exact
match for the function by searching for functions that have the same signature. If the system
finds a function with input parameters that exactly match those input parameters that are
specified in the DML statement, that function is chosen for execution.

If the system cannot find any function in the path that exactly matches those parameters that
specified on the DML statement, the parameters on the function call in the DML statement are
promoted to their next higher type. Then, another search is made for a function that accepts
the promoted parameters as input. During parameter promotion, a parameter is cast to its
next higher data type. For example, a parameter of type CHAR is promoted to VARCHAR,
and then to character large object (CLOB). Restrictions exist on the data type to which a
particular parameter can be promoted. We explain this concept with an example.

Assume that you created a table CUSTOMER in library LIB1. This table has, among its other
columns, a column that is named CUSTOMER_NUMBER, which is a CHAR(5). Also, assume
that you wrote a function, GetRegion, that will process and return the region to which your
customer belongs. The data type of the parameter that this function accepts as input is
defined as type CLOB(50K). Assume that no other functions are called GetRegion in the
path. If you execute the following query, you see that the function GetRegion(CLOB(50K)) is
executed:

select GetRegion(customer_number) from customer

How is this query successful? The field CUSTOMER_NUMBER from the CUSTOMER table
has the data type CHAR(5). The function GetRegion accepts a CLOB as a parameter, and no
other functions that are called GetRegion are in the path.

In its attempt to resolve the function call, the system first searched the library path for a UDF
that was called GetRegion, which accepts an input parameter of type CHAR. However, no
such UDF was found. The system then promoted the input parameter, in our case, the
CUSTOMER_NUMBER, up in the hierarchy list of promotable types to a VARCHAR. Then, a
search was made for a UDF that was called GetRegion, which accepted an input parameter
of type VARCHAR. Again, no such UDF was found.

Then, the system promoted the input parameter up the hierarchy list to a CLOB. A search was
made for a UDF that was called GetRegion, which accepted an input parameter of type
CLOB. This time, the search was successful. The system invoked the UDF GetRegion(
CLOB(50K)) to satisfy the user request.
326 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The concept of parameter promotion is demonstrated in the previous example. Table 10-1
indicates the data types and the data types to which they can be promoted.

Table 10-1 Precedence of data types

Data types can be promoted up the hierarchy only to particular data types. Distinct types
cannot be promoted. Even though distinct types are based on one of the built-in data types, it
is not possible to promote distinct types to anything other than the same type. Parameters
cannot be demoted down the hierarchy list as shown in Table 10-1. Therefore, if the
CUSTOMER_NUMBER column of the CUSTOMER table is a CLOB, and the GetRegion UDF
was defined to accept a CHAR as an input parameter, a call, such as the following example,
fails because function resolution does not find the UDF:

SELECT GetRegion(CUSTOMER_NUMBER) from customer

10.5.3 Function path and the function selection algorithm
On the IBM i system, two types of naming conventions are possible when you use SQL. One
of them is called the system naming convention, and the other one is called the SQL naming
convention. The system naming convention is native to the IBM i system, and the SQL
naming convention is specified by the American National Standards Institute (ANSI) SQL
standard.

The function resolution process depends on which naming convention you are using at the
time that you execute the SQL statement, which refers to a UDF.

Data type Data type precedence list (in best to worst order)

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB, or
DBCLOB

VARCHAR or VARGRAPHIC VARCHAR or VARGRAPHIC, CLOB, or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BLOB BLOB

SMALLINT SMALLINT, INTEGER, DECIMAL or NUMERIC, REAL, or DOUBLE

INTEGER INTEGER, DECIMAL or NUMERIC, REAL, or DOUBLE

DECIMAL or NUMERIC DECIMAL or NUMERIC, REAL, or DOUBLE

REAL REAL or DOUBLE

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

A user-defined type The same user-defined type

Note: CHAR parameters cannot be passed to the function as character literals (‘ABC’)
because all character literals are treated as VARCHAR data types, which are not
compatible with a fixed-length character data type.
Chapter 10. User-defined functions 327

Function path
When unqualified references are made to a UDF inside an SQL statement, DB2 for i uses the
concept of PATH to resolve references to the UDF. The path is an ordered list of library
names. It provides a set of libraries for resolving unqualified references to UDFs and UDTs. If
a reference to a UDF matches more than one UDF in different libraries, the order of libraries
in the path is used to resolve to the correct UDF.

The path can be set to any set of libraries that you want by using the SQL SET PATH
statement. The current setting of the path is stored in the CURRENT PATH special register.

For the SQL naming convention, the path is set initially to the following default value:

"QSYS", "QSYS2", "<USER ID>"

For the system naming convention, the path is set initially to the following default value:

*LIBL

When you are using the system naming convention, the system uses the library list of the
current job as the path, and uses this list to resolve the reference to the unqualified references
to the UDFs.

The current path can be changed with the SET PATH statement. This statement overrides the
initial setting for both naming conventions. For example, you can use the following statement:

SET PATH = MYUDFS, COMMONUDFS

To set the path to the following list of libraries:

QSYS, QSYS2, MYUDFS, COMMONUDFS

Notice that the libraries QSYS and QSYS2 are automatically added to the front of the list unless
you explicitly change the position of these libraries in the SET PATH statement. For example,
the following statement sets the CURRENT PATH registry to myfunc, QSYS, QSYS2:

SET PATH myfunc, SYSTEM PATH

For portability reasons, we recommend that you use SYSTEM PATH registry rather than QSYS
and QSYS2 library names on the SET PATH statement.

The function selection algorithm
The function selection algorithm searches the library path for a UDF by using the outlined
steps:

1. The algorithm finds all functions from the catalog (SYSFUNCS) and the built-in functions
that match the name of the function. If a library was specified, the algorithm gets those
functions from that library. Otherwise, the algorithm gets all functions whose library is in
the function path.

2. The algorithm eliminates those functions whose number of defined parameters does not
match the invocation.

3. The algorithm eliminates functions whose parameters are not compatible or “promotable”
to the invocation.
328 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

For the remaining functions, the algorithm follows these steps:

1. It considers each argument of the function invocation, from left to right. For each
argument, it eliminates all functions that are not the best match for that argument. The
best match for a specific argument is the first data type that you see in the precedence list.
Lengths, precessions, scales, and the "FOR BIT DATA" attribute are not considered in this
comparison. For example, a DECIMAL(9,1) argument is considered an exact match for a
DECIMAL(6,5) parameter, and a VARCHAR(19) argument is an exact match for a
VARCHAR(6) parameter.

2. If more than one candidate function remains after the preceding steps, it must be the case
(the way the algorithm works) that all of the remaining candidate functions have identical
signatures but are in different schemas. It chooses the function whose schema is earliest
in the user’s function path.

3. If no candidate functions exist, it signals the error SQLSTATE 42884.

10.6 System catalog tables
The database manager provides several data dictionary facilities to track UDFs. In this
section, we show how to view UDF information by using the SYSROUTINES catalog, the
SYSPARMS catalog, and the SYSFUNCS view.

10.6.1 SYSROUTINES catalog
UDF references are stored in the SYSROUTINES catalog. For detailed descriptions of the
DB2 Universal Database catalogs, see SQL Reference for Cross-Platform Development at
the following web address:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf

The sample SQL statement in Example 10-7 displays SYSROUTINES information about
UDFs in our test SAMPLEDB01 library.

Example 10-7 Query of SYSROUTINES that shows UDFs that are defined on a specific schema

SELECT *
FROM QSYS2.SYSROUTINES
WHERE ROUTINE_SCHEMA = 'SAMPLEDB01'
AND ROUTINE_TYPE = 'FUNCTION';

Note: The SYSROUTINES catalog contains details for both UDFs and stored procedures.
When you want to see only UDFs, you can use a view that is called SYSFUNCS, or you
can select rows in the SYSROUTINES catalog where ROUTINE_TYPE is FUNCTION.
Chapter 10. User-defined functions 329

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf

Figure 10-2 shows that two UDFs, DNAME and EMPBYPROJ, are in this schema. The first is
a scalar function. The second is a table function. Neither of them allows parallelism.
EMPBYPROJ is fenced. DNAME is not fenced.

Figure 10-2 Content of SYSROUTINES catalog

10.6.2 SYSPARMS catalog
The SYSPARMS catalog contains one row for each parameter of a UDF that was created by
the CREATE FUNCTION statement.

Assume that you want to retrieve the parameter details for all instances of the DNAME
function that is in the SAMPLEDB01 library. You can run the SQL statement in Example 10-8 to
display this information.

Example 10-8 Sample query on SYSPARMS that shows the parameters for the DNAME UDF

SELECT *
FROM QSYS2.SYSPARMS
WHERE SPECIFIC_SCHEMA = 'SAMPLEDB01'
AND SPECIFIC_NAME IN (

SELECT SPECIFIC_NAME
FROM QSYS2.SYSFUNCS
WHERE SPECIFIC_SCHEMA = 'SAMPLEDB01'
AND ROUTINE_NAME = 'DNAME');

Due to function overloading, the SAMPLEDB01 schema can contain functions with the same
routine name. By running this query, we produced the results that are shown in Figure 10-3.

Two instances of the DNAME function are in the SAMPLEDB01 library. Their signatures differ
because they accept an input parameter of type SMALLINT or INTEGER. Also, the result of a
function is stored in the SYSPARMS catalog as an OUTPUT parameter.

Figure 10-3 UDF parameter details in SYSPARMS catalog
330 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

10.7 Authorization and adopted authority
When a UDF is executed as part of an SQL statement by a client program, the statements in
the UDF are executed with the authorities of the user. Or, they are executed with the
authorities of the user, plus the authorities of the owner of the program object that
corresponds to that UDF. It depends on how it was defined in the USRPRF attribute at the
program or service program object creation time.

The authorization and adopted authorities behave as they do in a stored procedure, as
explained in 3.7, “Authorization and adopted authority” on page 35.

10.8 Transaction management considerations

Because UDFs are called and executed in the middle of an SQL statement, and SQL
statements must be atomic by principle, the UDF must not affect the transactional behavior of
their callers. Therefore, a UDF must not perform COMMIT, ROLLBACK, SAVEPOINT, or SET
TRANSACTION operations.

10.9 Coding considerations

When you code UDFs, keep in mind the limitations and restrictions that apply to them. The
following list contains important recommendations and hints for UDF developers:

� UDFs must not perform operations that take a long time (minutes or hours).

� UDFs are invoked from a low level in DB2 that holds resources (locks and seizes) during
the UDF execution.

� If a UDF does not finish in an allocated time, the SQL statement fails. You can override the
system timeout value with the UDF_TIME_OUT parameter in the query option file
QAQQINI. For more information, see DB2 UDB for AS/400 SQL Programming,
SC41-5611.

� Avoid inserts, updates, and delete operations on the same tables as the table that is
referred to in the invoking statement.

� A UDF runs in the same job as the invoking SQL statement, but it runs in a separate
system thread, so secondary thread considerations apply:

– UDFs will conflict with thread-level resources that are held by the SQL statement.
UDFs cannot perform any operation that is blocked from secondary threads.

– Activation Group (*NEW) is not allowed for UDFs.

– UDFs do not inherit the program-adopted authority that was active. Authority comes
from the UDF program or the user that runs the SQL.
Chapter 10. User-defined functions 331

332 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Chapter 11. External user-defined functions

External user-defined functions (UDFs) are coded in one of the high-level languages (HLLs)
that are available on the IBM i server. If you want complex sophisticated processing is
required, or you plan to reuse existing code, external UDFs are the best choice.

This chapter describes external UDFs that are written in HLLs. It explains how to register and
code external UDFs. It also reviews the differences in coding external UDFs as far as the
different parameter styles that are supported by IBM DB2 for i. It describes how to invoke
external UDFs and handle errors.

Also, all of the benefits of UDFs that are described in Chapter 10, “User-defined functions” on
page 313 apply to external UDFs.

This chapter includes the following topics:

� User-defined function considerations
� Registering an external UDF
� Parameter styles in external UDFs
� Scratchpad in UDFs and UDTFs
� UDF and UDTF calling sequence
� Coding an external UDF
� Error handling in external UDFs
� Pointer arithmetic and the scratchpad
� Coding example for an external user-defined table function

11
© Copyright IBM Corp. 2001, 2016. All rights reserved. 333

11.1 User-defined function considerations
A UDF is written by a user in one of the programming languages on the IBM i system.
External UDFs can be written in C, C++, RPG, COBOL, CL, and Java. SQL programmers can
invoke business calculations or processes that are written on one of the listed languages from
an SQL statement without needing to know how the UDF is implemented. You can create
external UDFs that are based on programs or service programs. To create an external UDF,
the HLL source code must be compiled and the program or service program object must be
created.

When an external UDF that is associated with an Integrated Language Environment (ILE)
external program or service program is created, an attempt is made to save the function’s
attributes in the associated program or service program object. If the *PGM or *SRVPGM
object is saved and then restored to this system or another system, the catalogs are
automatically updated with those attributes.

The attributes can be saved for external functions subject to the following restrictions:

� The external program library must not be SYSIBM, QSYS, or QSYS2.

� The external program must exist when the CREATE FUNCTION statement is issued.

� The external program must be an Integrated Language Environment (ILE) *PGM or
*SRVPGM object.

� The external program or service program must contain at least one SQL statement.

When an external UDF is invoked, it runs in whatever activation group was specified when the
external program or service program was created. However, ACTGRP(*CALLER) must
normally be used so that the UDF runs in the same activation group as the calling program.

To run Java functions, you need to install the Developer Kit for Java (5722-JV1) on your
system. Otherwise, an SQLCODE of -443 is returned, and a CPDB521 message is placed in
the job log.

11.2 Registering an external UDF
Before you use a UDF, you must register the UDF in the database by using the CREATE
FUNCTION statement. When an external UDF is registered within the database, entries are
made in the SYSROUTINES and SYSPARMS system catalog tables. The content of these
system catalog tables is described in 3.4, “System catalog tables” on page 31.

11.2.1 Registering an external UDF with System i Navigator
The following steps show how to create an external scalar and table UDF by using System i
Navigator.

Registering an external scalar UDF
In the following example, we register an external UDF, which is based in an RPG program,
that converts a decimal number that represents a date in format YYYYMMDD to a DATE
value, such as 2003-10-10. To see the source code of this example, see 11.6.1, “Coding the
SQL parameter style” on page 352.
334 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Follow these steps:

1. Double-click the System i Navigator icon on the desktop. Expand My Connections and
the IBM i server that you are working on.

2. Expand the Database icon and select the database where the UDF will be created.
Expand Libraries, and right-click the library where the UDF will be located. In our case,
the name of the library is SAMPLEDB01. Select New → Function → External, as shown in
Figure 11-1.

Figure 11-1 Creating an external UDF with System i Navigator
Chapter 11. External user-defined functions 335

3. The New External Function window (Figure 11-2) opens. Follow these steps:

a. On the General tab, enter a meaningful name for the UDF in the Function input field. In
our case, the function is called DEC2DATE. In the Description input field, type a
description of the function. In the “Data returned to invoking statement” box, select the
Single value if you want to return a scalar, or click Table if you want to create a
user-defined table function (UDTF). In our DEC2DATE example, we choose Single
value and select the return type DATE.

Figure 11-2 Creating an external UDF - General tab

b. At the bottom of the tab, you are presented with the following check boxes:

• Can run in parallel: Specify that the function can or cannot run in parallel. Table
functions cannot run in parallel, so this option is not available when your data
returned is TABLE.

• Program does not call outside of itself (No External Action): Specify whether the
function performs an external action, such as inserting, updating, or deleting rows in
a table, or calls a function or stored procedure that performs an external action,
such as sending data to a data queue. When external actions are performed, the
program must be invoked with each successive function invocation. Because our
function does not perform external actions, we check this option for our function.
336 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

• Same result returned from successive calls with identical input (Deterministic):
Check this option if the function will always return the same result from successive
invocations when identical input arguments are provided, which is the case in our
example.

• Attempt to run in same thread as invoking statement (Not Fenced): The function
can run (NOT FENCED) or cannot run (FENCED) in the same thread as the
invoking SQL statement. If the function contains cursors, it is better to run as
FENCED. In our example, we choose to run as NOT FENCED. That is, the function
can run in the same thread.

In addition, we define the data access and the specific name. The data access in our
example is NO SQL because this UDF will not execute any SQL statement inside. The
specific name establishes a unique name for the function.

4. Click the Parameters tab. Define the input parameters for the UDF, as shown in
Figure 11-3.

Figure 11-3 Creating an external UDF - Parameters tab

In addition, select the parameter style. Parameter styles are explained in 11.3,
“Parameter styles in external UDFs” on page 346.
Chapter 11. External user-defined functions 337

5. Click the External Program tab (Figure 11-4). Enter the characteristics and the location of
the external program. In our case, the program is an RPGLE program that returns a DATE.

Figure 11-4 Creating an external UDF - External Program tab

Registering an external UDTF
In the following example, we register an external UDTF that is based in a C program. This
program reads data from a stream file in the integrated file system (IFS) and returns the result
as a table. The source program is in 11.4, “Scratchpad in UDFs and UDTFs” on page 350.
Follow these steps:

1. Double-click the System i Navigator icon on your desktop. Under My Connections,
double-click the IBM i server that you are working on.

2. Double-click the Database icon, and select and expand the database where the UDTF will
be created. Expand the libraries, and select the library where the UDTF will exist. In our
case, the name of the library is SAMPLEDB01. Select New → Function → External.
338 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

3. The New External Function windows opens. Follow these steps:

a. On the General tab (Figure 11-5), enter a meaningful name for the UDTF in the
Function input field. In our case, the function is called F1Results. In the description
input field, type a description of the function. In the “Data returned to invoking
statement” box, select Table. In our F1Results example, we choose the following
columns:

• DRIVER_NBR
• DRIVER_NAME
• GENERAL_POSITION
• LAST_RACE_POSITION
• CONSTRUCTOR
• WHEEL_BRAND
• DRIVERS_COUNTRY
• YTD_POOLS
• YTD_WINS
• YTD_POINTS

Figure 11-5 Creating an external UDTF - General tab

b. At the bottom of the tab, you are presented with the following check boxes:

• Program does not call outside of itself (No External Action)
• Same result returned from successive calls with identical input (Deterministic)
• Attempt to run in same thread as invoking statement (Not Fenced). (Default.)

In addition, we define the data access and the specific name. The data access in our
example is NO SQL because this UDF will not execute any SQL statement. The specific
name establishes a unique name for the function.
Chapter 11. External user-defined functions 339

4. Click the Parameters tab (Figure 11-6). Define the input parameters for the UDTF. In our
case, the input parameters are the name of the file in the IBM i server IFS.

Also, define the parameter style. In our case, we choose DB2SQL because it is not a Java
program. Define an amount of memory for the scratchpad. We define a space of 100 bytes
for the scratchpad memory space.

Figure 11-6 Creating an external UDF - Parameters tab
340 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5. Click the External Program tab. Write the characteristics and the location of the external
program. In our example, the C program is a service program, with an entry point
readFileToTable. A program (*PGM) object is identified by the library and program name.
A service program can contain multiple entry points. When the entry point name differs
from the object name, the program is identified by the object name followed by the entry
point in parentheses, as shown in Figure 11-7.

Figure 11-7 Creating an external UDTF - External Program tab

11.2.2 Registering a Java UDF with System i Navigator
The following steps show how to create a Java scalar and table UDF by using System i
Navigator.

Registering a Java scalar UDF
In the following example, we register an external UDF that is based in a Java program. The
program calculates the number of the working days between two dates. Follow these steps:

1. Double-click the System i Navigator icon on your desktop. Under My Connections,
double-click the IBM i server that you are working on.

2. Double-click the Database icon and select the database where the Java UDF will be
registered. Expand the libraries and right-click the library where the Java UDF will reside.
In our case, the name of the library is SAMPLEDB01.

3. Select New → Function → External from the pop-up menu.
Chapter 11. External user-defined functions 341

4. The New External Function window opens. Follow these steps:

a. The General tab is shown in Figure 11-8. Enter a meaningful name for the UDF in the
Function input field. In our case, the function is called WORKING_DAYS. In the Description
input field, type a description of the function. In the “Data returned to invoking
statement” box, select Single value. In our WORKING_DAYS example, we choose
Single value and select the return type BIGINT.

Figure 11-8 Creating External UDF (Java) General tab

b. At the bottom of the tab, you are presented with the following check boxes:

• Can run in parallel
• Program does not call outside of itself (No External Action)
• Same result returned from successive calls with identical input (Deterministic)
• Attempt to run in same thread as invoking statement (Not Fenced)

In addition, we define the data access and the specific name. The data access in our
example is Reads SQL data because this UDF will execute a SELECT statement in a
table that contains the holidays for a specific calendar. Each country has its own
holidays at different dates. Even within a country, we might have different calendars for
specific purposes.

The specific name is defined as WDAYS01.
342 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

5. Click the Parameters tab (Figure 11-9). Define the input parameter. For example, we
define the initial date, final date, and an identifier (CALENDARID) for a particular calendar.

Figure 11-9 Creating an external UDF (Java) Parameters tab

In this case, our program is developed in Java. For Java, the JAVA and DB2GENERAL
parameter styles are supported. We choose the JAVA parameter style because it is
more portable among platforms. The System i Navigator GUI does not allow the
DB2GENERAL parameter style. If a Java UDF or UDTF with DB2GENERAL parameter
style must be created, you need to use another creation method, such as RUN SQL
Statement, to create it.

We choose the option Return null on null input. In this way, when at least one of the
parameters in the invocation is null, DB2 Universal Database will not execute the UDF,
and it will return a null.
Chapter 11. External user-defined functions 343

6. Click the External Program tab. Write the characteristics and the location of the external
program. As in the case of Java stored procedures, Java UDFs are implemented as
methods of a class. One class can have multiple methods to implement both UDFs and
stored procedures. That class must be on the /QIBM/UserData/OS400/SQLLib/Function
path. The method is identified by the class name followed by a dot (.) or an exclamation
point (!) followed by the method name, as shown in Figure 11-10. The Java class and
method name are case-sensitive. For performance, we recommend that you use Java
archive (JAR) files. DB2 for i provides built-in stored procedures for managing JAR files, as
presented in 5.7, “SQLJ procedures to manipulate JAR files” on page 119.

Figure 11-10 Creating an external UDF (Java) External Program tab

Registering a Java UDTF
In the following example, we register an external UDTF that is based in a Java program. This
program returns a table that exposes the properties, which are set in Java virtual machines
(JVMs), that are used for Java stored procedures and Java UDFs.

Note: Be careful when you define the type that is returned by the program. You can check
the data type compatibility in Table 5-1 on page 96.
344 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Follow these steps:

1. Double-click the System i Navigator icon on your desktop.

2. Under My Connections, double-click the IBM i server that you are working on. Double-click
the Database icon and select the database where the Java UDTF will be registered.
Expand the libraries and right-click the library where the Java UDTF will reside. In our
case, the name of the library is SAMPLEDB01. Select New → Function → External.

3. The New External Function window opens. On the General tab (as shown in
Figure 11-11), enter a meaningful name for the UDF in the Function input field. In our
case, the function is called JVMProperties. In the Description input field, type a description
of the function. In the “Data returned to invoking statement” box, select Table. In our
JVMProperties example, we choose a table with two columns, one column that is named
Property and the other column with the name Value. Both names are VARCHAR type of
length 500.

Figure 11-11 Creating an external UDTF (Java) General tab
Chapter 11. External user-defined functions 345

4. Click the Parameters tab, define the parameters to pass to the UDTF. Even if no
parameters will be passed to the UDTF, a parameter style must be selected. In this case,
we select the parameter style DB2 General because it is the only parameter style that is
supported by Java UDTFs.

Figure 11-12 Creating an external UDTF (Java) Parameters tab

5. Click the External Program tab. Type the characteristics and the location of the external
program, as shown in figure Figure 11-13. The rules for identifying the method that
implements the UDTF are the same as in the scalar Java UDF and stored procedure that
were already presented.

Figure 11-13 Creating an external UDTF (Java) External Program tab

11.3 Parameter styles in external UDFs
The parameter style is used to specify the conventions that are used for passing parameters
to and returning values from functions.

You can specify several different parameter styles for an external UDF. On the external
function invocation, DB2 Universal Database passes a number of parameters to the function
in addition to the input parameters that you provide. The number and type of extra
parameters that are passed by DB2 Universal Database depend on the parameter style. You
can specify the required parameter style at the time that the function is created. DB2 for i
supports six parameter styles:

� SQL
� DB2SQL
� GENERAL
� GENERAL WITH NULLS
� DB2GENERAL
� Java
346 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

These parameter styles are the same as the parameter styles that were presented in 4.2,
“Parameter styles in external stored procedures” on page 45, and 5.2, “Coding DB2 for i Java
stored procedures” on page 93.

In this section, we describe the parameters that apply to UDFs. We also provide an example
for each parameter style.

11.3.1 SQL parameter style
The SQL parameter style conforms to industry standard SQL. This parameter style can be
used in scalar UDFs only. The required set of parameters for this parameter style are shown:

ExternalUDF(
IN parameter (repeated),
OUT result,
IN parameter null indicator (repeated),
OUT result null indicator,
OUT sqlstate,
IN function name,
IN specific name,
OUT diagnostic message)

The main differences of the SQL parameter style in UDFs compared to stored procedures are
listed:

� Parameters are input parameters: All parameters are input parameters, except for the last
parameter, which is the result.

� Result: Result value: This parameter is set by the UDF before it returns to DB2. DB2 UDF
for i provides the storage for the returned value.

� Result indicator: This parameter must be set by the UDF before it returns to DB2. It is a
2-byte signed integer that is either a positive or negative value. If this parameter is set to a
negative value, the UDF result is interpreted as null. If this parameter is set to zero or a
positive value, the result is interpreted as not null.

� Function name: This parameter is set by DB2 before it calls the UDF. It is a
VARCHAR(139) that contains the fully qualified function name, following the SQL naming
standard.

11.3.2 DB2SQL parameter style
All of the parameters that are passed to a function for the SQL parameter style are also
passed to a function with the DB2SQL parameter style. However, the DB2SQL parameter
style allows additional parameters to be passed. This parameter style can be used for both
scalar and table UDFs. The supported set of parameters for this parameter style are shown:

externalUDF(IN parameter (repeated),
OUT result,
IN parameter null indicator (repeated),
OUT result null indicator,
OUT sqlstate,
IN function name,
IN specific name,
OUT diagnostic message,
INOUT scratchpad,
IN call type,
IN dbinfo)
Chapter 11. External user-defined functions 347

The additional parameters, which were not covered in the previous section, are explained in
the following list:

� Scratchpad: This parameter is set by DB2 before it calls the UDF if the SCRATCHPAD
clause was specified in the CREATE FUNCTION statement. This parameter can be used
by the UDF as an area where temporary values can be saved for use between
consecutive calls in the same statement scope. It can save the results of the last call in
between calls to the UDF. Each invocation of the UDF can see the results that are stored
by the last invocation in the scratchpad.

On the first call to the function, the contents of the scratchpad are initialized to zeros. Data
can be stored in the scratchpad area by a UDF only during the processing of a specific
SQL statement, which can be important for a UDTF that is used in a join or subquery.

If it is necessary to maintain the content of the scratchpad across OPEN calls, FINAL
CALL must be specified in your CREATE FUNCTION statement. With FINAL CALL
specified, in addition to the normal OPEN, FETCH, AND CLOSE calls, the table functions
will also receive a first call and a final call. These first and final calls can be used for
scratchpad maintenance and releasing resources.

� Call type: This argument is set by DB2 before it calls the UDF. For scalar functions, it is
only present if the CREATE FUNCTION statement of the UDF specified the FINAL CALL
keyword. For table functions, it is always present.

Three values are valid for scalar UDFs:

-1 First call to the UDF.

0 Normal call to the UDF. All of the normal input argument values are passed.

1 Final call to the UDF. No SQL argument or SQL argument indicator values are
passed. A UDF must not return any answer by using the SQL result, SQL result
indicator, SQL state, or diagnostic message arguments.

Five values are valid for UDTFs:

-2 First call to the UDF.

-1 Open call to the UDF. The scratchpad is initialized if NO FINAL CALL is specified.
ALL SQL argument values are passed.

0 Fetch call to the UDF. DB2 expects the table function to return either a row that
consists of the set of the result values, or an end of table condition that is indicated
by SQLSTATE ‘02000’.

1 Close call to the UDF. This call balances the OPEN call, and it can be used to
perform any CLOSE processing and to release resources.

2 Final call to the UDF.

This parameter is normally used with the SCRATCHPAD parameter. On the first call, the
scratchpad area is set up by the function and then used in subsequent normal calls. On
the last call to the function, the scratchpad area is cleaned up. This parameter is an
optional input parameter.

� dbinfo: This parameter is for the DBINFO structure if the DBINFO clause is specified on
the CREATE FUNCTION statement. See the sqludf.h include file in the QSYSINC library for
a detailed definition of this structure.
348 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

11.3.3 GENERAL parameter style
The following example shows the supported set of parameters for this parameter style:

externalUDF(IN arguments (repeated))

When this parameter style is used, the result is the value that the program returns. For this
reason, this parameter style can be used with scalar UDFs only.

11.3.4 GENERAL WITH NULLS parameter style
This parameter style can be used only with scalar UDFs. With this parameter style, the
parameters are passed into the program or service program in the following manner:

ExternalUDF(IN parameter (repeated),
IN parameter indicator array,
OUT result indicator)

Parameter indicator array
The parameter indicator array can be used by the UDF to determine whether one or more
parameters are not null. Each entry of the array is set to one of the following values:

0 The parameter is present (not null).
-1 The parameter is empty or null.

This parameter is treated as input only.

11.3.5 DB2GENERAL parameter style
Parameter style DB2GENERAL is one of two parameter styles that are supported in Java
UDFs. In this parameter style, the return value is passed as the last parameter of the function.
The parameter style must be set by using a set method that is inherited from the
com.ibm.db2.app.UDF class. When you code a UDF with the DB2GENERAL parameter style,
follow these conventions:

� The class that includes the Java UDF must extend or be a subclass of the
com.ibm.db2.app.UDF Java class.

� The Java method must be a public void method.

� The parameters for the Java method must be compatible with SQL. See 5.2.2, “Data type
compatibility” on page 96.

� The Java method can test for an SQL NULL value by using the isNull() method.

� The Java method must explicitly set the return parameter by using the set() method.

The main advantages of the DB2GENERAL parameter style over the JAVA parameter style
are shown:

� You can use the DB2GENERAL parameter style to test for null parameters of any data
type, including those data types that map to Java data types that do not support null
values, such as INTEGER.

� The DB2GENERAL parameter style supports UDTFs.

The DB2GENERAL parameter style has a disadvantage that you must consider. It is not
standard, which makes it less portable than the JAVA parameter style.
Chapter 11. External user-defined functions 349

11.3.6 JAVA parameter style
Consider the following conventions when you create a UDF with the JAVA parameter style:

� The Java method must be public static.

� The Java method must return a type that is compatible with SQL. The returned value is the
result of the UDF.

� The Java method can test for an SQL NULL for Java types that permit null values.

11.4 Scratchpad in UDFs and UDTFs
The scratchpad is a memory area that is provided by DB2 for i and that is conserved along
the statement scope. The statement scope is the set of calls that a UDF receives for a
reference of it in a single SQL statement. The scratchpad contains an 8-byte binary number
(equivalent to a C long field) that contains the size of the scratchpad followed by a byte array
of the specified size.

The size of the scratchpad is established in the SCRATCHPAD clause of the CREATE
FUNCTION statement. If a size is not specified, the size is set to the default size, which is 100
bytes.

The following SQL statement is an example:

SELECT UDF_W_SCRATCHPAD(ORDERDATE), UDF_W_SCRATCHPAD(SHIPDATE)
FROM SAMPLEDB01.ITEM_FACT
WHERE SHIPMODE = ‘EXPRESS’

In the previous statement, DB2 for i will reserve two memory areas for scratchpad, one for
each reference to the UDF_W_SCRATCHPAD function. In this case, two statement scopes
exist for the UDF_W_SCRATCHPAD function. The scratchpad is initialized with binary zeros
by the database manager before it calls the UDF for the first time in a statement scope.

For UDTFs, the FINAL CALL clause of the CREATE FUNCTION statement affects how the
scratchpad is initialized. If FINAL CALL is specified, the scratchpad is initialized before the
first call in a statement scope. If NO FINAL CALL is specified or defaulted for a table function,
the scratchpad is initialized for each OPEN call.

Scratchpad can be used as a mechanism to allow the UDF to conserve information between
calls. In Example 11-7 on page 358, the scratchpad is used to track the next number to
generate as an ID. In Example 11-16 on page 369, a scratchpad is used to maintain
information about a stream file that was opened at the first call and read among callings to
form the return table.

11.5 UDF and UDTF calling sequence
Now that you know what UDFs and UDTFs are, it is important to understand when external
programs are called and how many times.

The external program that implements a UDF or UDTF is called one time at the beginning of
the statement scope with the first row, one time for each of the subsequent retrieved rows in
the statement, and one time at the end of the statement.

Note: SCRATCHPAD can be used with the DB2SQL or DB2GENERAL parameter style.
350 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The following SQL statement is an example:

SELECT EMPNO, SALARY*FX_RATE(‘US’, ‘COL’, CURRENT DATE)
FROM EMPLOYEE
WHERE WORKDEPT = ‘A11’;

If EMPLOYEE has 10 rows for which the WORKDEPT is ‘A11’, our FX_RATE UDF is called
11 times. Depending on the parameter style that is used, the call type can be retrieved by the
following methods:

� DB2SQL parameter style: An input parameter that is provided by the database manager,
as illustrated in the example that is presented in 11.3.2, “DB2SQL parameter style” on
page 347.

� DB2GENERAL parameter style: By using the getCallType() Java method, which is
inherited from the UDF class. The values that are returned by this method are the same
values that are described in 11.3.2, “DB2SQL parameter style” on page 347.

The UDF class provides constant definitions to make your Java program code more
readable. For C programmers, the sqludf.h header file defines the same set of constants.
Table 11-1 shows the constants for scalar UDFs.

Table 11-1 Predefined constants for call types in scalar UDFs

Table 11-2 shows the constants for UDTFs.

Table 11-2 Predefined constants for call types in UDTFs

11.6 Coding an external UDF
External UDFs are regular HLL programs that are registered in DB2 for i. They do not differ
significantly from a regular HLL program that you write, except for certain conventions that
you must observe to coordinate the parameter passing between DB2 and your HLL program.

In this section, we present small programs to illustrate each parameter passing technique,
error handling, and scratchpad usage.

Constant name Description

SQLUDF_FIRST_CALL First call, which is only made if FINAL CALL was
specified in the CREATE FUNCTION statement

SQLUDF_NORMAL_CALL Fetch next row

SQLUDF_FINAL_CALL Final call, which is only made if FINAL CALL was
specified in the CREATE FUNCTION statement

Constant name Description

SQLUDF_TF_FIRST First call, which is only made if FINAL CALL was
specified in the CREATE FUNCTION statement

SQLUDF_TF_OPEN Open table

SQL_TF_FETCH Fetch next row

SQL_TF_CLOSE Close table

SQLUDF_TF_FINAL Final call, which is only made if FINAL CALL was
specified in the CREATE FUNCTION statement
Chapter 11. External user-defined functions 351

11.6.1 Coding the SQL parameter style
This section shows examples to code external UDFs with the SQL parameter style. It also
demonstrates how the parameters that are passed by DB2 Universal Database for iSeries to
the external UDF can be used within the function.

Assume that you want to create a function, DEC2DATE, that converts a nonstandard date that
is defined as DECIMAL(8,0) and stored in YYYYMMDD format to the DATE data type, which
in fact is a common problem in real life.

Examine the CREATE FUNCTION statement for the DEC2DATE external UDF, as shown in
Example 11-1.

Example 11-1 CREATE FUNCTION for the RPG SQL parameter style of DEC2DATE

CREATE FUNCTION SAMPLEDB01.DEC2DATE2 (
DECDATE DECIMAL(8, 0)) 1
RETURNS DATE 2
LANGUAGE RPGLE 3
SPECIFIC SAMPLEDB01.DEC2DATERPG 4
DETERMINISTIC
NO SQL
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION
NOT FENCED
EXTERNAL NAME 'SAMPLEDB01/DEC2DATE' 5
PARAMETER STYLE SQL ; 6

COMMENT ON SPECIFIC FUNCTION SAMPLEDB01.DEC2DATERPG
IS 'RPG DECIMAL TO DATE' ;

CREATE FUNCTION statement explanation
The following notes refer to the numbers in Example 11-1:

1 Qualified procedure name: If qualification is not provided, the implicit qualification rules
apply. That is, the unqualified alias, constraint, external program, index, node group,
package, sequence, table, trigger, and view names are implicitly qualified by the default
schema. This function receives one input parameter that is called DECDATE of type
DECIMAL(8,0). The parameter name is for documentation only. The parameter name does
not need to relate to parameter or variable names that are used in the program. Function
overloading rules apply, as explained in 10.5.1, “UDF overloading and function signature”
on page 325.

2 Return type of the function. In this case, the return is of the DATE type.
352 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

3 LANGUAGE clause of the CREATE FUNCTION statement. The LANGUAGE clause
specifies the language that was used to implement the UDF. In the example, it is ILE RPG.
This information helps the database to pass parameters to the external UDF in the format
that is required by the programming language.

External UDFs can be written in any of the following languages:

– C
– C++
– COBOL
– COBOLLE
– FORTRAN
– JAVA
– PL/I
– RPG
– RPGLE

If LANGUAGE is not specified, the LANGUAGE is determined from the program attribute
information that is associated with the external program at the time that the function is
created. The language of the program is assumed to be C as the default if the following
conditions are true:

– The program attribute information that is associated with the program does not identify
a recognizable language.

– The program cannot be found.

4 SPECIFIC NAME clause of the CREATE FUNCTION statement. Every function that is
created on the IBM i server must have a specific name. This name must be unique for the
specific library. This clause is optional. If you do not specify a specific name for the
function, the system generates a specific name. Normally, the specific name is the same
as the function’s name. However, if a function with the specific name exists, the system
generates a unique name.

5 EXTERNAL NAME clause of the CREATE FUNCTION statement. This clause specifies
the program, service program, or Java class that will be executed when the function is
invoked in an SQL statement. The name must identify a program, service program, or
Java class that exists at the server at the time that the function is invoked. If the naming
option is *SYS and the name is not qualified, the current path will be used to search for the
program or service program at the time that the function is invoked.

The validity of the name is checked at the server. If the format of the name is not correct,
an error is returned. If external-program-name is not specified, the external program name
is assumed to be the same as the function name. The program, service program, or Java
class does not need to exist at the time that the function is created, but it must exist at the
time that the function is invoked.

6 PARAMETER STYLE clause of the CREATE FUNCTION statement. DB2 Universal
Database for iSeries passes additional parameters apart from the arguments that are
defined in the CREATE FUNCTION statement, based on the specified parameter style, as
described in 11.3, “Parameter styles in external UDFs” on page 346.

Note: CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK, and SET TRANSACTION statements are not allowed in the external
program of the function.
Chapter 11. External user-defined functions 353

Now, examine the external program DEC2DATE, which is referred to in the CREATE
FUNCTION statement. We describe the parameters that DB2 Universal Database for iSeries
sends to the program and how the program uses these parameters. This program was written
in RPG, as shown in Example 11-2. The DEC2DATE external program accepts an 8-digit
decimal with a date that must be converted to DATE format as the input argument.

Example 11-2 SQL parameter style - RPG program

0001.00 **
0002.00 H ALWNULL(*USRCTL) 1
0003.00 **
0004.00 d outdate S D datfmt(*ISO) 2
0005.00 d indate S 8P 0 3
0006.00 d indatenul S 2B 0
0007.00 d outdatenul S 2B 0
0008.00 d sqlstate S 5A 4
0009.00 d functname S 517A VARYING
0010.00 d specname S 128A VARYING
0011.00 d errormsg S 70A VARYING
0012.00 *---
0013.00 * PARAMETER DEFINITION
0014.00 *---
0015.00 C *ENTRY PLIST
0016.00 C PARM indate
0017.00 C PARM outdate
0018.00 C PARM indatenul
0019.00 C PARM outdatenul
0020.00 C PARM sqlstate
0021.00 C PARM functname
0022.00 C PARM specname
0023.00 C PARM errormsg
0024.00 *---
0025.00 C *iso test(De) indate
0026.00 C if %error
0027.00 C eval outdatenul = -1
0028.00 C else
0029.00 C move indate outdate
0030.00 C eval outdatenul = 0
0031.00 C endif
0032.00 C eval *inlr = '1' 5
0033.00 *---

Code sample notes
The function name DEC2DATE is the name of the source file member and also the name of
the *PGM object, which is referred to in the CREATE FUNCTION statement that is shown:

EXTERNAL NAME 'DLEMA/DEC2DATE'

The following special comments refer to the numbers in the source code in Example 11-2:

1 This program will not be called when null parameters are provided, but we allow nulls as
input to add flexibility to the code.

2 The OUTDATE variable is defined as a date with International Organization for
Standardization (ISO) format.

3 The INDATE variable is defined as an 8-digit packed decimal.
354 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

4 From line 8 to line 11, the parameters that are received by the RPG program are specified
according to the parameter style that is used. In this case, they are the SQLSTATE,
function name, specific name, and error message parameters. Several of those variables
are useful for error management.

5 You do not want *INLR = ‘1’ in your program. *INLR = ‘1’ causes the program to be
released from memory after the program finishes. But a UDF, such as this UDF, which is
typically called many times, adversely affects performance.

A variation of this code is presented in Example 11-3. The program is not disposed of
because of the line in bold. It simply returns without forcing the program to release the
memory. Although we did not perform a rigorous test, the second DEC2DATE version
outperforms the first version by a factor of three.

Example 11-3 Variation of RPG ILE DEC2DATE UDF

**
H ALWNULL(*USRCTL)
**
d outdate S D datfmt(*ISO)
d indate S 8P 0
d indatenul S 2B 0
d outdatenul S 2B 0
d sqlstate S 5A
d functname S 517A VARYING
d specname S 128A VARYING
d errormsg S 70A VARYING
 *---
 *PARAMETER DEFINITION
 *---
C *ENTRY PLIST
C PARM indate
C PARM outdate
C PARM indatenul
C PARM outdatenul
C PARM sqlstate
C PARM functname
C PARM specname
C PARM errormsg
 *---
C *iso test(De) indate
C if %error
C eval outdatenul = -1
C else
C move indate outdate
C eval outdatenul = 0
C endif
C return
*---

These DEC2DATE programs are *PGM objects. The program is compiled into the *MODULE
object. Then, the *MODULE object is bound into a *PGM object so that we can specify the
activation group parameter as *CALLER.

Note: The external program that is coded in any host language needs to be complied with
the activation group parameter *CALLER.
Chapter 11. External user-defined functions 355

The CRTBNDRPG control language (CL) command is used to compile and bind the DEC2DATE
program, as shown in Figure 11-14.

Figure 11-14 Create Bound RPG Program

When you work with UDFs, triggers, and stored procedures, you use service programs more
often than programs. Example 11-4 shows the same DEC2DATE code with its *SRVPGM
version.

Example 11-4 Second variation of RPG ILE DEC2DATE UDF as a *SRVPGM

**
Hnomain
H ALWNULL(*USRCTL)
**
ddec2date PR
d indate 8P 0
d outdate D
d indatenul 2B 0
d outdatenul 2B 0
d sqlstate 5A
d functname 517A CONST OPTIONS(*VARSIZE) VARYING
d specname 128A CONST OPTIONS(*VARSIZE) VARYING
d errormsg 70A OPTIONS(*VARSIZE) VARYING
pdec2date B export
 *---
 *PARAMETER DEFINITION
 *---
ddec2date pi
d indate 8P 0
d outdate D datfmt(*ISO)
d indatenul 2B 0
d outdatenul 2B 0
d sqlstate 5A
d functname 517A CONST OPTIONS(*VARSIZE) VARYING
d specname 128A CONST OPTIONS(*VARSIZE) VARYING
d errormsg 70A OPTIONS(*VARSIZE) VARYING
 *---
C *iso test(De) indate
C if %error
C eval outdatenul = -1
C else
C move indate outdate

 Create Bound RPG Program (CRTBNDRPG)

 Type choices, press Enter.

 Program PGM > DEC2DATE
 Library > DLEMA
 Source file SRCFILE > RPGSRC
 Library > DLEMA
 Source member SRCMBR > DEC2DATE
 Source stream file SRCSTMF

 Generation severity level . . . GENLVL 10
 Text 'description' TEXT *SRCMBRTXT

 Default activation group DFTACTGRP *YES
356 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

C eval outdatenul = 0
C endif
C return
 *---
pdec2date E

A service source program can contain several different routines or entry points. This way, if
we need different versions of our date casting function, one version to convert from integer to
DATE, another version to convert from CHAR(8) to DATE, and so on, we can put them all
together in the same source so that its management and maintenance are easy. A service
source program can contain routines for multiple purposes.

11.6.2 Coding the DB2SQL parameter style
This section describes how to code external UDFs with the DB2SQL parameter style.

Assume that you want to massively generate identifiers for a data warehousing data loading
process. We can use the newly introduced GENERATED BY DEFAULT AS IDENTITY clause
at table creation time, but our data modeler required that the generated identifiers do not
repeat between tables. Our first approach was to consider a data area to track the next
number to generate, but the application designer was interested in code that can be ported to
other platforms, and the application designer asked us not to use the data area.

Then, we thought of a table that tracks the next consecutive number to generate. Because
this table might cause a bottleneck, instead of getting the next number in the sequence, we
built a UDF that obtains the next group of numbers and uses the SCRATCHPAD to generate
individual values until the end of the group is reached.

We examine the CREATE FUNCTION statement for the GENOID external UDF.

Example 11-5 CREATE FUNCTION statement for an external UDF that uses scratchpad

CREATE FUNCTION SAMPLEDB01.GENOID (
CHAR(20))
RETURNS DECIMAL(30, 0)
LANGUAGE RPGLE
SPECIFIC SAMPLEDB01.GENOID00
DETERMINISTIC
MODIFIES SQL DATA
RETURNS NULL ON NULL INPUT
SCRATCHPAD 100 1
EXTERNAL NAME 'SAMPLEDB01/GENOID(GENOID)' 2
PARAMETER STYLE DB2SQL;

Note: The DBINFO option works in a similar way to the DBINFO option in stored
procedures, which is explained in 4.3.2, “Coding the DB2SQL parameter style” on page 54.
Chapter 11. External user-defined functions 357

CREATE FUNCTION statement explanation
The elements that change from parameter style SQL to parameter style DB2SQL
(Example 11-5 on page 357) are explained in the following list:

1 This argument is set by DB2 before it calls the UDF. The scratchpad is a structure with an
INTEGER that contains the length of the scratchpad and a space that is initialized to all
binary zeros by DB2 before the first call to the UDF. Here, we defined a length area of 100
bytes. Therefore, the system will reserve 100 bytes of memory for the scratchpad area and
send the address of this area to the function program.

2 This name is the name of the external program that this function calls when it is invoked
by the database. In this example, SAMPLEDB01 is the name of the library in which the
program resides. GENOID is the name of the service program to execute, and (GENOID)
is the name of the RPGLE function inside the program that will be called when the
function is invoked. The program does not need to exist at the time of the creation of the
function, but the program must be created before the function is invoked for the first time.
This clause is an optional clause. If it is not specified, the system assumes that the name
of the program to execute is the same as the name of the function.

Now, we examine the service program GENOID, which is referred to in the CREATE
FUNCTION statement in Example 11-5 on page 357. The program has two parts. The first
part (Example 11-6) contains the definition of the RPG module.

Example 11-6 Part 1 - Module definition of member GENOIDPR

0001.00 D GENOID PR
0002.00 D Counter_name 20A
0003.00 D Output 30P 0
0004.00 D Ctr_name_ind 4B 0
0005.00 D Output_ind 4B 0
0006.00 D SQLstateRet 5A 1
0007.00 D FunctionName 517A CONST OPTIONS(*VARSIZE) VARYING 2
0008.00 D SpecificName 128A CONST OPTIONS(*VARSIZE) VARYING 3
0009.00 D DiagMsg 70A OPTIONS(*VARSIZE) VARYING 4
0010.00 D ScratchPad 104A OPTIONS(*VARSIZE) VARYING 5

The second part of the program (Example 11-7) contains the module code.

Example 11-7 Part 2 - GENOID RPG module

0001.00 Hnomain
0002.00 H ALWNULL(*USRCTL)
0003.00 /COPY SAMPLEDB01/RPGSRC,GENOIDPR
0004.00 P GENOID B EXPORT
0005.00 D GENOID PI
0006.00 D Counter_name 20A
0007.00 D Output 30P 0
0008.00 D Ctr_name_ind 4B 0
0009.00 D Output_ind 4B 0
0010.00 D SQLstateRet 5A 1
0011.00 D FunctionName 517A CONST OPTIONS(*VARSIZE) VARYING 2
0012.00 D SpecificName 128A CONST OPTIONS(*VARSIZE) VARYING 3
0013.00 D DiagMsg 70A OPTIONS(*VARSIZE) VARYING 4
0014.00 D ScratchPad 104A OPTIONS(*VARSIZE) VARYING 5
0015.00
0016.00 D ScratchPadDs DS BASED(ScratchPadPtr) 6
0017.00 D ScratchLenght 9B 0
0018.00 D FirstCall 4B 0
0019.00 D ChkValue 30P 0
0020.00 D Counter 30P 0
358 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

0021.00
0022.00 DWorkingStorage DS
0023.00 D ScratchPadPtr *
0024.00 D CtrNamePtr *
0025.00
0026.00 C EVAL ScratchPadPtr = %ADDR(ScratchPad) 7
0027.00 C IF FirstCall = 0 8
0028.00 C EVAL ChkValue = 0
0029.00 C EVAL Counter = 0
0030.00 C EVAL FirstCall = -1
0031.00 C ENDIF
0032.00 C IF Counter = ChkValue 9
0033.00 C/EXEC SQL
0034.00 C+ SELECT COUNTER INTO :Counter FROM SAMPLEDB01.COUNTER
0035.00 C+ WHERE COUNTER_NAME = :Counter_name
0036.00 C/END-EXEC
0037.00 C IF SQLCOD = -204 10
0038.00 C/EXEC SQL
0039.00 C+ CREATE TABLE SAMPLEDB01.COUNTER (COUNTER_NAME CHAR(20) NOT NULL,
0040.00 C+ COUNTER DEC(30,0) NOT NULL
0041.00 C+ WITH DEFAULT,
0042.00 C+ PRIMARY KEY (COUNTER_NAME))
0043.00 C/END-EXEC
0044.00 C/EXEC SQL
0045.00 C+ SELECT COUNTER INTO :Counter FROM SAMPLEDB01.COUNTER
0046.00 C+ WHERE COUNTER_NAME = :Counter_name
0047.00 C/END-EXEC
0048.00 C ENDIF
0049.00 C IF SQLCOD = 100 11
0050.00 C EVAL Counter = 1
0051.00 C EVAL ChkValue = 20
0052.00 C/EXEC SQL
0053.00 C+ INSERT INTO SAMPLEDB01.COUNTER
0054.00 C+ VALUES (:Counter_name, 21)
0055.00 C/END-EXEC
0056.00 C ELSE
0057.00 C EVAL ChkValue = Counter + 19
0058.00 C/EXEC SQL
0059.00 C+ UPDATE SAMPLEDB01.COUNTER
0060.00 C+ SET COUNTER = :ChkValue + 1
0061.00 C+ WHERE COUNTER_NAME = :Counter_name
0062.00 C/END-EXEC
0063.00 C ENDIF
0064.00 C ELSE
0065.00 C EVAL Counter = Counter + 1
0066.00 C ENDIF
0067.00 C EVAL Output = Counter
0068.00 C EVAL Output_ind = 0
0069.00 P GENOID E
Chapter 11. External user-defined functions 359

Code sample notes
The following special comments refer to the numbers in the source code in Example 11-6 on
page 358 and Example 11-7 on page 358:

1 SQLState parameter that is used for returning the state of the function. The SQLState is a
5-character string that needs a value in one of the following groups:

– 00000: The UDF completes without errors or warnings.

– 01Hxx: The xx can be any digits or uppercase letters. The UDF completes without
errors but with a warning.

– 38yxx: The y is an uppercase letter between I and Z. The xx signifies any two digits or
uppercase letters. The UDF ends with an error condition.

2 Fully qualified function name. Because the same program might be used in several UDFs,
the name of the function, as registered in the DB2 for i catalogs, is received as a
parameter and the programmers can use it in their programs.

3 Specific name for the function.

4 Diagnostic text field that might be passed back by the UDF with the warning or error
message text.

5 Scratchpad: Input/output parameter with the scratchpad.

6 The scratchpad that is received by the UDF has two values: A long integer that contains
the size of the scratchpad data and the data. This value and the following four values
redefine the scratchpad to be usable in the program.

7 A pointer to the scratchpad is set so that it is usable in the program.

8 Because the scratchpad is initialized with binary zeros the first time, the UDF is called in
an SQL statement scope. When the function is called for the first time, FirstCall is zero.

9 If Counter reached the upper value of the group (and at the first call, both Counter and
ChkValue are zero), a new upper value must be calculated and recorded on the
COUNTER table.

10 SQLCode -204 is fired if the COUNTER table does not exist. In that case, the table must
be created and the operation must be tried again.

11 SQLCode 100 is fired if no row exists for the particular counter. A new row is added to the
COUNTER table.

The GENOID program was created as a *SRVPGM object. In this case, GENOID is a
program that was written in RPG.
360 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

The CRTSQLRPGI CL command is used to create the module of the program (Figure 11-15). If
the program does not contain embedded SQL, the CL command is CRTRPGMOD.

Figure 11-15 CRTSQLRPGI CL command

Then, you must bind the GENOID service program. We use the following CL command:

CRTSRVPGM SRVPGM(DLEMA/GENOID) EXPORT(*ALL) TEXT('GENOID SVRPGM')

11.6.3 Coding the GENERAL parameter style
The GENERAL parameter style is ideal for reusing existing code because it simply passes all
parameters as input parameters and takes the result of the called program to be the result of
the UDF. The GENERAL parameter style in UDFs is only supported for external service
programs.

In Example 11-8, a UDF is created that is based on an existing COBOL program that returns
an exchange rate when it is given an original currency and target currency on a specific date.

Example 11-8 CREATE FUNCTION statement for the GENERAL parameter style

CREATE FUNCTION SAMPLEDB01.GET_FX_RATE (
ORIG_CCY CHAR(3) ,
TRGT_CCY CHAR(3) ,
FX_DATE DATE)

RETURNS DECIMAL(10, 5)
LANGUAGE COBOLLE
SPECIFIC SAMPLEDB01.GET_FX_RATE01
DETERMINISTIC 1
READS SQL DATA
RETURNS NULL ON NULL INPUT
EXTERNAL NAME 'SAMPLEDB01/UDF_CBL(GET_FX_RATE)' 2
PARAMETER STYLE GENERAL ;

 Create SQL ILE RPG Object (CRTSQLRPGI)

 Type choices, press Enter.

 Object > GENOID Name
 Library > DLEMA Name, *CURLIB
 Source file > RPGSRC Name, QRPGLESRC
 Library > DLEMA Name, *LIBL, *CURLIB
 Source member > GENOID Name, *OBJ
 Commitment control *CHG *CHG, *ALL, *CS, *NONE...
 Relational database *LOCAL
 Compile type > *MODULE *PGM, *SRVPGM, *MODULE
 Listing output *NONE *NONE, *PRINT
 Text 'description' *SRCMBRTXT

 Additional Parameters

 Precompiler options *XREF *XREF, *NOXREF, *GEN...
 + for more values
 More...
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
Chapter 11. External user-defined functions 361

CREATE FUNCTION statement explanation
By this time, you are already familiar with SQL CREATE statements, but we must highlight the
following points in Example 11-8 on page 361:

1 This function is deterministic because no matter when it is called, it always will return the
same value for an equal set of parameters. By specifying the DETERMINISTIC clause,
DB2 for i will avoid unnecessary executions for the program behind the UDF, which
improves performance.

2 Because in UDFs, the GENERAL parameter style is supported for service programs only,
the external name must refer to one service program. In this case, the service program
corresponds to the GET_FX_RATE entry point in the UDF_CBL service program object,
which is in the SAMPLEDB01 library.

Example 11-9 shows a COBOL service program with a GENERAL parameter style UDF.

Example 11-9 COBOL service program for GENERAL parameter style UDF

IDENTIFICATION DIVISION.
 PROGRAM-ID. UDF_CBL3.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-AS400.
 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * PARAMETERS NEEDED TO SIGNAL AN EXCEPTION *

 01 SNDPGMMSG.
 03 SND-MSG-ID PIC X(7) VALUE “UDF0005”.
 03 SND-MSG-FILE PIC X(20) VALUE “CSTMSGF SAMPLEDB01”.
 03 SND-MSG-DATA PIC X(30) VALUE “UDF ERROR “.
 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 0.
 03 SND-MSG-TYPE PIC X(10) VALUE “*ESCAPE”.
 03 SND-MSG-QUEUE PIC X(10) VALUE “*”.
 03 SND-MSG-STACK PIC 9(8) BINARY VALUE 1.
 03 SND-MSG-KEY PIC X(4) VALUE “ “.
 03 SND-ERROR-CODE.
 05 PROVIDED PIC 9(8) BINARY VALUE 66.
 05 AVALILABLE PIC 9(8) BINARY VALUE 0.
 05 EXCEPTION-ID PIC X(7) VALUE “ “.
 05 FILLER PIC X(1) VALUE “ “.
 05 EXCEPTION-DATA PIC X(50) VALUE “ “.

 * IMPORT THE SQL COMMUNICATION AREA STRUCTURE *

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.

362 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 * WORKING VARIABLES *

 77 EXCHANGE_RATE PIC S9(5)V9(5) PACKED-DECIMAL.

 LINKAGE SECTION.

 * PARAMETERS *

 77 ORIGINAL_CURRENCY PIC XXX.
 77 TARGET_CURRENCY PIC XXX.
 77 EXCHANGE_DATE FORMAT DATE.

 PROCEDURE DIVISION USING
 BY REFERENCE ORIGINAL_CURRENCY 1
 BY REFERENCE TARGET_CURRENCY 1
 BY REFERENCE EXCHANGE_DATE 1
 RETURNING EXCHANGE_RATE. 2
 A000-MAIN.

EXEC SQL
 WHENEVER SQLERROR GO TO E010-ERROR
 END-EXEC.
 EXEC SQL
 WHENEVER NOT FOUND GO TO A200-ALTERNATE-SEARCH
 END-EXEC.
 EXEC SQL
 SELECT FX_RATE INTO :EXCHANGE_RATE
 FROM SAMPLEDB01/CCY_FX_RATE
 WHERE ORIG_CCY = :ORIGINAL_CURRENCY
 AND TRGT_CCY = :TARGET_CURRENCY
 AND :EXCHANGE_DATE BETWEEN EFF_DT AND END_DT
 END-EXEC.
 A100-DONE1.
 GOBACK.
 A200-ALTERNATE-SEARCH.
 EXEC SQL
 WHENEVER NOT FOUND GO TO E020-EXCHANGE-RATE-NOT-FOUND
 END-EXEC.
 EXEC SQL
 SELECT DECIMAL((1.0/FX_RATE), 10,5) INTO :EXCHANGE_RATE
 FROM SAMPLEDB01/CCY_FX_RATE
 WHERE ORIG_CCY = :TARGET_CURRENCY
 AND TRGT_CCY = :ORIGINAL_CURRENCY
 AND :EXCHANGE_DATE BETWEEN EFF_DT AND END_DT
 END-EXEC.
 A200-DONE2.
 GOBACK.
 E020-EXCHANGE-RATE-NOT-FOUND.
 MOVE “UDF0002” TO SND-MSG-ID.
Chapter 11. External user-defined functions 363

 E010-ERROR.
 CALL “QMHSNDPM” USING SND-MSG-ID,
 SND-MSG-FILE,
 SND-MSG-DATA,
 SND-MSG-LEN,
 SND-MSG-TYPE,
 SND-MSG-QUEUE,
 SND-MSG-STACK,
 SND-MSG-KEY,
 SND-ERROR-CODE.
 GOBACK.

This code was compiled with the following command:

CRTSQLCBLI OBJ(SAMPLEDB01/UDF_CBL3) *SRCFILE(SAMPLEDB01/CBLSRC) *SRCMBR(UDF_CBL3)
*OBJTYPE(*MODULE) REPLACE(*NO)

The *SRCPGM was created with the following command:

CRTSRVPGM SRVPGM(SAMPLEDB01/UDF_CBL3) EXPORT(*ALL)

The parameters that are defined for the function are the parameters that the external program
receives. Also, the program return will be the UDF return.

11.6.4 Coding the GENERAL WITH NULLS parameter style
The GENERAL WITH NULLS parameter style (Example 11-10) is a variation of the
GENERAL parameter style, which was explained in 11.6.3, “Coding the GENERAL parameter
style” on page 361.

Example 11-10 CREATE FUNCTION statement for the GENERAL WITH NULLS parameter style

CREATE FUNCTION SAMPLEDB01.GET_FX_RATE (
ORIG_CCY CHAR(3) ,
TRGT_CCY CHAR(3) ,
FX_DATE DATE)

RETURNS DECIMAL(10, 5)
LANGUAGE COBOLLE
SPECIFIC SAMPLEDB01.GET_FX_RATE01
DETERMINISTIC 1
READS SQL DATA
RETURNS NULL ON NULL INPUT
EXTERNAL NAME 'SAMPLEDB01/UDF_CBL(GET_FX_RATE)' 2
PARAMETER STYLE GENERAL WITH NULLS;

For the UDF that is defined in Example 11-10, the HLL program has four input parameters
and one output parameter. The fourth parameter is a vector of null indicators that correspond
to the null state for the first three parameters. The fifth parameter corresponds to the null state
for the result that the UDF will return.
364 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

11.6.5 Coding the DB2GENERAL parameter style
We examine the CREATE FUNCTION statement for the JVMPROPERTIES external UDF.
Example 11-11 shows the CREATE FUNCTION statement for the DB2GENERAL parameter
style.

Example 11-11 CREATE FUNCTION statement for DB2GENERAL parameter style

CREATE FUNCTION SAMPLEDB01.JVMPROPERTIES ()
RETURNS TABLE (
PROPERTY VARCHAR(500) ,
VALUE VARCHAR(500))
LANGUAGE JAVA 1
SPECIFIC SAMPLEDB01.JVMPROP01
NOT DETERMINISTIC
NO SQL
CALLED ON NULL INPUT
DISALLOW PARALLEL
EXTERNAL NAME 'JVMProp!dump' 2
PARAMETER STYLE DB2GENERAL ; 3

Now, we examine the external program JVMProp that is referred to in the CREATE
FUNCTION statement. We describe the parameters that DB2 Universal Database for iSeries
sends to the program and how the program uses these parameters. This program was written
in Java, as shown in Example 11-12.

Example 11-12 Source code JVMProp.java DB2GENERAL parameter style

import COM.ibm.db2.app.*; 1
import java.util.*;

public class MyUDTFs extends UDF { 2

Enumeration propertyNames;
Properties properties;

public void ranking (String property, String value) throws Exception {
int callType = getCallType();
switch(callType) { 3

case SQLUDF_TF_FIRST: 4
break;

case SQLUDF_TF_OPEN: 5
properties = System.getProperties();
propertyNames = properties.propertyNames();
break;

case SQLUDF_TF_FETCH: 6
if (propertyNames.hasMoreElements()) {

property = (String) propertyNames.nextElement();
value = properties.getProperty(property);
set(1, property);
set(2, value);

Note: The following numbered notes refer to Example 11-11:

1 DB2GENERAL applies only for the Java language.

2 JVMProp is the name of the Java class that extends the com.ibm.db2.app.UDF class,
and dump is a public method that implements the UDF.

3 The parameter style clause is DB2GENERAL.
Chapter 11. External user-defined functions 365

} else {
setSQLstate("02000"); 7

}
break;

case SQLUDF_TF_CLOSE: 8
break;

case SQLUDF_TF_FINAL: 9
break;

default:
throw new Exception("UNEXPECTED call type of " + callType);

}

}
}

Code sample notes
The following special comments refer to the numbers in the source code in Example 11-12 on
page 365:

1 Package that contains the UDF class.

2 When the DB2GENERAL parameter style is used, the class must extend the UDF class.

3 The getCallType method is used to obtain the call timing, as explained in 11.5, “UDF and
UDTF calling sequence” on page 350.

4 No action is required at first call in this particular UDTF.

5 At open time, the properties will be read into memory.

6 For each fetch, the next property and value tuple will be returned.

7 When no more properties exist to return, an SQLSTATE “02000” is signaled, which means
that the last row was reached.

8 No action is required at the close in this particular UDTF.

9 No action at final call occurs in this particular UDTF.

As stored procedures, the Java file that contains the bytecode for the class must be in a
specific path in the IFS:

/QIBM/USERDATA/OS400/SQLLIB/Function

WebSphere Development Studio Client for IBM i provides a convenient development
environment to develop Java stored procedures and UDFs, and an integrated environment for
HLL languages, including CODE/400.

Note: In DB2 UDF for i, both fenced and unfenced Java stored procedures, UDFs, and
UDTFs are in /QIBM/USERDATA/OS400/SQLLIB/Function in the IFS. Other DB2 platforms
can have different paths for fenced and unfenced Java stored procedures, UDFs, and
UDTFs.
366 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

11.6.6 Coding the JAVA parameter style
SQL has date functions so that you can perform operations, such as calculating the number
of days between two dates. But in real business applications, we usually need to know the
time between two specific dates or time stamps in terms of working days or working hours.
The CREATE FUNCTION statement in Example 11-13 creates a UDF that calculates the
number of working days between two specific dates for a specific calendar, if the calendars
have different holiday dates.

Example 11-13 CREATE FUNCTION for the JAVA parameter style

CREATE FUNCTION SAMPLEDB01.WORKING_DAYS (
INITIALDATE DATE ,
FINALDATE DATE ,
CALENDARID INTEGER)

RETURNS BIGINT
LANGUAGE JAVA 1
SPECIFIC SAMPLEDB01.WDAYS01
DETERMINISTIC 2
READS SQL DATA
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION
NOT FENCED
EXTERNAL NAME 'WrkDays!wrkDays' 3
PARAMETER STYLE JAVA ;

Now, we examine the external program WrkDays, which is referred to in the CREATE
FUNCTION statement. We describe the parameters that DB2 Universal Database for iSeries
sends to the program and how the program uses these parameters. This program was written
in Java, as shown in Example 11-14.

Example 11-14 Source code WrkDays.java in the JAVA parameter style

import java.sql.*;

public class WrkDays {

public static long wrkDays(Date initialDate, Date finalDate, int calendarKey)
throws SQLException { 1

int count;
long result;
Connection con = DriverManager.getConnection("jdbc:default:connection"); 2
String stmt = "SELECT COUNT(*) FROM SAMPLEDB01.HOLIDAY " +

"WHERE HOLIDAY_DATE BETWEEN ? AND ? AND CALENDAR_KEY = ?";
PreparedStatement ps = con.prepareStatement(stmt);
ps.setDate(1, initialDate);
ps.setDate(2, finalDate);
ps.setInt(3, calendarKey);

Note: The following notes refer to Example 11-13:

1 The JAVA parameter style is allowed only when the language is Java.

2 Because this function has an SQL SELECT operation inside, it is important to avoid its
execution when the same two dates are provided as parameters. For this reason, it was
defined as DETERMINISTIC.

3 In this example, WrkDays is the name of the class and wrkDays is the public static
method that implements this particular UDF.
Chapter 11. External user-defined functions 367

ResultSet rs = ps.executeQuery();
if (rs.next()) {

count = rs.getInt(1);
if (initialDate.compareTo(finalDate) > 0) count = -count;
result = (long)(finalDate.getTime()-initialDate.getTime())/

((long)86400000) // 8640000 = 1000*24*60*60 3
- count;

}
else

throw new SQLException("Error reading holiday table", "38ZZZ"); 4
if (rs != null) rs.close();
if (ps != null) ps.close();
if (con != null) con.close();
return result; 5

}
}

Code sample notes
The following special comments describe the numbers in the source code in Example 11-14
on page 367:

1 For the JAVA parameter style, a public Java class must be defined. That class can contain
one or more methods, one for each UDF. UDFs and stored procedures can be combined
in the same class. The method that implements the UDF must be public static.

2 If the Java method that implements the UDF will perform database operations, it must
connect to the database manager by using the jdbc:default:connection URL.

3 The difference between the two dates is calculated in milliseconds and then converted to
days. The number of holidays is then subtracted.

4 If any SQL error occurs, an SQLException is thrown by the method to the caller.

5 The value that is returned by the method needs to be compatible with the SQL types.

11.7 Error handling in external UDFs
UDFs can report errors and warnings by the same mechanisms that are described in
Chapter 6, “Stored procedure error handling” on page 143. These mechanisms depend on
the parameter passing convention that is used.

When DB2SQL parameter passing is used, the UDF program reports errors and warnings by
using the SQLUDF_MSGTX and SQLUDF_STATE parameters. When DB2GENERAL or JAVA
parameter passing is used, the UDF program reports errors by throwing SQLException or
SQLWarning exceptions. If a warning message is sent back to DB2, the SQL statement
continues running. When an error message is sent back to DB2, the SQL statement stops.
Reported SQL errors and warnings need to follow the same conventions as stored
procedures.
368 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

11.7.1 Error handling with the DB2SQL parameter style

The following UDTF (Example 11-15 on page 369) receives a file name that corresponds to a
stream file in the IFS and returns it as a table. Errors might occur during the execution:

� The file might not exist.
� An I/O error might occur during the processing of the file.

Also, warnings might occur during the execution of the program:

� Rows in the file might have an inappropriate format.
� The end of file is reached.

Example 11-15 shows the CREATE FUNCTION statement for the F1Results UDTF.

Example 11-15 CREATE FUNCTION statement for F1Results UDTF

CREATE FUNCTION SAMPLEDB01.F1RESULTS(
FILENAME VARCHAR(255))

RETURNS TABLE (
DRIVER_NUMBER SMALLINT,
DRIVER_NAME,
GENERAL_POSITION SMALLINT,
LAST_RACE_POSITION,
CONSTRUCTOR VARCHAR(50),
WHEEL_BRAND VARCHAR(50),
DRIVER_COUNTRY VARCHAR(50),
YTD_POOLS SMALLINT,
YTD_WINS SMALLINT,
YTD_POINTS SMALLINT)

LANGUAGE C
SPECIFIC SAMPLEDB01.F1RESULTS
NOT DETERMINISTIC
NO SQL
RETURNS NULL ON NULL INPUT
DISALLOW PARALLEL 1
NOT FENCED
CARDINALITY 22 2
EXTERNAL NAME 'SAMPLEDB01/CUDF(readFileToTable)
PARAMETER STYLE DB2SQL;

The UDTFs require that DISALLOW PARALLEL is specified in 1. We specified CARDINALITY
to 22 at 2 to help the optimizer provide an estimate of the average number of rows that are
returned by the UDTF.

The code in Example 11-16 features error handling and pointer arithmetic. Pointer arithmetic
was used to align the pointer to the file structure. Pointer arithmetic is explained in 11.8,
“Pointer arithmetic and the scratchpad” on page 375.

Example 11-16 HLL UDTF that shows error handling, scratchpad, and pointer adjustment

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqludf.h>
#include <sqlstate.h>

#define MAX_LEN 255

/* function that receives a text, sets the value to the reference parameter */
Chapter 11. External user-defined functions 369

/* value and returns -1 (SQLNull) if text is null or 0 (not null) if text */
/* is not null */
short scanShort(short *value, char* text) {
 if (text == NULL) return (short)-1;
 *value = (short)atoi(text);
 return (short)0;
}

/* function that receives a text, sets the value to the reference parameter */
/* value and returns -1 (SQLNull) if text is null or 0 (not null) if text */
/* is not null */
short scanText(char *value, char* text) {
 if (text == NULL) return (short)-1;
 strcpy(value, text);
 return (short)0;
}

/* User defined table function that receives a file name as parameter and */
/* reads it from the IFS and returns it as a table of Formula 1 pilots */
void SQL_API_FN readFileToTable(
 /* UDTF parameter */
 SQLUDF_VARCHAR *fileName, /* input */

 /* Columns in the returned table */
 SQLUDF_SMALLINT *driverNumber, /* output */
 SQLUDF_VARCHAR *driverName, /* output */
 SQLUDF_SMALLINT *generalPosition, /* output */
 SQLUDF_SMALLINT *lastRacePosition, /* output */
 SQLUDF_VARCHAR *constructor, /* output */
 SQLUDF_VARCHAR *wheelBrand, /* output */
 SQLUDF_VARCHAR *driverCountry, /* output */
 SQLUDF_SMALLINT *ytdPools, /* output */
 SQLUDF_SMALLINT *ytdWins, /* output */
 SQLUDF_SMALLINT *ytdPoints, /* output */

 /* null indicator for the received parameter */
 SQLUDF_NULLIND *fileNameInd,

 /* null indicators for table columns */
 SQLUDF_NULLIND *driverNumberInd,
 SQLUDF_NULLIND *driverNameInd,
 SQLUDF_NULLIND *generalPositionInd,
 SQLUDF_NULLIND *lastRacePositionInd,
 SQLUDF_NULLIND *constructorInd,
 SQLUDF_NULLIND *wheelBrandInd,
 SQLUDF_NULLIND *driverCountryInd,
 SQLUDF_NULLIND *ytdPoolsInd,
 SQLUDF_NULLIND *ytdWinsInd,
 SQLUDF_NULLIND *ytdPointsInd,

 /* rest of the arguments */
 SQLUDF_TRAIL_ARGS_ALL)
{
 char line[MAX_LEN], *result;
 char *token;

 /* scratchpad structure */
 typedef struct { 1
 FILE *f;
 int rowNumber;
370 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 } strScratchPad;

 strScratchPad *strSPad;
 strScratchPad **ptrAlignmentPointer;

 /* get the address of the scratchpad buffer passed by the DB2 UDB */
 /* and align the pointer for the internal scratchpad structure at */
 /* the 16 byte boundary */
 ptrAlignmentPointer = ((strScratchPad**)(sqludf_scratchpad))+1; 2
 strSPad = (strScratchPad*)ptrAlignmentPointer;

 switch (SQLUDF_CALLT) {
 case SQLUDF_TF_OPEN:
 /* open a text stream file and store the pointer */
 /* on the scratch pad. Check to see if it opened */
 /* successfully */
 if ((strSPad->f = fopen(fileName, "r")) == NULL) { 3
 strcpy(SQLUDF_MSGTX, "Could not open file ");
 strncat(SQLUDF_MSGTX, fileName,
 SQLUDF_MSGTEXT_LEN -
 strlen(SQLUDF_MSGTX) -1); 4
 strncpy(SQLUDF_STATE, "38200",
 SQLUDF_SQLSTATE_LEN); 5
 return;
 }
 strSPad->rowNumber = 0;
 break;
 case SQLUDF_TF_FETCH:
 /* count the row */
 strSPad->rowNumber++;

 /* read a new line from the stream file */
 if ((result = fgets(line, MAX_LEN, strSPad->f))==NULL) {
 /* end of file reached */
 strncpy(SQLUDF_STATE, SQL_NODATA_EXCEPTION,
 SQLUDF_SQLSTATE_LEN); 6
 return;
 }

 /* scans for the values in the line */

 *driverNumberInd = scanShort(driverNumber,
 strtok(result, ","));
 *driverNameInd = scanText(driverName,
 strtok(NULL, ","));
 *generalPositionInd =scanShort(generalPosition,
 strtok(NULL, ","));
 *lastRacePositionInd = scanShort(lastRacePosition,
 strtok(NULL, ","));
 *constructorInd = scanText(constructor,
 strtok(NULL, ","));
 *wheelBrandInd = scanText(wheelBrand,
 strtok(NULL, ","));
 *driverCountryInd = scanText(driverCountry,
 strtok(NULL, ","));
 *ytdPoolsInd = scanShort(ytdPools,
 strtok(NULL, ","));
 *ytdWinsInd = scanShort(ytdWins,
 strtok(NULL, ","));
 *ytdPointsInd = scanShort(ytdPoints,
Chapter 11. External user-defined functions 371

 strtok(NULL, ","));
 break;
 case SQLUDF_TF_CLOSE:
 /* close the file */
 fclose(strSPad->f); 7
 strSPad->f = NULL;
 strSPad->rowNumber = 0;
 break;
 }
}

In Example 11-16 on page 369, in 3, the routine opens the file for which the name was
received as a parameter. If for any reason the file cannot be opened, an error message with
SQLSTATE of 38200 is returned. Error message text is established in line 4 and the error state
38200 is established in line 5.

When the end of the file that contains the race scores is reached, line 6 signals a warning
message that indicates to DB2 for i that the end of the returning table is reached. In line 7, the
file is closed.

11.7.2 Error handling with the DB2GENERAL parameter style
Java UDFs and UDTFs that use the DB2GENERAL parameter style inherit methods for
reporting exceptions and warnings:

� setSQLstate
� setSQLmessage

Be careful with the state and size of the returned message. The state code must follow the
rules that are explained in 6.1, “Database error reporting strategy” on page 144. Message text
must not exceed 70 characters.

Example 11-17 presents a Java version of Example 11-16 on page 369.

Example 11-17 Java version of the F1Results UDTF

public class F1RESULTS extends UDF { 1

private BufferedReader f1BufferedReader;
private FileReader f1FileReader;
private int lines = 0;
private static int MAXLINES = 100;

private void openFile(String fileName) throws IOException {
f1FileReader = new FileReader(fileName);
f1BufferedReader =

new BufferedReader(f1FileReader);
}

private void closeFile() throws IOException {
if (f1BufferedReader != null) f1BufferedReader.close();
if (f1FileReader != null) f1FileReader.close();

Note: To obtain access to files in the IFS, the CRTCMOD command was issued with the
SYSIFCOPT option set to *IFSIO:

CRTCMOD MODULE(DLEMA/F1UDTF) SRCFILE(DLEMA/CSRC) OUTPUT(*print)
DBGVIEW(*SOURCE) SYSIFCOPT(*IFSIO)
372 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

}

private void parseLine(String line) throws Exception {
int i = 2, index = 0;
for (; i<= 10; i++) {

int newIndex = line.indexOf(',', index);
if (index <= line.length() && newIndex != -1 &&

newIndex <= line.length()) {
if (i == 2 || i == 4 || i == 5 || i == 9 || i == 10) {

try {
set(i, Short.parseShort(

line.substring(index, newIndex).trim()));
} catch (NumberFormatException nfe) {

setSQLmessage("nfe in line " + lines); 2
setSQLstate("01H04"); 3

}
} else

set(i,line.substring(index, newIndex).trim());
}
index = newIndex + 1;

}
if (index < line.length()) {

try {
set(11, Short.parseShort(

line.substring(index).trim()));
} catch (NumberFormatException nfe) {

setSQLmessage("nfe in line " + lines); 2
setSQLstate("01H04"); 3

}
}

}

public void f1results (
String fileName,
short driverNumber,
String driverName,
short generalPosition,
short lastRacePosition,
String constructor,
String wheelBrand,
String driversCountry,
short ytdPools,
short ytdWins,
short ytdPoints) throws Exception {

int callType;
callType = getCallType();
try {

switch (callType) {
case SQLUDF_TF_OPEN: openFile(fileName); break;
case SQLUDF_TF_FETCH:

if (lines++ >= MAXLINES) {
setSQLstate("02000"); 4
return;

}

String line = f1BufferedReader.readLine();
if (line == null) {

setSQLstate("02000"); 4
Chapter 11. External user-defined functions 373

return;
}
parseLine(line);
break;

case SQLUDF_TF_CLOSE:
closeFile(); break;

default:
setSQLstate("38H06"); 5
setSQLmessage("Improper call type"); 5

}
}
catch(IOException ioe) { 6

String message = ioe.getMessage().trim();
if (message.length() > 70)

message = message.substring(0,70);
setSQLmessage(ioe.getMessage());
setSQLstate("38H01");
return;

}
}

}

Code sample notes
The following are some special comments of the source code in Example 11-17 on page 372:

1 Java UDTFs are supported in the DB2GENERAL parameter style only. The
DB2GENERAL parameter style Java UDFs must extend the UDF class.

2 When a number format exception is detected, a message that indicates the row in which
the problem was identified is established.

3 When a number format exception is detected, the UDTF returns an SQL Warning 01H04
and continues.

4 When the end of file is reached, the UDTF sets an SQL state of 02000 to indicate that no
more rows exist.

5 When a call type other than open, fetch, or close fires, an SQL error occurs with state
38H06 and message “Improper call type”.

6 I/O errors cause an SQL error with state 38H01. The program controls the maximum
length of the error message.

A simple client program that uses this UDTF is illustrated in Example 11-18.

Example 11-18 Client program that uses the F1RESULTS UDTF

public class F1Client { 1

private static String STMT = "SELECT * FROM TABLE(SAMPLEDB01.F1RESULTS(\'";
private static String STMT2 = "\')) AS A";

private static void printMessage(String state, String message) {
System.err.println("SQL State: " + state);
System.err.println("SQL Message: " + message);

}

public static void main(String[] args) {
try {

// first argument gives the class name for the JDBC driver
Class.forName(args[0]).newInstance();

}

374 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

catch (Exception e) {
System.err.println("Error: the JDBC driver is not valid");
System.exit(1);

}
try {

Connection con = DriverManager.getConnection(
// subsequent arguments supply the URL, user and password
args[1].trim(), args[2].trim(), args[3].trim());

// fourth argument provides the file name to be passed to the UDTF
PreparedStatement ps = con.prepareStatement(STMT + args[4] + STMT2);

ResultSet rs = ps.executeQuery();
while (rs.next()) {

SQLWarning sqlw = rs.getWarnings(); 2

if (sqlw != null)
printMessage(sqlw.getSQLState(), sqlw.getMessage());

// now print the row columns... omitted for simplicity
}

}
catch (SQLException sqle) { 3

printMessage(sqle.getSQLState(), sqle.getMessage());
System.exit(2);

}

}
}

Code sample notes
The following special comments refer to the source code in Example 11-18 on page 374:

1 UDTFs can be used from any kind of program, regardless of the original programming
language that was used. This sample code is a Java program that receives the driver
name, database URL, user, password, and file name as parameters. The sample code
assembles the SELECT statement, which includes a UDTF that reads the forecasted race
results for next year and prints them. The code does not print it (for simplicity).

2 After the program fetches each row, the program test for warning messages. If any
warning message is received, it is printed.

3 If an SQL error message is received, it is printed.

11.8 Pointer arithmetic and the scratchpad
Each hardware platform used to have its own requirements for the alignment of certain
variables. When you code a UDF with scratchpad, those alignment rules must be followed. In
IBM i servers, pointers must be aligned in 16-byte boundaries. The snippet in Example 11-19
gives the definition of the scratchpad structure as it is defined in the include file sqludf.h.

Example 11-19 Definition of the scratchpad structure as it is defined in the include file sqludf.h

SQL_STRUCTURE sqludf_scratchpad {
unsigned long length; /* length of scratchpad data */
char data[SQLUDF_SCRATCHPAD_LEN]; /* scratchpad data, init. to all \0

*/
};
Chapter 11. External user-defined functions 375

In Example 11-16 on page 369, we need to store a file pointer in the scratchpad, but the data
part of it might not align to a 16 boundary, so we can code a snippet similar to the snippet in
Example 11-20 to align that pointer to a 16 boundary.

Example 11-20 Code to align the pointer to a 16 boundary

typedef struct {
 char filler[8];
 FILE *f;
 integer rowNumber;
} strScratchpad;
...
strScratchpad *ScratchPadData;
...
ScratchPadData = *sqludf_scratchpad->data;
...

However, this code is platform-dependent. If we plan to move the code to another platform or
even if the platform architecture changes, the program will not work anymore. In the future,
when 64-bit architecture becomes obsolete and the IBM i evolves into a 128-bit machine, the
boundary for pointers might change. More platform-independent code is required, such as the
code that is shown in the snippet in Example 11-21.

Example 11-21 Platform-independent code

typedef struct {
 FILE *f;
 integer rowNumber;
} strScratchpad;
...
 strScratchPad *strSPad; 2
 strScratchPad **ptrAlignmentPointer;
...
 ptrAlignmentPointer = ((strScratchPad**)(sqludf_scratchpad))+1; 3
 strSPad = (strSratchPad*)ptrAlignmentPointer;

In the previous code snippet in Example 11-21, you see that a structure, which is called
strScratchPad, was declared. The variable f is a pointer to the input stream file to be read,
and rowNumber is an integer to track the line that is read to report warning or error messages
that refer to the failing row. We declare a pointer to this structure that is called strSPad at 2.
The scratchpad that is passed to the program itself is a structure of two elements.

In this program, the data element of the scratchpad structure is cast to the strScratchPad
structure. We use the data element of the sqludf_scratchpad structure 3 as a memory buffer
for our internal strScratchPad structure. The method of casting, such as the previous one, is
used to align the strSPad pointer on a 16-byte boundary (or whatever the boundary for the
specific platform is). If your code fails to align addresses correctly, an exception is thrown at
run time, and the application is terminated.

11.8.1 Debugging external UDFs
When you develop any kind of software, a debugging tool is important. Use debugging to
detect, diagnose, and eliminate runtime errors in a program. This section shows you
debugging alternatives to test SQL/Persistent Stored Modules (PSMs).
376 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

In this section, we show how to debug UDFs. SQL UDFs are always created as service
programs. We recommend that you create external functions as service programs. Therefore,
we show how to debug a service program here. The same technique needs to be used if you
want to debug a program object that is referenced by an external UDF.

In this example, we debug our TOTSAL UDF. Debugging UDFs might be tricky because they
are run on the OS/400 system in secondary threads. The following steps outline the debug
procedure:

1. Open two native OS/400 5250 sessions and sign on to both sessions. We refer to the first
session as session A and to the second session as session B.

2. Switch to session B, and type the following command on the command line:

STRSQL

The interactive SQL session starts, and the SQL command line is displayed.

3. Switch to session A and type the following command:

WRKACTJOB

The Work with Active Jobs panel is displayed in Figure 11-16. This panel displays a list of
all jobs that are currently active on the system. The job in session B is listed.

Figure 11-16 Work with Active Jobs panel

4. After you find the job, in our case, QPADEV0002, use option 5 to work with that job. Then, the
Work with Job panel is displayed. Choose option 2 and type these characteristics:

– Job: This field is the name of the job with which you are working.
– User: This field is the name of the user profile that is using the job.
– Number: This field is the number that is assigned to the job you are working with. Every

job on the OS/400 system is assigned a 6-digit unique job number.

In our case, we use this data:

Job: QPADEV0002 User: FREDYC Number: 016859

 Work with Active Jobs AS07
 09/24/03 10:16:23
 CPU %: .1 Elapsed time: 01:41:42 Active jobs: 167

 Type options, press Enter.
 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
 8=Work with spooled files 13=Disconnect ...

 Opt Subsystem/Job User Type CPU % Function Status
 QBATCH QSYS SBS .0 DEQW
 QCMN QSYS SBS .0 DEQW
 QCTL QSYS SBS .0 DEQW
 QSYSSCD QPGMR BCH .0 PGM-QEZSCNEP EVTW
 QINTER QSYS SBS .0 DEQW
 5 QPADEV0002 FREDYC INT .0 CMD-STRSQL DSPW
 QPADEV0003 FREDYC INT .0 CMD-WRKACTJOB RUN
 QSERVER QSYS SBS .0 DEQW
 QPWFSERVSD QUSER BCH .0 SELW
 More...
 Parameters or command
 ===>
 F3=Exit F5=Refresh F7=Find F10=Restart statistics
 F11=Display elapsed data F12=Cancel F23=More options F24=More keys
Chapter 11. External user-defined functions 377

5. Start a service job for the session B job. Enter the following command on the command
line:

STRSVRJOB 016859/FREDYC/QPADE0002

6. Start a debug session for the service program that is used in the TOTSAL function. Type
the following command on the command line:

STRDBG UPDPROD(*YES) SRVPGM(SAMPLEDB01/TOTSAL)

7. You see the debug session on your panel with the source code loaded into the debugger.
In this example, we analyze the ILE C function that the UDF generates. Go to the function
SQLPROC1, which is the “IF” in SQL that is transformed in ILE C. Put a breakpoint in one
of the executable statements in the program. In our case, we chose this statement:

if (SQL_STRUCT_HV.SQL_DATA_RETURNED == '1')

To create a breakpoint, place the cursor on the line of code at which you want to place the
breakpoint and press F6.

You see the following message at the bottom of the window:

Breakpoint added to line 396.

This procedure is shown in Figure 11-17.

Figure 11-17 Adding a breakpoint to the debug session

8. Press F12 to resume, which takes you back to the command line. You must invoke the
UDF from the interactive SQL that is run in session B.

 Display Module Source

 Program: TOTALSAL Library: SAMPLEDB01 Module: TOTALSAL
 391 } SQL_STRUCT_HV;
 392 4 memcpy(SQL_STRUCT_HV.SQL_VAR_1,&(*TOTALSAL_x).LASTNAME,17);
 393 5 SQL_STRUCT_HV.SQL_VAR_4[0]=(*TOTALSAL_x).SQLP_I4;
 394 6 sqlca.sqlerrd[5] = -9;
 395 7 QSQROUTE ((SQLCA *)&sqlca,&SQL_STRUCT,&SQL_STRUCT_HV);
 396 8 if (SQL_STRUCT_HV.SQL_DATA_RETURNED == '1')
 397 {
 398 9 SQLP_INT_VAR = SQL_STRUCT_HV.SQL_VAR_3;
 399 }
 400 10 SQLCODE=SQLCADE;
 401 11 memcpy(SQLSTATE,SQLSTOTE,5);
 402 #if (__OS400_TGTVRM__>=510)
 403 #pragma datamodel(pop)
 404 #endif
 405 }
 More...
 Debug . . .

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
 F12=Resume F17=Watch variable F18=Work with watch F24=More keys
 Breakpoint added to line 396.
378 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

9. Switch to session B and type the SQL statement that runs that function:

SELECT FIRSTNME,LASTNAME,TOTSAL(SALARY,BONUS,COMM,LASTNAME) AS TOTAL FROM
EMPLOYEE

The SELECT statement executes. The TOTSAL (DECIMAL, DECIMAL, DECIMAL,
VARCHAR) UDF is invoked. The following message is displayed at the bottom of the
panel:

Query running. 0 records selected, 1 processed.

This message is shown in Figure 11-18. However, the result of the query does not show.
Instead, the session busy cross sign stays at the bottom of the panel.

Figure 11-18 Invoking the TOTSAL SQL UDF

10.Switch back to session A. You see the source code of the PICTCHECK service program
displayed on the panel. The line of source code that will be executed is highlighted in white
on the panel. In our case, this line is the line at which you set the breakpoint in step 7 on
page 378.

11.Press F10 to execute the highlighted line of code. The line is executed, and it is no longer
highlighted. The next line of code to execute is highlighted. Each time that you press F10,
the next line of code in sequence is executed.

 Enter SQL Statements

 Type SQL statement, press Enter.
 Current connection is to relational database MONACO.

 ===> SELECT FIRSTNME,LASTNAME,TOTSAL(SALARY,BONUS,COMM,LASTNAME) AS TOTAL
 FROM EMPLOYEE

Bottom
 F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
 F12=Cancel F13=Services F24=More keys
 Query running. 0 records selected, 1 processed.
Chapter 11. External user-defined functions 379

12.You can check the value that is contained in any of the program variables in one of two
ways:

– Press F11 after you place the cursor over the variable for which you want to check the
value.

– Type the EVAL command on the debug command line.

We now check the value of the program variable SQLCODE. Place your cursor over the
variable and press F11. The value of the variable is displayed on the bottom of the panel,
as shown in Figure 11-19.

Figure 11-19 Checking the value of the program variables by using F11

13.Continue to press F10 until you step through the entire program. At any time, you can run
the program to completion by pressing F12.

14.After you finish debugging the code, you return to the Work with Job display. On the
command line, type the following CL commands:

ENDDBG
ENDSRVJOB

These commands end the debug mode and the service job that was run to debug the service
program.

 Display Module Source
 Current thread: 00000010 Stopped thread: 00000010
 Program: TOTALSAL Library: SAMPLEDB01 Module: TOTALSAL
 392 4 memcpy(SQL_STRUCT_HV.SQL_VAR_1,&(*TOTALSAL_x).LASTNAME,17);
 393 5 SQL_STRUCT_HV.SQL_VAR_4[0]=(*TOTALSAL_x).SQLP_I4;
 394 6 sqlca.sqlerrd[5] = -9;
 395 7 QSQROUTE ((SQLCA *)&sqlca,&SQL_STRUCT,&SQL_STRUCT_HV);
 396 8 if (SQL_STRUCT_HV.SQL_DATA_RETURNED == '1')
 397 {
 398 9 SQLP_INT_VAR = SQL_STRUCT_HV.SQL_VAR_3;
 399 }
 400 10 SQLCODE=SQLCADE;
 401 11 memcpy(SQLSTATE,SQLSTOTE,5);
 402 #if (__OS400_TGTVRM__>=510)
 403 #pragma datamodel(pop)
 404 #endif
 405 }
 406 12 if (sqlca.sqlcade == 100) {
 More...
 Debug . . .

 F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
 F12=Resume F17=Watch variable F18=Work with watch F24=More keys
 SQLCODE = 100
380 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

11.9 Coding example for an external user-defined table
function

In this section, we provide sample coding for an external UDTF. Because SQL does not have
a function that is equivalent to the DIR command in Windows or LS in UNIX, we write a
program to perform this work and create an external UDTF for this program. This external
UDTF receives one parameter of the OS/400 integrated file system (IFS) directory path name
(fewer than 128 characters in length) and returns a list of all of the subdirectories of the
specified path.

We give this UDTF a name of IFSDIR and store it in a schema that is named SQLLIB. The
external program is coded in RPG IV.

Example 11-22 shows the code of the RPG IV program.

Example 11-22 RPG IV code of the IFSDIR program

 *===
 * FolderList UDTF
 *
 * CREATE FUNCTION XXX/IFSDIR (IFSFOLDER VARCHAR(128))
 * RETURNS TABLE (FileName VARCHAR(128),
 * CreateStamp TIMESTAMP,
 * AccessStamp TIMESTAMP,
 * ModStamp TIMESTAMP,
 * Type CHAR(10),
 * DataSize BIGINT,
 * AllocSize BIGINT,
 * Owner CHAR(10))
 * EXTERNAL
 * LANGUAGE RPGLE
 * DISALLOW PARALLEL
 * RETURNS NULL ON NULL INPUT
 * PARAMETER STYLE DB2SQL
 *
 * Compile Instructions:
 * CRTBNDRPG PGM(OBJLIB/IFSDIR) SRCFILE(SRCLIB/QRPGLESRC)
 *===
 H DftActGrp(*No) ActGrp(*Caller) BndDir('QC2LE')
 *
 * Table Function Inputs
 D Folder S 128 Varying
 *
 * Table Function Columns 1A
 D FileName S 128 Varying
 D CreateStamp S Z
 D AccessStamp S Z
 D ModStamp S Z
 D Type S 10
 D DataSize S 20I 0
 D AllocSize S 20I 0
 D Owner S 10
 *
 * NULL Indicator Variables
 D Folder_NI S 5I 0
 D FileName_NI S 5I 0
 D CreateStamp_NI S 5I 0
 D AccessStamp_NI S 5I 0
 D ModStamp_NI S 5I 0
 D Type_NI S 5I 0
Chapter 11. External user-defined functions 381

 D DataSize_NI S 5I 0
 D AllocSize_NI S 5I 0
 D Owner_NI S 5I 0
 *
 * UDTF Call Type Parm
 D CallType s 10i 0
 *
 * UDTF call parameter constants
 D UDTF_FirstCall s 10i 0 Inz(-2)
 D UDTF_Open s 10i 0 Inz(-1)
 D UDTF_Fetch s 10i 0 Inz(0)
 D UDTF_Close s 10i 0 Inz(1)
 D UDTF_LastCall s 10i 0 Inz(2)
 *
 * SQL States
 D SQLSTATEOK c '00000'
 D ENDOFTABLE c '02000'
 D UDTF_ERROR c 'US001'
 *
 * NULL Constants
 D ISNULL c -1
 D NOTNULL c 0
 *
 * Prototypes for all procedures
 D GetAttr pr n
 D QPathName 128 Const
 D CountryID 2 Const
 D LangID 3 Const
 *
 * Get IFS Object Attributes
 DQp0lGetAttr pr 10i 0 ExtProc('Qp0lGetAttr')
 D pPath * Value
 D pAttrArr * Value
 D pBuffer * Value
 D pBufferSize 10u 0 Value
 D pBufferSizeN * Value
 D pNoBytes * Value
 D pSymLinkUse 10u 0 Value
 *
 * Directory Prototype Entries
 *
 * Open an IFS Directory
 DOpenDir PR * EXTPROC('opendir')
 D dirname * Value
 *
 * Read IFS Directory Contents
 DReadDir PR * EXTPROC('readdir')
 D dirhndl * Value
 *
 * Close IFS Directory
 DCloseDir PR 10i 0 EXTPROC('closedir')
 D dirhndl * Value
 *
 * IFS Entry Handles
 D dirName s 128
 D dirHandle s *
 D DirPtr s *
 D dsDirEntry ds Based(DirPtr)
 D MiscInfo 40
 D DirEntryCCSID 10i 0
382 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 D DirEntryCntry 2
 D DirEntryLang 3
 D DirEntryNLSR 3
 D DirEntryL 10u 0
 D DirEntry 640

 * C API Error Retrieval

 dGetErrNo pr * Extproc('__errno')
 dStrError pr * Extproc('strerror')
 d 10i 0 Value
 *
 dErrNo s 10i 0 Based(pErrNo)
 dErrStr s 128 Based(ptrStrError)
 dptrStrError s *
 *
 dErrDesc s 128
 dStatus s 128
 dNULL s 1 Inz(X'00')
 *
 * Parameters for DB2SQL parameter style
 *
 * SQL State - Input/Output
 D SQL_State s 5
 * Function Name Schema.Def name - Input only
 D Function_Name s 517
 * Function Specifc Name - Input Only
 D Specific_Name s 128
 * Message Text - Input/Output
 D Msg_Text s 70 Varying
 *
 * Error Code Data Structure for API Calls
 DdsErrCode DS
 D BytesPrv 10i 0 Inz(%Size(dsErrCode))
 D BytesAvl 10i 0 Inz(%Size(dsErrCode))
 D ExcID 7
 D Reserved 1
 D ErrData 128

 C *Entry PList
 *
 * Function input parameters
 C Parm Folder
 *
 * Function output parameters
 C Parm FileName
 C Parm CreateStamp
 C Parm AccessStamp
 C Parm ModStamp
 C Parm Type
 C Parm DataSize
 C Parm AllocSize
 C Parm Owner
 *
 * Function NULL input parameter indicators
 C Parm Folder_NI
 *
 * Function NULL output parameter indicators
 C Parm FileName_NI
 C Parm CreateStamp_NI
Chapter 11. External user-defined functions 383

 C Parm AccessStamp_NI
 C Parm ModStamp_NI
 C Parm Type_NI
 C Parm DataSize_NI
 C Parm AllocSize_NI
 C Parm Owner_NI
 *
 * DB2SQL Style Parms
 C Parm SQL_State
 C Parm Function_Name
 C Parm Specific_Name
 C Parm Msg_Text
 *
 * UDTF CallType flag parm (Open,Fetch,Close)
 C Parm CallType
 *
 * Process Table Request
 C/Free
 SQL_State=SQLSTATEOK;
 pErrNo=GetErrNo;
 ErrNo=*Zero;

 Select;
 //
 // Step 1. When CALL TYPE is UDTF_OPEN, perform
 // initialization work. Data is not
 // returned at this time. If an error
 // occurs here, resource cleanup has
 // to be done because the UDTF will
 // not be called again with a UDTF_CLOSE.
 //
 When CallType=UDTF_Open;
 dirName=%TrimR(Folder)+NULL;
 dirHandle=OpenDir(%Addr(DirName));
 If dirHandle=*NULL;
 pErrNo=GetErrNo;
 Status=*Blanks;
 ptrStrError=StrError(ErrNo);
 If (ptrStrError<>*Null);
 Status=%Subst(ErrStr:1:
 %Scan(NULL:ErrStr)-1);
 SQL_State=UDTF_ERROR;
 Msg_Text=%Char(ErrNo)+' '+Status;
 *InLR=*On;
 Endif;
 EndIf;
 //
 // Step 2. When CALL TYPE is UDTF_FETCH, retrieve
 // data on a row by row basis. The output
 // column parameters should be filled in
 // as well as the appropriate NULL indicator
 // variables set. This call will in effect
 // return one row to the "virtual" table.
 //
 // When the table has no more data to fetch,
 // the SQL_State should be set to '02000'
 // (No Data). Neglecting to return this
 // end of table marker will result in an
 // inifinte loop.
 //
384 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 When CallType=UDTF_Fetch;
 // Read directory entry
 DirPtr=ReadDir(dirHandle);

 If DirPtr=*Null;
 pErrNo=GetErrNo;
 If ErrNo<>*Zero;
 Status=*Blanks;
 ptrStrError=StrError(ErrNo);
 If (ptrStrError<>*Null);
 Status=%Subst(ErrStr:1:
 %Scan(NULL:ErrStr)-1);
 SQL_State=UDTF_ERROR;
 Msg_Text=%Char(ErrNo)+' '+Status;
 Endif;
 Else;
 //End of Table Condition
 SQL_State=ENDOFTABLE;
 EndIf;
 Else;
 // Get attributes for directory entry
 If GetAttr(Folder+'/'+%Subst(dirEntry:1:DirEntryL):
 DirEntryCntry:DirEntryLang)=*On;
 // Set Indicator Flags to NULL
 CreateStamp_NI=ISNULL;
 AccessStamp_NI=ISNULL;
 ModStamp_NI=ISNULL;
 Type_NI=ISNULL;
 DataSize_NI=ISNULL;
 AllocSize_NI=ISNULL;
 Owner_NI=ISNULL;
 Else;
 // Set Indicator Flags to NOT NULL
 CreateStamp_NI=NOTNULL;
 AccessStamp_NI=NOTNULL;
 ModStamp_NI=NOTNULL;
 Type_NI=NOTNULL;
 DataSize_NI=NOTNULL;
 AllocSize_NI=NOTNULL;
 Owner_NI=NOTNULL;
 EndIf;
 FileName_NI=NOTNULL;
 EndIf;
 //
 // Step 3. When CALL TYPE is UDTF_CLOSE, perform
 // cleanup work. This value is passed when
 // the FETCH routine signals an error or
 // signals an end of table condition.
 //
 When CallType=UDTF_Close;
 CloseDir(dirHandle);
 *InLR=*On;
 EndSl;
 Return;

 BegSr *PSSR;
 SQL_State=UDTF_ERROR;
 Msg_Text='General Program Error';
 *InLR=*On;
 Return;
Chapter 11. External user-defined functions 385

 EndSr;
 /End-Free
 *===
 * GetAttr (call the Qp0lGetAttr API)
 *
 * Get Attribute for Stream File or Object
 *
 * Returns:
 * Error flag (Indicator - *on/*Off). If *on then the
 * attributes were not retrieved.
 *
 * Parameters:
 * QPathName INPUT Fully qualified path name of object
 * to retrieve attributes for.
 *===
 P GetAttr b
 D GetAttr pi n
 D QPathName 128 Const
 D CountryID 2 Const
 D LangID 3 Const
 *
 D dsPath ds
 D pCCSID 10i 0 Inz(0)
 D pCountryID 2
 D pLangID 3
 D pResrv 3 Inz(x'000000')
 D pPathType 10i 0 Inz(0)
 D pPathNameLen 10i 0 Inz(%Size(pPathName))
 D pPathNameDlm 2 Inz('/')
 D pResrv2 10 Inz(x'00000000000000000000')
 D pPathName Like(qPathName)
 *
 * IFS Object attribute list to retrieve
 D dsAttrArray ds 1B
 D NoAttribs 10i 0 Inz(7)
 D ReqAttrID1 10i 0 Inz(cATTR_OBJType)
 D ReqAttrID2 10i 0 Inz(cATTR_Auth)
 D ReqAttrID3 10i 0 Inz(cATTR_AccTime)
 D ReqAttrID4 10i 0 Inz(cATTR_ModTime)
 D ReqAttrID5 10i 0 Inz(cATTR_CrtTime)
 D ReqAttrID6 10i 0 Inz(cATTR_DataSize)
 D ReqAttrID7 10i 0 Inz(cATTR_AllcSize)

 D BufferSizeReq s 10u 0
 D BytesReturned s 10u 0
 D ReturnCode s 10i 0
 *
 * Return Buffer to Receive File System Attributes
 D dsAttrRetBuf ds based(ptrRetBuffer)
 D AttrOffset 10i 0
 D AttrID 10i 0
 D AttrSize 10i 0
 D AttrReserved 10i 0
 D AttrData 1024
 D AttrDataN 10u 0 Overlay(AttrData)
 *
 D ptrRetBuffer s * Inz(%Addr(RetBuffer))
 D RetBuffer s 2048
 D i s 3 0
 *
386 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 D zEpochTime s z Inz(z'1970-01-01-00.00.00.000000')
 D zResultDate s z
 *
 * Constants for GET FILE ATTRIBUTES Qp0lGetAttr
 D cATTR_OBJType c const(0)
 D cATTR_DataSize c const(1)
 D cATTR_AllcSize c const(2)
 D cATTR_ExtAtrSz c const(3)
 * NOTE: Times are returned in seconds from Epoch Date
 D cATTR_CrtTime c const(4)
 D cATTR_AccTime c const(5)
 D cATTR_ChgTime c const(6)
 D cATTR_ModTime c const(7)
 *
 D cATTR_StgFree c const(8)
 D cATTR_CheckOut c const(9)
 D cATTR_LclRemot c const(10)
 D cATTR_Auth c const(11)
 D cATTR_FileID c const(12)
 D cATTR_ASP c const(13)
 *
 * Object Authority Structure
 D dsAuthority ds based(ptrAuthority)
 D Auth_owner 10
 D Auth_prigroup 10
 D Auth_Autl 10
 D Auth_rsv1 10
 D Auth_Offset 10i 0
 D Auth_NoUsers 10i 0
 D Auth_EntSize 10i 0
 *
 D ptrAuthority s *
 *
 * This structure is used for authorization entries for a given
 * object. The single char flags (us_read, etc.) will
 * contain a hex 00 or 01, not an EBCDIC 0 or 1.
 *
 D dsUserStruc ds based(ptrUserStruc)
 D us_Name 10
 D us_dataauth 10
 D us_objmgt 1
 D us_objexist 1
 D us_objalter 1
 D us_objref 1
 D us_rsv1 10
 D us_objoper 1
 D us_read 1
 D us_add 1
 D us_update 1
 D us_delete 1
 D us_execute 1
 D us_exclude 1
 D us_rsv2 7
 *
 D ptrUserStruc s *
 *
 * UTC Time Offset (Sign Hours Minutes, ex: EST is -0500)
 D dsUTCOffset ds Static
 D Sign 1
 D Hours 2s 0
Chapter 11. External user-defined functions 387

 D Minutes 2s 0
 *
 D UTCAdjust s 10i 0 Static
 *
 * Prototype for UTC Time Offset
 D QWCRSVAL PR ExtPgm('QWCRSVAL')
 D Buffer 100 Const
 D BufferLen 10u 0 Const
 D NoConsts 10u 0 Const
 D ConstList 10 Const
 D ErrorStuc Like(dsErrCode)

 D Buffer S 100
 C/Free
 //
 // Retrieve UTC Offset for this machine, the first time through
 //
 // If the time stamp shown by the function is incorrect, comment
 // out the code in this IF/ENDIF block.
 //
 If dsUTCOffset=*Blanks;
 CallP(E) QWCRSVAL(Buffer:%Size(Buffer):1:
 'QUTCOFFSET':dsErrCode);
 //
 // Calculate the number of seconds to adjust the Epoch Time
 //
 dsUTCOffset=%Subst(Buffer:93:5);
 UTCAdjust=Hours*3600 + Minutes*60;
 If Sign='-';
 UTCAdjust=-UTCAdjust;
 EndIf;
 EndIf;
 //--
 // Call API
 //--
 pPathName=qPathName;
 pPathNameLen=%Len(%Trim(qPathName));
 pCountryID=CountryID;
 pLangID=LangID;
 //
 // Retrieve Object Attributes
 //
 ReturnCode=Qp0lGetAttr(%Addr(dsPath):
 %Addr(dsAttrArray):
 %Addr(RetBuffer):
 %Size(RetBuffer):
 %Addr(BufferSizeReq):
 %Addr(BytesReturned):0);
 //
 // If creation time attribute successfully, received then convert
 // to date. (Creation time is given in the number of seconds
 // passed since the Epoch time of Jan 1, 1970.)
 //
 If ReturnCode=*Zero;
 FileName=%Subst(DirEntry:1:DirEntryL);
 For i=1 To NoAttribs;
 Select;
 //
 // Calculate Time Attributes
 //
388 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 When AttrID=cATTR_CrtTime Or
 AttrID=cATTR_AccTime Or
 AttrID=cATTR_ModTime;
 //
 // Add the number of seconds to the epoch time
 // Then add the number of seconds to adjust for the UTC offset
 //
 zResultDate=zEpochTime + %Seconds(AttrDataN)
 + %Seconds(UTCAdjust);

 //
 // Fill in return parameters
 //
 Select;
 When AttrID=cAttr_CrtTime;
 CreateStamp=zResultDate;
 When AttrID=cAttr_AccTime;
 AccessStamp=zResultDate;
 When AttrID=cAttr_ModTime;
 ModStamp=zResultDate;
 EndSl;
 //
 // Set Object Type & Data Sizes
 //
 When AttrID=cATTR_ObjType;
 Type=%Subst(AttrData:1:10);
 When AttrID=cATTR_DataSize;
 DataSize=AttrDataN;
 When AttrID=cATTR_AllcSize;
 AllocSize=AttrDataN;
 When AttrID=cATTR_Auth;
 ptrAuthority=%Addr(AttrData);
 Owner=Auth_Owner;
 //
 // To evaluate the user entries/authorities, cycle through the
 // list as follows
 //
 // ptrUserStruc=%Addr(RetBuffer)+Auth_offset;
 // For j=1 to Auth_NoUsers;
 // ptrUserStruc=ptrUserStruc+Auth_EntSize;
 // EndDo;
 //
 EndSl;
 //
 // Set Pointer for next attribute
 //
 ptrRetBuffer=%Addr(RetBuffer)+AttrOffset;
 EndFor;
 Return *Off;
 Else;
 // Error Occurred
 pErrNo=GetErrNo;
 ErrNo=0;
 Return *On;
 EndIf;
 /END-FREE
 P E
Chapter 11. External user-defined functions 389

You compile the program with the following CL command:

CRTBNDRPG PGM(SQLLIB/IFSDIR) SRCFILE(XXXXXX/QRPGLESRC) SRCMBR(IFSDIR)

After the program object is created in the library SQLLIB, register the external UDTF that is
named IFSDIR with the following SQL statement:

CREATE FUNCTION SQLLIB.IFSDIR (IFSFOLDER VARCHAR(128))
 RETURNS TABLE (FILENAME VARCHAR(128), 1C
 CREATESTAMP TIMESTAMP,
 ACCESSSTAMP TIMESTAMP,
 MODSTAMP TIMESTAMP,
 TYPE CHAR(10),
 DATASIZE BIGINT,
 ALLOCSIZE BIGINT,
 OWNER CHAR(10))
 EXTERNAL NAME ‘SQLLIB/IFSDIR’ 2
 LANGUAGE RPGLE
 DISALLOW PARALLEL
 RETURNS NULL ON NULL INPUT
 PARAMETER STYLE DB2SQL ;

The following special comments refer to the previous SQL statement:

� The column definition of the returned table at 1C must match the column definitions at 1A
and 1B in Example 11-22 on page 381.

� The parameter of EXTERNAL NAME 2 must be enclosed between a pair of single quotation
marks.

After a UDTF is registered, you must invoke it only from the FROM clause of the SELECT
statement. It must be cast to a table type by the built-in TABLE() function, as shown in the
following example:

SELECT * FROM TABLE(SQLLIB.IFSDIR (‘/QIBM’) AS X ;
390 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Figure 11-20 shows a sample result of the IFSDIR UDTF.

Figure 11-20 Result of the IFSDIR UDTF
Chapter 11. External user-defined functions 391

392 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Appendix A. Sample ILE C program that uses
the QDBRTVFD API

This appendix shows code for a sample Integrated Language Environment (ILE) C program
that uses the Retrieve File Description application programming interface (API). This program
shows how to obtain information about the triggers that are associated with a physical file.
The program can also be modified easily to retrieve information about the referential integrity
constraints.

A

© Copyright IBM Corp. 2001, 2016. All rights reserved. 393

Sample ILE C program that uses the QDBRTVFD API

Example A-1 shows a sample ILE C program where the Retrieve File Description API is used.

Example A-1 ILE C program that uses the QDBRTVFD API

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "QSYSINC/H/TRGBUF"
#include "QSYSINC/H/QDBRTVFD"

#define BUF_SIZE 70

void proc_fild0100(void);
struct error_code {
 int bytes_provided;
 int bytes_available;
 char message_id[7];
} error_code;

char buf[BUF_SIZE];
char in_data[200];
char return_data[5000];
Qdb_Rfd_Input_Parms_t *in_parms;
Qdb_Qdbfh_t *fdt_100;
Qdb_Qdbfphys_t *phy_100;
Qdb_Qdbftrg_t *trg_100;

main(int argc, char *argv[])
{
 char *library, *file;
 int i;

 in_parms = (Qdb_Rfd_Input_Parms_t *) in_data;
 memset(in_parms->File_And_Library_Name, ' ', 20);
 memset(in_parms->Record_Format_Name, ' ', 10);
 if (argc == 1) /*.... Analyzing the parameter list*/
 {
 printf("Invalid number of parameters\n");
 exit(1);
 }
 else if (argc >= 2)
 {
 library = strtok(argv[1], "/");
 if((file = strtok(NULL, "/")) == NULL)
 {
 memcpy(in_parms->File_And_Library_Name, argv[1],
 strlen(argv[1]));
 memcpy(in_parms->File_And_Library_Name+10, "*LIBL", 5);
 }
 else
 {
 memcpy(in_parms->File_And_Library_Name, file,
 strlen(file));
 memcpy(in_parms->File_And_Library_Name+10, library,
 strlen(library));
 }
 if (argc >= 3)
394 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 memcpy(in_parms->Record_Format_Name, argv[2],
 strlen(argv[2]));
 else
 memcpy(in_parms->Record_Format_Name,
 in_parms->File_And_Library_Name, 10);
 }
for (i=0; i<20; i++)
 {
 in_parms->File_And_Library_Name[i] =
 toupper(in_parms->File_And_Library_Name[i]);
 }
for (i=0; i<10; i++)
 {
 in_parms->Record_Format_Name[i] =
 toupper(in_parms->Record_Format_Name[i]);
 }
memset(buf, ' ', BUF_SIZE);
 /***/
 /* Set up the parameters that are passed for the API.*/
 /***/
in_parms->Length_Of_Receiver_Var = 5000;

memcpy(in_parms->File_Override_Flag, "0", 1);
memcpy(in_parms->System, "*LCL ", 10);
memcpy(in_parms->Format_Type, "*EXT ", 10);
memcpy(in_parms->Format_Name, "FILD0100", 8);

error_code.bytes_provided = 15;
 /***/
 /* Call the API. */
 /***/

QDBRTVFD(return_data,
 in_parms->Length_Of_Receiver_Var,
 &in_parms->Returned_File_And_Library,
 in_parms->Format_Name,
 &in_parms->File_And_Library_Name,
 in_parms->Record_Format_Name,
 in_parms->File_Override_Flag,
 in_parms->System,
 in_parms->Format_Type,
 &error_code);

 /***/
 /* If the retrieve was successful. */
 /***/
if (error_code.bytes_available == 0)
 {
 fdt_100 = (Qdb_Qdbfh_t *) return_data;
 /* If the file is a physical file. */
 if (! fdt_100->Qdbfhflg_t.Qdbfhfpl)
 {
 phy_100 = (Qdb_Qdbfphys_t *) (return_data + fdt_100->Qdbpfof);
 /* If the file has a valid number of triggers. */
 if ((phy_100->Qdbftrgn > 0) && (phy_100->Qdbftrgn < 7))
 proc_fild0100();
 else /* Else the file has invalid # of triggers. */
 printf("No triggers or invalid number of triggers..\n");
 }
 else /* Else the file is not a physical file. */
Appendix A. Sample ILE C program that uses the QDBRTVFD API 395

 printf("The file is not a physical file...\n");
 }
else /* Else the retrieve failed. */
 {
 printf("Bad error code from QDBRTVFD : %s\n",
 error_code.message_id);
 if (!strncmp(error_code.message_id, "CPF5715", 7))
 printf("File %10.10s in library %10.10s not found...\n",
 in_parms->File_And_Library_Name,
 in_parms->File_And_Library_Name + 10);
 }
} /* End of main program function. */
/***/
/******** Process the format for FILD0100 on the api call. */
/***/
void proc_fild0100() {
int j;
printf("Trigger information for file %10.10s in library %10.10s\n",
 in_parms->File_And_Library_Name+10,
 in_parms->File_And_Library_Name);
printf("Number of triggers: %i\n", phy_100->Qdbftrgn);
 /.... Set pooointer to the trigger information area*/
 trg_100 = (Qdb_Qdbftrg_t *) (return_data + phy_100->Qdbfotrg);
 /* Print a header line and start for loop. */
 memset(buf, '*', BUF_SIZE);
 buf[BUF_SIZE] = '\0';
 printf("%s\n", buf);

 printf(" Physical File Trigger Information \n");

for (j=1; j <= phy_100->Qdbftrgn; j++) {
 printf("%s\n", buf);
 printf("Trigger program: %10.10s in library %10.10s\n",
 trg_100->Qdbftpgm, trg_100->Qdbftplb);
 printf("Trigger Time:");
 switch(*trg_100->Qdbftrgt) /*... print TRIGGER TIME ...*/
 {
 case '1':printf(" *AFTER\n");
 break;
 case '2':printf(" *BEFORE\n");
 break;
 }
 printf("Trigger Event:");
 switch(*trg_100->Qdbftrge) /*... print TRIGGER EVENT ...*/
 {
 case '1':printf(" *INSERT\n");
 break;
 case '2':printf(" *DELETE\n");
 break;
 case '3':printf(" *UPDATE");
 switch(*trg_100->Qdbftupd)
 {
 case '1': printf(" *ALWAYS\n");
 break;
 case '2': printf(" *CHANGE\n");
 break;
 }
 break;
 }
396 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

 /* Increment the pointer to the next trigger.*/
 trg_100 ++;
 } /* end of for loop in trigger processing */
}

On the display, this program shows the list of triggers that are associated with a database file.
The list is retrieved by using the QDBRTVFD APIs. A complete description of this API is in
System API Programming, SC41-5800, which is available at the following website:

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c4158000.pdf

This utility can be created and called in the following way:

CRTBNDC PGM(T4249TRGI)
 SRCFILE(C)
CALL T4249TRGI PARM('mylib/filename' 'Record-format-name')

The second parameter, if not specified, defaults to the file name. If you do not specify the
library, it defaults to *LIBL.
Appendix A. Sample ILE C program that uses the QDBRTVFD API 397

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c4158000.pdf

398 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Appendix B. Order Entry application: Detailed
flow

This appendix provides detailed flow charts of each module that is included in the Order Entry
application scenario. The following modules are described:

� Program flow for the Insert Order Header program
� Program description for the Insert Order Header program
� Program flow for the Insert Order Detail program
� Program description for the Insert Order Detail program
� Program flow for the Finalize Order program
� Program description for the Finalize Order program

B

© Copyright IBM Corp. 2001, 2016. All rights reserved. 399

Program flow for the Insert Order Header program

DB2 Universal Database for iSeries functional highlights in this program include the following
topics:

� Referential integrity constraints for the Order Header table
� Insert trigger on the Order Header file

Figure B-1 shows a functional description of the various components of this application
scenario.

Figure B-1 Insert Order Header program flow

SEND
MESSAGE

CUSTOMER #
NOT VALID

SEND
MESSAGE

SALES PERSON / CUSTOMER
RELATIONSHIP NOT VALID

A
TAKE INPUT
 FROM
 SCREEN

INSERT
ORDER
HEADER

OK
RI
 ?

OK TO
INSERT

B

RI

TRIGGER
ON
INSERT

CHECK
RELATIONSHIP
WRITE AUDIT

TRAIL

DIFFERENT
ACTIVATION GROUP
400 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Program description for the Insert Order Header program

The idea of this program is to show how to use the following new database functions in a real
application:

� Referential integrity: When a record is inserted in the Order Header file, the system
checks for an existing customer in the Customer table.

� Database trigger: Before the insert operation completes, the database manager activates
a program that can verify whether the sales representative is assigned to the customer,
and log any violation attempt.

� Program description: The sales person periodically calls the customer over the phone and
places an order. The sales person enters the customer number, the order and delivery
date, and other general information. Our application does not automatically generate an
order number. For the sake of simplicity, the order number is entered by the sales
representative.

A more detailed flow of this program is described:

1. The program inserts a row into the Order Header table.

2. If the database referential constraint enforcement detects a customer number that is not
defined in the Customer table, a program message is sent to explain that the customer
number is invalid. A correct customer number must be entered.

3. The customer name is displayed at the terminal.

4. A row is inserted into the Order Header table.

5. Because an insert trigger is defined on this table, a program is automatically triggered by
the database manager.

6. The trigger program checks whether the current user profile is associated with the
customer in the Sales/Customer table. If no match exists, the program writes an audit trail
entry to an audit table.

7. If the insert is successful, the program returns a positive return code to the main program,
which calls the Insert Order Detail program.

Program flow for the Insert Order Detail program

DB2 for i functional highlights in this program include the following topics:

� Referential integrity constraints for the Order Detail table

� Referential integrity constraints for the Stock table (on the remote system)

� Two-phase commit and the second stage of Distributed Relational Database Architecture
(DRDA-2) or DRDA Level 2

� Remote stored procedure
Appendix B. Order Entry application: Detailed flow 401

The program flow for Insert Order Detail is shown in Figure B-2.

Figure B-2 Insert Order Detail program flow

ROLLBACK

RI

Y

N

Y

2-PHASE
COMMIT

C

SET
CONNECTION

REMOTE
CONNECT

CALL STORED
PROCEDURE

SET
CONNECTION

N

N

 STORED
PROCEDURE

INSERT ORDER
DETAIL

CANCEL
 ?

MORE
 ?

E

Y

CHECK
ORDER #

TAKE PRODUCT
NUMBER FROM
 SCREEN

C

FROM ORDER HEADER PROGRAM:
CUSTOMER #, ORDER #

CANCEL
ORDER

BEGIN
 ?

MORE
ITEMS
 ?

ALT
ITEM
OK?

CANCEL
 ?

E

B

N

N

N

Y

402 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Program description for the Insert Order Detail program

The idea of this program is to show how to use the following new database functions in a real
application:

� Referential integrity: When a record is inserted into the Order Detail table for a new order
item, the system checks for a matching order number in the Order Header table.

� Two-phase commit with DRDA, Level 2: This procedure inserts a record in a local file and
updates the remote inventory file (STOCK file). At the end of this process, you want to
release the locks on the inventory record, and the transaction is committed. The
two-phase commit support guarantees the integrity of this transaction.

� Stored procedure: To update the remote inventory file, this program calls a remote stored
procedure. The stored procedure checks the availability of the product. If the product has
low inventory levels, the stored procedure looks for an alternative and sends the new
product code and description back to the calling application. The selected product
information is displayed at the terminal and the user can choose to accept or reject the
substitute item.

A more detailed flow of this program is described:

1. Get the customer number and the order number from the Insert Order Header program.

2. Get the product number and quantity for every item from the display.

3. Issue a SET CONNECTION statement to the remote system. All of the necessary
CONNECT statements are performed by the main program.

4. Call a stored procedure at the remote system to perform the following tasks:

– Look for the product number in the remote inventory.

– Update the Stock table, reducing the quantity on hand if the quantity available is
sufficient.

– Look for an alternative product if the requested product is out of stock, and update the
corresponding quantity.

– Pass the product information back to the calling program.

5. The stored procedure then passes control back to the calling program.

6. The program sets a connection to the local system, and if the user accepts the record, the
new item is inserted in the Order Detail file, and the whole transaction is committed. If the
user rejects the item, a rollback brings the stock quantity on hand back to its original value.

7. A rollback is also performed if the referential integrity checking on the Order Detail table
fails. The checking fails if you insert the record with the wrong order number.

8. Optional: The user can cancel the whole order. In this case, a Cancel Order program is
called.

9. The program maintains a work field with the final totals of the whole order. When the entire
order is completed, this value is passed to the next program, Finalize Order.
Appendix B. Order Entry application: Detailed flow 403

Program flow for the Finalize Order program

DB2 for i functional highlights in this program include the trigger on the Update Order Header
row. See Figure B-3 for the program flow.

Figure B-3 Finalize Order program flows

A

MORE
ORDERS

?

COMMIT

END

OK
?ROLLBACKSEND

MESSAGE

N

UPDATE ORDER
HEADER

UPDATE SALES/
CUSTOMERS

UPDATE
CUSTOMERS

OK
?

TRIGGER
ON
UPDATE

FAX

CREDIT LIMIT
>= ORDER TOTAL =
OK

DELETE
ORDER

SEND
MESSAGE

A

CASCADE
DELETE
ORDER
DETAIL

TRIGGER
ON
UPDATE

INVOICE
WRITING

CHECK CREDIT
 LIMIT

READ
CUSTOMER

FROM ORDER DETAIL PROGRAM
CUSTOMER#, ORDER #, ORDER
TOTAL

TAKE INPUT

E

404 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Program description for the Finalize Order program

The idea of this program is to show how to use the database trigger function in a real
application. In this scenario, a program is triggered after the Order Header row is updated
with the total amount of the order. This program prints the invoice at the branch office as soon
as the order is complete.

Also, the program updates the credit limit on the customer file. If the current balance exceeds
90% of the credit limit, a “warning” fax is automatically sent to the customer by a trigger
program to allow the customer to take the appropriate actions (for example, apply for a credit
limit increase, based on the credit history of the customer).

A more detailed flow of this program is described:

1. Get the customer number and the order number from the previous process with the order
grand total.

2. Check the customer record. If the credit limit is exceeded, the order is canceled. To delete
the order, the detail is scanned, and the inventory quantity that is on hand for each item is
updated by adding the amount that was reserved for this order. When this process is
complete, the Order Header is deleted, and all of the order detail disappears as a result of
the *CASCADE constraint on the Order Header file. Finally, the entire transaction is
committed. Again, the two-phase commit support ensures that the local database and the
remote stock file are kept synchronized.

3. If the credit limit is OK, this program updates the following fields:

– The total amount in the customer file to track the customer balance

– The total amount in the Sales Representative/Customer table to reflect the sales
person’s turnover with the customer

– The total amount in the Order Header table items at invoice time

4. Because an update trigger is specified on the Order Header table, an invoice program is
started immediately. The invoice for the completed order is printed in the branch office.

5. After the preceding updates are complete, COMMIT is executed.

6. If more orders exist, the Insert Order Header program starts again.

7. If no more orders exist, this Order Entry application ends.
Appendix B. Order Entry application: Detailed flow 405

406 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The web material that is associated with this book is available in softcopy on the Internet from
the IBM Redbooks web server. Point your web browser at this website:

ftp://www.redbooks.ibm.com/redbooks/SG246503

Alternatively, you can go to the IBM Redbooks website:

http://www.redbooks.ibm.com/

Select Additional materials and open the directory that corresponds with the IBM Redbooks
form number, SG246503.

Using the web material

The additional web material that accompanies this book includes the following files:

File name Description
dbadvfun.zip IBM i and client source image
readme.zip Readme documentation

C

© Copyright IBM Corp. 2001, 2016. All rights reserved. 407

ftp://www.redbooks.ibm.com/redbooks/SG246503
http://www.redbooks.ibm.com/

System requirements for downloading the web material

The web material requires the following system configuration:

� IBM i requirements:

– OS/400 Version 5 Release 1
– 5722-ST1 - DB2 Query Manager and SQL Development Kit
– 5722-SS1 - Host servers

� Personal computer software:

– Microsoft Windows 95/98, Windows NT, or Windows 2000
– iSeries/IBM i Access Express for Windows
– PC5250 Emulation

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material (a compressed file) into this folder.

The readme.txt file contains the instructions for restoring the IBM i libraries and directories
and installing the PC clients and runtime notes.
408 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks publications
The following IBM Redbooks publications provide additional information about the topic in this
document. Several publications referenced in this list might be available in softcopy only.

� A Fast Path to AS/400 Client/Server Using AS/400 OLE DB Support, SG24-5183

� SQL Procedures, Triggers, and Functions on DB2 for i, SG24-8326

� Advanced Functions and Administration on DB2 Universal Database for iSeries,
SG24-4249

� DB2 UDB for AS/400 Object Relational Support, SG24-5409

� DB2 Universal Database for iSeries Administration: The Graphical Way on V5R3,
SG24-6092

� Building Java Applications for the iSeries Server with VisualAge for Java, SG24-6245

� Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and
More, SG24-5402

Other resources
These publications are also relevant as further information sources:

� Backup and Recovery, SC41-5304

� Database Programming, SC41-5701

� DB2 UDB for AS/400 SQL Programming, SC41-5611

� SQL Reference, SC41-5612

� System API Programming, SC41-5800:

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c4158000.pdf

� Conte, Paul, Database Design and Programming for DB2/400, 29th Street Press, April
1997, ISBN 1-8824190-65

� Conte, Paul and Cravitz, Mike, SQL/400 Developer’s Guide, 29th Street Press, September
2000, ISBN 1-882419-70-7

Referenced websites
These websites are also relevant as further information sources:

� IBM Toolbox for Java driver:

https://ibm.biz/Bd4c5V

� SQL Reference for Cross-Platform Development:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf
© Copyright IBM Corp. 2001, 2016. All rights reserved. 409

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c4158000.pdf
https://ibm.biz/Bd4c5V
ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/cpsqlrv11.pdf

� DB2 Universal Database for iSeries SQL Messages and Codes:

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/info/rzala/rzalamst.pdf

� IBM i Information Center:

http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/index.htm

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
410 External Procedures, Triggers, and User-Defined Functions on IBM DB2 for i

https://publib.boulder.ibm.com/iseries/v5r1/ic2924/info/rzala/rzalamst.pdf
http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/index.htm
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

IS
B

N
 0738441597

S
G

24-6503-03

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

External Procedures, Triggers, and User-Defined Functions on IBM
 DB2 for i

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738441597

SG24-6503-03

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	April 2016, Fourth Edition

	IBM Redbooks promotions
	Chapter 1. Introducing IBM DB2 for i
	1.1 An integrated relational database
	1.2 DB2 for i overview
	1.2.1 DB2 for i basics
	1.2.2 Stored procedures, triggers, and user-defined functions

	1.3 DB2 for i sample schema

	Chapter 2. Stored procedures, triggers, and user-defined functions for an Order Entry application
	2.1 Order Entry application overview
	2.2 Order Entry database overview
	2.3 Stored procedures and triggers in the Order Entry database
	2.3.1 Stored procedures
	2.3.2 Triggers
	2.3.3 User-defined functions

	Chapter 3. Stored procedures
	3.1 Introduction
	3.2 Stored procedure types
	3.2.1 SQL stored procedures
	3.2.2 External stored procedure

	3.3 Registering stored procedures
	3.3.1 CREATE PROCEDURE
	3.3.2 DECLARE PROCEDURE

	3.4 System catalog tables
	3.4.1 SYSROUTINES catalog
	3.4.2 SYSPARMS catalog

	3.5 Procedure signature and procedure overloading
	3.6 Deleting or replacing stored procedures
	3.6.1 Using a command line to drop a procedure
	3.6.2 Dropping overloaded procedures

	3.7 Authorization and adopted authority
	3.8 Returning result sets from stored procedures

	Chapter 4. External stored procedures
	4.1 Registering external stored procedures
	4.1.1 Registering an external procedure with System i Navigator

	4.2 Parameter styles in external stored procedures
	4.2.1 SQL parameter style
	4.2.2 DB2SQL parameter style
	4.2.3 GENERAL WITH NULLS parameter style
	4.2.4 GENERAL parameter style

	4.3 Coding external stored procedures
	4.3.1 Coding for SQL parameter style
	4.3.2 Coding the DB2SQL parameter style
	4.3.3 Coding the GENERAL WITH NULLS parameter style

	4.4 Returning result sets from external procedures
	4.4.1 Coding external stored procedures that return cursor result sets
	4.4.2 Coding external stored procedures that return array result sets

	4.5 CLI client program that calls a procedure that returns multiple result sets
	4.6 Moving into production (save and restore)
	4.7 The Order Entry application: Stored procedure examples
	4.7.1 Calling a stored procedure
	4.7.2 Sample stored procedure: SQL RPG version

	4.8 External stored procedure that uses a service program
	4.9 RPG IV example for an external stored procedure
	4.9.1 External stored procedure that writes to a data queue
	4.9.2 External stored procedure that reads from a data queue
	4.9.3 Calling external stored procedures from the Run SQL Scripts utility

	Chapter 5. Java stored procedures
	5.1 Prerequisites
	5.2 Coding DB2 for i Java stored procedures
	5.2.1 Parameter styles
	5.2.2 Data type compatibility
	5.2.3 Database connection in a Java stored procedure
	5.2.4 Returning result sets in Java stored procedures

	5.3 Coding examples
	5.3.1 Compilation of Java code
	5.3.2 Where to place Java classes
	5.3.3 Creating Java programs

	5.4 Registering Java stored procedures
	5.4.1 Registering Java stored procedures with System i Navigator
	5.4.2 Using the Run SQL Scripts utility
	5.4.3 Using the native interface

	5.5 Calling Java stored procedures
	5.6 Using SQL NULL
	5.7 SQLJ procedures to manipulate JAR files
	5.7.1 SQLJ.INSTALL_JAR
	5.7.2 SQLJ.REMOVE_JAR
	5.7.3 SQLJ.REPLACE_JAR
	5.7.4 SQLJ.UPDATEJARINFO
	5.7.5 SQLJ.RECOVERJAR

	5.8 Additional considerations
	5.8.1 Moving into production (save and restore)

	5.9 GetSuppliers example: Implementation with no result sets
	5.9.1 Stored procedure: GetSupplier
	5.9.2 Java client: ClientGetSupplier
	5.9.3 Java GUI client: ClientGetSupplierGUI

	5.10 GetSupplierRS example: Implementation with result sets
	5.10.1 GetSupplierRS stored procedure with the JAVA parameter style
	5.10.2 GetSupplierRS stored procedure with the DB2GENERAL parameter style
	5.10.3 Java clients: ClientGetSupplier and ClientGetSupplierGUI

	5.11 Problem determination
	5.11.1 Debugging
	5.11.2 Tracing

	Chapter 6. Stored procedure error handling
	6.1 Database error reporting strategy
	6.1.1 User-defined errors and warnings
	6.1.2 Consistent error handling

	6.2 Error handling in SQL stored procedures
	6.2.1 Condition and handler declaration
	6.2.2 SIGNAL and RESIGNAL
	6.2.3 SQLCODE and SQLSTATE variables in the SQL procedure
	6.2.4 Returning values by using the RETURN statement
	6.2.5 GET DIAGNOSTICS
	6.2.6 Error handling in nested compound statements
	6.2.7 Use nested compound statements for better performance

	6.3 Error handling in external stored procedures
	6.3.1 Checking the stored procedure completion status
	6.3.2 GENERAL and GENERAL WITH NULLS parameter styles

	6.4 Error handling in Java stored procedures
	6.5 Retrieving user-defined errors in a client application
	6.5.1 Retrieving error conditions in a JDBC client
	6.5.2 Retrieving error conditions from an ODBC or CLI client

	6.6 Transaction management in stored procedures
	6.6.1 Transaction management terminology
	6.6.2 Transactional behavior
	6.6.3 SQL statements for controlling transactions
	6.6.4 Transaction management in compound statements

	6.7 External stored procedures and commitment control
	6.7.1 Activation group
	6.7.2 Savepoints

	6.8 Several practical examples
	6.8.1 SQL stored procedure example
	6.8.2 External stored procedure example
	6.8.3 Java stored procedure example
	6.8.4 C++ client code that uses ODBC
	6.8.5 Java example client code
	6.8.6 Results for the example programs

	Chapter 7. Database triggers
	7.1 Trigger concepts
	7.2 Types of triggers in DB2 for i
	7.2.1 SQL triggers
	7.2.2 External triggers

	7.3 Enabling and disabling a trigger
	7.4 Displaying and reviewing trigger information
	7.4.1 Using System i Navigator to view the properties of a trigger
	7.4.2 Displaying trigger information
	7.4.3 Printing trigger information

	7.5 System catalog tables
	7.6 Authorization and adopted authorities on triggers
	7.7 Renaming and copying

	Chapter 8. External triggers
	8.1 Defining a trigger
	8.1.1 ADDPFTRG
	8.1.2 Using System i Navigator to add an external trigger

	8.2 Trigger program structure
	8.2.1 Trigger buffer for RPG
	8.2.2 Trigger buffer for COBOL
	8.2.3 Trigger buffer for C
	8.2.4 Using the trigger buffer

	8.3 Trigger feedback to application programs
	8.3.1 Commitment control and triggers

	8.4 Designing trigger programs
	8.4.1 Order Entry application scenario
	8.4.2 Audit trail trigger example programs
	8.4.3 Updating a trigger on the Order Header file program examples
	8.4.4 Softcoding the trigger buffer example
	8.4.5 Changing the record that fired a trigger

	8.5 Applications and triggers: Design considerations
	8.6 Recommendations

	Chapter 9. Triggers, referential integrity, and constraints
	9.1 Transaction isolation and recovery
	9.2 Trigger journal entries
	9.3 Triggers and referential integrity
	9.4 Comparing referential integrity and triggers
	9.4.1 Using triggers to implement referential integrity rules

	9.5 Constraints and triggers: Ordering the actions
	9.5.1 Insert operations
	9.5.2 Update operations
	9.5.3 Delete operations

	9.6 Triggers, referential integrity, and commitment control
	9.6.1 When the application is not running commitment control
	9.6.2 When the application runs under commitment control

	9.7 Referential integrity, triggers, and journal entries

	Chapter 10. User-defined functions
	10.1 Introduction
	10.2 Nature of user-defined functions
	10.2.1 User-defined scalar functions
	10.2.2 User-defined table functions

	10.3 Type of user-defined functions
	10.3.1 Sourced UDFs
	10.3.2 SQL UDFs
	10.3.3 External UDFs

	10.4 Creating user-defined functions
	10.4.1 CREATE FUNCTION
	10.4.2 Modifying a UDF
	10.4.3 Dropping a UDF

	10.5 Resolving a UDF
	10.5.1 UDF overloading and function signature
	10.5.2 Parameter matching and promotion
	10.5.3 Function path and the function selection algorithm

	10.6 System catalog tables
	10.6.1 SYSROUTINES catalog
	10.6.2 SYSPARMS catalog

	10.7 Authorization and adopted authority
	10.8 Transaction management considerations
	10.9 Coding considerations

	Chapter 11. External user-defined functions
	11.1 User-defined function considerations
	11.2 Registering an external UDF
	11.2.1 Registering an external UDF with System i Navigator
	11.2.2 Registering a Java UDF with System i Navigator

	11.3 Parameter styles in external UDFs
	11.3.1 SQL parameter style
	11.3.2 DB2SQL parameter style
	11.3.3 GENERAL parameter style
	11.3.4 GENERAL WITH NULLS parameter style
	11.3.5 DB2GENERAL parameter style
	11.3.6 JAVA parameter style

	11.4 Scratchpad in UDFs and UDTFs
	11.5 UDF and UDTF calling sequence
	11.6 Coding an external UDF
	11.6.1 Coding the SQL parameter style
	11.6.2 Coding the DB2SQL parameter style
	11.6.3 Coding the GENERAL parameter style
	11.6.4 Coding the GENERAL WITH NULLS parameter style
	11.6.5 Coding the DB2GENERAL parameter style
	11.6.6 Coding the JAVA parameter style

	11.7 Error handling in external UDFs
	11.7.1 Error handling with the DB2SQL parameter style
	11.7.2 Error handling with the DB2GENERAL parameter style

	11.8 Pointer arithmetic and the scratchpad
	11.8.1 Debugging external UDFs

	11.9 Coding example for an external user-defined table function

	Appendix A. Sample ILE C program that uses the QDBRTVFD API
	Sample ILE C program that uses the QDBRTVFD API

	Appendix B. Order Entry application: Detailed flow
	Program flow for the Insert Order Header program
	Program description for the Insert Order Header program
	Program flow for the Insert Order Detail program
	Program description for the Insert Order Detail program
	Program flow for the Finalize Order program
	Program description for the Finalize Order program

	Appendix C. Additional material
	Locating the web material
	Using the web material
	System requirements for downloading the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks publications
	Other resources

	Referenced websites
	Help from IBM

	Back cover

