

ibm.com/redbooks

IBM WebSphere Application
Server V6.1 Security Handbook

Rufus Credle
Tony Chen

Asish Kumar
James Walton

Paul Winters

J2EE application server and enterprise
application security

Additional security components
including Tivoli Access Manager

Sample code and applications
for security examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V6.1
Security Handbook

December 2006

International Technical Support Organization

SG24-6316-01

© Copyright International Business Machines Corporation 2005, 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (December 2006)

This book was updated on June 15, 2009.

This edition applies to WebSphere Application Server V6.1 (base) on IBM AIX V5.2, Red Hat
Enterprise Linux V3, Microsoft Windows 2000; WebSphere Application Server V6.1 Network
Deployment on IBM AIX V5.2, Red Hat Enterprise Linux V3, Windows 2000; and Tivoli Access
Manager V5.1 on IBM AIX V5.2, Red Hat Enterprise Linux V3, and Windows 2000.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this IBM Redbook . xvi
Become a published author . xix
Comments welcome. xix

Part 1. Application server security . 1

Chapter 1. Introduction to this book . 3
1.1 A focus on security . 4
1.2 Scenario-based chapters . 4
1.3 Sample applications . 5
1.4 WebSphere Information Center. 5

Chapter 2. Configuring the user registry . 7
2.1 User registries and repositories. 8
2.2 Stand-alone LDAP registry . 10

2.2.1 Stand-alone LDAP registry for WebSphere Application Server V6.1 14
2.2.2 Configuring the advanced LDAP user registry 19

2.3 Local OS registry. 23
2.3.1 Configuring WebSphere Application Server V6.1 24
2.3.2 Stand-alone custom registry . 26

2.4 Federated repository . 39
2.4.1 Connecting WebSphere Application Server to a federated repository40
2.4.2 Configuring supported entity types in a federated repository 42
2.4.3 Configuring an entry mapping repository in a federated repository . 43
2.4.4 Configuring a property extension repository in a federated repository44

Chapter 3. Administrative security . 49
3.1 Enabling administrative security . 50

3.1.1 Main components of WebSphere security . 51
3.1.2 Security Configuration Wizard. 53
3.1.3 Other security properties. 55
3.1.4 Stopping the application server. 57

3.2 Disabling administrative security . 58
3.3 Administrative roles . 59

3.3.1 Mapping a user to an administrative role . 61

© Copyright IBM Corp. 2006. All rights reserved. iii

3.3.2 Mapping a group to an administrative role . 62
3.3.3 Fine-grained administrative security . 63

3.4 Naming service security: CosNaming roles. 64
3.4.1 Mapping a user or a group to a CosNaming role 65
3.4.2 Applying CosNaming security: An example 65

Chapter 4. SSL administration and configuration management 69
4.1 Creating a new SSL key store entry . 70
4.2 Managing SSL certificates. 74

4.2.1 Expiring certificates . 74
4.2.2 Managing Web server and plug-in certificates 74

4.3 Creating a new SSL configuration. 76
4.4 Additional SSL configuration attributes . 78

4.4.1 Federal Information Processing Standard. 78
4.4.2 Dynamic SSL configuration updates . 78

4.5 Trust managers . 79
4.5.1 Custom trust managers. 80

4.6 Key managers . 83
4.6.1 Custom key managers . 83

Chapter 5. JAAS for authentication in WebSphere Application Server . . 85
5.1 The importance of JAAS . 86
5.2 JAAS in WebSphere . 86
5.3 Custom JAAS login in WebSphere . 88

5.3.1 Callback handler . 88
5.3.2 Login module. 89
5.3.3 Principal . 95
5.3.4 Configuration. 97
5.3.5 Viewing the sample JAAS module in action 99
5.3.6 Programming authentication . 99

5.4 J2C authentication data. 99

Chapter 6. Application security . 101
6.1 Application security . 102

6.1.1 Enabling application security. 102
6.1.2 Testing application security. 103
6.1.3 Application considerations . 103

6.2 Deploying a secured enterprise application . 105
6.2.1 Role mapping during application installation. 105
6.2.2 Role mapping after installation . 106

Chapter 7. Securing a Web application . 109
7.1 Transport channel . 110
7.2 Securing the static content . 110

iv WebSphere Application Server V6.1 Security Handbook

7.2.1 Securing the transport channel between the Web browser and Web
server . 111

7.2.2 Authentication by using a Web server. 113
7.2.3 Authorization by uisng aWeb server . 116

7.3 Securing the Web server plug-in for WebSphere 117
7.3.1 Securing the transport channel between the Web server and

WebSphere. 118
7.3.2 Testing the secure connection . 124

7.4 Securing the Web container of the application server. 126
7.4.1 Securing the transport channel . 126
7.4.2 Authentication by using the Web container. 127
7.4.3 Authorization by using the Web container. 132
7.4.4 Programmatic security . 141

7.5 Additional transport security, authentication, and authorization options . 147
7.5.1 Configuring LDAP authentication with IBM HTTP Server 147
7.5.2 Configuring SSL certificate-based client authentication for the IBM

HTTP Server . 152
7.5.3 Configuring SSL certificate-based client authentication for WebSphere

Application Server. 156

Chapter 8. Securing an EJB application . 171
8.1 Programmatic login (server-side) using JAAS. 173
8.2 Declarative J2EE security . 174

8.2.1 Defining J2EE security roles for EJB modules 174
8.2.2 Security role references . 175
8.2.3 Configuring method access control . 180
8.2.4 Enterprise JavaBeans Run-As delegation policy 186
8.2.5 Bean-level delegation . 186
8.2.6 Method-level delegation . 190
8.2.7 Run-as mapping . 193

8.3 Programmatic J2EE security . 197
8.4 EJB container access security . 199

8.4.1 CSIV2 and Secure Authentication Service 199
8.4.2 Container authentication . 200
8.4.3 RMI/IIOP transport channel protection . 204

Chapter 9. Client security . 207
9.1 Application clients in WebSphere . 208

9.1.1 Developing and securing the J2EE application client 209
9.1.2 Deploying an application client by using the Java Web Start tool . . 209
9.1.3 Thin application client . 213
9.1.4 Itsohello client example. 214

9.2 Java client authentication protocol . 216

 Contents v

9.2.1 CSIV2 Security Attribute Service . 217
9.2.2 Authentication process . 218

9.3 Java client configuration . 220
9.4 J2EE application client . 225

9.4.1 Itsohello unsecure J2EE client . 225
9.4.2 Itsohello secure J2EE client . 227

9.5 Thin application client . 228
9.5.1 Running a thin application client . 230
9.5.2 Itsohello unsecure thin client . 231
9.5.3 Itsohello secure thin client . 233

9.6 Programmatic login . 233
9.6.1 JAAS login module in WebSphere . 233
9.6.2 Programmatic login process . 235
9.6.3 Client-side programmatic login using JAAS 236

9.7 Securing the connection . 242
9.7.1 IIOP over SSL: A thin client example . 242

Chapter 10. Securing the service integration bus 247
10.1 Messaging components of the service integration bus 248

10.1.1 Service integration bus . 249
10.1.2 Messaging engine . 249
10.1.3 Foreign bus . 250
10.1.4 Bus destination . 250

10.2 An overview of service integration bus security 250
10.2.1 Authentication . 251
10.2.2 Authorization . 251
10.2.3 Transport security: Confidentiality . 253

10.3 Administering service integration bus security 253
10.3.1 Administering the Bus Connector role in the Administrative Console .

254
10.3.2 Administering the Bus Connector role by using the wsadmin tool 256

10.4 Administering destination security . 257
10.4.1 Default roles for bus destinations . 257
10.4.2 Destination specific roles . 258

10.5 Administering topic space root roles and topic roles 259

Part 2. Extending security beyond the application server . 263

Chapter 11. Security attribute propagation. 265
11.1 Initial Login versus Propagation Login . 267
11.2 Token framework. 268
11.3 Custom implementation of tokens . 270

11.3.1 Writing custom implementations of tokens 271
11.3.2 Common token functionality . 272

vi WebSphere Application Server V6.1 Security Handbook

11.3.3 Interaction of the login module and the token modules. 275
11.3.4 Authorization token . 276
11.3.5 Single Sign-On token . 279
11.3.6 Propagation token . 280
11.3.7 Authentication token . 283
11.3.8 Changing the token factory associated with the default token . . . 283

11.4 Horizontal propagation . 285
11.4.1 Horizontal propagation using Dynacache 285
11.4.2 Horizontal propagation using JMX . 286

11.5 Downstream propagation . 289
11.5.1 Downstream propagation scenario . 290

11.6 Enabling security attribute propagation . 292
11.6.1 Configuring security attribute propagation for

horizontal propagation . 292
11.6.2 Enabling downstream propagation . 293

11.7 Advantages of security attribute propagation . 295

Chapter 12. Securing a WebSphere application using Tivoli Access
Manager . 297

12.1 Introduction to Tivoli Access Manager . 298
12.1.1 Benefits . 298
12.1.2 When to use Tivoli Access Manager for e-Business in conjunction with

WebSphere Application Server. 299
12.1.3 Reverse proxies for authentication . 301
12.1.4 Access Manager Secure Domain . 301
12.1.5 Tivoli Access Manager auditing . 305
12.1.6 Access Manager and WebSphere integration. 306
12.1.7 Reverse proxy authenticators and the extended WebSphere trust

domain . 309
12.1.8 Challenges with reverse proxy authenticators 309

12.2 IBM Tivoli Access Manager security model. 315
12.2.1 User registry . 315
12.2.2 Master authorization (policy) database . 316

12.3 Summary of Access Manager deployment for integration with WebSphere
Application Server . 320

12.4 Lab environment . 320
12.5 The role of Tivoli Access Manager inside WebSphere Application Server

V6.1 . 321
12.5.1 Embedded Tivoli Access Manager client architecture 323
12.5.2 High-level components of the integration 325

12.6 WebSEAL authentication . 327
12.6.1 Basic authentication . 327
12.6.2 Form-based authentication . 328

 Contents vii

12.6.3 Client certificate-based authentication . 329
12.6.4 Token authentication. 331
12.6.5 HTTP header authentication . 332
12.6.6 Kerberos and SPNEGO authentication. 332
12.6.7 External authentication interface. 333
12.6.8 Combining authentication types using step-up authentication . . . 333

12.7 WebSEAL junctions. 334
12.7.1 Simple junctions . 335
12.7.2 Trust Association Interceptors and LTPA Junctions 338
12.7.3 Single sign-on junctions . 339

12.8 Integrating IBM WebSphere Application Server and
Tivoli Access Manager . 344

12.8.1 aznAPI. 345
12.8.2 Tivoli Access Manager and J2EE security 345
12.8.3 Embedded Tivoli Access Manager in WebSphere Application Server

V6.1 . 346

Chapter 13. Trust Association Interceptors and third-party software
integration . 353

13.1 Trust Association Interceptor. 354
13.1.1 The relatively new, enhanced TAI interface 355

13.2 Windows desktop single sign-on using SPNEGO 356
13.2.1 Lab scenario . 358
13.2.2 Configuring the WebSphere Application Server environment to use

SPNEGO . 359
13.2.3 Troubleshooting SPNEGO environments 376

13.3 IBM WebSphere Application Server and WebSEAL integration 378
13.3.1 Integration options. 378
13.3.2 Configuration for the Trust Association Interceptor approach. . . . 380
13.3.3 Configuration for the LTPA approach . 396
13.3.4 Security considerations . 402

Chapter 14. Externalizing authorization with JACC 403
14.1 Deployment tools contract. 405
14.2 Container contract . 407
14.3 Provider contract . 408
14.4 Why JACC. 408
14.5 JACC in WebSphere Application Server V6.1. 408

14.5.1 JACC access decisions in WebSphere Application Server V6.1 . 410
14.5.2 JACC policy context identifiers in WebSphere Application

Server V6.1. 414
14.5.3 WebSphere extensions to the JACC specification 414
14.5.4 JACC policy propagation in WebSphere Application Server V6.1 415

viii WebSphere Application Server V6.1 Security Handbook

14.5.5 Manual policy propagation . 418
14.5.6 Dynamic module updates in WebSphere Application Server V6.1 for

JACC . 420
14.6 Integrating Tivoli Access Manager as an external JACC provider 420

14.6.1 Disabling the embedded Tivoli Access Manager 426
14.6.2 Reconfiguring the JACC provider by using wsadmin 427

14.7 Sample application for JACC . 427

Chapter 15. Web services security . 429
15.1 Web services security exposures . 430
15.2 WS-Security . 432

15.2.1 WS-Security concepts. 433
15.2.2 Evolution of the WS-Security specification 434
15.2.3 WS-Security roadmap . 436
15.2.4 Example of WS-Security . 437
15.2.5 Development of WS-Security . 442
15.2.6 Hardware cryptographic device support for WS-Security 444

15.3 Transport-level security . 447
15.3.1 SOAP over HTTP transport-level security. 447

15.4 WS-I Basic Security Profile . 448
15.5 Summary . 449
15.6 More information . 449

Chapter 16. Securing access to WebSphere MQ 451
16.1 Application server and WebSphere MQ . 452

16.1.1 WebSphere MQ messaging components 452
16.1.2 Authentication . 454
16.1.3 Authorization . 455
16.1.4 Transport security . 456
16.1.5 Administering foreign service integration bus security 458
16.1.6 Administering WebSphere MQ security . 459

16.2 Sample application . 460
16.3 Additional information . 461

Chapter 17. J2EE Connector security . 463
17.1 The J2EE Connector Architecture. 464

17.1.1 Connector security architecture . 465
17.2 Securing the J2EE Connector . 466

17.2.1 Component-managed authentication . 466
17.2.2 Container-managed authentication . 468

17.3 JCA authentication mechanism. 470
17.3.1 Role-based authorization . 471
17.3.2 Topic security . 471
17.3.3 Messaging security . 471

 Contents ix

17.3.4 Enable bus security. 472
17.3.5 Inter-engine authentication alias . 472

17.4 Mediations security . 474
17.5 Transport security in service integration bus. 474

17.5.1 Destination security. 476
17.6 Securing Web services by using service integration technologies 476
17.7 Additional information . 477

Chapter 18. Securing the database connection . 479
18.1 Securing the connection . 480

18.1.1 JDBC type 2 driver . 482
18.1.2 JDBC type 4 driver . 483

18.2 Securing access to database data . 483

Part 3. Development environment . 485

Chapter 19. Development environment security 487
19.1 Rational Application Developer . 488

19.1.1 Securing the workspace . 488
19.2 WebSphere test environment . 491

19.2.1 Creating a new test server . 492
19.2.2 Enabling security for the WebSphere Test Server V6.1 494

19.3 Administering and configuring the WebSphere test servers 496
19.4 Enterprise application security . 497

19.4.1 Configuring enterprise application security during the development
phase . 497

19.4.2 JAAS entries in the deployment descriptor 500
19.5 Creating a new profile for the WebSphere test server 501

19.5.1 Advantages of multiple profiles . 501
19.5.2 Creating a new profile . 502

19.6 Application Server Toolkit 6.1 . 506

Appendix A. Additional configurations . 509
Sample application for client security . 510

Installing and testing Itsohello application. 511
Sample application for testing JACC . 513

Web module . 514
EJB module. 514
Deploying the sample application . 514
Verifying the installation . 515
Testing the application installation . 516

Configuring the service integration bus and default messaging provider. . . . 516
Creating a service integration bus. 517
Adding an application server or server cluster to the bus 518

x WebSphere Application Server V6.1 Security Handbook

Defining a queue destination on the bus. 520
Defining a JMS connection factory . 522
Defining a JMS queue. 525

Configuring WebSphere MQ as a foreign bus . 526
Defining a foreign bus . 527
Defining an MQ link. 528
Defining a foreign destination . 529
Defining a JMS queue for a foreign destination . 530

Sample application for messaging . 530
Configuring the application server. 531
Optional: Configuring WebSphere MQ . 536
Installing the sample application . 537
Testing the sample application . 538

Appendix B. Additional material . 543
Locating the Web material . 543
Using the Web material . 543

System requirements for downloading the Web material 544
How to use the Web material . 544

Abbreviations and acronyms . 545

Related publications . 547
IBM Redbooks . 547
Other publications . 547
Online resources . 547
developerWorks . 548
How to get IBM Redbooks . 549
Help from IBM . 549

Index . 551

 Contents xi

xii WebSphere Application Server V6.1 Security Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2006. All rights reserved. xiii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
BladeCenter®
ClearCase®
DataPower®
DB2 Universal Database™
DB2®
developerWorks®
Distributed Relational Database

Architecture™
Domino®

DRDA®
eServer™
IBM®
Lotus®
OS/400®
RACF®
Rational®
RDN®
Redbooks®
Redpapers™

Redbooks (logo) ®
System x®
System z®
Tivoli®
WebSphere®
xSeries®
z/OS®
zSeries®

The following terms are trademarks of other companies:

SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States and
other countries.

Interchange, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S.
and other countries.

EJB, Enterprise JavaBeans, J2EE, J2SE, Java, JavaBeans, JavaMail, JavaScript, JavaServer, JDBC, JDK,
JMX, JNI, JRE, JSP, JVM, Prism, Solaris, Sun, Sun Java, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, ActiveX, Expression, Internet Explorer, Microsoft, Visual Basic, Windows Server, Windows,
and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xiv WebSphere Application Server V6.1 Security Handbook

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication is part of the IBM WebSphere® V6.1 series. It
focuses on security and related topics, as well as provides technical details for
designing and implementing secure solutions with WebSphere. Designed for IT
architects, IT specialists, application designers, application developers,
application assemblers, application deployers, and consultants, this book
provides information about designing, developing, and deploying secure
e-business applications using IBM WebSphere Application Server V6.1. It
discusses theory and presents proven exercises performed in our lab by using
sample applications.

Part 1 discusses security for the application server and its components, including
enterprise applications. It focuses on administrative security and application
security, which were previously known as global security. It includes essential
information about how to secure Web and Enterprise JavaBeans™ (EJB™)
applications and how to develop a Java™ client using security.

Part 2 introduces additional components from the enterprise environment and
discusses security beyond the application server. External components include
third-party security servers, messaging clients and servers, and database
servers.

Part 3 provides a short introduction to development environment security. It
includes guidelines and best practices that are applicable to a secure
development environment.

This Redbooks publication provides enhancements to exercises performed in
Version 6.0. In addition, this book discusses the following features in Version 6.1:

� Persistence with an authenticated identity for protected, unprotected resource

� Support for the Simple and Protected Negotiate (SPNEGO) protocol to flow
Kerberos tokens from Microsoft® Internet Explorer®

� Ability to enable administrative security out-of-box (OOBE) by using the
Virtual Member Manager (VMM) file registry

� Integration of VMM into WebSphere Application Server

� Simplified WebSphere Application Server key/certificate management

� Security performance through hardware crypto acceleration

� Web Services Interoperability Organization (WS-I) Basic Security Profile 1.0

© Copyright IBM Corp. 2006. All rights reserved. xv

The team that wrote this IBM Redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Raleigh
Center.

The authors (from left): Rufus Credle, James Walton, Asish Kumar, Paul Winters, and Tony Chen

Rufus Credle is a Certified Consulting IT Specialist at the ITSO, Raleigh Center.
In his role as project leader, he conducts residencies and develops Redbooks
publications about network operating systems, ERP solutions, voice technology,
high availability and clustering solutions, Web application servers, pervasive
computing, and IBM and OEM e-business applications, all running IBM
System x, IBM eServer™ xSeries®, and IBM BladeCenter®. Rufus’ various
positions during his IBM career have included assignments in administration and
asset management, systems engineering, sales and marketing, and IT services.
He holds a Bachelor of Science (BS) degree in business management from Saint
Augustine’s College. Rufus has been employed at IBM for 26 years.

Tony Chen is an Advisory IT Specialist at IBM Canada in Toronto. Tony has been
working for IBM for over six years in IBM WebSphere technical support and
financial industry application development. Prior to IBM, he worked in the
software industry in Shanghai for two years. His areas of expertise include Java,
Java 2 Platform Enterprise Edition (J2EE™), and WebSphere. He has several
certifications from Sun™ and IBM in Java and WebSphere technologies. Tony
received his bachelor degree in Computer Science from Sichuan University,
China.

xvi WebSphere Application Server V6.1 Security Handbook

Asish Kumar is a Consulting IT Architect for Enterprise Architecture and
Technology Group, ASEAN/SA. He has over 18 years of experience. He has
been employed at IBM for four years. His expertise is on IT Architecture (J2EE,
EAI, Portal), Project Management, Quality Management (SEI/CMM, ITSM/ITIL).
His current focus area is high availability, security, and scalability. He holds a
master degree in Mathematics from India Institute of Technology, Kharagpur,
India.

James Walton is an Applications/Middleware specialist for the High
Performance On Demand Services team in IBM Global Services US. He has
over five years experience in Web application hosting and WebSphere
Application Server administration. After joining IBM, his experience in support of
production hosting environments has also included administration of WebSphere
Portal, WebSphere Edge Server, and IBM HTTP Server. James holds a BS
degree in Computer Science from Oklahoma Christian University. His key areas
of expertise include application hosting architecture, high availability Web
hosting, Web infrastructure security, and WebSphere Application Server.

Paul Winters is a software developer working with the IBM Tivoli® Security
Development team on the Gold Coast, Australia. He has worked on many Tivoli
Security products including Tivoli Access Manager for e-Business, IBM Tivoli
Identity Manager for IBM z/OS®, and IBM Tivoli Federated Identity Manager. His
areas of interest are Enterprise Security and Federated Identity Management.
Paul has a Bachelor of Computer Systems Engineering degree from the
University of Queensland in Australia.

Special thanks to the WebSphere Application Server V6.0 residency team, which
included Peter Kovari, Emilio Bielsa, Saravana C. Chandran, Lucky
Kartasasmita, Denis Masic, Sudhakar Nagarajan, Fumiko Satoh, Irina Singh,
and Matthew Stokes.

Thanks to the following people for their contributions to this project:

Cecilia Bardy, Linda Robinson, Carolyn Sneed, Margaret Ticknor, and
Jeanne Tucker
ITSO, Raleigh Center

Keys Botzum, Senior Technical Staff Member, IBM Software Services for
WebSphere
IBM Bethesda

Sridhar Muppidi, IBM Software Group, Tivoli Directory and Security Architecture
IBM Austin

 Preface xvii

Peter Birk, Ching-Yun Chao, and Shengdong (Shendong) Chen, members of the
WebSphere Application Server Security Development Team
IBM Austin

Kenneth Childers, Software Engineer
IBM Austin

Carlton Mason, WebSphere Application Server Development Manager
IBM Austin

Messaoud Benantar, Prism™ Project Security Lead
IBM Austin

Neil Readshaw, Chris Hockings, and Glen Gooding, members of the Tivoli
Security Advanced Customer Engineering Team located on the Gold Coast
IBM Australia

Davin Holmes and Kerry Gunn, Tivoli Security Development Team
IBM Australia

Kenichiroh Ueno, WebSphere Performance
IBM Japan

Simon Chan, Senior I/T Specialist - Tech. Lead, WebSphere Application Server
and Linux® on IBM System z® implementation
IBM Toronto, ON

Ajay Reddy, Technical Account Manager, Systems and Technology Group
IBM United Kingdom

Alasdair Nottingham, Service integration bus security, WebSphere Messaging
Development
IBM United Kingdom

xviii WebSphere Application Server V6.1 Security Handbook

Become a published author
Join us for a two-week to six-week residency program! Help write an IBM
Redbook dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You'll team with IBM technical
professionals, Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want IBM Redbooks to be as helpful as possible. Send us your comments
about this or other IBM Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx WebSphere Application Server V6.1 Security Handbook

Part 1 Application server
security

This part includes the following chapters:

� Chapter 1, “Introduction to this book” on page 3

� Chapter 2, “Configuring the user registry” on page 7

� Chapter 3, “Administrative security” on page 49

� Chapter 4, “SSL administration and configuration management” on page 69

� Chapter 5, “JAAS for authentication in WebSphere Application Server” on
page 85

� Chapter 6, “Application security” on page 101

� Chapter 7, “Securing a Web application” on page 109

� Chapter 8, “Securing an EJB application” on page 171

� Chapter 9, “Client security” on page 207

� Chapter 10, “Securing the service integration bus” on page 247

Part 1

© Copyright IBM Corp. 2006. All rights reserved. 1

2 WebSphere Application Server V6.1 Security Handbook

Chapter 1. Introduction to this book

This chapter provides a brief introduction to this book. It introduces the scenarios
that are used in each chapter and gives a quick overview of how the security
discussion is divided into multiple scenarios. This chapter also provides pointers
that help you find your way around other WebSphere Application Server V6.1
IBM Redbooks publications.

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 A focus on security

The focus in this book is on security, mostly WebSphere Application Server V6.1
and Tivoli Access Manager security. This book covers the application server and
other components, such as the directory server (for user registry), the reverse
proxy security server, and so on.

1.2 Scenario-based chapters

In this book, the individual chapters focus on application scenarios. Instead of
discussing bits and pieces or components, you can find descriptions of smaller
scenarios, for example a scenario illustrating how to secure Web applications.

The diagram in Figure 1-1 gives you a general idea of the key components within
WebSphere Application Server V6.1 as discussed in the following chapters.

Figure 1-1 The big picture

4 WebSphere Application Server V6.1 Security Handbook

1.3 Sample applications

Each scenario provides sample configurations and sample applications that you
can try. The sample applications are available as additional material. For further
information about additional materials, see Appendix B, “Additional material” on
page 543.

The sample applications in this book are simple. Their purpose is to show, in
practice, the theory described in the chapters. The samples are more like simple
components running in small, self-contained applications.

The samples are different from previous Redbooks publications about
WebSphere security. The samples in these chapters are not connected or
related. Therefore, you can test each sample independently.

1.4 WebSphere Information Center

This Redbooks publications is not a replacement for the WebSphere Information
Center, which is a great source of information for WebSphere Application Server
V6.1. This book and the WebSphere Information Center work as complements to
each other. However, note the following points:

� This book provides hands-on exercises and follows scenarios to explain the
security-related tasks. The WebSphere Information Center is a tremendous
reference guide for all the security-related tasks.

� This book follows a linear pattern, even though you can read only parts of the
book and move back and forth. In contrast, the WebSphere Information
Center contains hypertext documentation, which you can easily use to
navigate between topics to find the piece of information that you need.

You can find the WebSphere Application Server V6.1 Information Center at the
following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

 Chapter 1. Introduction to this book 5

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

6 WebSphere Application Server V6.1 Security Handbook

Chapter 2. Configuring the user
registry

This chapter discusses the configuration of the user registry in WebSphere
Application Server V6.1.

2

© Copyright IBM Corp. 2006. All rights reserved. 7

2.1 User registries and repositories

WebSphere Application Server V6.1 supports multiple types of registries and
repositories:

� Local operating system registry
� Stand-alone Lightweight Directory Access Protocol (LDAP) registry
� Stand-alone custom registry
� Federated repositories

Information about users and groups reside in a user registry or repository. In
WebSphere Application Server V6.1, a user registry or repository authenticates a
user and retrieves information about users and groups to perform
security-related functions, including authentication and authorization. Before
configuring the user registry or repository, decide which user registry or
repository to use. Although different types of registries and repositories are
supported, all of the processes in WebSphere Application Server V6.1 can use
one active registry.

When a user registry or repository is not configured, the local operating system
registry is used by default. If your choice of user registry is not the local operating
system registry, you must first configure the registry or repository, which is
typically done as part of enabling security. Next, restart the servers, and then
assign users and groups to roles for all your applications.

WebSphere Application Server V6.1 also provides a plug-in to support any
registry by using the custom registry feature. With the custom registry feature,
you can configure any user registry that is not made available through the
security configuration panels of the WebSphere Application Server V6.1.

The UserRegistry interface is used to implement both the custom registry and
the federated repository options for the user account repository. The interface is
helpful in situations where the current user and group information exists in some
other format. The UserRegistry interface is also used for LocalOS and LDAP
registries, for example, all our registries.

Custom registry: On occasion, although you might use supported registries,
such as LDAP, you might want to implement your own custom registry for more
control or when you have special situations. In general, you can use the
custom registry if the default registry support is not enough.

8 WebSphere Application Server V6.1 Security Handbook

Figure 2-1 shows how the registry and repository fit in with Security
Authentication components in WebSphere Application Server V6.1.

Figure 2-1 WebSphere Application Server V6.1 authentication mechanisms

Figure 2-1 shows the steps in the authentication process. Basically,
authentication is required for enterprise bean clients and Web clients when they
access protected resources. Enterprise bean clients (a servlet or other
enterprise beans, or a pure client) send the authentication information to a Web
application server by using one of the following protocols:

� Common Secure Interoperability Version 2 (CSIV2)
� Secure Authentication Service

Web clients use the HTTP or HTTPS to send the authentication information as
shown in Figure 2-1. The authentication information can be basic authentication
(user ID and password), a credential token, or a client certificate.

The Web authenticator and the Enterprise JavaBeans (EJB) authenticator pass
the authentication data to the login module (2), which can use Lightweight Third
Party Authentication (LTPA).

WebSphere Application Server

Authentication

CSIV2/SAS

TCP/IP
SSL

(1)
Basic or

token credential

(1)
Basic, token, or

certificate

HTTP/HTTPS

Local OS
registry

Standalone
LDAP registry

Standalone
custom registry

Federated
Repositories

File-based

LDAP V2

Federated
Repositories

File-based

LDAP V2

LTPALogin
Module

Authentication module

Enterprise beans
authenticator

ORB

Web
authenticator

Java
client

Web
client

(3)

(4)

(4)

(4)

(4)

(6)
Received
credential

(6)
Received
credential

Authentication data(2)

Authentication data(2)Credentials (5)

Cred
en

tia
ls

(5)

Auth
en

tic
ati

on

da
ta

 (2
)

Auth
en

tic
ati

on

da
ta

 (2
)

 Chapter 2. Configuring the user registry 9

The Authentication module uses the registry that is configured on the system to
perform the authentication (3). The following registries are supported:

� LocalOS
� Stand-alone LDAP
� Stand-alone custom registry
� Federated repositories

External registry implementation that follow the registry interface specified by
IBM can replace either the LocalOS or the Stand-alone LDAP registry. The Login
module creates a Java Authentication and Authorization Service (JAAS) subject
after authentication and stores the credential derived from the authentication
data in the public credentials list of the subject. The credential is returned to the
Web authenticator or EJB authenticator (5).

The Web container Object Request Broker (ORB) is responsible for connecting
Internet InterORB Protocol (IIOP) requests that contain the operation and any
required parameter, and for sending the request in the network. The server
receives the IIOP request, locates the target object, invokes the requested
operation, and returns the result to the clients.

WebSphere Application Server V6.1 uses an ORB to manage communication
between Java clients and server application and for communication among
product components.

The Web authenticator and the EJB authenticator store the received credentials
in the ORB for the authorization service to use in performing further access
control checks.

2.2 Stand-alone LDAP registry

To use LDAP as the user registry in this chapter, we use the IBM Tivoli Directory
Server V5.2 that ships with IBM Tivoli Access Manager for e-business V5.1.
Figure 2-2 on page 11 shows the Directory Information Tree (DIT). IBM Directory
Server V6.0 is used as the LDAP V3 server for the stand-alone LDAP user
registry, which is authenticated by using an LDAP binding.

10 WebSphere Application Server V6.1 Security Handbook

Figure 2-2 LDAP Directory Information Tree

LDAP registries naming model
The naming model defines how entries are identified and organized. Entries are
organized in a tree-like structure called the Directory Information Tree. Entries
are arranged within the DIT based on their distinguished name (DN). A DN is a
unique name that unambiguously identifies a single entry. DNs are made up of a
sequence of relative distinguished names (RDNs). Each RDN® in a DN
corresponds to a branch in the DIT that leads from the root of the DIT to the
directory entry. Entries are named according to their position in the DIT.

WebSphere supports several other LDAP servers. For the latest information
about the supported LDAP servers, see the following address:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

dn; cn=John, OU=ITSO, O=IBM, C=US dc=ibm.com

dn; cn=Management, OU=groups, O=IBM, C=US
dn; cn=Regular_user, OU=users, O=IBM, C=US

cn=human resources

cn=human resources

cn=management

OU=groups

cn=Regular_user

cn=Regular_user

cn=Residency_user

OU=users

cn=John

cn=Rufus

cn=Carolyn

OU=ITSO

OU=IBM

C=US

dc=com
dc=company domain

cn=human resourcescn=human resources

cn=human resourcescn=human resources

cn=management

OU=groups

cn=Regular_usercn=Regular_user

cn=Regular_usercn=Regular_user

cn=Residency_user

OU=users

cn=Johncn=John

cn=Rufuscn=Rufus

cn=Carolyn

OU=ITSO

O=IBM

C=US

dc=com
dc=company domaindn; cn=John, OU=ITSO, O=IBM, C=US dc=ibm.com

dn; cn=Management, OU=groups, O=IBM, C=US
dn; cn=Regular_user, OU=users, O=IBM, C=US

cn=human resources

cn=human resources

cn=management

OU=groups

cn=Regular_user

cn=Regular_user

cn=Residency_user

OU=users

cn=John

cn=Rufus

cn=Carolyn

OU=ITSO

OU=IBM

C=US

dc=com
dc=company domain

cn=human resourcescn=human resources

cn=human resourcescn=human resources

cn=management

OU=groups

cn=Regular_usercn=Regular_user

cn=Regular_usercn=Regular_user

cn=Residency_user

OU=users

cn=Johncn=John

cn=Rufuscn=Rufus

cn=Carolyn

OU=ITSO

O=IBM

C=US

dc=com
dc=company domain

DNs versus file system names: DNs read from leaf to root as opposed to file
system names, which typically read from root to leaf.

 Chapter 2. Configuring the user registry 11

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Table 2-1 lists the LDAP V3 attributes that are similar to those used in Figure 2-2.

Table 2-1 LDAP V3 attributes

IBM Tivoli Directory Server supports the standards directory schema such as the
following examples:

� IETF LDAP V3 RFCs-2252,2256

� The Directory Enabled Network (DEN)

� The Common Information Model (CIM) from the Distributed Management
Task Force (DMTF)

� The Lightweight Intranet Person Schema (LIPS) from the Network Application
Consortium

IBM Tivoli Directory Server also provides a set of extended common schema
definitions, including the following objects, that other IBM products share when
they exploit the LDAP directory server:

� Objects for white-page application such as ePerson, group, country,
organization, organization unit and role, locality, state, and so forth

� Objects for other subsystem such as account services and access points,
authorization, authentication, security policy, and so forth

Attribute type or fields String

CommonName CN

LocalityName L

StateOrProvinceName ST

OrganizationName O

OrganizationalUnitName OU

CountryName C

StreetAddress STREET

DomainComponent DC

UserID UID

Relative DN RDN

Specifies the top object class objectClass : top

Specifies the organization object class objectClass : organization

Specifies the organizational unit object class objectClass: organizationalUnit

12 WebSphere Application Server V6.1 Security Handbook

The LDAP client usually requires read access to the user registry. Use replicas to
increase security by separating the read function of the registry from the write
function. You can do this if you create a registry replica that is used for read-only
access, such as authentication, leaving the registry master only for making
updates.

Figure 2-3 illustrates the architecture of LDAP security and positioning of the
LDAP client.

Figure 2-3 The LDAP security architecture

Security roles
IBM Tivoli Directory Server V5.2 supports the following security roles:

� Directory administrator

The directory administrator is associated with a specific user account. There
is only one directory administrator account for the LDAP server. The directory
administrator has complete rights to manage the LDAP server. This person
also creates the user security role and defines the level of authorization that
the user has over entries.

� Administrative group members

Administrative group members are users who have been assigned a subset of
administrative privileges. All administrative group members have the same
set of privileges. The administrative group is a way for the directory
administrator to delegate a limited set of administrative tasks to one or more
individual user accounts.

� Global administrative group members

The global administrative group is a way for the directory administrator to
delegate administrative rights in a distributed environment to the database

LDAP Security Architecture

Internet

Uncontrolled

Client

Restricted

LDAPV3
enabled
directory
server

DMZ

Controlled

LDAP
Client

Intranet

Controlled

LDAP
Client

Port access configuration:
Port open
Port closed

HTTP/
HTTPS

TCP/IP
SSL

TCP/IP
SSL

389/636 389/636 389/636

LDAP Security Architecture

Internet

Uncontrolled

Client

Internet

Uncontrolled

Client

Restricted

LDAPV3
enabled
directory
server

Restricted

LDAPV3
enabled
directory
server

DMZ

Controlled

LDAP
Client

DMZ

Controlled

LDAP
Client

Intranet

Controlled

LDAP
Client

Intranet

Controlled

LDAP
Client

Port access configuration:
Port open
Port closed

Port access configuration:
Port open
Port closed

HTTP/
HTTPS

TCP/IP
SSL

TCP/IP
SSL

389/636 389/636 389/636

 Chapter 2. Configuring the user registry 13

back end. Global administrative group members are users who have been
assigned the same set of privileges as the administrative group with regard to
accessing entries in the database back end.

Global administrative group members do not have access to the audit log.
The audit log can be used by local administrators to monitor the activity of
global administrative group members. These members have activity or
access rights related to any data or operations regarding the configuration
settings of the directory server. This is commonly called the configuration
back end. All global administrative group members have the same set of
privileges.

� LDAP users

LDAP users are users whose privileges are determined by an access control
list (ACL). Each LDAP user is identified with an LDAP entry that contains the
authentication and authorization information for that user. The authentication
and authorization information might also allow the user to query and update
other entries depending on the type of authentication mechanism used. After
the user ID and password are validated, the user can access any of the
attributes of any entry to which that user has permission.

� Master server DN

The master server DN is a role that is used by replication that can update the
entries under a replica’s or a forwarding replica’s replication context to which
the DN is defined as a master server DN. The master server DN can create a
replication context entry on a replica or forwarding replica if the DN is defined
as the master server DN to that specific replication context or as a general
master server DN.

2.2.1 Stand-alone LDAP registry for WebSphere Application Server
V6.1

To use LDAP V3 as a user registry, you must have a valid user name (ID), user
password, server host and port, base DN and, if necessary, bind DN and bind
password.

Setting up security stand-alone LDAP registry
To set up security for the stand-alone LDAP registry:

1. In the administrative console, click Security → Security administration,
application, and infrastructure.

2. In the User account Repository, click Stand-alone LDAP registry and then
click Configure.

14 WebSphere Application Server V6.1 Security Handbook

3. Under General properties, complete the following information as illustrated in
Figure 2-4 on page 17:

a. In the Primary administrative user name field, enter a valid user name. You
can either enter the complete DN of the user or the short name of the user
as defined by the user filter in the Advanced LDAP settings panels. This ID
is the security server ID, which is only used for WebSphere Application
Server security and is not associated with the system process that runs
the server. The server calls the local operating system registry to
authenticate and obtain privilege information about users by calling the
native application programming interface (API) in that particular registry.

b. Optional: If you want to use the server ID:

i. Know the differences between administrator name, internal server ID,
and the serverID.

ii. Select Automatically generated server identity to enable the
application server to generate the server identity that is used for
internal process communication.

• Alternatively, in the Server identity that is stored in the repository
field, specify a user identity in the repository that is used for internal
process communication.

• Alternatively, in a Version 6.1.x node field, specify the user ID that is
used to run the application server for security purposes for the
server user ID or administrative user.

c. In the Advanced LDAP settings panel, click Apply.

d. From the Type list, select the type of LDAP server to use. The type of
LDAP server determines the default filters that WebSphere Application
Server uses. Select Custom and modify the user and group filters to use
other LDAP servers, if required.

e. In the Host field, enter the fully qualified host name of the LDAP server.
You can enter either the IP address or Domain Name Server (DNS) name.

f. In the Port field, enter the LDAP server port number. The host name and
port number represent the realm for this LDAP server in the WebSphere
Application Server cell. Therefore, if servers in different cells are
communicating with each other by using LTPA tokens, these realms must
match exactly in all the cells.

The default port number is 389. If multiple WebSphere Application Server
profiles are installed and configured to run in the same single sign-on
(SSO) domain, or if WebSphere Application Server interoperates with a
previous version of WebSphere Application Server, the port number must
match all configurations.

 Chapter 2. Configuring the user registry 15

g. In the Base Distinguished Name field, enter the base DN. The base DN
indicates the starting point for searches in this LDAP directory server.

The Ignore Case option is always enabled. Ignore Case is required, and
disabling it might cause authorization errors because of case sensitivity.
This field is required for all LDAP directories except the Lotus® Domino®
Directory. The Base Distinguished Name field is optional for the Domino
server.

h. Optional: In the Bind Distinguished Name field, enter the bind DN name.
The bind DN is required if anonymous binds are not possible on the LDAP
server to obtain user and group information. If the LDAP server is set up to
use anonymous bind, leave this field blank. If a name is not specified, the
application server binds anonymously.

i. Optional: In the Bind password field, enter the password that corresponds
to the bind DN.

j. Optional: Modify the Search time-out value. This time-out value is the
maximum amount of time that the client that sends a search request can
wait for a response before timing out.

k. Select the Reuse connection option. This option specifies that the server
must reuse the LDAP connection. Clear this option only in rare situations
where a router is used to send requests to multiple LDAP servers and
when the router does not support affinity. Leave this option selected for all
other situations.

l. Optional: Verify that the Ignore case for authorization option is enabled.
When you enable this option, J2EE authorization is case insensitive.
Typically, an authorization check involves checking the complete DN of a
user, which is unique on the LDAP server and is case sensitive. However,
when you use either the IBM Directory or the Sun ONE Directory LDAP
server, you must enable this option because the group information that is
obtained from LDAP servers is not consistent in case. This inconsistency
affects the authorization check only. Otherwise, this field is optional and
can be enabled when a case-sensitive authorization check is required. You
can also enable the Ignore case for authorization option when you are
using SSO between the product and Lotus Domino. The default is
enabled.

m. Optional: Select the Secure Sockets Layer (SSL) enabled option if you
want to use SSL communication with the LDAP server. If you select the
SSL enabled option, you can select either the Centrally managed or the
Use specific SSL alias option.

16 WebSphere Application Server V6.1 Security Handbook

Figure 2-4 LDAP settings for WebSphere Application Server

 Chapter 2. Configuring the user registry 17

Enabling the Centrally managed option to specify an SSL
configuration for LDAP
Select the Centrally managed option (Figure 2-5) if you want to specify an SSL
configuration for a particular scope such as the cell, node, server, or cluster in
one location. To use the Centrally managed option, specify the SSL configuration
for the particular set of endpoints. The Manage endpoint security configurations
and trust zones panel shows all of the inbound and outbound endpoints that use
the SSL protocol. For an LDAP registry, you can override the inherited SSL
configuration by specifying an SSL configuration for LDAP.

Figure 2-5 Enabling SSL for the LDAP User Registry

To specify an SSL configuration for LDAP:

1. Click Security → SSL certificate and key management → Manage
endpoint security configurations and trust zones.

2. Expand Outbound → cell_name → Nodes → node_name → Servers →
server_name → LDAP.

Using a specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL
configurations in the menu below the option. This configuration is used only when
SSL is enabled for LDAP. The default is DefaultSSLSettings.

To modify or create a new SSL configuration:

1. Click Security → SSL certificate and key management.

2. Under Configuration settings, click Manage endpoint security
configurations.

3. Select a Secure Sockets Layer configuration_name for selected scopes, such
as a cell, node, server, or cluster.

4. Under Related items, click SSL configurations.

5. Click New.

18 WebSphere Application Server V6.1 Security Handbook

6. Click OK and then click either Apply or Save until you return to the Secure
administration, applications, and infrastructure panel.

Testing the LDAP user registry in WebSphere Application Server 6.1
To test the connection, follow the steps in 3.1, “Enabling administrative security”
on page 50, to enable Administrative Security, and when the server starts, launch
the administrative console. The administrative console must prompt you for your
user ID and password for authentication because Administrative Security is
enabled. Provide the user ID as wsuser and password as test if you load the
directory with the data that accompanies this book. If you are able to log in
successfully, your configuration is working properly.

2.2.2 Configuring the advanced LDAP user registry

To configure the advanced LDAP user registry settings when users and groups
reside in an external LDAP directory:

1. Click Security → Secure administration, applications, and infrastructure.

2. Under User account repository, select Stand-alone LDAP registry and click
Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access
Protocol (LDAP) user registry settings.

Tip: Do run WebSphere Application Server as the root or administrator
user. From a security point of view, for a production environment, configure
WebSphere with an LDAP ID that is different from that of cn=root, with only
read and search rights in the LDAP server.

Validation failure: If the validation fails for any reason, go back to the
LDAP configuration panel and check your settings again.

Tips:

� Use the new TestConnection button in the LDAP panel to check your
configuration.

� After you enable security to stop the server, provide the -username and
-password parameters for the stopserver command script. For example, in
a UNIX® environment, you can stop WebSphere Application Server with
the following command:

/opt/IBM/WebSphere/AppServer/bin/stopServer.sh server1 -username
wsuser -password test

 Chapter 2. Configuring the user registry 19

The default values for all the user and group related filters are already entered
based on the type of LDAP server that is selected in the Standalone LDAP
registry setting panel. When security is enabled and any of these properties
change, go to the Secure administration, applications, and infrastructure panel
and click Apply or OK to validate the changes.

Table 2-2 shows the default search settings for IBM Tivoli Directory Server.

Table 2-2 Advanced LDAP settings for Tivoli Directory Server

Configuring the WebSphere Application Server key
Before you can configure WebSphere Application Server V6.1.1 to use SSL to
communicate with the LDAP server, extract the LDAP server certificate from the
LDAP key store and import it into the application server’s key store that is used
for LDAP connection.

Property:
Default value

Description

User Filter:
(&(uid=%v)(objectclass=ePerson))

Specifies the LDAP user filter used to search the registry for
users.

Group Filter:
(&(cn=%v)(|(objectclass=groupOfName
s)(objectclass=groupOfUniqueNames)))

Specifies the LDAP group filter used to search the registry for
groups.

User ID map:
*:uid

Specifies the LDAP filter that maps the short name of a user to
an LDAP entry. This field takes multiple objectclass:property
pairs delimited by a semicolon (;).

Group ID Map:
*:cn

Specifies the LDAP filter that maps the short name of a group
to an LDAP entry.This field takes multiple objectclass:property
pairs delimited by a semicolon.

Group member ID map:
ibm-allGroups:member;ibm-allGroups:
uniqueMember

Specifies the LDAP filter that identifies user to group
relationships.

Perform nested group search:
un-checked

Select this option if the LDAP server does not support
recursive server-side group member searches.

Certificate map mode:
EXACT_DN

Specifies whether to map X.509 certificates into an LDAP
directory by EXACT_DN or CERTIFICATE_FILTER. Specify
CERTIFICATE_FILTER to use the specified certificate filter for
the mapping.

Certificate filter:
(& (uid=${UniqueKey}))

The filter is used to map attributes in the client certificate to
entries in the LDAP registry. The syntax or structure of this
filter is: LDAP attribute=${Client certificate attribute}
(for example, uid=${SubjectCN}).

20 WebSphere Application Server V6.1 Security Handbook

Assuming a default installation of WebSphere Application Server V6.1.1,
configure the WebSphere Application Server key as follows:

1. Open the IBM Tivoli Directory Server V6.0 key store with the iKeyman tool.
For more information about how to use the tool, see the IBM Redpaper
publication WebSphere Security Fundamentals, REDP-3944.

2. Find the location of the keystore that IBM Tivoli Directory Server V5.2 uses by
looking up the ibm-slapdSslKeyDatabase parameter in the ibmslapd.conf
configuration file. In our case, the location is /etc/ldap_key.kdb. See
Chapter 4, “SSL administration and configuration management” on page 69,
for detailed key configuration and management.

3. Export the LDAP signer certificate as ldap_key.arm.

4. Load the certificate into the keystore that is used by WebSphere Application
Server V6.1 by opening the key store with the iKeyman tool. We used the
default key store for LDAP security, which is in
{Websphere_root}/profiles/default/etc/DummyServerTrustFile.jks.

Import the ldap_key.arm file into the key store.

Testing the LDAP SSL connection with WebSphere
See “Testing the LDAP user registry in WebSphere Application Server 6.1” on
page 19 to test the connection. Follow the steps in 3.1, “Enabling administrative
security” on page 50, to enable Administrative Security. The assumption here is
that the LDAP connection has been tested and found to be working with
Administrative Security enabled.

The purpose of this test is to make sure that WebSphere Application Server V6.1
is now communicating with LDAP by using SSL on the 636 port. The simplest
way to verify this is to examine the network connections that opened after
restarting it to execute the netstat command on the WebSphere Application
Server V6.1.1 machine. This command must work in both Microsoft Windows®
and UNIX systems.

If netstat reports that the ldaps/636 port is being used, WebSphere Application
Server V6.1.1 is using SSL to communicate with the LDAP server. When the
server starts, launch the administrative console and provide the user name
wsuser and password test. If you are able to log in successfully, your
configuration was successful.

 Chapter 2. Configuring the user registry 21

http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open
http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open
http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open

Dynamic groups and nested group support for Tivoli Directory
Server
Dynamic and nested groups simplify WebSphere Application Server security
management and increase its effectiveness and flexibility.

WebSphere Application Server supports all LDAP dynamic and nested groups
when using Tivoli Directory Server. This function is enabled by default, taking
advantage of this new feature in Tivoli Directory Server.

Tivoli Directory Server uses the ibm-allGroups forward reference group attribute
that automatically calculates all the group memberships including dynamic and
recursive memberships for a user. Security directly locates a user group
membership from a user object rather than indirectly search all the groups to
match group members.

Configuring dynamic and nested group support for Tivoli
Directory Server
To configure dynamic and nested group support for Tivoli Directory Server:

1. In the administrative console for WebSphere Application Server, click
Security → Secure administration, applications, and infrastructure.

2. Under User account repository, click Standalone LDAP registry.

3. In the LDAP user registry configuration panel, select IBM Tivoli Directory
Server for the LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access
Protocol (LDAP) user registry settings.

5. On the next page:

a. Change the Group filter value as follows:

(& (cn=%v) (I
(objectclass=groupOfNames)
(objectclass=groupOfUniqueNames)
(objectclass=groupOfURLs)))

b. Change the Group member ID map value as follows:

ibm-allGroups:member;ibm-allGroups:uniqueMember

c. In the Auxiliary object class field in the Add an LDAP entry panel for your
IBM Tivoli Directory Server, verify that the appropriate value is used:

• When you create a nested group, the Auxiliary object class value is
ibm-nestedGroup.

• When you create a dynamic group, the Auxiliary object class value is
ibm-dynamicGroup.

22 WebSphere Application Server V6.1 Security Handbook

2.3 Local OS registry

With the local operating system (or local OS) user registry implementation, the
WebSphere Application Server authentication mechanism can use the user
accounts database of the local operating system.

The respective operating system APIs are called by the product processes
(servers) for authenticating a user and other security-related tasks, for example,
getting user or group information. Access to these APIs is restricted to users who
have special privileges. These privileges depend on the operating system and
are described in the following sections.

In WebSphere Application Server V6.1, you can use an internally-generated
server ID because the Security WebSphere Common Configuration Model
(WCCM) contains a new tag, internalServerId. You are not required to specify a
server user ID and password during security configuration except in a mixed-cell
environment.

See the “Administrative roles and naming service authorization” topic in the
WebSphere Application Server - Express Information Center about the new
internal server ID at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Required privileges in Windows
The user running the WebSphere Application Server process requires proper
operating system privileges to call the Windows systems API for authenticating
and obtaining user and group information from the Windows operating system.
(The user privilege is for starting the WebSphere Application Server and not
serverID or adminID.) This user logs into the machine, or if the server is running
as a service, is the Log On As user. Depending on the machine and whether it is
a stand-alone machine or a machine that is part of a domain or is the domain
controller, the access requirements vary:

� For a stand-alone machine, the user has the following characteristics:

– Is a member of the administrative group
– Has the Act as part of the operating system privilege
– Has the Log on as a service privilege, if the server is run as a service

� For a machine that is a member of a domain, only a domain user can start the
server process. This user has the following characteristics:

– Is a member of the domain administrative groups in the domain controller

– Has the Act as part of the operating system privilege in the Domain
security policy on the domain controller

 Chapter 2. Configuring the user registry 23

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

– Has the Act as part of the operating system privilege in the Local security
policy on the local machine

– Has the Log on as a service privilege on the local machine, if the server is
running as a service

– The user is a domain user and not a local user, which implies that when a
machine is part of a domain, only a domain user can start the server

� For a domain controller machine, the user has the following characteristics:

– Is a member of the domain administrative groups in the domain controller

– Has the Act as part of the operating system privilege in the Domain
security policy on the domain controller

– Has the Log on as a service privilege on the domain controller, if the server
is run as a service

Required privileges with UNIX
The user that is running the process ID that runs the WebSphere Application
Server process requires root authority to call the local operating system APIs for
authentication and for obtaining user or group information. With WebSphere
Application Server in UNIX systems, you can only use the local machine registry,
the Network Information Service (NIS) (Yellow Pages) is not supported.

2.3.1 Configuring WebSphere Application Server V6.1

To configure WebSphere to use the local operating system’s registry:

1. Click Security → Secure administration, application, and infrastructure.

2. Under User account repository, select Local operating system and click
Configure.

3. Enter a valid user name in the Primary administrative user name field. This
value is the name of the user with administrative privileges that is defined in
the registry and is used to access the administrative console or used by
wsadmin. Click Apply.

4. Click Specify user identity for interoperability.

5. Select either the Automatically generated server identity or Server
identity that is stored in the repository option. If you select the Server

More information: For more information about how to configure the
required users for Windows, see the WebSphere Information Center
(search for the csec_localos topic ID) or read the operating system’s
documentation.

24 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

identity that is stored in the repository option, as shown in Figure 2-6, enter
the following information:

a. For Server user ID or administrative user, specify the short name of the
account that you chose in step 2 on page 19.

b. For Server user password, enter the password of the account that you
chose in step 2 on page 19.

c. Click OK.

Figure 2-6 LocalOS registry user name and password

 Chapter 2. Configuring the user registry 25

6. If there are no errors at this stage, select Security → Secure
administration, application, and infrastructure.

7. Ensure that the Active User Registry option is set to Local Operating
System and that Security is enabled. If this is not the case, make the
necessary changes. Click Apply to validate the settings.

8. Save the configuration for WebSphere.

9. Restart your WebSphere Application Server V6.1.1.

Testing the Local OS user registry
To test the connection, click the Test Connection button. You receive the
Success/Failure Message.

2.3.2 Stand-alone custom registry

WebSphere Application Server V6.1 security supports the use of a stand-alone
custom registry, in addition to the local operating system registry, stand-alone
LDAP registries, and federated repositories for authentication and authorization
purpose. A Stand-alone custom-implemented registry uses the UserRegistry
Java Interface as provided by WebSphere Application Server V6.1.

The UserRegistry interface
The UserRegistry interface is helpful in situations, for example, where the current
user and group information exists in some other format (such as a database) and
cannot be moved to a local OS or LDAP. In such a case, implement the
UserRegistry interface so that WebSphere Application Server V6.1 can use the
existing registry for all of the security-related operations. Using a custom registry
is a software implementation effort. It is expected that the implementation does
not depend on other WebSphere Application Server resources, such as data
sources, for its operation.

WebSphere Application Server supports different types of user registries. Only
one user registry can be active, and this active registry is shared by all of the
product server processes.

To implement the UserRegistry interface, a Java class is required that provides
WebSphere with a standard interface in order for WebSphere to communicate

Tip: If WebSphere fails to start after enabling security, the failure might be
caused by a problem with the user registry. If that is the case, you are unable
to login to the administrative console. You require another solution to disable
security. To disable administrative security manually for WebSphere, see 3.2,
“Disabling administrative security” on page 58.

26 WebSphere Application Server V6.1 Security Handbook

with the registry in an appropriate fashion. The provision of this interface ensures
that a variety of user registries can be used, such as relational databases and
files stored directly on the file system. A combination of multiple registries can be
used, such as LDAP and IBM RACF®.

The UserRegistry interface defines a general set of methods to allow the
application server to obtain user and group information from the registry. The
interface is also implemented by the two other available user registries in
WebSphere Application Server V6.1.1, LDAP, and the local OS. The registry can
operate as a process running remotely to the application server. Therefore, it is
necessary for each registry to implement the java.rmi.Remote interface.

In regard to the initialization of a WebSphere Application Server V6.1.1 custom
registry, with V4, it was possible to use other WebSphere Application Server
components to initialize the custom registry. For example, a data source might
have been used to connect to a database type custom registry or you might have
used a deployed EJB. However, after V5, neither of these examples is possible
because, unlike in V4, the security mechanism is initialized before other
components such as containers. Therefore, these facilities are not available
when the security component is started. Any implementation of the custom
registry must not depend on any WebSphere Application Server component,
such as data sources, enterprise beans, and so on.

The methods in the UserRegistry interface operates on the following information
for users:

userSecurityName The user name used to log in when prompted by an
application.

uniqueUserID Represents a unique identifier for the user. It is equivalent
to the unique identifier (UID) in UNIX or the DN in LDAP.

userDisplayName An optional string that describes a user.

groupSecurityName Represents the security group.

groupUniqueId Represents a unique identifier for the group.

groupDisplayName An optional string that describes a group.

 Chapter 2. Configuring the user registry 27

Table 2-3 includes all the methods defined in the UserRegistry interface. Each
method must be implemented by the custom registry.

Table 2-3 WebSphere UserRegistry interface

Method signature Use

void initialize(java.util.Properties props) throws
CustomRegistryException, RemoteException;

Initializes the registry. This method is called when
creating the registry.

String checkPassword(String userSecurityName,
String password) throws
PasswordCheckFailedException,
CustomRegistryException, RemoteException;

Checks the password of the user. This method is
called to authenticate a user when the user's name
and password are given.

String mapCertificate(X509Certificate[] cert) throws
CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException, RemoteException

Maps a certificate (of X.509 format) to a valid user
in the registry. This is used to map the name in the
certificate supplied by a browser to a valid
userSecurityName in the registry.

String getRealm() throws
CustomRegistryException, RemoteException;

The realm is a registry-specific string indicating the
realm or domain for which this registry applies. For
example, for IBM OS/400® or IBM AIX®, this is the
host name of the system whose user registry this
object represents. If null is returned by this, then
method realm defaults to the value of
“customRealm”.

Result getUsers(String pattern, int limit) throws
CustomRegistryException, RemoteException;

Gets a list of users that match a pattern in the
registry. The maximum number of users returned is
defined by the limit argument.

String getUserDisplayName(String
userSecurityName) throws
EntryNotFoundException,
CustomRegistryException, RemoteException;

Returns the display name for the user specified by
userSecurityName.

String getUniqueUserId(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException, RemoteException;

Returns the UniqueID for a userSecurityName.
This method is called when creating a credential for
a user.

String getUserSecurityName(String uniqueUserId)
throws EntryNotFoundException,
CustomRegistryException, RemoteException

Returns the name for a user given its UniqueID.

boolean isValidUser(String userSecurityName)
throws CustomRegistryException,
RemoteException

Determines if the userSecurityName exists in the
registry.

Result getGroups(String pattern, int limit) throws
CustomRegistryException, RemoteException

Gets a list of groups that match a pattern in the
registry. The maximum number of groups returned
is defined by the limit argument.

28 WebSphere Application Server V6.1 Security Handbook

File-based user registry sample
A sample custom registry implementation is provided with the WebSphere
Application Server. The user registry class is called
com.ibm.websphere.security.FileRegistrySample.

The class is installed with WebSphere Application Server V6.1, and the source
code is provided in the WebSphere Information Center for reference purposes.
See the WebSphere Information Center for details regarding the format of these
files and two sample files.

String getGroupDisplayName(String
groupSecurityName) throws
EntryNotFoundException,
CustomRegistryException, RemoteException

Returns the display name for the group specified by
groupSecurityName.

String getUniqueGroupId(String
groupSecurityName) throws
EntryNotFoundException,
CustomRegistryException, RemoteException

Returns the UniqueID for a group.

List getUniqueGroupIds(String uniqueUserId)
throws EntryNotFoundException,
CustomRegistryException, RemoteException

Returns the UniqueIDs for all the groups that
contain the UniqueID of a user. Called during
creation of a user's credential.

String getGroupSecurityName(String
uniqueGroupId) throws EntryNotFoundException,
CustomRegistryException, RemoteException

Returns the name for a group given its UniqueID.

boolean isValidGroup(String groupSecurityName)
throws CustomRegistryException,
RemoteException

Determines if the groupSecurityName exists in the
registry.

Result getUsersForGroup(String
groupSecurityName, int limit) throws
NotImplementedException,
EntryNotFoundException,
CustomRegistryException, RemoteException

Gets a list of users in a group. The maximum
number of users returned is defined by the limit
argument.

public List getGroupsForUser(String
userSecurityName) throws
EntryNotFoundException,
CustomRegistryException, RemoteException

Gets all the groups the given user is a member of.

Credential createCredential(String
userSecurityName) throws
NotImplementedException,
EntryNotFoundException,
CustomRegistryException, RemoteException

Throws the NotImplementedException for this
method.

Method signature Use

 Chapter 2. Configuring the user registry 29

The files must be copied to the directories that are specified in the initialization
properties (Table 2-4) for the custom registry before you can enable the registry.

Table 2-4 FileRegistrySample initialization properties

To configure the WebSphere Application Server to use the file user registry:

1. Launch the Secure administration, application, infrastructure console.

2. Under User account repository, select Stand-alone custom registry and
click Configure.

3. On the Standalone customer registry page (Figure 2-7 on page 31):

a. In the Primary administrative user name field, enter a valid user name.
This ID is the security server ID, which is only used for WebSphere
Application Server security and is not associated with the system process
that runs the server. The server calls the local operating system registry to
authenticate and obtain privilege information about users by calling the
native APIs in that particular registry.

b. Enter the complete location of the dot-separated class name that
implements the com.ibm.websphere.security. In the Custom registry class
name field, enter the UserRegistry interface. For the sample, this file name
is com.ibm.websphere.security.FileRegistrySample.

c. Add your custom registry class name to the class path. Add the Java
archive (JAR) file that contains your custom user registry implementation
to the application server lib/ext directory.

d. Optional: Select the Ignore case for authorization option for the
authorization to perform a case-insensitive check. Enabling this option is
necessary only when your user registry is case insensitive and does not
provide a consistent case when queried for users and groups.

e. Click Apply if you have any other additional properties to enter for the
registry initialization.

Name Value

usersFile File location and name, for example:
${USER_INSTALL_ROOT}/customer_sample/users.props

groupsFile File location and name, for example:
${USER_INSTALL_ROOT}/customer_sample/groups.props

30 WebSphere Application Server V6.1 Security Handbook

Figure 2-7 FileRegistry Sample Stand-alone Custom Registry user name and password

4. Click Custom Properties.

adminID

 Chapter 2. Configuring the user registry 31

5. On the Customer properties page (Figure 2-8):

a. Add the properties necessary to initialize the registry. These properties are
passed to the initialize method of the custom registry.

b. For the supplied FileRegistrySample code, enter the properties from
Table 2-4 on page 30.

Figure 2-8 File registry sample custom properties

6. Click Security → Secure administration, applications, and infrastructure.

7. Under User account repository, select Stand-alone custom registry and
click Configure.

8. Complete the following actions:

a. Under Additional properties, click Specify user identity for
interoperability.

b. Select either the Automatically generated server identity or Server
identity that is stored in the repository option. If you select the Server

32 WebSphere Application Server V6.1 Security Handbook

Identity that is stored in the repository option, enter the following
information:

i. For Server user ID or administrative user on a Version 6.0.x node,
specify the short name of the account (see Figure 2-7 on page 31).

ii. Server user password, specify the password of the account (see
Figure 2-7 on page 31).

iii. Click OK and complete the required steps to turn on security.

c. Click Apply to validate the settings.

9. Save the configuration for WebSphere.

10.Restart the application server.

Testing the custom registry
To test the connection, click the Test Connection button. If the connection is
correct, you see a message indicating success.

IBM DB2 custom user registry
The IBM DB2® registry uses Java Database Connectivity (JDBC™) to
communicate with the database. Although this registry is tested with DB2, you
must be able to modify it to work with other relational databases. The source
code (DB2UserRegistrySample.java) is included in the files that are associated
with this book along with the database structure that follows that of the LDAP
registry.

Open the DB2UserRegistrySample.java source in IBM Rational® Application
Developer V6.0 and check the comments in the source code. You will find that all
required methods for the UserRegistry interface are implemented. Look for the
SQL queries in the code and see what each method does with the database.

Although this can be modified, the sample instructions use the DB2 JDBC
Universal Driver (Type 4) to successfully run and compile the application DB2
Type 4 driver libraries (db2jcc.jar, db2jcc_javax.jar, and
db2jcc_license_cu.jar) and the WebSphere security libraries (sas.jar and
wssec.jar) that you are required to add to the Java build path (Figure 2-9 on
page 34).

 Chapter 2. Configuring the user registry 33

Figure 2-9 Rational Application Developer libraries required

The libraries (DB2 JAR files) shown previously and the compiled
DB2UserRegistrySample.class file must be present in a directory that is
accessible by the application server. This means the directory must be in the
application server’s class path (for example, <WebSphere_root>/lib/ext).
Alternatively, update the application server’s class path to refer to the directory
that contains the class file and JAR files.

A simple custom registry test class is DB2UserRegistrySampleTest, which is
shown in Example 2-1. This test class runs from the command line or is included
from Rational Application Developer. It can be used to test whether the custom
registry is working as required. The tool allows the developer to be sure that the
custom registry is functioning before configuring the application server to use it.

Example 2-1 DB2UserRegistrySampleTest output

Initialized DB2UserRegistrySample
Enter a user name. wsuser
Enter a UID. 1
Enter a group name. admingrp
Enter a GID. 1
Enter a password. test
X509 certificate file.
Testing registry...
checkPassword: wsuser
getGroupDisplayName: group for administrators
getGroups: com.ibm.websphere.security.Result@1bb97283
getGroupSecurityName: admingrp
getRealm: customRealm
getUniqueGroupId: 1

34 WebSphere Application Server V6.1 Security Handbook

getUniqueGroupIds: [1]
getGroupsForUser: [admingrp]
getUniqueUserId: 1
getUserDisplayName: WebSphere administrator
getUsers: com.ibm.websphere.security.Result@1eeab283
getUserSecurityName: wsuser
isValidGroup: true
isValidUser: true
mapCertificate: null
Test completed.

To run the DB2UserRegistrySampleTest tool, you must provide two arguments,
the Custom Registry class, DB2UserRegistrySample, and the Custom Registry
property file name. The property file contains the information shown in Table 2-5.

Table 2-5 DB2RegistrySample initialization properties

The tool prompts for user and group information and uses this information to
query the custom registry. It also prompts for an X.509 certificate file, although
the response can be empty (press Enter). In this case, the certificate check is not
performed. The compiled classes are provided with this book as part of the
additional material (see Appendix B, “Additional material” on page 543), and the
DB2 libraries are available together with the DB2 product.

To configure the WebSphere Application Server to use the DB2 user registry:

1. Launch the Secure administration, application, infrastructure console.

2. Under User account repository, select Stand-alone custom registry and
click Configure.

3. On the Standalone customer registry page (Figure 2-10 on page 36):

a. In the Primary administrative user name field, enter a valid user name.
This ID is the security server ID, which is only used for WebSphere
Application Server security and is not associated with the system process
that runs the server. The server calls the local operating system registry to

Name Value

DBDRIVER com.ibm.db2.jcc.DB2Driver

DBURL jdbc:db2://9.42.171.75:50000/userreg

DBUSERNAME webas

DBPASSWORD test

DBSCHEMA userreg

 Chapter 2. Configuring the user registry 35

authenticate and obtain privilege information about users by calling the
native APIs in that particular registry.

b. In the Custom registry class name field, enter the complete location of the
dot-separated class name that implements the
com.ibm.websphere.security.UserRegistry interface. We enter the file
name com.ibm.websphere.security.FileRegistrySample.

c. Add your custom registry class name to the class path. Add the JAR file
that contains your custom user registry implementation to the application
server lib/ext directory.

Figure 2-10 DB2Registry sample Standalone custom registry user name and password

AdminID

36 WebSphere Application Server V6.1 Security Handbook

d. Optional: Select the Ignore case for authorization option for the
authorization to perform a case insensitive check. Enabling this option is
necessary only when your user registry is case insensitive and does not
provide a consistent case when queried for users and groups.

e. Click Apply if you have other additional properties to enter for the registry
initialization.

4. Click Custom Properties.

5. Add the properties necessary to initialize the registry. These properties are
passed to the initialize method of the custom registry. For the supplied
FileRegistrySample code, enter the properties as shown in Table 2-4 on
page 30.

6. Click Security → Secure administration, applications, and infrastructure.

7. Under User account repository, select Standalone custom registry and click
Configure.

8. Complete the following actions:

a. Under Additional properties, click Specify user identity for
interoperability.

b. Select either the Automatically generated server identity or Server
identity that is stored in the repository option. If you select the Server
Identity that is stored in the repository option, enter the following
information:

i. For Server user ID or administrative user on a Version 6.0.x node,
specify the short name of the account that you chose in step 1.

ii. Server user password, specify the password of the account that you
chose in step 1.

iii. Click OK and complete the required steps to turn on security.

9. Click Custom Properties.

 Chapter 2. Configuring the user registry 37

10.Add the properties necessary to initialize the registry (Figure 2-11). These
properties are passed to the initialize method of the custom registry.

Figure 2-11 DB2 Registry Sample custom properties

11.If there are no errors at this stage, select Security → Secure
administration, application, and infrastructure.

12.Ensure that the Active User Registry option is set to Custom user registry
and that Administrative Security is enabled.

13.Click Apply to validate the settings.

14.Save the configuration for WebSphere.

15.Restart the application server.

38 WebSphere Application Server V6.1 Security Handbook

Testing the custom registry
To test the connection, follow the steps in 3.1, “Enabling administrative security”
on page 50, to enable Administrative Security. When the server starts, launch the
administrative console. The administrative console prompts you for a user name
and password for authentication. If you are able to log in successfully, your
configuration is successful.

2.4 Federated repository

Presently, most WebSphere Application Server applications have their own
models and components for mapping organizational entities, and they provide
different levels of security. Most applications depend on a specific schema for the
data in those repositories and are unable to use repositories with existing data.
Virtual member manager helps these applications by providing them a common
model, secure access to various brands and types of repositories, and the ability
to use repositories with existing data. The single model includes a set of
organizational entity types and their properties, a repository-independent API
and a Service Provider Programming Interface (SPI) for plugging in repositories.

If you configure multiple repositories under the federated realm, you must also
configure the supported entity type and specify a base entry for the default
parent. The base entry for the default parent determines the repository location
where entities of the specified type are placed on write operation by User and
Group management.

A federated repository enables you to use multiple repositories with WebSphere
Application Server V6.1. These repositories, which can be file-based
repositories, LDAP repositories, or a sub-tree of an LDAP repository, are defined
and theoretically combined under single realm. All of the user repositories that
are configured under the federated repository functionality are transparent to
WebSphere Application Server.

Tips for multiple user repositories: The user ID and the DN for an LDAP
repository must be unique in multiple user repositories that are configured
under the same federated repository configuration. In addition, the federated
repositories functionality in WebSphere Application Server supports the
logical joining of entries across multiple user repositories when the application
server searches and retrieves entries from the repositories.

 Chapter 2. Configuring the user registry 39

2.4.1 Connecting WebSphere Application Server to a federated
repository

To connect WebSphere Application Server V6.1 to a federated repository:

1. Click Security → Secure administration, applications, and infrastructure
Security configuration wizard.

2. Select your protection setting and click Next.

3. Select the Federated repositories option and click Next.

Then to modify the federated repository configuration:

1. Click Security → Security administration, applications, and
infrastructure.

2. Under User account repository, select Federated repositories and click
Configure.

3. In the Federated repositories pane (Figure 2-12 on page 41), enter the
following values for the initial configuration of a built-in, file-based repository:

– Primary administrative user name specifies the name of the user with
administrative privileges that is defined in the repository, for example,
adminUser.

– Password specifies the password of the administrative user who manages
file product resources and user accounts.

– Confirm password confirms the password of the administrative user who
manages the product resources and user accounts.

Tips:

� The user name and password do not have to be in the federated
repository because they are created.

� If you previously configured federated repositories, do not use the
Security configuration wizard to modify your configuration. Instead,
modify your configuration by using the federated repositories selection
under User account repository on the Secure administration,
applications, and infrastructure panel.

40 WebSphere Application Server V6.1 Security Handbook

Figure 2-12 Configuring a federated repository

 Chapter 2. Configuring the user registry 41

2.4.2 Configuring supported entity types in a federated repository

You must configure the supported entity types before you start managing the
account with users and groups in the administrative console. You cannot add or
delete the supported entity types, because these types are predefined.

To manage users and groups:

1. In the console navigation tree, click Users and Groups.

2. Click either Manage Users or Manage Groups.

3. In the administrative console, click Security → Security administration, and
infrastructure.

4. Under User account repository, select Federated repositories from the
Available realm definitions field and click Configure.

5. Complete the following actions:

a. Click Supported entity types to view a list of predefined entity types.

b. Click the name of a predefined entity type to change its configuration.

c. In the Base entry for the default parent field, type the DN of the base entry
in the repository. This entry determines the default location in the
repository where entities of this type are placed on write operations by
User and Group management.

d. In the Relative Distinguished Name properties field, enter the RDN
properties for the specified entity type. Possible values are cn for group,
UID or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon.

e. Click OK.

Testing the configuration
To test the configuration:

1. In the Secure administration, application, and infrastructure pane:

a. Click Apply to verify the federated repositories configuration. If Federated
repositories is not identified in the Current realm definition field, your
federated repositories configuration is not used by WebSphere Application
Server.

b. Enable security for the realm. See 3.1, “Enabling administrative security”
on page 50.

c. Click Apply.

42 WebSphere Application Server V6.1 Security Handbook

2. Save, stop, and restart all the product servers (deployment managers, nodes,
and application servers) for changes in this panel to take effect. If the server
comes up without any problems, the setup is correct.

2.4.3 Configuring an entry mapping repository in a federated
repository

The federated repository configuration uses multiple repositories simultaneously
and recognizes the entries in the different repositories as entries that represent
distinct entities. By configuring an entry mapping repository, a federated
repository configuration can use both LDAP and the database at the same time.
The federated repository configuration hierarchy and constraints for identifiers
provide the aggregated namespace for both of those repositories and prevent
identifiers from colliding.

When you configure an entry mapping repository, you can supply a valid data
source, a direct connection configuration, or both. The system first tries to
connect by way of the data source. If the data source is not available, then the
system uses the direct access configuration.

To configure the entry mapping repository:

1. Configure the WebSphere Application Server data source.

2. Set up the entry mapping repository by using wsadmin.

3. Configure the entry mapping repository into the federated repository:

a. In the administrative console, click Security → Secure administration,
applications, and infrastructure.

b. Under User account repository, select Federated repositories from the
available realm definitions field and click Configure.

c. Click Entry mapping repository.

d. In the Data source name field, enter the name of the data source.

e. Select the type of database that issued for the property extension
repository.

f. In the JDBC driver field, enter the name of the Java Database Connectivity
(JDBC) driver.

Restriction: You cannot configure an entry mapping repository in a
mixed-version deployment manager cell.

 Chapter 2. Configuring the user registry 43

g. In the Database URL field, enter the database URL that is used to access
the property extension repository with JDBC (Example 2-2). Use of an
alphanumeric text string conforms to the standard JDBC URL syntax.

Example 2-2 DB2 database URL

COM.ibm.db2.jdbc.app.DB2Driver
jdbc.db2.wim

h. In the Database administrator user name field, enter the user name of the
database administrator.

i. In the Password field, enter the password of the database administrator.

Testing the configuration
To test the configuration:

1. Click Security → Secure administration, application, and infrastructure
to return to the Secure administration, applications, and infrastructure panel.

2. Complete the following actions:

a. In the Current realm definition field, verify that Federated repositories is
defined. If federated repositories is not identified, select Federated
repositories from the available realm definitions field and click Select as
current.

b. Click Apply to verify the federated repositories configuration. If Federated
repositories is not identified in the Current realm definition field, your
federated repositories configuration is not used by WebSphere Application
Server.

3. Enable security for the realm. See 3.1, “Enabling administrative security” on
page 50.

4. Save, stop, and restart all the product servers (deployment managers, nodes,
and application servers) for changes in this panel to take effect. If the server
comes up without any problems, the setup is correct.

2.4.4 Configuring a property extension repository in a federated
repository

A federated repository configuration provides a property extension repository,
which is a database regardless of the type of main profile repositories for a
property-level join configuration. When an application uses the federated
repository configuration to retrieve an entry for a person, the federated repository
configuration transparently joins the properties of the person that is retrieved
from either the LDAP or the customer’s database with the properties of the

44 WebSphere Application Server V6.1 Security Handbook

person that is retrieved from the property extension repository into a single
logical person entry.

When you configure a property extension repository, you can supply a valid data
source, a direct connection configuration, or both. The system first tries to
connect by way of the data source. If the data source is not available, the system
uses the direct access configuration.

Property extension repository configuration
To configure the property extension repository:

1. Configure the WebSphere Application Server data source. See “Configuring
the WebSphere Application Server data source” in the WebSphere
Application Server V6.1 Information Center on the Web at the following
address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

2. Set up the property extension repository by using wsadmin. See 3.1, “Enabling
administrative security” on page 50, to set up an entry mapping repository, a
property extension repository, or a database repository by using wsadmin
commands.

3. Click Security → Secure administration, applications, and infrastructure.

4. Under User account repository, select Federated repository, and click
Configure.

5. Click Property extension repository.

6. In the Data source name field, enter the name of the data source.

7. Select the type of database that is used for the property extension repository.

8. In the JDBC driver field, enter the name of the JDBC driver.

9. In the Database URL field, enter the database URL that is used to access the
property extension repository with JDBC. Use an alphanumeric text string that
conforms to the standard JDBC URL syntax.

10.In the Database administrator user name field, enter the user name of the
database administrator.

11.In the password field, enter the password of the database administrator.

12.In the Entity retrieval limit field, enter the entity retrieval limit. The entity
retrieval limit is the maximum number of entities that the system can retrieve

Restriction: You cannot configure a property extension repository in a
mixed-version deployment manager cell.

 Chapter 2. Configuring the user registry 45

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

from the property extension repository with a single database query. The
default value is 200.

Testing the configuration
To test the configuration:

1. Enable security for the realm. See 3.1, “Enabling administrative security” on
page 50.

2. Save, stop, and restart all the product servers (deployment managers, nodes,
and application servers) for changes in this panel to take effect. If the server
comes up without any problems, the setup is correct.

Configuring LDAP in a federated repository
To configure secure access to an LDAP repository with failover servers option:

1. In the administrative console, click Security → Secure administration,
applications, and infrastructure.

2. Under User account repository, select Federated repositories from the
Available realm definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository
that is preconfigured.

Configuration tab
Set the following items on the Configuration tab:

� Repository Identifier

Specifies a unique identifier for the LDAP repository. This identifier uniquely
identifies the repository within the cell, for example, LDAP1.

� Directory Type

Specifies the type of LDAP server to which you connect. Expand the
drop-down list to display a list of LDAP directory types.

� Primary host name

Specifies the host name of the primary LDAP server. This host name is either
an IP address or a DNS name.

� Failover host name

Specifies the host name of the failover LDAP server. You can specify a
secondary directory server to be used in the event that your primary directory
server becomes unavailable. After switching to a secondary directory server,
the LDAP repository attempts to reconnect to the primary directory server
every 15 minutes.

46 WebSphere Application Server V6.1 Security Handbook

� Port

Specifies the port of the failover LDAP server. The default value is 389, which
is not an SSL connection. Use port 636 for an SSL connection. For some
LDAP servers, you can specify a different port for non-SSL or SSL
connections.

� Support referrals to other LDAP servers

Specifies how referrals that are encountered by the LDAP server are handled.
A referral is an entity that is used to redirect a client request to another LDAP
server. A referral contains the names and locations of other objects. It is sent
by a server to indicate that the information that the client requested can be
found at another location, possibly at another server. The default is ignored.

� Bind Distinguished Name

Specifies the distinguished name for the application server to use when
binding to the LDAP repository.

� Bind Password

Specifies the password for the application server to use when binding to the
LDAP repository.

� Login properties

Specifies the property names to use to log in to the application server.

� Certificate mapping

Specifies whether to map X.509 certificates to an LDAP directory by using
EXACT_DN or CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to
use the specified certificate filter for the mapping.

� Certificate Filter

Specifies the filter certificate mapping property for the LDAP filter. The filter is
used to map attributes in the client certificate to entries in the LDAP
repository.

� Require SSL communications

Specifies whether secure socket communication is enabled to the LDAP
server.

� Centrally managed

Specifies that the selection of an SSL configuration is based on the outbound
topology view for the Java Naming and Directory Interface (JNDI) platform.

� Use specific SSL alias

Specifies the SSL configuration alias to use for LDAP outbound SSL
communications. This option overrides the centrally managed configuration
for the JNDI platform.

 Chapter 2. Configuring the user registry 47

Limitation on federated repositories in a mixed-version
environment
In a mixed-version deployment manager cell that contains both Version 6.1.x and
Version 5.x or 6.0.x nodes, the following limitations apply for configuring
federated repositories:

� You can configure only one LDAP repository under federated repositories,
and the repository must be supported by Version 5.x or 6.0.x.

� You can specify a realm name that is compatible with prior versions only. The
host name and the port number represent the realm for the LDAP server in a
mixed-version nodes cell.

� You must configure a stand-alone LDAP registry. The LDAP information in
both the stand-alone LDAP registry and the LDAP repository under the
federated repositories configuration must match. During node
synchronization, the LDAP information from the stand-alone LDAP registry
propagates to the Version 5.x or 6.0.x nodes.

Federal Information Processing Standard support
Government agencies and financial institutions use Federal Information
Processing Standards (FIPS) to ensure that the products conform to specified
security requirements. For more information about these standards, see the
National Institute of Standards and Technology Web site at:

http://www.nist.gov/

WebSphere Application Server integrates cryptographic modules including Java
Secure Socket Extension (JSSE) and Java Cryptography Extension (JCE), which
have undergone FIPS 140-2 certification. In the WebSphere Application Server
documentations, the IBM JSSE and JCE modules that have undergone FIPS
certification are referred to as IBMJSSEFIPS and IBMJCEFIPS. When you
enable FIPS, several components of the Application Server are affected including
the cipher suites, the cryptographic providers, the load balancer, the caching
proxy, the high availability manager, and the data replication service.

Important: Before node synchronization, verify that Federated repositories
is identified in the current realm definition field. If Federated repositories is
not identified, select Federated repositories from the available realm
definitions field and click Select as current. Do not set the stand-alone
LDAP registry as the current realm definition.

Note: IBM products with WebSphere Application Server V6.1 maintain a FIPS
level of security compliance.

48 WebSphere Application Server V6.1 Security Handbook

http://www.nist.gov/
http://www.nist.gov/

Chapter 3. Administrative security

The term administrative security represents the security configuration which
affects the entire security domain. The security domain consists of all the servers
that are configured with the same user registry realm name. The basic
requirement for a security domain is that the access ID returned by the registry
from one server be the same access ID as that returned from the registry on any
other servers within the same security domain.

Enabling administrative security activates a wide variety of security settings for
WebSphere Application Server. While values for these settings can be specified,
they take effect only when administrative security is activated. These settings
include authentication of users, the use of Secure Sockets Layer (SSL), the
choice of user account repository, and application security.

In previous releases of WebSphere Application Server, enabling global security
activated security for both administration and applications. In WebSphere
Application Server V6.1, global security has been split into administrative and
application security, each of which can be enabled separately. However, as
mentioned previously, in order for application security to take effect,
administrative security must be enabled.

3

© Copyright IBM Corp. 2006. All rights reserved. 49

3.1 Enabling administrative security

In WebSphere Application Server V6.1, administrative security is enabled by
default as part of the installation process. This out-of-box enabled security is
made possible due to the inclusion of the built-in, file-based repository. The
built-in repository is a new feature made possible through the integration of
Virtual Member Manager (VMM) into WebSphere Application Server.

If WebSphere administrative security is disabled, you can re-enable it. From the
administrative console, click Security → Secure administration, applications,
and infrastructure. In the Secure administration, applications, and infrastructure
window (Figure 3-1), select Enable administrative security.

Figure 3-1 Administrative, application, and infrastructure security configuration page

50 WebSphere Application Server V6.1 Security Handbook

3.1.1 Main components of WebSphere security

WebSphere security has three critical components:

� Authentication protocol

The authentication protocol is used for Remote Method Invocation (RMI) over
the Internet InterORB Protocol (IIOP) requests when security is enabled.
WebSphere Application Server is configured to use Common Secure
Interoperability Version 2 (CSIV2) by default. IBM Secure Authentication
Service is the authentication protocol that is used by all releases of
WebSphere Application Server prior to Version 5.

Support for the Secure Authentication Service protocol is provided for
backwards compatibility with previous product releases. However, the
configuration pages for Secure Authentication Service are shown only in the
administration console when WebSphere Application Server V6.0 and
previous version servers are federated into the V6.1 cell. Secure
Authentication Service has been deprecated and will be removed from future
WebSphere releases. The CSIV2 is defined by the Object Management
Group (OMG) as a standard authentication protocol for vendors to
interoperate securely.

� Authentication mechanism

The WebSphere Application Server uses Lightweight Third Party
Authentication (LTPA) as the default authentication mechanism. Previous
releases supported the Simple WebSphere Authentication Mechanism
(SWAM). However, SWAM was deprecated in WebSphere Application Server
V6.1 and will be removed in future releases.

LTPA supports forwardable credentials and, for security reasons, a
configurable expiration time is set on the credentials. The use of LTPA allows
you to enable single sign-on (SSO) for your security domain. Additional
configuration settings are available and are explained in the “Authentication
mechanisms and expiration” topic in the WebSphere Application Server V6.1
Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Important: If your infrastructure includes only WebSphere Application
Server Version 5.1.1 and later, you must disable the Interoperability Mode
on the Single Sign-On configuration page. WebSphere Version 5.1.1 and
later use a new LTPA token format with stronger encryption. The
interoperability mode provides backwards compatibility support for the
older format tokens.

 Chapter 3. Administrative security 51

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� User account repository

Four types of realm definitions can be used for the user account repository:

– Local operating system
– Stand-alone Lightweight Directory Access Protocol (LDAP) registry
– Stand-alone custom registry
– The Federated repositories

Details regarding the user account repository are in Chapter 2, “Configuring
the user registry” on page 7. Make sure that the primary administrative user
name and server user identity fields are correctly completed.

Whenever Local operating system is chosen for the user account repository,
only special users can enable administrative security and later to start the
secure WebSphere. See 2.3, “Local OS registry” on page 23:

– For UNIX-based platforms, the WebSphere Application Server process
must be owned by a user with a root authority.

– For Windows-based platforms, WebSphere must be started by a user who
has the “Act as part of the operating system” rights. Make sure that the
system is rebooted if you must change the rights. Otherwise WebSphere
might not make the changes.

Table 3-1 summarizes the differences in security authentication capabilities and
user registries between WebSphere Application Server V6.0 and V6.1.

Table 3-1 Security capability comparison of WebSphere Application Server V6.0 and V6.1

Authentication
protocols

Authentication
mechanisms

Local OS
registry

LDAP
registry

Custom
registry

Federated
repositories

V6.0 � CSIV2
� Secure

Authentication
Service

� CSIV2 and Secure
Authentication
Service

LTPA
SWAM

Yes Yes Yes No

V6.1 � CSIV2
� CSIV2 and Secure

Authentication
Servicea

a. The IBM Secure Authentication Service authentication protocol has been deprecated. Support for it will be re-
moved in future releases of WebSphere Application Server. Support for Secure Authentication Service in V6.1
is available for backwards compatibility with V5.x and V6.0 servers, which can be federated into a V6.1 cell.

LTPA Yes Yes Yes Yes

52 WebSphere Application Server V6.1 Security Handbook

3.1.2 Security Configuration Wizard

WebSphere Application Server V6.1 offers the Security Configuration wizard to
help you enable security for your application serving environment. This wizard
takes you through the basic components that you must configure to activate
security for your realm. To enable security with the wizard:

1. Log in to the WebSphere Administration Console.

2. Select Security → Secure administration, applications, and
infrastructure, and then click Security Configuration Wizard.

3. Select the extent of protection, as shown in Figure 3-2. At a minimum, the
wizard enables administrative security based on the input you provide.
Additional security features, such as application and Java 2 security, are
optional settings that you can enable.

Click Next.

Figure 3-2 Configuring security with the Security Configuration Wizard

More information: For more information about enabling application
security, see 6.1.1, “Enabling application security” on page 102.

 Chapter 3. Administrative security 53

4. Select your User account repository:

– Selecting Federated repositories walks you through configuration of the
built-in, file-based user repository only. To configure a Federated
repository with a non-file-based repository in the realm, you must use the
User accounts repository section on the Secure administration,
applications, and infrastructure panel.

– Selecting any of the other repository options presents you with a page to
provide the basic information required to configure the chosen registry.

Click Next.

5. Configure the repository and click Next.

6. On the Summary page, review the information. If everything is correct, click
Finish.

7. When you return to the Secure administration, applications, and infrastructure
panel, click Apply and save the WebSphere configuration.

8. Restart the application server in order for the changes to take effect.

After the server is restarted, to gain access to the Administrative Console, use
the primary administrative user name and password defined in the user account
repository. See 3.3, “Administrative roles” on page 59, about adding access to
the Administrative console for other users or groups.

Note: WebSphere Application Server V6.1 separates the server user
identity from the primary administrative user. The primary
administrative user is any valid user in the user account repository that
you choose to give default administrative privileges. The server user
identity is used for server to server communication. By selecting the
automatically generated server identity, WebSphere creates an identity
for internal communications that is not stored in the repository and does
not have a password. LDAP directories still require a bind DN for
successful communications.

Important: If the User account repository section does not list your new
registry as the Current realm definition, select it from the list of Available
realm definitions, click Set as current, and then click Apply.

54 WebSphere Application Server V6.1 Security Handbook

Verifying and testing administrative security
After your server is restarted in secure mode, you can test that security is
properly enabled. There are basic tests that you can perform:

� Verify the form login. When using the Web-based Administrative Console, the
Web-based form login page that is displayed forces you to enter a user ID and
password. Only a user ID with administrative roles must be able to log in.

� Verify that the Java Client Basic Authentication works by executing the
<WebSphere_home>\bin\dumpNameSpace.bat file.

A challenge login window must open. Although you might be able to click
Cancel, you must type any correct user ID and password that is defined in the
user account repository to test the security.

Be aware that the login panel for the Java client only opens if the
com.ibm.CORBA.loginSource property is set to prompt in the
sas.client.props file. Clicking Cancel works only if CosNaming security (see
3.4, “Naming service security: CosNaming roles” on page 64) allows read
access to everyone. These values are the default values when you installed
WebSphere.

Successfully running these basic tests indicates that the administrative security
is working correctly.

3.1.3 Other security properties

Several other properties can be set from the Secure administration, applications,
and infrastructure page (Figure 3-1 on page 50). Some of them are used only if
administrative security is enabled, such as User account repository, Application
security, Authentication, and authorization providers. Others, for example, Java 2
Security, are not related to the enabling of administrative security. This means
that those properties can be activated and used even if administrative security is
not enabled.

� Java 2 security

This property specifies whether to enable or disable Java 2 security
permission checking. We recommend that you enable this security feature
because it protects the WebSphere infrastructure from applications and
applications from each other.

More information: For information about how to test application security, see
6.1.1, “Enabling application security” on page 102.

 Chapter 3. Administrative security 55

This protection is achieved by restricting access to the WebSphere internal
APIs, administrative APIs, configuration files, and enforcing Java 2 Platform,
Enterprise Edition (J2EE) recommended restrictions:

– Enterprise JavaBeans (EJB) are not allowed access to the file system.

– Servlets are only allowed file system access within the Web archive
(WAR) file.

– Use of getUserPrincipal() is not allowed except by explicitly granted
access.

When the Java 2 security option is enabled and if an application requires
more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are
granted in either the node default app.policy file or the was.policy file of the
application. For applications that were not developed with Java 2 security in
mind, the simplest way is to grant full permission to all resources within the
application to place the following entry in the was.policy file:

grant codeBase “file:$(application)” {
permission java.security.AllPermission;

}

Although this is a guaranteed way to get applications functioning in an
environment with Java 2 security enabled, we do not recommend this
practice. You must configure applications such that they are granted access to
only those resources that they require and with only the appropriate
permissions for the type of access required. Appropriate permissions can be
determined by checking for failed permission error messages in the logs, or
by using the Eclipse plug-in, Security Workbench Development Environment
for Java (SWORD4J), which is available at the following address:

http://alphaworks.ibm.com/tech/sword4j

Determining the required permissions for an application can be a difficult task,
but the end result is a much more secure application serving environment.

� Warn if applications are granted custom permissions

The filter.policy file contains a list of permissions that an application
should not have according to the J2EE 1.4 specification. If an application is
installed with a permission specified in this policy file and this option is
enabled, a warning message is issued. Java 2 security must be enabled in
order to enable this setting.

56 WebSphere Application Server V6.1 Security Handbook

http://alphaworks.ibm.com/tech/sword4j

� Restrict access to resource authentication data

Enable this option to restrict application access to sensitive J2EE Connector
Architecture (JCA) mapping authentication data. Consider doing this when
both of the following conditions apply:

– Java 2 security is enabled.

– The application code is granted the accessRuntimeClasses
WebSphereRuntimePermission in the was.policy file found within the
application enterprise archive (EAR) file.

� Use domain-qualified user names

If this option is enabled, user names are displayed with their fully-qualified
domain attribute when retrieved programmatically.

3.1.4 Stopping the application server

While the command to start the application server is still the same when
administrative security is enabled, stopping the server requires extra information.
You must specify a user ID with administrator role rights, or the primary
administrative user name specified in the user account repository and its
password, in the stopServer command:

<WebSphere_home>\bin\stopServer.bat <server_name> -username <userID>
-password <password>

For WebSphere Application Server running under a UNIX-based operating
system (OS), the previously mentioned command (the UNIX equivalent) carries a
serious security problem. Anyone who uses the ps -ef command while the
stopServer process is running can see the user ID and the password.

To avoid this problem:

1. If you are using the SOAP connection type (default) to stop the server, edit the
<WebSphere_home>\profiles\<profilePath>\properties\soap.client.props
file. Then, change the values of the following properties:

com.ibm.SOAP.securityEnabled=true
com.ibm.SOAP.loginUserid=<user ID>
com.ibm.SOAP.loginPassword=<password>

Note: Some of the properties in the Secure administration, applications,
and infrastructure page, for example, Java 2 Security, can be enabled even
if WebSphere administrative security is not enabled.

 Chapter 3. Administrative security 57

Again, the user ID <user ID>, with its password <password>, is the user ID
with administrator role rights or the primary administrative user name defined
in the user account repository.

2. Encode the com.ibm.SOAP.loginPassword property value as follows:

<WebSphere_home>\bin\PropFilePasswordEncoder.bat soap.client.props
com.ibm.SOAP.loginPassword

Examine the result and remove the soap.client.props.bak backup file, that
was created by the previous command. This file contains the unencrypted
password.

3. Make sure that proper file access rights for sensitive WebSphere Application
Server files, such as properties files and executable files, are set. At a
minimum, ensure that permissions prevent general users from accessing
these files. WebSphere administrators must be the only users that are
granted access to these files. For optimal security, access to the entire
WebSphere directory tree must be removed for general users.

Whether administrative security is enabled or disabled, stop the WebSphere
Application Server as follows:

<WebSphere_home>\bin\stopServer.bat <server_name>

3.2 Disabling administrative security

There are several ways to disable administrative security. The easiest method is
to use the Administrative Console and select Security → Secure
administration, applications, and infrastructure. However, this means that the
application server must already have been started. For some reason, if the
application server cannot be started, for example, because of a misconfigured
user account repository, you can disable administrative security by using the
command line.

To disable administrative security:

1. At the command prompt, type the following command:

<WebSphere_home>\bin\wsadmin.bat -conntype NONE

2. When the system command prompt redisplays, type the following command:

securityoff

3. Type quit and restart the application server.

58 WebSphere Application Server V6.1 Security Handbook

This procedure works without any problems. However, if it fails, you can disable
administrative security by directly editing the security.xml file in
<WebSphere_home>\profiles\<profilePath>\config\cells\<cell_name>\.

In addition change the security attribute enabled="true" to enabled="false".
Some other properties (Example 3-1), such as Java 2 security and application
security, are also in this file. However, use care when modifying this file directly.

Example 3-1 Content snippet of the security.xml file

<?xml version="1.0" encoding="UTF-8"?>
<security:Security xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
...

xmi:id="Security_1" useLocalSecurityServer="true"
useDomainQualifiedUserNames="false" enabled="true"

cacheTimeout="600"
issuePermissionWarning="false" activeProtocol="BOTH"
enforceJava2Security="true" enforceFineGrainedJCASecurity="false"
appEnabled="true" dynamicallyUpdateSSLConfig="true"
activeAuthMechanism="LTPA_1" activeUserRegistry="WIMUserRegistry_1"
defaultSSLSettings="SSLConfig_1">

 <authMechanisms ...
...

...
</security:Security>

3.3 Administrative roles

As in WebSphere Application Server V5.0, the administration subsystem of
WebSphere Application Server V6.1 uses the J2EE role-based authorization
concept. Three new roles are introduced in V6.1 for a total of seven defined roles
for performing administrative tasks (Table 3-2 on page 60).

Administrative security: Enable administrative security for your
infrastructure. Administrative security must only be disabled to fix a problem
that stems from a situation in which WebSphere security is failing.

 Chapter 3. Administrative security 59

Table 3-2 WebSphere administrative roles

The primary administrative user specified when enabling administrative security
is automatically mapped to the Administrator and AdminSecurityManager roles.
Therefore, it is not necessary to manually add this identity to either of these
administrative roles.

Users and groups, as defined by the user account repository, may be mapped to
administrative roles. To enable a new mapping, it is necessary to save the
changes to the master configuration and restart the server. For this reason, map
groups to administrative roles so that users can be added to the groups
appropriately (therefore, the users are mapped to administrative roles) without
the requirement to restart the WebSphere server.

Role Description

Monitor Least privileged. Allows a user to view the WebSphere
configuration and current application server state.

Configurator Monitor privilege in addition to the ability to change the WebSphere
configuration.

Operator Monitor privilege in addition to the ability to change runtime state,
such as starting or stopping servers.

Administrator Operator, configurator, and iscadmins privilege, in addition to
additional privileges granted solely to the administrator role, such
as:
� Modifying the primary administrative user and password
� Create, update, and delete users and groups
� Enabling or disabling administrative and Java 2 security
Note: An administrator cannot map users/groups to administrative
roles.

iscadmins Only available for administration console users. Allows a user to
manage users and groups in the Federated repositories.

Deployer Only available for wsadmin users (not administration console). Allows
a user to change configuration and runtime state on applications
using wsadmin.

Admin Security
Manager

Allows a user to map users and groups to administrative roles
through the administrative console, or through wsadmin for
fine-grained security. Also, when fine grained administrative
security is used, users granted this role can manage authorization
groups.

Effectiveness: The administrative roles are effective only when administrative
security is enabled.

60 WebSphere Application Server V6.1 Security Handbook

3.3.1 Mapping a user to an administrative role

In order for a user to perform an administrative action, its identity must be
mapped to an administrative role. To map a user to an administrative role:

1. From the Administrative Console, select Users and Groups →
Administrative User Roles.

2. Click Add.

3. Under General Properties:

a. In the User field, enter a user name. This user must be defined in the user
account repository that is to be active when administrative security is
enabled.

b. Select the appropriate administrative role. More than one role may be
selected. See Figure 3-3.

c. Click OK. If the user cannot be found in the registry, an error occurs.

4. Ensure that the new mapping is in the Administrative User Roles list.

5. Click Save to save the change to the master configuration.

Figure 3-3 Mapping a user to an administrative role

Active user: The recently added user is active only after the server is
restarted.

 Chapter 3. Administrative security 61

3.3.2 Mapping a group to an administrative role

As mentioned earlier, map groups to roles rather than users. Mapping a group is
fairly similar to mapping a user:

1. From the Administration Console, click Users and Groups → Administrative
Group Roles.

2. Click Add.

3. Under General Properties:

a. Map either a specific group or a special subject (Figure 3-4):

• To map a specific group, in the Specify group field, enter the group
name. This group must be defined in the user account repository that
becomes active when administrative security is enabled.

• To map a special subject, select the Special subjects option and the
appropriate subject from the drop-down list. A special subject is a
generalization of a particular class of users. The All Authenticated
special subject means that the access check of the administrator role
ensures that the user making the request has at least been
authenticated. The Everyone special subject means that anyone,
regardless of whether they are authenticated, can perform the action,
as though no security were enabled.

Figure 3-4 Mapping a group to an administrative role

62 WebSphere Application Server V6.1 Security Handbook

b. Select the appropriate administrative role. You can select more than one
role.

c. Click OK. If the group cannot be found in the registry, then an error occurs.

4. Ensure that the new mapping is in the Administrative Group Roles list.

5. Save the change to the master configuration by using the link at the top of the
window. Then restart the server.

3.3.3 Fine-grained administrative security

WebSphere Application Server V6.1 offers new functionality for enforcing a
fine-grained application of administrative security roles for wsadmin users. With
this new functionality, user and group authorization can be granted within a
specific scope, instead of the default cell-wide access that administration console
users and groups receive.

Fine-grained access is granted by performing the following steps, which you must
perform by using the wsadmin interface:

1. Connect to your application server with wsadmin. Specify a user that has the
AdminSecurityManager role for the cell.

2. Create an authorization group:

$AdminTask createAuthorizationGroup {-authorizationGroupName
itsoAuthGroup}

3. Add resources to the authorization group:

$AdminTask addResourceToAuthorizationGroup {-authorizationGroupName
itsoAuthGroup -resourceName Server=server1}
$AdminTask addResourceToAuthorizationGroup {-authorizationGroupName
itsoAuthGroup -resourceName Application=DefaultApplication}

You can add the following resource instances to an authorization group:

– Cell
– Node
– ServerCluster
– Server
– Application
– NodeGroup

 Chapter 3. Administrative security 63

4. Add users or groups with security roles to the authorization group:

$AdminTask mapUsersToAdminRole {-authorizationGroupName
itsoAuthGroup -roleName administrator -userids amy}
$AdminTask mapGroupsToAdminRole {-authorizationGroupName
itsoAuthGroup -roleName deployer -groupids itsodeploy}

5. Restart the application server for the changes to take effect, similar to console
Administrative User/Group roles.

With these resource and role authorizations, Amy (in our example) now has
administrator rights for the application server server1 and the default application,
through wsadmin. Also, members of the itsodeploy group can change the
configuration and runtime states for the default application by using wsadmin.

Alternatively, you can run any of the previous commands by using the
{-interactive} parameter to interactively walk through that configuration step by
step. For more information about managing fine-grained administrative security
roles, see the “Fine-grained administrative security” topic in the WebSphere
Application Server V6.1 Information Center. In addition, see the “Commands for
the AuthorizationGroupCommands group of the AdminTask object” topic, which
contains more information about the available commands for managing the
authorization group settings.

3.4 Naming service security: CosNaming roles

The J2EE role-based authorization concept has been extended to protect the
WebSphere Common Object Request Broker Architecture (CORBA) naming
service (CosNaming) to increase the granularity of its security control. In doing
so, WebSphere can gain better control for a client program that accesses the
content of the WebSphere Name space. There are generally two ways in which
client programs make a CosNaming call:

� Through the Java Naming and Directory Interface (JNDI)
� If CORBA clients invoke CosNaming methods directly

In Chapter 9, “Client security” on page 207, several examples of J2EE and thin
Java application clients that use the JNDI or CosNaming method call are
explained. In order for some of these sample clients to work, at least a
CosNaming read role to the CosNaming service must be granted to everyone.

Note: Fine-grained administrative security roles allow you to grant users and
groups access to specific resource instances through wsadmin. This
functionality is not available for administration console users.

64 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

This is the default setup for WebSphere. Table 3-3 shows all the four CosNaming
roles.

Table 3-3 CosNaming roles

3.4.1 Mapping a user or a group to a CosNaming role

The process of mapping a user or group to a CosNaming role is similar to
mapping a user or group to an administrative role. To map CosNaming roles,
click Environment → Naming → CORBA Naming Service Users for user
mappings and Environment → Naming → CORBA Naming Service Groups
for group mappings.

3.4.2 Applying CosNaming security: An example

In this section, we show a simple, practical example of the use of CosNaming
security. WebSphere Application Server provides a Java application client
<WebSphere_home>\bin\dumpNameSpace.bat file, which is useful for listing all of
the CORBA naming services available in the server.

When running dumpNameSpace.bat in a secure WebSphere environment, the
Login at the Target Server window (Figure 3-5 on page 66) opens. This window

Role Description

Cos Naming Read Users are allowed to perform queries of the WebSphere Name
Space, such as through the JNDI lookup method. The special
subject Everyone is the default policy for this role.

Cos Naming Write Users are allowed to perform write operations such as JNDI
bind, rebind, or unbind, and also CosNamingRead operations.
The special subject, AllAuthenticated, is the default policy for
this role.

Cos Naming Create Users are allowed to create new objects in the Name Space
through such operations as JNDI create Subcontext, and
perform CosNamingWrite operations. The special subject
AllAuthenticated is the default policy for this role.

Cos Naming Delete Users are able to destroy objects in the Name Space, for
example, using the JNDI destroySubcontext method, as well as
perform CosNamingCreate operations. The special subject
AllAuthenticated is the default policy for this role.

Effectiveness: CosNaming roles are only effective when administrative
security is enabled.

 Chapter 3. Administrative security 65

opens when the com.ibm.CORBA.loginSource property is set to “prompt” in the
sas.client.props CORBA client configuration file. You can either enter any
correct user ID and password defined in your user registry and click OK or simply
click Cancel.

Figure 3-5 A window prompted by the dumpNameSpace.bat Java application client

With a default setup of the WebSphere Application Server, both actions must run
without problems because the CosNaming read rights role is valid for everyone
(Figure 3-6).

Figure 3-6 Default CosNaming security for WebSphere Application Server

To restrict the access to CORBA naming service by allowing read access only to
authenticated users:

1. From the Administrative Console, click Environment → Naming → CORBA
Naming Service Groups.

2. Click Remove to remove the entry for the special role group EVERYONE.

3. Click Add to add a new entry giving CosNaming read rights for the special
group ALL_AUTHENTICATED.

4. Save the setup and restart the WebSphere Application Server.

66 WebSphere Application Server V6.1 Security Handbook

Figure 3-7 shows the final setup for the CosNaming security.

Figure 3-7 Customized CosNaming security

After WebSphere has been started, running the dumpNameSpace.bat Java
application client only gives good results if you enter a correct user ID and
password during the authentication process. Otherwise, the WebSphere
Application Server throws an exception as follows:

org.omg.CORBA.NO_PERMISSION.

Important: Granting read access to EVERYONE presents a small security risk.
Therefore it is better to keep the CosNaming security settings as presented in
this chapter (see Figure 3-7). If you experience unexpected results in
applications that use the CORBA naming service that you cannot resolve with
application security roles, add the default CosNaming security entry to the
configuration as shown in Figure 3-6 on page 66. This security risk can be
mitigated by ensuring that your WebSphere Application Server infrastructure
is protected from other systems by firewalls.

 Chapter 3. Administrative security 67

68 WebSphere Application Server V6.1 Security Handbook

Chapter 4. SSL administration and
configuration management

WebSphere Application Server uses the Secure Sockets Layer (SSL) protocol to
provide Transport Layer Security (TLS), which allows for secure communication
between a client and application server. The SSL configuration options in
WebSphere offer full end-to-end management, including certificate management,
individual endpoint SSL mappings, and scoped association of SSL configurations
and key stores.

WebSphere Application Server V6.1 has a default SSL configuration that is set
up during installation. This configuration is CellDefaultSSLSettings or
NodeDefaultSSLSettings, depending on the type of profile installation. In previous
releases, SSL settings were applied to transports on each individual server. In
this release, SSL configurations are centrally managed by default, with changes
able to be applied as widely as the cell-scope, or as narrowly as a particular
endpoint on a specific application server. The SSL configuration associations are
inherited. Therefore, the number of associations can be limited by only specifying
unique configurations for the highest level management scope that require them.
Additionally, separate SSL settings can be applied to the inbound or outbound
communication topologies separately if required.

You can manage all SSL configurations and settings in the Administrative
Console by selecting Security → SSL certificate and key management on the
left side. From this page, by using the links under Related Items, you can

4

© Copyright IBM Corp. 2006. All rights reserved. 69

manage the cell-scoped SSL certificates, keys, and configurations. Alternatively,
if you select Manage endpoint security configurations, you can manipulate
the SSL settings for narrower scopes. As with previous releases, SSL mappings
for the application server Web container transports can still be set within the
application server configurations themselves by overriding the centrally managed
associations.

Many new features are available in WebSphere Application Server V6.1 for SSL
management. Some of the most obvious changes include the ability to manage
key stores and certificates within the administrative console, certificate expiration
management, and dynamic SSL configuration updates. This chapter covers most
of these changes as it walks you through the creation of a new centrally
managed SSL configuration.

4.1 Creating a new SSL key store entry

For more information about creating key stores, see WebSphere Security
Fundamentals, REDP-3944. To create a new configuration for a previously
created Java key store:

1. Configure a new SSL key store. Click SSL certificate and key
management → Manage endpoint security configurations as shown in
Figure 4-1 on page 71. Select the scope for your new key store as cell,
nodegroup, cluster, node, server, or endpoint. For key store configuration,
inbound or outbound topology does not matter. The new key store is available
for both in that scope after it is created.

70 WebSphere Application Server V6.1 Security Handbook

http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open

Figure 4-1 Endpoint security configuration management

2. From the selected endpoint configuration page (Figure 4-2), under Related
Items, click Key stores and certificates.

Figure 4-2 Key stores and certificates management

 Chapter 4. SSL administration and configuration management 71

As shown in Figure 4-2, the default key stores are stored within the
configuration repository directory tree. While keeping your custom key stores
in these locations is entirely optional, it does make it easier for administration
and propagation if you store them in the configuration repository at the
appropriate scope level.

3. Click New to create your new key store.

4. Complete the form as shown in Figure 4-3 on page 73:

a. Set the name for your key store entry, for example, as Node01WebKeyStore.

b. Enter the path and file name for your key store, for example,
${CONFIG_ROOT}/cells/kcgl6khCell01/nodes/kcgl6khNode01/
WebKey.jks. WebSphere environment variables are valid. You can use
them as shown in Figure 4-2 on page 71.

c. Enter and confirm the password for the key store, and select the type from
the list.

d. Use the Remotely managed option for key stores that are not located on
the same node as those the administration console is run from. The host
list is then used in conjunction with a remote MBean call to manage the
key store on each endpoint host.

e. If you have some other mechanism for managing your key store and its
certificates, select the Read only option to ensure that WebSphere does
not alter the key store. You can use the Read only item for two reasons:

• If you do not want WebSphere Application Server to update certificates
and have some other mechanism to handle the managing of your key
store

• If the particular key store type does not support writable key store

The key store type of JCERACFKS at JDK™ 5.0 does not support
writable key store and must use Read only.

f. If the key store requires initialization before you can use it for
cryptographic operation, select Initialize at startup.

g. Specify the use of cryptographic hardware by selecting Enable
cryptographic operations on hardware device.

Note: If this is an WebSphere Application Server configuration for IBM
z/OS, the “Enabled cryptographic operations on hardware device”
check box (as shown in Figure 4-3 on page 73) must not be changed. In
IBM z/OS, cryptography is dictated by the key store type.

72 WebSphere Application Server V6.1 Security Handbook

Figure 4-3 Creating a new SSL key store entry

h. Click OK.

5. Save the WebSphere configuration.

You must use the same steps when adding a trust store to the WebSphere
configuration.

 Chapter 4. SSL administration and configuration management 73

4.2 Managing SSL certificates

After a key store is configured in WebSphere, most of the functions commonly
found in iKeyman and the Java key tool can be accessed from the administration
console. WebSphere certificate management provides the following functionality:

� Create personal certificate requests
� Import signer certificates
� Receive certificates from a certificate authority
� Create self-signed certificates
� View certificate properties
� Extract certificates
� Exchange signer certificates between key stores
� Delete certificates

Beyond the administration console, the command-line tools also have the ability
to add unknown certificates to the default trust store. However, trusting unknown
certificates must be done with care and only when you are certain of the
connection you are making.

4.2.1 Expiring certificates

With the key store and certificate management interface, you can also manage
your certificate expirations with the administration console. If you select Manage
certificate expirations from the SSL certificate and key management page, you
can configure the certificate expiration monitor. The monitor tracks all certificates
based upon configured schedule and threshold. You can configure the monitor to
log expiration notifications, or send e-mail expiration alerts to a list of addresses,
or both.

In addition to certificate expiration monitoring, certificates can be updated and
replaced, with self-signed certificates able to be replaced automatically, as they
near expiration. Certificate updates can then be pushed out if a dynamic SSL
configuration update is enabled. For more information about dynamic SSL
configuration updating, see “Dynamic SSL configuration updates” on page 78.

4.2.2 Managing Web server and plug-in certificates

In addition to managing SSL certificates that are used by application servers, the
WebSphere Administration Console can manage certificates and key stores that
are used by your Web servers and WebSphere plug-ins.

74 WebSphere Application Server V6.1 Security Handbook

For Web servers, complete end-to-end management of certificates and key
stores is only possible for configurations that are managed through the
administration console. For example, creating a new SSL-enabled virtual host on
a federated Web server (with no previous SSL) accomplishes the following tasks:

� Creates a new key store and configuration entry in the WebSphere
configuration

� Associates the key store with the Web server

� Assigns the specified certificate alias to the virtual host

� Propagates the new key store to the Web server node

See Figure 4-4.

Figure 4-4 Creating a new virtual host and key store in the administration console

Note: If your Web server already has a globally defined key store that is
managed through the WebSphere Administration Console, and if you create a
new SSL-enabled virtual host, you are prompted to choose a certificate alias
from the existing key store. To view your global Web server security settings,
click Servers → Web servers → <Web server name>. Then under the
Configuration settings section, select Global Directives.

 Chapter 4. SSL administration and configuration management 75

In addition to managing certificates for the WebSphere plug-in key store, the
plug-in key store configuration can also be managed from the console
(Figure 4-5). To manage your Web server’s plug-in configuration, click
Servers → Web servers → <Web server name>. Then under Additional
Properties, select Plug-in properties.

Figure 4-5 Configuring the Web server plug-in files and key stores

4.3 Creating a new SSL configuration

While central management makes it easy to use a single SSL configuration for
securing an entire cell, create separate SSL configurations for the different
transports in your application server. However, you can use a single key store to
manage certificates that coincide with different SSL configurations to secure various
transports. You can secure the following transports with an SSL configuration:

� Hypertext Transfer Protocol (HTTP)
� Lightweight Directory Access Protocol (LDAP)
� Internet InterORB Protocol (IIOP)
� Simple Object Access Protocol (SOAP)
� Session Initiation Protocol (SIP)
� Service Integration Bus (SIB)

In WebSphere Application Server V6.1, it is easier to configure SSL attributes.
With the integration of key store and certificate management, specific certificates
from a key store can be associated with an SSL configuration. Also, many
features prepopulate lists based on input.

76 WebSphere Application Server V6.1 Security Handbook

To create a new SSL configuration:

1. From the Manage endpoint security configurations page, choose your scope.
In the Related Items section, select SSL configurations and click New.

2. On the SSL certificate and key management page (Figure 4-6):

a. For Name, type a name for the new configuration, for example,
Node01WebSSL.

b. From the two lists, select your trust and key stores that you created.

c. Click Get certificate aliases to populate the list of available server and
client certificates.

d. If the selected the Default client certificate alias and Default server
certificate alias are not the aliases you want for this configuration, choose
your aliases from the list of available ones.

e. Click Apply to create the basic configuration.

Figure 4-6 Creating a new SSL configuration

 Chapter 4. SSL administration and configuration management 77

3. After applying the changes, click Quality of protection (QoP) to perform
further configuration settings:

a. Enable Client authentication to either support or require mutual
certificate authentication between peers.

b. Under Protocol, define the protocol that you want to use to secure the
transport. The options are SSL_TLS, SSL, SSLv2, SSLv3, TLS, and
TLSV1.

c. Under the Provider, configure the Java Secure Socket Extension (JSSE)
provider. This is the code that performs the cipher and decipher tasks.

d. Define the Cipher suite settings, which specify the encryption algorithms
that are accepted by the server. By selecting a cipher suite group, only
ciphers that meet your chosen group security level are made available.
You can then choose which encryption algorithms to keep or remove.
Make sure that matching ciphers are listed both on the server and client
sides. Otherwise, the communication does not work.

4. Click OK. Then save the configuration for WebSphere.

You can create as many SSL configurations as you require. After the
configurations are available, you can use them when configuring secured
transports and other SSL enabled endpoints.

4.4 Additional SSL configuration attributes

There are a couple of other configuration options for SSL that are available from
the main SSL certificate and key management page.

4.4.1 Federal Information Processing Standard

To enable FIPS support, select Use the United States Federal Information
Processing Standard (FIPS) algorithms on the SSL certificate and key
management page. When this option is selected, the LTPA implementation uses
IBMJCEFIPS. IBMJCEFIPS supports the United States FIPS-approved
cryptographic algorithms for Data Encryption Standard (DES), Triple DES, and
Advanced Encryption Standard (AES).

4.4.2 Dynamic SSL configuration updates

If you select Dynamically update the run time when SSL configuration
changes occur, all SSL-related attributes that change are read from the
configuration dynamically after they have been saved. They are then

78 WebSphere Application Server V6.1 Security Handbook

implemented for new connections. For outbound SSL endpoints, all outbound
connections inherit the new configuration changes, because new connections
are established for each request. For inbound SSL endpoints, only changes that
are implemented by the SSL channel are affected by dynamic updates.

For more information about dynamic SSL configuration updates, see the
“Dynamic configuration updates” topic in the WebSphere Application Server V6.1
Information Center.

4.5 Trust managers

A trust manager is a class that is invoked during SSL handshakes to make trust
decisions about remote endpoints requesting connections. The default trust
manager, either the IbmX509 or IbmPKIX, is used to validate the signature and
expiration of certificates, while additional custom trust managers can be plugged
in to perform extended certificate and host name checks.

The IbmX509 trust manager provides basic peer certificate validation based on
the trusted signer certificates present in the SSL configuration’s trust store.
Because of this, remove the unverified self-signed signer certificates and default
root certificates, from certificate authorities, that you do not need.

The IbmPKIX trust manager can replace the IbmX509 for trust decisions in an
SSL configuration. Standard certificate validation is provided, similar to the
IbmX509 trust manager, but it also provides extended certificate revocation list
(CRL) checking, where it checks that certificates contain CRL distribution points.

Note: The Object Request Broker (ORB) and Admin SOAP inbound SSL
socket factories are not affected by dynamic configuration changes. You must
restart the server for SSL configuration changes to take effect on these
protocols.

Note: Using the IbmPKIX trust manager further secures your application
serving environment. It does this by checking that clients are presenting valid
certificates and that those certificates have not been revoked by the certificate
authority because of their compromised status. However, keep in mind that
this introduces additional overhead that can affect performance.

 Chapter 4. SSL administration and configuration management 79

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

4.5.1 Custom trust managers

If your environment requires that additional trust checks be implemented, then
you can develop and configure a custom trust manager. When developing a
custom trust manager, keep in mind that the trust manager class must implement
the standard interface as follows:

javax.net.ssl.X509TrustManager

Implementing the following interface is optional:

com.ibm.wsspi.ssl.TrustManagerExtendedInfo

The custom trust manager must be packaged as a Java archive (JAR) file and be
in the <WebSphere_home>\lib\ext directory in order for it to be configured
properly and loaded by the application server. To configure a new trust manager
in WebSphere:

1. Log in to the WebSphere Administration Console.

2. Select Security → SSL certificate and key management → Manage
endpoint security configurations. Then select the scope for your new trust
manager.

3. Under Related Items, click Trust managers.

4. Click New.

5. Complete the form as shown in Figure 4-7 on page 81 with the information
about your new custom trust manager.

80 WebSphere Application Server V6.1 Security Handbook

Figure 4-7 Configuring a new cell-wide custom trust manager

After you create your new custom trust manager configuration, you must
associate it with an SSL configuration for it to take effect. To configure the trust
managers for an SSL configuration:

1. From the SSL certificate and key management page, select Manage
endpoint security configurations, then select the configuration scope.

2. Under Related Items, select SSL configurations, and click the SSL
configuration you want to configure with your new trust manager. Then under
Additional properties click Trust and key managers.

 Chapter 4. SSL administration and configuration management 81

3. On the Trust and key managers configuration page (Figure 4-8), set the
default trust manager and add custom trust managers.

Figure 4-8 Configuring the trust and key managers for an SSL configuration

For more information about trust managers, see the “Trust manager control of
X.509 certificate trust decisions” and “Creating a custom trust manager
configuration” topics in the WebSphere Application Server V6.1 Information
Center.

Important: The Trust and key managers configuration option is not
displayed in the initial release of WebSphere Application Server V6.1. This
has been corrected in Fixpack 1 (V6.1.0.1), which is available at the
following address:

http://www.ibm.com/software/webservers/appserv/was/support/

82 WebSphere Application Server V6.1 Security Handbook

http://www.ibm.com/software/webservers/appserv/was/support/
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

4.6 Key managers

A key manager is a class that is used during the SSL handshake to retrieve, by
alias, the appropriate certificate from the key store. The default key manager in
WebSphere is the IbmX509, or you can replace it with a custom key manager.
Unlike the trust managers, only one key manager can be implemented for an
SSL configuration at a time.

4.6.1 Custom key managers

When developing a custom key manager, keep in mind that the class must
implement the following interface:

javax.net.ssl.X509KeyManager

This is because it is replacing the default IbmX509 key manager and assuming
sole responsibility for certificate alias selection.

Similar to a custom trust manager, the custom key manager must be packaged
as a JAR file and be in the <WebSphere_home>\lib\ext directory in order for it to
be configured properly and loaded by the application server. To configure a new
key manager in WebSphere:

1. Log in to the WebSphere Administration Console.

2. Select Security → SSL certificate and key management → Manage
endpoint security configurations. Then select the scope for your new key
manager.

3. Under Related Items, click Key managers.

4. Click New.

 Chapter 4. SSL administration and configuration management 83

5. Complete the form, as shown in Figure 4-9, with the information about your
new custom key manager.

Figure 4-9 Configuring a new cell-wide custom key manager.

To configure a custom key manager on an SSL configuration, follow the same
steps as outlined for associating a trust manager to an SSL configuration in
“Custom trust managers” on page 80. From the Trust and key manager page, you
can then select your custom key manager from the drop-down list (see
Figure 4-8 on page 82).

For more information about key managers, see the “Key manager control of
X.509 certificate identities” and “Creating a custom key manager” topics in the
WebSphere Application Server V6.1 Information Center.

84 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Chapter 5. JAAS for authentication in
WebSphere Application
Server
This chapter provides a short overview of Java Authentication and Authorization
Service (JAAS). JAAS is an integral part of Java 2 security, and WebSphere
exploits it for authentication. By using JAAS, a user can implement and then
chain together modules with the standard Pluggable Authentication Module
(PAM) framework.

5

© Copyright IBM Corp. 2006. All rights reserved. 85

5.1 The importance of JAAS

JAAS is important because it gives application server users a plug-in point for
authentication, allowing them to customize application and system login.

The JAAS standard specifies a set of interfaces that allow custom modules to be
written. These modules can then be placed into a PAM chain that allows the
container to carry out the custom authentication. A custom login module can
perform principal and credential mapping, custom security token and custom
credential-processing, and error-handling among other tasks.

5.2 JAAS in WebSphere

JAAS in WebSphere plays an important role. All system and application logins
and Java 2 Platform Enterprise Edition (J2EE) Connector architecture (JCA)
authentication aliases use JAAS. The only other plug-in point for Web
authentication is the trust association interceptor (TAI) interface. TAI can be
considered a little simpler to implement compared to JAAS, but JAAS provides
greater flexibility.

A good example of how JAAS is used by WebSphere is when a user makes a
Web request to a resource that is secured by the server. When this happens, the
WEB_INBOUND JAAS login module chain is run so that the client can be
authenticated. This chain, by default, contains a Lightweight Third Party
Authentication (LTPA) login module and a default mapping module. The user can
place other JAAS login modules in the chain.

As shown in Figure 5-1 on page 87, you can customize the login sequence by
using JAAS login modules before and after the LTPA module or after the default
mapping module.

86 WebSphere Application Server V6.1 Security Handbook

Figure 5-1 The login sequence for an inbound Web request

WebSphere extensions to JAAS
WebSphere provides the following extensions to JAAS:

� Traditionally JAAS module chains are specified in text files that require you to
manually edit them. These files are similar to those in the Linux /etc/pam.d
directory.

In WebSphere, you can perform the JAAS configuration from the
Administrative Console or through wsadmin scripting. Although the plain file
configuration is still available and supported in WebSphere, use the
Administrative Console or wsadmin for configuration for the following reasons:

– Easy administration using the GUI (administration console only)
– Central management of configuration
– Distribution of configuration in Network Deployment environment

 Chapter 5. JAAS for authentication in WebSphere Application Server 87

� WSSubject (com.ibm.websphere.security.auth.WSSubject) is an extension to
the original Subject. The WSSubject implementation can return the subject in
the running thread using the getSubject() method inside a doAs() method.
This is not the case with the original JAAS V1.0 implementation.

� To allow the thread context class loader to load classes, a proxy LoginModule
is responsible for loading the actual LoginModule. The reason for a proxy
loader is to resolve class visibility. The proxy is an internal component. It is not
going to effect application developers or administrators.

5.3 Custom JAAS login in WebSphere

JAAS provides a pluggable authentication framework for the application server.
This section introduces the various components that you can plug in for JAAS
and use it in WebSphere Application Server.

5.3.1 Callback handler

Callback handlers are responsible in JAAS for collecting the necessary
information in the application to perform the authentication. The callback
handler, as its name suggests, uses the callback programming model to collect
information. Together with the callback handler, numerous different types of
callbacks are defined that can be invoked. These callbacks, or just one, are
invoked one after the other, for example, user ID callback to retrieve the user
name, password callback to retrieve the user’s password.

Callbacks can be implemented in different ways. They can be interactive or
non-interactive (in other words, programmatic). The interactive callbacks can
interact with the user (or device) in numerous ways, for example, asking for a
user ID typed in from the system console. A non-interactive, programmatic
callback collects information without prompting the user, for example, by reading
the user ID from a properties file.

For more information about the available callback handlers in WebSphere V6,
see “Built-in CallbackHandler in WebSphere” on page 237.

Custom callback handler
When writing your own callback handler, you can implement the different
callbacks to collect information. For more information about writing your own
callback handler, see “Custom CallbackHandler” on page 240.

88 WebSphere Application Server V6.1 Security Handbook

5.3.2 Login module

Login modules are responsible for the actual login, including making the
authentication check and creating the principal that is stored in the subject later.

WebSphere Application Server V6 comes with a few login modules implemented
for various login situations. They come registered and configured for the
application server. See 5.3.4, “Configuration” on page 97.

For details about how JAAS login modules work in WebSphere, see 9.6.1, “JAAS
login module in WebSphere” on page 233. See also 9.6.2, “Programmatic login
process” on page 235, which shows the interaction diagram for the whole login
mechanism using JAAS.

Custom login module
You can also write your own login module for WebSphere Application Server. You
must implement the LoginModule interface and code it by using the following
methods:

� public void initialize (Subject subject, CallbackHandler callbackHandler, Map
sharedState, Map options)

This method is responsible for initializing the login module after loading.

� public boolean login() throws LoginException

This method performs the actual login. This is the part where you can code
the authentication check using callbacks.

� public boolean commit() throws LoginException

After a successful login, you are required to commit the login. You can add or
insert the principal name and authentication data into the subject during the
commit state.

� public boolean abort() throws LoginException

In case of any problem, this method aborts the login process.

� public boolean logout() throws LoginException

After a successful login and by the end of the session, the application requires
you to log out and remove items. The logout() method is where you remove
the items that you added or inserted during the commit state.

More information: A good resource JAAS login module requirements is
the Sun Microsystems’ Java Authentication and Authorization Service
(JAAS) LoginModule Developer’s Guide available at:

http://java.sun.com/javase/6/docs/technotes/guides/security/

 Chapter 5. JAAS for authentication in WebSphere Application Server 89

http://java.sun.com/javase/6/docs/technotes/guides/security/

Example 5-1 shows a simple custom login module. The code for this example is
also in the additional materials ZIP file that is available for download. See
Appendix B, “Additional material” on page 543.

Example 5-1 Custom login module: CustomLoginModule.java

/*
 * Created on 12/07/2006
 */
package com.itso.was61sec.loginmodule;

import java.io.IOException;
import java.util.Map;

import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;

import com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback;

/**
 * Custom JAAS login module.
 *
 * @author paulw
 */
public class CustomLoginModule implements LoginModule {

// initial state
private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;
// the authentication status
private boolean succeeded = false;
private boolean commitSucceeded = false;
// username and password
private String username;
private String password;
// testUser's SamplePrincipal
private SamplePrincipal userPrincipal;

/* (non-Javadoc)
 * @see

javax.security.auth.spi.LoginModule#initialize(javax.security.auth.Subj

90 WebSphere Application Server V6.1 Security Handbook

ect, javax.security.auth.callback.CallbackHandler, java.util.Map,
java.util.Map)

 */
public void initialize(Subject subject, CallbackHandler

callbackHandler, Map sharedState,
Map options) {

System.out.println("DEBUG: Initializing class " +
CustomLoginModule.class);

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;
System.out.println("DEBUG: CallbackHandler: " + callbackHandler);

}

/*
 * This is phase one of the login process.
 *
 * (non-Javadoc)
 * @see javax.security.auth.spi.LoginModule#login()
 */
public boolean login() throws LoginException {

System.out.println("DEBUG: Entering login()");
// prompt for username and password
if (callbackHandler == null) throw new LoginException("Error: No

CallbackHandler available!");

Callback[] callbacks = new Callback[3];
callbacks[0] = new WSTokenHolderCallback("");
callbacks[1] = new NameCallback("user name: ");
callbacks[2] = new PasswordCallback("password: ", false);

try {
callbackHandler.handle(callbacks);

} catch (IOException ioe) {
throw new LoginException(ioe.toString());

} catch (UnsupportedCallbackException uce) {
throw new LoginException("Error: " +

uce.getCallback().toString());
}

boolean requiresLogin = ((WSTokenHolderCallback)callbacks[0]
).getRequiresLogin();

 Chapter 5. JAAS for authentication in WebSphere Application Server 91

if (requiresLogin) {
username = ((NameCallback) callbacks[1]).getName();
password = new String(((PasswordCallback)

callbacks[2]).getPassword());
((PasswordCallback) callbacks[2]).clearPassword();

// verify the username/password
// this code is using a hard-coded user name
// and password for the sake of simplicity
// if you would like to see an example with a
// registry lookup and groups please refer to:
//

http://www-128.ibm.com/developerworks/websphere/techjournal/0508_benant
ar/0508_benantar.html

boolean usernameCorrect = false;
boolean passwordCorrect = false;
if (username.equals("alison"))

usernameCorrect = true;
if (password.equals("passw0rd"))

passwordCorrect = true;
if (usernameCorrect && passwordCorrect) {

// authentication succeeded
succeeded = true;
System.out.println("DEBUG: Exiting login(), returning

TRUE");
return true;

} else {
// authentication failed
succeeded = false;
username = null;
password = null;
System.out.println("DEBUG: Exiting login(), returning FALSE

and raising exception");
throw new FailedLoginException("Authentication Failed!");

}
} else{

System.out.println("DEBUG: This is a propogation login,
nothing to do.");

return true;
}

}

/*
 * This is phase two of the login process when phase one
 * succeeded for all modules.

92 WebSphere Application Server V6.1 Security Handbook

 *
 * (non-Javadoc)
 * @see javax.security.auth.spi.LoginModule#commit()
 */
public boolean commit() throws LoginException {

System.out.println("DEBUG: Entering commit()");
if (succeeded == false) {

return false;
} else {

// Add Principal (authenticated identity) to the Subject.
// This is a custom Principal: SamplePrincipal. In
// WebSphere you may want to use the WSPrincipalImpl class
userPrincipal = new SamplePrincipal(username);
try {

if (!subject.getPrincipals().contains(userPrincipal))
subject.getPrincipals().add(userPrincipal);

} catch (Exception e) {
username = null;
password = null;
commitSucceeded = false;
throw new LoginException(e.getClass().toString() +

e.getMessage());
}
username = null;
password = null;
commitSucceeded = true;
return true;

}
}

/*
 * This is phase two of the login process when phase one
 * failed for one or more modules.
 *
 * (non-Javadoc)
 * @see javax.security.auth.spi.LoginModule#abort()
 */
public boolean abort() throws LoginException {

System.out.println("DEBUG: Entering abort()");
if (succeeded == false) {

// local variables are already clean
return false;

} else if (succeeded == true && commitSucceeded == false) {
// login succeeded but overall authentication failed
succeeded = false;

 Chapter 5. JAAS for authentication in WebSphere Application Server 93

username = null;
password = null;
userPrincipal = null;

} else {
// overall authentication succeeded and commit
// succeeded, but someone else's commit failed
logout();

}
return true;

}

/* (non-Javadoc)
 * @see javax.security.auth.spi.LoginModule#logout()
 */
public boolean logout() throws LoginException {

System.out.println("DEBUG: Entering logout()");
succeeded = false;
commitSucceeded = false;
username = null;
password = null;
userPrincipal = null;

// If the subject is read only then we need to destroy
// the credentials associated with the subject during
// the commit phase. We throw an exception if they do
// not implement the Destroyable interface.
if (!(subject.isReadOnly())) {

throw new LoginException("Not able to destroy principal in
subject.");

}
subject.getPrincipals().remove(userPrincipal);
return true;

}

}

The custom login module uses a custom principal (SamplePrincipal). For more
information about principals, see 5.3.3, “Principal” on page 95.

The login module performs the following actions:

1. Initializes the login module and instantiates the necessary objects.

2. Sets up the callback handler and the callback methods in preparation for user
input.

94 WebSphere Application Server V6.1 Security Handbook

3. Gets user input by walking through the callbacks one after the other using the
callback handler.

4. Authenticates the user by using the information that is returned from the
callbacks:

– If authentication is successful, it creates a principal based on the
authentication data and inserts it into the subject setup during initialization.

– If authentication fails, the module destroys the objects and returns with a
failed flag.

5. If all login modules in the chain return successful authentication results from
phase one, the commit function is called. Otherwise the abort function is
called.

– The commit function places the principal into the Java Subject.
– The abort function cleans up and destroys any sensitive information.

6. After a successful login, the application can also log out. The logout method
must remove the principal from the subject and destroy the objects in the login
module.

5.3.3 Principal

In JAAS, principals are objects that store user credentials. Principals can then
be added (stored) in subjects, which is another object in JAAS to store multiple
(or just one) principals. The subject is then propagated with the security context
and is available for the application server to check the logged in principals.

WebSphere has its own implementation of a principal, which is WSPrincipal. This
principal is used internally with the security context.

Custom principal
Principals can be customized, and new ones can be implemented based on the
java.security.Principal interface. Example 5-2 on page 96 shows an
implementation of a principal, called SamplePrincipal. You can customize the
principals to store extra information about the user, other than just the user
name.

Important: WebSphere does not handle serialization of principals. The
principal and login module must handle serialization and deserialization itself.
For more information and examples about this, see Chapter 11, “Security
attribute propagation” on page 265.

 Chapter 5. JAAS for authentication in WebSphere Application Server 95

Example 5-2 Custom principal: SamplePrincipal.java

package com.itso.was61sec.loginmodule;

import java.io.Serializable;
import java.security.Principal;

/**
 * Custom principal for JAAS login.
 *
 * @author paulw
 */
public class SamplePrincipal implements Principal, Serializable {

private String name;

public SamplePrincipal(String name) {
if (name == null) throw new NullPointerException("Illegal null

input");
this.name = name;

}

/* (non-Javadoc)
 * @see java.security.Principal#getName()
 */
public String getName() {

return name;
}

public String toString() {
return ("SamplePrincipal: " + name);

}

public boolean equals(Object o) {
if (o == null)

return false;
if (this == o)

return true;
if (!(o instanceof SamplePrincipal))

return false;

SamplePrincipal that = (SamplePrincipal) o;
if (this.getName().equals(that.getName()))

return true;
return false;

96 WebSphere Application Server V6.1 Security Handbook

}

public int hashCode() {
return name.hashCode();

}
}

As shown in Example 5-2, the principal is a simple Java object with attributes, a
collection of set and getter methods, and a few other supporting methods.

5.3.4 Configuration

Take the compiled code for the custom login module and the dependent classes
and package them in a JAR file. You can also deploy the code unbundled, in
directories and files, but package it in a JAR file.

You can place the custom login module code in the following places:

� Within a .ear file for a specific enterprise application, because then it is only
accessible to the specific application

� In the WebSphere Application Server shared library, but remember to edit the
server’s security policy file

� In the Java extensions directory (WebSphere_root\jre\lib\ext), where it is
available to all applications

In the WebSphere Administrative Console, you can configure JAAS login
modules by selecting Security → Secure administration, applications, and
infrastructure. Expand the JAAS menu and you see three items, where the first
two are related to LoginModule configuration.

Application logins
Application logins are the ones that your enterprise applications can use. After
installation, you find three items already defined:

� ClientContainer

com.ibm.ws.security.common.auth.module.WSClientLoginModuleImpl

� DefaultPrincipalMapping

com.ibm.ws.security.auth.j2c.WSPrincipalMappingLoginModule

� WSLogin

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl

 Chapter 5. JAAS for authentication in WebSphere Application Server 97

To add a new application JAAS login module configuration to the list:

1. Under Application login configuration, click New.

2. Provide an alias name, for example MyLoginModule.

3. Click Apply.

Do not click OK yet, you are going to define the login module first before you
save the configuration.

4. Click JAAS login modules.

5. Click New.

6. Provide the fully qualified name (including package name) for your custom
LoginModule implementation in the Module class name field, for example:

com.ibm.itso.MyLoginModuleImpl

Select the Use login module proxy check box, to ensure the class visibility
for applications. For more information about the login module proxy, see the
WebSphere Information Center.

Select the authentication strategy, set as REQUIRED for now. The options
include: REQUIRED, REQUISITE, SUFFICIENT, and OPTIONAL. For more
information about the different strategies, see the WebSphere Information
Center.

7. Click OK.

8. Save the configuration for WebSphere.

System logins
System login definitions are similar to the application login definitions, except that
they are related to the application server itself, not the applications. These
definitions are used for internal login purposes, for example, LTPA, Remote
Method Invocation (RMI), Web. You must remember that WebSphere Application
Server only authenticates a client when the resource being accessed has
security enabled.

You can write your own login modules and use them internally, but we
recommend that you do not remove or change the existing ones under the
System login configuration. For more information, see Chapter 11, “Security
attribute propagation” on page 265.

Attention: You must not remove or modify these definitions. Some
applications might use them, and those applications can break if you
change any of the definitions.

98 WebSphere Application Server V6.1 Security Handbook

5.3.5 Viewing the sample JAAS module in action

The easiest way to see the sample module working is to follow the instructions in
5.3.4, “Configuration” on page 97, and specify the module as part of the system’s
WEB_INBOUND module chain as OPTIONAL. After restart, when you attempt to
access a resource that requires authentication (including the administration
console, which is why you do not set it to REQUIRED), the callback handler
presents a login prompt.

In the module’s current form, the only successful login is to use the user name
alison and the password passw0rd. Therefore, it is beneficial to add this user to
the server’s security repository. Looking at the server’s SystemOut.log shows you
the debug output from the sample module.

5.3.6 Programming authentication

You can customize the entire authentication process in WebSphere for various
situations. You can customize and plug-in any or all of the components of the
JAAS login. WebSphere comes with predefined and preconfigured components
for every part of the login mechanism. If you require custom behavior in your
application, you must plug in your own implementation.

For details about programmatic login using JAAS, see 9.6.2, “Programmatic login
process” on page 235.

5.4 J2C authentication data

J2EE Connector security, known as J2C, allows secure connections to be made
from J2EE applications. The J2C authentication data entries configure the
access to external resources, for example, database, messaging oriented
middleware, and other J2C adapters.

Attention: This scenario is for testing purposes only. Changing the System
login module chains requires careful planning and consideration of the
environment’s security. A misconfigured System login chain can stop any
administration from occurring because all requests can be rejected.

 Chapter 5. JAAS for authentication in WebSphere Application Server 99

Why the J2C authentication data entries are required and how
are they used
When the application accesses an external resource, it occurs through a J2C
adapter. The application does not authenticate itself for the external resources by
providing a user ID and password. The user ID and password for the J2C adapter
is defined under the J2C authentication data. When the J2C adapter requests a
login, it uses a JAAS login module in WebSphere. The login module simply looks
up the J2C authentication data entry from the WebSphere configuration during
the login process and uses the retrieved data with the callback methods.

JAAS authentication entries are in the Administrative Console when you select
Security → Secure administration, applications, and infrastructure → Java
Authentication and Authorization Service → J2C Authentication data. You
can create new entries or remove entries here.

For more information about J2C authentication data, see Chapter 17, “J2EE
Connector security” on page 463.

100 WebSphere Application Server V6.1 Security Handbook

Chapter 6. Application security

This chapter discusses application security for WebSphere Application Server
V6.1.

6

© Copyright IBM Corp. 2006. All rights reserved. 101

6.1 Application security

In previous releases of WebSphere Application Server, when global security was
enabled, both administrative and application security were enabled. In
WebSphere Application Server V6.1, the concept of global security is split into
administrative security and application security, of which each component can be
enabled separately. Application security provides application isolation and
requirements for authenticating users for the applications in your environment.

Application security must be enabled in case declarative security is used by any
application that is deployed in the application server. However, if your application
relies only on programmatic security, for example using the HttpServletRequest
interface method getRemoteUser(), where authentication is already done on the
Hypertext Transfer Protocol (HTTP) server side, you are not required to enable
application security. Declarative security and programmatic security are
discussed further in 8.2, “Declarative J2EE security” on page 174, and 8.3,
“Programmatic J2EE security” on page 197.

6.1.1 Enabling application security

By default, administrative security is enabled during installation, and application
security is disabled. For application security to be enabled and take effect, you
must enable administrative security. For instructions on how to configure
administrative security, see Chapter 3, “Administrative security” on page 49.

To enable application security:

1. Start the WebSphere Administration Console and login.

2. Select Security → Secure administration, applications, and
infrastructure.

3. In the Application security section, select Enable application security
(Figure 6-1).

Figure 6-1 Enabling application security in WebSphere Application Server

4. Click Apply, and save the WebSphere configuration.

5. Restart the application server to make this change take effect.

102 WebSphere Application Server V6.1 Security Handbook

6.1.2 Testing application security

After you restart your server in secure mode, test that security is properly enabled:

1. If DefaultApplication is installed, test the Web-based Basic Authentication by
accessing the following URL:

http://<hostname>:<port>/snoop

The default <port> is 9080.

2. In the challenge login window that opens, type any user ID and password that
is defined in the user account repository.

6.1.3 Application considerations

One of the most common problem that occurs when application security is
enabled is that the getRemoteUser() method or getUserPrincipal() method of
the HttpServletRequest interface returns a null value. This happens if, for
example, authentication is done in the HTTP Server container before reaching
the WebSphere Application Server. Whenever application security is enabled,
WebSphere only passes the authentication token to secure resources within its
container. To secure these resources, add a security constraint within the
web.xml application descriptor file as shown in Example 6-1.

Example 6-1 Securing the resource /securedhello URI

<security-constraint>
<display-name>Authenticated</display-name>
<web-resource-collection>

<web-resource-name>Authenticated Resources</web-resource-name>
<url-pattern>/securedhello</url-pattern>
<http-method>PUT</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<description>Authorized guest roles</description>
<role-name>ServletGuest</role-name>

</auth-constraint>
<user-data-constraint>

<transport-guarantee>INTEGRAL</transport-guarantee>

Important: The default application and other included sample applications
must not be running in a production environment because they can reveal
a wealth of information about your environment. They can be excellent
diagnostic tools, but must be removed or stopped when not in use.

 Chapter 6. Application security 103

</user-data-constraint>
</security-constraint>

<security-role>
<description>Authenticated guest for servlet</description>
<role-name>ServletGuest</role-name>

</security-role>

Remember to define a correct security role mapping for the role that you have
added when deploying your application. In Example 6-1, the name of the role is
ServletGuest. If the application is already installed, edit security role mapping by
selecting Applications → Enterprise Application → <your_application> →
Security role to users/group mapping (Figure 6-2).

Figure 6-2 Security role mapping

For more detailed information, see Chapter 7, “Securing a Web application” on
page 109. Also, consult the Java 2 Platform, Enterprise Edition (J2EE) servlet
specification for further information about this subject.

Important: If application security is enabled, the getRemoteUsers() and
getUserPrincipal() methods return a null value even if the user is logged in,
unless the servlet of the JavaServer™ Pages (JSP™) is secured within the
application server.

104 WebSphere Application Server V6.1 Security Handbook

6.2 Deploying a secured enterprise application

Deploying a secured application is not much different than deploying any other
(non-secured) enterprise application. The only difference is that during
deployment, you can perform role mapping for users and groups, as well as
run-as mapping.

6.2.1 Role mapping during application installation

During the process of running the application installation, you see the Map
security roles to users or groups step. In this step, you have the option of
selecting any of the roles and assigning a user or a group from the user registry
using one of the lookups. You can also assign one of the special subjects
(Everyone or All authenticated) to the role.

If you have Enterprise JavaBeans (EJB) or EJB methods with Run-As role
mappings, you see the Map RunAs roles to users step. In this step, you can
specifically assign a user name and password (an identity) to a Run-As
(delegation) definition.

If you have EJB or EJB methods with Run-As system mappings, you see the
Correct use of system identity step. In this step, you can override the default
system identity with a specific user mapping. For more information about Run-As
mapping, see 8.2.7, “Run-as mapping” on page 193.

If you have EJB methods without security assignments, you see the Ensure all
unprotected 2.x methods have the correct level of protection step. In this step,
you can assign a role to these methods, on a per EJB basis (not on a per method
basis). You can also exclude the methods so that they cannot be accessed, or
you can clear them so that they can be accessed by everyone. EJB method
security is discussed further in 8.2.3, “Configuring method access control” on
page 180.

These three types of mappings might be already defined in the enterprise
archive. They can be defined during assembly time, just before deployment, for
example in the Rational Application Developer or in the Application Server
Toolkit. Even if the mappings were done previously, you can review and modify
them during deployment or later, as discussed in 6.2.2, “Role mapping after
installation” on page 106.

 Chapter 6. Application security 105

6.2.2 Role mapping after installation

After the application is installed, you can change the security settings for the
application:

1. Launch Administrative Console and log in.

2. Click Applications → Enterprise Applications.

3. Select the application that you want to change.

You find the following items under the Detail Properties section (Figure 6-3):

– Security role to user/group mapping
– User Run-As roles

By selecting either of these options, you access the same configuration page
as the one you saw during deployment.

Figure 6-3 Enterprise Application configuration page

106 WebSphere Application Server V6.1 Security Handbook

4. Save the configuration for WebSphere after the changes.

5. Restart the Enterprise Application in order for the changes to take effect.

Note: The User Run-As roles configuration link only opens in the
Administrative Console when your application uses Run-As delegation.
WebSphere detects whether this configuration exists in the application and
changes the interface accordingly.

The Ensure all unprotected 2.x methods have the correct level of protection
configuration is not available after deployment. After the methods are
defined as cleared, excluded or mapped to a role, this does not change.

 Chapter 6. Application security 107

108 WebSphere Application Server V6.1 Security Handbook

Chapter 7. Securing a Web application

This chapter discusses the security aspects involved with securing Web
applications. It explains how to secure the transport channels between all
components and discusses the authentication and authorization options that are
available for each processing component.

A Web application consists of different Web components, such as Hypertext
Markup Language (HTML) pages, JavaServer Pages (JSP), and servlets. All of
these components form Web pages on the server side. On the client side, a Web
browser is typically used to issue a request for a Web resource. The request
goes to the WebSphere Application Server. WebSphere Application Server then
processes all the Web components that form the requested Web resource,
creates a Web page, and sends it back as the response. The browser transforms
and displays the response Web page in a more human readable format.

7

© Copyright IBM Corp. 2006. All rights reserved. 109

7.1 Transport channel

A transport channel refers to the communication channel between Web client
and Web Application Server. The communication can be classified into different
layers, each with its own functions and scope. This section focuses on the top
layer of communication between Web clients and Web application servers.

Protocols define different communication types. HTTP is the protocol that is used
for application communication between Web clients and Web application servers.
By using only HTTP, the data flow is not encrypted. Therefore, anyone who can
intercept it might understand the content.

To secure the transport channel, secured HTTP (HTTPS) is required. Typically,
HTTP runs on top of the Transmission Control Protocol (TCP), which is a
transport protocol, and to secure it, Secure Socket Layer (SSL) is required. In
summary, for encrypted communication between Web clients (browsers) and
Web application servers (WebSphere Application Server), you use HTTPS,
which runs on top of an SSL secured TCP transport channel.

7.2 Securing the static content

Static Web resources are those whose content does not change over time
regardless of which user accesses them or the user input data. For example, this
can be a static.html page or a .jpg image file. Although WebSphere
Application Server provides a mechanism to serve them, those resources must
be served by the Web server. When the Web server is involved, WebSphere
does not have security control over the resources served by the Web server.
Therefore, transport security, authentication, and authorization must be
configured for the Web server.

This section explains how to secure static content that is served by the Web
server only. To secure static content served by WebSphere, see “Securing
content served by WebSphere Application Server” on page 135.

In 7.2.2, “Authentication by using a Web server” on page 113, we provide an
example of how to configure IBM HTTP Server to secure static content with
HTTP basic authentication when the user registry is set to a Lightweight
Directory Access Protocol (LDAP) directory. In 7.2.3, “Authorization by uisng
aWeb server” on page 116, we explain how to manage access to this static
content by using the .htaccess configuration files.

110 WebSphere Application Server V6.1 Security Handbook

Describing all the possible options for managing security in IBM HTTP Server is
not within the scope of this book. For detailed information, see the product
documentation for the appropriate release.

Additional products can also be used to provide the end-to-end security
infrastructure. For information about how Tivoli Access Manager fits into this
scenario, see Chapter 12, “Securing a WebSphere application using Tivoli
Access Manager” on page 297.

7.2.1 Securing the transport channel between the Web browser and
Web server

The Web browser and Web server communicate with each other over the HTTP
protocol. By default, HTTP is not secured at all. To ensure the data integrity, you
must use the SSL protocol with the HTTP protocol to secure the transport.

IBM HTTP Server uses the IBM proprietary SSL module and SSL configuration
described in this section. If you use another Web server, consult the product
documentation to see how to set up an SSL transport channel.

To begin, we created a key store of Certificate Management System (CMS)
format that contains a self-signed digital certificate to secure the HTTP transport
channel between the Web browser and the IBM HTTP Server. For more
information about how to create a key database file that stores the necessary
certificates, see the IBM Redpapers™ publication WebSphere Security
Fundamentals, REDP-3944.

Configuring IBM HTTP Server for SSL
To configure IBM HTTP Server for SSL:

1. Open the httpd.conf file, which is the configuration file for IBM HTTP Server,
in the <IHS_root>\conf directory.

2. Add the ibm_ssl_module definition to the end of the LoadModule list as
shown in Example 7-1.

Example 7-1 Adding ibm_ssl_module definition to httpd.conf

LoadModule alias_module modules/mod_alias.so
#LoadModule rewrite_module modules/mod_rewrite.so
#LoadModule deflate_module modules/mod_deflate.so
LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

 Chapter 7. Securing a Web application 111

http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open
http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open

3. Create a virtual host. Then enable and configure SSL just for this virtual host.
On a global level, the IBM HTTP server still does not use SSL. Add the
directives to the httpd.conf file as shown in Example 7-2.

Example 7-2 Adding a virtual host definition and configuring it for SSL

SSLDisable
Listen 0.0.0.0:443

<VirtualHost webserver01.redbook.net:443>
SSLEnable
KeyFile "C:/IBM/HTTPServer/conf/keys/IHS6Certificates.kdb"
</VirtualHost>

This is the most basic SSL setup, but you can use other SSL directives to set
the SSL configuration more specifically to your requirements. Further
explanation of these is not within the scope of this book. See the IBM HTTP
Server documentation.

The directives that this book uses for configuration are explained here:

– The directive Listen 0.0.0.0:443, which is placed into global definition
scope, makes the IBM HTTP Server listen on port 443 as well.

– The directive VirtualHost starts the virtual host stanza. Make sure that
you specify a TCP resolvable host name or IP address here.

– The directive SSLEnable enables SSL for this virtual host only.

– The directive KeyFile defines where the key database file is located.

4. Save the httpd.conf configuration file and restart IBM HTTP Server.

Testing SSL between Web browser and Web server
Open a Web browser and connect to the Web server using the following URL,
where <virtualhostname> is the TCP domain resolvable name that you used with
your virtual host definition:

https://<virtualhostname>

In our case, we type the following URL in the browser:

https://webserver01.redbook.net/

Because you did not specify any port with the request, the request goes to the
default HTTPS server listening port, which is 443. The Web server recognizes
the request, and because it comes to port 443, you can bind it to the configured
virtual host.

112 WebSphere Application Server V6.1 Security Handbook

https://webserver01.redbook.net/

Because SSL is enabled only for the virtual host, you can still access the Web
server unsecured by HTTP on port 80, which is defined on the global scope. If
you want an SSL-only configuration, specify SSL directives on the global scope
without creating a virtual host, as shown in Example 7-3.

Example 7-3 Configuring SSL on global configuration scope

#Listen 0.0.0.0:80
Listen 0.0.0.0:443
SSLEnable
KeyFile "C:/IBM/HTTPServer/conf/keys/IHS6Certificates.kdb"

Also delete or comment out the default Listen 0.0.0.0:80 directive to limit port
443 to be the only listening port when using an SSL-only configuration.

7.2.2 Authentication by using a Web server

Most Web servers can secure the files that they serve. For example, IBM HTTP
Server can protect its own resources in the following ways:

� HTTP basic authentication

With IBM HTTP Server, different user registry modules are provided to be
used for authentication, including simple text file, LDAP directory, or
database.

In 7.5.1, “Configuring LDAP authentication with IBM HTTP Server” on
page 147, we explain how to set IBM HTTP Server for using Basic
authentication with the LDAP directory as the user registry. In “Configuring
basic authentication for the Web server” on page 113, we explain how to set
IBM HTTP Server to use Basic authentication with the text file user registry.

For more details about HTTP Basic Authentication, see the protocol definition
document at the following address:

http://www.ietf.org/rfc/rfc2617.txt

� Digital client certificate authentication using SSL

Configuring basic authentication for the Web server
This section presents a simple scenario of how to implement basic authentication
for the Web server when user registry is stored in a simple text file.

LDAP or cliente certificat authentication: Basic authentication is not a
secure method of authorizing user access to Web server resources. If Web
server level authentication is required, use LDAP or client certificate
authentication.

 Chapter 7. Securing a Web application 113

http://www.ietf.org/rfc/rfc2617.txt

For this example scenario, we enable security for all the static Web components
in the C:\IBM\HTTPServer\htdocs\en_us directory.

Creating the user registry text file
First, create a simple text file that stores the user registry information. For this
purpose, use the htpasswd utility that comes with IBM HTTP Server. Example 7-4
shows how to run this utility. In this case, we create a new user registry file
named users and add the ITSOuser user.

Example 7-4 Creating user registry text file

C:\IBM\HTTPServer\conf>..\bin\htpasswd -c users ITSOuser
Automatically using MD5 format.
New password: *****
Re-type new password: *****
Adding password for user ITSOuser

C:\IBM\HTTPServer\conf>

Configuring the Web server to use basic authentication
To configure the Web server to use basic authentication:

1. Open the httpd.conf file, which is the configuration file for IBM HTTP Server.

2. Make sure that the auth_module module definition in the LoadModule list is
uncommented, as shown in Example 7-5.

Example 7-5 auth_module definition

LoadModule auth_module modules/mod_auth.so
#LoadModule auth_anon_module modules/mod_auth_anon.so
#LoadModule auth_dbm_module modules/mod_auth_dbm.so

3. Enable SSL on the global level and add Basic authentication. Previously you
created a virtual host definition and defined SSL transport just for that scope.

Add the Directory directive to protect the C:\IBM\HTTPServer\htdocs\en_us
directory. This directory is set as a global Web server root so that when you
call the Web server using host name, the Web server searches for the
index.html file under the Web server root.

114 WebSphere Application Server V6.1 Security Handbook

Within Directory, specify additional security directives that are effective only
on that scope (Example 7-6).

Example 7-6 Configuring HTTP basic authentication with text file user registry

#Listen 0.0.0.0:80
Listen 0.0.0.0:443
SSLEnable
KeyFile "C:/IBM/HTTPServer/conf/keys/IHS6Certificates.kdb"
<Directory "C:/IBM/HTTPServer/htdocs/en_US">
AuthType Basic
AuthName "Restricted Directory"
AuthUserFile "C:/IBM/HTTPServer/conf/users"
Require valid-user
Options None
AllowOverride None
</Directory>

4. Save the httpd.conf file and restart the Web server.

Testing the basic authentication configuration with the Web server
To test basic authentication:

1. Open a new browser window on the Web server machine.

2. In the address bar, type the following URL:

https://localhost

If you are using a browser on a separate machine, provide the proper server
name in the URL.

3. After the SSL connection is established and the the authentication window
(Figure 7-1 on page 116) opens, for User Name, type ITSOuser and the
corresponding password. Click OK.

The content (index.html) is served.

 Chapter 7. Securing a Web application 115

Figure 7-1 Testing HTTP Basic authentication with enabled SSL

7.2.3 Authorization by uisng aWeb server

By default, the Web server configuration and access control directives are
handled by the Web server administrator by modifying the httpd.conf file. The
appropriate section of the file enforces these settings as shown in Example 7-7.

Example 7-7 Enforcing access control management by settings in httpd.conf file

<Directory "C:/IBM/HTTPServer/htdocs/en_US">
AllowOverride None
Options None

</Directory>

116 WebSphere Application Server V6.1 Security Handbook

The directive AllowOverride None tells the Web server not to look for any other
access control definition files within the given directory scope. In a default
httpd.conf configuration file shipped with IBM HTTP Server, this directive is
included in every <Directory> container.

However, in many cases, this is a limiting factor and an administrator might need
to intervene for simple changes to the file. You might want to give to an individual
user or group of people the possibility to configure their own area of the Web site.
This is not possible with the default httpd.conf settings.

If there is a requirement to set an access control on a per-directory basis,
overriding the settings in the httpd.conf file, IBM HTTP Server uses .htaccess
files for every directory over which the user wants such control. Changes done to
any .htaccess file do not require restarting the Web server or any other
administrator intervention because the file is read every time a resource is
fetched from the directory.

A .htaccess file placed in one directory applies to all its subdirectories. If there is
more than one access file in a directory tree, the directives set in a file for the
subdirectory take precedence over the directives in the parent directory.

The drawback of using .htaccess files is the impact on the Web server’s
performance. Another problem with using .htaccess files is in regard to system
management. System management is difficult to maintain, especially in a
centralized security infrastructure.

For more information about how to use the .htaccess file, see the Apache tutorial
at the following address:

http://apache-server.com/tutorials/ATusing-htaccess.html

7.3 Securing the Web server plug-in for WebSphere

This section focuses on securing the WebSphere Application Server HTTP
plug-in. Although the plug-in runs as a part of the Web server’s process,
detached from WebSphere, it is an integral part of the WebSphere Application
Server and security.

 Chapter 7. Securing a Web application 117

http://apache-server.com/tutorials/ATusing-htaccess.html

7.3.1 Securing the transport channel between the Web server and
WebSphere

This section exlains the configuration to instantiate a secure connection between
the Web server plug-in and the embedded HTTP server in the WebSphere Web
container. By default, this connection is not secure, even when global security is
enabled. The documentation covers the configuration for IBM HTTP Server, but
the Web server related configuration in this situation is not specific to any Web
server.

Setting the authentication mechanism as a client certificate
You must complete the following steps to generate the certificates for SSL
communication between the two peers:

1. Create a self-signed certificate for the Web server HTTP plug-in.

2. Create a self-signed certificate for the WebSphere Web Container.

3. Exchange the public keys between the two peers.

4. Create a new key store configuration.

5. Create a new SSL configuration (or modify an existing one).

6. Modify the WebSphere embedded HTTP Server (Web Container) to use
SSL/HTTPS.

7. Regenerate and propagate the Web server plug-in-cfg.xml file for the Web
Container SSL/HTTPS change to take effect. Figure 7-2 illustrates the
exchange of the public certificate keys that are associated with each peer
participating in the secure SSL communication.

Figure 7-2 Certificates

Web Container

WAS6WebContainerCertificates.jks

Private
Key

Public
Key

Private
Key

Public
Key

Keys

Web server plug-in

WAS6PluginCertificates.kdb

Public
Key

Private
Key

Private
Key

Public
Key

Signer CertificatesPersonal Certificates

118 WebSphere Application Server V6.1 Security Handbook

Creating a self-signed certificate for the Web server HTTP
plug-in
Create a CMS type key store, for example, WAS6PluginCertificates.kdb in the
C:\IBM\HTTPServer\conf\keys\ directory. Create a self-signed certificate.

Creating a self-signed certificate for the WebSphere Web
container
Create a Java Key Store (JKS) type key store, for example,
WAS6WebContainerCertificates.jks in the C:\WebSphere\Appserver\profiles
\<profilename>\cells\<cellname> directory. Create a self-signed certificate.

Exchanging the public keys between the two peers
Exchange the public certificates from the self-signed certificated between the two
key stores:

� WAS6PluginCertificates.kdb
� WAS6WebContainerCertificates.jks

Creating a new SSL configuration
Within the WebSphere configuration, an SSL configuration represents a set of
SSL key store entries and properties that you can use with different WebSphere
resources.

To create a new cell-scoped key store entry and SSL configuration:

1. Start the WebSphere Administration Console and log in.

2. Select Security → SSL certificate and key management → Manage
endpoint security configurations → Inbound → <cellname>.

3. In the Related Items section, click Key stores and certificates.

4. Click New to create a key store entry.

5. Enter the following values to complete the form:

a. For Name, type WebContainerKeyStore.

b. For Path, type ${CONFIG_ROOT}\cells\<cellname>
\WAS6WebContainerCertificates.jks.

c. For Password, type passw0rd.

More information: For more details about creating and extracting a
self-signed certificate, see WebSphere Security Fundamentals, REDP-3944.

For information: For more details about exchanging certificates, see
WebSphere Security Fundamentals, REDP-3944.

 Chapter 7. Securing a Web application 119

http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open

d. For Type, enter JKS.

e. Leave other options as the default settings.

f. Click OK.

6. Create an SSL configuration to contain the new key store. On the SSL
certificate and key management page, select SSL configurations.

7. Click New to create a new SSL configuration.

8. Enter the following information to complete the form.

a. For Name, type WebContainerSSL.

b. For Trust store name, select WebContainerKeyStore.

c. For Key store name, select WebContainerKeyStore.

d. Before you can select an entry for the default server and client certificate
aliases, click Get certificate aliases. WebSphere reads the key store
configuration and populates the list with all the available server and client
certificates that exist in the key store.

e. Select the desired server and client certificate aliases

f. Click Apply.

g. Optional: under Additional Properties, click Quality of protection (QoP)
settings to set additional SSL settings, such as client authentication,
cipher suites, providers, and protocols.

The client authentication option determines whether the resource that is
using this SSL configuration also expects to get a client certificate either
trusted by a well-known CA, or self-signed with the imported public key. If
you enable this option for an SSL configuration that is used for HTTP
plug-in to Web container transport protection, then a client certificate is
required in the HTTP plug-in key database and the Web container must be
able to recognize that certificate.

We used the default additional settings. If you require client authentication
within this scope, see 7.5.2, “Configuring SSL certificate-based client
authentication for the IBM HTTP Server” on page 152, to learn how to set
a client certificate onto a CMS key database required for the HTTP plug-in.
See also 7.5.3, “Configuring SSL certificate-based client authentication for
WebSphere Application Server” on page 156, to set the SSL entry and
Web container configuration for client authentication.

h. Click OK.

Note: If you do not want WebSphere to make changes to the key store or
the certificates it contains, select the Read-only check box.

120 WebSphere Application Server V6.1 Security Handbook

9. Save the configuration for WebSphere.

Modifying the Web Container configuration to support SSL
To complete the configuration between Web server HTTP plug-in and Web
Container, the WebSphere Web Container must be modified to use the
previously created self-signed certificates.

To modify the Web Container with the required changes:

1. Select Servers → Application servers. Click the server that you want to
work with, which is server1 in our case.

2. Under the Container Settings section, click Web Container Settings → Web
container transport chains.

3. Modify the default secured transport chain called WCInboundDefaultSecure
chain to use it in this section. Web Container listens on the TCP port 9443 for
this chain. See Figure 7-3.

Figure 7-3 Default transport chains for server1

You can also create another transport chain and configure it as follows:

a. Click WCInboundDefaultSecure (or on the new transport channel if you
created one). Ensure that the Enabled check box is selected.

Mutual SSL: If you want mutual SSL between the two parties, select either
Supported or Required for Client authentication on the Quality of
protection settings page.

 Chapter 7. Securing a Web application 121

b. Click SSL Inbound Channel (SSL 2). Then, in the SSL configuration
section, select Specific to this endpoint, and select WebContainerSSL
from the list. Thus, you specify a previously created SSL configuration to
be used with this transport channel (see Figure 7-4).

c. Click OK, and then save the configuration for WebSphere.

Figure 7-4 SSL Inbound Channel properties

4. Regenerate and propagate the Web server plug-in.

5. Restart the application server for the changes to the Web Container
configuration to take effect.

Modifying the Web server plug-in file
You must modify the plug-in configuration file to reference the plug-in key ring
and the password stash file. By doing this modification, you can change the
transport protocol from HTTP to HTTPS with the certificates stored in the key
ring.

With WebSphere Application Server V6.1, more than one Web server definition
is possible, and each has its own set of HTTP plug-in properties, which are

122 WebSphere Application Server V6.1 Security Handbook

configurable in the Administrative Console. Also by default, there is a separate
installation directory of HTTP plug-in binaries. Within this directory, there are
separate plug-in configuration directories for each Web server/plug-in definition.
This section shows the use of the Web server definition, webserver1. In our case,
its configuration is in C:\Websphere\Plugins\config\webserver1.

To modify the Web server plug-in file:

1. Copy your key database and stash files to the Web server repository directory
for webserver1:

<config_root>\cells\<cellname>\nodes\<nodename>\servers\webserver1

Where <config_root> is the configuration directory of your WebSphere profile:

C:\WebSphere\AppServer\profiles\<profilename>\config

2. In the Administrative Console, select Servers → Web servers. Click the
server you want to work with, which in this case is webserver1.

3. In the Additional Properties section, click Plug-in properties.

4. Change the following values on the Plug-in properties page

a. In Repository copy of Web server plug-in files, for Plug-in key store file
name, type WAS6PluginCertificates.kdb.

b. In Web server copy of Web server plug-in files, for Plug-in key store
directory and file name, type C:\WebSphere\Plugins\config\webserver1\
WAS6PluginCertificates.kdb.

c. In Plug-in logging, for Log level, type Trace.

5. Click Copy to Web server key store directory.

6. Click OK.

7. Save the WebSphere configuration.

8. Open the plugin-cfg.xml HTTP plug-in configuration file for editing. A
standard non-secure HTTP connection in the configuration looks similar to
the following example:

<Transport Hostname="kcgl6kh.itso.ral.ibm.com" Port="9080"
Protocol="http"/>

Tip: If you are unsure about which HTTP plug-in configuration file is the right
one, open the Web server’s configuration file and check which file name is
used when defining HTTP plug-in module configuration.

 Chapter 7. Securing a Web application 123

By default, there is also the secured connection entry (Example 7-8).

Example 7-8 Secured connection entry

<Transport Hostname="kcgl6kh.itso.ral.ibm.com" Port="9443"
Protocol="https">

<Property name="keyring"
value="C:\WebSphere\Plugins\config\webserver1\WAS6PluginCertificates
.kdb"/>

<Property name="stashfile"
value="C:\WebSphere\Plugins\config\webserver1\WAS6PluginCertificates
.sth"/>
</Transport>

Note that the kcgl6kh.itso.ral.ibm.com is the host name for the application
server.

a. Comment out or delete the non-secure HTTP part as follows:

<!-- <Transport Hostname=kcgl6kh.itso.ral.ibm.com" Port="9080"
Protocol="http"/> -->

b. Save the plugin-cfg.xml file.

9. Restart the Web server.

7.3.2 Testing the secure connection

In this section, we assume that your Web server is SSL-enabled and that the
connection between the browser and Web server is secured HTTPS. Although
we do not recommend this security practice, the behavior must not be different if
you use a Web server that is not SSL-enabled.

Note: If the non-secure transport is not a requirement for your application,
remove the WCInboundDefault transport chain from the application server.
Then, after you regenerate and propagate the Web server plug-in, the
non-secure HTTP transport channel can no longer be used.

In this scenario, you prevent the Web server from connecting to the Web
Container on the non-secure transport channel. In later examples, this
allows you to access the Web Container directly on the non-secure
transport channel.

124 WebSphere Application Server V6.1 Security Handbook

After setting the HTTP plug-in and restarting the Web server, test the secure
connection:

1. Open a new browser window. Make sure that the Web server, WebSphere
(server1), and the default application are running.

2. Enter the following URL to access the Snoop servlet:

https://webserver01.redbook.net/snoop

Here webserver01.redbook.net is the host name for the Web server.

3. When application security is enabled in WebSphere, in the Basic
authentication window, enter a valid user name and password. The Snoop
servlet is output. For further information about enabling application security
see 3.1, “Enabling administrative security” on page 50.

Because we commented out the HTTP transport in the plug-in configuration,
leaving only the HTTPS option available, we left no choice to the plug-in.
Therefore, it must use HTTPS transport to connect to WebSphere.

We called Snoop by using the Web server with HTTPS. The Web server passed
the request to the HTTP plug-in, and the plug-in contacted WebSphere by using
HTTPS.

Open the http_plugin.log plug-in trace file (Example 7-9). This file shows that
the SSL connection has been used to connect to WebSphere and that
WebSphere issued the basic authentication challenge before serving the Snoop
servlet response.

Example 7-9 HTTP plug-in trace file showing the SSL connection

ws_common: websphereFindTransport: Finding the transport
ws_common: websphereFindTransport: Setting the transport(case 4):
kcgl6kh.itso.ral.ibm.com on port 9443
ws_common: websphereExecute: Executing the transaction with the app
server
ws_common: websphereGetStream: Getting the stream to the app server
ws_transport: transportStreamDequeue: Checking for existing stream from
the queue
ws_common: websphereGetStream: socket 7792 connected to
kcgl6kh.itso.ral.ibm.com:9443
lib_stream: openStream: Opening the stream
lib_stream: openStream: Stream is SSL
ws_common: websphereGetStream: Created a new stream; queue was empty,
socket = 7792
lib_htrequest: htrequestWrite: Writing the request:
 GET /snoop HTTP/1.1
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

 Chapter 7. Securing a Web application 125

 Accept-Language: en-us
 Accept-Encoding: gzip, deflate
 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET
CLR 1.1.4322)
 Host: webserver01.redbook.net
 Connection: Keep-Alive
 $WSIS: false
 $WSSC: http
 $WSPR: HTTP/1.1
 $WSRA: 127.0.0.1
 $WSRH: 127.0.0.1
 $WSSN: localhost
 $WSSP: 80
 Surrogate-Capability: WS-ESI="ESI/1.0+"
lib_htrequest: htrequestWrite: Writing the request content
ws_common: websphereExecute: Wrote the request; reading the response
lib_htresponse: htresponseRead: Reading the response: c2976c
 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Basic realm="Default Realm"
Content-Language: en-US
Content-Length: 0
lib_htresponse: htresponseSetContentLength: Setting the content length
|0|

7.4 Securing the Web container of the application server

This section discusses the authentication and authorization matters related to
the application server Web container.

7.4.1 Securing the transport channel

In 7.3.1, “Securing the transport channel between the Web server and
WebSphere” on page 118, you secured the transport channel for the Web
container. For internal communication between Web and Enterprise JavaBeans
(EJB) containers, WebSphere uses Internet Inter-ORB Protocol (IIOP), and the
internal communication is protected, by default, with administrative security
enabled.

For more information about Remote Method Invocation (RMI) over IIOP security
settings, see 8.4.3, “RMI/IIOP transport channel protection” on page 204.

126 WebSphere Application Server V6.1 Security Handbook

7.4.2 Authentication by using the Web container

The authentication method defines how the user is authenticated by the Web
application. Before any authorization constraint is applied, the user must pass
the authentication process by using a configured mechanism.

For Web container authentication, WebSphere provides full compliance of the
Java 2 Platform, Enterprise Edition (J2EE) specification, which defines the
following types of authentication methods:

� Basic authentication
� Form-based authentication
� Client certificate authentication

For more details about authentication mechanism, see WebSphere Security
Fundamentals, REDP-3944.

If a security constraint is set but no authentication method for a Web module is
configured, the default is to use basic authentication. For any type of
authentication methods to work, at least one security constraint must be defined
for the requested Web resources, and application security must be enabled for
the application server.

For instructions on how to define security constraints for Web resources, see
“J2EE Web module security fundamentals” on page 132. For instructions on how
to enable application security, see 6.1, “Application security” on page 102.

This section shows basic scenarios for setting up authentication for the
ITSObank application.

Note: Form-based or client certificate are the preferred methods of
authentication. With the use of basic authentication, the client browser caches
the user ID and password in memory, which are sent to the server whenever
an authentication request is received. The cached authentication credentials
never time out. Therefore, the user’s session cannot be invalidated unless the
browser is closed.

 Chapter 7. Securing a Web application 127

http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open
http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open

Configuring form-based authentication
One of the login challenges defined in te J2EE specification is the form-based
login. It enables the application developer to customize the login process and
presents an application-specific form by using the Form Login Authentication
mechanism.

Form login works in the following manner:

1. An unauthenticated user requests a resource protected by the Form Login
authentication type.

2. The application server redirects the request to the login form defined
previously in the Web deployment descriptor.

3. On the HTML login form, the user enters the user ID and password and
submits the form.

4. The action, triggered by the form submission, refers to a special servlet
j_security_check. The Web container, after receiving a request for the
j_security_check servlet, dispatches the information to the application
server’s security mechanism to perform the authentication.

5. If the servlet authenticates the user successfully, the originally requested
resource is displayed.

Because Lightweight Third Party Authentication (LTPA) is the default
authentication mechanism for administrative and application security, to use form
login in any Web application, single sign-on (SSO) must be enabled. If SSO is
not enabled, authentication during form login fails with a configuration error.

SSO is required because it generates an HTTP cookie that contains information
representing the identity of the user to the Web browser. This information is
required when using form login to authorize protected resources. In WebSphere
Application Server V6.1, SSO is enabled by default. However, additional
configuration might be necessary.

To configure SSO:

1. Log in to the WebSphere Administration console and select Security →
Secure administration, applications, and infrastructure.

2. In the Authentication section, click Web security → Single Sign-On.

128 WebSphere Application Server V6.1 Security Handbook

Figure 7-5 shows the default configuration for SSO. For the examples that follow,
we use the default settings.

Figure 7-5 Configuring single sign-on

Configuring a form-based login
To configure a form-based login, as shown in Figure 7-6, by using the Rational
Application Developer:

1. Load your Web application module into Rational Application Developer. In our
example, this module is itsobank.ear.

2. Within J2EE perspective, expand Dynamic Web Projects → itsobank.

3. Double-click the Deployment Descriptor of itsobankWeb Module.

 Chapter 7. Securing a Web application 129

4. On the Web Deployment Descriptor page (Figure 7-6), click the Pages tab
and scroll down.

a. In the Login section, select the FORM authentication method.
b. For Login Page, type /login/login.html.
c. For the Error Page, type /login/loginerror.html.

Figure 7-6 Form login configuration

5. Save the changes.

Setting the Authentication Method for the application Web module creates a
<login-config> section in a Web deployment descriptor XML file, as shown in
Example 7-10.

Example 7-10 Login-config section of the Web deployment descriptor

<login-config>
<auth-method>FORM</auth-method>
<realm-name>ITSO Bank</realm-name>
<form-login-config>

<form-login-page>/login/login.html</form-login-page>
<form-error-page>/login/loginerror.html</form-error-page>

</form-login-config>
</login-config>

Simple form-based login does not require any extra code development on the
server side. The j_security_check servlet that WebSphere Application Server

130 WebSphere Application Server V6.1 Security Handbook

uses enforces only the name of the following input fields that the developer must
put in the custom Login Form:

� j_username must be the input field in which a user types the user name.
� j_password must be the input field in which a user types the password.

The action required for the HTTP POST method is j_security_check.
Example 7-11 shows simple HTML code for the custom login form.

Example 7-11 Sample custom login form from the ITSOBank application

<!-- -->
<form method="post" action="/itsobank/j_security_check">
User name:<input type="text" name="j_username">
Password:<input type="password" name="j_password">
<input type="submit" name="action" value="Login">
</form>
<!-- -->

Form-based logout
One of the IBM extensions to the J2EE specification is the form-based logout as
shown in Example 7-12. After logging out, the user is required to re-authenticate
to have access to protected resources again. This logout form can be on any
page that is calling a POST action on the ibm_security_logout servlet. This form
must exist within the same Web application to which the user is redirected after
logging out.

Example 7-12 Sample logout form from the ITSOBank application

<form method="post" action="ibm_security_logout" name="logout">
<input type="submit" name="logout" value="Logout">
<input type="hidden" name="logoutExitPage" value="/login/login.html">
</form>

Today’s e-business Web applications require strict and well-designed security.
Providing the logout function is one of the important functions. Obviously, closing
the browser and destroying the session is always an option for the user, but it is
not an appropriate solution to finish a session with an application.

By combining the logout function with programmatic security, you can implement
step-up re-authentication, where the user can change credentials and get higher
authority in the application.

Attention: The j_security_check servlet does not work when global security is
disabled. The application server returns a Page Not Found error. This is also
true for the ibm_security_logout servlet.

 Chapter 7. Securing a Web application 131

7.4.3 Authorization by using the Web container

For Web container authorization, WebSphere provides full compliance on the
J2EE specification. This section discusses declarative security, which means
that the application is not security aware. It does not contain any security related
code. The protection on J2EE level is configured through deployment descriptors
and enforced by WebSphere.

We describe a situation where the application is security-aware as programmatic
security. See 7.4.4, “Programmatic security” on page 141, for more information.

J2EE Web module security fundamentals
In a J2EE application architecture, the Web module of the enterprise application
is comprised of one or more related servlets, JSP files, XML files, and HTML files
that can be managed as one integrated unit. The files in the Web module are
related in the sense that they perform a common business logic function.

The Web modules of the enterprise application run within the Web container of
the application server. The Web container, as a runtime environment for the Web
application, is responsible for handling requests for servlets, JSP files, and other
Web components running on the server-side or served from the server-side. The
Web container creates servlet instances, loads and unloads servlets, creates
and manages requests and response objects, and performs other servlet
management tasks.

The following sections explain how to configure security for the Web module of
an enterprise application.

Security roles
WebSphere implements roles-based security from the J2EE specification. The
security role is a logical grouping of principals. Access to a specific part of the
application is granted based on the role, which is then mapped during the
development or deployment phase to specific user registry entries. It gives a
certain level of transparency to the application development process.

The developer does not have to bother with the different user privileges that can
be defined for the application.

Note: The logout only works together with form-based login. When the
application is configured to use Basic Authentication, the credentials are
stored in the client’s browser, and the browser sends the user name and
password to the server together with every request. The only way to log out is
to break the session by closing the browser.

132 WebSphere Application Server V6.1 Security Handbook

To define a role for the Web module with a Rational Application Developer:

1. Within J2EE perspective, expand Dynamic Web Projects → itsobank.
Double-click the Deployment Descriptor of the itsobankWeb Module.

2. On the Web Deployment Descriptor page, select the Security tab.

a. In the Security Roles section, click Add to add a new security role.

b. In the Add Security Role window (Figure 7-7), for the Name field, type User
and click Finish.

3. Repeat steps a and b, and this time create a Manager security role.

4. Save and close the file.

Figure 7-7 Creating a new security role for the Web module

Security constraints
Providing an authentication mechanism for global application security and
creating security roles as you did in the previous two sections does not provide
the mechanisms to control access to the Web resources.

Security constraints declare how the content of the application is protected. For a
given security constraint, you must define the following items:

� One or more Web resources that define actual application components that
are to be protected by the security constraint

A Web resource is a set of URL patterns and HTTP methods in those
resources. All requests that are matched with the pattern defined for a given
Web resource are subject to a security constraint.

 Chapter 7. Securing a Web application 133

� An authorization constraint that defines the roles that provide access to the
Web resources existing within the security constraint

An authorization constraint is a set of roles that the user must be granted for
access to a Web resource collection existing within a security constraint. To
have access to the Web resource, the user must be granted at least one of
the roles that are defined within the authorization constraint.

� The user data constraint, which indicates the transport layer setting for
client/server communication to satisfy given security constraints

This setting must guarantee either content integrity (preventing tampering in
transit) or confidentiality (preventing reading data during transfer). The user
data constraint can override standard security settings for the application. For
example, access to some functions of the application might require basic
login by using a user ID and password. At the same time, some functions
might require a higher level of protection. The user data constraint allows an
application deployer to introduce such protection.

If WebSphere application security is enabled, and a security constraint is set for
a particular resource, then the resource is secured.

J2EE security role reference
During the development phase of the application, the actual role names for
security constraints might not unknown to the groups of developers. The actual
role names in a deployed runtime environment might not be known until the Web
application and EJB modules are ready and assembled into the .ear file.
Therefore, the role names used during development are considered to be logical
roles. These logical roles are then mapped by the application deployer into the
actual runtime roles during the application assembly and deployment phase.

Security role references provide a level of indirection to isolate roles that are
used during development and actual runtime roles. They link the names of the
roles that are used in the module to the corresponding name of the role in the
encompassing application.

The definition of the logical roles and the mapping to the actual runtime
environment roles are specified in the <security-role-ref> element of both the
Web application and the EJB JAR file deployment descriptors, web.xml and
ejb-jar.xml, respectively.

To define security role references for the Web module in Rational Application
Developer:

1. Load your Web application module into Rational Application Developer. In our
example, this is itsobank.ear.

2. Within J2EE perspective, expand Dynamic Web Projects → itsobank.

134 WebSphere Application Server V6.1 Security Handbook

3. Open the Web Deployment Descriptor for the itsobankWeb Module.

a. Select Servlets tab.

b. In the Servlets and JSPs section, select TransferServlet.

c. In the Add Security Role References window (Figure 7-8):

i. For Role link, select User.

ii. For Role reference name, enter The User role. The user role was
created when you defined security constraints.

iii. Click Finish.

Figure 7-8 Setting security role reference for TransferServlet

4. Save and close the file.

Securing content served by WebSphere Application Server
On the J2EE security level, WebSphere Application Server can secure Web
resources by using role-based declarative security mechanisms. This means that
the logical application security structure is defined independently from the
application itself. The logical security structure is stored in the deployment
descriptors of the application.

 Chapter 7. Securing a Web application 135

You can divide Web resources into two categories:

� Static resources

Static resources refers to all the resources that do not change the response
output over time. Static resources are, for example, static HTML pages and
different image files.

You can secure static resources of the enterprise application only if
WebSphere serves them. WebSphere cannot manage access to the static
content that resides on the Web server. All the static content that must be
protected by WebSphere Application Server must be packaged into the Web
module (Web archive file (.war)). Static HTML pages can be served by the
servlet that implements file serving behavior.

� Dynamic resources

Dynamic resources refers to all the resources that change the response
output over time, depending on different input parameters. Dynamic
resources are, for example, servlets and JSPs.

For all the Web resources, with WebSphere Application Server, you can protect
them on the HTTP method level. For example, the POST method of a servlet can
be part of a different security constraint than the GET method. The full list of
predefined methods that can be secured is as follows:

� GET
� POST
� PUT
� DELETE
� HEAD
� OPTION
� TRACE

When using method-level security constraints for resources, you might want to
separate the content that all the users can view from the administrative functions
that only privileged users are allowed to access. In WebSphere Application

File serving: Consider disabling File serving on your application if you do
not serve static content from your application.

Serve servlets by classname: Most applications have the option Serve
servlets by classname enabled by default. Because this poses a security
risk, you must disable it when preparing an application EAR file for
deployment.

136 WebSphere Application Server V6.1 Security Handbook

Server, you can do this by using different security constraints for the different
methods.

Configuring security constraints
To set up constraint to protect content for the Web application module:

1. Load your Web application module into Rational Application Developer. In our
example, this is itsobank.ear.

2. In the J2EE perspective, expand Dynamic Web Projects → itsobank.

3. Open the Web Deployment Descriptor for the itsobankWeb Module.

4. Click the Security tab:

a. In the Security Constraints section, click Add to add a new security
constraint.

b. In the Add Security Constraints window, for the Name field, type ITSO Bank
security constraint and click Next.

c. In the Add Web Resource panel (Figure 7-9 on page 138):

i. Specify the resource name, HTTP methods that are allowed to be
issued on the resource, and URL patterns on which this security
constraint applies.

ii. Complete the remaining values as shown in Figure 7-9.

iii. Click Finish.

Important: Make sure that the URL patterns correctly match your
resource names or URL bindings. There is no value syntax
checking. Therefore if the URL pattern is entered incorrectly, you
end up with an unprotected resource and a security constraint for a
non-existent resource.

 Chapter 7. Securing a Web application 137

Figure 7-9 Configuring security constraints for Web resources

Configuring authorization constraints
The security constraint that you have created for static resources defines the
HTTP methods that are allowed on certain URL definitions that represent the
Web resources. More specifically, within your security constraint, you defined that
only GET and POST methods can be run on your Web resources. However, you
have not specified who is allowed to run the defined security constraint or
specifically who is allowed to run GET and POST over your Web resources.

To define authorization constraint for the recently created security constraint:

1. On the Deployment Descriptor Security tab of the itsobankWeb Module,
select ITSO Bank security constraint.

2. In the Authorized Roles section, click Add.

138 WebSphere Application Server V6.1 Security Handbook

3. In the Define Authorization Constraint window:

a. For Description, type Web resources auth constraint.
b. In the Role Names list, ensure that User and Manager roles are selected.
c. Click Finish.

4. Save the changes. Figure 7-10 shows an overview of the security properties.

Figure 7-10 Overview of the configured security constraints for Web resources

 Chapter 7. Securing a Web application 139

Adding security and authorization constraint for the
AccountsView page
Up to this point, you have created a security constraint for the majority of your
sample application Web resources and then given authorization on this
constraint for previously created User and Manager security roles. The users that
are mapped to these roles during application installation all have access to these
resources.

However, your application contains a special static HTML page, called the
Accounts View page, to which you do not want every user to have access. You
only want that the Manager security role to have access to this page.

User Data Constraint section: In the User Data Constraint section, you
can choose a transport guarantee, which defines how to protect the
communication between the client and server. Three options are available:

None No constraint indicates that the application does not
require any transport guarantee.

Integral Data cannot be changed in transit. In practice, a request
must be transmitted over an SSL encrypted channel.

Confidential Data cannot be viewed in transit. In practice, the request
must be transmitted over an SSL encrypted channel.

140 WebSphere Application Server V6.1 Security Handbook

To add security and an authorization constraint for the AccountsView page:

1. Repeat steps 1 through 4 on page 137 to add another security constraint. Use
the values shown in Figure 7-11 on page 141.

Figure 7-11 Creating a security constraint for the Accounts View page

2. Repeat steps 1 on page 138 through 3 on page 139 to create another
authorization constraint for the just created Accounts View security constraint.
This time, make sure that only the Manager security role is selected.

7.4.4 Programmatic security

Programmatic security means that the application is security aware and contains
the code that handles security, providing any authorization and authentication
capabilities that are beyond J2EE security. The opposite case when the
protection is configured on the J2EE level and through application deployment
descriptors is described as declarative security.

 Chapter 7. Securing a Web application 141

See 7.4.3, “Authorization by using the Web container” on page 132, for more
details about security.

Programmatic security is divided into the following types:

� Java Authentication and Authorization Service (JAAS), where we use
mechanisms available in JAAS API

� J2EE programmatic security, where we use a few extra Java methods
available as part of Java Servlet 2.x specification

This section focuses only on the latter. For more details about JAAS security, see
Chapter 5, “JAAS for authentication in WebSphere Application Server” on
page 85.

J2EE servlet security methods
The Servlet 2.4 specification defines the following methods that allow
programmatic access to the caller’s security information of HttpServletRequest
interface:

� String getRemoteUser()

The getRemoteUser method returns the user name that the client has used to
log in:

String user = request.getRemoteUser()

� Boolean isUserInRole(String roleName)

The isUserInRole method allows the developer to perform additional checks
on the authorization rights of a user that are not possible, or are more difficult,
to perform through the deployment descriptor of the servlet:

if (request.isUserInRole("Manager")) {
// the user is in the manager role
// ...

}

� java.security.Principal getUserPrincipal()

The getUserPrincipal method allows the developer to get the name of the
current caller. To do this, call getName() on the java.security.Principal object
that is returned.

Principal principal=request.getUserPrincipal();
String username=principal.getName();

Important: The getRemoteUser() and getUserPrincipal() methods return
null as a result even if the user is logged in, unless the servlet or the JSP
itself is secured.

142 WebSphere Application Server V6.1 Security Handbook

Sample usage of security methods
Example 7-13 shows a modified code snippet from the ITSOBank sample
application. Similar code is in the TransferServlet.java in the doPost() method.
For more details, see the comments in Example 7-13.

Example 7-13 Sample code using the servlet security methods

// getting the environment variables for restricted role
// and for maximum transferable amount
restrictedRole=(String)environment.lookup("RestrictedRole");
maxWebTransferAmount=(Integer)environment.lookup("MaximumWebTransferAmo
unt");
// checking if the user is restricted to a certain amount of transfer
if(request.isUserInRole(restrictedRole) &&
transferAmount>maxWebTransferAmount.intValue()) {

// create an error message
// the user cannot transfer the requested amount
// forward the request to the response page with the message

}
// get the principal from the request
Principal principal=req.getUserPrincipal();
// print out the user information about the servlet invocation
System.out.println("Transfer Servlet was invoked by user:
"+req.getRemoteUser()+", principal: "+principal.getName());

With the security methods, the servlet does not let the user in a restricted role
submit a transfer greater than the maximum amount that is allowed. Two
environment variables are used in the code for this purpose:

� RestrictedRole, which defines the role that is restricted
� MaximumWebTransferAmount, which defines the upper limit of allowed

transferable amount

Example 7-14 shows how these two environment variables are defined in the
Web application deployment descriptor, which is the web.xml file.

Example 7-14 Environment variables for programmatic Web security sample code

<env-entry>
<env-entry-name>MaximumWebTransferAmount</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>5000</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>RestrictedRole</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

 Chapter 7. Securing a Web application 143

<env-entry-value>User</env-entry-value>
</env-entry>

In this case, the RestrictedRole variable is mapped to the User security role, and
that MaximumWebTransferAmount variable is set to 5000.

Testing the programmatic security sample
To test the programmatic security code in the ITSObank application, you must
meet the following prerequisites:

� The ITSObank sample application must be installed into a WebSphere
Application Server, and security must be enabled on that server.

� Two security roles must be defined for the application, User and Manager.
Ensure that you map these two roles to different users (see Figure 7-12).

Figure 7-12 ITSOBank security role to user/group mappings

To test the programmatic security code:

1. Make sure that the ITSObank application is started. Open a new browser
window and enter the ITSObank index page URL as follows for our example:

http://localhost:9080/itsobank/index.html

Because this is a protected URL are you are not authenticated yet, you arrive
at the login page.

2. Log in with a user mapped to the User security role. In our case, WebSphere
used an LDAP for the user registry. During the application installation, we

144 WebSphere Application Server V6.1 Security Handbook

mapped the user john to the User security role. Therefore, we enter the
following information in the login page:

– Userid: john
– Password: test

Click the Login button.

3. On the Welcome page, click Customer Transfer.

4. In the Customer transfer page, for the Transferred amount field, type 10000.
You can enter any number higher than 5000. Values for the other fields are
not important. Click the Transfer button.

You receive a response similar to the page shown in Figure 7-13.

Figure 7-13 Programmatic login sample response show that transfer was not allowed

 Chapter 7. Securing a Web application 145

In Example 7-15, the first line shows which user, under which principal, called
the TransferServlet servlet. The code in Example 7-15 is responsible for this
line. You can see which servlet programmatic methods are used.

Example 7-15 Use of the getRemoteUser() and getUserPrincipal() methods

// check the transfer amount for restricted roles
Principal principal=req.getUserPrincipal();
if(principal!=null) {

messagePrincipal="Transfer Servlet was invoked by user:
"+req.getRemoteUser()+", principal: "+principal.getName();

The second line in the Branch Transfer result page shows a negative
response, which means that the transfer was not allowed. In the code, we
check if the user is mapped to the User role and whether the wanted transfer
amount exceeds the specified limit (5000) for which transfer is not allowed.
Example 7-16 shows the code snippet.

Example 7-16 The use of isUserInRole() methods

if(message==null && req.isUserInRole(restrictedRole) &&
transferAmount>maxWebTransferAmount.intValue())

message="Transfer not allowed! User: "+req.getRemoteUser()
+" is assigned to role: " + restrictedRole +" ,which is only allowed
to transfer up to "+ maxWebTransferAmount;

else
message="Transfer initiated between customer:"+customerID+"

and branch:"+branchID+", the amount of:"+transferAmount;

5. Click Back to the start page link.

6. Click the Log out button to logout.

7. Log in again. This time log in with another user that must not be mapped to
the User security role.

146 WebSphere Application Server V6.1 Security Handbook

8. Repeat steps 3 and 4 on page 145. This time you see the response shown in
Figure 7-14.

Figure 7-14 Programmatic login sample response show that transfer was fine

7.5 Additional transport security, authentication, and
authorization options

In the following section, many additional transport security, authentication, and
authorization options for Web servers and WebSphere are described.

7.5.1 Configuring LDAP authentication with IBM HTTP Server

This section presents a simple scenario of how to implement basic HTTP
authentication for the Web server when the user registry is stored in an LDAP
directory for the IBM HTTP Server. To test the scenario, we used IBM Tivoli
Directory Server Version 6.0. In the following instructions, all the software has
been installed and you already have an LDAP server populated with users. (See
Figure 2-2 on page 11 for details about LDAP data structure.)

Enable security for all the static Web components in the
C:\IBM\HTTPServer\htdocs\en_us directory.

 Chapter 7. Securing a Web application 147

Preparing the necessary configuration files
The following steps show which files must be defined for the Web server and how
to use those files. The ldap.prop file is an LDAP configuration file
(Example 7-17) for the Web server. It is stored in the conf directory of the server.
In this case, it is C:\IBM\HTTPServer\conf. A sample LDAP configuration file with
an explanation of each directive is supplied with Web server software. For basic
authentication, the following entries are included.

Example 7-17 LDAP configuration for IBM HTTP Server

ldap.realm=LDAP Realm
ldap.URL=ldap://kcgl6kh.itso.ral.ibm.com/o=itso,c=us
ldap.transport=TCP
ldap.application.authType=Basic
ldap.application.DN=cn=root
ldap.application.password.stashFile=C:\IBM\HTTPServer\bin\ldap.sth
ldap.user.authType=Basic
ldap.user.name.filter=(&(objectclass=inetOrgPerson)(cn=%v1))
ldap.group.name.filter=(&(cn=%v1)(|(objectclass=groupofnames)(objectcla
ss=groupofuniquenames)))
ldap.group.memberAttributes=member uniquemember

Define the following files for the Web server:

� The ldap.URL file is of the form ldap://<hostName>/<BaseDN>.

� The ldap.application.DN file is the distinguished name (DN) by which the
Web server authenticates itself to the LDAP server.

� The ldap.sth file is a stash file that contains an encrypted password for the
Web server to authenticate with LDAP. If you are using Windows, ensure that
you specify the fully qualified path name with a short Windows file name. The
use of quotation marks does not work.

Decide with which user name and password the Web server connects to
LDAP. To create the stash file, at the command prompt, enter:

C:\IBM\HTTPServer\bin\ldapstash <password>
C:\IBM\HTTPServer\bin\ldap.sth

Tip: If you are using Windows, make sure that you use short file name types
when specifying a fully qualified path name for the configuration files in
ldap.prop as in the following example:

C:\Progra~1\IBM\HTTPServer\bin\ldap.sth

148 WebSphere Application Server V6.1 Security Handbook

Configuring your Web server to use LDAP for authentication
To configure the IBM HTTP Server to use LDAP for authentication:

1. Open the httpd.conf file, which is the configuration file for IBM HTTP Server.

2. Add the ibm_ldap_module definition to the end of the LoadModule list.

Example 7-18 Adding ibm_ldap_module definition to httpd.conf

#LoadModule deflate_module modules/mod_deflate.so
LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

#For Windows only
LoadModule ibm_ldap_module modules/IBMModuleLDAP.dll

#For UNIX/Linux only
LoadModule ibm_ldap_module modules/mod_ibm_ldap.so

3. Add the Directory directive to protect the C:\IBM\HTTPServer\htdocs\en_us
directory. This directory is set as a global Web server root. Therefore, when
you call the Web server by using only the host name, the Web server
searches for the index.html file under the Web server root.

Within Directory, specify additional security directives that are effective only
on that scope (Example 7-19).

Example 7-19 Configuring HTTP basic authentication with LDAP module

<Directory "C:/IBM/HTTPServer/htdocs/en_US">

LdapConfigFile "C:/IBM/HTTPServer/conf/ldap.prop"
AuthName "LDAP Realm"
AuthType Basic
Require valid-user
Options None
AllowOverride None

</Directory>

4. Save the httpd.conf file, and restart the Web server for the changes to take
effect.

Note: There is a difference between whether you are specifying an LDAP
module for UNIX, Linux, or Windows. See Example 7-18.

 Chapter 7. Securing a Web application 149

Testing LDAP authentication with Web server
To test how LDAP authentication works:

1. Open a new browser window on the machine where the Web server is
running.

2. In the address bar, type http://localhost/ or the address for the Web
server.

3. In the authentication window, enter a valid user and password from your
LDAP user registry scheme. According to the user registry scheme that we
use in this book, we entered the information as shown in Figure 7-15. Click
OK.

If the authentication process goes smoothly, you get the standard IBM HTTP
index page output.

Figure 7-15 Testing the LDAP authentication module for IBM HTTP Server

4. Before starting IBM HTTP Server, enable traces for the LDAP module by
exporting the following variables into the system:

LDAP_DEBUG=65535
LDAP_TRACE_FILE=C:\ldaptrace.txt

150 WebSphere Application Server V6.1 Security Handbook

After successful authentication in the LDAP module trace, you receive output
similar to what is shown in Example 7-20. The output shows a successful
connection to the LDAP server and a successful authentication query.

Example 7-20 The LDAP module trace output

ldap_authenticate(): entered
LDAP_obtain_session()
LDAP_authenticate_user()
auth_type (BASIC)
calling LDAP_authenticate_user_using_basic
LDAP_authenticate_user_using_basic(): user_name (amy)
LDAP_user2DN(): user_name (amy)
LDAP_user2filter(): user_name (amy)
LDAP_prepare_filter(): template
((&(objectclass=inetorgperson)(cn=%v1)))
the resulting filter: ((&(objectclass=inetorgperson)(cn=amy)))
LDAP_prepare_filter(): returning 0
LDAP_user2filter(): returning 0
LDAP_perform_search(): base (o=itso,c=us), filter
((&(objectclass=inetorgperson)(cn=amy)))
looking in the cache for the base, scope and filter
LDAP_cache_find_ele(): entered
looking for base [o=itso,c=us], filter
[(&(objectclass=inetorgperson)(cn=amy))], scope [2]
no cached answer
reusing 'LDAP Realm' application connection.
Search start: 1100719467, end: 1100719467
converted '(&(objectclass=inetorgperson)(cn=amy))' to DN
'cn=amy,ou=users,o=itso,c=us' for realm 'LDAP Realm'
adding DN (cn=amy,ou=users,o=itso,c=us) to cache
LDAP_cache_find_ele(): entered
looking for base [o=itso,c=us], filter
[(&(objectclass=inetorgperson)(cn=amy))], scope [2]
LDAP_perform_search(): returning 0
LDAP_user2DN(): returning 0
using DN (cn=amy,ou=users,o=itso,c=us)
calling LDAP_obtain_connection
: LDAP_open_connection(): using LDAP V3 API, cp->Version (3)
: connecting to [9.42.171.77, 389]
: cp->Version (3); cp->Transport (TCP)
: LDAP_init(9.42.171.77, 389)
: connected
: setting deferrals
: setting timeout

 Chapter 7. Securing a Web application 151

: not an application connection
: opened new user connection for 'LDAP Realm'; expiration:
1100720067
calling LDAP_simple_bind_s() with DN (cn=amy,ou=users,o=itso,c=us)
successful authentication
updating the password cache
LDAP_cache_find_ele(): entered
looking for base [o=itso,c=us], filter
[(&(objectclass=inetorgperson)(cn=amy))], scope [2]
cache: [o=itso,c=us], [(&(objectclass=inetorgperson)(cn=amy))], [2]
setting correct password for 'cn=amy,ou=users,o=itso,c=us' cache
LDAP_authenticate_user_using_basic(): returning 0
LDAP_authenticate_user(): returning 0
LDAP_release_session()

7.5.2 Configuring SSL certificate-based client authentication for the
IBM HTTP Server

The Web client can also provide a digital certificate to provide an identity during
an SSL initialization.

This section explains how to use client-side certificates with your Web server and
WebSphere Application Server. It also shows how to configure your servers to
support client-side certificates and use them as a base for user authentication.

Creating a personal certificate
Typically, the creation of a client-side certificate involves a Certificate Authority.
However, for purpose of this section, we create a self-signed personal certificate
that we import into the key store databases of the Web server and WebSphere.

To request and install a personal client-side certificate on Windows:

1. Use the iKeyman tool to create a new key store and a self-signed personal
certificate.

The PKCS12 format: When creating a new key store, use PKCS12
database format.

152 WebSphere Application Server V6.1 Security Handbook

2. In the Create New Self-Signed Certificate window, enter the values shown in
Figure 7-16. Then click OK.

Figure 7-16 Creating a new self-signed certificate to use with a Web browser

3. After the certificate is successfully created, extract it to a .arm file and then
import it to Web server’s CMS type key datastore.

For more details about creating self-signed certificates, see WebSphere Security
Fundamentals, REDP-3944.

Importing the certificate into your Web browser
Now, you must import the certificate into your Web browser. In our case, we use
Windows Internet Explorer. The procedure is similar for other Web browsers.

1. From the Internet Explorer menu bar, select Tools → Internet Options →
Content → Certificates.

2. From the Intended purpose list, select Client Authentication.

3. Click the Personal tab and then click Import.

4. In the Certificate Import Wizard, click Next.

5. Browse for the p12 file, the PKCS12 key datastore that was created for this
purpose. Click Next.

 Chapter 7. Securing a Web application 153

6. Provide the password to open the p12 file. Click Next.

7. Select the Enable strong private key protection check box. A prompt
pop-up window opens every time the certificate is accessed.

8. Click Next.

9. Click Finish.

10.In the Creating a new private exchange key! window, set the security level to
medium and click OK.

11.On the Personal tab, on which you see the certificate that was just imported,
select the certificate and click the Advanced... button.

12.Under the Advanced Options, select the Client Authentication check box.

Modifying the Web server to support client certificates
You must ensure that the selected Web server is configured to request client-side
certificates. Use IBM HTTP Server to configure SSL for the Web Server, to force
the clients to send their certificates.

1. Enable and configure SSL to use client-side certificates as the Web server
requires. Follow the steps in 7.2.1, “Securing the transport channel between
the Web browser and Web server” on page 111, to enable SSL for your IBM
HTTP Server if you have not done so yet.

2. Open the httpd.conf file.

3. Within other SSL configuration directives, add the SSLClientAuth directive as
shown in Example 7-21.

Example 7-21 Adding client authorization directive to SSL definition

SSLDisable
Listen 443

<VirtualHost kcgl6kh:443>
SSLEnable
KeyFile "C:/IBM/HTTPServer/conf/keys/IHS6Certificates.kdb"
SSLClientAuth required
</VirtualHost>

This is the most basic SSL setup for certificate client authentication. However,
there are other SSL directives that you can use to set the SSL configuration
more specifically to your requirements. For further explanation, see the IBM
HTTP Server documentation.

4. Save the httpd.conf configuration file and restart IBM HTTP Server.

154 WebSphere Application Server V6.1 Security Handbook

Testing the client-side certificate with IBM HTTP Server
To test client certificate authentication:

1. Open a new Internet Explorer window and enter the following URL:

https://localhost/

2. In the window that opens (Figure 7-17), click OK to allow Internet Explorer to
access your personal certificate. This window opens because the certificate is
protected.

The default IBM HTTP Server opens.

Figure 7-17 Testing client certificate authentication with IBM HTTP Server

3. To see what is happening in IBM HTTP Server, set the log level directive in
httpd.conf configurational file as LogLevel Debug.

After successful client authentication, with logs set to debug, you can get
similar entries in the IBM HTTP Server error.log file, as shown in
Example 7-22 on page 156.

 Chapter 7. Securing a Web application 155

Example 7-22 IBM HTTP Server error.log shows SSL client authentication

[info] [client 9.42.171.157] [9dec10] Session ID:
zAsAAKOjBuboHXV9qLYv7O7Ku+BYWFhY8Ze3RAEAAAA= (new)
[info] Cert Body Len: 664
[info] Serial Number: 44:b7:95:11
[info] Distinguished name CN=John,OU=users,O=ITSO,C=US
[info] Common Name: John
[info] Country: US
[info] Organization: ITSO
[info] Organization Unit: users
[info] Issuer's Distinguished Name: CN=John,OU=users,O=ITSO,C=US
[info] Issuer's Common Name: John
[info] Issuer's Country: US
[info] Issuer's Organization: ITSO
[info] Issuer's Organization Unit: users

7.5.3 Configuring SSL certificate-based client authentication for
WebSphere Application Server

This section explains how to configure client certificate authentication for your
applications. When you use client certificate authentication with your Web
modules, WebSphere security service attempts to map the data from the digital
certificate with the user data of the selected user account repository. The
repository can be one of the following types:

� Local OS registry

� Stand-alone LDAP registry

If you use an LDAP server for the user account repository, WebSphere
provides two ways of matching client certificate information to LDAP: mapping
by exact DN and mapping by filtering certificate attributes. Both options are
described in the sections that follow.

Note: If a Local OS registry is used, the certificate DN is parsed and the
name between the first equal sign (=) and the comma (,) is used as the
mapped name. If the DN does not contain the = sign, the complete name is
used. If there is no comma in the DN, everything after the = sign is used as
the name.

Important: Only Java client certificate authentication is supported with a
local OS user registry. Web client certificate authentication is not
supported.

156 WebSphere Application Server V6.1 Security Handbook

� Federated repositories

If you use federated repositories for the user account repository, WebSphere
provides the capability to match client certificate information to one or more
LDAP registries.

If the certificate successfully maps to a user, the holder of the certificate is
regarded as the user in the registry and is authorized as this user.

Configuring J2EE Web application for client certificate
authentication
By specification in the J2EE application Web module, the authentication method
can be configured to be one of five available types, including unspecified. This is
done in the Web deployment descriptor file.

To configure the ITSObank sample application for client certificate
authentication:

1. Load the itsobank.ear application file into Rational Application Developer.

2. In the J2EE perspective, expand Dynamic Web Projects → itsobank.

3. Double-click the Deployment Descriptor of the itsobankWeb module.

4. On the Web Deployment Descriptor page, select the Pages tab:

a. Scroll down to the Login section.

b. In the Login section (Figure 7-18), select the CLIENT_CERT
authentication method. You do not have to log in and log out of pages
anymore. They can just be deleted.

Figure 7-18 Configuring Web module for client certificate authentication

Important: Client certificate login is not supported in a security realm that
includes the built-in, file-based repository. Because of this, you cannot
choose federated repositories as your user account repository unless the
built-in, file-based repository is removed from the realm.

 Chapter 7. Securing a Web application 157

5. Save the changes. In your application, you only end up changing the Web
module deployment descriptor, which is the Web.xml file. The changes are in
the login-config tag, as shown in Example 7-23.

Example 7-23 Changes in the login-config tag

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>ITSO Bank</realm-name>

</login-config>

6. Export the application EAR file. For testing purposes, we install it on a
WebSphere Application Server.

Configuring WebSphere for the LDAP Certificate Filter option
In this section, the following prerequisites must be met:

� You successfully installed a personal certificate into a client Web browser. For
details, see “Creating a personal certificate” on page 152 and “Importing the
certificate into your Web browser” on page 153.

� The WebSphere Web container is configured to use the SSL configuration
that uses your previously configured key store. For details, see “Creating a
new SSL configuration” on page 119 and “Modifying the Web Container
configuration to support SSL” on page 121.

� If using the federated repositories for your User account repository, the realm
includes at least one LDAP registry and does not include the built-in,
file-based repository.

It is anticipated that the personal certificate subject DN does not necessarily
match, in any way, to your LDAP DN.

In the following sample, you use a self-signed personal certificate as described in
“Creating a personal certificate” on page 152.

The SubjectDN value of the certificate in our case is:

CN = John
OU = users
O = ITSO
C = US

Next, modify the WebSphere LDAP filtering rules to map the certificate subject
DN field to the IBM Tivoli Directory Server LDAP uniqueIdentifier field for a given
user. You are not required to use the uniqueIdentifier field. However, you must
ensure that the data type of the field selected is capable of handling the specific

158 WebSphere Application Server V6.1 Security Handbook

value and that the certificate attribute selected for authentication is unique
between certificates.

Also ensure that WebSphere has the right to search such a field when
performing authentication.

To configure WebSphere Application Server to use the certificate filter as
required:

1. Log in to the WebSphere Administration Console.

2. Select Security → Secure administrative, applications, and
infrastructure.

3. In the User account repository section, select your realm definition from the
list and click Configure.

4. In the Additional Properties section (Figure 7-19), click Advanced LDAP
user registry settings link option.

Figure 7-19 Setting the CERTIFICATE_FILTER client certificate mapping for an LDAP
registry in federated repositories

Note: For this section, we assume that you are using the stand-alone
LDAP registry. However, we used both the stand-alone LDAP registry and
a single LDAP registry in the federated repositories. Both registries work,
and where appropriate the alternate steps are noted.

 Chapter 7. Securing a Web application 159

5. In the Advanced LDAP user registry settings page (Figure 7-20):

a. For Certificate Map Mode, type CERTIFICATE_FILTER.
b. For Certificate Filter, type uid=${SubjectDN}.
c. Click OK.

Figure 7-20 Setting the CERTIFICATE_FILTER client certificate map mode for a
stand-alone LDAP registry

Note: If using federated repositories, in the Related items section, click
Manage repositories. Then click the LDAP registry that you want to
configure. The certificate mapping and filter settings are in the Security
section of the LDAP configuration page (Figure 7-19).

160 WebSphere Application Server V6.1 Security Handbook

6. Save the configuration for WebSphere.

7. Restart the application server for the changes to take effect.

Testing the client-side certificate
Test the client certificate authentication by using the default application that ships
with WebSphere and use the snoop servlet by accessing it with your Web
browser:

1. Make sure that your Web server and the default application are started.

2. Open a new browser window and access the following address from the client
to determine whether your browser is correctly passing a client certificate:

https://<your_webserver_name>/snoop

Figure 7-21 The snoop servlet application prompting for basic authentication login

Important: The default application is BASIC authentication enabled, which
also means that client certificate authentication is not selected (the
property in the Web deployment descriptor). Because of this, when
accessing snoop, it still prompts for BASIC authentication login, as shown
in Figure 7-21.

 Chapter 7. Securing a Web application 161

3. Enter the login information. In our case, we enter the following information:

– For User Name, type john.
– For Password, type test.

4. When the snoop servlet shows various request related information, scroll
down to the HTTPS Information section (Figure 7-22). You can see that our
certificate data shows client certificate chain information. When a client
certificate SSL is not used or if a client fails to pass a certificate, WebSphere
only returns the Cipher suite specification as used in the HTTPS connections.
No client certificate chain is displayed.

Figure 7-22 Response from the snoop servlet showing the client certificate

Now, create a test with your client certificate authentication enabled
ITSObankWeb sample application:

1. Ensure that ITSObank application is installed and started.

2. Open a new browser window and access the following address from the
client:

https://<your_webserver_name>/itsobank/index.html

Because client authentication is enabled, the server requests a client
certificate during SSL handshake and consequently.

162 WebSphere Application Server V6.1 Security Handbook

3. In the window that opens in your browser, when prompted, select a client
certificate, as shown in Figure 7-23. Select the right client certificate. You
might have more than one installed in your browser. Then click OK.

Figure 7-23 The browser prompts to select client certificate

4. Depending on the browser type and settings, if you see another window for
extra confirmation to receive the server SSL certificate, click OK.

If the SSL handshake goes smoothly, WebSphere maps the data from the client
certificate and authenticates the user. If the user defined in your certificate is
authorized to have access to ITSObank application, you see the initial window
similar to the one in Figure 7-24 on page 164.

No login form window is displayed. WebSphere authenticates the user with the
data that is stored in the SSL client certificate. Also, you might still have
remaining login and logout pages in your application. These pages are now
dysfunctional.

Important: The Logout button no longer not functions. To log out, you must
close the browser window. Otherwise, while it stays open, the browser sends
the client certificate automatically when it requires access to the application.

 Chapter 7. Securing a Web application 163

Figure 7-24 Successful client certification login to ITSOBank application

You can follow the operation of the authentication if you have tracing enabled for
security. You must be able to find, in your trace.log file, something similar to the
code in Example 7-24.

Example 7-24 The trace.log file for the federated repositories LDAP registry
authentication test

...
WebConstraint > getConstraints: Entry
 /index.html
 GET
...
WebConstraint 3 webConstraintsTable.length = 3
WebConstraint 3 webConstraintsTable.length = 3
WebConstraint > getRequiredRoles : /index.html GET Entry
WebConstraint 3 Required roles are
WebConstraint 3 User
WebConstraint 3 Manager
WebConstraint 3 .
WebConstraint < getRequiredRoles Exit
WebAuthentica > authenticate Entry

164 WebSphere Application Server V6.1 Security Handbook

WebAuthentica > handleSSO Entry
WebAuthentica < handleSSO: no cookies present in the request. Exit
WebAuthentica > handleCertificates Entry
WebAuthentica 3 Challenge type used is CERT.
00000036 WebAuthentica 3 Map credential for this certificate.
00000036 UserRegistryI > mapCertificate Entry
[
[
 Version: V3
 Subject: CN=John, OU=users, O=ITSO, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

 Key: IBMJCE RSA Public Key:
modulus:
98966527058421077098501498407111074308679862660755587411959053151165089
68201190145559405820101428730334415495592381640547308186423677327644831
44116225187250555795206466929778340899790785112795760951597519247963907
37420062217125085382010987012738935408836882825330277013381463050332575
316231938006583657106291
public exponent:
65537

 Validity: [From: Fri Jul 14 08:58:57 EDT 2006,
 To: Sat Jul 14 08:58:57 EDT 2007]
 Issuer: CN=John, OU=users, O=ITSO, C=US
 SerialNumber: [1152881937]

]
 Algorithm: [MD5withRSA]
 Signature:
0000: 53 b2 4f 24 d7 98 bd 76 02 3a 6a 68 36 5d 97 71
S.O....v..jh6..q
0010: 9d 19 7a a6 e9 02 77 49 03 b4 97 66 cb 7a 26 a8
..z...wI...f.z..
0020: 83 84 65 8a 40 dd 56 ed df 25 24 0f fb 0c 4a e8
..e...V.......J.
0030: 7e 69 8c fa 9d 10 1b 49 83 74 45 f6 e5 ac 65 ae
.i.....I.tE...e.
0040: d8 40 42 40 5a 79 7b 49 71 5b 52 18 dd 07 fd 8c
..B.Zy.Iq.R.....
0050: 0b d0 f1 db 31 01 0f dd 34 8b d0 75 02 a6 12 e8
....1...4..u....
0060: 46 95 8a a6 71 48 8e b1 3f 00 d1 5c 3a e8 46 d7
F...qH........F.

 Chapter 7. Securing a Web application 165

0070: ce 39 59 e3 c2 aa ce f5 b4 55 6d 1c 2a 03 89 27
.9Y......Um.....
]
UserRegistryI < mapCertificate Exit
 john
UserRegistryI > createCredential Entry
 john
UserRegistryI > getRealm Entry
UserRegistryI < getRealm Exit
 defaultWIMFileBasedRealm
RegistryUtil > appendRealm Entry
 user
 cn=john,ou=users,o=itso,c=us
 defaultWIMFileBasedRealm
RegistryUtil > getRealmWithSep Entry
 defaultWIMFileBasedRealm
RegistryUtil < getRealmWithSep Exit
 :defaultWIMFileBasedRealm/
RegistryUtil < appendRealm Exit
 user:defaultWIMFileBasedRealm/cn=john,ou=users,o=itso,c=us
UserRegistryI 3 securityName used in the credential is:
 john
UserRegistryI < createCredential Exit
 com.ibm.ws.security.auth.WSCredentialImpl@df40df4
WebAuthentica 3 Storing certificates in the credential
WebAuthentica < handleCertificates Exit
...
WebConstraint > getConstraints: Entry
 /transfer/accountsview.html
 GET
...
WebConstraint > getRequiredRoles : /transfer/accountsview.html GET
Entry
WebConstraint 3 Required roles are
WebConstraint 3 Manager
WebConstraint 3 .
WebConstraint < getRequiredRoles Exit
WebAuthentica > authenticate Entry
WebAuthentica > handleSSO Entry
WebAuthentica 3 Attempting primary cookie validation for: LtpaToken2
WebAuthentica > getCookieValues Entry
 LtpaToken2
...
WebAuthentica 3 The LTPA token was valid.
...

166 WebSphere Application Server V6.1 Security Handbook

WebCollaborat A SECJ0129E: Authorization failed for john while
invoking GET on default_host:itsobank/transfer/accountsview.html,
Authorization failed, Not granted any of the required roles: Manager
...

To get the traces as shown in Example 7-24, set the trace string shown in
Example 7-25 for the application server by selecting Application Servers →
server1 → Logging and Tracing → Diagnostic Trace → Change Log Detail
Levels.

Example 7-25 Trace string for the application server

com.ibm.ws.security.web.WebAuthenticator=all:
com.ibm.ws.security.web.WebConstraintsTable=all:
com.ibm.ws.security.web.WebAccessContext=all:
com.ibm.ws.security.registry.UserRegistryImpl=all:
com.ibm.ws.security.registry.RegistryUtil=all

First we requested the index.html page for which WebSphere checked the
security roles that are authorized to get the page. Furthermore, it extracted the
user information from the SSL certificate, matched it with the data from the LDAP
realm in the federated repositories, and checked if the user was in the required
security role. Afterward, we also tried to get another resource,
/transfer/accountsview.html, but were unable to achieve the authorization
because the user was not in the required role.

Configuring WebSphere to use the exact DN mapping option
Using the DN from the certificate to look up the user means that the directory
structure where the user is must match the DN exactly. For example, if the user
DN is cn=john,ou=users,o=ITSO,c=US, John must be under the user’s
organizational unit (ou), ITSO, US country (c) in this order.

For this section, WebSphere must already be configured to use an LDAP registry,
either as standalone or in the federated repositories, which contains some
directory structure. Figure 2-2 on page 11 shows the directory structure that we
used.

To configure WebSphere Application Server to use Exact DN mapping:

1. Log in to the WebSphere Administration Console.

2. Select Security → Secure administrative, applications, and
infrastructure.

3. In the User account repository section, select your realm definition from the
list and click Configure.

 Chapter 7. Securing a Web application 167

4. Depending on your User account repository, perform one of the following
actions:

– For a Stand-alone LDAP registry, in the Additional Properties section, click
Advanced LDAP user registry settings.

– For Federated repositories, in the Related items section, click Manage
repositories and then select your LDAP registry.

5. On the Advanced LDAP user registry settings page (Figure 7-25), set the
Certificate Map Mode as EXACT_DN.

Figure 7-25 The EXACT_DN client certificate map mode for a standalone LDAP registry

For the LDAP repository configuration page in the Federated repositories,
change the Certificate mapping selection to EXACT_DN.

168 WebSphere Application Server V6.1 Security Handbook

6. Make sure that the Certificate Filter field is empty.

7. Click OK.

8. Save the configuration for WebSphere.

9. Restart the application server in order for the changes to take effect.

For testing, use the same steps from in “Testing the client-side certificate” on
page 161 but with the certificate filter option.

You can follow the operation of the authentication if you tracing is enabled for
security. Use the same trace string as shown in Example 7-24 on page 164.

 Chapter 7. Securing a Web application 169

170 WebSphere Application Server V6.1 Security Handbook

Chapter 8. Securing an EJB application

This chapter discusses the security aspects involved within the Enterprise
JavaBeans (EJB) part of the Enterprise applications.

This chapter discusses which processing components are usually involved when
using EJBs that are running in WebSphere Application Server. The EJB
container in WebSphere Application Server that hosts the EJBs. The chapter
also discusses how to secure the transport channels to the EJB container, what
are the authentication and authorization options available, and how to configure
EJB security on the Java 2 Platform, Enterprise Edition (J2EE) level.

EJBs are J2EE components that implement the business logic of an application.
They typically have access to sensitive data, and it is important to understand
how security is applied to these resources.

There are three types of EJBs:

� Session Beans, which represent clients inside the J2EE server. Clients call
session bean methods to access an application.

� Entity Beans, which represent persistent business objects in an application’s
relational database. Typically, each entity bean has an underlying table in the
database, and each instance of the bean corresponds to a row in that table.

8

© Copyright IBM Corp. 2006. All rights reserved. 171

� Message-driven Beans, which allow J2EE applications to process messages
asynchronously. Message-driven bean methods are invoked by the
Application Server run time as part of a message queue processing.

Security can be applied to EJBs in the following ways:

� Access control can be applied to individual session and entity bean methods
so that only callers who are members of particular security roles can call
those methods.

� Session and entity bean methods that require to be aware of the role or
identity of the caller can programmatically call the J2EE application
programing interface (API) methods known as isCallerInRole() and
getCallerPrincipal() to determine a caller’s role and principal, respectively.
When using isCallerInRole(), the security role references are used, and
these are later mapped to security roles.

� You can delegate session, entity, and message-driven bean methods to
execute under the identity of either the caller (default), the EJB server, or a
specific security role. This is referred to as the Delegation Policy or Run-As
Mode Mapping.

In the following sections, each of these methods of applying security to EJBs are
discussed in detail.

Throughout this section, we use a simple EJB example as shown in Figure 8-1
on page 173. It consists of two stateless session EJBs, which are Hello and
SecuredHello. Each has just one simple remote method which returns a hello
message when invoked. Additionally, there is a servlet just to make the invoking
of EJBs easier. We call the servlet from a browser.

Important: Because queued messages generally do not have any
authentication information associated with them, authentication information
is unavailable to message-driven bean methods. As a result, securing
message-driven beans from unauthorized access is really a matter of
securing the message queue.

Note: If WebSphere security is not enabled, or if the EJB is not a protected
resource, isCallerInRole() returns false and getCallerPrincipal() returns
UNKNOWN.

172 WebSphere Application Server V6.1 Security Handbook

Figure 8-1 Sample application used throughout this section

8.1 Programmatic login (server-side) using JAAS

Programmatic login using Java Authentication and Authorization Service (JAAS)
is explained in 9.6.2, “Programmatic login process” on page 235, and in more
detail in 9.6.3, “Client-side programmatic login using JAAS” on page 236.
Server-side login is similar to the client-side login except that the login occurs on
the server side, for example, a servlet or an EJB performs the login.

From the programmer’s point of view, the two types of login are the same, except
that on the server side, you cannot use login methods that require user
interaction.

 Chapter 8. Securing an EJB application 173

8.2 Declarative J2EE security

J2EE security can be applied declaratively or programmatically. WebSphere
provides a security infrastructure for application security which is transparent to
the application developer. This means that the developer is not required to code
for security, because it is all handled at deployment and run time. This is called
declarative security.

8.2.1 Defining J2EE security roles for EJB modules

The method for defining security roles for EJBs and Web components is similar.
To add a role named BeanVisitor to the EJB component:

1. In the J2EE perspective, expand EJB Projects → ItsohelloEJB.

2. Open the Deployment Descriptor of the ItsohelloEJB module.

3. The EJB Deployment Descriptor page opens. Select Assembly tab.

4. In the Security Roles section, click Add to add a new security role.

5. In the Add Security Role window (Figure 8-2), for the Name field, type
BeanVisitor and click Finish.

Figure 8-2 New Security Role dialog box

A new <security-role> tag with your definition is added to the assembly section
of EJB deployment descriptor (Example 8-1).

Example 8-1 Security role definition in EJB deployment descriptor

<assembly-descriptor>
...
<security-role>

174 WebSphere Application Server V6.1 Security Handbook

<description>Authenticated guest for the EJB</description>
<role-name>BeanVisitor</role-name>

</security-role>
...

</assembly-descriptor>

8.2.2 Security role references

Security role references are used to provide a layer of indirection between
security roles named in EJB Java code and security roles that are defined at
application assembly time. This allows security roles names to be modified
without requiring changes to the application code. See Figure 8-3. You can divide
the security role reference usage process into three major parts:

� Use security role reference in the EJB code

When an EJB uses the IsCallerInRole(Java.lang.String roleName) J2EE API
method to determine whether the caller is a member of a particular role,
roleName is a security role reference which is later linked to a defined security
role in the EJB descriptor file, ejb-jar.xml. In Example 8-2, the Java code
shows how you can use a security role referenced.

Example 8-2 Security role reference example

public String isInRole() {
 if (mySessionCtx.isCallerInRole("RoleReference")) {
 return "You are a member of the referenced role";
 } else {
 return "You are NOT a member of the referenced role";
 }
}

� Reference definition

Every security role reference that is coded must be defined in the assembly
descriptor and we use the XML tag <security-role-ref> for this purpose.
See Figure 8-3 on page 177 (step 2).

� Reference link

At the application assembly time, all the defined security role references must
be linked to one of the existing security role definitions. The XML tag
<role-link> specified within <security-role-ref> in ejb-jar.xml deployment
descriptor defines the reference link.

In Example 8-3, the XML code shows how the security role reference
RoleReference can be linked to the security role BeanVisitor.

 Chapter 8. Securing an EJB application 175

Example 8-3 Security role reference in ejb-jar.xml

<enterprise-beans>
<session id="SecuredHello">

...
<security-role-ref>

<description>
The "RoleReference" string is mapped to

BeanVisitor security role</description>
<role-name>RoleReference</role-name>
<role-link>BeanVisitor</role-link>

</security-role-ref>
...

</session></enterprise-beans>

For a security role reference to work as shown in Figure 8-3 on page 177, the
security role to which it is linked must be a security role that is defined in the
deployment descriptor and mapped to one or more users, groups, or special
subjects.

176 WebSphere Application Server V6.1 Security Handbook

Figure 8-3 Security role references

Linking security role references
To define and link the RoleReference security role reference for the BeanVisitor
security role using Rational Application Developer:

1. From the Resource Perspective, navigate to the EJB deployment descriptor
file ejb-jar.xml and open it.

2. Select the References tab.

3. Select the bean that contains the method that calls the isCallerInRole()
method and click Add.

 Chapter 8. Securing an EJB application 177

4. In the Add Reference window (Figure 8-4), select Security Role Reference
and click Next.

Figure 8-4 Adding security role reference

178 WebSphere Application Server V6.1 Security Handbook

5. In the Add Security Role Reference window, fill in the values as shown in
Figure 8-5. The reference’s name is the string that is passed to the
isCallerInRole() method in the Java code.

The desired security role is selected from the Link pull-down menu. Only
security roles which have previously been defined in the EJB module are
shown in this menu.

Figure 8-5 Linking security reference role

You can also optionally enter a Description for this security role reference.

Click Finish to apply the changes and close the window.

6. Save the deployment descriptor.

 Chapter 8. Securing an EJB application 179

Figure 8-6 shows the Reference tab of the EJB deployment descriptor which
shows added security reference role for the SecuredHello bean.

Figure 8-6 Reference tab of EJB deployment descriptor

8.2.3 Configuring method access control

You can secure session and entity bean methods if you prevent access to all
except members of security roles that must access those methods. The
assembly descriptor tag in the application deployment descriptor file ejb-jar.xml
includes the method permissions. Example 8-4 shows the XML elements
allowing members of the BeanVisitor role to call all methods in the SecuredHello
EJB, and members of the Anonymous role to call all methods in the Hello EJB
and Method permissions in the ejb-jar.xml file.

Example 8-4 Role and method permission definitions in the ejb-jar.xml file

<assembly-descriptor>
<security-role>

<description>Authenticated guest for the EJB</description>
<role-name>BeanVisitor</role-name>

</security-role>
<security-role>

<description>Anybody who access the bean</description>
<role-name>Anonymous</role-name>

</security-role>
<method-permission>

<role-name>Anonymous</role-name>
<method>

180 WebSphere Application Server V6.1 Security Handbook

<ejb-name>Hello</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<method-permission>

<unchecked />
<method>

<ejb-name>SecuredHello</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getMessageUnprotected</method-name>
<method-params>
</method-params>

</method>
</method-permission>
<method-permission>

<role-name>BeanVisitor</role-name>
<method>

<ejb-name>SecuredHello</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

</assembly-descriptor>

Assigning method permissions
To set up these method permissions by using Rational Application Developer:

1. Load the EJB project into the Rational Application Developer. In this example
it is as follows:

ItsohelloEAR.ear

2. Within the J2EE perspective, expand EJB Projects → ItsohelloEJB.

3. Open the Deployment Descriptor for the itshelloEJB project. The EJB
Deployment descriptor page opens. Switch to the Assembly tab.

4. In the Method Permissions section, click Add.

 Chapter 8. Securing an EJB application 181

5. In the Method Permission window (Figure 8-7), select either one of the
existing security roles or the Unchecked option. See “Assigning roles to
unprotected methods” on page 184 for more details about the Unchecked
option.

Choose the Security Roles option and select BeanVisitor role. Click Next to
see the list of EJBs.

Figure 8-7 Adding method permission for defined security role

182 WebSphere Application Server V6.1 Security Handbook

6. In the Enterprise Bean Selection window (Figure 8-8), select the EJBs on
which you want to configure method permissions for the selected security
role. Choose SecuredHello and click Next to see the list of methods.

Figure 8-8 Selecting EJBs for configuring method permissions

 Chapter 8. Securing an EJB application 183

7. In the Method Elements window (Figure 8-9), select one or more methods
that you want to be accessible by a selected security role. You can use the
wildcards (*) if desired to include all methods of a given type or all methods for
a given EJB.

In this example, we selected all methods. Thus, the BeanVisitor security role
gets access to all SecuredHello EJB methods. For now, only the users which
are mapped to the BeanVisitor security role have access to this EJB. Click
Finish

Figure 8-9 Selecting EJB methods

Assigning roles to unprotected methods
During application installation, the WebSphere Administrative Console allows
you to specify what method permissions are applied to session and entity EJB
methods that are not explicitly secured in the deployment descriptor. If all
session and entity EJB methods are protected, this step is omitted.

184 WebSphere Application Server V6.1 Security Handbook

One of the following permissions is applied to these unprotected methods
(Figure 8-10):

Uncheck This is the default, and indicates that unprotected methods must
be left unprotected. Anyone can call these methods.

Exclude Unprotected methods are unavailable to all callers.

Role Unprotected methods are available only to members of a specific
security role.

Figure 8-10 Assigning roles to unprotected methods

Note: When assigning roles to EJB methods, methods can be specified using
several types of wildcards to select all home methods, local methods, local
home methods, remote methods, and so on. When installing an EJB
containing methods that are protected using one method-type wildcard, for
example, the home methods wildcard, but whose other methods are
unprotected, the WebSphere Application Server does not prompt for how
unprotected methods are to be secured. Instead, they are deselected.

 Chapter 8. Securing an EJB application 185

8.2.4 Enterprise JavaBeans Run-As delegation policy

When an EJB calls a method in another EJB, the identity of the caller of the first
EJB is, by default, propagated to the next. In this way, all EJB methods in the
calling chain would see the same principal if they were to call the
getCallerPrincipal() method. Occasionally, however, it is desirable for one EJB to
call another with a previously defined identity, for instance one that is a member
of a specific role.

For example, consider the message-driven bean’s onMessage() method which
calls a protected method in an entity bean. Because message-driven beans’
onMessage() methods are executed with no caller identity, this method cannot
call the protected entity bean method. By delegating the onMessage() method to
run as a specific role, and adding this role to the protected entity bean method’s
access permissions, the onMessage() method can successfully access the
protected method.

8.2.5 Bean-level delegation

The EJB 2.x specification defines delegation at the EJB level using the <run-as>
element which allows the application assembler to delegate all methods of a
given bean to run as a member of a specific security role. At deployment time, a
real user that is a member of the specified role must be mapped to this role,
through a process which is called run-as role mapping. All calls to other EJBs
made by the delegated bean are called using the identity of this mapped user.

Figure 8-11 on page 187 shows EJB delegation in contrast to the default Run-As
Caller mode. In the top scenario, the identity of the caller, caller01, is propagated
from EJB1 to EJB2. In the bottom scenario, EJB1 is delegated to run as role01.
During run-as mapping, another user, caller02, is mapped to role01, and
therefore it is effectively caller02 that calls EJB2. If, in the bottom scenario, EJB2
were to call EJB3, EJB3 would also appear to have been called by caller02.

Note: The default behavior on EJB method protection is for methods that are
not explicitly unprotected to be unchecked.

Important: Although this feature is commonly referred to as the Run-as Mode,
it does not have any noticeable effect on the bean to which it is applied. A
bean configured to run as a member of a given security role actually executes
using the identity of the caller. It is only when calling methods in other EJBs
that the run-as mode applies. These methods are called using the delegated
identity.

186 WebSphere Application Server V6.1 Security Handbook

Figure 8-11 Run as Caller versus Run as Role

Example 8-5 shows the XML code in the ejb-jar.xml deployment descriptor file for
the default mode (run as caller).

Example 8-5 ejb-jar.xml code for non-delegated EJB

<security-identity>
 <description>This bean requires no delegation</description>
 <use-caller-identity />
</security-identity

Example 8-6 shows the XML code in the ejb-jar.xml file for a bean which has
been delegated to run as a member of the RunAsRole security role.

Example 8-6 ejb-jar.xml code for EJB delegated to run as role mdbuser

<security-identity>
 <description>This EJB calls protected methods in other
EJBs.</description>
 <run-as>

EJB1

identity=caller01

EJB2

identity=caller01
caller01

Run As Role = Role01

EJB1

identity=caller01

EJB2

identity=caller02
caller01

Role01username = caller02
password = xxxxxxx

Run As
Mapping

Run As Caller (Default)

Run As Role

 Chapter 8. Securing an EJB application 187

 <description>Methods of this EJB run as the RunAsRole
role</description>
 <role-name>RunAsRole</role-name>
 </run-as>
</security-identity>

Assigning bean-level run-as delegation policies
To assign a bean-level run-as role to an EJB using Rational Application
Developer:

1. Within the J2EE perspective, expand EJB Projects → ItsohelloEJB.

2. Open the Deployment Descriptor for the ItsohelloEJB module. The EJB
Deployment descriptor page opens. Switch to the Access tab.

3. In the Security Identity (Bean Level) section, click Add.

4. In the Security Identity window (Figure 8-12 on page 189), select the desired
run-as mode, you can select either of the following two:

– Use identity of caller

If you select this option, the called EJB which you are calling from your
bean is called under your bean’s identity. This applies to all the methods in
the called bean.

– Use identity assigned to specific role (below)

If you select this option, the called EJB which you are calling from your
bean is called under the specified role identity. This applies to all the
methods in the called bean.

Select the desired role from the options list. This list contains all security
roles which have been defined in the EJB module.

For example, select the specific role Anonymous. Enter an optional Role
description and an optional Security identity description.

Click Next.

188 WebSphere Application Server V6.1 Security Handbook

Figure 8-12 Assigning bean level run as delegation policy

5. Select one or more beans that must use this delegation policy. In this
example, select SecuredHello.

6. Click Finish. Save and close the deployment descriptor.

 Chapter 8. Securing an EJB application 189

8.2.6 Method-level delegation

In addition to the bean-level delegation policy defined by the EJB 2.x
specification and described in the previous section, WebSphere Application
Server provides additional capabilities to perform method-level EJB delegation
as shown in Figure 8-13. This works in the same way as bean-level delegation,
but can be applied to specific EJB methods, rather than to the bean as a whole.
This finer degree of delegation granularity allows application assemblers to
delegate different methods of the same EJB to different security roles.

Figure 8-13 Method level Run-As delegation compared to Bean level Run-As delegation

190 WebSphere Application Server V6.1 Security Handbook

In addition, method-level delegation provides an additional delegation option,
which is called run as server. This option indicates that the method must make
calls to other EJBs using the identity of the Application Server itself.

Method-level delegation policies are defined in the ibm-ejb-jar-ext.xmi file.
Example 8-7 shows the XML code for a getMessage() method which is
delegated to run as the Application Server.

Example 8-7 Method-level run as server

<runAsSettings description="">
 <methodElements name="getMessage" parms="" type="Remote">
 <enterpriseBean xmi:type="ejb:Session"
href="META-INF/ejb-jar.xml#Hello"/>
 </methodElements>
 <runAsMode xmi:type="ejbext:UseSystemIdentity"/>
</runAsSettings>

Example 8-8 shows the XML code for a getMessage() method which is
delegated to run as a member of the RunAsRole security role.

Example 8-8 Method-level run as role

<runAsSettings>
 <methodElements name="getMessage" parms="" type="Remote">
 <enterpriseBean xmi:type="ejb:Session"
href="META-INF/ejb-jar.xml#Hello"/>
 </methodElements>
 <runAsMode>
 <runAsSpecifiedIdentity roleName="RunAsRole" description=""/>
 </runAsMode>
</runAsSettings>

Assigning method-level run-as delegation policies
To assign a method-level run-as role to an EJB using Rational Application
Developer:

1. Within the J2EE perspective, expand EJB Projects → ItsohelloEJB.

2. Open the Deployment Descriptor of the ItsohelloEJB module. The EJB
Deployment descriptor page opens. Switch to the Access tab.

3. Scroll down to Security Identity (Method Level) section and click Add.

4. In the Add Security Identity window (Figure 8-14), select one of the following
run-as modes and click Next:

 Chapter 8. Securing an EJB application 191

– Use identity of caller

If you select this option, the called EJB methods which you are calling from
your bean is called under your bean’s identity. This applies just to the
selected methods.

– Use identity of EJB server

If you select this option, the called EJB methods which you are calling
from your bean is called under EJB server identity. This applies just to the
selected methods.

– Use identity assigned to specific role (below)

If you select this option, the called EJB methods that you call from your
bean are called under a specified role identity. This applies to the selected
methods. Select the desired role from the option list. The specify role list
contains all security roles that were defined in the EJB module. If you
choose this option, enter an optional Role description and an optional
Security identity description.

Figure 8-14 Method-level run-as role policy in Rational Application Developer

192 WebSphere Application Server V6.1 Security Handbook

5. In the Enterprise Bean Selection dialog, select the EJBs that contain the
methods to which you want to assign this delegation policy. Then click Next.

6. In the Method Elements window (Figure 8-15), select the EJB methods to
which this delegation policy must be assigned. Click Finish.

Figure 8-15 Method Elements selection window

7. Save the deployment descriptor changes.

8.2.7 Run-as mapping

Run-as mapping refers to the process of assigning a real user from the user
registry that is a member of the specified security role to the bean-level or
method-level delegation policies. Run-as mapping is different from, but easily
confused with, security role mapping.

 Chapter 8. Securing an EJB application 193

Table 8-1 compares run-as mapping and security role mapping.

Table 8-1 Run-as mapping versus security role mapping

When installing an application that defines either a bean-level or method-level
run-as role delegation policy, one of the steps is to map the run-as roles to a real
user, as shown in Figure 8-16 on page 195:

1. Select the Role that you want to map.

2. Enter a valid user name and password of a user in the registry that is a
member of the specified security role.

3. Click Apply to authenticate the user and associate that identity with the
run-as role policy.

Run-as mapping Security role mapping

Run-as mapping is used to determine the
principal from the user registry that is used
as the caller identity when a delegated
EJB makes calls.

Security role mapping is used to
determine the users and groups from the
user registry that are considered members
of the security role.

Run-as mapping associates a single user
that is a member of the specified security
role with a delegation policy.

Security role mapping associates one or
more users or groups with a security role.

A single user name and password for the
mapped identity is stored in the
deployment descriptor.

One or more user names and/or group
names are stored in the deployment
descriptor.

Authentication done at installation time. Authentication done at run time.

Run-as mapping is performed using the
WebSphere Administrative Console only.

Security role mapping is performed using
the Application Server Toolkit, the
WebSphere Studio, or the WebSphere
Administrative Console.

Cannot be modified after application
installation.

Can be modified after application
installation using the WebSphere
Administrative Console.

Important: The Map RunAs roles to users option opens in the WebSphere
Administrative Console interface only when your application uses run-as
delegation. During the enterprise application installation, WebSphere detects
whether this configuration exists at all and changes the user interface
accordingly. The same is true for the Correct use of system identity option and
applications that delegate the EJB server identity for the method security role.

194 WebSphere Application Server V6.1 Security Handbook

4. After all run-as roles are mapped to real users, click Next to continue the
installation.

Figure 8-16 Run-as role mapping in WebSphere Application Server Version 6

 Chapter 8. Securing an EJB application 195

If one or more method-level delegation policies specify the run-as system, one of
the installation steps is going to be to verify this policy. The dialog opens as
shown in Figure 8-16, and for each method that specifies the run-as system, the
application deployer can do one of the following:

� Do nothing, and allow the method to make calls using the system identity.
� Assign the method a run-as role, and map the role to a user from the registry.

Figure 8-17 Verifying the run-as system

196 WebSphere Application Server V6.1 Security Handbook

To override the run-as system mapping and assign a run-as role as shown in
Figure 8-17 on page 196:

1. Select the methods to which you want to assign the run-as role.

2. Select the desired Role from the drop-down list of defined security roles. See
Figure 8-17.

3. Enter the valid user name and password of a user in the registry that is a
member of the specified security role.

4. Click Apply to authenticate the user and associate that identity with the
run-as role policy.

5. Click Next to continue with the installation.

8.3 Programmatic J2EE security

Security-aware applications can use programmatic security when declarative
security alone is not sufficient to express the security model of the application.

Programmatic security becomes useful when the Application Server provides a
security infrastructure that cannot supply all the functionality required for the
application. Using the Java APIs for security, developers can implement security
for the whole application without using the Application Server security functions
at all. Programmatic security also gives developers the option to implement
dynamic security rules for your applications.

Having said that, when developing servlets and EJBs, there are a few security
calls available if the developer wants greater control of what the end user is
allowed to do than is provided by the infrastructure.

EJB security methods
The EJB 2.x specification defines two methods that allow programmatic access
to the caller’s security context, javax.ejb.EJBContext.

� java.security.Principal getCallerPrincipal()

The getCallerPrincipal method allows the developer to get the name of the
current caller. To do this, call getName() on the java.security.Principal object
returned. See Example 8-9.

Example 8-9 The getCallerPrincipal method

EJBContext ejbContext;
...
// get the caller principal

 Chapter 8. Securing an EJB application 197

java.security.Principal callerPrincipal =
ejbContext.getCallerPrincipal();
// get the caller’s name
String callerName = callerPrincipal.getName();

The Principal.getName() method returns the login name of the user.

� Boolean isCallerInRole(String roleName)

The isCallerInRole method allows the developer to make additional checks
on the authorization rights of a user which are not possible, or more difficult,
to perform through the deployment descriptor of the EJB. See Example 8-10.

Example 8-10 The isCallerInRole method

EJBContext ejbContext;
...
if (ejbContext.isCallerInRole(““))
// Perform some function
else
// Throw a security exception

The isCallerInRole(String role) method returns true if the user is in the
specified role, and false if it is not. The role name specified in the method is
really a security role reference, not a role. If the security role reference is not
defined for the EJB, the method returns null.

Sample usage of security methods
Example 8-11 is a code snippet from the SecuredHelloBean as part of the
ItsohelloEAR application. For more details, check the original sample application.

Example 8-11 Sample code using the EJB security methods

public String getMessageUnprotected() {
return "[Not protected] Hello to you " +

mySessionCtx.getCallerPrincipal();
}

public String isInRole() {
if (mySessionCtx.isCallerInRole("RoleReference")) {

return "You are a member of the referenced role";
} else {

return "You are NOT a member of the referenced role";
}

}

198 WebSphere Application Server V6.1 Security Handbook

With the security methods, the EJB does not let the user in a restricted role
submit a transfer greater than the maximum transferable amount.

8.4 EJB container access security

The previous sections focused on EJB application security from the J2EE layer
perspective. There are some more authentication and transport protection
security mechanisms implemented by WebSphere working on the lower,
Common Object Request Broker Architecture (CORBA), messaging layer.

8.4.1 CSIV2 and Secure Authentication Service

When a client component uses services from the WebSphere EJB container, all
the communication go through the Remote Method Invocation over Internet
InterORB Protocol (RMI/IIOP). The client component can either be a stand-alone
Java client, a J2EE client container application, or another EJB container. See
Figure 8-18 on page 200.

WebSphere provides a security service which is compliant with Common
Security Interoperability Version 2, the CSIV2 protocol. There is another service
called IBM Security Authentication Service which has been used in previous
versions before CSIV2. Secure Authentication Service (IBM) is deprecated and it
is only kept to provide interoperability with WebSphere versions later than V5.0
and is not displayed in the administration console unless a V6.0 or later server is
federated into the cell.

In short, providing Common Security Interoperability, WebSphere basically
provides two important services:

� Authentication capabilities on the CORBA level.

� Transport channel encryption. WebSphere provides IIOP transport channel
protection using the Secure Sockets Layer (SSL) protocol.

For more details about CSIV2, see “CSIV2 Security Attribute Service” on
page 217.

 Chapter 8. Securing an EJB application 199

Figure 8-18 shows a simple scenario. A J2EE client application has to invoke
some methods in an EJB which runs in Server A. Furthermore, Server A must
run some methods in EJBs that run in Server B.

Figure 8-18 CSIV2 configurational options

8.4.2 Container authentication

When invoking EJB methods, the WebSphere Application Server environment
determines the type of authentication required between the client and the server
for each request. The following options are available:

� Basic authentication

In this case, plain user ID and password information is passed from client to
server through the CORBA message layer.

For more details, see the Message Layer authentication document in the
WebSphere Application Server 6.1 Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

200 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� Client certificate authentication

The client certificate authentication does not occur at the message layer as in
the previous case, but occurs during the connection handshake using SSL
certificates.

For more details, see Scenario 3: Client certificate authentication and RunAs
system document in the WebSphere Application Server 6.1 Information
Center on the Web at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Because basic authentication and client certificate authentication occur at a
different level, they can be set independently. For example, you can have both
authentications to be required or just basic authentication set and the other type
supported.

Configuring container authentication
The configuration of EJB container authentication can be done through the
WebSphere Administrative Console:

1. On the Secure administration, applications, and infrastructure page, in the
Authentication section, click RMI/IIOP Security to display all the available
options (Figure 8-19).

2. Set container authentication for either inbound or outbound requests
independently. Inbound means all the incoming communication that comes
from a client to the server, outbound means all the outgoing communication
that goes from the server toward other servers. Click either the CSIV2
inbound authentication or CSIV2 outbound authentication page link.

Figure 8-19 The Authentication section of the security administration page

 Chapter 8. Securing an EJB application 201

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

3. On the Configuration page (Figure 8-20 on page 203):

a. Set Basic Authentication to one of the following options:

Never Indicates that the server is not configured to accept
message layer authentication from any client.

Supported Indicates that this server accepts basic
authentication. However, other methods of
authentication can occur (if configured) and
anonymous requests are accepted.

Required Indicates that only clients configured to
authenticate to this server through the message
layer can invoke requests on the server.

b. Set Client certificate authentication to one of the following options:

Never Indicates that the server is not configured to accept
client certificate authentication from any client.

Supported Indicates that the server accepts SSL client
certificate authentication. However, other methods
of authentication can occur (if configured) and
anonymous requests are accepted.

Required Indicate that only clients that are configured to
authenticate to the server through SSL client
certificates can invoke requests on the server.

c. To enable client certificate authentication for the IIOP transport layer, set
the SSL to be required or supported (required is the more secure option).
The prerequisite on the client side is that the client must have set a key
database with a client certificate. As always, the certificate can be signed
by a known Certificate Authority. Using an imported self-signed public key
from the client is also an option, although we do not recommend it.

202 WebSphere Application Server V6.1 Security Handbook

Figure 8-20 Setting CSIV2 outbound authentication properties

 Chapter 8. Securing an EJB application 203

8.4.3 RMI/IIOP transport channel protection

When accessing EJB services, the client and server communicate through the
Object Request Broker (ORB) service, using the IIOP protocol. Prior to any
request flowing, a connection is established between the client ORB and the
server ORB over the Transmission Control Protocol (TCP) transport. WebSphere
provides the option of encrypting the connection using SSL.

According to the connection encryption policies of both the client and the server,
they negotiate the level of security for the connection used for the IIOP
communication.

Configuring IIOP transport channel protection
The configuration of IIOP transport channel protection can be done using the
WebSphere Administrative Console:

1. In the Secure administration, applications, and infrastructure page, go to the
Authentication section.

2. Select RMI/IIOP Security to display all the available options as shown in
Figure 8-19 on page 201.

3. Set transport channel protection for either inbound or outbound transport
independently. Select the CSIV2 inbound transport or CSIV2 outbound
transport page link.

4. On the page that opens (Figure 8-21 on page 205):

a. Set Transport to one the following options:

Transmission Control Protocol/Internet Protocol (TCP/IP)
Server only supports TCP/IP and cannot accept
SSL connections.

SSL supported Server can support either TCP/IP or SSL
connections.

SSL required Any client communicating with this server must use
SSL.

b. Configure SSL Settings by selecting either Centrally managed or Use
specific SSL alias. If you select Use specific SSL alias, select one of the

Note: Configure both the inbound and outbound CSIV2 transports with
SSL required in a secured environment. By default, WebSphere
negotiates a mutually acceptable level of transport security. However, if
a client requests a non-SSL connect, unless SSL required is
configured, a non-secure connection is established.

204 WebSphere Application Server V6.1 Security Handbook

defined SSL configurations from the drop-down list. For more information
about SSL configuration, see , “WebSphere Application Server uses the
Secure Sockets Layer (SSL) protocol to provide Transport Layer Security
(TLS), which allows for secure communication between a client and
application server. The SSL configuration options in WebSphere offer full
end-to-end management, including certificate management, individual
endpoint SSL mappings, and scoped association of SSL configurations
and key stores.” on page 69.

Figure 8-21 Setting CSIV2 Inbound transport properties

 Chapter 8. Securing an EJB application 205

By default, the ORB transport listener ports are dynamically allocated during run
time. You might consider fixing the listener ports used for CSIV2. Because each
Application Server runs its own ORB, they all have their own set of listening
ports. The listener ports are managed by changing the Application Server's
endpoints. In this case, specify the following endpoints to fix the port numbers:

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS
ORB_LISTENER_PORT

Check the WebSphere Application Server V6.1 Information Center for further
details about how to configure the endpoints.

206 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Chapter 9. Client security

This chapter discusses client security in WebSphere Application Server V6.1.

9

© Copyright IBM Corp. 2006. All rights reserved. 207

9.1 Application clients in WebSphere

A client is a generic term that refers to the process typically responsible for
requesting a service. The service is provided by the server. This chapter
discusses Java-based specific application clients that access a remote
enterprise bean server.

WebSphere Application Server V6.1 supports several important models of Java
application clients, such as the following examples:

� Java 2 Platform, Enterprise Edition (J2EE) application client

This client uses the Java Remote Method Invocation over Internet InterORB
Protocol (RMI/IIOP) to access enterprise bean references and to use the
Common Object Request Broker Architecture (CORBA) service provided by
the J2EE platform implementation. This client also provides initialization of
the runtime environment for the client application. The J2EE application client
run time also provides support for security authentication to the enterprise
beans and local resources.

� Thin application client

This client is a lightweight, downloadable Java application run time that is
capable of interacting with enterprise beans. WebSphere Application Server
V6.1 supports the pluggable client. The thin application client uses the
RMI/IIOP to access enterprise bean references and CORBA references and
allows the client application to use any supported CORBA services.
WebSphere Application Server V6.1 supports the thin client in a pluggable
client.

� Pluggable application client

This client is a kind of thin application client that uses a Sun Java™ Runtime
Environment (JRE™) instead of the JRE that IBM provides.

� Applet application client

This client is the applet that a client provides a browser-based Java run time
access to the enterprise bean directly. The client accesses the enterprise
beans by considering the enterprise bean object reference as CORBA object
references.

� ActiveX® application client

� This client refers to when WebSphere Application Server V6.1 provides an
Active X to Enterprise JavaBeans (EJB) bridge that enables Active X
programs to access enterprise beans through a set of Active X automation
objects. The bridge accomplishes this access by loading the Java virtual
machine (JVM™) into an Active X automation container such as Visual
Basic®, VBScript, and Active Server Pages. The Active X to EJB bridge uses

208 WebSphere Application Server V6.1 Security Handbook

the Java Native Interface (JNI™) architecture to programmatically access the
JVM.

You can find further extensive information regarding the application clients and
their capabilities in the WebSphere Application Server Information Center. This
chapter shows how the J2EE and thin clients access enterprise beans
resources.

9.1.1 Developing and securing the J2EE application client

To develop and secure the J2EE application client:

1. Create an instance of the object that you want to access from the remote
server.

2. Specify the user ID and password on the connection method when you create
a connection to the server. You must enable security.

3. Assemble the application client enterprise archive (EAR) file by using an
assembly tool, such as the Application Server Toolkit, Rational Application
Developer. Assemble the application client .ear file on any development
machine where the assembly tool is installed.

4. Add the resources to the client deployment descriptor by completing the
binding Java Naming and Directory Interface (JNDI) name for the resources
object on the server.

5. Distribute the configured .ear file to the client machines.

6. Deploy the application client.

7. Configure the application client resources.

8. Run the application client.

The J2EE application client supports the client container that runs stand-alone
Java applications and provides J2EE services to the applications. J2EE services
include naming, security, and resource connection.

To launch J2EE application clients, use the launchClient tool. See the
WebSphere Application Server V6.1 Reference Document for more information.

9.1.2 Deploying an application client by using the Java Web Start tool

Java Web Start is an application deployment technology that includes the
portability of the applets, the maintainability of servlets, and JavaServer Pages
(JSP) file technology, Extensible Markup Language (XML), and Hypertext
Markup Language (HTML). The Java Web Start client is used with a platform that
supports a Web browser.

 Chapter 9. Client security 209

Java Web Start is built from the J2EE infrastructure. The technology inherits the
complete security architecture of the J2EE platform. Java Web Start uses the
Java Network Launching Protocols (JNLP) and API. The JNLP client reads and
parses a JNLP descriptor file (JNLP file). Based on the JNLP descriptor, it
downloads appropriate pieces of a client application and any of its dependencies.
After downloading and caching the client application, Java Web Start launches it
natively on the client machine.

Java Web Start on the Java 2 Standard Edition (J2SE™) developer kits that IBM
provides is packaged in Application Client for WebSphere Application Server
V6.1.

To deploy an application client by using the Java Web Start tool:

1. In an assembly tool, import your Web archive (WAR) file or an EAR file that
contains one or more Web modules:

a. In the Project Explorer folder, locate your application.

b. Right-click the deployment descriptor and select Open with →
Deployment Descriptor Editor.

c. In the Deployment Descriptor window, to see online information about the
editor, press F1 and click the editor name. If you select a WAR file, a Web
deployment descriptor editor opens. If you select an EAR file, an
application deployment descriptor editor opens.

2. Create security roles either at the application level or at the Web module level.
If a security role is created at the Web Module level, the role also is displayed
in the application level. If a security role is created at the application level, the
role is not displayed in all of the Web modules. You can copy and paste a
security role at the application level to one or more Web module security
roles.

– To create a role at the Web-module level:

i. In a Web deployment descriptor editor, click the Security tab.

ii. Under Security Roles, click Add.

iii. Enter the Security role name, describe the security role, and click
Finish.

– To create a role at the application level:

i. In an application deployment descriptor editor, click the Security tab.

ii. Under the list of security roles, click Add.

iii. In the Add Security Role wizard, name and describe the security role
and then click Finish.

210 WebSphere Application Server V6.1 Security Handbook

3. Create security constraints, which are a mapping of one or more Web
resources to a set of roles.

On the Security tab of a Web deployment descriptor editor, click Security
Constraints. On the Security Constraints page, you can perform the
following tasks:

– Add or remove security constraints for specific security roles.
– Add or remove Web resources and their HTTP methods.
– Define which security roles are authorized to access the Web resources.
– On the user data, specify one of the following types of constraints:

None The application does not require transport
guarantees.

Integral Data cannot be changed in transit between the
client and the server.

Confidential Data content cannot be observed while it is in
transit.

Integral and Confidential constraints usually require the use of Secure
Sockets Layer (SSL).

a. Under Security Constraints, click Add.

b. Under Constraints name, specify a display name for the security constraint
and click Next.

c. Type a name and description for the Web resource collection.

d. Select one or more of the following HTTP methods:

– GET
– PUT
– HEAD
– TRACE
– POST
– DELETE
– OPTIONS

e. Next to the Pattern field, click Add.

f. Specify a URL pattern. The security run time uses the exact match first to
map the incoming URL with URL patterns. If the exact match is not
present, the security run time uses the longest match. Wild card (*.,*.jsp)
URL pattern matching is used last.

g. Click Finish.

h. Repeat steps a through g to create multiple security constraints.

 Chapter 9. Client security 211

4. Map security-role-ref and role-name elements to the role-link element. During
the development of a Web application, you can create the security-role-ref
element. The security-role-ref element contains only the role-name field. The
role-name field contains the name of the role that is referenced in the servlet
of the JSP code to determine if the caller is in a specified role.

Because security roles are created during the assembly stage, the developer
uses a logical role name in the role-name field and provides enough
description in the Description field for the assembler to map the actual role.
The security-role-ref element is at the servlet level. A servlet or JSP file can
have zero or more security-role-ref elements.

a. Click the References tab of a Web deployment descriptor editor. On the
References tab, you can add or remove the name of an enterprise bean
reference to the deployment descriptor:

• EJB reference
• Service reference
• Resource reference
• Message destination reference
• Security role reference
• Resource environment reference

b. Under the list of Enterprise JavaBeans references, click Add.

c. In the Name and Ref Type fields, specify a name and a type for the
reference.

d. Select Enterprise Beans in the workplace or Enterprise Beans not in
the workPlace.

e. Optional: If you select Enterprise Beans not in the workplace, in the Type
field, select the type of the enterprise bean. You can specify either an
entity bean or a session bean.

f. Optional: Click Browse to specify values for the local home and local
interface in the Local home and Local fields. Then click Next.

g. Map every role name that is used during development to the role by using
the previous steps. Every role name that is used during development
maps to the actual role.

5. Specify the RunAs identity for Servlets and JSP files. The RunAs identity of a
servlet is used to invoke enterprise bean from within the servlet code. When
enterprise beans are invoked, the RunAs identity is passed to the enterprise
bean for performing an authorization check on the enterprise beans. If the
RunAs identity is not specified, the client identity is propagated to the
enterprise beans. The RunAs identity is assigned at the servlet level.

212 WebSphere Application Server V6.1 Security Handbook

a. On the Servlets tab of the Web Deployment descriptor editor, under
Servlets and JSP, click Add.

b. In the Add Servlet of the JSP wizard, specify the servlet or JSP file
settings, including the name, initialization parameters, and URL mappings.
Click Next.

c. Specify the class file destination.

d. Back on the Servlets tab, click RunAs, select the security role, and
describe the role.

e. Specify a RunAs identity for each servlet and JSP file that is used for your
Web application.

6. Configure the login mechanism for the Web module. This configured login
mechanism applies to all the servlets, JSP files, and HTML resources in the
Web module.

a. Click the Pages tab of a Web deployment descriptor editor and click
Login. Select the required authentication method. The following methods
are available:

• Unspecified
• Basic
• Digest
• Form
• Client-Cert

b. Specify a realm name.

c. If you select the Form authentication method, select a login page and an
error page Web address. For example, you might use /login.jsp or
/error.jsp. The specified login and error pages are present in the .war
file.

d. Install the client certificate on a browser or Web client. If the ClientCert is
selected, place the client certificate in the server trust keying file.

7. Close the deployment descriptor editor, and when prompted, click Yes to save
the changes.

9.1.3 Thin application client

The thin application client run time provides the necessary support to the client
application for object resolution, security, reliability, availability, and
serviceability. However, this client does not support a container that provides
easy access to these services. For example, no support exists for nicknames of
enterprise bean or local resource resolution. When resolving to an enterprise
bean (using either JNDI or CosNaming) sources, the client application must
know the location of the name server and fully qualified name used when the

 Chapter 9. Client security 213

reference was bound to the name space. The client does not perform
initialization of any of the services that the client application might require.

The WebSphere thin application client provides the implementation for various
services (Security, Workload Management, CORBA objects, and CORBA-based
services).

9.1.4 Itsohello client example

This chapter uses the Itsohello application as an example. Figure 9-1 shows two
enterprise beans, Hello and SecuredHello, as the core of the Itsohello
application. These enterprise beans are installed in a WebSphere Application
Server. They are accessible from different remote clients, such as the user’s
browser (by using the HelloServlet servlet), four J2EE Java application clients,
and four thin Java application clients.

Figure 9-1 shows an interaction diagram of the Itsohello client applications that
are used for this chapter. Four J2EE application clients and four thin application
clients access secure and unsecure Hello beans in the EJB container.

Figure 9-1 Accessing secure and unsecure Hello beans in the EJB container

214 WebSphere Application Server V6.1 Security Handbook

The components are described as follows:

� An enterprise application ItsohelloEAR.ear is installed in WebSphere
Application Server. This .ear file contains a servlet called HelloServlet, which
accesses two simple session beans: ejb/itsohello/hello (unsecure) and
ejb/itsohello/securedhello (secure). The latter implies that only an
authenticated user allows you to access the bean. To verify the installation,
access the beans by using your browser with the following HTTP addresses:

– For the unsecure session bean:

http://<hostname>:<port>/itsohello/hello

– For the secure session bean:

http://<hostname>:<port>/itsohello/securedhello

The default <port> number is 9080. If you installed the application correctly,
you see Hello replies.

� J2EE application clients are marked as J2EE clients in Figure 9-1 on
page 214.

The following J2EE application clients are also wrapped in the
ItsohelloEAR.ear file mentioned previously:

– HelloClient, which is a J2EE client that accesses the unsecure hello bean
in the EJB container directly. See “Itsohello unsecure J2EE client” on
page 225

– HelloSecuredClient, which is a J2EE client that accesses the secure hello
bean in the EJB container. See “Itsohello secure J2EE client” on
page 227.

– HelloSecuredJAASClient, which behaves similar to the
HelloSecuredClient, but the authentication process is controlled
programmatically within the client. See “J2EE Java application client” on
page 237.

– HelloSecureJAASClientC, which is similar to HelloSecuredJAASClient but
uses a custom CallbackHandler for collecting authentication information.
See “Custom CallbackHandler” on page 240.

� Thin application clients are marked as “Thin Clients” in Figure 9-1 on
page 214. They contain clients similar to the four J2EE application clients, but
are written as thin application clients. The application contains two .jar files
called ItsohelloTHINCLIENT.jar and ItsohelloEJB.jar with additional
configuration and key files.

You can find the installation process for this Itsohello application in Appendix A,
“Additional configurations” on page 509.

 Chapter 9. Client security 215

9.2 Java client authentication protocol

Accessing secure EJB resources in a secure WebSphere Application Server
V6.1 environment requires an authentication protocol to determine the level of
security and the type of authentication between the client and the server. The
authentication protocol merges the server and client authentication requirements
and comes up with an authentication policy specific for them. This authentication
policy, among others, determines the following items:

� The kind of connection used, either SSL or TCP/IP

� If SSL is used, the strength of the encryption

� The way to authenticate the client, whether by using, for example, a user ID
and password combination or client certificate

In WebSphere Application Server V6.1, two authentication protocols are
available:

� IBM Secure Authentication Service
� Common Secure Interoperability Version 2 (CSIV2)

IBM Secure Authentication Service is the only authentication protocol that all
WebSphere Application Servers used prior to Version 5. The CSIV2, defined by
the Object Management Group (OMG), is a standard protocol defined for
vendors to interoperate securely. CSIV2 is considered the strategic protocol and
is implemented with more features than IBM Secure Authentication Service
within the WebSphere Application Server V6.1.

In preparation for a request to flow from client to server, two client and server
side Object Request Brokers (ORBs) must establish a connection over a TCP/IP
(or SSL) transport layer. The IIOP is used for handling the communication
between these two ORB objects. The IBM Secure Authentication Service and
CSIV2 authentication protocols are add-on services for the IIOP.

Note: The IBM Secure Authentication Service and CSIV2 authentication
protocols used in WebSphere Application Server are add-on services to the
standard IIOP protocol for handling communication between two ORBs. Within
WebSphere Application Server V6.1, the authentication protocol IBM Secure
Authentication Service is deprecated, but is still included for backward
compatibility.

216 WebSphere Application Server V6.1 Security Handbook

9.2.1 CSIV2 Security Attribute Service

The Common Security Interoperability Version 2 specification is defined by the
OMG at the following Web address:

http://www.omg.org

This specification defines the CSIV2 Security Attribute Service protocol to
address the requirements of CORBA security for interoperable authentication,
delegation, and privileges.

The CSIV2 Security Attribute Service protocol is designed to exchange its
protocol elements in the service context of a General Inter-ORB Protocol (GIOP)
request and to reply to messages that are communicated over a
connection-based transport. The protocol provides client authentication,
delegation, and privilege functionality that can be applied to overcome
corresponding deficiencies in an underlying transport.

The CSIV2 Security Attribute Service protocol facilitates interoperability by
serving as the higher-level protocol under which secure transports can be
unified. The CSIV2 Security Attribute Service protocol is divided into two layers:

� The authentication layer is used to perform client authentication where
sufficient authentication cannot be accomplished in the transport.

� The attribute layer can be used by a client to deliver security attributes, such
as identity and privilege, to a target where they can be applied in access
control decisions.

The attribute layer also provides the means for a client to assert identity
attributes that differ from the client’s authentication identity (as established in the
transport or CSIV2 Security Attribute Service authentication layers). This identity
assertion capability is the basis of a general-purpose impersonation mechanism
that makes it possible for an intermediate to act on behalf of an identity other
than itself. This can improve the performance of a system because the
authentication of a client is relatively expensive. The server can validate the
request by checking its trust rules.

 Chapter 9. Client security 217

http://www.omg.org

9.2.2 Authentication process

Authentication is a process of establishing whether a client, which can be a user,
a machine, or an application, is valid. Figure 9-2 shows the authentication
process between client and server ORBs.

Figure 9-2 Authentication process

The process is summarized as follows:

1. The client ORB calls the connection interceptor to create the connection. The
client ORB invokes the authentication protocol’s client connection interceptor.
It is used to read the tagged components in the interoperable Object
Reference (IOR) of the server-based object that is being requested. This is
how the authentication policy is established. After the policy is established,
the ORB makes the connection, with the optional addition of the SSL cipher.

2. The client ORB calls the request interceptor to get client security information.
The client ORB invokes the client request interceptor after the connection is
established and sends security information other than what was established
by the transport. This might include one of the following tokens:

– A user ID and password token (authenticated by the server)
– An authentication mechanism-specific token (validated by the server)
– An identity assertion token (allows an intermediate to act on behalf of

some identity other than itself)

This additional security information is sent with the message in a GIOP’s
service context. After the client request interceptor finishes adding the service
context to the message, the message is sent to the server ORB.

218 WebSphere Application Server V6.1 Security Handbook

3. The server ORB calls the request interceptor to receive the security
information, authenticate, and set the received credential. Upon receiving the
message, the server ORB invokes the authentication protocol’s server
request interceptor, which looks for the service context.
– If the service context is found, a method is invoked to the security server to

validate the client identity. When the client identity is valid, a credential is
returned. This credential contains additional information about the client,
retrieved from the used user registry, and is used for authorization
process. The authorization process determines whether the user is
allowed to access an EJB resource.

– If the service context is not found, the server request interceptor looks at
the transport connection to see if a client certificate chain is supplied. This
is the case when SSL client authentication is configured between the client
and server. If such a certificate is found, the distinguished name (DN) is
extracted and is mapped to an identity in the selected user registry.

• If the certificate does not map, no credential is created, and the request
is rejected.

• If the certificate maps, but the presented security information is invalid,
the method request is rejected, and an exception is sent back with the
reply.

• If the certificate maps, but no security information is presented, an
unauthenticated credential is created. Only EJB methods with no
security roles or EJB methods with a special Everyone role can be
accessed using this unauthenticated credential.

4. The server ORB calls the request interceptor so that security can send
information back to the client with the reply.

When the method invocation is completed, the server request interceptor is
invoked again to complete the server authentication, and a new reply service
is created to inform the client request interceptor of the outcome.

5. The client ORB calls the request interceptor so that the client can clean up
and set the session status as good or bad.

The client request interceptor receives a reply from the server. The CSIV2
Security Attribute Service supports both stateless and stateful security
contexts. A stateless context exists only for the duration of the GIOP request
that was used to establish the context. A stateful context endures until they
are discarded. If a stateful context is used, only the first request between a
client and server requires that the security information is sent. All subsequent
method requests must send a unique context ID only, and the server can look
up the credential stored in its session table.

 Chapter 9. Client security 219

9.3 Java client configuration

As explained in 9.2, “Java client authentication protocol” on page 216, accessing
secure EJB resources in a secure WebSphere Application Server environment
requires an authentication protocol. This protocol is required to determine the
level of security and the type of authentication between the client and the server,
such as the kind of connection used (for example SSL or TCP/IP), the strength of
the encryption used, the type of authentication used (for example user
ID/password or certificate), and so on.

A Java client application that is accessing a secure EJB resource within
WebSphere Application Server must specify these properties. These
configuration properties are specified in a file, as shown in Example 9-1, defined
by the com.ibm.CORBA.ConfigURL system property of the client’s JVM and are
in the sas.client.props sample file. The application server must also be
configured to communicate with a client in the required fashion. If a Java client
requires that client certificates be transmitted, for example, by using SSL, then
the server must be set to expect this.

Example 9-1 shows the starting of the Java client application com.ibm.Foo using
the CORBA configuration file properties/sas.client.props and using the Java
Authentication and Authorization Service (JAAS) login configuration file
properties/wsjaas_client.conf.

Example 9-1 Starting the Java client application com.ibm.Foo

java -Dcom.ibm.CORBA.ConfigURL=file:properties/sas.client.props
-Djava.security.auth.login.config=file:properties/wsjaas_client.conf
com.ibm.Foo

The sas.client.props file
The sas.client.props configuration file contains several sets of properties that
are explained as follows. The default values are marked by an asterisk (*).

� Client Security Enablement

com.ibm.CORBA.securityEnabled (true*, false)

This property determines if client security has been enabled. If the server’s
global security is enabled, the value of this property must be set to true.
Otherwise all the secured remote EJB resources cannot be accessed by the
client.

220 WebSphere Application Server V6.1 Security Handbook

� RMI/IIOP Authentication Protocol

com.ibm.CSI.protocol (sas, csiv2, both*)

This property determines which add-on authentication protocol is used.

– both is used when communicating with all kind of WebSphere Application
Server V6.1

– csiv2 is used when communicating with only servers Versions 5.x or 6.x.

– sas is used when communicating with only servers prior to Version 5.x.

� Authentication Configuration:

– com.ibm.CORBA.authenticationTarget (BasicAuth*)

BasicAuth is the only supported option for a pure Java client. The user
name and password are sent to the server for message layer
authentication only. The SSL client certificate authentication must be
configured under CSIV2 configuration.

– com.ibm.CORBA.validateBasicAuth (true*, false)

This property determines if the user details are authenticated immediately
or deferred until the first method request is communicated to the server,
when the com.ibm.CORBA.authenticationTarget property is set to
BasicAuth.

– com.ibm.CORBA.authenticationRetryEnabled (true*, false)

This property determines whether a failed login must be retried. It also
applies to stateful CSIV2 sessions and validations that have failed due to
an expired credential. Only those failures that are known to be correctable
are retried. This option is valid when com.ibm.CORBA.validateBasicAuth is
set to true.

– com.ibm.CORBA.authenticationRetryCount (an integer value, 3*)

This property determines how many retrieves are to be attempted for failed
login when com.ibm.CORBA.authenticationRetryEnabled is set to true.

– com.ibm.CORBA.securityServerHost

This property indicates the name (or IP address) of the security server to
validate the user ID and password.

– com.ibm.CORBA.securityServerPort

This property indicates the port number of the security server.

– com.ibm.CORBA.loginSource (prompt*, keyfile, stdin, none,
properties)

This property determines how the authentication request interceptor logs
in if it does not find an invocation credential set.

 Chapter 9. Client security 221

• prompt displays a window requesting a user name and password.

• keyfile extracts the user details from the file specified by
com.ibm.CORBA.keyFileName.

• stdin displays a command line prompt requesting user details.

• none must be selected if the client uses programmatic login.

• properties retrieves the user details from the
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword
properties.

– com.ibm.CORBA.loginUserid

This property indicates the user ID that is used when the
com.ibm.CORBA.loginSource property is set to properties.

– com.ibm.CORBA.loginPassword

This property indicates the user password that is used when the
com.ibm.CORBA.loginSource property is set to properties.

– com.ibm.CORBA.keyFileName

This property indicates the location of the key file that contains a list of
realm, user ID, and password combinations. See the file
<WebSphere_home>/profile/default/properties/wsserver.key. This file
is used when the com.ibm.CORBA.loginSource property is set to keyfile.

– com.ibm.CORBA.loginTimeout

This property is an integer within the range of 0 and 600. The default is
300. It is the amount of time, in seconds, that the login prompt is available
before the login is considered invalid.

� SSL Configuration:

– com.ibm.security.useFIPS (false*, true)

This property indicates that the client wants to be in Federal Information
Processing Standard (FIPS)-approved cryptographic algorithm mode.

– com.ibm.ssl.contextProvider (IBMJSSE2*, IBMJSSE, IBMJSSEFIPS)

This property indicates is the Java Secure Socket Extension (JSSE)
provider that is used. Specifying IBMJSSEFIPS means that the client wants
to be in FIPS-approved cryptographic algorithms mode. It also means that
the run time uses the IBMJSSE2 provider in combination with the
IBMJCEFIPS.

– com.ibm.ssl.protocol (SSL*, SSLv2, SSLv3, TLS, TLSv1)

This property determines which variety of the SSL and Transport Layer
Security (TLS) protocols are used to perform transport-layer encryption.

222 WebSphere Application Server V6.1 Security Handbook

– com.ibm.ssl.keyStoreType (JKS*, JCEK, PKCS12)

This property indicates the format of the SSL key store file.

– com.ibm.ssl.keyStore

As an example, consider the keys/DummyClientKeyFile.jks file. This
property indicates the location of the SSL key store file, which has
personal certificates and private keys.

– com.ibm.ssl.keyStorePassword

This property indicates the password with which the key store file is
protected.

– com.ibm.ssl.trustStoreType (JKS*, JCEK, PKCS12)

This property indicates the format of the SSL key trust file.

– com.ibm.ssl.trustStore

As an example, consider the keys/DummyClientTrustFile.jks file. This
property indicates the location of SSL key trust file.

– com.ibm.ssl.trustStorePassword

This property indicates the password with which the key trust file is
protected.

� IBM Secure Authentication Service add-on authentication protocol:

com.ibm.CORBA.standardClaimQOPModels (low, medium, high*)

This property determines the quality of protection (QOP), or rather the
security level. If the server and client values differ, the highest value is
chosen, and the connection is initialized with this QOP property.

� CSIV2 add-on authentication protocol

Certain security properties have supported or required property pairs. The
required properties take precedence over the supported properties pair.
Therefore, if the required property is enabled, communication with the server
must satisfy this property.

– com.ibm.CSI.performStateful (true*, false)

This property determines whether the client supports the stateful or
stateless session.

– com.ibm.CSI.performClientAuthenticationRequired (true*, false)
com.ibm.CSI.performClientAuthenticationSupported (true*, false)

When supported, message layer client authentication is performed when
communicating with any server that supports or requires authentication.
Message layer client authentication transmits a user ID and password if
the authenticationTarget property is BasicAuth, or it transmits a

 Chapter 9. Client security 223

credential token if the authenticationTarget property is one of the
token-based mechanism, for example, Lightweight Third Party
Authentication (LTPA), Kerberos.

When required, message layer client authentication must occur when
communicating with any server. If the transport layer authentication
property is also enabled (see the following property), both authentications
are performed. However, the message layer client authentication takes
precedence at the server side.

– com.ibm.CSI.performTLClientAuthenticationRequired (true*, false)
com.ibm.CSI.performTLClientAuthenticationSupported (true*, false)

When supported, transport layer client authentication can be performed,
and the client sends digital certificate to the server during the
authentication stage.

When required, the client only authenticates with servers that support
transport-layer client authentication.

– com.ibm.CSI.performTransportAssocSSLTLSRequired (true*, false)
com.ibm.CSI.performTransportAssocSSLTLSSupported (true*, false)

When supported, the client can use either TCP/IP or SSL to communicate
with the server.

When required, the client only communicates with servers that support
SSL.

– com.ibm.CSI.performMessageIntegrityRequired (true*, false)
com.ibm.CSI.performMessageIntegritySupported (true*, false)

These properties are only valid when SSL is enabled.

When supported, it can make an SSL connection with either 40-bit ciphers
or digital-signing ciphers.

When required, the connection fails if the server does not support 40-bit
ciphers.

– com.ibm.CSI.performMessageConfidentialityRequired (true*, false)
com.ibm.CSI.performMessageConfidentialitySupported (true*, false)

These properties are only valid when SSL is enabled.

When supported, it can make SSL connection with either 128-bit ciphers or
a lower encryption strength.

When required, the connection fails if the server does not support 128-bit
ciphers.

224 WebSphere Application Server V6.1 Security Handbook

� Additional CORBA configuration

com.ibm.CORBA.requestTimeout (integer value, 180*)

This property specifies the timeout period, in seconds, for responding to
requests sent from the client. Use care when specifying this property, and set
it only if the application is experiencing problems with timeouts.

For a more complete list of directives, see the WebSphere Application Server
Information Center.

9.4 J2EE application client

A J2EE application client operates in a similar fashion to a J2EE server-based
application. It uses the RMI/IIOP protocol and CORBA services that are provided
by the J2EE platform. This usage enables the J2EE application client to access
both EJB and CORBA object references. The J2EE platform allows the J2EE
application client to use the JNDI names, defined in the deployment descriptor, to
access the EJBs or other resources such as Java Database Connectivity
(JDBC), Java Messaging Service (JMS), JavaMail™, and so on.

The ItsohelloJ2EEClient.jar file (wrapped in the ItsohelloEAR.ear
application) provided with this IBM Redbooks publication has four J2EE
application clients. These clients request services to enterprise beans operating
in a remote EJB container. The first two clients are discussed in this section.

The J2EE client application depends on the application client run time to
configure its execution run time. You can use the launchClient command
(<WebSphere_home>\bin\launchClient.bat) to start and configure the J2EE
application client environment by examining the application client’s descriptor
(application-client.xml). Access to the EJB JAR file that contains the EJB
home interfaces and access to the client’s class file must be referenced in the
client’s MANIFEST.MF file as shown in Example 9-2.

Example 9-2 Client’s MANIFEST.MF file

Manifest-Version: 1.0
Class-Path: ItsohelloEJB.jar
Main-Class: com.ibm.itsohello.j2eeclient.J2EEClient

9.4.1 Itsohello unsecure J2EE client

The unsecure Itsohello J2EE client application is a text-based Java application
that accesses the unsecure bean HelloBean in a remote EJB container. Upon
successful execution, it shows a hello message created by the bean. The JNDI

 Chapter 9. Client security 225

name for this bean is ejb/itsohello/hello (Figure 9-1 on page 214). Example 9-3
shows the part of the client for connecting to the bean and getting the message.

Example 9-3 J2EE client to unsecured Hello bean

InitialContext ic = new InitialContext();
Object homeObject = ic.lookup("ejb/itsohello/hello");
HelloHome helloHome = (HelloHome)
PortableRemoteObject.narrow(homeObject,

HelloHome.class);
msg = helloHome.create().getMessage();

In Example 9-3, note that there is no reference that indicates the server in which
the remote enterprise bean is located. As mentioned already, the Application
Client run time is responsible for this configuration. This is one of the features of
the J2EE application client.

To start the application to access the unsecured bean:

1. Make sure that the ItsohelloEAR.ear application is already installed in the
destination WebSphere Application Server. Among others, two EJB with
appropriate access privilege are automatically installed by using JNDI names,
which are ejb/itsohello/hello and ejb/itsohello/securedhello. These
two EJB resources are the remote resources for the example application
clients. See Figure 9-1 on page 214.

2. From a command prompt, launch the J2EE client as follows:

<WebSphere_home>\bin\launchClient ItsohelloEAR.ear
-CCBootstrapHost=<Server_hostname>
-CCBootstrapPort=<RMIConnector_port>

The default value for <Server_hostname> is localhost and
<RMIConnector_port> is 2809. You can also use the included
runJ2EEClient.bat batch file for running the application. Remember to modify
the parameters according to the setup of your system.

Example 9-4 shows the messages from the application.

Example 9-4 Results from the runJ2EEClient.bat file

J2EE Itsohello clients:

a. UNSECURED CLIENT.
...

b. SECURED CLIENT.
...

c. SECURED CLIENT with JAAS.
...

226 WebSphere Application Server V6.1 Security Handbook

d. SECURED CLIENT with JAAS using custom callback handler.
...

Please enter your choice (a/b/c/d):

3. Press option a and ENTER.

The client application uses the com.ibm.itsohello.j2eeclient.HelloClient
class to connect to the unsecure HelloBean. When it finishes, you see the
following message:

Accessing unsecured Hello bean
Message from Hello bean: Hello to you UNAUTHENTICATED (role:
Anonymous)

9.4.2 Itsohello secure J2EE client

The Itsohello secure J2EE client application is similar to the unsecure J2EE
client, except that it shows a message created by the secure SecuredHelloBean
in a remote EJB container. The JNDI name for this bean is
ejb/itsohello/securedhello. In Example 9-5, the code snippet from
com.ibm.itsohello.j2eeclient.SecuredHelloClient class shows that there is
no difference in client code for accessing secure or unsecure enterprise beans.

Example 9-5 J2EE client to secure Hello bean

InitialContext ic = new InitialContext();
Object homeObject = ic.lookup("ejb/itsohello/securedhello");
SecuredHelloHome helloHome = (SecuredHelloHome)
PortableRemoteObject.narrow

(homeObject, SecuredHelloHome.class);
msg = helloHome.create().getMessage();

The procedure to start the included secure Itsohello example application is
similar to the Itsohello unsecure J2EE client. However, in step 2 in 9.4.1,
“Itsohello unsecure J2EE client” on page 225, you choose SECURED CLIENT
(option b). This option starts the secure client
com.ibm.itsohello.j2eeclient.SecuredHelloCLient.

Note: If the global security is enabled, and the value of the property
com.ibm.CORBA.loginSource is set to prompt in the file sas.client.props, the
client shows a window that requests a user identity and password, even if
the bean is not secured. To disable the window, set the
com.ibm.CORBA.loginSource property to none.

 Chapter 9. Client security 227

When global security is enabled and the com.ibm.CORBA.loginSource property in
the CORBA client configuration file (for example sas.client.props) is set to
prompt, a window (Figure 9-3) opens that prompts for a user ID and password.

Figure 9-3 Challenge window

After the client is authenticated, the appropriate remote method in
com.ibm.itsohello.bean.SecuredHelloHome is invoked. When the access is
successful, it shows a message similar to the following example:

Accessing Secured Hello bean
Message from Hello bean: [Secured] Hello to you viking (role:
BeanGuest)

9.5 Thin application client

The phrase thin application client refers to a Java client that is not running within
the J2EE client container. It is a stand-alone Java application that implements
EJB clients that connect to a remote EJB container of WebSphere Application
Server. Because it is not running under a J2EE client container, when resolving
to an enterprise bean, the client must know the location of the name server and
the fully qualified name that is used for the remote resource. The thin application
client must initialize and code explicitly access to any of the services that the
client might require.

To develop a thin application client:

1. Initialize the org.omg.CORBA.ORB object.

2. Optional: Initialize the org.omg.Cosnaming.NamingContextExt file if CosNaming
is used.

Note: There is no difference in the J2EE client code for accessing secure or
unsecure EJB resources, unless JAAS APIs are used. The behavior of the
authentication process is controlled by the client configuration file (for example
sas.client.props).

228 WebSphere Application Server V6.1 Security Handbook

3. Use the ORB object (or the derived NamingContextExt object) to get a
reference to the enterprise bean by using the fully qualified physical location
of the enterprise bean in the name space. WebSphere Application Server
provides a script <WebSphere_home>\bin\dumpNameSpace.bat, which is useful
for determining the fully qualified physical location names. Example 9-6
shows such an output.

Example 9-6 Results of the dumpNameSpace.bat file

...
==
Name Space Dump

Provider URL: corbaloc:iiop:localhost:2809
Context factory: com.ibm.websphere.naming.WsnInitialContextFactory
Requested root context: cell
Starting context: (top)=mka0klmyNode01Cell
Formatting rules: jndi
Time of dump: Mon Nov 08 11:45:20 EST 2004

==

==
Beginning of Name Space Dump
==

1 (top)
2 (top)/persistent javax.naming.Context
...
38 (top)/nodes/mka0klmyNode01/servers/server1/ejb/itsohello
38 javax.naming.Context
39 (top)/nodes/mka0klmyNode01/servers/server1/ejb/itsohello/hello
39 com.ibm.itsohello.bean.HelloHome
40 (top)/nodes/mka0klmyNode01/servers/server1/ejb/itsohello/secured
hello
40 com.ibm.itsohello.bean.SecuredHelloHome
...

The rest of the code is similar to the J2EE client.

 Chapter 9. Client security 229

9.5.1 Running a thin application client

You must set certain configurations to run a thin application client to operate in a
secure environment. If the WebSphere Application Clients product is installed,
you can use the provided buildClientRuntime tool (in the
<WebSphereClient_home>\bin\buildClientRuntime.bat file) to build the required
components for the client.

However, if the WebSphere Application Clients product is not installed, obtain the
components by using the installed WebSphere Application Server, as follows:

1. Get the Java 2 Runtime Environment (J2RE) that is provided by WebSphere,
including the libraries in the <WebSphere_home>\java\jre\lib and
<WebSphere_home>\java\jre\lib\ext directories.

2. Collect all application client runtime, properties, and configuration files. For a
secure environment, the JVM must point to a CORBA configuration file (for
example, the sas.client.props file) by using the JVM system property of
com.ibm.CORBA.ConfigURL. Optionally, if the application client uses the JAAS
APIs for login, the JVM must probably include the JAAS login configuration
file indicated by the JVM system property java.security.auth.login.config.

3. Collect the keystore and truststore files if SSL is used. These files are referred
to in the CORBA configuration file mentioned previously.

4. Collect libraries from the WebSphere runtime library in the
<WebSphere_home>\lib directory. Not all of them are required. However, for
the Itsohello thin application client (see the script in Example 9-7 on
page 231), the following files are required:

Example: Consider the following fully qualified name that is used in
Example 9-6:

cell/nodes/mka0klmyNode01/servers/server1/ejb/itsohello/hello

This can also be reached by using an unqualified name, with the help of
the ORB method:

string_to_object(corbaname:iiop:<host>:<port>/NameServiceServerRo
ot#ejb/itsohello/hello).

activity.jar
ecutils.jar
j2ee.jar
namingclient.jar
sas.jar
utils.jar

admin.jar
emf.jar
lmproxy.jar
ras.jar
securityimpl.jar
wccm_client.jar

bootstrap.jar
idl.jar
management.jar
runtime.jar
txClient.jar
wsexception.jar

cluster.jar
iwsorb.jar
naming.jar
runtimefw.jar
txClientPrivate.jar
wssec.jar

230 WebSphere Application Server V6.1 Security Handbook

Example 9-7 Script for running ItsohelloTHINCLIENT application

set WAS_HOME=C:\WebSphere\AppServer
set SERVER_HOST=mka0klmy.itso.ral.ibm.com
set SERVER_PORT=2809

set CLASSPATH=.\;.\prop\;itsohelloEJB.jar;itsohelloTHINCLIENT.jar
set JAVA_LIB=-Djava.ext.dirs=%WAS_HOME%\java\jre\lib;

%WAS_HOME%\java\jre\lib\ext;%WAS_HOME%\lib

set CORBA_CONFIG=-Dcom.ibm.CORBA.ConfigURL=file:prop/sas.client.prop
s
set LOGIN_CONFIG=-Djava.security.auth.login.config=file:prop/wsjaas_
client.conf
set CLIENT_TRACE=-Dcom.ibm.CORBA.CommTrace=false

%WAS_HOME%\java\bin\java -cp %CLASSPATH% %CORBA_CONFIG%
%LOGIN_CONFIG% %CLIENT_TRACE% %JAVA_LIB%
com.ibm.itsohello.thinclient.ThinClient %SERVER_HOST% %SERVER_PORT%

9.5.2 Itsohello unsecure thin client

You can find all the thin application clients used in the ItsohelloTHINCLIENT.jar
file. To run the code, the ItsohelloEJB.jar EJB JAR file is required. The setup of
the clients is the same as for the J2EE application clients. See 9.4, “J2EE
application client” on page 225. However, the batch runThinClient.bat is used
to start the application client. Remember to modify the parameters according to
the setup of your system.

There are two ways to program the thin application client to access a remote
enterprise bean. You can use either CosNaming with a fully qualified resource
name or the ORB method string_to_object with an unqualified resource name.
Both approaches are shown as follows:

� Example 9-8 shows the use of CosNaming with a qualified name. The fully
qualified name is used in this code snippet.

Example 9-8 Code snippet of thin client to an unsecure Hello bean using CosNaming

// initialize ORB object
java.util.Properties props = new java.util.Properties();
props.put("org.omg.CORBA.ORBClass", "com.ibm.CORBA.iiop.ORB");

Attention: Do not run the application client by using the different JVM
versions than what is used by the destination server. The use of a different
class implementation might give unexpected results.

 Chapter 9. Client security 231

props.put("com.ibm.CORBA.ORBInitRef.NameService","corbaloc:iiop:" +
serverHostname + ":" + serverPort + "/NameService");

props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot","corbaloc
:iiop:"+

serverHostname + ":" + serverPort + "/NameServiceServerRoot");
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init((String[]) null,
props);

// get the home object
Object obj = orb.resolve_initial_references("NameService");
org.omg.CosNaming.NamingContextExt initCtx =

org.omg.CosNaming.NamingContextExtHelper.narrow(obj);
Object homeObject = initCtx.resolve_str(

"cell/nodes/mka0klmyNode01/servers/server1/ejb/itsohello/hello"
);

HelloHome helloHome = (HelloHome)
PortableRemoteObject.narrow(homeObject,

HelloHome.class);
msg = helloHome.create().getMessage();

� Example 9-9 shows use of the ORB string_to_object method with an
unqualified name. With the help of the name server, the Hello bean can also
be reached by using an unqualified name, which is shown in the code snippet.

Example 9-9 Code for thin client to unsecure Hello bean using ORB string_to_object

java.util.Properties props = new java.util.Properties();
org.omg.CORBA.ORB orb=org.omg.CORBA.ORB.init((String[])null, props);

// get the home object
String resourceName = "corbaname:iiop:" + serverHostname + ":" +
serverPort +

"/NameServiceServerRoot#ejb/itsohello/hello";
Object homeObject = orb.string_to_object(resourceName);

HelloHome helloHome = (HelloHome)
PortableRemoteObject.narrow(homeObject,

HelloHome.class);
msg = helloHome.create().getMessage();

232 WebSphere Application Server V6.1 Security Handbook

9.5.3 Itsohello secure thin client

The process to program the Itsohello secure thin client is similar to the process
for a J2EE application client. See 9.4.2, “Itsohello secure J2EE client” on
page 227. There is no difference in coding for secure or for unsecure client. The
behavior of the application is determined by the client configuration file, for
example sas.client.props, as explained in 9.3, “Java client configuration” on
page 220.

9.6 Programmatic login

If you are required to implement a custom login mechanism for the application
client, for example, because the provided security infrastructure cannot supply all
the functionality that is required, you can use a programmatic login by using
JAAS. JAAS contains a collection of strategic authentication APIs that enable
developers to create their own login module.

9.6.1 JAAS login module in WebSphere

The authentication process between a Java application client and a remote EJB
is explained in 9.2.2, “Authentication process” on page 218. In Figure 9-4 on
page 234 shows the simplified authentication process within the WebSphere
Application Server to indicate the role of JAAS. The process flows as follows:

1. Java clients send the authentication information to the EJB authenticator
module. The authentication information can be a basic authentication (only a
user ID and password pair) or a credential token (for LTPA).

2. The EJB authenticator module pass the authentication information to the
JAAS login module.

3. The login module uses the specified authentication mechanism, which is
LTPA.

4. To validate the authentication information, the authentication module uses
LocalOS, Lightweight Directory Access Protocol (LDAP), or custom registry.

5. After authentication, the login module creates a JAAS Subject
(javax.security.auth.Subject). This subject, in addition to having the user’s
realm (getPrincipals()), contains a CORBA credential in its public
credential list attribute (getPublicCredentials()). This credential is used by
the authorization service to perform further access to any resources.

 Chapter 9. Client security 233

Note the importance of the JAAS login module in Figure 9-4.

Figure 9-4 Authentication process within WebSphere Application Server

WebSphere Application Server allows the JAAS login module (Figure 9-4) to
perform programmatic authentication to the WebSphere Application Server
security run time. It has already several built-in JAAS login configurations that
programmers can use directly, such as the following examples:

� WSLogin

This configuration is a generic JAAS login configuration that you can use with
almost any application, including the Java application client, to perform
authentication based on a user ID and password or a token.

� ClientContainer

Similar to WSLogin, this JAAS login configuration acknowledges the
CallbackHandler that is specified in the client container deployment
descriptor. The login module of this login configuration uses the
CallbackHandler in the client container deployment descriptor, if one is
specified, even if the application code specifies one CallbackHandler in the
LoginContext.

In WebSphere, you can find the information of the supported built-in JAAS login
configurations in the wsjaas_client.conf file. This file must be referred by the
JVM runtime system property java.security.auth.login.config of the
application client. See Example 9-1 on page 220.

WebSphere Application ServerCSIV2/SAS

TCP/IP
SSL

(1)
Basic or

token credential Local OS
registry

Standalone
LDAP registry

Standalone
custom registry

Federated
Repositories

File-based

LDAPV2

LTPALogin
Module

Authentication module

Enterprise beans
authenticator

Java
client

(3)

(4)

(4)

(4)

(4)

Authorization

data (2)

Credentials (5)

WebSphere Application ServerCSIV2/SAS

TCP/IP
SSL

(1)
Basic or

token credential Local OS
registry

Standalone
LDAP registry

Standalone
custom registry

Federated
Repositories

File-based

LDAPV2

Federated
Repositories

File-based

LDAPV2

LTPALogin
Module

Authentication module

Enterprise beans
authenticator

Java
client

(3)

(4)

(4)

(4)

(4)

Authorization

data (2)

Authorization

data (2)

Credentials (5)

234 WebSphere Application Server V6.1 Security Handbook

9.6.2 Programmatic login process

Programmatically, the interaction diagram in Figure 9-5 explains the login
process and access to secure resource by using the JAAS APIs.

Figure 9-5 Interaction diagram for login process using JAAS APIs

The illustration in Figure 9-5 is described as follows:

� Application starts the login process.

LoginContext is initialized.

– LoginModule is invoked. Depending on the design of the code, a user ID
or password combination can be provided with the help of a created
CallbackHandler object.

– Upon successful verification of the supplied user ID and password, the
LoginModule creates a Subject that contains the user’s realm and a
credential. The LoginModule must provide a validated credential and
some context for where that credential is valid, which is the authentication
realm (or user registry) where the user ID was validated.

� Application retrieves the created Subject from LoginContext.

� Using the doAs method, the application invokes an Action under the acquired
Subject.

 Chapter 9. Client security 235

Having read the description, the Java code can be as simple as Example 9-10.

Example 9-10 Java code snippet for interaction diagram shown in Figure 9-5

// login block
CallbackHandler loginHandler = new WSCallbackHandlerImpl(“uid”, “pwd”);
LoginContext lc = new LoginContext("WSLogin", loginHandler);
lc.login();
Subject subject = lc.getSubject();

// create Action for accessing the protected bean method
java.security.PrivilegedAction getHelloMessage = new

java.security.PrivilegedAction() {
public Object run() {

try {
Object obj = ic.lookup("ejb/itsohello/securedhello");
SecBeanHome hello = (SecBeanHome)

PortableRemoteObject.narrow(obj, SecBeanHome.class);
return hello.create().getMessage();

}
catch (Exception e) {
...

}
}

// run the created Action with the acquired subject
msg = (String) com.ibm.websphere.security.auth.WSSubject.doAs

(subject, getHelloMessage);

9.6.3 Client-side programmatic login using JAAS

A client-side login is useful when the user has to login to a security domain on a
remote system. However, this type of login requires that both the client and
server use the same process to authenticate and to collect the login information
for authentication purposes. The JAAS interface
javax.security.auth.callback.CallbackHandler defines how the security
services might interact with the application to retrieve the authentication data.

236 WebSphere Application Server V6.1 Security Handbook

Built-in CallbackHandler in WebSphere
WebSphere Application Server provides several class implementations of the
javax.security.auth.callback.CallbackHandler. The following
CallbackHandlers are the most useful for a client-side programmatic login:

� com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

This implementation presents a GUI login panel to prompt users for
authentication data.

� com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl

This callback prompts a user for authentication data, which is useful for
text-based client applications.

Whenever the CallbackHandler implementations do not fulfill the user’s
requirement, you can make a custom CallbackHandler implementation, which is
further discussed in “Custom CallbackHandler” on page 240.

J2EE Java application client
Example 9-11 shows the code for you to perform a programmatic login by using a
GUI CallbackHandler WSGUICallbackHandlerImpl. If you prefer the text-based
login, you must change the callback handler in the code to
WSStdinCallbackHandlerImpl.

Notice that the code in Example 9-11 is non-functional because it has nothing
that the authentication calls against. That is, there is no reference to which server
this authentication must be validated nor is there a reference for the enterprise
bean.

Example 9-11 J2EE client to secure Hello bean, using JAAS APIs

try
{

ic = new InitialContext();

// Invoke the JAAS Login module
CallbackHandler loginCallbackHandler = new WSGUICallbackHandlerImpl();
LoginContext lc = new LoginContext("WSLogin", loginCallbackHandler);
lc.login();
Subject subject = lc.getSubject();

// create action to access the protected bean method
java.security.PrivilegedAction getHelloMessage = new

java.security.PrivilegedAction() {
public Object run() {

try {

 Chapter 9. Client security 237

Object homeObject = ic.lookup("ejb/itsohello/securedhello");
SecuredHelloHome helloHome = (SecuredHelloHome)

PortableRemoteObject.narrow(homeObject, SecuredHelloHome.class);
return helloHome.create().getMessage();

}
catch (CreateException ce) {

...
}

}
};

// invoke the secure action using the created subject
msg = (String) com.ibm.websphere.security.auth.WSSubject.doAs(subject,

getHelloMessage);
}
catch (NamingException ne) {

...
}

The procedure to start the included secure Itsohello application by using the
JAAS APIs client example is similar to the Itsohello unsecure J2EE client.
However, in step 2 in 9.4.1, “Itsohello unsecure J2EE client” on page 225, you
can now choose SECURED CLIENT with JAAS (option c). This starts the client
com.ibm.itsohello.j2eeclient.SecuredHelloJAASCLient. Because the login
process is now controlled programmatically, the value of the
com.ibm.CORBA.loginSource property in the CORBA client configuration file (for
example sas.client.props) no longer has any influence.

Thin Java application client
Similar to the J2EE application client, the JAAS programmatic login can be
implemented for a thin Java application client. Notice how the security realm is
established. Example 9-12 shows the difference in the implementation.

Example 9-12 Thin application client to secure Hello bean

try {
// initialize the ORB object
orb = ORB.init((String[]) null, new Properties());

// IMPORTANT: this is a dummy call to server to establish security realm for JAAS.
// it should be done before the JAAS login
orb.string_to_object("corbaname:iiop:" + serverHostname + ":" + serverPort);

// Invoke the JAAS login module
CallbackHandler loginCallbackHandler = new WSGUICallbackHandlerImpl();

238 WebSphere Application Server V6.1 Security Handbook

LoginContext lc = new LoginContext("WSLogin", loginCallbackHandler);
lc.login();
Subject subject = lc.getSubject();

final String resourceName = "corbaname:iiop:" + serverHostname + ":" + serverPort
+ "/NameServiceServerRoot#ejb/itsohello/securedhello";

// create action to access the protected bean method
java.security.PrivilegedAction getHelloMessage = new

java.security.PrivilegedAction() {
public Object run() {

try {
Object homeObject = orb.string_to_object(resourceName);
SecuredHelloHome helloHome = (SecuredHelloHome)

PortableRemoteObject.narrow(homeObject, SecuredHelloHome.class);
return helloHome.create().getMessage();

}
catch (CreateException ce) {

...
}

}
};
msg = (String) com.ibm.websphere.security.auth.WSSubject.doAs(subject,

getHelloMessage);
}
catch (LoginException le) {

...
}

Example 9-12 shows the usual differences in programming between J2EE and
thin application clients. However, there is another difference that required only
when JAAS APIs programmatic login is used, which is the ORB method call:

orb.string_to_object(“corbaname:iiop:<serverHostname>:<serverPort>”);

This call is required to establish connection to the security realm server. This call
is required because the JAAS programmatic login must know where the security
realm server is to validate the user ID and password. Therefore, the call must be
done before the LoginContext.login() method is invoked.

 Chapter 9. Client security 239

Custom CallbackHandler
When required, a custom CallbackHandler that implements the CallbackHandler
interface can also be created. The interface has only one method that must be
implemented:

public void handle(javax.security.auth.callback.Callback[] callbacks)

Different types of Callback objects can be used in this method. This feature gives
a programmer the ability to interact with a calling application, to retrieve specific
authentication data, such as user name and password, or to display certain
information, such as an error or a warning message.

For a complete list of CallbackHandler implementations, see the WebSphere
Information Center and the JAAS javax.security.auth.callback API
documentation. For convenience, implementation examples are listed as follows:

� javax.security.auth.callback.TextOutputCallback

This implementation is used to display information messages as well as
warning and error messages.

� javax.security.auth.callback.NameCallback

This implementation is used to retrieve the name information (login name).

� javax.security.auth.callback.PasswordCallback

This implementation is used to retrieve the password information.

A simple example for a custom callback handler is also included in the Itsohello
client. Change the WSGUICallbackHandlerImpl to HelloCallbackHandlerImpl as
shown in Example 9-11 on page 237 or as shown in Example 9-12 on page 238
if you want to use this custom CallbackHandler. The code snippet for the custom
CallbackHandler is shown in Example 9-13.

Example 9-13 Code from custom CallbackHandler HelloCallbackHandlerImpl class.

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

System.out.println("Custom CallbackHandler");
System.out.println("Realm:" +

WSLoginHelperImpl.getDefaultRealmName());

for(int i = 0; i < callbacks.length; i++)
if (callbacks[i] instanceof TextOutputCallback)
{

TextOutputCallback toc = (TextOutputCallback)callbacks[i];
switch(toc.getMessageType())
{

240 WebSphere Application Server V6.1 Security Handbook

case 0: // '\0'
System.out.println(toc.getMessage());
break;

...
default:

throw new IOException("Unsupported message type: " +
toc.getMessageType());

}
}
else if (callbacks[i] instanceof NameCallback)
{

NameCallback nc = (NameCallback)callbacks[i];
System.out.print(nc.getPrompt());
System.out.flush();
nc.setName((new BufferedReader(new

InputStreamReader(System.in))).readLine());
}
else if (callbacks[i] instanceof PasswordCallback)
{

PasswordCallback pc = (PasswordCallback)callbacks[i];
System.out.print(pc.getPrompt());
System.out.flush();
String pwd = (new BufferedReader(new

InputStreamReader(System.in))).readLine();
pc.setPassword(pwd.toCharArray());

}
else if (!(callbacks[i] instanceof WSCredTokenCallbackImpl))

throw new UnsupportedCallbackException(callbacks[i],
"Unsupported callback");

}

Running the client with the CallbackHandler in Example 9-13 shows a challenge
text-based prompt such as the following example:

Custom CallbackHandler
Realm : <default>
Username: viking
Password: thepwd

 Chapter 9. Client security 241

9.7 Securing the connection

As explained in 9.2, “Java client authentication protocol” on page 216, the IIOP is
used when an application client accesses an EJB service by using ORB objects.
However, in preparation for a request to flow between these two ORB objects, the
client and server, a connection over TCP/IP transport layer must be established
(IIOP over TCP/IP). When a secure connection between the client and server is
required, WebSphere provides the option to encrypt the connection by using SSL
(IIOP over SSL).

Securing EJB in WebSphere is discussed in 8.4.3, “RMI/IIOP transport channel
protection” on page 204. For the application client, enabling IIOP over SSL
involves several configuration properties in the CORBA client configuration file,
for example, sas.client.props

� All properties under the SSL Configuration block. Make sure the values are
synchronized with the ones specified in the server side.

� Some properties under the CSIV2 add-on authentication protocol block
include the following properties:

– com.ibm.CSI.performTransportAssocSSLTLSRequired is set to true. This
property ensures that the client only communicates with servers that
support SSL.

– com.ibm.CSI.performMessageIntegritySupported and
com.ibm.CSI.performMessageConfidentialitySupported properties are
set to true. This setting ensures that the client can operate with different
SSL encryption levels. If required, the required version of these properties
can also be set to true.

See “The sas.client.props file” on page 220 for more information.

9.7.1 IIOP over SSL: A thin client example

We use a simple thin application client (see 9.5, “Thin application client” on
page 228) to illustrate the IIOP over TCP/IP and IIOP over SSL connections
between a Java application client and an enterprise bean resource.

242 WebSphere Application Server V6.1 Security Handbook

To begin, modify or verify both the thin application client and the WebSphere
Application Server where the enterprise bean resource is installed:

1. Run the runThinClient.bat script that is provided in this book. Make sure
that you obtain a correct result. For example, when you access the
UnsecuredClient example (choice a), you must see the following output:

Accessing unsecured Hello bean
Message from Hello bean: Hello you you UNAUNTHENTICATED (roles:
Anonymous)

2. Open WebSphere Administrative Console and verify that CSIV2 Inbound
Transport is set to SSL-supported (Figure 9-6). This setting indicates that the
server accepts both SSL and non-SSL connections. Note that SSL is
supported but not required.

Figure 9-6 CSIV2 Inbound Transport default setup

3. Modify the runThinClient.bat script by changing the following line:

set CLIENT_TRACE=-Dcom.ibm.CORBA.CommTrace=false

Change this line as follows:

set CLIENT_TRACE=-Dcom.ibm.CORBA.CommTrace=true

This change enables the tracing for the thin application client example, where
the trace output is in the orbtrc.<timestamp>.txt file.

 Chapter 9. Client security 243

IIOP over TCP/IP
The following example shows a thin client that does not support SSL connection,
connecting to an enterprise bean resource in a server that supports (but does not
require) SSL connection:

1. Edit the CORBA configuration client file in
thinClient\properties\sas.client.props (not the one on the server). Set
SSL connection properties as follows:

com.ibm.CSI.performTransportAssocSSLTLSRequired=false
com.ibm.CSI.performTransportAssocSSLTLSSupported=false

This means that the client does not support the SSL connection. With this
setup, although the server supports SSL connection (not required), the
connection between this client and the server is performed by using TCP/IP.
Verify this by examining the trace output file.

2. Run the runThinClient.bat script and choose option a. When done, examine
the orbtrc.<timestamp>.txt trace output file. See Example 9-14.

Example 9-14 Trace output file, a client connecting to a server using TCP/IP

12:02:52.303 com.ibm.rmi.ras.Trace dump:80 P=968498:O=0:CT
ORBRas[default]
...
Date: November 17, 2004 12:02:52 PM EST
Thread Info:
RT=0:...:WSTCPTransportConnection[addr=9.42.171.128,port=2809,...
...
Date: November 17, 2004 12:02:53 PM EST
Thread Info:
RT=1:...:WSTCPTransportConnection[addr=9.42.171.128,port=9100,...
...
Date: November 17, 2004 12:02:55 PM EST
Thread Info:
RT=1:...:WSTCPTransportConnection[addr=9.42.171.128,port=9100,...
...

By looking at the trace output file in Example 9-14, you can see that the
connection is kept in the TCP/IP level, as compared with the trace output
shown in Example 9-15 on page 245 for an SSL connection.

244 WebSphere Application Server V6.1 Security Handbook

IIOP over SSL
The following example shows a thin client that supports an SSL connection,
connecting to an enterprise bean resource in a server that supports (but does not
require) an SSL connection:

1. Similar to the steps in the previous section, edit the CORBA configuration
client file in the thinClient\properties\sas.client.props folder.

Set the SSL connection properties as follows:

com.ibm.CSI.performTransportAssocSSLTLSRequired=false
com.ibm.CSI.performTransportAssocSSLTLSSupported=true

This setting means that the client supports the SSL connection (but is not
required). Because now both the client and server support the SSL
connection, whenever this client connects to the server, the connection is
completed in SSL mode.

2. Run the runThinClient.bat script and choose option a. When completed,
examine the orbtrc.<timestamp>.txt trace output file. See Example 9-15.

Example 9-15 Trace output file, a client connecting to a server by using SSL

11:28:54.323 com.ibm.rmi.ras.Trace dump:80 P=930648:O=0:CT
ORBRas[default]
...
Date: November 17, 2004 11:28:54 AM EST
Thread Info:
RT=0:...:WSTCPTransportConnection[addr=9.42.171.128,port=2809,...
...
Date: November 17, 2004 11:28:57 AM EST
Thread Info:
RT=1:...:WSSSLTransportConnection[addr=9.42.171.128,port=9100,...
...
Date: November 17, 2004 11:28:59 AM EST
Thread Info:
RT=1:...:WSSSLTransportConnection[addr=9.42.171.128,port=9100,...
...

By looking at the trace output file in Example 9-15, you can see that the
connection is switched from TCP/IP to SSL.

 Chapter 9. Client security 245

246 WebSphere Application Server V6.1 Security Handbook

Chapter 10. Securing the service
integration bus

This chapter discusses securing the service integration bus during a WebSphere
Application Server V6.1 configuration.

The default messaging provider is part of WebSphere Application Server V6.1. It
is based on the service integration bus and supports the Java Messaging Service
(JMS) 1.1 domain-independent interfaces. Communicating with the service
integration bus using the default messaging provider is discussed in this section.

10

© Copyright IBM Corp. 2006. All rights reserved. 247

10.1 Messaging components of the service integration
bus

The following sections discuss the various pieces of the service integration bus
that work together to provide applications with messaging services, such as JMS.
Figure 10-1 shows a simple messaging infrastructure using the default
messaging provider in a single server.

Figure 10-1 Single server messaging

WebSphere
Application Server Node

Messaging Engine

Application

Queue

Service Integration Bus (SIB)

WebSphere
Application Server Node

Messaging Engine

Application

Queue

Service Integration Bus (SIB)

248 WebSphere Application Server V6.1 Security Handbook

Figure 10-2 illustrates a messaging infrastructure in a multi-node WebSphere
Application Server Network Deployment installation.

Figure 10-2 Multi-node messaging

10.1.1 Service integration bus

The service integration bus provides the basic framework for the Application
Server to provide JMSs to applications. Using this framework, it is possible to
connect multiple application servers into a messaging fabric.

Applications connect to the bus at specific points to send messages which are
then routed among the servers and clusters connected to the bus.

10.1.2 Messaging engine

A messaging engine is the server component running in an Application Server
that provides the messaging functionality of a service integration bus. When a
server or server cluster is added to the bus as a bus member, a messaging
engine is automatically created for it. Messaging engines host the bus
destinations that applications send messages to and receive messages from.

WebSphere
Application Server Node

Messaging Engine

Queue

WebSphere
Application Server Node

Messaging Engine

Service Integration Bus (SIB)

ApplicationApplication

WebSphere
Application Server Node

Messaging Engine

Queue

WebSphere
Application Server Node

Messaging Engine

Service Integration Bus (SIB)

ApplicationApplication

 Chapter 10. Securing the service integration bus 249

10.1.3 Foreign bus

A foreign bus is another service integration bus or a WebSphere MQ queue
manager that the local bus can communicate with. Messages can be routed to
the foreign bus directly through a link between the buses or indirectly through one
or more intermediary buses. For communication with WebSphere MQ, see 16.1,
“Application server and WebSphere MQ” on page 452.

10.1.4 Bus destination

A bus destination is a virtual location within the service integration bus that
applications send messages to or receive messages from. Destinations can be
either permanent or temporary. Temporary destinations are used by an
application during one connection with the service integration bus only. The
destinations are the following types:

Queue Used for point-to-point messaging.

Topic Space Used for publish/subscribe based messaging.

Alias An alternate name that you can use in place of the name
of another destination in either the local bus or a foreign
bus.

Foreign Used to identify a destination on another bus. This allows
the application to access the destination directly on a
foreign bus.

10.2 An overview of service integration bus security

This section discusses the three main topics of security as related to the default
messaging provider of WebSphere Application Server V6.1. Security can be
enabled on the bus if administrative security has been enabled for the Application
Server. Access to the bus and resources on the bus is role-based and
administered through the WebSphere Application Server wsadmin tool.

Note: An application cannot receive messages from any foreign destination.
An application that subscribes to a local topic space can receive messages
published to a foreign topic space if the topic space names have been mapped
between the local bus and the foreign bus.

250 WebSphere Application Server V6.1 Security Handbook

10.2.1 Authentication

To access a secured bus and the resources on the bus, a set of credentials has
to be supplied. After the credentials are verified, authorization to access the bus
is checked. Authentication is checked between client and messaging engine, and
also between messaging servers on the bus. The credentials are checked
against the user registry defined during the administrative security setup for the
Application Server. For administrative security information, see Chapter 3,
“Administrative security” on page 49.

10.2.2 Authorization

After it is connected to the bus, the messaging engine checks roles for the
destination being accessed. To access a destination on the bus, the user must
first be authorized to access the bus. Membership in the Bus Connector role
determines access to the bus. See 10.3, “Administering service integration bus
security” on page 253, for details about changing role membership. If the user or
its group does not have the Bus Connector role, connection is denied. After it is
connected to the bus, the messaging engine checks roles for the destination
being accessed.

Access to bus destinations are based on role membership. The bus destinations
each have a set of roles which are checked based on the type of actions
available for the destination. The service integration bus also has a set of default
roles that apply to all local destinations on the bus. The default roles and the
roles defined on the destination work together to define who can perform what
action on the bus destination. For example, to send a message to a queue
endpoint, the user must be a member of the Sender role for the queue endpoint
or a member of the default Sender role for the bus.

Comparison of JMS application authentication and two messaging
engines authentication: JMS application authenticating is used for the
server to authenticate the client/user. Two messaging engines authenticating is
for the two messaging engines to mutually authenticate each other.

Note: When a bus is initially created, a set of default permissions are granted
to all authenticated users with full access to all local destinations. However,
only the Server user is given the Bus Connector role. The administrator must
grant the Bus Connector role to users to give them full access to the bus and
its destinations.

 Chapter 10. Securing the service integration bus 251

Table 10-1, taken from the WebSphere Application Server V6.1 Information
Center, lists the bus destination types and the available roles for that destination.

Table 10-1 Destination role types

On the bus destinations, the following default roles are defined:

� Sender
� Receiver
� Browser
� Creator

If Topic access check required is specified on a Topic Space destination, topic
level security is enabled. After topic level security is enabled, additional
authorization checks are performed when users perform actions on topics. By
default, everyone has full access to topics within a topic space. Authorization
roles for topics are inherited from parent topics in the topic tree. The following
roles are defined for topics:

� Sender
� Receiver

For the commands to administer bus destination authorization, see 10.4,
“Administering destination security” on page 257. For the commands to the
administer topic level roles, see 10.5, “Administering topic space root roles and
topic roles” on page 259.

Table 10-2 gives a brief description for each of the roles available.

Table 10-2 Service integration bus roles

Destination type Role types

queue Sender, Receiver, Browser, Creator

port Sender, Receiver, Browser, Creator

webService Sender, Receiver, Browser, Creator

topicSpace Sender, Receiver

foreignDestination Sender

alias Sender, Receiver, Browser

Role type Capability

Bus connector Connect to the local bus.

Sender Send a message to the destination.

252 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

10.2.3 Transport security: Confidentiality

Providing credentials to the messaging engine and gaining access to the bus
destination is only part of the security battle. To secure the connection between
the client and the messaging engine, or between messaging engines, it is
important to enforce transport encryption. This is done via SSL.

When a bus is created with the security enabled, only the transport channel
chains protected by SSL are used by the bus. You can also choose to use secure
transport channel chains without enabling bus security. This is achieved if you
select Restrict the use of defined transport channel chains to those
protected by SSL for the Permitted transports.

10.3 Administering service integration bus security

Access to the service integration bus is determined by user or group membership
in the Bus Connector role. When both administrative security and the bus
security are enabled, access to the bus is checked when a user tries to connect
to a bus. By default, only Server group is assigned with this role.

The AllAuthenticated special group can be added into this role to allow all logged
in users to access the service integration bus. Another special group, called
Everyone, can be added into this role to allow unauthenticated users to connect
to the bus. Any user or group can also be assigned to this role as required.
Changing membership in the Bus Connector role can be accomplished using
either the Administrative Console or the wsadmin tool.

Receiver Receive (consume) a message from the destination.

Browser Browse (view) messages on the destination.

Creator Create a temporary destination based on the temporary
destination prefix.

Role type Capability

 Chapter 10. Securing the service integration bus 253

10.3.1 Administering the Bus Connector role in the Administrative
Console

To administer Bus Connector role:

1. In the Administrative Console, select Service integration → Buses.

2. Click the name of the service integration bus, and under Additional
Properties, click Security.

Alternatively, instead of clicking the name of the bus, under Security, click the
Enabled or Disabled link of the bus.

3. On the Bus security settings page (Figure 10-3), under Additional Properties,
click Users and groups in the bus connector role.

Figure 10-3 Security settings for service integration bus

254 WebSphere Application Server V6.1 Security Handbook

4. On the Users and groups in the bus connector role page (Figure 10-4),
perform either of the following options:

– Grant a user or group the Bus Connector role:

i. Click New.

Figure 10-4 Users and groups in the bus connector role

 Chapter 10. Securing the service integration bus 255

ii. On the New page (Figure 10-5), grant a user or group the Bus
Connector role.

Figure 10-5 Create a user or group in the bus connector role

– Remove a user or a group from the Bus Connector role. Select the user or
group from the list (Figure 10-4 on page 255) and click Delete.

10.3.2 Administering the Bus Connector role by using the wsadmin
tool

Alternatively, use the following wsadmin commands to view and modify
membership in the Bus Connector role.

� List users in Bus Connector role:

$AdminTask listUsersInBusConnectorRole {-bus busName}

� List groups in Bus Connector role:

$AdminTask listGroupsInBusConnectorRole {-bus busName}

� Add a user to Bus Connector role:

$AdminTask addUserToBusConnectorRole {-bus busName -user username}

256 WebSphere Application Server V6.1 Security Handbook

� Add a group to Bus Connector role:

$AdminTask addGroupToBusConnectorRole {-bus busName -group
groupname}

� Remove a user from Bus Connector role:

$AdminTask removeUserFromBusConnectorRole {-bus busName -user
username}

� Remove a group from Bus Connector role:

$AdminTask removeGroupFromBusConnectorRole {-bus busName -group
groupname}

10.4 Administering destination security

Access to a bus destination is based on the user or group membership in the
default roles defined on the service integration bus and the various roles defined
on the specific destination. These two sets of roles are combined to determine if
the action is authorized for the user.

10.4.1 Default roles for bus destinations

The following default role names for bus destinations are available:

� Sender
� Receiver
� Browser
� Creator

The following commands work with the default roles for destinations on the
service integration bus.

� List users in default role:

$AdminTask listUsersInDefaultRole {-bus busName -role roleName}

� List groups in default role:

$AdminTask listGroupsInDefaultRole {-bus busName -role roleName}

� Add user to default role:

$AdminTask addUserToDefaultRole {-bus busName -role roleName -user
userName}

� Add group to default role:

$AdminTask addGroupToDefaultRole {-bus busName -role roleName -group
groupName}

 Chapter 10. Securing the service integration bus 257

� Remove user from default role:

$AdminTask removeUserFromDefaultRole {-bus busName -role roleName
-user userName}

� Remove group from default role:

$AdminTask removeGroupFromDefaultRole {-bus busName -role roleName
-group groupName}

10.4.2 Destination specific roles

The following role names for bus destinations are available:

� Sender
� Receiver
� Browser
� Creator

The following commands set the roles for a specific local bus destination. For
information about working with foreign destinations, see 16.1.5, “Administering
foreign service integration bus security” on page 458 and the WebSphere
Application Server V6.1 Information Center.

� List users in role:

$AdminTask listUsersInDestinationRole {-type destinationType -bus
busName -destination destinationName -role roleName}

� List groups in role:

$AdminTask listGroupsInDestinationRole {-type destinationType -bus
busName -destination destinationName -role roleName}

� Add a user to role:

$AdminTask addUserToDestinationRole {-type destinationType -bus
busName -destination destinationName -role roleName -user userName}

� Add a group to role:

$AdminTask addGroupToDestinationRole {-type destinationType -bus
busName -destination destinationName -role roleName -group
groupName}

� Remove a user from role:

$AdminTask removeUserFromDestinationRole {-type destinationType -bus
busName -destination destinationName -role roleName -user userName}

258 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� Remove a group from role:

$AdminTask removeGroupFromDestinationRole {-type destinationType
-bus busName -destination destinationName -role roleName -user
userName}

� Override or restore the inheritance of default permissions for a destination:

$AdminTask setInheritDefaultsForDestination {-type destinationType
-bus busName -destination destinationName -inherit <true|false>}

� Override or restore the inheritance of default permissions for a destination:

$AdminTask setInheritDefaultsForDestination {-type destinationType
-bus busName -destination destinationName -inherit <true|false>}

� Determine whether a specified destination inherits default destination user
roles:

$AdminTask isInheritDefaultsForDestination {-type destinationType
-bus busName -destination destinationName}

10.5 Administering topic space root roles and topic
roles

The following top-level topics are within a topic space:

� Sender
� Receiver

The following commands are for topic space root roles:

� List users in a topic space root role:

$AdminTask listUsersInTopicSpaceRootRole {-bus busName -topicSpace
topicSpaceName -role roleName}

� List groups in a topic space root role:

$AdminTask listGroupsInTopicSpaceRootRole {-bus busName -topicSpace
topicSpaceName -role roleName}

� Add a user to a topic space root role:

$AdminTask addUserToTopicSpaceRootRole {-bus busName -topicSpace
topicSpaceName -role roleName -user userName}

� Add a group to a topic space root role:

$AdminTask addGroupToTopicSpaceRootRole {-bus busName -topicSpace
topicSpaceName -role roleName -group groupName}

 Chapter 10. Securing the service integration bus 259

� Remove a user from a topic space root role:

$AdminTask removeUserFromTopicSpaceRootRole {-bus busName
-topicSpace topicSpaceName -role roleName -user userName}

� Remove a group from a topic space root role:

$AdminTask removeGroupFromTopicSpaceRootRole {-bus busName
-topicSpace topicSpaceName -role roleName -group groupName}

The following roles are available for the topic:

� Sender
� Receiver

The following commands are for topic roles:

� List users in a topic role:

$AdminTask listUsersInTopicRole {-bus busName -topicSpace
topicSpaceName -topic topicName -role roleName}

� List groups in a topic role:

$AdminTask listGroupsInTopicRole {-bus busName -topicSpace
topicSpaceName -topic topicName -role roleName}

� Add a user to a topic role:

$AdminTask addUserToTopicRole {-bus busName -topicSpace
topicSpaceName -topic topicName -role roleName -user userName}

� Add a group to a topic role:

$AdminTask addGroupToTopicRole {-bus busName -topicSpace
topicSpaceName -topic topicName -role roleName -group groupName}

� Remove a user from a topic role:

$AdminTask removeUserFromTopicRole {-bus busName -topicSpace
topicSpaceName -topic topicName -role roleName -user userName}

� Remove a group from a topic role:

$AdminTask removeGroupFromTopicRole {-bus busName -topicSpace
topicSpaceName -topic topicName -role roleName -group groupName}

� Set or disable Sender role inheritance for a topic:

$AdminTask setInheritSenderForTopic {-bus busName -topicSpace
topicSpaceName -topic topicName -inherit <true|false>}

� Set or disable Receiver role inheritance for a topic:

$AdminTask setInheritReceiverForTopic {-bus busName -topicSpace
topicSpaceName -topic topicName -inherit <true|false>}

260 WebSphere Application Server V6.1 Security Handbook

� Determine whether a role is inheritance Receiver for a topic:

$AdminTask isInheritReceiverForTopic {-bus busName -topicSpace
topicSpaceName -topic topicName}

� Determine whether a role is inheritance Sender for a topic:

$AdminTask isInheritSenderForTopic {-bus busName -topicSpace
topicSpaceName -topic topicName}

 Chapter 10. Securing the service integration bus 261

262 WebSphere Application Server V6.1 Security Handbook

Part 2 Extending security
beyond the
application server

This part includes the following chapters:

� Chapter 11, “Security attribute propagation” on page 265

� Chapter 12, “Securing a WebSphere application using Tivoli Access
Manager” on page 297

� Chapter 13, “Trust Association Interceptors and third-party software
integration” on page 353

� Chapter 14, “Externalizing authorization with JACC” on page 403

� Chapter 15, “Web services security” on page 429

Part 2

© Copyright IBM Corp. 2006. All rights reserved. 263

� Chapter 16, “Securing access to WebSphere MQ” on page 451

� Chapter 17, “J2EE Connector security” on page 463

� Chapter 18, “Securing the database connection” on page 479

264 WebSphere Application Server V6.1 Security Handbook

Chapter 11. Security attribute
propagation

Java Authorization and Authentication Service (JAAS) provides a standard
application programming interface (API) for defining pluggable authentication
and Java 2 authorization extensions. Many LoginModules can be chained
together using JAAS configuration files. User authentication is done by
LoginModules and the authenticated user is represented by a Subject. A Subject
may also own security-related attributes, which are referred to as credentials.
Sensitive credentials that require special protection, such as private
cryptographic keys, are stored within a private credential Set. Credentials
intended to be shared, such as public key certificates, are stored within a public
credential Set. WebSphere Application Server V5.1.1.and later uses JAAS for
authentication. In WebSphere Application Server, LoginModules authenticate the
user, create the subject, and populate it with security attributes information.

The security attribute propagation feature enables WebSphere Application
Server to send security attribute information regarding the original login from one
server to another server. Prior to V5.1.1, WebSphere Application Server
authenticated the user and got the group information during login but passed
only the identity of the user downstream. This has been significantly enhanced in
Version 5.1.1. and later. This enhanced feature is called security attribute
propagation using which WebSphere Application Server can now pass security
attribute information, including authenticated Subject contents and other custom
security attributes downstream.

11

© Copyright IBM Corp. 2006. All rights reserved. 265

These security attributes that can be transported to other Application Servers
may be obtained during the initial login in the following ways:

� When WebSphere Application Server does the authentication, it can query
the user registry for static security attributes such as users language
preference or e-mail, and so on, and the subject is populated with these
attributes.

� The security attributes may also be populated by using a custom login module
in WebSphere Application Server. You can use the custom login module for
populating the dynamic attributes such as users login time, location of the
login, and Internet Protocol (IP) address of the original user. The custom
LoginModule can insert custom security attributes in the Subject which
contains the static and also the dynamic information.

� If there is an external security server, such as an IBM Tivoli Access Manager
involved, the security attributes may be propagated using the appropriate
Trust Association Interceptor for that reverse proxy server. The enhanced
TAI++ interface is able to assert a fully populated subject which can be
propagated to other servers.

The importance of security attribute propagation
Security attribute propagation is useful when you want to retain and distribute
some or all security attributes of the authenticated user, especially dynamic
attributes such as login time and logon location. Security attribute propagation
makes the JAAS Subject-based run time more useful, which can be highlighted
through the use of the Reverse Proxy Server. The originating attributes are
important because they define the access control list (ACL) of the originating
caller throughout the down stream system. When you want to maintain the
information about the originating caller identity, authenticated user strength,
location, and so on, you can use the security attribute propagation feature and
add these attributes to the Subject, which is then propagated downstream.

Note: The custom attributes or tokens in Subject are not used by
WebSphere Application Server for authentication or authorization.
However, WebSphere Application Server still handles propagation of these
customized tokens. WebSphere does not do serialization or deserialization
of the custom tokens. The Java programming language specifies the rules
for how Java code can serialize and deserialize an object. The serialization
and deserialization of the custom tokens must be carried out by the
implementation, and handled in the custom login module.

266 WebSphere Application Server V6.1 Security Handbook

11.1 Initial Login versus Propagation Login

Before the discussion of Initial Login and Propagation Login, we define identity
propagation and identity assertion.

Identity propagation refers to the low level capability of passing the users identity
to another server or system. For example, if there are two systems A and B. A
knows who the user is. The system A passes the identity of the user to system B.
This is known as identity propagation. In the context of WebSphere Application
Server, this means that the WebSphere Application Server A does the initial
authentication, authenticates the user and creates a Subject, and then
propagates the users identity to another WebSphere Application Server, which is
server B, in its trust domain.

Identity assertion is the manner in which identity of the user or system is
projected (or asserted) from one system to another. With respect to Identity
assertion and propagation, the following considerations among others are
important:

� The basis for identity propagation and assertion is the establishment of the
trust relationship between systems A and B. The systems can authenticate to
each other by using SSL based client certificates or by using a system
password which represents a “shared secret” shared only by system A and
system B.

� Strong network protection is a must while doing identity assertion. It is
important that intruders are unable to attack the system from within the

Important: Give careful consideration to the security of attribute propagation
especially if you are implementing a custom token module. During planning
consider the following aspects:

� The trust domain: Who sends and receives the information, can they be
trusted, and how.

� Confidentiality: Making sure that only the correct parties receive the
information and no one else. This can include encrypting tokens or using a
secure transport. For example, enforcing Secure Sockets Layer (SSL) for
Common Secure Interoperability Version 2 (CSIV2) communication.

� Integrity: Making sure that the information shared is correct and has not
been tampered with by third parties.

This is not a complete list, but it does give a few points of consideration to start
thinking about.

 Chapter 11. Security attribute propagation 267

network and then take advantage of the identity assertion trust relationship.
Thus, for example, if a password is used for authenticating, network
protection must be in place to protect that password.

� When asserting identities, the identities must be the same in the registry of
system A or system B. If the registries are not the same, some sort of identity
mapping has to be done which complicates things more. We do not discuss
the scenario when the identities are different in this book.

When WebSphere Application Server authenticates a request, it first checks to
see if the authentication must occur using initial login or a propagation login. An
initial login is the process of WebSphere Application Server authenticating the
user information. Typically the user proves his identity through a credential which
may be a user ID and a password, or a certificate, and WebSphere Application
Server then validates the user against the user registry and looks up secure
attributes that represent the user access rights.

Propagation login is the process of validating the user information, typically an
Lightweight Third Party Authentication (LTPA) token, and then deserializing a set
of tokens that constitute both custom objects and token objects known to the
WebSphere Application Server. For example, when the user identity is
propagated from WebSphere Application Server on system A to WebSphere
Application Server on system B, WebSphere Application Server B does a
propagation login to validate the tokens typically the LTPA token it received from
the WebSphere Application Server A to ensure that its a valid LTPA token.

11.2 Token framework

WebSphere Application Server provides a token framework to enable populating
the JAAS Subject with Java objects and to provide the serialization functionality
for those objects. The token framework is able to identify the uniqueness of the
token contained in the Authenticated Subject. This uniqueness of the token
determines how the Subject gets cached and the purpose of the token. This
uniqueness of the token also determines how the token gets recreated when the
Subject is lost.

The Token framework is useful in propagating custom security attributes
downstream. WebSphere Application Server Token framework defines four token
interfaces that enable the WebSphere Application Server run time to determine
how to propagate the token. All of the token types defined by the propagation
framework have similar interfaces. Basically, the token types are marker
interfaces (marker interface is a Java interface that does not actually define any
fields and is just used to “mark” Java classes) that implement the

268 WebSphere Application Server V6.1 Security Handbook

com.ibm.wsspi.security.token.Token interface. This interface defines most of the
methods.

The following tokens are provided by the WebSphere Application Server Token
framework:

Authorization token This token is user specific and it contains the
authorization related security attributes for the
authenticated Subject. It is used by WebSphere
Application Server to make Java 2 Platform, Enterprise
Edition (J2EE) authorization decisions

Single sign-on (SSO) token
A Single Sign-On token is also a user specific token that is
added to the JAAS Subject. It enables WebSphere
Application Server to do Single Sign-On to other
WebSphere Application Servers. It is added to the
response as a Hypertext Transfer Protocol (HTTP) cookie
and sent to the browser and represents unique
authentication. The default value of this token is the LTPA
Token Version 2. The LTPA Token Version 2 is significantly
enhanced compared to the previous LTPA Token version.

Propagation token The propagation token is not a user specific token and,
therefore, it is not stored in the Subject. Instead, the
propagation token is stored on the thread context. The
default propagation token records all user switches and
host switches.

Authentication token The authentication token contains the identity of the user.
This token is equivalent to the LTPA token in previous
versions. This token type is typically reserved for internal
WebSphere Application Server purposes. The
Authentication Token is added to the HTTP Response as
an LTPA Token cookie to maintain backward compatibility
with previous versions. Table 11-1 illustrates the Token
framework.

Table 11-1 Token framework

Token Name Interface
com.ibm.wsspi.websphere.
security.token.*

Subject based
or Thread based

Notes

Authorization
token

com.ibm.wsspi.security.token
.AuthorizationToken

Based on
authenticated
Subject

Propagated downstream

 Chapter 11. Security attribute propagation 269

11.3 Custom implementation of tokens

Each of the WebSphere Application Server tokens discussed previously can be
customized by implementing the appropriate interface. You can perform the
customization in the following two ways:

� You can add custom attributes to the default token.
� You can create your own implementation of the token by extending the

specific Token Interface.

Single
Sign-On token

com.ibm.wsspi.security.token
.SingleSignonToken

Based on
authenticated
Subject

Sent to the browser as a cookie
named LtpaToken2 by default.
Propagated downstream

Authentication
token

com.ibm.wsspi.security.token
.AuthenticationToken

Based on
authenticated
Subject

Exists for backward
compatibility. Has the old
LtpaToken for backward
compatibility. Propagated
downstream.

Propagation
token

com.ibm.wsspi.security.token
.PropagationToken

Based on the
thread and not
based on
Subject.

Propagated downstream

Token Name Interface
com.ibm.wsspi.websphere.
security.token.*

Subject based
or Thread based

Notes

Important: Any custom tokens that are used in this framework are not used
by WebSphere Application Server for authorization or authentication. The
framework serves as a way to notify WebSphere Application Server that you
want these tokens propagated in a particular way.

WebSphere Application Security run time uses the tokens in the following
situations only:

� Call the getBytes method for serialization.

� Call the getForwardable method to determine whether to serialize the
authentication token.

� Call the getUniqueId method for uniqueness.

� Call the getName and the getVersion methods for adding serialized bytes
to the token holder that is sent downstream.

270 WebSphere Application Server V6.1 Security Handbook

First, carefully consider the requirement that you must implement a custom
token. In most cases, you can add custom attributes to the default token and
retrieve them in your application code. You must also carefully consider writing
your own implementation if you want to accomplish one of the following tasks:

1. Isolate your attributes within your own implementation.

2. Serialize the information using custom serialization, which means, your java
code must be able to serialize and deserialize the token. If you are using the
default token that WebSphere Application Server provides, then WebSphere
Application Server takes care of this for you. Make custom decisions based
on the information in the customized token at the appropriate time.

3. You might need to use custom encryption and decryption for tokens.

Adding custom attributes to the default token is usually sufficient for propagating
the user or non-user specific attributes. Writing custom implementations is
usually for Service Providers to enable them to provide custom services.

11.3.1 Writing custom implementations of tokens

To modify the default implementation of the tokens:

1. If you plan to implement more than one token type, consider creating an
abstract class that implements the com.ibm.wsspi.security.token.Token
interface. All of your token implementations might extend the abstract class
and then most of the work is completed. However, if there are considerable
differences between how you handle the various token implementations, you
can implement the interface directly.

2. If you must implement a custom token interface, ensure that the methods
required by the specific token that you are trying to implement are
implemented. When the custom token object is added to the Subject, it does
affect the cache lookup of the Subject if you return something in the
getUniqueID() method. Therefore, when you are implementing a custom
token, you must ensure that the getUniqueID method returns either null or a
unique token.

3. After you implement the specific token interface, place your compiled code in
the WebSphere_Root/classes directory. Alternatively, you can place the class
in any private directory. If you place it in any private directory, add the Java
archive (JAR) file or the directory that contains your code into the
server.policy file so that it has the necessary permissions that are required by
the server code. The preferred directory to place any custom JAR files is
WebSphere_Root/lib/ext.

4. Write a JAAS login module so that the customized tokens are added and
received and processed properly during WebSphere Application Server
logins. You may make your specific token a read-only in the commit phase of

 Chapter 11. Security attribute propagation 271

the login module. If you make the token a read-only, you cannot add additional
attributes to the token within your applications. For further information about
implementing JAAS login modules, look at Chapter 5, “JAAS for
authentication in WebSphere Application Server” on page 85.

5. Add the JAAS login module to the specific application and system login
configurations. You can also add the implementation from an application.
However, to deserialize the information, you must still plug in a custom login
module, so that when the token is propagated, the WebSphere Application
Server logins receive the serialized version of the custom token.

6. In most cases while implementing a custom JAAS LoginModule, you might
add your custom login module, after the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for
receiving serialized versions of your custom token. The
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule is in the
following JAAS aliases:

WEB_INBOUND, RMI_INBOUND, DEFAULT

Add this login module to any of the application logins where you might want to
generate your custom token.

11.3.2 Common token functionality

If you are implementing more than one token type, it can be beneficial to
implement an Abstract class that all the tokens extend. This method is used in
the sample code in the additional material. To access additional material, see
Appendix B, “Additional material” on page 543. While there is functionality that is
shared, there are also certain parts of functionality that you must implement
within the subclasses, especially with regards to encryption, signatures, and
cloning. The following is a list indicates what you can share and cannot share:

� Shared functionality:

– Basic validation techniques such as expiration

– The fundamental data structure such as using a hash table to store the
user data

– Basic construction

– Most administration functions such as addAttribute(), getAttributes(),
getAttributeNames(), isForwardable(), getExpiration(), getPrincipal(),
setReadOnly(), getVersion(), and perhaps getUniqueID().

272 WebSphere Application Server V6.1 Security Handbook

� Functionality that must be token specific:

– The encryption, signing, and serialization of tokens for the getBytes()
method

– The decryption, signature validation and deserialization of tokens when
the byte[] token_bytes constructor is called

– Any advanced construction

Example 11-1 provides snippets of the token class for your review. For readability
reasons, most of the methods have their code removed (denoted by an ellipses
(...)).

Example 11-1 Snippets of the abstract token class

package com.itso.was61sec.customtokens;

import com.ibm.wsspi.security.token.Token;

public abstract class AbstractCustomToken implements Token {

java.util.Hashtable hashtable = new java.util.Hashtable();
private byte[] tokenBytes = null;
// 2 hours in millis, by default
private static long expire_period_in_millis = 2 * 60 * 60 * 1000;
private static short tokenVersion = 1;

/**
 * Constructor used to create initial AuthorizationToken instance
 */
public AbstractCustomToken(String principal) {

// Sets the token version
addAttribute("version", new Short(tokenVersion).toString());
// Sets the token expiration
addAttribute("expiration", new Long(System.currentTimeMillis()

Important: Do not start your Java package names for JAAS modules with
com.ibm.ws.security.server, because this causes problems when WebSphere
is running them.

Note: During development of these tokens, place the
WebSphere_Root/plugins/com.ibm.ws.runtime_6.1.0.jar file into the class
path. This has changed since WebSphere Application Server 6.0.x because of
WebSphere’s further adoption of OSGi.

 Chapter 11. Security attribute propagation 273

+ expire_period_in_millis).toString());
}

/**
 * Constructor used to deserialize the token bytes received during a
 * propagation login.
 */
public AbstractCustomToken(byte[] token_bytes) {

// Since the first step may or may not be to decrypt it
// we can't do much here

}

public boolean isValid() {
long expiration = getExpiration();

// if you set the expiration to 0, it does not expire
if (expiration != 0) {

// return if this token is still valid
long current_time = System.currentTimeMillis();

boolean valid = ((current_time < expiration) ? true : false);
System.out.println("isValid: returning " + valid);
return valid;

} else {
System.out.println("isValid: returning true by default");
return true;

}
}
public long getExpiration() { ... }

public boolean isForwardable() { ... }

public String getPrincipal() { ... }

abstract public byte[] getBytes();

abstract public String getName();

public short getVersion() { ... }

public String getUniqueID() {
// if you don't want to affect the cache lookup, just return NULL here.
// return null;

String cacheKeyForThisToken = "dynamic attributes";

274 WebSphere Application Server V6.1 Security Handbook

// if you do want to affect the cache lookup, return a string of
// attributes that you want factored into the lookup.
return cacheKeyForThisToken;

}

public void setReadOnly() { ... }

public String[] getAttributes(String key) { ... }

public String[] addAttribute(String key, String value) { ... }

public Enumeration getAttributeNames() { ... }

abstract public Object clone();

11.3.3 Interaction of the login module and the token modules

The following generic workflow indicates how a custom token module is handled
in a WebSphere Application Server:

1. When a user connects to a WebSphere Application Server, the corresponding
JAAS login chain is run and the custom login module is run.

2. The login module must go through all the tokens that the client has and look
for any of the corresponding token type. If a token is present then the user has
already logged in previously and it is considered a propagation login.

3. The token object is now constructed. Depending on the login the construction
of the token is different. In a case where a propagation login is occurring, the
byte[] token_bytes constructor of that token type is called. In the initial login
case, a token object is constructed using the String principal constructor and
information is gathered from the default authentication token.

4. The token is added to the Subject associated with the request and you can
now use it. It can be especially useful in conjunction with custom JACC
providers which can extract information from the tokens.

5. When WebSphere Application Server wants to serialize the token to send it
somewhere, the getBytes() method is called. This method must serialize itself
and perhaps sign and encrypt the serialized token.

 Chapter 11. Security attribute propagation 275

11.3.4 Authorization token

The authorization token contains most of the user’s information. It contains the
authorization-related security attributes that are propagated through the Subject.
The WebSphere Application Server authorization engine uses the default
authorization token to make J2EE authorization decisions.

Default authorization token
You can use the default authorization token when you want to add security
attributes that get propagated downstream. These security attributes must be
specific to the user associated with the authenticated Subject. If they are not
specific to the user, consider adding them in the propagation token that we
discuss later.

Adding custom attributes to the default authorization token
To add attributes into the default AuthorizationToken, use a custom JAAS login
module. This custom login module must be configured in the WEB_INBOUND
JAAS login module configuration (system login). Two login modules are defined
for the WEB_INBOUND JAAS alias:

� com.ibm.ws.security.server.lm.ltpaLoginModule
� com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

Figure 11-1 shows the two configurations.

Figure 11-1 JAAS login configurations

276 WebSphere Application Server V6.1 Security Handbook

You can insert the custom login module after the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, by using a
higher module order number in the definition.

First login occurs in ltpaLoginModule and after that a default AuthorizationToken
is created in the wsMapDefaultInboundLoginModule. As a third step, your
custom login module can add custom attributes to the authorization token.

Custom authorization token
When must you implement a custom authorization token?

The default AuthorizationToken is sufficient for propagating attributes that are
user-specific. However, you can write a custom authorization token
implementation if you want to accomplish one of the following:

� Isolate your attributes within your own implementation.

� Serialize the information using custom serialization. You must deserialize the
bytes at the target and add that information back on the thread. This task also
might include encryption and decryption.

� Affect the overall uniqueness of the Subject using the getUniqueID() method.

� If you want to make custom authorization decisions using the information in
the token at the appropriate time.

Implementing a custom authorization token
To implement a custom authorization token:

1. Implement the com.ibm.wsspi.security.token.AuthorizationToken interface.
The sample code shown in Example 11-2 extends from an abstract class. See
Appendix B, “Additional material” on page 543 to obtain the sample code. If
you are only implementing an authorization token, it might be easier to
implement the interface directly.

Example 11-2 Snippets of the sample implementation of an authorization token

package com.itso.was61sec.customtokens;

import com.ibm.wsspi.security.token.AuthorizationToken;

public class CustomAuthorizationTokenImpl extends
AbstractCustomToken implements AuthorizationToken {

public CustomAuthorizationTokenImpl(byte[] token_bytes) {
super(token_bytes);
// The reverse of what we did in getBytes must be done here.
try {

 Chapter 11. Security attribute propagation 277

// If you encrypted the token then you would decrypt it
// here. We didn't encrypt it, so we can just deserialize.
hashtable = (java.util.Hashtable)

com.ibm.wsspi.security.token.WSOpaqueTokenHelper
.deserialize(token_bytes);

} catch (Exception e) {
e.printStackTrace();

}
}

public CustomAuthorizationTokenImpl(String principal) {
super(principal);
// Sets the principal in the token
addAttribute("principal", principal);

}

public byte[] getBytes() {
// get bytes goes through the following flow, depending on how
// secure and trusted you want the token.
// 1. Serialize user data
// 2. Sign serialized data
// 3. Encrypt data
// The four token types often have different levels of
// security during transport so getBytes should probably
// be a subclass specific function.
if (hashtable != null) {

try {
// Do this if the object is set to read-only during login
// commit,
// because this makes sure that no new data gets set.

// You can deserialize this in the downstream login module using
// WSOpaqueTokenHelper.deserialize()
if (isReadOnly() && getTokenBytes() == null)
setTokenBytes(com.ibm.wsspi.security.token.WSOpaqueTokenHelper

.serialize(hashtable));

// You could encrypt the token's bytes here, but
// we will just pass them back unencrypted
return getTokenBytes();

} catch (Exception e) {
e.printStackTrace();
return null;

}
}

278 WebSphere Application Server V6.1 Security Handbook

System.out.println("getBytes: returning null");
return null;

}
}

2. Write a custom JAAS login module that adds and receives the custom
AuthorizationToken during WebSphere Application Server login. You can see
an example of a custom JAAS login module in Example 5-1 on page 90.

3. Add the custom login module to the application and system login
configurations that already contain the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for
receiving serialized versions of your custom authorization token. Add your
custom login module after
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, because
the custom AuthorizationToken implementation relies on the information
wsMapDefaultInboundLoginModule adds.

11.3.5 Single Sign-On token

The default Single Sign-On token is used by the WebSphere Application Server
runtime code only. It is added to the authenticated Subject and also added to the
HTTP response as an HTTP cookie.

Default Single Sign-On token
WebSphere Application Server defines a default SingleSignonToken with the
name of LtpaToken and the Version 2. The name and version together form the
cookie name and therefore the cookie name added is LtpaToken2. There are
size limitations for this token when it is added as an HTTP cookie and therefore
be careful about adding extra attributes to this token.

We recommend that any time you use cookies, use the Secure Sockets Layer
protocol to protect the request. Web users can use an SSO token to authenticate
once when they are accessing Web applications across multiple WebSphere
Application Servers.

Custom Single Sign-On token
You can implement your own custom SSO token which adds an HTTP response
as an HTTP cookie. Consider writing your own implementation of the Single
Sign-On token if you want to accomplish one of the following tasks:

� Separate your attributes within your custom implementation.
� Use custom serialization, or custom encryption/decryption.
� Check the uniqueness of the subject using the getUniqueID() method.

 Chapter 11. Security attribute propagation 279

Keep in mind the following guidelines while implementing your custom Single
Sign-On token:

� HTTP cookies have a size limitation, therefore do not add too much data to
this token.

� This cookie is not used and nor is handled by the WebSphere Application
Server run time.

The following steps explain the process for developing a custom Single Sign-On
token:

1. Write your custom token properly. The sample code in additional properties
extends a base token class. You can implement the
com.ibm.wsspi.security.token.SingleSignonToken interface directly.

2. Add the class to WebSphere_Root/classes or place it into a JAR file and then
into WebSphere_Root/lib/ext. Make sure that you add this directory or the
JAR file to the server.policy file so that WebSphere Application Server can
load your classes.

3. Write the JAAS login module that creates and adds your tokens properly
during WebSphere Application Server logins. You can see an example of a
custom JAAS login module in Example 5-1 on page 90.

4. Add your JAAS login module to WebSphere Application Server system login
configurations that contain the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for
receiving serialized versions of your custom propagation token.

11.3.6 Propagation token

The propagation token is not user specific and thus not part of the Subject. A
default PropagationToken is stored on the thread of execution for applications.
WebSphere Application Server propagates this PropagationToken downstream
and the token stays on the thread context. When a request is sent outbound to
another server, the propagation token on that thread is sent with the request and
the token is executed by the target server.

Default propagation token
The default propagation token does the following tasks:

1. It monitors and logs all user switches and host switches. The token data must
be available from within the container of any resource where the
PropagationToken lands. Remember that you must enable the propagation
feature at each server where a request is sent in order for propagation to
work.

280 WebSphere Application Server V6.1 Security Handbook

2. There is a WSSecurityHelper class that has APIs for accessing the
PropagationToken attributes and for adding custom attributes to the
propagation token in your application code.

3. After you add attributes to the PropagationToken, you cannot change these
attributes. This enables the WebSphere Application Server security run time
to add auditable information and have that information remain there for the life
of the invocation. Any time that you add an attribute to a specific key, an
ArrayList is stored to hold that attribute. The order of the attributes added is
preserved. The first element in the String Array returned is the first attribute
added for that specific key.

4. In the default PropagationToken, any data changes to the token is recorded
using a change flag. These changes are tracked to enable WebSphere
Application Server to know when to re-send the authentication information
downstream so that the downstream server has those changes. A CSIV2
session is maintained between servers for an authenticated client. Whenever
the PropagationToken changes, a new CSIV2 session is generated and a
new authentication occurs. Therefore, if there are frequent changes to the
PropagationToken during a method, it causes frequent downstream calls
which may impact performance.

5. Whenever the PropagationToken is propagated either horizontally or
downstream, the name of the receiving Application Server is logged into the
PropagationToken. The format for each server in the list is
“Cell:Node:Server”, which provides you access to the cell name, node name,
and server name of each Application Server that receives the invocation.

6. You can also get the caller list from the PropagationToken. Anytime an
authenticated Subject is generated, it is logged in the token. Basically,
whenever an authenticated user is set on the thread, the user is logged in the
default PropagationToken. At times, the same user might be logged in
multiple times if the RunAs user is different from the caller.

Adding custom attributes to the default propagation token
You can add custom attributes to the default PropagationToken for application
usage. This token is transported along with the request to downstream servers
so that the attributes are available in your downstream Enterprise JavaBeans
(EJB) or in your Application Servers when they are required.

Keep in mind the following considerations to add attributes when you use the
default PropagationToken:

� When you add information to the PropagationToken, it affects CSIV2 session
caching. Add information sparingly between remote requests.

� After you add information with a specific key, the information cannot be
removed.

 Chapter 11. Security attribute propagation 281

� You can add as many values to a specific key as you require. However, all of
the values are returned as a string array in the order they were added.
Therefore, keep track of values added and their sequence.

� The PropagationToken is available only on servers where security attribute
propagation is enabled and WebSphere application security is enabled.

� An application cannot use keys that begin with either
com.ibm.websphere.security or com.ibm.wsspi.security. These prefixes are
reserved.

Implementing a custom propagation token
The default PropagationToken is typically sufficient for propagating attributes
that are not user-specific. Consider writing your own implementation if you want
to do the following tasks:

� Isolate your attributes within your own implementation.
� Use custom serialization.
� Use custom encryption and decryption for your tokens.

To implement a custom propagation token:

1. Code your implementation of the PropagationToken interface. The sample
code implements com.ibm.wsspi.security.token.PropagationToken.You can
download the sample from the additional materials.

2. Add the class to <WebSphere_root>/classes, then add the JAR file to the
server.policy file so that WebSphere Application Server can load your
classes.

3. Write the JAAS login module that creates and adds your tokens properly
during WebSphere Application Server logins.

4. Add your JAAS login module to WebSphere Application Server system login
configurations that contain the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for
receiving serialized versions of your custom propagation token.

The com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule is
used in the following JAAS login module configurations, which are
WEB_INBOUND, RMI_INBOUND, DEFAULT. You can also add this login
module to any of the application logins where you might want to generate
your custom PropagationToken and store it on the thread context during the
login.

282 WebSphere Application Server V6.1 Security Handbook

11.3.7 Authentication token

Because the name indicates the authentication token, it contains the
authentication information of the user. The authentication token serves the same
function as the old LTPA token in earlier versions of WebSphere Application
Server (prior to V5.1.1). The default authentication token is reserved for
WebSphere Application Server run time and is authentication-mechanism
specific. The Single Sign-On token is the new token format and the
authentication token just serves the purpose of backward compatibility. Any
modifications to this token by custom code can potentially cause interoperability
problems.

11.3.8 Changing the token factory associated with the default token

When WebSphere Application Server generates the default tokens, it uses an
appropriate TokenFactory class for creating the default tokens. This token factory
class is specified using a custom property in the WebSphere Application Server.
To view the token class that is used by default for the tokens:

1. Launch the WebSphere Application Server Administrative Console and log in.

2. Select Security → Secure administration, applications, and
infrastructure.

3. On the right side of the page, in the Authentication section, select Custom
properties. Among the various properties that you can set, you see a list of
token factories. You can use the filter function of this view to narrow the list to
only token properties.

You can plug in your own custom TokenFactory class implementation. Locate the
specific token factory you want to modify. Associate your custom token factory
implementation class with the TokenFactory property value. Also, verify that your
implementation classes are available for the WebSphere Application Server
classloader.

If you must perform your own signing and encryption of the default token,
implement the following classes:

� com.ibm.wsspi.security.ltpa.Token
� com.ibm.wsspi.security.ltpa.TokenFactory

 Chapter 11. Security attribute propagation 283

You can use the LTPA keys or you can use your own keys for instantiating and
validating your token implementation. If you use your own keys, they must be the
same everywhere to validate the tokens that are generated using these keys.

� Authorization token, propagation token

For both these tokens, the default TokenFactory used is called
com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory
encodes the data, but does not encrypt the data in the AuthorizationToken.
This is because the AuthorizationToken is transmitted over CSIV2 using SSL
and therefore there is no requirement to encrypt the token. If you require
additional security for the AuthorizationToken, you can associate a different
TokenFactory implementation with this property to get encryption.

For example, if you associate com.ibm.ws.security.ltpa.LTPAToken2Factory
with this property, the token uses an encryption called the Advanced
Encryption Standard (AES). However, there may be a performance impact
with the encryption.

� Single Sign-On token

Single Sign-On token, by default, uses the
com.ibm.ws.security.ltpa.LTPAToken2Factory class, which creates the token
LtpaToken2. This TokenFactory uses the AES/CBC/PKCS5 Padding cipher
for encoding.

� Authentication token

The default TokenFactory for authentication token is called
com.ibm.ws.security.ltpa.LTPATokenFactory. The LTPATokenFactory uses
the DESede/ECB/PKCS5Padding cipher. This token factory creates an
interoperable LTPA token.

Note: If you change this TokenFactory, you lose the interoperability with
any servers running a version, prior to V5.1.1, of WebSphere Application
Server that use the default TokenFactory. Only servers running WebSphere
Application Server V5.1.1 or later with propagation enabled are aware of
the LtpaToken2 cookie.

Note: If you modify this TokenFactory, you lose the interoperability with
any servers running a version of WebSphere Application Server prior to
Version 5.1.1 and any other servers that do not support the new
TokenFactory implementation.

284 WebSphere Application Server V6.1 Security Handbook

If you associate com.ibm.ws.security.ltpa.LTPAToken2Factory with the
com.ibm.wsspi.security.token.authenticationTokenFactory property, the
token is encrypted using AES. However, you must weigh the performance
against your security requirements.

11.4 Horizontal propagation

In horizontal propagation, the Subject containing the security attributes are
propagated amongst the front-end WebSphere Application Servers. The default
Single Sign-On token is LTPAToken Version 2. You can create your own custom
token and add that to the Subject in a custom login module. The token contains
the following information:

� The users unique ID
� Timestamp
� The key to lookup the serialized security attributes
� The originating servers’ Java Management Extensions (JMX™)

administration endpoint which tells the receiving server how to communicate
with it

During the WebSphere Application Server initial login process, the Single
Sign-On token is added to the Subject and the token is added to the HTTP
response as a cookie. This login process can also be customized to add custom
information to the Single Sign-On token or to the Subject by using JAAS
LoginModules. If you have horizontal propagation enabled, it enables the
front-end receiving servers to retrieve the Subject information and extract the
security attributes information from the Subject. In this case, initial login occurs at
the originating server and propagation login occurs at the receiving servers.

11.4.1 Horizontal propagation using Dynacache

When WebSphere Application Servers are configured in a cluster and in the
same Distributed Replication Service (DRS) domain, the Application Server
propagates the serialized information to all the servers within the same domain.
The following actions happen during horizontal propagation by using Dynacache
(Figure 11-2):

1. Server 1 and Server 2 are members of the same DRS domain. Application1 is
deployed on Server 1 and Server 2. Assume the user is logged in on Server
1. During the initial login process on Server 1, a fully populated JAAS Subject
containing the tokens is created and placed in Dynacache. The Single
Sign-On token is created and placed on the HTTP response as a cookie.

2. Dynacache is replicated in the DRS domain.

 Chapter 11. Security attribute propagation 285

3. An HTTP request from application1 on Server 1 makes another call to
application1 on Server 2. The original login attributes are found on Server 2
without additional remote requests. This is because the Single Sign-On token
is passed to Server 2 by using a cookie.

4. WebSphere Application Server security searches for authentication
information, using the Single Sign-On token as the key. It first searches in the
local security cache for the Subject. Because this login is done on Server 1,
the subject is instantiated on Server 1. Hence, the local security cache on
Server 2 does not have the instantiated subject. Then WebSphere Application
Server security searches in Dynacache for tokens. Because Server 2 is in the
same DRS domain, the tokens are found in the Dynacache.

Figure 11-2 Horizontal propagation sample

The Lifetime of Dynacache entry is the same as the LtpaToken lifetime (120
minutes by default).

11.4.2 Horizontal propagation using JMX

Horizontal propagation can be accomplished by using the JMX infrastructure. In
Figure 11-3 on page 288, Server 1 and Server 2 are configured in the same Data
Replication Service Domain. Server 3 and Server 4 are configured in a separate
Data Replication Service Domain.

286 WebSphere Application Server V6.1 Security Handbook

The process is explained as follows:

1. The request originates from application1 on Server 1 (or Server 2). During the
initial login, a fully populated Subject is created and put in DynaCache which
gets replicated by DRS to all the servers within the DRS domain.

2. The request is redirected to application2 on either Server 3 or Server 4.
Server3 gets the Single Sign-On token from Server 1. It uses the Single
Sign-On token as a key, and checks the DynaCache for the serialized
information. The serialized information is not found in the DynaCache
because the Server 3 and Server 4 are not configured in the same DRS
domain. As a result, a secure remote JMX request is sent back to the
originating server (Server 1), that hosts application1 to obtain the Subject
information. Server 1 sends the serialized information to Server 3.

3. Server3 is able to deserialize the Subject and decrypt the Tokens to get the
security attribute information. This results in a propagation login by Server 3.

Use of JMX across cells: If you are using JMX across cells, significant trust is
implied between the cells. In addition to the requirement for shared LTPA
encryption keys, the cell level server identities end up with substantial
authority across the cell boundaries. This is because as with any
administrative calls, the JMX call requires authentication and authorization.
Looking at Figure 11-3 on page 288 and assuming that Servers 1 and 2 make
one cell and Servers 3 and 4 make another, when Server 3 makes a call, it
must send its server user ID and password to server 1. Server A, then,
validates this password and ensures that the user ID has administrative
authority to its cell, which has significant implications. This means that for
cross cell Web layer (called horizontal) subject propagation to work, it must
have the following:

� The receiving server (Server 3) must send its administrative secret
password to server 1. Server 1, therefore now knows the server user ID and
password for Server 3’s cell, and that ID has full administrative authority.

� Server 1’s cell must grant administrative authority to Server B’s server ID.
Server B, thus, has administrative authority over server 1's cell.

Ultimately both cells now completely trust each other. Each has administrative
authority over the other. The same behavior holds with propagation within a cell,
but in that case there is no issue because servers within a cell already trust
each other and share a common administrative identity.

Note that this does not apply when downstream propagation occurs using
Internet Inter-ORB Protocol (IIOP). In that case the upstream server simply
sends the subject to the downstream server. No JMX callbacks are required.

 Chapter 11. Security attribute propagation 287

Figure 11-3 Horizontal propagation using JMX

By using a single JMX remote call back to the originating server, the following
benefits are realized:

� You get the login information from the original server.

� You are not required to perform any User registry calls because the
Application Server can regenerate the subject from the serialized information.

� After the Server 3 gets the serialized information, it regenerates the Subject
and also puts that in the DynaCache for subsequent horizontal propagation
using dynacache for its DRS domain.

� If the JMX Call fails for some reason, WebSphere Application Server falls
back to an initial login. In this scenario, the login modules are called and the
Subject is recreated.

288 WebSphere Application Server V6.1 Security Handbook

Earlier versions of WebSphere Application Server supported Single Sign-On
from Server 1 to Server 2 or Server 3 using the LTPA token. Ever since
WebSphere Application Server V6.0, this has been supported using the Single
Sign-On token. This means that if you do not enable Web propagation, the Single
Sign-On still works using the Single Sign-On token which gets sent as a cookie to
the browser and to the servers of WebSphere Application Server. The
information contained in the Single Sign-On token enables the servers of
WebSphere Application Server to perform SSO. By enabling horizontal
propagation, you can pass the complete Subject to other front-end WebSphere
Application Server profiles.

There are some performance implications of enabling horizontal propagation.
Enabling Web inbound propagation eliminates some user registry calls. However,
the deserialization and the decryption of tokens are processing intensive tasks
and may impact performance. We recommend that you run performance tests in
your environment with typical number of users, with the propagation enabled and
with propagation disabled to determine the implications.

11.5 Downstream propagation

Previously there were two authentication protocols supported by IBM Secure
Association Service (SAS) is the authentication protocol used by all previous
releases of the WebSphere product. SAS is deprecated and it is maintained for
backwards compatibility. The Object Management Group (OMG) has defined an
authentication protocol called CSIV2 so that vendors can interoperate securely.
CSIV2 is implemented in WebSphere Application Server with more features than
SAS and is considered the strategic protocol. In fact, the only time the SAS
panels are shown in the administration console is when there is an older server
federated into the domain.

Note: For the remote JMX Administration call across the cell to succeed,
the two servers must share common security infrastructure, registries, SSL
Keys, and so on. Also the cell’s security server ID has administrator access
to the remote cell.

Important: SAS is supported only between Version 6.0.x and previous
version servers that have been federated in a Version 6.1 cell.

 Chapter 11. Security attribute propagation 289

Downstream propagation uses Remote Method Invocation (RMI) over IIOP to
access enterprise beans running on a back-end, which means, a downstream
server. The security attributes are passed to the enterprise beans running on the
downstream server by using the CSIV2 protocol that is established between the
WebSphere Application Servers. Basically downstream propagation enables a
downstream server to accept the client identity established on an upstream
server, without having to reauthenticate.

Types of downstream propagation are possible by using RMI:

� RMI_INBOUND

When you enable security attribute propagation for RMI_INBOUND, then this
indicates that the server can receive propagated security attributes from other
servers in the same realm over CSIV2 protocol.

� RMI_OUTBOUND

When you enable security attribute propagation for RMI_OUTBOUND, this
indicates that the server can send (propagate) security attributes from itself to
other servers in the same realm over CSIV2 protocol. For example, consider a
scenario described in Figure 11-4 on page 291 where Server 1 makes an
RMI call to Server 5. The following actions occur:

a. Subject contents and the PropagationToken contents are serialized at
Server 1.

b. Server 1 makes an RMI call to Server 5.

c. Serialized content sent over CSIV2 protocol to the target server (Server 5)
that has RMI_INBOUND propagation enabled.

d. If the receiving server does not support security attribute tokens,
WebSphere Application Server sends the LTPA token only.

11.5.1 Downstream propagation scenario

In Figure 11-4 on page 291, Server 1 and Server 2 are in the same DRS domain.
Server 5 is a downstream server to which an RMI call is made from Server 1.

1. User authenticates to Server 1. Subject is created during the login process at
the front-end server (Server 1) in this case, either by a propagation login or a
user registry login.

2. Server 1 and Server 5 have downstream propagation enabled.

3. The user makes an RMI request to an EJB running on application3 on Server
5.

290 WebSphere Application Server V6.1 Security Handbook

4. WebSphere Application Server propagates the tokens from Subject including
custom tokens from Server 1 to the downstream WebSphere Application
Server, Server 5. Thus, the security information is available for Server 5 for
enterprise bean invocations.

5. If tokens are available, a propagation login is performed otherwise an initial
login is performed. The subject is generated at the downstream server
(Server 5) and is added to the CSIV2 session.

Figure 11-4 Downstream propagation scenario

The downstream server trusts the upstream server, both RMI outbound and
inbound propagation must be enabled.

 Chapter 11. Security attribute propagation 291

11.6 Enabling security attribute propagation

CSIV2 defines the Security Attribute Service that enables interoperable
authentication, delegation, and privileges. You can selectively enable parts of
security attribute propagation depending on your server configuration and
requirements. For example, you can choose to enable horizontal propagation
among front-end WebSphere Application Servers using DynaCache or JMX. You
can also choose to enable downstream propagation. Typically, both types are
enabled for any given cell.

11.6.1 Configuring security attribute propagation for
horizontal propagation

To configure WebSphere Application Server for horizontal propagation:

1. Launch the Administrative Console and log in.

2. Select Security → Secure administration, applications, and
infrastructure. Select Web security and then Single Sign-On.

3. Optional: Earlier versions of WebSphere Application Server, prior to V5.1.1,
did not support security attribute propagation. It used an LTPA token for SSO
purposes.

If you must interoperate with such servers, select the Interoperability Mode
option. A WebSphere Application Server does not support security attribute
propagation receive the LTPA token and the propagation token, instead it
ignores the security attribute information that it does not understand.

292 WebSphere Application Server V6.1 Security Handbook

4. Select the Web inbound security attribute propagation option, which
enables horizontal propagation (Figure 11-5).

See Figure 11-5.

Figure 11-5 Horizontal propagation

With the Web inbound security attribute propagation enabled, the security
attributes of the originating server where the initial login occurred, gets
propagated to the receiving server. These security attributes include any custom
attributes or token that are set in the custom login modules in the login server.

11.6.2 Enabling downstream propagation

For downstream propagation, configure CSIV2 inbound and CSIV2 outbound:

1. Select Security → Secure administration, applications, and
infrastructure.

2. Under RMI/IIOP security, click CSIV2 inbound authentication. The login
configuration field specifies RMI_INBOUND as the system login configuration
used for inbound requests. This cannot be changed. However, you can chain
custom login modules to the login configuration.

 Chapter 11. Security attribute propagation 293

On this panel, ensure that Security Attribute Propagation is checked. Click
Apply.

3. Select Security → Secure administration, applications, and
infrastructure. Under RMI/IIOP security, click CSIV2 Outbound
authentication. Note that the login configuration says RMI_OUTBOUND. You
cannot change the Login Configuration but you can add additional custom
login modules to the configuration.

4. Ensure that Security Attribute Propagation is checked in this panel
whenever outbound security attribute propagation is selected.

5. Click Apply.

6. Save the configuration for WebSphere.

Important: WebSphere Application Server propagates only the objects
within the Subject that it can serialize. For the custom objects within the
Subject, take care of serialization for it to be propagated properly.

Optional: Select the Custom Outbound Mapping option if you deselect
the Security Attribute Propagation option and you want to use the
RMI_OUTBOUND login configuration. If neither of the options, Custom
Outbound Mapping option or Security Attribute Propagation option, is
selected, then WebSphere Application Server does not call the
RMI_OUTBOUND login configuration. If you require to plug in a credential
mapping login module, you must select the Custom Outbound Mapping
option.

Note: If you want to propagate security attributes to a different realm then
you must specify the target realms in the Trusted target realms field. You
must specify each trusted target realm and separate them by a pipe (|)
character. For example, specify server_name.domain:port_number for a
Lightweight Directory Access Protocol (LDAP) server or the machine name
for local operating system.

294 WebSphere Application Server V6.1 Security Handbook

11.7 Advantages of security attribute propagation

The propagation of security attributes in WebSphere Application has significant
benefits. It eliminates the requirement to perform registry look-ups at each hop
along an invocation.

In your environment, you might use a Web proxy server (for example, WebSEAL)
to perform user authentication and gather group information and other security
attributes. Previous to 6.0.x, WebSphere Application Server can only use the
identity of the user and disregard all the other security attributes. Since then,
information that is obtained from the Web proxy server can be used by
WebSphere Application Server and propagated downstream to other server
resources without additional calls to the user registry.

Another significant benefit of the security attribute propagation is that the user
switches that occur because of J2EE Run-As configurations do not cause the
Application Server to lose the original caller information. This information is
stored in the propagation token that is located on the running thread.

This also enables third-party providers to plug in custom tokens which can then
be propagated via custom login modules. The token interface contains a
getBytes() method that enables the token implementation to define custom
serialization, or encryption methods, or both.

Security attribute propagation provides the ability to have a unique ID for each
token type. This unique ID is used to formulate a more unique subject identifier
than just the user name in cases where dynamic attributes might change the
context of a user login. The token interface has a getUniqueId() method that is
used for returning a unique string for caching purposes.

For example, you might have to propagate the time of the day when the user logs
into the system. You can generate this time of the day during the login using
either a Web proxy server or by configuring a custom login module in the
WEB_INBOUND login configuration. This information can then be added to the
subject prior to serialization. Other attributes might be added to the subject and
use a unique ID. All of the unique IDs must be considered for the uniqueness of
the entire Subject. WebSphere Application Server has the ability to specify what
is unique about the information in the Subject, which might affect how the user
accesses the subject later.

 Chapter 11. Security attribute propagation 295

296 WebSphere Application Server V6.1 Security Handbook

Chapter 12. Securing a WebSphere
application using Tivoli
Access Manager

This chapter discusses IBM Tivoli Access Manager for e-business (Access
Manager) use in securing WebSphere Application Server V6.1 applications.

12

© Copyright IBM Corp. 2006. All rights reserved. 297

12.1 Introduction to Tivoli Access Manager

IBM Tivoli Access Manager for e-business (Access Manager) is a policy-based
access control solution for e-business and enterprise applications. Access
Manager is a collected suite of security management services with a variety of
distributed blades and plug-ins for the infrastructure components of e-business
applications.

12.1.1 Benefits

Tivoli Access Manager allows you to control access across your entire
e-business infrastructure, without multiple and possibly conflicting security
policies, for any enterprise with multiple Web-based applications.

There is a business-wide change in focus from implementing application-specific
security to prevent inappropriate users from accessing resources, towards
attempting to develop a common and consistent security policy and base its
implementation on common reusable security services and infrastructure.

This is about controlling network identity, correctly identifying a user after
authentication and passing that identity together with credentials through to the
other components of the e-business infrastructure, applications included. Then
the permissions for that identity can be tested locally and access can be given,
depending on the security policy for those resources through authorization.

The externalized security provided by Tivoli Access Manager includes strategies
to include legacy applications in single sign-on (SSO) solutions through
integration with pre-existing user registries and authorization databases.

If a user, regardless of which application a user accesses within an enterprise,
always logs in with the same ID and password, although there may be a
requirement for stronger authentication or re-authentication, perhaps token or
certificate-based around particularly sensitive information or high value
transactions, then this consistent user experience is displayed, from the user’s
viewpoint at least, as SSO. Attempting to ensure users have only a single identity
within your network increases the likelihood of leveraging existing infrastructure
to actually provide it.

The central definition and management/administration of security policies
provides a number of benefits, such as:

� Reduced security risk through ensured consistency from a services-based
security architecture.

� Lower administration costs due to centralized administration of a reduced
number of security systems. This also allows for the “de-skilling” of support

298 WebSphere Application Server V6.1 Security Handbook

staff because the security policies are based on a single application suite
rather than, as in many current examples, the multiple and different operating
systems of chained infrastructure platforms.

� Faster development and deployment with a common services-based
architecture.

� Reduced application development and maintenance costs from increased
efficiency and productivity by saving on isolated system and/or application
specific security development efforts

� For those industries where legislative compliance impacts security, for
example privacy requirements, centralized architecture provides a more
responsive environment and also a single point to apply policy.

� Tivoli Access Manager’s auditing can also help prove compliance to
Sarbanes-Oxley (SOX) Act, Health Insurance Portability and Accountability
Act (HIPAA), or the Basel II international banking accord.

All of these benefits contribute to enabling an enterprise to be faster to market
with new applications and features.

The down side of having a single security solution based on a single technology
or product is that any product-specific security exploitation results in
enterprise-wide vulnerability. It does, however, let you concentrate your
defenses rather than be forced to dissipate your efforts across multiple platforms
and products.

12.1.2 When to use Tivoli Access Manager for e-Business in
conjunction with WebSphere Application Server

Both Tivoli Access Manager and WebSphere Application Server are good
products that are leaders in their areas. They also compliment each other well
when appropriate. The decision whether to use Tivoli Access Manager is
dependant on whether the features that it provides are required. WebSphere
Application Server is a high quality secure product in its own right but Tivoli
Access Manager can increase the number of security features available to the
user. When deciding whether to use Tivoli Access Manager the user must
identify specific requirements and then determine what additional value Tivoli
Access Manager provides.

Some extra features that Tivoli Access Manager provides are:

� Web SSO across multiple products such as WebSphere Application Server
and WebLogic. Note that if the environment contains only WebSphere
Application Server and Portal then this feature is already provided by

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 299

WebSphere. This is because multiple WebSphere Application Server servers
and cells (along with Portal) can form a single SSO domain

� Cross Domain Name Server (DNS) domain SSO.

� Advanced authentication, which includes SecurID, password strength testing,
password expiration, login rules, Resource Access Control Facility (RACF)
authentication, multi factor authentication, step up authentication, and so on.

� Defense-in-depth

– WebSEAL can be placed in a demilitarized zone (DMZ) in front of a Web
server.

– WebSEAL can ensure that only authenticated traffic enters enterprise
intranet.

– This allows multiple authorization enforcement points throughout the
environment that use the same policies.

Note: Using WebSEAL for defense in depth raises the following issues:

� More infrastructure is required in the DMZ.

� Proxy server configuration raises URL issues that must be
addressed early in development.

� If any application does not require authentication then the DMZ
authentication requirement becomes invalid.

Attention: Except for Tivoli Access Manager for WebSphere Application
Server Embedded, Tivoli Access Manager 6.0 is under different licensing
arrangements to WebSphere Application Server. While the Tivoli Access
Manager Base components are shipped as part of WebSphere Application
Server ND, products that are part of the Web Security suite, such as
WebSEAL, is required to be purchased under a Tivoli license agreement.

300 WebSphere Application Server V6.1 Security Handbook

12.1.3 Reverse proxies for authentication

One of the more well known products in the Tivoli Access Manager range is
WebSEAL. WebSEAL is a reverse proxy that has the ability to authenticate and
perform coarse grained authorization. Using reverse proxies for authentication in
the DMZ as a point-of-contact is a popular and common Web security
architecture. Even though Figure 12-1 is Tivoli specific, it is a good example of
the standard architecture for a reverse proxy deployment. Reverse proxies are
designed to work with firewalls to greatly reduce the exposure of Web servers
and Application Servers to external attacks.

All the user’s contact with the Web site is through reverse proxy. When the user
first makes a request to the Web site the reverse proxy has the ability to
authenticate the user and also carry out coarse grained authorization. The
reverse proxy server then retrieves the Web resources through the firewall from
the actual Web server. Some reverse proxies, including WebSEAL, allow caching
of Web resources at the proxy level, helping speed up retrieval of static pages
and images.

There are some situations where a reverse proxy is useful, such as acting as a
point-of-contact in a federated SSO environment. But as with every technology,
reverse proxies are appropriate in many situations but are not the answer in
every case.

12.1.4 Access Manager Secure Domain

The Access Manager Secure Domain provides a secure computing environment
in which Access Manager enforces security policies for authentication,
authorization, and access control. It ignores performance, redundancy, and
availability considerations which must be addressed in production systems.
Figure 12-1 on page 302 shows the essential components.

IBM Tivoli Access Manager V6.0 requires a user registry and can be configured
to use different products, including Microsoft Active Directory® and iPlanet, but
the product itself ships with IBM Tivoli Directory Server V6.0, underpinned by the
IBM DB2 Universal Database™.

The Access Manager Policy Server maintains the master authorization policy
database, which contains the security policy information for all resources and all
credential information of all participants within the secure domain, both users and
servers. A secure domain contains of physical resources requiring protection.
These resources include programs, files, and directories. A virtual representation
of these resources, protected by attaching access control list (ACL) and
protected object policy (POP) entries, is stored by the Policy Server.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 301

Figure 12-1 Typical three-tier infrastructure supporting e-business applications

The policy server replicates this database to all the local authorization servers,
including WebSEAL, throughout the domain, publishing updates as required.
The policy server also maintains location information about the other Access
Manager and non-Access Manager servers operating in the secure domain.
There can be only one policy server active within a domain.

Access Manager provides C and Java authentication and authorization
application programming interfaces (APIs), which can be used programmatically
within other applications and clients. Client calls for authorization decisions,
through the Access Manager runtime service which must be on every server
participating in the secure domain, are always referred to an authorization
server. Programmatically made calls can be local or remote. They are passed to
an authorization server.

Uncontrolled Zone

DMZ

FirewallControlled Zone

Master
Authorization

data

Authorization
data replication

Web project
manager

User Registry

Secure Zone Secure Zone
Restricted Zone

Internet
Client

FirewallControlled Zone

WebSEAL
reverse proxy server

Intranet
Client

Application
server

Web server

Access Manager
policy server

Authorization server
Web server Plug-in

Access Manager
User Registry

Uncontrolled Zone

DMZ

FirewallControlled Zone

Master
Authorization

data

Authorization
data replication

Web project
manager

User Registry

Secure Zone Secure Zone
Restricted Zone

Internet
Client

FirewallControlled Zone

WebSEAL
reverse proxy server

Intranet
Client

Application
server

Web server

Access Manager
policy server

Authorization server
Web server Plug-in

Access Manager
User Registry

302 WebSphere Application Server V6.1 Security Handbook

Authorization servers are the decision-making servers that determine a client's
ability to access a protected resource based on the security policy. Each server
has a local replica of the policy database. There must be at least one within a
Secure Domain.

Web Portal Manager, a WebSphere-hosted application is provided to enter and
modify the contents of the policy store and the user registry. There is also a
command line utility, pdadmin, which extends the commands available to include
the creation and registration of authentication blades such as WebSEAL which is
described in a subsequent section.

A new feature added to Tivoli Access Manager for e-Business 6.0 is the Session
Management Server (SMS). This optional component which runs on WebSphere
is able to manage and monitor sessions across dispersed or clustered Access
Manager-protected Web servers or Access Manager proxies. Using the session
management server allows the Access Manager WebSEAL and Access
Manager plug-in for Web servers components to share a unified view of all
current sessions. Session management server permits any authorized user to
monitor and administer user sessions. It records a variety of session information,
including session inactivity and lifetime timeout information, login activity, and
concurrent login information. Because it runs on WebSphere, this gives the
environment a logical single point of administration while still enjoying replication
and high-availability.

You can configure Access Manager to integrate with many of the WebSphere
branded products and ships with explicit plug-ins for the following products:

� WebSphere Application Server
� WebSphere Edge Server
� Web server plug-in which supports:

– Apache Web server on AIX, Linux on zSeries®, and Solaris™

– IBM Hypertext Transfer Protocol (HTTP) Server on AIX, Linux on x86,
Linux on zSeries, and Solaris

– Internet Information Services on Windows 2003

– Sun Java System Web server on AIX and Solaris

For details of the supported operating systems for every component consult the
Tivoli Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=
/com.ibm.itame.doc/welcome.htm

Table 12-1 on page 304 shows the components that are installed for the sample
configurations in this book. The components are installed in a mixture of Linux
and Windows servers.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 303

http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?toc=/com.ibm.itame.doc_5.1/toc.xml
http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?toc=/com.ibm.itame.doc_5.1/toc.xml

For installation instructions, see the original product documentation that comes
with the package or read the documentation in the Information Center.

Table 12-1 IBM Tivoli Access Manager V6.0 components used

Note: We do not use the Session Management Server (SMS) or Common
Audit and Reporting Service (CARS) for this scenario.

Server Required component

Tivoli Directory Server V6.0 Directory server

Directory client

DB2 Universal Database edition

Global Security Toolkit (gskit)

Tivoli Access Manager
Policy Server V6.0

Access Manager run time

Access Manager policy server

Tivoli security utilities

Global Security Toolkit (gskit)

Access Manager license

Tivoli directory client

Tivoli Access Manager
Authorization Server V6.0

Access Manager authorization server

Access Manager run time

Tivoli security utilities

Global Security Toolkit (gskit)

Access Manager license

Tivoli directory client

304 WebSphere Application Server V6.1 Security Handbook

12.1.5 Tivoli Access Manager auditing

Auditing is the process of maintaining detailed, secure logs of critical activities in
a business environment. These activities can be related to security, content
management, business transactions, or other such activities. The following
events are common events that are audited:

� Login failures
� Unauthorized access to protected resources
� Modification to security policy

Tivoli Access Manager provides two methods for managing audit events. One
method uses the native Tivoli Access Manager approach, and the other method
uses the CARS.

Enterprises can use information contained in audit trails to help them show
compliance with government regulations such as the SOX Act, the HIPAA, and
the Basel II international banking accord. Audit trails are also useful to check
enforcement and effectiveness of IT controls, for accountability, and vulnerability,
and risk analysis.

Tivoli Access Manager Web
Portal Manager V6.0

Web Portal Manager (WebSphere enterprise
application)

WebSphere Application Server

Tivoli security utilities

Directory client

Global Security Toolkit (gskit)

Access Manager license

Access Manager run time

Tivoli Access Manager
WebSEAL Server V6.0

Access Manager WebSEAL server

Access Manager Web run time

Access Manager run time

Tivoli security utilities

Global Security Toolkit (gskit)

Access Manager license

Tivoli directory client

Server Required component

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 305

For more information about the auditing, see Auditing Guide, IBM Tivoli Access
Manager for e-Business V6.0, SC32-2202.

Common Auditing and Reporting Service
The Common Auditing and Reporting Service is a new feature provided with
Tivoli Access Manager 6.0. It provides a mechanism by which the enterprise can
centrally audit and report on their environment. The service’s clients, for example
WebSEAL, use Web service requests in the form of Common Base Events
(CBE) to send auditing information to the IBM Common Event Infrastructure
(CEI) server.

The audit events are stored as Extensible Markup Language (XML) in a data
store. This is good from a reporting standpoint as it means that reporting
software, such as Crystal Reports, is able to create reports with greater ease and
more flexibility. CARS comes with some out-of-box reports including:

� Audit event history
� Authentication event history
� Authorization event history
� Event details
� Password change activity
� Resource access
� Server availability reports

The Common Auditing and Reporting Service comes with the Common Auditing
Service server, which includes the event server and the operational reports
feature and also the Common Auditing Service C and Java clients.

12.1.6 Access Manager and WebSphere integration

To provide a standard-based authorization framework for WebSphere
applications, Tivoli Access Manager supports the Java 2 security model and also
the Java Authentication and Authorization Service (JAAS) and Java 2 Enterprise
Extensions (J2EE).

Integrating WebSphere and Access Manager adds WebSphere resources to the
significant list of elements that you can manage via Tivoli Access Manager’s
consistent authorization policy, and it also adds to WebSphere applications the
benefits that accrue in an Access Manager protected environment. Some
examples of this include URI-based access control, availability, and scalability
characteristics inherent in Access Manager implementations, and the ability to
support many authentication mechanisms without any impact to the target
application and Web SSO, which are fully applicable for WebSphere Application
Server.

306 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_audit.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_audit.htm

Figure 12-2 shows where WebSphere communicates with Access Manager
components, such as WebSEAL and the policy server, to achieve secure
communications at every single level between the different servers of an
e-business infrastructure around Access Manager. It shows a view of Tivoli
Access Manager and WebSphere communications in a simple scenario without
SMS, CARS, a discrete Authorization Server, or Tivoli Access Manager Java
Authorization Container Contract (JACC) being used.

Figure 12-2 View of Tivoli Access Manager and WebSphere Communications in a simple scenario

In Figure 12-2, the arrows represent communication channels, the dashed lines
indicate that the communications are encrypted and the arrow heads indicate

PRIVATE

Tivoli Access Manager v5.1
WebSEAL Reverse Proxy.

WebSphere Plug-in

DMZ PUBLIC

Web Client

Basic Authentication

Forms Login

Client CertificateHTTP Header

Token

Kerber OS /SPNEGOBasic Authentication

Forms Login

Client Certificate

IBM HTTP Server
WebSphere Application

Server v6.1

Tivoli Directory
Server 5.2

Tivoli Access Manager v5.1
Policy Server

Policy DB

SSL
Non SSL

V6.0

V6.0

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 307

what component initiates the connection. Figure 12-2 shows boxes, at all the
different points where the Web client can authenticate, listing the HTTP and
Hypertext Transfer Protocol Secure (HTTPS) authentication methods available.
Not all the communications in Figure 12-2 must happen at the same time, but
they are shown to give an idea of all the possibilities.

Some components can be taken out the picture and the architecture is still valid
in some scenarios. For example, without WebSEAL, WebSphere can still use the
policy server for its authentication decisions. The Web server is also an optional
component, because WebSEAL can junction directly to the WebSphere
Application Server. However, generally it is considered good practice to use the
Web server to serve static content. This chapter concentrates on the Tivoli
Access Manager components. See previous chapters in this book for security
regarding the IBM HTTP Server, WebSphere Application Server, and the Tivoli
Directory Server.

Communications to the Access Manager policy server are always encrypted for
security reasons but this is transparent to the other components as it is handled
internally by the Access Manager run times. WebSEAL provides different
authentication mechanisms from the client and integrates them by using different
authentication mechanisms with the back-end servers to provide a true SSO
even to Application Servers not aware of it.

The integration of WebSphere Application Server and Access Manager offers the
following additional options or possibilities:

� Shared user registry

� Web SSO using:

– Tivoli global sign-on (GSO) junctions
– Web Trust Association Interceptor (TAI)
– WebSEAL Lightweight Third Party Authentication (LTPA) cookie support

� Application integration using:

– Authorization application programming interface (aznAPI)
– JAAS
– JACC
– PDPermission
– J2EE security

308 WebSphere Application Server V6.1 Security Handbook

12.1.7 Reverse proxy authenticators and the extended WebSphere
trust domain

In order for reverse proxy authenticators to carry out their tasks successfully they
must terminate any Secure Sockets Layer (SSL) connections, authenticate the
user, and then access the Web resource. One by-product of this situation is that
WebSphere Application Server must completely trust the proxy. For example, the
Application Server does not get to see the clients certificate directly, thus any
client certificate authentication must be carried out by the proxy, therefore the
proxy must be trusted by the Application Server. Also, when the proxy server
vouches for an authenticated identity the Application Server must trust proxy and
be absolutely certain of its correctness. Another by-product is when the proxy
tries to access a Web resource on behalf of a user, the application server or Web
server must be absolutely certain that it is the proxy that is making the request.

To fulfill these trust requirements the proxy must become part of the Application
Server’s trust domain. There are a number of ways to do this but the most
common are:

� The proxy server authenticates itself to the Application Server either using a
user name and password or token.

� The proxy server uses a mutually authenticated SSL during communication
with the Application Server or Web server.

By using these methods the Application Server can trust who the proxy is, that it
is the proxy making the connection, and that the information received from the
proxy is secure.

This trust association is carried out in WebSphere Application Server using Trust
Association Interceptors, otherwise known as TAIs. For further information, see
13.1, “Trust Association Interceptor” on page 354.

12.1.8 Challenges with reverse proxy authenticators

This section covers the challenges you may face with reverse proxy
authenticators.

Session management
While the proxy is being used to authenticate for WebSphere Application Server
and perhaps other systems as well, there are multiple applications keeping user
state information. This session information must be kept consistent or else there
is a potential for security vulnerabilities. The problems occur because not all user
state implementations follow the same rules. For example, WebSEAL’s
authentication lifetime is based on absolute time and also idleness. This is

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 309

different to WebSphere Application Server’s authentication lifetime which is
based on absolute time. And different yet again is WebSphere Application
Server’s HTTP session lifetime which is based on idleness. These
inconsistencies require careful planning of security attribute lifetimes.

The following situations indicate where the state information can become
inconsistent:

� Log out of proxy but not WebSphere
� Proxy Crash
� Authentication to proxy times out but WebSphere cookies are still valid
� Log out of WebSphere but not proxy
� HTTP Session in WebSphere times out but WebSphere cookies still valid

The first three situations result in a situation where the user still has a valid
back-end state while the front-end state has been invalidated. This is potentially
bad.

Logout considerations
In an SSO environment, logging out can have different scopes. These logout
considerations must be handled carefully. The best way to approach this problem
is from the users’ perspective. What might a user expect when they click logout?
This is partly determined by how integrated the SSO domain is. Two major cases
lead to three logout semantics:

� Loosely related SSO

For example, a user logging in to an operating system and then starting an
application that requires authentication. The operating system automatically
logs the user in, resulting in a loosely related SSO environment. When the
user logs out of the application they do not expect to be logged out of the
entire operating system.

� Seamlessly related

For example, a portlet where after the user authenticates, they have access
to all resources offered without having to re-authenticate. When the user logs
out they expect to be logged out of all the resources simultaneously.

The logout semantics or scopes derived from the previous cases are as follows:

� Logout is only the application
� Logout is SSO wide
� The type of logout is dynamically determined by the user, where the user is

asked what they wish to do

Implementation of these logouts is quite complicated.

310 WebSphere Application Server V6.1 Security Handbook

Step-up authentication
Step-up authentication is the act of forcing the user to authenticate again in a
stronger manner to reach a protected resource. For example, when a bank
manager changes from a user name/password protected intranet site to a highly
sensitive site, this manger can be forced to enter a SecurID one time password.
Traditionally reverse proxies enforce step-up authentication based on the URL of
the request. Some products today, such as WebSphere Portal Server, do not use
URLs. This can mean that step-up authentication may not have been enforced.
For resources that require step-up authentication, the programmer must ensure
that step-up authentication has occurred every time, redirecting to the proxy to
enforce it.

Standard configuration practices
The following set of standard practices helps to alleviate these problems:

� Ensure that the only path from the user to WebSphere is through the proxy.

� Configure the LTPA lifetime to be shorter than that of the proxy session
lifetime.

� SSO is carried out (from the Application Server’s point of view) outside in.
� Single sign-off is carried out (from the Application Server’s point of view)

inside out, or for use cases not addressed by a global logout, leverage
JavaScript™ to clean the clients browser.

� Explicitly enforce step-up authentication if you are using a product that does
not use URLs. For example, Portal Server.

Ensuring that the only path from the clients browser to the Application Server is
through the reverse proxy reduces the risks associated with a user having a valid
back-end system session but invalid proxy session. Some methods to achieve
this include setting up SSL keys so that they only trust a small set of clients, only
accepting connections from certain hosts, and of course, the use of firewalls.

Configuring the LTPA lifetime to be shorter than the proxy session lifetime must
help prevent the user having a valid back-end session and invalid front-end
session. If the LTPA cookie times out during use, the application server issues a
new one transparently from the user’s point of view (as long as the request is
part of a valid proxy session). If the proxy server’s timeout is dependent on
idleness then make the LTPA lifetime less than that. Otherwise make the LTPA
lifetime a small fraction of proxy absolute session lifetime.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 311

Changing the token time-outs does not help if another user gets to the browser
before the LTPA token times out. Ensuring that the proxy and application server
session state are the same is the only way to ensure that stray back-end tokens
are not misused.

For SSO, the best practice is to first create a session at the proxy server and then
have the proxy server pass the request to the back end where another session is
created. This way the back-end is only creating sessions that have a
corresponding session in the proxy.

For single sign-off, the best practice is to have the environment perform it from
the inside out. For a global logout, then, it can be beneficial to make each
application to have a logout URL that destroys its session for a user. A manager
must be running in the environment that ideally knows which applications that the
user has sessions with. When the logoff request reaches the manager, the
manager sends notifications to all the applications that have sessions for the
user, telling them to destroy it. After that the manager then destroys its own
session, finally calling the proxy and telling it to destroy its session. You can use
this approach for quite large deployments, especially federated single-sign on
environments using Tivoli Federated Identity Manager (TFIM).

Example 12-1 is a simple inside out logout for a WebSphere Portal Server
environment. By changing the Portal’s ConfigService.properties file so that the
post-logout URL points to the proxies logout URL (in WebSEAL’s case,
pkmslogout), when the session is terminated at the Portal it cleans itself up and
then calls the proxy, telling it to clean itself up. This results in a clean
environment where the proxy, Application Server, and portal server have
destroyed the session and removed the user’s tokens. If there were more than
one application, then either the proxy must notify the other applications, or the
manager approach earlier must be employed.

A single application logout can also be tricky. One of the most common and well
documented solutions is to have JavaScript on the proxy’s login and logout pages
that destroys any relevant tokens. This approach can also be useful in both the
global and single application logout cases, where it stops tokens from a previous
session contaminating the users session (Example 12-1).

Example 12-1 An example of a logout page that clears any cookies that are in the user’s browser

<!-- DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN" -->

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>PKMS Administration: User Log Out</title>

312 WebSphere Application Server V6.1 Security Handbook

<Script language="JavaScript">

// The cookie_list array stores the names of all the session cookies that
// will be clear upon the load of this page.
//
// Each entries in this array should be formatted as
// cookieName[__cookiePath[__domain]].
//
// For example:
// cookie_list = new Array("JESSIONID__/", "ASPSESSION__/html_ibm.com");

cookie_list = new Array();

// Clears all the session cookies by iterating through the array cookie_list
function session_clean() {

// initialise variables
var cookieData;
var endName;
var endPath;
var cookiePath;
var cookieName;
var cookieDomain;

// iterate through cookie_list to clear each cookie
for (var i in cookie_list) {

cookiePath="";
cookieDomain="";
cookieData = cookie_list[i];
endName = cookie_list[i].indexOf("__");

// Check to see if a path was entered
// if no path was entered then assign the cookie array element to 'cookieName'
if (endName==-1) {

cookieName = cookieData;
}
// if a path was entered, extract the cookieName and cookiePath details from

the provided array element
else {

cookieName = cookieData.substring(0,endName);

// check to see if domain was entered
cookieData = cookieData.substring(endName+2, cookieData.length);
endPath = cookieData.indexOf("__");

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 313

// if no domain was entered, extract the cookiePath details from the
provided array element

if (endPath == -1) {
cookiePath = cookieData;

}
// if a domain was entered, extract the cookiePath and cookieDomain details

from the provided array element
else {

cookiePath = cookieData.substring(0,endPath);
cookieDomain = cookieData.substring(endPath+2,cookieData.length);

}
}
// if from the root server directory then create cookie with current directory

as domain (default)

if ((cookiePath=="")&&(cookieDomain=="")) {
document.cookie = cookie_list[i] + "=" + "" +
 ";expires=Monday, 01-Jan-80 00:00:00 GMT";

}
else if ((cookiePath !="")&&(cookieDomain=="")) {

document.cookie = cookieName + "=" + "" + ";path=" + cookiePath +
 ";expires=Monday, 01-Jan-80 00:00:00 GMT";

}
else if ((cookiePath !="")&&(cookieDomain!="")) {

document.cookie = cookieName + "=" + "" + ";domain=" + cookieDomain +
";path=" + cookiePath +

 ";expires=Monday, 01-Jan-80 00:00:00 GMT"
}

}
}

</Script>
</head>
<!--Call session_clean() to clear cookies when the html page loads-->
<body bgcolor="#FFFFFF" text="#000000" onLoad=session_clean()>
User %USERNAME% has logged out.
</body>
</html>

314 WebSphere Application Server V6.1 Security Handbook

12.2 IBM Tivoli Access Manager security model

The security policy for a Tivoli Access Manager secure domain is maintained and
governed by two key security structures:

� User registry
� Policy database

12.2.1 User registry

The user registry (such as Lightweight Directory Access Protocol (LDAP), Lotus
Domino, or Microsoft Active Directory) contains all users and groups who are
allowed to participate in the Tivoli Access Manager secure domain. In the
example used in this book, the IBM Tivoli Directory Server LDAP directory
contains the user registry shared by Tivoli Access Manager and WebSphere
Application Server.

The ability of Tivoli Access Manager to coexist with federated repositories has
the following limitations:

� You can configure only one LDAP repository under Federated repositories,
that LDAP repository configuration must match the LDAP server configuration
under Tivoli Access Manager.

� The Distinguished Name (DN) for the realm base entry must match the LDAP
DN of the base entry within the repository. In WebSphere Application Server,
Tivoli Access Manager recognizes the LDAP user ID and LDAP DN for both
authentication and authorization.The federated repositories configuration
does not include additional mappings for the LDAP user ID and DN.

� The federated repositories functionality does not recognize the metadata that
is specified by Tivoli Access Manager. When users and groups are created
under user and group management, they are not formatted using the Tivoli
Access Manager metadata.The users and groups must be manually imported
into Tivoli Access Manager before you use them for authentication and
authorization.

Attention: A new minimal data format was introduced with Tivoli Access
Manager for e-Business 6.0. If you want to interact with previous versions of
Access Manager clients, do not select this option during configuration of the
policy server.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 315

12.2.2 Master authorization (policy) database

The authorization database contains a representation of all resources in the
domain (the protected object space). The security administrator can dictate any
level of security by applying rules, known as ACL policies, POP, and authorization
rules, to those resources requiring protection

The Tivoli Access Manager authorization service enforces security policies by
comparing a user's authentication credentials with the policy permissions
assigned to the requested resource. The resulting recommendation is passed to
the resource manager, for example, WebSEAL or WebSphere Application
Server, which completes the response to the original request. The user
credential is essential for full participation in the secure domain.

The protected object space
The protected object space is a hierarchical portrayal of resources belonging to
an Access Manager secure domain. The virtual objects that are displayed in the
hierarchical object space represent the actual network resources in the domain.
They can be system resources, which are the actual file or application, and
protected objects, which are the logical representation of an actual system
resource used by the authorization service and other Access Manager
management components.

You can attach policy templates to objects in the object space to provide
protection of the resources. The authorization service makes authorization
decisions based on these templates.

These rules can be explicitly attached or inherited. The Access Manager
protected object space shown in Figure 12-3 on page 317 supports inheritance
of the security policies or rules. This is an important consideration for the security
administrator who manages the object space. The administrator has to apply
explicit policies only at points in the hierarchy where the rules must change.

316 WebSphere Application Server V6.1 Security Handbook

Figure 12-3 Tivoli Access Manager object space

The following object space categories are used by Access Manager:

� Web objects

Web objects represent any resource that a URL can address, including static
and dynamic contents. The WebSEAL server is a component of Access
Manager, responsible for protecting Web resources.

� Access Manager management objects

Management objects represent the management activities that you can
perform through the Web Portal Manager. The objects represent the tasks
necessary to define users and set security policy. Access Manager supports
delegation of management activities and can restrict an administrator's ability
to set security policy to a subset of the object space. An example of an
Access Manager management object is a defined group, for example,
/Management/Groups/boardmembers. ACLs can be attached to the object to
restrict who can add members to that group.

� User-defined objects

User-defined objects represent customized tasks or network resources
protected by applications that access the authorization service through the
Access Manager authorization API. For instance, in library application you

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 317

can map actions to objects and allow everyone access to the object
/library/book/summary but only allow authenticated access users to the object
/library/book/reservation.

Access Manager authorization engine
The Access Manager authorization service performs authorization decisions, as
shown in Figure 12-4, based on the policies applied to the objects as explained
earlier. For each request, for access to an object inside the protected object
space, the request is evaluated against the ACL, the POP, and the authorization
rule attached to the object or inherited by it, in the order described. A single
object can have none, one, two, or all three types of rule attached to it but only
one of each type.

Figure 12-4 Access Manager authorization flow

Access control list
An access control list policy, or ACL policy, is the set of rules (permissions) that
specifies the conditions necessary to perform certain operations on a resource.
ACL policy definitions are important components of the security policy
established for the secure domain. ACL policies, similar to all other policies, are
used to stamp an organization's security requirements onto the resources
represented in the protected object space. An ACL policy specifically controls:

� What operations can be performed on the resource.
� Who can perform these operations.

An ACL policy is made up of one or more entries that include user and group
designations and their specific permissions or rights. An ACL can also contain
rules that apply to unauthenticated users.

Protected object policy
ACL policies provide the authorization service with information to make a yes or
no answer on a request to access a protected object and perform some
operations on that object. POPs contain additional conditions on the request that
are passed back to the Access Manager Base and the resource manager (such

318 WebSphere Application Server V6.1 Security Handbook

as WebSEAL) along with the yes ACL policy decision from the authorization
service. An example of a POP is time-of-day access privileges. It is the
responsibility of Access Manager and the resource manager to enforce the POP
conditions.

Authorization rules
An Access Manager authorization rule is a policy type similar to an access
control list or a protected object policy. Authorization rules provide the flexibility
required to extend an ACL or POP by tailoring security policy to your
requirements. The rule is stored as a text rule within a rule policy object and is
attached to a protected object in the same way and with similar constraints as
ACLs and POPs.

Rules allow you to make decisions based on the attributes of a person or object
and the context and environment surrounding the access decision. For example,
you can use a rule to implement a time-of-day policy that depends on the user or
group. You also can use a rule to extend the access control capabilities, which
ACLs provide, by implementing a more advanced policy, such as one based on
quotas. While an ACL can grant a group permission to write to a resource, a rule
can go a step further by allowing you to determine if a group has exceeded a
specific quota for a given week before permitting that group to write to a
resource.

More information: For more detailed information about Tivoli Access
Manager security and administration, see the following documents:

� Administration Guide, IBM Tivoli Access Manager for e-Business V6.0,
SC32-1686

� Installation Guide, IBM Tivoli Access Manager for e-Business V6.0,
SC32-1684

� WebSEAL Administration Guide, IBM Tivoli Access Manager for
e-Business V6.0, SC32-1687

� Auditing Guide, IBM Tivoli Access Manager for e-Business V6.0,
SC32-2202

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

� IBM Tivoli Access Manager for e-business, REDP-3677

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 319

12.3 Summary of Access Manager deployment for
integration with WebSphere Application Server

Note that the deployment assumes that you have already planned the
environment. It also assumes that during deployment and configuration,
application hardening guidelines are followed. The basic steps involved in
Access Manager deployment are as follows:

1. Deploy and configure the registry. In Figure 12-5 we deployed DB2 and LDAP.

2. Deploy WebSphere Application Server and configure it to use the registry
from the previous step.

3. Deploy, configure and secure IBM HTTP Server (IHS) and plug-in for
WebSphere Application Server.

4. Deploy Access Manager policy manager.

5. Deploy Access Manager authorization server (if required).

6. Deploy WebSEAL.

7. Create or obtain certificates for WebSEAL, IHS, and WebSphere. Make sure
that they are trusted for each communication link, for example, Client <->
WebSEAL, WebSEAL <-> IHS, IHS <-> WebSphere Application Server.

8. Configure WebSphere Application Server to allow secure connections from
WebSEAL. To do this use TAI (recommend), LTPA junctions, or connect to
legacy applications using basic authentication (BA) or forms junctions.

9. Configure the front-end authentication for WebSEAL.

10.Create junctions in WebSEAL that are able to connect to WebSphere
Application Server.

12.4 Lab environment

To test some different Access Manager - WebSphere integration scenarios
described in this chapter, we use a lab environment with all the elements as
shown in Figure 12-2 on page 307.

Internal communication security: Security of all internal communication
between Tivoli Access Manager components are automatically handled by
Tivoli Access Manager certificates.

320 WebSphere Application Server V6.1 Security Handbook

Use Figure 12-5 to understand the lab environment used for these examples.

Figure 12-5 Lab environment

All the WebSphere Application Servers have the ITSOBank and ITSOHello
installed. For details, see Appendix A, “Additional configurations” on page 509.

They also have J2EE, administrative and application security enabled with LDAP
as the user registry, for details see Chapter 2, “Configuring the user registry” on
page 7. The LDAP server is also the registry configured with Tivoli Access
Manager.

12.5 The role of Tivoli Access Manager inside
WebSphere Application Server V6.1

The JACC provider in WebSphere Application Server is implemented by both the
client and the server pieces of the Tivoli Access Manager server. The client piece
of Tivoli Access Manager is embedded in WebSphere Application Server. The
server piece is located on a separate installable CD that is shipped as part of the
WebSphere Network Deployment (ND) package. The JACC provider is not an

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 321

out-of-box solution. Figure 12-6 represents the high level components of the
WebSphere embedded Tivoli Access Manager (Tivoli Access Manager Client)
and Tivoli Access Manager Server.

In Figure 12-6, conceptually three layers of integration points are allowed in the
embedded Tivoli Access Manager. It is provided in a hierarchical fashion so that
the function in each layer can become an integration point to fit into different
application-specific requirements. The bottom layer, which is the lowest building
block for the other two layers, includes a set of client-server components, which
are the Access Manager Java Runtime (AMJRTE) component and the Tivoli
Access Manager Server component. While the AMJRTE component serves the
client-side integration point, the Tivoli Access Manager Server component
provides the infrastructure for both runtime and management operations.

For more information about JACC, see Chapter 14, “Externalizing authorization
with JACC” on page 403.

Figure 12-6 WebSphere and Access Manager relations

Access Manager for WebSphere (AMWAS) Component

WebSphere Application Server v6

Access Manager Java Runtime (AMJRTE) Component

JACC Provider
Contract

JACC
Management

Local ACL
DB Replica

PDPrincipal
(Authentication)

Access Manager Server

Access Manager Policy Server

Master
ACL

User
Registry

AM Authz
Server ACL DB

Replica

SSL Connections

PDJAdmin
(Management)

PDPerm
(Authz)

TAI
GSO Credential
Mapping

322 WebSphere Application Server V6.1 Security Handbook

12.5.1 Embedded Tivoli Access Manager client architecture

Figure 12-7 shows the Tivoli Access Manager client architecture in WebSphere
Application Server V6.1.

Figure 12-7 Embedded Tivoli Access Manager client architecture

The process is performed as follows:

1. Users that access protected resources are authenticated using the Tivoli
Access Manager login module that is configured for use when the embedded
Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the J2EE
application deployment descriptor to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager
client to request an authorization decision (granted or denied) from the Tivoli
Access Manager authorization server. Additional context information, when
present, is also passed to the authorization server. This context information is
comprised of the cell name, J2EE application name, and J2EE module name.
If the Tivoli Access Manager policy database has policies that are specified
for any of the context information, the authorization server uses this
information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the
specified user within the Tivoli Access Manager - protected object space. The
protected object space is part of the policy database.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 323

5. The Tivoli Access Manager authorization server returns the access decision
to the embedded Tivoli Access Manager client.

6. WebSphere Application Server either grants or denies access to the
protected method or resource, based on the decision returned from the Tivoli
Access Manager authorization server.

See Figure 12-8.

Figure 12-8 WebSphere V6.x and Tivoli Access Manager in a sample architecture

324 WebSphere Application Server V6.1 Security Handbook

The participating WebSphere Application Servers use a local replica of the Tivoli
Access Manager policy database to make authorization decisions for incoming
requests. The local policy databases are replicas of the master policy database
that are installed as part of the Tivoli Access Manager installation. Having policy
database replicas on each participating WebSphere Application Server optimizes
performance when making authorization decisions and provides failover
capability.

The authorization server can also be installed on the same system as
WebSphere Application Server, although this configuration is not illustrated in the
diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the
example architecture share the LDAP user registry on Machine E.

12.5.2 High-level components of the integration

The integration of Tivoli Access Manager in WebSphere (Tivoli Access Manager
client) using the JACC model to perform access checks can be divided into the
following high level components:

� Runtime
� Client configuration
� Authorization table support
� Access check
� Authentication using the PDLoginModule

Tivoli Access Manager runtime support of JACC
Tivoli Access Manager implements the PolicyConfigurationFactory and the
PolicyConfiguration interfaces, as required by JACC. During the application
installation, the security policy information in the deployment descriptor and the
authorization table information in the binding files are propagated to the Tivoli
JACC provider using these interfaces. The Tivoli JACC provider stores the policy
and the authorization table information in the Tivoli Access Manager policy
server by calling the respective Tivoli Access Manager APIs. The information is
stored in the security policy database in the Tivoli Access Manager policy server.

Tivoli Access Manager client configuration
The Tivoli Access Manager client can be configured using either the
administrative console or wsadmin scripting. The administrative console panels
for the Tivoli Access Manager client configuration are located under the Security
center panel. The Tivoli client must be set up to use the Tivoli JACC provider. You
can perform the setup using wsadmin, either before or during the time of
WebSphere Application Server configuration.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 325

Authorization table support
Tivoli Access Manager uses the RoleConfiguration interface to ensure that the
authorization table information is passed to the Tivoli Access Manager provider
when the application is installed or deployed. When an application is deployed or
edited, the set of users and groups for the user or group-to-role mapping are
obtained from the Tivoli Access Manager server, which shares the same LDAP
server as WebSphere Application Server. This sharing is accomplished by
plugging in to the application management users or groups-to-role administrative
console panels. The management APIs are called to obtain users and groups
rather than relying on the WebSphere Application Server-configured LDAP
registry.

Access check
When WebSphere Application Server is configured to use the JACC provider for
Tivoli Access Manager, it passes the information to Tivoli Access Manager to
make the access decision. The Tivoli Access Manager policy implementation
queries the local replica of the ACL database for the access decision.

Authentication using the PDLoginModule module
The custom login module in WebSphere Application Server can perform the
authentication. This login module is plugged in before the WebSphere
Application Server-provided login modules. The custom login modules can
provide information that can be stored in the Subject. If the required information
is stored, no additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided
PDLoginModule module is also used to plug-in to WebSphere Application Server
for both LTPA and Simple WebSphere Authentication Mechanism (SWAM)
authentication.

The PDLoginModule module is modified to authenticate with the user ID or
password. The module is also used to fill in the required attributes in the Subject,
so that no registry calls are made by the login modules in WebSphere Application
Server. The information that is placed in the Subject is available for the Tivoli
Access Manager policy object to use for access checking.

Attention: Note that Simple WebSphere Authentication Mechanism is
deprecated in WebSphere Application Server V6.1 and is to be removed from
future versions.

326 WebSphere Application Server V6.1 Security Handbook

12.6 WebSEAL authentication

This section focuses on the authentication from a client to the Access Manager
WebSEAL reverse proxy. It describes the configurations available and provides
instructions for the most common authentication scenarios.

12.6.1 Basic authentication

By default, WebSEAL is configured for authentication over HTTPS using basic
authentication. If you want to enable basic authentication over HTTP, which we
do not recommend, the default shown in Example 12-2 must change accordingly
to either http or both. Edit the webseald.conf file and locate the [ba] stanza.

Example 12-2 Basic authentication

Enable authentication using the Basic Authentication mechanism
One of <http, https, both, none>
ba-auth = https

If you decide to use basic authentication in your configuration you may want to
consider changing the security realm displayed in the dialogue window by
changing the basic-auth-realm setting.

Figure 12-9 on page 328 shows the result of changing basic-auth-realm to a
parameter which is performed in Example 12-3.

Example 12-3 WebSEAL authentication realm

Realm name. This is the text that is displayed in the
browser's dialog box when prompting the user for login data.
By default, the string 'Access Manager' is used.
basic-auth-realm = ITSO Applications

Restart the WebSEAL instance for the changes to take effect. To test the settings
point your browser to the root of your WebSEAL server.

After the user is logged in, as shown in Figure 12-9 on page 328, the only way to
close the WebSEAL session is that the user has to close the browser. The
browser caches the credentials and automatically authenticates the user again
even if WebSEAL closed the session.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 327

Figure 12-9 Modified basic authentication dialogue

12.6.2 Form-based authentication

To configure form-based authentication in WebSEAL, edit the webseald.conf file
and then restart WebSEAL. Open the webseald.conf file and locate the [ba]
stanza and set ba-auth = none, then locate the [forms] stanza and change it as
shown in Example 12-4.

Example 12-4 Forms authentication

Enable authentication using the forms authentication mechanism
One of <http, https, both, none>
forms-auth = https

Tip: Basic authentication is often considered less secure than form
authentication. This is due to the fact that the basic authentication header is
sent on every request, whereas form authentication only sends login data
once during the POST and then keeps session state via session cookie or
SSL session-ID.

Form authentication has flaws as well. For example, if cookies are being used
for the session, someone can steal a user’s session cookie. With this cookie,
unless they managed to get the initial POST request which contained the
user’s identity, they can only steal the user’s session, not their identity.

No matter what authentication mechanism you use, a secure transport
protocol such as an SSL must always be used.

328 WebSphere Application Server V6.1 Security Handbook

Restart your WebSEAL instance for the changes to take effect Then test the
configurations by accessing a protected page.

After the user is logged in and you want to close the WebSEAL session, the user
must close the browser or preferably the application can redirect the user to the
pkmslogout page. After the user reaches this page, WebSEAL destroys the
session and displays the logout message.

12.6.3 Client certificate-based authentication

To configure certificate-based authentication in WebSEAL. Edit the
webseald.conf file and then restart WebSEAL. The use of certificates to
authenticate clients requires server and client configuration on the WebSEAL
side.

1. Open the webseald.conf file.

2. Locate the [ba] stanza and set the ba-auth=none entry.

3. Locate the [certificate] stanza and change it as shown in Example 12-5.

Example 12-5 Certificate authentication

When to accept a certificate from HTTPS clients. Options are:
never Never request a client certificate.
required Always request a client certificate. Do not accept
the
connection if the client does not present a
certificate.
optional Always request a client certificate. If presented,
use it.
prompt_as_needed Certificates will only be prompted for and processed
when
certificate authentication is necessary (due to an
ACL or
POP check failure).
accept-client-certs = required

Tip: If you are going to use form-based authentication, you can tailor your
login and logout pages to match your application design by modifying the
login.html and logout.html in the <webseal_instace_root>/lib/
html/C/directory.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 329

4. Find the [authentication-mechanisms] stanza. Uncomment the line and
change <cert-ssl-library> for your cert-ssl library.

In Example 12-6, you see the change for AIX. See WebSEAL Administration
Guide, IBM Tivoli Access Manager for e-Business V6.0, SC32-1687, for
information about the specific libraries for the operating system used.

Example 12-6 Certificate authentication library

Certificates
cert-ssl = libsslauthn.a

5. Create a client certificate in the client browser:

– If you are using self-signed certificates, load the certificate into the
WebSEAL keystore as a signer certificate.

– If you are using your own Certificate Authority (CA), the CA public key
certificate is loaded in the WebSEAL keystore as a signer certificate.
WebSEAL does a one-to-one DN matching of the certificate with LDAP.

In this sample, we use a self-signed certificate:

a. Create the user for the sample user01, with the user create command in
pdadmin, the Tivoli Access Manager Administration Command Line
Interface (CLI). Ensure that the user is valid by using the user modify
command and viewing the information about the new user with the user
show command in pdadmin. See Example 12-7.

Example 12-7 Access Manager user show command

pdadmin -a sec_master
Enter Password:
pdadmin sec_master> user create -no-password-policy user01
cn=user01,ou=users,o=itso,c=US user01 " " test
pdadmin sec_master> user modify user01 account-valid yes
pdadmin sec_master> user show user01
Login ID: user01
LDAP DN: cn=user01,ou=users,o=itso,c=US
LDAP CN: user01
LDAP SN:
Description:
Is SecUser: Yes
Is GSO user: No
Account valid: Yes
Password valid: Yes

b. Create a self-signed certificate that matches the following DN:

LDAP DN: cn=user01,ou=users,o=itso,c=US

330 WebSphere Application Server V6.1 Security Handbook

You can also create the self-signed certificate by using the iKeyman tool. For
more information, see WebSphere Security Fundamentals, REDP-3944.

6. Extract the certificate as Base64-encoded American Standard Code for
Information Interchange™ (ASCII) data (*.arm file) to import it into the
WebSEAL keystore later.

7. Export the certificate as PKCS12 (*.p12 file) to import it into the browser.

8. Use the iKeyman utility and open the WebSEAL keystore in
<webseal_instance_root>\certs\pdsrv.kdb. The default password is pdsrv.

For example, depending on your operating system:

– For Linux, the keystore is in
/var/pdweb/www-<instance>/certs/pdsrv.kdb.

– For Microsoft Windows, it is in C:\Program
Files\Tivoli\PDWeb\www-<instance>\certs\pdsrv.kdb.

9. Import the certificate that you exported with the .arm extension.

10.Restart the WebSEAL instance to make the changes take effect.

11.Load the certificate into your browser, and use the PKCS12 certificate (*.p12
file).

12.Test the configuration by accessing a secured resource with your browser.
You must be able to login without entering the user name or password.
Depending on your security settings and browser, you might see a certificate
request that allows you to chose the certificate to use.

12.6.4 Token authentication

Token authentication is used in a two-factor authentication and is used when
users must provide two forms of identification, for example, a single factor of
identification, such as a password, in addition to a second factor in the form of an
authentication token. The two-factor method is based on information that the
user knows in addition to something the user possesses. It provides a more
reliable level of user authentication than reusable passwords.

Tivoli Access Manager provides a built-in two-factor authentication library,
xtokenauth. It is a client implementation for the RSA SecurID token
authentication server (ACE/Server) and is written against the RSA authorization
API. WebSEAL provides RSA token authentication client (ACE/Agent) functions,
and is certified as SecurID Ready.

By default, this built-in shared library for token authentication is hard-coded to
map SecurID (RSA) token passcode data. This default token authentication

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 331

http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open
http://publib-b.boulder.ibm.com/abstracts/redp3944.html?Open

mechanism expects the user name used by the client to map to an existing user
account in the Access Manager LDAP registry.

For information about configuring token authentication, see WebSEAL
Administration Guide, IBM Tivoli Access Manager for e-Business V6.0,
SC32-1687.

12.6.5 HTTP header authentication

Tivoli Access Manager WebSEAL provides an authentication module that
authenticates users based on information obtained from custom HTTP headers
supplied by the client or a proxy agent. This module consists of a mapping
function that maps header data to an Access Manager identity.

WebSEAL trusts that this custom HTTP header data is the result of a previous
authentication. The WebSEAL authentication module is built specifically to map
data obtained from Entrust Proxy headers. When you enable HTTP header
authentication using the built-in authentication module, you must disable all other
authentication methods. You must accept connections only from the Entrust
Proxy. Disabling other authentication methods eliminates methods that can be
used to impersonate custom HTTP header data.

For further information about configuring HTTP header authentication, see
WebSEAL Administration Guide, IBM Tivoli Access Manager for e-Business
V6.0, SC32-1687.

12.6.6 Kerberos and SPNEGO authentication

WebSEAL supports the SPNEGO protocol and Kerberos authentication for use
with Windows clients to achieve Windows desktop SSO. The SPNEGO protocol
allows for a negotiation between the client (browser) and the server regarding the
authentication mechanism to use. The client identity presented by the browser
can be verified by WebSEAL using Kerberos authentication mechanisms.

WebSEAL's support for Kerberos authentication has been implemented
specifically to support a Windows desktop SSO solution. This solution requires
that you configure the WebSEAL server into an Active Directory domain, and that
WebSEAL access a Kerberos Key Distribution Center (KDC). In addition, the
Internet Explorer client must be configured to use the SPNEGO protocol and
Kerberos authentication when contacting WebSEAL.

For further information about configuring Kerberos SPNEGO authentication, see
WebSEAL Administration Guide, IBM Tivoli Access Manager for e-Business
V6.0, SC32-1687.

332 WebSphere Application Server V6.1 Security Handbook

12.6.7 External authentication interface

The external authentication interface is a plug-in point for custom login modules.
With this interface, third-party systems can supply an authenticated identity to
WebSEAL and Web-server plug-ins. The identity information is then used to
generate a credential.

This extended authentication functionality is similar to the existing custom
authentication module capability provided by the Web security external
authentication C API. However, the external authentication interface allows the
user identity to be supplied in HTTP response headers rather than through the
authentication module interface.

12.6.8 Combining authentication types using step-up authentication

One advantage of using WebSEAL to protect WebSphere Application Server
profiles is that WebSEAL can enforce step-up authentication. Step-up
authentication is not its own authentication type like BA. Instead it is designed to
enforce a higher level of authentication for highly confidential resources. For
example, a user might be logged into the SSO domain with a user name and
password. When the user tries to access a highly confidential resource, they
must also present a certificate.

One of the main concepts of step-up authentication is the idea of authentication
strength. It is a relative measure that is determined by the administrator. The only
rule is that unauthenticated is always lower than all other authenticated levels.
Therefore, for example, an administrator might decide that their environment has
the following authentication strengths (with unauthenticated always at 0):

� Password authentication (only form authentication is a support for password
authentication, not BA)

� SSL (client certificate) authentication

� Token card (SecurID, and so on) authentication

� External authentication using EAI

These authentication strengths are specified in the WebSEAL configuration file.
The authentication level is then applied to a sensitive resource object by using a
POP. The full process of deploying a step-up enabled environment is beyond the
scope of this document.

The following outline briefly indicates the tasks that must be done:

� Establishing an authentication strength policy
� Specifying authentication levels
� Specifying the authentication strength login form

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 333

� Creating a protected object policy
� Specifying network-based access restrictions
� Attaching a protected object policy to a protected resource
� Enforcing user identity match across authentication levels
� Controlling the login response for unauthenticated users

This process is not trivial. You must take great care during planning and
implementation. For more information about step-up authentication and how to
use it, see the “Authentication strength policy (step-up)” topic in the Tivoli Access
Information Center, on the Web at the following address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=
/com.ibm.itame.doc/am61_webseal_admin270.htm

12.7 WebSEAL junctions

The purpose of authenticating to WebSEAL is to access its protected resources,
although WebSEAL provides minimum Web server functionality. Most commonly
the resources protected are on back-end servers. WebSEAL’s connections with
the back-end Web servers have constantly been referred to as junctions. All
WebSEAL junctions are connections between a front-end WebSEAL server and
a back-end Web server that might be another WebSEAL server and might go by
another proxy server. Only the HTTP and HTTPS protocols are supported, and
WebSEAL-to-WebSEAL connections must have the SSL enabled.

A junction is where the back-end server Web space is connected to the
WebSEAL server at a specially designated mount point in the Access Manager
Web space created in the policy server database by appropriate use of the
pdadmin command.

The junction is a logical Web object space that is typically on another Web
server, rather than the physical file and directory structure of the proxied Web
server. Junctions define an object space that reflects organizational structure
rather than the physical machine and directory structure commonly encountered
on standard Web servers. A browser client never knows the physical location of a
Web resource as WebSEAL translates the requested URL addresses into the
addresses that a back-end server expects without exposing them to the client.
Web objects can be moved from server to server without affecting the way the
client accesses those objects.

Important: Step-up authentication is typically enforced by looking at the
request URL and mapping it to a resource object. When using products that
do not use URLs, such as portal server, use extra care to ensure that step-up
authentication has occurred.

334 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am61_webseal_admin270.htm

WebSEAL attempts to pass the request to the back-end server by referencing
the object in Access Manager’s protected object space. If it encounters an ACL
or POP on that object that requires authentication before the request can be
authorized, the client is questioned. WebSEAL is configurable for several
different challenge mechanisms including the default of basic authentication and
form-based logon from a junctioned application. It comes with an Application
Developers Kit with to build customized Cross Domain Authentication Services.
Another option is to use the External Authentication Interface to write custom
authentication modules.

WebSEAL junctions can also be configured to enable the creation of SSO
solutions. This way, users can access resources, regardless of the security
domain controls for these resources, following their initial authentication log in
through WebSEAL. With the global sign-on junction option, a third-party user
registry to be referenced to supply that junction with the appropriate user ID and
password.

Other options involve manipulation and additions to the underlying Access
Manager schema of inetOrgPerson, because each junction can be configured to
supply any and all attributes from the schema through to the back-end server. If
the login identity and passwords from the user registries of several legacy
applications can be migrated into extra attributes, those applications can be
accessed through WebSEAL by using only one initial login. Any further login
requirements from back-end servers are handled as transparent to the user.

In addition, the Cross Domain SSO and e-Community SSO solutions allow for
the transfer of Access Manager user credentials across multiple security
domains. For more information, seethe Tivoli documentation at the following
addresses:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=
/com.ibm.itame.doc/am60_webseal_admin213.htm

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=
/com.ibm.itame.doc/am60_webseal_admin218.htm

12.7.1 Simple junctions

pdadmin is a simple and easy-to-use command line utility for administration. You
can also use the Tivoli Access Manager Web Portal Manager, which provides a
graphical interface.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 335

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin213.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin218.htm

Before creating junctions, log in to the secure domain by using sec_master user
ID as follows:

pdadmin -a sec_master
password: Enter your password for sec_master
pdadmin sec_master>

You can get a list of configured WebSEAL servers by using the following server
list command:

pdadmin sec_master> server list
default-webseald-ibm-fa4431f1a88
 default-webseald-bch884313
 ivacld-ibm-fa4431f1a88

From this server list output, you can choose the server that is required, for
example, default-webseald-ibm-fa4431f1a88, for junction creation. Three options
are required for creating basic WebSEAL junctions:

� -h: The host name of the back-end junctioned server

� -t: The junction transport type with the options tcp, ssl, tcpproxy, sslproxy, and
local

� junction point name

The creation of a basic junction has the following syntax:

server task webseal-instance_name create -t transport_type -h host_name
jct_point_name

Consider the following example:

server task default-webseald-ibm-fa4431f1a88 create -t tcp -h
wvaa.itso.ral.ibm.com /test

You can configure a junction to insert Tivoli Access Manager specific client
identity and group information into the HTTP header by using the -c option. Then,
this information can be passed to the back-end servers which can use it from the
HTTP header. There are four options that you can use with -c:

iv-user Passes the short name or the long name. Defaults to
unauthenticated if the client is unauthenticated.

iv-user_l Passes the complete DN of the user.

Tip: For the pdadmin command line, see the following address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?top
ic=/com.ibm.itame.doc/am60_webseal_admin338.htm

336 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin338.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin338.htm

iv-groups Passes a list of comma-separated groups to which the
client belongs.

iv-creds An encoded opaque data structure representing an
Access Manager credential. It is used by the new TAI to
create a PDPrincipal object and inserts that object into the
Subject.

A junction can be configured to supply client identity in the BA header by using
the -b option when creating the junctions. This is different from the -c option
discussed earlier. When configuring a junction for use with the TAI of WebSphere
Application Server, configure your junction with the -b supply option. This option
inserts the dummy password configured in the webseald.conf file in a BA header.
This dummy password is used in the WebSEAL TAI to establish trust between the
participating WebSEAL servers and WebSphere Application Servers. You can
use the -f option to force a new junction to overwrite an existing junction mount
point. The following example uses these options:

server task default-webseald-ibm-fa4431f1a88 create -t ssl -h
wvaa.itso.ral.ibm.com -f -c iv_user,iv_creds /test

This creates a new junction test that overwrites the existing junction. To view the
details of this junction use the server task <webseal server> show
<junction-name> command (Example 12-8).

Example 12-8 Access Manager shows junction command

pdadmin sec_master> server task default-webseald-ibm-fa4431f1a88 show
/test
 Junction point: /test
 Type: SSL
 Junction hard limit: 0 - using global value

The -c all option: The -c all option adds all these options. You can also list
the options by using a comma as a separator.

Important: In order for a successful SSL junction to be created, WebSEAL
must be able to create a valid SSL connection to the Web server or Application
Server. This means that WebSEAL must be able to trust the certificate
presented. If the Web server also has SSL client authentication required
(which is considered good practice), the Web server must be able to trust
WebSEAL’s personal certificate in pdsrv.kdb.

It can also be considered beneficial to remove all other CA certificates from
the Web server, except those required to trust the proxy and Application
Server, so that it trusts requests from valid servers.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 337

 Junction soft limit: 0 - using global value
 Active worker threads: 0
 Basic authentication mode: filter
 Forms based SSO: disabled
 Authentication HTTP header: insert - iv_user iv_creds
 Remote Address HTTP header: do not insert
 Stateful junction: no
 Boolean Rule Header: no
 Scripting support: no
 Preserve cookie names: no
 Cookie names include path: no
 Transparent Path junction: no
 Delegation support: no
 Mutually authenticated: no
 Insert WebSphere LTPA cookies: no
 Insert WebSEAL session cookies: no
 Request Encoding: UTF-8, URI Encoded
 Server 1:
 ID: bec450e6-20bb-11db-8b52-00145e3ee66e
 Server State: running
 Operational State: Online
 Hostname: wvaa.itso.ral.ibm.com
 Port: 443
 Virtual hostname: wvaa.itso.ral.ibm.com
 Server DN:
 Query_contents URL: /cgi-bin/query_contents
 Query-contents: unknown
 Case insensitive URLs: no
 Allow Windows-style URLs: yes
 Current requests : 0
 Total requests : 1

12.7.2 Trust Association Interceptors and LTPA Junctions

When using WebSEAL as a perimeter authentication device for WebSphere
Application Server, there must be a certain level of trust required by WebSphere
of WebSEAL. The best way to ensure this trust is through TAIs or LTPA junctions.

Note: If the communications channel between WebSEAL and the junctioned
back-end server is not secure, you can use SSL junctions to ensure security.
However, you should use SSL junctions in all situations.

338 WebSphere Application Server V6.1 Security Handbook

12.7.3 Single sign-on junctions

For most cases, applications in a secured production environment behind several
security measures, such as protected environments and firewalls, can safely be
configured to trust WebSEAL and get the user identity by using the headers
provided. However, sometimes there is a requirement to integrate back-end
servers that require authentication and cannot or will not be modified to support
better methods such as TAI or LTPA as mentioned previously and further
explained in Chapter 13, “Trust Association Interceptors and third-party software
integration” on page 353.

In these cases, WebSEAL provides mechanisms to authenticate to Web servers
or application servers transparently, on behalf of the users, without them being
aware that Access Manager is handling the authentication.

Basic authentication
You can configure WebSEAL junctions to supply the back-end server with
original or modified client identity information. By using the set of -b options, you
can supply specific client identity information in the HTTP BA headers. After the
initial authentication between the client and WebSEAL, WebSEAL can build a
new basic authentication header. The request uses this new header as it
continues across the junction to the back-end server. You use the -b options to
dictate the specific authentication information that is supplied in this new header.
The following options are available:

supply The authenticated Tivoli Access Manager user name with
a static, generic dummy password. The original client
password is not used in this scenario. This option is used
for TAI junctions as explained previously.

ignore Passes the original client BA header to the back-end
server without interference. You can configure WebSEAL
to authenticate this BA client information or ignore the BA
header supplied by the client and forward the header,
without modification, to the back-end server.

filter Causes WebSEAL to remove the BA header from any
client requests, ensuring that WebSEAL is the single
security provider.

GSO Is used when the back-end server requires different user
names and/or passwords to authenticate. To use GSO, a
GSO resource credential database must be configured.
The user registry contains extra data for each user
beyond the Access Manager required data. The GSO
data is a list of gso resource-username-password entries.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 339

See the Tivoli Access Manager documentation for more
information about GSO.

Configuring a junction to authenticate to a server using basic
authentication
In the following example, the client authenticates to WebSphere Application
Server by using basic authentication. WebSphere must be configured with
application security and be able to accept basic authentication.

We use the snoop application (WebSphere default application sample) to test a
junction that requires basic authentication and shares the same user registry as
the policy server. To create the junction:

1. From the Access Manager server, use the pdadmin command line tool and log
on as the sec_master.

2. List the WebSEAL servers to find the one to configure the junction:

pdadmin sec_master> server list
 default-webseald-bch884313
 ba-webseald-bch884313
 forms-webseald-bch884313

For this example, use the server ba-webseald-bch884313, which listens on
IP:port 9.42.171.135:444 on HTTPS and is configured to use basic
authentication.

3. Create a junction to the WebSphere Server that listens on IP:port
9.42.171.159:443 on HTTPS. The junction uses the -b ignore option to pass
the BA header from WebSEAL to WebSphere transparently. Enter the
following command in the pdadmin command line:

pdadmin sec_master> server task ba-webseald-bch884313 create -t ssl
-h 9.42.171.159 -p 443 -b ignore /SnoopApp

If you access the snoop application directly by using the following address, the
basic authentication challenge comes from WebSphere:

https://9.42.171.159:443/snoop

To test the junction, access the same application through the WebSEAL server.
Enter the following address in your browser:

https://9.42.171.135:444/SnoopApp/snoop

You must be presented with the WebSEAL basic authentication header as
shown in Figure 12-9 on page 328.

Enter a valid user name and password from the LDAP registry, for example,
user01/test. WebSEAL authenticates to WebSphere and presents the snoop

340 WebSphere Application Server V6.1 Security Handbook

servlet output, as shown in Figure 12-10. The address is for WebSEAL, and the
address that was requested to WebSphere is in the response.

Figure 12-10 WebSEAL basic authentication SSO

Form-based authentication
Enabling WebSEAL to complete a form-based challenge from a back-end
application can be a powerful tool for integration with legacy systems. However,
WebSEAL does not keep that user’s password because it cannot authenticate to
the back-end resource as a confirmation that it is the user. You can correct this
problem if you have a trusted user and password for each application and then
pass the user’s credentials in as headers.

To enable SSO forms authentication to a back-end application, the Access
Manager administrator must perform two tasks. Firstly, a configuration file must
be created defining to WebSEAL how to identify a login form when it is received
from the back-end application and which fields in the back-end server form are
relevant for the authentication. Secondly, a junction must be created to the
back-end Web server using the -s option, which specifies the location of the
configuration file. After this is completed, WebSEAL provides login support for
Access Manager users to the back-end WebSphere application.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 341

For further information about enabling single-sign on forms authentication, see
the Access Manager for e-business WebSEAL Administrators Guide.

Creating the form-based authentication configuration file
The purpose of the configuration file for SSO forms authentication is to define the
following patterns and fields to WebSEAL:

� A pattern which WebSEAL can use to identify the URI which indicates a
request to the back-end application for a login form.

� A pattern which WebSEAL can use to identify the login form with a page
returned from the back-end application.

� A list of fields within the login form which WebSEAL is to provide the values
for, and where these values are to be obtained.

Example 12-9 is the source for a sample login page for the ITSOBank sample
application. It is a summary of the version from the ITSOBank_latest_with all
security defined.ear files in Web chapter code.

Example 12-9 ITSOBank - login.html

<form method="post" action="/itsobank/j_security_check">
<table width="80%">
<tr>
<td width="20%" align="right">Userid:</td><td><input size="20"
type="text" name="j_username" maxlength="25"></td>
</tr>

Tip: For this example, an ITSOBank_latest_with all security defined.ear
file is required from the Web chapter code that is deployed and configured in
IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316.
You must also specify users or groups for security roles.

Important: For security reasons WebSEAL never knows the password of
the user because it is immediately forwarded to the authentication provider
(for example, LDAP) which sends back user information and no password.
This means that you cannot forward the user’s password to the back-end
application.

Therefore, it is beneficial to create one user for each application and then
use the GSO functionality for requests. For more information about GSO,
see the following Web site:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?
topic=/com.ibm.itame.doc/am60_webseal_admin205.htm

342 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin205.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin205.htm

<tr>
<td align="right">Password:</td><td><input size="20" type="password"
name="j_password" maxlength="25"></td>
</tr>
<tr>
<td></td>
<td>
<input type="submit" name="action" value="Login"> <input
type="reset" name="reset" value="Clear">
</td>
</tr>
</table>
</form>

In our form, there are two input fields, j_username and j_password. These are
the two fields that WebSEAL must complete. Example 12-10 shows the SSO
forms configuration file.

Example 12-10 SSO forms authentication configuration file

[forms-sso-login-pages]
login-page-stanza = login-itsobank
[login-itsobank]
login-page = /itsobank/login/login.html
login-form-action = *
gso-resource =
argument-stanza = args-for-login-itsobank
[args-for-login-itsobank]
j_username = cred:azn_cred_authzn_id
passwords for all users must be the same on back end
j_password = string:static-passw0rd

In Example 12-10, we have configured one login form page, which is
login-itsobank. The URI for the login form is /itsobank/login/login.html. This entry
defines the URI that must be intercepted by WebSEAL. When a request is
received for this URI, WebSEAL intercepts the form, and returns to the
ITSOBank application that the user ID defined for this Access Manager user and
the fixed password test.

The forms configuration also allows you to use GSO resources, although we did
not use it in this example. The users can easily be created in the back-end
systems with the same password or no-password if the infrastructure and
WebSEAL provide a secure environment. This sample is similar to the -b supply
option discussed earlier.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 343

To create the junction:

1. Create the file itsobank.fsso.conf in the WebSEAL_install_directory/etc
directory. Ensure that the file is readable by the ivmgr user.

2. On the Access Manager server launch pdadmin and log on as sec_master.

3. Find the WebSEAL server that you are going to use:

pdadmin sec_master> server list
 default-webseald-bch884313
 ba-webseald-bch884313
 forms-webseald-bch884313

In this case, we use the server ba-webseald-bch884313, which listens on
IP:port 9.42.171.135:444 on HTTPS and is configured to use basic
authentication.

4. Create a junction to the WebSphere Application Server that listens on IP:port
9.42.171.159:443 on HTTPS. The junction uses the -s option to indicate the
forms SSO file.

Enter the following command:

pdadmin sec_master> server task ba-webseald-bch884313 create -t ssl
-h 9.42.171.159 -p 443 -f -S “C:\Program
Files\Tivoli\PDWeb\etc\itsobank.fsso.conf” /ITSOBank

5. To test the junction, access the WebSEAL server, the ITSOBank junction and
the protected resource /itsobank/transfer/customertransfer.html.

12.8 Integrating IBM WebSphere Application Server and
Tivoli Access Manager

To integrate WebSphere Application Server applications with Tivoli Access
Manager, you must distinguish between the following types of integration:

� Integration of new applications that are to be developed or existing
applications that are to be changed.

� Integration of existing applications without any changes.

For Java applications Access Manager provides a pure Java version of the
Authorization API (aznAPI) providing classes, which are PDPermission,
PDPrincipal, and PDLoginModule.

PDPermission is usable in both a JAAS and non-JAAS environment. You can use
these methods to secure new applications or to adjust existing applications.
Often, there are already existing J2EE applications secured by WebSphere

344 WebSphere Application Server V6.1 Security Handbook

declarative security also using J2EE security methods alternatively. When the
embedded Tivoli Access Manager is enabled in WebSphere Application Server,
it imports WebSphere security definitions into the Access Manager’s object
space. The function that determines whether a user is granted any permitted
roles is then handled by Tivoli Access Manager.

12.8.1 aznAPI

aznAPI is an API specifically designed for Access Manager. It has been
approved by the OpenGroup as the standard implementation of the Authorization
Model. Access Manager provides a C and a Java version of the API. The aznAPI
Java classes are basically Java wrappers for the original C API. WebSphere
applications may use the aznAPI to retrieve fine-grained authorization
information about a user. The authorization API consists of a set of classes and
methods that provide Java applications with the ability to interact with Access
Manager to make authentication and authorization decisions.

The aznAPI classes are installed as part of the Tivoli Access Manager Java
runtime component which comes with WebSphere Application Server V6.1.
These classes communicate directly with the Tivoli Access Manager
authorization server by establishing an authenticated SSL session with the
authorization server process.

12.8.2 Tivoli Access Manager and J2EE security

The Java security is policy based, which means that authorization to perform an
action is not hard coded into the Java run time or executables. Instead, the Java
environment consults policy external to the code to make security decisions. In
the simplest case, this policy is implemented in a flat file, which somewhat limits
its scalability and also adds administrative overhead.

To overcome the flat file implementation of Java 2 policy, and to converge to a
single security model, the authorization framework provided by Access Manager
can be leveraged from inside a normal Java security check. As mentioned earlier,
the most natural and architecturally pleasing implementation of this support is the
JAAS framework.

More information: For more information about Java development with Tivoli
Access Manager security and administration, see the following documents:

� IBM Tivoli Access Manager: Authorization Java Classes Developer
Reference, Tivoli Access Manager V6.0, SC32-1695

� IBM Tivoli Access Manager: Administration Java Classes Developer
Reference, Tivoli Access Manager V6.0, SC32-1693

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 345

Support for this standard provides the flexibility for Java developers to leverage
fine-grained usage of security and authorization services as an integral
component of their application and platform software. The Tivoli Access Manager
provides the PDLoginModule login module which is enabled when the
embedded Tivoli Access Manager is enabled in WebSphere V6.

With the Java 2 and JAAS support delivered with the embedded Tivoli Access
Manager, Java applications take advantage of the following benefits:

� Use the Tivoli Access Manager to acquire authentication and authorization
credentials from Access Manager.

� Use the PDPermission class to request authorization decisions.

This offers Java application developers the following advantages:

� The security of Java applications that use PDPermission is managed using
the same, consistent model as the rest of the enterprise.

� Java developers are not required to learn anything beyond Java 2 and JAAS.

� Updates to security policy involve Tivoli Access Manager-based administrator
actions, rather than any code updates.

Today, JavaServer Pages (JSP), servlets, and Enterprise JavaBeans (EJB) can
take direct advantage of these services. When WebSphere containers support
Java 2 security, EJB developers can avoid the requirement to make security calls
by having the containers handle security while they focus on business logic.

There are two options for implementing fine-grained authorization (at the level of
actions on objects) within servlets and EJBs:

� Given the Access Manager credential information (EPAC) passed in the
HTTP header, the servlet or the EJB must use the PDPermission class
extensions directly to query Access Manager for access decisions. The
access enforcement is still the responsibility of the application, servlet, or
EJB.

� Develop a proxy bean (a session bean) within an EJB. This proxy bean
intercepts all method invocations and communicates with Access Manager
(using the PDPermission class) to obtain the access decision and enforce it.

12.8.3 Embedded Tivoli Access Manager in WebSphere Application
Server V6.1

If the application is designed as a J2EE application, it relies on the J2EE security
methods to get a user ID and role. Tivoli Access Manager for WebSphere
Application Server provides container-based authorization and centralized policy

346 WebSphere Application Server V6.1 Security Handbook

management for WebSphere Application Server V6.1. Tivoli Access Manager for
WebSphere Application Server is implemented as an Access Manager aznAPI
application which runs on the WebSphere Application Server instance.

Access Manager for WebSphere Application Server supports applications that
use the J2EE Security Classes without requiring any coding or deployment
changes to the applications.

Tivoli Access Manager for WebSphere Application Server is used to evaluate
access requests from a user to protected resources based on the following tasks:

� Authentication of the user.

� Determination of whether the user has been granted the required role by
examining the WebSphere deployment descriptor.

� The WebSphere container using Tivoli Access Manager to perform role
membership checks for security code added directly into an application
(programmatic security).

Enabling the Embedded Tivoli Access Manager
To configure the WebSphere to use the Tivoli Access Manager APIs and the
Access Manager JACC implementation, enable the embedded Tivoli Access
Manager in WebSphere Application Server V6.1. For this scenario, Tivoli Access
Manager and WebSphere Application Server must share the same user registry.

To enable embedded Tivoli Access Manager:

1. Create a Tivoli Access Manager user, for example, wstam. Enter the following
command in pdadmin:

pdadmin sec_master> user create wstam -no-password-policy
cn=wstam,ou=users,o=itso,c=us wstam wstam test

user modify wstam account-valid yes

user modify wstam description "Access Manager user ID for WebSphere"

2. Enable Tivoli Access Manager JACC provider. See 14.6, “Integrating Tivoli
Access Manager as an external JACC provider” on page 420 for further
details. Make sure that Administrative and Application Security is enabled,
save your settings, and restart WebSphere. After enabling Tivoli Access
Manager, you must be able to see the following servers. For example, our
environment show three new servers in the pdadmin utility:

pdadmin sec_master> server list
Authn_418532961-wvaa
Authz_293977456-wvaa
JACC_293977456-wvaa

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 347

Migration of roles and principals to groups
When the embedded Tivoli Access Manager included in WebSphere Application
Server is installed, only the Administration Console roles and resources are
migrated to Tivoli Access Manager.

In WebSphere Application Server V5.0 there was a migration utility to migrate the
application roles to the Tivoli Access Manager object space. In WebSphere
Application Server V6.1, if JACC is enabled, every time a new application is
deployed all the required objects and mappings are created. To create the
resources required for the applications already installed in your Application
Server, you can either reinstall the applications or manually propagate the policy
information using wsadmin. If you choose reinstall, WebSphere creates the
required objects in the Tivoli Access Manager object space during deployment,
you also have the option to assign Application Roles to Tivoli Access Manager
users or groups. For information about manual policy propagation see 14.5.5,
“Manual policy propagation” on page 418.

Deployment descriptor mapping in Tivoli Access Manager
WebSphere maps the application deployment descriptor in a peculiar way that
might not be obvious at first sight. To show how this works, we use some of the
objects created after installing the Itsohello application. Figure 12-11 on
page 349 represents a part of the Tivoli Access Manager object space.

348 WebSphere Application Server V6.1 Security Handbook

Figure 12-11 Deployment descriptor and J2EE roles in Tivoli Access Manager object space

When the application is deployed all the application roles are created under
/webSppServer/deployedResources/Role, the mapping is of the form
/<role_name>/<server_node_cell>/<application_name>.

Although there are some extra objects under this, such as the Access Manager
ACL that governs the role, in other words, the Tivoli Access Manager users and
groups assigned to the role, is attached at the <application_name> level. In the
example in this book, the ACL attached to the following changes to reflect the
Tivoli Access Manager users and groups mapped to the role in the
Administration Console:

/WebAppServer/deployedResources/Roles/Anonymous/wvaaNode02Cell/Itsohell
oEAR

Also the Administration console reads the mappings by looking at the ACLs
attached to that object.

Note: If you update the ACLs using the Tivoli tools, the WebSphere server
has to be restarted to re-read the ACLs attached to the J2EE roles.

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 349

During deployment WebSphere translates each Web resource in the web.xml
descriptor to an object under the /webSppServer/deployedResources/Resources
directory. The mapping is of the following form:

<server_node_cell>/<application_name>/<???>/<application_name>/<war_fil
ename>/<resource>

In the sample, the Itsohello application receives the information from the
web.xml file. The relevant information in the web.xml file (Figure 12-12) translates
to the following object:

/WebAppServer/deployedResources/Resources/wvaaNode02Cell/WebResourcePer
mission/ItsohelloEAR/ItsohelloWAR.war/hello

Figure 12-12 The web.xml deployment descriptor

The Web deployment descriptor lists each action allowed in the Web objects
according to the HTTP Action. In this case the descriptor allows the Anonymous
role PUT and POST to the /hello Web resource and in Tivoli Access Manager the
object is created with extended attributes to represent this action as described in
Figure 12-11 on page 349.

350 WebSphere Application Server V6.1 Security Handbook

Also, for the EJB methods, WebSphere translates each method signature in the
EJB as described in the ejb-jar.xml descriptor to an object under
/webSppServer/deployedResources/Resources, the mapping is of the form:

<server_node_cell>/<EJBMethodPermission>/<application_name>/<ejb_filena
me>/<ejb_name>/<bean_name>/<method_signature>

In the sample, the Itsohello application receives the information from the
ejb-jar.xml file. The relevant information in the ejb-jar.xml file the can be seen in
Figure 12-12. As you can see in Figure 12-11 on page 349 translates to:

/WebAppServer/deployedResources/Resources/wvaaNode02Cell/EJBMethodPermi
ssion/ItsohelloEAR/ItsohelloEJB.jar/Hello/*,*,*

The EJB deployment descriptor lists the roles that are allowed to invoke the
methods in the bean, in our case the descriptor allows the Anonymous role to
invoke any method in the Hello bean.

This is shown in both the descriptor in Figure 12-13 and the Tivoli Access
Manager object space in Figure 12-11 on page 349.

Figure 12-13 The ejb-jar deployment descriptor

 Chapter 12. Securing a WebSphere application using Tivoli Access Manager 351

352 WebSphere Application Server V6.1 Security Handbook

Chapter 13. Trust Association
Interceptors and third-party
software integration

This chapter discusses the use of Trust Association Interceptors (TAIs) with
WebSphere Application Server V6.1.

13

© Copyright IBM Corp. 2006. All rights reserved. 353

13.1 Trust Association Interceptor

In many enterprises, you can use third-party applications, such as Web proxy
authentication servers like WebSEAL, to perform authentication. When
WebSphere is deployed in such scenarios, it is essential to establish a trust
relationship between the Application Server and the third-party security software
such as WebSEAL or Microsoft Windows Active Directory. This trusted
relationship between WebSphere Application Server and the third-party software
is established by using a TAI that specifically built for the product. Thus, TAI
enables the integration of third-party security servers with WebSphere
Application Server.

TAI is an interface that is provided by WebSphere Application Server. This
interface must be implemented for the specific Web proxy servers by the vendor
alone or in conjunction with IBM. The implementation of this interface determines
the contract used between WebSphere Application Server and the proxy server
to establish trust.

The perimeter authentication service can be any one of the following types:

� A reverse proxy such as WebSEAL

� A Web server security plug-in such as Access Manager plug-in for Web
servers

� A Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
protocol enabled client, as in the case of WebSphere Application Server V6.1

This perimeter authentication service is expected to achieve the following tasks:

� Establish trust with WebSphere Application Server.
� Perform user authentication.
� Insert user credential information into Hypertext Transfer Protocol (HTTP)

requests.

The TAI module in WebSphere Application Server is expected to perform the
following tasks:

� Validate the trust of the perimeter authentication service.
� Extract the user’s credential information from the request.

Introduced as part of WebSphere Application Server V5.1.1 was a new TAI
interface that had significantly enhanced features. This interface introduced
performance benefits that allowed the TAI module to return credential information
to the application server. This means that no additional user registry searches
are required by the login modules, thus reducing authentication overhead. This
can be combined with WebSphere Application Server’s downstream security
attribute propagation services to allow information propagation.

354 WebSphere Application Server V6.1 Security Handbook

The IBM developerWorks® article at the following address discusses the Tivoli
implementation of the newer interface called Tivoli Access Manager Trust
Association Interceptor (TAI++):

http://www-128.ibm.com/developerworks/tivoli/library/t-tamtai/

13.1.1 The relatively new, enhanced TAI interface

The TAI interface introduced in WebSphere Application Server V5.1.1,
com.ibm.wsspi.security.tai.TrustAssociationInterceptor, enhanced the original
interface with the following new features:

� Support for a multi-phase negotiation during the authentication process

� TAIResult returned by the TAI and it indicates if more negotiation is required
or the negotiation process is completed

� Trust Association Interceptor capable of asserting the userID and group
information to WebSphere Application Server

� The ability to add custom information to the subject during TAI processing;
can be returned as a Java Authentication and Authorization Service (JAAS)
subject and can be used in application code.

There are two key methods in the new interface:

� public boolean isTargetInterceptor (HTTPServletRequest req) throws
WebTrustAssociationException

This method determines if the request originated from one of the proxy
servers associated with the Trust Association Interceptor. The code in this
method must determine whether the incoming request originated from one of
the configured Proxy Servers by examining the request object. The result of
this method may be True or False. True value tells WebSphere Application
Server to continue the processing of TAI. In case of false, the TAI is ignored.

� public TAIResult
negotiateValidateandEstablishTrust(HttpServletRequest req,
HttpServletResponse res) throws WebTrustAssociationFailedException

The code in this method must determine whether to trust the proxy server
from which the request originated. This code is proxy server specific and must
authenticate the proxy server in some meaningful way.

com.ibm.websphere.security.TrustAssociationInterceptor: You can still
use the old TAI interface com.ibm.websphere.security.
TrustAssociationInterceptor. For more information about this version of TAI,
see IBM WebSphere V5.0 Security WebSphere Handbook Series,
SG24-6573.

 Chapter 13. Trust Association Interceptors and third-party software integration 355

http://www-128.ibm.com/developerworks/tivoli/library/t-tamtai/

Also this method enables the TAI to use a trust negotiation protocol, such as
SPNEGO, to provide challenge and responses back to the client.

The return value of negotiateValidateandEstablishTrust is TAIResult. This object
indicates the status of negotiation or the final result of negotiation. The TAIResult
class has three static methods for creating a TAIResult:

� create(int status)

You can set the int to something other than HttpServletResponse.SC_OK,
and the HttpServletResponse is sent back to the client to make another
request to the TAI.

� create(int status, String principal)

You can set the status to HttpServletResponse.SC_OK and then provide the
user ID or the unique ID for this user. WebSphere Application Server then
queries the registry with this ID for additional information to create the
credentials.

� create(int status, String principal, Subject subject)

You can set the status to HttpServletResponse.SC_OK, thus indicating that
no further negotiation is required. WebSphere Application Server creates the
subject by using the information provided in principal and subject.

A few additional methods on the TrustAssociationInterceptor interface are used
for TrustAssociationInterceptor initialization, shut down, and identification. For
more information about these methods, see the WebSphere Application Server
V6.1 Information Center or the WebSphere Application Server Java API
documentation.

13.2 Windows desktop single sign-on using SPNEGO

A new feature provided in WebSphere Application Server V6.1 is the ability to
use single sign-on (SSO) for WebSphere applications from a Microsoft Windows
desktop by using SPNEGO. The SSO is invisible to the user. Previously this
function was only achieved through third-party software such as Tivoli Access
Manager. Now this function is achieved by having a SPNEGO protocol enabled
client, such as a .NET application or SPNEGO-enabled browser (for example,
Microsoft Internet Explorer 5.5 and later or Mozilla Firefox 1.0). These establish
trust and pass credentials to the application server using Kerberos tokens issued
from a Microsoft Windows 2000 or 2003 Active Directory domain controller.

356 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Figure 13-1 show the challenge-response handshake.

Figure 13-1 HTTP request flow when using SPNEGO TAI

This environment has a clear separation of responsibilities between the four main
components:

� SPNEGO protocol enabled client
� Microsoft Windows Active Directory Domain Controller
� WebSphere Application Server with SPNEGO TAI
� The registry that WebSphere Application Server is using

The SPNEGO protocol-enabled client is responsible for creating the request. The
request creation is an important concept because it forces any client developers
to ensure that they implement the required functionality. The client creates the
request with the help of the Kerberos Key Distribution Center (KDC) located at
the Active Directory Domain Controller. This request contains the SPNEGO
token, which allows the TAI to authenticate the user.

 Chapter 13. Trust Association Interceptors and third-party software integration 357

After WebSphere Application Server receives the request that contains trust
information and user credentials, it validates the user against the registry. If a
different registry is used for WebSphere to the Windows Domain Controller this
validation can be tricky due to user name mappings. After successful validation,
a Lightweight Third Party Authentication (LTPA) token is created and a session
started for the user. For user mapping, see the WebSphere Application Server
Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_tai_umapper.html

13.2.1 Lab scenario

Figure 13-2 on page 359 illustrates an environment with the following machines:

� Microsoft Windows Server® 2003 SP1 (W2K3) Active Directory Domain
Controller

� Microsoft Windows Server 2003 SP1 (W2K3) domain member (client)

� SUSE® Linux Enterprise Server 9 with WebSphere Application Server V6.1

� Microsoft Windows Server 2003 SP1 (W2K3) domain member hosting
WebSphere Application Server V6.1

The W2K3 Domain Controller, bchhs409.paul.itso.ral.ibm.com, is also the
Domain Name System (DNS) and Kerberos Key Distribution Center. It has a
W2K3 domain member, bch884314.paul.itso.ral.ibm.com, with two users, which
are alison and emily who can log in to the domain.

A SUSE Linux Enterprise Server 9 workstation, cvs7240a.paul.itso.ral.ibm.com,
is hosting WebSphere Application Server V6.1. WebSphere Application Server
V6.1 is installed on W2K3 domain member bch884313.paul.itso.ral.ibm.com. The
Active Directory Domain repository is federated into the WebSphere Application

Tip: To understand the basics of Kerberos and its use within Microsoft
Windows environments it, see the following Web sites:

� Kerberos: The Network Authentication Protocol

http://web.mit.edu/Kerberos/

� Kerberos Protocol Transition and Constrained Delegation

http://technet2.microsoft.com/windowsserver/en/technologies/featu
red/kerberos/default.mspx

� Authentication for Administrative Authority

http://www.microsoft.com/technet/Security/bestprac/authent.mspx

358 WebSphere Application Server V6.1 Security Handbook

http://web.mit.edu/Kerberos/
http://technet2.microsoft.com/windowsserver/en/technologies/featured/kerberos/default.mspx
http://www.microsoft.com/technet/Security/bestprac/authent.mspx
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_tai_umapper.html

Servers’ security repository. These two WebSphere Application Servers profiles
are not part of the same cell and do not have any WebSphere Application Server
cross-cell SSO configured.

The goal of this lab is to allow users alison and emily to successfully access
WebSphere Application Server resources on either of the WebSphere
Application Server profiles without re-authenticating, for example, to achieve
Microsoft Windows desktop SSO.

Figure 13-2 Lab environment for Microsoft Windows SSO to WebSphere Application
Server using SPNEGO TAI

13.2.2 Configuring the WebSphere Application Server environment to
use SPNEGO

In this section, we explain how to configure an environment for Microsoft
Windows users to use SSO to WebSphere Application Server resources. The
configuration of WebSphere Application Server to use SPNEGO can be complex.

Prerequisites: Prior to reading this section, you must understand how
Microsoft Window Active Directory and Kerberos work. You must also have a
working Active Directory Domain that allows users to successfully log in to
desktops in the domain and know how to use native Windows SSO capabilities.

 Chapter 13. Trust Association Interceptors and third-party software integration 359

The WebSphere Application Servers’ repositories must also be considered
before configuration. It is easiest to use the domain’s Active Directory registry as
either a stand-alone Lightweight Directory Access Protocol (LDAP) or federated
into the federated repositories (as is done in the example). If you use another
registry, depending on your environment, you might have to do name mapping for
the users that are presented. Also, a process must be implemented to ensure
that user mapping exists between registries. This mapping might be one-to-one
or many-to-one depending upon the environments architecture.

From a technical perspective, these steps have the following goals:

� Enable the SPNEGO TAIs of the WebSphere Application Server profiles to
trust requests.

� Validate user credentials that come from SPNEGO-enabled clients that are
part of a Microsoft Windows Active Directory Domain.

Important: A working domain controller and at least one client computer in
that domain are required, because trying to use SPNEGO from the domain
controller does not work.

Note: Before you start, install the Windows Support Tools that come on the
Microsoft Windows installation CD. The following packages are also helpful for
managing Microsoft Windows Active Directory domains:

� Windows Server 2003 Resource Kit Tools (contains the kerbtray.exe file,
which is helpful for viewing Kerberos tickets)

http://www.microsoft.com/downloads/details.aspx?familyid=9d467a69
-57ff-4ae7-96ee-b18c4790cffd&displaylang=en

� Windows Server 2003 Administration Tools Pack

http://www.microsoft.com/downloads/details.aspx?familyid=C16AE515
-C8F4-47EF-A1E4-A8DCBACFF8E3&displaylang=en

� Windows Server 2003 Service Pack 1 Administration Tools Pack

http://www.microsoft.com/downloads/details.aspx?familyid=E487F885
-F0C7-436A-A392-25793A25BAD7&displaylang=en

360 WebSphere Application Server V6.1 Security Handbook

http://www.microsoft.com/downloads/details.aspx?familyid=9d467a69-57ff-4ae7-96ee-b18c4790cffd&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=C16AE515-C8F4-47EF-A1E4-A8DCBACFF8E3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=E487F885-F0C7-436A-A392-25793A25BAD7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=E487F885-F0C7-436A-A392-25793A25BAD7&displaylang=en

To configure the WebSphere Application Server environment to use SPNEGO:

1. Create a user account in the Microsoft Active Directory for the WebSphere
Application Server. Depending on whether the WebSphere Application Server
is hosted on a Linux, UNIX, or Microsoft Windows system, it determines the
type of user created.

Tip: Ensure that you complete the following checklist before continuing:

� You must have a functioning Microsoft Windows 2000/2003 Active
Directory Domain including the following requirements:

– Domain controller
– Client workstation
– Users that can login to the client workstation

� You must have a functioning WebSphere Application Server with
Application Security enabled.

� The users from the Active Directory must be able to successfully access
WebSphere Application Server’s protected resources using a native
WebSphere Application Server authentication mechanism such as basic
authentication (BA) or forms authentication.

� The domain controller and host of WebSphere Application Server must
have the same local time.

� Make sure that the clocks on the clients and WebSphere Application
Server are in sync with less than five minutes.

� Ensure that the client’s browsers are SPNEGO-enabled. For instructions
regarding this, see the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?t
opic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_config_web.
html

The Firefox configuration steps do not mention that you must also set the
value for the network.negotiate-auth.trusted-uris variable.

 Chapter 13. Trust Association Interceptors and third-party software integration 361

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_config_web.html

For Linux, the user must be created on the General tab as shown in
Figure 13-3.

For Windows, the computer must already have an associated user in the
Computers view (created when it joined the domain).

Figure 13-3 The Active Directory user corresponding to the WebSphere Application
Server, CVS7420A

2. Map the user account to the Kerberos service principal name (SPN). This
user account represents the WebSphere Application Server as being a
Kerberized service with the Kerberos KDC. Use the setspn tool to establish
WebSphere Application Server as the user. You can skip this step if you use
the -mapuser switch in the following step.

362 WebSphere Application Server V6.1 Security Handbook

Note some SPNs might already be related to the Microsoft Windows hosts
that were added to the domain. You can see this by using the setspn -L host
name command. You must still add an HTTP SPN for that host.

The usage for the setspn tool is as follows:

setspn.exe [switches data] computer_name

The switches are:

-R Resets the computers ServicePrincipalName
-A Adds an arbitrary SPN
-D Deletes an arbitrary SPN
-L Lists registered SPNs

You are required to specify the long host name for the principal. Example 13-1
shows the command used for cvs7240a in the example in this section.

Example 13-1 Command used for cvs7240a

C:\Program Files\Support Tools>setspn.exe -A
HTTP/cvs7240a.paul.itso.ral.ibm.com cvs7240a

Registering ServicePrincipalNames for
CN=cvs7240a,CN=Computers,DC=paul,DC=itso,DC=ral,DC=ibm,DC=com
HTTP/cvs7240a

Updated object

Check which SPNs have been associated by using the -L flag as shown in
Example 13-2.

Example 13-2 Checking SPNs using -L flag

C:\Program Files\Support Tools>setspn.exe -L cvs7240a

Registered ServicePrincipalNames for
CN=cvs7240a,CN=Computers,DC=paul,DC=itso,DC=ral,DC=ibm,DC=com:

HTTP/cvs7240a.paul.itso.ral.ibm.com

More information: For more information about the setspn tool, see the
following Web site:

http://technet2.microsoft.com/WindowsServer/en/library/b3a029a1-7
ff0-4f6f-87d2-f2e70294a5761033.mspx?mfr=true

 Chapter 13. Trust Association Interceptors and third-party software integration 363

http://technet2.microsoft.com/WindowsServer/en/library/b3a029a1-7ff0-4f6f-87d2-f2e70294a5761033.mspx?mfr=true
http://technet2.microsoft.com/WindowsServer/en/library/b3a029a1-7ff0-4f6f-87d2-f2e70294a5761033.mspx?mfr=true

3. Create the Kerberos keytab file and make it available to WebSphere
Application Server. Use the ktpass tool to create the Kerberos keytab file
(krb5.keytab).

The following switches are the most common (use --help switch for a full list
of switches):

-out File name specifies the keytab to produce.

-princ The principal_name specifies the principal name.

-pass The password specifies the one to use. Use an
asterisk (*) for a password prompt.

-mapuser The user name maps princ to the user.

-crypto {DES-CBC-CRC|DES-CBC-MD5|RC4-HMAC-NT}
Specifies the type of cryptographic system to use.

For Microsoft Windows, this switch might look similar to the following
example:

ktpass.exe -princ HTTP/<host>@<domain> -out C:\<new-file-name> -pass
passw0rd -ptype KRB5_NT_SRV_HST

Example 13-3 shows the output for getting the key for bch884313.

Example 13-3 Output from the ktpass utility for Windows host

C:\Program Files\Support Tools>setspn.exe -L bch884313
Registered ServicePrincipalNames for
CN=BCH884313,CN=Computers,DC=paul,DC=itso,DC=ral,DC=ibm,DC=com:
 HTTP/bch884313.paul.itso.ral.ibm.com
 HOST/bch884313.paul.itso.ral.ibm.com
 HOST/BCH884313

C:\Program Files\Support Tools>ktpass.exe -princ
HTTP/bch884313.paul.itso.ral.ibm.com@PAUL.ITSO.RAL.IBM.COM -out
C:\wdir\spnego\bch884313.HTTP.key -pass passw0rd -ptype
KRB5_NT_SRV_HST
NOTE: creating a keytab but not mapping principal to any user.
 For the account to work within a Windows domain, the
 principal must be mapped to an account, either at the
 domain level (with /mapuser) or locally (using ksetup)

Attention: Do not use the -pass switch to reset a password for a Windows
server account as this produces problems.

There are warnings regarding the account type and the ptype, but you can
safely ignore them.

364 WebSphere Application Server V6.1 Security Handbook

 If you intend to map
HTTP/bch884313.paul.itso.ral.ibm.com@PAUL.ITSO.RAL.IB
M.COM to an account through other means

or don't need to map the user, this message can safely be ignored.
WARNING: pType and account type do not match. This might cause
problems.
Key created.
Output keytab to C:\wdir\spnego\bch884313.HTTP.key:
Keytab version: 0x502
keysize 93
HTTP/bch884313.paul.itso.ral.ibm.com@PAUL.ITSO.RAL.IBM.COM ptype 3
(KRB5_NT_SRV_HST) vno 1 etype 0x17 (RC4-HMAC) keylength 16
(0xb9f917853e3dbf6e6831ecce60725930)

For an application server hosted on a UNIX or Linux server, use the following
command on the domain controller:

ktpass -princ HTTP/<WAS_Host>@PAUL.ITSO.RAL.IBM.COM -pass <password>
-out was_host.HTTP.keytab -mapuser was_host -mapOp set -princ
KRB5_NT_PRINCIPAL

You must see the output, which is shown in Example 13-4, such as Key
created. Output keytab to was_host.HTTP.keytab, and some other
information about the key. Remember the password that you used to create
the keytab because it is required later.

Example 13-4 Output from the ktpass utility for a Linux host

C:\Program Files\Support Tools>ktpass.exe -out
c:\wdir\spnego\cvs7240a_long.HTTP.key -princ
HTTP/cvs7240a.paul.itso.ral.ibm.com@PAUL.ITSO.RAL.IBM.COM -pass
passw0rd -mapuser cvs7240a -target paul.itso.ral.ibm.com -ptype
KRB5_NT_PRINCIPAL
Using legacy password setting method
Successfully mapped HTTP/cvs7240a.paul.itso.ral.ibm.com to cvs7240a.
Key created.
Output keytab to c:\wdir\spnego\cvs7240a_long.HTTP.key:
Keytab version: 0x502
keysize 92 HTTP/cvs7240a.paul.itso.ral.ibm.com@PAUL.ITSO.RAL.IBM.COM
ptype 1 (KRB5_NT_PRINCIPAL) vno 5 etype 0x17 (RC4-HMAC) keylength 16
(0xb9f917853e3dbf6e6831ecce60725930)
C:\Program Files\Support Tools>setspn.exe -L cvs7240a
Registered ServicePrincipalNames for CN=cvs7240a
WAS,CN=Users,DC=paul,DC=itso,DC
=ral,DC=ibm,DC=com:
 HTTP/cvs7240a.paul.itso.ral.ibm.com

 Chapter 13. Trust Association Interceptors and third-party software integration 365

4. Configure and enable the application server and the associated SPNEGO TAI
by using the administrative console or the wsadmin command to perform
command tasks. See “Configuring SPNEGO TAI in WebSphere Application
Server” on page 369.

5. Ensure that LTPA is the authentication mechanism. It is also beneficial to set
the SSO domain for the LTPA cookies.

6. On the WebSphere Application Server host, install the Kerberos keytab file.
Get the key file that was created in step 3 on page 364 to the host machine,
and then reference the key file in the krb5.conf file (step 7). This file must be
secured so that only the correct users can read it (the example, use chmods on
the file to 600).

You can manipulate key files by using the ktutil or ktab utilities. For example,
to ensure that it is the correct key file, use the list command as shown in
Example 13-5.

Example 13-5 Using list command to confirm the correct key files

cvs7240a:/wdir/spnego # ktutil -k cvs7240a_long.HTTP.key list
cvs7240a_long.HTTP.key:

Vno Type Principal
 5 arcfour-hmac-md5
HTTP/cvs7240a.paul.itso.ral.ibm.com@PAUL.ITSO.RAL.IBM.COM

7. Update the associated Kerberos configuration (krb5.conf) by using the
following hierarchy to find this file:

a. File referred to by the java.security.krb5.conf property
b. <java.home>/lib/security/krb5.conf
c. Depending on your platform, choose one of the following files:

• The c:\winnt\krb5.ini file on Microsoft Windows platforms
• The /etc/krb5/krb5.conf file on UNIX platforms
• The /etc/krb5.conf file on Linux platforms

Edit the file to correspond to your environment. For further information about
the Kerberos configuration file, see the Linux man page or the MIT Kerberos
documentation. Kerberos has many Linux man pages for Kerberos utilities

More information: For more information about the keytab files and the
ktpass command, see the following Web address:

http://technet2.microsoft.com/WindowsServer/en/library/64042138-9
a5a-4981-84e9-d576a8db0d051033.mspx?mfr=true

366 WebSphere Application Server V6.1 Security Handbook

http://technet2.microsoft.com/WindowsServer/en/library/64042138-9a5a-4981-84e9-d576a8db0d051033.mspx?mfr=true

such as, ktutil, kinit, kdestroy, klist, and krb5.conf, which you type as
follows:

man krb5.conf

The stanzas of interest are libdefaults, realms, and domain_realm.
Example 13-6 shows the file that is used for the example in this section.

Example 13-6 Editing the file to correspond to the environment

[libdefaults]
clockskew = 300
default_realm = PAUL.ITSO.RAL.IBM.COM
default_keytab_name = FILE:/wdir/spnego/cvs7240a_long.HTTP.key
default_tkt_enctypes = des-cbc-md5 rc4-hmac
default_tgs_enctypes = des-cbc-md5 rc4-hmac

[realms]
PAUL.ITSO.RAL.IBM.COM = {

kdc = bchhs409.paul.itso.ral.ibm.com:88
default_domain = paul.itso.ral.ibm.com

}
[domain_realm]

.paul.itso.ral.ibm.com = PAUL.ITSO.RAL.IBM.COM

Another option is to use the wsadmin command createKrbConfigFile. After
using this utility to create the program, you might want to edit the created file
manually.

Example 13-7 shows the command for the example scenario.

Example 13-7 Command for our scenario

wsadmin>$AdminTask createKrbConfigFile {-krbPath /etc/krb5.cong
-realm PAUL.ITSO.RAL.IBM.COM -kdcHost bchhs409.paul.itso.ibm.com
-dns bchhs409.paul.itso.ral.ibm.com -keytabPath
/wdir/spnego/cvs7240a_long.HTTP.key}

Note: By now you must be able to make a valid Kerberos session from the
WebSphere Application Server host by using the kinit command (Linux
and UNIX only). See 13.2.3, “Troubleshooting SPNEGO environments” on
page 376, for more details.

 Chapter 13. Trust Association Interceptors and third-party software integration 367

Example 13-8 shows the command for the Windows host.

Example 13-8 Command for the Windows host

wsadmin>$AdminTask createKrbConfigFile {-krbPath "C:\Program
Files\IBM\WebSphere\AppServer\java\jre\lib\security\krb5.conf"
-realm PAUL.ITSO.RAL.IBM.COM -kdcHost bchhs409.paul.itso.ral.ibm.com
-dns bchhs409.paul.itso.ral.ibm.com -keytabPath
C:\wdir\spnego\bch884313.HOST.key}

8. Configure the Java virtual machine (JVM) properties and enable SPNEGO
TAI. See “Configuring JVM properties and enabling SPNEGO TAI in
WebSphere Application Server” on page 374.

Important: During the setup of this example, bch884313 threw Checksum
errors when it validated the client’s ticket. We resolved this by changing the
encryption types as follows:

[libdefaults]
default_realm = PAUL.ITSO.RAL.IBM.COM
default_keytab_name = FILE:C:\wdir\spnego\bch884313.HTTP.key
default_tkt_enctypes = des-cbc-md5
default_tgs_enctypes = des-cbc-md5
kdc_default_options = 0x5480000

Avoid using the single data encryption standard (DES), because it is a less
secure encryption.

If you have Windows 2000 or a mix of Windows 2000 and 2003, use
DES-CBC-MD5. If you have a pure set of Windows 2003 servers, use
RC4-HMAC. If you use RC4-HMAC, when you use the
createKrbConfigFile command, specify the encryption type of
RC4-HMAC to avoid the checksum error.

Important: Make sure that the machines that host the Kerberos ticket
granting service, Windows Active Directory, and the WebSphere
Application Server are synchronized with less than five minutes. This is
essential because a machine’s local time with respect to Kerberos tokens’
validity is considered important.

368 WebSphere Application Server V6.1 Security Handbook

Configuring SPNEGO TAI in WebSphere Application Server
Make sure that you have followed all the preceding steps in the previous section.
Then configure the SPNEGO TAI in WebSphere Application Server:

1. Log in to the WebSphere Application Server administrative console.

2. Click Security → Secure administration, applications, and infrastructure.

3. Expand Web security and click Trust association.

4. Under the General Properties heading, select the Enable trust association
check box and then click Interceptors.

5. Select SPNEGO TAI in the list of interceptors,
com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl. Then click
Custom properties.

6. Click New.

7. Complete the Name and Value for the text boxes. Click OK.

8. Repeat steps 6 and 7 for each custom property that you want to apply to the
SPNEGO TAI.

The properties are entered so that each SPN can be assigned individual
values. The SPN ID has to match with those specified for the JVM. See
“Configuring JVM properties and enabling SPNEGO TAI in WebSphere
Application Server” on page 374. Table 13-1 on page 370 shows the list of
properties.

Note: Use the SPNEGO TAI admin command tasks to create custom
properties so that you can avoid missing a property or a typing error.

Tip: The Kerberos SPN is a string of the form HTTP/<hostname>@realm. The
complete SPN is used with the Java Generic Security Service (JGSS) by
the SPNEGO provider to obtain the security credential and security context
that are used in the authentication process. It is set for the Active Directory
user when running setspn or ktpass.

Use the wsadmin addSpnegoTAIProperties tool so that property names are
correct. You can use the interactive mode by using the following command:

wsadmin>$AdminTask addSpnegoTAIProperties -interactive

For further information about this command, see the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?t
opic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_add_wsadmin
.html

 Chapter 13. Trust Association Interceptors and third-party software integration 369

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_add_wsadmin.html

Table 13-1 Attributes required for the SPNEGO TAI configuration

The list in Table 13-1 is explained as follows:

– com.ibm.ws.security.spnego.SPN<id>.hostName

This attribute is required. It specifies the host name in the SPN used by
the SPNEGO TAI to establish a Kerberos secure context.

– com.ibm.ws.security.spnego.SPN<id>.filterClass

This attribute is optional. It specifies the name of the Java class that is
used by the SPNEGO TAI to select which HTTP requests are subject to
SPNEGO authentication. If no class is specified, the default
com.ibm.ws.security.spnego.HTTPHeaderFilter implementation class is
used. The Java class that is specified must implement the
com.ibm.wsspi.security.spnego.SpnegoFilter interface. A default
implementation of this interface is provided. Specify the
com.ibm.ws.security.spnego.HTTPHeaderFilter class to use the default
implementation. This class uses the selection rules specified with the
com.ibm.ws.security.spnego.SPN<id>.filter property.

Attribute name Required Default value

com.ibm.ws.security.spnego.SPN<id>.host
Name

Yes None

com.ibm.ws.security.spnego.SPN<id>.filter
Class

No See the description that
follows this table.

com.ibm.ws.security.spnego.SPN<id>.filter No See the description that
follows this table.

com.ibm.ws.security.spnego.SPN<id>.enab
leCredDelegate

No false

com.ibm.ws.security.spnego.SPN<id>.spne
goNotSupportedPage

No See the description that
follows this table.

com.ibm.ws.security.spnego.SPN<id>.NTL
MTokenReceivedPage

No See the description that
follows this table.

com.ibm.ws.security.spnego.SPN<id>.trim
UserName

No true

Note: The host name is the long form of host name, for example,
cvs7240a.paul.itso.ral.ibm.com.

370 WebSphere Application Server V6.1 Security Handbook

– com.ibm.ws.security.spnego.SPN<id>.filter

This attribute is optional. It defines the filtering criteria that is used by the
specified class with the previous attribute. It defines arbitrary criteria that is
meaningful to the implementation class used. The
com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation
class uses this attribute to define a list of selection rules that represent
conditions that are matched against the HTTP request headers to
determine whether or not the HTTP request is selected for SPNEGO
authentication.

Each condition is specified with a key-value pair, separated from each
other by a semicolon. The conditions are evaluated from left to right,
because they are displayed in the specified attribute. If all conditions are
met, the HTTP request is selected for SPNEGO authentication.

The key and value in the key-value pair are separated by an operator that
defines which condition is checked. The key identifies an HTTP request
header to extract from the request and its value is compared with the value
that is specified in the key-value pair according to the operator
specification. If the header that is identified by the key is not present in the
HTTP request, the condition is treated as not being met.

You can use any of the standard HTTP request headers as the key in the
key-value pairs. See the HTTP specification for the list of valid headers. In
addition, two keys are defined to extract information from the request,
which is useful as a selection criterion and not available through standard
HTTP request headers.

The remote-address key is used as a pseudo header to retrieve the remote
Transmission Control Protocol/Internet Protocol (TCP/IP) address of the
client application that sent the HTTP request. The request-URL key is
used as a pseudo header to retrieve the URL that is used by the client
application to make the request. The interceptor uses the result of the
getRequestURL operation in the javax.servlet.http.HttpServletRequest
interface to construct the Web address. If a query string is present, the
result of the getQueryString operation in the same interface is also used.
In this case, the complete URL is constructed as follows:

String url = request.getRequestURL() + ‘?’ +
request.getQueryString();

 Chapter 13. Trust Association Interceptors and third-party software integration 371

Table 13-2 defines the operators and conditions.

Table 13-2 Conditions and operators

– com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate

This attribute is optional. It indicates whether the Kerberos GSS delegated
credentials are stored by the SPNEGO TAI. This attribute enables the
capability for an application to retrieve the stored credentials and
propagate them to other applications downstream for additional SPNEGO
authentication.

This attribute requires use of the advanced Kerberos credential delegation
feature and requires development of custom logic by the application
developer. The developer must interact directly with the Kerberos Ticket
Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the
delegated Kerberos credentials on behalf of the end-user who originated
the request. The developer must also construct the appropriate Kerberos
SPNEGO token and include it in the HTTP request to continue the
downstream SPNEGO authentication process, including handling
additional SPNEGO challenge-response exchanges, if necessary.

Condition Operator Example

Match exactly = =
Arguments are compared as
equal.

host=host.my.company.com

Match partially
(includes)

%=
Arguments are compared with a
partial match being valid.

user-agent%=IE 6

Match partially
(includes one of
many)

^=
Arguments are compared with a
partial match being valid for one
of many arguments specified.

user-agent%=IE 6

Does not match !=
Arguments are compared as not
equal.

request-url!=noSPNEGO

Greater than >
Arguments are compared
lexicographically as greater
than.

remote-address>192.168.2
55.130

Less than <
Arguments are compared
lexicographically as less than

remote-address<192.168.2
55.135

372 WebSphere Application Server V6.1 Security Handbook

– com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage

This attribute is optional. It specifies the Web address of a resource that
contains the content that the SPNEGO TAI includes in the HTTP response
that the (browser) client application displays if it does not support
SPNEGO authentication. It can specify a Web (http://) or a file (file://)
resource. WebSphere has a default page that is returned.

– com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage

This attribute is optional. It specifies the Web address of a resource that
contains the content that the SPNEGO TAI includes in the HTTP response
that the (browser) client application displays when the SPNEGO token is
received by the interceptor when the challenge-response handshake
contains an NT LAN Manager (NTLM) token instead of the expected
SPNEGO token. It can specify a Web (http://) or a file (file://) resource.
WebSphere has a default page that is returned.

– com.ibm.ws.security.spnego.SPN<id>.trimUserName

This attribute is optional as shown in Figure 13-4. It specifies whether
(true) or not (false) the SPNEGO TAI is to remove the suffix of the principal
user name, starting from the “@” that precedes the Kerberos realm name.
If this attribute is set to true, the suffix of the principal user name is
removed. If this attribute is set to false, the suffix of the principal name is
retained. The default value used is true.

Figure 13-4 The custom properties specified for the example scenario

9. After you finish defining your custom properties, click Save to store the
updated SPNEGO TAI configuration.

 Chapter 13. Trust Association Interceptors and third-party software integration 373

Configuring JVM properties and enabling SPNEGO TAI in
WebSphere Application Server
To configure the JVM for use with the SPNEGO TAI:

1. Log in to WebSphere Application Server administrative console.

2. Click Servers → Application servers.

3. Select the appropriate servers and click Java and process management.
Then click Process Definition.

4. Click Java virtual machine.

5. In the Generic JVM arguments text box (Figure 13-5), add the following line:

-Dcom.ibm.ws.security.spnego.isEnabled=true

Figure 13-5 Enabling the JVM for SPNEGO TAI authentication

6. Optional: Complete the following JVM options, which are specified similar to
step 5 (space separated):

– com.ibm.ws.security.spnego.propertyReloadFile

Use this attribute to identify the file that contains configuration properties
for the SPNEGO TAI, when it is not convenient to stop and restart the

Tip: These two JVM options enable debugging and can be set to off or
all. They can be set as Custom Properties for the JVM using the
Administration Console:

com.ibm.security.jgss.debug
com.ibm.security.krb5.Krb5Debug

374 WebSphere Application Server V6.1 Security Handbook

Application Server. The properties in this file can be reloaded to configure
the SPNEGO TAI.

Example 13-9 shows the template for this file.

Example 13-9 The template for the SPNEGO property file

##
Template properties files for SPNEGO TAI

Where possible defaults have been provided.
#
##

#---
Hostname
#---
#com.ibm.ws.spnego.SPN1.HostName=wsecurity.austin.ibm.com

#---
(Optional) SpnegoNotSupportedPage
#---
#com.ibm.ws.spnego.SPN1.SpnegoNotSupportedPage=

#---
(Optional) NTLMTokenReceivedPage
#---
#com.ibm.ws.spnego.SPN1.NTLMTokenReceivedPage=

#---
(Optional) FilterClass
#---
#com.ibm.ws.spnego.SPN1.FilterClass=com.ibm.ws.spnego.HTTPHeaderF
ilter

#---
(Optional) Filter
#---
#com.ibm.ws.spnego.SPN1.Filter=

Note: The properties that are defined in the specified file override any
properties defined using the administrative console.

 Chapter 13. Trust Association Interceptors and third-party software integration 375

– com.ibm.ws.security.spnego.propertyReloadTimeout

Use this attribute to specify a time interval in seconds that elapses after
which the SPNEGO TAI reloads the configuration properties. Also, the
SPNEGO TAI reloads the configuration properties if the file that is
identified by the com.ibm.ws.security.spnego.propertyReloadFile attribute
has changed since the last time the configuration attributes were retrieved.
This time interval in seconds must be specified as a positive integer.

7. Click Apply and then click OK to save the configuration.

13.2.3 Troubleshooting SPNEGO environments

Use the following tips to help you troubleshoot an SPNEGO environment:

� Turn on logging. For details, see the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.base.doc/info/aes/ae/tsec_SPNEGO_trouble_shoot.
html

� Make sure that you are trying to access WebSphere Application Server with a
user that is logged into the domain.

� Make sure that you are not trying to access the WebSphere Application
Server from the domain controller.

� Make sure that the TAI initialized successfully as shown in Example 13-10.

Example 13-10 Successful TAI initialization

[8/8/06 17:56:56:247 EDT] 0000000a TrustAssociat I
com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl
initialize CWSPN0006I: SPNEGO Trust Association Interceptor
initialization is complete. Configuration follows:
 TAI configuration (JVM) properties:
 com.ibm.ws.security.spnego.isEnabled=true

Important: If the com.ibm.ws.security.spnego.propertyReloadFile
attribute and the com.ibm.ws.security.spnego.propertyReloadTimeout
attribute are not set, then the SPNEGO TAI properties are only loaded
once from the SPNEGO TAI custom properties defined in the
WebSphere Application Server configuration data. This one-time
loading occurs when the JVM is initialized.

If the com.ibm.ws.security.spnego.propertyReloadTimeout attribute is
set, but the com.ibm.ws.security.spnego.propertyReloadFile attribute is
not, then the SPNEGO TAI is not initialized.

376 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tsec_SPNEGO_trouble_shoot.html

 Server configuration:
 Kerberos
ServicePrincipalName=HTTP/cvs7240a.paul.itso.ral.ibm.com@PAUL.ITSO.R
AL.IBM.COM

com.ibm.ws.security.spnego.SPN.filter=remote-address%=10.1.2.

com.ibm.ws.security.spnego.SPN.filterClass=com.ibm.ws.security.spneg
o.HTTPHeaderFilter@4fe24fe2
 com.ibm.ws.security.spnego.SPN.NTLMTokenReceivedPage=null
 com.ibm.ws.security.spnego.SPN.spnegoNotSupportedPage=null

� Make sure that you have the correct encryption types specified in your
Kerberos configuration file.

� Make sure that your machine can resolve an IP address from the host names
specified in DNS.

� Make sure that you have the same time on the WebSphere Application Server
host and the domain controller.

� For Linux and UNIX, try to start a Kerberos session from the WebSphere
Application Server host using kinit. This tip allows a user to debug the
Kerberos environment itself, before having to think about WebSphere
configuration.

Example 13-11 shows sample output where a successful session is started.

Example 13-11 Output from a successful start of a session

cvs7240a:/opt/IBM/WebSphere/AppServer/profiles/SPNEGOAppSrv/bin #
kinit cvs7240a@PAUL.ITSO.RAL.IBM.COM
cvs7240a@PAUL.ITSO.RAL.IBM.COM's Password:
kinit: NOTICE: ticket renewable lifetime is 1 week
cvs7240a:/opt/IBM/WebSphere/AppServer/profiles/SPNEGOAppSrv/bin #
klist
Credentials cache: FILE:/tmp/krb5cc_0
 Principal: cvs7240a@PAUL.ITSO.RAL.IBM.COM

 Issued Expires Principal
Aug 8 19:10:25 Aug 9 05:10:25
krbtgt/PAUL.ITSO.RAL.IBM.COM@PAUL.ITSO.RAL.IBM.COM

� For Windows, use kerbtray.exe to see which tickets have been granted to the
user logged in.

� Restart the client machine. Sometimes this can have adverse affects if the
client is brought up before the domain controller.

 Chapter 13. Trust Association Interceptors and third-party software integration 377

� Remove any filters that you specified for the TAI. Try to get a connection
working before you start filtering requests.

� Make sure that you have SPNEGO authentication enabled on the client’s
browser. For instructions, see the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_config_web.html

In the Firefox configuration steps, you must also set the value for
network.negotiate-auth.trusted-uris variable.

13.3 IBM WebSphere Application Server and WebSEAL
integration

This section discusses the different integration scenarios between WebSphere
Application Server and WebSEAL.

13.3.1 Integration options

Various options are available to set up SSO between WebSphere Application
Server and Access Manager’s WebSEAL.

Using the Trust Association Interceptor
You can set up the TAI in two ways:

� With a trusted user
� With a trusted connection

Trusted user
In this configuration, the TAI identifies the WebSEAL server using the Basic
Authentication header. A trusted user is created in LDAP and the TAI is
configured with that userID. Only the password (not the userID) is placed on the
basic authentication header by WebSEAL. This represents a “shared secret”,
which only the TAI and the WebSEAL server know.

Tip: For SPNEGO troubleshooting, see the WebSphere Information Center
at the following Web address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?t
opic=/com.ibm.websphere.base.doc/info/aes/ae/tsec_SPNEGO_trouble_
shoot.html

378 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tsec_SPNEGO_trouble_shoot.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_SPNEGO_config_web.html

During run time, the TAI examines the password and validates it with the user
registry to confirm that the password belongs to the trusted user. This procedure
enables the TAI to trust that it really is the WebSEAL server asserting the end
user's identity, and the TAI can therefore trust it. To set up the WebSEAL junction
to use the basic authentication header to identify the WebSEAL server, you can
use the -b supply option with the junction creation command. WebSEAL builds
the Basic Authentication header using the password, which is specified in the
Webseald.conf file (basicauth-dummy-passwd property). This set up is described
in detail in consequent sections.

Trusted connection using mutual Secure Sockets Layer
If you are using the old TAI implementation and using this configuration, then the
WebSEAL server identifies and authenticates itself to the Web server using its
own client-side certificates. In this case, the TAI performs no further validation of
the WebSEAL server hosts. This configuration is set in TAI using the
com.ibm.websphere.security.WebSEAL.mutualSSL=true setting. With these
settings the TAI validates the WebSEAL host using the hostname property, and
does no further validation. It assumes that the connection from WebSEAL to
Application Server is completely trusted. This setup requires a Secure Sockets
Layer (SSL) junction. You set up an encrypted junction using SSL with client
certificates.

Using Lightweight Third Party Authentication
With LTPA, you do not have to configure a TAI for the Application Server. Instead,
you can configure an LTPA junction.

Mutual SSL authentication: Mutual SSL authentication is no longer
supported by the newer WebSEAL TAI included with WebSphere Application
Server V5.1.1 and later. You can still configure mutual SSL in WebSphere
Application Server (and doing so is often useful), but the TAI does not
acknowledge it. You must use password-based authentication from WebSEAL
with the newer TAI. The older TAI (WebSealTrustAssociationInterceptor)
continues to be included if you want to use it.

Important: An LTPA junction is considered non-strategic. Administrators must
try to use TAI junctions instead.

 Chapter 13. Trust Association Interceptors and third-party software integration 379

13.3.2 Configuration for the Trust Association Interceptor approach

In this section, we describe the configuration for using TAIs.

Flow of tokens from WebSEAL to WebSphere Application
Server
WebSEAL provides authentication and authorization to all requests before
passing them to the junctioned Web server. In Figure 13-6, WebSEAL is in the
demilitarized zone.

Figure 13-6 Request flow when using the TAI

The flow in Figure 13-6 is as follows:

1. An unauthenticated client issues a request for a secure resource which is
intercepted by the reverse proxy (WebSEAL).

2. WebSEAL issues an HTTP authentication challenge to the client. Note that
WebSEAL can be configured to use a different authentication mechanism,
such as forms authentication or token authentication, but the overall flow of
information remains the same.

380 WebSphere Application Server V6.1 Security Handbook

3. The client responds to the authentication challenge with a new request
containing the client’s userID (c_user) and password (c_pwd) in the HTTP
basic authentication header.

4. WebSEAL authenticates the user against the user registry using the c_user
and c_pwd values. WebSEAL also authorizes the request based on access
control list (ACL) that is configured for the junction.

5. WebSEAL modifies the BA header so that it includes the TAI password
configured in the WebSEAL configuration file. WebSEAL also attaches the
client’s userID and group membership and credentials into an additional
HTTP headers (iv_user, iv_groups, and iv_creds) that are sent along with the
request to the Application Server.

6. The request goes to the WebSphere Application Server, where the TAI
intercepts the request for further security processing. The TAI performs the
authentication for the configured tai_user (using the configured tai_pwd). This
authentication ensures that the TAI, together with the WebSphere Application
Server, is trusted. The TAI then extracts the credential information from the
incoming request from WebSEAL.

7. The user credentials are extracted from the request by the TAI and are used
to construct a PDPrincipal object in the Application Server. A credential object
that contains user information is constructed from information contained in the
PDPrincipal. The Principal and the Credential objects are inserted into a
JAAS Subject, which is returned from the call.

8. WebSphere sends the output to WebSEAL.

9. WebSEAL dispatches the output to the client.

Note the following additional comments for the TAI:

� WebSphere Application Server does not query the registry directly for Trust
Association Interceptor processing. The new Interceptor class
TAMTrustAssociationInterceptorplus contacts the Tivoli Access Manager
Authorization Server which does the check with the user registry. This also
indicates that additional configuration is required to ensure that WebSphere
Application Server can contact the authorization server.

� It is possible to negotiate with the client in a multiphase handshake. Keep in
mind that the Tivoli Access Manager TAI does not use the multiphase
negotiation and it does not have to. There are security protocols that may
require negotiation, for example, SPNEGO. TAI that can handle negotiation
can be developed using the new, extended interface.

� With the new TAI, you can add custom attributes to the Subject in the form of
Java sets.

� You can continue to use the old WebSEAL TAI class called
WebsealTrustAssociationInterceptor in WebSphere Application Server V6.1.

 Chapter 13. Trust Association Interceptors and third-party software integration 381

Cookie configuration options
WebSEAL forwards cookies created for the user by the back-end system to the
user’s browser. The decision as to which cookies are to be created by the
back-end system and subsequently sent to the user’s browser is something that
can be further considered when using WebSEAL and TAI. Because TAI can
create a valid JAAS subject that gives the Application Server the authenticated
user’s credentials, it is possible for it not to use WebSphere Application Server
SSO capabilities. Disabling WebSphere Application Server SSO means that no
LTPA tokens are going to be created to track the user’s session. Some customers
consider this beneficial.

Therefore, there are two options for which cookies are sent to the user’s browser:

� Keeping WebSphere Application Server SSO enabled, which creates LTPA
tokens for the user

� Disabling WebSphere Application Server SSO, which does not create LTPA
tokens for the user

Depending upon your environment and personal opinion on what might be
considered more secure, this decision must be made on a case-by-case basis.
Figure 13-7 and Figure 13-8 give examples of the cookies that are sent to the
user’s browser depending on the configuration.

Figure 13-7 shows the cookies that are sent to the user’s browser when
WebSphere Application Server SSO is enabled.

Figure 13-7 Cookies sent to the user’s browser when WebSphere Application Server
SSO is enabled

382 WebSphere Application Server V6.1 Security Handbook

Figure 13-8 shows the cookies that are sent to the user’s browser when
WebSphere Application Server SSO disabled.

Figure 13-8 Cookies sent to the user’s browser when WebSphere Application Server
SSO disabled

Attention: Disabling SSO in WebSphere Application Server disables all
forms-based authentication. This includes the WebSphere administration
console and also application logins. The reason why WebSEAL can still allow
access to resources is that TAI creates a JAAS subject without the
requirement of a form.

Therefore, if SSO is disabled while login through WebSEAL to applications
works, then all administration must be carried out by using wsadmin, unless a
different, non-publicly accessible, WebSEAL junction is set up to protect the
administration console (we do not recommend). Although, forcing all
administration through wsadmin can also be considered beneficial, especially
with the use of the new wsadmin fine grained administrative security.

 Chapter 13. Trust Association Interceptors and third-party software integration 383

Configuring SSO between WebSphere Application Server and
WebSEAL
Prior to configuring SSO between WebSphere Application Server and
WebSEAL, you must have the following prerequisites in place:

� Ensure that the IBM Tivoli Directory Server V6.1 is installed and configured
for both Tivoli Access Manager for e-business and for WebSphere Application
Server registry. If you are following the scenario in this book, you can import
the import.ldif file that is provided as part of the additional material. See
Appendix B, “Additional material” on page 543.

� Ensure that Administrative and Application Security is enabled with LTPA and
LDAP.

� We use a WebSphere Application Server sample application called
Technology Samples. Ensure that you install this application and can run it
through the Web server.

� You must install and configure Tivoli Access Manager for e-business V6.0
correctly. You must be able to access the WebSEAL form login page. To
configure WebSEAL for form-based authentication, make the following
changes in the webseald.conf file:

forms-auth=https
basic-auth=none

Figure 13-9 shows the simple environment to test this configuration.

Figure 13-9 Test environment for the configuration

384 WebSphere Application Server V6.1 Security Handbook

Installing and configuring the base products
To begin, install and configure WebSphere Application Server, IBM Directory
Server with DB2, IBM HTTP Server, and Tivoli Access Manager for e-business
(including WebSEAL). See the WebSphere Application Server product
documentation, and the Tivoli product documentation for installation and
configuration. For user registry configuration for WebSphere Application Server,
see Chapter 2, “Configuring the user registry” on page 7.

Creating test users for Tivoli Access Manager
To create the test users;

1. Create two user accounts in LDAP by importing the text shown in
Example 13-12 as a .ldif file.

Example 13-12 tai-config.ldif

dn: uid=taiuser,o=ibm,c=us
objectclass: organizationalPerson
objectclass: ePerson
objectclass: top
objectclass: inetOrgPerson
uid: taiuser
userpassword: taiuser1
sn: taiuser
givenname: taiuser
cn: tai
preferredlanguage: en

dn: uid=amy,o=ibm,c=us
objectclass: organizationalPerson
objectclass: ePerson
objectclass: top
objectclass: inetOrgPerson
uid: amy
userpassword: test
sn: amy
givenname: amy
cn: amy
preferredlanguage: en

dn: uid=john,o=ibm,c=us
objectclass: organizationalPerson
objectclass: ePerson
objectclass: top
objectclass: inetOrgPerson
uid: john

 Chapter 13. Trust Association Interceptors and third-party software integration 385

userpassword: test
sn: john
givenname: john
cn: john
preferredlanguage: en

dn: cn=managers,o=ibm,c=us
objectclass: top
objectclass: groupOfUniqueNames
cn: managers
uniquemember: uid=amy,o=ibm,c=us

dn: cn=human_resources,o=ibm,c=us
objectclass: top
objectclass: groupOfUniqueNames
cn: hr
uniquemember: uid=john,o=ibm,c=us

2. Use the following command to import the file:

ldif2db -i tai-config.ldif

This command creates three users in the directory, which are taiuser, amy,
and john.

3. Start the pdadmin tool and import the users into Tivoli Access Manager by
using the following commands:

user import taiuser uid=taiuser,o=ibm,c=us
user modify taiuser account-valid yes
user modify taiuser password-valid yes

Similarly, run all three commands by replacing taiuser with amy and john.

4. Import the managers group by using the following command:

group import managers cn=managers,o=ibm,c=us

Configuring SSL for the Web server
If you are setting up WebSEAL junction to use SSL, configure SSL for the Web
server so that the HTTPS traffic uses a self-signed certificate. If you are using
TCP, instead of SSL for your WebSEAL junction, skip this configuration step and
proceed to the next step. The Web server must have a port defined for SSL
(usually 443). You can use the IBM Key Management Utility, iKeyman, to
generate a self-signed certificate.

386 WebSphere Application Server V6.1 Security Handbook

To configure SSL for the Web server:

1. Set up the IBM HTTP server using SSL.
2. Use the keystore name of ihskeys.kdb.
3. Extract the self-signed certificate into the IHSCertificate.arm file.
4. Restart the HTTP Server.
5. Verify the configuration by accessing a Web page using SSL (HTTPS).

Importing the Web server certificate to WebSEAL to establish trust
Load the certificate that you created in the previous step into the key database of
WebSEAL:

1. If your HTTP Server is on a different machine than WebSEAL, copy your
certificate (the IHSCertificate.arm file from the previous step) from the
HTTP Server machine to the WebSEAL machine.

2. Start iKeyman on the WebSEAL machine and open the WebSEAL keystore in
the <Access_Manager_Install_root>\PDWeb\www-<profile_name>
\certs\pdsrv.kdb file. This is the key-ring used by WebSEAL to store
acceptable CA certificates for SSL junctions. The password for this keystore is
pdsrv.

3. Add the IBM HTTP Server certificate named IHSCertificate.arm to the
WebSEAL keystore.

Ensuring the SSL port of the virtual hosts in WebSphere Application
Server is specified
In order for the Web server plug-in to forward the HTTPS traffic to the Application
Server, the host alias port for the virtual host must be specified. In WebSphere
Application Server V6.1, this is enabled by default, but it is good practice to
check. If it is not present, update the virtual host list for WebSphere Application
Server to include the correct host name and port numbers and then regenerate
the plug-in configuration:

1. Launch the Administrative Console and log in on the WebSphere Application
Server machine.

2. Select Environment → Virtual Hosts → default_host → Host Aliases →
New. Add a host alias for the host name and an SSL port. The host name can
be a single asterisk (*) or a fully-qualified host name. Usually this is the host
name of the Web server. The port number for SSL is usually 443.

3. Click OK.

4. Save the configuration for WebSphere, and regenerate the plug-in
configuration.

 Chapter 13. Trust Association Interceptors and third-party software integration 387

Configuring WebSEAL
Configure a WebSEAL junction from the WebSEAL Server to the Web server.
This task is performed on the WebSEAL machine.

1. On the WebSEAL machine, use the pdadmin command line to create a
WebSEAL junction. Enter the following command:

server task default-webSEAL-<hostname> create -t ssl -h
<webserver_host> -p <SSL_port> -j -b supply -c all -f /ssl1

For TCP junctions, use tcp instead of ssl.

In our scenario, we entered the command as follows:

pdadmin sec_master> server task forms-webseald-bch884313 create -t
ssl -h wvaa -p 443 -j -b supply -c all -f /wastcp

2. Edit the webseald.conf file to configure the dummy password that is passed in
the HTTP header and for forms authentication. Open the file in
<Access_Manager_install_root>/PDWeb/etc/webseald-default.conf.

3. In the [junction] stanza, change the basic-auth-dummy-password to the user
password of the taiuser as follows:

basicauth-dummy-passwd = taiuser1

4. In the [forms] stanza, enable WebSEAL authentication by using forms. If you
want to use only SSL junction, then set the forms-auth to https:

forms-auth = https

5. Because you are using form-based authentication and not basic
authentication, change the ba-auth from https to none:

ba-auth = none

6. Restart the WebSEAL server, policy server, and the authorization server.

Configuring the Access Manager Java Runtime
In order for Tivoli Access Manager Trust Association Interceptor to run correctly,
first configure the Access Manager Java Runtime by using the PDJrteCfg utility:

java com.tivoli.pd.jcfg.PDJrteCfg -action {config | unconfig}
-cfgfiles_path configuration_file_path -host policy_server_host [-was]

Here, the configuration_file_path is the path to the JRE that you want to
configure or unconfigure and policy_server_host is the host name of the policy
server. The -was flag indicates that this is a WebSphere Application Server
installation. Run the WebSphere setupCmdLine command before running this
utility.

388 WebSphere Application Server V6.1 Security Handbook

Example 13-13 shows the result from our scenario.

Example 13-13 Result from our scenario

cd <WAS_HOME>/bin
. ./setupCmdLine.sh
java -cp ${CLASSPATH} -Dpd.home={WAS_HOME}/java/jre/PolicyDirector
com.tivoli.pd.jcfg.PDJrteCfg -action config -cfgfiles_path
${WAS_HOME}/java/jre -host ibm-fa4451f1a88.itso.ral.ibm.com -was

Running the SvrSslCfg utility
Run the SvrSslCfg command to configure an SSL connection between Tivoli
Access Manager and WebSphere Application Server. This command creates a
<WebSphere_root>/java/jre.PdPerm.properties configuration file and a Java
key store file, which securely stores a client certificate. These two files enable
WebSphere Application Server to contact the Tivoli Access Manager server.

To run the SvrSslCfg utility:

1. Run the setupCmdLine.bat (or setupCmdLine.sh) script, which is in
<WebSphere_root>\bin to set up the environment.

2. Make sure the WAS_HOME environment variable reflects the WebSphere
Application Server installation root.

3. Run the SvrSslCfg utility as one continuous command line, or enter keywords
on several lines by using a trailing continuation character (\) as shown in
Example 13-14.

Example 13-14 Entering keywords using a trailing continuation character

CLASSPATH=${WAS_HOME}/java/jre/lib/ext/PD.jar:${WAS_CLASSPATH}
java \
-cp ${CLASSPATH} \
com.tivoli.pd.jcfg.SvrSslCfg \
-action config \
-admin_id sec_master \
-admin_pwd password \
-appsvr_id wasuser \
-policysvr tam_policy_server_host:7135:1 \

Note: The SvrSslCfg command must be run for each WebSphere Application
Server machine, Java environment. For example, in a Network Deployment
setup, if the deployment manager and a node are installed on the same
machine, you must run the SvrSslCfg twice: once for the deployment manager
developer kit and once to configure the node developer kit.

 Chapter 13. Trust Association Interceptors and third-party software integration 389

-authzsvr tam_authorization_server_host:7136:1 \
-mode remote \
-cfg_file configuration_file \
-key_file key_file \
-cfg_action create

The explanation of the different switches follows:

action Action to be taken, it can be config or unconfig.

admin_id Administrator ID for Tivoli Access Manager, use
sec_master.

admin_pwd Password for the Tivoli Access Manager administrator.

appsvr_id The name that is specified here is combined with the host
name to create unique names for Tivoli Access Manager
objects created for your application. The following names
are reserved for Tivoli Access Manager applications:

– ivacld
– secmgrd
– ivnet
– ivweb

This ID is created in the registry and is used by
WebSphere Application Server to communicate with Tivoli
Access Manager.

appsvr_pwd The password for the Application Server ID (appsvr_id).

authzsvr Access to the authorization server in the following format:

authorization_server_name:port_number:rank

policysvr Access to the policy server in the following format:

policy_server_host_name:port_number:rank

cfg_action Create specifies to create the configuration and key store
files during server configuration. Configuration fails if
either of these files already exists.

Replace specifies to replace the configuration and key
store files during server configuration. Configuration
deletes any existing files and replaces them with new
ones.

cfg_file Specifies the fully-qualified file name.

key_file Specifies the directory that contains the key files for the
server. Make sure that server user (for example, ivmgr) or
all users have permission to access the .kdb file.

390 WebSphere Application Server V6.1 Security Handbook

host The host name for the Application Server.

mode Specifies the mode in which the application operates. This
value must be either local or remote.

Example 13-15 shows the scenario in this book.

Example 13-15 Example for the scenario in this book

java -cp ${CLASSPATH} -Dpd.cfg.home=${WAS_HOME}/java/jre
com.tivoli.pd.jcfg.SvrSslCfg -action config -admin_id sec_master
-admin_pwd its0ral -appsvr_id wvaa -appsvr_pwd its0ral -port 7135 -mode
remote -host wvaa -policysvr ibm-fa4451f1a88.itso.ral.ibm.com:7135:1
-authzsvr 9.42.171.117:7136:1 -cfg_file
/opt/IBM/WebSphere/AppServer/java/jre/PdPerm.properties -domain Default
-key_file /opt/IBM/WebSphere/AppServer/java/jre/lib/security/PdPerm.sh
-cfg_action create

Enabling and configuring Tivoli Access Manager Trust Association
Interceptor++
The Tivoli Access Manager TAI++ module must be told where it can find
information and what it must do with the information that comes in. This is done
by setting custom properties for the TAI module.

To enable and configure Tivoli Access Manager Trust Association Interceptor++:

1. From the administrative console for WebSphere Application Server, click
Security → Secure administration, applications, and infrastructure.

2. Under Web security, click Trust association.

3. Click Enable Trust Association and then click Apply.

4. Click Interceptors.

5. Select com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to
edit the WebSEAL interceptor.

6. Click Custom Properties.

Note: If you plan to use the old TAI, follow the procedures in the WebSphere
Application Server V6.1 Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_sso_ws_step4_sso_using_T
AI_for_WAS.html

 Chapter 13. Trust Association Interceptors and third-party software integration 391

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_sso_ws_step4_sso_using_TAI_for_WAS.html

7. Click New to enter the property name and value pairs. Verify that the
parameters shown in Table 13-3 are set.

Table 13-3 The parameters that must be entered for Tivoli Access Manager TAI++ configuration

Parameter Description

com.ibm.websphere.security.
webseal.checkViaHeader

You can configure TAI so that you can ignore the via header route when
you are validating trust for a request. Set this property to false if none of
the hosts in the via header require to be trusted. When set to false you do
not require to set the trusted host names and host ports properties. The
only mandatory property to check when via header is false is
com.ibm.websphere.security.webseal.loginId.
The default value of the check via header property is false. When using
Tivoli Access Manager plug-in for Web servers, set this property to false.
VIaHeader: The via header is part of the standard HTTP header that
records the server names of the request that passed through.

com.ibm.websphere.security.
webseal.loginId

The WebSEAL trusted user as created earlier. The format of the user
name is the short name representation. This property is mandatory. If it
is not set in WebSphere Application Server, the TAI initialization fails.

com.ibm.websphere.security.
webseal.id

A comma-separated list of headers that exists in the request. If all of the
configured headers do not exist in the request, trust cannot be
established. The default value for the ID property is iv-creds. Any other
values set in WebSphere Application Server are added to the list along
with iv-creds, separated by commas.

com.ibm.websphere.security.
webseal.hostnames

Do not set this property if using Tivoli Access Manager plug-in for Web
Servers. The property specifies the host names (case sensitive) that are
trusted and expected in the request header. Requests arriving from
un-listed hosts might not be trusted. If the checkViaHeader property is not
set or is set to false then the trusted host names property has no
influence. If the checkViaHeader property is set to true, and the trusted
host names property is not set, TAI initialization fails.

com.ibm.websphere.security.
webseal.ports

Do not set this property if using Tivoli Access Manager plug-in for Web
servers. This property is a comma-separated list of trusted host ports.
Requests that arrive from unlisted ports might not be trusted. If the
checkViaHeader property is not set, or is set to false this property has no
influence. If the checkViaHeader property is set to true, and the trusted
host ports property is not set in WebSphere Application Server, the TAI
initialization fails.

392 WebSphere Application Server V6.1 Security Handbook

com.ibm.websphere.security.
webseal.viaDepth

A positive integer that specifies the number of source hosts in the via
header to check for trust. By default, every host in the via header is
checked, and if any host is not trusted, trust cannot be established. The
via depth property is used when only some of the hosts in the via header
must be trusted. The setting indicates the number of hosts that are
required to be trusted.

As an example, consider the following header:
Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, or set to 2, or set to 0, and a request
with the previous via header is received, then both webseal1:7002 and
webseal2:7001 must be trusted. The following configuration applies:
com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2
com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1, and the previous request is received,
then only the last host in the via header has to be trusted. The following
configuration applies:
com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports =7001

The viaDepth property is set to 0 by default, which means all of the hosts
in the via header are checked for trust.

com.ibm.websphere.security.
webseal.ssoPwdExpiry

After trust is established for a request, the SSO user password is cached,
eliminating the requirement to have the TAI re-authenticate the SSO user
with Tivoli Access Manager for every request. You can modify the cache
timeout period by setting the SSO password expiry property to the
required time in seconds. If the password expiry property is set to 0, the
cached password never expires. The default value for the password
expiry property is 600.

com.ibm.websphere.security.
webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted
hosts. If set to true, the comments field of the hosts entry in the via header
is checked to determine if a host is a proxy. Remember that not all proxies
insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader
property is set to false then the ignoreProxy property has no influence in
establishing trust.

Parameter Description

 Chapter 13. Trust Association Interceptors and third-party software integration 393

8. Click OK.

9. Save the configuration and log out.

10.Restart WebSphere Application Server.

Figure 13-10 shows the options specified for the example scenario in this book.

Figure 13-10 The custom properties specified for the TAI++ module in the example scenario

com.ibm.websphere.security.
webseal.configURL

For the TAI to establish trust for a request, it requires that the SvrSslCfg
run for the Java virtual machine on the Application Server and result in
the creation of a properties file. If this properties file is not at the default
URL, which is file://java.home/PdPerm.properties, then the correct URL
of the properties file must be set in the configuration URL property. If this
property is not set, and the SvrSslCfg-generated properties file is not in
the default location, then the TAI initialization fails. The default value for
the config URL property is:
file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

Parameter Description

394 WebSphere Application Server V6.1 Security Handbook

Testing the configuration
After restarting the Application Server check the server’s SystemOut.log file.
There must be an entry in the log from each of the TAI modules initializing. The
successful initialization of the module can be seen in the log output in
Example 13-16.

Example 13-16 SystemOut.log showing a successful TAI module initialization

[8/3/06 6:20:06:134 PDT] 0000000a TrustAssociat A SECJ0122I: Trust
Association Init Interceptor signature: WebSeal Interceptor Version 1.1
[8/3/06 6:20:06:222 PDT] 0000000a TrustAssociat A SECJ0121I: Trust
Association Init class
com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus loaded
successfully
[8/3/06 6:20:08:622 PDT] 0000000a TAMTrustAssoc I
com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlusinitialize(Pr
operties) The Trust Association Interceptor component of embedded
Tivoli Access Manager has been initialized.
[8/3/06 6:20:08:623 PDT] 0000000a TrustAssociat A SECJ0122I: Trust
Association Init Interceptor signature: $Id: @(#)64 1.6
src/pdwas/com/ibm/ws5/security/web/TAMTrustAssociationInterceptorPlus.j
ava, amemb.jacc.was, amemb600, 051118a 05/10/05 09:50:42 @(#) $

Next, access the WebSEAL junction that points to the Application Server. It is
successful if you can access protected WebSphere applications. Access the
snoop application. Notice the User Principal value, which must be the user ID of
the user logged into Access Manager.

If there are any errors at this stage, try the following actions:

� Check the WebSEAL and WebSphere application logs and look for any
errors. See if TAI initialization was successful.

� Make sure that PDJrteCfg and SvrSslCfg completed successfully.

� Make sure that you can log in to the WebSEAL instance by accessing the
WebSEAL root.

� Make sure that the page on the Web server routing to WebSphere Application
Server is available.

� Make sure that, if you are using an SSL junction, the certificates are trusted.

� Try turning on a trace for TAI in WebSphere by using the following setting:

com.ibm.ws.security.*=all=enabled

� Make sure that configuration values specified in the custom properties are
correct, especially the trusted host names.

 Chapter 13. Trust Association Interceptors and third-party software integration 395

13.3.3 Configuration for the LTPA approach

The LTPA approach type of trust association is considered far inferior to the TAI
approach. That said, sometimes it might be unavoidable to use this approach. If
you decide to use this approach, familiarize yourself with all the LTPA key
management facilities available in WebSphere Application Server V6.1, which
you can see at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/tsec_ltpa.html

LTPA is an IBM proprietary technology used in IBM products like WebSphere
Application Server, Tivoli Access Manager, and Lotus Domino. The LTPA token is
an encrypted string that contains a user ID, expiration time, and a digital
signature.

Look at a scenario in which WebSphere issues the LTPA token. In this case,
WebSphere Application Server authenticates the user and issues an LTPA token.
This LTPA token can be passed to another WebSphere Application Server
instance which can read this LTPA token and determine the authenticated user
ID. The basis for reading and trusting the LTPA token is that the two WebSphere
Application Server instances share the same LTPA keys for token generation and
they must also share the same user registry.

More information: For a full list of troubleshooting tips, see the following
address:

http://www-128.ibm.com/developerworks/tivoli/library/t-tamtai/

LTPA key management: LTPA key management has changed significantly in
WebSphere Application Server V6.1. The keys are stored in a JCEKS key
store and the key store, but not the keys themselves, which can be viewed in
the WebSphere administration console.

The password used to encrypt exported ltpa keys has been separated from
the storage of the keys. This means that, in previous versions of WebSphere
Application Server, whenever a new password was set in the LTPA
configuration panel, new keys were generated. This is no longer the case. See
the WebSphere Application Server Information Center for more information:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_ltpa.html

396 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_ltpa.html
http://www-128.ibm.com/developerworks/tivoli/library/t-tamtai/
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tsec_ltpa.html

However, in most real-world scenarios, the authentication is done by a third-party
security server such as Tivoli Access Manager, which is also capable of issuing
LTPA tokens. Both Tivoli Access Manager and WebSphere Application Server
are configured with the same LTPA encryption key. WebSphere Application
Server receives the LTPA Token, decrypts it, and determines the authenticated
user ID. It does not challenge the user again thus providing SSO from Tivoli
Access Manager to WebSphere Application Server. Figure 13-11illustrates this
scenario.

Figure 13-11 Request flow when using LTPA

The following steps describe the flow when using LTPA:

1. A client requests a secured resource.

2. WebSEAL is the Web proxy that intercepts the request and challenges the
client.

3. The client supplies the credentials in a new request.

4. WebSEAL authenticates the user against the user registry and constructs an
LTPA token and attaches it to an LTPA cookie.

Attention: WebSEAL LTPA support for trust association to WebSphere
Application Server is not strategic. The preferred option is to use the Tivoli
Access Manager Trust Association Interceptor.

 Chapter 13. Trust Association Interceptors and third-party software integration 397

5. A request is passed to the back-end junctioned Web server with the
WebSphere Application Server plug-in.

6. WebSphere Application Server receives the request. WebSphere Application
Server looks for the LTPA token and finds it in the cookie. WebSphere
Application Server decrypts the LTPA token and verifies that the signature is
correct. From here on, WebSphere Application Server trusts the identity of the
user as specified in the LTPA token.

7. WebSphere Application Server sends output to WebSEAL, and WebSEAL
sends the output to the client.

Configuring LTPA
If you have already set up security on your WebSphere Application Server, you
can skip to “Exporting the LTPA Keys from WebSphere” on page 399. To set up
LTPA in WebSphere:

1. Launch the Administrative Console for WebSphere Application Server and
login.

2. Click Security → Secure administration, applications, and
infrastructure → Authentication mechanisms and expiration.

3. Select the appropriate group from the Key set group field that contains your
public, private, and shared LTPA keys. These keys are used to encrypt and
decrypt data that is sent between servers. You can access these key set
group configurations using the Key set group link. In the Key set group
configuration, you can indicate whether to automatically generate new keys
and when to generate them.

4. Enter a positive integer value in the authentication cache timeout field. This
timeout value refers to how long an LTPA token is valid in minutes. The token
contains this expiration time so that any server that receives the token can
verify that the token is valid before proceeding further. This value must be
smaller than your WebSEAL session timeout. See 12.1.8, “Challenges with
reverse proxy authenticators” on page 309, for further information.

5. Enter a positive integer in the Timeout value for forwarded credentials
between servers field. This value refers to how long the server credentials
from another server are valid before they expire. The default value is 120
minutes. The value in the Timeout value for forwarded credentials between

Cookie in LTPA cache of WebSEAL: WebSEAL does not send the LTPA
cookie to the client, but rather the cookie is stored in WebSEAL’s LTPA
cache. WebSEAL uses a different cookie to identify the session with the
client, then the actual LTPA token is mapped to the session. This approach
provides higher security because the LTPA token can be captured on the
network.

398 WebSphere Application Server V6.1 Security Handbook

servers field must be greater than the value in the authentication cache
timeout field.

6. Click Apply or OK. The LTPA configuration is now set. Do not generate the
LTPA keys in this step because they are automatically generated later.
Proceed with the rest of the steps that are required to enable security, and
start with SSO, if it is required.

7. Complete the information in the Security → Secure administration,
applications, and infrastructure panel and click OK. Make sure that both
Administrative Security and Application Security are enabled. The LTPA keys
are generated automatically the first time. Do not generate the keys manually.

8. Click Web security → Single Sign-On and select the Enabled box. Also
enter the SSO domain name that corresponds to your environment.

9. Click OK and then restart the server.

Exporting the LTPA Keys from WebSphere
Export password encrypted LTPA keys into a file that you can use with
WebSEAL:

1. Launch the Administrative Console for WebSphere Application Server and log
in.

2. Select Security → Secure administration, applications, and
infrastructure → Authentication mechanisms and expiration.

3. Toward the bottom of the page, in the Cross-cell single sign-on section, set or
change the password if required. In the Key File name field, enter the full path
of a file on the WebSphere Application Server machine where the key file
must be placed.

Click Export Keys as shown in Figure 13-12 to create the exported key file.

Figure 13-12 Exporting LTPA keys

 Chapter 13. Trust Association Interceptors and third-party software integration 399

The key file must look similar to Example 13-17.

Example 13-17 Password encrypted LTPA key file

#IBM WebSphere Application Server key file
#Thu Aug 03 12:23:14 PDT 2006
com.ibm.websphere.CreationDate=Thu Aug 03 12\:23\:14 PDT 2006
com.ibm.websphere.ltpa.version=1.0
com.ibm.websphere.ltpa.3DESKey=c6UsDMRoQ/CaarcTAPFgANfDqP0gKYaLWFNxYMEpC10\=
com.ibm.websphere.CreationHost=wvaa
com.ibm.websphere.ltpa.PrivateKey=44gdF8RbgmyNvE/7kETT+BqlxLdvxLVyZpIvY9AYia/aIpJav7j
M3yTMH3C+kto8G8lIO80tPCZaby/G+HdBBcb5cbFcpwGyCltiy+NQtlKSwMnpxtn/LokOKqSN0lcrHwzW/Nio
gL1mE1Oux4EqAAwrRG9qtXu4guBm8UWPzBAGYwih4wcYO1URg2ZO9rhDbrYvLC98LVJJ9wDV3uLa/zEcChpS+
fkldHvTDi+pxvaQIQCNuSR5FE96EusysfdzF0pV3iKqdB3JQgsKh75D3y4wpD1IFLnXPUzhzZY0zckQBMor4x
fp6q2yZH2y/R0axt8wY6yZo5mT+I2lI+WWhiKr6CeuvG1iCxXqLvmafbg\=
com.ibm.websphere.ltpa.Realm=9.42.171.110\:389
com.ibm.websphere.ltpa.PublicKey=AMrUkQ5ZqJXOr8zfTzRsms2gBgv3t3f/V59ntHA55fGhHt8vpQSH
yLLLdzNn0UgY+b/Q++ZxCtbUSC4KoM69kzY10pysqlEIAKGj/Ijl/KjvAN25j0lT4HNFQ2Zr8wF+2grHI1R41
4XZBQkEiykL11kJiddxEhlGSZfZSOjbBA5zAQAB

Configuring WebSEAL to use an LTPA junction
In this stage, set up WebSEAL to use LTPA tokens to establish trust with the
application server:

1. Copy the LTPA key file to the WebSEAL server. Note that this file must be kept
secure. Otherwise, the LTPA trust relationship might be compromised.

2. To set up an SSL junction, enable the Web server to use SSL and exchange
certificates between the Web server and WebSEAL.

3. Create the junction on the WebSEAL server. For junction creation, specify the
following three options:

A Enables LTPA cookies.

F <full_path_to_ltpa_keys_file>
Specifies the full path name and location (on the
webseal host machine) of ltpa key file exported from
the WebSphere Application Server machine. This
shared ltpakeys.txt file was originally created on the
WebSphere Application Server host and copied to the
WebSEAL machine.

Z <keyfile_password>Specifies the password required to open the keyfile for
LTPA, which is defined in the WebSphere Application
Server Administrative Console.

400 WebSphere Application Server V6.1 Security Handbook

By using pdadmin on the WebSEAL server, execute the following commands:

pdadmin sec_master> server task default-webseald-ibm-fa4431f1a88
create -t ssl -A -F "/wdir/keys/wvaa-ltpa.key" -Z "passw0rd" -h
wvaa -p 443 /ltpa

4. Test the junction by accessing the snoop servlet. In our example, we enter the
following URL:

https://ibm-fa4431f1a88/ltpa/snoop

Configuring LTPA cache for WebSEAL
Because LTPA creation, encryption, and decryption introduce processing
overhead, with LTPA cache processing, you can improve the performance of
LTPA junctions in a high-load environment. The LTPA cache is enabled by
default. To configure the ltpa cache settings, open the webseald.conf file and
locate the [ltpa-cache] stanza. The following settings are available:

� ltpa-cache-enabled, where the default value is “yes”. It enables and disables
the LTPA cache.

� ltpa-cache-size, where the default value is “1096”. It defines the maximum
number of entries allowed in the cache hashtable. Higher value sets more
memory and results in faster information access.

� ltpa-cache-entry-lifetime, where the default is 3600 seconds. It is the
lifetime of a cache entry.

� ltpa-cache-entry-idle-timeout, where the default value is 600 seconds. It
defines the maximum time an inactive cache entry can remain in cache.

For more information about tuning these values, see the WebSEAL
administration guide on the Web at the following address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=
/com.ibm.itame.doc/am60_webseal_admin.htm

 Chapter 13. Trust Association Interceptors and third-party software integration 401

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc/am60_webseal_admin.htm

13.3.4 Security considerations

Tivoli Access Manager Trust Association is a powerful mechanism that has to be
tightly secured. Because the environment is only as secure as the weakest point,
use care for every installation.

The first possible security vulnerability is that an attacker can obtain the trusted
user name and password. If this happens, the attacker can vouch for false users
and be trusted.

To help prevent this:

� Ensure that all traffic between WebSEAL, IBM HTTP Server, and WebSphere
Application Server is secured at the transport layer by using SSL. This helps
prevent eavesdropping.

� Use transport level security so that only requests from trusted WebSEAL
hosts are allowed to reach the IBM HTTP Server. This helps to prevent
spoofing of WebSEAL requests by using a stolen TAI trusted password.

Another security consideration is the synchronization of WebSEAL and
WebSphere Application Server sessions. See 12.1.8, “Challenges with reverse
proxy authenticators” on page 309, for further information.

402 WebSphere Application Server V6.1 Security Handbook

Chapter 14. Externalizing authorization
with JACC

The Java Authorization Container Contract (JACC) is a specification that was
introduced in Java 2 Platform, Enterprise Edition (J2EE) 1.4 through the Java
Specification Request (JSR) 115 process. This specification defines a contact
between J2EE containers and authorization providers. This enables any
third-party authorization providers to plug into any J2EE 1.4 Application Servers
such as WebSphere to make authorization decisions when a J2EE resource is
being accessed. The access decisions is made through the standard
java.security.Policy object.

You can find more information about JACC under JSR 115 at the following
address:

http://www.jcp.org/en/jsr/detail?id=115

The specification defines new java.security as the permission classes to satisfy
the J2EE authorization model. It also defines the binding of container access
decisions to operations on instances of these permission classes. In addition, it
defines the semantics of policy providers that employ the new permission
classes to address the authorization requirements of J2EE, including the
following information:

� The definition of roles as named collections of permissions

� The granting to principals of permissions corresponding to roles

14

© Copyright IBM Corp. 2006. All rights reserved. 403

http://www.jcp.org/en/jsr/detail?id=115

� The determination of whether a principal has been granted the permissions of
a role (for example, isCallerInRole)

� The definition of an identifier to role mappings that bind
application-embedded identifiers to application scoped role names

The specification defines the installation and configuration of authorization
providers for use by containers. The specification defines the interfaces that a
provider must make available to allow container deployment tools to create and
manage permission collections corresponding to roles.

The JACC specification defines three primary components as shown in
Figure 14-1:

� Deployment tools contract
� Container contract
� Provider contract

Figure 14-1 Security contracts in JACC

404 WebSphere Application Server V6.1 Security Handbook

14.1 Deployment tools contract

J2EE deployment tools must translate and complete the declarative policy
statements appearing in deployment descriptors into a form suitable for securing
applications on the platform. The resulting policy statements may differ in form
from the policy statements appearing in the deployment descriptors. The
specification requires that the policy information in the deployment descriptor be
propagated to the container during the application install time. The policy
information contains the security-related information in the deployment
descriptor.

Specifically, the security-constraint information in the web.xml and the
method-permission information in the ejb-jar.xml along with security-role-ref
information in both these files must be propagated to the provider in the format
specified by the contract. The format is different for Web and Enterprise
JavaBeans (EJB) modules and is governed by the rules specified in the contract.
The deployment tools contract defines the following key components:

� Policy contexts and policy context identifiers

The JACC specification states that deployment tools of contract must define
the separate authorization policy contexts corresponding to each deployed
instance of a J2EE module. Deployment tools of contract must provide the
per module scoping of policy context that is necessary to provide for the
independent administration of policy contexts corresponding to individual
application modules (perhaps deployed multiple times) within a common
policy provider.

� Servlet policy context identifiers

The JACC specification states that deployment tools of contract must define
servlet policy context identifiers sufficient to differentiate all instances of a
Web application deployed on the logical host or on any other logical host that
may share the same policy statement repository. One way to satisfy this
requirement is to compose policy context identifiers by concatenating the host
name with the context path (as defined in the Servlet specification) identifying
the Web application at the host.

� Translating servlet deployment descriptors

The JACC specification states that deployment tools of contract must
translate the security-constraint and security-role-ref elements in the
deployment descriptor into permissions and add them to the
PolicyConfiguration object.

 Chapter 14. Externalizing authorization with JACC 405

� EJB policy context identifiers

The JACC specification states that the EJB policy context identifiers are
sufficient to differentiate all instances of the deployed EJB Java archive (JAR)
files on every Application Server.

� Translating EJB deployment descriptors

If the method-permission element contains the unchecked element, then the
deployment tools must call the addToUncheckedPolicy method to add the
permissions resulting from the translation to the PolicyConfiguration object.
Alternatively, if the method-permission element contains one or more
role-name elements, then the deployment tools must call the addToRole
method to add the permissions resulting from the translation to the
corresponding roles of the PolicyConfiguration object.

� Deploying an application or module

The Application Server's deployment tools must translate the declarative
authorization policy appearing in the application or module deployment
descriptors into policy statements within the policy providers used by the
containers to which the components of the application or module are being
deployed.

� Undeploying an application or module

To ensure that there is not a period during undeployment when the removal of
policy statements on application components renders previously protected
components unprotected, the Application Server must stop dispatching
requests for the application's components before undeploying an application
or module.

� Deploying to an existing policy configuration

To associate an application or module with an existing set of linked policy
contexts, the identifiers of the existing policy contexts must be applied by the
relevant containers in fulfilling their obligations as defined in the Policy
Decision and Enforcement Subcontract. The policy contexts must be verified
for existence, by calling the inService method of the
PolicyConfigurationFactory of the relevant containers’ Policy providers. The
deployment tools must call Policy.refresh on the Policy provider of each of the
relevant containers, and the containers must not perform predispatch
decisions or dispatch requests for the deployed resources until these calls
have completed.

� Redeploying a module

Containers are not required to implement redeployment functionality.

406 WebSphere Application Server V6.1 Security Handbook

14.2 Container contract

The container contract of the JACC specification specifies how the container
creates the permission objects during access checks and calls the provider with
appropriate information to help make the access decision. When a resource is
being accessed, the container is expected to create the appropriate permission
object and call the provider's Policy.implies method. The container is also
expected to register what are called the policy context handler objects that
contain additional information to make the access decision. The following
handlers are required to be registered by the containers. The container contract
defines the following components:

� Policy Enforcement by Servlet Containers which includes the Evaluation of
Transport Guarantees, Predispatch Decision, and Application Embedded
Privilege Test.

� Provider Support for Servlet Policy Enforcement which includes Servlet Policy
Decision Semantics, Matching Qualified URL Pattern Names,
WebResourcePermission Matching Rules, WebRoleRefPermission Matching
Rules, and WebUserDataPermission Matching Rules.

� Policy Enforcement by EJB Containers which includes the EJB Predispatch
Decision and EJB Application Embedded Privilege Test.

� Provider of Support for EJB Policy Enforcement which includes EJB Policy
Decision Semantics, EJBMethodPermission Matching Rules, and
EJBRoleRefPermission Matching Rules.

� Component runAs Identity

� Setting the Policy Context

� Checking AccessControlContext Independent Grants

� Checking the Caller for a Permission

� Missing Policy Context

� Default Policy Context

� Policy Compatibility Requirements

� Optimization of Permission Evaluations

 Chapter 14. Externalizing authorization with JACC 407

14.3 Provider contract

The provider contract in the JACC specification specifies that each JRE of an
Application Server must be provided with classes that implement the
PolicyConfigurationFactory class and the PolicyConfiguration interface. The
classes are used by the container to propagate the security information to the
provider. The provider is also expected to provide the implementation for the
java.security.Policy object. This Policy object must assume responsibility for
performing all access decisions within the JRE in which it is installed. The Policy
object can delegate the non-javax.security.jacc access decisions to the
corresponding default system Policy implementation class.

The Provider contract defines the following components:

� Policy Implementation Class
� Policy Configuration Interface
� PolicyContext Class and Context Handlers
� What a Provider Must Do
� Optional Provider Support for JAAS Policy Object
� What the Application Server Must Do

14.4 Why JACC

In the J2EE 1.3 Specification, there is no specification address. The Application
Server vendor implementations make the access decisions and proprietary
interfaces are used for third party vendor product integration. There is no
standard way for third party authorization providers such as Tivoli Access
Manager to plug in to Application Servers to make the decisions. There is no
standard way for the third party providers to collect the security policy information
from the application or from the Application Servers. To address these issues,
the JACC was introduced in the J2EE 1.4 specification.

14.5 JACC in WebSphere Application Server V6.1

WebSphere Application Server V6.1 supports JACC and provides several key
components to support the provider contract, container contract, and deployment
tool contract. The JACC specification only specifies a contract to propagate the
policy information to the provider using the PolicyConfiguration interface and
PolicyConfigurationFactory abstract class. There is no contract specified to
propagate the authorization table information to the provider. It is the
responsibility of the provider to present some kind of management interface to
handle principals (users/groups) to roles.

408 WebSphere Application Server V6.1 Security Handbook

To propagate the authorization table information, WebSphere Application Server
provides interfaces RoleConfigurationFactory and RoleConfiguration. The
implementation of these interfaces is optional.

Figure 14-2 shows the WebSphere support for the Deployment tools Contract,
Provider Contract, and Container Contract as specified by the JACC
specification.

Figure 14-2 JACC support in WebSphere Application Server V6.1

 Chapter 14. Externalizing authorization with JACC 409

Deployment tools contract
The deployment tools contract components must employ the following steps:

1. Create a PolicyContext identifier (contextID) for the module.

2. Get the PolicyConfiguration for the contextID.

3. Translate the declarative policy in DD into appropriate permission classes.

4. Create Policy Statements in the PolicyConnfiguration objects using the
permission classes.

5. Commit the changes and refresh the Policy.

Container contract
The container contract components must employ the following steps:

1. Create the PolicyContext identifier for the module.
2. Register the various PolicyContextHandlers.
3. Create the Protection Domain (PD) and the appropriate Permission object

(perm).

Provider contract
The provider makes the access decision based on the permission object.

14.5.1 JACC access decisions in WebSphere Application Server V6.1

The authenticated user makes a request to the Web or the EJB resource. The
security run time makes the decision of whether to allow the access. This is
called an access decision. Figure 14-3 on page 411 shows the generic flow of
the access decision for protected resources under the WebSphere environment,
where external authorization is enabled through JACC.

410 WebSphere Application Server V6.1 Security Handbook

Based on JACC, the appropriate permission object is created, the appropriate
policy context handlers are registered, and the appropriate policy context
identifier (contextID) is set. A call is made to the java.security.

Figure 14-3 shows how the provider implements the policy object method to
make the access decision.

Figure 14-3 Externalized decisions making with JACC in WebSphere V6

JACC Provider
Contract

Policy
Object

JACC Provider
Contract

PolicyConfiguration

Provider Repository

check access

yes/no

WebSphere
Application
Server v6

 Chapter 14. Externalizing authorization with JACC 411

Access decisions for enterprise beans
The authenticated user makes a request to the protected EJB resource.
WebSphere security run time delegates the authorization check to the security
run time.

Figure 14-4 shows the flow of steps that occur when the JACC is enabled for
external authorization.

Figure 14-4 Logical steps for decision making

The steps shown in Figure 14-4 are explained as follows:

1. It creates the EJBMethodPermission object using the bean name, method
name, interface name, and the method signature.

2. It creates the contextID and sets it on the thread by using the
PolicyContext.setContextID(contextID) method.

3. It registers the required policy context handlers, including the Subject policy
context handler.

4. It creates the ProtectionDomain object with principal in the subject. If there is
no principal, null is passed for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies()
method of the Policy object, which is implemented by the provider. The

412 WebSphere Application Server V6.1 Security Handbook

EJBMethodPermission and the ProtectionDomain objects are passed to this
method.

6. The isCallerInRole() access check also follows the same process, except that
an EJBRoleRefPermission object is created instead of an
EJBMethodPermission.

Access decisions for Web resources
The authenticated user makes a request to the protected Web resource. The
WebSphere security run time delegates the authorization check to security run
time. Following are the steps that take place when the JACC is enabled for
external authorization.

Flow for the subject Everyone
When JACC is enabled for external authorization, the following actions apply to
the subject called Everyone:

1. The WebResourcePermission is constructed with urlPattern and the
Hypertext Transfer Protocol (HTTP) method accessed.

2. A ProtectionDomain with a null principal name is created.

3. The JACC provider's Policy.implies() method is called with the permission
and the protection domain. If the Uniform Resource Identifier (URI) access is
unchecked (or given access to the subject called Everyone), the provider
must permit access (return true) in the implies() method. Access is then
granted without further checks.

Using the HTTPS protocol
When JACC is enabled for external authorization, the following actions apply
when using the HTTPS protocol:

1. The WebUserDataPermission is constructed with the urlPattern accessed,
along with the HTTP method invoked, and the transport type of the request. If
the request is over Hypertext Transfer Protocol Secure (HTTPS), the
transport type is set to CONFIDENTIAL, otherwise, null is passed.

2. ProtectionDomain with a null principal name is created.

3. The JACC provider's Policy.implies() method is called with the permission
and the protection domain. If the request is using the HTTPS protocol and the
implies returns false, the HTTP 403 error is returned to imply
excluded/precluded permission and no further checks are performed. If the
request is not using the HTTPS protocol, and the implies returns false, the
request is redirected over HTTPS.

The provider's implies() method is called using the Permission object and the
ProtectionDomain created previously. If the user is granted permission to access

 Chapter 14. Externalizing authorization with JACC 413

the resource, the implies() method must return true. If the user is not granted
access, the implies() method must return false.

14.5.2 JACC policy context identifiers in WebSphere Application
Server V6.1

The JACC specification defines that “It must be possible to define separate
authorization policy contexts corresponding to each deployed instance of a J2EE
module. This per module scoping of policy context is necessary to provide for the
independent administration of policy contexts corresponding to individual
application modules (perhaps multiply deployed) within a common Policy
provider. Each policy context contains all of the policy statements (as defined by
this specification) that affect access to the resources in one or more deployed
modules. At policy configuration, a PolicyConfiguration object is created for each
policy context, and populated with the policy statements (represented by
permission objects) corresponding to the context. Each policy context has an
associated policy context identifier.”

A policy context identifier is defined as a unique string that represents a policy
context. WebSphere Application Server makes the contextID unique by using the
string href:cellName/appName/moduleName as the contextID format for the
modules. The href part of the string indicates that a hierarchical name is passed
as the contextID.

14.5.3 WebSphere extensions to the JACC specification

WebSphere provides three extension interfaces to the JACC specification:
InitializeJACCProvider, RoleConfiguration, and RoleConfigurationFactory.

The JACC specification only specifies a contract to propagate the policy
information to the provider. There is no contract specified to propagate the
authorization table information to the provider. The provider must present a
management interface to handle principals (users/groups) to roles.

To propagate the authorization table information, WebSphere Application Server
provides interfaces RoleConfigurationFactory and RoleConfiguration. The
implementation of these interfaces is optional. In some cases, the JACC provider
requires initialization during server startup so that it can communicate with the
server during startup. WebSphere provides the InitializeJACCProvider interface
for this reason. When this interface is implemented, it is called during server
startup. Any custom properties in the JACC configuration model are propagated
to the initialize method of this implementation. The custom properties can be
entered either by using the administrative console or by scripting.

414 WebSphere Application Server V6.1 Security Handbook

During server shutdown, the cleanup method is called for any cleanup work that
a provider requires. Implementation of this interface is strictly optional, and must
be used only if the provider requires initialization during server startup.

The RoleConfiguration interface is used to propagate the authorization
information to the provider. This interface is similar to the PolicyConfiguration
interface found in JACC. The RoleConfigurationFactory interface is similar to the
PolicyConfigurationFactory interface introduced by JACC and is used to obtain
RoleConfiguration objects based on the contextIDs.

14.5.4 JACC policy propagation in WebSphere Application Server V6.1

The policy propagation between the WebSphere Application Server and JACC
Provider, as shown in Figure 14-5, is handled in the following ways:

� A new application is installed and the configuration is saved.
� An application is uninstalled and the configuration is saved.
� There is an update to an existing application either with a new module or an

update to an existing module with security policy changes.

Figure 14-5 JACC policy propagation during application install

 Chapter 14. Externalizing authorization with JACC 415

When an application is installed or deployed in the WebSphere Application
Server, the security policy information in the application is propagated to the
provider when the configuration is saved. The contextID for that application is
saved in its application.xml file, used for propagating the policy to the JACC
provider, and also for access decisions for J2EE resources.

When an application is uninstalled as shown in Figure 14-6, the security policy
information in the application is removed from the provider when the
configuration is saved.

Figure 14-6 JACC policy removal during application uninstall

416 WebSphere Application Server V6.1 Security Handbook

If you update the existing application or add a new module to an existing
application as shown in Figure 14-7, the information in the impacted modules is
propagated to the provider by default. A module is impacted when the
deployment descriptor of the module has changed as part of the update. If the
provider supports the RoleConfiguration interfaces, the entire authorization table
for that application is propagated to the provider.

Figure 14-7 JACC policy update during application update

For some reason, if the security information is not to be propagated to the
provider during application updates, you can set the Java virtual machine (JVM)
property com.ibm.websphere.security.jacc.propagateonappupdate to false in
the deployment manager or the unmanaged base Application Server. If this
property is set to false, then none of the updates to an existing application in the
server is propagated to the provider. Also, you can set this property on a per
application basis using the custom properties of an application. You can use the
wsadmin tool to set the custom property of an application. If this property is set at
the application level, none of the updates to that application is propagated to the
provider. If the update to an application is a full update, for example, a new

 Chapter 14. Externalizing authorization with JACC 417

application .ear file is used to replace the existing one, the provider is refreshed
with the entire application security policy information.

In the Network Deployment (ND) environment, when an application is installed
and saved, the security policy information in that application is updated in the
provider from the deployment manager (dmgr or cell). However, the application
is not propagated to its respective nodes until the synchronization command is
issued and completed.

Also, in the ND setup, when an application is uninstalled and saved at the
deployment manager, the policy for that application is removed from the JACC
provider. However, unless the synchronization command is issued and
completed from the deployment manager to the nodes hosting the application,
the applications are still running in the respective nodes. In this instance, any
access to this application must be denied because the JACC provider does not
contain the required information to make the access decision for that application.

Note that any updates to the application already installed as described previously
are also propagated to the provider from the deployment manager. The changes
in the provider are not in sync with the applications in the nodes until the
synchronization is completed.

14.5.5 Manual policy propagation

It is possible to manually propagate policy information of installed applications to
the JACC provider. You can do this if you use wsadmin scripting that is shown in
Example 14-1 and Example 14-2. You may want to do this in a case where there
are network difficulties during the initial JACC policy propagation during
application installation and not all JACC providers have the required information.
If this happens you have two choices, either reinstall the application or manually
propagate the policy and authorization information.

Manual policy propagation uses the propagatePolicyToJACCProvider(String
appNames) function in the SecurityAdmin MBean. To do this the server must be
running. This tool propagates the deployment descriptors of the specified
applications to the JACC providers. If the JACC provider has implemented the
RoleConfiguration and RoleConfigurationFactory interfaces, then authorization
information provided in the binding file of the EAR is also propagated. appNames
is a colon (:) separated list of application names. If null is specified then the policy
information for all deployed applications are propagated.

418 WebSphere Application Server V6.1 Security Handbook

Example 14-1 shows the use of wsadmin scripting to manually propagate policy
information for a single server.

Example 14-1 Using wsadmin to manually propagate policy information for single server

C:\Program Files\IBM\WebSphere\AppServer\profiles\paul\bin>wsadmin.bat
-username wasadmin -password passw0rd
wsadmin># First of all we need to get the correct SecurityAdmin MBean.
wsadmin>set serverSecAdm [$AdminControl queryNames
type=SecurityAdmin,process=server1,*]
WebSphere:name=SecurityAdmin,process=server1,platform=proxy,node=paulwN
ode01,version=6.1.0.0,type=SecurityAdmin,mbeanIdentifier=SecurityAdmin,
cell=bchhs409Node02Cell,spec=1.0
wsadmin># or for a deployment manager
wsadmin>set serverSecAdm [$AdminControl queryNames
type=SecurityAdmin,process=dmgr,*]
wsadmin># Now we specify the applications we are going to propagate
information on behalf of
wsadmin>set appNames [list ItsohelloEAR:PlantsByWebSphere]
ItsohelloEAR:PlantsByWebSphere
wsadmin># or for all deployed applications
wsadmin>set allApps [list null]
null
wsadmin>$AdminControl invoke $serverSecAdm
propagatePolicyToJACCProvider $appNames

Example 14-2 shows the use of wsadmin to manually propagate policy
information for a cluster.

Example 14-2 Using wsadmin to manually propagate policy information for a cluster

C:\Program
Files\IBM\WebSphere\AppServer\profiles\Dmgr01\bin>wsadmin.bat -username
wasadmin -password passw0rd
wsadmin># First of all we need to get the correct SecurityAdmin MBean.
wsadmin>set dmgrSecAdm [$AdminControl queryNames
type=SecurityAdmin,process=dmgr,*]
WebSphere:name=SecurityAdmin,process=dmgr,platform=proxy,node=bchhs409C
ellManager01,version=6.1.0.0,type=SecurityAdmin,mbeanIdentifier=Securit
yAdmin,cell=bchhs409Cell01,spec=1.0
wsadmin># Now we specify the applications we are going to propagate
information on behalf of
wsadmin>set appNames [list ItsohelloEAR:PlantsByWebSphere]
ItsohelloEAR:PlantsByWebSphere
wsadmin># or for all deployed applications
wsadmin>set allApps [list null]

 Chapter 14. Externalizing authorization with JACC 419

null
wsadmin>$AdminControl invoke $dmgrSecAdm propagatePolicyToJACCProvider
$allApps

14.5.6 Dynamic module updates in WebSphere Application Server
V6.1 for JACC

WebSphere handles the dynamic module update with respect to JACC for Web
modules. When the Web module is updated, only that application must be
restarted in native authorization mode. In the case of JACC enabled, the dynamic
module update depends on the provider support to handle such updates specific
to the security modules. You must select the Dynamic module check box for the
change to take effect.

14.6 Integrating Tivoli Access Manager as an external
JACC provider

To configure WebSphere Application Server to use Tivoli Access Manager as the
external authorization engine:

1. Ensure that WebSphere Application Server and the Tivoli Access Manager
Policy Server are sharing the same Lightweight Directory Access Protocol
(LDAP). Also ensure that the WebSphere administrative user has a valid
account in Tivoli Access Manager.

2. Start the WebSphere Application Server Administrative Console, and log in.

3. From the left navigation menu, click Security → Secure administration,
applications, and infrastructure.

4. Click External authorization providers.

Memory shortage problems: You might encounter memory shortage
problems when WebSphere Application Server runs with Tivoli Access
Manager as the JACC provider. To fix this issue prior to configuring Tivoli
Access Manager as the JACC provider, set the
com.tivoli.pd.as.atcc.ATCCache.enabled property to false in the
amwas.amjacc.template.properties file. This file is in the
PROFILE_HOME/config/cells/cell_name/ directory. After setting this
property to false, restart WebSphere Application Server.

420 WebSphere Application Server V6.1 Security Handbook

5. On the External authorization providers page, specify whether to use the
default authorization provider or an external JACC provider. Select External
authorization using a JACC provider and click Apply.

6. Navigate back to the External authorization providers page, and under
General Properties, click External JACC provider. If the Tivoli Access
Manager properties are not prefilled, specify the following properties as
shown in Figure 14-8 on page 422 and apply the changes:

– For Policy class name, type com.tivoli.pd.as.jacc.TAMPolicy.

– Policy configuration factory class name, type
com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory.

– For Role configuration factory class name, type
com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory.

– For JACC provider initialization class name, type
com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize.

– For Requires the EJB arguments policy context handler for access
decisions, type false.

– For Supports dynamic module updates, type true.

 Chapter 14. Externalizing authorization with JACC 421

Figure 14-8 Specifying the Tivoli Access Manager JACC classes

7. Under Additional Properties, click Tivoli Access Manager properties.

8. Enter the following information:

– Enable embedded Tivoli Access Manager

Select this option to enable the Tivoli Access Manager.

– Ignore errors during embedded Tivoli Access Manager Disablement

Select this option when you want to unconfigure the JACC provider. Do not
select this option during configuration.

– Client listening point set

WebSphere Application Server must listen using a Transmission Control
Protocol/Internet Protocol (TCP/IP) port for authorization database
updates from the policy server. More than one process can run on a
particular node or machine. Enter the listening ports used by Tivoli Access
Manager Clients, separated by a comma. If a range of ports is specified,

422 WebSphere Application Server V6.1 Security Handbook

separate the lower and higher values by a colon (for example, 7999,
9990:999).

– Policy server

Enter the name of the Tivoli Access Manager Policy server and the
connection port. Use the form policy_server:port. The policy
communication port is set at the time of the Tivoli Access Manager
configuration, and the default is 7135.

– Authorization servers

Enter the name of the Tivoli Access Manager Authorization server. Use
the form auth_server:port:priority. The authorization server communication
port is set at the time of the Tivoli Access Manager configuration, and the
default is 7136. More than one authorization server can be specified by
separating the entries with commas. Specifying more than one
authorization server at a time is useful for reasons of failover. The priority
value is determined by the order of the authorization server use (for
example, auth_server1:7136:1 and auth_server2:7137:2). A priority value
of 1 is required when configuring against a single authorization server.

– Administrator user name

Enter the Tivoli Access Manager Administrator user name that was
created when Tivoli Access Manager was configured (it is usually
sec_master).

– Administrator user password

Enter the Tivoli Access Manager administrator password.

– User registry distinguished name suffix

Enter the Distinguished Name (DN) suffix for the user registry that is
shared between Tivoli Access Manager and WebSphere (for example,
o=ibm,c=us).

– Security domain

You can create more than one security domain in Tivoli Access Manager,
each with its own administrative user. Users, groups, and other objects
are created within a specific domain, and are not permitted to access
resource in another domain. Enter the name of the Tivoli Access Manager

Important: You must specify a priority or else the configuration fails.
For troubleshooting tips, see the WebSphere 6.1 Information Center
and then go to Troubleshooting and support → Troubleshooting
WebSphere applications → Security → Troubleshooting security
configurations → Authorization provider troubleshooting tips.

 Chapter 14. Externalizing authorization with JACC 423

security domain that is used to store WebSphere Application Server users
and groups. If a security domain has not been established at the time of
the Tivoli Access Manager configuration, leave the value as Default.

– Administrator user distinguished name

Enter the full Distinguished Name of the WebSphere security
administrator ID (for example, cn=wasdmin, o=ibm,c=us). The ID name
must match the Primary administrative user name on the LDAP User
Registry panel in the administrative console. To access this panel, click
Security → Secure administration, applications, and infrastructure.
Under Available realm definitions, click Stand-alone LDAP registry.

Note: The Embedded Tivoli Access Manager client only supports
Stand-alone LDAP Registries or a Federated repository containing a
single LDAP registry, which is the equivalent to a Stand-alone LDAP
Registry.

424 WebSphere Application Server V6.1 Security Handbook

Figure 14-9 shows the Tivoli Access Manager client settings.

Figure 14-9 Tivoli Access Manager client settings

 Chapter 14. Externalizing authorization with JACC 425

14.6.1 Disabling the embedded Tivoli Access Manager

In a Network Deployment architecture, ensure all managed servers, including
node agents, are started, then perform the following process after you are on the
deployment management server. Information from the unconfigure operation is
forwarded to managed servers, including node agents, when the server is
restarted. The managed servers then require a restart for changes to take effect.

Disabling Tivoli Access Manager by using the Administrative
Console
To unconfigure the Tivoli Access Manager JACC provider by using the
WebSphere Application Server Administrative Console:

1. Select Security → Secure administration, applications, and
infrastructure.

2. On the right sidebar, click Authorization provider (default).

3. Under Related items, click External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties. The
configuration screen for the Tivoli Access Manager JACC provider is
displayed.

5. Deselect Enable embedded Tivoli Access Manager option. If you want to
ignore errors when unconfiguring, select Ignore errors during embedded
Tivoli Access Manager Disablement option. Select this option only when
the Tivoli Access Manager domain is in an irreparable state.

6. Click OK.

7. Restart all WebSphere Application Server instances for the changes to take
effect.

Disabling Tivoli Access Manager by using wsadmin
To disable the Tivoli Access Manager JACC provider:

1. Start the wsadmin command line utility.

2. From the wsadmin prompt, enter the following command:

$AdminTask unconfigureTAM -interactive

3. Tell WebSphere Application Server not to use an external JACC provider as
shown in Example 14-3.

Example 14-3 Eliminating use of an external JACC

wsadmin># Get the Authorization Configuration
wsadmin>set authConfig [$AdminConfig list AuthorizationConfig]
(cells/localhostNode01Cell|security.xml#AuthorizationConfig_1)

426 WebSphere Application Server V6.1 Security Handbook

wsadmin># Just seeing what we have
wsadmin>$AdminConfig show $authConfig
{authorizationProviders {"Tivoli Access
Manager(cells/localhostNode01Cell|security.xml#AuthorizationProvider
_1)"}}
{useJACCProvider true}
{useNativeAuthorization false}
wsadmin># Stop using any external JACC providers
wsadmin>$AdminConfig modify $authConfig [list { useJACCProvider
false }]

wsadmin>$AdminConfig show $authConfig
{authorizationProviders {"Tivoli Access
Manager(cells/localhostNode01Cell|security.xml#AuthorizationProvider
_1)"}}
{useJACCProvider false}
{useNativeAuthorization false}
wsadmin>$AdminConfig save

4. When all the information is entered, enter F to save the properties (or C to
cancel the unconfiguration process and discard entered information).

5. Restart all WebSphere Application Server instances for the changes to take
effect.

14.6.2 Reconfiguring the JACC provider by using wsadmin

Reconfigure the JACC provider by using the following wsadmin command:

$AdminTask reconfigureTAM interactive

Enter all new and existing options.

14.7 Sample application for JACC

You can find details about the sample application in “Sample application for
testing JACC” on page 513.

 Chapter 14. Externalizing authorization with JACC 427

428 WebSphere Application Server V6.1 Security Handbook

Chapter 15. Web services security

This chapter discusses Web services security in WebSphere Application Server
V6.1.

15

© Copyright IBM Corp. 2006. All rights reserved. 429

15.1 Web services security exposures

Web services security is one of the most important Web services subjects. When
using Web services, security exposures that exist are similar to other Internet
services, middleware-based applications, and communications.

To explain the Web services security exposures, we use a bank teller scenario as
an example, as shown in Figure 15-1. The bank teller (Web service consumer)
connects over the Internet to the bank’s data center (Web service provider). We
assume there is no security applied at all, which is not realistic, but necessary for
the example.

Figure 15-1 Common security exposures in a sample bank teller application based on
Web services

This example has the following major risk factors:

� Spoofing: No authentication

An attacker can send a modified SOAP message to the service provider,
pretending to be a bank teller, to get confidential information, or to withdraw
money from another customers account. By applying authentication to the
Web services, this security exposure can be eliminated.

<SOAPMessage
in clear text>

User: Teller1
Account No.1234

Balance

<SOAPMessage
in clear text>

User: Teller1
Account No.1234

Balance

Network

Bank Teller 1

Attacker

Bank Data
Center

Spoofing:
No authentication

Tampering:
No integrity

Eavesdropping:
No confidentiality

430 WebSphere Application Server V6.1 Security Handbook

� Tampering: No integrity

The SOAP message is intercepted between the Web service client and
server. An attacker can modify the message, for example, and deposit the
money into another account by changing the account number. Because there
is no integrity constraint, the Web service server does not check if the
message is valid, and accepts the modified transaction.

Applying integrity mechanism to the Web services, this security exposure can
be eliminated.

� Eavesdropping: No confidentiality

An attacker can intercept the SOAP message, and read all contained
information. Because the message is not encrypted, confidential customer or
bank information can end up in the wrong hands.

This exposure exists because the account and balance information is sent
over the network in plain text.

Applying a confidentiality mechanism to the Web services, this security
exposure can be eliminated.

To prevent the described security exposures, the following mechanisms can be
applied to secure a Web services environment as shown in Figure 15-2:

� Message level security: Web services security (WS-Security)
� Transport level security: TLS/SSL

Figure 15-2 Securing Web services

Securing
Web Services

Authentication
example:
username
password

Integrity
message
signature

Message level security
(WS-Security)

Confidentiality
message
encryption

Transport level security
(TLS/SSL)

encrypt the message stream
(HTTPS for HTTP)

 Chapter 15. Web services security 431

Depending on the demanded level of application security, you can apply one or
more of these security mechanisms. Also, a combination of message-level
security and transport-level security can be implemented.

The more the security mechanisms are implemented, which increases the
security effect, the more influence on other non-functional requirements is given.
Therefore, while designing a Web services security solution, it is kept in mind that
security has an impact on the following non-functional requirements:

� System capacity

Any applied security mechanism has an impact on system resource usage
(for example CPU and memory usage). Therefore, when planning a Web
services environment, the required security overhead must be considered in
the system capacity and volume planning.

The non-functional requirements, capacity and volume, cover, for example,
the number of concurrent users and the number of transactions per second.
This has influence on the required system infrastructure (hardware, network).

� Performance

Security mechanisms and functions also impact the applications response
time. When defining the Web services system response time requirements,
keep in mind that the response times are affected when you apply security.

The performance requirement for a system defines the response time for a
main application operation, for example, less than 1 second for 90% of all
transactions.

The WS-Security specification, and Secure Sockets Layer (SSL) mechanism is
covered in detail in the next sections.

15.2 WS-Security

This section introduces WS-Security concepts. You can find more information
about the various WS-Security specifications in 15.2.3, “WS-Security roadmap”
on page 436.

Note: Applying security is not only a question of feasibility, the additional
system resources and the influence on the response time must also be
considered.

432 WebSphere Application Server V6.1 Security Handbook

15.2.1 WS-Security concepts

The WS-Security specification provides a message-level security which is used
when building secure Web services to implement message content integrity and
confidentiality. The advantage of using WS-Security over SSL is that it can
provide End-to-End Message Level security. This means that the message
security can be protected even if the message goes through multiple services,
therefore, called intermediaries. Additionally, WS-Security is independent of the
transport layer protocol. It can be used for any SOAP binding, for example
Hypertext Transfer Protocol (HTTP) or Java Messaging Service (JMS). Using
WS-Security, end-to-end security can be obtained as shown in Figure 15-3.

Figure 15-3 End to end security with message level security

The WS-Security specification, which is Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004), is proposed by the Organization for the
Advancement of Structured Information Standards (OASIS) WebSphere
Services Security (WSS) Technical Committee. This specification proposes a
standard set of SOAP extensions. This specification is flexible and is designed to
be used as the basis for securing Web services within a wide variety of security
models including public key infrastructure (PKI), Kerberos, and SSL. It provides
support for multiple security token formats, multiple trust domains, multiple
signature formats, and multiple encryption technologies based on Extensible
Markup Language (XML) Signature and XML Encryption to provide integrity or
confidentiality.

The specification includes security token propagation, message integrity, and
message confidentiality. However, these mechanisms by themselves do not
address all the aspects of complete security solution. Therefore, WS-Security
represents only one of the layers in a complex secure Web services solution
design.

Important: With WS-Security 1.0, the wire format changed in a way which is
not compatible with previous WS-Security drafts. Also, interoperability
between implementations based on previous drafts and Version 1.0 is not
possible.

Web service
Client

Web service
Server

Security Context

Intermediary

 Chapter 15. Web services security 433

The WS-Security specification defines the usage of XML Signature and XML
Encryption:

� Message integrity is provided by XML Signature in conjunction with security
tokens to ensure that modifications to messages are detected. See:

http://www.w3c.org/Signature

� Message confidentiality leverages XML Encryption in conjunction with
security tokens to keep portions of a SOAP message confidential. See:

http://www.w3c.org/Encryption

15.2.2 Evolution of the WS-Security specification

The WS-Security support is provided in WebSphere 5.0.2 and later. Each version
of WebSphere is based on different versions of the Web services security
language.

The first version of the WS-Security specification was proposed by IBM,
Microsoft, and Verisign in April 2002. After the formalization of the April 2002
specifications, the specification is transferred to OASIS consortium. For more
information, see the following address:

http://www.oasis-open.org

In OASIS activities, core specification and many profiles which describe the use
of a specific token framework in WS-Security have been discussed. The latest
specification and profiles of WS-Security were proposed in March 2004 as the
OASIS Standard. The latest core specification, Web Services Security: SOAP
Message Security 1.0 (WS-Security 2004) was standardized in March 2004. The
two profiles, Web Services Security UsernameToken Profile 1.0 and Web
Services Security X.509 Certificate Token Profile 1.0, were standardized at the
same time.

There are other token profiles that OASIS is currently working on such as Web
Services Security: SAML Token Profile, Web Services Security: Rights
Expression® Language (REL) Token Profile, Web Services Security: Kerberos
Token Profile, Web Services Security Minimalist Profile (MProf), and Web
Services Security: SOAP Message with Attachments (SwA) Profile.

434 WebSphere Application Server V6.1 Security Handbook

http://www.w3c.org/Signature
http://www.w3c.org/Encryption
http://www.oasis-open.org

The support of the April 2002 specification is provided in WebSphere 5.0.2 and
5.1. WebSphere Application Server Version 6.0 and 6.1 support the WS-Security
1.0 specification and two profiles (UserName-Token 1.0, x.509 Token 1.0).
Figure 15-4 shows the evolution of WS-Security.

Figure 15-4 Evolution of Web services security

To read more about these standards, refer to the following Web addresses:

� Specification: Web Services Security (WS-Security) Version 1.0 (April 2002):

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

� Web Services Security Addendum (August 2002):

http://www-106.ibm.com/developerworks/webservices/library/ws-securea
dd.html

� Web Services Security: SOAP Message Security V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf

April 2002
WS-Security
Version 1.0

August 2002
WS-Security
Addendum
Version 1.0

September 2002
WS-Core Draft 1

May 2003
WSS: SOAP

Message Security
Draft 13

Feburary 2003
WSS:

UsernameToken
Draft 2

Oasis Activities

March 2004
WSS: SOAP Message
Security Verison 1.0

March 2004
WSS: Username

Token Version 1.0

March 2004
WSS: X.509

Token Version 1.0

 Chapter 15. Web services security 435

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secureadd.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

� Web Services Security: UsernameToken Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

� Web Services Security: X.509 Token Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

15.2.3 WS-Security roadmap

As mentioned, the WS-Security specification addresses only a subset of security
services for all security aspects. A more general security model is required to
cover other security aspects, such as logging and non-repudiation. The definition
of those requirements is given in a common Web services security model
framework, a security white paper of Web Services Security Roadmap proposed
by IBM and Microsoft. We describe this Roadmap in the following section.

Web services security model framework
The Web services security model introduces a set of individual interrelated
specifications to form a layering approach to security. It includes several aspects
of security, which are identification, authentication, authorization, integrity,
confidentiality, auditing, and non-repudiation. It is based on the WS-Security
specification, co-developed by IBM, Microsoft, and VeriSign.

Figure 15-5 shows a schematic version of the Web services security model.

Figure 15-5 WS-Security roadmap

SOAP Foundation

WS-Security

WS-Secure
Conversation

WS-
Federation

WS-
Authorization

WS-Policy WS-Trust WS-Privacy

436 WebSphere Application Server V6.1 Security Handbook

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

These specifications include different aspects of Web services security:

WS-Policy Describes the capabilities and constraints of the security
policies and other business policies on intermediaries and
endpoints, for example, required security tokens,
supported encryption algorithms, and privacy rules.

WS-Trust Describes a framework for trust models that enables Web
services to securely interoperate. This specification is
responsible for managing trusts and establishing trust
relationships.

WS-Privacy Describes a model for how Web services and requestors
state privacy preferences and organizational privacy
practice statements.

WS-Federation Describes how to manage and broker the trust
relationships in a heterogeneous federated environment,
including support for federated identities.

WS-Authorization Describes how to manage authorization data and
authorization policies.

WS-SecureConversation
Describes how to manage and authenticate message
exchanges between parties, including security context
exchange and establishing and deriving session keys.

The combination of these security specifications enables many scenarios, which
are difficult or impossible to implement with today's more basic security
mechanisms, such as transport securing or XML document encryption.

15.2.4 Example of WS-Security

This section provides some examples of SOAP messages with WS-Security.
Using WS-Security, authentication mechanism, integrity, and confidentiality can
be applied in the message level. In WebSphere Application Server V6.1, there
are many options to apply these security mechanisms. In this section, the most
typical scenarios of each mechanism are shown as an introduction.

 Chapter 15. Web services security 437

As an overview, Figure 15-6 shows the Web services security elements added to
the SOAP message.

Figure 15-6 SOAP message security with WS-Security

Applying WS-Security, the SOAP security header is inserted under the SOAP
envelope.

Authentication
The user name and password information as a Username Token is stored in the
message. When the Username Token is received by the Web service server, the
user name and password are extracted from the Username Token and they are
verified. Only when both the user name and password are valid is the message
accepted and processed at the server.

Using Username Token is just one of the ways of implementing authentication.
This mechanism is also known as basic authentication. Other forms of
authentication are digital signature, ID Assertion, Lightweight Third Party
Authentication (LTPA), and custom tokens.

Misc. Headers

Security Header

SOAP Body

SOAP Header

SOAP Envelope Security Token

Timestamp

Signature

Encrypted Key

Encrypted Data

Data *

* Depending on the applied security, the data is
clear text or encrypted.

438 WebSphere Application Server V6.1 Security Handbook

Enabling basic authentication in your application
To configure authentication:

1. On the client side, to insert the Username Token to a SOAP message, specify
a security token and its token generator in the client’s WS-Security
configuration:

a. Specify a security token at Request Generator configuration. In case you
are using basic authentication, the security token type must be Username.
This security token is sent inside the SOAP message to the server.

b. Specify a token generator for Username Token at Request Generator
configuration. The role of the token generator is to get the user name and
password from the configuration file and generate the Username Token
with this user name and password. The token generator class for
Username Token, UsernameTokenGenerator, is provided by the
WebSphere Web services security run time as a default implementation.

2. On the server side, to receive the client’s Username Token, specify a security
token in the server’s WS-Security configuration, which the server and a token
consumer require:

a. Specify a security token which is required by the server, in case of basic
authentication, the required security token type is a Username similar to a
client’s configuration.

b. Specify a token consumer at Request Consumer configuration. The token
consumer receives a security token in the request message and validates
it. The token consumer class for Username Token,
UsernameTokenConsumer, is provided by the WebSphere Web services
security run time as a default implementation.

c. Turn on the application security in the WebSphere Application Server
where the application is deployed.

Integrity
Integrity is applied to the application to ensure that no one illegally modifies the
message while it is in transit. Essentially, integrity is provided by implementing an
XML digital signature on the contents of the SOAP message. If the message data
changes illegally, the signature is no longer valid.

In WebSphere Application Server V6.1, multiple and arbitrary parts of the
message can be signed, for example a message body, security token and time
stamp.

A signature is created based on a key that the sender is authorized to have.
Unauthorized sniffers do not have this key. When the receiver gets the message,
it too creates a signature using the message contents. Only if the two signatures

 Chapter 15. Web services security 439

match does the receiver honor the message. If the signatures are different, an
error is returned to the sender.

Enabling integrity in your application
To configure integrity:

1. On the client side, to specify the integrity of part of a SOAP message, specify
the part that must be signed and the process of signing in the client’s
WS-Security configuration:

a. Specify the parts of the message that must be signed at Request
Generator configuration. The message parts can be specified by the
predefined keyword or XPath expression. Also, you can specify multiple
parts which require a signature.

b. Specify key-related information which includes the location of the client’s
key, a type of key, and a password for protecting the key.

c. Specify signing information which defines how to sign to the specified part.
Specify some options for signature such as a signature method algorithm
or key-related information.

d. In a most typical integrity example, a security token is inserted in the
SOAP message, which is used as signature verification by the server. In
such an example, a token generator must be specified at Request
Generator configuration. This token generator’s role is to generate a token
for signature verification. In this case, a token generator for X.509
certificate token, X509TokenGenerator, must be specified, which is
provided by the WebSphere Web services security run time as a default
implementation.

e. If a client expects a response that includes integrity information by the
server, then the client also has to be configured to validate the integrity of
the response message at Response Consumer configuration.

2. On the server side, to specify required integrity for part of a SOAP message,
specify the part that must be signed and the process of verifying the signature
in the server’s WS-Security configuration:

a. Specify the parts of the message which require a signature at Request
Consumer configuration. The message parts can be specified by the
predefined keyword or XPath expression. Also, you can specify multiple
parts which require a signature.

b. Specify key-related information which includes the location of the server’s
key, a type of key, and a password for protecting the key.

c. Specify signing information which defines how the specified part is to be
signed. Specify some options for signature, such as a signature method
algorithm or key-related information.

440 WebSphere Application Server V6.1 Security Handbook

d. In a most typical integrity example, a security token is inserted in to the
SOAP message, which is used as signature verification by the server. In
such an example, a token consumer must be specified at Request
Consumer configuration. This token consumer’s role is to receive the
token for signature verification. In this case, a token consumer for X.509
certificate token, X509TokenConsumer, must be specified. It is provided
by the WebSphere Web services security run time as a default
implementation.

e. If a server requires a response that includes integrity information by the
server, then the server also has to be configured to sign the response
message at Response Generator configuration.

Confidentiality
In WebSphere Application Server V6.1, multiple and arbitrary parts of the
message can be encrypted, for example, a message body, security token, and so
on.

Confidentiality is the process by which a SOAP message is protected so that only
authorized recipients can read it. Confidentiality is provided by XML encryption of
the contents of the SOAP message. If the SOAP message is encrypted, only one
who knows the key for confidentiality can decrypt and read the message.

Enabling confidentiality in your application
The following are the simplified steps to enable confidentiality:

1. On the client side, to specify confidentiality of part of a SOAP message,
specify the part that must be encrypted and the manner of encryption in the
client’s WS-Security configuration.

a. Specify the parts of the message that must be encrypted at Request
Generator configuration. The message parts can be specified by the
predefined keyword or XPath expression. Also, you can specify multiple
parts that require encryption.

b. Specify key-related information which includes the location of the client’s
key, type of key, and a password for protecting the key.

c. Specify encryption information that defines how to encrypt the specified
part. Specify some options for encryption such as an encryption method
algorithm and key-related information.

d. If a client expects a response that includes confidentiality by the server,
then the client also has to be configured to decrypt the server’s encryption
of the response message at Response Consumer configuration.

 Chapter 15. Web services security 441

2. On the server side, to specify the required confidentiality for part of a SOAP
message, specify the part that must be encrypted and the way of decrypting
the encryption in the server’s WS-Security configuration.

a. Specify the parts of the message which require decryption at Request
Consumer configuration. The message parts can be specified by the
predefined keyword or XPath expression. Also, you can specify multiple
parts that require a signature.

b. Specify key-related information, including the location of the server’s key, a
type of key, and a password for protecting the key.

c. Specify encryption information which defines how to decrypt the specified
part. Specify some options for encryption such as an encryption method
algorithm and key-related information.

d. A token consumer must be specified at Request Consumer configuration.
This token consumer’s role is to receive information for message
decryption. In this case, a token consumer for X.509 certificate token,
X509TokenConsumer, must be specified. It is provided by the WebSphere
Web services security run time as a default implementation.

e. If a server requires a response that includes confidentiality by the server,
then the server also has to be configured to encrypt the response
message at Response Generator configuration.

15.2.5 Development of WS-Security

WebSphere Application Server V6.1 supports two development tools, which are
Application Server Toolkit and Rational Application Developer. Developing Web
services applications with WS-Security is made easier with the new Web Service
security wizards provided in Application Server Toolkit V6.1.

To access the wizards, in the Project Explorer of the Java 2 Platform, Enterprise
Edition (J2EE) perspective, expand Web Services → Services and right-click
your service and select Secure Web Service (Figure 15-7 on page 443).

With the wizards, you can add a stand-alone security token, XML encryption or
XML digital signature to a Web service. You may also clone the WS-Security
settings from another Web service to your Web service.

442 WebSphere Application Server V6.1 Security Handbook

Figure 15-7 Secure Web Service wizards

Another set of wizards (Figure 15-8) is provided to configure WS-Security on
your Web service client applications.

Figure 15-8 Secure Web Service client wizards

For more information about how to use the wizards, see the article Securing Web
services using Web services security wizards in WebSphere Application Server
V6.1 Information Center on the Web at the following address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

 Chapter 15. Web services security 443

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

However, if the Web Services security wizards do not satisfy your complex
security requirement, you still have the option to manually configure WS-Security
for your Web services applications. See article “Securing Web services manually
based on WS-Security” in WebSphere Application Server V6.1 Information
Center for details.

You can also find detailed information about how to define WS-Security
configuration manually by using Rational Application Developer in “Securing Web
Services” in WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461.

15.2.6 Hardware cryptographic device support for WS-Security

In WebSphere Application Server V6.1, you can configure hardware
cryptographic device to be used for Web services security. You can use the
hardware cryptographic device in two ways:

� Accelerate the cryptographic operations for WS-Security.
� Store the cryptographic keys so that they never leave the device.

Configuring a hardware cryptographic keystore
To enable the previous two functions, define a hardware cryptographic keystore:

1. In the Administrative Console, select Security → SSL certificate and key
management.

2. Under Related Items, click Key stores and certificates.

3. Click New. New keystore page opens, as shown in Figure 15-9 on page 445.

4. Type a name for this hardware keystore.

5. Type the path for this hardware device-specific configuration file.

Note: Two required attributes in this configuration file are name and library.
The following is an example:

name = SampleAccelerator
library=/opt/sample/lib/libpkcs11.so

The IBMPKCS11Impl Provider Guide at the following address describes
the details of this configuration file:

http://www-128.ibm.com/developerworks/java/jdk/security/50/secgui
des/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html#Confi
gFile

444 WebSphere Application Server V6.1 Security Handbook

http://www-128.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html#ConfigFile
http://www-128.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html#ConfigFile
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

6. Type and confirm the password. This is optional when the keystore is used
purely as a cryptographic accelerator.

7. Select Cryptographic Token Device (PKCS11).

8. Select Read only.

9. Optional: Select Initialize at startup.

10.Optional: Select Enable cryptographic operations on hardware device if
this device is used as a cryptographic accelerator.

11.Click OK.

12.Click Save to save the configuration.

Figure 15-9 New hardware cryptographic keystore

 Chapter 15. Web services security 445

Enabling cryptographic operations on hardware device
You can use hardware device as a cryptographic accelerator for WS-Security.
You can store the key for the cryptographic operations in a regular Java key store
file. In this case the device is a pure cryptographic accelerator.

To enable cryptographic operations on hardware device:

1. In the Administrative Console, select Servers → Application servers.

2. Click the server name that you want to configure.

3. Under Security, click Web services: Default bindings for Web services
security.

4. Under Cryptographic Hardware, select Enable cryptographic operations
on hardware device and choose the hardware configuration name (defined
in step 4 of “Configuring a hardware cryptographic keystore” on page 444).
See Figure 15-10.

Figure 15-10 Cryptographic hardware configuration

5. Click OK.

6. Click Save to save the configuration.

Supported hardware cryptographic devices: For a list of supported
hardware cryptographic devices, see the following Web address:

http://www-128.ibm.com/developerworks/java/jdk/security/50/secgui
des/pkcs11implDocs/IBMPKCS11SupportList.html

Note: To further accelerate WS-Security processing for large scale
service-oriented architecture (SOA) applications, consider WebSphere
DataPower® SOA Appliances:

http://www.ibm.com/software/integration/datapower/

446 WebSphere Application Server V6.1 Security Handbook

http://www-128.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html
http://www-128.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html
http://www.ibm.com/software/integration/datapower/

15.3 Transport-level security

HTTP, the most used Internet communication protocol, is currently also the most
popular protocol for Web services. HTTP is an inherently insecure protocol,
because all information is sent in clear text between unauthenticated peers over
an insecure network. It belongs to the group of protocols, such as Simple Mail
Transfer Protocol (SMTP), telnet, and File Transfer Protocol (FTP), that were
designed in the earlier stages of the Internet, when security seemed not to be an
issue, and eventually they are to be replaced by transfer protocols that allow
authentication and encryption.

To secure HTTP, transport-level security can be applied. Transport-level security
is a well-known and often used mechanism to secure HTTPS inter- and intranet
communications. Transport-level security is based on SSL or Transport Layer
Security (TLS) that runs beneath HTTP.

HTTPS allows client and server-side authentication through certificates, which
have been either self-signed or signed by a certification agency. HTTPS can be
assigned in any combination with any parts of message-level security
(WS-Security).

Unlike message-level security, HTTPS encrypts the entire HTTP data packet.
There is no option to apply security selectively only on certain parts of the
message. SSL and TLS provide security features including authentication, data
protection, and cryptographic token support for secure HTTP connections.

This book does not cover HTTPS in more detail. See the points in “More
information” on page 449.

15.3.1 SOAP over HTTP transport-level security

Although HTTPS does not cover all aspects of a general security framework, it
provides a security level regarding party identification and authentication,
message integrity, and confidentiality. It does not provide authentication, auditing,
and non-repudiation. To run HTTPS, the Web service port address must be in the
form https://.

 Chapter 15. Web services security 447

Even with the WS-Security specification, you must consider SSL when you think
about Web services security. By using SSL, a so-called point-to-point security
can be achieved. See Figure 15-11.

Figure 15-11 Point-to-point security with HTTPS

15.4 WS-I Basic Security Profile

Web Services Interoperability Organization (WS-I) is an open industry effort
promoting Web services interoperability across vendors, platforms, programming
languages, and applications. One of WS-I’s major deliverable to date is WS-I
Basic Profile, which provides implementation guidelines for how you can use the
profiled Web services specifications together for best interoperability. WS-I Basic
Profile V1.1 (BP1.1) is supported in WebSphere V6.0 and later.

WS-I Basic Security Profile (BSP) V1.0 is a Working Group Draft that consists of
a set of non-proprietary Web services specifications that clarifies and amplifies
those specifications to promote Web services security interoperability across
different vendor implementations.

The Basic Security Profile is an extension to the Basic Profile. It describes how
OASIS WS-Security specifications must be interpreted by adding constraints and
clarifications with the intent to promote interoperability. The scope of BSP
includes the following additional specifications:

� RFC 2818: HTTP over TLS

� RFC 2246: The Transport Layer Security Protocol V1.0

� The Secure Sockets Layer Protocol V3.0

� WS-Security: SOAP Message Security V1.0

� WS-I Basic Profile V1.0

� WS-I Basic Profile V1.1

� Simple SOAP Binding Profile V1.0

� XML-Signature Syntax and Processing

� XML Encryption Syntax and Processing

Web service
Client Intermediary Web service

Server

Security Context Security Context

HTTPS HTTPS

448 WebSphere Application Server V6.1 Security Handbook

� WS-Security: UsernameToken Profile V1.0

� WS-Security: X.509 Certificate Token Profile

� RFC 2459: Internet X.509 Public Key Infrastructure Certificate and CRL
Profile

� Information technology “Open Systems Interconnection” The Directory:
Public-key and attribute certificate frameworks Technical Corrigendum 1

� WS-Security: Rights Expression Language (REL) Token Profile V1.0

� WS-Security: Kerberos Token Profile V1.1

� WS-Security: SAML Token Profile V1.0

� WS-I Attachments Profile Version 1.0

� WS-Security: SOAP Messages with Attachments (SwA) Profile V1.1

WebSphere Application Server V6.1 now supports applications to comply to the
WS-I Basic Security Profile V1.0. It provides configuration options to ensure that
you can enable the BSP recommendations and security considerations to ensure
interoperability.

15.5 Summary

Web services technology enables a loosely coupled, language-neutral,
platform-independent way of linking applications within organizations, across
enterprises, and across the Internet. To achieve the target, however, it is
essential for Web services to provide a sufficient level of security to support
business transactions. Ensuring the integrity, confidentiality, and security of Web
services through the application of a comprehensive security model is critical,
both for organizations and their customers.

In WebSphere Application Server V6.1, Web services security can be applied at
transport-level security and at message-level security. Highly secure client-server
designs can be architected using these security levels.

15.6 More information

Because Web services security is a quickly evolving field, it is essential for
developers and designers to regularly check for recent updates. This following list
of Web addresses provides the most important entry points for your exploration:

 Chapter 15. Web services security 449

� XML Signature Workgroup home page

http://www.w3.org/Signature/

� XML Encryption Workgroup home page

http://www.w3.org/Encryption/

� WS-Security specification 1.0

http://www.ibm.com/developerworks/library/ws-secure/

� The Web services security Roadmap white paper

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

� OASIS WS-Security 1.0 and token profiles

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

� The WS-I Organization Web site, which includes profiles, sample application
implementations, and compliance testing tools

http://www.ws-i.org/

� The WS-I Basic Profile V1.1 deliverable

http://www.ws-i.org/Profiles/BasicProfile-1.1.html

� The WS-I Basic Security Profile V1.0 deliverable

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

� Information about the IBM representation and contribution to the WS-I
Organization

http://www.ibm.com/developerworks/webservices/wsi/

� IBM Tivoli Access Manager for Business Integration

http://www.tivoli.com/products/index/access-mgr-bus-integration/

� IBM WebSphere MQ standard proposition overview on developerWorks

http://www.ibm.com/software/ts/mqseries/messaging/

� Security information about IBM J2SE 5 SDKs, which are used by WebSphere
Application Server V6.1

http://www-128.ibm.com/developerworks/java/jdk/security/50/

Several commercial and non-commercial information sources are available that
cover more general subjects, such as SSL encoding and HTTPS protocol.

450 WebSphere Application Server V6.1 Security Handbook

http://www.w3.org/Signature/
http://www.w3.org/Encryption/
http://www.ibm.com/developerworks/library/ws-secure/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ibm.com/developerworks/webservices/wsi/
http://www.tivoli.com/products/index/access-mgr-bus-integration/
http://www.ibm.com/software/ts/mqseries/messaging/
http://www-128.ibm.com/developerworks/java/jdk/security/50/

Chapter 16. Securing access to
WebSphere MQ

Java Messaging Service (JMS) is a Java application programming interface
(API) that allows applications to create, send, receive, and read messages. As
part of the Java 2 Platform, Enterprise Edition (J2EE) 1.4 Specification,
WebSphere Application Server V6.1 supports the JMS 1.1 API. J2EE 1.4
platform has the following messaging features:

� Application clients, Enterprise JavaBeans (EJB) components, and Web
components can send or synchronously receive a JMS message. Application
clients can also receive JMS messages asynchronously.

Application clients should refer to the application running on the client side in
the J2EE client container.

� The message-driven bean (MDB) enables the asynchronous consumption of
messages on the server side.

� Sending or receiving messages can participate in distributed transactions.

The JMS specifications do not discuss the security and encryption of the
message that is getting transferred using the JMS provider. Instead,
specifications leave the security implementation to the JMS provider. This
chapter discusses about WebSphere MQ and default messaging as JMS
providers.

16

© Copyright IBM Corp. 2006. All rights reserved. 451

16.1 Application server and WebSphere MQ

If the default messaging provider does not meet your requirements, WebSphere
Application Server can use WebSphere MQ as a JMS provider. Applications
running on WebSphere Application Server V6.1 can access WebSphere MQ
JMS resources through the JMS 1.1 interfaces.

This section discusses the different ways to integrate WebSphere Application
Server V6.1 with WebSphere MQ in a secure way. For additional information, see
IBM Redbooks WebSphere MQ Version 6 and Web Services, SG24-7115 and
WebSphere MQ Security in an Enterprise Environment, SG24-6814.

16.1.1 WebSphere MQ messaging components

WebSphere applications can communicate with WebSphere MQ in a couple of
ways in V6.1. WebSphere MQ can be connected to the service integration bus
as a foreign bus and the service integration bus handles communication with
WebSphere MQ, or applications can interact directly with WebSphere MQ. When
connected to the service integration bus, the WebSphere MQ queue manager
appears to be another messaging engine on a foreign bus and all communication
is handled by using TCP/IP.

If WebSphere MQ is not linked to the service integration bus, the applications
interact directly with the WebSphere MQ server by using inter-process
communication if the WebSphere MQ server is local, or via TCP/IP. Regardless
of which method is configured, the WebSphere application uses the same JMS
API to interact with the JMS provider. Only the underlying implementation
changes. Choosing the appropriate architecture depends on application and
architectural requirements and are not discussed here.

Direct communication with WebSphere MQ
Direct communication between WebSphere applications and IBM WebSphere
MQ is handled via a pool of connection objects. The WebSphere MQ “unified”

More information: For more information about configuring Secure Sockets
Layer (SSL) between WebSphere Application Server and WebSphere MQ on
the JMS provider, review the article “IBM WebSphere Developer Technical
Journal: Securing connections between WebSphere Application Server and
WebSphere MQ -- Part 1” on developerWorks at the following address:

http://www-128.ibm.com/developerworks/websphere/techjournal/0601_rat
nasinghe/0601_ratnasinghe.html

452 WebSphere Application Server V6.1 Security Handbook

http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www.redbooks.ibm.com/abstracts/sg247115.html?Open
http://www.redbooks.ibm.com/abstracts/sg247115.html?Open
http://www.redbooks.ibm.com/abstracts/sg246814.html?Open
http://www.redbooks.ibm.com/abstracts/sg246814.html?Open

JMS connection factory specifies how to connect to WebSphere MQ queue
manager for both point-to-point and publish/subscribe messaging.

To define this type of JMS resources, click Resources → JMS → JMS
providers and select WebSphere MQ messaging provider at the appropriate
scope. Connection factories is available in the Additional Properties pane. Also
available here are the “domain-specific” Queue connection factories and Topic
connection factories. In this configuration, WebSphere Application Server does
not handle any of the authentication or authorization tasks other than passing a
set of credentials to the WebSphere MQ server. The credentials can be supplied
by the application or the container where the request is made. Transport security
(confidentiality) with SSL is specified on the connection factory. The WebSphere
MQ server handles all of the security tasks.

Integrating WebSphere MQ onto the service integration bus
Integrating WebSphere MQ onto the service integration bus follows the
service-oriented architecture (SOA) model. The WebSphere MQ queue manager
opens to the local service integration bus as a Foreign Bus. Communication
parameters for the foreign bus are defined by an MQ link definition on the
messaging engine used to communicate with WebSphere MQ.

Figure 16-1 on page 454 shows a WebSphere MQ queue manager connected to
the service integration bus via an MQ link. Applications that must send messages
to MQ connect directly to their local or remote messaging engine and put
messages to a destination. Messages can be routed according to the JMS
destination configuration. A foreign, or alias, destination can be configured from a
security perspective. The messaging engine reroutes to the messaging engine
that has the MQ link definition. Which then routes the messages to the target
queue manager via the MQ link. As far as the application is concerned, the
destination is local to the messaging engine or can be configured to send
messages to the foreign destination.

Alternative: You can also configure the JMS resources by selecting
Resources → JMS and then selecting the appropriate JMS resource type.

Note: It is not possible to receive a message from a queue defined on a
WebSphere MQ queue manager. Similarly, it is not possible for WebSphere
MQ applications to receive messages from a queue defined on the bus.

 Chapter 16. Securing access to WebSphere MQ 453

Figure 16-1 WebSphere MQ service integration bus Integration

The following sections discuss the three security points, which are
authentication, authorization, and transport security and what roles WebSphere
Application Server and WebSphere MQ play.

16.1.2 Authentication

This section describes authentication for WebSphere Application Server and
WebSphere MQ.

WebSphere Application Server
When WebSphere MQ is integrated onto the service integration bus as a Foreign
Bus, being displayed as another messaging engine to WebSphere, WebSphere
Application Server can handle a portion of the authentication. To access the
Foreign Bus, applications connect to the local messaging engine and then put
messages to alias destinations or foreign destinations. To access any resources
on the local bus, proper credentials must be supplied to the local messaging
engine by either application or the application container if security is enabled for
the Application Server and bus. These credentials are validated against the
global user registry.

454 WebSphere Application Server V6.1 Security Handbook

For more information about local service integration bus security, see 10.2, “An
overview of service integration bus security” on page 250.

WebSphere MQ
When a JMS client, WebSphere Application Server in this instance, connects to
WebSphere MQ, the credentials supplied are checked against the local operating
system user registry where the WebSphere MQ server is installed.

16.1.3 Authorization

This section describes authorization for WebSphere Application Server and
WebSphere MQ.

WebSphere Application Server
Authorization to access service integration bus resources, including alias
destinations, foreign destinations, and connecting to the bus has already been
discussed in Authorization in 10.2, “An overview of service integration bus
security” on page 250. Alias destinations and foreign destinations are used to
access resources on the WebSphere MQ server, therefore, access to these local
resources is required.

WebSphere MQ
Access to WebSphere MQ resources is required both in Service Integration Bus
(SIB) to send to the foreign destination, and the Object Authority Manager
(OAM) on the WebSphere MQ server. The OAM is automatically enabled for
each queue manager. If authorization checking is not required the OAM may be
disabled.

The OAM maintains an access control list (ACL) for each WebSphere MQ object
it is controlling access to. On UNIX systems only group IDs can be displayed in
an ACL. This means that all members of a group have the same authority. On
Windows, both user IDs and group IDs can be displayed in an ACL. This means
that authorities can be granted to individual users and also groups. The control
command setmqaut grants and revokes authorities and is used to maintain the
ACLs.

Note: For meaningful security to exist between WebSphere Application Server
and WebSphere MQ when TCP is used across a host, which is the most
common scenario, a custom MQ security exit must be written or mutual SSL
must be configured.

 Chapter 16. Securing access to WebSphere MQ 455

The following authorizations, among others, can be granted or revoked:

� get
� browse
� put
� connect

To connect to the queue manager the user must have connect authorization.
After it is connected, when a request is made to a queue, process or namelist,
the OAM checks the users authorization for that resource. For example, if a user
wants to put a message on the queue, they would require “put” authorization for
the queue. You can find all details about WebSphere MQ messaging security in
the IBM WebSphere MQ V6.0 Security product documentation.

16.1.4 Transport security

Communication between WebSphere Application Server and WebSphere MQ
can be accomplished via TCP/IP, or if the queue manager and Application Server
are on the same machine, then via inter-process communication. When
communication via a foreign bus, MQ link is used, communication is always done
via TCP/IP and the following two sub-sections apply.

If the applications communicate directly with the WebSphere MQ server, not over
the service integration bus, then you can use either of the communication path.
Transport security is not required when inter-process communication is used as
transport of messages is done in memory. Transport level security, SSL
parameters, for direct connections is defined on the JMS connection factories.
The SSL settings on the WebSphere side and WebSphere MQ side must match.

WebSphere Application Server
When defining the MQ link between a WebSphere Application Server messaging
engine and the WebSphere MQ foreign bus, two WebSphere MQ style channels,
a sender and receiver, are defined in the local messaging engine. These two
channels handle all communication between the messaging engine and the
queue manager.

More information: For information about System Authorization Facility (SAF)
on z/OS for WebSphere Application Server V6.1, visit the Web at:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=
/com.ibm.mq.csqzas.doc/sp1adzos.htm

456 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzas.doc/sp1adzos.htm

The sender channel, as the name implies, is used when messages are sent from
the Application Server to WebSphere MQ. The sender channel has an option for
Transport chain which determines if SSL is used when transporting messages to
WebSphere MQ. The two default options for Transport chain are
OutboundBasicMQLink and OutboundSecureMQLink. OutboundSecureMQLink
uses SSL when connecting to WebSphere MQ.

When WebSphere MQ has to route a message to the default messaging engine
on the Application Server, a connection is opened on the receiver channel. The
port, or ports, which the local messaging engine accepts MQ link inbound
requests on, are defined by the available transports in WebSphere MQ link
inbound transports from the Application Server properties page. By default two
transports are defined, InboundBasicMQLink and InboundSecureMQLink.
InboundSecureMQLink is SSL enabled while InboundBasicMQLink is not. If
SSL is required then disable the InboundBasicMQLink and restart the
Application Server or node where the messaging engine is. Additional transports
may be defined as required.

WebSphere MQ
Clients and queue managers communicate with WebSphere MQ over channels
defined on the WebSphere MQ server. When WebSphere Application Server
applications use direct JMS connections to a WebSphere MQ server, not over
the service integration bus, the applications are displayed as clients. When
communication is done via the service integration bus, the MQ link is displayed
as a queue manager to WebSphere MQ. Regardless of what method is used,
communication is done over one or more channels. SSL properties on the
channel allow for selection of which Cipher Spec to use and which clients, based
on Distinguished Name (DN), to accept connections from. Enabling SSL on the
channel is as simple as selecting the Cipher Spec and restarting the channel.

Notes:

� The default InboundBasicMQLink port is 5558. The default
InboundSecureMQLink port is 5578.

� When communication with WebSphere MQ is done across the service
integration bus, the name of the Sender channel defined on the MQ link
must match the name of a receiver channel on the WebSphere MQ queue
manager. The same is true for the sender channel defined on the
WebSphere MQ queue manager matching the name of the receiver
channel on the MQ link.

Important: Use special consideration when using lowercase letters and
defining the channels on WebSphere MQ. Do not use lowercase letters on
channel names.

 Chapter 16. Securing access to WebSphere MQ 457

For more information about configuring SSL between WebSphere Application
Server and WebSphere MQ on the JMS provider, review the article” IBM
WebSphere Developer Technical Journal: Securing connections between
WebSphere Application Server and WebSphere MQ -- Part 1” on
developerWorks at the following address:

http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnas
inghe/0601_ratnasinghe.html

16.1.5 Administering foreign service integration bus security

Security on the service integration bus and resources within the service
integration bus are checked if both administrative security and bus security are
enabled. Access to foreign destinations defined on the local service integration
bus first requires access to the local service integration bus. The commands to
modify the Bus Connector role (the role to connect to the service integration bus)
have already been detailed in 10.3, “Administering service integration bus
security” on page 253. After the application connects to the local service
integration bus, additional checks are made to verify sender rights on the
destination and foreign bus objects.

You can use the following commands to modify the Sender role for a foreign bus:

� List users in role for a foreign bus:

$AdminTask listUsersInForeignBusRole {-bus busName -foreignBus
foreignBusName -role rolename}

� List groups in role for a foreign bus:

$AdminTask listGroupsInForeignBusRole {-bus busName -foreignBus
foreignBusName -role rolename}

� Add a user to a role for a foreign bus:

$AdminTask addUserToForeignBusRole {-bus busName -foreignBus
foreignBusName -role rolename -user username}

� Add a group to a role for a foreign bus:

$AdminTask addGroupToForeignBusRole {-bus busName -foreignBus
foreignBusName -role rolename -group groupname}

� Remove a user from a role for a foreign bus:

$AdminTask removeUserFromForeignBusRole {-bus busName -foreignBus
foreignBusName -role rolename -user username}

� Remove a group from a role for a foreign bus:

$AdminTask removeGroupFromForeignBusRole {-bus busName -foreignBus
foreignBusName -role rolename -group groupname}

458 WebSphere Application Server V6.1 Security Handbook

http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0601_ratnasinghe/0601_ratnasinghe.html

You can use the following commands to modify the Sender role for a foreign
destination:

� List users in a destination role for a foreign bus:

$AdminTask listUsersInDestinationRole {-type destinationType -bus
busName -foreignBus foreignBusName -destination destinationName
-role roleName}

� List groups in a destination role for a foreign bus:

$AdminTask listGroupsInDestinationRole {-type destinationType -bus
busName -foreignBus foreignBusName -destination destinationName
-role roleName}

� Add a user to a destination role for a foreign bus:

$AdminTask addUserToDestinationRole {-type destinationType -bus
busName -foreignBus foreignBusName -destination destinationName
-role roleName -user userName}

� Add a group to a destination role for a foreign bus:

$AdminTask addGroupToDestinationRole {-type destinationType -bus
busName -foreignBus foreignBusName -destination destinationName
-role roleName -group groupName}

� Remove a user from a destination role for a foreign bus:

$AdminTask removeUserFromDestinationRole {-type destinationType -bus
busName -foreignBus foreignBusName -destination destinationName
-role roleName -user userName}

� Remove a group from a destination role for a foreign bus:

$AdminTask removeGroupFromDestinationRole {-type destinationType
-bus busName --foreignBus foreignBusName destination destinationName
-role roleName -user userName}

16.1.6 Administering WebSphere MQ security

Access to WebSphere MQ objects is controlled by the OAM. The setmqaut
command is used to grant and revoke authorities and maintain the ACL
contained in the OAM. Only a user with administration authority can run this
command. Running the setmqaut command without parameters displays the
command usage as follows:

setmqaut -m QMgrName [-n ObjName] -t ObjType [-p Principal | -g
Group][-s ServiceName] Authorizations

 Chapter 16. Securing access to WebSphere MQ 459

The following authorizations, among others, can be granted or revoked:

� get
� browse
� put
� connect

For example, to grant browse rights to user janedoe on a queue name default
and queue manager named QM_klchm8p the following command is executed:

C:\PROGRA~1>setmqaut -m QM_klchm8p -n default -t queue -p janedoe
+browse

The result is as follows:

The setmqaut command completed successfully.

You can use the dspmqaut command to display authorizations from the OAM. For
in depth details on administering WebSphere MQ security see the IBM
WebSphere MQ V6.0 Security product documentation.

16.2 Sample application

For more information about configuring messaging for applications, see
“Configuring the service integration bus and default messaging provider” on
page 516.

Integrating WebSphere MQ onto service integration bus via MQ link is described
in “Configuring WebSphere MQ as a foreign bus” on page 526.

You can find the details about a messaging sample application in “Sample
application for messaging” on page 530.

Notes:

� Prepend the authorization with + to grant and - to revoke. For example,
use +connect to grant connect authorization and -get to revoke get
authorization.

Multiple authorizations can be specified at one time by separating them
with a space. For example, +browse -get - put

� In a UNIX environment, authorizations can only be granted on groups.

460 WebSphere Application Server V6.1 Security Handbook

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801

16.3 Additional information

Information about the JMS specification is available at the following address:

http://java.sun.com/products/jms/index.jsp

For security information about WebSphere MQ, see WebSphere MQ Security
Version 6.0, SC34-6588-01, in the WebSphere MQ Information Center at the
following address:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/co
m.ibm.mq.csqzas.doc/csqzas03.htm

 Chapter 16. Securing access to WebSphere MQ 461

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801
http://java.sun.com/products/jms/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzas.doc/csqzas03.htm

462 WebSphere Application Server V6.1 Security Handbook

Chapter 17. J2EE Connector security

This chapter discusses Java 2 Platform, Enterprise Edition (J2EE) Connector
security with WebSphere Application Server V6.1.

17

© Copyright IBM Corp. 2006. All rights reserved. 463

17.1 The J2EE Connector Architecture

The J2EE Connector Architecture (JCA) specifies a standard architecture that
allows J2EE applications to connect to enterprise information systems (EISs).
The architecture defines a set of contracts that EIS vendors and Application
Server vendors code to. These contracts specify standard application
programming interfaces (APIs) to which the resource adapters must adhere and
services that the system must provide to support the resource adapter. These
system level services include transaction management, connection
management, and security management, among others. EIS vendors coding
their resource adapters to the connector API take advantage of the system level
services on the J2EE server on which they are running. Applications are then
free to take advantage of the resource adapter or connector.

After it is coded to the API, the resource adapter is plugged into an Application
Server that supports the J2EE Connector Architecture. WebSphere Application
Server V6.1 supports the J2EE Connector Architecture Version 1.5 specification.
After the resource adapter is installed, applications running on the Application
Server can access the EIS without having to handle the system level services.
These are called outbound calls. Applications use the Common Client Interface
(CCI) for EIS access. This interface provides a common API through which
applications can access EISs.

Starting with the Version 1.5 specification, the EIS application can make calls into
the Application Server to access application components and perform tasks.
Calls initiated by EIS to WebSphere Application Server are called inbound calls.

The specification is beyond the scope of this book, but the architecture defines a
standard set of APIs and services for scalable, transaction-oriented, secure
connections to back-end EIS, such as enterprise resource planning (ERP)
systems, databases, transaction processing, and messaging systems.

464 WebSphere Application Server V6.1 Security Handbook

Figure 17-1 shows a high-level representation of the J2EE Connector
Architecture.

Figure 17-1 J2EE Connector Architecture

You can download the full JCA from Sun Microsystems at the following address:

http://java.sun.com/j2ee/connector/

17.1.1 Connector security architecture

The J2EE Connector security architecture is designed to extend the end-to-end
security model for J2EE-based applications to include integration with EISs. An
Application Server and an EIS collaborate to ensure the proper authentication of
a resource principal, which establishes a connection to an underlying EIS. The
connector architecture identifies the following mechanism as the
commonly-supported authentication mechanism:

� Basic Password: Basic user-password-based authentication mechanism that
is specific to an EIS

� Kerb V5: Kerberos Version 5-based authentication mechanism

 Chapter 17. J2EE Connector security 465

http://java.sun.com/j2ee/connector/

Applications define whether to use application-managed sign-on or
container-managed sign-on in the resource-ref elements in the deployment
descriptor. Each resource-ref element describes a single connection factory
reference binding.

The res-auth element in a resource-ref element, whose value is either
Application or Container, indicates whether the enterprise bean code performs a
sign-on or WebSphere Application Server can sign-on to the resource manager
using the principal mapping configuration. The resource-ref element is typically
defined at application assembly time with an assembly tool. The resource-ref can
also be defined, or redefined, at deployment time.

17.2 Securing the J2EE Connector

By their nature, EIS resources generally require a high level of security to protect
the information they contain from unauthorized access. In general, this means
that to connect to an EIS, the user must supply a proper set of credentials,
usually a user ID and password, before gaining access to the EIS back end.
When accessing an EIS back end, the request for access flows from the
application to the resource adapter and then to the EIS. In a secure environment,
when the request is made to the adapter, the proper credentials are sent to the
adapter when a connection is requested. The adapter then uses the credentials
to connect to the EIS and performs the requested actions.

J2EE Connectors follow the J2EE security model. Access to EIS resources takes
place under the security context of a resource principal. Where the security
context comes from depends on the security model in use at the time of access
to the resource adapter. The two security models are component-managed
authentication (also called application-managed authentication) and
container-managed authentication. Each is discussed in the following sections.

17.2.1 Component-managed authentication

In the case of component-managed authentication, the application component
accessing the resource or adapter is responsible for programmatically supplying
the credentials, or WebSphere Application Server can supply a default
component-managed authentication alias, if available.

Note: You can also find the component-managed authentication referred to as
Per Connection Factory. Mostly you see this naming in the Rational
Application Developer.

466 WebSphere Application Server V6.1 Security Handbook

After obtaining the connection factory for the resource from Java Naming and
Directory Interface (JNDI), the application component creates a connection to the
resource using the create method on the connection factory supplying the
credentials. If no credentials are supplied when creating a connection and a
component-managed authentication alias has been specified on the Java 2
Connector (J2C) connection factory, the credentials from the authentication alias
are used. Assuming the credentials are valid, future requests that use the same
connection use the same credentials.

Creating a sample EIS resource adapter is beyond the scope of this book. You
can find sample code for looking up a resource adapter connection factory and
connecting to the resource in Example 17-1. The code assumes that a Resource
Reference has been defined and named EISResourceName and maps to a J2EE
Resource Adapter connection factory.

The basic steps are as follows:

1. Get the initial JNDI context.
2. Look up the connection factory for the resource adapter.
3. Create a ConnectionSpec object holding credentials.
4. Obtain the Connection Object from the Connection Factory by supplying the

ConnectionSpec object.

After a connection is obtained by using the credentials specified in the
ConnectionSpec object, all future interactions, through interaction objects, carry
the user credentials. The EIS fulfills the request or denies it based on the
Authorization properties in EIS.

Example 17-1 Get resource connection

try
{

Context ic = new InitialContext();
ConnectionFactory cf = (ConnectionFactory)

ic.lookup("java:comp/env/EISResourceName");
try {

//Use the following if res-auth=Application
//This is for Component Managed Authentication with
//no JAAS Authentication Alias set on the Connection Factory
WSConnectionSpecImpl conSpec = new WSConnectionSpecImpl();
conSpec.setUserName("username"); // replace the username with the

value

Note: Component-managed authentication is specified by setting the
res-auth entry in the deployment descriptor for the resource reference to the
application.

 Chapter 17. J2EE Connector security 467

conSpec.setPassword("password"); // replace the password with the
value

Connection con = cf.getConnection(conSpec);
//Use the following if res-auth=Container
//This is for Container Managed Authentication
//Connection con = cf.getConnection();

} catch (ResourceException re) {
System.out.println(re.toString());

}
}
catch(NamingException ne) {

System.out.println(ne.toString());
}

Security of lookups with component-managed authentication
External Java clients (stand-alone clients or server from other cells) with JNDI
can look up a J2C resource such as a data source or Java Messaging Service
(JMS) queue. However, they are not permitted to take advantage of the
component-managed authentication alias defined on the resource. This alias is a
default value used when the user and password are not supplied on the
getConnection() call. Therefore, if an external client requires to get a connection,
it must assume responsibility for the authentication by passing it through
arguments on the getConnection() call.

17.2.2 Container-managed authentication

Container-managed authentication removes the requirement of the component
to programmatically supply the credentials for accessing the EIS. Instead of
calling the getConnection() method with a ConnectionSpec object,
getConnection() is called with no arguments. See Example 17-1 for sample code.

The authentication credentials used for connecting to the EIS are then supplied
by the Web container, the application container, or the Enterprise JavaBeans
(EJB) container, depending on where the resource is accessed from.
WebSphere Application Server V6.1 supports the Java Authentication and
Authorization Service (JAAS) specification. Therefore, you can map the
credentials for accessing the EIS from any of the configured JAAS Authentication
login modules, including any custom JAAS Authentication login module.

J2C authentication: J2C authentication alias is per cell. An enterprise bean
or servlet in one application server cannot look up a resource in another
server process that is in a different cell, because the alias is not resolved.

468 WebSphere Application Server V6.1 Security Handbook

When defining the Resource Reference in the deployment descriptor, either Web
application deployment descriptor or EJB deployment descriptor, after the
Authentication is set to Container and the WebSphere Bindings JNDI Name has
been entered, three options become available for the JAAS Login Configuration.
The three options are explained in the following sections.

The Container-managed authentication (deprecated) setting
This option uses the container-managed authentication settings that are defined
for the resource’s connection factory. The credentials can come from a JAAS
Authentication Alias when using the DefaultPrincipalMapping
Mapping-configuration alias setting, or be mapped from another JAAS
Authentication login module.

The Use Default Method setting
The Use Default Method setting behaves similarly to container-managed
authentication using the DefaultPrincipalMapping option. A JAAS authentication
alias is linked to the Connection Factory and all container-managed
authentication requests using the resource reference use the credentials from
the alias when connecting to the EIS. The difference is that the linking from the
JAAS authentication alias to Connection Factory is done at the resource
reference level within the application. This alleviates a security exposure by
limiting the scope of the credentials to the application defining the resource
reference. All other applications must supply their own credentials when
accessing the Connection Factory directly from JNDI. We recommend this
method for mapping JAAS authentication aliases to Connection Factories.

The Use Custom Login Configuration setting
This option allows you to use any defined JAAS authentication module. Enter the
name of the JAAS authentication modules as it is defined in Security → Secure
administration, applications, and infrastructure → Java Authentication and
Authorization Service → Application logins and specify any parameters
required. When a connection to the resource is required, the specified module is
used to obtain the credentials that are passed to the connector.

Note: Selecting this option and specifying DefaultPrincipalMapping and
selecting a JAAS Authentication Alias when defining the resource’s
Connection Factory provides the same functionality as WebSphere
Application Server V5.

We no longer recommend this method. We recommend you to use the Use
Default Method option, which is discussed next.

 Chapter 17. J2EE Connector security 469

17.3 JCA authentication mechanism

When bus security is enabled and before users are allowed to connect to a bus,
their credentials must first be authenticated. Authentication uses the same user
registry as the other parts of WebSphere Application Server. When an
authentication failure occurs, a JMSsecurityException is thrown. See Chapter 2,
“Configuring the user registry” on page 7 for further information about user
registry.

You can also use the Java Authorization Container Contract (JACC) provider for
Tivoli Access Manager to manage authentication to EISs such as databases,
transaction processing systems, and message queue systems which come
under WebSphere Application Server Security domain. Global single sign-on
(SSO) principal mapper JAAS login module is used to achieve the authentication.

With GSO principal mapping, a special purpose JAAS login module inserts a
credential into the subject header. This credential is used by the resource
adapter to authenticate to the EIS. The JAAS login module used is configured on
a per connection factory basis. The default principal mapping module retrieves
the user name and password information from Extensible Markup Language
(XML) configuration files. The JACC provider for Tivoli Access Manager
bypasses the credential that is stored in the XML configuration files and uses the
Tivoli Access Manager global sign-on (GSO) database instead, to provide the
authentication information for the EIS security domain.

WebSphere Application Server provides a default principal mapping module that
associates user credential information with EIS resources. The default mapping
module is defined in the WebSphere Application Server administrative console
on the Application login panel. To access the panel, click Security → Secure
administration, applications and infrastructure. Under Java Authentication
and Authorization Service, click Application login. The mapping module name
is DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each
connection factory by an authDataAlias attribute. The authDataAlias attribute
does not contain the user name and password. This attribute contains an alias
that refers to a user name and password pair that is defined elsewhere.

The Tivoli Access Manager Principal mapping module uses the authDataAlias
attribute to determine the GSO resource name and the user name that is
required to perform the lookup on the Tivoli Access Manager GSO database. The
Tivoli Access Manager Policy Server retrieve the GSO data from the user
registry. Tivoli Access Manager stores authentication information on the Tivoli
Access Manager GSO database against a resource and user name pair.

470 WebSphere Application Server V6.1 Security Handbook

17.3.1 Role-based authorization

Messaging security uses a simple role model in which a role contains the
authorization permission required to perform a given operation. If messaging
security is switched on, you must give permission to any users, who connect to a
bus, to carry out the operations that they must perform. You do this by assigning
them to the appropriate role or roles.

You can assign a user or group to the following types of role:

� Connector, which contains permission to connect to the local bus.

� Sender, which contains permission to send (produce) a message to the
destination.

� Receiver, which contains permission to receive (consume) a message from
the destination.

� Browser, which contains permission to browse message on the destination.

� Creator, which contains permission to create a temporary destination based
on this temporary destination prefix. This only applies to prefix destinations.

� Identity Adopter, which contains permission to send a message using a
different user identity.

When messaging security is switched on, all operations on the following objects
require authorization:

� Buses
� Destinations
� Topic spaces and Topics

17.3.2 Topic security

When messaging security is switched on, users must be authorized to access
topics. Topics are contained in a topic space, which is one of the types of
destination.

17.3.3 Messaging security

Messaging security applies to the whole bus. You cannot switch security on for
some messaging engines in a bus and off for the others.

When you create a connection to the messaging system, you can specify a user
name and password. The user name and password are authenticated using the
same user registry that the Application Server uses for its authentication check.
To ensure confidentiality and integrity of messages in transit, you can configure a
Secure Sockets Layer (SSL) secure transport for the connections between

 Chapter 17. J2EE Connector security 471

clients and messaging engines, between messaging engines in the same bus,
and between buses. You can configure a bus so that all its connections use a
secure transport.

Creating a bus when administrative security is enabled results in a bus that is
secure by default. If administrative security is disabled, an insecure bus is
created.

17.3.4 Enable bus security

Select this option to inherit the secure administration setting of the cell. Deselect
this option if you always wish to disable bus security. Creating a bus when
administrative security is enabled results in a bus that is secure, by default. If
administrative security is disabled an insecure bus is created.

17.3.5 Inter-engine authentication alias

This is the name of the authentication alias used to authorize communication
between messaging engines on the bus. This field can be left blank. If a value is
specified, and the bus security is enabled, incoming connections from other
messaging engines are controlled to prevent unauthorized messaging engines
from establishing a connection.

Permitted transport
You can use the permitted transports group of radio buttons to specify what
transports must be used. There are three modes. The first allows the use of any
messaging transport chain defined to any bus member. The second allows the
use of only messaging transport chains that are protected by an SSL chain. The
third only allows the transports in the specified list. The Permitted transport link
under Related Items allows you to add and remove permitted transports.

Mediations authentication alias
This is the name of the authentication alias used to authorize the bus to access
mediations.

Foreign bus
A foreign bus is a representation of another service integration bus, or a
WebSphere MQ queue manager, with which an existing service integration bus,
or a WebSphere MQ queue manager, can exchange messages. The purpose of
a foreign bus is to extend the network of buses that can exchange messages.

472 WebSphere Application Server V6.1 Security Handbook

Inbound communication
When a server is created using the default template, transport chains, explained
in the following sections, are automatically created to facilitate communication
with messaging engines that are hosted by the Application Server.

InboundBasicMessaging
InboundBasicMessaging allows communication using the Transmission Control
Protocol (TCP). The default port used by this chain for the first server on the
node is 7276. You must verify that the selected port is not already used, for
example, if you are configuring a second server with the same name as the first
server. Messaging engines hosted in other Application Servers and JMS
applications running in a client container can communicate with the messaging
engines of the server using this transport chain.

InboundSecureMessaging
InboundSecureMessaging provides secure communication using the SSL-based
encryption protocol over a TCP network. The default port used by this chain for
the first server on the node is 7286. You must verify that the selected port is not
already used, for example, if you are configuring a second server with the same
name as the first server. The SSL configuration information for this chain is
based on the default SSL repertoire for the Application Server. Messaging
engines hosted in other Application Servers and JMS applications running in the
client container can communicate using this transport chain.

InboundBasicMQLink
InboundBasicMQLink supports WebSphere MQ queue manager sender
channels and applications using the WebSphere MQ JMS provider connecting
over a TCP network. The default port used by this chain is 5558, although this
can be automatically adjusted to avoid conflicts.

InboundSecureMQLink
InboundSecureMQLink enables WebSphere MQ queue manager sender
channels and applications using the WebSphere MQ JMS provider to establish
SSL based encrypted connections over a TCP network. The default port used by
this chain is 5578, although this is automatically adjusted to avoid conflicts.

You can manage all these chains through the administrative console if you select
either Servers → Application server → server_name → Messaging engine
inbound transports or Servers → Application servers → server_name →
WebSphere MQ link inbound transports.

 Chapter 17. J2EE Connector security 473

17.4 Mediations security

When WebSphere Application Server security is enabled, the messaging engine
must be authorized to access the mediation. To specify a mediation
authentication alias for the messaging engine, by using the administrative
console:

1. In the navigation panel, click Service Integration → Buses.

2. From the list of buses that is displayed in the content panel, select the name
of the bus where the mediation is defined. The properties of the bus are
displayed.

3. In the Mediations authentication alias field, select the authentication alias that
you want to use to access the bus.

4. Click OK.

5. Save your changes to the master configuration.

When an application sends a message to the bus, the identity of the sender
application is associated with the message. The message is sent to the next
destination in the forward routing path only if the message originator has Sender
authority for that destination. A mediation can change the identity of the senders
to the mediations identity.

When you install a mediation for use when security is enabled, you must ensure
that the identity that the messaging engine uses to call mediations can access
the mediations. If bus security is enabled, and the mediation sends messages to
and receives messages from destinations, the mediation identity requires access
to the destination.

17.5 Transport security in service integration bus

The use of permitted transports requires all members of the bus to be at the
WebSphere Application Server V6.1 or later version. Configuring with the use of
administrative console helps to prevent any error. However, if a bus is configured
to use permitted transport and has a previous level bus member, the runtime
operation ignores the setting and issues a warning.

474 WebSphere Application Server V6.1 Security Handbook

The transport security functionality addresses the following issues:

� If you want to prevent the use of specific protocols to attach to the bus, the
administrator must go around each server in the bus, disabling the relevant
chains.

� Adding a new server as a bus member requires the administrator to disable
channels on that server.

� Two different buses that have different requirements on the chain being used
cannot share a server.

You can enforce transport encryption with a bus configuration setting on a bus
with V6.1 or later bus members. This setting is independent of the bus security
setting, therefore chains can be locked down without enabling bus security. The
use of permitted chains has three settings:

� All defined messaging transport chains
� Any messaging transport chain that contains the SSL channel
� Only messaging transport chains in a specific list

When the use of permitted chains is enabled, the bus only allows access to the
permitted chains. When the bus is set to be secure, by default you can only have
chains that use the SSL channel. If the bus is not set to be secure, the default
setting allows access for all chains.

When the use of permitted chains is enforced and a protocol is not specified for
inter-bus communications then InboundSecureMessaging is assumed instead of
InboundBasicMessaging. You can avoid this assumption if you set the protocol
attribute in the bus configuration. If InboundSecureMessaging is not a permitted
chain then an error occurs.

To configure the list of permitted chains:

1. Open the administrative console, and click Service Integration Bus
Security.

2. On the content panel, click the name of the bus that you wish to configure the
users and groups for. When a new page opens, click Security link under
Additional Properties.

3. Click Security selection link, which is either Enabled or Disabled

4. On the Security Configuration panel, click Permitted Transport link under
Additional Properties.

5. Click the New button on the Permitted Transport Panel.

6. This new panel allows a transport to be added to the list of permitted channel
chains. The selection list contains the unique messaging chain names
defined to servers that are members of the bus. Click OK to confirm selection.

 Chapter 17. J2EE Connector security 475

17.5.1 Destination security

When messaging security is switched on, users must have permission to access
destinations, including temporary destinations. If a message has to be routed
from one destination to one or more other destinations, then the user must have
permission to access all the destinations concerned.

To allow a user access to a destination, you must give them the required
authorization permissions by assigning them to the appropriate roles, depending
on what activity they must perform. Role assignments for a destination are
defined on the bus that owns the destination and all messaging engines on the
bus have access to them.

The following roles are available for destinations:

� Sender
� Receiver
� Browser
� Creator (For Temporary destinations only)

17.6 Securing Web services by using service
integration technologies

Service integration technologies provide a range of facilities for secure
communication between the service requester and the service integration bus
(SIB), and between the service integration bus and the destination service. By
default, the service integration bus for Web Services configuration works when
WebSphere Application Server security is enabled and your service integration
buses are secured.

However, this level of security does not impose any security restrictions on the
users of your service integration bus/Web services configuration. To control how
your service integration bus/Web services configuration is used by each group of
your colleagues or customers, use the service integration bus/Web services
additional security features to enable working with password-protected
components and servers, with WS-Security and with Hypertext Transfer Protocol
Secure (HTTPS).

476 WebSphere Application Server V6.1 Security Handbook

To configure these facilities:

1. Configure secure transmission of SOAP messages using WS-Security.

2. Create user ID and password authentication and authorization for inbound
and outbound services.

3. Invoke outbound services over HTTPS.

See the WebSphere Application Server V6.1 Information Center for more
information.

17.7 Additional information

For additional information about the JCA specification, see the following Web
address:

http://java.sun.com/j2ee/connector

 Chapter 17. J2EE Connector security 477

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://java.sun.com/j2ee/connector

478 WebSphere Application Server V6.1 Security Handbook

Chapter 18. Securing the database
connection

Database security is typically broken down into two areas. First, securing the
connection between the client and server, and secondly, access control.
Securing the connection generally is concerned with using encryption between
the database client and server so that others on the network cannot sniff data as
it flows across the network. The encryption can be using Secure Sockets Layer
(SSL) between client and server, or some other proprietary encryption scheme.

18

© Copyright IBM Corp. 2006. All rights reserved. 479

18.1 Securing the connection

The IBM DB2 Universal Database allows for the specification of one or more
authentication types. These authentication types specify how and where the
authentication of the user is verified and what type of encryption is required.

Table 18-1 shows the authentication types that are allowed between DB2
Universal Database V8.2 clients and servers, along with the encryption that is
performed. See the “Authentication methods for your server” topic in the IBM
DB2 Information Center for further information about the authentication types
and how to set them.

Table 18-1 DB2 V8.2 authentication types

Authentication Type Where Specified Encryption

SERVER Client or Server None. User ID, password, and data sent unencrypted.

SERVER_ENCRYPT Client or Server Encrypted user ID and encrypted password are sent to
server for authentication.

CLIENT Client or Server None. User ID and password are authenticated on the
client node only.

DATA_ENCRYPT Client or Server Same authentication as SERVER_ENCRYPT in
addition to the encryption of user data:
� Structured Query Language (SQL) statements
� SQL program variable data
� Output data from the server processing of an SQL

statement
� Answer set data resulting from a query
� Large object (LOB) data streaming
� SQLDA descriptors

DATA_ENCRYPT_CMP Server Same as DATA_ENCRYPT except for clients that do
not support it, they fall back to SERVER_ENCRYPT.

KERBEROS Client or Server Authentication is done using Kerberos security system.

KRB_SERVER_ENCRYPT Server Same as KERBEROS except for clients that do not
support it, they fall back to SERVER_ENCRYPT.

GSSPLUGIN Client or Server Authentication is done using GSS-API plug-in.

GSS_SERVER_ENCRYPT Server Same as GSSPLUGIN except for clients that do not
support it, they fall back to SERVER_ENCRYPT.

480 WebSphere Application Server V6.1 Security Handbook

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/core/c0008880.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/core/c0008880.htm

IBM currently ships two Java Database Connectivity (JDBC) data source
provider implementations with DB2 Universal Database V8.2.:

� DB2 Legacy CLI-based Type 2 JDBC Driver Provider
� DB2 Universal JDBC Driver Provider

The Universal provider is both a JDBC type 2 and JDBC type 4 driver, while the
Legacy provider is a type 2 driver only.

Encryption of the JDBC connection to the DB2 server depends on which type of
JDBC driver is used. Figure 18-1 on page 482 illustrates the communication
paths of the type 2 and type 4 drivers.

Note: When explicitly cataloging a database with a specific authentication type,
ensure that the server is set to handle that encryption type. For example, if the
client catalogs the database by using KERBEROS and the server is set to
SERVER_ENCRYPT, an SQL error results and the connection does not complete.

Note: Support for the DB2 Legacy CLI-based Type 2 JDBC Driver provider is
deprecated in WebSphere Application Server V6.1. The recommended JDBC
driver for DB2 is the Universal JDBC Driver.

To use the Universal driver:

1. Install or copy the db2jcc Java archive (JAR) files to WebSphere
Application Server.

2. Set the WebSphere variable DB2UNIVERSAL_JDBC_DRIVER_PATH to
point to the directory containing the JAR files.

 Chapter 18. Securing the database connection 481

Figure 18-1 IBM DB2 Universal Database JDBC drivers

The security implications of each type of driver is discussed in the following
sections.

18.1.1 JDBC type 2 driver

The type 2 driver uses the locally installed native DB2 client libraries. By making
Java Native Interface (JNI) calls through the local DB2 instance, as shown in
Figure 18-1, the Java application can access databases that have been
cataloged on the system. Security over the JNI calls is not required. Security
between the DB2 client instance and the DB2 server is determined by the
security settings specified during cataloging of the database at the client and the
DB2 server’s authentication setting.

Example 18-1 shows how to catalog the sample database using the db2 catalog
command and setting the Authentication mechanism to SERVER_ENCRYPT.
SERVER_ENCRYPT specifies that the encrypted user ID and encrypted password are
sent to the server for authentication. All requests and data flow are unencrypted,
in the DB2 binary format, between client and server.

Example 18-1 Sample DB2 catalog command

db2 catalog database sample at node db2node_name AUTHENTICATION
SERVER_ENCRYPT

482 WebSphere Application Server V6.1 Security Handbook

18.1.2 JDBC type 4 driver

The JDBC type 4 driver is a pure Java, client-side implementation used to
connect to an IBM DB2 Universal Database server. The type 4 driver uses the
Distributed Relational Database Architecture™ (DRDA®) protocol to connect
directly to the database server. When using the type 4 driver, the driver gets a list
of the authentication types the server accepts and it uses one of these if
possible.

If the client and server have no allowed authentication types in common, an
exception is thrown and connection fails. The authentication type chosen
determines the level of security between the JDBC client and the DB2 server.

Allow the client and server to negotiate the authentication type of handling
authentication and encryption. It is also possible to specify programmatically
which authentication type the type 4 driver can use, by setting the
securityMechanism property on the data source.

18.2 Securing access to database data

The second important area of database security, access control, is generally
broken down into two topics, authentication and authorization. Authentication is
validating that a user is who they say they are, and authorization is validating
access to particular data within the database. These are processes handled by the
database server. When a user supplies his credentials, usually a user ID and
password, to the database server during a connect request, the database engine
validates these credentials. After the credentials are validated, the database
engine then checks to see if the user is authorized to perform the action requested,
such as connecting to the database or interacting with data in the database.

The authentication credentials that are used by WebSphere Application Server to
access a database can either be programmatically supplied or provided by the
various Application Server containers. When the database is accessed from a

Note: When using the type 4 driver, local installation of the DB2 client code is
not required. Only the db2jcc JAR files must be copied to the WebSphere
Application Server and the WebSphere environment variable
DB2UNIVERSAL_JDBC_DRIVER_PATH pointed to the appropriate directory.
The JAR files can be found on the DB2 server in the <DB2_root>/java
directory.

For details, see the “Vendor-specific data sources minimum required settings”
topic in the WebSphere Information Center.

 Chapter 18. Securing the database connection 483

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

resource reference with component/application managed authentication defined,
the credentials are either supplied programmatically during the connect request
or from a component-managed authentication alias defined on the JDBC
connection factory.

For container-managed authentication access, the container supplies the
credentials to the connection factory. For further information regarding
container-managed authentication, see 17.2.2, “Container-managed
authentication” on page 468.

Each database engine has a method for granting, revoking, and storing
authentication and authorization information. For example, IBM DB2 Universal
Database uses the grant and revoke commands to specify authorization
information. If using a database engine other than DB2, see the documentation
specific to your installation. Consider the following general guidelines
implementing database security:

� Require users to supply credentials to access the database. This generally
requires revocation of public or anonymous access.

� Do not share user IDs and passwords among users.

� Specify authorization to tables, stored procedures, functions, and so on, using
groups rather than user IDs. While not a true security requirement, this makes
administration a lot easier.

� Grant only the minimum rights required for a user or group to accomplish the
tasks assigned to them.

Note: WebSphere Application Server V6.1 provides two types of data
sources. WebSphere Application Server V4 data source is provided only to
support Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications. The other
new data source runs under the J2EE Connector Architecture (JCA)
connection manager and the relational resource adapter. J2EE 1.3 and 1.4
applications must use the new data source.

484 WebSphere Application Server V6.1 Security Handbook

Part 3 Development
environment

This part includes Chapter 19, “Development environment security” on page 487.

Part 3

© Copyright IBM Corp. 2006. All rights reserved. 485

486 WebSphere Application Server V6.1 Security Handbook

Chapter 19. Development environment
security

This chapter discusses the development environment for WebSphere Application
Server V6.1.

19

© Copyright IBM Corp. 2006. All rights reserved. 487

19.1 Rational Application Developer

Rational Application Developer (formally known as WebSphere Studio
Application Developer) is a comprehensive Integrated Development Environment
based on Eclipse open source platform to quickly design, develop, analyze, test,
profile, and deploy Web, Web Services, Java, Java 2 Platform Enterprise Edition
(J2EE), and portal applications. Rational Application Developer is closely
integrated with Rational products to leverage the powerful Rational Software
technologies to improve the software development life cycle.

The new WebSphere Rapid Deploy feature makes Rational Application
Developer easier to system, unit test, and deploy applications to WebSphere
Application Server V6.1 and also provides continued and full support to
WebSphere Application Server V5.0 and V5.1.

There are a few changes between WebSphere Studio Application Developer and
Rational Application Developer from a security point of view. This section
discusses the development tool from a security point of view. The application
development security issues and WebSphere Application Server security
configuration issues are already discussed in various sections of this book.

19.1.1 Securing the workspace

The primary issue from the development tool point of view is to secure the
workspace where the actual application code resides. Many organizations use a
code repository tool such as Concurrent Versions System (CVS) or Rational
ClearCase®. Rational Application Developer uses the security mechanism
provided by the repository actual tool. For setting up security for the tool used
with the repository, see the appropriate tool documentation.

Regarding the security of the actual workspace, where the copy of the code
resides, Rational Application Developer relies more on operating system security.
To gain access to the Rational Application Developer, one must be able to log in
to the machine on which Rational Application Developer has been installed.
There is no separate user ID or password required to access the Rational
Application Developer application. Though there is no direct authentication
mechanism for Rational Application Developer access, there are a couple of
indirect ways to secure from unauthorized users performing unnecessary or
unwanted changes to the artifacts.

488 WebSphere Application Server V6.1 Security Handbook

Operating system access control
Rational Application Developer keeps all the artifacts under the specified
workspace directory. One way of securing the workspace is to provide access to
only the developer on the machine so that other users cannot access the
directory.

Windows hosted development environment
Secure the workspace directory:

1. Open the Windows Explorer, select the workspace directory you want to
secure and open the properties.

2. In the Workspace Properties window (Figure 19-1), click the Security tab and
provide proper access to the right users and groups.

Figure 19-1 Modifying workspace directory access under Windows

 Chapter 19. Development environment security 489

If any user tries to open the workspace without proper access, Rational
Application Developer is not able to open the workspace because the user ID
does not have read access to the workspace directory. The following error
message that is shown in Figure 19-2 is displayed.

Figure 19-2 WorkSpace directory access error message

Linux hosted development environment
Under a Linux operating system, you can change the access by creating user
groups, adding the user to the group, and providing workspace directory read
access to the group by using the following command:

chmod 770 <workspace_directory>

This command provides complete access to the owner and the group and does
not give any access to others. Another way to provide access control is at the
user level by using the following command:

chmod 700 <workspace_directory>

This command provides full access to the user and others are not able to access
the workspace directory at all.

Network security
Another option is to keep the workspace on the shared network drive instead of
the local drive. The access to the directory can be authenticated at mounting
time, mapping time, or access time and can be done by providing a user ID and
password.

490 WebSphere Application Server V6.1 Security Handbook

19.2 WebSphere test environment

The creation of a new server, configuration or modifications can be done under
the server view.

The server view displays the list of all the available servers and the
configurations associated with each server. The server name and the host name
identify a unique server. The server view also displays the status of all the
servers. The Status can be one of the following settings:

� Starting
� Started
� Started in debug mode
� Started in profile mode
� Stopping
� Stopped

Table 19-1 describes the State of the server and defines the action to take based
on the server configuration set. For example, when a resource associated to the
server has been modified (for example, a JSP file has been updated), the project
has to be re-published.

Table 19-1 Possible server status

Note: There is no Server perspective in Rational Application Developer. Only
the Server view is available.

Note: If the server tools detect that a file defined to run on a particular server
has changed, and the Automatically restart servers when necessary check
box has been selected on the Server preferences page (Window →
Preferences → Server), the server tools automatically restart that server. The
Status column in the Servers view changes from Started to Stopped to
Started.

Server state Description

Server is synchronized Both the server configuration and the applications
are in sync.

Server must be restarted The server has to be restarted in order for the
changes to take place.

Server must be restarted and
republished

Either the server configuration or the applications
or both have changed. The changed files must be
republished.

 Chapter 19. Development environment security 491

19.2.1 Creating a new test server

A server is a runtime environment that is used for testing the project resource.
The test environment does not have to reside on the same development
machine. The WebSphere Application Server V6.1 can be created in a separate
machine and configured under Rational Application Developer as a test server.
This increases performance because the test environment process and the
development tool run on different machines.

To create a new WebSphere test server:

1. Select File → New → Other.

2. In the New window (Figure 19-3), click the Show all wizards check box.
Expand the server folder and then select Server. Click Next.

Figure 19-3 Creating a new server

Important: If Rational Application Developer is installed with the IBM
WebSphere Application Server V6.1 Integrated Test Environment option, a
WebSphere Application Server V6.1 server is automatically created when the
workbench is started the first time and is viewable under the server perspective.

492 WebSphere Application Server V6.1 Security Handbook

3. The server creation wizard starts. Any existing server can be created and
configured as a WebSphere test environment.

In the Host name field shown in Figure 19-4, provide the fully qualified
Domain Name Server (DNS) name or Internet Protocol (IP) address of the
remote host name that the server is running on. Or use localhost if you are
planning to use a local Application Server.

In the Select the server type list, select the server or test environment where
the resources are to be published. This can be a WebSphere Application
Server V6.1 or v5.x server. The next configuration is valid only if WebSphere
Application Server V6.1 is selected.

Figure 19-4 Selection of server version

4. If the host name provided has multiple WebSphere profiles running, then the
WebSphere profile name field displays all the available profiles and any one
can be selected as a WebSphere test environment server profile. With the
default Application Server, a default profile is created. You can create new
profiles in your Application Server. For more details, see “Creating a new
profile” on page 502.

Click the Detect button (Figure 19-5) to determine the type of server for the
profile under the given host name. You can use this option to check whether
the profile selected is Network Deployment profile or Base/Express profile,
otherwise you can manually set the type of the server.

 Chapter 19. Development environment security 493

You can leave the Enable security option unchecked at this time. You can turn
the option on later. See Figure 19-5.

Figure 19-5 WebSphere Server settings panel

5. Click Finish. The new server is displayed in the Servers view.

19.2.2 Enabling security for the WebSphere Test Server V6.1

The Enable Security option provides the security authentication.

This section applies for both local and also remote WebSphere Application
Server V6.1. See Chapter 3, “Administrative security” on page 49 to understand
how to configure Administrative Security. Only authorized users can start and
access the server. When Rational Application Developer tool starts the server, it
uses the user ID and password provided under the Enable Security section.

This security configuration can be done either during the creation of the test
server or after the test server has been created.

494 WebSphere Application Server V6.1 Security Handbook

Enabling security when creating the new server
You can configure security for the test server at the time of creating the
configuration. Specify the user name and password in the wizard under the
WebSphere Server Settings panel as shown in Figure 19-6.

Figure 19-6 Test Server startup security setting

Restriction: The server must be configured with Administrative Security
before configuring a WebSphere test environment under Rational Application
Developer.

 Chapter 19. Development environment security 495

Configuring security for an existing test server
On the Server Overview page (Figure 19-7), select the test server you are going
to configure.

To configure the startup services security option, expand the Security feature.
Then, provide the user name and password for the current active authentication
settings defined in the server configuration.

Figure 19-7 Test server startup security update

19.3 Administering and configuring the WebSphere test
servers

Administering and configuring the test server can be done either within or outside
of the Rational Application Developer.

Inside Rational Application Developer
On the Servers view, right-click the server and select Run administrative
console from the context menu. This opens the browser view with the
Administrative Console within the development environment.

Outside Rational Application Developer
Open your favorite Web browser and type the following URL to open the
Administrative Console:

http://<hostname>:9060/ibm/console

496 WebSphere Application Server V6.1 Security Handbook

The port number depends upon the profile configuration.

19.4 Enterprise application security

This section covers some of the security aspects of enterprise applications in the
development environment. There are some deployment time tasks that can be
performed in the development environment using the features of Rational
Application Developer. These topics are discussed in the following sections:

� Configuring enterprise application security during the development phase
� JAAS entries in the deployment descriptor

19.4.1 Configuring enterprise application security during the
development phase

This section discusses the mapping of application roles defined in the Web
module and Enterprise JavaBeans (EJB) module to actual users and groups in
the user registry. To learn more about the Web resources security and creation
and configuration of the Web deployment descriptor, see Chapter 7, “Securing a
Web application” on page 109. To learn more about the EJB resources security
and creation and configuration of EJB deployment descriptor, see Chapter 8,
“Securing an EJB application” on page 171.

The user and groups mapped under a certain role may or may not match the
user and group names in the user registry after deployment. Because of this
reason, we recommend you not to do role mapping during development or
assembly time. There are situations when role mapping before deployment time
can be useful and can shorten the deployment time, for example during testing.

If you have role mapping definitions in the enterprise application descriptor and
you are going to deploy the application in a different environment where the
mappings are not valid, you can remap your roles to the actual user registry
during deployment.

To create a new security configuration:

1. Double-click Deployment Descriptor under the enterprise application.

2. Select the Security tab.

More information: See the other sections in this book to configure the server
from the security point of view.

 Chapter 19. Development environment security 497

3. Click the Gather button shown in Figure 19-8. This gets the security roles
defined for Web and EJB modules defined under the enterprise application.

Figure 19-8 Gather the roles defined in Web and EJB deployment descriptor

You can bind the roles in the deployment descriptor to the following subjects:

� Everyone

Literally everyone is mapped to this role. Any user can get access to the
resource that is associated with the role.

� All authenticated users

Any user that is authenticated against the user registry can get access to the
resource that is associated with the role.

� Users/Groups

Only the users or users from the groups mapped to the role can access the
resource that is associated with the role.

– Mapping a user to a role:

i. Check the Users/Groups box.

ii. Click Add next to the Users area.

iii. Enter the user name in the field in the new window that opens, then
click Finish.

iv. Later you can remove or edit a mapping that is defined.

– Mapping a group to a role:

i. Check the Users/Groups box.

ii. Click Add next to the Groups area.

iii. Enter the user name in the field in the new window that opens, then
click Finish.

iv. Later, remove or edit a mapping that is defined.

You can map multiple users and groups to one role.

498 WebSphere Application Server V6.1 Security Handbook

The roles for the enterprise application are defined in the application.xml file
shown in Example 19-1.

Example 19-1 application.xml with role definitions

<?xml version="1.0" encoding="UTF-8"?>
<application id="Application_ID" version="1.4" ... >
...

<security-role id="SecurityRole_1101950918401">
<role-name>ejbRole</role-name>

</security-role>
<security-role id="SecurityRole_1101950918411">

<role-name>webRole</role-name>
</security-role>
<security-role id="SecurityRole_1101950918431">

<role-name>applicationRole</role-name>
</security-role>

</application>

The security role mapping is stored in the ibm-application-bnd.xmi file shown in
Example 19-2.

Example 19-2 ibm-application-bnd.xmi provides the binding information

<?xml version="1.0" encoding="UTF-8"?>
<applicationbnd:ApplicationBinding xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:applicationbnd="applicationbnd.xmi">
 <authorizationTable>
 <authorizations>
 <users name="ejbUser"/>
 <role
href="META-INF/application.xml#SecurityRole_1101950918401"/>
 <groups name="ejbGroup"/>
 </authorizations>
 <authorizations>
 <specialSubjects xmi:type="applicationbnd:AllAuthenticatedUsers"
name="AllAuthenticatedUsers"/>
 <role
href="META-INF/application.xml#SecurityRole_1101950918411"/>
 </authorizations>
 <authorizations>
 <specialSubjects xmi:type="applicationbnd:Everyone"
name="Everyone"/>
 <role
href="META-INF/application.xml#SecurityRole_1101950918431"/>

 Chapter 19. Development environment security 499

 </authorizations>
 </authorizationTable>
 <application href="META-INF/application.xml#Application_ID"/>
</applicationbnd:ApplicationBinding>

19.4.2 JAAS entries in the deployment descriptor

WebSphere Application Server V6.1 and Rational Application Developer support
extended deployment descriptors. In the extended deployment descriptor, you
can configure components, such as the following examples, that you might
configure during deployment time:

� Java Database Connectivity (JDBC) Provider, Data source
� Classloader mode
� Substitution variables
� Shared library
� Virtual hosts
� Authentication

Under Authentication, you can define Java Authentication and Authorization
Service (JAAS) entries that you can use for the data source defined in the
extended deployment descriptor as well.

To define JAAS entries:

1. Open the Deployment Descriptor for your enterprise application.

2. Select the Deployment tab.

3. Open the Authentication area (Figure 19-9) and click Add.

Figure 19-9 Extended deployment descriptor: Authentication

500 WebSphere Application Server V6.1 Security Handbook

4. In the Add JAAS Authentication Entry window (Figure 19-10), complete the
form as required, and then click OK.

Figure 19-10 Adding a new JAAS entry

The JAAS configuration that you specify is stored in the security.xml file under
the directory structure ibmconfig/cells/defaultCell under the META-INF
directory of the enterprise application.

19.5 Creating a new profile for the WebSphere test
server

In WebSphere Application Server V6.1, the application server instances are
configured under different profiles. If you require to create a new Application
Server instance, you cannot simply create a new Application Server. You must
create a new profile. The Profile creation wizard can create a new profile under
WebSphere Application Server V6.1.

19.5.1 Advantages of multiple profiles

Rational Application Developer creates only one profile, the default, in the test
environment for the test server, server1. Using the Profile Creation Wizard, you
can create more Application Server process. Creating a new server profile has
the following advantages:

� Two different teams can test independently of one another using the same
machine.

� Each application under single Rational Application Developer can use an
independent test server.

 Chapter 19. Development environment security 501

19.5.2 Creating a new profile

There are different ways to create a new profile. One option is to issue the
command directly from the command line. The script is located in
<RAD_home>/runtimes/base_v6/bin/Profile Creator. The name of the
command is pctWindows.exe in Windows or pctLinux.bin in UNIX.

To create a new profile:

1. Enter the pctWindows.exe script in Windows or pctLinux.bin script in UNIX to
launch the Profile creation wizard.

2. In the Profile name panel (Figure 19-11), enter the profile name and select
Make this profile the default. Then click Next.

Figure 19-11 Creating new profile using profile creation wizard

502 WebSphere Application Server V6.1 Security Handbook

3. In the Node and host names panel (Figure 19-12), enter the node name and
host name and click Next.

Figure 19-12 Providing node and host name

 Chapter 19. Development environment security 503

4. In the Port value assignment panel (Figure 19-13), each new profile is an
instance of WebSphere Application Server and share the same runtime
executables and libraries. Every time a new profile is created, the port
numbers must be different than the existing servers. Click Next.

Figure 19-13 Port numbers for the new profile

504 WebSphere Application Server V6.1 Security Handbook

5. In the Windows service definition panel (Figure 19-14), in the Windows
environment, the profile can be registered as Windows services. If the new
profile must be registered as services under a Windows operating system,
provide the necessary information.

Figure 19-14 Adding profile as Windows services

Important: The profile’s soap port must be provided while creating
WebSphere Test Environment under Rational Application Developer. See
19.2.1, “Creating a new test server” on page 492, for details.

 Chapter 19. Development environment security 505

6. On the next panel, when you see that the progress of the profile creation is
complete, click Finish to close the wizard.

After a new profile is created, you can start the server from either the first step,
the command line, or Rational Application Developer after configuring a new
WebSphere test server.

19.6 Application Server Toolkit 6.1

WebSphere Application Server Toolkit 6.1 is a GUI tool for assembling a J2EE
application from an application module, modifying J2EE deployment descriptor,
and installing the application on a WebSphere Application Server. It is also
interfaced with Rational Application Developer Tool. Application Server Toolkit
extends capabilities of supporting the creation of new application.

The Application Server Toolkit is built using Eclipse V3.1.2 technology with
features for team programming, debugging, J2EE application deployment, and
more. The Application Server Toolkit also provides a familiar interface for
developers experience with the Rational Developer Family of products. Those
products extend the capabilities of the Application Server Toolkit, such as
supporting the creation of new applications.

For WebSphere Application Server V6.1, the development environment no longer
has the server configuration in the workspace. Server-specific configuration are
set in the WebSphere Administrative Console.

Application Server Toolkit 6.1 provides the following features:

� You can now use the Application Server Toolkit to publish and test an
application on any running WebSphere Application Server V6.1, either on a
local or on a remote platform.

� The Application Server Toolkit has improved the WebSphere Enhanced
enterprise archive (EAR) file capability, which is used for packaging and
preparing applications for publishing to a WebSphere Application Server
V6.1. The WebSphere Enhanced EAR file is the deployment page of the
Enterprise Application Deployment Descriptor editor. It has been updated to

Important: The specified user must have the following permissions and be
logged on as root:

� Log on as service
� Act as part of the operating system.

506 WebSphere Application Server V6.1 Security Handbook

allow you to add resource adapters and connection factories to an enterprise
application targeted for WebSphere Application Server V6.1.

� The Application Server Toolkit 6.1 support running script against a secured
server. You can supply the user ID and password from the workbench to
communicate to the secured server. If security exposure is a concern, you
can supply authenticated information in the sas.client.props or the
soap.client.props files to communicate with a secured server.

� The Application Server Toolkit allows you to create Enterprise beans from
scratch. You can create, modify, and deploy Enterprise beans using the EJB
creation tools.

� The Application Server Toolkit now provides a comprehensive visual XML
development environment. The toolkit includes components for building
document type definitions (DTDs), XML schemas, and XML files.

� The Application Server Toolkit V6.1 supports Bottom-up mapping for
container-managed persistence (CMP) enterprise beans.

 Chapter 19. Development environment security 507

508 WebSphere Application Server V6.1 Security Handbook

Appendix A. Additional configurations

This appendix provides additional information about configurations for
WebSphere 6 related to security. It also provides = additional information about
the sample applications used in this book.

A

© Copyright IBM Corp. 2006. All rights reserved. 509

Sample application for client security
This section provides a brief introduction of how to install the Itsohello Web
component, the Itsohello Enterprise JavaBeans (EJB) resources and the
Itsohello application clients used in this book. It has all the security features built
in which are discussed in this book.

No special configuration for the WebSphere Application Server is required. You
can use the default WebSphere installation settings where global security is
enabled.

Figure A-1 shows the high-level diagram of the Itsohello application. It shows two
enterprise beans, which are Hello and SecuredHello, as the core of the Itsohello
application, installed in a WebSphere Application Server. These resources are
accessible via different remote clients, such as users’s browser (by using the
HelloServlet servlet), four Java 2 Platform, Enterprise Edition (J2EE) Java
application clients, and four thin Java application clients.

Figure A-1 Itsohello application

510 WebSphere Application Server V6.1 Security Handbook

Installing and testing Itsohello application
To install and test itsohello:

1. Create a folder AppClient on your workstation, and extract the contents
(Example A-1) to the downloaded itsohello.zip file into this folder.

Example: A-1 Contents of itsohelp.zip file

AppClient/ItsohelloEAR.ear
AppClient/runJ2EEClient.bat

AppClient/thinClient/ItsohelloEJB.jar
AppClient/thinClient/ItsohelloTHINCLIENT.jar
AppClient/thinClient/runThinClient.bat

AppClient/thinClient/keys/DummyClientKeyFile.jks
AppClient/thinClient/keys/DummyClientTrustFile.jks
AppClient/thinClient/properties/sas.client.props
AppClient/thinClient/properties/wsjaas_client.conf

2. Deploy the ItsohelloEAR.ear enterprise application into a WebSphere
Application Server. It installs the Itsohello servlet and the two enterprise
beans. Accept all the default setting values, including the warning for
was.policy.

3. Test the installed ItsohelloEAR.ear application by accessing the beans using
your browser:

a. Test the unsecure bean by entering the following URL:

http//<hostname>:9080/itsohello/hello

The following reply is returned:

Message from bean: Hello to you UNAUTHENTICATED (roles:
Anonymous)

b. Test the secure bean by entering the following URL:

http//<hostname>:9080/itsohello/securedhello.

A window must open, asking for user ID and password. Fill in any user ID
and password combination specified in your active WebSphere user
registry. This user registry is defined when you enabled the global security.
If the user ID and password combination is correctly authenticated.

The following reply is returned:

Message from bean: [Secured] Hello to you viking (roles:
BeanGuest)

 Appendix A. Additional configurations 511

4. To test the J2EE Java application clients, edit the runJ2EEClient.bat script
file. Change the following entries to the correct values:

set WAS_HOME=C:\WebSphere\AppServer
set SERVER_HOST=mka0klmy.itso.ral.ibm.com
set SERVER_PORT=2809

WAS_HOME specifies the location of your WebSphere Application Client (if it is
not installed you can use the location of WebSphere Application Server).
SERVER_HOST and SERVER_PORT are the host name and Internet Inter-ORB
Protocol (IIOP) port number of the WebSphere Application Server where your
enterprise beans (wrapped in ItsohelloEAR.ear) are located. To run the
script file:

a. Open a command prompt window.

b. Go to the AppClient folder that you previously created.

c. Run the following modified script as shown in Example A-2:

runJ2EEClient.bat

The application shows four options that correspond to the four types of
J2EE application clients (Figure A-1 on page 510).

Example: A-2 Client application’s opening screen

J2EE Itsohello clients:

a. UNSECURED CLIENT.
 Access the unsecured Hello bean. If you still get an authentication
 challenge window, just click “Cancel”. Or you can also change the property
 “com.ibm.CORBA.loginSource” to “none” in the file “sas.client.props”.

b. SECURED CLIENT.
 Access the secured Hello bean. You should be authenticated, otherwise the
 app will throw an exception. If you don't get an authentication challenge
 window, you need to change the property
 “com.ibm.CORBA.loginSource” to “prompt” in the file “sas.client.props”.

c. SECURED CLIENT with JAAS.
 Access the secured Hello bean using JAAS. Authentication is done via JAAS.

d. SECURED CLIENT with JAAS using custom callback handler.
 Similar like (c) with custom callback handler

Please enter your choice (a/b/c/d):

512 WebSphere Application Server V6.1 Security Handbook

d. Select a J2EE application client you want to test. For example, for SECURED
CLIENT with JAAS, press c and Enter.

e. In the authentication window that opens, enter your user ID and password.
When a valid user ID and password is entered (any user ID defined in the
user registry), a message similar to the following example is displayed:

Accessing SecuredHello bean using JAAS
Message from Hello bean: [Secured] Hello to you viking (roles:
BeanGuest)

5. To test the thin Java application clients, edit the runThinClient.bat script file.
Change the following entries to the correct values:

set WAS_HOME=C:\WebSphere\AppServer
set SERVER_HOST=mka0klmy.itso.ral.ibm.com
set SERVER_PORT=2809

See step 4 on page 512 for more explanation about these entries.

To run the script file:

a. Open a command prompt window.

b. Go to the AppClient\thinClient folder that you created previously.

c. Run the following modified script:

runThinClient.bat

The rest of the procedure is the same as the procedure to test the J2EE
application client.

Sample application for testing JACC
The sample application consists of one Web module, one EJB Module, and utility
jar. There are four roles defined in this application:

� WebRole
� First
� Second
� Third

WebRole is used to map the Web resource, and other roles are mapped to
specific methods in the EJB.

 Appendix A. Additional configurations 513

Web module
The Web module contains three servlets. The JACCTestServlet is the one that
invokes the EJB and displays the results. The other two servlets are used to
display the deployment descriptor of Web and EJB module. The
JACCTestServlet is protected and mapped to WebRole.

EJB module
The EJB module contains Stateless Session Bean and is exposed with the
following four methods:

getDD() Unprotected method to display the deployment descriptor.

getFirst() Protected method and returns the strings. It is mapped to
the “First” role.

getSecond() Protected method and returns the strings. It is mapped to
the “Second” roles.

getThird() Protected method and returns the strings. It is mapped to
the “Third” roles.

Deploying the sample application
To deploy this sample application:

1. Open the Administrative Console.
2. Install the ITSOJACC.ear application.
3. During the installation in Step 7, which is to map security roles to Tivoli

Access Manager users and groups, perform the mapping for your roles.

Note: The assumption here is that you already configured security using
Lightweight Directory Access Protocol (LDAP) and Tivoli Access Manager,
and enabled the external authorization using Java Authorization Container
Contract (JACC) and Tivoli Access Manager.

514 WebSphere Application Server V6.1 Security Handbook

Verifying the installation
After the application installs all the policy information propagated to Tivoli Access
Manager Object space, verify the installation by using the pdamin command
interface:

1. Open the pdadmin command interface. Log in by using your sec_master.

2. Issue the command object list, and you see three object trees:

/Management
/WebSEAL
/WebAppServer

The /WebAppServer is the one where all the WebSphere related information
is stored. You can drill down to the lower level of the object tree.

3. Enter the following command:

Object list /WebAppServer/deployedResources/Roles

You see several role definitions depending on your environment. The
highlighted ones belong to the sample application shown in Example A-3.

Example: A-3 Result from Object list command

/WebAppServer/deployedResources/Roles/administrator
/WebAppServer/deployedResources/Roles/configurator
/WebAppServer/deployedResources/Roles/CosNamingCreate
/WebAppServer/deployedResources/Roles/CosNamingDelete
/WebAppServer/deployedResources/Roles/CosNamingRead
/WebAppServer/deployedResources/Roles/CosNamingWrite
/WebAppServer/deployedResources/Roles/First
/WebAppServer/deployedResources/Roles/monitor
/WebAppServer/deployedResources/Roles/operator
/WebAppServer/deployedResources/Roles/Second
/WebAppServer/deployedResources/Roles/Thrid
/WebAppServer/deployedResources/Roles/Unchecked
/WebAppServer/deployedResources/Roles/WebRole

 Appendix A. Additional configurations 515

Testing the application installation
Open the Web browser, and type the following URL:

http://<yourhostname>:<port>/JACC/JACCTestServlet

You are asked for authentication. After you provide the necessary credentials, the
JACCTestServlet page is displayed (Figure A-2).

Figure A-2 Results from the test servlet

Configuring the service integration bus and default
messaging provider

This section covers the steps to define a service integration bus and Java
Messaging Service (JMS) resources using default messaging provider.

The basic process entails the following tasks, which are explained in the sections
that follow:

1. Creating a service integration bus
2. Adding an application server or server cluster to the bus
3. Defining a queue destination on the bus
4. Defining a JMS connection factory
5. Defining a JMS queue

516 WebSphere Application Server V6.1 Security Handbook

Creating a service integration bus
To define a service integration bus:

1. In the Administrative Console, select Service integration → Buses.

2. In the list of currently defined buses (Figure A-3), click New to create a new
bus.

Figure A-3 Defined service integration buses

Note: A default topic space is defined when the messaging engine is
configured (defining a topic space is not demonstrated here). The steps to
define a topic space are basically the same as for a queue destination and the
only parameters required for the destination are name and description. After it
is defined, you can modify the properties to allow send or receive actions and
enforce topic access checking, among others.

 Appendix A. Additional configurations 517

3. On the Create a new Service Integration Bus page (Figure A-4), enter a name
for the bus and select Bus security if security is required on the bus.

Then click Next.

Figure A-4 New service integration bus

4. Click Finish to return to the list of defined buses.

5. Click Save to save the configuration.

Adding an application server or server cluster to the bus
To add an application server as a bus member of the bus:

1. In the Administrative Console, select Service integration → Buses.

2. Click the name of the service integration bus to which you want to add a
server.

Bus security: Selecting Bus security enables security checking on bus
resources only if administrative security is also enabled. If administrative
security is not enabled, selecting the Bus security option has no effect until
administrative security is enabled.

518 WebSphere Application Server V6.1 Security Handbook

3. On the bus properties page, under Topology, click Bus members.

4. On the Bus members page (Figure A-5), click Add to add an Application
Server to the bus.

Figure A-5 Bus members list

5. On the Add a new bus member page (Figure A-6), select the server. You can
also add a cluster or WebSphere MQ server as a bus member on this page.
Click Next.

Figure A-6 Add a new bus member

6. Select File store or Data store for the message persistence. Selecting data
store lets you persist messages in database. Click Next.

7. Click Next to accept the default message store setting.

8. Click Finish to return to the bus members page.

9. Click Save to save the configuration.

 Appendix A. Additional configurations 519

Defining a queue destination on the bus
To define a queue destination on the bus:

1. In the Administrative Console, select Service integration → Buses.

2. Click the name of the service integration bus that you want to add a queue
destination to.

3. On the bus properties page, under Destination resources, click Destinations.

4. On the Destinations page (Figure A-7), click New to create a new destination.

Figure A-7 Destinations list

520 WebSphere Application Server V6.1 Security Handbook

5. On the Create new destination page (Figure A-8), select Queue to define a
queue destination. Click Next.

Figure A-8 Select destination type

6. Enter the name of the queue in the Identifier field. Optionally, enter a
description of the queue destination in the Description field. Click Next.

7. From the bus member list, select the bus member where the queue
destination must be defined. Click Next.

8. Click Finish to return to the destinations page.

9. Click Save to save the configuration.

Note: The next few windows gather the information required to define the
destination. The basic attributes for a Queue or Topic space are an
identifier, description, and the bus member the destination is defined on.

 Appendix A. Additional configurations 521

Defining a JMS connection factory
To define a JMS connection factory:

1. In the Administrative Console, select Resources → JMS → JMS providers.

2. From the list of JMS providers (Figure A-9), click Default messaging
provider at the appropriate scope.

Figure A-9 JMS providers list

522 WebSphere Application Server V6.1 Security Handbook

3. On the Default messaging provider properties page (Figure A-10), under
Additional Properties, click Connection factories to display connection
factories list.

Figure A-10 Default messaging provider properties

 Appendix A. Additional configurations 523

4. Click New to create a new connection factory.

5. On the New connection factory properties page (Figure A-11):

a. Enter the name and Java Naming and Directory Interfaces (JNDI) name
for the connection factory.

b. From the Bus name drop-down list in the Connection pane, select the local
bus hosting the queue destination.

c. Modify additional properties on this page as required, including the
Component-managed authentication alias.

d. Click OK to return to the Connection factories list.

Figure A-11 New connection factory properties

6. Click Save to save the configuration.

524 WebSphere Application Server V6.1 Security Handbook

Defining a JMS queue
To define a JMS queue:

1. Click Default messaging provider to return to the Default messaging
provider properties page.

2. Under Additional Properties, click Queues to display the queues list.

3. Click New to create a new queue.

4. On the New queue properties page (Figure A-12 on page 526):

a. Enter the Name and JNDI name for the queue.

b. From the Bus name drop-down list in the Connection pane, select the local
bus hosting the queue destination.

c. From the Queue name list in the Connection pane, select the queue
destination.

d. Click OK to return to the queues list.

Note: For Queue, Topic space, and Alias destinations, you must select
the local bus where the destination is defined. For Foreign destinations,
you must select the foreign bus.

After a bus is selected the page refreshes so that the Queue name field
contains a list of destinations on the selected bus.

 Appendix A. Additional configurations 525

Figure A-12 New queue properties

5. Click Save to save the configuration.

Configuring WebSphere MQ as a foreign bus
To connect WebSphere MQ to the service integration bus, a local bus must be
defined. See “Configuring the service integration bus and default messaging
provider” on page 516 for the steps to define a service integration bus and add a
server to the bus. This section gives details of the steps required to define a
foreign bus and the MQ link for communicating with WebSphere MQ.

526 WebSphere Application Server V6.1 Security Handbook

Defining a foreign bus
To define a foreign bus:

1. In the Administrative Console, select Service integration → Buses.

2. Click the service integration bus where the foreign bus is defined to display
the bus properties page.

3. Click Foreign buses under Topology to display the list of foreign buses
defined on this service integration bus.

4. Click New to add a new foreign bus.

5. Enter a name and description for the foreign bus.

If applications are not allowed to send messages to the foreign bus, clear the
Send allowed check box. Click Next.

6. In the Routing type list, select Direct, WebSphere MQ link. Click Next.

7. Enter the name to use to authenticate inbound message flows in the Inbound
user ID field.

Enter the name to use to authenticate outbound message flows in the
Outbound user ID field.

Note: If foreign destinations are used to communicate with MQ queues,
enter the name of the MQ queue manager here. Otherwise any descriptive
name is fine.

Note: All messages received from the foreign bus appear to come from the
ID entered in the Inbound user ID field. This is important when the sender
of the message is not authorized to access the service integration bus or
puts messages to objects on the local service integration bus.

When a message enters the bus, the user ID that is stored in the message
is checked against the local security. Initially the user ID is the user ID
assigned to the message by the sending bus. That user ID may not have
access to the local service integration bus or resources, and may not even
be known to the local User Registry. By entering a locally known user ID in
the Inbound user ID field, the message can transmit into the local service
integration bus and all messages coming from the foreign bus appear to
come from this local ID.

 Appendix A. Additional configurations 527

Click Next.

8. Click Finish to return to the foreign bus list page.

9. Click Save to save the configuration.

Defining an MQ link
To define an MQ link:

1. In the Administrative Console, select Service integration → Buses.

2. Click the service integration bus where the foreign bus is defined to display
the bus properties page.

3. Click Messaging engines under Topology to display a list of the messaging
engines on the bus.

4. Click the name of the messaging engine where the MQ link is defined.

5. Click WebSphere MQ links under Additional Properties.

6. Click New to create a new WebSphere MQ link.

7. On the next page:

a. Enter a name and description for the MQ link.

b. From the Foreign bus name list, select the foreign bus, which is the foreign
bus that you defined previously.

c. Enter a queue manager name, which is the name that the MQ link shows
to the MQ queue manager. Do not use lowercase letters. This name is

Note: All messages sent to the foreign bus appear to come from the ID
entered in the Outbound user ID field. On WebSphere MQ, this value is in
the UserIdentifier field of the message context.

When a message enters a secure foreign bus, the user ID is stored in the
message. The user ID is initially set to the user ID of the message sender.
This may not be appropriate, because by entering a user ID here all
messages appear to come from the new user ID.

Note: WebSphere MQ client links are used to define an MQ link that makes
the messaging engine appear as a queue manager to JMS clients
connecting to it. Security for client links is handled by the roles discussed
for default messaging communication in , “This chapter discusses securing
the service integration bus during a WebSphere Application Server V6.1
configuration.” on page 247.

528 WebSphere Application Server V6.1 Security Handbook

used when defining the sender channel on the WebSphere MQ queue
manager.

d. Modify other properties as required.

e. Click Next.

8. On the next page:

a. Enter a name for the sender channel. This must match a receiver channel
defined on the MQ server.

b. Enter the host name and port of the MQ server queue manager.

c. Select the Transport chain to use.

d. Modify other properties as required.

e. Click Next.

9. On the next page:

a. Enter a name for the receiver channel. This must match a sender channel
defined on the WebSphere MQ queue manager.

b. Modify other properties as required.

c. Click Next.

10.Click Finish to return to the WebSphere MQ links list page.

11.Click Save to save the configuration.

Defining a foreign destination
In order for an application to put a message on a queue on the MQ queue
manager, the local service integration bus requires a foreign destination
definition defining the foreign bus, MQ queue manager, and destination queue.

To define the foreign destination:

1. In the Administrative Console, select Service integration → Buses.

2. Click the service integration bus where the foreign destination is defined, to
display the bus properties page.

3. Click Destinations to display the destinations list page.

4. Click New to create a new destination.

Note: The transport chain determines the transport level security.
Select OutboundSecureMQLink to use Secure Sockets Layer (SSL)
when connecting to WebSphere MQ.

 Appendix A. Additional configurations 529

5. Select Foreign as the destination type and click Next.

6. On the next page:

a. Enter an identifier for the destination.

b. Enter a description for the destination.

c. Select the foreign bus from the bus list where this destination links to. For
an MQ queue this is the name of the foreign bus defined for the MQ link.

d. Modify other properties as required.

e. Click Next.

7. Click Finish to return to the Destinations list page.

8. Click Save to save the configuration.

Defining a JMS queue for a foreign destination
To send messages to a foreign destination, the application must connect to the
local messaging engine. The connection factory that was used to connect to the
local service integration bus messaging engine can be reused here. The steps to
configure the JMS connection factory are explained in “Defining a JMS
connection factory” on page 522.

The steps to create a JMS queue for a foreign destination are identical to the
steps detailed in “Defining a JMS queue” on page 525 with one exception.
Rather than selecting a local service integration bus from the Bus name list,
select the name of a foreign bus used to connect to WebSphere MQ. After the
page refreshes, select the foreign destination that you just defined from the
Queue name list. All other steps are the same.

Sample application for messaging
The JMSSampleApplication.ear file contains a sample application (shown in
Figure A-13 on page 531) to demonstrate sending and browsing messages on a
service integration bus destination. The sample contains two servlets, one for
sending messages to the queue and the second for browsing messages on the
queue. This section details the steps to configure an Application Server’s default
messaging provider, and optionally WebSphere MQ resources, to demonstrate
the sample application.

Note: The identifier must match the name of the destination on the
foreign bus. In the case of WebSphere MQ, this is the name of the
queue defined on the queue manager.

530 WebSphere Application Server V6.1 Security Handbook

Figure A-13 JMS sample application flow

Configuring the application server
The following resources are required to test the sample application. The sample
application requires administrative security and application security to be
enabled. Java 2 security is not required. The resources marked optional are only
required if testing with WebSphere MQ.

If you are not familiar with configuring bus and messaging components in
WebSphere, see “Configuring the service integration bus and default messaging
provider” on page 516.

Note: The application is configured to send messages to and browse
messages on the same queue if not testing with WebSphere MQ. If
WebSphere MQ integration is being tested, then messages are sent to the
ForeignQueue destination on the local bus. The messages are then routed
automatically to the ForeignQueue on the WebSphere MQ queue manager.
The ForeignQueue is defined as a remote queue to WebSphere MQ and
routed back to the LocalQueue on the Application Server’s messaging engine.
Messages cannot be received or browsed from a foreign destination, therefore
the application reads them from the LocalQueue on the bus.

 Appendix A. Additional configurations 531

Defining the resources required for the sample application entail the following
tasks as explained in the sections that follow:

1. Creating a service integration bus
2. Adding an application server to the bus
3. Optional: Creating a foreign bus
4. Optional: Defining an MQ link
5. Creating a queue destination
6. Optional: Creating a foreign destination
7. Creating a JMS connection factory
8. Creating a JMS queue for LocalQueue
9. Optional: Creating a JMS queue for ForeignQueue

Creating a service integration bus
The steps to define a service integration bus are explained in “Creating a service
integration bus” on page 517. Use these steps to define a service integration bus
with the following properties shown in Table A-1.

Table A-1 Local bus properties

Adding an application server to the bus
The steps to make an application server a member of the service integration bus
are explained in “Adding an application server or server cluster to the bus” on
page 518. Use those steps to add the Application Server, where the sample
application is installed, to the TEST_LOCAL_SIBUS.

Optional: Creating a foreign bus
The steps to define a foreign bus are explained in “Defining a foreign bus” on
page 527. Use the steps, in the section mentioned, to define a foreign bus on the
TEST_LOCAL_SIBUS with the following properties shown in Table A-2 on
page 533, leaving all other properties at their default values.

Field Value

Name TEST_LOCAL_SIBUS

Bus security Checked

Note: A foreign bus is only required if the sample application is connected to
WebSphere MQ.

532 WebSphere Application Server V6.1 Security Handbook

Table A-2 Foreign bus properties

Optional: Defining an MQ link
The steps to define an MQ link are explained in “Defining an MQ link” on
page 528. Use these steps to define an MQ link on the TEST_LOCAL_SIBUS to
connect the application server to the WebSphere MQ queue manager by using
the properties in Table A-3.

Table A-3 MQ link properties

Field Value

Name <Use the queue manager name of the MQ>

Routing type Direct, WebSphere MQ link

Inbound user ID janedoe

Outbound user ID User name that has access to put messages to MQ. Ask MQ
administrator for this.

Note: You can use the existing MQ queue manager or create a new queue
manager. Make sure the queue manager name is used as the name of this
foreign bus.

The user ID janedoe with password janedoe must be defined in the user
registry of WebSphere Application Server V6.1.

Note: An MQ link is only required if the sample application is connected to
WebSphere MQ as a foreign bus.

Field Value

Name TEST_LOCAL_SIBUS To MQ

Foreign bus name <name of the foreign bus that you just defined>

Queue manager name QM_EMBEDDED

Sender MQ channel name FROM_QM_EMBEDDED

Hostname Host name of MQ server

Port Port that MQ queue manager is listening on. Default
is 1414.

Transport chain OutboundBasicMQLink (if not using SSL)
OutboundSecureMQLink (if using SSL)

 Appendix A. Additional configurations 533

Creating a queue destination
The steps to define a queue destination are explained in “Defining a queue
destination on the bus” on page 520. Use these steps to define a queue
destination on the TEST_LOCAL_SIBUS with the properties shown in Table A-4.

Table A-4 Queue destination properties

Optional: Creating a foreign destination
The steps to define a foreign destination are explained in “Defining a foreign
destination” on page 529. Use these steps to define a foreign destination on the
TEST_LOCAL_SIBUS with the properties shown in Table A-5 on page 535.

Receiver MQ channel name TO_QM_EMBEDDED

Note: The channel names, host name, port, and transport chain all depend on
values that you get from your MQ administrator.

The sender channel name must be the name of a receiver channel on the MQ
server. If the channel is SSL enabled on the MQ server then transport chain
must be set to OutboundSecureMQLink, otherwise use OutboundBasicMQLink.

The receiver channel name must match the name of a sender channel on the
MQ server.

Field Value

Destination Type Queue

Name LocalQueue

Bus member Application server that hosts the sample application. There must
only be one in the list.

Note: A foreign destination is only required if the sample application is
connected to a WebSphere MQ server via a foreign Service Integration Bus
definition.

Field Value

534 WebSphere Application Server V6.1 Security Handbook

Table A-5 Foreign destination properties

Creating a JMS connection factory
The steps to define a JMS connection factory are explained in “Defining a JMS
connection factory” on page 522. Use these steps to create a connection factory
with the properties shown in Table A-6.

Table A-6 Connection factory properties

Creating a JMS queue for LocalQueue
The steps to define a JMS queue are explained in “Defining a JMS connection
factory” on page 522. Use these steps to create a queue with the properties
shown in Table A-7.

Table A-7 JMS properties for LocalQueue

Field Value

Destination type Foreign

Name ForeignQueue

Bus <name of the foreign bus that you just defined>

Note: The name property must match the queue name on the MQ server to
which messages are transmitted.

For the sample application a remote queue named ForeignQueue is defined to
route messages sent to MQ back to the LocalQueue on the Application
Server. This simplifies the sample application as applications cannot read
from foreign destinations.

Field Value

Name LocalSIB_CF

JNDI name jms/cf_localSIB

Bus name TEST_LOCAL_SIBUS

Field Value

Name LocalQueue

JNDI name jms/queue_LocalQueue

Bus TEST_LOCAL_SIBUS

Queue name LocalQueue

 Appendix A. Additional configurations 535

Optional: Creating a JMS queue for ForeignQueue
If you defined a foreign destination for WebSphere MQ, create another JMS
queue that points to the Foreign destination. Follow the steps in “Defining a JMS
queue for a foreign destination” on page 530 with the properties shown in
Table A-8.

Table A-8 JMS properties for Foreign destination

Optional: Configuring WebSphere MQ
In order for WebSphere MQ and a WebSphere Application Server messaging
engine to communicate, the following MQ objects must be defined:

� Transmit queue
� Sender channel
� Receiver channel

The sample application also requires a Remote Queue, named ForeignQueue, to
be defined on the MQ server. This remote queue routes all messages placed on
the queue back to the LocalQueue on the WebSphere Application Server.

After logging on to the WebSphere MQ server as a user with MQ administration
privileges, define the channels and queues:

1. From the command line, run runmqsc or runmqsc <queue manager name>. This
queue manager name must match the foreign bus name defined in “Optional:
Creating a foreign bus” on page 532.

2. From the runmqsc prompt, enter the commands shown in Example A-4, line by
line. Press Enter where you see the new line symbol (↵).

Example: A-4 Execution of commands

define qlocal(QM_EMBEDDED) usage (XMITQ) ↵
define channel(FROM_QM_EMBEDDED) CHLTYPE(RCVR) ↵
define channel(TO_QM_EMBEDDED) CHLTYPE(SDR)
conname('localhost(5558)') XMITQ(QM_EMBEDDED) ↵
define qremote(‘ForeignQueue’) RQMNAME(QM_EMBEDDED)
XMITQ(QM_EMBEDDED) RNAME(‘LocalQueue’) Put(ENABLED) ↵
start channel(FROM_QM_EMBEDDED) ↵

Field Value

Name ForeignQueue

JNDI name jms/queue_ForeignQueue

Bus <name of the foreign bus that you just defined>

Queue name ForeignQueue

536 WebSphere Application Server V6.1 Security Handbook

start channel(TO_QM_EMBEDDED) ↵
end ↵

3. Log out if necessary.

Installing the sample application
To install the JMSSampleApplication.ear file on WebSphere Application Server
V6.1:

1. In the Administrative Console, select Applications → Install New
Application to start the application installation process.

2. Click Browse and locate the JMSSampleApplication.ear file the click Open.

3. Click Next.

4. On the “Step 1: Select installation options” page, click Next.

5. On the “Step 2: Map modules to servers” page, choose an Application Server
to install the sample application. Click Next.

6. On the “Step 3: Summary” page, click Finish.

7. Click Save to save the configuration.

Review JMS resource references of the installed sample application.

1. In the Administrative Console, select Applications → Enterprise
Applications to display the installed application list.

2. Click JMSSampleApplication.

3. Under References, click Resource references.

 Appendix A. Additional configurations 537

4. On the Resources references page, go to the bottom of the page
(Figure A-14). Verify that the target resource JNDI names are the same as the
ones you defined in “Configuring the application server” on page 531. Click
Cancel if no change is required, or click OK if changes are made to map to
the JNDI names you entered previously in “Configuring the application server”
on page 531.

Figure A-14 JMS resource references

5. Click Save to save the configuration changes.

Start the sample application:

1. In the Administrative Console, select Applications → Enterprise
Applications to display the installed application list.

2. Select the JMSSampleApplication entry.

3. Click Start to start the application. When the application is started, the
following message is displayed:

Application JMSSampleApplication on server <servername> and node
<nodename> started successfully.

Testing the sample application
To test the sample application:

1. Enter the following URL:

http://localhost:9080/JMSSampleApplication/

If you are testing the sample application from another machine, replace
localhost with the host name of the application server machine.

538 WebSphere Application Server V6.1 Security Handbook

2. Enter a valid user name and password when prompted by the browser.

3. Click Click here to send a message.

4. Enter Test Message 0 and click Post Message. The following message is
displayed:

Security Exception occurred.
Your message was not posted to the Queue.
Access to bus was denied

5. Start wsadmin:

wsadmin -user username -password password

6. From the wsadmin command line, enter the following command to list the
users that can access the bus. By default, no user has this role.

$AdminTask listUsersInBusConnectorRole {-bus TEST_LOCAL_SIBUS}

7. To list groups that can access the bus, enter the following command. Only a
special group Server is listed.

$AdminTask listGroupsInBusConnectorRole {-bus TEST_LOCAL_SIBUS}

8. Add the special group AllAuthenticated to the bus connector role:

$AdminTask addGroupToBusConnectorRole {-bus TEST_LOCAL_SIBUS -group
AllAuthenticated}

9. Save the changes:

$AdminConfig save

10.From the sample application in the browser, click Click here to send a
message.

11.Enter Test Message 1 and click the Post Message button. The following
message is returned to your browser:

Your message has been posted to the Queue

Note: By default, only the special group Server has bus connector role.

Note: This user must have administrator access to WebSphere Application
Server V6.1 to use wsadmin tool.

Note: Do not close the wsadmin console until instructed to do so, because it
is used many times in the following steps.

 Appendix A. Additional configurations 539

12.Click Click here to browse messages on the queue. The message Test
Message 1 must now be displayed.

13.From the wsadmin command line, enter the following command to list the
groups that are in the default sender role for the bus. By default,
AllAuthenticated must be the only group listed.

$AdminTask listGroupsInDefaultRole {-bus TEST_LOCAL_SIBUS -role
sender}

14.From the wsadmin command line, enter the following commands to remove the
AllAuthenticated group from the default sender role:

$AdminTask removeGroupFromDefaultRole {-bus TEST_LOCAL_SIBUS -role
sender -group AllAuthenticated}
$AdminConfig save

15.Optional: Restart the messaging engine. (See the Persistent security
exception note box on page on page 540.)

16.From the sample application, click Click here to send a message.

17.Enter the text Test Message 2 and click Post Message. The following
message is displayed in the browser:

Security Exception occurred.
Your message was not posted to the Queue.
Send access to queue was denied.

Persistent security exception: The updated authorization policy might
take a few seconds to take effect in a Network Deployment environment.

Restart the messaging engine for the Application Server, which can force
the authorization policy to update immediately.

1. In Administration Console, select Servers → Application servers.

2. Click the name of the application server that is running the messaging
engine to open the Application Server properties page.

3. Click Messaging engines under Server messaging.

4. Select the messaging engine by placing a check mark in the left column
and click Stop.

5. After it is stopped, select the messaging engine again and click Start.

Alternatively, you can also stop and start the messaging engine by
selecting Service integration → Buses → <your bus name> →
Messaging engines.

540 WebSphere Application Server V6.1 Security Handbook

18.From the sample application, click Click here to browse messages on the
queue. Only the message “Test Message 1” must be displayed.

19.From the wsadmin command line, enter the following commands to remove the
AllAuthenticated group from the browser default role:

$AdminTask removeGroupFromDefaultRole {-bus TEST_LOCAL_SIBUS -role
browser -group AllAuthenticated}
$AdminConfig save

20.Optional: Restart the messaging engine. (See the Persistent security
exception note box on page on page 540.)

21.From the sample application, click Click here to browse messages on the
queue. The following message is displayed in the browser:

Security Exception occurred.
Browse access to queue was denied.

22.From the wsadmin command line, enter the following commands to add the
AllAuthenticated group back to the sender default role:

$AdminTask addGroupToDefaultRole {-bus TEST_LOCAL_SIBUS -role sender
-group AllAuthenticated}
$AdminConfig save

23.From the sample application, click Click here to send a message.

24.Enter the text Test Message 3 and click Post Message. The message posts
successfully.

25.From the sample application, click Click here to browse messages on the
queue. The following message is displayed in the browser.

Security Exception occurred.
Browse access to queue was denied.

26.From the wsadmin command line, execute the following commands to add the
AllAuthenticated group back to the browser default role.

$AdminTask addGroupToDefaultRole {-bus TEST_LOCAL_SIBUS -role
browser -group AllAuthenticated}
$AdminConfig save

27.From the sample application, click Click here to browse messages on the
queue. The messages Test Message 1 and Test Message 3 is displayed.

28.Exit the wsadmin command line by typing quit.

Roles in destination queue: Additionally, by using the commands in 10.4,
“Administering destination security” on page 257, you can modify and test
the roles on the queue destination rather than using the default roles that
affect access to all bus destinations not just the LocalQueue destination.

 Appendix A. Additional configurations 541

Testing against WebSphere MQ: To test against WebSphere MQ, map
the resource reference for jms/queue_sender to JMS Queue
jms/queue_ForeignQueue and restart the application. Add the sender role
to group AllAuthenticated for this foreign destination:

$AdminTask addUserToDestinationRole {-bus TEST_LOCAL_SIBUS
-foreignBus <foreign bus name> -type foreignDestination
-destination ForeignQueue -role sender -user AllAuthenticated}

Then the previous testing steps also work for the MQ foreign destination on
the foreign bus.

542 WebSphere Application Server V6.1 Security Handbook

Appendix B. Additional material

This IBM Redbook refers to additional material that you can download from the
Internet as the following sections describe.

Locating the Web material
The Web material associated with this IBM Redbook is available in softcopy on
the Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246316

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG246316.

Using the Web material
The additional Web material that accompanies this IBM Redbook includes the
following files:

File name Description
sg246316.zip Compressed code samples for ITSO applications

B

© Copyright IBM Corp. 2006. All rights reserved. 543

ftp://www.redbooks.ibm.com/redbooks/SG246316
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB minimum
Operating System: Windows or Linux
Processor: P4 2.x GHz or faster
Memory: 1 GB or more

How to use the Web material
Create a subdirectory (folder) on your workstation, and extract the contents of the
Web material compressed file into this folder.

544 WebSphere Application Server V6.1 Security Handbook

acronyms
ACL access control list

AM access manager

API application programming
interface

BA basic authentication

CA certificate authority

CRL certificate revocation list

CMP container-managed
persistence

CORBA Common Object Request
Broker Architecture

CPU central processing unit

DD deployment descriptor

DNS Domain Name Server

DRS Data Replication Service

EAR enterprise archive

EIS enterprise information system

EJB Enterprise JavaBeans

ERP enterprise resource planning

FIPS Federal Information
Processing Standards

FTP File Transfer Protocol

GIOP General Inter-ORB Protocol

GSO global sign-on

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines

IHS IBM HTTP Server

IIOP Internet Inter-ORB Protocol

IOR interoperable object reference

IP Internet Protocol

Abbreviations and

© Copyright IBM Corp. 2006. All rights reserved.
IT information technology

ITSO International Technical
Support Organization

JAAS Java Authentication and
Authorization Service

JACC Java Authorization Container
Contract

JAR Java archive

JCA J2EE Connector Architecture

JDBC Java Database Connectivity

JKS Java Key Store

JMS Java Messaging Service

JMX Java Management
Extensions

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JRE Java Runtime Environment

JSP Java ServerPages

JSR Java Specification Request

JSSE Java Secure Socket
Extension

JVM Java virtual machine

KDC (Kerberos) Key Distribution
Center

LDAP Lightweight Directory Access
Protocol

LDIF Lightweight Directory
Interchange Format

LTPA Lightweight Third Party
Authentication

MQ Message Queuing

ND Network Deployment

NIS Network Information Service

 545

OMG Object Management Group

ORB Object Request Broker

OS operating system

OU organizational unit

PAM Pluggable Authentication
Modules

PKI public key infrastructure

RMI Remote Method Invocation

RSA Rivest, Shamir and Adleman
(algorithm)

SIP Session Initiation Protocol

SIB Service Integration Bus

SMTP Simple Mail Transfer Protocol

SOA service-oriented architecture

SOAP Simple Object Access
Protocol

SPNEGO Simple and Protected
Negotiate

SQL Structured Query Language

SSL Secure Socket Layer

SSO single sign-on

SWAM Simple WebSphere
Authentication Mechanism

TAI trust association interceptor

URL Uniform Resource Locator

WAR Web archive

WAS WebSphere Application
Server

WTE WebSphere Test
Environment

XML Extensible Markup Language

546 WebSphere Application Server V6.1 Security Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 549. Note that some of the documents referenced here may
be available in softcopy only.

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

� IBM Tivoli Access Manager for e-business, REDP-3677

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

� WebSphere Security Fundamentals, REDP-3944

Other publications

These publications are also relevant as further information sources:

� IBM Tivoli Access Manager Administration Guide V6.0, SC32-1686

� IBM Tivoli Access Manager for e-Business Auditing Guide V6.0, SC32-2202

� IBM Tivoli Access Manager for e-Business Installation Guide V6.0,
SC32-1684

� IBM Tivoli Access Manager WebSEAL Administration Guide V6.0,
SC32-1687

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere Application Server, Version 6.1 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

© Copyright IBM Corp. 2006. All rights reserved. 547

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� WebSphere Application Server V6 Information Center

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� WebSphere Application Server - prerequisites

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� Tivoli Access Manager V6.0 Information Center

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

� OMG’s XMI Web site

http://www.omg.org/XMI

� Apache Web server documentation: htaccess

http://apache-server.com/tutorials/ATusing-htaccess.html

� IETF’s Web site, RFC2617

http://www.ietf.org/rfc/rfc2617.txt

� OASIS’s Web site

http://www.oasis-open.org

� Specification: Web Services Security (WS-Security)

http://www-106.ibm.com/developerworks/webservices/library/ws-secure

� WebSphere MQ Web site

http://www.ibm.com/software/ts/mqseries/messaging

� Sun Microsystems Java Authentication and Authorization Service (JAAS)
LoginModule Developer’s Guide and other security related APIs and articles

http://java.sun.com/javase/6/docs/technotes/guides/security/

� Sun’s J2EE Web site

http://java.sun.com/j2ee

� Key Botzum’s WebSphere hardening guide

http://www-128.ibm.com/developerworks/websphere/techjournal/0512_bot
zum/0512_botzum1.html

developerWorks
� Articles on WebSphere Application Server security

http://www.ibm.com/developerworks

� IBM WebSphere Developer Technical Journal

http://www-128.ibm.com/developerworks/websphere/techjournal/

548 WebSphere Application Server V6.1 Security Handbook

http://java.sun.com/javase/6/docs/technotes/guides/security/
http://www.ibm.com/developerworks
http://www-128.ibm.com/developerworks/websphere/techjournal/
http://www.omg.org/XMI
http://apache-server.com/tutorials/ATusing-htaccess.html
http://www.ietf.org/rfc/rfc2617.txt
http://www.oasis-open.org
http://www-106.ibm.com/developerworks/webservices/library/ws-secure
http://www.ibm.com/software/ts/mqseries/messaging
http://java.sun.com/j2ee
http://www-128.ibm.com/developerworks/websphere/techjournal/0512_botzum/0512_botzum1.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-128.ibm.com/developerworks/websphere/techjournal/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 549

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

550 WebSphere Application Server V6.1 Security Handbook

Index

Symbols
.arm file 153

A
access check 326
access control 172, 483

directives 116
access control list 316, 318
access control list (ACL) 14
access decisions

enterprise beans 412
Web resources 413

Access Manager
authorization engine 318
authorization server 302
aznAPI 345
client 323
client configuration 325
credential information 346
external JACC provider 420
integration 344
J2EE security 345
JACC 325
lab environment 320
management objects 317
migration 348
plug-in 303
policy 308
policy database 325
policy server 301
role 321
secure domain 301
security model 315
user registry 315
Web portal manager 303
WebSEAL 302
WebSphere integration 306

Access Manager Java Runtime (AMJRTE) 322
ACE/Server 331
ACL 316, 318
active directory 301
ActiveX application client 208
add security constraints 137

© Copyright IBM Corp. 2006. All rights reserved.
additional CORBA configuration 225
admin SOAP 79
administrative group members 13
administrative security 102
Advanced Encryption Standard (AES) 78
alias 250
all authenticated 105
all authenticated users 498
AllowOverride 117
alternate name 250
AMJRTE (Access Manager Java Runtime) 322
applet application client 208
application client run time 208, 225
application clients 208
application deployment 105
application installation 105
application logins 97
application programming interface (API) 15, 39
application scenarios 4
application security 102
application server instance 501
Application Server Toolkit 105
application.xml 416
attribute layer 217
auditing 436
auth_module 114
authentication 251, 436, 454

basic authentication 127
client certificate 127
digital certificate 113
form-based 127

authentication and authorization APIs 302
authentication challenge 150
authentication configuration 221
authentication layer 217
authentication mechanism 51, 118, 133, 233
authentication process 9
authentication protocol 51
authentication strategy 98
authentication token 269, 283–284
authorization 251, 436, 455

Web server 116
authorization API 308
authorization constraint 134

 551

authorization constraints
configuration 138

authorization rules 319
authorization server 302
authorization service 10
authorization table support 326
authorization token 269, 276, 284
AuthorizationToken 277
AuthzPropTokenFactory 284
aznAPI 308, 345

B
basic authentication 9, 113, 125, 200, 438

logout 132
test 115

bean level delegation 186
bmPKIX trust manager 79
bottom-up mapping 507
buildClientRuntime 230
Bus Connector role 251
bus destination 250
bus destination roles 252
business logic 171

C
callback handlers 88
CallbackHandler 234, 237
CCI 464
certificate

authentication with LDAP 156
authority 74
expirations 74
filter 20
import 153
map mode 20
properties 74

certificate-based client authentication 152
certification agency 447
client certificate 9
client certificate authentication 201

options 202
client example 214
client ORB 218
client security 510
client security enablement 220
CLIENT_CERT 157
client-certificate 118
ClientContainer 97, 234

client-side
programmatic login 236

client-side certificate 152, 155
CMS 111
CMS keystore 153
cn=root 19
Common Auditing and Reporting Service 306
Common Auditing and Reporting Service (CARS)
305
common base events (CBE) 306
common client interface 464
Common Event Infrastructure (CEI) 306
common information model (CIM) 12
Common Secure Interoperability 216, 289
Common Secure Interoperability Version 2 9
Common Secure Interoperability Version 2 (CSIV2)
51
Common Security Interoperability 199, 217
communication channel 110
communication types 110
component-managed authentication 466–467
confidentiality 436, 441
configuration

custom login module 97
exact DN mapping 167
local OS user registry 24
SSL 118, 121
WebSEAL form based authentication 342

connection factory 467
connection object 467
connection-based transport 217
container contract 407, 410
container settings 121
container-authentication 200
container-authentication configuration 201
container-managed authentication 468–469
content integrity 134
CORBA configuration file 230
CORBA ConfigURL 220
CosNaming

roles 64
with a qualified name 231
with unqualified name 232

creating a new profile 501
credential list attribute 233
credential token 9, 233
credentials 265
cross domain single sign-on 335
cryptographic hardware 72

552 WebSphere Application Server V6.1 Security Handbook

csec_localos 24
CSIV2 9, 199, 216

add-on authentication protocol 223
inbound 201
inbound authentication 293–294
inbound transport 243
Security Attribute Service 217

custom attributes 266, 276, 281
custom authorization token 277

implementation 277
custom callback handler 88
custom CallbackHandler 240
custom encryption 271
custom JAAS login 88
custom key manager 83
custom login configuration 469
custom login form 131
custom login module 89

configuration 97
custom principal 95
custom propagation token

implementation 282
custom single sign-on token 279
custom token 271–272
custom trust manager 80
custom user registry 8, 26

DB2 33
development 29
sample 29

CustomLoginModule.java 90
CVS 488

D
data constraint 134
Data Encryption Standard (DES) 78
database

authentication types 480
connection security 480
securing access 483
security 479

DB2
custom user registry 33
legacy CLI-based Type 2 provider 481
libraries 34
Universal Database 480
Universal JDBC provider 481

DB2UserRegistrySample 33
DB2UserRegistrySampleTest 34

decision-making server 303
declarative security 102, 132, 174
default authorization token 276
default method 469
default propagation token 280
default search settings 20
default single sign-on token 279
default token 270
DefaultPrincipalMapping 97, 469
delegation policy 172, 193
deployment

application 105
deployment descriptor 128
deployment descriptor mapping 348
deployment tools contract 405, 410
desktop single sign-on 332
destination security 257
development environment

Linux 490
Windows 489

digital certificate
authentication 113

directory administrator 13
directory directive 114
Directory Enabled Network (DEN) 12
Directory Information Tree (DIT) 11
Distinguished Name 158
Distinguished Name (DN) 11, 14, 16
Distributed Management Task Force (DMTF) 12
Distributed Relational Database Architecture (DR-
DA) 483
Distributed Replication Service 285
DN 158
doAs() 235
Domain Name Server (DNS) 15
downstream propagation 289, 293

scenario 290
DRS 285
DRS Replication Domain 285
dummy password 337
dumpNameSpace 229
dynacache 285
dynamic module updates 420
dynamic resources 136
dynamic Web projects 129

E
EAR file 158

 Index 553

eavesdropping 431
e-business infrastructure 307
e-community single sign-on 335
EIS systems 464
EJB 171

authenticator 9–10
container access security 199
declarative security 174
descriptor file 175
method access control 180
method level delegation 190
method permissions 181
modules 174, 514
policy context identifier 406
programmatic security

sample code 198
security methods 197
security roles 174

ejb-jar.xml 134, 187
EJBMethodPermission object 412
embedded HTTP Server 118
embedded messaging security 250
embedded Tivoli Access Manager 346

client 323
disable 426
enable 422

enable SSL 154
encryption 431
enhanced TAI interface 355
enhanced TAI++ 266
ensure all unprotected 105
enterprise application security 497
enterprise bean clients 9
Enterprise JavaBeans 171
Enterprise JavaBeans (EJB) 233
entity beans 171
EPAC 346
Everyone 105, 498
Everyone role 219
exact Distinguished Name 167
exact DN mapping 167
exchange certificates 119
exclude 185
external authorization engine 420
externalized security 298

F
Federal Information Processing Standard (FIPS)

48, 78
federated repository 39
file-based

registry
testing 33

repositories 39
user registry 29

FileRegistrySample 29
filter 339
foreign bus 250, 472
foreign destination 529
foreign service integration bus security 458
foreign system integration bus 532
form login

authentication mechanism 128
configuration 129

form-based
authentication 128, 341
login 128
logout 131

G
General Inter-ORB Protocol (GIOP) 217
GET method 136
getCallerPrincipal() 172, 197
getConnection() 468
getUniqueID() 271
GIOP 217
global administrative group members 13
global security 102, 127, 494
global sign-on 335
global sign-on (GSO) 470
group 105
group filter 20
group ID map 20
group member ID map 20
groupDisplayName 27
groupSecurityName 27
groupUniqueId 27
GSO 308, 339

H
Health Insurance Portability and Accountability Act
(HIPAA) 305
horizontal propagation 285

dynacache 285
JMX 286

htaccess 117

554 WebSphere Application Server V6.1 Security Handbook

HTML pages 109, 136
htpasswd utility 114
HTTP 76, 447

basic authentication 113
cookie 128
method security 136
methods 133
plug-in 118, 122
transport 125

http_plugin.log 125
httpd.conf 111
httpd.conf file 116
HTTPS 111

information 162
Hypertext Transfer Protocol (HTTP) 76

I
IBM DB2 Universal Database 480
IBM HTTP server

certificate 152
logs 155
SSL 111

IBM Secure Authentication Service 51, 216
IBM Tivoli Directory server 22
IBM Tivoli Directory server V5.2 10
ibm_security_logout 131
ibm_ssl_module 111
ibm-ejb-jar-ext.xmi 191
IbmX509 trust manager 79
identification 436
Identity assertion 267
Identity propagation

definition 267
ignore 339
IIOP 76, 126, 216
IIOP over SSL 242, 245
IIOP over TCP/IP 244
iKeyman tool 21, 74, 152
import certificate 20, 153
inbound transport 201
InboundBasicMessaging 473
InboundBasicMQLink 473
InboundSecureMessaging 473
InboundSecureMQLink 473
inetOrgPerson 335
initial login 266–267
installation

applications 105

integrity 431, 436, 439
internal login 98
Internet Inter-ORB Protocol 216
Internet Inter-ORB Protocol (IIOP) 76
interoperability mode 292
Interoperable Object Reference 218
IOR 218
iPlanet 301
isCallerInRole() 172, 198
isolate roles 134
ITSObank application 127
Itsohello application 511
iv-creds 337
iv-groups 337
iv-user 336

J
j_password 131
j_security_check 128
j_username 131
J2C 99
J2C authentication data 99
J2EE 1.3 specification 408
J2EE application client 208
J2EE Connector Architecture (JCA) 57, 464
J2EE Connector security 99, 466
J2EE deployment tools 405
J2EE programmatic security 142
J2RE (Java 2 Runtime Environment) 230
JAAS 85, 142, 173, 265, 306

authentication 468
authentication entries 500
callback handler 88
configuration 87
framework 345
login module 89, 233, 271

authentication alias 100
principal 95
programmatic login 238
subject 233

JAAS authentication alias 99
JAAS login 94
JAAS login sequence 94
JACC 308, 403

access decisions 410
policy context identifiers 414
policy propagation 415
provider 321

 Index 555

sample 427, 513
specification 414
WebSphere 408
WebSphere extensions 414

Java 2 Connector (J2C) 468
Java 2 Platform, Enterprise Edition (J2EE) 306
Java 2 Runtime Environment (J2RE) 230
Java 2 security 85
Java archive (JAR) 30, 36
Java Authentication and Authorization Service 85,
142, 306
Java Authentication and Authorization Service
(JAAS) 10, 89
Java Authorization Container Contract (JACC) 408,
420
Java Authorization Contract for Containers 403
Java build path 33
Java client authentication protocol 216
Java client configuration 220
Java Cryptography Extension (JCE) 48
Java Database Connectivity (JDBC) 43
Java Generic Security Service (JGSS) 369
Java keytool 74
Java Management Extensions 287
Java Messaging Service (JMS) 451, 468
Java Naming and Directory Interface (JNDI) 468
Java Native Interface 208
Java Network Launching Protocols (JNLP) 210
Java Secure Socket Extension (JSSE) 48
Java Server Pages

JSP 132
Java Server Pages (JSP) 209
Java Web Start 209
java.security.Policy object 403, 408
JCA (J2EE Connector Architecture) 57, 464
JDBC

data source provider 481
type 2 driver 482
type 4 driver 483

JMS 522
messaging services 248
objects 530

define 522
JMS clients

application clients 451
Message-Driven Bean 451

JMX 287
JMX administration 285
JNI 208

JSPs 109
JSR 115 403
junction

configuration 336

K
key configuration 20
key distribution center (KDC) 362
key manager 83
key store 111
key stores 74
KeyFile 112
KeyStore 230

L
launchClient 225
LDAP 14, 27, 76, 325

authentication
test 150

certificate filter 158
client 13
configuration 14, 149

ldap.sth 148
keystore 20
module trace 151
repositories 39
server 147
server certificate 20
test 19
test SSL 21
user registry 8, 10

test 19
users 14

ldap.prop 148
Lightweight Directory Access Protocol 325
Lightweight Directory Access Protocol (LDAP) 14,
22, 76
Lightweight Intranet Person Schema (LIPS) 12
Lightweight Third Party Authentication 9, 268
Lightweight Third Party Authentication (LTPA) 15,
51, 326, 366
LoadModule 111, 114, 149
local

operating system 52
registry 15

OS 26
OS user registry 8

test 26

556 WebSphere Application Server V6.1 Security Handbook

local OS
user registry 23

local replica 325
LocalOS 10
log on as 23
log on as a service 23
logical roles 134
login form 128
login module 89, 233
login process 235
login sequence 94
login-config 158
LoginContext 234
LoginModule 265
LoginModule interface 89
logout 163
lower administration 298
LTPA 9, 128, 268, 283

cache 401
cookie 308
token 396

LTPAToken 269
LtpaToken2 279
LTPAToken2Factory 284

M
manual policy propagation 418
mapping

administrator role to group 62
administrator role to user 61
CosNaming role to user 65

marker interfaces 268
master authorization database 316
master server DN 14
message layer authentication 200

options 202
message level security 431
message-driven beans 172
messaging

engine 249
sample application 530

method access control 180
method level delegation 190
method permissions 181
method-level delegation policies 196
MQ link 453, 528, 533
multi-phase negotiation 355
multiple profiles 501

mutual SSL 121, 379

N
NameServiceServerRoot 230
naming model 11
netstat 21
netstat reports 21
network identity 298
network information service 24
network security 490
new application login module 98
new test server 492
NIS 24
non-repudiation 436
non-secure HTTP 124

O
OAM 455
Object Authority Manager 455
Object Management Group 216, 289
Object Management Group (OMG) 51
Object Request Broker 216
Object Request Broker (ORB) 79
OMG 216, 289
operating system access control 489
ORB 216
ORB object 229
OrgContainer entity 42
OrgContainer.Delimit 42
outbound transport 201
out-of-box (OOBE) xv
overhead 432

P
PAM 85
pctLinux 502
pctWindows 502
pdadmin 303
PDLoginModule 326, 346
PDPermission 308, 346
performance 432
personal certificate 74, 152
PKCS12 152
pluggable application client 208
Pluggable Authentication Module 85
plug-in configuration 123
plug-in file 122

 Index 557

plugin-cfg.xml 123
policy context 405

identifier 405
identifier (contextID) 411

policy propagation 415
policy server 301, 423
policy store 303
POP 316, 318
port

443 112
POST method 136
primary administrative user 54
principal 95, 146
programmatic

login 233
client-side 236
server-side 173

security 102, 141, 197
sample 144

programmatic J2EE security 197
programming authentication 99
programming authorization 99
propagation login 267–268
propagation token 269, 280, 284
PropagationToken 281–282
property extension repository 44
protected 133
protected object policies 316, 318
protected object space 316
ProtectionDomain object 412
protocol 436
provider contract 408, 410
proxy LoginModule 88
public keys 118–119

Q
queue 250
queue destination

define 520

R
RACF 27
Rational Application Developer 33, 105, 129, 488
Rational ClearCase 488
Redbooks Web site 549

Contact us xix
registry master 13
registry replica 13

Relative Distinguished Name (RDN) 11, 42
Remote Method Invocation over the Internet In-
ter-ORB Protocol (RMI/IIOP) 51
request consumer 439
request generator 439
required privileges 23
res-auth 467
resource collection 134
resource name 137
resource reference 469
RMI/IIOP 199
RMI/IIOP authentication protocol 221
RMI/IIOP transport channel protection 204
RMI_INBOUND 272, 290
RMI_OUTBOUND 290
role link 135
role mapping 105–106
role name 134
RoleConfiguration 409
RoleConfiguration interface 326
RoleConfigurationFactory 409
roles 134
root authority 24
RSA authorization API 331
RSA SecurID token authentication server 331
rser registry

LDAP 10
Run-As

caller mode 186
delegation policy 186
mapping 105, 193
mode 186
mode mapping 172
role mapping 186
server 191

RunAs identity 212
RunAsRole 187
RunAsRole security role 187

S
sample application 5
sample configuration 5
Sarbanes-Oxley (SOX) Act 305
SAS 289
sas.client.props 220
scenario 4
Secure Association Service 289
Secure Authentication Service 9, 51

558 WebSphere Application Server V6.1 Security Handbook

secure client 227
secure domain 301
Secure Sockets Layer 110
Secure Sockets Layer (SSL) 49
secure thin client 233
securing connection 242
security 430

attribute 266
attribute propagation 292
authentication 9
aware 141
challenge 228
constraints 133

configuration 137
enterprise 429
identity 188
methods

sample 143
role

Web module 132
role reference 134
role references 172, 175
token 439
transport channel 447

security and authorization constraint 140
Security Attribute Service 199
security constraints 211
Security Workbench Development Environment for
Java (SWORD4J) 56
securityMechanism 483
security-role-ref 134, 175
self-signed certificates 74, 118

create 119
server creation wizard 493
server ORB 219
server perspective 491
server Status 491
server user identity 54
service context 217, 219
Service Integration Bus 248–249

integrating with MQ 453
security 253

Service Integration Bus (SIB) 76, 247
service principal name (SPN) 362
Service Provider Programming Interface (SPI) 39
service-oriented architecture (SOA) 453
Servlet

getRemoteUser() 142
getUserPrincipal() 142

isUserInRole() 142
servlet policy context identifier 405
servlet policy enforcement 407
servlet security 142
servlet security methods 142

sample code 143
servlets 109
session beans 171
Session Initiation Protocol (SIP) 76
Session Management Server (SMS) 303
setspn tool 362
SIB 76
signer certificates 74
Simple and Protected GSSAPI Negotiation Mecha-
nism (SPNEGO) xv
simple junctions 335
Simple Object Access Protocol (SOAP) 76
Simple WebSphere Authentication Mechanism
(SWAM) 9, 51, 326
single sign-on 128
single sign-on (SSO) 16, 51
SingleSignonToken 279
SIP 76
SMTP 447
snoop 125
snoop servlet 125
SOAP 76

binding 433
message security 433

SPNEGO protocol 332
spoofing 430
SSL 110–111, 124, 216

certificate 152
configuration 69, 111, 222, 242
entry 119
handshake 163
inbound channel 122
module 111
repertoire 118
settings 204
test 112
testing 124
Web container 121
Web server and WebSphere 118

SSLEnable 112
SSO 128
stand-alone

custom registry 8, 10
LDAP registry 14

 Index 559

Lightweight Directory Access Protocol (LDAP)
10

stateful security context 219
stateless security context 219
static content 110
static resources 136
static Web resources 110
step-up authentication 333
strong private key protection 154
subject 265
SubjectDN 158
supply 339
system capacity 432
system integration bus

define 517
system logins 98

T
TAI 308, 337, 354
TAIResult 355
tampering 431
test

LDAP 19
user registry 26

testing
client certificate 161
SSL 124

testing SSL 112
thin application client 208, 228

running 230
thin Java application client 238
timestamp 285
Tivoli Access Manager 266, 298, 305

for business integration 450
GSO database 470
policy server 470
principal 470
Trust Association Interceptor (TAI) 397

Tivoli Directory Server 12, 301
Tivoli global sign-on 308
token factory 283
token framework 268
tokens 266
topic

roles 252
space 250
space roles 259

trace 167

transport 123
chain 121
channel 110, 126
channel encryption 199
channel security 447
guarantee

confidential 140
integral 140
none 140

transport guarantee
Web module

transport guarantee 140
transport layer 134
Transport Layer Security (TLS) 447
transport level security 431
transport security 109, 456, 475

confidentiality 253
options 204

Trust Association Interceptor 308, 337, 354, 380
Trust Association Interceptor (TAI) 86, 354
trust manager 79
trust store 73
trusted connection 379
trusted relationship 354
trusted user 378
TrustStore 230

U
unauthenticated credential 219
unchecked 105, 182, 185–186
uniqueIdentifier 158
uniqueUserId 27
UNIX required privileges 24
unprotected methods 184
unsecure client 225
unsecure thin client 231
URI-based access control 306
URL

bindings 137
definition 138
patterns 133

use identity assigned to specific role 192
use identity of caller 192
use identity of EJB server 192
user 105
user account repository 52
user data constraint 134
user filter 20

560 WebSphere Application Server V6.1 Security Handbook

user ID map 20
user registries 8, 14
user registry 8, 114, 303

custom 8, 26
file-based 29
LDAP 8
local OS 8, 23

user repository 8
user role 135
user Run-As roles 106
user-defined objects 317
userDisplayName 27
UserRegistry interface 8, 26

method list 28
users/groups 498
userSecurityName 27

V
virtual host 112
Virtual Member Manager (VMM) xv, 50

W
WCInboundDefaultSecure 121
Web applications 109, 132

client certificate 157
module 129, 137

Web archive file 136
Web authenticator 9–10
Web browser security 111
Web client 9
Web clients 9
Web components 109
Web container 118, 126, 132

authentication 127
ORB 10
SSL 121
testing SSL 124

Web Deployment Descriptor 137
Web module 132, 514

authentication method 132
basic authentication 127
client certificate authentication 127
form-based authentication 127
form-based logout 131
security roles 132

Web objects 317
Web portal manager 303
Web proxy

authentication server 354
Web resources 133
Web security

options 147
Web server 124

.htaccess 117
authentication 113
authorization 116
basic authentication 114
certificate 387
client certificates 154
configuration 149
configuration files 148
definition 122
LDAP authentication 149
ldap.sth 148
plug-in file 122
security 111
SSL 118, 386

Web services
security 430

model 436
Web Services Interoperability Organization (WS-I)
xv, 448
web.xml 134, 405
WEB_INBOUND 272
WebRole 514
WebSEAL 295, 308

authentication 327
basic authentication 327, 339
certificate 387
client certificate-based authentication 329
form-based authentication 328
HTTP header authentication 332
integration 378
junctions 334
Kerberos authentication 332
LTPA 396
SPNEGO authentication 332
TAI 354
token authentication 331

webseald.conf 327
WebSphere

administration console 74, 83
Application Server 4

Toolkit 6.1 506
Application Server V6.0 51
JAAS 86
JACC 408

 Index 561

profiles 493
SSL 118, 121
test environment 491
test server

new profile 501
security 494

WebSphere Common Configuration Model (WCCM)
23
WebSphere MQ

access control list 455
configuration 536
direct communication 452
integration 452
messaging components 452
security 459

Windows required privileges 23
workspace security 488
WS-Authentication 437
WS-Federation 437
WSGUICallbackHandlerImpl 237
WS-I Basic Security Profile (BSP) 448
wsjaas_client.conf 234
WSLogin 97, 234
WS-Privacy 437
WS-SecureConversation 437
WS-Security 432

authentication 438
roadmap 436
specification 434
Web site 450

WSSecurityHelper 281
WSStdinCallbackHandlerImpl 237
WSSubject 88
WS-Trust 437

X
XML

encryption 433
Web site 450

signature 433
Web site 450

xtokenauth 331

562 WebSphere Application Server V6.1 Security Handbook

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

W
ebSphere Application Server

V6.1 Security Handbook

®

SG24-6316-01 ISBN 0738496707

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM WebSphere Application
Server V6.1 Security Handbook

J2EE application
server and
enterprise
application security

Additional security
components
including Tivoli
Access Manager

Sample code and
applications for
security examples

This IBM Redbooks publication is part of the IBM WebSphere V6.1
series. It focuses on security and related topics, as well as provides
technical details for designing and implementing secure solutions
with WebSphere. Written for IT Architects, IT Specialists, application
designers, application developers, application assemblers,
application deployers, and consultants, this book provides
information about designing, developing, and deploying secure
e-business applications using IBM WebSphere Application Server
V6.1. It discusses theory and presents proven exercises performed
in our lab by using sample applications.

Part 1 discusses security for the application server and its
components, including enterprise applications. It focuses on
administrative security and application security, which were
previously known as global security. It includes essential
information about how to secure Web and Enterprise JavaBeans
(EJB) applications and how to develop a Java client using security.

Part 2 introduces additional components from the enterprise
environment and discusses security beyond the application server.
External components include third-party security servers,
messaging clients and servers, and database servers.

Part 3 provides a short introduction to development environment
security. It includes guidelines and best practices that are applicable
to a secure development environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Part 1 Application server security
	Chapter 1. Introduction to this book
	1.1 A focus on security
	1.2 Scenario-based chapters
	1.3 Sample applications
	1.4 WebSphere Information Center

	Chapter 2. Configuring the user registry
	2.1 User registries and repositories
	2.2 Stand-alone LDAP registry
	2.2.1 Stand-alone LDAP registry for WebSphere Application Server V6.1
	2.2.2 Configuring the advanced LDAP user registry

	2.3 Local OS registry
	2.3.1 Configuring WebSphere Application Server V6.1
	2.3.2 Stand-alone custom registry

	2.4 Federated repository
	2.4.1 Connecting WebSphere Application Server to a federated repository
	2.4.2 Configuring supported entity types in a federated repository
	2.4.3 Configuring an entry mapping repository in a federated repository
	2.4.4 Configuring a property extension repository in a federated repository

	Chapter 3. Administrative security
	3.1 Enabling administrative security
	3.1.1 Main components of WebSphere security
	3.1.2 Security Configuration Wizard
	3.1.3 Other security properties
	3.1.4 Stopping the application server

	3.2 Disabling administrative security
	3.3 Administrative roles
	3.3.1 Mapping a user to an administrative role
	3.3.2 Mapping a group to an administrative role
	3.3.3 Fine-grained administrative security

	3.4 Naming service security: CosNaming roles
	3.4.1 Mapping a user or a group to a CosNaming role
	3.4.2 Applying CosNaming security: An example

	Chapter 4. SSL administration and configuration management
	4.1 Creating a new SSL key store entry
	4.2 Managing SSL certificates
	4.2.1 Expiring certificates
	4.2.2 Managing Web server and plug-in certificates

	4.3 Creating a new SSL configuration
	4.4 Additional SSL configuration attributes
	4.4.1 Federal Information Processing Standard
	4.4.2 Dynamic SSL configuration updates

	4.5 Trust managers
	4.5.1 Custom trust managers

	4.6 Key managers
	4.6.1 Custom key managers

	Chapter 5. JAAS for authentication in WebSphere Application Server
	5.1 The importance of JAAS
	5.2 JAAS in WebSphere
	5.3 Custom JAAS login in WebSphere
	5.3.1 Callback handler
	5.3.2 Login module
	5.3.3 Principal
	5.3.4 Configuration
	5.3.5 Viewing the sample JAAS module in action
	5.3.6 Programming authentication

	5.4 J2C authentication data

	Chapter 6. Application security
	6.1 Application security
	6.1.1 Enabling application security
	6.1.2 Testing application security
	6.1.3 Application considerations

	6.2 Deploying a secured enterprise application
	6.2.1 Role mapping during application installation
	6.2.2 Role mapping after installation

	Chapter 7. Securing a Web application
	7.1 Transport channel
	7.2 Securing the static content
	7.2.1 Securing the transport channel between the Web browser and Web server
	7.2.2 Authentication by using a Web server
	7.2.3 Authorization by uisng aWeb server

	7.3 Securing the Web server plug-in for WebSphere
	7.3.1 Securing the transport channel between the Web server and WebSphere
	7.3.2 Testing the secure connection

	7.4 Securing the Web container of the application server
	7.4.1 Securing the transport channel
	7.4.2 Authentication by using the Web container
	7.4.3 Authorization by using the Web container
	7.4.4 Programmatic security

	7.5 Additional transport security, authentication, and authorization options
	7.5.1 Configuring LDAP authentication with IBM HTTP Server
	7.5.2 Configuring SSL certificate-based client authentication for the IBM HTTP Server
	7.5.3 Configuring SSL certificate-based client authentication for WebSphere Application Server

	Chapter 8. Securing an EJB application
	8.1 Programmatic login (server-side) using JAAS
	8.2 Declarative J2EE security
	8.2.1 Defining J2EE security roles for EJB modules
	8.2.2 Security role references
	8.2.3 Configuring method access control
	8.2.4 Enterprise JavaBeans Run-As delegation policy
	8.2.5 Bean-level delegation
	8.2.6 Method-level delegation
	8.2.7 Run-as mapping

	8.3 Programmatic J2EE security
	8.4 EJB container access security
	8.4.1 CSIV2 and Secure Authentication Service
	8.4.2 Container authentication
	8.4.3 RMI/IIOP transport channel protection

	Chapter 9. Client security
	9.1 Application clients in WebSphere
	9.1.1 Developing and securing the J2EE application client
	9.1.2 Deploying an application client by using the Java Web Start tool
	9.1.3 Thin application client
	9.1.4 Itsohello client example

	9.2 Java client authentication protocol
	9.2.1 CSIV2 Security Attribute Service
	9.2.2 Authentication process

	9.3 Java client configuration
	9.4 J2EE application client
	9.4.1 Itsohello unsecure J2EE client
	9.4.2 Itsohello secure J2EE client

	9.5 Thin application client
	9.5.1 Running a thin application client
	9.5.2 Itsohello unsecure thin client
	9.5.3 Itsohello secure thin client

	9.6 Programmatic login
	9.6.1 JAAS login module in WebSphere
	9.6.2 Programmatic login process
	9.6.3 Client-side programmatic login using JAAS

	9.7 Securing the connection
	9.7.1 IIOP over SSL: A thin client example

	Chapter 10. Securing the service integration bus
	10.1 Messaging components of the service integration bus
	10.1.1 Service integration bus
	10.1.2 Messaging engine
	10.1.3 Foreign bus
	10.1.4 Bus destination

	10.2 An overview of service integration bus security
	10.2.1 Authentication
	10.2.2 Authorization
	10.2.3 Transport security: Confidentiality

	10.3 Administering service integration bus security
	10.3.1 Administering the Bus Connector role in the Administrative Console
	10.3.2 Administering the Bus Connector role by using the wsadmin tool

	10.4 Administering destination security
	10.4.1 Default roles for bus destinations
	10.4.2 Destination specific roles

	10.5 Administering topic space root roles and topic roles

	Part 2 Extending security beyond the application server
	Chapter 11. Security attribute propagation
	11.1 Initial Login versus Propagation Login
	11.2 Token framework
	11.3 Custom implementation of tokens
	11.3.1 Writing custom implementations of tokens
	11.3.2 Common token functionality
	11.3.3 Interaction of the login module and the token modules
	11.3.4 Authorization token
	11.3.5 Single Sign-On token
	11.3.6 Propagation token
	11.3.7 Authentication token
	11.3.8 Changing the token factory associated with the default token

	11.4 Horizontal propagation
	11.4.1 Horizontal propagation using Dynacache
	11.4.2 Horizontal propagation using JMX

	11.5 Downstream propagation
	11.5.1 Downstream propagation scenario

	11.6 Enabling security attribute propagation
	11.6.1 Configuring security attribute propagation for horizontal propagation
	11.6.2 Enabling downstream propagation

	11.7 Advantages of security attribute propagation

	Chapter 12. Securing a WebSphere application using Tivoli Access Manager
	12.1 Introduction to Tivoli Access Manager
	12.1.1 Benefits
	12.1.2 When to use Tivoli Access Manager for e-Business in conjunction with WebSphere Application Server
	12.1.3 Reverse proxies for authentication
	12.1.4 Access Manager Secure Domain
	12.1.5 Tivoli Access Manager auditing
	12.1.6 Access Manager and WebSphere integration
	12.1.7 Reverse proxy authenticators and the extended WebSphere trust domain
	12.1.8 Challenges with reverse proxy authenticators

	12.2 IBM Tivoli Access Manager security model
	12.2.1 User registry
	12.2.2 Master authorization (policy) database

	12.3 Summary of Access Manager deployment for integration with WebSphere Application Server
	12.4 Lab environment
	12.5 The role of Tivoli Access Manager inside WebSphere Application Server V6.1
	12.5.1 Embedded Tivoli Access Manager client architecture
	12.5.2 High-level components of the integration

	12.6 WebSEAL authentication
	12.6.1 Basic authentication
	12.6.2 Form-based authentication
	12.6.3 Client certificate-based authentication
	12.6.4 Token authentication
	12.6.5 HTTP header authentication
	12.6.6 Kerberos and SPNEGO authentication
	12.6.7 External authentication interface
	12.6.8 Combining authentication types using step-up authentication

	12.7 WebSEAL junctions
	12.7.1 Simple junctions
	12.7.2 Trust Association Interceptors and LTPA Junctions
	12.7.3 Single sign-on junctions

	12.8 Integrating IBM WebSphere Application Server and Tivoli Access Manager
	12.8.1 aznAPI
	12.8.2 Tivoli Access Manager and J2EE security
	12.8.3 Embedded Tivoli Access Manager in WebSphere Application Server V6.1

	Chapter 13. Trust Association Interceptors and third-party software integration
	13.1 Trust Association Interceptor
	13.1.1 The relatively new, enhanced TAI interface

	13.2 Windows desktop single sign-on using SPNEGO
	13.2.1 Lab scenario
	13.2.2 Configuring the WebSphere Application Server environment to use SPNEGO
	13.2.3 Troubleshooting SPNEGO environments

	13.3 IBM WebSphere Application Server and WebSEAL integration
	13.3.1 Integration options
	13.3.2 Configuration for the Trust Association Interceptor approach
	13.3.3 Configuration for the LTPA approach
	13.3.4 Security considerations

	Chapter 14. Externalizing authorization with JACC
	14.1 Deployment tools contract
	14.2 Container contract
	14.3 Provider contract
	14.4 Why JACC
	14.5 JACC in WebSphere Application Server V6.1
	14.5.1 JACC access decisions in WebSphere Application Server V6.1
	14.5.2 JACC policy context identifiers in WebSphere Application Server V6.1
	14.5.3 WebSphere extensions to the JACC specification
	14.5.4 JACC policy propagation in WebSphere Application Server V6.1
	14.5.5 Manual policy propagation
	14.5.6 Dynamic module updates in WebSphere Application Server V6.1 for JACC

	14.6 Integrating Tivoli Access Manager as an external JACC provider
	14.6.1 Disabling the embedded Tivoli Access Manager
	14.6.2 Reconfiguring the JACC provider by using wsadmin

	14.7 Sample application for JACC

	Chapter 15. Web services security
	15.1 Web services security exposures
	15.2 WS-Security
	15.2.1 WS-Security concepts
	15.2.2 Evolution of the WS-Security specification
	15.2.3 WS-Security roadmap
	15.2.4 Example of WS-Security
	15.2.5 Development of WS-Security
	15.2.6 Hardware cryptographic device support for WS-Security

	15.3 Transport-level security
	15.3.1 SOAP over HTTP transport-level security

	15.4 WS-I Basic Security Profile
	15.5 Summary
	15.6 More information

	Chapter 16. Securing access to WebSphere MQ
	16.1 Application server and WebSphere MQ
	16.1.1 WebSphere MQ messaging components
	16.1.2 Authentication
	16.1.3 Authorization
	16.1.4 Transport security
	16.1.5 Administering foreign service integration bus security
	16.1.6 Administering WebSphere MQ security

	16.2 Sample application
	16.3 Additional information

	Chapter 17. J2EE Connector security
	17.1 The J2EE Connector Architecture
	17.1.1 Connector security architecture

	17.2 Securing the J2EE Connector
	17.2.1 Component-managed authentication
	17.2.2 Container-managed authentication

	17.3 JCA authentication mechanism
	17.3.1 Role-based authorization
	17.3.2 Topic security
	17.3.3 Messaging security
	17.3.4 Enable bus security
	17.3.5 Inter-engine authentication alias

	17.4 Mediations security
	17.5 Transport security in service integration bus
	17.5.1 Destination security

	17.6 Securing Web services by using service integration technologies
	17.7 Additional information

	Chapter 18. Securing the database connection
	18.1 Securing the connection
	18.1.1 JDBC type 2 driver
	18.1.2 JDBC type 4 driver

	18.2 Securing access to database data

	Part 3 Development environment
	Chapter 19. Development environment security
	19.1 Rational Application Developer
	19.1.1 Securing the workspace

	19.2 WebSphere test environment
	19.2.1 Creating a new test server
	19.2.2 Enabling security for the WebSphere Test Server V6.1

	19.3 Administering and configuring the WebSphere test servers
	19.4 Enterprise application security
	19.4.1 Configuring enterprise application security during the development phase
	19.4.2 JAAS entries in the deployment descriptor

	19.5 Creating a new profile for the WebSphere test server
	19.5.1 Advantages of multiple profiles
	19.5.2 Creating a new profile

	19.6 Application Server Toolkit 6.1

	Appendix A. Additional configurations
	Sample application for client security
	Installing and testing Itsohello application

	Sample application for testing JACC
	Web module
	EJB module
	Deploying the sample application
	Verifying the installation
	Testing the application installation

	Configuring the service integration bus and default messaging provider
	Creating a service integration bus
	Adding an application server or server cluster to the bus
	Defining a queue destination on the bus
	Defining a JMS connection factory
	Defining a JMS queue

	Configuring WebSphere MQ as a foreign bus
	Defining a foreign bus
	Defining an MQ link
	Defining a foreign destination
	Defining a JMS queue for a foreign destination

	Sample application for messaging
	Configuring the application server
	Optional: Configuring WebSphere MQ
	Installing the sample application
	Testing the sample application

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	developerWorks
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

