

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page v.

 First Edition (May 2017)

 This edition applies to IBM Watson services in IBM Bluemix.

 Notices

 This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

 The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

 Bluemix®

 Cloudant®

 developerWorks®

 Global Business Services®

 Global Technology Services®

 IBM®

 IBM Watson®

 IBM Watson IoT™

 Rational®

 Redbooks®

 Redpapers™

 Redbooks (logo)[image:]®

 Tivoli®

 Watson™

 Watson IoT™

 WebSphere®

 The following terms are trademarks of other companies:

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 The Building Cognitive Applications with IBM Watson Services series is a seven-volume collection that introduces IBM® Watson™ cognitive computing services. The series includes an overview of specific IBM Watson® services with their associated architectures and simple code examples. Each volume describes how you can use and implement these services in your applications through practical use cases.

 The series includes the following volumes:

 •Volume 1 Getting Started, SG24-8387

 •Volume 2 Conversation, SG24-8394

 •Volume 3 Visual Recognition, SG24-8393

 •Volume 4 Natural Language Classifier, SG24-8391

 •Volume 5 Language Translator, SG24-8392

 •Volume 6 Speech to Text and Text to Speech, SG24-8388

 •Volume 7 Natural Language Understanding, SG24-8398

 Whether you are a beginner or an experienced developer, this collection provides the information you need to start your research on Watson services. If your goal is to become more familiar with Watson in relation to your current environment, or if you are evaluating cognitive computing, this collection can serve as a powerful learning tool.

 This IBM Redbooks® publication, Volume 4, introduces the Watson Natural Language Classifier service. This service applies cognitive computing techniques to return best matching predefined classes for short text inputs such as a sentence or phrase. The book describes concepts that you need to understand to create, use, and train the classifier. It describes how to prepare training data and create and train the classifier to connect the classes to example texts so that the service can apply the classes to new inputs. It also provides examples of applications that demonstrate how to use the Watson Natural Language Classifier service in practical use cases. You can develop and deploy the sample applications by following a step-by-step approach and by using the provided code snippets. Alternatively, you can download an existing Git project to more quickly deploy the application.

 Authors

 This book was produced by a team of specialists from around the world, working in collaboration with the IBM International Technical Support Organization.

 Marcelo Mota Manhaes is a Certified IT Specialist in IBM Global Technology Services®, IBM Brazil. Marcelo is an IT Delivery Architect; his areas of expertise include cloud computing, software automation tools, business analytics, and cognitive computing. Marcelo has over 20 years of experience in the IT industry. He led several projects to design and build cognitive solutions such as an application that helps managers to evaluate the performance of their employees and a question answering system that uses Watson Natural Language Classifier (NLC), Retrieve and Rank, and Language Translator to enable IBM Knowledge Center users to find technical information by asking questions in their native language. Marcelo teaches cloud computing and cognitive systems at the Universidade Positivo. He is the author of several IBM Redbooks publications. Marcelo holds a B.S. in Computer Science from Universidade Federal do Paraná—UFPR and an M.S. in Computer Science from Universidade Tecnológica Federal do Paraná—UTFPR.

 Taemin Ko is an IT Architect in Software Lab Services, IBM Korea. His primary responsibility is to help clients to accelerate software delivery. This includes Software Process Innovation, mentoring and coaching of software engineering practices, such as Agile Transformation, and IBM Rational® based Tool Chain Innovation. Taemin is also responsible for architecture definition and implementation of Internet of Things (IoT) solutions using IBM Watson®. He was in charge of Watson internalization and enablement for Lotte Group of Korea. He is currently working on the design and implementation of a chatbot enabled by Watson Conversation API for one of the major card companies in Korea.

 Abeer Selim is a Certified IT Specialist Level 2 in IBM Global Business Services® and the Integration Practice Lead at the Client Innovation Center (CIC), IBM Egypt. She has over 11 years of experience in the IT industry. Abeer co-authored several scientific papers such as Machine Learning Methodologies in Brain-Computer Interface Systems, Machine learning methodologies in P300 speller Brain-Computer Interface systems, and Electrode Reduction Using ICA and PCA in P300 Visual Speller Brain-Computer Interface System. Abeer holds a B.S. and M.S. in Biomedical and Systems Engineering from Cairo University in Egypt.

 Omar Amer is a Package Solution Consultant in cognitive computing at IBM Egypt. He is a subject matter expert (SME) for IBM Watson and IBM cloud technologies. Omar participated in several projects implementing cognitive computing solutions with Watson APIs, Watson Explorer, and Watson Knowledge Studio.

 Lak Sri currently serves as a Program Director in the IBM developerWorks® part of the IBM Digital Business Group organization. Lak leads innovation in the developer activation space. He was the technical leader for the Building Cognitive Applications with IBM Watson Services Redbooks series. Lak led the development of the IBM Cloud Application Developer Certification program and the associated course. Earlier he worked as a Solution Architect for Enterprise Solutions in Fortune 500 companies using IBM Tivoli® products. He also built strategic partnerships in education and IBM Watson IoT™. Lak is an advocate and a mentor in several technology areas, and he volunteers to plan and support local community programs.

 The project that produced this publication was managed by Marcela Adan, IBM Redbooks Project Leader, ITSO.

 Thanks to the following people for their contributions to this project:

 Swin Voon Cheok
Ecosystem Development (EcoD) Strategic Initiative, IBM Systems

 Juan Pablo Napoli
Skills Academy Worldwide Leader, Global University Programs

 Teja Tummalapalli
IBM Digital Business Group

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Basics of Natural Language Classifier service

 This chapter introduces the IBM Watson Natural Language Classifier service. The Natural Language Classifier service applies cognitive computing techniques to return best matching predefined classes for short text inputs, such as a sentence or phrase.

 Unlike traditional APIs, many cognitive services require being trained first before they can be used; the Watson Natural Language Classifier (NLC) service is one of those services that must be trained before using.

 This chapter provides an overview of the process for creating and using the classifier. It includes snippets with code examples to perform some of the steps in the process.

 The following topics are covered in this chapter:

 •Using the Natural Language Classifier service

 •References

 1.1 Using the Natural Language Classifier service

 Figure 1-1 provides an overview of the four steps that are included in the process of creating and using the classifier.

 [image:]

 Figure 1-1 Using the Natural Language Classifier service: Process steps

 To use the Natural Language Classifier service in your application, you must train the classifier following these steps:

 1.	Prepare training data

 2.	Create and train the classifier

 3.	Query the trained classifier

 4.	Evaluate results and update the data

 The following sections take you through a simple example following these steps to train the classifier.

 1.1.1 Prepare training data

 To prepare the training data, follow these steps:

 1.	Identify class labels. These are the classes that the classifier will output.

 2.	Collect representative text.

 3.	Match classes to text. That is, create the training data by matching text with their respective classes.

 Identify class labels

 Class labels represent the result labels that describe the intent of the input text. Class labels are the output of a trained classifier.

 To train the classifier, you prepare a training CSV file that is used when the classifier is created.

 For the simple example described in this chapter, two class labels are identified: Health and VeterinaryHealth. In a real production scenario, usually a larger number of class labels are identified.

 Collect representative texts

 Gather representative texts for each class label for training purposes, These texts show the classifier examples for each class and serve as training data. These examples should be similar to the actual text input that will be provided to the classifier in production.

 Representative text for Health class labels

 The following text examples can be associated with the Health class labels:

 •How much does it cost to get an occupational health card?

 •What are steps required to get a health card?

 •I want to be immune from Hepatitis B.

 Representative text for VeterinaryHealth class labels

 The following text examples can be associated with the VeterinaryHealth class labels:

 •I need to know regulations for importing animals/veterinary products into the markets.

 •Where can I adopt a pet from a shelter?

 •Where can someone obtain health cards for veterinary?

 •How to get a post mortem report for my pet?

 Match classes to text

 Now you create a file in CSV format with two columns:

 •Column one is the input text

 •Column two is the class label for that text

 Table 1-1 shows the input text and corresponding class label for the example in this chapter.

 Table 1-1 Training data to create a CSV file

 	
 Input text

 	
 Class label

 	
 How much does it cost to get an occupational health card

 	
 Health

 	
 What are steps required to get a health card

 	
 Health

 	
 I want to be immune from Hepatitis B

 	
 Health

 	
 I need to know regulations for importing animals/veterinary products into the Markets

 	
 VeterinaryHealth

 	
 Where can I adopt a pet from a shelter

 	
 VeterinaryHealth

 	
 Where can someone obtain health cards for veterinary

 	
 VeterinaryHealth

 	
 How to get a post mortem report for my pet

 	
 VeterinaryHealth

 Example 1-1 shows the CSV file created from Table 1-1.

 Example 1-1 Training data in CSV format

 [image:]

 How much does it cost to get an Occupational health card,Health

 What are steps required to get a health Card,Health

 I want to be immune from Hepatitis B,Health

 I need to know regulations for importing animals/veterinary products into the Markets,VeterinaryHealth

 Where Can I adopt a pet from a shelter,VeterinaryHealth

 Where can someone obtain Health cards for veterinary,VeterinaryHealth

 How to get a post mortem report for my pet,VeterinaryHealth

 [image:]

 You can access the training CSV file at the GitHub web page:

 https://gist.github.com/snippet-java/044c616801cea023930bed41efed6488

 	
 Note: This simple example shows only two class labels and three and four text samples for each. In a production scenario, many more class labels and text samples of training data should be provided.

 1.1.2 Create and train the classifier

 Before you can create a classifier, the Natural Language Classifier service instance must be created as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 After creating the Natural Language Classifier service instance, create a classifier that is associated with the service instance. Specify the classifier name and training CSV file, and then upload the training CSV file that you created in 1.1.1, “Prepare training data” on page 2 to train the classifier. The classifier ID will be returned.

 Figure 1-2 shows a simplified diagram representing the creation of the classifier.

 [image:]

 Figure 1-2 Create the Natural Language Classifier service classifier

 You can create the classifier and upload training data using one of the following methods:

 •Using the toolkit in IBM Bluemix®

 •Programmatically, with simple programs written in languages such as Java and Node.js

 •Using command-line tools, such as cURL

 The following examples show code snippets in different technologies to create the classifier and upload the training data passing the following parameters:

 •Credentials of the associated service instance

 •Classifier name

 •The CSV file with the training data to upload

 Example 1-2 shows a code snippet in Node.js to create the classifier and upload the training data.

 Example 1-2 Code snippet: NodeJS

 [image:]

 var watson = require('watson-developer-cloud');

 var fs = require('fs');

 var natural_language_classifier = watson.natural_language_classifier({

 username: '{username}',

 password: '{password}',

 version: 'v1'

 });

 var params = {

 language: 'en',

 name: 'My Classifier',

 training_data: fs.createReadStream('./train.csv')

 };

 natural_language_classifier.create(params, function(err, response) {

 if (err) console.log(err);

 else

 console.log(JSON.stringify(response, null, 2));

 });

 [image:]

 Example 1-3 shows a code snippet in Java to create the classifier and upload the training data.

 Example 1-3 Code snippet: Java

 [image:]

 import java.io.File;

 import com.ibm.watson.developer_cloud.natural_language_classifier.v1.NaturalLanguageClassifier;

 import com.ibm.watson.developer_cloud.natural_language_classifier.v1.model.*;

 public class SimpleServlet {

 	public static void main(String[] arg) {

 		NaturalLanguageClassifier service = new NaturalLanguageClassifier();

 		service.setUsernameAndPassword("{username}", "{password}");

 		Classifier classifier = service.createClassifier("My Classifier", "en",

 new File("./train.csv")).execute();

 		System.out.println(classifier);

 	}

 }

 [image:]

 Example 1-4 shows a code snippet in cURL to upload the training data.

 Example 1-4 Code snippet: cURL

 [image:]

 curl -u "{username}":"{password}" -F training_data=@train.csv -F training_metadata="{\"language\":\"en\",\"name\":\"HealthClassifier\"}" https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers

 [image:]

 Response

 Example 1-5 shows the response returned when running the code to upload the training data.

 Example 1-5 Code snippet: Response

 [image:]

 {

 "classifier_id": "10D41B-nlc-1",

 "name": "My Classifier",

 "language": "en"

 "created": "2015-05-28T18:01:57.393Z",

 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/10D41B-nlc-1",

 "status": "Training",

 "status_description": "The classifier instance is in its training phase, not yet ready to accept classify requests"

 }

 [image:]

 The classifier_id value shows a unique identifier for each classifier. Multiple classifiers can be associated with the same Natural Language Classifier service instance.

 The status shows the classifier status. When the classifier is ready to accept requests, the status changes from Training to Available.

 Check the classifier status

 Before you can use the classifier, you must check the status. The following code snippets provide examples of how to check the status.

 	
 Note: In the following code snippets, replace "{classifier}" with the "classifier_id": value obtained in the response (see Example 1-5).

 Example 1-6 shows a code snippet in Node.js to check status of the classifier.

 Example 1-6 Code snippet: NodeJS

 [image:]

 var watson = require('watson-developer-cloud');

 var fs = require('fs');

 var natural_language_classifier = watson.natural_language_classifier({ username: '{username}', password: '{password}', version: 'v1' });

 natural_language_classifier.status({

 classifier_id: '{classifier}'

 }, function(err, response) {

 if (err) console.log('error: ', err);

 else console.log(JSON.stringify(response, null, 2));

 });

 [image:]

 Example 1-7 shows a code snippet in Java to check status of the classifier.

 Example 1-7 Code snippet: Java

 [image:]

 import java.io.File;

 import com.ibm.watson.developer_cloud.natural_language_classifier.v1.NaturalLanguageClassifier;

 import com.ibm.watson.developer_cloud.natural_language_classifier.v1.model.*;

 public class SimpleServlet {

 	public static void main(String[] arg) {

 		NaturalLanguageClassifier service = new NaturalLanguageClassifier();

 		service.setUsernameAndPassword("{username}", "{password}");

 		Classifier classifier = service.getClassifier("{classifier}").execute();

 		System.out.println(classifier);

 		

 	}

 }

 [image:]

 Example 1-8 shows a code snippet in cURL to check status of the classifier.

 Example 1-8 Code snippet: cURL

 [image:]

 curl -u "{username}":"{password}" https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/{classifier}

 [image:]

 Response

 When the classifier is trained, the status changes to Available (see Example 1-9). You can now use the classifier.

 Example 1-9 Status response for a trained classifier

 [image:]

 { "classifier_id": "{classifier}",

 "name": "My Classifier",

 "language": "en",

 "created": "2015-05-28T18:01:57.393Z",

 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/10D41B-nlc-1",

 "status": "Available",

 "status_description": "The classifier instance is now available and is ready to take classifier requests.",

 }

 [image:]

 1.1.3 Query the trained classifier

 After the classifier is trained, you can query it. Figure 1-3 on page 8 represents querying the classifier by providing the classifier ID and input text.

 The API returns a response that includes the name of the class for which the classifier has the highest confidence. Other class-confidence pairs are listed in descending order of confidence. The confidence value represents a percentage, and higher values represent higher confidences.

 [image:]

 Figure 1-3 Querying the classifier

 The classification process divides the value of 1 (100%) among all defined class labels and outputs a value for each class label (percentage) that can be thought of as the confidence level for each class label as shown Figure 1-3.

 The following examples show code snippets to query the classifier.

 Example 1-10 shows a snippet in Node.js to run a query on a classifier by specifying the classifier ID.

 Example 1-10 Code snippet: Node.js, querying the classifier

 [image:]

 var watson = require('watson-developer-cloud');

 var fs = require('fs');

 var natural_language_classifier = watson.natural_language_classifier({ username: '{username}', password: '{password}', version: 'v1' });

 natural_language_classifier.classify({

 text: 'I want a health card',

 classifier_id: '{classifier}'

 }, function(err, response) {

 if (err) console.log('error: ', err);

 else console.log(JSON.stringify(response, null, 2));

 });

 [image:]

 Example 1-11 shows a snippet in Java to run a query on the Natural Language Classifier classifier.

 Example 1-11 Code snippet: Java, querying the classifier

 [image:]

 import java.io.File;

 import com.ibm.watson.developer_cloud.natural_language_classifier.v1.NaturalLanguageClassifier;

 import com.ibm.watson.developer_cloud.natural_language_classifier.v1.model.*;

 public class SimpleServlet {

 	public static void main(String[] arg) {

 		NaturalLanguageClassifier service = new NaturalLanguageClassifier();

 		service.setUsernameAndPassword("{username}", "{password}");

 		Classification classifier = service.classify("{classifier}

 ","I want a health card").execute();

 		System.out.println(classifier);

 		

 		

 	}

 }

 [image:]

 Example 1-12 shows a snippet in cURL to run a query on the Natural Language Classifier classifier.

 Example 1-12 Code snippet: Querying the classifier, cURL

 [image:]

 curl -u "'{username}":"{password}" -H "Content-Type:application/json" -d "{\"text\":\"I want a health card\"}" https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/{classifier}/classify

 [image:]

 Query response

 Example 1-13 shows the response returned when querying the classifier.

 Example 1-13 Query response

 [image:]

 {

 "classes": [

 {

 "confidence": 0.9858005113688728,

 "class_name": "Health"

 },

 {

 "confidence": 0.014199488631127315,

 "class_name": "VeterinaryHealth"

 }

],

 "classifier_id": "f5b42ex171-nlc-2121",

 "text": "I want a health card",

 "top_class": "Health",

 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/f5b42ex171-nlc-2121"

 }

 [image:]

 In this code snippet:

 •The "text" value shows the input text in the query request.

 •The "classes" value is an array that contains the list of defined class labels and the confidence for each. Confidence is a value between 0 (0%) and 1 (100%), indicating the confidence for each class label for the query input text.

 The sum of confidence for all classes is 1. The classes in the array are ordered in a descending order of confidence. That is, the class label with the highest confidence is always the first element in the classes array.

 1.1.4 Evaluate results and update the data

 The objective of this step in the process is to improve the results returned by the classifier:

 1.	Detect wrong or weak confidence cases for user input text.

 2.	Change or restructure user’s phrases into generic representative text.

 3.	Match text to their corresponding class label.

 4.	Add new text to the original training data and create a new classifier.

 5.	Repeat this cycle when quality of classification drops to a certain lower limit.

 1.2 References

 See the following resources:

 •Overview of the IBM Watson Natural Language Classifier service:

 https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/index.html

 •Getting started with the Natural Language Classifier service:

 https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/getting-started.html

[image:]
[image:]

Creating a Natural Language Classifier service in Bluemix

 IBM Watson Developer Cloud offers a variety of services for developing cognitive applications. One of these services, which is the focus of this book, is the Watson Natural Language Classifier (NLC) service.

 This chapter explains how to create an instance of the Natural Language Classifier service in Bluemix that is required for the use cases described in this book.

 The following topics are covered in this chapter:

 •Requirements

 •Creating the Natural Language Classifier service instance

 •What to do next

 2.1 Requirements

 To create a service and perform the use cases in this book, you must have a Bluemix account. You can register to create an account and log in at IBM Bluemix. When you log in, you are prompted to authenticate with your email or IBM ID and password.

 2.2 Creating the Natural Language Classifier service instance

 The two ways to create the Natural Language Classifier service instance are as follows:

 •Creating the Natural Language Classifier service instance from the Bluemix website

 •Creating the Natural Language Classifier service instance using Cloud Foundry commands

 2.2.1 Creating the Natural Language Classifier service instance from the
Bluemix website

 To create the service, follow these steps:

 1.	Log in to the IBM Bluemix website.

 2.	When the home page opens, click Catalog.

 3.	On the IBM Bluemix Catalog page (Figure 2-1) scroll to the Services section, select Watson, and then click Natural Language Classifier.

 [image:]

 Figure 2-1 Natural Language Classifier in the Bluemix Catalog

 4.	On the Natural Language Classifier page (Figure 2-2 on page 13), create the service. You can change the Service name and Credentials name fields by using your personal choices or keep the default values. The important point is that for the instance of the service being created, the credential name will have the username and password. Click Create.

 [image:]

 Figure 2-2 Creating Natural Language Classifier service instance

 5.	Get the credentials (username and password) from the service instance for later use.

 Click the service instance and select the Service Credentials tab.

 6.	Click View Credentials and get the username and password values (Figure 2-3 on page 14).

 	
 Important: The service instance credentials, username and password, are used in the next chapters.

 [image:]

 Figure 2-3 Get user name and password from Natural Language Classifier service instance

 2.2.2 Creating the Natural Language Classifier service instance using Cloud Foundry commands

 To create the service, follow these steps:

 1.	Download the Cloud Foundry software Cloud Foundry software and install it on your computer.

 2.	Open a command prompt.

 3.	Run the cf login command and insert the email and password for your Bluemix account in the sequence shown in Example 2-1.

 Example 2-1 Run login and provide email and password for the Bluemix account

 [image:]

 cf login

 API endpoint: https://api.ng.bluemix.net

 ¢	

 Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>

 ¢	

 Password> <PUT_YOUR_PASSWORD_ACCOUNT>

 Authenticating...

 OK

 Targeted org <YOUR_ORGANIZATION>

 [image:]

 4.	Select a Bluemix space to host the service (Example 2-2 on page 14).

 Example 2-2 Select a Bluemix space

 [image:]

 Select a space (or press enter to skip):

 1. dev

 2. qa

 3. Prod

 Space> 1

 Targeted space dev

 API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

 User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Org: <YOUR_ORGANIZATION>

 Space: dev

 [image:]

 5.	Run the following command to create an instance of the service:

 cf create-service <service> <service_plan> <service_instance>

 About the command:

 cf create-service	The Cloud Foundry command to create the service instance.

 <service>	The name of the service you want to create an instance of. For Natural Language Classifier, use Natural_Language_Classifier.

 <service_plan>	The pricing plan.

 <service_instance>	The service instance name you want to use.

 Example 2-3 shows the command.

 Example 2-3 The cf create-service command

 [image:]

 cf create-service Natural_Language_Classifier standard "ITSO-

 ED-6000-R01 - Natural Language Classifier"

 Creating service instance ITSO-ED-6000-R01 - Natural Language Classifier in org

 <YOUR_ORGANIZATION>/ space dev as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

 OK

 [image:]

 6.	List the service information by using the cf service <service_name> command to confirm that it was successfully created (Example 2-4).

 Example 2-4 The cf service command

 [image:]

 cf service "ITSO-ED-6000-R01 - Natural Language Classifier"

 Service instance: ITSO-ED-6000-R01 - Natural Language Classifier

 Service: natural_language_classifier

 Bound apps:

 Tags:

 Plan: standard

 Description: Natural Language Classifier performs natural language classification on question texts. A user would be able to train their data and the predict the appropriate class for an input question.

 Documentation url: https://www.ibm.com/watson/developercloud/nl-classifier.html

 Dashboard: https://www.ibm.com/watson/developercloud/dashboard/en/nl-classifier-dashboard.html

 Last Operation

 Status: create succeeded

 Message:

 Started: 2017-02-16T17:16:49Z

 Updated:

 [image:]

 7.	Create user and password credentials to access the service by using this command:

 cf create-service-key <service_instance> <service_key>.

 About the command:

 cf create-service-key	The Cloud Foundry command to create the service key with user and password.

 <service_instance>	The name of the Natural Language Classifier service instance.

 <service_key>	The name of the service key you want to create.

 Example 2-5 shows this command.

 Example 2-5 The cf create-service-key command

 [image:]

 cf create-service-key "ITSO-ED-6000-R01 - Natural Language Classifier" myKeys

 Creating service key myKeys for service instance ITSO-ED-6000-R01 - Natural Language Classifier as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

 OK

 [image:]

 8.	Get the username and password in order to access the service later by running the following command:

 cf service-key <service_instance> <service_key>

 About the command:

 cf service-key	The Cloud Foundry command to view the username and password in the service key.

 <service_instance>	The name of the service instance.

 <service_key>	The name of the service key.

 Example 2-6 shows this command.

 Example 2-6 Use cf service-key to get username and password

 [image:]

 cf service-key "ITSO-ED-6000-R01 - Natural Language Classifier" myKeys

 Getting key myKeys for service instance ITSO-ED-6000-R01 - Natural Language Classifier as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

 {

 "password": "egDxZXXEoXJR",

 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api",

 "username": "189db2d8-95e2-XXXX-9a3c-1fba7f991c41"

 }

 [image:]

 	
 Important: The service instance credentials, username and password, are used in the next chapters.

 2.3 What to do next

 Creating the service instance is a required step for the remaining chapters in this book. With username and password collected from Natural Language Classifier service instance, you can go through the next chapters:

 •Chapter 3, “Healthcare questions and answers” on page 19.

 •Chapter 4, “News Classification” on page 45.

 •Chapter 5, “SPAM Classifier” on page 101.

[image:]
[image:]

Healthcare questions and answers

 This chapter introduces the use of the Watson Natural Language Classifier (NLC) service in an application. The Watson Natural Language Classifier service applies deep learning techniques to predict the best predefined classes for short sentences or phrases. The classes prediction can be used for triggering a corresponding action in an application, such as answering a question.

 This chapter describes steps to create a simple Healthcare question and answer (Q and A) application. The application is an example of a use case for a cognitive application using the Watson Natural Language Classifier service. The main objective of the Healthcare Q and A application is to provide answers to questions that are related to a healthcare community or organization.

 In this chapter, you work with code that is partially developed and therefore the chapter provides code snippets for you to use.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 3.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 3.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Create a Healthcare Q and A application using Node.js and running in IBM Bluemix.

 •Prepare training data in a CSV file.

 •Implement the Watson Natural Language Classifier service using Node.js.

 •Train the classifier using the prepared CSV file.

 •Use the Bluemix web user interface to create and manage services.

 3.1.2 Prerequisites

 To complete the steps in this chapter, ensure that you meet the following prerequisites

 •Bluemix account

 •The instructions to create an Natural Language Classifier service, as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11

 •An Internet browser such as Chrome, Firefox, Internet Explorer, or Safari

 •Install Cloud Foundry

 •Basic JavaScript skills

 •Review the available Bluemix regions and select the most appropriate based on your location

 •Git basics

 3.1.3 Expected results

 By following the steps in this book, you should be able to use a browser to run the application. The application works as follows:

 1.	In a web browser open the Healthcare Q and A Application to see a running version on Bluemix (Figure 3-1 on page 21).

 [image:]

 Figure 3-1 Healthcare Q and A application

 2.	Enter a question (such as “Where are clinics?”) and click Submit. A page opens to display an answer (Figure 3-2).

 [image:]

 Figure 3-2 Healthcare Q and A application results displayed

 3.2 Architecture

 The Healthcare Q and A application is composed of a web interface, application logic, Watson Natural Language Classifier service, and Node.js run time. The application logic orchestrates a classification service. The Watson Natural Language Classifier service classifies to which category the specified question belongs. Node.js run time uses the Express framework as the integration platform between the web interface and the Watson Natural Language Classifier service.

 Figure 3-3 shows the components of the application and flow:

 1.	User submits a healthcare related question through the web interface.

 2.	Web interface posts the received question to the application.

 3.	Application logic routes the question to Node.js Express as the application integration platform.

 4.	Node.js in turn receives the question and sends it to the Watson Natural Language Classifier service to be classified.

 5.	Watson Natural Language Classifier service returns the response, which includes the top class representing the category of the question.

 6.	Node.js returns the Natural Language Classifier response to the application logic.

 7.	Application logic identifies the web interface page to be displayed as per the question category returned from the Watson Natural Language Classifier service.

 8.	Web interface displays the page that includes the answer to the question.

 [image:]

 Figure 3-3 Architecture overview diagram

 3.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step deployment (incomplete) version of the application

 This repository contains an incomplete version of the application and is used in all sections of 3.4, “Step-by-step implementation” on page 23. This version takes you through the key steps to integrate the IBM Watson services with the application logic.

 •Quick deployment (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 3.5, “Quick deployment of application” on page 42.

 3.4 Step-by-step implementation

 Deploying this application involves the following steps:

 1.	Downloading the project from the Git repository.

 2.	Preparing the training data.

 3.	Creating and training the Natural Language Classifier service.

 4.	Creating the Node.js Express Healthcare Q and A application.

 5.	Deploying the application.

 6.	Testing the application.

 3.4.1 Downloading the project from Git

 Start by downloading the code. The code is basically the same as the quick-deployment version, however it is missing some important parts to be developed by you.

 •Download the incomplete code (step-by-step deployment version):

 https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

 After downloading, explore the downloaded folder to become familiar with its structure so you can more easily follow the step-by-step deployment.

 •You can also download the complete code (quick deployment version) that you can use for verification or as a code reference:

 https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

 3.4.2 Preparing training data

 This section focuses on preparing the training data CSV file for the Healthcare Q and A application. The file should include a list of questions that are categorized into different classes. After randomly listing some of the expected questions, most of the questions seemed to fit into five main categories of questions representing five classes (Figure 3-4):

 Policy: 	Questions about healthcare policy, contracts, and plans

 Providers: 	Questions about service providers

 Products: 	Questions about products and offers

 About: 	Questions about the healthcare organization and contact information

 Claim: 	Questions about claims and reimbursements

 [image:]

 Figure 3-4 Sample questions for different categories

 A bulk of related questions for each category are in the training file.

 This training file is used as an input to the next step, 3.4.3, “Creating and training the classifier” on page 24.

 You can find the training data CSV file hcqa_training_data.csv in the hcqaNaturalLanguageClassifier_Student folder that you downloaded as described in 3.4.1, “Downloading the project from Git” on page 23.

 3.4.3 Creating and training the classifier

 	
 Note: You must create a Natural Language Classifier service instance in Bluemix as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11 before performing the steps in this section.

 After creating the Natural Language Classifier service instance, the next step is to create and train a classifier associated with the service instance, by using the prepared training CSV file from 3.4.2, “Preparing training data” on page 24:

 1.	Log in to your Bluemix account, open the Manage tab, and click Access the beta toolkit, (Figure 3-5 on page 25).

 [image:]

 Figure 3-5 Training process step 1: Access the toolkit

 2.	Click Sign in with Bluemix (Figure 3-6).

 [image:]

 Figure 3-6 Training process step 2: Sign in with Bluemix

 3.	Click Confirm to grant the toolkit access to your previously created Natural Language Classifier service instance (Figure 3-7).

 [image:]

 Figure 3-7 Training process step 3: Confirm

 4.	Click Add training data (Figure 3-8).

 [image:]

 Figure 3-8 Training process step 4: Add training data

 5.	Upload the prepared training CSV file by clicking the upload icon (Figure 3-9). Then click Create classifier.

 [image:]

 Figure 3-9 Training process step 5: Create classifier and upload training data

 6.	Specify the classifier name in the Name field, and then click Create (Figure 3-10).

 [image:]

 Figure 3-10 Training process step 6: Provide a name for classifier

 7.	Reload the page to be sure that the classifier creation process is in progress (Figure 3-11).

 [image:]

 Figure 3-11 Training process step 7: Progress bar

 8.	After the training process completes, the classifier is listed with a Classifier ID (Figure 3-12). This value will be used later in the JSON configuration file, for the Node.js Healthcare Q and A application.

 [image:]

 Figure 3-12 Training process step 8: Training process completed

 3.4.4 Creating the Node.js Express Healthcare Q and A application

 To create the Healthcare Q and A application, complete these steps.

 1.	Download the project from the Git repository:

 https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

 2.	Set the dependencies:

 a.	Navigate to the downloaded application folder, and open the package.json file:

 ../hcqaNaturalLanguageClassifier/package.json

 The file has a list of required dependencies (Figure 3-13).

 [image:]

 Figure 3-13 Snapshot from the package.json file: Dependencies

 b.	In the package.json file, add the following dependency to line number 16 (Figure 3-14 on page 29):

 "watson-developer-cloud":"2.14.8"

 The Watson module will provide access to the high-level wrappers for each of the Watson cognitive services running on IBM Bluemix.

 [image:]

 Figure 3-14 The package.json file after adding Watson-developer-cloud to dependency list

 3.	Set the service credentials and classifier ID.

 a.	Open the config.js configuration file /hcqaNaturalLanguageClassifier/config.js to add the Natural Language Classifier service credentials and classifier ID.

 b.	Add the values for the username and password that you obtained when you created the service as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 c.	Add the classifier ID that you obtained when you created the classifier in step 8 on page 27. See Figure 3-15.

 [image:]

 Figure 3-15 Snapshot from the config.js file: Setting service credentials and classifier ID

 d.	Save the config.js file.

 4.	Configure the application route. This route specifies the URI that points to the file that includes the required application actions.

 a.	Open the following file:

 ../hcqaNaturalLanguageClassifier/app.js

 b.	Add the following text to line number 10 (Figure 3-16 on page 30), and add an extra new line after that:

 var nlc = require('./routes/nlc');

 This line of code specifies the route file (nlc in this example).

 [image:]

 Figure 3-16 Snapshot from the app.js file highlighting the location of newly added code

 c.	Specify the URI that the application will use to load and access the file.

 Add the following text to line number 28 in the app.js file (Figure 3-17 on page 31):

 app.use('/nlc', nlc);

 [image:]

 Figure 3-17 Snapshot from the app.js file highlighting the route file and URI

 d.	Review the added lines as shown in Figure 3-18, and then save and close the file.

 [image:]

 Figure 3-18 Snapshot for the app.js file highlighting the updates

 By adding these lines, the application will load the new route file any time the user accesses the application using this URI:

 http://server:port/nlc

 5.	Integrate the Healthcare application with the Watson Natural Language Classifier service by creating the server-side code. In this step, create the file that includes the implemented code to be run when the route is accessed:

 a.	Create the nlc.js file in the following path:

 ../hcqaNaturalLanguageClassifier/routes/nlc.js

 b.	Open the nlc.js file and add the code snippet shown in Example 3-1, which loads the required node modules and the previously created config.js file.

 Example 3-1 An nlc.js snippet: Loads the required node modules

 [image:]

 var config = require('../config');

 var express = require('express');

 var bodyParser = require('body-parser');

 var watson = require('watson-developer-cloud');

 [image:]

 c.	Set up the Express router:

 var router = express.Router();

 d.	Create a body-parser instance for working with the URL that is encoded from data. The body-parser middleware will be used to gain access to HTML form parameters.

 var urlEncodedParser = bodyParser.urlencoded({extended:false});

 e.	Declare an instance of the Natural Language Classifier service and use the credentials and classifier ID in JSON format in the configuration file, as shown in Example 3-2.

 Example 3-2 Creating the Natural Language Classifier service instance: The nlc.js snippet

 [image:]

 var urlEncodedParser = bodyParser.urlencoded({extended:false});

 //Declare an instance of the NLC service; use the credentials and classifier //id in JSON format in the configuration file

 var natural_language_classifier = watson.natural_language_classifier(config.watson.natural_language_classifier);

 [image:]

 f.	Add a function to handle HTTP POST requests to URL /nlc. This function will perform classification on the input text entered by the user. The data will be submitted through an HTML form in a parameter named source. Example 3-3 shows these details:

 i.	Perform classification on the source form parameter.

 ii.	A function to be run when classification analysis is completed.

 iii.	Print the returned errors to the server console.

 iv.	Print the returned results data to the server console.

 v.	Send the returned JSON data to the client application.

 Example 3-3 Classifying input text: nlc.js snippet

 [image:]

 router.post('/', urlEncodedParser, function(req, res, next){

 //Perform classification on the source form parameter.

 	natural_language_classifier.classify({

 		'text': req.body.source,

 		'classifier_id': config.watson.natural_language_classifier.id

 	},

 //A function to be run when classification analysis is completed

 	function(err, response){

 		if(err){

 //Print the returned errors to the server console.

 			console.log('error:', err);

 		}else{

 //Print the returned results data to the server console

 			console.log(JSON.stringify(response, null, 2));

 //Send the returned JSON data to the client application

 			res.json(response);

 		}

 	});

 });

 [image:]

 g.	To the end of the file, add the following line, which will make the routes available to the remainder of the application:

 module.exports = router;

 The complete file is shown in Figure 3-19.

 [image:]

 Figure 3-19 Snapshot for the nlc.js file

 The Node.js route, which is the nlc.js file that will run the specified cognitive services on data submitted through an HTML form has been created.

 6.	Review the index.js file. This file is the application main page that includes the input field and renders the results in a new page by using EJS templates.

 a.	Open the index.ejs file, which is in the following path:

 ../hcqaNaturalLanguageClassifier/views/index.ejs

 b.	Review the code, which has the following details:

  •	A function for sending data to the server through an AJAX request (Figure 3-20 on page 34.

 [image:]

 Figure 3-20 index.ejs: JavaScript classify function

  •	A simple function for resetting or clearing values in the page (Figure 3-21).

 [image:]

 Figure 3-21 index.ejs: JavaScript clearData function

  •	A simple text area to accept input from the user (Figure 3-22).

 [image:]

 Figure 3-22 index.ejs: textarea

  •	Buttons for invoking the JavaScript functions classify() and clearData() (Figure 3-23).

 [image:]

 Figure 3-23 index.ejs: Buttons for invoking JavaScript functions

  •	Modals for each class that displays the answers for different categories and classes (Figure 3-24 on page 35).

 [image:]

 Figure 3-24 index.ejs: Examples of Modals

 c.	Close the index.ejs file.

 3.4.5 Deploying the Healthcare Q and A application on Bluemix

 The steps in this section guide in pushing the final application to the Bluemix environment and making it publicly accessible to consumers:

 1.	Open the manifest.yml file (Figure 3-25) and review its contents:

 ../hcqaNaturalLanguageClassifier/manifest.yml

 [image:]

 Figure 3-25 The manifest.yml file

 This is a helper file for identifying and pushing the application to the IBM Bluemix environment. The file is used to declare resources and metadata required for your application to run in Bluemix and also used to bind existing services to the application.

 2.	Each application hosted in IBM Bluemix must have a unique sub-domain. To distinguish your application from others, make the host name unique by appending the initials of your name to the host value.

 host: hcqaNaturalLanguageClassifier-AS

 Note: Replace AS by your initials

 3.	Save and close the file after updates.

 4.	Review the Bluemix regions (Table 3-1). A Bluemix region is a defined geographical territory that you can deploy your applications to. Select the appropriate Bluemix region closer to your location to reduce the application latency.

 Table 3-1 Regions

 	
 Region

 	
 Location

 	
 Prefix

 	
 cf API endpoint

 	
 UI console

 	
 US South

 	
 Dallas, US

 	
 ng

 	
 api.ng.bluemix.net

 	
 console.ng.bluemix.net

 	
 United Kingdom

 	
 London, UK

 	
 eu-gb

 	
 api.eu-gb.bluemix.net

 	
 console.eu-gb.bluemix.net

 	
 Sydney

 	
 Sydney, Australia

 	
 au-syd

 	
 api.au-syd.bluemix.net

 	
 console.au-syd.bluemix.net

 5.	Set the API endpoint for the Bluemix region you selected (from Table 3-1) and log in to Bluemix using your Bluemix credentials.

 Return to the command window and enter the commands shown in Example 3-4.

 Example 3-4 Enter these commands in the command window

 [image:]

 cf api https://api.ng.bluemix.net

 cf login -u <<Your Bluemix username>>

 [image:]

 6.	When prompted enter your Bluemix password.

 7.	Push the health care application to be deployed in Bluemix.

 In the command prompt window enter the commands shown in Example 3-5.

 Example 3-5 Deploying the application to Bluemix

 [image:]

 cd <<The project path username>>\hcqaNaturalLanguageClassifier

 cf push 'hcqaNaturalLanguageClassifier'

 [image:]

 The Cloud Foundry command-line tool will examine the contents of the manifest.yml and package.json files and push the application to Bluemix.

 8.	Exit the CF tool:

 cf logout

 3.4.6 Testing the application

 To test the Healthcare Q and A application, complete these steps:

 1.	In the web browser, enter the following URL to open the application. Replace _AS by your initials as you entered them in step 2 on page 35 (Figure 3-26 on page 37):

 http://hcqanaturallanguageclassifier-AS.mybluemix.net/

 	
 Note: To assess the quality of the training, the test input questions should not be exactly the same as the questions included in the training set.

 [image:]

 Figure 3-26 Healthcare Q and A application

 2.	Enter a test question, such as “Where are clinics?” (which represents a Provider class question) and click Submit (Figure 3-27). The figure shows that the question is classified as Providers, as expected.

 [image:]

 Figure 3-27 Healthcare Q and A application results displaying Providers class results

 3.	Check the logs by first opening the application from the dashboard (Figure 3-28). Click the application.

 [image:]

 Figure 3-28 Healthcare Q and A application

 Then, on the left panel, click Logs to view the application logs (Figure 3-29).

 [image:]

 Figure 3-29 Returned JSON results from the classifier

 4.	Back to the web application, enter a test question which represents an About class question such as “I would like to know more about you?” and click Submit (Figure 3-30). The figure shows that the question is classified as About, as expected.

 [image:]

 Figure 3-30 Healthcare Q and A application results displaying About class results

 5.	Review the logs (Figure 3-31).

 [image:]

 Figure 3-31 Returned JSON results from the classifier

 6.	Enter a question, such as “What are the policies?” (which represents a Policy class question) and click Submit. (Figure 3-32). The figure shows that the question is classified as Policy, as expected.

 [image:]

 Figure 3-32 Healthcare Q and A application results displaying Policy class results

 7.	Review the logs (Figure 3-33).

 [image:]

 Figure 3-33 Returned JSON results from the classifier

 8.	Enter a test question, such as “How to claim?” (which represents a Claim class question) and click Submit (Figure 3-34). The figure shows that the question is classified as Claim, as expected.

 [image:]

 Figure 3-34 Healthcare Q and A application results displaying Claim class results

 9.	Review the logs (Figure 3-35).

 [image:]

 Figure 3-35 Returned JSON results from the classifier

 10.	Enter a test question, such as “Can you provide background about the products and offers?” (which represents a Products class question) and click Submit (Figure 3-36). The figure shows that the question is classified as Products, as expected.

 [image:]

 Figure 3-36 Healthcare Q and A application results displaying Products class results

 11.	Review the logs (Figure 3-37).

 [image:]

 Figure 3-37 Returned JSON results from the Natural Language Classifier classifier

 3.5 Quick deployment of application

 As described in 3.3, “Two ways to deploy the application: Step-by-step and quick deploy” on page 23, a Git repository containing the full application code is provided so that you can run the application with minimal steps.

 Follow these steps:

 1.	Access the Git repository and download the complete application code from:

 https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

 2.	Follow the steps in 3.4.5, “Deploying the Healthcare Q and A application on Bluemix” on page 35.

 3.6 References

 See the following resources:

 •Regions in Bluemix:

 https://www.ibm.com/developerworks/community/blogs/enablingwithbluemix/entry/regions_in_bluemix?lang=en

 •What is Bluemix:

 https://console.ng.bluemix.net/docs/overview/whatisbluemix.html

 •Cloud Foundry and CLI:

 https://github.com/cloudfoundry/cli/releases

 •CLI and Dev Tools:

 https://console.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

 •Node.js:

 https://nodejs.org/en/

 •Express and Node.js tutorial:

 https://codeforgeek.com/2014/06/express-nodejs-tutorial/

 •Natural Language Classifier; Authentication:

 http://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/?node#authentication

 •Getting Started with IBM Watson Node.js SDK:

 http://www.slideshare.net/pgodby/getting-started-with-ibm-watson-apis-sdks

[image:]
[image:]

News Classification

 Watson Natural Language Classifier (NLC) provides a machine-learning classifier that combines complex convolutional neural networks with a sophisticated language model to learn and understand language. Behind this complexity, the Watson Natural Language Classifier service is easy to use.

 This use case shows a web application, named News Classification, that calls a classifier that is already trained in using public news data, and the classifier responds with the type of news the text is related to.

 This chapter describes how to use the Natural Language Classifier service to develop a sample use case in Java that classifies news text into five types:

 •Business

 •Entertainment

 •Politics

 •Technology

 •Sports

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 4.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 4.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Prepare training and test data

 •Create and train a Natural Language Classifier instance

 •Run test queries

 •Evaluate the classifier with test data and check its accuracy

 •Deploy a Java application that uses the classifier with Eclipse or with Git.

 4.1.2 Prerequisites

 Be sure the following prerequisites are met:

 •Review Chapter 1, “Basics of Natural Language Classifier service” on page 1.

 This chapter is important to help you understand the basics of Natural Language Classifier.

 •Create a Natural Language Classifier service instance as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 •Some Java programming language background

 A basic Java programming background is important to understand the code.

 •IBM Bluemix account

 Bluemix is an open standard, cloud platform for building, running, and managing applications and services. A Bluemix account is essential because the sample Java web application is deployed into it.

 For more information, see the Bluemix website.

 These software requirements are also necessary:

 •Access to a Windows desktop or Linux.

 •IBM SDK, Java Technology Edition, Version 8, which you can download. This prerequisite applies if you are using Eclipse.

 •If you use Eclipse, then install and set up Eclipse Neon with Bluemix tools.

 •If you are using Git client:

  –	Git download and installation

  –	Cloud Foundry download and installation

 4.1.3 Expected results

 Figure 4-1 shows the home page of the News Classification web application that you can test. Here the user inputs text.

 [image:]

 Figure 4-1 News Classification home page

 A user enters news information in the Text input field, and clicks Classify News (Figure 4-2).

 [image:]

 Figure 4-2 Input text on news classification application

 Then, the application lists the classification type in the Top Class field (Figure 4-3). In this case, Top Class indicates news input is sports.

 [image:]

 Figure 4-3 News classification results

 To see the classification details, click the double down-arrow icon to the right of the top class to expand classification information.

 Figure 4-4 shows the expanded details panel of the Top Class. It shows the confidence of the response and the other classes and confidences from the most confidence to least confidence.

 [image:]

 Figure 4-4 Classification details for the sample input text

 The last function is the Feedback button for users who do not agree with the top class result. It saves the feedback suggestion for analysis by subject matter experts (Figure 4-5).

 [image:]

 Figure 4-5 Feedback function

 4.2 Architecture

 An overview of the application architecture is shown in Figure 4-6 and is described next.

 [image:]

 Figure 4-6 News Classification architecture diagram

 The steps in the diagram are as follows:

 1.	The user inserts news content, as text, into the web interface and requests that it be classified (clicks the Classify Text button).

 2.	The news text is sent to the application (enterprise back end) for processing.

 3.	The enterprise application (web service) calls the Watson Natural Language Classifier service to evaluate what type of news is the best match for input text.

 4.	The Natural Language Classifier service returns the response to the enterprise application.

 5.	The enterprise application forwards the response to the web application front-end.

 6.	The web interface manages the data information, performs some front-end processing, and makes the response available for the user to view.

 7.	The other operation is user feedback provided if the news classification is incorrect. The user clicks Feedback and submits the correct classification.

 8.	The web application front-end passes the user feedback request to the web application back end.

 9.	The web application back-end calls the IBM Cloudant® noSQL DB service to persist the feedback.

 10.	The database responds with the insert operation result to the enterprise application.

 11.	The enterprise application passes the response to the web front-end.

 12.	The user interface displays the results to the user.

 Although in this use case, the web application is deployed to the IBM WebSphere® Liberty profile, it could also be deployed to Tomcat.

 For more information about application server hosting for enterprise applications, see About WebSphere Liberty and Apache Tomcat.

 4.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step deployment (incomplete) version of the application

 This repository contains an incomplete version of the application and is used in all sections of 4.4, “Step-by-step implementation” on page 50. This version takes you through the key steps to integrate the IBM Watson services with the application logic.

 •Quick deployment (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 4.5, “Quick deployment of application” on page 97.

 4.4 Step-by-step implementation

 Implementing this use case involves the following steps:

 1.	Downloading the project from Git.

 2.	Creating a Cloudant noSQL DB service instance.

 3.	Reviewing the project structure.

 4.	Preparing training data.

 5.	Creating and training the classifier.

 6.	Querying the trained classifier.

 7.	Evaluating the results and updating the training data.

 8.	Deploying the application.

 9.	Testing the application.

 4.4.1 Downloading the project from Git

 This section explains how to download the sample News Classification project (incomplete version of the application), which is available at:

 https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

 You can use either of the following options:

 •Import the sample Git project to Eclipse

 •Clone the sample Git project by using the Git command line

 Import the sample Git project to Eclipse

 Install and configure Eclipse Neon with Bluemix Tools and Java SDK 8. The information to download and install the software is listed in 4.1.2, “Prerequisites” on page 46.

 After setting up Eclipse in your workstation, complete these steps:

 1.	Import the Git project into Eclipse. Select File → Import. When the Import window opens (Figure 4-7) select Git → Projects from Git and click Next.

 [image:]

 Figure 4-7 Import a Git project to Eclipse

 2.	In the next window (Figure 4-8), select Clone URI.

 [image:]

 Figure 4-8 Import Projects from Git: Clone URI

 3.	In the next window (Figure 4-9), add the following URI, and click Next:

 https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

 [image:]

 Figure 4-9 Select URI for Git repository in Eclipse

 4.	The Git branches are listed (Figure 4-10). Select the master branch and click Next.

 [image:]

 Figure 4-10 Master branch selected to import Git project

 5.	A local version of the Git project will be created. Specify the destination directory in your local workstation and click Next (Figure 4-11).

 [image:]

 Figure 4-11 Local storage location for Git project

 6.	The last steps are to configure the Eclipse project. In the next window (Figure 4-12) select Import Existing Eclipse Project and click Next.

 [image:]

 Figure 4-12 Import existing Eclipse project option

 7.	Confirm your settings (Figure 4-13) and click Finish.

 [image:]

 Figure 4-13 Project selected confirmation

 The result shows that the Eclipse project is imported into the workspace (Figure 4-14). This project will be the platform for other steps in this chapter.

 [image:]

 Figure 4-14 Project imported with success from Git

 Clone the sample Git project by using the Git command line

 If you do not want to use Eclipse for this use case, you can use Git. The requirement for this section is to install Git before you start. See 4.1.2, “Prerequisites” on page 46.

 Complete the following steps:

 1.	Open a command prompt and set up Git by using the following command:

 git config --global http.sslVerify false

 2.	Choose an empty directory to download the project code.

 3.	Run the command in the selected directory:

 git clone

 https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

 4.	Change to the redbooks-nlc-201-news-java-student directory:

 cd redbooks-nlc-201-news-java-student

 5.	Check the project content (Example 4-1):

 Example 4-1 Project content

 [image:]

 Directory of C:\Users\IBM_ADMIN\student\redbooks-nlc-201-news-java-student

 1.031 .classpath

 1.101 .project

 <DIR> .settings

 <DIR> lib

 274 manifest.yml

 1.755 pom.xml

 2.493 README.md

 <DIR> resources

 <DIR> src

 <DIR> target

 <DIR> WebContent

 [image:]

 4.4.2 Reviewing the project structure

 Several project components are important to highlight:

 •The com.ibm.itso.ed600r01.nlc.news package in the src folder contains the PrepareData, CreateAndTrain, Query, and Evaluate Java classes required by the process to use the Natural Language Classifier service that is described in 1.1, “Using the Natural Language Classifier service” on page 2.

 •The com.ibm.itso.ed600r01.nlc.news.beans package in the src folder contains beans that are used to communicate the web front-end with web back-end by using Java to JSON format.

 •The com.ibm.itso.ed600r01.nlc.news.ws package includes the Java web service to access the back-end application This code receives news text to classify and feedback classification from users.

 •The resource folder contains the training and test data set samples that are used in this use case.

 •The pom.xml file has all Java package dependencies for this project.

 •The manifest.yml files contains the template to deploy the application in Bluemix.

 4.4.3 Creating a Cloudant noSQL DB service instance

 Another requirement for the web application is to be prepared for client feedback about the quality of the classification. A database repository will be created to save client feedback that can be used by the SMEs to improve the quality of the classification.

 You can choose one of the following ways to create the Cloudant noSQL service:

 •From Bluemix

 •From the command line

 Create a Cloudant noSQL DB service instance from Bluemix

 Complete the following steps:

 1.	Open the IBM Bluemix Catalog page (top menu on the right) and select Services → Data & Analytics from the left menu and click Cloudant noSQL DB (Figure 4-15).

 [image:]

 Figure 4-15 Cloudant noSQL service on Bluemix

 2.	Click Create to create the service instance (Figure 4-16).

 [image:]

 Figure 4-16 Create Cloudant noSQL DB service

 The service name will be used to configure the application when it is deployed.

 	
 Important: Take note of the space in which you are creating the service. The application and the Cloudant noSQL DB service must be deployed in the same space.

 Create a Cloudant noSQL DB service from command line

 To create the service, follow these steps:

 1.	Download and install the Cloud Foundry software on your workstation.

 2.	Open a command prompt.

 3.	Run cf login and supply the email and password for you Bluemix account as shown in Example 4-2.

 Example 4-2 Run cf login

 [image:]

 cf login

 API endpoint: https://api.ng.bluemix.net

 Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Password> <PUT_YOUR_PASSWORD_ACCOUNT>

 Authenticating...

 OK

 Targeted org <YOUR_ORGANIZATION>

 [image:]

 4.	Select a Bluemix space on which to host the service as shown in Example 4-3.

 Example 4-3 Select a space

 [image:]

 Select a space (or press enter to skip):

 1. dev

 2. qa

 3. Prod

 Space> 1

 Targeted space dev

 API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

 User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Org: <YOUR_ORGANIZATION>

 Space: dev

 [image:]

 5.	Run the following command to create a Cloudant noSQL DB service instance (Example 4-4 on page 59):

 cf create-service <service> <service_plan> <service_instance>

 The command has these values:

 cf create-service	The Cloud Foundry command to create a service instance

 <service>	The name of the service you want to create an instance of; Cloudant noSQL DB in this case.

 <service_plan>	The name of the plan, in this example the plan name is Lite.

 <service_instance>	The name you provide for your service instance. You use this name to refer to your service instance in other commands when you configure and deploy the News Classifier application. If your service instance includes spaces, surround the service instance name with double or single quotation marks depending on the operating system where you run the command prompt. In this example the service instance name is News Classifier Feedback.

 Example 4-4 The cf create-service command

 [image:]

 cf create-service CloudantNoSQLDB Lite "News Classifier Feedback"

 Creating service instance News Classifier Feedback in org

 <YOUR_ORGANIZATION>/ space dev as <YOUR_BLUEMIX_EMAIL_ACCOUNT>...

 OK

 [image:]

 6.	List the service information by running the cf service <service_name> command to confirm that it was created successfully (Example 4-5).

 Example 4-5 Confirm successful creation

 [image:]

 cf service " News Classifier Feedback"

 Service instance: News Classifier Feedback

 Service: cloudantNoSQLDB

 Bound apps:

 Tags:

 Plan: Lite

 Description: Cloudant NoSQL DB is a fully managed data layer designed for modern web and mobile applications that leverages a flexible JSON schema. Cloudant is built upon and compatible with Apache CouchDB and accessible through a secure HTTPS API, which scales as your application grows. Cloudant is ISO27001 and SOC2 Type 1 certified, and all data is stored in triplicate across separate physical nodes in a clus-ter for HA/DR within a data center.

 Documentation url: https://console.ng.bluemix.net/docs/#services/Cloudant/index.html#Cloudant

 Dashboard: https://cloudantbroker.ng.bluemix.net/dashboard/9e763bb2-c702-4bb6-8547-f30b34c25b87

 Last Operation

 Status: create succeeded

 Message:

 Started: 2017-02-16T20:20:04Z

 Updated:

 [image:]

 4.4.4 Preparing training data

 When preparing training data, an important place to start is by choosing a good data set. The features of a good data set are explained in this section.

 The raw data in some situations is already in the required comma-separated value (CSV) file format, but in other situations you can find data in other formats. In this case, converting the source format into CSV format needs some data preparation. Even if the file is a CSV file, it might need some data preparation to be ready to use as input to the classifier. Those steps are explained in this section.

 The strategy here is to create two data sets:

 •Training data to train the classifier.

 •Test data to test the classifier. The test data set will be used in 4.4.7, “Evaluating results and updating training data” on page 73.

 Figure 4-17 on page 60 shows the general activities to prepare the training and test data sets.

 [image:]

 Figure 4-17 Activities for preparing training and test data

 Figure 4-18 shows a snapshot of the training data used in the News Classification use case. Column “A” includes a list of news text. Column “B” has one of five classifications: business, entertainment, politics, technology, and sports.

 [image:]

 Figure 4-18 Training data for news classification

 For this use case two CSV files were built manually, one for training the classifier and one for testing the classifier. To obtain the CSV files for this use case, go to:

 https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

 Find the following files in directory /redbooks-nlc-201-news-java-student/resources/:

 •news-train.csv

 Training set to be used for bootstrap classification when creating the classifier in 4.4.5, “Creating and training the classifier” on page 63.

 •news-test.csv

 Test set to be used to evaluate the quality of the classification results in 4.4.7, “Evaluating results and updating training data” on page 73.

 To build a training data set with an acceptable syntax and good quality, consider these guidelines:

 •The training and test sets are prepared for UTF-8 format.

 •If you have a comma (,) in the text, insert quotes around the text.

 •The maximum length of a text value is 1024 characters.

 •The training and test data have at least five records (rows) and no more than 15,000 records.

 •Limit the length of input text to fewer than 60 words.

 •Limit the number of classes to several hundred classes.

 For more information about preparing the training data, see Using your own data to train the Natural Language Classifier.

 If you want to prepare your own data in CSV format, it must have two columns, the first one with the text to classify and the second column with classification types (business, entertainment, politics, technology, sports). You can validate the data by using the PrepareData program, which is described later.

 Data can be prepared in two ways:

 •Prepare training data on Eclipse

 •Prepare training data on the command line

 Prepare training data on Eclipse

 Complete these steps:

 1.	On Eclipse (see project in Figure 4-14 on page 55), right-click the PrepareData.class and select Run As → Run Configurations (Figure 4-19).

 [image:]

 Figure 4-19 Run as Java main program in Eclipse

 2.	On the Main tab, confirm that com.ibm.itso.ed600r01.nlc.news.PrepareData is selected (Figure 4-20 on page 62).

 [image:]

 Figure 4-20 PrepareData class selected class to run

 3.	In the Arguments tab, for Program arguments, enter the name of the CSV file to be prepared and click Run (Figure 4-21).

 [image:]

 Figure 4-21 Arguments to call PrepareData class

 This program checks text constraints such as column size, special characters such as \n \r and others. The output is shown in Figure 4-22.

 [image:]

 Figure 4-22 PrepareData output on Eclipse

 Prepare training data on the command line

 Complete these steps:

 1.	Open a command prompt on your computer.

 2.	Set up java.exe in your path.

 3.	Change to the resources directory of the project that was prepared in “Clone the sample Git project by using the Git command line” on page 55:

 cd redbooks-nlc-201-news-java-student/resources

 4.	Run the following scripts, which, in turn, run Java commands:

  –	For Windows: PrepareData.bat <csv file path>

  –	For Linux: ./PrepareData.sh <csv file path>

 The output is shown in Example 4-6.

 Example 4-6 Output

 [image:]

 ./PrepareData.sh news-train.csv

 Preparing File news-train.csv to be ready for Natural Language Classifier input

 Fixing 1024 chars for text length, handling special chars like line feed and form

 at to UTF-8 format

 Data prepared!

 [image:]

 	
 Note: The CSV file path can be the file name only if it is in the resources project folder.

 4.4.5 Creating and training the classifier

 	
 Note: You must create an Natural Language Classifier service instance in Bluemix as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11 before performing the steps in this section.

 The news-train.csv (shown in the examples in 4.4.4, “Preparing training data” on page 59) will be used to create and train the classifier. This step is called bootstrap classification. The bootstrap classification (Figure 4-23), can be validated by subject matter experts (SMEs) for accuracy using other data, called test data, and if necessary correct classification problems.

 [image:]

 Figure 4-23 Bootstrap classification

 This step is highly sensitive to good training data provided from the prepare data step and can be continuously improved depending on the target accuracy level, using other data sets.

 The program to create and train the classifier is simple. Figure 4-24 shows the activities to create and train the classifier.

 [image:]

 Figure 4-24 Create and train activities

 The figure shows the following activities:

 1.	The CSV file created from the training data set in 4.4.4, “Preparing training data” on page 59 is used as input to create and train the classifier.

 2.	The service credentials (username and password) that you obtained when you created the Natural Language Classifier service instance are needed when you create the classifier.

 3.	Choose a name for the classifier.

 4.	The classifier language must match the language that is used to train the classifier.

 5.	Run the program to create the classifier specifying the information listed in the previous steps.

 6.	After the program runs successfully, get the classifier ID which will be used later.

 For more information about creating a classifier, see the Watson Developer Cloud website.

 For the use case in this chapter, a Java program is provided to create and train the classifier. The Java class is CreateAndTrain.class. The next steps describe running it.

 The program can be used in one of the following two ways to create and train the classifier:

 •Create and train the classifier on Eclipse

 •Create and train the classifier on the command line

 Create and train the classifier on Eclipse

 Complete the following steps:

 1.	On Eclipse, right-click the CreateAndTrain.class class and select Run As → Run Configurations (Figure 4-19 on page 61).

 2.	On the Main tab, confirm that com.ibm.itso.ed600r01.nlc.news.CreateAndTrain is selected (Figure 4-25).

 [image:]

 Figure 4-25 CreatedAndTrain class is selected

 3.	In the Arguments tab, enter the following program arguments to create a classifier (see the example in Figure 4-26 on page 66):

 <csv file path> <user> <password> <classifier_name> <language>

 The arguments have the following meanings:

 csv file path	The location in the local computer of the CSV file that will be uploaded as a training set, for example news-train.csv. The CSV file path can be just the file name if the file is currently in the resources project folder.

 user	The username from the Natural Language Classifier service instance.

 password 	The password from the Natural Language Classifier service instance.

 classifier_name	The name for the classifier.

 language	The language used to train the classifier.

 [image:]

 Figure 4-26 Define arguments to call create and train program in Eclipse

 4.	After specifying the arguments, click Run.

 The important point is that user and password arguments match the ones that were obtained when the Natural Language service instance was created.

 The program is executed as a Java application in Eclipse (Figure 4-27).

 [image:]

 Figure 4-27 Create and training program output

 The last activity (shown in Figure 4-24 on page 64) is to get the classifier ID to be used in the next step described in 4.4.6, “Querying the trained classifier” on page 68.

 The program output shows information about the classifier creation returned by the Watson API. It includes classifier_id, the language for which the classifier was created, the name of the classifier, the status of the classifier, and more.

 Important values shown in Figure 4-27 on page 66 are:

 •The classifier_id parameter: This is the ID of the new trained classifier. It will be used in 4.4.6, “Querying the trained classifier” on page 68 and in 4.4.8, “Deploying the application” on page 85).

 •The status parameter: Shows that the classifier is not ready for queries. It will be available for the next step (query) only when status changes to Available.

 Create and train the classifier on the command line

 Complete the following steps:

 1.	Open a command prompt in your computer.

 2.	Set up java.exe in your path

 3.	Change to the resources directory of the project prepared in “Clone the sample Git project by using the Git command line” on page 55. Example:

 cd redbooks-nlc-201-news-java-student/resources

 4.	Run the following scripts:

  –	For Windows:

 CreateAndTrain.bat <csv file path> <user> <password> <classifier_name> <lan-guage>

  –	For Linux:

 ./CreateAndTrain.sh <csv file path> <user> <password> <classifier_name> <lan-guage>

 The command has the following information:

 csv file path 	The location in the local computer of the CSV file that will be uploaded as a training set, for example news-train.csv. The CSV file path can be just the file name if it is currently in the resources project folder.

 user 	The user name obtained from Natural Language Classifier service instance.

 password 	The password obtained from the Natural Language Classifier service instance.

 classifier_name 	The name for the classifier.

 language 	The language used to train the classifier.

 The output is similar to Example 4-7.

 Example 4-7 Output

 [image:]

 CreateAndTrain.bat news-train.csv 53bf6841-xx4c-4812-9fe5-fc25af43876f hJy62XXY7fot "Class News Simulator" en

 java -cp ../target/redbooks-nlc-201-news-java-student.jar;../lib/opencsv-3.3.jar;../lib/java-sdk-3.

 5.3-jar-with-dependencies.jar com.ibm.itso.ed600r01.nlc.news.CreateAndTrain news

 -train.csv 53bf6841-b04c-4812-9fe5-fc25af43876f hJy62p0Y7fot "Class News Simula-tor" en

 {

 "classifier_id": "f5bbbbx174-nlc-3736",

 "language": "en",

 "name": "Class News Simulator",

 "status": "Training",

 "created": "2017-02-14T18:37:39.887",

 "status_description": "The classifier instance is in its training phase, not y

 et ready to accept classify requests",

 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/

 classifiers/f5bbbbx174-nlc-3736"

 }

 [image:]

 The program output shows information about the classifier creation returned by the Watson API. It includes classifier_id, the language for which the classifier was created, the name of the classifier, the status of the classifier, and more.

 Important values shown in Example 4-7 on page 67 are:

 •The classifier_id parameter: This is the ID of the new trained classifier. It is used in 4.4.6, “Querying the trained classifier” on page 68 and in 4.4.8, “Deploying the application” on page 85).

 •The status parameter: Shows that the classifier is not ready for queries. It will be available for the next step (query) only when status changes to Available.

 4.4.6 Querying the trained classifier

 After the classifier is trained, you can query it. In this step you use the Watson API to send text to the trained classifier. The service returns the top matching class and other possible matches with the associated confidence.

 The flow of steps to query the classifier are shown Figure 4-28 on page 69.

 [image:]

 Figure 4-28 Query the classifier flow

 The figure shows the following steps implemented in the Java Query.class created for this use case to query the classifier:

 1.	Get the classifier ID from the create and train classifier step described in 4.4.5, “Creating and training the classifier” on page 63.

 2.	Get the username and password from the Natural Language Classifier service instance created as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 3.	Select the news text message that will be used as input to query the classifier for classification.

 4.	Check the status of the classifier until it is Available.

 5.	Run the query. Input the parameters collected in the previous steps to a Java program to query the classifier.

 The Java class created for this step in the News Classification use case is Query.class.

 The program can be used in one of the following two ways to query the trained classifier:

 •Query the trained classifier with Eclipse

 •Query the trained classifier with the command line

 Query the trained classifier with Eclipse

 Complete the following steps to run the Java Main program on Eclipse:

 1.	Right-click the Query.class. class and select Run As → Run Configurations.

 2.	On the Main tab confirm that com.ibm.itso.ed600r01.news.Query is selected (Figure 4-29).

 [image:]

 Figure 4-29 Query class execution on Eclipse

 3.	In the Arguments tab, enter the following parameters (see the example in Figure 4-30 on page 71):

 <classifier_id> <user> <password> <query_text>

 The arguments have the following meanings:

 classifier_id 	The classifier ID obtained in 4.4.5, “Creating and training the classifier” on page 63.

 user 	The username from the Natural Language Classifier service instance credentials obtained when you created the service instance as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 password 	The password from the Natural Language Classifier service instance credentials obtained when you created the service instance.

 query_text 	The news text to classify. If the text has more than one word, enclose the text in double quotation marks. For example, use the following query text as a parameter: “He supposedly died at the end of the drama’s fourth season. But now Wentworth Miller is back as the gritty Michael Scofield in the action-packed Prison Break season five trailer.”

 [image:]

 Figure 4-30 Query program execution on Eclipse

 4.	After specifying the arguments, click Run.

 5.	Check the results. Figure 4-31 shows an example of the API response when running a query in this use case.

 [image:]

 Figure 4-31 Query results output

 Query the trained classifier with the command line

 Complete these steps:

 1.	Open a command prompt in your computer.

 2.	Set up java.exe in your path.

 3.	Change to the resources directory of the project prepared in 4.4.1, “Downloading the project from Git” on page 51:

 cd redbooks-nlc-201-news-java-student/resources

 4.	Run the following scripts:

  –	For Windows:

 Query.bat <classifier_id> <user> <password> <query_text>

  –	For Linux:

 ./Query.sh <classifier_id> <user> <password> <query_text>

 The command has the following values:

 classifier_id 	The classifier ID obtained in 4.4.5, “Creating and training the classifier” on page 63.

 user 	The username from the Natural Language Classifier service instance credentials obtained when you created the service instance as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 password 	The password from the Natural Language Classifier service instance credentials obtained when you created the service instance.

 query_text 	The news text to classify. If the text has more than one word, enclose the text in double quotation marks.

 The output is similar to Example 4-8.

 Example 4-8 Output

 [image:]

 $./Query.sh f5b432x172-nlc-3699 53bf6841-b04c-4812-9fe5-fc25af43876f hJy62p0Y7fot "economic growth slowed sharply in the fourth quarter as a plunge in shipments of soybeans weighed on exports, but steady consumer spending and rising business investment pointed to sustained strength in domestic demand"

 Status of Classifier f5b432x172-nlc-3699 - AVAILABLE

 Results for query economic growth slowed sharply in the fourth quarter as a plunge in shipments of soybeans weighed on exports, but steady consumer spending and rising business investment pointed to sustained strength in domestic demand

 {

 "classes": [

 {

 "confidence": 0.9906648553297829,

 "class_name": "business"

 },

 {

 "confidence": 0.004622361487155504,

 "class_name": "politics"

 },

 {

 "confidence": 0.0018452044719471966,

 "class_name": "technology"

 },

 {

 "confidence": 0.0016647389251637564,

 "class_name": "sports"

 },

 {

 "confidence": 0.0012028397859506108,

 "class_name": "entertainment"

 }

],

 "classifier_id": "f5b432x172-nlc-3699",

 "text": "economic growth slowed sharply in the fourth quarter as a plunge in ship-ments of soybeans weighed on exports, but steady consumer spending and rising business investment pointed to sustained strength in domestic demand",

 "top_class": "business",

 "url": "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers/f5b432x172-nlc-3699"

 }

 [image:]

 Query classifier response

 The following information in the query response is important:

 •status shows the classifier status. When the classifier is ready to accept requests, the status is changes from Training to Available. Before running the query you should check the status of the classifier to confirm that it is available to accept queries. If the status is not Available, the program ends.

 •classes is an array that contains the list of defined class labels and the confidence for each. This array represents the query results in JSON format. The classes in the array are ordered in a descending order of confidence, that is, the class label with the highest confidence is always the first element in the classes array.

 •Other parameters in the query response are:

  –	classifier ID

  –	text: Shows the input text in the query request

  –	top_class: Class with the highest confidence

  –	url to reach the classifier.

 4.4.7 Evaluating results and updating training data

 The objective of this step in the process is to improve the results returned by the classifier. It is a critical step to ensure that the classifier will perform successfully in a production environment.

 These are the main approaches you can follow for evaluating results:

 •Evaluating results with the Natural Language Classifier toolkit interactive wizard

 •Evaluating results programmatically

  –	Running the program with Eclipse

  –	Running the program with the command line

 Evaluate results with the Natural Language Classifier toolkit interactive wizard

 The first approach to evaluation is validation by SMEs and adjusting the classifier if accuracy is not aligned with the desired outcome. You can also include customer feedback providing a way for users to input their feedback about the classification results.

 Figure 4-32 provides an overview of the process.

 [image:]

 Figure 4-32 Manual validation of classifier

 Manual validation activities are shown in more detail in Figure 4-33.

 [image:]

 Figure 4-33 Manual results evaluation activities

 The figure shows the following activities:

 1.	Run query with a test data set to test an existing classifier. This step can be performed by a system administrator or SME.

 2.	Get the query results. The results can be collected by a test program, for example by running a single query in the classifier or a set of queries from a test data source and collecting responses. Another approach is to collect feedback from customers in a production web application and save the feedback to a database.

 3.	SMEs analyze and evaluate the query results. For example, they determine if the top class is correct or if the level of accuracy is satisfactory based on the required threshold, for example 95% of precision.

 4.	If the results are satisfactory, the evaluation process ends.

 5.	If the results are not satisfactory, the SMEs make changes to adjust the training data for the text that was incorrectly classify.

 6.	Create a new training data set with the new data and create a new classifier with the new training data.

 These steps can be executed using the Natural Language Classifier toolkit in Bluemix:

 1.	Log in to Bluemix and scroll down to the Services section.

 2.	Click the Natural Language Classifier service.

 3.	Click the Manage tab.

 4.	Click Access the beta toolkit (see Figure 4-34).

 [image:]

 Figure 4-34 Accessing the Natural language Classifier toolkit

 5.	Select the News Classification classifier that was created in 4.4.5, “Creating and training the classifier” on page 63 and click the (next) arrow (Figure 4-35).

 [image:]

 Figure 4-35 News Classifier selection for evaluation

 6.	On the next page, click Use test data to load a test CSV file, or enter text in the input field and click Classify (Figure 4-36).

 [image:]

 Figure 4-36 Options for input test data

 In this example, click Use test data and select the news-test-nlc-toolkit.csv file in the resources folder of the sample project (Figure 4-37 on page 77).

 [image:]

 Figure 4-37 Test data selection

 You receive two messages indicating that the test CSV file was loaded successfully (Figure 4-38).

 [image:]

 Figure 4-38 Test data loading completion

 Also, you receive information about how the classifier segmented the test data into news categories. Figure 4-39 shows text that should have been classified as technology but was incorrectly classified business as the top class. In this case, mark this classification as incorrect.

 [image:]

 Figure 4-39 Handing incorrect classification

 Figure 4-40 shows the correct classification defined by SMEs. The classifier classified the text correctly as sports type.

 [image:]

 Figure 4-40 Handling correct classifications

 7.	SMEs evaluate each text classification from the test data set. Figure 4-41 shows the results.

 8.	After all text classification results are evaluated, click Add to training data to create a new training data set to improve the classifier performance. Note that a new classifier must be created with the new training data.

 [image:]

 Figure 4-41 Evaluation results

 9.	The training data window opens (Figure 4-42). Review the information. If text is marked by the SME as wrongly classified, the toolkit provides a suggestion for a class.

 [image:]

 Figure 4-42 Training page

 10.	Select incorrectly classified text and drag the correct class from the Classes section on the left to the Texts section on the right.

 Figure 4-42 shows that the politics class was dragged to the text that was classified as business before.

 11.	Download the corrected CSV file by clicking the download icon and add the data to the training data set.

 12.	Create a new classifier with the new and improved training data set. Click Create classifier (Figure 4-42) to create the new classifier.

 	
 Note: The classifier ID of the new classifier is not the same as the classifier ID of the original classifier. The classifier ID must be updated in the programs that use it to access the new classifier.

 This process is continuous until the classifier reaches a good value for accuracy, aligned with business needs, for example 80% correct classification.

 Evaluate results programmatically

 You can automate the process described in “Evaluate results with the Natural Language Classifier toolkit interactive wizard” on page 74 by creating a program that queries an existing classifier using a test data set.The test data set has the correct classes defined by the previous work of the SMEs. If accuracy results are not satisfactory, the test data is added to the training data set and used to train a new classifier. This approach is described in Figure 4-43 on page 80.

 [image:]

 Figure 4-43 Automated validation of classifier

 The activities are shown in Figure 4-44.

 [image:]

 Figure 4-44 Evaluation automated

 These are the activities:

 1.	A test data set was prepared and is available.

 2.	The SMEs defined the accuracy threshold, for example 70%, according to business requirements.

 3.	Test data set and accuracy requirement are input to the evaluation program.

 4.	The evaluation program queries the classifier for each line in the test data set.

 5.	The results are evaluated and the accuracy calculated.

 6.	If the accuracy is below the threshold, create a new training data set and create and train a new classifier.

 Figure 4-45 shows a high-level flow of the Evaluate program.

 [image:]

 Figure 4-45 Evaluate program flow

 The figure shows the following steps in the Evaluate program:

 1.	Get classifier ID.

 2.	Get Natural Language Classifier service credentials (username and password).

 3.	Load the test CSV file.

 4.	For each text (row) in the test CSV file query the classifier.

 5.	Collect the classification results, that is, save the results in an ArrayList structure.

 6.	Compare results. The classifier results for each line of text in the test CSV file is compared with the classification provided by SMEs for the same text. The number of correct classifications is computed.

 7.	Calculate the accuracy with the following formula:

 (Number of correct classifications) / (number of texts classified)

 Two main methods are defined in the Evaluate.class program:

 •batchClassify

 Loads the test CSV file and classifies each line of text. It returns an ArrayList; each element contains the classification by the classifier and by the SME for the same line of text. Figure 4-46 provides a flow diagram for this class.

 [image:]

 Figure 4-46 The batchClassify method of Evaluate class program

 •generateAcuracy

 This method receives the ArrayList from batchClassify, determines the correct and incorrect classifications and calculates the accuracy. Figure 4-47 provides a flow diagram for this class.

 [image:]

 Figure 4-47 The generateAcuracy method of Evaluate class

 Run the Evaluate program with Eclipse

 Complete the following steps to run the Evaluate program with Eclipse:

 1.	Right-click Evaluate.class and select Run As → Run Configurations.

 2.	On the Main tab confirm that com.ibm.itso.ed600r01.news.Evaluate is selected (Figure 4-48).

 [image:]

 Figure 4-48 Evaluate program configuration when running on Eclipse

 3.	In the Arguments tab, enter the following parameters and click Run (Figure 4-49 on page 84):

 <classifier_id> <user> <password> <csv_file_test>

 The parameters have the following meanings:

 classifier_id	The classifier ID created in the create and train phase.

 user 	The username from the Natural Language Classifier service instance.

 password 	The password from the Natural Language Classifier service instance.

 csv_file_test 	The location in the local computer of the test CSV file. For this example, use the news-test-nlc-toolkit.csv file in the resource folder.

 [image:]

 Figure 4-49 Evaluate arguments for execution on Eclipse

 The final accuracy is output, as Figure 4-50 shows. In this case, the figure shows 71,43% of correct classification from the test set.

 [image:]

 Figure 4-50 Evaluate program output on Eclipse

 Run the Evaluate program from the command line

 Follow these steps:

 1.	Open a command prompt in your computer.

 2.	Set up java.exe in your path.

 3.	Change to the resources directory of the project.

 cd redbooks-nlc-201-news-java-student/resources

 4.	Run the Java command

  –	For Windows:

 Evaluate.bat <classifier_id> <user> <password> <csv_file_test>

  –	For Linux:

 ./Evaluate.sh <classifier_id> <user> <password> <csv_file_test>

 The command has these values:

 classifier_id	The classifier ID created in the create and train phase.

 user 	The username from the Natural Language Classifier service instance.

 password 	The password from the Natural Language Classifier service instance.

 csv_file_test 	The location in the local computer of the test CSV file. For this example, use the news-test-nlc-toolkit.csv file in the resource folder.

 The output is as follows:

 $./Evaluate.sh ff18c7x157-nlc-5650 53bf6841-XXXc-4812-9fe5-fc25af43876f hJy62XXX7fot news-test-nlc-toolkit.csv

 71,43 % of accuracy

 This output shows 71,43% of correct classification from the test data set.

 Manage evaluated results and update the training data

 Using the output from the Evaluate program, the SMEs can decide, based on business needs, whether they have to create a new classifier using the test data set to improve performance.

 The Evaluation of the classifier performance can be continuous depending on business needs and user feedback.

 Figure 4-51 shows an approach to evaluate the classifier performance by saving user feedback with the information needed for analysis in a database. SMEs analyze the feedback and decide whether the classifier must be improved.

 [image:]

 Figure 4-51 Classifier Feedback process in the application program

 4.4.8 Deploying the application

 This section shows two options for deploying the application to Bluemix:

 •Deploy the application from Eclipse

 •Deploy the application from command line

 Deploy the application from Eclipse

 To deploy the application from Eclipse, the Bluemix tools must be installed as listed in 4.1.2, “Prerequisites” on page 46. You will use the Bluemix Eclipse plug-in to deploy the application to Bluemix.

 Complete the following steps:

 1.	Right-click project nlc-201-new-java-student in Eclipse and select Run As → Run on Server.

 2.	Under Select the server type, click IBM → IBM Bluemix and click Next (Figure 4-52).

 [image:]

 Figure 4-52 Select Bluemix server to host application

 3.	Enter the Bluemix account information (email and password) and click Next (Figure 4-53 on page 87).

 [image:]

 Figure 4-53 Username and password for Bluemix account

 4.	Select the Bluemix space that will host the application (Figure 4-54), By default, dev space is available if no other is created by the user. Click Next.

 [image:]

 Figure 4-54 Select space to deploy application

 5.	The application selected to be deployed to Bluemix is recognized. Click Finish (Figure 4-55).

 [image:]

 Figure 4-55 Application selected for deployment to Bluemix

 6.	The application details (Figure 4-56 on page 89) show the required configuration before the plug-in starts the deployment on the Bluemix.

 Buildpack URL defines the application server to which the application is deployed. If this field is empty, the application will be hosted by IBM WebSphere Liberty profile.

 If you want to deploy into Apache Tomcat you will need to use the Java Buildpack URL. See the list of community build packs.

 Select Save to manifest file and click Next.

 [image:]

 Figure 4-56 Buildpack selection to host application

 7.	The Launch deployment window (Figure 4-57) shows the deployment details. These include memory to be used, URL to access the application which is built by default using the application name plus the Bluemix domain.You can change this URL and verify that no one is using this URL by clicking Validate. Click Next.

 [image:]

 Figure 4-57 Launch deployment configuration on Bluemix

 8.	This step binds the news classification service instance created in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

 The Cloudant noSQL DB service instance must also be bound to the application; it is used by the application to save customer feedback. This service was created in 4.4.3, “Creating a Cloudant noSQL DB service instance” on page 56.

 Select the services as shown in Figure 4-58 and click Next.

 [image:]

 Figure 4-58 Select services to bind to the application

 9.	Create a variable to store the classifier_id so it can be received by the application code. In the Environment Variables window click New.

 Name the variable CLASSIFIER ID and in the Value field enter the classifier ID of the classifier created in 4.4.5, “Creating and training the classifier” on page 63.

 Click OK and then click Finish (Figure 4-59 on page 91).

 [image:]

 Figure 4-59 Classifier ID variable set up for News Application

 If you lose the classifier ID, complete these steps:

 a.	Log in to Bluemix.

 b.	In the left menu. select Services → Dashboard.

 c.	Go to the Natural Language Classifier service.

 d.	Click Manage → Access Beta Toolkit.

 e.	Click the classifiers link (right top menu).

 f.	On the classifier page, the classifier ID is displayed (Figure 4-60).

 [image:]

 Figure 4-60 Displaying the classifier ID

 The web application is deployed on Bluemix and several deployment messages are displayed on the Eclipse console, such as Liberty binaries download to host application, WebSphere Liberty profile server start logs, and others. Look for the message indicating that the application is running (Figure 4-61).

 [image:]

 Figure 4-61 Application running on Bluemix

 Deploy the application from the command line

 This section assumes that you cloned the sample Git project as described in “Clone the sample Git project by using the Git command line” on page 55.

 Follow these steps:

 1.	Change to the redbooks-nlc-201-news-java-student directory:

 cd redbooks-nlc-201-news-java-student

 2.	In the root application directory, run cf login and put the email and password account for Bluemix in sequence (Example 4-9):

 Example 4-9 The cf login command

 [image:]

 cf login

 API endpoint: https://api.ng.bluemix.net

 ¢	

 Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>

 ¢	

 Password> <PUT_YOUR_PASSWORD_ACCOUNT>

 Authenticating...

 OK

 Targeted org <YOUR_ORGANIZATION>

 [image:]

 3.	Select the Bluemix space to host the application (Example 4-10):

 Example 4-10 Select a space

 [image:]

 Select a space (or press enter to skip):

 1. dev

 2. qa

 3. Prod

 Space> 1

 Targeted space dev

 API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

 User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Org: <YOUR_ORGANIZATION>

 Space: dev

 [image:]

 4.	Get the services names that will be bound to the application:

  –	The first service is the Natural Language Classifier service instance that was created in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11.

  –	The second service is the Cloudant NoSQL DB service instance to save client feedback that was created in 4.4.3, “Creating a Cloudant noSQL DB service instance” on page 56.

 To get the name of services, run the cf services command and copy the name of the services from the name column (Example 4-11):

 Example 4-11 The cf services command

 [image:]

 cf services

 Getting services in org <YOUR_ORGANZATION> / space dev as <YOUR_BLUEMIX_EMAILACCOUNT>...

 OK

 name service plan bound last

 apps operation

 Cloudant NoSQL DB-gl cloudantNoSQLDB Lite create

 succeeded

 ITSO - ED-6000-R01 - natural_language_ standard create

 Natural Language classifier succeeded

 Classifier

 [image:]

 5.	In another command prompt, edit the manifest.yml file (Example 4-12) in the root of directory and change these items:

 a.	The host line: Insert your host name.

 b.	In the services section: Insert the names collected in step 4 on page 92.

 c.	The CLASSIFIER_ID line: Insert the value obtained in 4.4.5, “Creating and training the classifier” on page 63.

 Example 4-12 The manifest.yml file

 [image:]

 applications:

 - name: nlc-201-news-java-student

 memory: 512M

 host: <YOUR_HOST_NAME>

 domain: mybluemix.net

 services:

 - <YOUR_CLOUDANT_SERVICE_NAME>

 - <YOUR_NATURAL_CLASSIFIER_SERVICE_NAME>

 env:

 CLASSIFIER_ID: <YOUR_CLASSIFIER_ID>

 [image:]

 If you lose the classifier ID, complete these steps:

 i.	Log in to Bluemix.

 ii.	In the left menu. select Services → Dashboard.

 iii.	Go to the Natural Language Classifier service.

 iv.	Click Manage → Access Beta Toolkit.

 v.	Click the classifiers link (right top menu).

 vi.	On the classifiers page, the classifier ID is displayed (Figure 4-62).

 [image:]

 Figure 4-62 Classifier ID collected on Bluemix service

 d.	Save all the changes to the manifest.yml file.

 6.	At the prompt and from the root directory (redbooks-nlc-201-news-java-student) push the application to Bluemix. The information to deploy is in the manifest.yml file (step 5):

 cf push nlc-201-news-java-student -p target\nlc-201-news-java-student.war

 7.	See the results (Example 4-13). The results show the application state, number of instances, memory usage, URL to access the application and other technical information.

 Example 4-13 Results

 [image:]

 requested state: started

 instances: 1/1

 usage: 512M x 1 instances

 urls: nlc-201-news-java-student.mybluemix.net

 last uploaded: Wed Feb 15 14:37:18 UTC 2017

 stack: cflinuxfs2

 buildpack: Liberty for Java(TM) (WAR, liberty-16.0.0_4, buildpack-v3.7-20170118-

 2046, ibmjdk-1.8.0_20161213, env)

 [image:]

 	
 Note: The urls value will match the host and domain you entered in step 5 on page 93.

 4.4.9 Testing the application

 To test the application enter the application URL in a browser to display the home page (Figure 4-63).

 [image:]

 Figure 4-63 News application home page

 Enter news text in the Text input field and click Classify News.

 The result shows the Top Class suggested classification type (Figure 4-64). If the type is not correct, select another classification from the Suggest other classification pull-down and click Feedback.

 [image:]

 Figure 4-64 News application results

 Click the icon to the right of Top Class to see the classifier output details (Figure 4-65).

 [image:]

 Figure 4-65 New application results in detail

 If you do not agree with the classification and make a suggestion by using the feedback feature, your suggestion is sent to the database. With this data, the SMEs can verify and improve classifier accuracy (as explained in 4.4.7, “Evaluating results and updating training data” on page 73). See Figure 4-66.

 [image:]

 Figure 4-66 Feedback to change classification option

 4.5 Quick deployment of application

 A second Git repository is provided so that you can run the News Classification application even if you did not perform the steps described in 4.4, “Step-by-step implementation” on page 50.

 1.	You need a Bluemix account. Experimental Watson Services can be used at no cost.

 2.	Follow the requirements in 4.1.2, “Prerequisites” on page 46 to install Git and Cloud Foundry software on your local computer.

 3.	Open a command prompt and set up Git using the following command:

 git config --global http.sslVerify false

 4.	Choose an empty directory to download the code.

 5.	Run the command in the selected directory:

 git clone https://github.com/snippet-java/redbooks-nlc-201-news-java.git

 6.	Change to the redbooks-nlc-201-news-java directory:

 cd redbooks-nlc-201-news-java

 7.	In the root application directory, run the cf login and provide the email and password account for Bluemix in the sequence shown in Example 4-14.

 Example 4-14 The cf login command

 [image:]

 cf login

 API endpoint: https://api.ng.bluemix.net

 ¢	

 Email> <PUT_YOUR_BLUEMIX_EMAIL_ACCOUNT>

 ¢	

 Password> <PUT_YOUR_PASSWORD_ACCOUNT>

 Authenticating...

 OK

 Targeted org <YOUR_ORGANIZATION>

 [image:]

 8.	Select the Bluemix space to host the application (Example 4-15).

 Example 4-15 Select a space

 [image:]

 Select a space (or press enter to skip):

 1. dev

 2. qa

 3. Prod

 Space> 1

 Targeted space dev

 API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

 User: <YOUR_BLUEMIX_EMAIL_ACCOUNT>

 Org: <YOUR_ORGANIZATION>

 Space: dev

 [image:]

 9.	Create the Natural Language Classifier service:

 cf create-service natural_language_classifier standard my-nlc-service

 10.	Create service keys (service credentials) to access the Natural Language Classifier service:

 cf create-service-key my-nlc-service myKey

 11.	Retrieve the service keys from the Natural Language Classifier service to use after:

 cf service-key my-nlc-service myKey

 12.	Create a service for the database feedback function of this application:

 cf create-service CloudantNoSQLDB Lite "News Classifier Feedback"

 13.	The Natural Language Classifier service must be trained before you can successfully use this application. The training data is provided in the resources/news-train.csv file from the redbooks-nlc-201-news-java root directory. Open the resources directory:

 cd redbooks-nlc-201-news-java/resources

 14.	Execute the Java command:

  –	For Windows:

 CreateAndTrain.bat news-train.csv <user> <password> "News Classifier" en

  –	For Linux:

 ./CreateAndTrain.sh news-train.csv <user> <password> "News Classifier" en

 The command has the following parameters:

 user 	The user name from step 11.

 password 	The password from step 11.

 The information output from this command will show the classifier ID. Keep this information.

 15.		At the command prompt, edit the manifest.yml in the root directory (redbooks-nlc-201-news-java) and change the following information (Example 4-16):

 a.	host: Use a host name that is unique.

 b.	CLASSIFIER_ID: Insert the value you created in step 14 on page 98.

 Example 4-16 The manifest.yml file

 [image:]

 applications:

 - name: nlc-201-news-java

 memory: 512M

 host: <YOUR_HOST_NAME>

 domain: mybluemix.net

 services:

 - News Classifier Feedback

 - News Classifier

 env:

 CLASSIFIER_ID: <YOUR_CLASSIFIER_ID>

 [image:]

 16.	Save all the changes to the manifest.yml file.

 17.	At the prompt and from the root directory (redbooks-nlc-201-news-java), push the application to Bluemix:

 cf push nlc-201-news-java -p target\nlc-201-news-java-student.war

 18.		After completing these steps, you are ready to test your application. Start a browser and enter the URL of your application:

 <YOUR_HOST_NAME>.mybluemix.net

 4.6 References

 See the following resources:

 •Create classifier:

 https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier

 •Using your own data to train the Natural Language Classifier:

 https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html

[image:]
[image:]

SPAM Classifier

 The SPAM Classifier application in this use case reads mail subject or contents that the user provides and classifies whether the mail is spam or not. The user provides feedback to the classification results about whether it is correctly or incorrectly classified. User feedback is saved for additional training of the Natural Language Classifier classifier.

 SPAM Classifier uses Natural Language Classifier (NLC) service, one of the cognitive capabilities that IBM Watson provides. It understands natural language and classifies text into one of several predefined classes. The classifier is trained with training data, which is prepared for each purpose but can be improved with additional training from new training data to make the classifier smarter.

 The following topics are covered in this chapter:

 •Getting started

 •Architecture

 •Two ways to deploy the application: Step-by-step and quick deploy

 •Step-by-step implementation

 •Quick deployment of application

 •References

 5.1 Getting started

 To start, read through the objectives, prerequisites, and expected results of this use case.

 5.1.1 Objectives

 By the end of this chapter, you should be able to accomplish these objectives:

 •Understand practical applications of the Watson Natural Language Classifier service, such as spam classification.

 •Follow the procedure to use the Natural Language Classifier service.

 •Implement and deploy the use case application in a Node-RED environment on Bluemix.

 5.1.2 Prerequisites

 To build Watson Natural Language Classifier service based on Watson Natural Language Classifier on Bluemix and implement a controller in Node-RED, you must have the following accounts, resources, knowledge, and experiences:

 •Bluemix account

 •Node-RED application on Bluemix

 •cURL, a command-line tool for transferring data by URL syntax

 •Internet browser such as Chrome, Firefox, Internet Explorer, Safari

 •Basic implementation skill with JavaScript

 5.1.3 Expected results

 By following the steps in this book, you should be able to run the application in a browser by interacting with the classifier through three web pages:

 1.	Request classification (Figure 5-1).

 On the first page, the user enters mail subject or content, as one line, to be classified and then submits the request.

 [image:]

 Figure 5-1 Input page of mail subject or content

 2.	Display classification result (Figure 5-2).

 User receives the classification results and is prompted to agree or disagree with the results. Every time the user provides feedback about the classification results, the feedback is saved to a Cloudant database in Bluemix for additional training.

 [image:]

 Figure 5-2 Classification result is displayed

 3.	Review user feedback (Figure 5-3).

 For the user’s request of feedback review, the SPAM Classifier displays the user feedback from the Cloudant database.

 [image:]

 Figure 5-3 User feedback is displayed

 5.2 Architecture

 The SPAM Classifier architecture is described from the following perspectives:

 •Static perspective is described in a component perspective.

 •Dynamic perspective is described in a role and activity perspective.

 SPAM Classifier application is composed of an application controller, Watson Natural Language Classifier Service, and data store. The application controller orchestrates the classification service. Watson Natural Language Classifier service classifies whether the subject or content of mail is spam or non-spam. The data store saves the user feedback about the classification result.

 5.2.1 Component perspective

 Figure 5-4 shows the components and data flow.

 [image:]

 Figure 5-4 Component diagram

 Data flows as follows:

 1.	Mail subject or content, approve or reject.

 2.	Mail subject or content, approve or reject.

 3.	Mail subject or content.

 4.	Classification result: spam or non-spam.

 5.	Classification result: spam or non-spam.

 6.	Classification result: spam or non-spam.

 7.	User feedback regarding classification result.

 5.2.2 Role and activity perspective

 Figure 5-5 shows the role and activity service flow.

 [image:]

 Figure 5-5 Role and activity diagram

 The flow from the role and activity perspective is as follows:

 1.	User accesses the SPAM Classifier application URL with a web browser.

 2.	Application controller displays the input page.

 3.	User enters mail subject or content on the input form and submits it.

 4.	Application controller reads mail subject or content and queries the Natural Language Classifier classifier to classify whether it is spam or non-spam.

 5.	Application controller displays the classification result, from the Watson Natural Language Classifier service, in a web response to the user.

 6.	User provides feedback by agreeing or disagreeing with the classification result.

 7.	Application controller saves user feedback into data store to update the training data.

 5.3 Two ways to deploy the application: Step-by-step and quick deploy

 Two Git repositories are provided for this use case:

 •Step-by-step deployment (incomplete) version of the application

 This repository contains an incomplete version of the application and is used in all sections of 5.4, “Step-by-step implementation” on page 106. This version takes you through the key steps to integrate the IBM Watson services with the application logic.

 •Quick deployment (complete) version of the application

 This repository contains the final version of the application. If you want to bypass the implementation steps and instead run the application as a demonstration, download this full version. Downloading and running this full version demonstration is explained in 5.5, “Quick deployment of application” on page 120.

 5.4 Step-by-step implementation

 Deploying this application involves the following steps:

 1.	Creating a Node-RED application

 2.	Cloning the Git project

 3.	Preparing training data

 4.	Creating and training the classifier

 5.	Querying the trained classifier

 6.	Evaluating results and updating training data

 5.4.1 Creating a Node-RED application

 For the deployment of this use case, the application UI and application controller to query the classifier are developed in a Node-RED app and user feedback is saved to Cloudant noSQL DB. You should create both, the Node-RED application and the Cloudant noSQL DB service on Bluemix.

 The web pages, controller, and Watson Natural Language Classifier service are implemented in Node-RED. After you log in to Bluemix, create an app of Node-RED:

 1.	In IBM Bluemix, open the full catalog (Figure 5-6 on page 107). Under Apps, click Boilerplates → Node-RED Starter.

 [image:]

 Figure 5-6 IBM Bluemix Catalog: Node-RED Started

 2.	Provide an App name (Figure 5-7) and click Create.

 [image:]

 Figure 5-7 Create Node-RED App

 3.	The App is now created. Click the URL link in the ROUTE column (Figure 5-8 on page 108).

 [image:]

 Figure 5-8 Node-RED App created

 4.	Node-RED in Bluemix opens (Figure 5-9). Click Go to your Node-RED flow editor.

 [image:]

 Figure 5-9 Node-RED editor

 5.	Now you have a Node-RED development environment available (Figure 5-10).

 [image:]

 Figure 5-10 Node-RED editor

 5.4.2 Cloning the Git project

 A Git project was created for this use case. Clone the Git project:

 1.	Open a command prompt and set up Git by using the following command:

 git config --global http.sslVerify false

 2.	Choose an empty directory to download the code.

 3.	Run the command in the selected directory:

 git clone https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git

 4.	Change to the nlc-201-spam-nodered-student directory:

 cd nlc-201-spam-nodered-student

 After cloning the project, you can find the exported Node-RED flow and training data for the project:

 •Node-RED flow: nlc-201-spam-nodered-student/defaults/flow.json

 •Training data: nlc-201-spam-nodered-student /resources/spam_training_1.csv

 5.4.3 Preparing training data

 Training data should be prepared in advance because when you create the classifier, training data should be provided at that point. The training data is in the form of a comma separated value (CSV) file, which is composed of text and a label. A convenient approach is to create data in Microsoft Excel and save it in CVS format, for example a spam_training_1.csv file.

 Figure 5-11 shows example training data.

 [image:]

 Figure 5-11 Training data

 Watson Natural Language Classifier supports multiple classifications. In the SPAM Classifier application, training data has only two classifications: SPAM or Non-SPAM. Each line of data should be labelled with only one of them.

 About the data

 Training data used in this use case was compiled by Tiago Agostinho de Almeida and José María Gómez Hidalgo. More information is in 5.6, “References” on page 122.

 5.4.4 Creating and training the classifier

 This section describes the steps to create and train the classifier.

 Create a service of the Natural Language Classifier

 You must create a Natural Language Classifier service instance in Bluemix as described in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11 before performing the steps in this section.

 When you develop an application in Node-RED, the classifier should run in the same space of Bluemix where Node-RED runs. For this use case, the Natural Language Classifier service was created in the same space with the following credential information:

 url 	"https://gateway.watsonplatform.net/natural-language-classifier/api"

 password 	"y1wcQL63akRX"

 username 	"1b2749fe-7581-42e2-ad3e-115c022ef8cd"

 Create a classifier with initial training data

 Now you are ready to create a classifier with the curl command (Example 5-1).

 Example 5-1 The curl command

 [image:]

 curl -i -u "<username>":"<password>" -F training_data=@ <traing_data_file_path> -F training_metadata="{\"language\":\"en\",\"name\":\"TutorialClassifier\"}" "https://gateway.watsonplatform.net/natural-language-classifier/api/v1/classifiers"

 [image:]

 In this example, replace the following information:

 •Replace <username> and <password> with service credentials obtained when you created the service as explained in Chapter 2, “Creating a Natural Language Classifier service in Bluemix” on page 11, for example, "1b2749fe-7581-42e2-ad3e-115c022ef8cd" and "y1wcQL63akRX" respectively.

 •Replace <training_data_file_path> with the full path of the training data file, which includes the folder and file name. If you execute a cRUL command in the folder where the training data file is located, you can specify the file name without the full path (for example, "spam_training_1.csv").

 Figure 5-12 shows an example of curl command.

 [image:]

 Figure 5-12 Sample curl command

 The cURL response

 After the cURL command runs successfully, it returns a response with classifier ID, for example "f5b42fx173-nlc-3980", which you need to retrieve for later use. Training begins immediately with the initial training data.

 Figure 5-13 on page 111 shows an example of a cURL response.

 [image:]

 Figure 5-13 Sample cURL response

 5.4.5 Querying the trained classifier

 As the component diagram shows (Figure 5-4 on page 104), the user interacts with the SPAM Classifier application through a web user interface. The Watson Natural Language Classifier service performs classification of the user input. The application controller orchestrates the overall process.

 Request classification

 You create the request classification page in Node-RED for the user to access through a web address. For this use case, pages were previously created by the authors. Follow these steps to import the pages into the Node-RED environment:

 1.	In the Node-RED editor, click the top right menu and select Import → Clipboard (Figure 5-14).

 [image:]

 Figure 5-14 Import menu

 2.	The clipboard window opens. Copy the code (Example 5-2 is the code snippet to import). Paste the code and click Import (Figure 5-15).

 [image:]

 Figure 5-15 Paste sample code

 Example 5-2 shows the sample code to import. This snippet is part of an exported Node-RED flow file (flow.json), which is included in the project folder cloned by Git. After you import the entire content of flow.json, you get all nodes and the links between them.

 Example 5-2 Sample code to import (flow.json)

 [image:]

 [{"id":"3a346689.6c13ca","type":"http in","z":"f1d9f81c.fa7428","name":"/req_nlc","url":"/req_nlc","method":"get","swaggerDoc":"","x":95.89584350585938,"y":102,"wires":[["e225af86.0689e"]]},{"id":"e225af86.0689e","type":"template","z":"f1d9f81c.fa7428","name":"Template: Req NLC","field":"payload","fieldType":"msg","format":"handlebars","syntax":"plain","template":"<html>\n<body>\nSPAM Classifier powered by Watson NLC\n

\n\n<form action=\"/call_nlc\">\n\n<table>\n\n<tr>\n<td align=right>\n\tMail Subject or Content to Classify:\n</td>\n<td>\n\t<input type=text name=\"mail_subject\" size=80 maxlength=80>\n</td>\n</tr>\n\n<tr>\n<td></td>\n<td>\n\t
\n\t<input type=submit value=\"Submit\">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</html>\n","x":339.8958435058594,"y":102,"wires":[["d3537223.63a0f"]]},{"id":"d3537223.63a0f","type":"http response","z":"f1d9f81c.fa7428","name":"","x":570.8958435058594,"y":102,"wires":[]},{"id":"30ffbfdb.e0e7","type":"comment","z":"f1d9f81c.fa7428","name":"Display Input Page to User","info":"User load mail subject or content input page","x":146.89584350585938,"y":55,"wires":[]}]

 [image:]

 After the import, you have three nodes connected to one another (Figure 5-16).

 [image:]

 Figure 5-16 Nodes imported

 3.	Click Deploy at the right top corner (Figure 5-17).

 [image:]

 Figure 5-17 Deploy button

 4.	The user can access the request classification page with browser (Figure 5-18).

 In this example, a Node-RED app is created with the name node-red-0116, and the Req NLC node is created with the /req_nlc URL. In a browser, open the SPAM Classifier application to see a running version on Bluemix.

 [image:]

 Figure 5-18 Input page of mail subject or content

 5.	After the page loads, the user can input one sentence of the mail subject or content to be classified and the click Submit.

 Performing classification, displaying result, asking user feedback

 For this use case, modules for performing classification, displaying results, and requesting user’s feedback were previously created by the author.

 To import these modules into the Node-RED environment, complete these steps:

 1.	In the Node-RED editor, click the top right menu and select Import → Clipboard.

 2.	The clipboard window opens. Copy the code (Example 5-3 is the code snippet to import). Paste the code and click Import.

 Example 5-3 is sample code to import. This snippet is part of the exported Node-RED flow file (flow.json), which is included in the project folder cloned by Git. After you import the entire content of flow.json, you get all nodes and the links between them.

 Example 5-3 Sample code to import (flow.json)

 [image:]

 [{"id":"3b41f3fb.1f941c","type":"http in","z":"f1d9f81c.fa7428","name":"/call_nlc","url":"/call_nlc","method":"get","swaggerDoc":"","x":92.89582824707031,"y":273,"wires":[["5f7cbce2.f278b4"]]},{"id":"28d7ff89.2d239","type":"watson-natural-language-classifier","z":"f1d9f81c.fa7428","name":"NLC","mode":"classify","language":"en","classifier":"f5b42fx173-nlc-3980","x":502.8958282470703,"y":273,"wires":[["544d5bac.0ac034"]]},{"id":"5f7cbce2.f278b4","type":"function","z":"f1d9f81c.fa7428","name":"Parse mail_subject","func":"/**\n * Set msg.payload with mail_subject user provided\n * Save mail_subject into global context for later use\n */\n\nvar mail_subject = msg.req.query.mail_subject;\n\ncontext.global.mail_subject = mail_subject;\nmsg.payload = mail_subject;\n\nreturn msg;\n","outputs":1,"noerr":0,"x":293.8958282470703,"y":273,"wires":[["28d7ff89.2d239"]]},{"id":"a3f5e89a.e214d8","type":"http response","z":"f1d9f81c.fa7428","name":"Display NLC Result","x":879.8958129882812,"y":384,"wires":[]},{"id":"2bd7fc4a.094154","type":"template","z":"f1d9f81c.fa7428","name":"Template: NLC Result","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":"<!--\npayload.mail_subject: mail_subject user provided\npayload.top_class: classification result against mail_subject, either SPAM or Non-SPAM\n-->\n\n<html>\n<head>\n<script>\n function clickYes() {\n document.form1.user_feedback.value = \"Y\";\n document.form1.submit();\n }\n function clickNo() {\n document.form1.user_feedback.value = \"N\";\n document.form1.submit();\n }\n</script>\n</head>\n</head>\n<body>\nSPAM Classifier powered by Watson NLC\n

\n\n<form name=form1 action=\"/update_feedback\">\n\n<input type=hidden name=\"user_feedback\">\n\n<table border=0>\n\n<tr>\n<td align=right>\n\tMail Subject or Content to Classify:\n</td>\n<td>\n\t{{payload.mail_subject}}\n\t<input type=hidden name=\"mail_subject\" value=\"{{payload.mail_subject}}\">\n</td>\n</tr>\n\n<tr>\n<td align=right>\n\tClassification Result by NLC:\n</td>\n<td>\n\t{{payload.top_class}}\n\t<input type=hidden name=\"classification_result\" value=\"{{payload.top_class}}\">\n</td>\n</tr>\n\n<tr>\n<td colspan=2 align=center>\n
\nDo you agree with NLC Result?\n

\n<input type=button value=\"Yes\" onClick=\"javascript:clickYes();\">\n<input type=button value=\"No\" onClick=\"javascript:clickNo();\">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</html>\n","x":640.8958129882812,"y":384,"wires":[["a3f5e89a.e214d8"]]},{"id":"2124dc51.d636c4","type":"comment","z":"f1d9f81c.fa7428","name":"User Submit -> Call NLC to classify SPAM / Non-SPAM","info":"When user submit \"mail subject or contents\", \nsystem ask NLC to classify if it is SPAM or Non-SPAM","x":231.8958282470703,"y":221,"wires":[]},{"id":"544d5bac.0ac034","type":"function","z":"f1d9f81c.fa7428","name":"Deliver mail_subject","func":"/**\n * Get mail_subject from global context and deliver to template generator\n */\n\nmsg.payload.mail_subject = context.global.mail_subject;\nreturn msg;","outputs":1,"noerr":0,"x":376.72222900390625,"y":384.8055725097656,"wires":[["2bd7fc4a.094154"]]}]

 [image:]

 3.	After the import, you have nodes connected to one another (Figure 5-19).

 [image:]

 Figure 5-19 Nodes imported

 4.	Update the configuration information of the Natural Language Classifier node. Double-click the NLC node. When the editor opens (Figure 5-20), update the following fields (with the service you created) as in the example and click Done.

 Username	1b2749fe-7581-42e2-ad3e-115c022ef8cd

 Password	y1wcQL63akRX

 Classifier ID 	f5b42fx173-nlc-3980

 [image:]

 Figure 5-20 Configuration of Natural Language Classifier

 5.	Click Deploy to apply changes.

 6.	For the user’s request of classification, SPAM Classifier will classify the mail subject or content into SPAM or Non-SPAM, display the result, and ask if the user agrees with the results (Figure 5-21).

 [image:]

 Figure 5-21 Classification result displayed

 7.	After the user clicks Yes or No, the user feedback is saved to the Cloudant noSQL DB.

 5.4.6 Evaluating results and updating training data

 Every time a user provides feedback to the classification result, the feedback is saved to the Cloudant noSQL DB in Bluemix for additional training.

 Save user feedback into Cloudant noSQL DB

 To import feedback into the Node-RED environment, complete these steps:

 1.	In the Node-RED editor, click the top right menu and select Import → Clipboard.

 2.	The clipboard window opens. Copy the code (Example 5-4 is the code snippet to import). Paste the code and click Import.

 Example 5-4 is the sample code to import. This snippet is part of the exported Node-RED flow file (flow.json), which is included in the project folder cloned by Git. After you import the entire content of flow.json, you get all nodes and the links between them.

 Example 5-4 Sample code to import (flow.json)

 [image:]

 [{"id":"bc4b6594.b53508","type":"http in","z":"f1d9f81c.fa7428","name":"/update_feedback","url":"/update_feedback","method":"get","swaggerDoc":"","x":116.79165649414062,"y":586.8889465332031,"wires":[["b6021075.bf4ef"]]},{"id":"b6021075.bf4ef","type":"function","z":"f1d9f81c.fa7428","name":"Parse user_feedback","func":"/**\n * Compose a string which is saved into cloudant\n * String Format: mail_subject,classification_result,user_feedback\n * - mail_subject: mail_subject user provided\n * - classification_result: either SPAM or Non-SPAM\n * - user_feedback: either Y or N\n */\n\n// replace quotation with space to avoide error while saving into cloudant\nvar mail_subject = msg.req.query.mail_subject.trim();\nif (mail_subject.indexOf(\"\\\"\") > -1) {\n var arr = mail_subject.split(\"\\\"\");\n mail_subject = \"\";\n for (var i=0; i<arr.length; i++) {\n if (mail_subject != \"\") {\n mail_subject + \" \";\n }\n mail_subject = mail_subject + arr[i];\n }\n}\n\nmsg.payload = \n mail_subject\n + \",\"\n + msg.req.query.classification_result\n + \",\"\n + msg.req.query.user_feedback\n;\n\nreturn msg;\n","outputs":1,"noerr":0,"x":385.7916564941406,"y":585.888916015625,"wires":[["d1271eb8.a2cce","1092b881.601317"]]},{"id":"20b581e7.42c8fe","type":"comment","z":"f1d9f81c.fa7428","name":"User click Yes or No -> Update User Feedback into Cloudant","info":"Format: Mail Subject, Classification Result, User Feedback\nExample: \"Hi world !\", SPAM, Y","x":241.79165649414062,"y":534.888916015625,"wires":[]},{"id":"d1271eb8.a2cce","type":"template","z":"f1d9f81c.fa7428","name":"Alert and Redirect","field":"payload","fieldType":"msg","format":"handlebars","syntax":"plain","template":"<html>\n<body>\n <script>\n alert(\"Your feedback was saved for later training. Thank you.\")\n location.href = \"/req_nlc\"\n </script>\n</body>\n</html>","x":643.7326812744141,"y":646.2326965332031,"wires":[["a6bd45dd.c0e7f8"]]},{"id":"a6bd45dd.c0e7f8","type":"http response","z":"f1d9f81c.fa7428","name":"Redirect to /req_nlc","x":871.7916412353516,"y":646.0000915527344,"wires":[]},{"id":"1092b881.601317","type":"cloudant out","z":"f1d9f81c.fa7428","name":"User Feedback","cloudant":"","database":"my_database","service":"node-red-0116-cloudantNoSQLDB","payonly":true,"operation":"insert","x":633.7916412353516,"y":585.8889770507812,"wires":[]}]

 [image:]

 3.	After the import, you have nodes connected with one another (Figure 5-22).

 [image:]

 Figure 5-22 Nodes imported for feedback

 4.	Update the configuration information of the Cloudant out node. To do this, double-click the User Feedback node. When the editor opens (Figure 5-23), update the following fields as in the example and click Done.

 Service	node-red-0116-cloudantNoSQLDB

 Database	my_database

 [image:]

 Figure 5-23 Configuration of Cloudant out

 5.	Click Deploy to apply changes.

 Feedback format

 Each feedback is a one-line string composed of the following three items separated by a comma.

 •Mail subject or content that user provided

 •Classification result, either SPAM or Non-SPAM

 •User feedback, either Y or N (for Yes or No)

 For example, if user provides the text Hi, World as mail subject or content, the classifier will classify it as Non-SPAM, and if the user agrees with the classification result, the feedback string would be:

 Hi, World, Non-SPAM, Y

 Review user feedback

 As users keep providing feedback, The feedback data is store in the Cloudant DB. You should review the Cloudant DB data periodically and create new training data to improve the classifier performance.

 Complete the following steps to import the code snippet for reviewing user feedback into the Node-RED environment:

 1.	In the Node-RED editor, click the top right menu and select Import → Clipboard.

 2.	The clipboard window opens. Copy the code (Example 5-5 is the code snippet to import). Paste the code and click Import.

 Example 5-5 is the sample code to import. This snippet is part of the exported Node-RED flow file (flow.json), which is included in the project folder cloned by Git. After you import the entire content of flow.json, you get all nodes and the links between them.

 Example 5-5 Sample code to import (flow.json)

 [image:]

 [{"id":"4c877c19.f98864","type":"http in","z":"f1d9f81c.fa7428","name":"/get_feedback","url":"/get_feedback","method":"get","swaggerDoc":"","x":95.89579772949219,"y":838.000244140625,"wires":[["a49abc66.27aa4"]]},{"id":"9fa9b6f4.e7e938","type":"template","z":"f1d9f81c.fa7428","name":"Template: User Feedback","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":"<html>\n<body>\nSPAM Classifier powered by Watson NLC\n

\n\n<table border=0>\n\n<tr>\n<td valign=top>\n\tUser Feedback:\n</td>\n<td>\n<textarea cols=80 rows=20>\n{{payload}}\n</textarea>\n</td>\n</tr>\n\n</table>\n\n</body>\n</html>\n","x":513.8957977294922,"y":939.000244140625,"wires":[["747d6044.05772"]]},{"id":"747d6044.05772","type":"http response","z":"f1d9f81c.fa7428","name":"","x":746.8957977294922,"y":938.000244140625,"wires":[]},{"id":"a49abc66.27aa4","type":"cloudant in","z":"f1d9f81c.fa7428","name":"User Feedback","cloudant":"","database":"my_database","service":"node-red-0116-cloudantNoSQLDB","search":"_all_","design":"","index":"","x":355.8957977294922,"y":837.000244140625,"wires":[["e33f4f6e.4da6f"]]},{"id":"e33f4f6e.4da6f","type":"function","z":"f1d9f81c.fa7428","name":" Collect records","func":"/**\n * Collect user feedback records from cloudant\n * Record format: mail_subject,classification_result,user_feedback\n * - mail_subject: mail_subject user provided\n * - classification_result: either SPAM or Non-SPAM\n * - user_feedback: either Y or N\n */\n\nvar len = msg.payload.length;\nvar newPayload = \"\";\nfor (var i=0; i<len; i++) {\n if (newPayload != \"\") {\n newPayload = newPayload + \"\\n\";\n }\n \n var str = msg.payload[i].payload.toString();\n \n // Enclose mail_subject with quotation if it contains comma (,)\n var arr = str.split(\",\");\n if (arr.length > 3) {\n str = \n parse_mail_subject(arr)\n + \",\"\n + arr[arr.length-2]\n + \",\"\n + arr[arr.length-1];\n }\n\n newPayload = newPayload + str;\n}\n\nmsg.payload = newPayload;\nreturn msg;\n\n\nfunction parse_mail_subject(arr) {\n \n var str = \"\";\n for (var i=0; i<arr.length-2; i++) {\n if (str != \"\") {\n str = str + \",\";\n }\n str = str + arr[i];\n }\n str = \"\\\"\" + str + \"\\\"\";\n \n return str;\n}","outputs":"1","noerr":0,"x":573.8957977294922,"y":837.000244140625,"wires":[["9fa9b6f4.e7e938"]]},{"id":"4834bed2.bf2be","type":"comment","z":"f1d9f81c.fa7428","name":"Get User Feedback from Cloudant","info":"For later training","x":159.8957977294922,"y":789.000244140625,"wires":[]}]

 [image:]

 3.	After the import, now you have nodes connected with one another (Figure 5-24).

 [image:]

 Figure 5-24 Nodes imported

 4.	Update the configuration information of the Cloudant in node. To do this, double-click the User Feedback node. When the editor opens (Figure 5-25), update the following fields as in the example and click Done.

 Service	node-red-0116-cloudantNoSQLDB

 Database	my_database

 [image:]

 Figure 5-25 Configuration of Cloudant in

 5.	Click Deploy to apply changes.

 6.	When the user requests to review the feedback, SPAM Classifier displays the user feedback from the Cloudant DB (Figure 5-26).

 .[image:]

 Figure 5-26 User feedback displayed

 5.5 Quick deployment of application

 As described in 5.3, “Two ways to deploy the application: Step-by-step and quick deploy” on page 106, a Git repository containing the full application code is provided so that you can run the application with minimal steps and more quickly. Here you can create the necessary Natural Language Classifier service, Cloudant noSQL DB service, and Node-RED development environment instead of following the detailed described in 5.4, “Step-by-step implementation” on page 106.

 Complete these steps to deploy the application more quickly:

 1.	You need a Bluemix account. If you do not have one, create one.

 2.	Install Git and Cloud Foundry in your local computer.

 3.	Open a command prompt and set up Git using the following command:

 git config --global http.sslVerify false

 4.	Choose an empty directory to download the code.

 5.	Run the command in the selected directory:

 git clone https://github.com/snippet-java/redbooks-nlc-201-spam-nodered.git

 6.	Change to the nlc-201-spam-nodered directory:

 cd nlc-201-spam-nodered

 7.	In the root application directory, run the cf login command and replace <BLUEMIX_EMAIL> and <BLUEMIX_PASSWORD> with your Bluemix account information, and select an organization (<ORG_NO>) to use (Example 5-6).

 Example 5-6 Execute login and set email and password

 [image:]

 cf login

 API endpoint>: https://api.ng.bluemix.net

 Email> <BLUEMIX_EMAIL>

 Password> <BLUEMIX_PASSWORD>

 Authenticating...

 OK

 Select an org (or press enter to skip)

 1. sample_org1

 2. sample_org2

 org> <ORG_NO>

 [image:]

 8.	Select a Bluemix space to host the application (Example 5-7).

 Example 5-7 Select Bluemix space

 [image:]

 Select a space (or press enter to skip):

 1. dev

 2. qa

 3. Prod

 Space> 1

 Targeted space dev

 API endpoint: https://api.ng.bluemix.net (API version: 2.54.0)

 User: < BLUEMIX_EMAIL>

 Org: < BLUEMIX_PASSWORD>

 Space: dev

 [image:]

 9.	Create the Natural Language Classifier service:

 cf create-service natural_language_classifier standard my-nlc-service

 10.	Create service keys to access the Natural Language Classifier service:

 cf create-service-key my-nlc-service myKey

 11.	Retrieve the service keys from the Natural Language Classifier service:

 cf service-key my-nlc-service myKey

 12.	Create a Cloudant noSQL DB service for the feedback function of this application:

 cf create-service CloudantNoSQLDB Lite "SPAM Feedback"

 13.	Create a classifier instance with initial training data. Follow the steps in 5.4.4, “Creating and training the classifier” on page 110. Training data is available in the resources folder.

 14.	In the manifest.yml file, update <My_Name> and <My_Host> with your unique values (Example 5-8).

 Example 5-8 Update manifest.yml file

 [image:]

 applications:

 - path: .

 memory: 512M

 instances: 1

 domain: mybluemix.net

 name: <My_Name>

 host: <My_Host>

 disk_quota: 1024M

 services:

 - <My_Name>-cloudantNoSQLDB

 env:

 NODE_RED_STORAGE_NAME: <My_Name>-cloudantNoSQLDB

 declared-services:

 <My_Name>-cloudantNoSQLDB:

 label: cloudantNoSQLDB

 plan: Lite

 [image:]

 15.	Node-RED needs a Service of Cloudant NoSQL DB for storage. Create a service before you push the application to Bluemix:

 cf create-service CloudantNoSQLDB Lite "<My_Name>-cloudantNoSQLDB"

 16.	Now, you can push the application to Bluemix:

 cf push

 17.	In Bluemix, after you enter the Node-RED environment you created, you can review the default flows developed in Node-RED. However, you should update the configuration information of Natural Language Classifier node and Cloudant node with those you created.

 5.6 References

 See the following resources:

 •Carmine, DiMascio. Create a natural language classifier that identifies spam. IBM developerWorks, 2016

 https://www.ibm.com/developerworks/library/cc-spam-classification-service-watson-nlc-bluemix-trs/index.html

 •Almeida, T.A., Gómez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.

 http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the Internet as described in the following sections.

 Locating the web material

 The following Git repositories are available to help you with the examples in these chapters:

 •Chapter 3, “Healthcare questions and answers” on page 19:

  –	For the incomplete code (step-by-step implementation version):

 https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs-student.git

  –	For the complete code (quick deployment version) that you can use for verification or as a code reference:

 https://github.com/snippet-java/redbooks-nlc-201-healthcare-nodejs.git

 •Chapter 4, “News Classification” on page 45:

  –	For the incomplete code (step-by-step implementation version):

 https://github.com/snippet-java/redbooks-nlc-201-news-java-student.git

  –	For the complete code (quick deployment version):

 https://github.com/snippet-java/redbooks-nlc-201-news-java.git

 •Chapter 5, “SPAM Classifier” on page 101:

  –	For the incomplete code (step-by-step implementation version):

 https://github.com/snippet-java/redbooks-nlc-201-spam-nodered-student.git

  –	For the complete code (quick deployment version):

 https://github.com/snippet-java/redbooks-nlc-201-spam-nodered

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 The volumes in the Building Cognitive Applications with IBM Watson APIs series:

 • Volume 1 Getting Started, SG24-8387

 • Volume 2 Conversation, SG24-8394

 • Volume 3 Visual Recognition, SG24-8393

 • Volume 4 Natural Language Classifier, SG24-8391

 • Volume 5 Language Translator, SG24-8392

 • Volume 6 Speech to Text and Text to Speech, SG24-8388

 • Volume 7 Natural Language Understanding, SG24-8398

 You can search for, view, download or order these documents and other Redbooks, Redpapers™, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Online resources

 These websites are also relevant as further information sources:

 •IBM Bluemix; create an account or log in:

 https://console.ng.bluemix.net

 •Cloud Foundry software download and install:

 https://github.com/cloudfoundry/cli/releases

 •Healthcare Q and A Application to see a running version:

 http://hcqanaturallanguageclassifier.mybluemix.net/

 •IBM SDK, Java Technology Edition, Version 8 download:

 https://developer.ibm.com/javasdk/downloads/

 •Git client downloads and installation:

 https://git-scm.com/downloads

 •News Classification web application to see a running version:

 https://nlc-201-news-java.mybluemix.net/

 •Eclipse Neon with Bluemix tools; install and set up:

 https://www.ibm.com/cloud-computing/bluemix/eclipse

 •Application server hosting for enterprise apps:

  –	WebSphere Liberty:

 https://developer.ibm.com/wasdev/websphere-liberty/

  –	Apache Tomcat:

 http://tomcat.apache.org/

 •Using your own data to train the Natural Language Classifier (Watson Developer Cloud):

 https://www.ibm.com/watson/developercloud/doc/natural-language-classifier/using-your-data.html

 •Creating a classifier (Watson Developer Cloud):

 https://www.ibm.com/watson/developercloud/natural-language-classifier/api/v1/#create_classifier

 •Community buildpacks list:

 https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created

 •SPAM Classifier application to see a running version:

 https://node-red-0116.mybluemix.net/req_nlc

 Also see the list of online resources for the following chapters in this book:

 •Basics of Natural Language Classifier API: 1.2, “References” on page 10

 •Healthcare Questions and Answers: 3.6, “References” on page 42

 •News Classification: 4.6, “References” on page 99

 •SPAM Classifier: 5.6, “References” on page 122

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Building Cognitive Applications with IBM Watson Services: Volume 4 Natural Language Classifier

 Back cover

 Acrobat bookmark

 ISBN 0738442593

 SG24-8391-00

 ®

 OPS/images/8391-nlc-news.08.1.021.jpg

OPS/images/8391-nlc-news.08.1.022.jpg

OPS/images/nlc-201-news-Cloudant_Create_Service.png
< Viewall

Cloudant NoSQL DB

Catalog Support

Account

Cloudant NoSQL DB is a fully Service name:
managed data layer designed for

modern web and mobile Cloudant NoSQL DB-n5.
appiications that leverages a

flexible JSON schema. Cloudant CetnHens

is built upon and compatible with Credentet

Apache CouchDB and

accessible through a secure

HTTPS API, which scales as your

appiication grows. Cloudant is Feanies

1S027001 and SOC2 Type 1

certified, and alldata is stored in

o ———— « Fully managed DBaa$
Need Help? Estimate Monthly Cost
Contact Bluemix Sales Cost Calculator

OPS/images/8391-nlc-healthcare.07.1.45.jpg
) hogaNaturallanguageClassifier sus @ s

§§§§§§§l

H

HERR

vt ey

[T —

OPS/images/nlc-201-news-Import_existing_Eclipse_project-Reviewed.png
78] Cloning from https:/github.com/snippet-java/redbooks-nic-201-news-java-st... = | B | 3

Selecta

izard to use for importing projects
Depending on the wizerd, you may select a directory to determine the wizard's scope

Wizard for project import
Import using the New Project wizard
Import as general project

= Working Tree - C:\Users\JBM_ADMIN\git\redbooks-nlc-201-news-java-student

@

OPS/images/8391-nlc-healthcare.07.1.44.jpg

OPS/images/nlc-201-news-Import_news_Java_Student_Selected-Reviewed.png
18] Cloning from hitps:/github.com/snippet-javalredbooks-nlc-201-news-java-student git

Import Projects
Import projects from a Git repository

fems
pe et o ks srelcted prjects [sdeamn]

& nlc-201 newsjava-student (CAUserIBM_ADMINY gt redbooks-nlc-201-news-jva-student)

E—
—

o notng s Cree)
Working st sdect.]
@ Bk | e [oned

OPS/images/8391-nlc-healthcare.07.1.47.jpg
) hogaNaturall anguageClassifier su @ s

- e

OPS/images/nlc-201-news-Git_Master_Branch-NEW.png
8 Import Projects from Git e =)

Branch Selection GIT)
Seectbranchestoclone from remote repositry. Remte tracking branches wil | 7
e creted o ack updates ot thse branches i the remote reposton. P

Branches of https /igithub.com/snippet-java/redbooks-nic-201-news-java-student
[typefittertex]

7145 master

@ BT meo (g][coned]

OPS/images/8391-nlc-healthcare.07.1.46.jpg
Claming

OPS/images/nlc-201-news-Git_Local_storage-Reviewed.png
{8} Import Projects from Git @] =

Local Destination
Configure the local storage location for redbooks-nic-201-news jave-student.

Destination

Directory: C\Users\IBM_ADMINgiredbooks-nlc-201-news-java-student e

Configuration

Remote name: _origin

OPS/images/8391-nlc-healthcare.07.1.49.jpg
i) hegaNaturallanguageClassifier sws @ nrws

- e

IRRERE

OPS/images/8391-nlc-news.08.1.018.jpg

OPS/images/8391-nlc-healthcare.07.1.48.jpg
Products, Offers and Palns

Group Life and Disabilty

Group Medcal Plans

Medium Package Plan

Smal Package Pian

OPS/images/8391-nlc-news.08.1.019.jpg

OPS/images/nlc-201-news-Import_project_with_success-Reviewed.png
4§ > nlc-201-news-java-student [redbooks-nlc-201-news-java-student master]
s
4 8 com.ibmitso.ed6000L.nlc.news
» [} CresteAndTrainjava
» [Evalustejava
» [PrepareDatajava
> [} Queryjava
4 8 com.ibmitso.ed60010L.nlc.news.beans.
» [ClssifyNewsjava
o [} QuenNewsjava
4 8 com.ibmitso.edS00r0L.nlc.news.ws
o [} NewsSenvicejava
5 configuration.properties
» A JRE System Library [av2SE-LE]
» A Maven Dependencies
b Gy lib
b Gy resources
> Gy > target
> Gy WebContent
manifestym
[pomaml
[} README.md.

OPS/images/8391-nlc-news.08.1.017.jpg

OPS/images/8391spec.03.1.1.jpg

OPS/images/8391-nlc-healthcare.07.1.41.jpg
) hegaNaturalLanguageClassifier sux @ arrs

OPS/images/nlc-201-news-Import_Eclipse_Project_Clone_URI.png
] Import Projects from Git

Select Repository Source
Select a location of Git Repositories

[typefittertex]
[Existing local repository

7] Clone URI|

@ <Back || New> | [_rmsn_] [Concel

OPS/images/8391-nlc-healthcare.07.1.40.jpg

OPS/images/nlc-201-news-Source_Git_Repository-Reviewed.png
] Import Projects from Git

Source Git Repository
Enter the location of the source repository.

4
Location
URE hitps://github.com/snippet-java/redbooks-nlc-201-news-java-student git [Local Fle..
Host: github.com

Repository path: /snippet-java/redbooks-nlc-201-news-java-student git

Connection

Protocol:

Port:

Authentication

User:

Password:
Storein Secure Store

©) <o J[news]|

Finish

OPS/images/8391-nlc-healthcare.07.1.43.jpg
B

(1) heqaNaturalLanguageClassifier s @ amv

OPS/images/8391-nlc-healthcare.07.1.42.jpg
About

‘Who We Are

Have a question?

B T r—————————————

Need o find our offices?

Need Support?

OPS/images/8391-nlc-healthcare.07.1.34.jpg

OPS/images/nlc_hcqa_DeployApplication2.png
applications:
- patn:
memory: 2564
instances: ©
domain: mybluemix.net
name: hcqaNaturallanguageClassifier
host: hcqaNaturallanguageClassifier
buildpack: sdk-for-nodejs
disk_quota: 1024M

OPS/images/8391-nlc-healthcare.07.1.36.jpg

OPS/images/8391-nlc-healthcare.07.1.35.jpg

OPS/images/8391-nlc-healthcare.07.1.37.jpg

OPS/images/8391-nlc-healthcare.07.1.39.jpg
Medical Providers

List of approved medical providers

OPS/images/nlc-201-news-Create_Classifier_Eclipse_arguments.png
Name: CreateAndTrain
© Main (9~ Arguments g JRE| & Classpath| & Source) I Environment |

L

>

Program arguments:

C\\Users\\IBM_ADMIN\\Downloads\\bbe-train.csy 42b3e662-795b-46bd-bb6d-
'9d0a4<0245df" "rDujb641IpyE" "News Classification” en

m

Working directory:
© Default: [Stworkspace_locnlc-201-news-java-student}

OPS/images/8391-nlc-news.08.1.043.jpg

OPS/images/8391-nlc-spam.09.1.11.jpg
ode-RED in Bluemix

A visual tool for wiring the Internet of Things

Node-RED provides a browser-based edior

that makes it easy to wire together flows that Goto your Node-RED flow editor
an be deployed 1o the runtime in a single

ek

OPS/images/8391-nlc-news.08.1.044.jpg

OPS/images/nlc_spam_010.png
& Node-RED : node-red-C x

<« C | @ Secure | https;//node-red-0116.mybluemix.net/red/#fl 435.fc7f9c @ fr H

a Flow 1

~ input

inject

catch

status.

tink.

matt

hitp

OPS/images/nlc-201-news-Create_And_Training_Output.png
<terminated> News Classification - CreateAndTrain [Java Application] C:\Program Files (x86)\eclipseDevelopmentPackage\ibm_sdk80\bin\javaw.exe (23 de jan de 2017 17:

F£18c7x157-nle-5650" ,

News Classification”,

"Training’
2017-01-23119:24:47.221",

lescription”: "The classifier instance is in its training phase, not yet ready to accept classify requests”,

ittps: //gateway watsonplatforn. net/natural-language-classifier/api/v1/classif iers/Ff18c7x157-nlc-5650"

OPS/images/8391-nlc-news.08.1.042.jpg

OPS/images/nlc_spam_008.png
AlApps ()

Cloud Foundry Apps 1GB/8 GB Used

NAME ROUTE STATE ACTIONS

node-red-0116 node-red-0116 mybluemixnet @ FRuming ca

OPS/images/8391-nlc-news.08.1.036.jpg

OPS/images/8391-nlc-news.08.1.037.jpg
Bootstrap classification

~-O-8

OPS/images/nlc-201-news-Prepare_Data_Output.png
<terminated> PrepareData [Java Application] C:\Program Files (36)\eclipseDevelopmentPackage-6.3.20\ibm_sdkB0\bin\javaw.exe
Preparing File news-train.csv to be ready for Natural Language Classifier input

Fixing 1024 chars for text lengh, handling special chars like line feed and format to UTF-8 format
Data prepared !

OPS/images/8391-nlc-news.08.1.035.jpg

OPS/images/8391-nlc-news.08.1.038.jpg

OPS/images/nlc-201-news-Create_Classifier_RunAs_selected_class.png
Name: PrepareData

® Meain (- Arguments| @), JRE| % Classpath| & Source| I Environment| [] Common |

Project:
Plc-201-news-java-student Browse...

Main class:

<omibm.itzo.ed6000Lnlc.news CreateAndTrsin Search..
[include system ibraries when sesrching for s main class

OPS/images/nlc-201-news-PrepareData_RunAs_selected_class.png
Name: PrepareData

® Meain (- Arguments| @), JRE| % Classpath| & Source| I Environment| [] Common |

Project:

Plc-201-news-java-student Browse...
Main class:

‘comibmtso.ed60010L.nc.news.PrepareData Search...
Include system libraries when searching for a main class
Include inherited mains when searching for a main class
Stopin main

OPS/images/nlc-201-news-PrepateData_arguments.png
Name: PrepareData

® Main [¢9= Arguments i, JRE| % Classpath| &/ Source| I8 Environment| (] Common| |
Program arguments: 2
news-train.csv A

VM arguments:

OPS/images/nlc-201-news-Train_Data_Format_-_Review.png
A]

The market for artificial intelligence (Al) technologies is flourishing. Beyond the hype and the heightened media attention the
numerous startups and the internet giants racing to acquire them there is a significant increase in investment and adoption by
enterprises. A Narrative Science survey found last year that 38% of enterprises are already using Al growing to 62% by 2018.
Forrester Research predicted a greater than 300% increase in investment in artificial intelligence in 2017 compared with 2016. 1DC

estimated that the Al market will grow from $8 billion in 2016 to more than $47 billion in 2020. technology
‘economic growth slowed sharply in the fourth quarter as a plunge in shipments of soybeans weighed on exports but steady
consumer spending and rising business investment pointed to sustained strength in domestic demand. business

Half of Brazil's population cannot prove full legal ownership of their homes depriving authorities in the recession-hit country of a
major source of taxes and deterring local investment a senior government official said.An estimated 100 million people lack
property rights a senior Ministry of Cities official told the Thomson Reuters Foundation highlighting the need for Brazil to bring

its housing sector into the formal economy. polites
Fluminense Football Club known simply as Fluminense is a Brazilian club best known for its football team that plays in the
Brazilian Championship A series sports

He supposedly died at the end of the Fox drama's fourth season. But now Wentworth Miller is back as the gritty Michael Scofield
in the action-packed Prison Break season five trailer. entertainment

OPS/images/nlc-201-news-Eclipse_RunAs.png
Run As

Debug As
Profile As

o 1RunonServer
[2Java Application

Run Configurations.

AltShift+X, R
AltsShift+X,)

OPS/images/8391-nlc-news.08.1.025.jpg

OPS/images/8391addm.10.1.2.jpg

OPS/images/8391-nlc-news.08.1.026.jpg

OPS/images/8391-nlc-news.08.1.023.jpg

OPS/images/8391-nlc-news.08.1.024.jpg

OPS/images/8391addm.10.1.1.jpg

OPS/images/8391-nlc-news.08.1.029.jpg
-
(o ordtatase)

ta s in CSV fomat

OPS/images/8391-nlc-news.08.1.027.jpg

OPS/images/8391-nlc-news.08.1.028.jpg

OPS/images/8391-nlc-healthcare.07.1.10.jpg

OPS/images/nlc_spam_007.png
Create a Cloud Foundry App

App name:

Node-RED Starter i
This application demonstrates how o run the Node-RED open- DD
source prject vithin [BM Bluemix. Hoot name: Domain:
() node-red 0115 [—
View Docs
= o= Selected Plan:
TYPE Boilerplate. SDK for Node.js™ Cloudant NoSQL DB
REGION US South

Default Lite

is -
SO orNocejs™| Glowdnt oS
)

NeedHelp? Estimate Morthly Cost

Contact Bluemix Sales Cost Calculator

OPS/images/nlc_spam_006.png
@, I1BM Bluemix Catalog Support Account

Personality Insights Personaltty Insights
- Java Web Starter E Node.js Web Starter

All Categories Asimple Java app that Asimple Nodeis app
uses the Persora that uses Person:

Infrastructure = i

Compute

S o StrongLoop Arc ﬂ Mendix Rapid Apps.

Netmork This spplication s the Model driven rapid app
StrongLoop Arc platform that alc

Security

Apps

Boilerplates a Node-RED Starter oy Python Flask

Cloud Foundry Apps This application k| Asimple Python Flask
demonstrates ho application that v

Containers

Operittisk (Communty) Communiy

OPS/images/8391-nlc-spam.09.1.07.jpg
‘Application and Watson services,

Bluamix

Datastore
Bluemix

OPS/images/8391-nlc-spam.09.1.06.jpg
Application and Watson services.
i Bluomix)

appieson Ut
(rpiom
BN RED)

Sopicaton Cnvo

g
SyedsRED)

QH.

Data Store (in Bluermix)

©

T
Nosao

Lagens

seenin

OPS/images/nlc_spam_003_027.png
¢« c

@ Secure | https;//node-red-0116.mybluemix.net/get_feedback

'SPAM Classifier powered by Watson NLC

User Feedback:

man... Then can save money... Hee...,Non-SPAN,II
'm gonna finish my bath now. Have a good...fine night.”,Non-SPAN,Y

/Are you unique enough? Find out from 30th August. ww.areyouunigue. co.uk,SPAN,Y
I plane to give on this month end.,Non-SPAN,Y
Did you hear about the new Divorce Barbie? It comes with all of Ken's Stuff!,SPAMN

OPS/images/nlc_spam_002_022.png
[https/node-red-01167 X

& = C [8 Secure | hitpsy/node-red-0116 mybluemixnet/callnlc?mil subject=Did +you hea @ ¥ |

'SPAM Classifier powered by Watson NLC

Mail Subject or Content to Classify-Did you hear about the new " Divorce Barbie"? It comes with all of Ken's stuff!
Classification Result by NLC:SPAM

Do you agree with NLC Result?

OPS/images/nlc_spam_001_019.png
[https/node-red-01167 X

& > C @ secure | hitpsy/node-red-0116 mybluemixnet/req_nlc a x|

SPAM Classifier powered by Watson NLC

Mail Subject or Content to Classify-[Did you hear about the new “Divorce Barbie™? It comes with all o Ken's stuff

OPS/images/8391-nlc-spam.09.1.02.jpg

OPS/images/8391-nlc-spam.09.1.01.jpg

OPS/images/nlc-hcqa_textarea.png
<p/>
<div><textarea id="source’ name="source’ rows="10" col:

<o/>

757></ textarea</div>

OPS/images/nlc-hcqa_modals.png
Policy” class="modal fade” role="dialog” style="z-index:999999999;">
<div class="modal-dialog">
<1-- Modal content-->
<div class="modal-content">
<div class="modal-header">
<button type="button” class='close” data-dismis:
<n3 class='modal-title’>Policies and Plans</h3>

‘modal">x</bucton>

</aiv>
<div class="modal-body">
<div class="container-fluid">

<n4>1. Group Life & Medical Plans</hi>
¢p>Like all vell run companies, yours will rely on your pecple to succeed. It's therefore crucial to offer the best benefits package you can, to attract talented people and to retain a motivated vorkforce. It's
also vorth remembering that many employees today see these benefits as a key consideration vhen assessing the employment market</p>
<p class="calltoaction’>Learn more about our Group Life and Medical plans</p>
<h4>2. Have your circumstances changed? enbsp;</hé>
<p>¥e vant to make sure that you alvays have the right protection for your circumstances. If things change sndash; for example, you may start a family, move jobs or emigrate sndash; this could seriously affect the
amount or type of protection you need. </p>
<p>So if anything changes, just call us on <atrong>19798</3tzong> (from outside Eqypt +202 2 461 5020) so ve can make sure yousrsquosre still receiving the right level of protection.</p>
<h4>5. List of required documents for any change in your policy? enbsp;</hi>
<p>Here is our required document for any change in your policy.</p>
<p>ebull; Required documents for policy changes.</p>
</div>
</aiv>
<div class="modal-footer">
<button type="button” clas:
</div>
</div>
</div>
</div>

Modal —->

btn btn-info data-dismiss="modal">Close</bucton>

OPS/images/nlc-hcqa_buttons.png
<div>
<button id="submitButton’ onclick="classify()" type="button’ class="btn bn-info">Submit</button>
<button id="submitButton2” type='button’ data-toggle='modal’ styles "display :monme”></button>
<button onclick="clearbata()" type='button’ class='btn btn-info’ data-toggle='modal’ >Clear</button>
</divs

OPS/images/8391-nlc-healthcare.07.1.23.jpg

OPS/images/8391-nlc-healthcare.07.1.22.jpg

OPS/images/8391-nlc-healthcare.07.1.25.jpg

OPS/images/8391-nlc-healthcare.07.1.24.jpg

OPS/images/nlc_hcqa_CreateApplication13.png
//Declare an instance of the NIC service by using the credentials and classifier id in JSON format in the configuravion file
natural_language_classifier = watson.natural language classifier(config.watson.natural language classifier) ;

config = require('../config");
express = require (express’);

bodyParser = require ("body-parser’) ;

watson = require ('watson-developer-cloud’) ;

router = express.Router() ;
urlEncodedparser = bodyParser.urlencoded ({extended:

alse})

Elzouter.post('/', urlEncodedParser, function(req, res, next){

h:

natural_language_classifier.classify({
"text': req.body.source,
"classifier_id': config.watson.natural_language_classifier.id
b
/A function to be run when classification analysis is completed.
function(err, response) {
if(ern)
//Print the returned errors into the server console.
console. log("error:, err);
JeLse(
//Prin the returned results data into the server console.
console. 1og (JSON. stringify (response, null, 2));
//Send the returned JSON data to the client application.
res.json (response) ;

h:

module.exports = router;

OPS/images/8391-nlc-healthcare.07.1.26.jpg

OPS/images/8391-nlc-healthcare.07.1.29.jpg
fanction cleardaza() (
docusenc. gecElenentaya(“source") value
docusent. gecElemencsyTa() -inoerima -
¥

OPS/images/nlc-hcqa_JavascriptClassifyFunction.png
functian classify() {
var xhr = new XMLHCTpRequest()

xhr.onreadystatechange = function() {

if (xhr.readyState = 4) {

if (xhr.status = 200) {

var 3son = JSON.parse (hr.responseText) ;

document..getElementByTd ("result”) . innerHTML = json.top_class;

document.. getElementAyTd "subnitBurton2”) . setAttribute ("data-target”, "§" + json.top_class);
document. getElementByld ("subnitBurton2”) .click() ;

}

}

}

xhr.open("BOST", "./nlc", true);

xhr. setRequestHeader ("Content-type", "application/x-inwi-forn-urlencoded”) ;

ahr. send ("source=" + document. getElementByld ("source") .value) ;

}

OPS/images/8391-nlc-healthcare.07.1.21.jpg

OPS/images/8391-nlc-healthcare.07.1.20.jpg
var express = require("cxpress');
var path = require('zach')

var favicon = requize('serve
var logger = require("sorgen’
var cookieparser = requize("
var bodyPazse = zequize('body-pazses) ;

var index = require("./zoutes, tndex')
var users = requize(’./rouces/users');
e = reqire (. /roes /Al

var spp = expresa();

77 view engine serup
app.sec("vieis’, pach.join(_dizaame, vies:
app.set('vien sngine, 212

77 uncomment. atter placng your favicon in /public
//app. use £avicon (pach. Join (_diaane, 'public!, ‘favicon.ico'))
app.use (Logger ('dev)
app.use (bodyearser. 35000))
app.use (podyPazser urlencoded ((excended: false) ;
app.use (cookiepazsez())

5p.use (express. static(path. Join(_dirnane, ‘5ublic')));

app.use("/*, index)
e (/uterst, user):

/7 cateh 404 and orvard <o erzor nandler
lepp.uae (function(zeq, res, next) {
var ezx = new Exror (it found');

e
next(erz)
0

1/ exsor nanaer
app.use (unction(erz, req, res, next)
77 35z 1ocats, oniy provising erzor in development
zes.locals.mesaage = erx.message;
res.locals,exror = req.epp.ger(’en') == ‘developmenct 7 exr ¢ (1

1/ sendex the exror page
res.status (exr.status 11 500):

OPS/images/8391-nlc-healthcare.07.1.19.jpg
s
% app.use(’/, tndex);
27 app.use('/users, users):
[Fsppoume o, oo
30 /7 cazen 404 and forvard to exsor handler

51 Flapp.use (function(re, res, nexc) (
32 | var erc = new Ecror('wor Fou
2

s

e

OPS/images/nlc-201-news-Import_Eclipse_Project_from_Git.png
.

Select
Import one o more projects from a Git Repository.

Select an import wizard:

[type it text

S & General
> e
46t

(5, Projects from Git
> & Install
-
s & Maven
> & Oomph

>

@ ek [Nets]

Finish

OPS/images/8391-nlc-news.08.1.008.jpg

OPS/images/nlc-201-news-Application_Other_Classification_-_Review.png
Watson Natural Language Classifier

Top Class : sports
Suggest other classification : Business

Message
Response : Feedback saved with success |

OPS/images/nlc_hcqa_TrainingSteps6.png
Create Classifier

Create and train a classffier from the 8 classes and 134 texts on the Training
data page.

Name: HCQA NLG

Training data language: English V'

The time 1o train a classfer varies from mirutes to hours and depends on the sze ofth training

OPS/images/nlc-201-news-Application_Results_in_Detail_-_Review.png
Top Class : sports ¥

0.9853532252599781,

“spores”

0.00801902711571135,
“politics”

0.0028254919329835614,

“entartaiment”

0.0015045313912377656,
“tachnoTogy”

0.001297724 300085183,

Business”

OPS/images/8391-nlc-healthcare.07.1.11.jpg
S ®

o - e e

OPS/images/nlc-201-news-Application_Results_-_Review.png
Text Input:

Jose Mourinho refused to accept Manchester Uniteds unbeaten run was over on Thursday night after struggling to contain his fury at
referee Jonathan Moss awarding Hull City a controversial penalty. United booked their place in the EFL Cup final against Southampton

despite Hull ending their 17-game unbeaten streak with a 2-1 win at the KCOM Stadium.But Mourinho claimed his side did not lose after
being infuriated that Marcos Rojo was penalised for a push on Harry Maguire

Watson Natural Language Classifier

Top Class : sports[

Suggest other classification - Business

OPS/images/8391-nlc-healthcare.07.1.14.jpg
1BM Watson Natural Language Classifier

Classifiers
These casifers re comnected 10 he sevce nstance. Yo an et and inprovetheperormance of a lssfe hat as
tatus of Avaale

HCQANLC &n

Created b0 a8 a0
Classfier D

OPS/images/nlc-201-news-Application_Text_Input_-_Review.png
Enter the news you want to classify and click Classify News
The classification will be one of these types: business, technology, sports, politics, and entertainment

Text Input:

Jose Mourinho refused to accept Manchester United’s unbeaten run was over on Thursday night after struggling to contain his fury at
referee Jonathan Moss awarding Hull City a controversial penalty. United booked their place in the EFL Cup final against Southampton
despite Hull ending their 17-game unbeaten streak with a 2-1 win at the KCOM Stadium.But Mourinho claimed his side did not lose after
being infuriated that Marcos Rojo was penalised for a push on Harry Maguire

Classify News

OPS/images/8391-nlc-healthcare.07.1.13.jpg
1514 Watson Naturl Language Giassifor

Classifiers

Thess cassorsar connaced 10 servee nstanc. Yo can st ac v th petormance of s tht has o

OPS/images/8391-nlc-news.08.1.003.jpg
Classify News

Enter the news you want to classify and click Classify News

The cassiication wil be one ofthese types: business.lachnology, spors, poltics, and enertainment

Text Input:

Classiy News

OPS/images/nlc_hcqa_CreateApplication2-02.png
&

1

"name": "hcqanaturallanguageclassifier”,
version”: "0.0.07,
"private”: true,
"seripes™: {
“"start": "node ./bin/wai"
b
"dependencies”: {
"body-pazser”: "-1.15.2",
“cookie-parser”: "~1.4.3",
"debug™: "~2.2.0%,
s "-2.5.27,
xpress”i "~4.14.0%,
"morgan”: "~1.7.07,
"serve-favicon’ 3.07,
“watson-developer-cloud"

OPS/images/8391-nlc-news.08.1.002.jpg

OPS/images/nlc_hcqa_CreateApplication.png
"namen: "hcganaturallanguageclassifier”,
mversion”: "0.0.07,

"private”: true,

"scripts”: {

mstart": "mode ./bin/ww"

n1.7.0m,
mserve-favicon": "~2.3.0"

OPS/images/8391-nlc-news.08.1.001.jpg

OPS/images/8391-nlc-healthcare.07.1.18.jpg
10

2
1
u
1
16
1
1
15
20
2
2
=
2
5
26
2
2
2
2
2
=
»
%
3
b
b
3
3
r
Py
«
4
.

var express = require('express’)
var pach = requize('pacn) ;
var favicon = require ('serve
var logger = require('zorgen’)
var cookiezasser = sequire ("
var bodyPazser = require('body-pers

var index = require("./coues/index’) ;
var usezs = zequize(”
var nic = require(

var agp = express();

1/ view engine sewp
app.set(*views', path.join(_dirname, 'vievs'));
app.set(view engine’, e

7/ unconment. atter plactng your favicon in /public

//app.use (favicon (pach. Join(_dirname, ‘public’, 'favicon.ico')));

[——
app.use (bodyParser.130n() -

epp.use (bodyParser.urlencoded ([extended: false })
ap.

.

-ase (cookieBarsez()

-ase (express. static(path.Join(_dizaame, 'pablic'))):

app.
app.:

7/ cateh 404 and forvard to error handler
app.use (fusction(req, zes, next) (
var err = new Exror('tiot Found’
erx.status = 404

next(ern);

7/ exxor nantier
app.use (fuction(ezz, zeq, res, next) (
7/ sec locals, oniy providing error in developoenc
o5 locals.message = err.mesaag
zes. locals.exzor = req.app.gec('env’) mmm ‘developmen:

1/ zender the exror page
zes.status exz.svazas (1 500);

i

OPS/images/nlc_hcqa_CreateApplication3.png
var config = {
watson: {

natural_language_classifier:

password: "7,

version: "vi",

12
module.exports = config

OPS/images/8391-nlc-overview.05.1.30.jpg

OPS/images/8391-nlc-overview.05.1.28.jpg

OPS/images/8391-nlc-overview.05.1.29.jpg

OPS/images/8391-nlc-overview.05.1.20.jpg

OPS/images/8391-nlc-overview.05.1.21.jpg

OPS/images/8391-nlc-overview.05.1.22.jpg

OPS/images/8391-nlc-overview.05.1.23.jpg
N
nput Output

OPS/images/8391-nlc-overview.05.1.24.jpg

OPS/images/8391-nlc-overview.05.1.25.jpg

OPS/images/8391-nlc-overview.05.1.26.jpg

OPS/images/8391-nlc-overview.05.1.27.jpg

OPS/images/nlc-201-news-Application_Other_Classification_When_Tested-_Review.png
“classifier_

"90e757x198-nlc-36405"

“text"s “Jose Mourinho refused to accept Manchester United’s urbeaten run was over on Thirsday might after
struggling to contain his fury at referee Jonathan Moss swarding Hull City a controversial penalty. United booked
their place in the EFL Cup final against Southampton despite Hull ending their 17-gane urbeaten streak with a 2-1 win

st the KCON Stadiun.But Nourinho clained his side did rot Tose after being infuristed that Narcos Rojo was penslised
for & push on Harry Waguire.

“top class"

“sports”,

Suggest other classification : Business

OPS/images/8391-nlc-news.08.1.095.jpg

OPS/images/nlc-201-news-Application_Results_Clean_-_Review.png
Enter the news you want to classify and click Classify News
The classification will be one of these types: business, technology, sports, politics, and entertainment

Text Input:

Jose Mourinho refused to accept Manchester Uniteds unbeaten run was over on Thursday night after
struggling to contain his fury at referee Jonathan Moss awarding Hull City a controversial penalty.United
booked their place in the EFL Cup final against Southampton despite Hull ending their 17-game unbeaten
streak with a 2-1 win at the KCOM Stadium.But Mourinho claimed his side did not lose after being
infuriated that Marcos Rojo was penalised for a push on Harry Maguire

Classify News

Watson Natural Language Classifier

Top Class : sports ¥
Suggest other classification : Business -

OPS/images/8391-nlc-news.08.1.093.jpg
Top Class - sport{¥]
=

crassen”s -
-

confideree"s 0.9864532252539781
Ui
i

confiderce"s 0.0028251919329835615,

| “tectolons”

confidaree*s 0.0012077343000818%,

OPS/images/8391-nlc-news.08.1.098.jpg

OPS/images/8391-nlc-news.08.1.099.jpg

OPS/images/8391-nlc-news.08.1.096.jpg

OPS/images/8391-nlc-news.08.1.097.jpg

OPS/images/8391-nlc-news.08.1.090.jpg

OPS/images/8391-nlc-news.08.1.091.jpg
s,/ 201 vews java myblmixnet

Classify News

Enter the news you want to classify and click Classify News

The classiication wil bs one ofthese types: business,technology, spors, poltics, and enertainment

Text Input:

Classiy News

OPS/images/8391-nlc-overview.05.1.17.jpg

OPS/images/8391-nlc-overview.05.1.18.jpg

OPS/images/8391-nlc-overview.05.1.19.jpg

OPS/8391cover.jpg
bmcomroc

Building Cognitive Applications with
IBM Watson Services: Volume 4
Natural Language Classifier

Marcelo Mota Manhaes
Taemin Ko

Abeer Selim S

Omar Amer
Lak Sri

@ Cloud

In partnership with
1BM Skills Academy Program

OPS/images/8391-nlc-healthcare.07.1.09.jpg
PR ———

OPS/images/8391-nlc-healthcare.07.1.08.jpg
Login

OPS/images/8391-nlc-healthcare.07.1.07.jpg
Natural L anguage Classifier Toolkit (beta)

Intended Use

OPS/images/8391-nlc-overview.05.1.10.jpg

OPS/images/nlc_hcqa_TrainingDataSample.png
Can you nominate good Pediatrics?
‘What are the HealthCare insurance products proposed?
I would like to contact the support team?

I there any time limitation to submitting my claim?
How do | manage my policy?

Providers
Products
About
Claim
Policy

OPS/images/8391-nlc-overview.05.1.11.jpg

OPS/images/8391-nlc-healthcare.07.1.05.jpg
Public network Bluemix network

00 =@ =0

OPS/images/8391-nlc-news.08.1.089.jpg

OPS/images/8391-nlc-overview.05.1.12.jpg

OPS/images/8391-nlc-healthcare.07.1.04.jpg
Medical Providers

List of approved medical providers

ere 5 cus st s of approved e rovcers

Cataog

OPS/images/8391-nlc-overview.05.1.13.jpg

OPS/images/nlc_hcqa_Evaluation1.png
Heatithcare Q and A Application

Enter question to be answered

OPS/images/8391-nlc-overview.05.1.14.jpg

OPS/images/8391-nlc-healthcare.07.1.02.jpg

OPS/images/8391-nlc-overview.05.1.15.jpg

OPS/images/8391-nlc-healthcare.07.1.01.jpg

OPS/images/8391-nlc-overview.05.1.16.jpg

OPS/images/8391-nlc-createservice.06.1.11.jpg

OPS/images/8391-nlc-createservice.06.1.10.jpg

OPS/images/8391-nlc-createservice.06.1.13.jpg

OPS/images/8391-nlc-createservice.06.1.12.jpg

OPS/images/8391-nlc-createservice.06.1.15.jpg

OPS/images/8391-nlc-createservice.06.1.14.jpg

OPS/images/8391-nlc-createservice.06.1.17.jpg

OPS/images/8391-nlc-createservice.06.1.16.jpg

OPS/images/8391-nlc-createservice.06.1.09.jpg

OPS/images/8391-nlc-overview.05.1.31.jpg

OPS/images/8391-nlc-createservice.06.1.08.jpg

OPS/images/8391-nlc-createservice.06.1.07.jpg

OPS/images/8391-nlc-createservice.06.1.06.jpg

OPS/images/nlc-201-createservice-NLC_Get_User_and_Password.png
ITSO - ED-6000-R01 - Natural Language Classifier

Manage Service Credentials

Service Credentials.

Gredentials are provided in JSON
format. The JSON snippet lists
credentials, such as the APl key and
secret, as well as connection
information for the service.

Connections

Service Credentials New Credential @

[Kev NamE DATE GREATED AGTIONS

[Gredentials-1 Jan 26,2017-01:45:41 View Gredentials ~ B

(

"url": "https://gateway.watsonplatform.net/natural-lan
quage-classifier/api”,
pnsmza: - .

1

OPS/images/8391-nlc-createservice.06.1.04.jpg
1BM Bluemi

© Vewan

Natural Language Classifier

The Natural Language Classifer
servcs apples cognite
computing tectmiques to et
tho best mathing casses fora
sentance or phase. For
example, yousumit a question
and e serviosretums ks 10
ho best matching answers or
nextactons for you applation.
You create a st nstance
by providng asetof
oproserdatie sirngs and a set
ot one or mors corect lasses
foreach vanng Afer ranig,
she.cewclasstter ot

Servica name:
ITS0-£D-6000-R01-NaturalLanguage Classier
Gredentiainame:

Credentils 1

Features

+ SofiBank

Alocalaad vrsionof i
Watson servce s avaiable

Need Hep?
Contact Biuemix Saies

Estimate Moty Cost
Cost Calculstor

OPS/images/8391-nlc-createservice.06.1.03.jpg
z a =

OPS/cover.xhtml

 [image: Cover image]

OPS/images/8391-nlc-createservice.06.1.02.jpg

OPS/images/8391-nlc-createservice.06.1.01.jpg

OPS/images/8391-nlc-news.08.1.061.jpg

OPS/images/8391-nlc-news.08.1.062.jpg

OPS/images/8391-nlc-spam.09.1.30.jpg

OPS/images/8391-nlc-news.08.1.060.jpg
O Nowsites v

Texts o6 seeced - z

& hosinclsses B Do O Newestirt v

@ rasten

HollofBras popuation cannot prcvs o galoumershy of o e, Gy
ort e receon it corey of 3 major e of s nd dtrrg sl
vt somorcemerrment ffcal st sttt 00 e pocpl ck roperty
s s ity of it offcia 1k he Thomson Resers Foudation ohlghtng
heoed for Braz o bring s hvsig sector o theomal aconory.

T
e ater sugging o cortan i ey a lre Jothan Moss awardeg Gy
ontersil praiyUnte booked h ace i ha EFL Gupfrl aganst Sorampion,
espie il encing thi 17-game et ek wih 21w th KCOM Stachan ut
Moteoho camed e e i ot oo afo b i hat Marcos R was.
penaicaor push on Hary Mogure.

Raal Nack i fc g Federein Sy s At Open ol e S
best Grgor Do 6-3,6.7,7-6, 115,67 47, -4 na pulatig motch tht st b 56

OPS/images/8391-nlc-news.08.1.065.jpg
RecsaArayList rom e
batcnClassity method

Loop trough heArayt st

Gompars the fist slamantof sach em
(cas defined by SME) wit the second
fameri (neve classiiod by classiier)

Rotum acouracy = rumber of correet
Classicatons | ol rmber of cassfcators

OPS/images/nlc_spam_024.png
Edit cloudant out node

Delete Cancel

Senice node-red-0116-cloudantNoSQLDB

& Database | my_database

Operation | insert
@ Only store msg payload object?

@ Name User Feedback

OPS/images/nlc-201-news-Evaluate_Classifier_RunAs.png
Name: Evaluate

® Meain (- Arguments| @), JRE| % Classpath| & Source| I Environment| [] Common |

Project:

Plc-201-news-java-student Browse...
Main class:
mitso.ed6000L nic.news Evaluate Search...
Include system libraries when searching for a main class
Include inherited mains when searching for a main class
Stopin main

OPS/images/8391-nlc-spam.09.1.34.jpg

OPS/images/8391-nlc-news.08.1.063.jpg
et st

carscy et

Cactat
acoacy =Number of care
mackien o marber o

oty SEs

[rr——

wcn nwstenin CSV
o sy o cacsiter

Cometrsauts

OPS/images/8391-nlc-spam.09.1.31.jpg

OPS/images/8391-nlc-news.08.1.064.jpg
Racane the

and tst CSV f o clasdy Load tes CSV fle

Call query program to query e classfier. Loop through CSV flerows.

Save each cassifcation rtumed by the Return
classfierwiththe correspending cassiicaton Aeraylist ofcassfications provdad by
provided by the SME in ArayList Gassforand SME

OPS/images/8391-nlc-spam.09.1.32.jpg
([e cick Yosor o > Update User Feedback nfo Gioudat

OPS/images/nlc-201-news-NLC_Toolkit-_Correctly_Classified_-_Review.png
Jose Mourinho refused to accept Manchester United's unbeaten run was over on
Thursday night after struggling to contain his fury at referee Jonathan Moss awarding
Hull Gity a controversial penatty.United booked their place in the EFL Gup final
‘against Southampton despite Hull ending their 17-game unbeaten streak with a 2-1
win at the KGOM Stadium.But Mourinho claimed his side did not lose after being
infuriated that Marcos Rojo was penalised for a push on Harry Maguire.

ECEXD) oioooon) entamenioon) (tecmoon 000

OPS/images/8391-nlc-spam.09.1.26.jpg

OPS/images/nlc-201-news-NLC_Toolkit-_Evaluation_Results.png
Live system progress

@Apprmeu

®Hawed2

\dd to training data

OPS/images/8391-nlc-spam.09.1.27.jpg
> Cat LG o sty SR, NS

OPS/images/nlc-201-news-NLC_Toolkit-Test_Data_Loading_Messages.png
Classification Started File news-test-nic-toolkit.csv has been submitted for classification.

Classification Complete news-test-nic-toolkit.csv classification complete.

OPS/images/nlc-201-news-NLC_Toolkit-_Wrongly_Classified_-_Review.png
‘The market for artificial inteligence (Al) technologies is flourishing. Beyond the hype and the heightened media
attention the numerous startups and the internet giants racing to acquire them there is a significant increase in
investment and adoption by enterprises. A Narrative Science survey found last year that 38% of enterprises are
already using Al growing to 62% by 2018. Forrester Research predicted a greater than 300% increase in investment in
artificial intelligence in 2017 compared with 2016. IDG estimated that the Al market will grow from $8 billion in 2016 to
‘more than $47 billion in 2020.

business (087)) (_ technology (0.02)) (__entertanment (0.00) polics 0.00) sports (0.00)

OPS/images/8391-nlc-spam.09.1.25.jpg

OPS/images/nlc_spam_021.png
Edit natural language classifier node

Delete Cancel

 Name NG
&Usemame | 1b2743fe-7581-42¢2-ad3e-115c022efBcd

& Password

2 Mode Classiy .

@ Classifier ID | f5b42ix173-nlc-3980

OPS/images/8391-nlc-overview.05.1.01.jpg

OPS/images/8391-nlc-news.08.1.050.jpg

OPS/images/8391-nlc-news.08.1.051.jpg

OPS/images/nlc-201-news-NLC_Toolkit-classify_or_use_test_data.png
Classifiers / fH18c7x167-nlc-5650

Improve performance Use test data

Review live system texts that have incorrect or low-confidence classifications and add them to
your training data. Then train a new classifier with the updated data.

T —

OPS/images/nlc_spam_017.png
DsplaylnputPageluUm:]

OPS/images/nlc-201-news-NLC_Toolkit-Select_Test_Data.png
Classifiers / fH18c7x167-nlc-5650

Improve performance

@ File Upload

= Y
A Favorites - Neme ’ Date modified Type
B Desktop) news testsv 060220171104 Microsof
11 Douloads [EDnewstet miciooiEe 09/02/2017 1636 Microsof]
2 Recent laces) news-trimcsv 06/02/2017 1608 Microsof]
& OneDrive
Librares
8 Computer
& LocalDik (@)
G Nerwork - "] ,

File name: news-test-nic-toolkit.csv

OPS/images/nlc_spam_018.png

OPS/images/nlc-201-news-NLC_Toolkit_access.png
ITSO - ED-6000-R01 - Natural Language Classifier

Manage Service Credentials Connections
@ Natural Language Classifier rrERE
Interpret natural language and classify it
with confidence Developer resources:

* Documentation

* Demo

OPS/images/8391-nlc-spam.09.1.20.jpg

OPS/images/nlc-201-news-NLC_Toolkit-select_classifier.png
Classifiers

These classifiers are connected to the service instance. You can test and improve the performance of a
classifier that has a status of Available.

& o|

News Classification

Created Jan 23, 2017 5:24:47 PM
Classifier ID: ff18c7x157-nic-5650

OPS/images/8391-nlc-spam.09.1.21.jpg

OPS/images/8391-nlc-overview.05.1.09.jpg

OPS/images/nlc-201-news-Query_Output.png
<terminated> Query [Java Application] C:\Program Files (86)\eclipseDevelopmentPackage-6.3.20\ibm_sdkB0\bin\javaw.exe (9 de fev de 2017 16:19:23)
Status of Classifier Ff13c7x157-nlc-5650 - AVAILABLE
Results for query He supposedly died at the end of the Fox drama’s fourth season. But now Wentworth Miller is back

8575665436245274,

015873119271676537,
politics”

006316477550227919,
echnology”

_id": "Ff18c7x157-nlc-5650",
‘He supposedly died at the end of the Fox drama\uge27s fourth season. But now Wentworth Miller is back
‘top_clas: ntertainment”,

"https://gateway .watsonplatform. net/natural-language-classifier/api/vl/classifiers/ff18c7x157 -nlc-5650"

OPS/images/8391-nlc-spam.09.1.15.jpg

OPS/images/8391-nlc-overview.05.1.08.jpg

OPS/images/8391-nlc-news.08.1.048.jpg

OPS/images/nlc_spam_012.png
Wlatsondcurl —i —u “1h2?749fe-7581-42e2-ad3e-115cB22ef8cd": "ylucQL63akRR" —F tr
Eining data=Gspan_training 1.csu —F training_netadata="CH#"languagett”:#"entt”, #"na

o2 # TutorialClass if iertt™ tps://gatevay.vatsonplatforn.net/natural-langua
e—classifier/apisvi/classifiers’

OPS/images/8391-nlc-overview.05.1.07.jpg

OPS/images/nlc-201-news-Query_Classifier_RunAs_selected_class.png
Neme: Query

@ wen - Arguments| 2, RE| & Classpath| 1 Source| /8 Environment| (] Common|

Project:

nlc-201-news-java-student Browse...
Main class:

‘comibmtso.ed60010L.nlc.news. Query. Search...
Include system libraries when searching for a main class

Include inherited mains when searching for a main class

Stopin main

OPS/images/nlc_spam_011.png
S e e e

A B

Go until jurong point, crazy.. Available only in bugis n great world la Non-SPAM

Ok lar... Joking wif u oni... Non-SPAM
Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. "SPAM

U dun say so early hor... U ¢ already then say.. Non-SPAM
Nah I don't think he goes to usf, he lives around here though Non-SPAM

FreeMsg Hey there darling it's been 3 week's now and no word back SPAM
Even my brother is not like to speak with me. They treat me like aidsNon-SPAM

OPS/images/8391-nlc-overview.05.1.06.jpg
Nic
Cnssier

Output

OPS/images/nlc-201-news-Query_Classifier_Eclipse_arguments.png
Name: Query
© Main [¢9= Arguments _=i, JRE| % Classpath| &, Source| I Environment| (-] Common |
Program arguments:

187157 -nlc-5650 53b16841-b04c-4812-9fe5-fc25af43876f hiyb2p0VTfot "He supposedly died at ~
the end of the Fox drama's fourth season. But now Wentworth Millris back as the gritty Michael
Scofield in the action-packed Prison Break season five trailer”

e
@Defauk [Sworkspace ocnic 20-news java-student)]

© Other. []

OPS/images/8391-nlc-spam.09.1.14.jpg

OPS/images/8391-nlc-overview.05.1.05.jpg

OPS/images/nlc_spam_016.png
Import nodes

</td>\n<td>\nit
\nit<input type=submit val-
Ue=\"Submity">\n</td>\n</tr>\n\n</table>\n\n</form>\n</body>\n</
htmi>\n","x":362,"y"92,"Wires"[["6817402e f8c77"T]},

{'id""6817402e fBCT7","type":
sponse”,"z""fdgfa1c fa7428"

593,"y":92,"wires"[[}|

Importto | current flow | new flow

=

OPS/images/8391-nlc-overview.05.1.04.jpg

OPS/images/8391-nlc-overview.05.1.03.jpg
El = ©

Prepare
training data

Create and train
the classifier

Query the
trained classifier

pr——

« Colctepesenanic

« Moo casses o e

= Usa o 9110 ugiona

Tanng bogns
e

op marcng coss

Evaluate results.
and update
training data

* Upie you ranng
perpbeiry

«GCrstoanavana
oot uang
oo g s

OPS/images/8391-nlc-news.08.1.049.jpg

OPS/images/nlc_spam_013.png
raining”
‘status_description” : "The classifier instance is in its training phase. not
et ready to accept classify requests”

OPS/images/8391-nlc-overview.05.1.02.jpg

OPS/images/8391-nlc-spam.09.1.18.jpg
2, NodeRED

Cipboara « import

Req NLC Search fows.

OPS/images/8391-nlc-news.08.1.083.jpg

OPS/images/8391-nlc-news.08.1.084.jpg

OPS/images/8391-nlc-news.08.1.081.jpg

OPS/images/8391-nlc-news.08.1.082.jpg

OPS/images/8391-nlc-news.08.1.087.jpg

OPS/images/8391-nlc-news.08.1.085.jpg

OPS/images/8391-nlc-news.08.1.086.jpg

OPS/images/8391-nlc-news.08.1.080.jpg

OPS/images/8391-nlc-news.08.1.100.jpg

OPS/images/nlc-201-news-Classifier_ID_collected_on_bluemix_service.png
News Classification

Created Jan 23, 2017 5:24:47 PM
Classifier ID: ff18c7x157-nic-5650

&

OPS/images/nlc-201-news-Deployment_Application_started_on_bluemix.png
[AUDIT] CWWKF@O11I: The server defaultServer is ready to run a smarter planet.
[INFO] CWiKFOPOBI: Feature update completed in 12.324 seconds.

[INFO] CWWKOP219T: TCP Channel defaultHttpEndpoint has been started and is now listening for
Container became healthy

[Application Running Check] - Application appears to be running - nlc-261-news-java-student.

OPS/images/nlc-201-news-Deployment_Select_Bluemix_Space.png
Organizations and Spaces
T ot

Organizations and Spaces:
4 marcelo.mota.manhaes
dev

OPS/images/8391-nlc-spam.09.1.40.jpg

OPS/images/nlc-201-news-Deployment_Application_confirmation.png
Rnonsever .~ BT TR R E b

Add and Remove @
Moty the resourcesthat are configured on the sever E

Move resources to the right to configure them on the server
Available: Configured:

T nlc-201-news-java-student]

AddAl>> | [« il D

OPS/images/8391-nlc-spam.09.1.41.jpg

OPS/images/nlc-201-news-Deployment_Select_Bluemix_to_run.png
Run On Server
Select which server to use:

How do you want to select the server?
Choose an existing server

Manually define 2 new server

Select the server type:
type filter text

G =
| C Gessromty
4 = 1BM H
. IBM Bluemix Tools Server Adapter
@ WebSphere Application Server Liberty
(= JBoss bv Red Hat. =2

Publishes and runs Java EE modules, JavaScript modules and packaged servers of Liberty Profile to
IBM Bluemix.

e — [Cou]

Server name: IBM Bluemix

® LTI v | o |

OPS/images/nlc-201-news-Deployment_Select_Bluemix_Account.png
RunOn

IBM Bluemix Account
Press Validate Account, ‘Next, ‘Finish' to validate credentials.

L

‘Account Information

) Use s one-time password tologin (550)

Email marcelo.mota.manhees@gmail.com

[pr——

URL

(18 Biuemix (US South) - htps://aping bluemixnet

)]

g Aot

OPS/images/nlc-201-news-Deployment_Select_services_to_join_to_application.png
] Application

Services selection

Bind or add new services

Select sevices to bind to the application: =
Name - Service Plan v
& Cloudant NoSQL DB-gl cloudantNoSQLDB Lite
ZS.ITSO - ED-6000-R01 - Natural Language Classifier natural_language._classif... standard
m =
Newr | [Fmen][conesl

OPS/images/8391-nlc-spam.09.1.44.jpg

OPS/images/nlc-201-news-Classifier_ID_environment_variable.png
) Application \

Environment Variables
Edit application environment variables

Variable Value

8] New Variable Entry. =) || e |

(=]

Nome: CLASSFER D
Valve: [FI8GPa5T nic 3650]

OPS/images/nlc-201-news-Deployment_Buildpack_selection.png
@] Applicstion

%

Application details
Specify application details.

Name: Plc-201-news-java-student
Buildpack URL (optional):

Save to manifest ile

®

OPS/images/8391-nlc-spam.09.1.42.jpg

OPS/images/nlc-201-news-Deployment_Memory_and_URL_Settings.png
] Application

(=]]
Launch deployment
Speciy the depleyment dtals
Subdomain: nlc-201-news-jov-tudent
Domain: [mybluemixnet o)
Deployed URL: nlc-201-news-java-student-1}mybluemixnet Validate

Mermory Limit (MB): 512

(9)Start application on deployment

OPS/images/8391-nlc-spam.09.1.43.jpg

OPS/images/8391-nlc-news.08.1.069.jpg
‘Appicaton saves fesdback

User erters classficaton Wwinalirformaton needed data and decide whetherto

foadback foranaiysis

SMES arayze fasdback

improve the ciassifer

-@-@-3@

‘Appicaton pogram Database

ShEs,

OPS/images/nlc_spam_026.png
Edit cloudant in node

Delete

& Database

Q Search by

@ Name

Cancel

node-red-0116-cloudantNoSQLDB
my_database
all documents

User Feedback

OPS/images/nlc-201-news-Evaluate_Classifier_Eclipse_arguments.png
Name: Evaluste
© Main [¢9= Arguments _=i, JRE| % Classpath| &, Source| I Environment| (-] Common |
Program arguments:

f18c7157-nlc-5650 53bf6841-b04c-4812-9feS-{c25af43876f hy62p0VTFot CA\\Users\ -
\IBM_ADMIN\\git\\nlc-201-news-java-student\resources\news-test-nlc-toolkit.csv.

e
@Defauk [Sworkspace ocnic 20-news java-student)]

Oother |]

OPS/images/8391-nlc-spam.09.1.35.jpg

OPS/images/nlc-201-news-Evaluate_Output.png
51 Problems @ Javadoc (&) Declarstion (B Console £
<teminted> News Clssiicsion - Evaluste Jsva Application]

71,43 % of accuracy

OPS/images/nlc_spam_025.png
Get User Feedback from Cloudant

OPS/images/8391-nlc-spam.09.1.39.jpg

