

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page v.

 Second Edition (December 2017)

 This edition applies to IBM SDK for Node.js.

 Notices

 This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

 The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

 Global Business Services®

 IBM®

 IBM Watson®

 Redbooks®

 Redbooks (logo)[image:]®

 Watson™

 The following terms are trademarks of other companies:

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 This IBM® Redbooks® publication explains how to create various applications based on Node.js, and deploy and run them on IBM Cloud. This book includes the following exercises:

 •Develop a Hello World application in Node.js on IBM Cloud

 •Use asynchronous callback to call an external service

 •Create an Express application

 •Build a rich front-end application by using React and ES6

 During these exercises, you will perform these tasks:

 •Create an IBM SDK for Node.js application.

 •Write your first Node.js application.

 •Deploy an IBM SDK for Node.js application on an IBM Cloud account.

 •Create a Node.js module and use it in your code.

 •Understand asynchronous callbacks and know how to use it to call an external service.

 •Understand IBM Watson™ Language Translator service.

 •Create a Hello World Express application.

 •Create a simple HTML view for your application.

 •Understand Express routing.

 •Use third-party modules in Node.js.

 •Understand IBM Watson® Natural Language Understanding service.

 •Use a Git repository on IBM Cloud DevOps services.

 •Understand Delivery Pipeline.

 •Understand how to clone an IBM Cloud application.

 •Use React to create interactive web pages.

 •Understand the following concepts of ES6: Classes, arrow functions, and promises.

 This book is for beginner and experienced developers who want to start coding Node.js applications on IBM Cloud.

 Authors

 This book was produced by a team of specialists from around the world working at the International Technical Support Organization, Poughkeepsie Center.

 Ahmed Azraq is a Cloud Solution Leader in IBM Egypt. He has recently joined the Global IBM Cloud Services and Solutioning, East Hub organization. His primary responsibility is to help clients across the Middle East and Africa (MEA) and Asia Pacific to adopt IBM Cloud and IBM Watson. Since joining IBM in 2012, Ahmed has worked as a technical team leader, and architect in the IBM MEA Client Innovation Center, which is part of IBM Global Business Services® (GBS). Ahmed has several professional certifications, including Open Group IT Specialist, IBM Certified Solution Advisor - Cloud Reference Architecture, IBM Certified Application Developer - Cloud Platform, Java EE, IBM Business Process Manager, Agile development process, and IBM Design Thinking. Ahmed has delivered training on IBM Cloud, DevOps, hybrid cloud Integration, Node.js, and Watson APIs to IBM clients, IBM Business Partners, university students, and professors around the world. He is the recipient of several awards, including Eminence and Excellence Award in the IBM Watson worldwide competition Cognitive Build, the IBM Service Excellence Award for showing excellent client value behaviors, and knowledge-sharing award.

 Ahmed has authored several IBM Redbooks publications, including Building Cognitive Applications with IBM Watson Services: Volume 2 Conversation, SG24-8394, and Essentials of Cloud Application Development on IBM Bluemix, SG24-83742.

 Mohamed Ewies is a Certified Expert IT Specialist and IBM Certified Application Developer for Cloud Platform. He has 12 years of experience in developing enterprise applications in IBM Application Middleware Software. He worked as an Application Architect and Technical Team Lead on several large-scale projects. His technical experience includes Java EE, Web/Portal, Cloud, and Application Integration development. He worked on the architecture and implementation of several web applications and proofs of concept on IBM Cloud.

 Ahmed S. Hassan has over 11 years experience in information technology. He worked as software developer and integration engineer for many projects in different industries, including electronic design automation, electronic payment, telecommunications, and travel and transportation. Ahmed is an IBM Certified Cloud Application Developer.

 The project that produced this publication was managed by Marcela Adan, IBM Redbooks Project Leader, ITSO.

 Thanks to the following author of the previous edition of this book:

 Ahmed E. Marzouk
IBM Client Innovation Center, IBM Egypt

 Thanks to the following people for their contributions to this project:

 Andrea Emliani
Ossama Hakim
Juan Pablo Napoli
Denny Punnoose
IBM Skills Academy

 Aya A. Fathy
Global Business Services, IBM Egypt

 Khaled Sallam
Global Business Services, IBM Egypt

 Uzma Siddiqui
IBM Hybrid Cloud, IBM US

 Arlemi Turpault
IBM Digital Business Group, IBM UK

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Developing a Hello World Node.js app on IBM Cloud

 IBM SDK for Node.js provides a stand-alone JavaScript runtime and server-side JavaScript solution for IBM platforms. It provides a high-performance, highly scalable, event-driven environment with non-blocking I/O that is programmed with the familiar JavaScript programming language. The IBM SDK for Node.js is based on the Node.js open source project.

 The Eclipse Orion Web IDE is a web-based, integrated development environment (IDE) where you can create, edit, run, debug, and perform source-control tasks. You can seamlessly move from editing to running, submitting, and deploying.

 In this chapter, you install the IBM SDK for Node.js on an IBM Cloud account. You develop a Node.js-based server application (by using the Eclipse Orion Web IDE) that responds to web browser requests.

 This chapter contains the following topics:

 •Getting started

 •Architecture

 •Step-by-step implementation

 •Exercise review

 1.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 1.1.1 Objectives

 Web developers write JavaScript applications to add interactivity to client-side web applications. As an interpreted scripting language, developers do not need to use compilers to write applications. The syntax of the programming language is simple enough for web developers with little programming experience to write simple applications.

 IBM SDK for Node.js uses the JavaScript programming language for server-side applications. Instead of running scripts in a web browser, the node application interprets and runs JavaScript applications on a server. Node.js works on an event-driven model, which means it responds to events through callback functions that Node.js calls when an operation completes.

 By completing the steps in this chapter, you install the IBM SDK for Node.js on an IBM Cloud account. You develop a server application that responds to web browser requests.

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create an IBM SDK for Node.js application.

 •Write your first Node.js application.

 •Deploy an IBM SDK for Node.js application on an IBM Cloud account.

 •Create a Node.js module and use it in your code.

 1.1.2 Prerequisites

 Before you start, be sure that you meet these prerequisites:

 •A valid email account

 •A workstation that has these components:

  –	Internet access

  –	Web browser: Google Chrome or Mozilla Firefox

  –	Operating system: Linux, Mac OS, or Microsoft Windows

 1.1.3 Expected results

 The expected result of this exercise is to have a running Node.js application on IBM Cloud, as shown in Figure 1-1.

 [image:]

 Figure 1-1 Expected results: Node.js app

 This application is developed by using Eclipse Orion Web IDE. Eclipse Orion Web IDE is a web-based IDE where you can create, edit, run, debug, and perform source-control tasks.

 The Web IDE is part of the IBM Cloud continuous delivery toolchains. Figure 1-2 shows the code.

 [image:]

 Figure 1-2 Expected results: Node.js code

 The application’s scope is to show a Hello NodeJS! message in the web browser for the user. It will also show the current system date by using a custom Node.js module that you will develop in this exercise. The output is shown in Figure 1-3.

 [image:]

 Figure 1-3 Expected results: Hello NodeJS! message and system date and time

 1.2 Architecture

 The architecture of the Node.js Hello World app is shown in Figure 1-4.

 [image:]

 Figure 1-4 Architecture

 The following steps explain the sequence of interactions between the components that are used in the exercise:

 1.	The user accesses the web application in a web browser through a URL provided by IBM Cloud.

 2.	The web browser sends the HTTP request to the deployed Node.js app in IBM Cloud.

 3.	The Node.js app listens to the incoming request and responds with a Hello World message that includes the current date and time.

 4.	The web browser shows the received message to the user.

 1.3 Step-by-step implementation

 This section describes how to implement the Hello World Node.js app.

 1.3.1 Set up your IBM Cloud account

 Register with IBM Cloud by providing a valid, unique email address. Your email address acts as your user name for IBM Cloud, and you provide a password of your choice. When you sign up to IBM Cloud, you are prompted for your demographic information (such as your name and company). An email is sent to the email account that you provide in the registration to confirm that your email account is valid and active.

 Complete these steps to set up your IBM Cloud account:

 1.	Open the IBM Cloud console at http://bluemix.net.

 2.	Click Create a free account. You are presented with a page similar to Figure 1-5.

 [image:]

 Figure 1-5 IBM Cloud Sign up pane

 	
 Important note: Select United States for Country or Region. The exercises in this course were developed and tested in the IBM Cloud US South region. You must select United States to ensure that you create the resources in the US South region to be consistent with the services that are used during course development. IBM Cloud assigns you a region that is nearest to the country or region that you specify in your registration form.

 If you are physically located in a country that is closer to an IBM Cloud region other than the US South, the closest region might be selected when you log in. Every time you log in to IBM Cloud, check that the US South region was selected and, if not, switch the region to US South.

 3.	Complete the form with your personal information. Note that you must use a valid email address for this course because IBM Cloud sends you an email to verify your account.

 4.	Click Create Account. You are redirected to a page that looks similar to Figure 1-6. Close the page.

 [image:]

 Figure 1-6 Email sent confirmation page

 5.	Check your email at the email account that you used to sign up to IBM Cloud. You will receive an email similar to the one shown in Figure 1-7.

 [image:]

 Figure 1-7 Confirm your account

 6.	Click Confirm Account. A page opens that explains that you have now activated your IBM Cloud account.

 7.	Close this browser or browser tab. You may proceed to the next step.

 The page that confirms that your account was activated also includes a Log in link. Instead of following this Log in link, open a new browser window to experience the regular login to IBM Cloud.

 1.3.2 Log in to your IBM Cloud account

 Log in to your IBM Cloud account by completing these steps:

 1.	Open your web browser, enter the following web address, and press Enter:

 https://bluemix.net

 2.	The IBM Cloud login page opens (Example 1-8). Click Log in and provide your authentication credentials.

 [image:]

 Figure 1-8 IBM Cloud login

 1.3.3 Create the Node.js application on IBM Cloud

 Create the Node.js app by using the SDK for Node.js runtime on IBM Cloud by completing these steps:

 1.	In the IBM Cloud Dashboard, click Create resource (Figure 1-9).

 [image:]

 Figure 1-9 Creating the application

 2.	The IBM Cloud Catalog page opens. It lists the infrastructure and platform resources that can be created in IBM Cloud. Scroll down to the Cloud Foundry Apps section under Platform and click SDK for Node.js (Figure 1-10).

 [image:]

 Figure 1-10 IBM Cloud catalog

 3.	In the App name field, enter vy102-XXX-nodejs. Replace XXX by three random characters that become your unique key (Figure 1-11). You will be using this unique key in the naming convention of this exercise.

 The Host name field is automatically populated with the same value as the app name.

 Keep the default values for the other fields.

 In the Pricing Plans section, select 128 MB.

 	
 Note: If you are physically located in a country that is closer to an IBM Cloud region different from the US South, the closest region might be selected when you log in. Every time you log in to IBM Cloud, check that the US South region was selected and, if not, switch the region to US South.

 Click Create.

 [image:]

 Figure 1-11 Creating the Node.js app

 4.	The Getting started page for the created application opens (Figure 1-12). The status for vy102-XXX-nodejs is shown as Starting until the application runs. Wait until the status changes to This app is awake (for IBM Cloud Lite accounts) or Running (for non-IBM Lite accounts).

 [image:]

 Figure 1-12 Created Node.js App

 1.3.4 Enable continuous delivery by using toolchain

 The Getting started page of your app shows instructions for accessing your app through the command-line interface (CLI). However, in this exercise, you use continuous delivery.

 Enable continuous delivery for the Node.js app by completing these steps:

 1.	Click Overview on the left pane, scroll down to the Continuous delivery tile, and then click Enable (Figure 1-13).

 [image:]

 Figure 1-13 Enabling continuous delivery

 2.	A new Continuous Delivery Toolchain tab opens. This toolchain includes tools to develop and deploy the application.

 The Toolchain Name field is automatically populated. Keep the default values for the Select Region and Choose an organization fields (Figure 1-14).

 [image:]

 Figure 1-14 Toolchain page

 Scroll down to see three main icons (Figure 1-15), which are described later:

  –	Git Repos and Issue Tracking.

  –	Eclipse Orion Web IDE.

  –	Delivery Pipeline.

 The Git Repos and Issue Tracking icon is selected by default.

 [image:]

 Figure 1-15 Three primary icons: Git Repos and Issue Tracking is selected by default

 The Repository type field menu lists options to start from your code base:

 New	Start a new application.

 Fork	Start from a certain existing repository (you specify its URL), and then have a separate stream of the same repository.

 Clone	Clone an existing repository to create a new one.

 Existing	Link to an existing repository and continue working on it.

 3.	The default selection is Clone. For this exercise, select New, so that you can start your application from scratch.

 4.	For the other fields, keep their default values, then click Create.

 5.	A new page opens, showing the three main phases (Figure 1-16). A toolchain is a set of tool integrations that support development, deployment, and operations tasks. The UI to create a new toolchain groups the tools into the following phases:

 THINK	This phase is for planning the application by creating bugs, tasks, or ideas by using the Issue Tracker, which is part of the Git repository.

 CODE	This phase is for the implementation of the application by providing a GIT repository as source code management system, and a Web IDE (Eclipse Orion) to edit your code online. In the repository, you can specify whether to clone a repository or start from scratch by selecting New in the repository type.

 DELIVER	This phase is for configuring the delivery pipeline. It allows you to specify automatic build, deployment, and testing of your code after a developer pushes new code to the Git repository.

 [image:]

 Figure 1-16 THINK, CODE, and DELIVER

 1.3.5 Create a Hello World Node.js server

 The following steps describe how to write Node.js code from Eclipse Orion Web IDE, and how to link this code to the Node.js app on IBM Cloud that you created in the previous sections:

 1.	On the Toolchain page, click the Eclipse Orion Web IDE icon (Figure 1-16 on page 13).

 2.	The page now shows the generated Node.js project through the Eclipse Orion Web IDE (Figure 1-17).

 The Eclipse Orion Web IDE is a browser-based development environment where you develop for the web. You can develop in JavaScript, HTML, and CSS with the help of content-assist, code-completion, and error-checking.

 The left side of the current page shows the project structure. Currently, no Node.js files are available. In the next steps, you create these files one by one.

 [image:]

 Figure 1-17 Eclipse Orion Web IDE

 3.	Right-click the root of the project (named vy102-XXX-nodejs) from the project structure on the left, and then select New → File (Figure 1-18).

 [image:]

 Figure 1-18 Creating a file

 4.	A text field is displayed (Figure 1-19). Type manifest.yml and then press Enter.

 [image:]

 Figure 1-19 Creating the manifest.yml file

 The manifest.yml file is now created (Figure 1-20).

 [image:]

 Figure 1-20 Viewing the manifest.yml file

 The manifest.yml file contains information about the deployment of the application to IBM Cloud.

 Add the code snippet from Example 1-1 to manifest.yml.

 Example 1-1 Code snippet: Application details

 [image:]

 applications:

 - path: .

 memory: 256M

 instances: 1

 domain: mybluemix.net

 name: vy102-XXX-nodejs

 host: vy102-XXX-nodejs

 disk_quota: 1024M

 [image:]

 	
 Note: Replace the XXX with your unique key (three random characters) that you chose in step 3 on page 9 to give a unique name to your Node.js app and host.

 Table 1-1 explains the meaning of each attribute in the manifest.yml file.

 Table 1-1 manifest.yml file attributes

 	
 Attribute

 	
 Description

 	
 path

 	
 Indicates to Cloud Foundry the directory where the application is located.

 	
 memory

 	
 Specifies the memory limit for all instances of the application.

 	
 instances

 	
 Specifies the number of app instances that are needed for the application.

 A value of one instance is sufficient for this exercise.

 	
 domain

 	
 The Cloud Foundry domain to which you are deploying the application.

 	
 name

 	
 The name of the application that you specified when you created the Cloud Foundry app in IBM Cloud.

 	
 host

 	
 The subdomain where the application is available.

 	
 disk_quota

 	
 Specifies the allocation amount of disk space for the app instance.

 5.	If required, change the domain based on your IBM Cloud region as listed in Table 1-2.

 	
 Note: If you followed the instructions for this exercise, you should be in the US South region.

 Table 1-2 IBM Cloud regions and domains

 	
 Region

 	
 Domain

 	
 US South

 	
 mybluemix.net

 	
 United Kingdom

 	
 eu-gb.mybluemix.net

 	
 Sydney

 	
 syd.mybluemix.net

 	
 Germany

 	
 eu-de.mybluemix.net

 6.	Save the file by clicking File → Save.

 7.	Right-click the root of the project (named vy102-XXX-nodejs), select New → File, name the file package.json, and then press Enter.

 The package.json file holds various metadata relevant to the project. For example, in Example 1-2, the “start” field specifies app.js, which is the starting point (entry JS file) for this application. The package.json file also specifies the dependencies on other Node.js modules.

 The package.json file is used by node package manager (NPM), which is the default package manager for the JavaScript runtime environment, Node.js.

 NPM provides two main functions:

  –	Online repositories for Node.js packages/modules, which are searchable at the
Node.js website.

  –	A command-line utility to install Node.js packages, and perform version management and dependency management of Node.js packages.

 NPM accesses the package.json file to perform tasks such as registering the application by using the name field in the package.json file, making sure the dependencies in the package.json file are available in the Node.js online repository with the specified versions, and so on.

 Insert the code snippet from Example 1-2 in the package.json file.

 Example 1-2 Code snippet for package.json file

 [image:]

 {

 "name": "NodejsStarterApp",

 "version": "0.0.1",

 "description": "A Hello World NodeJS sample",

 "scripts": {

 		"start": "node app.js"

 	}

 }

 [image:]

 The main attributes of the package.json file are described in Table 1-3.

 Table 1-3 Main attributes

 	
 Attribute

 	
 Description

 	
 name

 	
 The name of your node application. The name and version together form an identifier that is assumed to be completely unique.

 	
 version

 	
 The version of the current application. The version must always be in the form of n.n.n (that is, 1.0 is not an allowed value).

 	
 description

 	
 A simple description about the application.

 	
 scripts

 	
 A dictionary property containing script commands that are run at various times in the lifecycle of your package. The key is the lifecycle event, and the value is the command to run at that point. In this case, the “start” event is needed to refer to the node app.js command.

 Save the file by clicking File → Save.

 8.	Create a file and name it app.js. This is the entry JavaScript file for your application.

 9.	Insert the line from Example 1-3 into the app.js file.

 Example 1-3 Add variable

 [image:]

 var http = require("http");

 [image:]

 Figure 1-21 shows the variable in IBM Cloud DevOps.

 [image:]

 Figure 1-21 The app.js file: Importing the HTTP module

 The require statement is used to import node modules that are managed by NPM.

 The name of the built-in module, http, is managed by NPM. This module is mainly used to allow Node.js to transfer data over the Hypertext Transfer Protocol (HTTP).

 10.	Enter the code snippet from Example 1-4 to create the server. This server is expected to handle the HTTP requests coming from the client.

 Example 1-4 Code snippet: Creating the server

 [image:]

 // Read the port from the underlying environment.

 // If not exist, use the default port: 8080

 var port = process.env.VCAP_APP_PORT || 8080;

 // Create the server and listen to requests on the specified port.

 http.createServer(function (request, response) {

 	

 }).listen(port);

 [image:]

 Your app.js file, which now looks like Figure 1-22, shows the createServer function.

 [image:]

 Figure 1-22 The createServer function

 As shown, the HTTP module has a createServer callback function, which is responsible for creating a server. This server provides a callback that receives two parameters:

  –	request: This object contains the HTTP request details from the client. You should be able to read parameters from this request to use in your application.

  –	response: This object is created by the HTTP module and you add the response details to it. Then, the HTTP module sends the response object back to the client as an HTTP response to the original HTTP request from the client.

 The server listens to a port variable. The port variable is set by the following value:

 process.env.VCAP_APP_PORT

 The process.env property returns an object that contains the user’s environment. In this case, it contains properties related to the deployed application and its underlying IBM Cloud environment.

 The process.env.VCAP_APP_PORT port value is provided by IBM Cloud automatically when you create the project.

 If the process.env.VCAP_APP_PORT is null for some reason (this can happen if you run this application outside the IBM Cloud), then the port variable is set to 8080 (port 8080 is the default port for Node.js).

 11.	Inside the function of the createServer, add the code snippet from Example 1-5.

 Example 1-5 Code inside createServer function

 [image:]

 // Set the content type of the response

 response.writeHead(200, {'Content-Type': 'text/plain'});

 [image:]

 This line has the response’s header details:

  –	Status code: Identifies whether the request was a success, a bad request, a forbidden request, and so on. The code for success is 200.

  –	Content type: Identifies the type of content returned in the body of the response. The content type can be text/plain, text/html, and other types. In this scenario, content type is set as text/plain.

 12.	Add the code snippet from Example 1-6 to the end of the createServer function.

 Example 1-6 Code snippet: Response - Hello NodeJS

 [image:]

 // Write a simple Hello World message,

 // which will be shown in the user's web browser

 response.end('Hello NodeJS!');

 [image:]

 The end function is used to add the text passed as an argument to the body of the response.

 The app.js file now looks like the one in Figure 1-23, showing the added response.

 [image:]

 Figure 1-23 The app.js file: Added response

 Save the file by clicking File → Save.

 13.	In the server toolbar, select Create new launch configuration from the drop-down list and click the “+” button to display the Edit Launch Configuration window. If you do not have the Create new launch configuration option, skip this step.

 In the Edit Launch Configuration window, ensure that the Organization is set to your email address, Space is set to dev, and click Save.

 14.	Now, you can click the play button (Deploy the App from the Workspace), highlighted in Figure 1-23. Clicking this button deploys the application to IBM Cloud.

 You might receive a notification warning you that your application will be redeployed. Click OK to confirm.

 The deployment status indicates that deployment is in progress (Figure 1-24).

 [image:]

 Figure 1-24 Pressing the Deploy the App from the Workspace button

 15.	After the deployment is complete, click Open the Deployed App (Figure 1-25).

 	
 Note: If you receive an error message about a timeout, refresh the page.

 [image:]

 Figure 1-25 Opening the deployed app

 A new tab opens and displays the Hello NodeJS! message.

 1.3.6 Add a module to the Node.js application

 In this section, you add a Node.js module to your application.

 A module encapsulates related code into a single unit of code. Creating a module means moving the related functions into one file. This point is illustrated next with an example involving an application that is built with Node.js.

 Several modules are built in Node.js. For example, the HTTP module is a built-in module. The following steps show how to create your own custom module:

 1.	Close the Running Application tab to return to Eclipse Orion.

 2.	Right-click the vy102-XXX-nodejs folder, and then select New → Folder (Figure 1-26).

 [image:]

 Figure 1-26 Creating a folder

 3.	Name the new folder currentDate.

 4.	In the currentDate folder, create a file named package.json.

 5.	In this package.json file, add the code snippet from Example 1-7.

 Example 1-7 Code snippet: Add currentDate

 [image:]

 {

 "name": "currentDate",

 "main": "./lib/currentDate"

 }

 [image:]

 The results are shown in Figure 1-27.

 The figure shows that the new package.json file represents the new module:

  –	It has the usual name attribute and another attribute named main.

  –	This main attribute has the path of the JS file that contains the code of this module.

  –	The value of the main attribute is "./lib/currentDate". You need to create a currentDate.js file inside the lib folder, which you do in the next steps.

 Save the file by clicking File → Save.

 [image:]

 Figure 1-27 The currentDate module in the package.json file

 6.	In the currentDate folder, create a folder named lib.

 7.	In the lib folder, create a new file named currentDate.js. The result is shown in Figure 1-28.

 [image:]

 Figure 1-28 The currentDate module in the currentDate.js file

 8.	In the currentDate.js file, enter the code snippet from Example 1-8.

 Example 1-8 Code snippet: Export current date time

 [image:]

 exports.currentDateTime = function() {

 return Date();

 };

 [image:]

 This new currentDateTime function simply returns the current date by using Date().

 This function is added to a variable named exports, which is used for exposing the function so it can be used by other modules in the system. It is a special object, which by default is included in every JS file in the Node.js application.

 Your file now looks like the one shown in Figure 1-29.

 [image:]

 Figure 1-29 The currentDate module: Exporting the currentDateTime function

 Save the file by clicking File → Save.

 9.	Open the app.js file and find the line that is shown in Example 1-9.

 Example 1-9 Set variable http

 [image:]

 var http = require("http");

 [image:]

 Below that line, add the line from Example 1-10.

 Example 1-10 Set variable dateModule

 [image:]

 var dateModule = require('./currentDate');

 [image:]

 This line imports the currentDate, which you just created, to your app.js file.

 	
 Note: In the line, the period and forward slash (./) characters indicate that the currentDate module exists in the same folder as the folder that contains this app.js file.

 10.	Find the lines that are shown in Example 1-11.

 Example 1-11 Write Hello world message

 [image:]

 / Write a simple Hello World message,

 // which will be shown in the user's web browser

 response.end('Hello NodeJS!');

 [image:]

 Replace those lines with the lines from Example 1-12.

 Example 1-12 Lines to use

 [image:]

 // Write a simple Hello World message appended with the current date

 response.end('Hello NodeJS! The time now is: ' + dateModule.currentDateTime());

 [image:]

 The result is shown in Figure 1-30.

 [image:]

 Figure 1-30 Using the currentDate module in the app.js file

 All changes are automatically saved in Eclipse Orion. If the changes are not automatically saved or if you want to force a save, select File → Save.

 To deploy, click the play button (Deploy the App from the Workspace), as shown in Figure 1-31. You might receive a notification warning you that your application will be redeployed. Click OK to confirm.

 [image:]

 Figure 1-31 Deploying the application that is using the currentDate module

 11.	After deployment is complete, open the deployed application by clicking Open the Deployed App (Figure 1-32).

 [image:]

 Figure 1-32 Opening the deployed application that is using the currentDate module

 Your web browser now opens and displays the result (Figure 1-33).

 [image:]

 Figure 1-33 Results

 1.3.7 Stop the application

 IBM Cloud Lite account provides you with 256 MB of application memory for Cloud Foundry apps and 100 Cloud Foundry services.

 To free the resources assigned to your application, you can either stop your application or delete it:

 1.	Stop your application by clicking the Stop the App icon (Figure 1-34).

 [image:]

 Figure 1-34 Stop the application

 2.	Close your web browser.

 1.4 Exercise review

 In this exercise, you accomplished the following goals:

 •Created a Node.js App on the IBM Cloud environment.

 •Used the Continuous Delivery Toolchain to develop and deploy the Node JS App.

 •Wrote your first Node.js “Hello NodeJS!” application.

 •Created a module in Node.js to wrap functionality and use it from other JS files.

 [image:][image:]Understanding asynchronous callback

 This chapter discusses two important concepts: Asynchronous method invocation and callbacks:

 •Asynchronous method invocation

 This is a design pattern where an invoker method does not block while waiting for the invoked method to finish processing and return a result. Instead, the invoked method is run in a separate thread and the invoker is notified when the result is ready.

 •Callback function

 This is a function that is passed to another function as a parameter and the callback function is called and run within this other function.

 An asynchronous callback has considerations that differ from a synchronous callback. This chapter describes those considerations.

 This chapter shows how to use callback functions to call an external service. This exercise uses the IBM Watson Language Translator service in IBM Cloud. You will create a Node.js module that contains the logic for these calls.

 This chapter contains the following topics:

 •Getting started

 •Architecture

 •Step-by-step implementation

 •Exercise review

 2.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 2.1.1 Objectives

 By the end of this chapter, you should be able to understand asynchronous callbacks and be able to write the code in a Node.js application.

 2.1.2 Prerequisites

 Before you start, be sure that you meet these prerequisites:

 •Basic knowledge of JavaScript

 •An IBM Cloud account

 •A workstation that has these components:

  –	Internet access

  –	Web browser: Google Chrome or Mozilla Firefox

  –	Operating system: Linux, Mac OS, or Microsoft Windows

 2.1.3 Background

 In this exercise, you will use asynchronous callback functions.

 A callback function is a function that is passed as a parameter to another function. The callback function is to be run only after the called function finishes running.

 Example 2-1 shows an example of a callback function.

 Example 2-1 Callback function example

 [image:]

 setTimeout(function() {

 console.log("A");

 }, 3000);

 setTimeout(function() {

 console.log("B");

 }, 2000);

 setTimeout(function() {

 console.log("C");

 }, 4000);

 setTimeout(function() {

 console.log("D");

 }, 1000);

 [image:]

 The setTimeout function in Example 2-1 is a function that receives the following parameters:

 •A callback function that should be run after a certain time interval.

 •The time interval (in milliseconds) that should elapse before the callback function can run.

 When calling the setTimeout function, Node.js is not waiting for the processing to finish. Instead, Node.js registers the callback function for it to be run after the response is returned.

 When the code in Example 2-1 runs, the following output is returned in the console:

 D

 B

 A

 C

 The result depends on the sequence of the setTimeout functions finishing their execution and not on the sequence of their declaration in the JavaScript file.

 2.1.4 Expected results

 This exercise shows how to use callback functions to call an external service (this exercise uses the Watson Language Translator service on IBM Cloud).

 The logic of these calls will be in a Node.js module that you will create. Figure 2-1 shows a callback function to call the Language Translator service.

 [image:]

 Figure 2-1 Expected results

 The expected result of running this function is to see the translation of a word from English to Spanish using IBM Watson Language Translator service. (Figure 2-2).

 [image:]

 Figure 2-2 Example results

 2.2 Architecture

 The architecture of the asynchronous callback in this chapter is shown in Figure 2-3.

 [image:]

 Figure 2-3 Asynchronous Callback sample architecture diagram

 This exercise shows how to use callback functions in your Node.js application. In this scenario, the Node.js app accesses the IBM Watson Language Translator service in IBM Cloud. The flow that is shown in Figure 2-3 is as follows:

 1.	The user enters the application’s URL in the web browser.

 2.	The web browser sends the HTTP request to the Node.js app that is deployed in IBM Cloud.

 3.	The Node.js app asynchronously calls the Language Translator service and registers a callback function that is to be called when the Language Translator service sends the response.

 4.	The Node.js app sends an HTTP request to the Language Translator service on IBM Cloud that is exposed as a REST API.

 5.	The Language Translator service responds to the HTTP request with the requested data (translated text).

 6.	The callback function (from step 3) is now run. This function responds to the HTTP request (from step 2).

 7.	The Node.js app sends the data to the web browser in the HTTP response.

 8.	The web browser displays a web page that shows the data to the user.

 2.3 Step-by-step implementation

 This section describes how to make asynchronous callback calls by using Node.js.

 2.3.1 Log in to your IBM Cloud account

 Follow these steps to log in to IBM Cloud:

 1.	Open your web browser, enter the following web address, and then press Enter:

 https://bluemix.net

 2.	The IBM Cloud login page opens (Figure 2-4). Click Log in and provide your account credentials.

 [image:]

 Figure 2-4 IBM Cloud login

 2.3.2 Create the Node.js application on IBM Cloud

 Create the Node.js app by using the SDK for Node.js runtime on IBM Cloud:

 1.	In the IBM Cloud dashboard, click Create resource (Figure 2-5).

 [image:]

 Figure 2-5 Create resource

 2.	The IBM Cloud Catalog page opens (Figure 2-6). It lists the infrastructure and platform resources that can be created in IBM Cloud. Scroll down to the Cloud Foundry Apps section and click SDK for Node.js.

 [image:]

 Figure 2-6 IBM Cloud Catalog

 3.	In the App name field, enter vy102-XXX-nodejs. Replace XXX with any three random characters, which become your unique key (Figure 2-7). Make sure that the name of this application is different from the name of the application that you created in Chapter 1, “Developing a Hello World Node.js app on IBM Cloud” on page 1. Take note of the random characters because you will be using your unique key in the naming convention of this exercise.

 The Host name field is automatically populated with the same value as the app name.

 Keep the default values for the other fields.

 Click Create.

 [image:]

 Figure 2-7 Creating the Node.js app

 4.	The Getting started page for the created application opens (Figure 2-8). For a while, the status for vy102-XXX-nodejs is shown as Starting. Wait until the status changes to This app is awake (for IBM Cloud Lite accounts) or Running (for non-IBM Lite accounts).

 [image:]

 Figure 2-8 Created Node.js app

 2.3.3 Enable continuous delivery

 Enable continuous delivery for the Node.js app by completing these steps:

 1.	Click Overview on the left pane, scroll down to the Continuous delivery tile, and then click Enable (Figure 2-9).

 [image:]

 Figure 2-9 Enabling continuous delivery

 A new continuous delivery toolchain tab opens (Figure 2-10).

 [image:]

 Figure 2-10 Toolchain creation page

 Scroll down to see the three main icons shown in Figure 2-11:

  –	Git Repos and Issue Tracking

  –	Eclipse Orion Web IDE

  –	Delivery Pipeline

 The Git Repos and Issue Tracking icon is selected by default.

 [image:]

 Figure 2-11 Three primary icons: Git Repos and Issue Tracking is selected by default

 2.	To create the Node.js app from scratch, select New from the Repository type menu, and then click Create. A new page opens (Figure 2-12).

 [image:]

 Figure 2-12 Create a toolchain page

 2.3.4 Integrate the Node.js app with the Watson Language Translator service

 An IBM Cloud service is a ready-for-use functionality that is hosted on IBM Cloud and can be accessed from your application over the internet. Examples of services are databases, message queues, and many others. In this exercise, you use the Watson Language Translator service.

 Create a Language Translator service instance

 In the following steps, you create an instance of the Watson Language Translator service that is hosted on IBM Cloud and access this service from your Node.js application:

 1.	Right-click Catalog and select Open link in new tab (Figure 2-13). A Catalog tab opens.

 [image:]

 Figure 2-13 Open Catalog in new tab

 2.	In the filter field, search for the Language Translator service and click it (Figure 2-14).

 [image:]

 Figure 2-14 Language Translator service icon

 Use this service to translate text from one language to another.

 3.	The Language Translator service page opens (Figure 2-15). Keep the default values and click Create.

 [image:]i

 Figure 2-15 Creating the Language Translator service

 Connect the Node.js app to the Language Translator service

 To connect your Node.js app to the Language Translator service, complete these steps:

 1.	Click Connections on the left navigation bar, then click Create Connection.

 2.	From the list, select your Node.js application that you created in 2.3.2, “Create the Node.js application on IBM Cloud” on page 31, and click Connect.

 3.	A message prompts you to restage the application so that it can use the Language Translator service (Figure 2-16). Click Restage.

 [image:]

 Figure 2-16 Restage after connecting to the Language Translator service

 Obtain the Language Translator service credentials

 The service credentials are required to access the service. To create and obtain the credentials for your Language Translator service instance, complete these steps:

 1.	In the Language Translator Service Details page, click Service credentials on the left navigation bar, then click New Credential (Figure 2-17).

 [image:]

 Figure 2-17 Service Credentials

 2.	The Add new credential window opens. Click Add.

 3.	Click View credentials to display the credentials. Figure 2-18 shows a JSON object that contains the service credentials. Click the Copy icon to copy the service credentials and paste them in a text editor. These credentials are needed to access the Language Translator service instance.

 [image:]

 Figure 2-18 Language Translator service credentials

 4.	Close the Service Details browser tab.

 Understand the Language Translator REST API

 The Language Translator service provides REST APIs, which can be called by the applications linked to it. The following steps walk you through a demo showing you how the Language Translator REST API works:

 1.	Open a new web browser tab. Use the following web address to open the Language Translator for IBM Watson Developer Cloud API:

 https://language-translator-demo.ng.bluemix.net/

 2.	Scroll down to the Translate Text section. Select English for the input language, and Spanish for the Output language. Then, write Hello in the Text input field and press Enter. The Text output field shows the translation as Hola as shown in Figure 2-19.

 [image:]

 Figure 2-19 Language Translator For IBM Cloud API

 3.	In the Output section, click JSON. The JSON object retrieved from the API call is shown (Example 2-2).

 Example 2-2 JSON object as response

 [image:]

 {

 {

 "translations": [

 {

 "translation": "Hola"

 }

],

 "word_count": 1,

 "character_count": 5

 }

 [image:]

 	
 Note: The translations.translation field contains the translated text result. You will learn how to read the content of this field in a Node.js app in the next section, 2.3.5, “Access the Language Translator service from the Node.js app”.

 4.	Close the opened tab of the web browser.

 2.3.5 Access the Language Translator service from the Node.js app

 This section describes the steps to access the Language Translator service from a Node.js application.

 1.	On the View toolchain page, click the Eclipse Orion Web IDE icon.

 The browser shows the generated Node.js project in the Eclipse Orion Web IDE (Figure 2-20).

 [image:]

 Figure 2-20 Eclipse Orion Web IDE

 2.	Right-click the root of the project (named vy102-XXX-nodejs), and select New → File. A text field is displayed. Type manifest.yml and then press Enter. The manifest.yml file is now created.

 3.	Add the code snippet from Example 2-3 to the manifest.yml file. Replace the XXX with your unique key (three random characters).

 Example 2-3 Code snippet: manifest.yml file

 [image:]

 applications:

 - path: .

 memory: 256M

 instances: 1

 domain: mybluemix.net

 name: vy102-XXX-nodejs

 host: vy102-XXX-nodejs

 disk_quota: 1024M

 [image:]

 4.	If required, change the domain on based on your IBM Cloud region as listed in Table 2-1.

 Table 2-1 IBM Cloud regions and domains

 	
 Region

 	
 Domain

 	
 US South

 	
 mybluemix.net

 	
 United Kingdom

 	
 eu-gb.mybluemix.net

 	
 Sydney

 	
 syd.mybluemix.net

 	
 Germany

 	
 eu-de.mybluemix.net

 5.	Create a file and name it package.json. Insert the code snippet from Example 2-4 into the package.json file.

 Notice the dependencies section, which includes the ready made packages to be used by the application. The package used in this exercise is watson-developer-cloud, which is the Node library used to access the Watson Developer Cloud services. You will use it in the exercise to access the Language Translator service.

 Example 2-4 Code snippet: package.json file

 [image:]

 {

 "name": "NodejsStarterApp",

 "version": "0.0.1",

 "description": "App for understanding Callback",

 "scripts": {

 "start": "node app.js"

 },

 "dependencies": {

 "watson-developer-cloud": "^1.0.0"

 }

 }

 [image:]

 6.	Create a file and name it app.js. In the app.js file, insert the code from Example 2-5.

 Example 2-5 Code snippet: Create http instance

 [image:]

 const http = require('http');

 [image:]

 The http module is used for HTTP functions.

 7.	Next, insert the code shown in Example 2-6.

 Example 2-6 Code snippet: Create watson-developer-cloud instance

 [image:]

 const watson = require('watson-developer-cloud');

 [image:]

 This line imports the watson-developer-cloud package. This package allows access to all of the Watson APIs, one of which is the Language Translator service that you use in this exercise.

 8.	Next, insert the code snippet from Example 2-7.

 Example 2-7 Code snippet: Create server to receive http request

 [image:]

 var portNumber = process.env.VCAP_APP_PORT || 8080;

 const server = http.createServer(handleRequests);

 server.listen(portNumber, function() {

 console.log('Server is up!');

 });

 [image:]

 This code creates a server to receive the http requests from the user. The function handleRequests is called whenever a request is received.

 9.	The next step is to implement the handleRequests function. Insert the code snippet from Example 2-8 at the end of the app.js file.

 Example 2-8 Code snippet: handleRequests function

 [image:]

 function handleRequests(userRequest, userResponse) {

 }

 [image:]

 The handleRequests function has two parameters:

  –	The request (named userRequest in this example).

  –	The response (named userResponse in this example).

 Figure 2-21 shows the app.js file up to this point in the exercise.

 [image:]

 Figure 2-21 Watson developer cloud library, server, and handleRequests function

 In the handleRequests function, add the following line for setting the header data:

 userResponse.writeHead(200, {'Content-Type': 'text/plain'});

 10.	Below the userResponse.writeHead line, enter the code snippet from Example 2-9.

 Example 2-9 Code snippet: Identify translation request message

 [image:]

 	var helloText = 'Hello';

 	var fromLanguage = 'en';

 	var toLanguage = 'es';

 [image:]

 These variables contain the data to be sent in the request to the Language Translator service:

  –	helloText stores the text that will be translated.

  –	fromLanguage stores the source language for the translation.

  –	toLanguage stores the target language for the translation.

 11.	After the variables declaration in the function handleRequests, enter the code snippet from Example 2-10.

 Example 2-10 Code snippet: Language Translator object

 [image:]

 	var language_translator = watson.language_translator({

 		version: 'v2'

 	});

 [image:]

 The watson module includes the language_translator API. This function expects a JSON object containing details about the connection to the Language Translator service such as the URL, username, and password.

 However, because the Language Translator service is bound to the Node.js app through IBM Cloud, there is no need to specify these details as they are stored in VCAP_SERVICES. Only the version of the Language Translator service is specified here.

 12.	Enter the code snippet from Example 2-11.

 Example 2-11 Code snippet: language_translator.translate

 [image:]

 	language_translator.translate({

 		text: helloText,

 		source: fromLanguage,

 		target: toLanguage

 	}, callback);

 [image:]

 The language_translator.translate function is called. The translate function expects two arguments:

  –	A JSON object. This JSON object contains the text, source, and target fields. As shown Example 2-11, the variables helloText, fromLanguage, and toLanguage are used for setting the values.

  –	A callback function. This function will be run after the Language Translator service finishes processing the request and returns the response to the Node.js app. While the Language Translator service is processing the request, the Node.js app registers the callback function so it can be run after the response is returned.

 13.	Before the line language_translator.translate, enter the code snippet in Example 2-12.

 Example 2-12 Code snippet: language_translator callback function

 [image:]

 	var callback = function(err, data) {

 		if (err) {

 			console.log(err);

 			userResponse.end('Error: ' + err);

 		} else {

 			console.log(data);

 			userResponse.end('Translation of ' + helloText + " is " + data.translations[0].translation);

 		}

 	};

 [image:]

 The callback function has two arguments:

  –	The err object, which is used if an error occurs in the function

  –	The data object, which contains the data returned by the Language Translator service.

 The translation data can be sent in the userResponse object, which is the response object that contains the text to be returned to the web browser.

 The handleRequests function should now look as shown in Example 2-13.

 Example 2-13 Code snippet: handleRequests function complete

 [image:]

 const http = require('http');

 const watson = require('watson-developer-cloud');

 var portNumber = process.env.VCAP_APP_PORT || 8080;

 const server = http.createServer(handleRequests);

 server.listen(portNumber, function() {

 	console.log('Server is up!');

 });

 function handleRequests(userRequest, userResponse) {

 	userResponse.writeHead(200, {

 		'Content-Type': 'text/plain'

 	});

 	var helloText = 'Hello';

 	var fromLanguage = 'en';

 	var toLanguage = 'es';

 	var language_translator = watson.language_translator({

 		version: 'v2'

 	});

 	var callback = function(err, data) {

 		if (err) {

 			console.log(err);

 			userResponse.end('Error: ' + err);

 		} else {

 			console.log(data);

 			userResponse.end('Translation of ' + helloText + " is " + data.translations[0].translation);

 		}

 	};

 	language_translator.translate({

 		text: helloText,

 		source: fromLanguage,

 		target: toLanguage

 	}, callback);

 }

 [image:]

 14.	If you see a warning message Parameter 'userRequest' is never used for the line function handleRequests(userRequest, userResponse), click Disable no-unused-params.

 15.	Next, click Create new launch configuration and the “+” sign in the drop-down list. If you do not have the Create new launch configuration option, skip this step.

 In the Edit Launch Configuration window, ensure that the Organization is set to your email address, and Space is set to dev, and click Save.

 16.	Click the play icon (Deploy the App from the Workspace) to deploy the app.

 17.	After the deployment is complete, click the Open the deployed app icon.

 You see the output in your browser (Figure 2-22). The output shows the translation of the Hello text from English to Spanish.

 [image:]

 Figure 2-22 Language Translator output

 2.3.6 Access the Language Translator service through a Node.js module

 In 1.3.6, “Add a module to the Node.js application” on page 21, you learned how to create a Node.js module. In this section, you will learn how to return a callback function in a module.

 The following steps create a Node.js module, called translator, that will contain the logic for accessing the Language Translator service:

 1.	In the root path, create a new folder and name it translator.

 2.	In the translator folder, create a file named package.json.

 3.	Enter the code snippet in Example 2-14 in the package.json file. The main field contains the path of the JS file that has the Language Translator service code.

 Example 2-14 Code snippet: package.json for Language Translator

 [image:]

 {

 "name": "translator",

 "main": "./lib/translator",

 "dependencies": {

 "watson-developer-cloud": "^1.0.0"

 }

 }

 [image:]

 The package.json file in Example 2-14 represents the translator module.

 4.	In the translator folder, create a new folder named lib.

 5.	In the lib folder, create the translator.js file.

 The translator folder (and translator.js file) now look like Figure 2-23.

 [image:]

 Figure 2-23 The translator.js file

 Leave the translator.js file empty for now.

 6.	Open the app.js file and remove all code in this file.

 7.	Add the code in Example 2-15 to the app.js file.

 Example 2-15 Code snippet: Importing http and translator

 [image:]

 const http = require('http');

 const translatorModule = require('./translator');

 [image:]

 The first line is for importing the http module. The second line is for importing the translator module that you created in the previous steps. You now import the translator module into the app.js file. You implement the translator module later.

 8.	Add the code snippet from Example 2-16 to the app.js file.

 Example 2-16 Code snippet: Declare text, from and to fields

 [image:]

 var helloText = 'Hello';

 var fromLanguage = 'en';

 var toLanguage = 'es';

 [image:]

 These lines declare the variables for the input fields that you use when accessing the Language Translator service.

 9.	Below the var toLanguage line, add the code snippet from Example 2-17.

 Example 2-17 Code snippet: Create server and listen on a port

 [image:]

 var portNumber = process.env.VCAP_APP_PORT || 8080;

 const server = http.createServer(handleRequests);

 server.listen(portNumber, function() {

 	console.log('Server is up!');

 });

 [image:]

 These lines create the server and listen on a certain port.

 createServer receives the handleRequests callback function. You implement this function in the next step.

 10.	Add the code snippet from Example 2-18 for the handleRequests callback function.

 Example 2-18 Code snippet: handleRequests

 [image:]

 function handleRequests(userRequest, userResponse) {

 	userResponse.writeHead(200, {

 		'Content-Type': 'text/plain'

 	});

 }

 [image:]

 The body has code that sets the header content.

 11.	Inside the handleRequests callback function, after the userResponse.writeHead(200, { 'Content-Type': 'text/plain' }); function call, enter the code snippet from Example 2-19.

 Example 2-19 Code snippet: getTranslation

 [image:]

 translatorModule.getTranslation(helloText, fromLanguage, toLanguage, callback);

 [image:]

 The code line in Example 2-19 calls the getTranslation function that should be defined in the Language Translator module.

 This function has following parameters:

  –	helloText

  –	fromLanguage

  –	toLanguage

  –	callback function, which will be called after the getTranslation function finishes its execution

 12.	Before the translatorModule.getTranslation() line you just added, insert the code snippet from Example 2-20 for the callback function that is mentioned in the previous step.

 Example 2-20 Code snippet: The callback function with translatorOutput

 [image:]

 	var callback = function(error, translatorOutput) {

 		if (error) {

 			userResponse.end(error);

 		} else {

 			userResponse.end('Translation of ' + helloText + " is " + translatorOutput);

 		}

 	};

 [image:]

 The callback function is expected to have an error parameter that holds a value in case of errors. The other parameter is for the translatorOutput. If the error object is not null, the HTTP response is sent back to the user with this error. If no error occurs, the message containing the translatorOutput is sent in the HTTP response back to the user.

 The app.js file now looks like the file in Figure 2-24.

 [image:]

 Figure 2-24 The app.js file using the translator module

 Save the file by clicking File → Save.

 13.	Open the translator.js file. Add the code snippet from Example 2-21 to import the watson-developer-cloud module.

 Example 2-21 Code snippet: Importing the watson-developer-cloud API

 [image:]

 var watson = require('watson-developer-cloud');

 [image:]

 14.	Next, define and export the getTranslation data, which is used in the app.js file. The initial code looks like the code snippet shown in Example 2-22.

 Example 2-22 Code snippet: Exporting the getTranslation function

 [image:]

 exports.getTranslation = function getTranslation(helloText, fromLanguage, toLanguage, callback) {

 };

 [image:]

 This function receives the fields helloText, fromLanguage, toLanguage, and the callback function that is to be run when the getTranslation function finishes execution.

 15.	Inside the getTranslation function, add the code snippet from Example 2-23. This code is for accessing the Language Translator API.

 Example 2-23 Code snippet: Access Language Translator API

 [image:]

 	var language_translator = watson.language_translator({

 		version: 'v2'

 	});

 [image:]

 Below the code in Example 2-23, add the code snippet from Example 2-24 for the actual call to the Language Translator service.

 Example 2-24 Code snippet: language_translator translate function

 [image:]

 language_translator.translate({

 		text: helloText,

 		source: fromLanguage,

 		target: toLanguage

 	}, translatorCallback);

 [image:]

 16.	Before the language_translator.translate line, add the code snippet from Example 2-25. This code defines the translatorCallback callback function.

 Example 2-25 Code snippet: translatorCallback function

 [image:]

 var translatorCallback = function(err, data) {

 		

 	};

 [image:]

 The translatorCallback callback function is called after the response from the language_translator.translate function is returned.

 The translatorCallback function contains two parameters:

  –	err: This parameter has a value if there is an error returned when the language_translator.translate function is run.

  –	data: This parameter has the returned response data from running the language_translator.translate function.

 17.	Inside the translatorCallback function, add the code snippet from Example 2-26.

 Example 2-26 Code snippet: translatorCallback callback function details

 [image:]

 if (err) {

 			console.log(err);

 			callback(err, null);

 		} else {

 			console.log(data);

 			callback(null, data.translations[0].translation);

 		}

 [image:]

 The code first checks if an error occurred. In case of error, run the callback function, with the first parameter set to the err value and the second parameter, the data object, to null.

 If err is null, then no errors occurred. In this case, the data object has the response data from calling the Language Translator service.

 Now, the callback function can be run by setting the first parameter as null (because no errors occurred) and the second parameter as data.translations[0].translation to read the returned translation from the data JSON object. The JSON object structure is shown in Example 2-2 on page 40.

 Figure 2-25 shows the translator.js file at this point.

 [image:]

 Figure 2-25 Translator module code

 18.	Click the play icon (Deploy the App from the Workspace) to deploy the app. Confirm if you are prompted to restart the app. After the deployment is complete, click the Open the Deployed App icon.

 The window showing the translation is displayed (Figure 2-26).

 [image:]

 Figure 2-26 Results of translator output

 2.3.7 Stop the application

 IBM Cloud Lite account provides you with 256 MB of application memory for Cloud Foundry apps and 100 Cloud Foundry Services.

 To free the resources that are assigned to your application, you can either stop your application or delete it. To do so, complete these steps:

 1.	Stop your application by clicking the Stop the App icon(Figure 2-27).

 [image:]

 Figure 2-27 Stop the application

 2.	Close your web browser.

 2.4 Exercise review

 In this exercise you accomplished the following goals:

 •Created the Language Translator service in IBM Cloud and connected it to your Node.js app.

 •Used asynchronous callback functions in your Node.js app and learned how the callback function is run.

 •Created a module in Node.js to call the Language Translator service and used it from other JS files.

[image:]
[image:]

Creating your first Express application

 Express is a Node.js web framework. It allows rapid development of web applications. It provides an easy way to handle routing of an application by exposing REST APIs.

 In this chapter, you create an application that uses the Express framework and the Watson Natural Language Understanding service to extract the author name from articles that are published on the web. You provide the web address (URL) of the article to the application, and it outputs the name of the author (or multiple names if the article has multiple authors).

 This chapter contains the following topics:

 •Getting started

 •Architecture

 •Step-by-step implementation

 •Exercise review

 3.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 3.1.1 Objectives

 Express is a Node.js web framework. It allows rapid development of web applications. It provides an easy way to handle routing of an application by exposing REST APIs.

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create a Hello World Express application.

 •Create a simple HTML view for your application.

 •Understand Express routing.

 •Use third-party modules in Node.js.

 •Understand IBM Watson Natural Language Understanding service.

 •Use a Git repository on IBM Cloud DevOps.

 •Understand Delivery Pipeline.

 3.1.2 Prerequisites

 Before you start, be sure that you meet these prerequisites:

 •Basic JavaScript skills

 •Basic HTML skills

 •An IBM Cloud account

 •A workstation that has these components:

  –	Internet access

  –	Web browser: Google Chrome or Mozilla Firefox

  –	Operating system: Linux, Mac OS, or Microsoft Windows

 3.1.3 Expected results

 You create an application that uses Express framework and Watson Natural Language Understanding service to extract the author name from any article that is published on the web. You provide the web address (URL) of the article, and the application outputs the name of the author (or multiple names if the article has multiple authors).

 The application involves the following steps:

 1.	Figure 3-1 shows the starting page of the application. Enter the web address of any article, such as the following URL, and then click Submit. In this example, the URL of the article is as follows:

 http://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-david-kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale/

 [image:]

 Figure 3-1 Watson Author Finder

 2.	The URL of the article is posted to the /author URL (Figure 3-2), then Watson Natural Language Understanding service is called to extract the author name (or names) from the article.

 [image:]

 Figure 3-2 Watson Author Finder returned these results

 3.2 Architecture

 Figure 3-3 shows the components and runtime flow of the application.

 [image:]

 Figure 3-3 Architecture

 The following steps explain the sequence of interactions between the various components in the exercise:

 1.	In a web browser, navigate to the application URL of this exercise:

 http://vy102-XXX-express.mybluemix.net

 2.	The web browser sends a GET request to the Node.js server. As mentioned in step 1, the application URL for this example is http://vy102-XXX-express.mybluemix.net. The path that follows this URL is a route, and there should be a handler for this route in the Node.js application.

 For example, if the user sends the following request, there should be a route called 'GET /sample' in the Node.js application:

 http://vy102-XXX-express.mybluemix.net/sample

 This route can return a resource (HTML page, image, and so on), call a back-end service, or both.

 In step 1, the user requested the home page of this exercise’s application. The browser sends a GET request to http://vy102-XXX-express.mybluemix.net/. That means that the 'GET /' (root) route will be called.

 3.	The Express framework in Node.js returns the index.html file in response to the 'GET /' route request.

 4.	The web browser shows the index.html page to the user. The index.html page contains a form that has one text box, and a Submit button. In the text box, the user can enter the URL of the article.

 5.	The user enters the article’s URL, and then clicks Submit.

 6.	The web browser sends a POST request to the /author route with the article URL passed in the body.

 7.	Express framework in Node.js passes the article URL to Watson Natural Language Understanding service. Also, it requests that the metadata be returned.

 	
 Note: The Watson Natural Language Understanding service uses natural language processing (NLP) to analyze semantic features of any text. The Natural Language Understanding service has many features, such as concepts, categories, emotion, entities, keywords, metadata, and sentiment.

 The feature that you use in this exercise is metadata.The feature gets document metadata, including author name, title, RSS and Atom feeds, prominent page image, and publication date.

 8.	The metadata of the article is returned by the Natural Language Understanding service.

 9.	Node.js filters the metadata to return only the author name (or names).

 10.	The author name (or names) of the article are returned to the user on the web browser.

 3.3 Step-by-step implementation

 This section provides details of how to implement the Hello World Node.js app by using the Express framework.

 3.3.1 Log in to your IBM Cloud account

 Log in to IBM Cloud by completing these steps:

 1.	Open your web browser, enter the following web address, and then press Enter:

 https://bluemix.net

 2.	The IBM Cloud login page opens (Figure 3-4). Click Log in and provide your authentication credentials.

 [image:]

 Figure 3-4 IBM Cloud login

 3.3.2 Create the Node.js application on IBM Cloud

 Complete these steps to create the Node.js app by using the IBM SDK for Node.js runtime on IBM Cloud and to enable continuous delivery for the application:

 1.	Click Catalog on the top bar and select Cloud Foundry Apps on the left pane.

 2.	Click SDK for Node.js (Figure 3-5).

 [image:]

 Figure 3-5 IBM Cloud Catalog: Cloud Foundry Apps

 3.	In the App name field, type vy102-XXX-express (Figure 3-6). Replace XXX with any three random characters. Click Create.

 [image:]

 Figure 3-6 Create an SDK for Node.js application

 4.	In the next steps, you enable continuous delivery for this application. Application Details displays the Getting started page (Figure 3-7). Wait until the application is started and then click Overview.

 [image:]

 Figure 3-7 Application details: Getting started page

 5.	In the Continuous delivery tile of the Overview page, click Enable (Figure 3-8).

 [image:]

 Figure 3-8 Application details: Overview page

 6.	A new tab opens (Figure 3-9) where you create a toolchain. In the Repository type field, select New to create an empty application, and then click Create.

 [image:]

 Figure 3-9 Create a toolchain

 7.	To start editing the code, click Eclipse Orion Web IDE (Figure 3-10).

 [image:]

 Figure 3-10 IBM Cloud DevOps toolchain

 8.	On the left, expand the twistie for vy102-xxx-express (highlighted in Figure 3-11).

 [image:]

 Figure 3-11 Eclipse Orion

 Notice that an empty project is created (Figure 3-12).

 [image:]

 Figure 3-12 An empty project is created: vy102-xxx-express

 3.3.3 Create the Hello World Express application

 Express is a Node.js framework. It is used to simplify the creation of web applications on Node.js. The core component of Express is routes.

 Route refers to the definition of application end points (Uniform Resource Identifiers (URIs)) and how they respond to client requests. Express supports the routing methods that correspond to the HTTP methods GET, POST, PUT, HEAD, DELETE, OPTIONS, and TRACE.

 In the following steps, you create the Hello World Express application that returns the words “Hello Express!” in response to the GET / route request. The root (/) route is called whenever a user accesses the URL of the application. Also, you will create another route, POST /author, after the user sends a POST request to the /author resource. This route returns “Author Name” to the user.

 1.	Create the package.json file and add Express framework as one of its dependencies:

 a.	Right-click vy102-xxx-express in the left navigation bar, and select New → File.

 b.	Name the file package.json (Figure 3-13) and then press Enter.

 [image:]

 Figure 3-13 The empty package.json file

 c.	Copy the code snippet from Example 3-1 to the package.json file.

 Example 3-1 Code snippet: package.json

 [image:]

 {

 "name": "vy102-XXX-express",

 "version": "0.0.1",

 "description": "A sample express app",

 "dependencies": {

 "express": "4.*"

 }

 }

 [image:]

 d.	Notice that Express version 4.x is added as a dependency. In the name, replace XXX with the three characters that you assigned as part of your application name (Figure 3-14).

 [image:]

 Figure 3-14 The package.json file with the Express version 4.x dependency

 2.	Create the app.js file. In app.js, you create an instance of Express and it will be the starting point of your application:

 a.	In the navigation bar, right-click vy102-xxx-express, and then select New → File.

 b.	Name the file app.js and press Enter. At this point, app.js is empty (Figure 3-15).

 [image:]

 Figure 3-15 The empty app.js file

 c.	Copy the code snippet from Example 3-2 into the app.js file.

 Example 3-2 Code snippet: Instantiate Express framework (GET and POST)

 [image:]

 var port = process.env.VCAP_APP_PORT || 8080;

 //Express Web Framework, and create a new express server

 var express = require('express'),

 	app = express();

 // In case the caller calls GET to the root '/', return 'Hello Express!'.

 app.get('/', function(req, res) {

 res.send('Hello Express!');

 });

 // In case the caller calls POST to /author, return 'Author name'

 app.post('/author', function(req, res) {

 res.send('Author name');

 });

 // start server on the specified port and binding host

 app.listen(port);

 [image:]

 The code instantiates the Express framework, listening to the default port of IBM Cloud, and exposes two routes (Figure 3-16):

 GET /	Returns “Hello Express!” to the caller when the caller requests the root of the application.

 POST /author	When the caller issues a post request to /author, “Author name” is returned.

 [image:]

 Figure 3-16 The app.js file with Express starter code

 	
 Note: You can usually press Shift+Alt+F to format the code.

 3.	Add the manifest.yml file with the domain and host, and configure it to run app.js after the Node.js server starts:

 a.	Right-click vy102-xxx-express in the left navigation bar, and then select New → File.

 b.	Name the file manifest.yml and press Enter.

 c.	Copy the code snippet from Example 3-3 to the manifest.yml file. This code configures the domain, name, and memory of the application.

 In the manifest.yml file, replace XXX with the three characters you chose as part of your application name and host.

 Example 3-3 Code snippet: Add domain and host, and configure to run app.js

 [image:]

 applications:

 - path: .

 memory: 256M

 instances: 1

 domain: mybluemix.net

 name: vy102-XXX-express

 host: vy102-XXX-express

 disk_quota: 	1024M

 [image:]

 d.	If needed, change the domain on based on your IBM Cloud region as listed in Table 3-1.

 Table 3-1 IBM Cloud regions and domains

 	
 Region

 	
 Domain

 	
 US South

 	
 mybluemix.net

 	
 United Kingdom

 	
 eu-gb.mybluemix.net

 	
 Sydney

 	
 syd.mybluemix.net

 	
 Germany

 	
 eu-de.mybluemix.net

 e.	Copy the following line to the end of the manifest.yml file. This line instructs IBM Cloud to start app.js after the application is staged.

 command: node app

 Your manifest.yml now looks like the file in Figure 3-17.

 [image:]

 Figure 3-17 The manifest.yml file

 The file is saved automatically. You can force save it by clicking File → Save.

 4.	Deploy the application from the workspace by completing these steps:

 a.	In the server toolbar, select Create new launch configuration from the drop-down list. If you do not have the Create new launch configuration option, skip to step d.

 b.	Click the “+” button to display the Edit Launch Configuration window.

 c.	In the Edit Launch Configuration window, ensure that the Organization is set to your email address, and Space is set to dev, and click Save.

 d.	Click the play icon (Deploy the App from the Workspace), which is highlighted in Figure 3-18. Then, click OK in the window that opens to confirm the action.

 [image:]

 Figure 3-18 Deploy the application

 e.	Notice that the Live Edit and debug options are visible on the top toolbar after the deployment is completed (Figure 3-19). The Live Edit and debug features are available only for the Node.js application. When IBM Cloud detects that you are creating a Node.js application (from the manifest.yml file), the two features become available on the toolbar.

 	
 Note: IBM Cloud Lite account does not support the Live Edit feature. If you are using a Lite account, this option will not be displayed.

 [image:]

 Figure 3-19 The Live Edit and debug features are now available

 	
 Note: While a Node.js application is in Live Edit mode, you can debug it on the Web IDE. You can edit code dynamically, insert breakpoints, step through code, restart the runtime, and more. You must use a Chrome browser to be able to use the debug feature.

 5.	Run the application by clicking the Open the Deployed App icon (Figure 3-20).

 [image:]

 Figure 3-20 Open the application

 A new tab opens with the application, and the “Hello Express!” text is returned (Figure 3-21).

 [image:]

 Figure 3-21 The Hello Express application

 3.3.4 Create a simple HTML view and organize the code

 In the next steps, you create a simple HTML page that has a form where the user enters the URL of the article. When the user clicks Submit, the article URL is posted to /author in the request body.

 You will also organize the code by creating routing modules instead of having the routing handled in the app.js file.

 Complete these steps:

 1.	Add views/index.html as the starting page (Figure 3-22):

 a.	Close the browser tab where the application is running.

 b.	Right-click vy102-xxx-express on the left bar, and select New → Folder.

 c.	Name the folder views, and then press Enter.

 d.	Right-click the views folder on the left bar, and select New → File.

 e.	Name the file index.html, and then press Enter.

 [image:]

 Figure 3-22 Empty index.html file

 2.	Copy the code snippet from Example 3-4 into the index.html file.

 Example 3-4 Code snippet: HTML

 [image:]

 <html>

 <body>

 <h1 style="color:blue;">Watson Author Finder</h1>

 <p>To get information about the author of an article, enter the URL of that article.</p>

 <form action="author" method="post">

 <input type="text" name="url" />

 <input type="submit" value="Submit" />

 </form>

 </body>

 </html>

 [image:]

 The HTML code indicates the following information:

  •	A heading that contains the words “Watson Author Finder” in blue.

  •	A paragraph that instructs the user what to do.

  •	A form that contains a text field and a Submit button. Upon submission, the parameters are submitted in the form of x-www-form-urlencoded in the body. In this code snippet, the only parameter is the URL of the article. The URL is submitted as a POST method to the author action, which triggers the POST /author route.

 The index.html file now looks like the one shown in Figure 3-23.

 [image:]

 Figure 3-23 The content of the index.html file

 3.	In app.js, change the root route (GET /) to send the index.html page to the caller:

 a.	Open app.js from the left navigation bar.

 b.	Add the following code snippet after the line that contains app = express();.

 This code snippet references the path module. The path module provides utilities for handling the directories, so it must point to the index.html file.

 var path = require('path');

 c.	Update the callback function for / route, which is the line after app.get('/', function(req, res) {. Change the code so that the callback function returns the index.html page instead of the words Hello Express!:

 res.sendFile(path.join(__dirname, 'views/index.html'));

 Also, change the comment before the line app.get('/', function(req, res) { to the following text:

 // In case the caller calls GET to the root '/',

 // return the content of index.html

 Figure 3-24 shows the app.js file with your updates.

 [image:]

 Figure 3-24 Updated app.js

 4.	To be able to receive the request parameter, you must add a module named body-parser. The body-parser middleware module parses the data and populates the request object with the data under the req.body module. Complete these steps:

 a.	After the line that contains var path = require('path');, add a reference to the third-party body-parser module:

 var bodyParser = require('body-parser');

 //parse application/x-www-form-urlencoded

 app.use(bodyParser.urlencoded({ extended: false }));

 b.	Hover the cursor over body-parser and notice the warning message that is generated by Eclipse Orion Web IDE (Figure 3-25). The message indicates that the body-parser module is not defined in package.json.

 [image:]

 Figure 3-25 Missing module in package.json warning

 c.	You can either update package.json manually to add dependencies to body-parser or click Update package.json, which updates the dependencies automatically.

 Open the package.json file and update the dependencies as shown in Example 3-5.

 	
 Note: Make sure that you add a comma after the express dependency line, as shown in the example

 Example 3-5 Add body-parser

 [image:]

 "dependencies": {

 "express": "4.*",

 "body-parser": "*"

 }

 [image:]

 d.	Open app.js and update the callback function for the POST /author route to send the URL to the user in response to post /author instead of sending Author name. Replace res.send('Author name'); with the code snippet in Example 3-6.

 Example 3-6 Code snippet: Send URL to user

 [image:]

 res.send('You called the server requesting the author of the article: ' + req.body.url);

 [image:]

 Change the comment before the line app.post('/author', function(req, res) { to the following text:

 // In case the caller calls POST to /author, return the url of the article

 e.	Press Shift + Alt + F to format the code. Your updated app.js is shown in Figure 3-26.

 [image:]

 Figure 3-26 Updated app.js file

 5.	In this step, you organize the code by moving all the routing to the routes module:

 a.	Right-click vy102-xxx-express on the left navigation bar, and then select New → Folder. Name the folder routes and press Enter.

 b.	Create index.js to handle all the routing related to the root resource, right-click the routes folder, select New → File, name the file index.js, and then press Enter.

 c.	Copy the code snippet from Example 3-7 and paste it into the index.js file.

 Example 3-7 Code snippet: Using expres.Router

 [image:]

 // index.js - Index route module

 var express = require('express');

 var router = express.Router();

 //Provides utilities for dealing with directories

 var path = require('path');

 // Home page route

 router.get('/', function (req, res) {

 res.sendFile(path.join(__dirname, '../views/index.html'));

 });

 module.exports = router;

 [image:]

 This code snippet uses express.Router, which is introduced in Express 4 and provides an isolated instance of routes. It is used here to define an endpoint (URI) that handles the routing when a user sends a GET request to the home page of the application for this exercise.

 The updated index.js file is shown in Figure 3-27.

 [image:]

 Figure 3-27 Updated index.js file

 d.	Create an author.js file to handle all the routing related to the /author resource. Right-click the routes folder, select New → File, name the file author.js, and then press Enter.

 e.	Copy the code snippet from Example 3-8 into the author.js file.

 Example 3-8 Code snippet: Add to author.js file

 [image:]

 // author.js - Author route module

 var express = require('express');

 var router = express.Router();

 router.post('/', function (req, res) {

 res.send('You called the server requesting the author of the article: ' + req.body.url);

 });

 module.exports = router;

 [image:]

 Figure 3-28 shows the updated author.js file.

 [image:]

 Figure 3-28 Updated author.js file

 f.	Edit app.js to configure Express to use the index and author route modules:

 i.	Click app.js on the left navigation bar.

 ii.	Find lines of code between the comments // In case the caller calls GET and // start server on the specified port and binding host.

 iii.	Replace those lines, including the comment // In case the caller calls GET with the code snippet from Example 3-9. Remove any unintended line breaks, especially in the comments, after pasting the code.

 Example 3-9 Code snippet: Use app.js to bind routing modules

 [image:]

 //Routes modules

 var index = require('./routes'),

 author = require('./routes/author');

 	

 //In case the caller access any URI under the root /, call index route

 app.use('/', index);

 //In case the caller access any URI under /author, call author route

 app.use('/author', author);

 [image:]

 This example uses app.js to bind the routing modules that you defined previously with specific paths. The handling of the routing of any URI under root (/) is handled by the index routing module, and the handling of the routing of any URI under /author is handled by the author routing module.

 Your updated app.js file is shown in Figure 3-29.

 [image:]

 Figure 3-29 Updated app.js

 6.	Deploy the application and run it by completing these steps:

 a.	Click the Play icon (Deploy the App from the Workspace) on the top toolbar to deploy the app. Confirm that you want to restart the app if prompted to do so.

 b.	Wait for the deployment to complete.

 c.	Click the Open the Deployed App icon on the top toolbar to run the application.

 The application opens in your browser (Figure 3-30).

 [image:]

 Figure 3-30 Running the application

 d.	In the text box, enter the URL for an article of your choice and click Submit.

 The route POST /author is then called (Figure 3-31).

 In this example, the following URL was used for testing:

 https://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-david-kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale

 [image:]

 Figure 3-31 Author page

 3.3.5 Integrate with Watson Natural Language Understanding service

 The default Node.js framework includes only a minimal set of features. However, a large community of developers add to the Node.js framework through third-party libraries.

 In this section, you extract the author name by calling the Watson Natural Language Understanding service. IBM Watson services provide REST APIs that you can use to add cognitive capabilities to your applications.

 Natural Language Understanding uses natural NLP to analyze semantic features of any text, which can be plain text, HTML, or a public URL. Natural Language Understanding returns results for the features that you specify. The feature that you use in this exercise is metadata. It gets document metadata, including author name, title, RSS/Atom feeds, prominent page image, and publication date.

 In Node.js, the Watson APIs are wrapped inside a third-party module that is named watson-developer-cloud that you will use in this exercise. The watson-developer-cloud module is developed and maintained by IBM. It is a third-party module because it is not developed as part of the Node.js foundation, and not packed into Node.js by default. To include the watson-developer-cloud module, you must add it as a dependency in the package.json file.

 Complete these steps:

 1.	In this step, you add the Watson Natural Language Understanding service and bind it to the application.

 IBM Cloud services are a set of capabilities or functions delivered over the Internet that IBM Cloud hosts and manages. You can add services from the IBM Cloud catalog to your IBM Cloud application. Services provide a predefined endpoint that you can access from your application. The infrastructure for services is completely managed by IBM Cloud, and your app only must use the provided endpoint.

 You will bind the Natural Language Understanding service to your application so your application can use it by completing these steps:

 a.	Close the running application tab and go back to the IBM Cloud DevOps page.

 b.	Right-click Catalog and select Open link in new tab (Figure 3-32).

 [image:]

 Figure 3-32 Eclipse Orion

 c.	In the IBM Cloud Catalog, click Natural Language Understanding (Figure 3-33).

 [image:]

 Figure 3-33 Catalog - Selecting Natural Language Understanding

 The Natural Language Understanding page opens (Figure 3-34).

 [image:]

 Figure 3-34 Natural Language Understanding creation page

 d.	Change the Service name field to natural-language-understanding. This is the name of the service.

 e.	Click Create.

 f.	Click Connections on the left pane.

 g.	Click Create connection, select your application vy102-XXX-express, and click Connect (Figure 3-35).

 [image:]

 Figure 3-35 Connect the Natural Language Understanding service with the application

 	
 Important step: You must perform this step because it binds the instance of the Natural Language Understanding service to the application so that your application can use the service.

 h.	To make the service available for use, click Restage on the dialog window that opens (Figure 3-36). Restaging the application means redeploying the application.

 [image:]

 Figure 3-36 Restage app dialog box

 i.	Close the Service Details tab to return to IBM Cloud DevOps.

 2.	For integration with Watson, you will be using a module named watson-developer-cloud. Add a dependency for it in the package.json file:

 a.	Open the package.json file.

 b.	Add watson-developer-cloud as a dependency in package.json:

 i.	Find the line “body-parser”: “*” (it can also be “body-parser”: “latest” if added automatically before). Add a comma (,) at the end of the line and press Enter.

 ii.	On the new line, add the following code snippet:

 "watson-developer-cloud": "2.25.1"

 The updated package.json is shown in Figure 3-37.

 [image:]

 Figure 3-37 Updated package.json

 3.	Create a module named articleServices to handle all the business logic related to articles. This module has the function extractArticleAuthorNames that calls the Natural Language Understanding service, passing to it the article URL, and returning the list of author names. Complete these steps:

 a.	Right-click vy102-xxx-express in the left navigation bar and then select New → Folder. Name the folder services, and then press Enter.

 b.	Create articleServices.js. Right-click the services folder, select New → File, name the file articleServices.js, and press Enter.

 c.	Create an instance of the third-party node.js module watson-developer-cloud by copying the code snippet from Example 3-10 to the articleServices.js file.

 Example 3-10 Code snippet: Create instance of third-party Node.js module

 [image:]

 // Watson Natural Language Understanding third party module

 //Specify the release for the Natural Language Understanding service

 var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');

 var natural_language_understanding = new NaturalLanguageUnderstandingV1({

 	'version_date': NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27

 });

 [image:]

 	
 Unknown dependency: Eclipse Orion might raise an unknown dependency warning message. You can ignore this warning because the parent module, watson-developer-cloud, was included previously. The watson-developer-cloud module contains the natural-language-understanding module.

 d.	Create a function, extractArticleAuthorNames (Example 3-11) that calls the Natural Language Understanding service to extract the authors’ names.

 Example 3-11 Code snippet: extractArticleAuthorNames function

 [image:]

 /*

 * Call Watson NLU Service to extract the list of author names for the requested article URL

 */

 exports.extractArticleAuthorNames = function(req){

 };

 [image:]

 4.	Prepare the parameters for calling the Natural Language Understanding service by placing the code snippet from Example 3-12 inside the extractArticleAuthorNames function.

 Example 3-12 Code snippet: Parameters for calling Watson NLU

 [image:]

 // url is the parameter passed in the POST request to /author

 // It contains the URL of the article

 // The metadata feature returns the author, title, and publication date.

 var parameters = {

 'url': req.body.url,

 'features': {

 'metadata': {}

 }

 };

 [image:]

 5.	Call the Natural Language Understanding service and return to the caller a callback function that contains the author’s name. Complete these steps:

 a.	Add callback as a parameter to the function:

 exports.extractArticleAuthorNames = function(req, callback){

 b.	Call the analyze function from the natural_language_understanding third-party module. If the request succeeds, it returns a metadata object of the article. In this exercise, you are interested in the authors object in the metadata that returns the list of authors for the article.

 Copy the code snippet from Example 3-13 to the extractArticleAuthorNames function after the parameters variable initialization.

 Example 3-13 Code snippet: Call the Natural Language Understanding service and return caller

 [image:]

 // Call the Watson service and return the list of authors

 natural_language_understanding.analyze(parameters, function(err, response) {

 if (err)

 callback(err,null);

 else

 callback(null,response.metadata.authors);

 });

 [image:]

 6.	If the URL passed is empty, return an error message to the user:

 a.	Add the following error message as a constant after the initialization of the natural_language_understanding variable:

 //error message for missing URL

 const MISSING_URL_ERROR = 'URL not passed';

 b.	Check whether the URL is empty. At the beginning of the extractAuthorNames function (line exports.extractArticleAuthorNames = function(req, callback){), add the code snippet from Example 3-14 to return the error message if the URL is not defined.

 Example 3-14 Check URL

 [image:]

 	//If the url is not passed, return error to the caller

 	if(req===null||req.body===null||req.body.url===null){

 		callback(MISSING_URL_ERROR,null);

 		return;

 	}

 [image:]

 c.	Press Alt + Shift + F to format the code.

 The complete articleServices.js file now looks like the file in Figure 3-38.

 [image:]

 Figure 3-38 The full code of the articleService.js file

 7.	Edit the author route to call authorServices.extractArticleAuthorNames instead of just returning the article URL by completing these steps:

 a.	From the navigation bar, open the routes folder and select the author.js file.

 b.	Add a reference to the authorServices module after the router variable initialization:

 var articleServices = require('../services/articleServices');

 c.	Edit / route to call the extractArticleAuthorNames function from the articleServices module. This process involves replacing the line res.send('You called the server requesting the author of the article: ' + req.body.url); with the code snippet from Example 3-15.

 Example 3-15 Code snippet: Add call to extractArticcleAuthorNames function

 [image:]

 	articleServices.extractArticleAuthorNames(req, function(err, response) {

 if (err)

 res.status(500).send('error: ' + err);

 else

 res.send(response);

 });

 [image:]

 The code indicates that in case of error, a 500 status code is returned to the user, which means Internal Server Error.

 The updated author.js file is shown in Figure 3-39.

 [image:]

 Figure 3-39 Updated author.js

 3.3.6 Deploy the application and run it

 Other ways to deploy the application exist in addition to deploying it from Eclipse Orion Web IDE. In the next steps, you push the code to the Git repository, and then the IBM Cloud Delivery Pipeline automatically builds and deploys the code.

 By default, enabling continuous delivery for a project creates a DevOps toolchain for your project. The toolchain includes a Git repository that is based on GitLab. Git is an open source change management system.

 The Git repository perspective in the IBM Cloud DevOps Services web IDE supports common Git commands to manage your code. You can also develop your application on your own workstation and commit your changes to the Git repository with a standard Git client.

 By default, IBM Cloud Delivery Pipeline services automatically run the build and deploy tasks when you commit changes to the Git repository.

 Complete these steps:

 1.	Switch to the Git perspective by clicking the Git icon on the left toolbar (highlighted in Figure 3-40).

 [image:]

 Figure 3-40 IBM Cloud DevOps

 2.	Notice that all the changed files are listed in the Working Directory Changes window (Figure 3-41). Enter a descriptive message for commit, for example Watson Author Finder - Initial Code, and then click Commit.

 [image:]

 Figure 3-41 IBM Cloud DevOps: Git

 3.	Your change is displayed in the outgoing window (Figure 3-42). Click Push.

 [image:]

 Figure 3-42 IBM Cloud DevOps: Git

 4.	After the application is pushed to Git, the Delivery pipeline automatically builds and deploys the application. Complete these steps:

 a.	Close the IBM Cloud DevOps Git tab and return to the Application Details.

 b.	Scroll down to the Continuous delivery tile and then click View toolchain (Figure 3-43).

 [image:]

 Figure 3-43 Application Details

 c.	Click Delivery Pipeline (Figure 3-44).

 [image:]

 Figure 3-44 IBM Cloud DevOps toolchain

 d.	Wait until all the jobs at the Build Stage and Deploy Stage are completed. Figure 3-45 shows that the Deploy Stage is still running.

 [image:]

 Figure 3-45 Delivery Pipeline: Deploy Stage is in-progress

 Figure 3-46 shows that both stages are completed.

 [image:]

 Figure 3-46 Delivery Pipeline: Build Stage and Deploy Stage passed

 e.	To run the application, click the URL of the last execution result of the Deploy Stage (Figure 3-47).

 [image:]

 Figure 3-47 Delivery Pipeline: Click URL

 f.	Run the application by entering the URL of any article and then clicking Submit (Figure 3-48).

 The following is an example of an article URL:

 https://www.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-david-kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale

 [image:]

 Figure 3-48 Watson Author Finder application

 The author name is retrieved from the Natural Language Understanding service (Figure 3-49).

 [image:]

 Figure 3-49 Watson Author Finder returned results

 3.4 Exercise review

 During this exercise, you accomplished the following goals:

 •Created Hello World Express Application that includes two routes handling the URIs GET /, and POST /author. You should now understand the basics of Express Framework.

 •Sent the index.html page to the caller of the GET URI. You should now know how to use Express to send an HTML page to the user in response to a route.

 •Learned how to integrate a Node.js application with Watson Natural Language Understanding service.

 •Organized the code into routes, views, and services. By following the steps, you should now know about preferred practices for organizing Express applications in Node.js.

[image:]
[image:]

Building a rich front-end application by using React and ES6

 This chapter guides you through building an interactive and rich client-side application by using React. The app demonstrates the use of React components. It uses the Fetch API with ECMAScript 6 (ES6) to communicate with Node.js back-end services that call the IBM Watson Natural Language Understanding service to extract the authors of online articles that are selected by the user.

 The sample application demonstrates the integration of the React front-end application with server-side Node.js services.

 This chapter contains the following topics:

 •Getting started

 •Architecture

 •Step-by-step implementation

 •Exercise review

 4.1 Getting started

 To start, read the objectives, prerequisites, and expected results of this chapter.

 4.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Clone an IBM Cloud application.

 •Use React to create interactive web pages.

 •Use the Fetch API to interact with back-end web services.

 •Understand the following concepts of ES6:

  –	Classes.

  –	Arrow functions.

  –	Promises.

 4.1.2 Prerequisites

 Before you start, be sure that you meet these prerequisites:

 •Basic JavaScript skills

 •Basic HTML 5 skills

 •An IBM Cloud account

 •An understanding of Cloud DevOps basic concepts

 •An understanding of Git basic concepts

 •Access to a web browser: Google, Chrome, or Mozilla Firefox

 4.1.3 Background concepts

 In this exercise, you use ES6, React, and Bootstrap to build the front-end application. This section briefly introduces the concepts used.

 ECMAScript 6

 Most modern UI frameworks and new JavaScript APIs require an understanding of ES6. This exercise uses the ES6 Fetch API to call back-end services, classes to create the React Component, and the arrow function to simplify the code.

 In 2015, the European Computer Manufacturers Association (ECMA), released a new version of the JavaScript standardization (ES6), which was considered a significant upgrade to the JavaScript language, since the standardization done in 2009, which was called ES5. ES6 introduced a set of new features and syntactic sugar, to JavaScript language.

 	
 Syntactic sugar: Syntactic sugar is a term used in programming languages to define the syntax introduced to make writing the code easier. It does not add new features. For example, sum = sum +1; //The syntactic sugar is sum++;.

 Both syntaxes are still valid and perform the same functions.

 This chapter covers only four ES6 features:

 •let keyword

 let is a keyword used to refer to a variable. It is similar to the var keyword, but the main difference is that the variable defined with let is visible only within the scope it is defined in. In contrast, var can be accessible outside its defined scope. Example 4-1 shows the difference between the var and let keywords:

 Example 4-1 Difference between var and let keywords

 [image:]

 for (var i = 0; i < 10; i++) {

 console.log(i);

 }

 // The variable i is accessible here, although it was defined inside the for loop.

 console.log(i);

 for (let k = 0; k < 10; k++) {

 console.log(k);

 }

 // The following line is invalid, because k is not accessible outside the for loop.

 console.log(k);

 [image:]

 •Classes

 ES5 already included object-oriented and inheritance capabilities provided by prototype. ES6 introduces the class syntax, which is a syntactic sugar to make it easier to program.

 Example 4-2 shows how to define a class by using prototype in ES5. Notice that in ES5 a class is defined by using the function keyword, which is confusing.

 Example 4-2 Defining a class by using prototype in ES5

 [image:]

 function Rectangle(x, y) {

 this.x = x;

 this.y = y;

 }

 Rectangle.prototype.draw = function() {

 // your rectangle drawing code goes here

 }

 // Initialize Rectangle.

 var rect = new Rectangle(2,3);

 [image:]

 Example 4-3 shows how to define a class in ES6 by using the class syntax. This approach eliminates the confusion and is better aligned with object-oriented programming syntax.

 Example 4-3 Defining a class using ES6 syntactic sugar

 [image:]

 class Rectangle {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 draw() {

 // your rectangle drawing code goes here

 }

 }

 let rect = new Rectangle(2,3);

 [image:]

 •Arrow function

 Classical JavaScript function syntax does not provide flexibility for defining a function with just one statement when compared to defining a function with a longer body. Regardless of the number of statements in the function, you always must enter function () {}. The arrow function simplifies the syntax for a simple single-line function.

 Example 4-4 shows a simple function definition in ES5.

 Example 4-4 Defining the add function in ES5

 [image:]

 var add = function(a, b) {

 return a + b;

 }

 console.log(add(3, 4));

 [image:]

 Example 4-5 shows the same function with a simplified arrow syntax in a single line.

 Example 4-5 Same example with ES6

 [image:]

 let add = (a, b) => a + b;

 console.log(add(3, 4));

 [image:]

 •Promises

 Promises are a compelling alternative to callback functions when dealing with asynchronous code. Unfortunately, promises can be confusing. However, significant work has been done to bring out the essential advantages of promises in a way that is interoperable and verifiable.

 	
 Note: There are several promises libraries, but the one introduced in ES6 is based on the Promises/A+ specification. For more information, see Promises/A+ at https://promisesaplus.com/.

 The core component of a promise object is its then method. then takes two optional callback functions as arguments (fulfillment value and rejection reason). The then method is how you get the return value (known as the fulfillment value) or the exception thrown (known as the rejection reason) from an asynchronous operation.

 Example 4-6 shows calling an asynchronous function and handling the returned promise by using two callback functions, which are called onFulfilled and onRejected in this example.

 Example 4-6 Promises with ES6

 [image:]

 var promise = doSomethingAync()

 promise.then(onFulfilled, onRejected)

 [image:]

 Example 4-7 and Example 4-8 illustrate the difference between handling callback functions in ES5 and ES6..

 Example 4-7 shows a sample code written in ES5 to read a file. It uses asynchronous callback functions to process the file and handle the error.

 Example 4-7 Reading files and handling errors in ES5

 [image:]

 readFile(function(err, data) {

 if (err) {

 console.error(err);

 }

 console.log(data);

 });

 [image:]

 With ES6 promises, the code looks like in Example 4-8.

 Note that the data argument in console.log and the err argument in console.error do not need to be specified. The code can be simplified as shown in the example because the interpreter implicitly passes the argument to functions that accept only one parameter.

 Example 4-8 Reading files and handling errors in ES6

 [image:]

 var promise = readFile()

 promise.then(console.log, console.error)

 [image:]

 You can pass the promise around and anyone with access to the promise can consume it using then regardless whether the asynchronous operation has completed or not. You are also ensured that the result of the asynchronous operation will not change for any reason because the promise will be resolved only once (either fulfilled or rejected).

 	
 Note: It is helpful to think of then not just as a function that takes two callbacks (onFulfilled and onRejected in this example), but as a function that unwraps the promise to reveal what happened from the asynchronous operation. Anyone with access to the promise can use then to unwrap it.

 React concepts

 In this exercise, you use React to build a client-side application that takes the URL of an article published on the internet as input from the user and communicates asynchronously with a back-end Node.js service to extract the author of the article.

 React is a framework for building client-side dynamic web applications. React uses dynamic data binding and virtual Document Object Model (DOM) to extend HTML syntax and to eliminate the need for code that keeps the UI elements synchronized with the application state. This code, sometimes referred to as glue code, serves solely to synchronize the state of the UI components with changes in the back-end application. It does not add business value capabilities to your solution. React saves you the time and effort needed to create this code.

 Some of the basic concepts of React applications are as follows:

 •Virtual DOM

 HTML pages use what is called DOM to render, traverse, and update UI elements in a responsive way. JavaScript code traverses the DOM tree to create, update, or hide HTML components. JavaScript traverses the DOM by using browser-specific application programming interfaces (APIs).

 Sometimes this approach creates compatibility issues across browsers. Also, some browsers implement the function more efficiently than others. For example, you might experience better performance when using Chrome to access a website compared to another browser.

 Figure 4-1 shows the DOM of the HTML page for the Watson Author Finder application developed in Chapter 3, “Creating your first Express application” on page 53.

 [image:]

 Figure 4-1 DOM of the HTML page for the Watson Author Finder application

 Example 4-9 shows the HTML code represented by the DOM in Figure 4-1.

 Example 4-9 Code snippet: HTML code for application Watson Author Finder

 [image:]

 <html>

 	<body>

 		<h1 style="color:blue;">Watson Author Finder</h1>

 		<p>To get information about the author of an article, enter the URL of that article.</p>

 		<form action="author" method="post">

 			<input type="text" name="url"/>

 			<input type="submit" value="Submit"/>

 		</form>

 	</body>

 </html>

 [image:]

 React addresses this issue by using the concept of virtual DOM to provide an abstraction of the HTML DOM. With this approach, the responsibility for traversing the virtual DOM lies on the React framework, which makes it independent of the browser.

 Example 4-10 shows the same HTML code written in React. Note the following in the code:

  –	The AuthorCheckForm class is equivalent to the <form> tag.

  –	The InputUI class is equivalent to the content of the form.

 Example 4-10 HTML code in Example 4-8 written in React

 [image:]

 class AuthorCheckForm extends React.Component {

 constructor(props) {

 super(props);

 }

 render() {

 return (

 <form action="author" method="post">

 					<InputUI label='URL'/>

 		 		</form>

)

 }

 }

 class InputUI extends React.Component {

 constructor(props) {

 super(props);

 }

 render() {

 return (

 <div>

 			 <a>

 					{this.props.label}

 				

 				<input type="text" name="url"/>

 				<input type="submit" value="Submit"/>

 			</div>

)

 }

 }

 [image:]

 •React components

 React components are reusable pieces of the UI. Each component extends the React class component, which has lifecycle methods that describe the behavior of the component. Conceptually, components are like JavaScript classes. Your implementation can override the component lifecycle methods to specify the behavior of each reusable piece.

 The component lifecycle methods are constructor() and render(). You initialize variables, including the state, in the constructor() method and write the HTML code in the render() method.

 Another important property of the component is that it can be used to keep the state of the UI.

 Example 4-11 shows the basic skeleton of a React component.

 Example 4-11 React component

 [image:]

 class InputUI extends React.Component {

 constructor(props) {

 super(props);

 }

 render() {

 return (<p> hello world </p>)

 }

 }[image:]

 •React components properties

 A React component property is similar to an attribute in an HTML tag. In React, you use a custom tag to define component properties instead of using custom attributes for an HTML tag. In Example 4-12, the component is InputUI and the property is label.

 •React element

 The React element is similar to standard HTML tags, such as <h1>, <body>, and so on. The difference between React elements and HTML DOM elements is that React elements can also be used to render the components.

 Example 4-12 shows a React element rendering the InputUI component.

 Example 4-12 React element

 [image:]

 <InputUI label='URL' />

 [image:]

 Example 4-13 shows React element example for a standard HTML tag.

 Example 4-13 React element

 [image:]

 <input type="submit" value="Submit"/>

 [image:]

 •React state

 To make the React components dynamic, you initialize the state in the constructor() method and render the component data from the state. The state is updated by events, for example an Ajax response. React renders the components to display the updated state.

 States and virtual DOM complement each other to achieve the high performance of React. React uses the virtual DOM to compute what the DOM of the final web page should look like after the state of some elements is updated. The calculations happen in-memory on the virtual DOM. The result of this algorithm is how the HTML DOM should look.

 •JavaScript XML (JSX)

 JSX simplifies code by enabling developers to write XML-like syntax in JavaScript code. JSX is commonly used in React, but current browsers do not support JSX out of the box. Writing code with JSX requires the use of the Babel JavaScript compiler (also known as transpiler) to convert JSX into JavaScript supported by the browsers.

 Example 4-14 shows creating an element in React by using JSX.

 Example 4-14 Creating an element by using JSX

 [image:]

 var sum = 3+2;

 <input type=”text” value={sum}/>

 [image:]

 Example 4-15 shows creating the same element in React without using JSX.

 Example 4-15 Creating the same element using JavaScript

 [image:]

 var sum = 3+2;

 React.createElement(“input”,{“type”:”text”,“value”:{sum});

 [image:]

 As a developer, you can program in React with JavaScript without using JSX. However, JSX is currently the preferred language for React programmers.

 Bootstrap

 Bootstrap is an HTML, CSS, and JavaScript front end for developing responsive web pages.

 Bootstrap uses a responsive grid layout. Each Bootstrap page is arranged into nested rows and columns. Each row holds exactly 12 columns. Classes are assigned to columns and used to determine the width of the column at different screen sizes. For example, div tag with class col-md-6 takes exactly half the screen width (6/12) on screens of medium size and larger. A div with both classes col-xs-12 and col-md-6 takes the full screen width on extra small and small screens, and half the width on medium and large screens.

 For more information, see the Bootstrap documentation at this URL:

 https://getbootstrap.com/docs/4.0/getting-started/introduction/

 4.1.4 Expected results

 Figure 4-2 shows the Author Finder application displaying the list of authors extracted from an article published on the CNN website.

 [image:]

 Figure 4-2 React app Watson Natural Language Understanding Author Finder

 Here is how it works:

 1.	The user enters the URL of an article that has one or more authors.

 2.	The user clicks Retrieve Author.

 3.	React sends a request to the Node.js web service by using the Fetch API.

 4.	The web service calls the Watson Natural Language Understanding service to parse the article and extract the authors.

 5.	The result is passed back to the React state, which renders it in a responsive grid.

 4.2 Architecture

 Figure 4-3 shows the components and runtime flow of the application.

 [image:]

 Figure 4-3 Architecture

 Figure 4-3 describes these steps:

 1.	In a web browser, the user navigates to the application URL:

 http://vy102-xxx-react.mybluemix.net

 2.	The web browser sends a GET / request to the Node.js back-end application developed in Chapter 3, “Creating your first Express application” on page 53.

 3.	The Express framework in Node.js returns frontend/index.html.

 4.	The frontend/index.html page is returned to the user. The index.html page contains a form that has one text box and a Submit button. The text box is where the user enters the URL of an article.

 5.	The user enters the article URL and then clicks Submit.

 6.	The web browser sends a POST request to the /author route with the article URL passed in the body.

 7.	The Express framework in Node.js passes the article URL to the Watson Natural Language Understanding service. It also specifies that metadata should be returned.

 	
 IBM Watson Natural Language Understanding service: This service uses natural language processing (NLP) to analyze semantic features of a text. Watson Natural Language Understanding service has many features, such as concepts, categories, emotion, entities, keywords, metadata, and sentiment.

 The feature used in this exercise is metadata. It retrieves document’s metadata, including the author name, title, RSS/ATOM feeds, prominent page image, and publication date.

 8.	The metadata for the article is returned by the Watson Natural Language Understanding service.

 9.	Node.js filters the metadata to return only the author names.

 10.	The authors of the article are returned to the user through the web browser.

 4.3 Step-by-step implementation

 The implementation involves the following steps:

 1.	Clone the express application from Git using the Delivery Pipeline.

 2.	Create your first React page.

 3.	Add a dynamic form to the page.

 4.	Add more components to the form.

 5.	Use the Fetch API to call the Node.js author service.

 4.3.1 Log in to IBM Cloud

 To log in to IBM Cloud, complete these steps:

 1.	Open the IBM Cloud console in your web browser:

 http://bluemix.net

 2.	Click Log in.

 3.	Enter your IBM Cloud ID (Figure 4-4).

 [image:]

 Figure 4-4 IBM Cloud login

 4.	Click Continue.

 5.	Enter your password and click Log in.

 6.	Confirm that your IBM Cloud account page opens.

 4.3.2 Clone the Express application from Git by using the Delivery Pipeline

 This application builds on the code that you developed in Chapter 3, “Creating your first Express application” on page 53. If you successfully finished the application in Chapter 3, “Creating your first Express application” on page 53, you can skip to “Create your first React page” on page 106.

 Complete the following steps to quickly deploy the application:

 1.	Open the following link:

 https://console.bluemix.net/devops/setup/deploy?repository=https://github.com/ibm-redbooks-dev/vy102-XXX-express

 2.	On the page that opens (Figure 4-5), select the Delivery Pipeline tab. On the Delivery Pipeline tab, set the App name to vy102-XXX-react (replace XXX with your unique key). Keep all other settings unchanged and click Deploy.

 [image:]

 Figure 4-5 Create a Toolchain window

 3.	A new window opens (Figure 4-6). Click Eclipse Orion Web IDE.

 [image:]

 Figure 4-6 IBM Cloud toolchain: Select Eclipse Orion Web IDE

 4.	The Eclipse Orion Web IDE lists your project files (Figure 4-7). The source code from the application developed in Chapter 3, “Creating your first Express application” on page 53 is displayed in the online IDE because the new project was cloned from it.

 [image:]

 Figure 4-7 Eclipse Orion Web IDE

 5.	Make the following changes to the manifest.yml file (Figure 4-8 on page 104):

  –	Change the application name and host on lines 10 and 11 to vy102-xxx-react. Replace xxx with your random key.

  –	If needed, change the domain based on your IBM Cloud region as shown in Table 4-1.

 The exercises in this book were tested in the US South region. If you use another IBM Cloud region and face any problem, register for a new IBM Cloud account and select United States for country or region as described in Chapter 1.3.1, “Set up your IBM Cloud account” on page 4.

 Table 4-1 IBM Cloud regions and domains

 	
 Region

 	
 Domain

 	
 US South

 	
 mybluemix.net

 	
 United Kingdom

 	
 eu-gb.mybluemix.net

 	
 Sydney

 	
 syd.mybluemix.net

 	
 Germany

 	
 eu-de.mybluemix.net

 [image:]

 Figure 4-8 manifest.yml

 6.	Complete the following steps to configure the application to be deployed from Eclipse Orion IDE to IBM Cloud:

 a.	Click Create new launch configuration, then press the + button (Figure 4-9).

 [image:]

 Figure 4-9 Eclipse Orion launch bar

 b.	In the Edit Launch Configuration window (Figure 4-10), keep all the settings as default and click Save. If your user is part of multiple organizations, choose the organization that has your email as its name. Note that application name and host values are defaulted from manifest.yml. If you change the host value, it overrides the value in manifest.yml.

 [image:]

 Figure 4-10 Edit Launch Configuration

 c.	Deploy the application by clicking the play icon, Deploy the App from the Workspace, which is highlighted in Figure 4-11.

 [image:]

 Figure 4-11 Eclipse Orion launch bar

 	
 Troubleshooting: If you get the error The app space binding to service is taken, delete the deployed app from your IBM Cloud dashboard. Then redeploy the app from Eclipse Orion by clicking the play icon (Deploy the App from the Workspace).

 7.	Wait for the deployment to complete. To make sure that your application is running, either click the Open the Deployed App icon (highlighted in Figure 4-12) or go directly to your default route:

 https://vy102-xxx-react.mybluemix.net/

 [image:]

 Figure 4-12 Eclipse Orion launch bar

 4.3.3 Create your first React page

 React is a JavaScript-based front-end web application framework that is used primarily to develop single-page applications. The single-page application is a web page that loads one HTML page, and dynamically updates it as the user interacts with the app.

 The entire React application, including HTML views, JavaScript files, and CSS files, run on the browser. In this exercise, to make these components available to the browser, all the client-side files must be located under a single root folder and must be served by the Express framework by using the express.static() method.

 	
 Important: The application now uses two JavaScript frameworks: Express, which runs on the server side and React, which runs on the client side. From the perspective of Node.js, all the React code is a set of static text files that are passed to the browser without any processing. To avoid confusion between the client-side files and the server-side files, this exercise keeps all client-side files in a hierarchy inside the frontend folder.

 Complete the following steps:

 1.	Start Eclipse Orion Web IDE for your application if it is not opened already.

 2.	Update the app.js file by adding the following lines after the initialization of the routes module:

 //Serve the files in /frontend as static files

 app.use(express.static(__dirname + '/frontend'));

 The updated app.js file is shown in Figure 4-13.

 [image:]

 Figure 4-13 The added lines in the updated app.js file

 The code in app.js initializes the Express framework and sets it to listen to all HTTP requests. It also sets Express to use the /frontend folder as its static content root. This setting means that when the user tries to access any URL in the application, Express tries to find the file that matches that path inside the /frontend folder.

 If a file is found, it is returned to the user. If no static file matches the path that is requested by the user, Express tries to match the path to one of the routes. If no routes match, error 404 is returned.

 	
 Note: Express tries to match static file paths first because the express.static() method is called in this code before the routes are registered. If the invocation order is reversed, Express checks the routes before looking up static files. In general, you should match static files before matching routes.

 If the user does not specify a path, Express checks whether a file named index.html exists at the root of the /frontend folder. If that file exists, it is returned to users opening the domain without specifying a path. Essentially, the /frontend/index.html file is the home page, so the first order of business is to update that file to use React.

 3.	Create the folder frontend under the root of the project and create the file index.html inside it with the content shown in Example 4-16.

 Example 4-16 Basic HTML page

 [image:]

 <html>

 <head>

 <title>React JS - Author Finder</title>

 </head>

 <body>

 </body>

 </html>

 [image:]

 4.	Reference React, and Babel in your HTML. This reference can be done by inserting the script lines shown in Example 4-17 inside the <body> tag.

 Example 4-17 Fetching required libraries

 [image:]

 	<!-- Loading the script in body is a recommendation to ensure faster loading,

 	 putting all scripts at the header will cause the page to wait till all scripts loaded

 Load React related files from internet -->

 	<script crossorigin src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

 	<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

 	<!-- Load babel JavaScript compiler from internet -->

 	<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 [image:]

 5.	Update the /frontend/index.html file to reference bootstrap CSS from the Content Delivery Network (CDN). This update can be done by inserting the link line shown in Example 4-18 inside the <head> tag right after the </title> tag.

 	
 CDN: A CDN is a distributed system that hosts common CSS, JavaScript, and other web resources in a geographically dispersed group of servers so that the files are delivered to users from the server nearest to them.

 Example 4-18 Fetching bootstrap stylesheets

 [image:]

 <link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css"/>

 [image:]

 6.	Insert a simple HTML code that contains a <div> tag inside the <body> tag, right after the last </script> tag (Example 4-19).

 The React component is rendered in the <div> tag with id=”root”.

 Notice the use of col-sm-10, col-sm-offset-1, and text-center bootstrap classes.

 Example 4-19 <div> tag in HTML code

 [image:]

 	<div class="container">

 		<div class="row">

 			<!-- You do not need to write much html code, you will

 			 build the whole html on your JSPX code -->

 			<div class="col-sm-10 col-sm-offset-1 text-center" id="root">

 			</div>

 		</div>

 	</div>

 [image:]	

 7.	With the /frontend/index.html file open in the IDE, press Alt + Shift + F to auto-format it. It should look like Example 4-20.

 Example 4-20 Formatted /frontend/index.html file

 [image:]

 <html>

 <head>

 	<title>React JS - Author Finder</title>

 	<link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css" />

 </head>

 <body>

 	<!-- Loading the script in body is a recommendation to ensure faster loading,

 	 putting all scripts at the header will cause the page to wait till all scripts loaded

 Load React related files from internet -->

 	<script crossorigin src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

 	<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

 	<!-- Load babel JavaScript compiler from internet -->

 	<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 	<div class="container">

 		<div class="row">

 			<!-- You do not need to write much html code, you will

 			 build the whole html on your JSPX code -->

 			<div class="col-sm-10 col-sm-offset-1 text-center" id="root">

 			</div>

 		</div>

 	</div>

 </body>

 </html>

 [image:]

 8.	You no longer need the /views/index.html file because you replaced it with the /frontend/index.html file. Delete the /views/index.html file and all references to it, including the index.js route and the code registering it in the app.js file. To do so, complete the following steps:

 a.	Right-click the views folder and select Delete to delete the folder and the index.html file inside it.

 b.	Right-click the /routes/index.js file and select Delete to delete it.

 	
 Note: Delete the index.js file only. Do not delete the routes folder.

 c.	In app.js, locate and delete index = require('./routes'),. Do not delete var because it is still used to declare the author.

 d.	In app.js, locate and delete the app.use('/', index) line, along with the comment line before it.

 Your app.js file should look like Figure 4-14.

 [image:]

 Figure 4-14 Updated app.js

 4.3.4 Add a dynamic form to the page

 Now, add a simple form to the page. The form consists of a text box, a label, and a button. The user enters the article URL in the text box and then clicks the button so that React calls the Node.js back-end service to extract the author’s name.

 For this step, create the form but do not call the Node.js service:

 1.	Under the frontend folder, create a folder called components. Create the components.js file in the components folder (Figure 4-15).

 [image:]

 Figure 4-15 New components.js file

 2.	Inside the components.js file, create a class that extends React.Component as shown in Example 4-21.

 Example 4-21 Code snippet: Class Container [image:]

 class Container extends React.Component {

 constructor(props) {

 super(props);

 }

 render() {}

 }

 [image:]

 3.	Initialize the page state in the constructor by adding the code snippet from Example 4-22 to the constructor after the super(props) line.

 Example 4-22 Code snippet: Class Container extends React.Component

 [image:]

 this.state = {

 url: '',

 authors: [],

 inputVal: ''

 };

 [image:]

 4.	After the constructor, add the updateUrl() method to update its state. Also, add the getAuthor() method with no implementation for now. It will be implemented later to call the back-end service to retrieve the authors (Example 4-23).

 	
 Note: Format the code correctly after pasting, especially any wrapped around lines, and remove any unintentional line breaks in lines of code and comments.

 Example 4-23 Adding the updateUrl() and getAuthor() methods

 [image:]

 updateUrl(e) {

 this.setState({

 inputVal: e.target.value

 });

 }

 // getAuthor uses the fetch function to retrieve authors

 // from the REST service created in the previous exercise

 getAuthor() {}

 [image:]

 5.	Replace the render () method with the code snippet in Example 4-24. It contains html tags to render the author name and the button.

 	
 Note: From this point on, do not use Shift + Alt + F to format the code in the components.js file. If you need to format the code, do it manually.

 Eclipse Orion Web IDE does not currently support JSX syntax formatting that is combining HTML and JavaScript code. You can use other code formatting tools such as jsbeautifier at http://jsbeautifier.org/. Select the Support e4x/jsx syntax option of jsbeautifier if you will use this tool to format JSX code in the examples of this chapter.

 Example 4-24 Override the render() method

 [image:]

 // Render is the core function behind React components.

 // It defines components and elements in XML format.

 // This is only feasible if using JSPX and Babel JavaScript compiler.

 render() {

 return (

 <div class="jumbotron text-center">

 	 <h1>Author Finder</h1>

 	 <div id='input-form' class='text-center'>

 	 <input type="text" class="form-control input-lg text-center" onChange={e=>this.updateUrl(e)} placeholder="Enter URL of Article here!"/>

 	 </div>

 	

 	 <button type="button" class="btn btn-primary btn-lg" disabled = {this.state.inputVal.length===0} onClick={()=>{this.getAuthor()}}>Retrieve Author</button>

 	 </div>

)

 }

 [image:]

 6.	Add the code snippet in Example 4-25 at the end, after the brace } closing the Container class. This code updates the HTML DOM tree, with the new component, starting from the <div id="root"> element. The code inserts the Container component in the <div id="root"> element shown in Example 4-20 on page 109.

 Example 4-25 ReactDOM.render

 [image:]

 ReactDOM.render(<Container />, document.getElementById("root"));

 [image:]

 7.	Your code now should look like Example 4-26.

 Example 4-26 Complete code for Container class

 [image:]

 class Container extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 url: '',

 authors: [],

 inputVal: ''

 };

 }

 updateUrl(e) {

 this.setState({

 inputVal: e.target.value

 });

 }

 // getAuthor uses the fetch function to retrieve authors

 // from the Rest service created in the previous exercise

 getAuthor() {}

 // Render is the core function behind React components.

 // It defines components and elements in XML format.

 // This is only feasible if using JSPX and Babel JavaScript compiler.

 render() {

 return (

 <div class="jumbotron text-center">

 	 <h1>Author Finder</h1>

 	 <div id='input-form' class='text-center'>

 	 <input type="text" class="form-control input-lg text-center" onChange={e=>this.updateUrl(e)} placeholder="Enter URL of Article here!"/>

 	 </div>

 	

 	 <button type="button" class="btn btn-primary btn-lg" disabled = {this.state.inputVal.length===0} onClick={()=>{this.getAuthor()}}>Retrieve Author</button>

 	 </div>

)

 }

 }

 ReactDOM.render(<Container />, document.getElementById("root"));

 [image:]

 8.	Update index.html to import the React Container component by adding the following line in the <body> tag after the last </script> tag, as shown Figure 4-16.

 <script type="text/babel" src="./components/components.js"></script>

 Note that the script type is text/babel, not JavaScript, to indicate to the browser that it needs the support of the Babel compiler to translate this page.

 [image:]

 Figure 4-16 The /frontend/index.html file

 9.	Deploy the application by clicking the Play icon (Deploy the App from the Workspace). If you receive a pop-up message warning you that the application will be redeployed, click OK to confirm.

 10.	After the application deployment is complete, run the application by clicking the Open the Deployed App icon. The UI should look like Figure 4-17. Notice that the Retrieve Author button is disabled until the user starts writing in the text box.

 [image:]

 Figure 4-17 Dynamic React form

 4.3.5 Add more components to the form

 Figure 4-18 represents the React components to be developed in this exercise.

 [image:]

 Figure 4-18 Component structure

 In 4.3.4, “Add a dynamic form to the page” on page 110, you added an HTML form to the page as a React component called Container.

 In this section, you will add the Results and the AuthorRecord components using these steps:

 1.	Open the /frontend/components/components.js file.

 2.	Copy the code snippet from Example 4-27 on page 116 into the components.js file, before ReactDOM.render(<Container />, document.getElementById("root")).

 	
 Note: Do not use SHIFT + ALT + F to format the code in the components.js file. If you need to format the code, do it manually.

 Example 4-27 shows a new component called Results. It displays the Article URL, and the list of extracted author names.

 Example 4-27 Code snippet: Results Component in components.js

 [image:]

 // Results: is another React component

 // that creates the list of AuthorRecords

 class Results extends React.Component {

 constructor(props) {

 super(props);

 }

 render() {

 if (this.props.hide) {

 return null;

 }

 return (

 <div class='form-inline'>

 <div class="row">

 <div class="col-xs-12 col-md-3">

 <h2>Article URL:</h2>

 </div>

 <div class="col-xs-12 col-md-9">

 {this.props.url}

 </div>

 </div>

 <div class="row">

 <div class="col-xs-12 col-md-3">

 <h2>Authors:</h2>

 </div>

 <div class="col-xs-12 col-md-9">

 <div class="row">

 </div>

 </div>

 </div>

 </div>

)

 }

 }

 [image:]

 	
 Note: If you see errors in the components.js file, ignore them. These errors are caused by combining HTML code with JavaScript code as this file follows JSX syntax.

 3.	Copy the code snippet from Example 4-28 into the components.js file after the render() method in the Results class.

 Example 4-28 shows a helper method called renderAuthors() to iterate over the authors retrieved from the back-end service by using map().

 Notice that the AuthorRecord is not defined in the file. You are going to define it in another file in the next section. This is one of the powerful features of React Component because putting the AuthorRecord in a separate file makes it a reusable component.

 Example 4-28 Code snippet: renderAuthors()

 [image:]

 	/*

 Notice that the AuthorRecord is defined in a separate file. This is a powerful feature of the React Component: Putting the AuthorRecord in a separate file and making it a reusable component.

 */

 renderAuthors() {

 /*

 When developing a component, you should capitalize it.

 Hence, you should use "AuthorRecord" instead of "authorrecord" to identify 	 it as a component to React.

 */

 let authors = this.props.authors;

 return authors.map(a => {

 return <AuthorRecord author = {a}/>;

 });

 }

 [image:]

 4.	Call the renderAuthors() method, within the div class=”row”. It is highlighted in bold in Example 4-29. Your final Results component should look like Example 4-29.

 Example 4-29 Code snippet: Results component

 [image:]

 // Results: is another React component

 // It creates the list of AuthorRecords

 class Results extends React.Component {

 constructor(props) {

 super(props);

 }

 render() {

 if (this.props.hide) {

 return null;

 }

 return (

 <div class='form-inline'>

 <div class="row">

 <div class="col-xs-12 col-md-3">

 <h2>Article URL:</h2>

 </div>

 <div class="col-xs-12 col-md-9">

 {this.props.url}

 </div>

 </div>

 <div class="row">

 <div class="col-xs-12 col-md-3">

 <h2>Authors:</h2>

 </div>

 <div class="col-xs-12 col-md-9">

 <div class="row">

 												{this.renderAuthors()}

 </div>

 </div>

 </div>

 </div>

)

 }

 /*

 Notice the AuthorRecord is defined in a separate file. This is a powerful feature of the React Component: Putting the AuthorRecord in a separate file and making it a reusable component.

 */

 renderAuthors() {

 /* When developing a component, you should capitalize it.

 Hence, you should use "AuthorRecord" instead of "authorrecord" in order to identify it as a component to React.

 */

 let authors = this.props.authors;

 return authors.map(a => {

 return <AuthorRecord author = {a}/>;

 });

 }

 }

 [image:]

 	
 Note: The value of url and authors is retrieved from the state. Therefore, any event that updates state.url and state.authors causes the components to be rendered.

 5.	In the Container class below the <button> tag, add the Results element to render the Results component:

 <Results url={this.state.url} hide={this.state.authors.length === 0} authors={this.state.authors}/>

 This line includes the Results component element and these properties:

  –	url retrieved from state.url

  –	authors retrieved from state.authors.

 Figure 4-19 shows the Results component added to the Container class.

 [image:]

 Figure 4-19 Adding Results to the Container class

 6.	Create a file called authorrecords.js and place it in the components folder. authorrecords.js defines a new React component, but in a separate file.

 7.	Add the code snippet in Example 4-30 to the newly created file authorrecords.js.

 	
 Note: Do not use SHIFT + ALT + F to format the code in the authorrecords.js file. If you need to format the code, do it manually.

 Example 4-30 Code snippet: authorrecords.js

 [image:]

 //AuthorRecord : a component defined to hold author names

 class AuthorRecord extends React.Component{

 render() {

 return (

 <div class="row">

 <div class="col-xs-12 col-md-6">

 {this.props.author.name}

 </div>

 </div>

);

 }

 }

 [image:]

 The code in Example 4-30 shows that you can define a component in a separate file, and use it in your web page. This approach allows you to reuse the component in another project by simply copying that file to your new project.

 Figure 4-20 shows a snapshot of component.js rendering AuthorRecord.

 [image:]

 Figure 4-20 Rendering AuthorRecord in component.js

 8.	To make the new component AuthorRecord accessible to the other component, import authorrecords.js in index.html. In index.html, add the following line before importing components.js:

 <script type="text/babel" src="./components/authorrecords.js"></script>

 Your index.html file should look like Figure 4-21.

 [image:]

 Figure 4-21 The /frontend/index.html file

 4.3.6 Using the Fetch API to call the Node.js author service

 React is a framework to implement the view components in the model view controller (MVC) architecture. To retrieve resources from the back-end server, you need to use another library. XMLHttpRequest is commonly used to call REST services, but in this example you will use the Fetch API. It is a new API that provides a flexible feature set. It returns a promise that resolves the Response, which makes calling REST services simpler.

 	
 You can use the Fetch API to call any REST API. All Watson APIs are exposed as REST services, which means that you can call the Watson Language Translator service, the Watson Natural Language Understanding services, or any other Watson service by using the Fetch API.

 In this part, you will call the author service that you developed in Chapter 3, “Creating your first Express application” on page 53.

 To call the author service that was developed in Chapter 3, “Creating your first Express application” on page 53, complete these steps:

 1.	Open /frontend/components/components.js to update the getAuthor() method.

 2.	In the Container class, in components.js, replace getAuthor() with the code snippet in Example 4-31.

 Example 4-31 Code snippet: /frontend/components/components.js file

 [image:]

 	getAuthor() {

 		var myHeaders = new Headers();

 		myHeaders.append("Content-Type", "application/x-www-form-urlencoded");

 		fetch('/author', {

 				method: 'POST',

 				body: "url=" + this.state.inputVal,

 				headers: myHeaders

 			}).then(res => res.json())

 			.then(data => this.setState({

 				authors: data,

 				url: this.state.inputVal

 			}));

 	}

 [image:]

 This code sends an asynchronous POST request to /author. In Chapter 3, “Creating your first Express application” on page 53, you created an Express route that handles such requests.

 In Example 4-31 there are multiple then methods, which is called promises chaining. Because then returns a promise, it means that promises can be chained. This method is used to avoid nested callbacks.

 The code snippet in Example 4-31 defines the HTTP method as POST and sets the path to /author. It also passes the URL that is entered by the user in the url field in the body, and sets the content type header to application/x-www-form-urlencoded.

 3.	Deploy the application using the Play icon (Deploy App from the Workspace) from the server toolbar. If a window with Stop and redeploy? Your application vy102-XXX-express will be redeployed is displayed, click OK.

 4.	After the deployment is complete, start the application by clicking Open the Deployed App from the server toolbar.

 5.	To test the application, enter the following web address into the URL text box:

 http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.html

 The application now displays the complete list of authors (Figure 4-22).

 [image:]

 Figure 4-22 Displaying the list of authors

 6.	Try resizing the window to be narrower (or open the application in your mobile device). Notice how the page responds by adapting its layout. The “Article URL” and “Authors” headings now appear above their respective results, as shown in Figure 4-23. This approach is called responsive design, and is made possible by using Bootstrap.

 [image:]

 Figure 4-23 Mobile view

 4.4 Exercise review

 During this exercise, you achieved the following goals:

 •Learned the basics of the React framework.

 You built a basic React application that uses React components to interact with the user. It uses the Fetch API to communicate with the server.

 •Learned the basics of ES6.

 You used the class syntax, arrow functions, and promises with the Fetch API to call the back-end services

 •Learned the basics of the Bootstrap framework.

 You used the Bootstrap framework responsive grid system to create a responsive page that has different layouts on various screen sizes.

 •Learned how to use Express to serve static files and resources.

 You used the Express framework’s express.static service to serve all the files that are hosted in the /frontend folder.

 •Used Git to clone an existing project.

 You used Git to clone the source code from Chapter 3, “Creating your first Express application” on page 53 and used it as the basis for this exercise.

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the Internet.

 Locating the material on GitHub

 The source code that is associated with Chapter 3, “Creating your first Express application” on page 53 is available at the following GitHub location:

 https://github.com/ibm-redbooks-dev/vy102-XXX-express

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 The following publications provide additional information about the topic in this document:

 •Essentials of Application Development on IBM Cloud, SG24-8374

 You can search for, view, download or order this documents and other IBM Redbooks, IBM Redpapers, Web Docs, draft and additional materials, at the following website:

 http://www.redbooks.ibm.com/

 Online resources

 These websites are also relevant as further information sources:

 •IBM Cloud console to sign up for an account

 https://bluemix.net

 •Node.js

 https://nodejs.org/en/

 •Express

 https://expressjs.com/

 •React

 https://reactjs.org

 •ECMAScript 2015 (ES6) Language Specification

 https://www.ecma-international.org/ecma-262/6.0/

 Help from IBM

 IBM Support and downloads

 https://www.ibm.com/support/home/

 IBM Global Services

 https://www.ibm.com/services/index.html

 Developing Node.js Applications on IBM Cloud

 Back cover

 Acrobat bookmark

 ISBN 0738442852

 SG24-8406-01

 ®

 OPS/images/WatsonAuthorFinderAppF49.png
C | @ Secure | https;//vy102-x14-express.mybluemix.net Y| ok ‘

‘Watson Author Finder

To get information about the author of an article, enter the URL of that article.

tip:/iwww.forbes comisites

OPS/images/Understand_asynchronous_callback.06.1.81.jpg

OPS/images/Create_your_first_Express_app.07.1.52.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.21.jpg

OPS/images/AuthorPageF31.png
D hitps//wy102-ad2-expre X Y Y

& C | @ Secure | https/vy102-242-express.mybluemixnet/author

You called the server requesting the author of the article
http://wwww.forbes.com/sites/alexkonrad/2016/01/29/new-ibm-watson-chief-david-
kenny-talks-his-plans-for-ai-as-a-service-and-the-weather-company-sale.

OPS/images/Build_rich_UI_AngularJS.08.1.22.jpg

OPS/images/NLUUnderstandingCreationWindow.png
€ Viewall

Natural Language Understanding

Analyze text to extract meta-data from
content such as concepts, entities,
keywords, categories, sentiment,
‘emotion, relations, semantic roles,
using natural language understanding.
With custom annotation models
developed using Watson Knowledge

Service name:

Natural Language Understanding-oa

Select region to deploy

US South

Choose an organization:

student_156@yahoo.c...

Need Help?
Contact IBM Cloud Sales [

Estimate Monthly Gost
Cost Caleulator

OPS/images/Create_your_first_Express_app.07.1.53.jpg
Al Gatogories

Infrastructure

Gompan

Contaners

Platform
Apptcston Servss
Bockcran

L

Language
Tt

e

NatorotLangusge
Claiter

Personaity nsights

OPS/images/Build_rich_UI_AngularJS.08.1.20.jpg

OPS/images/Understand_asynchronous_callback.06.1.77.jpg

OPS/images/Create_your_first_Express_app.07.1.45.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.14.jpg

OPS/images/Understand_asynchronous_callback.06.1.76.jpg

OPS/images/Create_your_first_Express_app.07.1.44.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.15.jpg

OPS/images/WeatherModuleCode.png
File Edt View Tools (running: normal)

Root (console biuemixnet) v
v ¥y102-150-nodejs
» launchConfigurations

v translator

D) gitignore
[apois
[manifestymi

[package json

translator s

Live Edit

var watson = require(*uatson-ceveloper-cloud');

exports.getTranslation = function getTranslation(nelloText, fromlangusge, tolangusge, callback) {

%

var language_translator = watson.language_translator({
version: v2'

PH

var translatorCallback = function(err, data) {
if (err) {
console. log(err);
calloack(err, nuil);
¥

else {

console.log(data);

callback(null, data.translations[o].translation);
¥

n
langusge_translator. translate({
text: helloText,
source: fronLanguage,
target: tolanguage
3, translatorCalloack);

OPS/images/Create_your_first_Express_app.07.1.47.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.12.jpg

OPS/images/Understand_asynchronous_callback.06.1.78.jpg

OPS/images/Create_your_first_Express_app.07.1.46.jpg
© fe et Vew wos | EEIEEETEYIIITTEND > e 2
authorjs

] 1/ author.js - Author route module
> |65 Var Fodker eupress- Aautec):
*

router.post('/", function (req, res) {
res-send(lou calles the Server reauesting the author of the article: * + req.body.url);

»i

OPS/images/Build_rich_UI_AngularJS.08.1.13.jpg

OPS/images/Create_your_first_Express_app.07.1.49.jpg
& Fle Edt Vew Tools
Py rootconsole... v | appis
& Nt |3 et o e o 1 s
2
> 1aUNCNCONGUIE 3/ /Express eb Framework, and create a new expres
sl 4 var express = require(‘express'),
5 app = expressO;
Bawnots | 6
7 var pash = reauire("patn');
Ringers |® 4 lire(lonht)
5 var bodyParser = require("body-parser’);
.o 10 //parse spplication/x-ww-form-urlencoded
nore 11 app.use(bodyParser. urlencoded({
D <to 12 extended: false
D gitgnore PR
1
15 //Routes mosutes
616 var index - reauire(: /cautesl)s
D see 17 author = require("./routes/author');
8
[PackageiSn | 15 /1 case the caller access any URI under the o
2 app.use(/", index);
2
22 //In case the caller access any URT under /autho
25 app.use("/author’, author);
2
25 1/ start server on the specified port and bindin _
2 app.Mstencport)s]

OPS/images/Build_rich_UI_AngularJS.08.1.18.jpg

OPS/images/Create_your_first_Express_app.07.1.48.jpg

OPS/images/HtmlDOM.png
Document

1

Root element:
<htmi>

o

Element.
<body>

Element.
1>

Element
<»

Element
<form>

Text
Watsan Author Finder

Text:
Please write

Element
<input>

Element.
<input>

OPS/images/Build_rich_UI_AngularJS.08.1.16.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.17.jpg

OPS/images/8406spec.03.1.1.jpg

OPS/images/Understand_asynchronous_callback.06.1.71.jpg

OPS/images/Understand_asynchronous_callback.06.1.70.jpg

OPS/images/Understand_asynchronous_callback.06.1.73.jpg

OPS/images/Create_your_first_Express_app.07.1.41.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.10.jpg

OPS/images/Understand_asynchronous_callback.06.1.72.jpg

OPS/images/Create_your_first_Express_app.07.1.40.jpg
et AR
- e e - e 05 ||
H
L [S ——
Pl by
v 5 a9 = express();
B § or ot = el iath);
B e & ar bogurser = reauireody-paser”);
;
e T ——
3 vt aiot
D chorore u ‘extended: false
B o
D otgrore ¥
_ 15171 case the caller calls GET to the root /",
6 7 et o ot o
1 mandestym 007 swo.get("/", fnctiong, res) {
i i
B package son 0
H
11710 cn e atr it Tt e, et 1o e
3 =4
3 T e the e reesting e e o e i< epoy 1]
o
3
T ——
3 e

OPS/images/Build_rich_UI_AngularJS.08.1.11.jpg

OPS/images/Understand_asynchronous_callback.06.1.75.jpg

OPS/images/Create_your_first_Express_app.07.1.43.jpg
« Fle e vew Tos | EEIEEETEITIIEIINED > @ O =

Y Roctconsoe... + | indexis

vwiozatese | 1

S wnerconsaflly
B wroues 2
L
D ctonore %
Dowron fil 3

B swpis H

[mandestymi

17 tndex.3s - Tndex route module
Var-express - require("exprass’);
Var router = express RREEO;

Irprovides wiiscies for
Var patn < reauire(peth

aling with sirectories

11 vome page route
Fouter.get(:/, function (z33, res) {

FexSandr 18 path. Soin(girnane, ../views/ingex.heal'));
»i

mosute.exports = router;

OPS/images/Understand_asynchronous_callback.06.1.74.jpg

OPS/images/Create_your_first_Express_app.07.1.42.jpg

OPS/images/Understand_asynchronous_callback.06.1.66.jpg
const http = require('nttp');
const translatorfodule = require(. (CA0SASREL)5

var helloText = ‘Hello';
var fronlangusge = ‘en’;
var tolanguage = es';

var portiiusber = process. env.VCAP_APP_PORT || 5080;
const server = nttp.createServer(handleRequests);
server. listen(porthiunper, function() {

i T Ve Ak ey

function handleRequests usscBqusss, useresponse) {
userResponse.writeHead(200, {
“Content-Type': "text/plain’
5

var callback = function(error, translatorutput) {
if (error) ¢
userResponse. end(error);
) else {
userResponse.end("Translation of * + helloText + * is * + translatorOutput);
¥

b

translatortiodule. getTranslation(helloText, froaLonguage, tolangusge, callback);

OPS/images/Create_your_first_Express_app.07.1.34.jpg
e a—
Jema——
« roves
B s
B oo
D ctonore
D poonore

B oatapessn

D) mantestym ‘

var port = process.eny.VCAP_469_PORT || 50303

//Express eb Fromework, and create » new express server
Var express = require("express),

TR path = reauireCpeE

77 In case e caller calls GET fo the root
ceturn the content of index.ntal
eneF 16 (poth.SoknT_dirnone, e e TR,

»r

17 Tn case the caller calls POST to /author, return “Author
post("/author", function(zsg, res) {

ni

e Avthor nase’);

17 stert server on the specksied port and binaing host
. Lstan(pirtd)

OPS/images/Understand_asynchronous_callback.06.1.65.jpg

OPS/images/Create_your_first_Express_app.07.1.33.jpg
wosy
Un1 styeecotorsbluesouataon avtnor Fincerc/nts
5570 et inforaation shouk tne auther of an rticle, enter the LRL of that artice.</s>
Cinput typesttext nomes-u1t/>
Chrait pene it velesonite/>
<rtorm
<oars
cinents

OPS/images/Understand_asynchronous_callback.06.1.68.jpg

OPS/images/Create_your_first_Express_app.07.1.36.jpg

OPS/images/Understand_asynchronous_callback.06.1.67.jpg

OPS/images/Create_your_first_Express_app.07.1.35.jpg
:
== |k

v routes s

:

B aunorss B

B indexis. ;

.

D cignore. 12
D) otgnor {10
:
[manestymi v

2

B package json 019

:

2

var port = process. env.VCAP_APP_PORT || 5050

//8xpress lieb Framework, and create ne express server
Var express = require(*sxpress'),

200 = express();
var path = recuire(path');
var begyparser = reavire(

Jrparse ptication o

e R ———

17 10 coe she catter cal

77 Ceten’ o ot o

gt/ tnction(2ol
ARG = |

n

[pckagerson |

1/ 1n case the caller calls BOST to /autnor, return ‘Aut

200.post(*/author”, function(zsa, res) {
Fes.senaCAutnor nome");

»;

OPS/images/Create_your_first_Express_app.07.1.38.jpg

OPS/images/Understand_asynchronous_callback.06.1.69.jpg

OPS/images/Create_your_first_Express_app.07.1.37.jpg

OPS/images/Create_your_first_Express_app.07.1.39.jpg

OPS/images/Create_your_first_Express_app.07.1.70.jpg

OPS/images/manifestYML_2.png
«

&
-

Fle Edt View Tools

Root (console bluemi. . v
10200 xpress-20171

» routes

» senvices

» views
D cignore.
D) atignore
B appjs

B package json
D) README md

Create new launch configuration

manifestymi
1 declared-services:
2 natural-langusge-understanding:
3 Label: natural-language-understanding
a plan: free
5 applications:
& - patn:
7 memory: 256
& instances: 1
9 domain: mybluemix.net
10 name: vylo2-xoc-react
1L host: vylo2-wec-react
12 disk_quota: 10241
13 command: node app
1 services
15 - natural-langusge-understanding
]

OPS/images/Create_your_first_Express_app.07.1.72.jpg
ss (running: normal) >u

¢ Fle Eat Vew Teos | (EEEEIED

Rom(wnwlcmulmnx v | ariclesenvices s

o o ——————————
3 var Naturallasguagenderstancingi - re Jll=

» tuncncontguratons 1@ 3 V2 e o eetee encersvanatod nc

e B e et et attanguageinde

el s M
+ services H B
7 s/error message for missing WL
e un mon = Mot pass

OPS/images/Create_your_first_Express_app.07.1.71.jpg
« Fie

s vew o | ST > &

\ authorjs

17 author.3s - Author. route module
var express = require("express’);
Var router = express. Rauiar();

var articleservices = require(*../services/articleservices');

router.post(*/", function(req, res)
articieservices.extractarticleautnoriiones req, function(err, response)
i (err)
res . status(s09) . send("error: * = err);
ease
res sena(response);
i
»

module. exports = router;

OPS/images/Create_your_first_Express_app.07.1.74.jpg
#* B> *

‘Repositry.| v102-242 Reterence. | master — ongnmaster New oranch] v RG]

Actve Branch (master)
v ¢ *

[y Worin Doty Changes
Notning o commi.

Watson Author Fnder — Intial
Code

‘Anmed Azrag on 6252017
2143 AM

 incaming
No Changes.

v isory

Workng DiectoryChanges [[
e

Enter the comit message

1 Amend previous cormmit more

OPS/images/Build_rich_UI_AngularJS.08.1.43.jpg

OPS/images/Create_your_first_Express_app.07.1.73.jpg
i s eS| | e | R

No Actve Branch Woring Diect
v e

No Changes uatzon Author Finder - Initial Code

Changes

L Amend previous commi. more

SelectAl 9 fles selected EE]

B B

> [mantestym

OPS/images/Build_rich_UI_AngularJS.08.1.44.jpg
Edt View Toos weeat (J

OPS/images/Create_your_first_Express_app.07.1.76.jpg
€ Toolchains

3%) vy102-a42-express m. :
Overview
o

e
[« I 1
- oy e

Ectoue Oron Web 0E

© Askus a Questif

OPS/images/Create_your_first_Express_app.07.1.75.jpg
() vy102-a42-express o~ [RN ¢

[EpE———
Nov 0 201730727 P e

© sermed vz stz e
Nov 0207 20725 70 sz,

[R T—

Nov 1020175071 s

© retoges oot cgrens e

[S—

pripcasiripofiefrimtion
pretingtonr ey

OPS/images/EditLaunchConfiguration.png
aunch Configuration

Launch Config Name*
Target
Organization®:
Space*

Manifest File:

Application Name
Host:

Domain*:

‘Yellow boxes indicate modified fields, which will override manifest fl settings.

vy102-xc-react

US South (Production)

aazraq@eg.ibm.com

dev

@|[manifestymi

Manifest Settings

vy102-xxc-react

vy102-xxc-react

mybluemix net

OPS/images/Create_your_first_Express_app.07.1.67.jpg

OPS/images/BluemixLogin_3.png
Log into IBM Cloud

Enter Email or IBMid: Forgot your IBMid?

Email or IBMid

Continue

New? Create an IBM Cloud account

OPS/images/Create_your_first_Express_app.07.1.66.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.37.jpg
Tool Integrations

Appname:
ey

Fegon Ogarizaion Soaco
USSons v | hessamate v dev

OPS/images/Create_your_first_Express_app.07.1.69.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.34.jpg
Author Finder

http/imoney.cnn.com2017/11/09/technology/uber-po-2

Article URL:

http:/imoney.cnn.com/2017/11/09Aechnology/uber-

ipo-2019/index htm!

Authors:

Seth Fiegerman

OPS/images/Create_your_first_Express_app.07.1.68.jpg
€ Fe Eat vew Toos | (IEEEEIMTTCTNEES > 8

aricieServces s

//Natural Language Understanding Watson Third Party Hodule
77 Spacisy the release number for the Natson NLU Service.
Var NaturalLangusgeinderstandingVi -
require(uatson. developer Cloud/natual:language:understanding/vl.is);
var natural_language_understanding - new laturallangusgeUnderstanding({
“larsion dsta": Natursllanguagelndarstandingyl. VERSION DATE. 201702 27
i

I/error message for missing URL
Const MISSINGURL_ERROR = "UFL not passed

-
export axtractarticleiuthortianes - function(req, callbsck) (
7/ T¢ the url 15 not passed, return srror to the caller
4 (req === null || req.body === nu1l || req.body.url
callback(HISSING_URL_ERROR, null);

11 Matson NLU Service to extract the 1ist of author names of the requested o

- 1)

)

17 4l is the paraseter passed in the post request to /author
77Tt contains the URL of the article
77 metadata festure of NLU returns the suthor of the uebpage, the page
77 Title, and the publication dste.
Var paraneters - {
“urd
Festures' (
mecadata’s ()
)

%

//€a11 the NLU Watson Service, and return the authors 1ist
natural_langusge_understanding. analyze (paraneters, funceion(err, respense) (
4 Cerr)
catlback(err, rull);
a1ze
callback(null, response.metadata. authors);
»;

OPS/images/Build_rich_UI_AngularJS.08.1.35.jpg
Public network

Web Browser
(Reacus)

OPS/images/BluemixToolchain.png
Your app is being created! Quick start: To watch the pipeline deploy your app,

@ click Delivery Pipeline. After the app is deployed, you can see it running by x
clicking View app.
Add a Tool
THINK cope DELIVER
Issues ait Delivery Pipeline
Vy102-x0x-express-20. Vy102-x0x-express-20. Vy102-x0x-express-20.
 Configured Configured Configured

Eclipse Orion Web IDE

 Configured

OPS/images/EclipseOrionWebIDE_2.png
«

*

Docs.

Support Manage

fe ot vew Toos | (CETTETIETCIITEIY

an(mnsnl&,»ondetks‘ag v | wio2oocreact

02 mereat
By > ozt | SR—

v vy102:xxxreact

£ fontend
£ routes.

£ servces

D cignore

D) gtignore

B appis

D) manifestymi

[package-ockjson
[package son

D) READMEmd

» Git

» JavaScript

1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM
1102017, 22450 PM

=]

K8
k8
218
k8

51k8
k8
38

OPS/images/Create_your_first_Express_app.07.1.61.jpg

OPS/images/Create_your_first_Express_app.07.1.60.jpg

OPS/images/Create_your_first_Express_app.07.1.63.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.32.jpg

OPS/images/Create_your_first_Express_app.07.1.62.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.33.jpg

OPS/images/Create_your_first_Express_app.07.1.65.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.30.jpg

OPS/images/Create_your_first_Express_app.07.1.64.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.31.jpg

OPS/images/RestageExpress.png
Restage app

Your 'vy102-313-express' app needs to be restaged. Do you want to restage it now?

OPS/images/Build_rich_UI_AngularJS.08.1.25.jpg

OPS/images/ConnectNLUWithApp.png
Getting started

Manage

Service credentials

Plan

Connections

Connect natural-language-understanding

Gloud Foundry apps

X

NAME ROUTE STATUS

J5 vyl0o-add-express VYi02:242:) @ Funning
expressmybluemixnet

OPS/images/Build_rich_UI_AngularJS.08.1.26.jpg

OPS/images/Create_your_first_Express_app.07.1.58.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.23.jpg

OPS/images/Create_your_first_Express_app.07.1.57.jpg
€ Fle Eot Vew Toos | (EIERTCITITIITNEEERD > 8 O = Q
szmnnmuuww v | packagelson

@ e L e -
v taunchContgurations 5 “iersion™t "0.0.1°, ’
2 H “description™; *A Somple express 035",
D wio2a42-express aunch H ~dependencies™: {
v routes H “express
H “aoy-parser”
B aurors s “uatson-developer-Elouds "2.25.1"
5)
B indexss 1)
» vews

[cfignore.

OPS/images/Build_rich_UI_AngularJS.08.1.24.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.29.jpg

OPS/images/Create_your_first_Express_app.07.1.59.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.27.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.28.jpg

OPS/images/Understand_asynchronous_callback.06.1.40.jpg

OPS/images/Understand_asynchronous_callback.06.1.42.jpg

OPS/images/Create_your_first_Express_app.07.1.10.jpg
P—) vy102-a42-express e~ [Y :

— Looation: UnvedKingdom Space: e
Nov 10,2017 1:41:34 PM | aazrac@e. Cotimuoss debvery
© updatod vy102-a42-express app.
PO Nov 10,2017 1:41:25 PM | aazraa@e. ‘Gontinuous detvery is ot enabled for
e app.
A9t Management © oreated vy102-42-express app Enabio continuous daivery 1o automate
Nov 10,207 1:41:25 PM | aazraa@e. s tests, and doployments through

the Doivery Pipeine, GitHub, and moro.

OPS/images/Understand_asynchronous_callback.06.1.41.jpg

OPS/images/Understand_asynchronous_callback.06.1.33.jpg

OPS/images/Understand_asynchronous_callback.06.1.32.jpg

OPS/images/Understand_asynchronous_callback.06.1.35.jpg

OPS/images/Understand_asynchronous_callback.06.1.34.jpg

OPS/images/Understand_asynchronous_callback.06.1.37.jpg

OPS/images/Understand_asynchronous_callback.06.1.36.jpg

OPS/images/WeatherparmssrvANDhandleRequestsFunc.png
& Rl Edt View Toos

P oot console buemixret)
v 102312-n00efs 1 const http - require(*http');

. 02 const Pequireuatson-developer-cloud');
Lot H
o 4 var portiumber - process. env.CAP_APP_PORT || 5068;
* o 5 const server - fttp.cresteserver (nandlerequests);
[giignore & server.Listen(porthumber, function() {
7 conole dogCserver 53 P13
5o
[menifestymi 5
1o function handlerequests(userazquest, userdesoonse)
[packageson i ¢ ¢

u ¥

OPS/images/Understand_asynchronous_callback.06.1.38.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.60.jpg

OPS/images/Understand_asynchronous_callback.06.1.31.jpg

OPS/images/Understand_asynchronous_callback.06.1.30.jpg

OPS/images/Understand_asynchronous_callback.06.1.29.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.53.jpg

OPS/images/Understand_asynchronous_callback.06.1.22.jpg
1BM Cloud Cotalog Docs Support Manage

Geting started —

Language Translator-xe

Manage
Location: USSoutn Org: aazraq@eglomcom Space: dev
Servico credentisis
Plan Credentsare povidedin JSONformat The JSON . More
anippet st crcentl,such a the APk and

Servi erodentisls

T . " o <1

[] KEYNAME DATE GREATED AcTions

Vewcsdanias o 8

] Crodrts Nov23,207- 055

url": “https://gatevay.watsonplatf
orm.net/language-translator/api”,

‘username”: "e5036¢55-4605-423f-9ad
3-9e57c43badsa’
‘password”:

2t UsHroFNIC

OPS/images/Develop_Hello_World_Nodejs_app.05.1.54.jpg

OPS/images/CreatEDWCDSrv.png
IBM Cloud

Watson /
Getting started

1.2) Language Translator-xe :

Manage

Location: US South Org: aazraq@egibmcom Space: dev
Service credentials

Plan

Connections Service credentials.

Gredentials are provided in JSON format. The JSON
snippet ists credentials, such as the AP! key and secret,
s well s connection information for the service.

Servies eredentials

Click New credentials to create a set of credentials for this instance.

View More

OPS/images/Develop_Hello_World_Nodejs_app.05.1.55.jpg

OPS/images/Understand_asynchronous_callback.06.1.24.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.56.jpg
 reosn Ve Toos | RIS > 8 2= | vex (B 0 ¢ tecamt 0 B

Y s =
iy R
ol o s S
1A e
o AL St)
2 7 /7 Create the server ang listen to reauests on the specified port.
D § A s ¢
= B LI B e st 1w e
D« 12 response. ena("Hello NodelS! The tise now is: © + GateNogule. currentDateTine());

B ol 3 paee
D manvestm
R -

OPS/images/WDC4Bluemix.png
Translate Text

Input

Enter or paste text from a passage

English

Text Rest API

Hello

Output

Copy output from this field to clipboard

Spanish

Text JSON

Hola

OPS/images/8406addm.09.1.2.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.57.jpg
e e ver s | TN e 2 =< | veex OB 05 wewcwm: 0 B
P i

o " S s .
03 T S e
»rmone 3 TesTen noinCmy
e 5 Vi ot = praces . kP A POAT 1| 30895
B —— 5 11 crste the server a0 diten o reuests on e ot o
2 swomeren | e G T
FS—— » pldpumd e ieumaat mefcontun e omes wams oy L
0 e e e e
0 ot B R

D ranestm:
T i b

OPS/images/EclipseOrionWebIDE.png
& File Edt View Tools (running:

Root (console bluemixnet) v | launchConfigurations
v W102-150-nodejs

» v launchConfgurations @
) w102-150-nodejs launch 1142017, 3:14:05 Pl 1K8
» Javascript

»Git

OPS/images/8406addm.09.1.1.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.58.jpg
Fe i vew Tos | NI
« »ollEn | meex (B © ¢ tmucomt 0 B

B o oo s v o
g s g 1 i oo

o 3w et el e
#" e DI et o

P 3 e e s
[y 317 ot e e e st o et ot oo o
< Her i i el
el B el St i
7 ¥ arie ells bria mesage ssveces ikt curret sate o th systen

3 w37 snen
0 o
D s

Fespose s retis e o

PRt

etiroste curertoetTins)5

OPS/images/Understand_asynchronous_callback.06.1.25.jpg

OPS/images/Understand_asynchronous_callback.06.1.28.jpg

OPS/images/Understand_asynchronous_callback.06.1.27.jpg

OPS/images/Understand_asynchronous_callback.06.1.60.jpg

OPS/images/Understand_asynchronous_callback.06.1.62.jpg

OPS/images/Create_your_first_Express_app.07.1.30.jpg
& FeoEm vew Toos

Y o consebhemicres ¥
-
[pm———
B e

[stamare
Dower

D mansestymi
D pactaseioon

OPS/images/Understand_asynchronous_callback.06.1.61.jpg

OPS/images/Understand_asynchronous_callback.06.1.64.jpg

OPS/images/Create_your_first_Express_app.07.1.32.jpg

OPS/images/Understand_asynchronous_callback.06.1.63.jpg

OPS/images/Create_your_first_Express_app.07.1.31.jpg

OPS/images/Understand_asynchronous_callback.06.1.55.jpg

OPS/images/Create_your_first_Express_app.07.1.23.jpg

OPS/images/Understand_asynchronous_callback.06.1.54.jpg

OPS/images/Create_your_first_Express_app.07.1.22.jpg
© e e Teon | TSNS > e

&
%

Rt corsi e ¥
-z
e
D e
D st
Do
 petaseen

o

01

Q| vees OB

Var port = process. env.vese_sep_oaT] sese;

I/Espress web Framevot, and create » nex wpress server
\ar eress = reauire("bpress),
59+ exoressO;

17 1n case the caller calls GET to the root /", return “Hello Express!’
Sop.get("/, function(esa, res) {

Tes.send(Chello Eroress!)}
»

11 10 case the caller calls FusT to /author, return “Author name”
S5o-gont(-/autnor”, function(zas, re6) {

Pes.send(e rame');
»

11 start server on the specified port and binsing bt
o Listen(port);

OPS/images/Understand_asynchronous_callback.06.1.57.jpg

OPS/images/ManifestYML.png
5 IBM Cloud Docs Support Manage

ISR CUR Sl vy 102-a42-express (running: normal) 2 > e

Root (console-ondeck stage1 bluemixnet) v manifestym!
v 102262 express 1 applications
& 2 Fan
» launchConfiurations. 3 memory: 2564
4 instences: 1
D enoe 5 domain: mybluemix.net
6 name: v102-a42-express
D gtignore 7 host: w102-ad2-express
s 8 disk_quota: 10261
9 coman

noce 20 -
[manfiestymi

package json

OPS/images/Understand_asynchronous_callback.06.1.56.jpg

OPS/images/Create_your_first_Express_app.07.1.24.jpg

OPS/images/Understand_asynchronous_callback.06.1.59.jpg

OPS/images/Create_your_first_Express_app.07.1.27.jpg
C e ve Ton | RTINS > w2 = A (e OD

| mandestym

Root (console biuemicnet) ¥

> applications:
- patn

v lunchConfigurations =

instances: 1

02062 pressonch
* e domain: mybluesix.net

D stancee nane: wy12-242-express
3 Post: wyie2.a6z-express
[o disk_quota: 1021

B o comand: node a9

D poctageleon |

OPS/images/Understand_asynchronous_callback.06.1.58.jpg

OPS/images/Create_your_first_Express_app.07.1.26.jpg
Flo ot [core i o JTODEERY
o e

e pifg oy

» suncnContgurtons 5 i asen

D ctoe § e

D simore T

B awois o o don

EEra—

D paciagesson |

OPS/images/HelloExpressApp.png
< C | @ Secure | hitps;//vy102-a42-express mybluemixnet

Hello Express!

OPS/images/Create_your_first_Express_app.07.1.28.jpg
& Fe ER Vew Toos

2
vev—

D mmcncontursions

% D wikeesemmn

o

D seonore

B o

mantestymi

1 amplscations:
2 T

57 ey s

3 Dmtcest 1

s domain: mbluenic.net
7 hest: e s express
5 Comand: node 09

OPS/images/Understand_asynchronous_callback.06.1.51.jpg

OPS/images/weatherOutput.png
Translation of Hello is Hola

OPS/images/weatherJSfile.png
€ File Edit View Tools vy102-150-nodejs (running: normal)

Root (console.bluemixnet) v
v vy102-150-nodels

& » launchConfgurations

£ v transiator

vio
[transiatorjs

[package json

D) cfignore

D gitignore

[apois

[maniestymi

B package json

OPS/images/Create_your_first_Express_app.07.1.21.jpg

OPS/images/Understand_asynchronous_callback.06.1.52.jpg

OPS/images/Create_your_first_Express_app.07.1.20.jpg

OPS/images/Create_your_first_Express_app.07.1.19.jpg
© FeoEm Ve Tos

oot conslebherre)
oz s epeess
» nchContpestors
3D e
[stonare

|
[i |

won

OPS/images/Build_rich_UI_AngularJS.08.1.09.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.08.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.07.jpg

OPS/images/Understand_asynchronous_callback.06.1.44.jpg

OPS/images/Create_your_first_Express_app.07.1.12.jpg
€ Tookchains

k) vyi02-ad2-express LM :

T

P ——

¥ Contgred ot

OPS/images/Build_rich_UI_AngularJS.08.1.06.jpg

OPS/images/Understand_asynchronous_callback.06.1.43.jpg

OPS/images/CreateToolchaing.png
= 5 IBMCloud

0 ® (@
o @ @

EcipseOronVieo Defvery Pipelne
Tacking

e

Git repos and issue tracking hosted by IBM and built on GitLab Gommunity Edtion.

Repository type:

New -
Create an empty repository
Owner Repository Name

aazraq v vy102-a42-express
Make this repository private ®
Enable issues ®

Track deployment of code changes ®

OPS/images/Build_rich_UI_AngularJS.08.1.05.jpg

OPS/images/Understand_asynchronous_callback.06.1.46.jpg

OPS/images/Create_your_first_Express_app.07.1.14.jpg
& e Edt View Toos

. Root (console blusmixnet) v

&

r——
B dmon
[otonore

wi02asz enpress

v 102342 express
23 taunchContiguratons
D chnore
D sitonore

2017, 1231250
20 123123 A0
242017 1231240

ot

e
e

OPS/images/Build_rich_UI_AngularJS.08.1.04.jpg

OPS/images/Understand_asynchronous_callback.06.1.45.jpg

OPS/images/Create_your_first_Express_app.07.1.13.jpg
& e Edt vew Tods

Root (consale biuemixnet) v W102-242 express.

[srozase-emress S

w102 382 express. 642017, 12312580

OPS/images/Build_rich_UI_AngularJS.08.1.03.jpg

OPS/images/Understand_asynchronous_callback.06.1.48.jpg

OPS/images/Create_your_first_Express_app.07.1.16.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.02.jpg

OPS/images/Understand_asynchronous_callback.06.1.47.jpg

OPS/images/Create_your_first_Express_app.07.1.15.jpg
TR > .

Y oct corsdebhemicraty v | paciagein

& Fi ER Vew Toos

«Ezacegmen B
D, mmncontuestons
% D

D stomare

OPS/images/Build_rich_UI_AngularJS.08.1.01.jpg

OPS/images/PKGJSONWithExpressV4F14.png

OPS/images/Understand_asynchronous_callback.06.1.49.jpg

OPS/images/Create_your_first_Express_app.07.1.17.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.30.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.28.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.29.jpg
=

&
2

Fle Eot Vew Toos

[i oo om —— I

var esp = reutreCntes |

Root (consol buemixnet) v awois
V7102137 noseis o

» aunchContiurations

D ctonore

D strore

OPS/images/Develop_Hello_World_Nodejs_app.05.1.20.jpg
& Pl Et vew Toos |
[

< RN

e L

rez=ER| 6 B

6202017, 837:11 A
o200 BT OM 1KE
e a0 1E

OPS/images/Develop_Hello_World_Nodejs_app.05.1.21.jpg
| w2 57ctes
> T ...,
¥ s uncnContguratons. = isuncnContigurasons
e o
e D o
=y

»ou

d

OPS/images/Develop_Hello_World_Nodejs_app.05.1.22.jpg
« Fie Eat Vew Toos | EEEEEEENITICTINENG > e 2 =Q | 0 B

Rm(w-ﬂemm\xmr) - | ‘manifestymi
Jsp— o1

D7, oo

D e

[gvonore

OPS/images/Develop_Hello_World_Nodejs_app.05.1.23.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.24.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.25.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.26.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.27.jpg

OPS/images/ThreeIconsGITRepos_TrackingF11.png
Tool Integrations

Git Repos and
ssue Tracking

Eclipse OrionWeb Delivery Pipeiine
IDE

Git repos and issue tracking hosted by IBM and built on GitLab Gommunity Edition.

Repository type:

New

Create an empty repository.

Ouwner

mewies

Repository Name

v vy 102-136-nodejs

OPS/images/Develop_Hello_World_Nodejs_app.05.1.18.jpg
%) vy102-137-nodejs

o
i+ 0
)

=

OPS/images/Develop_Hello_World_Nodejs_app.05.1.19.jpg
« Fe mst vew Toos | ENTIEERETEIUTI
Root (console bluemixnet) ¥ | ¥y102-137-nodess

O X rerconzions

B pwomsaen [SprR—
D et D st
[oo D ot

v 102137 nodeis

CEERY

200017, 83711 AW
200017, 83710 A
292017, 83710 A

o B

]

e
18

OPS/8406cover.jpg
@ Redbooks

[

Developing Node.js
Applications on IBM Cloud

Ahmed Azrag
Mohamed Ewies
Ahmed S. Hassan

@ Cloud

In partnership with
1BM Skills Academy

OPS/images/Create_your_first_Express_app.07.1.09.jpg
Dusiond | wyi0z otz epress

0 vy102-a42-express @ mmn _.-

Omssmq@egbmcam LoosoncUnkaKogaim Spaosdev

OPS/images/Create_your_first_Express_app.07.1.08.jpg
« Vewst

Create a Cloud Foundry App

SDK for Nodejs™ sasaad
-
e g s s e
[
o — e ema LT L
ncxdpetararcs sty Pr— e 5
by [ismmimmliiIN]
[P —
© -
g 2| caigao -

p— p— S
e . [

OPS/images/Create_your_first_Express_app.07.1.07.jpg
Al Catogories

Infrastructure

Soae
Network
Securty

VWivare

—
Aoplcason Sences
Bocicran

Cious Founcy Ao

Q Soareh

epoy your app without managngunderyng fastrctre

Libertyfordovam
o)

[—

ASPNET Core

Devwo, st ard
scoe ASPNET .

SO forNodeya™
oo, deso.

Runtio for it

Septestonite

e

OPS/images/BluemixLogon_F4.png
) 1BM Cloud

Welcome to IBM Cloud, the home
of 130+ unique services. Start
building immediately.

Create a free account

Login

OPS/images/BluemixLogin_2.png
) 1BM Cloud

‘Welcome to IBM Cloud, the home
of 170+ unique services. Start
building immediately.

Log

Create a free account

OPS/images/CreatingAppF5.png
RESOURCEGROUP GLOUD FOUNDRY ORG
AllResources v All Organizations ~

CLOUD FOUNDRY SPACE LOGATION CATEGORY
All Spaces v AllLocations v Al Categories v Filter by resource name...

Get started by deploying your first app

o=

Liberty for Java™ 'SDK for Node js™

OPS/images/Create_your_first_Express_app.07.1.05.jpg
Public network ‘ 1BM Cloud network

GET/

@ openappurL
P o
O @=
E E
g atorrame @) viob browser AT M

on Node s runtime

Aot meladats
(-]

°0°

[d
Watson Natural Language

Understanding

OPS/images/Develop_Hello_World_Nodejs_app.05.1.12.jpg
Deploy your app without managing underlying infrastructure.

Liberty for SDKfor

) davan Js | Nodeje™
Develon, depioy, Develop, depid.
and scle v and scsie
@ = @ o
Runtime for Xpages

S Deveiop, deploy
AKtra b and scae 814

serverapplca

ASPNET Gore

Develop, deploy,
and scale

Go

Develop, deploy,
and scale Go

B

OPS/images/Create_your_first_Express_app.07.1.04.jpg
[hitps

C @ Secure | httpsy/vy102-242-express.mybluemixnet;

OPS/images/CreatingNodeJSapp_F7.png
App name:

W102-XXX-nodejs

Host name:

vy102-XXX-nodejs

Select region to deploy in:

US South -

Domain:

mybluemixnet -

Choose an organization:

student_156@yahoo.com

Choose a space:

dev

timate Monthly Gost
ost Calculator

Free

OPS/images/WatsonAuthorFinderF1.png
\omes) | | 5
[httpsi/fy102-xid-expre X \

[C | @ Secure | https;//vy102-x14-express.mybluemix.net Y| i ‘

‘Watson Author Finder

To get information about the author of an article, enter the URL of that article.

[

OPS/images/Develop_Hello_World_Nodejs_app.05.1.14.jpg
s ron ot e

vy102-158-nodejs @ mmns wist...

OPS/images/Create_your_first_Express_app.07.1.02.jpg

OPS/images/EnablingContinuousDeliveryF9.png
IBM Cloud Support Manage

Getingstared (1) vy102-XXX-nodejs @ s R R KR -

Overview
Org: skilsacademyite@gmail.com Location: US South ‘Space: dev
Runtime
Activity feed ew full usage details
Gonnections
Logs No activity available
Continuous delivery
Monitoring

API Management

Continuous delivery is not enabled for
this app.

Enable continuous delivery to automate

builds, tests, and deployments through

the Delivery Pipeiine, GitHub, and more.

OPS/images/Create_your_first_Express_app.07.1.01.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.16.jpg
TN cooe oEveR AU

0 0-@-C

ISSUE TRACKER REPOSTORY PPELNE 18M Cloud

OPS/images/Develop_Hello_World_Nodejs_app.05.1.50.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.51.jpg

OPS/images/RestageWeatherCoSrv.png
Restage app

Your 'vy102-uis-nodejs' app needs to be restaged. Do you

want to restage it now?

Cancel

OPS/images/Develop_Hello_World_Nodejs_app.05.1.52.jpg

OPS/images/CreateWeatherCODataService.png
Language Translator

Want to dynamically translate news, Service name:

conversational
CEEETRCT el anguage Translator-s8
documents? Instantly publish content
in multiple languages? Or allow your
French-speaking staff to instantly
send emails in English? You can with .
Watson Language Transiator!
Connect the Watson service to your

Select region to deploy in: Choose an organization: Choose a space:

Gode, and you can leverage the power

of our service in the following e . R @ -
domains / language pairs:

Need Help? Estimate Monthly Gost
Contact IBM Cloud Sales [Cost Calculator

OPS/images/Understand_asynchronous_callback.06.1.18.jpg
Al Catogories () > [Re—— B - |

Infrastructure

Prattorm
Compute
Serage Watson
fm Bl cogritie apps that help erhance, scae, and acoslerate uman expertioe
Secury
e @ Langusge Transiator
Whnare) Tansstetext rom ane incusgeto
ancthr forsoecic domaee
Platform (1) © -

OPS/images/Develop_Hello_World_Nodejs_app.05.1.42.jpg

OPS/images/CreateNodeJSApp.png
<« Viewall

Create a Cloud Foundry App

SDK for Node.js™ CEE

Vy102-XXX-nodejs
Develop, deploy, and scale server-side.

JavaScript® apps with ease. The IBM

Host name: Domain:
‘SDK for Nodejs™ provides enhanced
performance, security, and serviceabilty. Vy102-XXX-nodejs Fyr <
@ & Select region to deploy in: Choose an organization: Choose a space:
US South - student_0145@yahoo.com dev

View Docs

Need Help? Estimate Monthly Cost A
Contact IBM Cloud Sales Cost Caleulator ree

OPS/images/Develop_Hello_World_Nodejs_app.05.1.43.jpg
Pl Em vew Toos
Roo consol buemxnet) v

102137 n000ls
+ curentDate

£ raners “currentoate®,
b/ correntonte”

OPS/images/Understand_asynchronous_callback.06.1.10.jpg
Al Categories

Infrastructure

Compute
Storage
Network
Security

Whvare

Deploy your app without managing underling infrasiructure.

Libortyfor ™
e Develop, deploy, and scale.
e ks i
o
. ASPNET Core.
net |

Develop, deploy and scale
ASPNET Core web =

'SDK for Node js™
» Develop, deploy, and scale
Sees
o
2 Runtime for Swift
-

AKitura based server
‘applcation that you

OPS/images/Develop_Hello_World_Nodejs_app.05.1.44.jpg
Y oot (console uermixren v :umbﬁ

@ TV,
~ cumeniDate

*ew

« me co ven Tos | EEIESEZTEYIIIITITNNNGD > e O =

Q| vees OB ¢

OPS/images/EnalbingContinuousDelivery.png
Monitoring

AP Management

)
(-t
&/
o acty avatanie

(©) started vy102-147-nodejs app
Nov 4, 2017 12:47:30 PM | student_0145@yahoo.com

(© updated vy102-147-nodejs app
changed routes
Nov 4, 2017 12:47:20 PM | student_0145@yahoo.com

vy102-147-nodejs ® ruming visit...

Ro

Continuous delivery

Continuous delivery is not enabled for this app.

Enable continuous delivery to automate builds, tests,
and deployments through the Delivery Pipeline,
GitHub, and more.

OPS/images/Develop_Hello_World_Nodejs_app.05.1.45.jpg

OPS/images/CreateDNodeJSapp.png
Getting started

Monitoring

AP Management

Cloud Foundry apps / vy102-147-nodejs.

(1) wy102-147-nodejs @ e ..

Download, modify, and redeploy your Cloud Foundry app with the

command line interface
Last Updated: 2017-06-31 | Edit in GitHub

Use Biuemix command line interface to download, modify, and redeploy your Gloud Foundry applications and service instances.

Before you begin, download and install the Bluemix command line interface.

Download Bivemix Command Line nterface)

Restriction: The command line tool is not supported by Gygwin. Use the tool in a command line window other than the Cygwin
command line window.

OPS/images/Develop_Hello_World_Nodejs_app.05.1.46.jpg

OPS/images/threePrimIcons.png
) ()
\@/ &/

IDE

Git repos and issue tracking hosted by IBM and buiit on GitLab Gommunity Edition.
Repository type:
New
Create an empty repository:
Ouwmer Repository Name
student 0145 v vy102-148-nodejs.

OPS/images/Develop_Hello_World_Nodejs_app.05.1.47.jpg
€ Fie Eat vew Toos | > ez

Root (console biuemixnet) v curentDate js
v ¥y 102-XXX-nodels. 1 exports.currentDateTine = function() {
&> 2 return Date();
v currentDate 3

¥ ww

package json

OPS/images/toolchaincreationpage.png
D%f Continuous Delivery Toolchain

This toolchain includes tools to develop and
THINK CODE DELIVER RUN

deploy your app. Depending on your app, when
You create the toolchain, the Git repository wil
sither be empty or will contain source code from

yourapp.
This toolchain uses tools that are part of the. -> ->
Continuous Delivery service. If an instance of that

service isn't aready inthe selected organization, ISSUE TRACKER REPOSITORY PIPELINE IBM Cloud
‘when you click Create, it is automatically added |

with the free Lite plan selected.

WEB IDE

To get started, ciick Create.

OPS/images/Develop_Hello_World_Nodejs_app.05.1.48.jpg

OPS/images/OpenCatalogInNewTab.png
Overview

Connections

Manage

Toolchains /

) vy102-X12-nodejs

THINK

o

Issues
vy102-X12-nodeis

 Configured

Docs.

Save link as...

Copy link address

Inspect

copE

o

ait
vy102-X12-nodeis

 Configured

Eclipse Orion Web IDE

 Configured

Open linkin new tab
Open link in new window

Support Manage ()

DELIVER

@
-

 Configured

OPS/images/Develop_Hello_World_Nodejs_app.05.1.49.jpg

OPS/images/CreatetoolchainPage.png
Manage

Toolchains / vyi02-147-nodejs

) vy102-147-nodejs

THINK GoDE

Issues ait
vy102-148-nodejs vy102-148-nodejs
 Configured Configured

Eclipse Orion Web IDE

DELIVER

-

Add a Tool @

OPS/images/Develop_Hello_World_Nodejs_app.05.1.40.jpg
« Fle fot ven Tos | EEEEERTTIITITITIINGN > @ O

#
&

Root (console buembcnet) v

‘CRCHRER Ne

winencont
B ez

D ctonee

D otaroe

B wse

[maesty

B wraset

cu
copy

Paste

Deete
Rename
Compare win
penwin
pen Relates
import

Seaen
ShowPkians.

o
x|
GG F e meCEuons
e D e
2 D) otoore
Dawis
o[D e
|| @ secoveson
.
o » davascript
pesR ™

W102:137-no0es

| vecer BB

6202017, 83711 A
6202017, 83710 A
6292017, 837:10 A
202017, 84749 A
202017, 4154 A
6202017, 84235 A

18
18
"8
18
8

OPS/images/Develop_Hello_World_Nodejs_app.05.1.41.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.39.jpg
et ver oo | EEIEIETTIITTTTNGG

Root (console buemoxnet) v | awois
g o | 1 vae ety - reutreCnessy;
|3 77 aena ene o Srom she imdertyiog anviconmene
~ lnchContiurzions | 3 77 et S i o e
Wiy |3 A e e o e s
e | & 17 creste tne server ana 16sten ¢ reauests on the specisies port
(o 165 e crestasereer unceion (causas, ceaponce) <
D oo 1 ke e SR ey
S response riseneadane, {-Convent-yoe-s “text/plain s
77 it N siogie Setls loria sesaager
{57/ inicn uti2 be snae i ine saer 5 wed browser
0 mantestymi | B Fesponae.anaCretio wase3si s
R | Bttt

OPS/images/CreateApp.png
Dashboard

RESOURGE GROUP REGioN LoD FouNDRY ORG. GLOUD FOUNDRY SPAGE
Al Resources ¥ USSouth v student 0145@yahoocom v dev v Create resourc

I

OPS/images/Develop_Hello_World_Nodejs_app.05.1.31.jpg

OPS/images/BluemixLogin.png
) 1BM Cloud

Welcome to IBM Cloud, the home
of 130+ unique services. Start
building immediately.

Create a free account

Login

OPS/images/Develop_Hello_World_Nodejs_app.05.1.32.jpg
Rk orson s a0 v o
e Lot ey
e L
» launchConfigurations 3 /7 If not exist, use the default port: 8080
L HEAE S bt e
= 3 7] e e o e et i
D o B e e e+ o
:
T R ——

D paciae son

OPS/images/Understand_asynchronous_callback.06.1.07.jpg
Public network

Ener ho spplstn's URL

1BM Cloud network

Send e TP st

Usar

Responss wih o

e

o oo Tty
iy o
o i
ot Execute the.
=
-] Do
aen| | e
| =
e

WatsonLanguage Transatorseni

OPS/images/Develop_Hello_World_Nodejs_app.05.1.33.jpg

OPS/images/Results_3.png
Translation of Hello is Hola

OPS/images/Develop_Hello_World_Nodejs_app.05.1.34.jpg

OPS/images/Understand_asynchronous_callback.06.1.05.jpg
oo

D wtzns ncn
e
o

B meron
D ctorore

0 o
Do

0 ot
B swmeren

REE R eanaee Rt

1wt < remdreCratsn-deelpe-clow';

‘e 28 Couns|

o geTrwsiation » fncion etTrmsIaton eIiTee, romangage, toanpage, CHINGE)

o g v . g e
»

e trvtatoratiock fmctonCrr,) ¢
Wen

st toter

i, i,

)

aase ¢
oo totena);
okl bt ationa o] trmsation);

)

»
Trgage sriaer v
e riter,
o g,
Shgs

OPS/images/Develop_Hello_World_Nodejs_app.05.1.35.jpg

OPS/images/Understand_asynchronous_callback.06.1.04.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.36.jpg

OPS/images/Understand_asynchronous_callback.06.1.03.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/Develop_Hello_World_Nodejs_app.05.1.37.jpg
 Peoc e Toos | RTINS [e ¢ = 68 4

Root consoe ivemixre) v

e
A4 » launcnConfigurations

%D oo
[soorere

K

[mantestymi
[package son

s

var hetp « require("res
77 Resd the part from the inder1ying environment.
U1 16 nok axist, use the sefaute port: 5080

o port « process v VCAB. PP BORT || 0905

1/ Creste the server and Msten to requests on the specisled port.
Petp.createserver(function (csausst, response)
17756t the content type of the response
Fesponse.uritenead(260, {"Content-Typa': “text/plain'D);
77 Nrite s sinple ells Vorld nessage,
77 which w1 be shoun i the ser-s b browser
Fesponse.ena("He1io Hodes!") 3
»-aistentoort)s

OPS/images/Understand_asynchronous_callback.06.1.02.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.38.jpg
€ Fe o vew oo ||
[g

o O, voss

» ncoContguors

#* D e o rercomsosaes s 83711
D otpoe D et wzsaom 3710 m0
Bwen D onon a0 sari0m
D mansestym B s, 0021
B ssiapeson 3 s aasaorr, 0807

2 sxiaseson o oorza

e

8

OPS/images/Understand_asynchronous_callback.06.1.01.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.61.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.62.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.60.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.65.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.66.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.63.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.64.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.58.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.59.jpg

OPS/images/ModifiedAppJS.png
< Fle Edt View Tooks

PP Root (zonsole buemixnet) ¥

+ Wi02-313.xpress 1 var port = process.env.vCaP_aPP_PORT || G056
2
b 3 //express web Francuork, ond create a new express server
3t » launchConfgurations & var express - require(*dipress’),
» senices 5 o - expressO);
6
07 ver patn - require("path');
s

5 var bosyparser = require("body-parser’);
10 //parse application/x-wm-Fora-urlencoded
11 app.use(bodyparser.urlencoded((

[manestymt 1 extended: false
B oM
B packageson 1

15 //moutes modules
16 var author = require(*./routes/author');

15 //Serve the files in /frontend as static files
15 app.use(express.static(_girname + '/rontend'));

21 //In case the caller ccess any URI under /author, call suthor route
22 app.use(*/author", author);

2/ start server an the spectfied port and binding host
= wptissenorty

OPS/images/ProjectTree.png
¢ File Edit View Tools

Root (console bluemixnet) v | components.js
v 102 XXX-express-201711 ~ | 1|

&

% v frontend
B indexhtml
» launchConfigurations
-
B authors

(running: normal)

OPS/images/Develop_Hello_World_Nodejs_app.05.1.01.jpg

OPS/images/WatsonAuthorFinderReturnedResultsF50.png
[{"name”:"Alex Konrad"}]

OPS/images/Build_rich_UI_AngularJS.08.1.50.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.51.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.54.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.55.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.52.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.53.jpg

OPS/images/bluemix-email.png
{5 1BM Cloud

Hello

Thank you for signing up for IBM
Cloud! Confirm your account to
get started.

By confirming your account, you accept the

Welcome and happy building!

OPS/images/Create_your_first_Express_app.07.1.78.jpg
& Tookchain

vy102-a42-express | Delivery Pipeline

Build Stage ® @& > DeployStage ©®
ustae Poun. USTART StgnBudStge / doiBuld
i ety e o e e
xes - wcos ewlon sty
© B Pt o @ Oapoy P e
& suidr g- 3 Wzaszepes .
20 e res
Vewnsinen
& Buidt -

© Askusat

OPS/images/Build_rich_UI_AngularJS.08.1.47.jpg

OPS/images/next-steps.png
Vi

() IBMCloud

Thanks!

To complete your registration, check your email.

Can't find the email? Resend

OPS/images/Create_your_first_Express_app.07.1.77.jpg
& Toolehain

vy102-a43-express | Delivery Pipeline

Build Stage [oX3

@

Lot commtty A
sy sumstein N

e

wes [oepep——

@ Bt Prmi o

& Buia g

> Deploy Stage [OX3

ST SuonBukdStoe / dtxBuld
B s g-
e [r——r—
2 Owpoy Arees ®

Mot

OPS/images/Build_rich_UI_AngularJS.08.1.48.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.07.jpg
Aoy b 1 18M Clowd account? Lo

Fusthame:

company

Country o Region”
Untegsies

sssssssss

(==
s ®

S Y

Keeo e frrd f e, servces, oo o BW comparieswormee.
© Byemai - By ekphone
1 chcking Crete Accou, accetthe I o sy oy and BN Gl .

OPS/images/Build_rich_UI_AngularJS.08.1.45.jpg
var port = process.env.VCAP_APP_PORT || 080;

//Express Web Framework, and create a new express server
var express = require('express’),
app = express();

var path = require(‘path');

var bodyParser = require("body-parser');
//parse application/x-wa-forn-urlencoded
app.use(bodyParser.urlencoded({

extended: false

i

//Routes modules
var index = require(../routes),

author = require(./routes/author');

//serve the files in /frontend as static files
20p. use (express.static(_dirname + '/frontend’));

//In case the caller access any resource under the root /, call index route
2pp.use("/", index);

//1n case the caller access any resource under /author, call author route
app.use(*/author’, author);

1/ start server on the specified port and binding host
app.Listen(port);

OPS/images/Develop_Hello_World_Nodejs_app.05.1.06.jpg
Public network 1BM Cloud network

et e etawona A, @ Sent o TP et

gt e et e

OPS/images/Create_your_first_Express_app.07.1.79.jpg
Build Stage o8 >
- Sonn
| Letcommtty edAzsa Zho
e Auor -l Coe
soss [ren—
@ Buid Pased 70
Uit cumonResuT
B Buid1 g-

Deploy Stage ®®

USTARUT e Buld e £ ok B
& ot
. [E—

©@ Do Prssa 230

LAST EXECUTONRESULT

%‘”"’ﬁ °
Veunimeton

B Buidt g

OPS/images/Build_rich_UI_AngularJS.08.1.46.jpg

OPS/images/Results.png
Hello NodeJS! The time now is: Mon Jun 19 2017 23:07:05 GMT+0000 (UTC)

OPS/images/Develop_Hello_World_Nodejs_app.05.1.04.jpg
e e

B

[y
B samen
0 e
0 oopon

0 reetrm
A

et
(R ey

OPS/images/ExpectedResults_NodeJSApp_F1.png
Dashboard

RESOURCE GROUP REGION CLOUD FOUNDRY ORG CLOUD FOUNDRY SPACE
All Resources USSouth v devadviondon@gmailcom v dev v (e e

Cloud Foundry Apps 256 MB/256 MB Used

I

Name - Route State

vy102-989-nodejs vy102-989-nodejsmy... O Awake (1)

OPS/images/Build_rich_UI_AngularJS.08.1.49.jpg

OPS/images/Develop_Hello_World_Nodejs_app.05.1.02.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.83.jpg
khtm1>

<head>
<titlesReact IS - Author Finderc/title>
<!-- load from the internet bootstrap style class that enhance the look of the the webpage
<Link rel="stylesheet" href="//netdna.bootstrapcdn. con/bootstrap/3.0.8/css/bootstrap.min.cs|
</nead>

<body>
<

Loading the script in body is a recommendation to insure faster loading,

putting all scripts at the header will cause the page to wait till all scripts loaded
Load React related files from internet -->

<script crossorigin src="nttps://unpkg.con/react@1é/und/react .production.min. js"></script>
<script crossorigin src="nttps://unpkg. con/react-dong16/und/react-don. production.min. js"></|

<i-- Load babel script pre-compiler from internet -->
<script src="nttps://unpkg. con/babel-standalone@s. 15.8/babel .min. js"></script>

<script type="text/babel" src="./components/authorrecords. js"></script>
TECrIPT Type="Text/babeT™ STC="/CORpOTETES COMPONents 35" 5/ 5Cr It

<div class="containe
<div class="row">
] <I-- You do not need to write much html code, you will
build the whole html on your JSPX code &

>

<div class="col-sm-10 col-sm-offset-1 text-center” id="root™>
</divs
</div>
</aiv>
</body>

</ntm1>

OPS/images/Build_rich_UI_AngularJS.08.1.84.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.81.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.82.jpg
‘components s

s
55
5
s
]
&
&
&
&
&
&

17 Results: is another React component that create hold the the 1ist of AuthRecords
Class Results extends React.Conponent
Constructor(props) ¢
‘Super(prons);
)

1/ otice the AuthRecod ot derined in that file, it iz define in separate file
77 This is one of the powerful feautre of React Component, pucting the AuthAecod in seperate File and sake it
rendernutrors() ¢

16t authors = this.srops sutnors;

17 when developing conpoenet. you should make it capatilized "AuthRecord" not “suthrecord” in order to mak

Feturn <Astnoriezora suthor- (3170

OPS/images/MobileView.png
Author Finder

http://edition.cnn.com/2017/06/12/politics/hfr-c

Retrieve Author

Article URL:

http://edition.cnn.com/2017/06/12/politics/hfr-

dennis-rodman-north-korea/index.html

Authors:
CNN
Elise Labott
Joshua Berlinger
Matt Rivers
Nicole Gaouette
Tim Schwarz

Will Ripley

OPS/images/Build_rich_UI_AngularJS.08.1.85.jpg

OPS/images/Displayingthe_listofAuthors.png
Author Finder

http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-north-korea/index.html

3 http://edition.cnn.com/2017/06/12/politics/hfr-dennis-rodman-
Article URL: ? ?
north-korea/index.html
CNN
Authors:
Elise Labott

Joshua Berlinger
Matt Rivers
Nicole Gaouette
Tim Schwarz

Will Ripley

OPS/images/Build_rich_UI_AngularJS.08.1.80.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.78.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.79.jpg
1/ Container: consiar it the main cospenent the descripe the whole page
Class Container extends React.Comsanert ¢

constructor(props)
‘super(rops);
s seate = (
s -,
autrors: 1,
inpueve:

3

spssteuri(e)(
this.setState({inputialie. target vaive);
B

1/ getiuthor use fetch function, in order to retrieve authors for rest service we created in previous excersie
gehane) ¢

1/ Renser 15 tne core function bening React conponents, define components and elesents in ML format, only feasible
Fencer() ¢
return
568y classe"dumsotron text-center>
nboAvtnor Finserc/ml
<63 dae St forn” Classe"text-center'>
Ciput types-text” classaforn-control dnput-1g text-center® onChanges(es>this.updatelri(e))
<rgiv
sy
‘outton type:

ton" classerbtn btn-prisery btnlg”

fsabies - (this.stote.inputval lengtn=--2) on

OPS/images/Build_rich_UI_AngularJS.08.1.72.jpg
container|

Author Finder

http://money.cnn.com/2017/11/09/technology/uber-ipo-2

Retrieve Author)ﬂts

Article URL:

hitp://money.cnn.com/2017/11/09/technology/uber-

ipo-2019/index.html

AuthorRecord

Authors: -~

Seth Fiegerman

OPS/images/Build_rich_UI_AngularJS.08.1.73.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.70.jpg
“Litiessence 35 - avtnor Fingerc/ticies
12 aad from the internct backitrap style cless thet enhance the Lock of the the wehpege -
T Lesmeet hrefa netons- oot st socinCon oot 3.0 8/ os/ sost o0 minochs 1>

Lossing the scrist 1n sosy 1s a recommencation to dnsure faster loseing,
purting 411 scripts o€ the Peader wilh couse the page £ welt ELLL SL1
Tovs Resct reioted fites from internet o>

SIS Crassorigin Sr<e"1 €t uroke.con/ uCCE1E/ i/ enc o aductfonwin J5°3¢/Scr gt
CHCFiSE Crassarigin or<u"TECpa://ToKG con/ ucE-omELE) ack-dam. roducton. i S5/ SEr 1B

—

€1-- Lond sabel script gre-comptler from internet -
CSEEISE Sreanatt e ur ok Con/banel Seanduloned 15 0/nabel i S573¢/scr ot

[—
Rrop ey
52" Vou 50 ot nees to uite much nem cose, you widd

Bisia e Lnsie nemt on sour J9K <o 55
ety clasaancol-om 10 Cob o oHGSRt T bent center® Seneront®s
aios

e
<>

OPS/images/AngularJSPagewithController.png
Author Finder

Enter URL of Article here!

Retrieve Author

OPS/images/Build_rich_UI_AngularJS.08.1.76.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.77.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.74.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.75.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.69.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.67.jpg

OPS/images/Build_rich_UI_AngularJS.08.1.68.jpg

