

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page xxi.

 First Edition (December 2013)

 This edition applies to Version 11, Release 1 of DB2 for z/OS (program number 5615-DB2) and Version 11, Release 1 of DB2 Utilities Suite for z/OS (program number 5655-W87).

 	
 Note: This book is based on a pre-GA version of a product and may not apply when the product becomes generally available. We recommend that you consult the product documentation or follow-on versions of this book for more current information.

 Figures

 2-1 The classic DFSMS storage hierarchy		16

 2-2 Storage tiers overview		17

 3-1 LRSN delta explanation		25

 3-2 10-byte RBA/LRSN formats		26

 3-3 REORG TABLESPACE with Index conversion		38

 3-4 DSN1COPY: Catalog information mismatch		40

 3-5 PIT RECOVERY		43

 3-6 CREATE DGTT syntax with NOT LOGGED options		44

 4-1 PIT Recovery after materializing REORG of DB2 10 change		53

 4-2 MODIFY RECOVERY scenario		57

 4-3 RBDP after failing LPL or GRECP recovery in DB2 10		60

 4-4 RECOVER with ALTER LIMIT option		64

 4-5 RECOVER to CURRENT after DROP COLUMN		76

 4-6 RECOVER to LOGPOINT after DROP COLUMN		76

 4-7 TABLE layout after dropping a column		78

 4-8 Effect of DSN1COPY for a table with dropped column		79

 4-9 DBD lock on first insert		80

 4-10 DEFER DEFINE enhancement		81

 6-1 CREATE ALIAS statement syntax		106

 6-2 Application compatibility V11R1		110

 6-3 Application compatibility V10R1		111

 6-4 Result of sample query using GROUPING SETS (WORKDEPT, EDLEVEL, SEX)		121

 7-1 Need for differently structured data to gain business insights		137

 7-2 DB2 11 for z/OS enhancing Analytics on z platform with big data		138

 7-3 Hadoop key components		139

 7-4 HDFS overview		140

 7-5 MapReduce overview		141

 7-6 JAQL query components		142

 7-7 Big data use cases		144

 7-8 SPSS Modeler stream		147

 7-9 Publish for server scoring adapter option		147

 9-1 RMF Workload, LPAR CPU utilization		190

 9-2 RMF Workload, LPAR CPU utilization per WLM Report Class		190

 9-3 SQL based continuous block fetch		208

 9-4 Package based continuous block fetch		208

 9-5 Summary of local stored procedure improvements		215

 9-6 Moving to multi-threaded JVM environment		217

 9-7 Calling ADMIN_COMMAND_MVS from Data Studio		219

 9-8 ADMIN_COMMAND_MVS parameters in Data Studio		220

 9-9 Calling ADMIN_COMMAND_MVS: Result1 panel		220

 9-10 AR and AS DRDA components		225

 9-11 DB2 JDBC driver Versions web page		227

 9-12 db2 JDBC driver versions web page		228

 9-13 IBM Data Studio 3.2 and DB2 11		229

 9-14 IBM Data Studio 4.1 and DB2 11		229

 9-15 How to identify the Data Studio version		230

 10-1 DB2 10 and RACF Access Control Authorization Exit Authorization		240

 10-2 DB2 11 and RACF Access Control Authorization Exit Authorization		243

 10-3 DB2 11 REBIND PLAN command and PROGAUTH		251

 11-1 REORG TABLE SPACE PART with NPSIs		271

 11-2 New SORTNPSI keyword		271

 11-3 New DSNZPARM REORG_PART_SORT_NPSI		272

 11-4 Switch phase impact reduction		274

 11-5 Partition-level inline image copy performance		285

 11-6 AREO status after REORG REBALANCE		291

 11-7 RESTORE SYSTEM syntax diagram with SWITCH VCAT and SYSVALUEDDN		300

 11-8 LOAD SHRLEVEL NONE PARALLEL		302

 11-9 LOAD SHRLEVEL CHANGE PARALLEL		304

 11-10 DSNACCOX performance		313

 12-1 Currency of versions		316

 12-2 DB2 versions and required z/OS level		316

 12-3 Migration modes and paths		317

 12-4 DSNTIPG install panel		322

 12-5 EXPAND screen for panel DSNTIPG		324

 12-6 Install Panel DSNTIPC		326

 12-7 DSNTIPC results when using DSNTIDXB member		327

 12-8 DSNTIJXC/DSNTXAZP		330

 12-9 CREATE new DB2 11 DSNTIDxx input from old DB2 10 DSNTIDxx		331

 12-10 DB2 11 migration process at a glance		333

 12-11 V11 modes and APPLCOMPAT(V10R1)		378

 12-12 V11+1 modes and APPLCOMPAT(V10R1)		379

 13-1 DB2 11 performance: CPU changes per workload type		385

 13-2 DB2 10 performance expectations		385

 13-3 DB2 11 performance expectations		386

 13-4 DB2 buffer pool frame size options		388

 13-5 The pseudo-delete process		392

 13-6 Automated pseudo-delete cleanup process		393

 13-7 Example of using SYSINDEXCLEANUP for cleanup of pseudo-deleted entries		394

 13-8 Indirect reference - Overflow records		399

 13-9 DB2 statistics and the optimizer, previous to DB2 11		402

 13-10 The DB2 11 optimizer and BIND, REBIND, and PREPARE: statistics feedback		403

 13-11 he DB2 11 optimizer and EXPLAIN: statistics feedback		404

 13-12 Statistics granularity in SYSIBM.SYSSTATFEEDBACK table		405

 A-1 Stored procedure monitoring		423

 Tables

 3-1 UTILITY_OBJECT_CONVERSION		37

 3-2 SYSCOPY values for ICTYPE and TTYPE		39

 3-3 Composition of BACKUP token		41

 4-1 PIT recover allowed after materializing REORG		52

 4-2 SYSPENDINGDDL entry after RECOVER to PIT before materializing REORG		54

 4-3 WFSTGUSE_AGENT_THRESHOLD		66

 4-4 WFSTGUSE_AGENT_THRESHOLD sample		67

 4-5 DB2 behavior for WSTGUSE based on WFDBSEP setting		68

 4-6 Maximum WORKFILE storage configured		69

 4-7 Entry values for SYSPENDINGDDL		73

 6-1 Summary of SQL statements/features in DB2 11 for z/OS		100

 6-2 EMP_TEMPORAL_HIST table contents		117

 6-3 EMP_TEMPORAL table contents		117

 6-4 Sample time stamp values		119

 8-1 XQuery FLWOR expression keywords		153

 9-1 Client information fields length changes with DB2 11 for z/OS		172

 9-2 DSNRLMTxx longer columns in DB2 11		182

 9-3 DSNRLMTxx column difference summary DB2 10 versus DB2 11		184

 9-4 DDF - WLM classification attributes in z/OS 1.13		190

 9-5 New DDF - WLM classification attributes in z/OS 2.1		191

 9-6 Client information property values for type 4 connectivity to DB2 for z/OS		197

 9-7 Preliminary internal lab performance results		210

 10-1 SYSIBM.DSNPROGAUTH fields description		252

 10-2 SYSIBM.DSNPROGAUTH fields description		253

 10-3 DISTINCT and aggregation with column masking in DB2 10 versus DB2 11		266

 11-1 SORTDATA YES/NO RECLUSTER YES/NO summary		281

 11-2 New default statistics values		294

 11-3 REPAIR CATALOG utility will update the following catalog columns		310

 11-4 DB2 Utility options deprecated		314

 12-1 Mandatory operational requirements		319

 12-2 Target system conditional operational requirements		319

 12-3 EDM Pool stepped sizings		325

 12-4 Number of catalog and directory objects		341

 12-5 Tables having inline LOB columns		341

 12-6 System parameters with changed limits		354

 12-7 Removed system parameters		355

 12-8 DROP example for CLONE		361

 12-9 APPLCOMPAT defaults for BIND		375

 12-10 Behavior of V10R1 application compatibility		376

 13-1 SYSIBM.SYSINDEXCLEANUP		395

 13-2 TYPE of statistics recommendation		405

 13-3 REASON why statistics are recommended		406

 A-1 The QXST control block size is enlarged		429

 A-2 IFCID221		430

 A-3 IFCID225		430

 A-4 IFCID316, The QW0316 control block size is enlarged.		430

 A-5 IFCID401, The QW0401 control block size is enlarged.		431

 A-6 QW00xxER 		431

 B-1 DB2 10 current function and performance related APARs		438

 B-2 z/OS DB2-related APARs		439

 B-3 OMEGAMON PE GA and DB2 related APARs		439

 Examples

 2-1 ALTER BUFFERPOOL command to use 2 GB frame size	10

 2-2 Results of ALTER BUFFERPOOL command to change FRAMESIZE	10

 2-3 DISPLAY BUFFERPOOL command to show 2 GB frame size	10

 2-4 Results of DISPLAY BUFFERPOOL command showing 2 GB frame defined	10

 2-5 Results of DISPLAY BUFFERPOOL command showing 2 GB and 1 MB frame allocation	11

 2-6 D VIRTSTOR command to show the maximum allocation of 2 GB and 1 MB frames	12

 3-1 Output of DISPLAY GROUP command	26

 3-2 Ten byte RBA in MSTR in CM	27

 3-3 Log record in CM	27

 3-4 DSN1PRNT of a header page in extended format	28

 3-5 DSN1PRNT of a header page in basic format	28

 3-6 DSNJCNVT control statement	33

 3-7 DSNJU004 JCL	33

 3-8 DSNJU004 output showing if DSNJCNVT has run	34

 3-9 Output of TEST option	41

 3-10 Repair output	41

 3-11 BACKUP token prior to BSDS conversion	41

 3-12 BACKUP SYSTEM job output after BSDS conversion	42

 3-13 DSNJU004 after BACKUP SYSTEM for non-data sharing system	42

 3-14 BACK SYSTEM job output from data sharing system	42

 3-15 DSNJU004 after BACKUP SYSTEM for data sharing	42

 3-16 Error message for not found map table space	49

 4-1 DDL for table creation	53

 4-2 Selecting from SYSCOPY	55

 4-3 AREOR for all three partitions of the PBR	62

 4-4 WFSTGUSE per agent message	67

 4-5 WFSTGUSE per system message	68

 5-1 DISPLAY GROUPBUFFERPOOL output with write-around statistics	87

 5-2 DISPLAY GBPOOL command output for percentage based CLASST threshold	89

 5-3 ALTER GBPOOL command to express CLASST in number of pages	89

 5-4 ALTER GBPOOL command output showing CLASST in number of pages	89

 5-5 Syntax of MODIFY irlmproc,SET command	92

 6-1 Sample create global variable statement	103

 6-2 Scope of global variable: Different SQL statements on the same DB2 connection	103

 6-3 Sample - Ordinary Array definition	105

 6-4 Associative array data type - sample CREATE, DECLARE, and SET statements	105

 6-5 ARRAY_EXISTS predicate syntax	105

 6-6 Array data type create statement and sample use case in a scalar function	112

 6-7 Sample invocation of UNNEST table function	114

 6-8 Sample invocation of UNNEST table function with ORDINALITY clause	114

 6-9 APPLICATION COMPATIBILITY - Setting the special register values	114

 6-10 Sample SET CURRENT TEMPORAL BUSINESS_TIME statement	115

 6-11 SET CURRENT TEMPORAL SYSTEM_TIME to past time period	115

 6-12 SET CURRENT TEMPORAL SYSTEM_TIME to future time period	116

 6-13 Sample temporal table DDL statements	118

 6-14 Sample VIEW statement on a temporal table along with a temporal Query	119

 6-15 Selecting with AS OF	120

 6-16 Sample SQL statement utilizing GROUP BY GROUPING SETS	121

 6-17 Sample ROLLUP construct	122

 6-18 Sample ROLLUP result set	122

 6-19 Selecting with grouping sets	123

 6-20 Sample SQL statement using CUBE construct in a GROUP BY clause	124

 6-21 Result set from the sample CUBE construct	124

 6-22 LIKE BLANK INSIGNIFICANT DSNZPARM behavior with trailing blanks	128

 6-23 Sample LIKE predicate to illustrate the stripping of trailing blanks	128

 7-1 DDL for ARCHIVE ENABLE	132

 7-2 ALTER TABLE ADD COLUMN on an archive enabled table	133

 7-3 Sample INSERT statement with MOVE_TO_ARCHIVE set to N	133

 7-4 Error message on an INSERT with MOVE_TO_ARCHIVE set to ' N'	133

 7-5 Sample DELETE from an Archive Enabled Table	134

 7-6 Sample SELECT statement on an archive enabled table	135

 7-7 Sample cursor statement in a static application	135

 7-8 DDL for DISABLE ARCHIVE statement	136

 7-9 Sample Generic Table UDF code	144

 7-10 Sample HDFS_READ from a CSV file	145

 7-11 Sample JAQL_SUBMIT	145

 7-12 Nested UDF calls	146

 7-13 Sample SQL statement for a scoring adapter for DB2 on z/OS	148

 8-1 DDL for purchaseOrdersXML table	153

 8-2 DDL for statusXML table	154

 8-3 INSERT statements for purchaseOrdersXML table	154

 8-4 INSERT statements for statusXML table	156

 8-5 Use of FLWOR “for” keyword to loop through a sequence of values	157

 8-6 Results of sample XQuery using FLWOR keyword “for”	157

 8-7 Sample XQuery using FLWOR keyword “for” and XMLSERIALIZE	158

 8-8 Sample XQuery using all FLWOR keywords	159

 8-9 Results of sample XQuery using all FLWOR keywords	159

 8-10 XQuery FLWOR expression to express a join	160

 8-11 Results of XQuery FLWOR expression to express a join	160

 8-12 Example of an XQuery constructor	161

 8-13 Sample XQuery using conditional expression	162

 8-14 Results of sample XQuery using conditional expression	163

 8-15 Sample XQuery using fn:avg built-in function	163

 8-16 Syntax for boundary-space declaration	164

 8-17 Syntax for copy namespaces declaration	164

 8-18 Declaration example preserving boundary space and copy namespaces	165

 8-19 Results of query to preserve boundary space and copy namespaces	165

 8-20 Declaration example not preserving boundary space and copy namespaces	166

 8-21 Results of query to not preserve boundary space and copy namespaces	166

 8-22 Example of avoiding XML schema revalidation	167

 8-23 UPDATE of an XML document with partial revalidation	168

 9-1 -DIS THD(*) DETAIL	173

 9-2 Retrieve the CURRENT CLIENT_CORR_TOKEN value using SQL	173

 9-3 Value of CURRENT CLIENT_CORR_TOKEN	174

 9-4 Client correlation token components	174

 9-5 Java and CURRENT CLIENT_CORR_TOKEN	174

 9-6 Java program output, overriding the correlation token	175

 9-7 -DIS THD(*) DETAIL and the client correlation token value	175

 9-8 DDL and Insert for example table	175

 9-9 Contents of example table	176

 9-10 Using the CURRENT CLIENT_CORR_TOKEN in SQL	176

 9-11 Java and SQL exploiting CURRENT CLIENT_CORR_TOKEN	176

 9-12 Java application execution output	177

 9-13 Query on SYSIBM.SYSVARIABLES	178

 9-14 OMPE command JCL example	179

 9-15 OMPE Accounting Trace Long - JDBC driver 10.1 fix pack 0	180

 9-16 OMPE Accounting Trace Long - JDBC driver 10.5 fix pack 2	180

 9-17 JDBC driver correlation: Old Java driver	180

 9-18 JDBC driver correlation: New Java driver	180

 9-19 OMPE Accounting Trace report, identification section	181

 9-20 DDL to create the RLMT table DSNRLMT01, DB2 11 version	183

 9-21 DDL to create the RLMT table DSNRLMT01, DB2 10 version	183

 9-22 Start Resource Limit Facility command	184

 9-23 Successful start of RLF	184

 9-24 Starting RLIMIT in DB2 10 with DSNRLMT01 version DB2 11	185

 9-25 -DIS RLIMIT: RLF partially started	185

 9-26 Starting RLIMIT in DB2 11 CM with DSNRLMT01 version DB2 11	185

 9-27 -DIS RLIMIT: RLF partially started	186

 9-28 -DIS RLIMIT output example	186

 9-29 ALTER TABLE SYSIBM.DSNRLMT01	186

 9-30 Copying RLMT data to a DB2 11 version of the table	186

 9-31 Copying RLST data to a DB2 11 version of the table	187

 9-32 -STA RLIMIT command	187

 9-33 Starting RLIMIT on a new set of RLF tables	187

 9-34 WLM Modify Rules for the Subsystem Type panel	192

 9-35 Setting accounting information in a Java program	192

 9-36 WLM classification rules: nesting accounting information	193

 9-37 installing WLM definitions	193

 9-38 WLM Service definition installation successful	194

 9-39 Activating WLM definitions	194

 9-40 WLM Policy activated	194

 9-41 RMF Enclave Report panel	194

 9-42 Enclave details in RMF Enclave report	195

 9-43 RMF Enclave Classification Attributes	195

 9-44 WLM_SET_CLIENT_INFO syntax	196

 9-45 Using the setClientInfo Java method	197

 9-46 Java program: setting client information fields	198

 9-47 Java sample program output	200

 9-48 -DIS THD(*) DETAIL	200

 9-49 DIS THD(*) DETAIL and message V436	201

 9-50 DIS THD(*) DETAIL and message V436 missing	201

 9-51 CANCEL THREAD command in DB2 11	203

 9-52 -DISPLAY THREAD(*) LOCATION(*) command	203

 9-53 CANCEL DDF THREAD command syntax	203

 9-54 CANCEL DDF THD FORCE example	204

 9-55 DB2 11 new message DSNV519I	204

 9-56 Structure of DB2 message DSNV519I	204

 9-57 CANCEL DDF THREAD command	205

 9-58 CANCEL THREAD command output example	205

 9-59 Cancelled thread: DB2 MSTR feedback	205

 9-60 JCC trace and the default interrupt processing mode	206

 9-61 SPUFI panel DSNEBP11, defaults for REBIND PACKAGE	208

 9-62 REBIND PACKAGE with DBPROTOCOL(DRDACBF) option	209

 9-63 REBIND output	209

 9-64 Structure of SQLCODE -30045	212

 9-65 Syntax CALL ADMIN_COMMAND_MVS	218

 9-66 Message DSNA601I	219

 9-67 ADMIN_COMMAND_MVS and WLM DISPLAY: system log messages	220

 9-68 RACF - GENERAL RESOURCE SERVICES panel	221

 9-69 RACF SEARCH FOR GENERAL RESOURCE PROFILES panel	221

 9-70 RACF COMMAND OUTPUT, MVS.MCSOPER	222

 9-71 RACF COMMAND OUTPUT, resource MVS.MCSOPER.*	222

 9-72 RACF define resource MVS.MCSOPER.DSNADMCM	222

 9-73 RACF define resource output example	223

 9-74 RACF SETROPTS REFRESH command	223

 9-75 RACF resources search result	223

 9-76 RACF resource MVS.MCSOPER.DSNADMCM	223

 9-77 Error message DSNA628I	223

 9-78 RACF message ICH408I	224

 9-79 RACF PERMIT MVS.MCSOPER.DSNADMCM	224

 9-80 RACF SETROPTS RACLIST(OPERCMDS) REFRESH command	224

 9-81 RACF MVS.MCSOPER.DSNADMCM resource details	224

 9-82 Using the db2level command	226

 9-83 Running the db2jcc utility	226

 9-84 Db2jcc utility output	226

 9-85 JDBC connection url String with TRACE_ALL	227

 9-86 JDBC trace output	227

 9-87 -DIS DDF output example	230

 9-88 DB2 Command Line Processor initial contents	231

 9-89 DB2 catalog TCP/IP node example	231

 9-90 Sample Windows hosts file	232

 9-91 DB2 catalog TCP/IP node example using an hosts file entry	232

 9-92 DB2 catalog TCP/IP node output example	232

 9-93 DB2 terminate example	232

 9-94 DB2 list node directory command example	233

 9-95 DB2 catalog database command example	233

 9-96 DB2 catalog database command output example	233

 9-97 DB2 list database directory command output example	233

 9-98 Connect to a DB2 for z/OS database using the CLP	234

 9-99 DB2 catalog ODBC data source command example	235

 9-100 DB2 catalog ODBC data source command output example	235

 9-101 DB2 LIST ODBC DATA SOURCES command example	235

 10-1 RACF permit ACCESS(READ) on CLASS(DSNR)	242

 10-2 RACF PERMIT command and % generic resource character	245

 10-3 RACF PERMIT DELETE command	245

 10-4 SQLCODE -551 explanation and RACF changes	246

 10-5 Updates to DB2 message DSNT210I	247

 10-6 DSNX235I	247

 10-7 DSNX236I	248

 10-8 DSNX237I	249

 10-9 REBIND to enable PROGAUTH	251

 10-10 DDL for creating the table SYSIBM.DSNPROGAUTH	252

 10-11 DSNTIJSG extract: sample INSERT in SYSIBM.DSNPROGAUTH	253

 10-12 REBIND PLAN output showing PROGAUTH enabled	254

 10-13 BIND PLAN DSNTIA11 in job DSNTIJTM	255

 10-14 BIND PLAN DSNTIA11 output	255

 10-15 SYSPLAN query to show a PLAN’s PROGAUTH value	256

 10-16 SQL query on SYSIBM.SYSPACKLIST	256

 10-17 SQL query on SYSIBM.SYSPACKAGE	257

 10-18 INSERT SQL on SYSIBM.DSNPROGAUTH	258

 10-19 SQL query on SYSIBM.DSNPROGAUTH	258

 10-20 Testing program authentication with DSNTIAD	258

 10-21 Program authentication preventing execution	258

 10-22 Updating SYSIBM.DSNPROGAUTH to allow program execution	259

 10-23 SQL query on SYSIBM.DSNPROGAUTH, ENABLED = ‘Y’	259

 10-24 Program authentication allowing execution	259

 10-25 SQL to find DBNAME and TSNAME of SYSIBM.DSNPROGAUTH	260

 10-26 Display status of SYSIBM.DSNPROGAUTH table space status	260

 10-27 SYSIBM.DSNPROGAUTH not available prevents program execution	260

 10-28 DB2 MSTR message 00C90081	261

 10-29 SPUFI option AUTOCOMMIT = NO	261

 10-30 SQL to update SYSIBM.DSNPROGAUTH	262

 10-31 Locks on SYSIBM.DSNPROGAUTH table space	262

 10-32 Program failure due to locks on SYSIBM.DSNPROGAUTH	262

 10-33 Sample table and data for column mask example	263

 10-34 Creating a column mask	263

 10-35 Activating column access control	264

 10-36 Column access control effects on SELECT	264

 10-37 Deactivating column access control	265

 10-38 SQLCODE -20478	265

 10-39 Aggregate function with DISTINCT in SQL	266

 11-1 REORG TABLESPACE PART WITH SORTNPSI YES	272

 11-2 REORG TABLESPACE PART WITH SORTNPSI YES job output	273

 11-3 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES	275

 11-4 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES job output	275

 11-5 Mapping table with the DB2 10 format and run REORG	278

 11-6 Mapping table with the DB2 11 format and run REORG	279

 11-7 Mapping table and run REORG	280

 11-8 Database and table space format when automatically created by DB2	280

 11-9 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO	282

 11-10 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO job output	283

 11-11 REORG TABLESPACE PART WITH INLINE IMAGE COPY	283

 11-12 REORG TABLESPACE PART WITH INLINE IMAGE COPY job output	284

 11-13 REORG TABLESPACE PART WITH LISTPARTS	286

 11-14 REORG TABLESPACE PART WITH LISTPARTS job output	287

 11-15 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE	288

 11-16 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE job output	289

 11-17 REORG LOB SHRLEVE NONE	291

 11-18 REORG LOB SHRLEVE NONE job output	292

 11-19 REORG SHRLEVEL CHANGE LOGRANGES NO	292

 11-20 REORG SHRLEVEL CHANGE LOGRANGES NO job output	292

 11-21 RUNSTATS RESET option	296

 11-22 RUNSTATS RESET job output	298

 11-23 RUNSTATS USE PROFILE usability for LISTDEF	298

 11-24 RUNSTATS USE PROFILE usability for LISTDEF job output	298

 11-25 RESTORE SYSTEM LOGONLY SWITCH VCAT	300

 11-26 LOAD SHRLEVEL NONE with PARALLEL option	302

 11-27 LOAD SHRLEVEL NONE with PARALLEL option job output	303

 11-28 LOAD SHRLEVEL CHANGE with PARALLEL option	304

 11-29 LOAD SHRLEVEL CHANGE with PARALLEL option job output	305

 11-30 DISPLAY UTILITY command output	306

 11-31 TEMPLATE with DSNTYPE EXTREQ and TIME LOCAL	307

 12-1 Missing fallback PTF error message	335

 12-2 Install and IVP jobs generated as result of ENFM installation CLIST completion	339

 12-3 -DIS GROUP result from non-data-sharing subsystem	342

 12-4 DSNU2902I error message	343

 12-5 DSNU2902I message text	343

 12-6 -DISPLAY GROUP DETAIL output	344

 12-7 -DIS GROUP DETAIL output in ENFM	344

 12-8 LIKE_BLANK_INSIGNIFICANT	348

 12-9 Books definition	361

 12-10 CAST as TIMESTAMP with APPLCOMPAT set to V10R1	365

 12-11 CAST as TIMESTAMP with APPLCOMPAT set to V11R1	365

 12-12 Invoke scalar function TIMESTAMP with store clock value	366

 12-13 V9 result of implicit cast of decimal using CHAR function	373

 12-14 V10 result of implicit cast of decimal using CHAR function	373

 12-15 IFCID 366 record description	380

 12-16 IFCID 376 record description	381

 13-1 Enable the cleanup on all indexes	396

 13-2 Disable the cleanup on all indexes	396

 13-3 Disable cleanup on all indexes except on every Saturday and Sunday	396

 13-4 Disable cleanup on all indexes every day from 8am to 6pm local time	397

 13-5 Disable cleanup on all indexes in database RMCDB00	397

 13-6 Two rows on the same level with conflicting information about Monday	397

 13-7 Sample use of the new FOR UPDATE option of PCTFREE	400

 A-1 New IFCID 377 to record index pseudo delete daemon cleanup	412

 A-2 Changed IFCID 106 to record INDEXCLEANUP_THREADS	412

 A-3 New IFCID 27	413

 A-4 IFCID 2 and IFCID 3	414

 A-5 New IFCID 382 and 383 to record suspend operations for parallel task	414

 A-6 IFCID369 - Aggregate accounting interface details	415

 A-7 IFCID0053	416

 A-8 IFCID0058	416

 A-9 Accounting trace enhancements filed QHWCAACE	417

 A-10 Accounting trace enhancements QWACZIIP_ELIGIBLE	417

 A-11 DXR100I message	418

 A-12 IFCID217, IFCID225 and IFCID106	419

 A-13 IFCID0380	423

 A-14 QW0381 details	425

 A-15 QW0497 details	425

 A-16 QW0498 details	425

 A-17 QW0499 details	426

 A-18 CPU time that was spent running on a Specialty Engine	427

 A-19 Incompatible changes for new RBA/LRSN	428

 A-20 IFCID127 and IFCID 128	429

 A-21 Changes IFCID 002/225 to record arrays support	431

 A-22 Changes IFCID 003/239 to record autonomous transactions	432

 A-23 Changes IFCID 366 to record application incompatibility	432

 A-24 Changes IFCID 230/256 to record castout queue threshold	434

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 CICS®

 DB2®

 DB2 Connect™

 Distributed Relational Database Architecture™

 DRDA®

 DS8000®

 FICON®

 FlashCopy®

 IBM®

 IMS™

 InfoSphere®

 iSeries®

 Language Environment®

 MQSeries®

 MVS™

 OMEGAMON®

 Optim™

 Parallel Sysplex®

 pureQuery™

 pureXML®

 RACF®

 Redbooks®

 Redbooks (logo)[image:]®

 RETAIN®

 RMF™

 SPSS®

 System i®

 System Storage®

 System z®

 Tivoli®

 VTAM®

 WebSphere®

 z/OS®

 z10™

 zEnterprise™

 The following terms are trademarks of other companies:

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Other company, product, or service names may be trademarks or service marks of others.

 Summary of changes

 This section describes the technical changes made in this edition of the book and in previous editions. This edition might also include minor corrections and editorial changes that are not identified.

 Summary of Changes
for SG24-8180-00
for IBM DB2 11 for z/OS Technical Overview
as created or updated on May 5, 2016.

 December 2013, First Edition

 This revision of the first edition published December 2013, reflects the addition, deletion, or modification of new and changed information described below.

 May 2014, First Update

 Changed information

 •Replaced Figure 4-9 on page 80.

 •Removed an error message at “Problem determination” on page 254.

 •Corrected parameter spelling of PROGAUTH keyword.

 New information

 •Updated RSU at Appendix B.1, “DB2 APARs” on page 438.

 Preface

 IBM® DB2® Version 11.1 for z/OS® (DB2 11 for z/OS or just DB2 11 throughout this book) is the fifteenth release of DB2 for IBM MVS™. It brings performance and synergy with the IBM System z® hardware and opportunities to drive business value in the following areas:

 •Unmatched reliability, availability, and scalability

  –	Improved data sharing performance and efficiency

  –	Less downtime by removing growth limitations

  –	Simplified management, improved autonomics, and reduced planned outages

 •Save money, save time

  –	Aggressive CPU reduction goals

  –	Additional utilities performance and CPU improvements

  –	Save time and resources with new autonomic and application development capabilities

 •Simpler, faster migration

  –	SQL compatibility, divorce system migration from application migration

  –	Access path stability improvements

  –	Better application performance with SQL and XML enhancements

 •Enhanced business analytics

  –	Faster, more efficient performance for query workloads

  –	Accelerator enhancements

  –	More efficient inline database scoring enables predictive analytics

 The DB2 11 environment is available either for new installations of DB2 or for migrations from DB2 10 for z/OS subsystems only.

 This IBM Redbooks® publication introduces the enhancements made available with DB2 11 for z/OS. The contents help database administrators to understand the new functions and performance enhancements, to plan for ways to use the key new capabilities, and to justify the investment in installing or migrating to DB2 11.

 Authors

 This book was produced by a team of specialists from around the world working at the IBM Silicon Valley Lab, San Jose, California.

 Paolo Bruni is a DB2 Information Management Project Leader at the International Technical Support Organization based in the Silicon Valley Lab. He has authored several IBM Redbooks publications about DB2 for z/OS and related tools, and has conducted workshops and seminars worldwide. During his years with IBM, in development and in the field, Paolo has worked mostly on database systems.

 Felipe Bortoletto is a Certified IBM IT Specialist in information management and an IBM Certified DBA for DB2 for z/OS V7, V8, V9 and DB2 10. He has 18 years of experience in IT with 13 years of experience with DB2 for z/OS. He joined IBM 9 years ago and is currently a member of the IBM GBS in Brazil. He holds a degree in Computer Science from UNICAMP. Felipe co-authored Securing and Auditing Data on DB2 for z/OS, SG24-7720 and DB2 10 for z/OS Performance Topics, SG24-7942.

 Ravikumar Kalyanasundaram is an IBM Certified Thought Leader in the I/T Specialist profession and a Distinguished I/T Specialist (Certified by The Open Group). He has more than 21 years of experience and currently working as a Senior Managing Consultant at IBM Software Group - IM Lab Services. He provides technical consulting services to clients world wide, utilizing specialized knowledge and skills in DB2 for z/OS database, Analytics Accelerator and Information Management tools. He provides a truly integrated set of high quality services with a focus on database performance management. He plays a direct role in increasing the long term strength and enhancing the market position and competitive posture of IBM database products and tools. He holds a Bachelors degree in Electrical and Electronics Engineering and a Masters degree in Business Administration (MBA). He is a detail oriented person, with outstanding project management, problem-solving, team-building and decision making skills. Ravi is a co-author of several IBM Redbooks publications, including Optimizing Restore and Recovery Solutions with DB2 Recovery Expert for z/OS V2.1, SG24-7606, DB2 9 for z/OS: Resource Serialization and Concurrency Control, SG24-4725, DB2 10 for z/OS Performance Topics, SG24-7942, Optimizing DB2 Queries with IBM DB2 Analytics Accelerator for z/OS, SG24-8005, Hybrid Analytics Solution using IBM DB2 Analytics Accelerator for z/OS V3.1, SG24-8151.

 Sabine Kaschta is a DB2 Specialist working for the IBM Software Group in Germany. Currently, she works as a Segment Skills Planner for the worldwide curriculum for DB2 for z/OS training as well as IT consultant. She also works on course development and in her role as IT consultant enjoys teaching customized workshops for customers worldwide. Sabine has 22 years of experience working with DB2. Before joining IBM in 1998, she worked for a third-party vendor providing second-level support for DB2 utilities. She is experienced in DB2 system programming and client/server implementations in the insurance industry in Germany. She co-authored several IBM Redbooks publications, including DB2 UDB for OS/390 and Continuous Availability, SG24-5486, Cross-Platform DB2 Distributed Stored Procedures: Building and Debugging, SG24-5485, IBM TotalStorage Migration Guide for the SAP User, SG24-6400, DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know, ... and More, SG24-6079, DB2 9 for z/OS Technical Overview, SG24-7330, DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604, and DB2 9 for z/OS: Deploying SOA Solutions, SG24-7663, DB2 10 for z/OS Technical Overview, SG24-7892.

 Glenn McGeoch is a Senior DB2 Consultant for the IBM DB2 for z/OS Lab Services organization based in San Francisco, CA, US. He has 36 years of experience in the software industry, with 28 years of experience in working with DB2 for z/OS. He holds a degree in Business Administration from the University of Massachusetts and an MBA from Rensselaer Polytechnic Institute. Glenn worked for 19 years as an IBM customer with a focus on IBM CICS® and DB2 application development, and spent the last 17 years with IBM assisting DB2 customers. His areas of expertise include application design and performance, stored procedures, and DB2 migration planning. He has presented to regional DB2 User Groups and to customers on various DB2 topics. Glenn co-authored several IBM Redbooks publications, including DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083, DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604, DB2 10 for z/OS Performance Topics, SG24-7942, and Streamline Business with Consolidation and Conversion to DB2 for z/OS, SG24-8044.

 Cristian Molaro is an IBM Gold Consultant, an independent DB2 specialist, and an instructor based in Belgium. He has been recognized by IBM as an IBM Champion for Information Management in 2009, 2010, 2011, 2012, and 2013. His main activity is linked to DB2 for z/OS administration and performance. Cristian is co-author of several IBM Redbooks publications related to DB2. He holds a Chemical Engineering degree and a Masters degree in Management Sciences. Cristian was recognized by IBM as “TOP” EMEA Consultant at the IDUG EMEA DB2 Tech Conference Prague 2011.

 Special thanks to people worldwide who have contributed to the preparation of the material for the Sequoia Introduction Program and the programming specifications. We have used that material as the basis for this book.

 Thanks to the following people for their contributions to this project:

 Bob Haimowitz
International Technical Support Organization

 Jeff Berger
Mengchu Cai
Gayathiri Chandran
Ramani Croisettier
Janet Figone
Bill Franklin
Jeff Josten
Akiko Hoshikawa
Gopal Krishnan
Laura Kunioka-Weis
Allan Lebovitz
Chris Leung
Maggie Lin
Irene Liu
John Lyle
Jane Man
Bruce McAlister
Ka-Chun Ng
Jim Pickel
Emily Prakash
Terry Purcell
Jim Ruddy
John Tobler
Jay Yothers
Debbie Yu
IBM Silicon Valley Lab

 Shirley Brost
IBM Information Management Lab Services

 Robert Gensler
Glenn Wilcock
IBM Tucson Lab

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks publications

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

DB2 11 for z/OS at a glance

 DB2 11 for z/OS delivers key innovations that reduce your total cost of ownership and that increase availability, scalability, and security for your business-critical information. In addition, DB2 11 for z/OS offers improvements for analytics and makes installation and migration simpler and faster. DB2 11 for z/OS can also connect core operational data with big data to drive more business value and uses secure connections to support increasing mobile device requests.

 This chapter provides a brief overview of the most important functions provided by IBM DB2 Version 11.1 for z/OS (also referred to as DB2 11 for z/OS or just DB2 11 throughout this book). For the purposes of this discussion, these functions are divided into the following categories, which correspond to the parts of this book:

 •Subsystem

 •Application functions

 •Operations and performance

 1.1 Subsystem

 As with all previous versions, DB2 11 for z/OS takes advantage of the latest improvements in the platform. DB2 11 increases the synergy with System z hardware and software to provide better performance, more resilience, and better function for an overall improved value.

 DB2 11 benefits from advances in large real memory support, faster processors, and better hardware compression.

 Additional RUNSTATS and LOAD workloads can now take advantage of zIIP engines, driving faster LOAD processing, improved performance, and CPU savings. With IBM zEnterprise™ EC12 (zEC12) and DB2 11, you can achieve additional CPU reductions by using pageable large (1 MB) page frames and Flash Express and by supporting 2 GB page frames.

 In DB2 11, the relative byte address (RBA) and log record sequence number (LRSN) log records are expanded from basic 6-byte format to extended 10-byte format. You also can convert the RBA and LRSN to extended 10-byte format to avoid reaching the logging limits. Extending the RBA and LRSN to 10-byte format helps to avoid wrapping of the RBA and LRSN values, which can cause system problems. In addition, the increased precision of the 10-byte format for the LRSN provides performance improvements for data sharing environments.

 In DB2 11 you can alter the limit keys for a partitioned table space without impacting the availability of the data. When you change the limit key values, the data remains available, and applications can continue to access the data.

 Under some conditions, DB2 11 can improve performance, because there is less need to use a REORG utility. These improvements come in the following ways:

 •By automatically cleaning up pseudo-deleted index entries.

 •Second, by managing free space differently to reduce the number of indirect references when the row size varies.

 1.2 Application functions

 DB2 11 delivers several SQL enhancements that can help applications to ease development and porting. DB2 11 also provides several enhancements to the support of IBM pureXML®, stored procedures, and connectivity. Application-enabling infrastructure changes allow for intersection with big data, XML, and e-business.

 In addition to providing more SQL aggregation improvements, the combination of z/OS Communication Server for TCP/IP, DB2 11 functions and the many new features in IBM DB2 Analytics Accelerator V4 improve the bandwidth of the hybrid system solution for OLTP and analytical workloads.

 IBM also provides the InfoSphere® BigInsights solution, which brings the power of Hadoop to the enterprise. DB2 11 provides an efficient access to BigInsights data with the use of a “universal table” user-defined function that allows this data to be read in DB2. Alternatively, DB2 data can also be accessed from BigInsights using a Jaql JDBC driver.

 In DB2 11, expanded support for SQL, XML, and temporal tables can result in improved application performance.

 DB2 11 allows you to automatically insert rows that are deleted from one table into a separate table called an archive table. Archive tables provide the following benefits:

 •DB2 can manage historical data for you. You do not have to manually move data to a separate table.

 •Because rows that are infrequently accessed are stored in a separate table, you can potentially improve the performance of queries against the archive-enabled table.

 •You can modify queries to include or exclude archive table data without having to change the SQL statement and prepare the application again. Instead, you can control the scope of the query with a global variable.

 •You can store archive tables on a lower-cost device to reduce operating costs.

 1.3 Operations and performance

 With key enhancements in DB2 11, DB2 for z/OS and System z continue to lead the industry in security and auditing. With DB2 11 RACF® Exit enhancements, external security that is managed by RACF administrators can now fully handle access to DB2 objects. This function provides the following benefits:

 •The use of the OWNER keyword is now acceptable by RACF. A new installation parameter allows the use of the package OWNER for static and dynamic SQL authorization.

 •A refresh function for DB2’s authorization cache is implemented, which allows RACF to dynamically notify changes and keep the security definitions synchronized.

 •DB2 11 also removes some of the restrictions on the use of the SQL GROUP BY, DISTINCT, and UNION clauses when querying a masked table.

 Utilities have enhancements that can significantly reduce execution time for REORG, more zIIP eligibility for the RUNSTATS utility. Point-in-time recovery is now allowed, which follows dynamic schema changes and can improve application availability and DBA productivity.

 In DB2 11, simpler, faster migration results in a faster return on your investment. This version of DB2 for z/OS provides enhancements to the DB2 installation CLIST, ISPF panels, and jobs, and provides new installation verification procedures (IVPs). Also, a new feature helps to streamline the migration process by allowing an application with incompatible SQL or XML to continue running on DB2 11 without requiring code changes. You no longer need to wait for application changes to be planned and delivered for your business to realize the benefits of DB2 11.

 Performance improvements in DB2 11 focus on optimizing query processing and reducing CPU processing time without causing significant administration or application changes. However, DB2 11 also offers a balanced approach to performance improvements across all types of workloads, whether your workloads are for online transaction processing (OLTP), batch, or utilities.

 Early measurements show DB2 11 CPU savings of up to 10% for complex OLTP and update-intensive batch workloads when compared to DB2 10. Queries can see up to 25% DB2 CPU savings for uncompressed tables and up to 40% when running against compressed tables. Benefits can be achieved without any application changes, just binding. More CPU savings are possible for specific workloads, with application changes.

[image:]
[image:]

Subsystem

 DB2 continues to evolve by removing structural constraints to support its increasing use by concurrent workloads. Several improvements to the DB2 engine allow better and more use of System z hardware and software functions that provide growth, performance, and cost of ownership reduction.

 The following chapters in this part describe functions generally related to the DB2 subsystem and the z/OS platform:

 •Chapter 2, “Synergy with System z” on page 7

 •Chapter 3, “Scalability” on page 23

 •Chapter 4, “Availability” on page 51

 •Chapter 5, “Data sharing” on page 85

[image:]
[image:]

Synergy with System z

 As with all previous versions, DB2 11 for z/OS takes advantage of the latest improvements in the platform. DB2 11 increases the synergy with System z hardware and software to provide better performance, more resilience, and better function for an overall improved value. In addition, DB2 11 benefits from advances in large real memory support, faster processors, and better hardware compression.

 DB2 for z/OS is designed to take advantage of the System z platform to provide capabilities that are unmatched in other database software products. The DB2 development team works closely with the System z hardware and software teams to take advantage of existing System z enhancements and to drive many of the enhancements that are available on the System z platform.

 This chapter describes the synergy between DB2 11 and the System z hardware and software that removes constraints for growth, improves reliability and availability, and continues to improve total cost of ownership and performance. It also outlines features and functions of the IBM zEnterprise platform and z/OS V2R1 that are expected to benefit DB2 for z/OS. It includes the following topics:

 •Synergy with IBM zEnterprise System

 •Synergy with IBM System z and z/OS

 •Using zIIP speciality processors

 •Reduced need for REORG

 •DFSMS storage tiers

 •Additional System z enhancements

 2.1 Synergy with IBM zEnterprise System

 The IBM zEnterprise System delivers unique value and industry-leading capabilities that allow you to maximize the business value of your unique information. The IBM zEnterprise EC12 (zEC12) is the cornerstone of the latest zEnterprise System and flagship of the IBM Systems portfolio. The superscalar design allows the zEC12 to deliver a record-level capacity. It is powered by 120 of the world’s most powerful microprocessors that run at 5.5 GHz and is capable of executing more than 78,000 millions of instructions per second (MIPS).

 DB2 for z/OS takes advantage of the following features available with the zEC12:

 •Faster CPU speed speed

 •More system capacity

 •zEC12 hardware features

 2.1.1 Faster CPU speed

 The CPU speed of the zEC12 has been measured at 1.25 times the speed of the z196. The improved CPU speed of the zEC12 provides the following performance improvements over the z196 for DB2:

 •20-28% CPU reduction for OLTP workloads

 •25% CPU reduction for Query and Utility workloads

 •1-15% less compression overhead with DB2 data

 2.1.2 More system capacity

 The zEC12 provides up to 50% more total capacity than the z196. This increase capacity makes the zEC12 an excellent choice to grow either horizontally or vertically within one server. The zEC12 is a good choice if you are planning a large scale consolidation because of its ability to provide secure data serving and to support mission-critical transaction processing. DB2 11 provides scalability features, as described in Chapter 3, “Scalability” on page 23. The zEC12 provides the synergy to take advantage of these scalability enhancements in DB2 11.

 2.1.3 zEC12 hardware features

 DB2 11 takes advantage of the following hardware features of the zEC12.

 Large frame area (LFAREA)

 The large frame area is used for the fixed 1 MB large page frames and fixed 2 GB large page frames. Using large page frames can improve performance for some applications by reducing the overhead of dynamic address translation. This improvement is achieved by each large frame requiring only one entry in the translation lookaside buffer (TLB), as compared to the larger number of entries that are required for an equivalent number of 4 KB page frames. A single TLB entry improves TLB coverage for users of large page frames by increasing the hit rate and decreasing the number of TLB misses that an application incurs.

 	
 TLB buffer: Memory addresses that are referred to by a process are virtual addresses and require translation to the physical address. The TLB is a relatively small cache area that is used to perform this address translation.

 Large pages are a performance improvement feature for some cases, but switching to large pages is not recommended for all workloads. Large pages provide performance value to a select set of applications that can generally be characterized as memory access-intensive and long-running. These applications meet the following criteria:

 •They must reference large ranges of memory.

 •They tend to exhaust the private storage areas that are available within the 2 GB address space (such as IBM WebSphere®), or they use private storage that is above the 2 GB address space (such as IBM DB2).

 Flash memory and pageable 1 MB page frames

 The zEC12 supports an optional hardware feature called Flash Express memory cards. These memory cards are supported in an I/O drawer with other I/O cards. The cards come in pairs for improved availability, and no HCD/IOCP definition is required. Flash memory is assigned to partitions the same way that main memory is assigned, and each partition’s flash memory is isolated, similar to main memory. You can dynamically increase the maximum amount of flash memory on a partition, and you can dynamically configure flash memory into and out of the partition.

 You can use flash memory to solve many different problems. Flash memory is much faster than spinning disk, but it is much slower than main memory. Flash memory takes less power to utilize than either option.

 With the combination of Flash Express installed on a zEC12 and the pageable 1 MB large page frame support in z/OS V1R13, DB2 takes advantage of the large page frame support by allocating internal control blocks (PMBs) using 1 MB pageable storage. These large page frames can be paged to and from Flash Express, and performance might be improved due to a reduction in TLB misses and an increase in the TLB hit rate.

 Flash memory can also be used to improve SVC dump data capture time. It removes the requirement for pageable link pack area (PLPA) and common page data sets when used for cold start IPLs.

 This feature requires zEC12 (2827) hardware with Flash Express installed and z/OS V1R13 and above with requisite PTFs (FMID JBB778H). APARs PM85944 and PM90486 retrofit this feature to DB2 10 for z/OS.

 2 GB large page frames

 A 2 GB page frame is a memory page that is 2048 times larger than a 1 MB page and 524,288 times larger than the ordinary 4 KB base page. 2 GB large page frames allow for a single TLB entry to fulfill many more address translations than either a large page or an ordinary base page. 2 GB large page frames provide exploiters with much better TLB coverage and, therefore, potentially allow the following benefits:

 •Better performance by decreasing the number of TLB misses that an application incurs

 •Less time spent converting virtual addresses into physical addresses

 •Less real storage used to maintain DAT structures

 Note that 2 GB large pages require z/OS V2R1 and the hardware features of the zEC12.

 The Buffer Manager component of DB2 uses a 2 GB frame size only when there are at least 2 GB of buffer storage to allocate and when the buffer pool is defined as long-term page fixed. For example, if you specify a small buffer pool size, such as VPSIZE=20000, a 2 GB frame is not used. If you specify VPSIZE=524288 for a 4 KB buffer pool, you are requesting a buffer pool that can contain 524,288 pages that are 4 KB in size, for a total of 2,147,483,648 bytes, which is exactly 2 GB. In this case, you get exactly one 2 GB frame allocated. If you specify VPSIZE=600000, you get one 2 GB frame, with the remainder of the buffer pool allocated in 1 MB frames up to the specified size.

 For DB2 to take advantage of 2 GB large pages, the ALTER BUFFERPOOL command now includes the FRAMESIZE attribute. The valid values are 4 KB, 1 MB and 2 GB. Example 2-1 runs the ALTER BUFFERPOOL command to establish a page fixed buffer pool with 2 GB pages.

 Example 2-1 ALTER BUFFERPOOL command to use 2 GB frame size

 [image:]

 										 DB2 COMMANDS SSID: DB1D

 ===>

 Position cursor on the command line you want to execute and press ENTER

 Cmd 1 ===> -ALTER BUFFERPOOL(BP4) VPSIZE(600000) FRAMESIZE(2G) PGFIX(YES)

 Cmd 2 ===>

 Cmd 3 ===>

 [image:]

 Example 2-2 shows the results of the ALTER command. The DSNB543I message shows that the PGFIX attribute is set to YES. The DSNB522I message shows that the FRAMESIZE attribute is set.

 Example 2-2 Results of ALTER BUFFERPOOL command to change FRAMESIZE

 [image:]

 DSNB522I -DB1D VPSIZE FOR BP4 HAS BEEN SET

 DSNB543I -DB1D THE PGFIX ATTRIBUTE IS ALTERED FOR

 BUFFER POOL BP4

 CURRENT ATTRIBUTE = YES

 NEW ATTRIBUTE = YES

 THE NEW ATTRIBUTE IS IN PENDING STATE.

 DSNB522I -DB1D FRAME FOR BP4 HAS BEEN SET

 DSN9022I -DB1D DSNB1CMD '-ALTER BUFFERPOOL' NORMAL COMPLETION

 [image:]

 To validate that the frame size was set properly and that DB2 uses a 2 GB frame, Example 2-3 issues the DISPLAY BUFFERPOOL command.

 Example 2-3 DISPLAY BUFFERPOOL command to show 2 GB frame size

 [image:]

 										 DB2 COMMANDS SSID: DB1D

 ===>

 Position cursor on the command line you want to execute and press ENTER

 Cmd 1 ===> -DISPLAY BUFFERPOOL(BP4) DETAIL

 [image:]

 Example 2-4 shows the results of the DISPLAY command. Note that the preferred frame size is 2 GB. However, no buffers have yet been allocated to the 2 GB frame because no DB2 workload has been run that uses this buffer pool since altering the size.

 Example 2-4 Results of DISPLAY BUFFERPOOL command showing 2 GB frame defined

 [image:]

 DSNB401I -DB1D BUFFERPOOL NAME BP4, BUFFERPOOL ID 4, USE COUNT 0

 DSNB402I -DB1D BUFFER POOL SIZE = 600000 BUFFERS AUTOSIZE = NO

 VPSIZE MINIMUM = 0 VPSIZE MAXIMUM = 0

 ALLOCATED = 0 TO BE DELETED = 0

 IN-USE/UPDATED = 0

 DSNB406I -DB1D PGFIX ATTRIBUTE -

 CURRENT = YES

 PENDING = YES

 PAGE STEALING METHOD = LRU

 DSNB404I -DB1D THRESHOLDS -

 VP SEQUENTIAL = 80

 DEFERRED WRITE = 30 VERTICAL DEFERRED WRT = 5, 0

 PARALLEL SEQUENTIAL =50 ASSISTING PARALLEL SEQT= 0

 DSNB546I -DB1D PREFERRED FRAME SIZE 2G

 0 BUFFERS USING 2G FRAME SIZE ALLOCATED

 [image:]

 Next, a table is created with a long row (2021 bytes in this case) that was not compressed. For this example, 3.3 million rows are inserted into the table and then a SELECT * is issued on the table with no WHERE clause to ensure that all the rows and all the columns on each row are read.

 After running the SQL statements, a DISPLAY BUFFERPOOL command is issued again. Example 2-5 shows the results.

 Example 2-5 Results of DISPLAY BUFFERPOOL command showing 2 GB and 1 MB frame allocation

 [image:]

 DSNB401I -DB1D BUFFERPOOL NAME BP4, BUFFERPOOL ID 4, USE COUNT 1

 DSNB402I -DB1D BUFFER POOL SIZE = 600000 BUFFERS AUTOSIZE = NO

 VPSIZE MINIMUM = 0 VPSIZE MAXIMUM = 0

 ALLOCATED = 600000 TO BE DELETED = 0

 IN-USE/UPDATED = 0

 DSNB406I -DB1D PGFIX ATTRIBUTE -

 CURRENT = YES

 PENDING = YES

 PAGE STEALING METHOD = LRU

 DSNB404I -DB1D THRESHOLDS -

 VP SEQUENTIAL = 80

 DEFERRED WRITE = 30 VERTICAL DEFERRED WRT = 5, 0

 PARALLEL SEQUENTIAL =50 ASSISTING PARALLEL SEQT= 0

 DSNB546I -DB1D PREFERRED FRAME SIZE 2G

 524288 BUFFERS USING 2G FRAME SIZE ALLOCATED

 DSNB546I -DB1D PREFERRED FRAME SIZE 2G

 19200 BUFFERS USING 1M FRAME SIZE ALLOCATED

 DSNB546I -DB1D PREFERRED FRAME SIZE 2G

 56512 BUFFERS USING 4K FRAME SIZE ALLOCATED

 [image:]

 Note that the buffer pool is defined as 600,000 buffers, which is a little more than 2 GB. Because a large enough workload was run to use more than 2 GB of buffer pool storage, DB2 allocated 524,288 pages to a 2 GB frame, which amounts to exactly 2 GB of storage. DB2 then allocated 19,200 pages to 1 MB frames, which amounts to 75 1 MB frames. The remaining 56,512 pages were allocated to 4 KB frames.

 You might have expected all the storage above 2 GB to be allocated to 1 MB frames. However, DB2 does use some internal calculations to allocate what is left over after the 2 GB allocation, and it does not always come out to exactly what the system has defined. For this example, the DISPLAY VIRTSTOR,LFAREA command was run to see the maximum possible allocation to each frame size.

 Example 2-6 shows the results of the DISPLAY command. In this test case, a maximum of 100 page frames can be used for a frame size of 1 MB. Based on the internal calculation, DB2 allocated 75 page frames of 1 MB each (19200 * 4096 / 1024 / 1024), with the remaining 56,512 pages allocated using a 4 KB frame size.

 Example 2-6 D VIRTSTOR command to show the maximum allocation of 2 GB and 1 MB frames

 [image:]

 D VIRTSTOR,LFAREA

 IAR019I 18.51.21 DISPLAY VIRTSTOR 200

 SOURCE = 00

 TOTAL LFAREA = 100M , 2G

 LFAREA AVAILABLE = 20M , 0G

 LFAREA ALLOCATED (1M) = 80M

 LFAREA ALLOCATED (4K) = 0M

 MAX LFAREA ALLOCATED (1M) = 80M

 MAX LFAREA ALLOCATED (4K) = 0M

 LFAREA ALLOCATED (PAGEABLE1M) = 0M

 MAX LFAREA ALLOCATED (PAGEABLE1M) = 0M

 LFAREA ALLOCATED NUMBER OF 2G PAGES = 1

 MAX LFAREA ALLOCATED NUMBER OF 2G PAGES = 1

 [image:]

 2.2 Synergy with IBM System z and z/OS

 This section discusses interfaces that are used by DB2 11 to take advantage of the synergy potential between the System z hardware and the z/OS operating system software. There are a number of features in DB2 11 that use features in different versions of the z/OS operating system. DB2 11 takes advantage of the following features available in z/OS:

 •AUTOSIZE options VPSIZEMIN and VPSIZEMAX

 •1 MB page frames for DB2 execution code

 •Improved performance of batch updates in data sharing

 •Improved usability and consistency for security administration

 •Log writing

 2.2.1 AUTOSIZE options VPSIZEMIN and VPSIZEMAX

 The AUTOSIZE attribute of the ALTER BUFFERPOOL command specifies whether DB2 uses Workload Manager (WLM) services, if available, to increase the buffer pool size automatically as appropriate.

 The VPSIZEMIN and VPSIZEMAX attributes have been added to the ALTER BUFFERPOOL command to allow more control. These attributes specify the minimum and maximum size for a buffer pool when AUTOSIZE(YES) is in effect beyond the DB2 increase or decrease of the buffer pool size by +/-25%. They require z/OS V2R1.

 2.2.2 1 MB page frames for DB2 execution code

 In z/OS V2R1, the execution code for DB2 itself can be backed by 1 MB pageable page frames. It is available only with Flash Express configured, which can result in CPU reductions that are associated with loading the code.

 2.2.3 Improved performance of batch updates in data sharing

 z/OS V2.1 with IBM DB2 11 for z/OS running on zEC12 or zBC12, or later systems with CFLEVEL 18, is planned to take advantage of the function to allow batched updates to be written directly to disk without being cached in the coupling facility in an IBM Parallel Sysplex®. This function can help avoid application stalls that might sometimes occur during large concurrent batch updates.

 When a page set is GBP-dependent, if GBPCACHE CHANGED is used, both COMMITs and DEREFFED WRITEs need to write the pages to the GBP. If the I/O subsystem is slower at casting out pages from the GBP to DASD (or to a remote site) than the rate at which deferred writes are filling up the GBP, COMMITS are suspended and cast out operations can free space in the GBP. Typically the deferred writes done on behalf of batch updates are the culprit. In effect, DB2 is thrashing the coupling facility, because there is no value in having the deferred writes be written to the GBP. DB2 11 solves this situation with the support of changes to z/OS.

 The z/OS support for this function is also available on IBM zEnterprise 196 (z196) and zEnterprise 114 (z114) servers with CFLEVEL 17 and an MCL, and on z/OS V1.12 and z/OS V1.13 with the PTF for APAR OA40966.

 This feature is described in more detail in 5.1, “Group buffer pool write-around protocol” on page 86.

 2.2.4 Improved usability and consistency for security administration

 DB2 11 for z/OS is designed to improve usability and consistency for security administration. z/OS V2.1 RACF, when used with DB2 11, is designed to provide consistency between DB2 and RACF access controls for bind and rebind under an owner’s authorization identifier, RACF security exit support for declared global temporary tables (DGTT), and support for automatic authorization statement cache refreshes when RACF profiles are changed. This is intended to make DB2 security administration easier.

 Details on security enhancements can be found in Chapter 10, “Security” on page 239.

 2.2.5 Log writing

 As a performance improvement in DB2 11, log records are written without the need to first space switch to the xxxxMSTR address space. To support this change, log buffers must be moved from their current location in xxxxMSTR 31-bit private to common storage. Because the log buffers can be large, up to 400 MB, it is not practical to move the log buffers to ECSA because most systems would not have enough ECSA available for a single request of this size. The log buffers are moved to 64-bit common (HCSA).

 The amount of HCSA used is roughly the size of the log buffers specified by the OUTBUFF parameter plus 15%. The SYS1.PARMLIB setting for HVCOMMON must be large enough to accommodate this size for each DB2 11 subsystem active on an LPAR. In addition, the buffers can reside in 1 MB page frames, if available. You might want to increase the SYS1.PARMLIB setting for LFAREA to allow for this allocation.

 IFCID 225 includes statistics for the common storage used by log manager buffers and control structures.

 This function is enabled in conversion mode (CM).

 2.3 Using zIIP speciality processors

 DB2 for z/OS began using zIIP specialty processors in V8 and continued to improve total cost of ownership (TCO) by further using zIIP engines in DB2 9 and DB2 10. DB2 11 continues this trend by providing additional zIIP workload eligibility, as described in this section.

 zIIP is designed to help free general computing capacity and lower software costs for select DB2 workloads. The initial DB2 implementation of zIIP was targeted towards reducing the software costs for business intelligence (BI), enterprise resource planning (ERP), and customer relationship management (CRM) workloads on the mainframe. However, non-DB2 workloads can take advantage of zIIP as well.

 The amount of redirect in each case varies based on workload characteristics.

 The following DB2 11 for z/OS processing is authorized to execute on zIIP:1

 •Asynchronous processing that is executed under enclave SRBs and that will be “charged” for CPU consumption purposes to a DB2 address space (rather than to user applications), with the exception of P-lock negotiation processing

 Such zIIP eligible processing includes:

  –	Cleanup of pseudo deleted index entries as part of DB2 system task cleanup

  –	Cleanup of XML multi-version documents (available in DB2 10 for z/OS through APAR PM72526)

  –	Log write and log read

 •The DB2 base LOAD, REORG, and REBUILD INDEX utility processing of inline statistics collection that DB2 directs to be executed under enclave Service Request Blocks (SRBs)2

 •The DB2 base processing of the RUNSTATS utility Column Group Distribution statistics collection that DB2 directs to be executed under enclave SRBs2

 •The DB2 base LOAD utility index management processing when running LOAD REPLACE that DB2 directs to be executed under enclave SRBs2

 From the DB2 address space point of view:

 •DBM1 address space

  –	System task performing clean up of pseudo-deleted index entries

  –	Portions of XML multi version documents cleanup processing (also available in DB2 10 through APAR PM72526)

  –	System-related asynchronous SRB processing with the exception of P-lock negotiation processing

 •MSTR address space

 System related asynchronous SRB processing, such as log write or log read

 •Utilities

  –	Portions of inline statistics gathering processing during LOAD, REORG, and REBUILD index processing

  –	Portions of RUNSTATS column group distribution statistics processing

  –	The work on elimination on NPSIs during LOAD REPLACE PART with dummy input

 Refer to the IBM documentation for software and hardware requisites for zIIP at:

 http://www.ibm.com/systems/z/hardware/features/ziip/about.html

 zAAP on zIIP

 IBM continues to support running IBM System z Application Assist Processor (zAAP) workloads on IBM System z Integrated Information Processor (zIIP) processors (zAAP on zIIP). z/OS V2.1 is designed to remove the restriction that prevents zAAP-eligible workloads from running on zIIP processors when a zAAP is installed on the server. This support is intended to help facilitate migration and testing of zAAP workloads on zIIP processors. This support is also available with the PTF for APAR OA38829 for z/OS V1.12 and z/OS V1.13.

 IBM zEnterprise EC12 is planned to be the last high-end System z server to offer support for zAAP specialty engine processors. IBM intends to continue support for running zAAP workloads on zIIP processors (zAAP on zIIP).

 2.4 Reduced need for REORG

 Starting in 2009, several product enhancements emerged that improved performance for disorganized index and data. These enhancements provided less need to run expensive DB2 REORGs. DB2 11 continues this progress towards reducing the need for REORGs. This section reviews what has happened since 2009 and explains features in DB2 11 that help to further reduce the need for REORG.

 In 2009 IBM and other vendors began to offer solid-state disks (SSD) for enterprise storage. SSD has no mechanical seeks or rotational delays that are associated with disorganized data, enabling the device to efficiently stream the data no matter how the data is organized. Random pages are still not streamed as fast as sequential pages, but the performance gap between random and sequential data is significantly reduced.

 In 2011 IBM delivered High Performance FICON® (zHPF) support for DB2 list prefetch with its IBM System Storage® DS8000® Licensed Machine Code (LMC) level R6.2. This support also requires a z196 or zEC12 processor. In addition, IBM delivered FICON Express 8S channels for these two processors. FICON Express 8S is optimized for zHPF. Using zHPF, FICON Express 8S can read discontiguous pages faster.

 R6.2 also introduced List Prefetch Optimizer to optimize the fetching of data from disk when DB2 is using list prefetch. List Prefetch Optimizer requires zHPF. List Prefetch Optimizer is optimal for both random pages (as is the case with a disorganized index scan) and skip-sequential scans (as is the case with a sorted RID list). List Prefetch Optimizer is especially good in conjunction with solid-state disks. For details, see GPFS in the Cloud: Storage Virtualization with NPIV on IBM System p and IBM System Storage DS5300, REDP-4682.

 Furthermore, R7.2 recently delivered Flash Optimized Offering for the DS8870. It is expected that some disorganized index scans might benefit from this support when using SSD. See the recent announcement at:

 http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS113-174

 The price of SSD is rapidly coming down and gaining market share. As cost reduction happens, DB2 10 and 11 are well positioned to take advantage of this hardware to further reduce the need for REORGs.

 2.5 DFSMS storage tiers

 The classic z/OS DFSMS storage hierarchy involves a three-level hierarchy. Data that is regularly accessed is maintained on a fast drive Primary Level (Level 0) that is managed by DFSMShsm. When the data is no longer accessed regularly, it is migrated to Migration Level 1 (ML1), which is typically on a less expensive disk drive. When the data has not been accessed for a longer period of time, then it is migrated to Migration Level 2 (ML2), which is typically on tape.

 Figure 2-1 shows an example of the classic three-level storage hierarchy.

 [image:]

 Figure 2-1 The classic DFSMS storage hierarchy

 Over the years, typical configurations have changed to leave data on Level 0 longer and then migrate directly to ML2, bypassing ML1. When ML2 is a Virtual Tape Server (VTS), then VTS disk cache replaces the ML1 tier. The VTS disk cache implementation provides the following savings:

 •Eliminates MIPS required for software compression to ML1

 •Eliminates DFSMShsm ML1 to ML2 processing

 Although the classic DFSMS storage hierarchy provides these benefits, this storage management solution also have the following shortcomings:

 •There is no policy-based automation for moving data within the Primary Storage Hierarchy (Level 0)

 •There is no policy-based management of Active (open) data

 z/OS V2R1 DFSMS introduces a storage tiers solution. This solution provides an automated, policy-based space management that moves data from tier to tier within the Primary (Level 0) Hierarchy. The storage tiers solution provides the following benefits:

 •It better aligns storage costs with changing business value.

 •It minimizes the TCO for System z data by actively managing data on the lowest cost storage that meets the business needs of the data.

 Within the storage tiers solution, automated movement of data is provided through the existing DFSMShsm Space Management function. Movement is referred to as a class transition. The data that is moved remains in its original format and can be accessed immediately after the movement is complete.

 The storage tiers solution replaces ML1 with a Nearline level, which represents data that is not at the Enterprise (Level 0) level but still needs to be accessed relatively quickly. That is, it is not “hot” data, but it is not “frigid” data either. The data is either cool or cold, which means it is not accessed that frequently. The storage tiers solution allows this “cool” data to be transitioned from the Enterprise level (Level 0) to the Nearline level (Level 1) after some specified period of time. The data that is stored in the Nearline level is still stored on DASD and is still immediately accessible. The data is just transitioned to a different class of storage.

 Figure 2-2 shows an overview of the storage tiers solution.

 [image:]

 Figure 2-2 Storage tiers overview

 The critical enterprise data, or “hot” data as it is sometimes called, is stored on Enterprise Level storage, or tier 0. The less critical, but still regularly accessed, data is stored on Nearline Level storage, or tier 1. Data on the Nearline level that is not accessed in 32 days is migrated to ML2 storage.

 2.5.1 Use cases for storage tiers

 The following data set examples benefit from the storage tiers solution.

 One case that benefits is where the data sets are not currently eligible for migration because they always need to be immediately accessible. In this situation, a delay while waiting for the data set to be recalled is unacceptable. These data sets can be allocated on a particular class of storage and then later transitioned to a less expensive class of storage for permanent retention.

 A second case that might benefit is when there are data sets that are eligible for migration today, but there is a benefit to keeping them online for a longer period of time. In this case, it makes sense to convert the migration of data sets to transition to a lower cost storage and then to increase the number of days that the data sets must be unreferenced before migrating directly to ML2.

 Note that there is a difference between the HSM migrate/recall functions and class transitions. When a data set is recalled, it is returned to the class of storage as directed by the automatic class selection (ACS) routines, which typically is higher than where a data set resides after a transition. When a data set transitions to a lower class of storage, it remains there until it is transitioned again or until it migrates.

 2.5.2 Setup and invocation of storage tiers

 DFSMShsm Space Management processing uses policy-based automation to ensure that volumes within the Primary Storage Hierarchy have enough free space for new data and to ensure that data is stored at the lowest acceptable tier in the Storage Hierarchy. This function is accomplished through the following processes:

 •Data set expiration

 •Migration of unreferenced data to the Migration Hierarchy

 •“Class Transitions” within the Primary Hierarchy

 Class Transition processing is new and is used by the storage tier solution. This processing is integrated into the following existing DFSMShsm Space Management functions:

 •Primary Space Management

 •On-Demand Migration, which is a new function introduced in V1R13

 This function performs space management on a volume as soon as it goes over its high threshold. It is a replacement for on-the-hour Interval Migration processing.

 •Interval Migration

 When a volume is selected for space management processing due to being over a threshold, in addition to existing expiration and migration checking, space management functions determines if a data set is eligible to be transitioned, based on management class criteria.

 SMS Management Class

 The SMS Management Class provides the Class Transition policies, which include the following components:

 •Class Transition Criteria

 •Serialization Error Exit

 •Transition Copy Technique

 Each of these policies is discussed in more detail in the sections that follow.

 Class Transition Criteria

 This criteria determines if and when a data set should be transitioned. This criteria includes information about how long since the data set was created and how long since the data set was used. In addition, there is a periodic setting that specifies that a data set should be transitioned monthly, quarterly, or annually, regardless of the usage of the data set.

 Serialization Error Exit

 This exit indicates what type of special processing occurs if the data set cannot be serialized, meaning that the data set is open and it cannot be moved. The following serialization error exit setting options are available:

 •NONE

 •DB2

 •CICS

 •zFS

 •EXIT

 If the setting is DB2, the exit invokes DB2 to close and unallocate the object. If this operation is successful, the object is serialized and moved, and DB2 is invoked to reopen the object. For DB2 data, the data set can always be open, and special processing might be needed to transition the data at any time. Because it is expected that data sets can be open, the default is to not issue an error message if a data set cannot be exclusively serialized; it is just skipped, which is similar to migration processing.

 Transition Copy Technique

 This technique setting indicates which copy technique is used to move the data set. The following techniques are available:

 •Standard uses standard I/O, which is the default.

 •Fast Replication Preferred prefers Fast Replication. If it cannot be used, standard I/O is used.

 •Fast Replication Required requires Fast Replication. If it cannot be used, fail the data movement. This technique requires the target volume to be in the same storage controller.

 •Preserve Mirror Preferred prefers to use Preserve Mirror. This technique indicates that a Metro Mirror primary volume is allowed to become an IBM FlashCopy® target volume. If Preserve Mirror cannot be used, FlashCopy or standard I/O can be used.

 •Preserve Mirror Required requires Preserve Mirror. The transition is performed only if the Metro Mirror primary target volume does not go duplex pending. This parameter has no affect if the target volume is not a Metro Mirror primary volume.

 Storage Group Processing Priority

 In addition to the class transition policies, the new Storage Group Processing Priority specifies the relative order in which storage groups are processed during Primary Space Management. To help ensure that the “receiving” storage groups have enough space for the data sets that are moved to them, a new storage group Processing Priority is provided. These storage groups are assigned a higher priority. Storage Groups are processed in the order of their priority. A higher value means a higher priority. The valid values are 1 to 100, with a default of 50.

 After DFSMShsm determines that a data set has met the Class Transition criteria specified by the Management Class, it invokes the ACS routines to determine what the transition should be. The ACS routines are invoked with the new ACS environment (the &ACSENVIR variable) value of SPMGCLTR, for “space management class transition.” The following ACS routines are invoked in the order shown:

 •Storage Class

 •Management Class

 •Storage Group

 Any or all policies can be transitioned.

 The Storage Class indicates the “preferred” class of storage to which the data set is allocated. If the storage class changes but the storage group remains the same and if a device matching the new storage class attributes cannot be selected, the data set is not moved.

 When a new management class is assigned, DFSMShsm begins using the newly assigned policies to manage the data set. If only the management class changes, the data set is altered to assign it to the new management class, and no data movement is performed.

 During processing of the Storage Group routine, from 1 to 15 storage groups can be returned. The storage administrator ensures that a different storage group name provides a meaningful transition.

 When DFSMShsm determines that a data set should be moved for a Class Transition, DFSMSdss is invoked to perform a Logical COPY with the DELETE command. In this case, DFSMSdss is the full data mover, unlike migrate/recall and backup/recover processing where DSS is only the half data mover. DFSMSdss handles the Copy Technique and Exit processing. After the movement, the data set retains all existing attributes and can be immediately accessed.

 The ICF catalog is updated as a part of the movement. No new DFSMShsm control data set records are created for transitions; however, new functional statistics record (FSR) type 24 is created for reporting purposes.

 2.5.3 Use cases for DB2

 Possible use cases for storage tiers for DB2 data are cases where the data is partitioned and the data is date or time dependent and the latest data is always added to the end. For example, if a table is defined as partitioned by range (PBR) and the partitioning key is defined as a date or time stamp, you can design it such that each partition held one month’s worth of data. If the most frequently accessed data is data within the last 60 days, you can set up storage tiers such that the partition that contains the current month’s data is on Primary storage, and the two partitions that contain the prior two month’s data are on Nearline storage. All data prior to those months are on Migration Level 2 storage.

 A similar scenario can be made for partition by growth (PBG) table spaces, with the assumption that newly added partitions contain the data for which there is the most interest.

 2.6 Additional System z enhancements

 The following additional enhancements to the System z hardware and software platform also provide benefits to DB2 for z/OS.

 2.6.1 Enhancing DB2 BACKUP SYSTEM solution

 DB2 11 enables recovery of single pageset from DB2 system-level backup even if original volume does not have sufficient space and enables exploitation of FlashCopy consistency group for DB2 BACKUP SYSTEM. It also enables restoration of a pageset to a different name.

 FRBACKUP COPYPOOL with consistency allows you to create a backup of the log copypool with consistency. Prior to DB2 11, you need a conditional restart of DB2 with a log truncation point that corresponds to the data complete LRSN of the system-level backup. The conditional restart is needed to compensate for the fuzziness of the backup of the log copypool. If the backup of the log copy pool is taken with consistency, you no longer need to do a conditional restart of DB2.

 You can use the FlashCopy Consistency Group function to minimize application impact when making consistent copies of data spanning multiple volumes. The procedure consists of freezing the source volume during each volume copy operation and thawing the frozen volumes using the CGCREATED command after a FlashCopy Consistency Group is formed. During the time period between the first and the last volumes are frozen, no dependent write updates occur, which allows a consistent copy of logically related data that spans multiple volumes.

 2.6.2 z/OS DFSMS VSAM RLS for z/OS catalog support

 In a Parallel Sysplex environment, z/OS V2.1 extends support for the VSAM record-level sharing (RLS) environment to catalogs to allow improvements to both single-system and shared catalog performance.

 DB2 9 and above can see improved DB2 data set open/close performance.

 2.6.3 DDF Synchronous Receive support

 DB2 10 currently uses Asynchronous Receive, which requires extra SRB dispatching. DB2 11 uses the z/OS 1.13 Communication Server services for synchronous receive. The benefits are reduced CPU for DIST address space, especially for high performance DBATs or long running transactions.

 No application changes or binds are required.

 2.6.4 zEnterprise Data Compression

 zEnterprise Data Compression (zEDC) for z/OS V2.1, a priced optional feature of z/OS that runs on zEC12 and zBC12 systems with the zEDC Express adapter, is designed to support a new data compression function. This facility is designed to provide high-performance, low-latency compression without significant CPU overhead. Initially, z/OS allows you to specify that SMF data written to log streams be compressed, which is expected to reduce disk storage requirements for SMF data and reduce SMF and System Logger CPU consumption for writing SMF data. For more information about this function, see Subsystem and Transaction Monitoring and Tuning with DB2 11 for z/OS, SG24-8182.

 Further support for zEDC is also planned. Corresponding support in the SMF dump program IFASMFDL is designed to support both hardware-based and software based decompression, and software-based decompression support is available on z/OS V1.12 and z/OS V1.13 with the PTF for APAR OA41156. This function allows higher write rates for SMF data when hardware compression is enabled. IBM RMF™ support for hardware compression includes SMF Type 74 subtype 9 records and a Monitor I PCIE Activity report that provides information about compression activity on the system.

 In addition, plans are to make the BSAM and QSAM access methods available by the end of the first quarter of 2014. These functions can help you save disk space, improve effective channel and network bandwidth without incurring significant CPU overhead, and improve the efficiency of cross-platform data exchange.

 Plans are also to provide support for DFSMSdss to take advantage of zEDC by the end of the third quarter 2014. This function is designed to be available for dumping and restoring data and also when DFSMShsm uses DFSMSdss to move data. This function can provide efficient compression with lower CPU overheads than the processor- and software-based compression methods currently available.

 1 This information provides only general descriptions of the types and portions of workloads that are eligible for execution on IBM Specialty Engines (for example, zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM Specialty Engines only to execute the processing of eligible workloads of specific programs expressly authorized by IBM as specified in the “Authorized Use Table for IBM Machines” provided at:

 	http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html

 	No other workload processing is authorized for execution on a Specialty Engine. IBM offers Specialty Engine at a lower price than General Processors/Central Processors because customers are authorized to use Specialty Engines only to process certain types or amounts of workloads as specified by IBM in the Authorized Use Table.

 2 DB2 does not direct all such base utility processing to be executed under enclave SRBs.

[image:]
[image:]

Scalability

 Business resiliency is a key component of the value proposition of DB2 for z/OS and the System z platform, supporting your efforts to keep your business running even when the workload keeps growing or you need to make changes. DB2 11 innovations drive new value in resiliency through scalability improvements and fewer outages—planned or unplanned.

 The most important scalability enhancement delivers the ability to switch to a longer log RBA and LRSN value. This allows for logging capability that should cover you for the next decades even with growth at more than historic rates.

 This chapter describes the following:

 •Extended RBA and LRSN

 •NOT LOGGED for declared global temporary tables

 •More open data sets (DSMAX)

 •PBG mapping tables to lift the 64 GB limit

 3.1 Extended RBA and LRSN

 Since the initial version of DB2, the relative byte address (RBA) of log records has been 6 bytes. This size provides 256 TB of log record addressing capacity over the life of a DB2 non-data sharing subsystem. In DB2 environments with high logging volumes, there have been several cases where users have exhausted DB2’s logging capacity. When this happens, DB2 initially issues DSNJ032E and DSNJ033E warning messages and eventually terminates if you do not address the situation.

 The following sections describe the current, basic format, RBA, and the enabling of the DB2 11, extended format RBA/LRSN:

 •Reaching the end of the basic RBA

 •The new 10 byte RBA and LRSN

 •Considerations before converting to extended format

 •Steps for enabling the extended RBA/LRSN format

 •Converting the BSDS

 •NOT LOGGED for declared global temporary tables

 •Converting data from 6 byte to 10 byte RBA/LRSN or vice versa

 •Additional considerations regarding utilities

 3.1.1 Reaching the end of the basic RBA

 When the end of the log RBA range is reached, you must take manual recovery actions to reset the RBA back to zero.

 You also need to reset the PGLOGRBA values in every page for all objects. This change necessitates an extended outage.

 For data sharing, the process is less intrusive, and involves shutting down the affected member and starting a new member to take its place. Data sharing is less intrusive because PGLOGRBA contains an log record sequence number (LRSN), which is a 6-bite value derived from the TOD clock value to be used for all members of the data sharing group. This value will not run out until the year 2042.

 Data sharing customers who have disabled and re-enabled data sharing can have LRSN values “in the future” with respect to the TOD clock. This is, because during the re-enable process, DB2 records an LRSN “delta” value in the BSDS which gets added to the TOD clock value to derive the LRSN.

 Another way that you end up with an LRSN value that is “in the future” is when you enable data sharing for a subsystem that has a RBA value that is numerically greater than the current TOD clock value. This might be done when a non data sharing system is approaching the end-of-range of its RBA, so enabling data sharing can yield a few extra years before the problem must be dealt with.

 Therefore, some customers will run out of LRSN range well before 2042.

 	
 Note: The LRSN delta only occurs if the RBA of the originating member is higher than the STCK value at the moment data sharing is turned on. The determined delta is common to all members of a data sharing group. Its purpose is to ensure that an LRSN value is always larger than any of the RBAs used on any member. This delta is kept in each member’s BSDS and in the SCA.1

 1 The shared communications area (SCA) is a list structure in the coupling facility.

 Figure 3-1 shows an example of how an LRSN delta is calculated and applied to find the real LRSN value that is associated with the various log records. The example also shows how the LRSN of this system would progress from August 5, 2013 to April 04, 2018 due to the necessary delta.

 [image:]

 Figure 3-1 LRSN delta explanation

 	
 Important: If you use a tool, such as the IBM z/OS Store Clock converter, keep in mind that you have to add two bytes x’0000’ to the LRSN value that you see.

 The 6-byte LRSN provides a granularity of 16 microseconds, On faster machines, many consecutive log records can have duplicate LRSN values. DB2 9 and DB2 10 provide enhancements so that DB2 no longer has to ‘spin’ in the Log Manager to avoid duplicate LRSNs for most cases, but there are still some cases where CPU spinning is necessary. This adds considerable overhead. Extending the LRSN to use more of the TOD clock precision eliminates the need to “spin” to obtain a unique value, which improves data sharing performance.

 To address these problems, the RBA and LRSN are being expanded to 10 bytes.

 The LRSN is expanded allowing for over five orders of magnitude greater granularity and over 30,000 years before the end of range is encountered. The 10 byte RBA value should be large enough that it will take many decades to exhaust even if hardware speeds continue to increase at their historic rates.

 3.1.2 The new 10 byte RBA and LRSN

 RBA and LRSN values have both been extended to 10 bytes from the previous six byte size. For an RBA, a six byte value is converted to a ten byte value by adding zeroes to the four most significant bytes, to the left side of the value.

 The new RBA limits

 For an LRSN, the existing value has one zero byte added to the left side and three bytes added to the right side. The three bytes on the right side can be zero or x'FF', depending on the usage. In particular, zero padding applies to new log records that are generated, and x'FF' padding is used for existing LRSN records that are generated. Figure 3-2 visualizes this example.

 [image:]

 Figure 3-2 10-byte RBA/LRSN formats

 Even if you do nothing with regards to larger RBAs and LRSNs, when starting DB2 11 in conversion mode (CM), these longer records are displayed everywhere in DB2.

 As shown in Example 3-1, which lists the output of a -DIS GROUP command, subsystem DB0B is currently running in DB2 11 CM.

 Example 3-1 Output of DISPLAY GROUP command

 [image:]

 DSN7100I -DB0B DSN7GCMD

 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(CM)

 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)

 --

 DB2 DB2 SYSTEM IRLM

 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC

 -------- --- ---- -------- -------- --- -------- ---- --------

 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM

 --

 SPT01 INLINE LENGTH: 32138

 *** END DISPLAY OF GROUP(........)

 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

 [image:]

 All messages, log records, and so on are already handling the RBA in the 10 byte, the extended format.

 Example 3-2 shows the longer RBA values in the messages of the starting MSTR address space.

 Example 3-2 Ten byte RBA in MSTR in CM

 [image:]

 .

 Display Filter View Print Options Search Help

 SDSF OUTPUT DISPLAY DB0BMSTR STC03760 DSID 2 LINE 26 COLUMNS 21- 100

 COMMAND INPUT ===> SCROLL ===> CSR

 DSNY001I -DB0B SUBSYSTEM STARTING

 DSNJ127I -DB0B SYSTEM TIMESTAMP FOR BSDS= 13.190 06:32:16.83

 DSNJ001I -DB0B DSNJW007 CURRENT COPY 1 ACTIVE LOG 425

 DATA SET IS DSNAME=DB0BL.LOGCOPY1.DS01,

 STARTRBA=0000000000002C4C0000,ENDRBA=0000000000002E67FFFF

 DSNJ001I -DB0B DSNJW007 CURRENT COPY 2 ACTIVE LOG 426

 DATA SET IS DSNAME=DB0BL.LOGCOPY2.DS01,

 STARTRBA=0000000000002C4C0000,ENDRBA=0000000000002E67FFFF

 DSNJ099I -DB0B LOG RECORDING TO COMMENCE WITH 427

 STARTRBA=0000000000002C539000

 S DB0BDBM1

 S DB0BDIST

 DSNR001I -DB0B RESTART INITIATED

 DSNR003I -DB0B RESTART...PRIOR CHECKPOINT RBA=0000000000002C5339EE

 DSNR004I -DB0B RESTART...UR STATUS COUNTS 442

 IN COMMIT=0, INDOUBT=0, INFLIGHT=0, IN ABORT=0, POSTPONED ABORT=0

 DSNR005I -DB0B RESTART...COUNTS AFTER FORWARD 443

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

 [image:]

 Example 3-3 shows an extract of the archive log. The RBA and LRSN hexadecimal values appear in the expanded format.

 Example 3-3 Log record in CM

 [image:]

 DSN1LPRT UR CONNID=DB0B CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM

 START DATE=00.162 TIME=21:40:02 DISP=COMMITTED INFO=COMPLETE

 STARTRBA=0000000000003DB1827A ENDRBA=0000000000003DB18658

 STARTLRSN=00CBC49885F1B4000000 ENDLRSN=00CBC49885F1D6000000

 NID=* LUWID=USIBMSC.SCPDB0B.CBC49885F1A9.0001

 COORDINATOR=* PARTICIPANTS=*

 DATA MODIFIED:

 DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX

 DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01

 DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

 [image:]

 You see all these extended format RBAs and LRSNs but you are not yet actually using its functionality.

 The new page format for larger RBA and LRSN

 Because the RBA for non-data sharing or the LRSN for data sharing that correspond to the last logged update to a page (table or index page) are stored in a fixed six byte location in each page (PGLOGRBA), the format of the pages needs to change to accommodate the new, larger value. This format is supported in New Function Mode (NFM), ENFM*, and CM*, that is, any mode that does not support coexistence with or fall back to an earlier release.

 The terms basic format and extended format refer to objects that are in the 6 byte and 10 byte PGLOGRBA formats, respectively. An object can be converted to and from EXTENDED format by using the REORG, REBUILD, or LOAD REPLACE utilities.

 Refer to Example 3-4 for the changed layout of the header page.

 Example 3-4 DSN1PRNT of a header page in extended format

 [image:]

 PAGE: # 00000000 --

 HEADER PAGE: PGCOMB='10'X PGBIGRBA='0000000000014AC0F7C7'X PGNUM='00000000'X PGFLAGS='38'X

 HPGOBID='01340005'X HPGHPREF='00000002'X HPGCATRL='00'X HPGREL='D7'X HPGZLD='00'X

 HPGCATV='00'X HPGTORBA='000000000000'X HPGTSTMP='20130725163247762845'X

 HPGSSNM='DB1A' HPGFOID='0004'X HPGPGSZ='1000'X HPGSGSZ='0004'X HPGPARTN='0000'X

 HPGZ3PNO='000000'X HPGZNUMP='00'X HPGTBLC='0001'X HPGROID='0006'X

 HPGZ4PNO='00000000'X HPGMAXL='0059'X HPGNUMCO='000E'X HPGFLAGS='0008'X

 HPGFLAGS2='00'X HPGFLAGS3='80'X HPGCONTM='20130807162852039670'X

 HPGSGNAM='SYSDEFLT' HPGVCATN='DB1AD ' HPGRBRBA='000000000000'X

 HPGLEVEL='000000000000'X HPGPLEVL='000000000000'X HPGCLRSN='000000000000'X

 HPGSCCSI='0025'X HPGDCCSI='0000'X HPGMCCSI='0000'X HPGDSSZ='00200000'X

 HPGFLAG2='00'X HPGEPOCH='0000'X HPGRBLP='000000000000'X HPGDNUMB='1F'X

 HPGDNUMC='0007'X HPGDFSG='00000000'X HPGDLSG='00000000'X HPGSISP='00000000'X

 HPGBIGTORBA='00000000000000000000'X HPGBIGRBRBA='0000000000014ABD9979'X

 HPGBIGLEVEL='00000000000000000000'X HPGBIGPLEVL='00000000000000000000'X

 HPGBIGCLRSN='0000000000014AC0F7C7'X HPGBIGRBLP='00000000000000000000'X FOEND='52'X

 [image:]

 For your convenience, Example 3-5 also shows the header page of a table space that is still in basic format.

 Notice the difference highlighted in blue in both outputs. The extended format header page has seven new fields at the bottom of the page, which all contain the three letters BIG in the field names. In addition, PGLOGRBA is changed to PGBIGRBA, which can now hold the 10 byte RBA.

 Also notice that the FOEND field at the end of the page contains a character if the page set is still stored and worked within basic format. If it is converted to extended format, it contains a hexadecimal value.

 Example 3-5 DSN1PRNT of a header page in basic format

 [image:]

 PAGE: # 00000000 --

 HEADER PAGE: PGCOMB='00'X PGLOGRBA='0000044F9766'X PGNUM='00000000'X PGFLAGS='38'X

 HPGOBID='01120002'X HPGHPREF='0000001A'X HPGCATRL='00'X HPGREL='D6'X HPGZLD='00'X

 HPGCATV='00'X HPGTORBA='000000000000'X HPGTSTMP='20110428113926841184'X

 HPGSSNM='DB0B' HPGFOID='0001'X HPGPGSZ='1000'X HPGSGSZ='0004'X HPGPARTN='0000'X

 HPGZ3PNO='000000'X HPGZNUMP='00'X HPGTBLC='0002'X HPGROID='0000'X

 HPGZ4PNO='00000000'X HPGMAXL='0000'X HPGNUMCO='0000'X HPGFLAGS='0008'X

 HPGFLAGS2='00'X HPGFLAGS3='00'X HPGCONTM='20110428114327048498'X

 HPGSGNAM='DSN8G100' HPGVCATN='DB0BD ' HPGRBRBA='0000044FBDE4'X

 HPGLEVEL='0000044FBDE4'X HPGPLEVL='000000000000'X HPGCLRSN='0000044F9766'X

 HPGSCCSI='0025'X HPGDCCSI='0000'X HPGMCCSI='0000'X HPGDSSZ='00200000'X

 HPGFLAG2='00'X HPGEPOCH='0000'X HPGRBLP='000000000000'X HPGDNUMB='1F'X

 HPGDNUMC='0007'X HPGDFSG='00000000'X HPGDLSG='00000000'X HPGSISP='00000000'X

 FOEND='E'

 [image:]

 Other types of pages, such as data or dictionary pages, are different but have the same BIG fields. You can search for PGBIG or simply check out the FOEND information. If FOEND appears in hexadecimal, you are currently looking at a page set that has been converted to EXTENDED format.

 3.1.3 Considerations before converting to extended format

 Partitioned tables and indexes can be converted one partition at a time. You do not need to convert all partitions at the same time, except for PBG hashed table spaces that require the entire table to be REORGed when being converted. XML tables with 8 byte version IDs must also have all partitions converted at the same time. Also, CLONE tables cannot be converted until the clone is dropped. The SYSINDEXPART and SYSTABLEPART catalog tables include an indicator of what format the partition is expected to be in.

 This value is not guaranteed to be accurate because DSN1COPY can cause the format to change without updating the catalog. Therefore, this value is for informational purposes only, such for determining what objects might or might not have been converted to the new format. You can use the REPAIR utility to correct the format column, if it is incorrect. Utilities that change the format of the object also update the catalog columns.

 The soft and hard limit

 There are two logging limits that impact SQL and utility processing. These log limits are expressed as RBAs in non-data sharing and as LRSNs time-derived values in data sharing. For data sharing, the RBA value triggers warning messages from the log manager, but it does not affect utilities behavior because the LRSN value is used instead of the RBA value in database objects.

 Warning messages already existed in DB2 10 for a subsystem that is approaching the end of its RBA range. When the subsystem reaches the critical threshold, the subsystem is terminated and can be restarted only in LIGHT mode or with ACCESS(MAINT). The same applies when approaching the end of the LRSN range.

 A warning message is issued starting approximately one year before the LRSN range will be exhausted and is reissued for every log switch. At about two months before the end of the LRSN range, the soft limit processing begins (as described in the next section). At about two weeks before the end of the LRSN range, the subsystem terminates and can be started only in LIGHT mode or with ACCESS(MAINT) until the BSDS is converted. If the BSDS is not converted to the new format and if the LRSN has exceeded the 6 byte maximum, the subsystem is not allowed to restart until the BSDS is converted.

 The soft limit

 This limit occurs at RBA 'FFF800000000'x or at an LRSN approximately two months before the 6 byte capacity is exhausted. This advisory limit, also known as the soft limit, marks the beginning of new utility behaviors for any utility that updates a BASIC format object. The new behaviors at this limit are as follows:

 •Objects in basic 6 byte format are available for read-only access. Attempts to update these objects are rejected. If you need to update table spaces and indexes that have reached the soft limit, you need to convert them to extended 10 byte format.

 •As a general rule, with exceptions noted in the final item in this list, utilities that attempt to log an update of a BASIC page set fail with a DSNT500-style resource unavailable error and the '00C2026D'x reason code.

 •The following catalog table spaces, and their indexes, are heavily used by utilities. If these table spaces are in BASIC format at the soft limit, utilities are significantly impacted and in many cases unusable.

  –	DSNDB01.SYSUTILX

  –	DSNDB06.SYSTSCPY

  –	DSNDB01.SYSLGRNX

 	
 Important: When your DB2 subsystem hits the soft limit and the DSNDB06.SYSTSCPY table space is still in BASIC format, you cannot run the RECOVER utility for any table space any longer. The RECOVER command always records its execution in SYSIBM.SYSCOPY, which is stored in this table space.

 •If you cannot use a utility while in this phase but if this utility did not change the format of the page set from BASIC to EXTENDED (that is, left it in BASIC format), the page set is available only for read-only access.

 •The following utilities are not affected by the restrictions that are put in place after the soft limit is reached:

  –	Utilities that do not have a target object, such as STOSPACE

  –	Utilities that do not update the target object, such as REPORT

  –	Utilities that are in the process of converting page sets to the EXTENDED format

  –	Utilities that are invoked against EXTENDED format page sets

  –	Utilities that open the output object as non-recoverable

 The hard limit

 The actual logging limit occurs when the RBA or LRSN no longer fits in 6 bytes. At this time, the soft limit restrictions remain in place. In addition, you must convert the BSDS to start DB2. If BSDS is not converted, the attempt to start DB2 fails. As a consequence, you cannot use any online utilities.

 New subsystem parameters for extended RBA

 The following subsystem parameters are related to the extended RBAs and LRSNs when dealing with DB2 objects:

 •OBJECT_CREATE_FORMAT

 •UTILITY_OBJECT_CONVERSION

 OBJECT_CREATE_FORMAT

 The OBJECT_CREATE_FORMAT subsystem parameter specifies whether DB2 creates new table spaces and indexes to use a basic or extended log record format.

 The acceptable values are BASIC and EXTENDED. The default value depends on whether a subsystem is newly installed in DB2 11 or migrated from DB2 10. The default value is EXTENDED for the newly installed DB2 and BASIC for migration.

 •BASIC

 New table spaces and indexes are created with a maximum of 256 TB of log record addressing capacity over the life of a DB2 subsystem, or a maximum log record sequence number (LRSN) of 2**48 over the life of a DB2 data-sharing group. Use BASIC if you intend to use this instance of DB2 to copy or recover data from an instance of DB2 that does not support the EXTENDED format. However, after the 6 byte logging limit is exceeded, all new objects are created in EXTENDED format.

 •EXTENDED

 New table spaces and indexes are created with a maximum of 1 YB (yottabyte1) of log record addressing capacity over the life of a DB2 subsystem or a maximum LRSN of 2**80 over the life of the DB2 data-sharing group. This setting is the default. Use this setting in either of the following situations:

  –	When DB2 is likely to exhaust the basic log format. This setting is required to update database objects if the DB2 log RBA exceeds 2**48 for non-data-sharing environments or if the LRSN exceeds x'FFFFFFFFFFFF' for data-sharing environments.

  –	In data-sharing environments only, when duplicate LRSN values occur because the processing speed exceeds the precision of the traditional log addressing format.

 	
 Important: In conversion mode, basic 6 byte format is used regardless of the setting of this parameter.

 There is no way of overriding this setting with any keyword in the DDL syntax.

 	
 Important: The setting for this system parameter is ignored after you hit the hard limit. Objects are always created in EXTENDED format in this situation.

 UTILITY_OBJECT_CONVERSION

 The value of the UTILITY_OBJECT_CONVERSION parameter specifies whether DB2 utilities that accept the RBALRSN_CONVERSION option convert existing table spaces and indexes to 6 byte page format, to a 10 byte page format, or perform no conversion.

 	
 Note: The RBALRSN_CONVERSION keyword is available for the following utility control statements:

 •REORG TABLESPACE

 •REORG INDEX

 •REBUILD INDEX

 •LOAD

 When you specify this keyword in the utility control statement, it generally overrides the current setting of the subsystem parameter unless set to NOBASIC (see Table 3-1 on page 37).

 The following values are acceptable for this parameter:

 •BASIC

 Existing table spaces and indexes that use extended 10-byte page format are converted to basic 6-byte page format. The BASIC option is allowed only if the OBJECT CREATE FORMAT field is also set to BASIC.

 •EXTENDED

 Existing table spaces and indexes that use 6-byte page format are converted to extended 10-byte page format. The EXTENDED option is allowed only if the OBJECT CREATE FORMAT field is also set to EXTENDED.

 •NOBASIC

 Existing table spaces and indexes that use 6-byte page format are converted to extended 10-byte page format. Table spaces and indexes that already use extended 10-byte page format cannot be returned to the 6-byte page format. When this setting is in effect, utilities that specify the RBALRSN_CONVERSION keyword with BASIC fail. In addition, utilities that specify RBALRSN_CONVERSION keyword with NONE when the object is in 6-byte page format fail. The NOBASIC value is allowed in this field only if the OBJECT CREATE FORMAT field is set to EXTENDED.

 	
 Important: If you use the NOBASIC value, you prevent the user from overriding the system parameter setting with the utility control statement.

 •NONE (default)

 No conversion is performed. This option is the default setting of this parameter. The NONE option is allowed regardless of the OBJECT CREATE FORMAT setting.

 Conversion from six to 10 byte RBA and LRSN and vice versa is only possible in NFM.

 3.1.4 Steps for enabling the extended RBA/LRSN format

 	
 Important: After migrating to NFM, check the RBA situation and decide if migration to extended RBS/LRSN is needed.

 To fully enable the extended RBA/LRSN format, you need complete the following important tasks in NFM for DB2 11. Although you should run the BSDS conversion first, to improve performance, you can complete the other tasks in any order.

 •Convert the BSDS records to support EXTENDED format (install job DSNTIJCB), as described 3.1.5, “Converting the BSDS” on page 32.

 This conversion causes outage for non-data-sharing subsystems. You need to plan for stopping DB2 and running the DSNTIJCB. It is a fast execution.

 In data sharing, you can convert a member at the time and avoid outage.

 •Convert the DB2 catalog and directory table spaces and indexes to extended format, as described in 3.1.6, “Converting DB2 catalog and directory” on page 35, and then install the DSNTIJCV job.

 This task is mainly a REORG SHRLEVEL CHANGE, because it causes no outage. Furthermore, you can break the DSNTIJCV job logically by object and execute it a bit at the time if necessary.

 •Convert the user data, as described in “The new page format for larger RBA and LRSN” on page 27 and 3.1.7, “Converting data from 6 byte to 10 byte RBA/LRSN or vice versa” on page 36.

 You also need to decide which DSNZPARM option to use. See “New subsystem parameters for extended RBA” on page 30. In addition, keep an eye on the extended RBA disk space increase.

 3.1.5 Converting the BSDS

 The first step towards being able to use the extended RBA/LRSN format is to run the DSNJCNVT stand-alone utility for BSDS conversion. Running DSNJCNVT is optional and can be done any time after migrating to DB2 11 New Function Mode (NFM) if you are not approaching the end of the 6 byte range. The conversion is required during the DB2 installation if the RBA or LRSN is approaching the end of the 6 byte range.

 For a data-sharing installation, if the LRSN is approaching the end of the 6 byte range, the BSDS of each member can be converted one at a time. If the RBA or LRSN are approaching the end of the 6 byte range, you need to convert the database objects also. They become read-only when the end of the range is reached.

 Considerations for running DSNJCNVT

 Keep in mind the following considerations when running the DSNJCNVT stand-alone utility:

 •You must stop the DB2 subsystem that owns the BSDSs that are to be converted. DSNJCNVT is a stand-alone utility.

 •In a data-sharing environment, allow DB2 utilities that read the logs of peer members to finish before converting the BSDSs.

 •In a data-sharing environment, stop data replication products before the conversion to ensure that the old BSDSs can be successfully renamed and replaced by the converted BSDSs. The preferred procedure is to stop the replication product first and then stop the DB2 system that is to have its BSDSs converted. This procedure allows sharing systems to deallocate the BSDSs when the state of the member changes to inactive.

 •The RACF user ID that is running DSNJCNVT must have read/write access to the new BSDSs and read access to the old BSDSs.

 •The DB2 subsystem that owns the BSDS that is to be converted must start after the data sharing group was migrated to DB2 11 NFM.

 •Conversion to the new BSDS format is required to write new format log records and remove the 6 byte RBA and LRSN limits.

 Sample DSNJCNVT JCL

 The statements in Example 3-6 specify that DSNJCNVT stand-alone utility is to convert the BSDS to support 10 byte RBA and LRSN fields.

 Example 3-6 DSNJCNVT control statement

 [image:]

 //CONVERT EXEC PGM=DSNJCNVT,REGION=64M

 //SYSUT1 DD DSN=DB2A.OLD.BSDS01,DISP=SHR

 //SYSUT2 DD DSN=DB2A.OLD.BSDS02,DISP=SHR

 //SYSUT3 DD DSN=DB2A.BSDS01,DISP=OLD

 //SYSUT4 DD DSN=DB2A.BSDS02,DISP=OLD

 //SYSPRINT DD SYSOUT=*

 [image:]

 DSNJU004 to check if conversion has run

 You can use the Print Log Map (DSNJU004) stand-alone utility to check if the conversion for a specific subsystem or member was performed. See the JCL shown in Example 3-7.

 Example 3-7 DSNJU004 JCL

 [image:]

 //DSNTLOG EXEC PGM=DSNJU004

 //STEPLIB DD DISP=SHR,DSN=your.SDSNEXIT

 // DD DISP=SHR,DSN=your.SDSNLOAD

 //SYSUT1 DD DISP=SHR,DSN=your.BSDS01

 //SYSPRINT DD SYSOUT=*

 //SYSUDUMP DD SYSOUT=*

 //SYSIN DD *

 //*

 [image:]

 The resulting messages are shown in Example 3-8. The line marked in bold in this example indicates that for the DB2 subsystem the conversion has not been run yet.

 Example 3-8 DSNJU004 output showing if DSNJCNVT has run

 [image:]

 DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1

 DSNJCNVT CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1

 LOG MAP OF BSDS DATA SET COPY 1, DSN=DB0BB.BSDS01

 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

 DATA SHARING MODE IS OFF

 SYSTEM TIMESTAMP - DATE=2013.217 LTIME=12:27:14.79

 UTILITY TIMESTAMP - DATE=2013.178 LTIME= 8:13:30.76

 VSAM CATALOG NAME=DB0BD

 HIGHEST RBA WRITTEN 0000000000003DB21472 2013.217

 HIGHEST RBA OFFLOADED 0000000000003DB21FFF

 RBA WHEN CONVERTED TO V4 00000000000000000000

 [image:]

 	
 Important: if you want the new BSDS format, you need to convert to it in NFM regardless of whether you installed or migrated to DB2 11.

 	
 Note: Looking at the DSNJU004 output, RBAs and LRSNs already are shown in a 10 byte format. The DSNJU004 stand-alone utility, as most DB2 externalization functions, uses the extended format, but DB2 still stores the RBAs and LRSNs as 6 byte values until the conversion is completed. The conversion changes the CI size for existing BSDSs from 4 KB to 8 KB so that it can accommodate the larger record sizes.

 Install job DSNTIJCB

 The DSNTIJCB new installation job applies the needed changes to the BSDS. It includes the following job steps:

 DSNTDEF 	Activates IDCAMS to define new BSDS data sets with CLUSTER, DATA, and INDEX components under the temporary names prefix.BSDS01.NEW and prefix.BSDS02.NEW.

 DSNTCNVT	Activates DSNJCNVT to read records from the existing BSDS, converts them to support the extended RBA and LRSN format, and writes them into the prefix.BSDS01.NEW and prefix.BSDS02.NEW data sets.

 DSNTRENO	Renames the existing BSDS data sets to backup names, prefix.BSDS01.OLDFMT and prefix.BSDS02.OLDFMT.

 DSNTRENN	Renames prefix.BSDS01.NEW and prefix.BSDS02.NEW to prefix.BSDS01 and prefix.BSDS02.

 The job completes with return code zero. The following message displays in the job log:

 IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

 DSNJ200I DSNJCNVT CONVERT UTILITY PROCESSING COMPLETED SUCCESSFULLY FOR MEMBER DB1A

 After the BSDS is converted, the physical log records are written in the new format. A larger log record header (LRH) is required for the larger RBA and LRSN values, and there are changes to the format of the log data sets as well (collectively called new format logs). Members of a data sharing group can be converted one at a time and can run with a mix of converted and not converted members is supported.

 	
 Tips: The conversion only takes a few seconds. In addition, if the conversion fails, you can restart DB2 with the old BSDS while you resolve the problem of the failure. You can test the conversion with a copy of the BSDS before you really convert the actual BSDS.

 3.1.6 Converting DB2 catalog and directory

 Because catalog and directory are composed of table and index spaces, you have to change the RBA/LRSN formats for those also. You need to distinguish between subsystems, which are newly installed in DB2 11, and those that are migrated from DB2 10.

 New installations

 For new installations all catalog and directory table spaces and indexes are always created in the extended object format. The setting of OBJECT_CREATE_FORMAT system parameter is not honored for catalog and directory objects. As a result, if you query the catalog of a newly installed subsystem, the RBA_FORMAT column of SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART contains value ‘E’ for all catalog and directory objects.

 Migrated subsystems

 The tables that are newly created in CM are as follows:

 NAME TSNAME

 ---------+---------+---------+

 SYSOBD_AUX SYSTSOBX

 SYSQUERYPREDICATE SYSTSQRE

 SYSQUERYSEL SYSTSQRS

 SYSVARIABLES_DESC SYSTSVAD

 SYSVARIABLEAUTH SYSTSVAU

 SYSINDEXCLEANUP SYSTSIXC

 SYSSTATFEEDBACK SYSTSSFB

 SYSVARIABLES SYSTSVAR

 SYSVARIABLES_TEXT SYSTSVAT

 All the table spaces holding these tables are created using the BASIC format. You can verify this RBA_FORMAT browsing column in SYSIBM.SYSTABLEPART. The associated indexes are in basic format as well, because the EXTENDED format for page sets and for the BSDS is available only in NFM.

 DSNTIJCV

 DB2 11 introduces the DSNTIJCV new installation job for catalog conversion, which is customized during the ENFM installation/migration job generation.

 You can use the DSNTIJCV installation job to convert the DB2 catalog and directory table spaces and their indexes to extended RBA/LRSN format. You need to be in NFM when you run this job. Do not rearrange the processing sequence and the table space grouping in this job. The COPY and REORG steps use LISTDEF filtering to exclude table spaces that are already in extended format, because they have been converted previously.

 The main objective of the DSNTIJCV job is to migrate the catalog and directory to EXTENDED format. However, you can also it to change the catalog and directory back from EXTENDED format to BASIC format.

 The following list shows a detailed description of the job steps as described in the job prolog:

 JCVTRM00 STEP 	TERMINATE PENDING UTILITIES FOR THIS JOB

 JCVCVT01 STEP 	CONVERT SYSUTILX DIRECTORY TABLE SPACE

 JCVCPY01 STEP	IMAGE COPY THE CONVERTED SYSUTILX TABLE SPACE

 JCVCPY02 STEP	IMAGE COPY THE SYSLGRNX TABLE SPACE

 JCVCVT02 STEP	CONVERT THE FORMAT OF THE SYSLGRNX TABLE SPACE

 JCVCPY03 STEP	COPY OTHER DIRECTORY TABLE SPACES TO BE CONVERTED

 JCVCVT03 STEP	CONVERT THE OTHER DIRECTORY TABLE SPACES

 JCVCPY04 STEP	COPY THE DIRECTORY LOB TABLE SPACES

 JCVCVT04 STEP	CONVERT THE DIRECTORY LOB TABLE SPACES

 JCVCPY05 STEP	COPY THE SYSTSCPY CATALOG TABLE SPACE

 JCVCVT05 STEP	CONVERT THE SYSTSCPY CATALOG TABLE SPACE

 JCVCPY06 STEP	COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 1)

 JCVCVT06 STEP	CONVERT OTHER CATALOG TABLE SPACES (PART 1)

 JCVCPY07 STEP	COPY RELATED CATALOG LOB TABLE SPACES (PART 1)

 JCVCVT07 STEP	CONVERT RELATED CATALOG LOB TABLE SPACES (PART 1)

 JCVCPY08 STEP	COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 2)

 JCVCVT08 STEP	CONVERT OTHER CATALOG TABLE SPACES (PART 2)

 JCVCPY09 STEP	COPY RELATED CATALOG LOB TABLE SPACES (PART 2)

 JCVCVT09 STEP 	CONVERT RELATED CATALOG LOB TABLE SPACES (PART 2)

 JCVCPY10 STEP	COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 3)

 JCVCVT10 STEP	CONVERT OTHER CATALOG TABLE SPACES (PART 3)

 JCVCPY11 STEP	COPY RELATED CATALOG LOB TABLE SPACES (PART 3)

 JCVCVT11 STEP	CONVERT RELATED CATALOG LOB TABLE SPACES (PART 3)

 JCVCPY12 STEP	COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 4)

 JCVCVT12 STEP	CONVERT OTHER CATALOG TABLE SPACES (PART 4)

 JCVCPY13 STEP	COPY RELATED CATALOG LOB TABLE SPACES (PART 4)

 JCVCVT13 STEP	CONVERT RELATED CATALOG LOB TABLE SPACES (PART 4)

 	
 Important: The catalog and directory are special DB2 objects. Carefully watch your subsystems RBAs and LRSNs. Definitely make sure that you do not hit the hard limit with the catalog and directory not being migrated to the EXTENDED format. The ability of utilities to convert, especially the SYSUTILX, SYSTSCPY, and SYSLGRNX utilities to the EXTENDED format after you hit the hard limit, is more restricted than for any other page set. It might occur that you cannot convert these objects using regular utilities, and you might be forced to follow a manual procedure to reset RBA and LRSN for your subsystem.

 	
 Tip: Make sure you closely watch for messages about potential soft limit hits for your DB2 subsystem. Consider a timely conversion of your subsystem’s BSDSs before you run into major problems and convert the catalog directory early enough to avoid major problems with hitting the hard limit.

 3.1.7 Converting data from 6 byte to 10 byte RBA/LRSN or vice versa

 The most obvious way to convert the RBA/LRSN format of an existing page set from 6 bytes to 10 bytes are the REORG TABLESPACE and REORG INDEX utilities.

 You can convert a partitioned table space index one part at a time with the following exceptions:

 •PBG table spaces that are organized by hash must be converted at table space level, that is all parts in one REORG job.

 •Tables with 8 byte XML version IDs must also be converted at the table level.

 •Tables that are in an active clone relationship cannot be converted. You must drop the clone first.

 The REORG INDEX and REORG TABLESPACE utilities

 The REORG TABLESPACE and REORG INDEX utilities in SHRLEVEL REFERENCE or NONE have three new utility control statements that influence if and how an RBA/LRSN conversion is performed during the utility execution.

 The UTILITY_OBJECT_CONVERSION DSNZPARM setting is used when the utility control statement does not specify the RBALRSN_CONVERSION keyword with the following options:

 BASIC 	Existing table spaces and indexes that use extended 10 byte page format are converted to basic 6 byte page format. The BASIC option is allowed only if the OBJECT CREATE FORMAT field is also set to BASIC.

 EXTENDED	Existing table spaces and indexes that use 6 byte page format are converted to extended 10 byte page format. The EXTENDED option is allowed only if the OBJECT CREATE FORMAT field is also set to EXTENDED.

 NOBASIC	Existing table spaces and indexes that use 6 byte page format are converted to extended 10 byte page format. Table spaces and indexes that already use extended 10 byte page format cannot be returned to the 6 byte page format. When this setting is in effect, utilities that specify the RBALRSN_CONVERSION keyword with the BASIC option fail. In addition, utilities that specify the RBALRSN_CONVERSION keyword with NONE when the object is in 6 byte page format fail. The NOBASIC option is allowed in this field only if the OBJECT CREATE FORMAT field is set to EXTENDED. If a value is not specified for RBALRSN_CONVERSION, the RBALRSN_CONVERSION value defaults to EXTENDED.

 NONE	No conversion is performed. This option is the default setting of this parameter. The NONE option is allowed regardless of the OBJECT CREATE FORMAT setting.

 Table 3-1 shows what type of conversion is performed and the error messages, depending on the system parameter setting and the usage of the RBALRSN_CONVERSION keyword in the utility control statement. For REORG TABLESPACE, all the results listed in the four NFM columns also apply to the conversion of all indexes that are defined on the tables in the table space that is being reorganized.

 Table 3-1 UTILITY_OBJECT_CONVERSION

 	
 Utility option

 	
 UTILITY_OBJECT_CONVERSION

 	

 	
 NONE

 	
 BASIC

 	
 EXTENDED

 	
 NOBASIC

 	
 CM

 	
 NFM

 	
 CM

 	
 NFM

 	
 CM

 	
 NFM

 	
 CM

 	
 NFM

 	
 NONE

 	
 DSNU169I1 DSNU123I2

 	
 NONE

 	
 DSNU169I DSNU123I

 	
 NONE

 	
 DSNU169I DSNU123I

 	
 NONE

 	
 DSNU169I DSNU123I

 	
 fails if object is BASIC

 	
 BASIC

 	
 DSNU169I DSNU123I

 	
 BASIC

 	
 DSNU169I DSNU123I

 	
 BASIC

 	
 DSNU169I DSNU123I

 	
 BASIC

 	
 DSNU169I DSNU123

 	
 fails

 	
 EXTENDED

 	
 DSNU169I DSNU123I

 	
 EXTENDED

 	
 DSNU169I DSNU123I

 	
 EXTENDED

 	
 DSNU169I DSNU123I

 	
 EXTENDED

 	
 DSNU169I DSNU123I

 	
 EXTENDED

 	
 omitted

 	
 ignored

 	
 NONE

 	
 ignored

 	
 BASIC

 	
 ignored

 	
 EXTENDED

 	
 ignored

 	
 EXTENDED

 1 DSNU169I The OBJECT CONVERSION REQUESTED BY requestor-type requestor-name requestor-operand IS IGNORED

 2 DSNU123I csect-name ATTEMPT TO USE NEW FUNCTION BEFORE NEW FUNCTION MODE

 Even if the table space is not actually converted by the REORG, because it already exists in the requested format, the index is converted to the same format as the table space. See Figure 3-3.

 [image:]

 Figure 3-3 REORG TABLESPACE with Index conversion

 If a conversion of the RBA/LRSN format occurs during the REORG, the job output provides the following message:

 DSNU1169I -DB1A 220 18:59:09.53 DSNURFIJ - TABLESPACE SABIDB3.SEGMENT CONVERTED BY KEYWORD TO EXTENDED RBA/LRSN FORMAT

 	
 Active CLONE relationship restriction: If there is an active CLONE relationship, page set conversion is not performed. If this request is based on a system parameter setting, the fact that a conversion is requested is ignored. If, however, you request this conversion through a RBALRSN_CONVERSON utility control statement, a DSNU1459 error message is issued.

 A new RBA_FORMAT column is added to the SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART catalog tables. The values in this column are:

 B	Basic, with 6 byte RBA/LRSN format

 E	Extended, with 10 byte RBA/LRSN format

 U	Undefined, where DEFINE NO was specified when creating the table space, and the table space is not an XML table space with XML versions.

 blank	For migrated objects

 In addition to this new column, which indicates the RBA/LRSN format for a given page set, the TTYPE column on the SYSIBM.SYSCOPY catalog table adds additional information when a utility execution leads to a format conversion. If the resulting format is EXTENDED, you see an E in this column and if it is BASIC the value is B. As a consequence, you might see the combinations as listed in Table 3-2 in SYSIBM.SYSCOPY.

 Table 3-2 SYSCOPY values for ICTYPE and TTYPE

 	
 Utility

 	
 ICTYPE

 	
 TTYPE

 	
 REORG LOG YES

 	
 X

 	
 B or E

 	
 REORG LOG NO

 	
 W

 	
 B or E

 	
 RECOVER PIT

 	
 P

 	
 B or E

 	
 REBUILD INDEX

 	
 B

 	
 B or E

 	
 LOAD REPLACE LOG YES

 	
 R

 	
 B or E

 	
 LOAD REPLACE LOG NO

 	
 S

 	
 B or E

 	
 Note: For index spaces, the entries occur only if they are copy-enabled. In addition, they are also generated only through the REORG INDEX, REBUILD INDEX, and RECOVER to PIT utilities. Thus, if the RBA/LRSN format is changed, through a REORG TABLESPACE, no information about this change is kept in the SYSIBM.SYSCOPY.

 LOAD REPLACE

 In addition to the REORG TABLESPACE and REORG INDEX utilities, LOAD with option REPLACE is another way to convert a page set’s RBA and LRSN length. The setting of UTILITY_OBJECT_CONVERSION system parameter applies, analogous to REORG, only past conversion mode. The RBALRSN_CONVERSION utility control statement can be set to NONE, BASIC, EXTENDED, and the utility behavior is basically the same as described in “The REORG INDEX and REORG TABLESPACE utilities” on page 37.

 Keep in mind that specifying the RBALRSN_CONVERSION can only make sense on LOAD REPLACE. If you use LOAD RESUME, the nature of the utility is to load only a subset of the total number of rows into a table (space). Having a few rows use a 6 byte RBA and some using a 10 byte RBA really does not make sense. You receive the following error message when you try to request a conversion during a LOAD RESUME:

 DSNU071 KEYWORD ‘RBALRSN_CONVERSION REQUIRES KEYWORD ‘REPLACE’.

 REBUILD INDEX

 In DB2 11 NFM, the same functionality and the same rules apply for the conversion of RBAs and LRSNs as described for REORG INDEX and TABLESPACE and for LOAD REPLACE.

 DSN1COPY

 DSN1COPY is a stand-alone utility. When you use this utility to overlay data of an existing table space with image copy data from an image copy that you created earlier, DB2 does not check or modify anything in the catalog.

 Using the DSN1COPY utility can cause a mismatch between the information stored in the catalog and the actual table space format, as illustrated in Figure 3-4. This scenario assumes a TS is created in EXTENDED format (with the OBJECT_CREATE_FORMAT=EXTENDED system parameter). Take an image copy of the page set and subsequently reorganize it. Using the REORG control statement, specify the RBALRSN_CONVERSION option with BASIC value. This option changes the format of the table space from EXTENDED to BASIC. This change is also reflected in the SYSIBM.SYSTABLESPACE table RBA_FORMAT column, which now shows the B value. Next, run the DSN1COPY utility, and overlay the table space data with what is on image copy FC1, that is data in EXTENDED format. Now there is a mismatch between the information that is stored in the catalog and what is in the table space.

 [image:]

 Figure 3-4 DSN1COPY: Catalog information mismatch

 When you start working with the table stored in this table space, these is no message or, even worse, error message, but the mismatch is nevertheless not nice. You can use the REPAIR utility with the CATALOG option to fix this mismatch.

 The REPAIR CATALOG option is a new option on the REPAIR utility. It indicates that the REPAIR utility is to validate information in the catalog for the specified table space. When you specify REPAIR CATALOG, the utility performs the following actions:

 1.	Compares the following information in the catalog with the data:

  –	Row format (can be either reordered row format or basic row format)

  –	RBA format (can be either 6 byte format or 10 byte format)

  –	Data version information (same functionality that is performed with REPAIR VERSIONS)

  –	Hash space value

 For these items, if the information in the catalog is different from the data, the REPAIR utility changes the values in the catalog to match the data.

 2.	Validates the following information:

  –	DBID, PSID, and OBID

  –	Table space type

  –	SEGSIZE

  –	PAGESIZE

  –	Table definition

 For these items, if the information in the catalog is different from the data, the REPAIR utility does not correct the information in the catalog. Instead, the REPAIR utility fails and reports the mismatched information in a message. To correct the mismatched information, take the action that is documented for the message that you receive.

 REPAIR CATALOG does not make any corrections for indexes. If you or the REPAIR utility made corrections to the data or catalog as a result of running REPAIR CATALOG, rebuild any indexes on the target tables.

 The syntax for the REPAIR utility includes a TEST option that you can specify together with REPAIR CATALOG. This option indicates that the REPAIR utility is not to correct any mismatched information. Wih this option set, the utility checks all of the same information that it checks when you specify REPAIR CATALOG. However, any information differences between the data and catalog are reported only in messages. The utility does not take any corrective actions.

 Example 3-9 shows the results before running REPAIR CATALOG for the situation described in Figure 3-4 on page 40, using the TEST option.

 Example 3-9 Output of TEST option

 [image:]

 DSNU674I -DB1A 221 15:58:59.95 DSNUCBVR - RBA FORMAT FOR DBID=X'014F' PSID=X'0005' IN THE DB2 CATALOG IS BASIC, BUT IN THE PAGE SET IS EXPANDED.

 [image:]

 Then, subsequently running the REPAIR utility, the utility reports the messages shown in Example 3-10.

 Example 3-10 Repair output

 [image:]

 DSNU674I -DB1A 221 16:41:23.70 DSNUCBVR - RBA FORMAT FOR DBID=X'014F' PSID=X'0005' IN THE DB2 CATALOG IS BASIC, BUT IN THE PAGE SET IS EXPANDED.

 DSNU695I -DB1A 221 16:41:23.71 DSNUCBVR - INFORMATION IN THE CATALOG WAS UPDATED

 TO MATCH THE PAGE SET

 [image:]

 3.1.8 Additional considerations regarding utilities

 This section discusses several aspects about how utilities are affected by extended RBA/LRSNs and how utilities support RBS/LRSNs.

 BACKUP/RESTORE SYSTEM

 When you run the BACKUP SYSTEM utility, a token is associated with the backup to identify it. In a system for which the BSDS is not converted so that it can hold the extended RBAs and LRSNs, the token is 18 bytes long. In this situation, the token is composed as explained in Table 3-3.

 Table 3-3 Composition of BACKUP token

 	
 Field

 	
 Field description

 	
 Length

 	
 DB2 SSID

 	
 DB2 subsystem ID

 	
 4 bytes

 	
 TOD

 	
 Time of day of SYSPITR = LRSN

 	
 8 bytes

 	
 RBA

 	
 Checkpoint RBA of last checkpoint before BACKUP

 	
 6 bytes

 Example 3-11 shows a token resulting from a BACKUP SYSTEM execution on a DB2 subsystem for which the BSDS is not converted to the extended RBA/LRSN.

 Example 3-11 BACKUP token prior to BSDS conversion

 [image:]

 TOKEN = X'C4C2F0C2CBC85E68889EE60800003E44A7B1'

 [image:]

 After you have converted the BSDS, the information given in the job output is different. First, the length of the token is increased by 4 bytes, which are added to the RBA at the end of the token. No change occurs for the time of day, which you can expect, because the BSDS conversion is for both, 10 bytes by RBAs as well as 10 bytes by LRSNs. Second, the job output is slightly changed. It shows both the tokenand the real value that is stored in the BSDS for the time of day.

 Example 3-12 shows how the token changed and the additional information for the DATA COMPLETE LRSN, which in fact is 10 bytes long.

 Example 3-12 BACKUP SYSTEM job output after BSDS conversion

 [image:]

 DSNU1600I 220 17:06:57.72 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA STARTING,

 COPYPOOL = DSN$DB1A$DB

 TOKEN = X'C4C2F1C1CBC8654135D846040000000000014B43AB62'.

 DSNU1614I 220 17:06:59.95 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA COMPLETED

 COPYPOOL = DSN$DB1A$DB

 TOKEN = X'C4C2F1C1CBC8654135D846040000000000014B43AB62'

 DATA COMPLETE LRSN = X'0000000000014B43F6DA'

 ELAPSED TIME = 00:00:02.

 [image:]

 Also, if you print the BSDS afterwards and scroll to the section that lists all available SYSTEM BACKUPS, the long LRSN is also listed. Example 3-13 contains the information about one existing system level backup. Notice the entries showing up in the EXTENDED format.

 Example 3-13 DSNJU004 after BACKUP SYSTEM for non-data sharing system

 [image:]

 START STCK DATA COMPLETE

 DATA LOG RBLP LRSN

 ---------------- ---------------- -------------------- --------------------

 CBC8654135D84604 0000000000000000 0000000000014B43AB62 0000000000014B43F6DA

 TOKEN = C4C2F1C1CBC8654135D846040000000000014B43AB62

 Z/OS 1.13 CAT=YES

 LOCATION NAME = DB1A

 [image:]

 Things are a little different for data sharing systems. Example 3-14 shows almost the same data as Example 3-12, with the exception that the last 10 bytes of the token do not represent an RBA but an LRSN.

 Example 3-14 BACK SYSTEM job output from data sharing system	

 [image:]

 DSNU1600I 220 16:05:48.87 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA STARTING,

 COPYPOOL = DSN$DB1B$DB

 TOKEN = X'C4F1C2F1CBC8579652E78E0A00CBC85695DC17000000'.

 DSNU1614I 220 16:05:49.80 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA COMPLETED

 COPYPOOL = DSN$DB1B$DB

 TOKEN = X'C4F1C2F1CBC8579652E78E0A00CBC85695DC17000000'

 DATA COMPLETE LRSN = X'00CBC8579651972A2200'

 ELAPSED TIME = 00:00:00.

 [image:]

 For completion, Example 3-15 shows the information listed in the BSDS for the data sharing system.

 Example 3-15 DSNJU004 after BACKUP SYSTEM for data sharing

 [image:]

 START STCK DATA COMPLETE

 DATA LOG RBLP LRSN

 ---------------- ---------------- -------------------- --------------------

 CBC8579652E78E0A 0000000000000000 00CBC85695DC17000000 00CBC8579651972A2200

 TOKEN = C4F1C2F1CBC8579652E78E0A00CBC85695DC17000000

 Z/OS 1.13 CAT=YES

 LOCATION NAME = DB1B

 [image:]

 RECOVER

 The RECOVER utility TORBA, TOLOGPOINT, and RESTORBEFORE keywords now accept 6 byte or 10 byte RBAs or LRSNs. Operands of 6 bytes or less are interpreted as being in BASIC format. Operands greater than 6 bytes are interpreted as being in EXTENDED format.

 The RECOVER utility now can handle the different RBA/LRSN formats. Figure 3-5 illustrates what happens when you recover a page set to a point prior to changing the RBA/LRSN format.

 [image:]

 Figure 3-5 PIT RECOVERY

 This example creates an object in BASIC format and take an image copy, which in this situation includes the data in BASIC format. Subsequently, the RBA/LRSN format changes using a REORG TABLESPACE. Because changing the RBA/LRSN format is possible only with a SHRLEVEL REFERENCE or CHANGE REORG, an image copy is mandatory. This image copy contains the data in EXTENDED format. If you had to perform a subsequent RECOVER to current, you use this image copy, and the object remains in EXTENDED format.

 If you decide not to recover to CURRENT, but to image copy FC1, RECOVER also accepts this image copy as a recover basis. It uses the data as is on the image copy and recovers the data up to the point that you specify on your RECOVER TABLESPACE statement. If you specify any given RBA between FC1 and FC2, the result is a recovered object in BASIC format. The fact that the object is reverted to BASIC format is mentioned in the job output through the following message:

 DSNU1169I -DB1A 220 18:59:09.53 DSNURFIJ - TABLESPACE SABIDB3.SEGMENT CONVERTED BY KEYWORD TO BASIC RBA/LRSN FORMAT.

 In addition, several catalog changes are also applied to reflect this conversion. RBALRSN_FORMAT in SYSIBM.SYSTABLEPART is set to B and also the entry for the PIT recovery in SYSIBM.SYSCOPY indicates this through the TTYPE column for the PIT recovery record.

 REPORT RECOVERY

 The REPORT RECOVERY utility output now accommodates the longer RBAs and LRSNs. The utility output is restricted to 120 bytes in length, which means that the existing layout is compressed. So if you rely on processing the output automatically, make sure that you review current processes and adjust accordingly.

 3.2 NOT LOGGED for declared global temporary tables

 A declared global temporary table (DGTT) is used by an application to store intermediate SQL results data while an application is still running. DB2 11 improves this implementation by allowing the option to avoid logging during insert, update, and delete activity to DGTTs. This option can improve the performance and usability of DGTTs by applications. It is also in line with DB2 family compatibility because for DB2 for Linux, UNIX, and Windows already supports not-logged DGTTs.

 With the ability to choose to not log DGTT activity, it might be beneficial for you to use DGTTs instead of a created global temporary table (CGTT). Although CGTTs support not logging and can provide better performance because the schema is known prior to execution of the application program, CGTTs do not support certain key features, such as indexes.

 3.2.1 Syntax extension

 Figure 3-6 illustrates the DECLARE GLOBAL TEMPORARY TABLE syntax.

 [image:]

 Figure 3-6 CREATE DGTT syntax with NOT LOGGED options

 The syntax in Figure 3-6 shows that a DGTT now has the following different logging options:

 •LOGGED

 This option is the default and the current behavior. In this case, DB2 logs all changes, and during ROLLBACK or ROLLBACK TO SAVEPOINT, the changes to the DGTT are undone.

 •NOT LOGGED ON ROLLBACK DELETE ROWS

 This option specifies that you do not want logging to occur for this table, and during ROLLBACK or ROLLBACK TO SAVEPOINT, all rows in the DGTT are deleted if any change was made in the duration.

 •NOT LOGGED ON ROLLBACK PRESERVE ROWS

 This option specifies that you do not want logging to occur for this table, and during ROLLBACK or ROLLBACK TO SAVEPOINT, the rows in the DGTT are preserved as they are.

 You usually think about rollbacks in an error situation when there is a negative SQLCODE or message returned to the application. This kind of rollback is not affected by the new behavior. In the case of an error situation during an SQL statement, where an SQLCODE or message is issued, if an update was made to a DGTT and LOGGED is specified, the changes to the DGTT are undone.

 Also, in the case of an error situation during an SQL statement, where an SQLCODE or message is issued, if an update was made to a DGTT and NOT LOGGED is specified, all rows in that DGTT are deleted, regardless of the DELETE/PRESERVE ROWS qualification.

 	
 Important: Your decision on the ROLLBACK behavior for DGTTs affects only situations in which your application explicitly issues a ROLLBACK statement.

 3.2.2 Undo processing for NOT LOGGED DGTTs

 Undo processing operates by reading the information on the log in a backward direction and backs out the changes made by the current unit of recovery, as indicated by the log records encountered. Undo processing is entered for of a number of reasons:

 •The application issues the ROLLBACK SQL statement.

 The undo processing depends on ON ROLLBACK DELETE/PRESERVE specification described previously. If you specified NOT LOGGED ON ROLLBACK DELETE ROWS on the DECLARE GLOBAL TEMPORARY TABLE statement and if the DGTT was updated since the last COMMIT, all rows in the DGTT are deleted. The DGTT itself remains available; however, all cursors open against the DGTT are closed.

 If you specified NOT LOGGED ON ROLLBACK PRESERVE ROWS, all rows in the DGTT are preserved as is. The DGTT and the rows are available.

 •The application issues the ROLLBACK TO SAVEPOINT statement.

 In this case the undo processing depends on the ON ROLLBACK DELETE/PRESERVE specification described previously.

 If you specified NOT LOGGED ON ROLLBACK DELETE ROWS and if the DGTT was updated since the last COMMIT, all rows in the DGTT are deleted. The DGTT itself is available; however, all cursors open against the DGTT remain open but not positioned because the rows are deleted.

 If you used NOT LOGGED ON ROLLBACK PRESERVE ROWS on the DECLARE GLOBAL TEMPORARY TABLE statement, all rows in the DGTT are preserved as is. The DGTT and the rows are available.

 •If there is an error while the application executes an INSERT, UPDATE, or DELETE statement, all rows are deleted from the DGTT. This type of error includes, for example, a duplicate key violation. The DGTT itself is available; however, any cursors open against the DGTT remain open but no longer have position.

 •If an application gets cancelled using a -CANCEL THREAD command, all rows are deleted from the DGTT, and the DGTT is dropped.

 •For statements that insert multiple rows, the ATOMIC and NOT ATOMIC CONTINUE ON SQLEXCEPTION options of the INSERT statement determine the result of an error inserting any of the rows.

  –	The ATOMIC option specifies that if the insert for any row fails, all changes made to the database by any of the inserts, including changes made by successful inserts, are undone. This option is the default.

  –	The NOT ATOMIC CONTINUE ON SQLEXCEPTION option specifies that, regardless of the failure of any particular insert of a row, the INSERT statement will not undo any changes made to the database by the successful inserts of other rows, and inserting will be attempted for subsequent rows. However, the minimum level of atomicity is at least that of a single insert (that is, it is not possible for a partial insert to complete), including any triggers that might have been executed as a result of the INSERT statement.

 The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clauses can be specified for a static multiple-row-insert. However, do not specify this clause for a dynamic INSERT statement. For a dynamic statement, use the ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clause as an attribute on the PREPARE statement.

 3.2.3 Thread reuse

 A thread is qualified for reuse if the table was defined with both the ON COMMIT DELETE ROWS attribute, which is the default, and the NOT LOGGED ON ROLLBACK DELETE ROWS attribute, which is not the default.

 A thread is not qualified for reuse if the table is defined with PRESERVE ROWS specified either ON COMMIT or NOT LOGGED ON ROLLBACK.

 3.2.4 Sample scenarios

 The following examples summarize these types of scenarios.

 Example 1

 Assume that the application has the following sequence of SQL statements:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	CREATE UNIQUE INDEX on DT1

 3.	INSERT INTO DT1 (successful)

 4.	INSERT INTO DT1 (duplicate key error)

 In this error situation, because no UNDO log records are available due to NOT LOGGED specification, DB2 deletes all the rows in DT1. However, the DGTT, DT1, are available for INSERT, UPDATE, DELETE, and FETCH.

 Example 2

 Assume that the application has the following sequence of SQL statements:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	CREATE UNIQUE INDEX on DT1

 3.	INSERT INTO DT1 (successful)

 4.	INSERT INTO DT1 (successful)

 5.	DECLARE GLOBAL TEMPORARY TABLE DT2 NOT LOGGED ON ROLLBACK DELETE ROWS (declaring a second DGTT) produces an internal error such as no space.

 In this error situation, DB2 only undoes anything done for DECLARE DT2. DT1 remains as is, with 2 inserted rows, and available for further updates.

 Example 3

 Assume the following sequence of steps:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	CREATE UNIQUE INDEX on DT1

 3.	INSERT INTO DT1 (successful)

 4.	INSERT INTO DT1 (successful)

 5.	DECLARE GLOBAL TEMPORARY TABLE DT2 NOT LOGGED ON ROLLBACK DELETE ROWS

 6.	INSERT INTO DT2 (successful)

 7.	INSERT INTO DT2 (duplicate key error)

 In this situation, DB2 delete rows from DT2, because the error was on INSERT into DT2.

 Example 4

 Assumes the following sequence of SQL statements:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	INSERT INTO DT1 with a subselect

 3.	COMMIT

 4.	DECLARE CURSOR C1 on DT1

 5.	OPEN C1

 6.	FETCH C1

 7.	UPDATE where current of C1

 8.	INSERT into DT1

 9.	ROLLBACK

 This roll back causes DB2 to delete all the rows in DT1. Even the inserted rows that were committed. However, the DGTT, DT1, is available for INSERT, UPDATE, DELETE, and FETCH.

 Example 5

 Assume the application has the following sequence of SQL statements:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	INSERT INTO DT1 with a subselect

 3.	COMMIT

 4.	DECLARE CURSOR C1 on DT1

 5.	OPEN C1

 6.	FETCH C1

 7.	ROLLBACK

 This rollback does not delete the rows in DT1 because no updates were made to DT1 since the last commit.

 	
 Difference with this example in the roll back: Note the difference here. When NOT LOGGED ON ROLLBACK DELETE ROWS is specified, insert, update, and delete activity is not logged. During a ROLLBACK or ROLLBACK TO SAVE POINT, if there was any updates to the DGTT since the last COMMIT statement, all rows from the DGTT are deleted, and any open cursors against the DGTT have no position. If the declaration of the DGTT itself was not committed, the DGTT itself is rolled back.

 Example 6

 Assume the following sequence of statements:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	INSERT INTO DT1 with a subselect

 3.	DECLARE CURSOR C1 on DT1

 4.	OPEN C1

 5.	FETCH C1

 6.	ROLLBACK

 This rollback deallocates the DGTT because there was no COMMIT after it was declared. The NOT LOGGED attribute does not apply to log records written during the DECLARE and DROP of the DGTT.

 Example 7

 The following example is a sequence of steps for a DGTT, which is defined as NOT LOGGED ON ROLLBACK PRESERVE ROWS:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK PRESERVE ROWS

 2.	INSERT INTO DT1 with a subselect

 3.	COMMIT

 4.	DECLARE CURSOR C1 on DT1

 5.	OPEN C1

 6.	FETCH C1

 7.	UPDATE where current of C1

 8.	INSERT into DT1

 9.	DELETE FROM T2 (T2 is a different table unrelated to DGTT and is logged)

 10.	ROLLBACK

 This roll back causes DB2 to rollback the DELETE from T2; however the DGTT, DT1, remains untouched because of the PRESERVE ROWS specification.

 Example 8

 Assume the following SQL statements are executed in the application:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK PRESERVE ROWS

 2.	INSERT INTO DT1 with a subselect

 3.	DECLARE CURSOR C1 on DT1

 4.	OPEN C1

 5.	FETCH C1

 6.	ROLLBACK

 This rollback deallocates the DGTT because there was no COMMIT after it was declared. The NOT LOGGED attribute does not apply to log records written during the DECLARE and DROP of the DGTT.

 Example 9

 Assume that the application has the following sequence of SQL statements:

 1.	DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

 2.	CREATE UNIQUE INDEX on DT1

 3.	INSERT INTO DT1 (successful)

 4.	SET SAVEPOINT SP1

 5.	INSERT INTO DT1 (successful)

 6.	DECLARE GLOBAL TEMPORARY TABLE DT2 NOT LOGGED ON ROLLBACK DELETE ROWS

 7.	INSERT INTO DT2 (successful)

 8.	ROLLBACK TO SP1

 In this situation, DB2 deletes rows from DT1 and DT2. DB2 also undoes the declare of DT2. DT1 will still be available.

 3.3 More open data sets (DSMAX)

 The DSMAX subsystem parameter determines the maximum number of data sets that is to be allowed open at one time. DB2 11 increases the maximum number from 100,000 to 200,000. Although the maximum number of concurrently open data sets is 200,000, the practical limit might be significantly less on any given DB2 subsystem, depending on availability of virtual storage below the 2 GB bar. In most cases, a value of 50,000 to 75,000 open data sets is sufficient. The maximum number of 200, 000 open data sets is available in DB2 11 CM and has is retrofitted to DB2 10 through APAR PM88166.

 3.4 PBG mapping tables to lift the 64 GB limit

 When you reorganize a table space using SHRLEVEL CHANGE, you have to use a mapping table. For each row, the mapping table records the position of each record (RID) in the original table space and the one that it is to be found on the reorganized shadow copy.

 DB2 11 includes the following enhancements related to the mapping tables:

 •The mapping table can be created automatically by DB2 during REORG execution.

 •The mapping table can grow up to 16 TB.

 3.4.1 Autonomic creation of the mapping table

 When processing a REORG TABLESPACE SHRLEVEL CHANGE request, the REORG utility has the option to create its own mapping table and mapping index, instead of relying on a user’s input. Use the REORG_MAPPING_DATABASE system parameter to specify a valid database name, and do not specify anything for the mapping table on the utility control statement. This action directs REORG to allocate the mapping table in the database that is specified.

 If the name is valid only in terms of following the naming rules for database names but if the name that you specify is not an existing database in the DB2 subsystem, the REORG fails while trying to allocate a table space for the mapping table in this database.

 Example 3-16 shows the error message in the utility output in this case.

 Example 3-16 Error message for not found map table space

 [image:]

 DSNUGUTC - REORG TABLESPACE SABIDB3.SEGMENT SHRLEVEL CHANGE

 .35 DSNURMAP - MAPPING DATABASE yourdb IS INVALID

 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

 [image:]

 The autonomic creation of mapping tables is described in more detail at 11.1.4, “Automated REORG mapping table management” on page 278.

 3.4.2 Mapping tables up to 16 TB

 Mapping tables must store information about each row’s source and target RID. Thus, a REORG job can hit the limit of 64 GB when very large table spaces are reorganized. Prior to DB2 11, this limit meant a mapping table had to be a segmented table space. With growing data needs, REORG jobs can hit the limit more often. DB2 11 allows you to use PBG table spaces for storing mapping tables, which practically eliminates the limit.

 To determine how much space you need for a REORG, make the following calculation for the index:

 1.1 * Number-of-rows-in-table-space * 31

 1 The byte units are: Kilobyte ·Megabyte ·Gigabyte ·Terabyte ·Petabyte ·Exabyte ·Zettabyte ·Yottabyte

[image:]
[image:]

Availability

 DB2 11 for z/OS continues to bring changes that can improve availability. These new functions keep up with the demands of transaction processing and business intelligence that require on-demand actions and changes without interruption of service. DB2 11 delivers increased application and subsystem availability with more functions for schema evolution, autonomics, governance, and usability.

 This chapter describes the following enhancements:

 •Online schema changes and enhanced recovery options

 •Automatic recovery of indexes from GRECP or LPL status

 •Improved availability when altering limit keys

 •Work file database enhancements

 •Governing of parallel processing of utilities

 •Compression dictionary availability for CDC tables

 •DROP column support

 •Defer define object enhancements

 •Allow BIND, REBIND, and DDL to break-in persistent threads

 •Idle thread break-in

 Other enhancements that indirectly improve availability are described at 2.4, “Reduced need for REORG” on page 15 and 13.3, “Reduced need for REORG” on page 390.

 4.1 Online schema changes and enhanced recovery options

 With DB2 10, several online schema options allow you to make changes to database objects (indexes and table spaces) while maximizing availability of altered objects. ALTER statements (such as changing segment size, data set size, buffer pool with a different page size, the MEMBER CLUSTER attribute, and table space type) are among the changes that you can execute while applications are running. These changes are deferred and are not materialized immediately, leaving the altered objects available.

 DB2 10 alters are called pending changes. Their materialization requires reorganization of the affected objects.

 DB2 10 introduced the following supported pending definition changes:

 •Alter segment size (SEGSIZE) on partition-by-growth universal table space (PBG UTS), partition-by-range universal table space (PBR UTS), and XML table space.

 •Alter data set size (DSSIZE) on partition-by-growth universal table space (PBG UTS), partition-by-range universal table space (PBR UTS), XML table space, and large object (LOB) table space.

 •Alter buffer pool with a different page size on partition-by-growth universal table space (PBG UTS), partition-by-range universal table space (PBR UTS), and LOB table space.

 •Alter buffer pool with a different page size on index that is associated with universal table space (UTS).

 •Alter MEMBER CLUSTER on partition-by-growth universal table space (PBG UTS), and partition-by-range universal table space (PBR UTS).

 •Convert single-table classic partitioned table space to partition-by-range universal table space (PBR UTS).

 •Convert single-table classic simple table space to partition-by-growth universal table space (PBG UTS).

 •Convert single-table classic segmented table space to partition-by-growth universal table space (PBG UTS).

 4.1.1 Scope of enhancements for online schema changes in DB2 11

 DB2 10 does not allow point-in-time (PIT) recoveries prior to a materializing REORG job. DB2 11 lifts this restriction for some of the DB2 10 pending alters. Table 4-1 lists the online schema change types for which PIT recoveries are now possible after a materializing REORG.

 Table 4-1 PIT recover allowed after materializing REORG

 	
 DB2 10 online schema change

 	
 LOB auxiliary table space

 	
 XML auxiliary table space

 	
 PBR table space

 	
 ALTER DSSIZE

 	
 YES

 	
 YES

 	
 YES

 	
 ALTER PAGESIZE

 	
 YES

 	
 NO

 	
 YES

 	
 ALTER SEGSIZE

 	
 NO

 	
 YES

 	
 YES

 	
 ALTER MEMBER CLUSTER

 	
 NO

 	
 NO

 	
 YES

 Table 4-1, does not include PBG table spaces. For a list of restrictions that are currently in place, refer to 4.1.7, “Determine if a table space is eligible for PIT recovery prior to REORG” on page 59.

 	
 Prerequisite note: The prerequisite for being able to use the new functionality is that the materializing REORG job is executed in DB2 11 New Function Mode. Thus, this enhancement is available in New Function Mode (NFM). In addition, for table spaces that have gone through the supported schema changes in DB2 10 NFM or DB2 11 conversion mode (CM) and that have had the materializing REORG, even in DB2 11 NFM you cannot do a PIT to any point before that REORG.

 4.1.2 How it works

 Starting in DB2 11 NFM, in the cases listed in Table 4-1, you can recover an LOB table space, XML table space, or PBR to a point in time (PIT) that is prior to the materialization of supported DB2 10 table space attributes pending definition changes. After the RECOVER job is executed, the table space is placed in REORP restrictive state. You must run a subsequent REORG on the entire table space to finalize the point-in-time recovery process.

 Figure 4-1 shows the details of a PIT recovery.

 [image:]

 Figure 4-1 PIT Recovery after materializing REORG of DB2 10 change

 This example starts with the creation of a database, a table space, and table. Then, it inserts some rows, as shown in Example 4-1 for the DDL.

 Example 4-1 DDL for table creation

 [image:]

 CREATE DATABASE SABIDB4;

 CREATE TABLESPACE SABITS1 IN SABIDB4 NUMPARTS 3 ;

 CREATE TABLE SABITB4 LIKE SYSIBM.SYSCOPY

 PARTITION BY (DBNAME)

 (PARTITION 1 ENDING AT ('AAAAAA'),

 PARTITION 2 ENDING AT ('EEEEEE'),

 PARTITION 3 ENDING AT ('ZZZZZZ'))

 IN SABIDB4.SABITS1 ;

 COMMIT;

 INSERT INTO SABITB4 SELECT * FROM SYSIBM.SYSCOPY ;

 [image:]

 Next, the example takes an image copy. If you have the FlashCopy technology available, take a FCIC.

 Then, the example executes one of the DB2 10 ALTER statements listed in Table 4-1 as eligible for this enhancement. In this case the SEGSIZE of the table space is changed from 32 to 64. As a result of this change, the table space is placed in AREOR status. The QUIESCE utility that runs immediately after the ALTER facilitates an RBA for subsequent recovery.

 To materialize the pending change and to get rid of the AREOR status, run the following command:

 REORG TABLESPACE SABIDB4.SABITS1 SHRLEVEL REFERENCE

 An inline image copy is mandatory for a REORG SHRLEVEL REFERENCE. Thus, REORG materializes the pending changes and also produces an image copy. In addition, starting with DB2 11, the materializing REORG leads to entries in the SYSIBM.SYSOBDS table. This table stores information about object definitions as they were at that time. The effect of this online schema change is that the following rows are added to the SYSIBM.SYSOBDS table:

 •One row with OBDTYPE=L, which contains information about an OBDFILE. OBDFILE entries describe the file object descriptor (OBD).

 •A second row with OBDTYPE=P, which contains information about an OBDPSET. OBDPSET records describe either a data page set or index page set OBD.

 	
 Tip: Refer to DB2 11 for z/OS Diagnosis Guide and Reference, LY37-3222 for details about the object descriptors and the layout of the SYSIBM.SYSOBDS table.

 	
 Note: One of the columns in the SYSIBM.SYSOBDS table is VERSION. This column is the version of the original object for an OBD image that was captured during the ALTER that creates a new version. This value is -1 if this row is inserted because of a materializing REORG.

 The next step is to actually do the recovery to the RBA of the QUIESCE point. The recover works fine, but leaves the table space in REORP status because the contents of the image copy do not match the structure of the table space as it is currently described in the catalog. REORP is a restrictive state. Thus, this state does not allow any interaction with the underlying table space. In addition to setting the REORP status, a row is added to the SYSIBM.SYSPENDINGDDL table, which indicates that there are necessary actions to take for this table space. The row that is inserted into the SYSIBM.SYSPENDINGDDL table contains the information listed in Table 4-2.

 Table 4-2 SYSPENDINGDDL entry after RECOVER to PIT before materializing REORG

 	
 Column name

 	
 Value

 	
 DBNAME

 	
 Database Name

 	
 TSNAME

 	
 Table Space Name

 	
 DBID

 	
 DBID

 	
 PSID

 	
 PSID of table space

 	
 OBJSCHEMA

 	
 Database name

 	
 OBJNAME

 	
 Table space name

 	
 OBJOBID

 	
 Table space file OBID

 	
 OBJTYPE

 	
 ‘S’

 	
 STATEMENT_TYPE

 	
 ‘R’

 	
 OPTION_ENVID

 	
 Default to 0

 	
 OPTION_KEYWORD

 	
 ‘TOLOGPOINT’ or ‘TORBA’

 	
 OPTION_VALUE

 	
 RBA/LRSN value to be recovered to as a string of characters

 	
 OPTION_SEQNO

 	
 1

 	
 CREATEDTS

 	
 Time stamp of when RECOVER was executed

 	
 RELCREATED

 	
 Current release of DB2

 	
 IBMREQD

 	
 ‘N’

 	
 ROWID

 	
 Generated by DB2

 	
 STATEMENT_TEXT

 	
 Empty string

 	
 COLNAME

 	
 Empty string

 	
 PARTITION

 	
 Default to 0

 	
 PARTITION_KEYWORD

 	
 Empty string

 	
 Note: The only way to remove this entry from the SYSIBM.SYSPENDINGDDL table is to run a REORG SHRLEVEL CHANGE or REFERENCE.

 ALTER TABLESPACE ... DROP PENDING CHANGES does not help for entries that are added as a result of RECOVER TABLESPACE to a PIT before a REORG that materialized some of the online schema changes.

 In addition to the entries in the SYSIBM.SYSPENDINGDDL and SYSIBM.SYSOBDS tables, these steps also generate entries in the SYSIBM.SYSCOPY tables. Selecting the rows that are produced shows the information in Example 4-2.

 Example 4-2 Selecting from SYSCOPY

 [image:]

 SELECT ICTYPE, STYPE, TTYPE, OLDEST_VERSION, DSNUM

 FROM SYSIBM.SYSCOPY

 ORDER BY TIMESTAMP DESC

 ---------+---------+---------+---------+---------+-------

 ICTYPE STYPE TTYPE OLDEST_VERSION DSNUM

 ---------+---------+---------+---------+---------+-------

 P C -1 0

 F W 0 0

 W F 0 0

 A S 00000032 0 0

 Q W -1 0

 F T C 0 0

 F T C 0 3

 F T C 0 2

 F T C 0 1

 C L E 0 0

 [image:]

 This information includes a couple of new entry types. TTYPE for the ALTER (row 4) shows the SEGSIZE setting that was in place at the time the ALTER was executed. The OLDEST_VERSION column contains a -1 for the QUIESCE and the PIT.

 	
 Note: The value -1 for OLDEST_VERSION for the QUIESCE and the PIT is set for entries for which the version information really does not matter.

 To make the table space fully available again, now run a REORG with SHRLEVEL REFERENCE or CHANGE.

 REORG SHRLEVEL NONE is not allowed in this situation, which is different behavior from the situation in which the table space also has one or more entries in SYSIBM.SYSPENDINGDDL and is currently placed in AREOR status. When you try to run REORG SHRLEVEL NONE in one of those situations, REORG runs but does not materialize the pending change. In this situation, with REORP due to RECOVER, you receive the following message:

 DSNU2921I -DB1A 212 13:37:42.18 DSNURFIT - OPTION SHRLEVEL REFERENCE IS REQUIRED ON TABLESPACE SABIDB4.SABITS1 TO COMPLETE THE POINT-IN-TIME RECOVERY PROCESS

 If you specify SHRLEVEL CHANGE, instead of REFERENCE, DB2 accepts it, but under the covers it executes a SHRLEVEL REFERENCE and lets you know about this change through the following message:

 DSNU124I -DB1A 212 14:11:42.09 DSNURFIT - SHRLEVEL CHANGE SPECIFICATION IS IGNORED AND SHRLEVEL REFERENCE IS IN EFFECT FOR CURRENT UTILITY EXECUTION

 You have to make sure that you reorganize the entire table space to finalize the PIT recovery process. A partition level recovery is not an option here, and you are notified about it the a DSNU256I message.

 Next in this scenario shown in Figure 4-1 on page 53, ALTER the SEGSIZE of the table space again, which again leads to AREOR advisory state. To remove the AREOR status and to materialize this change, run REORG SHRLEVEL REFERENCE/CHANGE again. This REORG now leads to two additional rows in the SYSIBM.SYSOBDS table. Because the structure of the table space has changed again, DB2 now has to save the table space layout as it was before the materializing REORG to enable you to run subsequent PIT recoveries at a later point in time.

 4.1.3 Effect of MODIFY RECOVERY

 As described previously and as shown in Figure 4-1 on page 53, pending definition changes now also lead to new entries in the SYSIBM.SYSOBDS catalog table. Because this table grows large over time, you can remove entries using the MODIFY RECOVERY utility. This utility removes entries that correspond to the rows that are being removed from the SYSIBM.SYSCOPY catalog table also, as shown in Figure 4-2.

 [image:]

 Figure 4-2 MODIFY RECOVERY scenario

 	
 Using this utility with a table space in REORP status: The MODIFY RECOVERY utility is not allowed if a table space is in REORP restrictive status after a RECOVER job was run to recover the data to a PIT before the materialization of pending definition changes on the table space. You must run REORG before you can use the MODIFY RECOVERY utility on this table space again.

 4.1.4 Considerations for LOBs

 Although Table 4-1 on page 52 lists some of the online schema changes for LOBs that qualify for PIT recoveries after materializing REORG, this section describes the specialties that come along with LOBs and XML table spaces.

 If you have recovered a table space that contains LOB columns and if the LOB table spaces have undergone materialized online schema changes, to finalize the PIT recovery process you must reorganize the LOB table spaces first after RECOVER. If your base table space did not have any materialized online schema changes then there is no need to also reorganize it after the RECOVER. If after the RECOVER you check the table space status for both the LOB and base table space or spaces, you can see that only the ones with materialized online schema changes are set to REORP status. However, if your base table space is in REORP status after the PIT recovery, you must reorganize the base table space. This reorganization then pulls the LOB table spaces again and reorganize them again. The reason for that is that AUX YES is set on default due to the REORP restrictive status on the base table space.

 If by accident you do not follow this described order, that is with LOB table spaces first, then the reorganization of the base table space fails with a return code 8 and a DSNU1159I message. If the base table space is not in REORP but the LOB table space is and if you run a REORG on the base table space, which includes the reorganization of the LOB table space or spaces, the REORG runs and completes with RC 4. In addition, if you look at the job output, you do not find any indication that the REORP status has not been reset. Instead the REORG utility issues the following message:

 AUXILIARY TABLESPACE DSN00051.LI8ZSEO8 WILL BE REORGANIZED IN PARALLEL WITH THE BASE TABLEPACE

 However, if you check the status of the LOB table space after the reorganization of the base table space is complete, notice that the LOB table space is still in REORP status.

 4.1.5 Restrictions for the window between PIT recovery and REORG

 PIT recovery includes the following restrictions:

 •You cannot execute any CREATE, ALTER, RENAME, and DROP TABLE statements on the table space objects, objects contained in the table space, and any auxiliary objects associated with the table space if the subsequent REORG has not been executed yet.

  –	That is, pending definition changes are not allowed on the table space objects, objects contained in the table space, indexes on tables in the table space, and any auxiliary objects associated with the table space during the window between the PITR and the subsequent REORG.

  –	The following actions are not allowed:

  •	CREATE AUXILIARY TABLE

  •	CREATE INDEX

  •	CREATE TABLE

  •	DROP TABLE (of base TS, associated LOB TS, associated XML TS)

  •	RENAME INDEX (of index on base table, auxiliary index, XML index, and so on)

  •	RENAME TABLE

  •	ALTER INDEX (of index on base table, auxiliary index, XML index, and so on)

  •	ALTER TABLE (of base TS, associated LOB TS, associated XML TS)

  •	ALTER TABLESPACE (of base TS, associated LOB TS, associated XML TS)

 Existing SQLCODE -20385 with new reason code 28 is issued.

 •The only utilities that are allowed when the table space is in REORG-pending (REORP) restrictive status during the window between the PITR and the subsequent REORG are:

  –	REORG

  –	RECOVER to the same point in time (PIT), that means that you could to another PIT to the same RBA or LOGPOINT or a RECOVER to CURRENT

  –	REPORT RECOVERY

  –	REPAIR DBD

 All the other utility jobs (COPY, COPYTOCOPY, MERGECOPY, MODIFY RECOVERY, LOAD, and UNLOAD) fail and DSNU933I new message returns code 8 (RC=8) to indicate that the object needs to be reorganized to make the object descriptor consistent.

 4.1.6 More restrictions for PIT recovery after materializing REORG

 Consider the following RECOVER restrictions for recovering a table space to a PIT prior to a materializing REORG job:

 •You cannot recover an index to a PIT prior to the materialization of pending definition changes.

 •If allowed, the PIT recovery must always be done for the entire table space.

 •PIT recovery prior to a materializing REORG is not allowed if there are outstanding unmaterialized pending definition changes on the object. If you need to do the PIT recovery, you can do an ALTER TABLESPACE DROP PENDING CHANGES.

 •If you use VERIFYSET NO1 an such a PIT recovery, DB2 overrides it and executes VERIFYSET YES instead.

 •The table space that you want to recover to a PIT before the materialization must not contain a CLONE table.

  –	If a CLONE exists, you must drop the relationship first. When you try to recover nevertheless without dropping you see the message:

 DSNU1319I -DB1A 212 18:17:19.78 DSNUCAIN - POINT-IN-TIME RECOVERY IS NOT ALLOWED BECAUSE TABLESPACE DSN00051.LI8ZSEO8 CONTAINS A CLONE TABLE

  –	If you executed EXCHANGE DATA BETWEEN TABLE base and clone past the point to which you want to recover, RECOVER is not allowed. You get the message:

 DSNUCASA - RECOVER CANNOT PROCEED FOR TABLESPACE DSN00051.SABITB6

 BECAUSE A SYSIBM.SYSCOPY RECORD HAS BEEN ENCOUNTERED WHICH HAS

 DBNAME=DSN00051 TSNAME=SABITB6 DSNUM=0 ICTYPE=A STYPE=E

 STARTRBA=X'0000000000014797BB88' LOWDSNUM=0 HIGHDSNUM=0

 4.1.7 Determine if a table space is eligible for PIT recovery prior to REORG

 There are many restrictions for a PIT recovery to a PIT prior to the materialization of a pending change. If you do not want to run into surprises when you attempt a PIT recovery, you need to analyze the situation. Right now there is no easy way to determine whether a PIT recovery will work for a given table space. The REPORT RECOVERY utility does not provide help in terms of available issues. The only thing that might help is the eye-catcher ##, which surrounds the ICTYPE information for all table spaces for which a materializing REORG was run previously.

 Thus, the best way to check whether a PIT is feasible is based on the entries in the SYSIBM.SYSCOPY catalog table, which includes the necessary information for the RECOVER utility.

 4.2 Automatic recovery of indexes from GRECP or LPL status

 This improvement applies only to a special situation in which DB2 has to mark an index as rebuild pending (RBDP). A RBDP restrictive state can greatly affect the system and application availability. Thus, although it is a specific issue and might not happen often, this function is an improvement in DB2 11. In a small timing window, if there is an index tree structural modification in progress in a situation in which the index is put into LPL or GRECP status, the LPL or GRECP recovery might fail, as illustrated in Figure 4-3.

 [image:]

 Figure 4-3 RBDP after failing LPL or GRECP recovery in DB2 10

 This situation can lead to the RBDP restrictive state of the index space, which then will require a potentially long REBUILD INDEX utility execution.

 In the example, assume that UR1 changes a key A on page 3 of the index space. UR2 does some work that leads to a needed split of page 3. Now, for some reason page 3 is put in LPL state. While in LPL, furthermore assume that the change of key A on page 3 is rolled back. The rollback is noted on the log as compensation log record (CLR). In addition, UR2 also rolls back the page split. If automatic LPL recovery occurs, DB2 first applies the rollback of the change for key A, and then the rollback of the split to page 3, which then leads to the loss of the information regarding the rollback of key A. Because this behavior is not correct, DB2 sets RBDP on the index space.

 This described behavior is an availability exposure addressed by DB2 11 with a two-pass LPL/GRECP recovery. The behavior works as follows:

 •The CLR is skipped in the first pass. The UNDO of the page split is applied first.

 •Then in a second pass the CLR is applied and the UNDO is skipped. As a result, the LPL recovery can complete correctly and the RBDP status can be avoided.

 If DB2 uses this two-pass LPL/GRECP recovery, you are notified by a DSNI051I message, which indicates the starting point of the second pass LOG APPLY during LPL or GRECP recovery.

 	
 Attention: After completion of the two-pass LPL/GRECP recovery, DB2 sets ICOPY status for COPY YES indexes. This setting keeps DB2 from applying the logs that are written before the image copy taken time and, therefore, avoids marking an index into RBDP also. Thus, to avoid running into a situation where copy-enabled indexes are set to ICOPY and you cannot use the RECOVER INDEX utility, monitor the system log for a DSNI051I message.

 4.2.1 RESTORE SYSTEM after two-pass LPL/GRECP recovery has occurred

 With the start of a two-pass LPL/GRECP recovery, DB2 writes a new log record type to indicate that this index has gone through the two-pass LPL or GRECP recovery.

 If there are indexes that have gone through the two-pass LPL or GRECP recovery earlier or if the indexes are still in LPL or GRECP state and the CLRs are written before physical undo logs, these indexes are left in rebuild pending state after the RESTORE SYSTEM utility.

 4.2.2 RECOVER INDEX after two-pass LPL/GRECP recovery has occurred

 If you recover a COPY YES index that has gone through the two-pass LPL or GRECP recovery and if the RECOVER utility needs to apply the logs processed by the two-pass LPL or GRECP recovery, or if the index is still in LPL or GRECP state, but the LCLRs are written before physical undo logs, this index is left in rebuild pending state after the RECOVER utility. Thus, you still need to rebuild this index after the RECOVER utility. However, the occurrence of this type of situation is rare.

 4.3 Improved availability when altering limit keys

 For range-partitioned tables, data rows are stored in data partitions based on the user-specified partition limit key values. After using the table space for a certain time, the partition boundaries that you originally decided to use might not fit well anymore due to data skew or data growth. As a consequence, you might have need to redistribute data across adjacent partitions by using one of the following methods:

 •Run the REORG TABLEPACE command with the REBALANCE option, which was introduced with DB2 8.

 •Use the ALTER option to change the limit key values with the ALTER TABLE DDL statement.

 In DB2 10, when you alter the limit keys for a range-partitioned table space, all affected partitions are immediately placed in a REORG pending restrictive state. When table space partitions are in REORP status, the partitions either need to be loaded with LOAD REPLACE or reorganized immediately.

 To improve data availability, DB2 11 handles the alter of limit keys for range-partitioned table as pending changes. Thus, similar to many other pending changes introduced starting with DB2 10 and continuing in DB2 11, the limit key values for affected partitions are not applied immediately but are recorded in the SYSIBM.SYSPENDINGDDL DB2 catalog table.

 	
 Index-controlled partitioning: The information in this section applies to universal range-partitioned (PBR) and classic table-controlled range-partitioned table spaces. If you still use index-controlled partitioning, you must switch to table-controlled partitioning first. The easiest way to accomplish this step is to ALTER the clustering index to NOT CLUSTER and then ALTER it back to CLUSTER.

 To illustrate the needed step, the following statements create a table with three partitions:

 CREATE TABLESPACE SABITS1 IN SABIDB3 NUMPARTS 3 ;

 CREATE TABLE SABITB3 LIKE DSN81110.EMP

 PARTITION BY (EMPNO)

 (PARTITION 1 ENDING AT ('000020'),

 PARTITION 2 ENDING AT ('000040'),

 PARTITION 3 ENDING AT ('999999'))

 IN SABIDB3.SABITS1 ;

 Issue the following command:

 ALTER TABLE SABITB3 PARTITION 1 ENDING AT (‘000020)

 DB2 responds with the following message:

 DSNT404I SQLCODE = 610, WARNING: A CREATE/ALTER ON OBJECT SABINE.SABITB3 HAS

 PLACED OBJECT IN ADVISORY REORG PENDING

 Checking the SYSIBM.SYSPENDINGDDL table, a row is added to it, but the table space is not placed in AREOR. In fact there is nothing that needs to be changed. The row that is placed in the SYSIBM.SYSPENDINGDDL table shows the following characteristics:

 •OBJTYPE column = 'T'

 •PARTITION column = n (physical partition number of the affected partition)

 •PARTITION_KEYWORD = “ALTER”

 •OPTION_KEYWORD = “ENDING AT”

 •OPTION_VALUE = “xxxx”, which is the limit key

 Because the previous alteration did not really change the limit key for the table, you can change partition 1 from ‘000020’ to ‘000040’ in the next approach. This change results in the following misleading error message:

 DSNT408I SQLCODE = -636, ERROR: RANGES SPECIFIED FOR PARTITION 2 ARE NOT VALID

 This table definition attempts to alter partition 1 to the high key that is currently specified for partition 2. Thus, to set the limit key for partition 1 to ‘000040’, the limit key for partition 2 must be increased first. You can accomplish this increase and the increase for partition 1 in one UR or in separate URs. After successful execution of the mentioned two alters, the entire table space is set to AREOR advisory state, as shown in Example 4-3.

 Example 4-3 AREOR for all three partitions of the PBR

 [image:]

 DSNT360I -DB1A ***********************************

 DSNT361I -DB1A * DISPLAY DATABASE SUMMARY

 * GLOBAL

 DSNT360I -DB1A ***********************************

 DSNT362I -DB1A DATABASE = SABIDB3 STATUS = RW

 DBD LENGTH = 4028

 DSNT397I -DB1A

 NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

 -------- ---- ----- ----------------- -------- -------- -------- -----

 SABITS1 TS 0001 RW,AREOR

 -THRU 0003

 SABITS1 TS

 ******* DISPLAY OF DATABASE SABIDB3 ENDED **********************

 DSN9022I -DB1A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

 [image:]

 At this point nothing has really changed. To materialize the changed limit keys, run REORG with either SHRLEVEL CHANGE or SHRLEVEL REFERENCE. Within the REORG utility output, notice the following messages, which indicate that in fact the REORG materializes the pending changes:

 DSNU2916I - PENDING ALTER LIMIT KEY VALUES ARE BEING MATERIALIZED

 DSNU1163I - APPLYING PENDING DEFINITION CHANGES COMPLETE FOR SABIDB3.SABITS1

 The reorganization ends with return code 4 if it completes successfully. A SYSIBM.SYSCOPY record with ICTYPE=A and STYPE=K is inserted for each affected data partition.

 	
 Note: If you decided to change the limit keys yourself, rather than letting DB2 do it through REORG ... REBALANCE, with the REBALANCE keyword, is not allowed if pending limit key changes are waiting for its materialization. However, if you change your mind after you issued the ALTER TABLE statements and you prefer to let DB2 do the rebalancing, you still have to option to use ALTER TABLESPACE DROP PENDING CHANGES. The DROP PENDING CHANGES option removes all entries for this table space from SYSIBM.SYSPENDINGDDL and removes the AREOR status.

 Packages of the underlying table are invalidated by the REORG utility.

 This function is available in NFM and it only applies to UTS PBR and table controlled partitioning. An ALTER LIMIT KEY on index controlled partitioned table spaces would set them in REORGP.

 APAR PM89655 adds the following new DSNZPARM values to help in this situation:

 •The PREVENT_ALTERTB_LIMITKEY system parameter is used to disable altering of limit key values through an ALTER TABLE statement for index-controlled partitioned table spaces. The default value is NO, the existing behavior. This system parameter takes effect in DB2 11 for z/OS NFM (and is ignored in DB2 11 for z/OS CM). Such altering would cause the table space to be placed in reorganization pending (REORP) status.

 •The PREVENT_NEW_IXCTRL_PART system parameter is used to prevent creation of new index-controlled partitioned tables. The default value is NO, the existing behavior. This system parameter takes effect in DB2 10 for z/OS NFM (and is ignored in DB2 10 for z/OS CM). Table controlled partitioning should be used.

 4.3.1 Considerations for tables containing LOBs

 Starting with DB2 10, if you request FlashCopy image copies as inline copies, the image copies are created for both, the base table space and the LOB or AUX table spaces.

 FlashCopy image copies are used if:

 •You set the subsystem parameter FLASHCOPY_REORG_TS to YES and omit the FLASHCOPY keyword on the REORG table space control statement

 •You use whatever setting for subsystem parameter FLASHCOPY_REORG_TS and specify FLASHCOPY YES on the utility control statement.

 When requesting a FlashCopy inline image copy, you must specify a TEMPLATE prior to the REORG statement.

 Sample utility control statements are:

 TEMPLATE SCOPY1 UNIT(SYSDA) DISP(MOD,CATLG,CATLG)

 SPACE=(10,10) TRK

 DSN(DB2R8.&SN..D&JDATE..T&TIME..P&PART.)

 REORG TABLESPACE DSN00063.PARTTB

 SHRLEVEL REFERENCE

 AUX YES COPYDDN(SCOPY1)

 4.3.2 LOAD REPLACE

 Prior to DB2 11 NFM, all ALTER limit key executions are immediate in a sense that the new limit keys are stored in the catalog immediately, and the affected table space partitions are placed into a REORP restrictive state. The REORG or LOAD REPLACE can be used to materialize alter limit key changes by reformatting the data sets and removing the REORP status on the affected data partitions.

 However, with DB2 11 NFM you get the new behavior with pending alter limit keys. The only way to materialize pending changes is using the REORG utility. So a LOAD REPLACE can no longer be used for the materialization of new limit keys after you are in NFM. If you run a LOAD REPLACE while you still have unmaterialized pending changes for your limit keys, the load should run successful but does load new data records based on the existing limit key values prior to the pending alter limit key changes.

 4.3.3 RECOVER

 A PIT recovery across an online REORG that materialized the pending alter limit key changes is now supported. However, be aware that the data partitions for which you applied limit key changes before the REORG are placed in REORP restrictive state. In the RESTORE phase, all rows are processed on a page-per-page basis. Thus, all image copied pages of partition 1 are going back to partition 1, all copied pages of partition 2 are written to the VSAM cluster of partition 2, and so on, as shown in Figure 4-4.

 [image:]

 Figure 4-4 RECOVER with ALTER LIMIT option

 In addition, the limit keys that are stored in the catalog are still the limit keys that you set earlier using ALTER TABLE. With the recover you just recover the data to a prior PIT and not the schema. So after the RECOVER, there is a mismatch between which rows are expected in each of the partitions and the data that is really there. You can resolve this mismatch using a REORG on the affected table space partition.

 	
 Important: Only partitions 1 and 2 are placed in REORP status, because the ALTER of the limit key for partition 1 affected only these two partitions. As a consequence, you reorganize only these two partitions to make the table space available.

 4.4 Work file database enhancements

 Each DB2 subsystem has a WORKFILE database. In a data sharing system, each data sharing member has its own WORKFILE database.

 DB2 uses the WORKFILE database to keep the declared global temp tables (DGTTs) and other non-DGTT temporary data, such as created global temp tables (CGTTs) and DB2 work data, to support queries by SQL applications that need to perform SORTs that are held in 'work files. DGTTs are used for DGTTs declared by external applications, DB2-internal implementation of static scrollable cursors, DB2-internal implementation instead of triggers, and so on.

 A WORKFILE database can have up to 500 table spaces for all kinds of temporary data together. A table space in the WORKFILE database can be created as a PBG table space that is partitioned and segmented or as a classic segmented table space that is non-partitioned and segmented. PBG tables spaces are DB2-managed. Non-PBG table spaces can be either DB2-managed or user-managed or both. Each table space in the WORKFILE database can hold multiple DGTT tables or work files (depending on their size). A single work file’s (non-DGTT) data can reside in multiple WORKFILE database table spaces (that is one work file can span up to 255 table spaces) if necessary.

 However, a single DGTT cannot span multiple table spaces. That is, a DGTT can use storage in its initially-assigned table space only. If a DGTT is assigned a table space that is also shared by work files, it is possible that the DGTT can run out of necessary space. To alleviate storage shortage for DGTTs, DB2 currently implements a preference logic in the selection of WORKFILE database table spaces for DGTTs versus work files, as follows:

 For DGTTs, DB2 attempts to allocate storage from a list of DB2-defined table spaces with non-zero secondary quantity (SECQTY = -1 or SECQTY > 0) first, before looking for storage from table spaces with a zero secondary quantity. The selection criteria for work files is in the opposite direction. DB2-defined table spaces with SECQTY = 0 or user-defined table spaces are first used for work files.

 This preference logic works effectively only if the WORKFILE database contains a mixture of DB2-managed table spaces with zero and non-zero secondary quantities and user-defined table spaces.

 DB2 10 includes the WFDBSEP system parameter, which isolates certain type of work file table spaces for DGTT or non-DGTT use only.

 If WFDBSEP is set to YES, then:

 •PBG table spaces and DB2-managed non-PBG (classic segmented) table spaces with a non-zero secondary quantity (that is, SECQTY = -1 or > 0) are reserved for DGTT use only (as DGTT-Preferred).

 •DB2-managed non-PBG (classic segmented) table spaces with a zero secondary quantity (SECQTY = 0) and user-managed non-PBG table spaces are reserved for work files use only.

 If the preferred table spaces are not available or they do not have sufficient storage, they get a SQLCODE -904 resource unavailable error. Even though DB2 10 keeps track of the WORKFILE database space usage through some statistic trace records, there are no alerts issued by DB2 when critical storage shortage conditions are approached either at agent level or at system level.

 DB2 11 is enhanced to allow you to tell DB2 using two new system parameters which we are going to describe on the following few pages, to issue warning messages when WORKFILE database space-usage approaches a critical level. These system parameters allow you to monitor space used by DGTTs and “regular” work files separately.

 4.4.1 WFSTGUSE_AGENT_THRESHOLD subsystem parameter

 DB2 11 introduces a new subsystem parameter WFSTGUSE_AGENT_THRESHOLD to define the agent-level space-usage alert threshold. The system parameter is online-changeable.

 The WFSTGUSE_AGENT_THRESHOLD subsystem parameter determines the percentage of available space in the work file database on a DB2 subsystem or data sharing member that can be consumed by a single agent before DB2 issues a warning message.

 The percentage can range from 0 to 100, with a default value of 0, which basically means that this function is not used, that is DB2 does not issue agent-level space usage warnings for the work file database. For a value greater than 0, refer to Table 4-3 to determine how this DSNZPARM influences DB2 behavior.

 Table 4-3 WFSTGUSE_AGENT_THRESHOLD

 	
 WFDBSEP setting

 	
 DB2 behavior

 	
 YES

 	
 Issue a warning message in the following situations:

 •When the percentage of total temporary work file space for one agent reaches or exceeds the percentage of WFSTGUSE_AGENT_THRESHOLD.

 •The percentage of total configured work file-storage in the WORKFILE database consumed by one agent reaches or exceeds the percentage set in WFSTGUSE_AGENT_THRESHOLD.

 	
 NO

 	
 When an agent’s combined total used storage for DGTTs (temporary work files) and sort work files reaches or exceeds the percentage set in WFSTGUSE_AGENT_THRESHOLD

 Table 4-4 shows a few scenarios to demonstrate DB2 behavior in detail.

 Table 4-4 WFSTGUSE_AGENT_THRESHOLD sample

 	
 WFDBSEP

 	
 Total Sort work file defined

 	
 Total Temp work file defined

 	
 WFSTGUSE_AGENT_THRESHOLD

 	
 WFDB storage used by agent

 	
 Warning issued?

 	
 YES

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 20% Sortwork

 	
 YES

 	
 YES

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 20% Temp

 	
 YES

 	
 YES

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 7% Sortwork

 7% Temp

 	
 NO

 	
 YES

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 10% Sortwork

 5% Temp

 	
 YES

 	
 YES

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 4% Sortwork

 7% Temp

 	
 NO

 	
 NO

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 20% Sortwork

 	
 YES

 	
 NO

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 20% Temp

 	
 YES

 	
 NO

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 7% Sortwork

 7% Temp

 	
 YES

 	
 NO

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 10% Sortwork

 5% Temp

 	
 YES

 	
 NO

 	
 1 GB

 	
 1 GB

 	
 10%

 	
 4% Sortwork

 7% Temp

 	
 YES

 Example 4-4 shows message DSNI052I, which was issued as a result of reaching the specified threshold for one agent. In this case, the setting for WFDBSEP is NO. As a result, the message FOR DECLARED GLOBAL TEMP TABLES AND WORK FILES displays in Example 4-4.

 Example 4-4 WFSTGUSE per agent message

 [image:]

 DSNI052I -DB1A DSNISGNS AN AGENT HAS EXCEEDED THE 519

 THRESHOLD FOR STORAGE USE

 IN WORK FILE DATABASE DSNDB07

 FOR DECLARED GLOBAL TEMP TABLES AND WORK FILES.

 THRESHOLD = 1 PERCENT.

 TOTAL STORAGE CONFIGURED = 336 KB

 CONNECTION ID = DB1A

 CORRELATION ID = SABINE

 LUWID = USIBMSC.SCPDB1A.CBC5C3757ECE=21

 PACKAGE NAME = DSNESM68

 PLAN NAME = DSNESPCS

 [image:]

 	
 Note: DB2 issues this message only once per commit scope. So do not wait for repeated messages before you take action.

 The total space configured for a table space in the WORKFILE database is determined during restart based on the PRIQTY and SECQTY specified on CREATE TABLESPACE. For the calculation DB2 assumes that the user has made the defined storage available for all the table spaces using a storage group. One exception occurs for user-defined table spaces. DB2 can only calculate the space for those objects when it opens the page set.

 	
 Note: If DB2 has not opened all user-defined table space objects for the WORKFILE database yet, DB2 does not know about the sizes for these objects. Therefore, it might happen that an agent has used up a high percentage of the available space in DSNDB07 but that a warning is not issued, because one or two small user-defined work files are not opened yet.

 4.4.2 WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter

 The WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter determines the percentage of available space in the work file database on a DB2 subsystem or data sharing member that can be consumed by all agents before a warning message is issued.

 Acceptable values are in the range between 0 to 100. The default is set to 90%. Example 4-5 sets the threshold to a low value of 2%. The message that you get in case the system-wide threshold is reached is slightly different from that in Example 4-4. Example 4-5 shows the message for the system-level space warning.

 Example 4-5 WFSTGUSE per system message

 [image:]

 DSNI053I -DB1A DSNISGNS THE DB2 SUBSYSTEM HAS 521

 EXCEEDED THE THRESHOLD FOR

 STORAGE USE IN WORK FILE DATABASE DSNDB07

 FOR DECLARED GLOBAL TEMP TABLES AND WORK FILES.

 THRESHOLD = 2 PERCENT.

 TOTAL STORAGE CONFIGURED = 336 KB.

 [image:]

 When this value is 0, DB2 does not issue system-level space usage warnings for the work file database.

 When the value is not equal zero, DB2 behaves as listed in table Table 4-5.

 Table 4-5 DB2 behavior for WSTGUSE based on WFDBSEP setting

 	
 WFDBSEP setting

 	
 DB2 behavior

 	
 YES

 	
 Issue a warning message in the following situations:

 •When the total system level storage used for DGTTs reaches or exceeds the WFSTGUSE_SYSTEM_THRESHOLD percentage of the total configured DGTT-storage in the WORKFILE database.

 •The total system-level storage used for work files reaches or exceeds the WFSTGUSE_SYSTEM_THRESHOLD percentage of the total configured work files-storage in the WORKFILE database.

 	
 NO

 	
 Issue a warning message when the total system level storage used for DGTTs and work files together reaches or exceeds the WFSTGUSE_SYSTEM_THRESHOLD percentage of the total configured storage in the WORKFILE database.

 	
 Note: The DSNI053 message is issued at 5 minutes interval, if the criteria for issuing the message continues to exist. You cannot influence this interval.You can adjust this interval if you get too many messages in the MSTR address space using the following methods:

 •Increase the percentage for the WFSTGUSE_SYSTEM_THRESHOLD system parameter, but keep in mind the implications.

 •Increase the number or size of the WORKFILE database table spaces.

 The total space configured for a table space in the WORKFILE database is determined during restart based on the PRIQTY and SECQTY specified on CREATE TABLESPACE. For the calculation DB2 assumes that the user made the defined storage available for all the table spaces using a storage group. One exception occurs for user-defined table spaces. DB2 can calculate only the space for those objects when it opens the page set. Refer to Table 4-6 for more details.

 	
 Important: If DB2 has not opened all user-defined table space objects for the WORKFILE database, DB2 does not know about the sizes for these objects. Therefore, it might happen that an agent has used up a high percentage of the available space in DSNDB07 but that a warning is not issued, because one or two small user-defined work files are not opened.

 Table 4-6 Maximum WORKFILE storage configured

 	
 Table space

 	
 PRIQTY

 	
 SECQTY

 	
 Maximum storage configured for the table space

 	
 PBG

 	

 	
 -1

 	
 DSSIZE * MAXPARTITIONS GB

 	
 PBG

 	

 	
 > 0

 	
 DSSIZE * MAXPARTITIONS GB

 	
 PBG

 	

 	
 0

 	
 MIN(PRIQTY, DSSIZE) GB

 	
 DB2-managed Non-PBG

 	
 < 2 GB

 	
 -1

 	
 64 GB

 	
 DB2-managed Non-PBG

 	
 < 2 GB

 	
 > 0

 	
 64 GB

 	
 DB2-managed Non-PBG

 	
 < 2 GB

 	
 0

 	
 PRIQTY GB

 	
 DB2-managed Non-PBG

 	
 >= 2 GB

 	

 	
 64 GB

 	
 User-managed Non PBG with number of data sets > 1

 	

 	

 	
 Number of data sets * 2 GB

 	
 User-managed Non PBG with number of data sets > 1

 	

 	
 0

 	
 PRIQTY GB

 	
 User-managed Non PBG with number of data sets > 1

 	

 	
 > 0

 	
 2 GB

 4.4.3 Systems programmer response to DSNI052I/DSNI053I

 Determine whether the warning threshold that is specified by subsystem parameter WFSTGUSE_SYSTEM_THRESHOLD or WFSTGUSE_AGENT_THRESHOLD are too low.

 If this is not the case, take one or both of the following actions:

 •Create additional table spaces in the work file database of the object types that are specified in this message.

 Use the DSNTWFG exec in job step DSNTIST of installation job DSNTIJTM to create additional table spaces.

 •Change the value of subsystem parameter WFDBSEP from NO to YES.

 4.5 Governing of parallel processing of utilities

 DB2 processes various tasks for various utilities in parallel. Sometimes you have to ask for it, and sometimes DB2 determines the possible degree of parallelism by itself. The following utilities can have some work run in parallel:

 •REORG TABLESPACE

 •REBUILD INDEX

 •CHECK INDEX

 •UNLOAD

 •LOAD

 This utilities include a new PARAMDEG_UTIL subsystem parameter that allows you to limit the number of parallel tasks for utilities for a data sharing member.

 REORG TABLESPACE

 REORG TABLESPACE uses parallel index build if more than one index needs to be built (including the mapping index for SHRLEVEL CHANGE). You can either let the utility dynamically allocate the data sets that SORT needs for this parallel index build or provide the necessary data sets yourself. The number of subtasks must be less than or equal to the number that is specified by the PARALLEL option. If you do not specify the PARALLEL option, the PARAMDEG_UTIL subsystem parameter determines the maximum degree of parallelism for the utility.

 Neither the PARALLEL nor PARAMDEG_UTIL affect the degree of parallelism used by the unload phase of REORG.

 REBUILD INDEX

 For REBUILD INDEX the PARALLEL(num-subtasks) keyword specifies the maximum number of subtasks that are to be started in parallel to rebuild indexes. If the PARALLEL keyword is omitted, the maximum number of subtasks is limited by either the number of partitions being unloaded or the number of indexes built.

 REBUILD INDEX typically allocates subtasks in groups of two or three, so the actual number of subtasks that are started might be less than the number specified on PARALLEL.

 The specified number of subtasks for PARALLEL always overrides the specification of the PARAMDEG_UTIL subsystem parameter. Thus, PARALLEL can be smaller or larger than the value of PARAMDEG_UTIL.

 The num-subtasks value specifies the maximum number of subtasks and must be an integer between 0 and 32767, inclusive. If the specified value for num-subtasks is greater than 32767, the REBUILD INDEX statement fails. If 0 or no value is specified for num-subtasks, the REBUILD INDEX utility uses the optimal number of parallel subtasks. If the specified value for num-subtasks is greater than the calculated optimal number, the REBUILD INDEX utility limits the number of parallel subtasks to the optimal number with applied constraints.

 	
 Incompatibility: In DB2 11 conversion mode, the degree of parallelism can increase for the REBUILD INDEX utility.

 The REBUILD INDEX utility previously limited the degree of parallelism to 18 subtasks. Now, because of the PARALLEL option value or the PARAMDEG_UTIL subsystem parameter value, the amount of parallelism might increase.

 CHECK INDEX

 If you specify more than one index, CHECK INDEX checks the indexes in parallel unless they are constrained by available memory, sort work files, or the PARALLEL option. Sorting the index keys and checking multiple indexes in parallel, rather than sequentially, reduces the elapsed time for a CHECK INDEX job.

 If you do not specify the PARALLEL option, the PARAMDEG_UTIL subsystem parameter determines the maximum degree of parallelism for the utility.

 UNLOAD

 The unload utility also has a new PARALLEL keyword. This keyword specifies the maximum number of subtasks to be used in parallel to process the unloading of a partitioned table space. If the PARALLEL keyword is omitted, the maximum number of subtasks possible is determined by the number of partitions being unloaded.

 The (num-subtasks) value specifies the maximum number of subtasks that are to be processed in parallel. The value must be an integer between 0 and 32767, inclusive. If the specified value for num-subtasks is greater than 32767, the UNLOAD statement fails. If 0 or no value is specified for num-subtasks, the UNLOAD utility uses the optimal number of parallel subtasks after applying constraints. If the specified value for num-subtasks is greater than the calculated optimal number, the UNLOAD utility limits the number of parallel subtasks to the optimal number. The specified number of subtasks for PARALLEL always overrides the specification of PARAMDEG_UTIL, so it can be smaller or larger than the DSNZPARM value.

 LOAD

 For a single input data set, the PARALLEL option specifies the maximum number of subtasks that are to be used in parallel when loading a table space from a single input data set and building the indexes. By using parallel subtasks, the utility can potentially reduce the elapsed time of the load operation.

 For multiple input data sets, where there is one data set for each partition, the PARALLEL option specifies the maximum number of subtasks to be used with loading the data partitions, building the indexes, and gathering statistics. This option applies to classic and range-partitioned table spaces. If the PARALLEL option is omitted, the load operation uses the optimal number of subtasks with applied constraints.

 	
 The PARALLEL option overrides PARAMDEG_UTIL: The specified number of subtasks for the PARALLEL option always overrides the specification of the PARAMDEG_UTIL subsystem parameter. Thus, the PARALLEL value can be smaller or larger than the value of PARAMDEG_UTIL.

 	
 Restriction: The PARALLEL option is not valid in the following situations:

 •For a single input data set, the LOAD statement includes any of the following options:

  –	SPANNED YES

  –	INCURSOR

  –	PRESORTED

  –	FORMAT INTERNAL

  –	COLGROUP

 •The table space to be loaded is a PBG table space.

 •The table to be loaded has XML columns and is in a simple or segmented table space, and the LOAD statement includes the SHRLEVEL CHANGE option.

 •The table to be loaded has LOB or XML columns, and the LOAD statement includes the SHRLEVEL NONE option.

 The LOAD utility calculates an optimal number of subtasks to process in parallel based on memory constraints, virtual storage constraints, and the number of available processors. If 0 or no value is specified for num-subtasks, the LOAD utility uses the optimal number of parallel subtasks. If the specified value for num-subtasks is greater than the calculated optimal number, the LOAD utility limits the number of parallel subtasks to the optimal number. If the specified value for num-subtasks is less than the calculated optimal number, the LOAD utility uses the specified value. If the specified value for num-subtasks is greater than 32767, the LOAD statement fails.

 4.6 Compression dictionary availability for CDC tables

 The DB2 instrumentation facility interface (IFI) provides the ability to read log records for data replication products to process the changes to a table from insert, update, and delete operations. If the table is compressed, IFI needs a dictionary to decompress the log record data. Compression dictionaries are created during LOAD or REORG or by using COMPRESS on INSERT. DB2 uses these compression dictionaries when compressed record information must be read from the log for replication purposes.

 However, if you execute a subsequent REORG or LOAD operation and if you do not specify the KEEPDICTIONARY option, DB2 builds a new compression dictionary during the utility execution. This action is OK for all subsequent DML on the table data. However, a problem can occur if a data replication product needs to read log records that require information included in the old compression dictionary. The old compression dictionary is kept in memory as long as DB2 is up and running but is discarded if you have to shut down the DB2 system. In addition, in a data sharing group, the old compression dictionary is kept only in the memory of the member on which you run the LOAD or REORG. The other members or the data sharing group are not aware of the old compression dictionary, and the information about its existence cannot be shared with different data sharing members.

 DB2 11 provides relief to this situation. The change applies only to tables that are created with CHANGE DATA CAPTURE and COMPRESS YES. If you run LOAD or REORG for those objects, DB2 now saves the old compression dictionary. DB2 externalizes the old compression dictionary to the log and adds a record with ICTYPE ‘J’ to the SYSIBM.SYSCOPY table. The START_RBA column of this new records points to the RBA of the data sharing member’s log to which the compression dictionary is externalized.

 In a data sharing environment, DB2 merges log records if the value of the IFI READS qualification WQALFLTR is X'00'. If WQALFLTR is X'01', log records are not merged. The iinstrumentation facility component identifier (IFCID) can retrieve log records from the archive data sets.

 This improvement is available in CM.

 4.7 DROP column support

 With DB2 you had the ability to complete the following tasks:

 •Add a column to an existing table (V1)

 •Alter a column on an existing table (V8)

 •Rename a column on an existing table (V9)

 The ability to drop a column from an existing table has been a requirement because an abandoned column produces the following types of costs:

 •Space in every row stored in the table

 •Space in every image copy of the table space

 •Space taken up in the log records written for the table

 •Additional CPU and elapsed time in all aspects of accessing and maintaining the data

 •DBA time “remembering” that the column is redundant

 Without the ability to drop a column from an existing table, the procedure of getting rid of the redundant column is to schedule an outage, unload the data, drop the table, re-create the table without that column, load the data, and potentially redo grants.

 DB2 11 lets you drop existing columns from a table through an ALTER TABLE ... DROP COLUMN.. RESTRICT SQL statement if there are no dependent objects such as indexes, triggers, unique or check constraints, row permissions, column masks and so on, defined on this column. Views dependent on the table are implicitly regenerated.

 DB2 10 introduced pending changes for online schema changes. An ALTER TABLE to drop one or more columns of a table is a pending change. The drop is not materialized immediately after the ALTER TABLE statement completes, instead one row for each dropped column is inserted into the SYSIBM.SYSPENDINGDDL catalog table and the table space holding the affected table is placed in AREOR advisory pending state.

 For example, if the sc1.table1 table resides in the DB1.TS1 table space, and the table has 10 columns, with the names column1...column10. To drop column10, execute the following ALTER TABLE statement:

 ALTER TABLE sc1.table1 DROP COLUMN column10 RESTRICT

 Upon execution of the this ALTER statement, the entries listed in Table 4-7 are inserted into SYSPENDINGDDL.

 Table 4-7 Entry values for SYSPENDINGDDL

 	
 SYSPENDINGDDL catalog field

 	
 Value

 	
 DBNAME '

 	
 DB1

 	
 TSNAME

 	
 TS1

 	
 DBID

 	
 DBIS of DB1

 	
 PSID

 	
 PSID of TS1

 	
 OBJSCHEMA

 	
 sc1

 	
 OBJNAME

 	
 table1

 	
 COLNAME

 	
 colun10

 	
 OBJOBID

 	
 OBID of sc1.table1

 	
 OBJTPYE

 	
 T

 	
 STATEMENT_TYPE

 	
 A

 	
 COLUMN_KEYWORD

 	
 DROP

 	
 OPTION_KEYWORD

 	
 RESTRICT

 	
 OPTION_VALUE

 	
 empty string

 	
 STATEMENT_TEXT

 	
 ALTER TABLE sc1.table1 DROP COLUM column10 RESTRICT

 Because it is only an advisory state, the object is fully available for any DML statements. In order to actually materialize the change, you have to run a REORG TABLESPACE utility with SHRLEVEL REFERENCE or CHANGE.

 	
 Important: You must execute the REORG TABLESPACE utility to materialize the pending DROP COLUMN on the entire table space. If you only REORG a subset of partitions of a partitioned table space, the REORG runs, but the pending changes continue to be pending changes and the table space remains in AREOR status.

 You can run a REORG with SHRLEVEL NONE as well while the table space is in AREOR status, but SHRLEVEL NONE would not materialize the pending change or changes.

 The REORG with SHRLEVEL REFERENCE or CHANGE performs the following actions:

 •Generate a new table version.

 •Update the catalog definition to remove any references to the dropped column.

 •Revoke any associated column level privileges.

 •Update the data to remove any data for the dropped column.

 •Collect statistics for the table space and associated indexes with the default options (TABLE ALL INDEX ALL UPDATE ALL HISTORY ALL) if the STATISTICS keyword was not specified with the utility.

 •Invalidate any packages and dynamic cached statements that are dependent on the table.

 •Create a SYSCOPY record for the dropped column.

 •Remove the pending drop column entry from SYSPENDINGDDL.

 •Issue a DSNU1166I warning message with RC=4 to indicate that some partition statistics might have become obsolete. The partition statistics that might be obsolete are COLGROUP statistics, KEYCARD statistics, HISTOGRAM statistics, frequency statistics with NUMCOLS > 1, and statistics for extended indexes where applicable.

 	
 Tip: A new option is available on the RUNSTATS utility control statement, RESET ACCESSPATH. You might want to run RUNSTATS with this statement prior to running REORG TABLESPACE to materialize the pending DROP COLUMN. RUNSTATS TABLESPACE ... RESET ACCESSPATH does not gather any statistics. Instead it only resets any access path related statistics in the catalog tables.

 •The user should execute the RUNSTATS utility to collect the partition statistics again.

 •Clear the AREOR state from the table space.

 4.7.1 Changes to the catalog as a result of dropping a column

 As a result of dropping one or more columns from a table, several updates need to be applied to the DB2 catalog. You see the following subset of changes after the successful materializing REORG:

 •A new table version is generated:

  –	SYSTABLESPACE.CURRENT_VERSION is updated

  –	SYSTABLES.VERSION is updated.

 	
 Note: If you drop multiple columns and run REORG TABLESPACE only once to materialize this change, only one version is generated for it.

 •SYSTABLES.COLCOUNT is decreased.

 •SYSTABLES.RECLENGTH is decreased.

 •SYSCOLUMNS.COLNO is changed for all subsequent columns.

 •If the dropped column is a LOB column, the related auxiliary objects for all partitions are dropped.

 4.7.2 Undo a DROP COLUMN

 A DROP COLUMN cannot be undone after you materialized it using REORG TABLESPACE. However, after you execute a pending ALTER TABLE DROP COLUMN, and before the drop is materialized by a REORG utility, you can remove the pending alter using ALTER TABLESPACE DROP PENDING CHANGES.

 	
 Important: The removal of the pending alter that you initiated using the ALTER TABLE command does not work through another ALTER TABLE command but needs to be an ALTER TABLESPACE command instead!

 In addition, removing pending alters for a given table space is not granular. If you use the DROP PENDING CHANGES option on the ALTER TABLESPACE command, all pending changes for the specified table space are removed.

 4.7.3 Impact of DROP COLUMN on utilities

 This section describes the impact of DROP COLUMN on utilities.

 RECOVER

 Recovery to a PIT prior to a materializing REORG is not allowed. Because the materializing REORG must be a SHRLEVEL REFERENCE or SHRLEVEL CHANGE REORG, the REORG produces an image copy. As shown in Figure 4-5, two image copies FC1 and FC2 that existed prior to the materializing REORG are no longer valid image copies.

 [image:]

 Figure 4-5 RECOVER to CURRENT after DROP COLUMN

 In case you need to a recover after the reorganization, this process works properly if you need to recover to CURRENT. However, if your want to recover to any point prior to the image copy that was taken with the materializing REORG, as shown in Figure 4-6, the process fails with a DSNU5561I message and RC8.

 [image:]

 Figure 4-6 RECOVER to LOGPOINT after DROP COLUMN

 	
 Tip: Because the image copy that is created during the REORG is the only good image copy that you have at this point, create at least two image copies during the REORG.

 UNLOAD

 Unless you do something to the physical data sets of image copies FC1 and FC2 in Figure 4-7 on page 78, they continue to exist even if they are not usable by RECOVER any more. As a consequence, you might think that unloading data might work even after the DROP COLUMN is materialized. It does not. If the image copy contains data for dropped columns, the attempt to unload ends with DSNU1227I and RC8.

 DSN1COPY

 The DSN1COPY utility is another method to copy data from still existing image copies to the table space cluster. If you run the DSN1COPY utility and use, for example, image copy FC2 as shown in Figure 4-7, you are using an image copy on which the structure of the data rows is different than the one that is known to the DB2 catalog. The DSN1COPY utility is a stand-alone utility. When you run it, DB2 does not check the contents of the input data set and also does not compare it to whatever is defined in the DB2 catalog. As a consequence, a DSN1COPY utility execution that copies over the contents of FC2 to the table space cluster, completes with RC 0 if done correctly.

 If you subsequently try to select from the table you run into errors if the expected data type does not fit with the encountered data type on the data page.

 Figure 4-7 illustrates how the layout of the EMPLOYEE table changes after DROP COLUMN and the materializing REORG. If later on you use DSN1COPY to copy the contents of FC1 to the table space cluster of DB1.TS1, no problems occur, because DSN1COPY does not check the column layout.

 [image:]

 Figure 4-7 TABLE layout after dropping a column

 As shown in Figure 4-8, a subsequent usage of the EMPLOYEE table might or might not be successful. If you just selected from columns that are before the dropped column, you get the correct results back. If you also select from column, which were repositioned in the table order, there is a high potential that the attempt to read the data will fail. Even if it does not fail, because the data types fit with the column definition, you will definitely get the wrong data returned, that is the information that was previously stored in the dropped column.

 [image:]

 Figure 4-8 Effect of DSN1COPY for a table with dropped column

 4.7.4 Impact of DROP COLUMN on applications

 Dropping a column is not just a matter of executing the new ALTER statement introduced by DB2 11. It also needs planning and careful analysis and communication.

 Any packages and statements in the dynamic statement cache that are dependent on the table holding the column that you are planning to drop are invalidated after you run the materializing REORG statement. If system parameter ABIND is set to YES or COEXIST, an automatic rebuild occurs the next time the application is called. The rebind succeeds if the application does not have any reference to the column that you dropped. In case you missed any packages that are in fact still referencing the column or columns, the automatic rebuild fails and the package is set to inoperative status. Thus, you have to correct the failing SQL statement in the package and execute a BIND package to reactivate the package in question.

 The analogous is true for dynamic SQL statements, which are invalidated in the dynamic statement cache.

 4.7.5 Restrictions for DROP COLUMN

 Keep in mind the following restrictions to the DROP COLUMN function:

 •Only allowed for tables residing in a UTS.

 •Not allowed if the table is an MQT or for tables which are referenced by an MQT

 •Not allowed for columns belonging to a system-period temporal table or a history table

 •Not allowed for tables with EDITPROC or VALIDPROC defined on it.

 •Not allowed for CGTTs.

 •The partitioning key column cannot be dropped.

 •The hash key column for a table space defined as organized by hash cannot be dropped.

 •DOCID columns cannot be dropped.

 •ROWID columns with GENERATED BY DEFAULT or with a dependent LOB cannot be dropped.

 •Security label columns (row permissions or column masks) cannot be dropped.

 4.8 Defer define object enhancements

 The enhancements described in this section are mostly helpful for applications whose database design has the following characteristics:

 •Objects are created with the DEFER YES option

 •Many objects that share one database

 For these objects, a problem can occur when users insert or load data into the logically existing tables that are not physically defined. When these tables are first used, DB2 needs to take an exclusive lock for the database descriptor (DBD). This lock is held until the unit of recovery that completes the data successfully creates the cluster and then completes all the inserts or load action. If there are other tables that are also used for the first time, they also require a DBD lock so that there is a high potential that these tables will run into a time out condition.

 Figure 4-9 illustrates this situation. UR1 issues an INSERT statement, which leads to a DBD lock and a VSAM DEFINE. This lock then starts the inserts. The DBD lock is not released until UR1 commits.

 [image:]

 Figure 4-9 DBD lock on first insert

 DB2 11 allows the lock to be releases on the database descriptor earlier. Thus, instead of waiting for the inserts to complete the unit of recovery per commit, DB2 11 now releases the lock as soon as the table or index space is physically defined. Refer to Figure 4-10. Because UR1 releases the DBD lock immediately after the DEFINE CLUSTER, UR2 does not time out, but UR2 can itself take the DBD lock, DEFINE the cluster for table TAB2, release the lock again, and start with the inserts.

 [image:]

 Figure 4-10 DEFER DEFINE enhancement

 4.9 Allow BIND, REBIND, and DDL to break-in persistent threads

 You need to find windows of opportunity when you can make changes to applications, which sometimes requires that you bind packages and plans or make changes to the database by submitting DDL. Historically, it is difficult to execute a BIND command or a DDL statement at times when applications are running, especially applications bound with RELEASE(DEALLOCATE).

 One of the BIND/REBIND options for BIND PLAN and BIND PACKAGE is RELEASE. The RELEASE option determines when to release resources that a program uses, either at each commit point or when the program terminates.

 You can set RELEASE to COMMIT, DEALLOCATE, or INHERITFROMPLAN. COMMIT releases resources at each commit point, unless cursors are held. If the application accesses the object again, it must acquire the lock again. RELEASE(DEALLOCATE) releases resources only when the program terminates. RELEASE(DEALLOCATE) has the advantage that it requires less CPU (up to 20%) than RELEASE(COMMIT). Alternatively, RELEASE(COMMIT) has the advantage of allowing other processes, such as BIND/REBIND and the execution of DDL, to break in more easily and use needed resources to complete successfully rather than time out.

 DB2 10 introduced the -MODIFY DDF PKGREL(COMMIT/BNDOPT) command. When you issue the -MODIFY DDF PKGREL(COMMIT) command, DB2 temporarily changes the behavior of DDF threads bound with RELEASE(DEALLOCATE) so that they act as though they were bound with RELEASE(COMMIT). The idea behind it allows BIND, REBIND, and DDL and utilities to break in to persistent threads on COMMIT rather than waiting for the application to allocate and therefore undergo the risk of running into time out situations.

 DB2 11 introduces a PKGREL_COMMIT system parameter that can be set to YES or NO. YES is the default. If set to YES it allows a persistent DB2 thread, at COMMIT or ROLLBACK, to implicitly release a package that is bound with RELEASE(DEALLOCATE) and active on that thread if there is a BIND REPLACE/REBIND PACKAGE, online schema change operation (for example, DDL), or online REORG with deferred ALTER operation that needs to quiesce or invalidate the package. So think of it as though you are tapping the executing holder of the thread on the shoulder, and when it comes to their next commit, they change to RELEASE(COMMIT) for that thread.

 	
 Important: This behavior is available only for ACTIVE persistent threads. If the thread is waiting for some other things to complete and is not currently ACTIVE in DB2, the BIND/REBIND/DDL/Utility is not able to break in.

 This described behavior is not available for the following circumstances:

 •Packages that have OPEN and HELD cursors at the time of the COMMIT or ROLLBACK

 •Packages that are bound with KEEPDYNAMIC(YES)

 •COMMIT or ROLLBACK options that occur within a DB2 stored procedure

 The PKGREL_COMMIT system parameter is online changeable.

 This option is available only in NFM.

 4.10 Idle thread break-in

 RELEASE is a BIND option that tells DB2 how to handle the caching of package locks and structures. The default is setting for this BIND option is COMMIT. Thus, DB2 frees package structures upon commit. The alternative option is DEALLOCATE. With RELEASE(DEALLOCATE) package structures persist until full thread deallocation.

 RELEASE(DEALLOCATE) potentially can improve performance in the following circumstance:

 •Long running batch jobs that COMMIT frequently

 •Thread reuse for example for CICS protected threads or JCC Type 2 applications.

 RELEASE(DEALLOCATE) is not used pervasively for the following reasons:

 •Your system might have virtual storage constraints, which was true primarily for DB2 9 and earlier.

 •RELEASE DEALLOCATE was not allowed for DDF workload from DB2 V6 and DB2 10.

 •If application do not release resources upon commit, this means that BINDs or REORGS for example have little chance to break in during long running batch applications.

 DB2 10 introduced high performance DBATS, the re-enablement of the RELEASE(DEALLOCATE) bind option for DDF threads. For the high performance DBATs you have a chance to change the originally picked bind option of RELEASE(DEALLOCATE) on the fly. The way to do this is by using the -MODIFY DDF PKGREL(COMMIT) command. After you issue this command, new DDF DBAT threads bound with RELEASE(DEALLOCATE) behave as though they were bound with RELEASE(COMMIT) and, therefore, increase the chances for BINDs and REORGs to break in at COMMIT. The existing DBATs remains as RELEASE(DEALLOCATE) until 200 commits.

 After you are finished with your planned actions, you can reverse the behavior to RELEASE(DEALLOCATE) using -MODIFY DDF PKGREL(BNDOPT) command. If you do not issue this command, behavior is reversed back automatically after 200 commits.

 DB2 11 continues to improve this situation for processes that have a need to break in. RELEASE(COMMIT) mode takes effect on the next COMMIT if there is a waiter and not just for new DBATs.

 4.10.1 Improvements for DDF threads

 As with DB2 10, you enable the improvements for DDF thread using the -MODIFY DDF PKGREL(COMMIT) command.

 Disabling has changed a bit. You can still use -MODIFY DDF PKGREL(COMMIT) command, but in addition, it is reversed to RELEASE(DEALLOCATE) much earlier than before. It is automatically done on the next COMMIT if there is a waiter on a package lock.

 4.10.2 Improvements for non-DDF threads

 DB2 11 now also focuses on non-DDF threads.

 Active threads

 DB2 11 introduces a the PKRGEL_COMMIT system parameter. This subsystem parameter specifies whether at COMMIT or ROLLBACK a persistent DB2 thread releases a package that is active on that thread if certain DB2 operations are waiting for exclusive access to that package.

 Idle threads

 In DB2 11 with APAR PM95929 applied, if a package lock appears to be at risk of a timeout, a broadcast is sent to all members of a data sharing group to recycle any idle threads from local attaches, that is for example CICS, IBM IMS™, RRSAF and so on. The risk of timeout is indicated at 1/2 of the internal resource lock manager (IRLM) timeout limit (the IRLMRWT subsystem parameter).

 A thread is eligible for recycling if all of the following statements are true:

 •It is at a transaction boundary.

 •It is not running in DB2.

 •It has not committed or rolled back in an interval that is larger than half of IRLMRWT.

 The recycle processing fences the API and issues a “dummy” COMMIT for the idle thread, which allows package locks to be freed. If an attempt to use the idle thread is made during the recycle processing, it is delayed until the recycle is complete. The recycle is rapid and delays are minimal.

 	
 Important: This process does not address threads with held cursor across commits and does not address long running transactions holding package locks.

 Maintenance in this area includes APARs PM95929, PM96001, and PM96004.

 1 Specifies whether the RECOVER utility verifies that all related objects that are required for a PIT recovery are included in the RECOVER control statement. This option applies to point-in-time recoveries of base objects and related objects. VERIFYSET NO behavior is always in effect for PIT recoveries of catalog and directory objects.

[image:]
[image:]

Data sharing

 DB2 data sharing can provide the following advantages over database architectures:

 •Separate, independent DB2 systems

 •Improved DB2 availability during both planned and unplanned outages

 •Increased scalability because you are not bound by the limits of a single DB2 system

 •Greater flexibility when configuring systems

 These advantages and an overview of the operational aspects of data sharing are described in detail in DB2 11 for z/OS Data Sharing: Planning and Administration, SC19-4055.

 DB2 11 for z/OS provides a number of enhancements to data sharing. These enhancements provide improved availability, scalability, and performance. All of these enhancements are available in DB2 11 conversion mode (CM) unless otherwise noted.

 This chapter describes the following enhancements to data sharing:

 •Group buffer pool write-around protocol

 •Improved castout processing

 •Improved DELETE_NAME performance

 •Restart light with CASTOUT option

 •Locking enhancements

 •Index availability and performance

 •Group buffer pool write performance

 •Automatic LPL recovery at end of restart

 •Log record sequence number spin avoidance

 5.1 Group buffer pool write-around protocol

 DB2 environments that have data sharing enabled can have multiple applications concurrently accessing data from any member of a data sharing group, with many members potentially reading and writing the same data. When multiple members of a data sharing group open the same table space, index space, or partition, and at least one of them opens it for writing, the data is said to be of inter-DB2 read/write interest to the members.

 To control access to data that is of inter-DB2 read/write interest, whenever the data is changed, DB2 caches it in a storage area that is called a group buffer pool (GBP) in the coupling facility. When there is inter-DB2 read/write interest in a particular table space, index, or partition, it is dependent on the group buffer pool, or GBP-dependent (group buffer pool-dependent).

 In DB2 data sharing, when batch jobs or utilities run against GBP-dependent objects, it can result in heavy, sustained GBP page write activity. When this happens, the GBP can begin to fill up with changed pages which can result in application slowdowns or, in severe cases, pages being written to the logical page list (LPL), which cause DB2 data outages.

 Over the years, this has consistently been one of the top data sharing customer complaints, and many customers, after having suffered through these slowdowns or outages, have over-allocated the GBP structures, which introduces its own set of problems. An over-allocated GBP drives up cost and can result in performance or scalability concerns because of the overly large GBP structure sizes. As a large GBP becomes polluted with lots of changed pages, the resulting flood of castout related CF commands, and in some cases the CF, becomes unresponsive because of this flood of write and castout commands.

 DB2 11 addresses these issues by providing a capability to bypass writing pages to the GBP in certain situations and write the pages directly to DASD instead, while using the GBP to send buffer invalidate signals. This feature is referred to as GBP write-around.

 Two thresholds are used to determine whether GBP write-around is invoked for all objects in a GBP or for a page set/partition: the GBP castout threshold; and the class castout threshold. When the GBP castout threshold hits 50%, meaning that 50% of the GBP is occupied by changed pages, then write-around is invoked for writing pages for all objects. When the class castout threshold hits 20%, meaning that 20% of a class castout queue is occupied by changed pages, then DB2 employs the write-around protocol for the page set/partition. The write-around process at the GBP level continues until the GBP castout threshold drops to 40%. The write-around process at the page set/partition level continues until the class castout threshold drops to 10%. These threshold values are fixed; you cannot change them.

 If either threshold is reached, the write-around protocol at the appropriate level is invoked. The processing occurs as follows:

 •Changed pages are conditionally written to the GBP. Conditional write means that if a page is already cached in the GBP then the write is allowed to proceed, and if the page is not already cached then the write fails. A DISPLAY GROUPBUFFERPOOL command with the MDETAIL option shows the number of pages written through a write-around processing in the DSNB777I informational message that is displayed as part of the output.

 •If the write failed, the page is written to DASD, and the GBP is used to send buffer invalidate signals to the other members.

 Example 5-1 shows a DISPLAY GROUPBUFFERPOOL command for a buffer pool that includes an object that was updated from one member and selected from another member, which forces the object to become GBP-dependent. Following the command is partial output from the command, including the DSNB777I message.

 Example 5-1 DISPLAY GROUPBUFFERPOOL output with write-around statistics

 [image:]

 										 DB2 COMMANDS SSID: D1B1

 ===>

 Position cursor on the command line you want to execute and press ENTER

 Cmd 1 ===> -DISPLAY GROUPBUFFERPOOL(GBP0) MDETAIL

 DSNB750I -D1B1 DISPLAY FOR GROUP BUFFER POOL GBP0 FOLLOWS

 DSNB755I -D1B1 DB2 GROUP BUFFER POOL STATUS

 CONNECTED = YES

 CURRENT DIRECTORY TO DATA RATIO = 5

 PENDING DIRECTORY TO DATA RATIO = 5

 CURRENT GBPCACHE ATTRIBUTE = YES

 PENDING GBPCACHE ATTRIBUTE = YES

 DSNB777I -D1B1 ASYNCHRONOUS WRITES

 CHANGED PAGES = 0

 CLEAN PAGES = 0

 FAILED DUE TO LACK OF STORAGE = 0

 WRITE-AROUND PAGES = 0

 [image:]

 The benefit of GBP write-around is that DB2 automatically detects the flooding of writes to the GBP, and automatically responds by dynamically switching to the GBP write-around protocol for those objects that are causing the heaviest write activity. Only the deferred writes are affected. Commits continues to write GBP-dependent page sets to the GBP. After the GBP storage shortage is relieved, DB2 resorts back to normal GBP write activity for all GBP-dependent objects.

 If a page is already in the GBP, the deferred writes will update the page in the GBP rather than writing the page to DASD (conditional write).

 GBP write-around does not solve the underlying I/O subsystem issues that contributed to the GBP being flooded. The I/O subsystem problem will remain, however, it doesn't matter that the batch updates slow down a little bit as long as the COMMITs perform better. But, it is possible that eventually the COMMITs themselves will flood the GBP if the batch updates continue to flood the I/O subsystem.

 This support is provided in z/OS 1.12 and above, with Coupling Facility Control Code (CFCC) Level 17 and 18 on z196 and later hardware.

 5.2 Improved castout processing

 In prior versions of DB2, data sharing environments with heavy write activity cause pages to be written to the group buffer pools faster than the castout engines can process them. As a result, the group buffer pools become congested with changed pages and, in extreme cases, group buffer pool full conditions might occur. This inefficient castout processing often results in application response time issues. DB2 11 provides the following enhancements to make castout processing more efficient.

 •Reduced wait time for I/O completion

 •Reduced notify message size sent to castout owners

 •More granular class castout threshold

 5.2.1 Reduced wait time for I/O completion

 The read of the GBP for castout processing now overlaps the write I/O operation to DASD. In prior versions, DB2 waited until a page read from the GBP was written to DASD before another page was read from the GBP. This wait time is reduced by overlapping the read for castout with the write to DASD.

 5.2.2 Reduced notify message size sent to castout owners

 The size of the message indicating the status of the castout processing is reduced. Previously, the notification message sent to castout owners was a list of pages, which can be large if many pages are cast out. Now the message includes a list of page sets or partitions, instead of a list of pages, which considerably reduces the size of the message.

 5.2.3 More granular class castout threshold

 Castout processing now provides more granularity for the class castout threshold. Previously, the class castout threshold was specified as a percentage of the number of data entries. The smallest allowable number was 1%. For a really large GBP, a value of 1% still results in thousands of pages being cast out at a time, which can stress the castout engines and the coupling facility. The capability to allow for a value smaller than 1% was needed.

 The syntax for the ALTER GROUPBUFFERPOOL command is changed to allow the class castout threshold to be specified as either a percentage of the number of data entries or an absolute number of pages. The new syntax for the CLASST option is as follows:

 CLASST(class-threshold1,class-threshold2)

 You can use the class-threshold1 variable to represent the class castout threshold in terms of a percentage of data entries. It can be specified as an integer between 0 and 90, representing 0% to 90%. The default value is 5%.

 You can use the class-threshold2 variable to represent the class castout threshold in terms of an absolute number of pages. It can be specified as an integer between 0 and 32767. The default value is 0.

 Do not specify a value for both variables. If you do, the value of class-threshold2 is ignored. If you want to specify the threshold in terms of a percentage of data entries, which was the only behavior prior to DB2 11, specify a non-zero value for the first variable and a zero value for the second variable. If you need to specify a value smaller than 1% for a large GBP, specify a zero value for the first variable and the desired number of pages at which castout should occur for the second variable.

 In the data sharing environment for this example, the GBP0 group buffer pool is defined with CLASST values of 5 and 0. Example 5-2 shows the output of a DISPLAY GBPOOL command, which is an abbreviation of the DISPLAY GROUPBUFFERPOOL command, showing the class castout threshold (CLASST) values of 5 and 0.

 Example 5-2 DISPLAY GBPOOL command output for percentage based CLASST threshold

 [image:]

 DSNB750I -D1B1 DISPLAY FOR GROUP BUFFER POOL GBP0 FOLLOWS

 DSNB755I -D1B1 DB2 GROUP BUFFER POOL STATUS

 CONNECTED = YES

 CURRENT DIRECTORY TO DATA RATIO = 5

 PENDING DIRECTORY TO DATA RATIO = 5

 CURRENT GBPCACHE ATTRIBUTE = YES

 PENDING GBPCACHE ATTRIBUTE = YES

 DSNB756I -D1B1 CLASS CASTOUT THRESHOLD = 5, 0

 GROUP BUFFER POOL CASTOUT THRESHOLD = 30%

 GROUP BUFFER POOL CHECKPOINT INTERVAL = 4 MINUTES

 RECOVERY STATUS = NORMAL

 [image:]

 Example 5-3 shows an example of an ALTER GROUPBUFFERPOOL command to specify a class castout threshold such that pages are cast out when 500 changed pages are in the GBP.

 Example 5-3 ALTER GBPOOL command to express CLASST in number of pages

 [image:]

 										 DB2 COMMANDS SSID: D1B1

 ===>

 DSNE294I SYSTEM RETCODE=000 USER OR DSN RETCODE=0

 Position cursor on the command line you want to execute and press ENTER

 Cmd 3 ===> -ALTER GBPOOL(GBP0) CLASST(0,500)

 [image:]

 Example 5-4 shows the output of the ALTER GBPOOL command.

 Example 5-4 ALTER GBPOOL command output showing CLASST in number of pages

 [image:]

 DSNB804I -D1B1 CLASS CASTOUT THRESHOLD SET TO 0,500 FOR GBP0

 DSN9022I -D1B1 DSNB1CMD '-ALTER GBPOOL' NORMAL COMPLETION

 [image:]

 You can only expect to see a benefit to using the second threshold value for a GBP that is large enough that it is causing a delay at castout time.

 5.3 Improved DELETE_NAME performance

 After all pages for a page set are cast out, the page set becomes non-GBP-dependent. DB2 then uses a cache DELETE_NAME request to delete both data and directory entries from the GBP. At the same time, cross-invalidation signals are sent to each member that has interest in the page set to indicate that there is no longer GBP-dependency for that page set.

 Normally this cross-invalidation process completes without issue. In rare cases, there might be a high number of DELETE_NAME requests due to time-outs when sending cross-invalidation signals to data sharing members when there is a long distance between the members and the coupling facility.

 In prior versions, DB2 delivered some maintenance that deleted only the data entries to avoid timeouts caused by cross invalidation. However, these enhancements did not provide the desired effect.

 DB2 11 resolves this issue by suppressing the cross-invalidation signals during the processing of DELETE_NAME requests.

 All the necessary cross-invalidation signals have already been sent when the pages were previously written to the GBP. The cross-invalidations for DELETE_NAME are not needed after casting out the pages; therefore, the cross-invalidation signals can be suppressed.

 New features in cross-system extended services for z/OS (XES) and CFCC are required to use the DELETE_NAME performance enhancement. The specific requirements are as follows:

 •The GBP must be allocated in a coupling facility of CFLEVEL=17 or higher. The “suppress cross-invalidation” functionality is supported on the following combinations of hardware and CFCC levels:

  –	z114 (2818) DR93G CFCC EC N48162 CFCC Release 17 at the requisite microcode load (MCL) level

  –	z196 (2817) DR93G CFCC EC N48162 CFCC Release 17 at the requisite microcode load (MCL) level

  –	zEC12 (2827) CFCC Release 18

 •The DB2 member that performs castout must be running on z114 or z196 that supports the “suppress cross-invalidation” functionality or a zEC12. The following z/OS releases support the “suppress cross-invalidation” functionality:

  –	z/OS V1R12 and later with APAR OA38419 installed

 This feature has also been retrofitted to DB2 9 and DB2 10 through APAR PM67544.

 5.4 Restart light with CASTOUT option

 If a failed DB2 subsystem was running on a z/OS image that is no longer available, that subsystem can hold locks on behalf of transactions that were executing at the time of the failure. If those locks were global locks, which are locks on resources that are actively shared, then the update type locks in the lock structure are changed to retained locks. In this scenario, it is critical to restart the failed DB2 in another z/OS image in the same Parallel Sysplex (where another member might be active) to release the retained locks. Otherwise, no other access is allowed to the resources protected by those locks until the underlying changes are either committed or backed out.

 When restarting a failed DB2 subsystem on another z/OS image, the other z/OS image might not have the resources to handle the workload of an additional DB2 subsystem. The option to restart DB2 in LIGHT mode enables DB2 to restart with a minimal storage footprint to quickly release retained locks and then terminate normally.

 Prior to DB2 11, restart light released most, but not all, retained locks. Restart light was designed to restart quickly with a minimal storage footprint. Therefore, restart light did not go through castout processing and, as a result, retained page set P-locks in IX or SIX mode were not released. Utilities can be blocked from running by these retained page set P-locks, therefore impacting overall DB2 availability.

 DB2 11 introduces an enhancement to the restart light process to also include castout processing. The syntax of the START command is enhanced to include the LIGHT(CASTOUT) option. When this new option is used, transaction retained locks are released as usual, but the restart also kicks off castout processing. After castout is completed, the page sets become non-GBP-dependent, and the page set P-locks in IX or SIX mode are released.

 The default for the LIGHT restart option is NO, which means that DB2 performs a complete restart and not a light restart. Of the remaining three LIGHT values, CASTOUT, YES and NOINDOUBTS, the value of CASTOUT involves the most steps, because it also includes castout processing. The YES and NOINDOUBTS options do not provide castout processing. The values for the LIGHT option are mutually exclusive.

 Restart might take longer to run with LIGHT(CASTOUT) than with LIGHT(YES), but the benefit is that utilities can now be run without disruption, therefore increasing availability. If you are dependent upon running utilities as soon as possible after the restart, then you might want to investigate the LIGHT(CASTOUT) option. If you are more focused on getting the DB2 subsystem up as quickly as possible and will deal with retained page set P-locks on your own, you might want to use LIGHT(YES) or LIGHT(NOINDOUBTS) instead.

 5.5 Locking enhancements

 DB2 11 includes a number of locking enhancements that provide improved reliability, availability, and scalability. Many of these locking enhancements also provide benefits in a data sharing environment. This section describes the following locking enhancements:

 •Conditional propagation of child Update locks to the coupling facility

 •Improved performance in handling lock waiters

 •Increase in maximum number of CF lock table entries

 •Throttle batched unlock requests

 •Improved IRLM resource hash table algorithm

 5.5.1 Conditional propagation of child Update locks to the coupling facility

 Prior to internal resource lock manager (IRLM) 2.3, IRLM propagates U state child locks for S state parent page set P-Locks in all cases. Propagation of U state child locks are not necessary in cases where only a single member is doing updates to a table in a data sharing environment. Propagating a large number of U state child locks to the CF incurs unnecessary overhead and should be avoided until it is necessary.

 In DB2 11, IRLM 2.3 propagates shared S state parent page set P-locks to the CF as XES exclusive requests and suppresses any update U state child lock propagations until there is global contention on the parent page set P-lock.

 This enhancement improves the performance of SELECT FOR UPDATE statements in data sharing environments.

 5.5.2 Improved performance in handling lock waiters

 In prior versions of DB2, in a large data sharing group with a large number of processes waiting on locks, there can be a performance cost for managing the lock waiters. DB2 11, with IRLM 2.3, introduces an improved deadlock and contention algorithm. This improved algorithm results in reduced CPU time for processes with many lock waiters and also reduces the number of lock suspensions.

 5.5.3 Increase in maximum number of CF lock table entries

 IRLM previously limited the number of CF lock structure table entries (LTEs) to a maximum value of 1 GB. Because the maximum LTEs supported by XES is 2 GB, there is no reason for IRLM to put its own limit for the LTEs. Therefore, in DB2 11, with IRLM 2.3, you can specify a lock table size as big as 2 GB as supported by XES.

 This enhancement reduces contention when accessing the lock structure in the CF. It also reduces the possibility of false contention, which can occur when the number of LTEs is too small compared to the number of different resource names that can acquire locks.

 You can use the MODIFY irlmproc,SET z/OS command to change the number of lock table entries. Example 5-5 shows the syntax for this command.

 Example 5-5 Syntax of MODIFY irlmproc,SET command

 [image:]

 >>-MODIFY--irlmproc,SET-+-,DEADLOCK=nnnn---------------+-------><

 +-,LTE=nnnn--------------------+

 +-,MLT=nnnnnU------------------+

 +-,PVT=nnnn--------------------+

 +-,TIMEOUT=nnnn,subsystem-name-+

 | .-10--. |

 '-,TRACE=-+-nnn-+--------------'

 [image:]

 You can increase the number of lock table entries by changing the value of the LTE option. You must set it to an exact power of 2. Each increment in value represents 1,048,576 LTE entries. To set it to the maximum number of LTEs, 2 GB, specify a value of 2048.

 Because the command is a z/OS IRLM command, it can be issued only from a z/OS console. You also need to rebuild the CF lock structure to enable the new LTE size.

 5.5.4 Throttle batched unlock requests

 If a thread in a data sharing environment holds million of locks and is going through de-allocation, IRLM sends unlock requests for all of the locks in a batch unlock request to XES. If this process is done under non-preemptible SRB mode in a uni-processor environment, the unlock request process occupies the processor until all of the unlock requests are processed. As a result, this flood of unlock requests can cause XES to receive an abend178 because real storage manager (RSM) cannot find any available real storage frame.

 IRLM 2.2 and 2.3 are enhanced through APAR PM60449 to change the way that IRLM handles batch unlock processing when a thread is holding more than 128,000 locks. The unlock request runs as a queued request under an IRLM SRB and does a status STOP SRB after running for some time. The batch unlock processing continues when this SRB is resumed again.

 This change reduces storage constraints on XES and also reduces secondary latch contention in IRLM. This change allows other higher priority work from RSM and XES to run, which can improve conditions that result in a hang.

 5.5.5 Improved IRLM resource hash table algorithm

 IRLM 2.2 introduced through APAR PK50095 the capability to have an expanded resource hash table to handle anticipated higher locking volumes. IRLM provided support for a 64 KB hash table in DB2 10.

 IRLM internally goes through the resource hash table serially every deadlock cycle while holding the main latch, preventing any other work from processing in IRLM. With higher volumes of threads and more and more locks being held, this hash table processing drives up the CPU time with every deadlock cycle.

 In DB2 11, with IRLM 2.3, the resource hash table algorithm is improved to perform the deadlock cycle processing more efficiently. This improvement results in less CPU time associated with this process and reduced contention on lock structure access.

 5.6 Index availability and performance

 DB2 11 includes a number of index enhancements that provide improved availability and performance in data sharing environments. This section describes the following index enhancements:

 •Avoid placing indexes in RBDP state during group restart

 •Reduce synchronous log writes during index structure modifications

 5.6.1 Avoid placing indexes in RBDP state during group restart

 There are certain recovery scenarios where objects are placed in the logical page list (LPL) or in group buffer pool recovery pending (GRECP) state. A small timing window exists where, if there is an index tree structural modification (Index SMOD) in progress when the index is put into LPL or GRECP state, the index manager can write logical compensation log records (LCLRs) before writing the physical NOT APPLY undo log records for the unfinished index SMODs. Later, the LPL or GRECP recovery fails and the index is left in rebuild pending (RBDP) state when the LCLRs are processed before the physical undo logs are processed. After the LPL or GRECP recovery completes in this scenario, you still need to spend time to rebuild the index, which can take hours if the affected index is large. Ideally, you want to be able to run LPL and GRECP recovery and recover the indexes at the same time.

 In DB2 11, if there is an index tree structural modification in progress when the index is put into LPL or GRECP state, then DB2 goes through a two-pass LPL or GRECP log apply process to recover the index. The second pass makes indexes available after the LPL or GRECP recovery process is completed. A DSNI051I message is issued at the start of the second pass. The LPL or GRECP recovery might take longer to finish when the second pass is needed, but you will not need to spend a longer amount of time to rebuild the index. This enhancement reduces DB2 outage time and increases index availability.

 Also refer to 4.2, “Automatic recovery of indexes from GRECP or LPL status” on page 60 for more information.

 This enhancement is available in DB2 11 New Function Mode (NFM) only.

 5.6.2 Reduce synchronous log writes during index structure modifications

 As rows are inserted in data sharing environments, index pages often need to be split as new keys fill the existing pages. The index split logic for GBP-dependent indexes causes two synchronous log writes, which can have a significant impact on transaction or batch performance. A similar situation exists for deletes where empty index pages get pruned from the index tree. There are five synchronous log writes in the delete case.

 A related issue occurs when there are massive deletes from an index while the index is not GBP-dependent, and then the index becomes GBP-dependent as the backout starts. This situation has caused some backouts to take 10 to 20 times longer than the unit of work, because of the need to force several log write I/Os when adding deleted pages back into the index tree as part of the undo of the deletes.

 DB2 11 reduces the synchronous log writes for index split and index page delete operations. Rather than do the log force write I/Os after processing begins and then again at the end of the process, the log force write I/Os occur only once at the end of the process. This enhancement improves performance for index splits and for pseudo deletes.

 DB2 11 also reduces backout time by reducing the number of log force write I/Os during a rollback of deleted pages. DB2 11 can tell whether an index split operation completed successfully and will not roll back a successfully completed index split operation.

 5.7 Group buffer pool write performance

 The GBP batch write processing in DB2 11 has been enhanced to avoid pagefix operations by allocating fixed storage for GBP batch write. This enhancement provides a reduction in the path length for the COMMIT processing.

 5.8 Automatic LPL recovery at end of restart

 There are occasionally times when there are not enough pages available in the GBP to accept a write from the local buffer pool. The write is attempted a few times while DB2 goes through the castout process in an attempt to free more pages. However, after a few unsuccessful attempts, DB2 gives up and inserts an entry for the page in the LPL, where it is unavailable for any access until the LPL condition is removed. The LPL exception condition is set if pages cannot be read from or written to the GBP.

 Prior to DB2 11, in a data sharing environment, when pages were added to the LPL by an active member while one of the members was down and holding retain locks, there was no automatic LPL recovery performed when the failed member restarted. This process resulted in an extended outage for application programs, which impacted overall system availability.

 To recover these LPL pages, you had to manually resolve the LPL objects by issuing a -START DB(xx) SPACE(yy) command for every object with an LPL exception condition. This manual process can be time consuming if there are many objects with pages in the LPL, therefore extending the time that some applications are unavailable. This manual process can also be error prone, because some of the objects can be missed when issuing the -START commands, especially when there is a long list of objects to be recovered.

 DB2 11 improves upon the LPL recovery process by initiating automatic LPL recovery of objects at the end of both normal (non-PIT recovery) restart and restart light. If the restart involves any indoubt or postponed abort (PA) units of recovery (URs) then the LPL recovery associated with those URs is not automatically triggered at the end of restart. These objects cannot be automatically recovered because DB2 does not know the entire LPL log range for indoubt and PA URs until they are resolved.

 The auto-LPL recovery process is not triggered for any of the following circumstances:

 •If the DB2 member is started in access maintenance mode

 •If the DB2 member is started in point-in-time (PIT) Recovery mode

 •If the DB2 member is started at a tracker site

 •If the DB2 member is involved in any type of conditional restart

 •If DEFER ALL was specified on installation panel DSNTIPS

 •For objects explicitly listed in a DEFER object list on installation panel DSNTIPS

 •For table spaces defined as NOT LOGGED

 The processing for automatic LPL recovery is similar to the auto-GRECP recovery processing that is done at the end of restart in that the auto-LPL recovery uses the existing messages to report LPL recovery progress, errors and successful completion. It makes only one attempt to automatically recover LPL objects. If the auto-LPL recovery fails at restart time, then either the DBA can manually recover the LPL objects by issuing -START DB commands or mainline auto-LPL recovery can perform the recovery at the appropriate time.

 In the following conditions, an LPL object can remain in LPL after the end of restart auto-LPL recovery is completed:

 •If any error is encountered during log apply

 •If an active member continues to add new pages to the LPL or extends the LPL range while the restarting member is performing the auto-LPL recovery

 The mainline auto-LPL recovery processing has always had retry logic to drive the LPL recovery one more time if the LPL page range or log range is extended. Auto-LPL continues to honor the same retry logic except during restart light. Because auto-LPL recovery is initiated during restart light, the auto-LPL recovery task serializes with DB2 shutdown; the end of restart auto-LPL recovery will complete before DB2 is terminated at the end of restart light.

 At the end of auto-LPL recovery, each member issues a DSNI049I message on the console to indicate that LPL recovery of all objects is completed. This is the same message that has been issued in prior versions of DB2 when the -START DB command completes, and is still issued when the -START DB command completes if you need to issue the command because auto-LPL recovery cannot complete due to one of the reasons listed above. The message is always issued to make it easier for you to automate the recovery process using whatever tool or manual procedure you have implemented.

 5.9 Log record sequence number spin avoidance

 Enhancements were made in both DB2 9 and DB2 10 in the area of log record sequence number (LRSN) spin avoidance. DB2 9 allowed for duplicate LRSN values for consecutive log records on a given member. DB2 10 further extended LRSN spin avoidance by allowing for duplicate LRSN values for consecutive log records for inserts to the same data page.

 Each of these enhancements meant that a DB2 member did not need to “spin” consuming CPU resources under the log latch to wait for the next LRSN increment. This function can avoid significant CPU overhead and log latch contention (LC19) in data sharing environments with heavy logging.

 The DB2 9 and DB2 10 enhancements avoided the need to “spin” in the Log Manager to avoid duplicate LRSNs for most cases. However, some cases still exist where CPU spinning is necessary, which adds overhead. For example, consecutive DELETE or UPDATE operations to the same page require LRSN spin.

 DB2 11 extends the LRSN to use more of the TOD clock precision. RBA and LRSN values are expanded from 6 bytes to 10 bytes so that it can take hundreds of years to exhaust a DB2 subsystem’s or data sharing group’s logging capacity, based on current and projected logging rates. Details about the expanded RBA and LRSN vales are provided in 3.1, “Extended RBA and LRSN” on page 24.

 Data sharing environments can take advantage of the larger LRSN values and avoid LRSN spin altogether.

[image:]
[image:]

Application functions

 This part describes functions that help to enable the application development with DB2 11 for z/OS.

 DB2 11 delivers several SQL enhancements that can help applications to ease development and porting. DB2 11 also provides several enhancements to the support of pureXML, stored procedures, and connectivity.

 Application-enabling infrastructure changes allow for intersection with big data. XML and e-business have each a dedicated chapter.

 This part includes the following chapters:

 •Chapter 6, “SQL” on page 99

 •Chapter 7, “Application enablement” on page 129

 •Chapter 8, “XML” on page 151

 •Chapter 9, “Connectivity and administration routines” on page 171

[image:]
[image:]

SQL

 This chapter describes the SQL features and enhancements that are delivered with DB2 11 for z/OS. The audience for this chapter is the application developers and database administrators.

 This chapter includes the following topics:

 •Introduction

 •Global variables

 •Array data type

 •Aliases and public aliases for SEQUENCES

 •New built-in functions

 •SET CURRENT APPLICATION COMPATIBILITY

 •Temporal special registers

 •Temporal support on VIEWs

 •DGTT

 •CUBE, ROLLUP and GROUPING SETS

 •LIKE_BLANK_INSIGNIFICANT DSNZPARM

 	
 Good news for application managers and developers:

 DB2 11 has mechanisms in place to limit potential SQL (and XML) incompatibilities on application DML statements by allowing you to complete the following tasks:

 •Identify applications affected by incompatible SQL (and XML) changes through trace records

 •Control the compatibility level to DB2 10 at an application (package) level

 See 6.6, “SET CURRENT APPLICATION COMPATIBILITY” on page 114 and 12.6, “Release incompatibilities” on page 357.

 6.1 Introduction

 This section provides a summary of SQL features and enhancements to existing SQL statements.

 Table 6-1 lists the key new SQL features which are discussed in other parts of this chapter. This table contains DML, DCL, and DDL statements that are new to DB2 11 for z/OS.

 Table 6-1 Summary of SQL statements/features in DB2 11 for z/OS

 	
 SQL statement/feature

 	
 Description

 	
 CREATE VARIABLE

 	
 Defines Global variables.

 Read 6.2, “Global variables” on page 102.

 	
 CREATE TYPE (array)

 (DROP TYPE clause can be used to drop the array data type)

 	
 Defines an array data type.

 Read 6.3, “Array data type” on page 104 and 6.5, “New built-in functions” on page 112 for the associated built-in functions.

 	
 SET CURRENT APPLICATION COMPATIBILITY

 	
 Sets application compatibility level for dynamic/distributed applications. Works similar to the static equivalent APPLCOMPAT bind parameter.

 Read 6.6, “SET CURRENT APPLICATION COMPATIBILITY” on page 114.

 	
 SET CURRENT TEMPORAL BUSINESS_TIME

 	
 Sets the business time for use with temporal tables.

 	
 SET CURRENT TEMPORAL SYSTEM_TIME

 	
 Sets the system time for use with temporal tables.

 	
 SET assignment-statement (this is not truly new)

 	
 Sets the assignment-statement (DB2 SQL) The SET assignment-statement is a reclassification of the documentation of the SET host-variable and SET transition-variable statements into a single statement.

 	
 ALTER FUNCTION (SQL scalar) and

 CREATE FUNCTION (SQL scalar)

 	
 New clauses:

 •BUSINESS_TIME SENSITIVE

 •SYSTEM_TIME SENSITIVE

 •ARCHIVE SENSITIVE

 •APPLCOMPAT

 Changed clauses:

 •data-type

 •data-type2, which can include array-type-name

 	
 ALTER PROCEDURE (SQL native) and

 CREATE PROCEDURE (SQL native)

 	
 New clauses:

 •BUSINESS_TIME SENSITIVE

 •SYSTEM_TIME SENSITIVE

 •ARCHIVE SENSITIVE

 •APPLCOMPAT

 Changed clause:

 •data-type, which can include array-type-name

 	
 CREATE PROCEDURE (external)

 	
 Changed clause:

 •data-type, which can include array-type-name

 	
 ALTER TABLE DROP COLUMN

 	
 New clause

 	
 ALTER TABLE ENABLE ARCHIVE

 	
 New clauses:

 •ENABLE ARCHIVE

 •DISABLE ARCHIVE

 	
 ALTER TABLESPACE and

 CREATE TABLESPACE

 	
 Changed clause:

 •PCTFREE, which can now include FOR UPDATE smallint

 	
 COMMENT

 	
 Changed clause:

 •data-type, which can include array-type-name

 	
 CREATE INDEX

 	
 New clauses:

 •INCLUDE NULL KEYS

 •EXCLUDE NULL KEYS

 	
 DECLARE GLOBAL TEMPORARY TABLE

 	
 New clause:

 •LOGGED

 •NOT LOGGED

 	
 EXECUTE

 	
 Changed clauses:

 The object of the USING clause can be an SQL variable, SQL parameter,

 global variable, or host variable.

 	
 FETCH

 	
 Changed clauses:

 The object of the INTO clause can be a host variable, a global variable, an SQL parameter, an SQL variable, a transition variable, or an array element.

 	
 GRANT (function or procedure privileges) and corresponding REVOKE

 	
 Changed clauses:

 •data-type, which can include array-type-name

 	
 GRANT (type or JAR privileges) and

 corresponding REVOKE

 	
 Changed clauses:

 The object of the TYPE clause can be a distinct type or an array type

 	
 SELECT INTO

 	
 Changed clauses:

 The object of the INTO clause can be a host variable, a global variable, an SQL parameter, an SQL variable, a transition variable, or an array element.

 	
 SET PATH

 	
 Changed clauses:

 The SYSTEM PATH now includes the following schemas:

 •SYSIBM

 •SYSFUN

 •SYSPROC

 •SYSIBMADM

 	
 SQL statement with subselect

 	
 Changed clauses:

 The collection-derived-table clause is added to table-reference in the FROM clause of a subselect.

 	
 VALUES INTO

 	
 Changed clauses:

 The object of the INTO clause can be a host variable, a global variable, an SQL parameter, an SQL variable, a transition variable, or an array element.

 Refer to DB2 11 for z/OS What's New?, GC19-4068 for an alphabetical listing of the summary of changes to existing and new SQL statements.

 6.2 Global variables

 Traditionally within a relational database system, most interactions between an application and the DBMS are in the form of SQL statements within a connection. To share information between SQL statements within the same application context, the application that issued the SQL statements has to do this work by copying the values from the output arguments, such as host variables, of one statement to the input host variables of another. Similarly, when applications issue host-language calls to another application, host variables need to be passed among applications as input or output parameters for the applications to share common variable. Furthermore, SQL statements that are defined and contained within the DBMS, such as the SQL statements in the trigger bodies, cannot access this shared information.

 These restrictions limit the flexibility of relational database systems and, thus, the ability of users of such systems to implement complex, interactive models within the database itself. Users of such systems are forced to put supporting logic inside their applications to access and transfer user application information and internal database information within a relational database system. Ensuring the security of the information that is transferred and accessed is also left to the user to enforce in their application logic.

 To overcome this restriction and to maximize the flexibility of a DBMS, global variables are introduced in DB2 11 for z/OS. A global variable can be created, instantiated, accessed, and modified by the applications. Global variables are named memory variables that you can access and modify through SQL statements. Global variables enable you to share relational data between SQL statements without the need for application logic to support this data transfer. You can control access to global variables through the GRANT (global variable privileges) and REVOKE (global variable privileges) statements.

 A global variable is associated with a specific application context, and contains a value that is unique to that application scope. A created global variable is available to any active SQL statement running against the database on which the variable was defined. A global variable can be associated with more than one application scope, but its value will be specific to each application scope.

 SQL statements sharing the same connection (that is, under the same application scope) can create, access, and modify the same global variables. This enhancement includes the following functional additions to DB2.

 6.2.1 DDL and catalog information

 A new DDL statement allowing the application to create global variable to be shared among SQL statements using the same connection. A sample CREATE statement is depicted in Example 6-1.

 Example 6-1 Sample create global variable statement

 [image:]

 CREATE VARIABLE BATCH_START_TS TIMESTAMP

 DEFAULT CURRENT TIMESTAMP;

 [image:]

 The new SYSIBM.SYSVARIABLES table includes one row for each global variable that is created.

 The new SYSIBM.SYSVARIABLEAUTH table includes one row for each privilege of each authorization ID that has privileges on a global variable.

 The SYSIBM.SYSVARIABLES_TEXT table is an auxiliary table for the DEFAULTTEXT column of the SYSIBM.SYSVARIABLES table.

 6.2.2 Qualifying global variables

 Global variable names are qualified two-part names. For unqualified global variables, the implicit qualifier facilitates the naming resolution of global variables. DB2 determines the implicit qualifier for global variables as follows:

 The schemas in the SQL PATH are searched in order from left to right for a matching global variable. If a global variable matches the global variable name in reference, resolution is complete. If no matching global variable is found after completing this step, an error is returned.

 6.2.3 Global variable’s scope

 The scope of global variable’s definition is similar to that of DB2 special register’s, in that, when created, the definitions of global variables are shared across different DB2 connections. However, each connection maintains its own instance of the global variable, such that the variable’s content is only shared among SQL statements within the same connection.

 For example, if you use a Global variable, which was created using the DDL in Example 6-1 in a program, the first invocation of this Global variable has the same value as the current time stamp. The subsequent use of this global variable retains the initial instantiated value for the duration of the connection.

 Example 6-2 shows how a Global variable’s value of 2013-08-02-14.59.46.423414 remains the same in different SQL statements (when referenced) within the same DB2 connection.

 Example 6-2 Scope of global variable: Different SQL statements on the same DB2 connection

 [image:]

 -- Initial execution of the SQL

 SELECT BATCH_START_TS, CURRENT TIMESTAMP

 FROM SYSIBM.SYSDUMMY1

 ;

 -- Result set from the initial execution

 BATCH_START_TS 	CURRENT TIMESTAMP

 2013-08-02-14.59.46.423414 2013-08-02-14.59.46.423414

 -- Second execution of the same SQL statement in the same SPUFI session

 SELECT BATCH_START_TS, CURRENT TIMESTAMP

 FROM SYSIBM.SYSDUMMY1

 ;

 -- Result set from the second execution

 BATCH_START_TS 	CURRENT TIMESTAMP

 2013-08-02-14.59.46.423414 2013-08-02-14.59.46.424678

 -- Third execution of the same SQL statement in the same SPUFI session

 SELECT BATCH_START_TS, CURRENT TIMESTAMP

 FROM SYSIBM.SYSDUMMY1

 ;

 -- Result set from the third execution

 BATCH_START_TS CURRENT TIMESTAMP

 2013-08-02-14.59.46.423414 2013-08-02-14.59.46.425282

 [image:]

 If you rerun this set of SQL statements at a different point in time (for example, in a different SPUFI session another time), it results in a different instantiated value for the global variable. That value remains in effect until the end of that connection.

 6.2.4 Global variable’s naming resolution

 DB2 naming resolution precedence rule is modified to include global variable references. If at the time of naming resolution, the definition of the referenced global variable does not exist, message DSNX200I or DSNX100I will be issued during BIND if VALIDATE(BIND) or VALIDATE(RUN) were specified, respectively, on the BIND command.

 	
 Note: It is also possible that during static bind time, the checked objects preceding global variables in naming resolution might not exist yet, resulting in the object name being resolved to global variables, provided that the variable definitions exist. In this case, the resolved name remains as global variables, even if the object becomes available before the execution of this statement, because the naming resolution was already done at static bind time.

 6.3 Array data type

 An array type is a user-defined data type that is an ordinary array or an associative array. The elements of an array type are based on one of the existing built-in data types.

 	
 Note: The array data type can only be used as one of the following data types:

 •An SQL variable

 •A parameter or RETURNS data-type of an SQL scalar function

 •A parameter of a native SQL procedure

 •The target data type for a CAST specification

 Currently, the array data type is not supported in other contexts, such as columns of tables and views, triggers, and client interfaces that are not essential for migrating applications.

 The CREATE TYPE (array) statement defines an array data type. The SYSIBM.SYSDATATYPES table contains one row for each array data type defined.

 DROP TYPE array_name statement drops an array data type created using the CREATE TYPE array_name statement.

 6.3.1 Ordinary arrays

 An array with a user-defined upper bound on the number of elements, which are referenced by their ordinal position in the array.

 After the execution of the assignment statement in Example 6-3, the cardinality of mySimpleA is set to 100. The elements with array indexes with values 1 to 99 are implicitly initialized to NULL.

 Example 6-3 Sample - Ordinary Array definition

 [image:]

 CREATE TYPE simple AS INTEGER ARRAY[];

 BEGIN

 	SET mySimpleA[100] = 123;

 END

 [image:]

 6.3.2 Associative arrays

 An array with no user-defined upper bound on the number of elements, which are ordered by and can be referenced by an array index value. Array index values are unique and do not have to be contiguous.

 After the execution of the assignment statement in Example 6-4, the cardinality of the array is set to 1.

 Example 6-4 Associative array data type - sample CREATE, DECLARE, and SET statements

 [image:]

 CREATE TYPE assoc AS INTEGER ARRAY[INTEGER];

 BEGIN

 	SET myAssocA[100] = 123;

 END

 [image:]

 6.3.3 ARRAY_EXISTS predicate

 The ARRAY_EXISTS predicate tests for the existence of an array element with the specified index in an array. Example 6-5 shows the syntax of this new predicate.

 Example 6-5 ARRAY_EXISTS predicate syntax

 [image:]

 ARRAY_EXISTS (array-expression,array-index)

 [image:]

 The ARRAY_EXISTS predicate produces the following results:

 •True if array-variable includes an array index that is equal to the result of casting array-index to the data type of the array index of array-variable.

 •False under either of the following conditions:

  –	The array-variable does not include an array index that is equal to the result of casting array-index to the data type of the array index of array-variable.

  –	Either argument is null.

 •Never unknown.

 6.4 Aliases and public aliases for SEQUENCES

 DB2 10 for z/OS supports aliases for tables, views, and aliases. The definition of these aliases is recorded in the SYSIBM.SYSTABLES catalog table, with a value of A for the TYPE column. IBM DB2 for Linux, UNIX, and Windows supports aliases on aliases, tables, views, nicknames (federated related), module names (related to competitive database product with PL/SQL), and sequence objects. Competitive database products also allow synonyms to be created for sequence objects.

 DB2 11 extends the support for SEQUENCE objects so that you can now create:

 •A private ALIAS for a SEQUENCE

 •A public ALIAS for a SEQUENCE

 This section describes how to create and use these aliases for SEQUENCES and provide related considerations.

 6.4.1 Private ALIAS for a SEQUENCE

 The CREATE ALIAS syntax is extended as shown in Figure 6-1.

 [image:]

 Figure 6-1 CREATE ALIAS statement syntax

 Assuming that your CURRENT SQLID is user2, to create a private ALIAS user2.SEQ1 for user1.SEQ1 sequence, you can use either of the following DDL statements:

 CREATE ALIAS user2.SEQ1 FOR user1.SEQ1

 CREATE ALIAS SEQ1 FOR user1.SQ1

 Both statements result in the creation of a private ALIAS user2.SEQ1. However, you cannot issue both statements. The second CREATE ALIAS fails with -601.

 The information for table aliases was recorded in the SYSIBM.SYSTABLES table, and the information about the existence of the alias for user1.SEQ1 is recorded in the SYSIBM.SYSSEQUENCES table.

 For this example, the SYSIBM.SYSSEQUENCES table include the following information:

 SCHEMA				user2

 OWNER				user2

 NAME				SEQ1

 SEQTYPE				A

 SEQID				an ID, for example 453

 CREATEDBY				user2

 INCREMENT				0

 START				0

 MAXVALUE				0

 ….

 Other columns include characteristics of the SEQUENCE 0 or N, as follows:

 …..

 SEQSCHEMA				user1 (schema of the sequence the alias depends on)

 SEQNAME				SEQ1 (name of the sequence, the alias depends on)

 ….

 You can use this alias with any of the SEQUENCE related statements, such as NEXT VALUE or PREVIOUS VALUE. Thus, for example, user2 can successfully execute the following statement, assuming that the user1.TAB1 table is an existing table:

 INSERT INTO user1.TAB1 VALUES(NEXT VALUE FOR SEQ1, 'AAA');

 This INSERT command inserts one row into user1.TAB1 table and inserts the next available value for the user1.SEQ1 sequence, using characteristics such as INCREMENTS, MAXVALUE, and so on, of the user1.SEQ1 sequence.

 6.4.2 Public ALIAS for a SEQUENCE

 As mentioned previously, in addition to the ability of creating private aliases for sequences, DB2 11 allows you to create public aliases. All public aliases are created in the new SYSPUBLIC schema. This creation happens implicitly or explicitly, meaning that DB2 automatically assigns schema SYSPUBLIC to the ALIAS if you omit the schema name. As a consequence, the following statements create a SYSPUBLIC SEQ2 public alias for a user1.SEQ1 schema:

 CREATE PUBLIC ALIAS SEQ2 FOR SEQUENCE user1.SEQ1

 CREATE PUBLIC ALIAS SYSPUBLIC.SEQ2 for SEQUENCE user1.SEQ1

 Both statements lead to the same information inserted into the SYSIBM.SYSSEQUENCES table, as follows:

 SCHEMA				SYSPUBLIC

 OWNER				user2

 NAME				SEQ1

 SEQTYPE				A

 SEQID				a ID, for example 453

 CREATEDBY				user2

 INCREMENT				0

 START				0

 MAXVALUE				0

 ….

 Other columns include characteristics of the SEQUENCE 0 or N, as follows:

 …..

 SEQSCHEMA				user1 (schema of the sequence the alias depends on)

 SEQNAME				SEQ1 (name of the sequence, the alias depends on)

 ….

 A public alias can always be referenced without qualifying its name with a schema name. The implicit qualifier of a public alias is SYSPUBLIC, which can also be specified explicitly.

 When DB2 resolves an unqualified name, private aliases are considered before public aliases.

 When there is a reference to a sequence, DB2 must resolve the reference to one of the following sequences:

 •A private alias for a sequence

 •A public alias for a sequence

 •A sequence

 For example, assume that a sequence named orders_seq exists, defined as follows, and an alias is named orders_seq_A is defined for this sequence. The orders_seq sequence generates odd values starting with 1, as follows:

 CREATE SEQUENCE orders_seq AS INT

 START WITH 1

 INCREMENT BY 2

 MINVALUE 1

 NO MAXVALUE

 NO CYCLE

 NO CACHE

 ORDER ;

 CREATE ALIAS orders_seq_A FOR SEQUENCE orders_seq;

 Another sequence named orders_seq2 exists as follows, and a public alias named orders_seq_A is defined for this sequence. The orders_seq2 sequence generates even values starting with 2, as follows:

 CREATE SEQUENCE orders_seq2 AS INT

 START WITH 2

 INCREMENT BY 2

 MINVALUE 2

 NO MAXVALUE

 NO CYCLE

 NO CACHE

 ORDER ;

 CREATE PUBLIC ALIAS orders_seq_A FOR SEQUENCE orders_seq2;

 Note that both of these aliases have the same name, but different schemas. The first alias defined is a private alias, and it is qualified with the default schema. The second alias was defined as a public alias, which means that it is qualified by SYSPUBLIC.

 The following customer_orders_t table demonstrates the use of sequence aliases:

 CREATE TABLE customer_orders_t

 (order_id INT NOT NULL ,

 order_date DATE NOT NULL)

 A NEXT VALUE sequence reference provides the value for the ORDER_ID column of the table in the following INSERT statement. The sequence reference specifies ORDERS_SEQ_A for the sequence. This name can represent a sequence itself, or it can be a reference to a private alias for a sequence or a public alias for a sequence. DB2 goes through a process of name resolution to determine the sequence to be used.

 INSERT INTO customer_orders_t

 VALUES (NEXT VALUE FOR orders_seq_A, CURRENT DATE) ;

 Issuing a select statement shows the value that was generated for the sequence (the value of the ORDER_ID column) and that determined which sequence alias was used.

 SELECT * FROM customer_orders_t;

 Returns:

 ORDER_ID 	ORDER_DATE

 -----------	---------- -----------

 1	07/11/2012

 The value of 1 for the ORDER_ID column indicates that the ORDERS_SEQ sequence generated the value for the column. DB2 used the ORDERS_SEQ sequence, because the unqualified reference to ORDERS_SEQ_A resolved to the private alias ORDERS_SEQ_A, which is defined for the sequence ORDERS_SEQ.

 6.4.3 Dropping an alias for sequence

 Dropping a sequence alias (private or public) is restricted if any of the following dependencies exist:

 •A trigger that uses the sequence in a NEXT VALUE or PREVIOUS VALUE expression exists.

 •An inline SQL function1 that uses the sequences in a NEXT VALUE or PREVIOUS VALUE expression exists.

 When an alias for a sequence is dropped, all packages that refer to the sequence alias are invalidated.

 6.4.4 Security considerations

 To create an alias for a sequence, the privilege set must include at least one of the listed authorities or privileges:

 •The CREATEIN privilege on the schema

 •SYSADM or SYSCTRL authority

 •System DBADM

 6.4.5 Considerations regarding application compatibility setting

 Public aliases or private aliases can only be created and used in New Function Mode (NFM). In addition to that, to make use of private or public aliases, the value of special register CURRENT APPLICATION COMPATIBILITY must implicitly or explicitly be set to V11R1.

 Assume that you have multiple sequences defined maybe to generate only odd or even numbers as discussed earlier. If these sequences, or public or private aliases, all have the same name, DB2 resolves the names as also discussed before. However, the results differ, depending on the value that is currently set for the CURRENT APPLICATION COMPATIBILITY special register.

 Refer to the next two figures to explore the differences. Figure 6-2 represents V11R1 compatibility.

 [image:]

 Figure 6-2 Application compatibility V11R1

 The behavior for APPLICATION COMPATIBILITY set to V11R1 is as described before, but if you set it to V10R1, as shown in Figure 6-3, you receive negative SQL codes in all cases in which the new aliases for sequences are used.

 [image:]

 Figure 6-3 Application compatibility V10R1

 In two of these cases you receive the following message because you try to explicitly request the use of aliases for sequences:

 DSNT408I SQLCODE = -4743, ERROR: ATTEMPT TO USE A FUNCTION WHEN THE

 APPLICATION COMPATIBILITY SETTING IS SET FOR A PREVIOUS LEVEL

 The -204 code received in the example where you implicitly try to use the public alias for the sequence occurs because DB2 does not even consider the existence of the sequence definition 4.

 For the sequence, if APPLCOMPAT='V10R1', and the sequence is not qualified, there is no attempt to resolve it in the SYSPUBLIC schema. If it cannot be resolved at the first try through the private schema, DB2 issues -204.

 If APPLCOMPAT='V11R1', and the sequence is not qualified, DB2 tries to resolve it in the SYSPUBLIC schema if it cannot be resolved at the first try through the private schema.

 If the sequence is qualified, DB2 only tries to resolve in that specified qualifier.

 After a sequence is resolved, if it is resolved to a public alias, it must be in V11R1. Otherwise, a -4743 error is issued.

 CURRENT PATH does not include SYSPUBLIC; however, the public aliases that exist in this schema are found.

 This behavior needs to be thoroughly checked when you start using aliases for sequences in NFM, while still running application with an application compatibility setting other than V11R1.

 6.5 New built-in functions

 DB2 11 for z/OS includes new built-in functions that improve the power of the SQL language. The schema is SYSIBM. Refer to DB2 11 for z/OS SQL Reference, SC19-4066 for syntax alternatives and additional examples.

 6.5.1 ARRAY_AGG

 The ARRAY_AGG function returns an array in which each value of the input set is assigned to an element of the array. ARRAY_AGG can be invoked in the following situations:

 •Select list of a SELECT INTO statement

 •Select list of a fullselect in the definition of a cursor that is not scrollable

 •Select list of a scalar fullselect as a source data item for a SET assignment-statement (or SQL PL assignment-statement)

 •A RETURN statement in an SQL scalar function

 Example 6-6 shows a sample CREATE array data type followed by a sample UDF where the array data type is used in a RETURN statement of an SQL scalar function. This sample UDF uses the ARRAY_AGG (aggregate) function and returns an array data type to the caller.

 Example 6-6 Array data type create statement and sample use case in a scalar function

 [image:]

 CREATE TYPE PHONELIST AS CHAR(4) ARRAY[];

 CREATE FUNCTION PHONELIST_UDF (LOWSAL DECIMAL(9,2))

 RETURNS PHONELIST

 LANGUAGE SQL

 CONTAINS SQL

 NO EXTERNAL ACTION

 RETURN

 (SELECT ARRAY_AGG(PHONENO ORDER BY SALARY)

 FROM DSN81110.EMP WHERE SALARY > LOWSAL)

 [image:]

 6.5.2 ARRAY_DELETE

 The ARRAY_DELETE function deletes elements from an array. This function can be specified only in the following specific contexts:

 •As a source value for a SET assignment-statement (or SQL PL assignment-statement) or VALUES INTO statement.

 •As the value to be returned in a RETURN statement in an SQL scalar function.

 6.5.3 ARRAY_FIRST

 The ARRAY_FIRST function returns the minimum array index value of an array. The data type of the result is the data type of the array index, which is INTEGER for an ordinary array. If array expression is not null and the array is not empty, the value of the result is the minimum array index value, which is 1 for an ordinary array.

 6.5.4 ARRAY_LAST

 The ARRAY_LAST function returns the maximum array index value of an array. The data type of the result is the data type of the array index, which is INTEGER for an ordinary array. If the array expression is not null and the array is not empty, the value of the result is the maximum array index value, which is the cardinality of the array for an ordinary array.

 6.5.5 ARRAY_NEXT

 The ARRAY_NEXT function returns the next larger array index value, relative to a specified array index value.

 6.5.6 ARRAY_PRIOR

 The ARRAY_PRIOR function returns the next smaller array index value, relative to a specified array index value.

 6.5.7 CARDINALITY

 The CARDINALITY function returns the number of elements in an array. The data type of the result is BIGINT.

 The result of the CARDINALITY function is as follows:

 •For an ordinary array, the result is the highest array index for which the array has an assigned element. Elements that have been assigned the null value are considered to be assigned elements.

 •For an associative array, the result is the actual number of unique array index values that are defined in array-expression.

 •For an empty array, the result is 0.

 6.5.8 MAX_CARDINALITY

 The MAX_CARDINALITY function returns the maximum number of elements that an array can contain. This value is the cardinality that was specified in the CREATE TYPE statement for an ordinary array type.

 The result of the MAX_CARDINALITY function is as follows:

 •For an ordinary array, the result is the maximum number of elements that an array can contain.

 •For an associative array, the result is the null value.

 6.5.9 TRIM_ARRAY

 The TRIM_ARRAY function deletes elements from the end of an ordinary array. It can be invoked only in the following contexts:

 •A source value for SET assignment-statement or SQL PL assignment-statement, or a VALUES INTO statement

 •The value that is returned in a RETURN statement in an SQL scalar function

 6.5.10 UNNEST (table function)

 Treat an array like a table to fetch data (that is, rows) from the array. You can use the UNNEST construct (collection-derived table), which returns a result table that contains a row for each element of an array. For example, using the UNNEST operation, you can retrieve a list of the phone numbers from the array returned by the PHONELIST_UDF as shown in Example 6-7.

 Example 6-7 Sample invocation of UNNEST table function

 [image:]

 SELECT * FROM dsn81110.emp WHERE phoneno = ANY (SELECT T.PHONE FROM unnest(phonelist_udf(30000)) AS T(PHONE))

 [image:]

 The WITH ORDINALITY clause in Example 6-8 indicates that the result table is to include an additional column that reflects the ordinal position of each array element within the array. This additional column is the last column of the result table from the UNNEST operation.

 Example 6-8 Sample invocation of UNNEST table function with ORDINALITY clause

 [image:]

 SELECT T.ARRAY_IX_SEQ, T.PHONE

 FROM UNNEST(PHONELIST_UDF(20000)) WITH ORDINALITY AS T(PHONE, ARRAY_IX_SEQ);

 [image:]

 In Example 6-8, the correlation clause following the WITH ORDINALITY clause, specifies that the additional column is named ARRAY_IX_SEQ, and the array element column is named PHONE. These column names can be explicitly referenced in the select list of the query.

 6.5.11 Arrays in MERGE statement

 With the introduction of limited support for arrays, an array value (that is, “whole array”) can be specified in MERGE statements in a context that allows for an array value. For example, an array can be referenced in a predicate of a merge statement.

 Note that a value to be assigned to a column with a MERGE statement must not be an array value, because a column cannot be defined as an array. However, an array value can be referenced in an expression that provides the source value to be assigned, as long as the result of the expression is assignable to the target column.

 6.6 SET CURRENT APPLICATION COMPATIBILITY

 This special register is applicable only to dynamic SQL. CURRENT APPLICATION COMPATIBILITY specifies the DB2 release level that the dynamic SQL is compatible with. The data type is VARCHAR(10). A routine environment cannot inherit this special register value from the caller's environment, even if the routine was created with the INHERIT SPECIAL REGISTER option.

 You can change the value of this special register by executing the SET CURRENT APPLICATION COMPATIBILITY statement as shown in Example 6-9.

 Example 6-9 APPLICATION COMPATIBILITY - Setting the special register values

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1'

 SET CURRENT APPLICATION COMPATIBILITY = 'V10R1'

 [image:]

 As shown in Example 6-9, possible values for the APPLICATION COMPATIBILITY special register are V10R1 and V11R1.

 •V10R1: Dynamic SQL statements are executed as they were in V10R1.

 •V11R1: Dynamic SQL statements are executed with the new functionality of V11R1, which is not necessarily compatible with V10R1.

 The value of V11R1 cannot be specified until DB2 11 for z/OS is in New Function Mode (NFM). By the same token, new options offered in V11 can be used in dynamic SQL statements only when this special register value has the V11R1 value (or implicitly inherited it from the DSNZPARM value default). For example, the SYSTIMESENSITIVE, BUSTIMESENSITIVE, and ARCHIVESENSITIVE options cannot be explicitly specified with the value of YES in NFM if this special register is set to V10R1. However, the IFCID 376 trace record can be used to identify those applications that can observe V11 incompatible changes when this special register is set to V11R1.

 Additional details about application compatibility feature is discussed in 12.7, “Controlling application compatibility” on page 373.

 See also DB2 11 for z/OS Installation and Migration, SC19-4056.

 6.7 Temporal special registers

 The SET statement in Example 6-10 sets the CURRENT TEMPORAL BUSINESS_TIME special register to last month. Assume that temporal table is an application-period temporal table with a BUSINESS_TIME period. The setting of the special register CURRENT TEMPORAL BUSINESS_TIME affects the update of temporal table that follows.

 Example 6-10 shows sample set statements.

 Example 6-10 Sample SET CURRENT TEMPORAL BUSINESS_TIME statement

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1'

 SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH;

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP + 5 DAYS;

 [image:]

 Example 6-11 shows a setting of compatibility.

 Example 6-11 SET CURRENT TEMPORAL SYSTEM_TIME to past time period

 [image:]

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 WHERE EMPNO = 10;

 ---------+---------+---------+---------+-----

 EMPNO BONUS

 ---------+---------+---------+---------+-----

 000010 1000.00

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP - 2 DAYS

 WHERE EMPNO = 10;

 ---------+---------+---------+---------+-----

 EMPNO BONUS

 ---------+---------+---------+---------+-----

 000010 1000.00

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 2 DAYS;

 UPDATE DB2R4.EMP_TEMPORAL SET BONUS = 777 WHERE EMPNO = 10;

 --DSNE615I NUMBER OF ROWS AFFECTED IS 1

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP

 WHERE EMPNO = 10;

 ---------+---------+---------+---------+---------

 EMPNO BONUS

 ---------+---------+---------+---------+---------

 000010 777.00

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP - 5 DAYS

 WHERE EMPNO = 10;

 ---------+---------+---------+---------+---------+

 EMPNO BONUS

 ---------+---------+---------+---------+---------+

 000010 1000.00

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP - 2 DAYS

 WHERE EMPNO = 10;

 ---------+---------+---------+---------+--------

 EMPNO BONUS

 ---------+---------+---------+---------+--------

 000010 1000.00

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 2 DAYS;

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 WHERE EMPNO = 10;

 ---------+---------+

 EMPNO BONUS

 ---------+---------+

 000010 777.00

 [image:]

 Example 6-12 is not exactly working like a time machine.

 Example 6-12 SET CURRENT TEMPORAL SYSTEM_TIME to future time period

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP + 2 MONTHS;

 UPDATE DB2R4.EMP_TEMPORAL SET BONUS = 2222 WHERE EMPNO = 10;

 --DSNE615I NUMBER OF ROWS AFFECTED IS 1

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP + 1 MONTH

 WHERE EMPNO = 10

 ---------+---------+---------+---------+---------+

 EMPNO BONUS

 ---------+---------+---------+---------+---------+

 000010 2222.00

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP

 WHERE EMPNO = 10

 ---------+---------+---------+---------+----

 EMPNO BONUS

 ---------+---------+---------+---------+----

 000010 2222.00

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 2 DAYS;

 SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL

 WHERE EMPNO = 10

 ---------+---------+---------+---------+----

 EMPNO BONUS

 ---------+---------+---------+---------+----

 000010 2222.00

 [image:]

 This behavior is not expected and can be explained by browsing the underlying tables directly, as shown in Table 6-2 and Table 6-3.

 Table 6-2 EMP_TEMPORAL_HIST table contents

 	
 EMPNO

 	
 BONUS

 	
 START_TS

 	
 END_TS

 	
 10

 	
 1000

 	
 2013-08-26-00.21.00.753406376000

 	
 2013-09-09-00.59.10.635906699000

 	
 10

 	
 777

 	
 2013-09-09-00.59.10.635906699000

 	
 2013-09-09-01.36.34.073591227000

 Table 6-3 EMP_TEMPORAL table contents

 	
 EMPNO

 	
 BONUS

 	
 START_TS

 	
 END_TS

 	
 10

 	
 2222

 	
 2013-09-09-01.36.34.073591227000

 	
 9999-12-30-00.00.00.000000000000

 6.7.1 Scope of session-level special registers

 For temporal query, it implicitly adds “FOR SYSTEM_TIME AS OF Current Temporal System_Time” for system-period temporal table, and “FOR BUSNESS_TIME AS OF Current Temporal Business_Time” for application-period temporal table.

 6.7.2 SYSTIMESENSITIVE and BUSTIMESENSITIVE

 Two new bind options are available in DB2 11 for z/OS so that applications can choose whether to be sensitive to the Current Temporal System_Time and Current Temporal Business_Time special registers.

 Default is YES for these two BIND parameters.

 6.8 Temporal support on VIEWs

 In DB2 11 for z/OS, the PERIOD specification is extended to CREATE VIEW statements to provide the temporal support to users of views. The period specification is ignored if the view does not reference relevant type of temporal tables.

 Example 6-13 contains the DDL used to define the temporal tables referenced in this section.

 Example 6-13 Sample temporal table DDL statements

 [image:]

 CREATE TABLE DB2R4.EMP_TEMPORAL

 (EMPNO CHAR(6) FOR SBCS DATA NOT NULL,

 FIRSTNME VARCHAR(12) FOR SBCS DATA NOT NULL,

 MIDINIT CHAR(1) FOR SBCS DATA NOT NULL,

 LASTNAME VARCHAR(15) FOR SBCS DATA NOT NULL,

 WORKDEPT CHAR(3) FOR SBCS DATA WITH DEFAULT NULL,

 PHONENO CHAR(4) FOR SBCS DATA WITH DEFAULT NULL,

 HIREDATE DATE WITH DEFAULT NULL,

 JOB CHAR(8) FOR SBCS DATA WITH DEFAULT NULL,

 EDLEVEL SMALLINT WITH DEFAULT NULL,

 SEX CHAR(1) FOR SBCS DATA WITH DEFAULT NULL,

 BIRTHDATE DATE WITH DEFAULT NULL,

 SALARY DECIMAL(9, 2) WITH DEFAULT NULL,

 BONUS DECIMAL(9, 2) WITH DEFAULT NULL,

 COMM DECIMAL(9, 2) WITH DEFAULT NULL,

 START_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL

 GENERATED ALWAYS AS ROW BEGIN,

 END_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL

 GENERATED ALWAYS AS ROW END,

 TRANS_ID TIMESTAMP (12) WITHOUT TIME ZONE

 GENERATED ALWAYS AS TRANSACTION START ID,

 PERIOD SYSTEM_TIME (START_TS, END_TS),

 CONSTRAINT EMPNO

 PRIMARY KEY (EMPNO))

 PARTITION BY (EMPNO ASC)

 (PARTITION 1 ENDING AT ('099999'),

 PARTITION 2 ENDING AT ('199999'),

 PARTITION 3 ENDING AT ('299999'),

 PARTITION 4 ENDING AT ('499999'),

 PARTITION 5 ENDING AT ('999999'))

 AUDIT NONE

 DATA CAPTURE NONE

 CCSID EBCDIC

 NOT VOLATILE

 APPEND NO ;

 COMMIT;

 CREATE TABLE DB2R4.EMP_TEMPORAL_HIST

 (EMPNO CHAR(6) FOR SBCS DATA NOT NULL,

 FIRSTNME VARCHAR(12) FOR SBCS DATA NOT NULL,

 MIDINIT CHAR(1) FOR SBCS DATA NOT NULL,

 LASTNAME VARCHAR(15) FOR SBCS DATA NOT NULL,

 WORKDEPT CHAR(3) FOR SBCS DATA WITH DEFAULT NULL,

 PHONENO CHAR(4) FOR SBCS DATA WITH DEFAULT NULL,

 HIREDATE DATE WITH DEFAULT NULL,

 JOB CHAR(8) FOR SBCS DATA WITH DEFAULT NULL,

 EDLEVEL SMALLINT WITH DEFAULT NULL,

 SEX CHAR(1) FOR SBCS DATA WITH DEFAULT NULL,

 BIRTHDATE DATE WITH DEFAULT NULL,

 SALARY DECIMAL(9, 2) WITH DEFAULT NULL,

 BONUS DECIMAL(9, 2) WITH DEFAULT NULL,

 COMM DECIMAL(9, 2) WITH DEFAULT NULL,

 START_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL,

 END_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL,

 TRANS_ID TIMESTAMP (12) WITHOUT TIME ZONE

 WITH DEFAULT NULL)

 PARTITION BY (EMPNO ASC)

 (PARTITION 1 ENDING AT ('099999'),

 PARTITION 2 ENDING AT ('199999'),

 PARTITION 3 ENDING AT ('299999'),

 PARTITION 4 ENDING AT ('499999'),

 PARTITION 5 ENDING AT ('999999'))

 AUDIT NONE

 DATA CAPTURE NONE

 CCSID EBCDIC

 NOT VOLATILE

 APPEND NO ;

 COMMIT;

 ALTER TABLE

 EMP_TEMPORAL

 ADD VERSIONING USE HISTORY TABLE

 EMP_TEMPORAL_HIST ;

 [image:]

 Example 6-14 shows a sample CREATE VIEW statement defined on a temporal table and a sample SELECT statement that can query the view as of certain point in time.

 Example 6-14 Sample VIEW statement on a temporal table along with a temporal Query

 [image:]

 CREATE VIEW v0 (EMPNO, SALARY, COMM)

 AS SELECT EMPNO, SALARY, COMM

 FROM EMP_TEMPORAL ;

 -- The following is a sample temporal query on the above view

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SELECT * FROM V0

 FOR SYSTEM_TIME AS OF TIMESTAMP '2013-08-25 23:55:00' ;

 [image:]

 For illustration purposes, if the bi-temporal table contains rows with the START_TS and END_TS column values shown in Table 6-4, none of the rows are picked up by the query coded in the Example 6-14. However, the result set includes all the rows if the same query is run without the FOR SYSTEM_TIME AS OF TIMESTAMP clause.

 Table 6-4 Sample time stamp values

 	
 START_TS

 	
 END_TS

 	
 2013-08-26-00.21.00.753406376000

 	
 9999-12-30-00.00.00.000000000000

 The second sample SELECT statement as shown in Example 6-15 returns all the rows for which the timestamp value specified in the AS OF clause (that is, 2013-10-10 00:22:00) lies between the START_TS and END_TS values on the rows involved. For example, if all the rows pertaining to the view had the same set of values tabulated in Table 6-4, all the rows are returned by the query coded in Example 6-15.

 Example 6-15 Selecting with AS OF

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SELECT * FROM V0

 FOR SYSTEM_TIME AS OF TIMESTAMP '2013-10-10 00:22:00' ;

 [image:]

 Both the sample temporal queries are coded with the SET CURRENT APPLICATION COMPATIBILITY = 'V11R1 statement to emphasize the fact that this is a new function and it will not work if your Application Compatibility level is set to V10R1.

 	
 Note: DB2 11 for z/OS removes DB2 10 restrictions that period specification and period clause can only be specified with base table references and appropriate type of temporal tables.

 6.9 DGTT

 The DECLARED GLOBAL TEMPORARY TABLE statement now includes a clause to specify logging behavior. The logging attribute for the DGTT is at the table level as opposed to the logging attribute that is at the table space level for base tables.

 A DGTT has the following different logging options:

 •LOGGED, which is the default and the current behavior. In this case, DB2 logs all changes and during ROLLBACK or ROLLBACK TO SAVEPOINT, the changes to the DGTT are undone.

 •NOT LOGGED ON ROLLBACK DELETE ROWS, which specifies no logging and during ROLLBACK or ROLLBACK TO SAVEPOINT, all rows in the DGTT are deleted if any change was made in the duration.

 •NOT LOGGED ON ROLLBACK PRESERVE ROWS, which specifies no logging and during ROLLBACK or ROLLBACK TO SAVEPOINT, the rows in the DGTT will be preserved as they are.

 In the case of an error situation during an SQL statement, where an SQLCODE or message is issued, if an update was made to a DGTT and LOGGED is specified, the changes to the DGTT are undone.

 In the case of an error situation during an SQL statement, where an SQLCODE or message is issued, if an update was made to a DGTT and NOT LOGGED is specified, all rows in that DGTT are deleted, regardless of the DELETE/PRESERVE ROWS qualification.

 DB2 can provide full incremental bind avoidance when used in a loop by switching to short prepare with RELEASE(DEALLOCATE).

 6.10 CUBE, ROLLUP and GROUPING SETS

 Grouping-sets and super-groups are two new options under GROUP BY clause (of the SELECT statement). A super-group stands for ROLLUP, CUBE or grand-total clause. ROLLUP is helpful in providing subtotaling along a hierarchical dimension such as time or geography. CUBE is helpful in queries that aggregate based on columns from multiple dimensions.

 With support for rollup, cube, and grouping-sets specifications, the SQL coding complexity can be reduced greatly and the SQL performance can be improved dramatically.

 6.10.1 GROUPING SETS

 The GROUPING SETS option can be thought of as the union of two or more groups of rows into a single result set. It is logically equivalent to the union of multiple subselects with the group by clause in each subselect corresponding to one grouping set. This is similar to the DB2 for Linux, UNIX, and Windows and DB2 for IBM System i® support for grouping-sets and super-group specifications.

 Example 6-16 shows a sample SQL statement by using the GROUP BY clause with the GROUPING SETS option. Figure 6-4 shows the result set of this SQL statement.

 Example 6-16 Sample SQL statement utilizing GROUP BY GROUPING SETS

 [image:]

 SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY, AVG(SALARY) as AVG_SALARY, COUNT(*) as COUNT	

 FROM DSN81110.EMP WHERE SALARY > 20000

 GROUP BY GROUPING SETS (WORKDEPT, EDLEVEL, SEX)

 [image:]

 The result set is logically equivalent to the union all of three subselects with the group by clause in each subselect corresponding to one column each from the three columns on the grouping sets specification (while the other two column values are shown as NULLs).

 [image:]

 Figure 6-4 Result of sample query using GROUPING SETS (WORKDEPT, EDLEVEL, SEX)

 6.10.2 ROLLUP

 A ROLLUP grouping is an extension to the GROUP BY clause that produces a result set containing sub-total rows in addition to the “regular” grouped rows. Subtotal rows are “super-aggregate” rows that contain further aggregates whose values are derived by applying the same column functions that were used to obtain the grouped rows. These rows are called sub-total rows, because that is their most common use; however, any column function can be used for the aggregation.

 A ROLLUP grouping is a series of grouping-sets. The general specification of a ROLLUP with n elements:

 GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

 is equivalent to

 GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn),

 (C1,C2,...,Cn-1),

 ...

 (C1,C2),

 (C1),

 ())

 For example, SUM and AVG are used in Example 6-17 is similar to Example 6-16 on page 121.

 Example 6-17 Sample ROLLUP construct

 [image:]

 SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY,

 AVG(SALARY) as AVG_SALARY, COUNT(*) as COUNT	

 FROM DSN81110.EMP WHERE SALARY > 20000

 GROUP BY ROLLUP (WORKDEPT, EDLEVEL, SEX)

 [image:]

 Example 6-18 shows the result set for the query in Example 6-17.

 Example 6-18 Sample ROLLUP result set

 [image:]

 WORKDEPT EDLEVEL SEX SUM_SALARY AVG_SALARY COUNT

 -------- ------- ---- ---------- -------------- -----

 A00 14 M 29250.00 29250.00000000 1

 A00 18 F 52750.00 52750.00000000 1

 A00 19 M 46500.00 46500.00000000 1

 B01 18 M 41250.00 41250.00000000 1

 C01 16 F 23800.00 23800.00000000 1

 C01 18 F 28420.00 28420.00000000 1

 C01 20 F 38250.00 38250.00000000 1

 D11 16 M 130400.00 26080.00000000 5

 D11 17 F 43590.00 21795.00000000 2

 D11 18 F 29840.00 29840.00000000 1

 D21 14 M 22180.00 22180.00000000 1

 D21 15 F 27380.00 27380.00000000 1

 D21 16 F 36170.00 36170.00000000 1

 D21 17 M 28760.00 28760.00000000 1

 E01 16 M 40175.00 40175.00000000 1

 E11 16 F 29750.00 29750.00000000 1

 E11 17 F 26250.00 26250.00000000 1

 E21 14 M 51520.00 25760.00000000 2

 E21 16 M 23840.00 23840.00000000 1

 A00 14 NULL 29250.00 29250.00000000 1

 A00 18 NULL 52750.00 52750.00000000 1

 A00 19 NULL 46500.00 46500.00000000 1

 B01 18 NULL 41250.00 41250.00000000 1

 C01 16 NULL 23800.00 23800.00000000 1

 C01 18 NULL 28420.00 28420.00000000 1

 C01 20 NULL 38250.00 38250.00000000 1

 D11 16 NULL 130400.00 26080.00000000 5

 D11 17 NULL 43590.00 21795.00000000 2

 D11 18 NULL 29840.00 29840.00000000 1

 D21 14 NULL 22180.00 22180.00000000 1

 D21 15 NULL 27380.00 27380.00000000 1

 D21 16 NULL 36170.00 36170.00000000 1

 D21 17 NULL 28760.00 28760.00000000 1

 E01 16 NULL 40175.00 40175.00000000 1

 E11 16 NULL 29750.00 29750.00000000 1

 E11 17 NULL 26250.00 26250.00000000 1

 E21 14 NULL 51520.00 25760.00000000 2

 E21 16 NULL 23840.00 23840.00000000 1

 A00 NULL NULL 128500.00 42833.33333333 3

 B01 NULL NULL 41250.00 41250.00000000 1

 C01 NULL NULL 90470.00 30156.66666666 3

 D11 NULL NULL 203830.00 25478.75000000 8

 D21 NULL NULL 114490.00 28622.50000000 4

 E01 NULL NULL 40175.00 40175.00000000 1

 E11 NULL NULL 56000.00 28000.00000000 2

 E21 NULL NULL 75360.00 25120.00000000 3

 NULL NULL NULL 750075.00 30003.00000000 25

 [image:]

 Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note also that the order in which the grouping-expressions is specified is significant for ROLLUP. For example:

 GROUP BY ROLLUP(a,b)

 Is equivalent to

 GROUP BY GROUPING SETS((a,b),

 (a),

 ())

 While

 GROUP BY ROLLUP(b,a)

 Is the same as

 GROUP BY GROUPING SETS((b,a),

 (b),

 ())

 The SQL code in Example 6-19 is the equivalent of Example 6-17 on page 122.

 Example 6-19 Selecting with grouping sets

 [image:]

 SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY, AVG(SALARY) AS AVG_SALARY, count(*) as COUNT	

 FROM DSN81110.EMP WHERE SALARY > 20000

 GROUP BY GROUPING SETS ((WORKDEPT, EDLEVEL, SEX),(WORKDEPT, EDLEVEL), (WORKDEPT),())

 [image:]

 Grand total for the result of this query is the last row on the query result set shown in Example 6-18 on page 122, which can also be identified by the row containing null values for all the three columns on the ROLLUP clause (that is, WORKDEPT, EDLEVEL, SEX).

 6.10.3 CUBE

 A CUBE grouping is an extension to the GROUP BY clause that produces a result set that contains all the rows of a ROLLUP aggregation and, in addition, contains crosstabulation rows. Cross-tabulation rows are additional super-aggregate rows that are not part of an aggregation with sub-totals.

 Like a ROLLUP, a CUBE grouping can also be thought of as a series of grouping-sets. In the case of a CUBE, all permutations of the cubed grouping-expression-list are computed along with the grand total. Therefore, the n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets. For example, a specification of

 GROUP BY CUBE(a,b,c)

 is equivalent to

 GROUP BY GROUPING SETS((a,b,c),

 (a,b),

 (a,c),

 (b,c),

 (a),

 (b),

 (c),

 ())

 Notice that the three elements of the CUBE translate to eight grouping sets. The order of specification of elements does not matter for CUBE.

 Example 6-20 shows a sample SQL statement using CUBE in the GROUP BY clause with similar code used in the ROLLUP description in Example 6-17 on page 122.

 Example 6-20 Sample SQL statement using CUBE construct in a GROUP BY clause

 [image:]

 SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY, AVG(SALARY) AS AVG_SALARY, count(*) as COUNT	

 FROM DSN81110.EMP WHERE SALARY > 20000

 GROUP BY CUBE (WORKDEPT, EDLEVEL, SEX);

 [image:]

 Example 6-21 shows the result set for the query in Example 6-20.

 Example 6-21 Result set from the sample CUBE construct

 [image:]

 WORKDEPT EDLEVEL SEX SUM_SALARY AVG_SALARY COUNT

 -------- ------- ---- ---------- -------------- -----

 A00 14 M 29250.00 29250.00000000 1

 A00 18 F 52750.00 52750.00000000 1

 A00 19 M 46500.00 46500.00000000 1

 B01 18 M 41250.00 41250.00000000 1

 C01 16 F 23800.00 23800.00000000 1

 C01 18 F 28420.00 28420.00000000 1

 C01 20 F 38250.00 38250.00000000 1

 D11 16 M 130400.00 26080.00000000 5

 D11 17 F 43590.00 21795.00000000 2

 D11 18 F 29840.00 29840.00000000 1

 D21 14 M 22180.00 22180.00000000 1

 D21 15 F 27380.00 27380.00000000 1

 D21 16 F 36170.00 36170.00000000 1

 D21 17 M 28760.00 28760.00000000 1

 E01 16 M 40175.00 40175.00000000 1

 E11 16 F 29750.00 29750.00000000 1

 E11 17 F 26250.00 26250.00000000 1

 E21 14 M 51520.00 25760.00000000 2

 E21 16 M 23840.00 23840.00000000 1

 NULL 14 M 102950.00 25737.50000000 4

 NULL 15 F 27380.00 27380.00000000 1

 NULL 16 F 89720.00 29906.66666666 3

 NULL 16 M 194415.00 27773.57142857 7

 NULL 17 F 69840.00 23280.00000000 3

 NULL 17 M 28760.00 28760.00000000 1

 NULL 18 F 111010.00 37003.33333333 3

 NULL 18 M 41250.00 41250.00000000 1

 NULL 19 M 46500.00 46500.00000000 1

 NULL 20 F 38250.00 38250.00000000 1

 A00 NULL F 52750.00 52750.00000000 1

 A00 NULL M 75750.00 37875.00000000 2

 B01 NULL M 41250.00 41250.00000000 1

 C01 NULL F 90470.00 30156.66666666 3

 D11 NULL F 73430.00 24476.66666666 3

 D11 NULL M 130400.00 26080.00000000 5

 D21 NULL F 63550.00 31775.00000000 2

 D21 NULL M 50940.00 25470.00000000 2

 E01 NULL M 40175.00 40175.00000000 1

 E11 NULL F 56000.00 28000.00000000 2

 E21 NULL M 75360.00 25120.00000000 3

 A00 14 NULL 29250.00 29250.00000000 1

 A00 18 NULL 52750.00 52750.00000000 1

 A00 19 NULL 46500.00 46500.00000000 1

 B01 18 NULL 41250.00 41250.00000000 1

 C01 16 NULL 23800.00 23800.00000000 1

 C01 18 NULL 28420.00 28420.00000000 1

 C01 20 NULL 38250.00 38250.00000000 1

 D11 16 NULL 130400.00 26080.00000000 5

 D11 17 NULL 43590.00 21795.00000000 2

 D11 18 NULL 29840.00 29840.00000000 1

 D21 14 NULL 22180.00 22180.00000000 1

 D21 15 NULL 27380.00 27380.00000000 1

 D21 16 NULL 36170.00 36170.00000000 1

 D21 17 NULL 28760.00 28760.00000000 1

 E01 16 NULL 40175.00 40175.00000000 1

 E11 16 NULL 29750.00 29750.00000000 1

 E11 17 NULL 26250.00 26250.00000000 1

 E21 14 NULL 51520.00 25760.00000000 2

 E21 16 NULL 23840.00 23840.00000000 1

 NULL NULL F 336200.00 30563.63636363 11

 NULL NULL M 413875.00 29562.50000000 14

 NULL 14 NULL 102950.00 25737.50000000 4

 NULL 15 NULL 27380.00 27380.00000000 1

 NULL 16 NULL 284135.00 28413.50000000 10

 NULL 17 NULL 98600.00 24650.00000000 4

 NULL 18 NULL 152260.00 38065.00000000 4

 NULL 19 NULL 46500.00 46500.00000000 1

 NULL 20 NULL 38250.00 38250.00000000 1

 A00 NULL NULL 128500.00 42833.33333333 3

 B01 NULL NULL 41250.00 41250.00000000 1

 C01 NULL NULL 90470.00 30156.66666666 3

 D11 NULL NULL 203830.00 25478.75000000 8

 D21 NULL NULL 114490.00 28622.50000000 4

 E01 NULL NULL 40175.00 40175.00000000 1

 E11 NULL NULL 56000.00 28000.00000000 2

 E21 NULL NULL 75360.00 25120.00000000 3

 NULL NULL NULL 750075.00 30003.00000000 25

 [image:]

 In Example 6-20, CUBE (WORKDEPT, EDLEVEL, SEX) and CUBE (EDLEVEL, WORKDEPT, SEX) yield the same result sets. The use of the word same applies to content of the result set, not to its order.

 6.10.4 Grand total

 Both CUBE and ROLLUP return a row that is the overall (grand total) aggregation, which can be separately specified with empty parentheses within the GROUPING SET clause. It can also be specified directly in the GROUP BY clause, although there is no effect on the result of the query.

 6.10.5 Grouping expression

 When used in conjunction with grouping-sets and super-groups, the GROUPING function returns a value that indicates whether a row returned in a GROUP BY result is a row that is generated by a grouping set that excludes the column represented by expression. The result of the function is a small integer value, such as 1 or 0.

 For details, see:

 http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.db2z11.doc.updates%2Fsrc%2Ftpc%2Fdb2z_bif_grouping.htm

 6.11 ALTER TABLE DROP COLUMN

 This function drops the identified column from the table. Any privileges that are associated with the column are revoked.

 A column cannot be dropped if any of the following conditions are true:

 •The containing table space is not a universal table space.

 •The table is a created global temporary table.

 •The table is a system-period temporal table.

 •The table is a history table.

 •The table is an archive-enabled table.

 •The table is an archive table.

 •The table has an edit procedure or a validation exit procedure.

 •The table contains check constraints.

 •The table is a materialized query table.

 •The table is referenced in a materialized query table definition.

 •The column is defined as a security label column.

 •The column is an XML column.

 •The column is a DOCID column.

 •The column is a hidden ROWID column.

 •The column is defined as ROWID GENERATED BY DEFAULT, and the table contains a hidden ROWID column.

 •The column is a ROWID column on which there is a dependent LOB column.

 •The column is part of the table partitioning key.

 •The column is part of the hash key.

 •All of the remaining columns in the table are hidden.

 •A view that is dependent on the table has INSTEAD OF triggers.

 •A trigger is defined on the table.

 •Any of the following objects are dependent on the table:

  –	Extended indexes

  –	Row permissions

  –	Column masks

  –	Inline SQL table functions

 ALTER TABLE DROP COLUMN is considered a pending definition change, at the time that the ALTER statement is executed, semantic validation and authorization checking are performed as usual. However, the drop is not applied to the current definition or data at the time of the ALTER (that is, catalog and data are untouched). An entry is recorded in the SYSIBM.SYSPENDINGDDL catalog table for the pending drop column, and the table space is placed in an advisory REORG-pending (AREOR) state.

 6.12 LIKE_BLANK_INSIGNIFICANT DSNZPARM

 The LIKE_BLANK_INSIGNIFICANT DSNZPARM value specifies whether blanks are significant when applying the LIKE predicate to a string. If set, the blank insignificant behavior applies.

 This DSNZPARM value provides a new behavior for the LIKE predicate that treats trailing blanks within fixed length character strings as insignificant. This behavior is “more compatible” with the results for variable length strings.

 This system parameter is off after a fresh install of DB2 for z/OS. If the DB2 system is migrated to DB2 11, the LIKE_BLANK_INSIGNIFICANT behavior is disabled by default. The system parameter can be enabled in conversion mode (CM).

 This option can significantly impact the behavior of SQL statements if you have a LIKE predicate in your SQL statement and if the column referred in the LIKE predicate includes undesirable trailing blanks.

 Before the LIKE predicate is applied, any trailing blanks in a CHARACTER or GRAPHIC column are stripped to the last non-blank character. If the column contains all blanks, the blank in character position 1 is not stripped. After stripping occurs, the LIKE predicate is applied against the stripped column data. Example 6-22 illustrates this behavior.

 Example 6-22 LIKE BLANK INSIGNIFICANT DSNZPARM behavior with trailing blanks

 [image:]

 CREATE TABLE BINSIGNIFICANT (C1 CHAR(10));

 INSERT INTO BINSIGNIFICANT VALUES(' AA ');

 INSERT INTO BINSIGNIFICANT VALUES('A AA A');

 INSERT INTO BINSIGNIFICANT VALUES('AA ');

 INSERT INTO BINSIGNIFICANT VALUES('AAA A ');

 SELECT * FROM BINSIGNIFICANT

 WHERE C1 LIKE '%AA'

 ---------+---------+---------+---------

 C1

 ---------+---------+---------+---------

 AA

 AA

 [image:]

 	
 Trailing blanks note: Although trailing blanks in the column data are insignificant, trailing blanks in the LIKE predicate are significant.

 Example 6-23 illustrates the situation when the LIKE predicate contains one or more of the “match any character” (usually underscore) in the last position. The “blank significant” (pre-V11 behavior), might have resulted in a match if the last character in the column contained the blank character. The “blank insignificant” behavior no longer results in a match when the column data contains trailing blanks (because the trailing blanks are being stripped during predicate evaluation).

 Example 6-23 Sample LIKE predicate to illustrate the stripping of trailing blanks

 [image:]

 SELECT C1

 FROM BINSIGNIFICANT

 WHERE C1 LIKE '%AA_';

 [image:]

 The LIKE predicate in Example 6-23 does not even match the two fixed length strings it matched in Example 6-22, although there is a trailing blank in those two rows immediately after the string AA.

[image:]
[image:]

Application enablement

 This chapter describes DB2 11 for z/OS functions, not strictly confined to SQL, that provide infrastructure support for new applications or that simplify portability of existing applications to DB2 for z/OS from other database systems.

 This chapter includes the following topics:

 •Ensuring application compatibility

 •Transparent archiving of temporal data

 •Providing support for big data

 •Using the scoring adapter to add predictive analytics to OLTP applications

 •Using JavaScript Object Notation with IBM DB2

 •Suppressing null indexes

 7.1 Ensuring application compatibility

 DB2 11 for z/OS has mechanisms in place to limit potential SQL and XML incompatibilities on application DML statements. It allows you to ensure application compatibility by using the following functions:

 •Identify applications that are affected by incompatible SQL and XML changes through trace records

 This function provides a mechanism to discover which applications will be affected.

  –	The DSNTIJPM migration job is updated to warn of Static SQL packages affected.

  –	IFCID 366 is updated to report on Dynamic SQL.

 •Control the compatibility level to DB2 10 at application level

 The following methods apply to transitioning to new behavior:

  –	APPLCOMPAT(VnnR1) BIND/REBIND option for static SQL

  –	APPLCOMPAT DSNZPARM for static SQL indicates default value

  –	CURRENT APPLICATION COMPATIBILITY special register for dynamic SQL

  –	DSN_PROFILE_ATTRIBUTES for IBM DRDA® applications

 For dynamic SQL statements, the APPLICATION COMPATIBILITY special register value must be set to appropriate value, and for static SQL statements, the APPLCOMPAT bind option must contain the desired value.

 Details about the APPLICATION COMPATIBILITY special register are discussed in 6.6, “SET CURRENT APPLICATION COMPATIBILITY” on page 114.

 Details about the APPLCOMPAT BIND/REBIND option are discussed at 12.6.1, “Application and SQL release incompatibilities” on page 357.

 The APPLCOMPAT bind option applies only to DML (or DDL that contains DML, such as CREATE VIEW, CREATE MASK, MQTs, and so on) not DDL or DCL. For example, DB2 allows the user to CREATE objects, but application compatibility is not checked until the object is referenced:

 •The CREATE TYPE (array) is allowed, but SET array-variable = ... is subject to application compatibility rules (that is, array-variable only available in V11R1 mode).

 •The BIND option applies to packages: stored procedures, user-defined functions (UDFs), triggers, applications, and so on.

 	
 Note: In a distributed environment, if DB2 is configured with APPLCOMPAT(V11R1), the value of the accounting string that is returned has a maximum length of 255 bytes. If DB2 is configured with APPLCOMPAT(V10R1), the value of the accounting string that is returned has a maximum length of the value returned is 200 bytes.

 7.2 Transparent archiving of temporal data

 DB2 11 for z/OS provides basic archive and retrieval functions using SQL through a two table approach. The table that contains the current data is called an archive-enabled table, and the table that holds the pre-existing rows is called an archive table. An application can design its own way to archive data, or DB2 can automatically move rows deleted from an archive-enabled table to the associated archive table. The retrieval of data from a base table or a base table plus its associated archive table is controlled by the setting of a built-in system defined global variable without changing SQL in the applications.

 	
 Important: For archive-enabled tables, you do not need to change the application. No DBA intervention to recall data is required.

 Whether DB2 automatically moves deleted rows to the archive table depends on the setting of a new global variable. Additionally, you can use the LOAD utility with resume behavior to archive data.

 You can define a table as an archive-enabled table with an associated archive table for historical rows. The ALTER TABLE statement is extended with an ENABLE ARCHIVE clause to change an existing table into an archive-enabled table with an associated archive table. You can use the table as the archive table is specified in the USE clause. Defining a table as an archive-enabled table results in package invalidation of existing applications that reference the table.

 After a table is defined as an archive-enabled table:

 •ALTER TABLE with the ADD COLUMN clause also implicitly adds the new column to the associated archive table.

 •If the SYSIBMADM.GET_ARCHIVE global variable is set to Y, data is retrieved from the archive table when an archive-enabled table is referenced in a table-reference. The access of historical data in the archive table is “transparent” to the application. All subsequent SQL statements including those from invoked function, stored procedure, and trigger. This allows the application to see both active and archive data without modifying the SQL statements in multiple packages. DB2 rewrites the query with UNION ALL operator.

 •If the SYSIBMADM.MOVE_TO_ARCHIVE global variable is set to Y, historical data is stored in the associated archive table when a row is deleted in an archive-enabled table. The storing of a row of historical data in the archive table is “transparent” to the application. When the global variable is set to Y, an update operation will return an error.

 •Any reference to an archive-enabled table for existing values in an INSERT, UPDATE, DELETE, or MERGE will not include rows of the associated archive table.

 •A system-period temporal table or application-period temporal table cannot be referenced in a data manipulation statement when the archive-enabled table is also referenced when both tables are considered for transparent archive transformations.

 	
 Tip: A table cannot be defined as both an archive-enabled table and a system-period temporal table.

 Two new updatable global variables are introduced to give control over whether archived rows for rows deleted from an archive-enabled table are automatically written to an associated archive table and whether rows in the archive table are included when an archive-enabled table is referenced in a table-reference.

 If the majority of applications retrieve data from base table, there should be no performance degradation by UNION ALL to its associated archive table.

 You can use the DISABLE ARCHIVE clause on the ALTER TABLE statement to remove the relationship between the archive-enabled table and the associated archive table. After the ALTER statement is successfully processed, both tables are considered ordinary tables. See 7.2.7, “Static application scenario” on page 135 for additional details.

 7.2.1 Controls of archive transparency

 The following bind/routine options are added to control the sensitivity to the settings of the SYSIBMADM.GET_ARCHIVE global variable:

 •ARCHIVESENSITIVE (default YES)

  –	BIND PACKAGE

  –	REBIND PACKAGE

  –	REBIND TRIGGER PACKAGE

  –	CREATE TRIGGER (implicit trigger package)

 •ARCHIVE SENSITIVE (default YES)

  –	CREATE FUNCTION (SQL scalar)

  –	ALTER FUNCTION (SQL scalar)

  –	CREATE PROCEDURE (SQL native)

  –	ALTER PROCEDURE (SQL native)

 •ARCHIVE SENSITIVE (DB2I panels)

  –	DB2I Panel DSNEBP10

  –	DB2I Panel DSNEBP11

  –	DB2I Panel DSNEBP19

 	
 Important: The CREATE TRIGGER and REBIND TRIGGER PACKAGE options fail if the trigger has an archive-enabled table reference in the WHEN clause and the trigger package is generated with ARCHIVESENSITIVE YES.

 7.2.2 Sample code for enabling archive transparency

 To use archive transparency, you need two tables properly defined. Then, issue an ALTER TABLE statement to define the relationship between the two tables.

 Example 7-1 shows sample DDL statements for an archive-enabled table that stores active data, the archive table that stores archive data, and the ALTER table to enable archive transparency feature.

 Example 7-1 DDL for ARCHIVE ENABLE

 [image:]

 -- Main table which will be archive enabled

 CREATE TABLE POLICY_INFO_AET

 (POLICY_ID CHAR(10) NOT NULL,

 COVERAGE INT NOT NULL);

 -- Archive table to store archive data

 CREATE TABLE POLICY_INFO_ARC

 (POLICY_ID CHAR(10) NOT NULL,

 COVERAGE INT NOT NULL);

 -- If the APPLCOMPAT is not set to V11R1 then use the following statement

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 -- ARCHIVE ENABLE -- ALTER table to enable archive transparency

 ALTER TABLE POLICY_INFO_AET ENABLE ARCHIVE USE POLICY_INFO_ARC;

 [image:]

 A single ALTER statement to add a column or multiple columns on an archive-enabled table also adds the same column or columns to an archive table. Example 7-2 shows a sample ALTER TABLE statement.

 Example 7-2 ALTER TABLE ADD COLUMN on an archive enabled table

 [image:]

 ALTER TABLE POLICY_INFO_AET ADD COLUMN UPDATE_TS TIMESTAMP(12);

 [image:]

 After executing the ALTER TABLE ADD COLUMN statement in Example 7-2, DB2 also implicitly adds an UPDATE_TS column to the archive table automatically (that is, policy_info_arc table).

 7.2.3 Inserting rows into archive enabled table

 The INSERT, UPDATE, and MERGE statements are all blocked in archive mode. These statements use the following options:

 •If SYSIBMADM.MOVE_TO_ARCHIVE = ‘Y’, the INSERT, UPDATE, and MERGE statements fail based on the assumption that in archive mode, you can only DELETE.

 •If SYSIBMADM.MOVE_TO_ARCHIVE = ‘N’, no archive mode failure occurs (that is, it is business as usual).

 •If SYSIBMADM.MOVE_TO_ARCHIVE = ‘E’, the behavior is similar to Y, but adds flexibility. The E setting does not restrict the use of the data change statements. Users that favor the restriction can set the global variable to Y, and users that do not want the restriction can set the global variable to E.

 Example 7-3 shows a sample SQL INSERT statement, along with valid values for the APPLICATION COMPATIBILITY special register and the MOVE_TO_ARCHIVE global variable.

 Example 7-3 Sample INSERT statement with MOVE_TO_ARCHIVE set to N

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET SYSIBMADM.MOVE_TO_ARCHIVE = 'N';

 INSERT INTO POLICY_INFO_AET

 (SELECT J_POLICY, COVERAGE_NBR, CHG_TIMESTAMP

 FROM DSN81110.TEMP)

 [image:]

 Example 7-4 shows the negative SQLCODE and the accompanying error message when an INSERT statement was attempted on an archive enabled table with SET SYSIBMADM.MOVE_TO_ARCHIVE = 'Y'.

 Example 7-4 Error message on an INSERT with MOVE_TO_ARCHIVE set to ' N'

 [image:]

 DSNT408I SQLCODE = -20555, ERROR: AN ARCHIVE-ENABLED TABLE IS NOT ALLOWED IN THE SPECIFIED CONTEXT. REASON CODE 2

 [image:]

 7.2.4 Deleting rows from an archive enabled table

 A single DELETE statement can trigger transparent archive when MOVE_TO_ARCHIVE global variable is in effect. No additional privilege is required on an archive table. Only the privileges on the delete of an archive-enabled table are needed.

 Given an SQL DELETE from an archive enabled table, regardless of whether it is dynamic or static SQL and whether the package is bound with the ARCHIVESENSITIVE option YES or NO:

 •If the built-in SYSIBMADM.MOVE_TO_ARCHIVE global variable contains the Y value, for each row deleted from the archive-enabled table, DB2 inserts it into the corresponding archive table.

 •If the built-in SYSIBMADM.MOVE_TO_ARCHIVE global variable contains the N value (the default), DB2 does no data propagation to the archive table. It basically works similar to a regular delete statement.

 This feature is basically an SQL performance improvement to help archiving data with a single DELETE. For the application, there is no change on the data-change SQL statements (that is, transparent to the application).

 Example 7-5 shows a sample DELETE statement along with valid values for the APPLICATION COMPATIBILITY special register and the MOVE_TO_ARCHIVE global variable.

 Example 7-5 Sample DELETE from an Archive Enabled Table

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET SYSIBMADM.MOVE_TO_ARCHIVE = 'Y';

 DELETE FROM POLICY_INFO_AET

 WHERE UPDATE_TS < CURRENT TIMESTAMP - 7 YEARS;

 [image:]

 7.2.5 Querying archive enabled table

 There is no need to change SQL statements in an existing application to get current data only or to get both current and archive data. The setting of the SYSIBMADM.GET_ARCHIVE built-in global variable offers transparent access to archive data for queries.

 If the application wants to get the result from both base and archive table, use the following option:

 SET SYSIBMADM.GET_ARCHIVE = ‘Y’ ;

 	
 Note: If the CID 65 field QW0065ER DS CL2 EXPANSION REASON shows the A value, the implicit query transformation driven by the built-in SYSIBMADM.GET_ARCHIVE global variable or the ARCHIVESENSITIVE did happen.

 If the application just wants to access the active data, use the following default option:

 SET SYSIBMADM.GET_ARCHIVE = ‘N’ ;

 	
 Note: If the CID 65 field QW0065ER DS CL2 EXPANSION REASON shows a blank value, the implicit query transformation driven by the built-in SYSIBMADM.GET_ARCHIVE global variable and ARCHIVESENSITIVE bind option did not happen.

 Example 7-6 shows a sample query along with valid values for the APPLICATION COMPATIBILITY special register and the MOVE_TO_ARCHIVE global variable. This SELECT statement is internally converted to include an implicit UNION ALL operation with the corresponding archive table.

 Example 7-6 Sample SELECT statement on an archive enabled table

 [image:]

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 SET SQSIBMADM.GET_ARCHIVE = ‘Y’ ;

 SELECT * FROM POLICY_INFO_AET

 [image:]

 7.2.6 Using a dynamic transaction with archive transparency

 The steps to use a dynamic transaction with archive transparency include:

 •Define the archive-enabled table

 •Define the archive table

 •Build the link using ALTER TABLE ENABLE ARCHIVE

 •Archive data, before DELETE by executing SET SYSIBMADM.MOVE_TO_ARCHIVE = 'Y' ;

 When DELETE statements are executed on an archive enabled table, DB2 deletes the record or records as usual. In addition, the deleted rows are inserted into the corresponding archive table.

 To access both base and archive data, before PREPARE or EXECUTE IMMEDIATE, use the following option:

 SET SYSIBMADM.GET_ARCHIVE = 'Y' ;

 	
 Note: Except the target table of INSERT/UPDATE/DELETE/MERGE, DB2 expands all archive-enabled table references to the table expression with UNION ALL of base and archive table.

 7.2.7 Static application scenario

 The cursor on an archive enabled table is defined as usual as for a regular table as shown in Example 7-7 in an application program.

 Example 7-7 Sample cursor statement in a static application

 [image:]

 DECLARE CUR1 CURSOR FOR

 SELECT * FROM POLICY_INFO_AET

 WHERE POLICY_ID = :H1 ;

 [image:]

 Bind the package that contains the cursor with ARCHIVESENSITIVE YES. Note the default is YES, which can be omitted.

 DB2 generates the following internal sections:

 •The normal section with blank value of EXPANSION_REASON in SYSIBM.SYSPACKSTMT:

 SELECT * FROM POLICY_INFO_AET WHERE POLICY_ID = :h1 ;

 •The extended section with A value of EXPANSION_REASON in SYSIBM.SYSPACKSTMT:

 SELECT * FROM (SELECT * FROM POLICY_INFO_AET UNION ALL SELECT * FROM POLICY_INFO_ARC) WHERE POLICY_ID = :h1 ;

 When using EXPLAIN facilities (either through BIND with EXPLAIN(YES) or through the EXPLAIN statement), PLAN_TABLE includes two plans for each query referencing archive-enabled table or tables (that is, one without archive table access and one with archive table access). The expansion_reason includes blank and “A” respectively.

 7.2.8 DISABLE ARCHIVE

 The ALTER TABLE statement can also be used to specify that the table is no longer an archive-enabled table using the DISABLE ARCHIVE clause. The table name must identify an archive-enabled table The definition of the columns is not changed, but the table is no longer treated as an archive-enabled table. The data in both tables are unaffected by the ALTER statement. The relationship between the archive-enabled table and the associated archive table is removed. The archive table is not dropped. Only the relationship between the two tables is removed. Subsequent queries that reference the table will not consider rows in the archive table regardless of the setting of the SYSIBMADM.GET_ARCHIVE global variable, and deleted rows will not be moved to the archive table regardless of the setting of SYSIBMADM.MOVE_TO_ARCHIVE global variable.

 Example 7-8 shows a sample ALTER TABLE statement with the DISABLE ARCHIVE clause on the sample archive-enabled table that is used in this chapter.

 Example 7-8 DDL for DISABLE ARCHIVE statement

 [image:]

 -- If the APPLCOMPAT is not set to V11R1 then use the following statement

 SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

 -- ALTER table to disable archive transparency

 ALTER TABLE POLICY_INFO_AET DISABLE ARCHIVE;

 [image:]

 After successful execution of the ALTER TABLE ... DISABLE ARCHIVE statement, the packages and statements in the dynamic statement cache that reference this table are invalidated.

 Archiving cannot be disabled if there are any views, materialized query table definitions, or inline SQL table functions that reference the table.

 7.2.9 Analytics Accelerator - HPSS considerations

 The IBM DB2 Analytics Accelerator V3 (and later) has an archive transparency function with High Performance Storage feature. This feature of the Accelerator is supported by DB2 11 for z/OS, which allows applications to deal with local archive tables compared to completely offloaded archive tables with Analytics Accelerators.

 7.3 Providing support for big data

 Big data systems are used for analytics. They accept “queries” and return results, usually asynchronously. With DB2 11 for z/OS, applications can connect to both big data systems and DB2 to provide integration. However, SQL connection to big data systems provides convenience with simplified interface and better productivity.

 Opportunities exist to lower risk and cost and to create up-sell and cross-sell opportunities by looking at information about social networking (such as Facebook, Twitter, and LinkedIn), and studying data from telemetry devices (machine to machine), detecting customer sentiment in emails, audio, video. However, the challenge remains as to how to integrate this “noise.” Slowly over time, the circle of trust widened, as shown in Figure 7-1, to include other forms of “differently structured” data.

 For example, email is generally structured “From, to, date, and time stamp, subject, attachments, main body with containing sentences, verbs, nouns, adjectives, propositions and closing remarks.” It is structured differently from non-relational data. This is to enhance and augment our knowledge about entities relevant to our business. That way, we can gain deeper insights that help lower business risks and costs, and increase revenue and profit through innovative business models.

 [image:]

 Figure 7-1 Need for differently structured data to gain business insights

 The amount and types of data being captured for business analysis is growing. A classic example of this large superset of data is web logs, which contain unstructured raw data.

 7.3.1 Enhancing big data analytics with Apache Hadoop

 In an increasing trend unstructured data is being stored on new frameworks. These infrastructures encompass hardware and software support such as new file systems, query languages, and appliances. A prime example of DB2 use of Apache Hadoop is shown in DB2 11 for z/OS enhancing Analytics on z platform with big dataDB2 11 for z/OS enhancing Analytics on z platform with big dataFigure 7-2.

 [image:]

 Figure 7-2 DB2 11 for z/OS enhancing Analytics on z platform with big data

 Apache Hadoop is a Java-based framework that supports data intensive distributed applications and allows applications to work with thousands of nodes and petabytes of data.

 As shown in Figure 7-3, Hadoop framework is ideal for distributed processing of large data sets. It is designed to run on large clusters of commodity hardware.

 [image:]

 Figure 7-3 Hadoop key components

 The Hadoop framework includes the following main components:

 •The file systems (HDFS)

 HDFS is a distributed, scalable, and portable file system written in Java for the Hadoop framework, that provides high-throughput access to application data.

 •The MapReduce engine

 The MapReduce engine consists of one JobTracker, to which client applications submit MapReduce jobs. The JobTracker pushes work to available TaskTracker nodes in the cluster, striving to keep the work as close to the data as possible.

 Hadoop distributed file system

 The Hadoop distributed file system (HDFS) is designed to be highly fault tolerant, as illustrated in Figure 7-4.

 [image:]

 Figure 7-4 HDFS overview

 Each node in a Hadoop instance typically has a single name-node; a cluster of data-nodes form the HDFS cluster. Each data-node serves up blocks of data over the network using a block protocol specific to HDFS.

 Large files are broken into blocks of fixed size (default = 64 MB), and distributed across multiple machines. Blocks are replicated. Block Replicas are distributed across servers and racks. It achieves reliability by replicating the data across multiple nodes, and hence does not require RAID storage. With the default replication value, 3, data is stored on three nodes. Two are on the same rack, and one node is on a different rack. This policy cuts the inter-rack write traffic which generally improves write performance. The chance of rack failure is far less than that of node failure. Data nodes can talk to each other to rebalance data, to move copies around, and to keep the replication of data high.

 HDFS was designed to handle very large files. HDFS was designed for mostly immutable files and might not be suitable for systems requiring concurrent write operations. HDFS applications need a write-once-read-many access model for files. After a file is created, written, and closed, it need not be changed. This assumption simplifies data coherency issues and enables high throughput data access.

 MapReduce

 Multiple Mappers send data to the multiple Shuffles, which then pass data to the Reducers for “Divide and Conquer” plus mass parallel processing, as shown in Figure 7-5.

 [image:]

 Figure 7-5 MapReduce overview

 For example, for an input file that is split into four blocks, with each block containing a list of receipts, there are four mappers. Each mapper reads one block in parallel. The mapper reads each receipt and generates a pair (seller, amount). All the pairs for seller1 are sent to reducer R1, and all seller2 pairs are sent to R2. The reducer then calculates the total amount for each seller.

 The Map function only cares about the current key and value. The Reduce function only cares about the current key and its values. A Mapper can invoke Map on an arbitrary number of input keys and values or just some fraction of the input data set. A Reducer can invoke Reduce on an arbitrary number of the unique keys but all the values for that key.

 Jaql, the JSON query language

 Java MapReduce provides most flexibility and performance, but tedious development cycle (it is similar to the assembly language of Hadoop). Jaql is a functional, declarative query language that is designed by IBM to process large data sets. For parallelism, Jaql rewrites high-level queries, when appropriate, into “low-level” queries consisting of MapReduce jobs.

 Read more about how DB2 and JSON work together in 7.5, “Using JavaScript Object Notation with IBM DB2” on page 149.

 SQL within Jaql

 Jaql integrates an SQL expression that should make it easier for users with an SQL background to write MapReduce scripts in Jaql for the BigInsights environment. SQL within Jaql also makes it easier to integrate existing SQL applications and tooling with Jaql.

 Analyze big data with JAQL

 Jaql query has three components, as shown in Figure 7-6. You can think of a Jaql query as a pipeline. A Jaql query reads input data from a source. A source is anything from which data can be read, such as a file. A source is the only mandatory part of a Jaql query. Next, the data is manipulated according to the operators or functions that were specified in the query. Finally, the data is output to a sink. A sink is anything to which data can be written.

 [image:]

 Figure 7-6 JAQL query components

 Typical results from big data are in a table form.So, DB2 11 for z/OS provides a single table function to interface with such systems, which requires generic table UDF that returns a table of any shape. Existing infrastructure require one UDF per result type/shape.

 •Phase 1: specify the return in FROM clause after the table UDF

 •Phase 2: use DESCRIBE interface to get result table shape dynamically

 Integration with Hadoop-based IBM BigInsights big data platform

 The goal here is to integrate DB2 11 for z/OS with Hadoop based BigInsights Bigdata platform thereby enabling traditional applications on DB2 for z/OS to access Big Data analytics.

 The following UDFs are provided to access BigInsight from DB2 for z/OS:

 •HDFS_Read is a user-defined table function to read a file in Hadoop file system. The output schema is determined at query time.

 •JAQL_Submit is a user-defined scalar function to submit a JAQL script to BigInsight.

 Analytics jobs can be specified using JSON Query Language (JAQL) submitted to BigInsights, and the results stored in Hadoop Distributed File System (HDFS). The table UDF (HDFS_READ) reads the Bigdata analytic result from HDFS, for subsequent use in an SQL query. The HDFS_READ UDF output table can have variable shapes.

 DB2 11 supports generic table UDF by enabling this function. It also supports the security model of BigInsight, though the BigInsights console and Representational State Transfer (REST).

 	
 REST with SOA: REST is the preferred way of communicating in service-oriented architecture (SOA) environments.

 Consider the following DB2-BigInsights integration use case:

 •BigInsights ingests data that usually is not ingested by established structured data analysis systems such as DB2, for example email from all clients sent to an insurance company.

 •DB2 kicks off a Hadoop job on BigInsights that analyzes emails and identifies customers who have expressed dissatisfaction with the service. It looks for the words cancel, terminate, switch, or synonyms thereof and the names of the company’s competitors.

 •The BigInsights job runs successfully, creates a file of results (names and email addresses of customers at risk), and terminates.

 •DB2 reads the BigInsights result file using user-defined table function (HDFS_READ).

 •DB2 joins the result with the Agent table and alerts the agents of the at-risk customers. The agents act upon the at-risk customer and offer a promotion to stave off defection.

 Other use cases are shown in Figure 7-7. These five use cases are the sweet spots for the scenarios discussed in this chapter.

 [image:]

 Figure 7-7 Big data use cases

 7.3.2 Example HDFS_READ with a generic table UDF

 The HDFS_READ UDF is a generic table UDF that access HDFS and returns a table of variable shape. Generic TUDF does not specify output table schema at create time but at reference time. The file in HDFS must be in delimited format. It connects BigInsights through REST API.

 The HDFS_READ UDF takes the following arguments:

 •URL, that sets the server address and path of the file in the HDFS

 •The option-string that specifies DELIMITER, USER, and PASSWORD

 Example 7-9 shows the sample table UDF code along with how it can be invoked from a SELECT statement.

 Example 7-9 Sample Generic Table UDF code

 [image:]

 CREATE FUNCTION hdfsRead (handle VARCHAR (xxxx))

 RETURNS GENERIC TABLE

 LANGUAGE JAVA PARAMETER STYLE JAVA

 EXTERNAL NAME ‘jar:com.ibm.XAP.hdfsRead' ;

 SELECT TX.*

 FROM TABLE(hdfsRead(‘http://172.16.134.134:8080/data/sample.csv’

) AS TX (station VARCHAR(35),

 year VARCHAR(4),

 month VARCHAR(2),

 loc VARCHAR(10),

 count VARCHAR(5),

 minCO2 VARCHAR(7),

 maxCO2 VARCHAR(7),

 avgCO2 VARCHAR(20));

 [image:]

 The HDFS_READ table function returns one row for each record (or line) in the file. If the number of the result columns m is less than the number of fields in each record, the first m fields of each record is returned. If a field has no value (two adjacent comma), a null value is returned for the corresponding column.

 Example 7-10 shows a sample CSV file stored in HDFS.

 Example 7-10 Sample HDFS_READ from a CSV file

 [image:]

 -- Sample CSV file content stored in HDFS

 1997,Ford, E350,"ac, abs, moon",3000.00

 1999,Chevy, "Venture ""Extended Edition""", ,4900.00

 1996,Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00

 -- Sample SELECT statement

 Select * From table (HDFS_Read('http://BI.foo.com/data/controller/dfs/file.csv',

 ‘user=scott password=tiger'))

 as X (year integer, make varchar(10), model varchar(30),

 description varchar(40), price decimal(8,2));

 --Results

 [image:]

 [image:]

 7.3.3 Example JAQL_SUBMIT

 The first query in Example 7-10, submits to BigInsight a Jaql query which read receipts data in JSON format, select the interested fields: seller’s ID, the subtotal amount of the receipt, which is total minus the tax, then group by seller and calculate the total revenue of each seller, and write it to an output file test1.csv in comma delimited format.

 Assume that T2 is the table contained the tax filing information of each company. The second query in Example 7-11 read the Jaql result file and join it with T2 to find those companies whose reported revenue in their tax form is not equal to the total revenue collected from receipts.

 Example 7-11 Sample JAQL_SUBMIT

 [image:]

 Select Jaql_submit('read(hdfs("receipts.json"))

 -> transform { seller: $.issuer.id, subtotal: $.subtotal }

 -> group by $seller =$.seller

 into {$seller, revenue: sum($.subtotal))

 -> write (del(location=''/test1.csv''))', ‘’

 'http://kea.svl.ibm.com', ‘TIMEOUT=60 USER=scott PASSWORD=tiger'))

 From SYSIBM.SYSDUMMY1;

 Select * From TABLE(HDFS_READ(

 'http://kea.svl.ibm.com/data/controller/dfs/test1.csv',

 'USER=scott PASSWORD=tiger‘))

 AS X (seller varchar(10), revenue decimal(10,2)), T2

 Where X.seller = T2.id and X.revenue <> T2.revenue

 [image:]

 Example 7-12 shows another example of JAQL_SUBMIT UDF with nested construct.

 Example 7-12 Nested UDF calls

 [image:]

 Select *

 From Table(hdfs_read(Jaql_submit('read(hdfs("receipts.dat"))

 -> transform { seller: $.Emisor.rfc,

 amount: $.Conceptos }

 -> group by $seller =$.seller

 into {$seller, total:sum($.amount))

 -> write(del(location=''/tmp/test1.csv''))',

 'http://kea.svl.ibm.com:8080/data/controller/dfs/tmp/test1.csv',

 'http://kea.svl.ibm.com:8080',

 ‘USER=SCOTT PASSWORD=TIGER'),

 ‘USER=SCOTT PASSWORD=TIGER’))

 AS X (seller varchar(10),

 total decimal(10,2));

 [image:]

 7.4 Using the scoring adapter to add predictive analytics to OLTP applications

 You can use IBM SPSS® Modeler Server 15, together with SPSS Modeler Server Scoring Adapter 15 for DB2 on z/OS, to add predictive analytics to OLTP applications that are running on z/OS. You use SPSS Modeler Server to create and train the models and publish them into DB2 on z/OS.

 The scoring adapter for DB2 on z/OS provides a scoring engine that runs the UDF run time. The adapter defines a UDF that applications can start by using SQL to run the scoring models synchronously, in-line within their transactions, by using live transaction data as the input for scoring to maximize the effectiveness of scoring results.

 Figure 7-8 shows a sample SPSS Modeler stream. You must publish a model nugget, for example, NN_Is_Fraud, to the scoring adapter.

 [image:]

 Figure 7-8 SPSS Modeler stream

 You must establish a connection to the database before you publish the model nugget. After you set up the connection, publish the nugget to the scoring adapter by clicking File → Publish for server scoring adapter, as shown in Figure 7-9.

 [image:]

 Figure 7-9 Publish for server scoring adapter option

 When a model is published to a server scoring adapter, it generates a sample SQL statement. This SQL statement uses UDFs to start the SPSS model that was built earlier and generates a predictive score that can be used by a decision management system.

 Example 7-13 shows a sample SQL statement for a scoring adapter.

 Example 7-13 Sample SQL statement for a scoring adapter for DB2 on z/OS

 [image:]

 SELECT

 	UNPACK

 		(HUMSPSS.SCORE_COMPONENT('P',

 					'demo_UDF',

 					PACK(CCSID 1208,						T0.C0,T0.C1,T0.C2,T0.C3,T0.C4,T0.C5,T0.C6,T0.C7,

 											T0.C8,T0.C9,T0.C10,T0.C11,T0.C12,T0.C13,T0.C14,

 											T0.C15,T0.C16,T0.C17,T0.C18,T0.C19,T0.C20,T0.C21,

 											T0.C22,T0.C23

)

)

).* AS

 		(

 		C24 BIGINT,C25 DOUBLE,C26 DOUBLE

)

 		

 	FROM (

 		SELECT

 			T0."CARD_ID" AS C0,

 			T0."T_AMOUNT" AS C1,

 			T0."T_NO_OVER500" AS C2,

 			T0."C_BALANCE_LIMIT" AS C3,

 			T0."C_AMOUNT_LAST_MONTH" AS C4,

 			T0."TIME_NO_3HOUR" AS C5,

 			T0."TIME_AMOUNT_3HOUR" AS C6,

 			T0."M_HISTORY" AS C7,

 			T0."M_TYPE" AS C8,

 			T0."T_TIME" AS C9,

 			T0."E_TIME_LAG" AS C10,

 			T0."TIME_REJECT" AS C11,

 			T0."E_REJECT" AS C12,

 			T0."LIMIT" AS C13,

 			T0."GENDER" AS C14,

 			T0."EDU_LEVEL" AS C15,

 			T0."MAR_STAT" AS C16,

 			T0."IMP_LEV" AS C17,

 			T0."OCCUPATION" AS C18,

 			T0."ECO_CAT" AS C19,

 			T0."ANNUAL_SALARY" AS C20,

 			T0."OWN_HOU_FLAG" AS C21,

 			T0."VENDORS_IN_30_MINUTES" AS C22,

 			T0."MERCHANT_COUNTRY" AS C23

 			FROM ${TABLE0} T0

) AS T0

 [image:]

 In the example, the SQL query returns Score(C24), Confidence(C25), and Normalized Propensity(C26) as output predicted scores that can be used by a decision management system for making runtime decisions. Running the scoring adapter SQL within the DB2 environment provides scalability and performance similar to DB2 for z/OS. This situation makes it possible to handle large transaction volumes and heavy workloads and also meet stringent response time requirements and SLAs.

 7.5 Using JavaScript Object Notation with IBM DB2

 JavaScript Object Notation (JSON) is a lightweight, text-based, human-readable format. It is a language-independent data interchange format that is becoming increasingly popular as an alternative to XML. JSON is currently supported by many different programming language APIs, which makes it a simple to use document format.

 JSON is based on a subset of the JavaScript Programming Language, Standard ECMA-262 Third Edition, December 1999. It is a text format that is language independent but uses conventions that are familiar to programmers of the C-family of languages.

 Many applications might use it just for data interchange. Thus, they rarely save the JSON files to disk as the interchanges occur between Internet-connected computers. However, for databases, sending and retrieving data from the IBM DB2 platform to the Internet and thus creating the requirement to be able to use DB2 as a repository of JSON documents is critical.

 The IBM DB2 Accessories Suite for DB2 11 feature is enhanced with necessary components to enable DB2 for z/OS to be used as a JSON document store. Included are the following JSON capabilities:

 •A programming interface for Java applications to store, update and intelligently query JSON documents

 •A command line processor for performing administration tasks and data access operations on JSON data

 •A Wire Listener service that extends the support to other languages through an open source wire protocol for accessing JSON data

 The JSON capability is a driver-based solution that embraces the flexibility of the JSON data representation within the context of an RDBMS that includes well-known enterprise features and quality of service.

 With this offering, applications can manage JSON documents in DB2 for z/OS using a new application programming interface (API) which is designed after the MongoDB data model and query language. This API uses available DB2 for z/OS capabilities to store, modify, and retrieve JSON documents. This allows existing DB2 administration skills, resources, and processes to be utilized for managing this new type of data in DB2 for z/OS.

 Using JSON capability, users can interact with JSON data in the following ways:

 •They can administer and interactively query JSON data using a command line shell.

 •They can programmatically store and query data from Java programs using a driver for JSON supplied by IBM that enables them to connect to their JSON data through the same JDBC driver used for SQL access.

 •They can use any driver that implements the MongoDB protocol. This function enables them to access JSON stored from a variety of modern languages, including node.js, PHP, Python, and Ruby, and more traditional languages such as C, C++, and Perl.

 7.6 Suppressing null indexes

 Having to index every data row affects performance and the size of the index. When creating an index, it is useful to exclude one or more values from being indexed, such as values that will never be used in a query, for example NULL, blank, and 0. DB2 11 NFM can improve insert performance of NULL entries by the option of excluding NULL rows from indexes.

 The CREATE INDEX statement is changed to state EXCLUDE NULL KEYS, and the RUNSTATS utility collect statistics only on non-NULL value.

 All table statistics derived from an index are adjusted by the number of excluded NULL values. Therefore the table statistics will be the same whether they were derived from a table scan, an EXCLUDE NULL KEYS index, or a non-EXCLUDE NULL KEYS index (or INCLUDE NULL KEYS index). After converting existing indexes to EXCLUDE NULL indexes, monitor application performance. Insert performance should improve and query performance difference should be minimal.

[image:]
[image:]

XML

 Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. The first working draft of an XML specification was published in 1996. XML 1.0 became a Worldwide Web Consortium (W3C) recommendation on February 10, 1998.

 DB2 9 for z/OS introduced support for the XML data type through the use of its pureXML capabilities and hybrid database engine. With DB2 9, XML data previously stored in the traditional relational format can be stored natively as XML.

 Many enhancements to XML processing were provided through maintenance in DB2 9 and in DB2 10. Those functions and enhancements are documented in DB2 10 for z/OS Technical Overview, SG24-7892 and Extremely pureXML in DB2 10 for z/OS, SG24-7915.

 DB2 11 provides many additional enhancements to XML functionality. Some of these enhancements are also retrofitted to DB2 10.

 This chapter describes the following XML enhancements in DB2:

 •XQuery support

 •XML performance enhancements in DB2 10 and DB2 11

 •XQuery FLWOR expressions performance enhancements

 •XMLTABLE performance enhancements in DB2 11

 8.1 XQuery support

 The capability to store and access XML documents in DB2 for z/OS using an XML data type was first introduced in DB2 9. The initial implementation of XML in DB2 made use of the XPath language, which is a language for navigating XML documents and addressing parts of XML documents. XPath is a subset of XQuery, which is a richer language for accessing XML documents.

 Although you can code SQL statements to access XML documents in DB2 9, the XPath language make it difficult to write meaningful queries against XML data. In addition, the XPath language support in DB2 for z/OS is a small subset of the XQuery language that is supported on DB2 for Linux, UNIX, and Windows, which makes porting applications from DB2 for Linux, UNIX, and Windows to DB2 for z/OS difficult. As a result, you likely faced lost productivity due to the following issues:

 •Rewriting XQuery queries to use syntax that DB2 supported

 •Using a mixture of XPath and SQL/XML, which can be difficult to express

 •Some query semantics not supported by XPath on DB2

 •Challenges porting applications between different DB2 family members

 The XQuery language support provided in DB2 11 and retrofitted to DB2 10 using APARs PM47617 and PM47618 allows application programmers to express such semantics and avoid unnecessary query rewrites. You can now spend less time switching back and forth between XQuery and SQL/XML and can express queries purely using XQuery instead. Differences between XQuery language support in DB2 for z/OS and DB2 for Linux, UNIX, and Windows still exist, but now in DB2 for z/OS, you can use commonly used XQuery language features, such as for, let, constructors, and if-then-else.

 You still use the same XML functions available in prior versions of DB2, such as XMLQUERY, XMLEXISTS, and XMLTABLE. The XMLQUERY function is used in the SELECT clause of an SQL query to specify which XML data to retrieve. The XMLTABLE function is used in the FROM clause to extract XML data in a table format. The XMLEXISTS function is used in the WHERE clause to specify under which conditions to retrieve the data.

 The difference is that you now have a much richer set of XML expressions that you can supply to the XML functions. You can use the following types of expressions alone or in combination:

 •FLWOR expressions

 A FLWOR expression is a loop construct for manipulating XML documents in an application-like manner. The name (pronounced flower) is an acronym for the keywords used in the expression (FLWOR = For-Let-Where-Order By-Return).

 •XQuery constructors

 Instead of using publishing functions for creating XML elements, documents, and other XML constructs, you can now write them as literals anywhere that you can write an expression of the same type.

 •Conditional expressions

 You can use IF-THEN-ELSE logic anywhere you can use an expression within an XQuery expression.

 •Built-in functions

 New built-in function for XQuery to return the average of the values in a sequence.

 •XQuery prolog

 The prolog has new declarations that define the processing environment for a query for XQuery.

 In the following sections we provide some details and examples of using each of these types of expressions.

 8.1.1 FLWOR expressions

 Table 8-1 lists a description and example of usage for each keyword for FLWOR.

 Table 8-1 XQuery FLWOR expression keywords

 	
 Keyword

 	
 Description

 	
 for

 	
 Allows a variable to loop through a sequence of values. These can be literals, XPath expressions, and so on. The looping variable is prefixed with $, as with other variables in XML expressions. An example is as follows:

 for $i in /$po//item

 	
 let

 	
 Assigns a variable a single value. This can be a literal, an XPath expression, and so on. The variable is prefixed with $. An example is as follows:

 let $p := $po/ipo:purchaseOrder/items/item/USPrice

 	
 where

 	
 Defines the criteria for which values are to be returned, as with an SQL query. An example is as follows:

 where $j/name=$i/billTo/name and $j/status="premier"

 	
 order by

 	
 Orders the output specified in the return clause, as with an SQL query. An example is as follows:

 order by xs:decimal($i/USPrice) descending

 	
 return

 	
 Specifies what is to be returned from each iteration of the FLWOR expression. The final result is their concatenation.

 return $i

 The FLWOR expression keyword syntax provides similar capabilities for XML data as SQL keywords do for relational data. The following example queries show how these keywords are used.

 The first example creates two tables with XML data:

 •One table to contain purchase order information

 •One table to contain customer status information

 Each table includes two columns:

 •An INTEGER column that is defined as an IDENTITY column

 •An XML column to contain the customer data

 Example 8-1 shows the DDL for the purchaseOrdersXML table.

 Example 8-1 DDL for purchaseOrdersXML table

 [image:]

 CREATE TABLESPACE DB2R3XTS IN DSNDB04 BUFFERPOOL BP4

 USING STOGROUP SYSDEFLT

 PRIQTY 1000

 SECQTY 1000

 ;

 CREATE TABLE purchaseOrdersXML

 (id_col INTEGER GENERATED BY DEFAULT

 AS IDENTITY(START WITH 1

 INCREMENT BY 1,

 CACHE 20) NOT NULL,

 po XML

)

 IN DSNDB04.DB2R3XTS

 ;

 [image:]

 Example 8-2 shows the DDL for the statusXML table.

 Example 8-2 DDL for statusXML table

 [image:]

 CREATE TABLESPACE DB2R3XT2 IN DSNDB04 BUFFERPOOL BP4

 USING STOGROUP SYSDEFLT

 PRIQTY 1000

 SECQTY 1000

 ;

 CREATE TABLE statusXML

 (id_col INTEGER GENERATED BY DEFAULT

 AS IDENTITY(START WITH 1

 INCREMENT BY 1,

 CACHE 20) NOT NULL,

 status XML

)

 IN DSNDB04.DB2R3XT2

 ;

 [image:]

 	
 Important: Unlike SQL statements on a relational data, XQuery statements are case sensitive. If you intend to replicate these tests, you need to make sure that you set CAPS OFF if running these examples in SPUFI.

 Example 8-3 shows the SQL statements to insert two rows into the purchaseOrdersXML table. Note a value for the ID_COL column is not provided, because that column is defined as an IDENTITY column and a value is generated by default.

 Example 8-3 INSERT statements for purchaseOrdersXML table

 [image:]

 INSERT INTO purchaseOrdersXML

 (po)

 VALUES(XMLPARSE(DOCUMENT

 '<ipo:purchaseOrder

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ipo="http://www.example.com/IPO"

 orderDate="1999-12-01">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">

 <name>Helen Zoe</name>

 <street>55 Eden Street</street>

 <city>San Jose</city>

 <state>CA</state>

 <postcode>CB1 1JR</postcode>

 </shipTo>

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">

 <name>Joe Lee</name>

 <street>66 University Avenue</street>

 <city>Palo Alto</city>

 <state>CA</state>

 <postcode>CB1 1JR</postcode>

 </shipTo>

 <billTo xsi:type="ipo:USAddress">

 <name>Robert Smith</name>

 <street>8 Oak Avenue</street>

 <city>Old Town</city>

 <state>PA</state>

 <zip>95819</zip>

 </billTo>

 <items>

 <item partNum="833-AA">

 <productName>Lapis necklace</productName>

 <quantity>1</quantity>

 <USPrice>99.95</USPrice>

 <ipo:comment>Want this for the holidays!</ipo:comment>

 <shipDate>1999-12-05</shipDate>

 </item>

 <item partNum="945-ZG">

 <productName>Sapphire Bracelet</productName>

 <quantity>2</quantity>

 <USPrice>178.99</USPrice>

 <shipDate>2000-01-03</shipDate>

 </item>

 </items>

 </ipo:purchaseOrder>

 '))

 ;

 INSERT INTO purchaseOrdersXML

 (po)

 VALUES(XMLPARSE(DOCUMENT

 '<ipo:purchaseOrder

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ipo="http://www.example.com/IPO"

 orderDate="1999-12-01">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">

 <name>James Doe</name>

 <street>77 Eden Street</street>

 <city>San Jose</city>

 <state>CA</state>

 <postcode>CB1 1JR</postcode>

 </shipTo>

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">

 <name>Hal Yee</name>

 <street>99 University Avenue</street>

 <city>Palo Alto</city>

 <state>CA</state>

 <postcode>CB1 1JR</postcode>

 </shipTo>

 <billTo xsi:type="ipo:USAddress">

 <name>Albert James</name>

 <street>5 Oak Avenue</street>

 <city>Old Town</city>

 <state>PA</state>

 <zip>95819</zip>

 </billTo>

 <items>

 <item partNum="844-AA">

 <productName>Lapis bracelet</productName>

 <quantity>1</quantity>

 <USPrice>89.95</USPrice>

 <ipo:comment>Want this for the holidays!</ipo:comment>

 <shipDate>1999-12-08</shipDate>

 </item>

 <item partNum="947-ZG">

 <productName>Sapphire Earring</productName>

 <quantity>2</quantity>

 <USPrice>187.99</USPrice>

 <shipDate>2000-01-05</shipDate>

 </item>

 </items>

 </ipo:purchaseOrder>

 '))

 ;

 [image:]

 Example 8-4 shows the SQL statements to insert two rows into the statusXML table. Again, only the contents of the XML column are shown. DB2 generates the value for the IDENTITY column.

 Example 8-4 INSERT statements for statusXML table

 [image:]

 INSERT INTO statusXML

 (status) VALUES(XMLPARSE(DOCUMENT

 '<status>

 <statusItem>

 <name>Robert Smith</name>

 <status>premier</status>

 <comment>Orders a lot of jewelry</comment>

 <comment>Has friends in the Silicon Valley</comment>

 </statusItem>

 <statusItem>

 <name>Jason C</name>

 <status>blacklist</status>

 <comment>This guy doesn''t pay his bills!</comment>

 </statusItem>

 </status>'))

 ;

 INSERT INTO statusXML

 (status) VALUES(XMLPARSE(DOCUMENT

 '<status>

 <statusItem>

 <name>Albert James</name>

 <status>regular</status>

 <comment>Occasionally orders jewelry</comment>

 <comment>Has friends in San Francisco city</comment>

 </statusItem>

 <statusItem>

 <name>James B</name>

 <status>blacklist</status>

 <comment>This guy doesn''t pay his bills!</comment>

 </statusItem>

 </status>'))

 ;

 [image:]

 Now that there is XML data in the two tables, the next examples show the FLWOR code expressions to retrieve XML data and format the results.

 Simple FLWOR use case

 The for keyword allows a variable to loop through a sequence of values, similar to a cursor on relational data. Example 8-5 shows how to use the for keyword to read through all the rows in the purchaseOrdersXML table.

 Example 8-5 Use of FLWOR “for” keyword to loop through a sequence of values

 [image:]

 SELECT XMLQUERY(

 'declare namespace ipo="http://www.example.com/IPO";

 for $i in $po/ipo:purchaseOrder

 return

 <itemsShipped xmlns:ipo="http://www.example.com/IPO">

 <to> {$i/shipTo/name/text()} </to>

 <items> {$i/items/item} </items>

 </itemsShipped>'

 PASSING PO as "po")

 FROM purchaseOrdersXML;

 [image:]

 Example 8-6 shows the results of the query. When you run this example query in SPUFI, the results for each row is shown on one line. This example is formatted to make it easier for you to read.

 Example 8-6 Results of sample XQuery using FLWOR keyword “for”

 [image:]

 <?xml version="1.0" encoding="IBM037"?>

 <itemsShipped xmlns:ipo="http://www.example.com/IPO">

 <to>Helen ZoeJoe Lee</to>

 <items>

 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="833-AA">

 <productName>Lapis necklace</productName>

 <quantity>1</quantity>

 <USPrice>99.95</USPrice>

 <ipo:comment>Want this for the holidays!</ipo:comment>

 <shipDate>1999-12-05</shipDate>

 </item>

 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="945-ZG">

 <productName>Sapphire Bracelet</productName>

 <quantity>2</quantity>

 <USPrice>178.99</USPrice>

 <shipDate>2000-01-03</shipDate>

 </item>

 </items>

 </itemsShipped>

 <?xml version="1.0" encoding="IBM037"?>

 <itemsShipped xmlns:ipo="http://www.example.com/IPO">

 <to>James DoeHal Yee</to>

 <items>

 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="844-AA">

 <productName>Lapis bracelet</productName>

 <quantity>1</quantity>

 <USPrice>89.95</USPrice>

 <ipo:comment>Want this for the holidays!</ipo:comment>

 <shipDate>1999-12-08</shipDate>

 </item>

 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="947-ZG">

 <productName>Sapphire Earring</productName>

 <quantity>2</quantity>

 <USPrice>187.99</USPrice>

 <shipDate>2000-01-05</shipDate>

 </item>

 </items>

 </itemsShipped>

 DSNE610I NUMBER OF ROWS DISPLAYED IS 2

 [image:]

 Notice that before each row returned there is a string of text that looks as follows:

 <?xml version="1.0" encoding="IBM037"?>

 This information is called the XML declaration, which is kind of like a header for an XML document. If the data has an XML declaration before it is sent to the database server, the XML declaration is not preserved. However, for DB2 ODBC and embedded SQL applications, implicit serialization is used by default. With implicit serialization, the DB2 database server adds an XML declaration, with the appropriate encoding specification, to the data. For Java and .NET applications, the DB2 database server does not add an XML declaration, but if you retrieve the data into a DB2 XML object and use certain methods to retrieve the data from that object, the IBM Data Server Driver for JDBC and SQLJ adds an XML declaration.

 If you do not want to display the XML declaration as part of the output and just want to display the data, you can use the XMLSERIALIZE function with the EXCLUDING XMLDECLARATION option on the results of the XMLQUERY function to exclude the XML declaration.

 Example 8-7 shows a sample XQuery statement using the XMLSERIALIZE function.

 Example 8-7 Sample XQuery using FLWOR keyword “for” and XMLSERIALIZE

 [image:]

 SELECT XMLSERIALIZE(XMLQUERY(

 'declare namespace ipo="http://www.example.com/IPO";

 for $i in $po/ipo:purchaseOrder

 return

 <itemsShipped xmlns:ipo="http://www.example.com/IPO">

 <to> {$i/shipTo/name/text()} </to>

 <items> {$i/items/item} </items>

 </itemsShipped>'

 PASSING PO as "po")

 AS CLOB

 VERSION '1.0'

 EXCLUDING XMLDECLARATION)

 FROM purchaseOrdersXML;

 [image:]

 The query results are exactly the same but without the XML declaration information before each row. This scenario excludes the XMLSERIALIZE function from all subsequent examples in this chapter to make the SQL statements easier to read. It also removes the XML declaration from all subsequent results, for the same reasons. The inclusion or exclusion of XML declaration information in your query results depends on the source from which you execute your query and whether you use the XMLSERIALIZE function. <<STOP>>

 Use of all FLWOR keywords

 Now that we have seen a simple example of a FLWOR expression in XQuery, let’s build an example that uses all the keywords. Let us read the statusXML table to return all customers who have a status of “blacklist”. Example 8-8 shows the XQuery expression that we wrote to accomplish the desired result.

 Example 8-8 Sample XQuery using all FLWOR keywords

 [image:]

 SELECT XMLQUERY (

 'for $i1 in $st/status/statusItem

 let $sts := $i1/status

 where $sts = "blacklist"

 order by $i1/name

 return

 $i1/name'

 PASSING STATUS AS "st")

 FROM statusXML;

 [image:]

 Example 8-9 shows the results of this query.

 Example 8-9 Results of sample XQuery using all FLWOR keywords

 [image:]

 <name>Jason C</name>

 <name>James B</name>

 [image:]

 Note that only the names for Jason C and James B are returned, because they are the only names with a status of “blacklist”. They show up on different rows of the result because they reside in different documents within the database.

 Be careful when using the let keyword in combination with the for keyword. Example 8-8 uses the for keyword to set up a loop through all the statusItem elements. This, it uses the let keyword to assign the variable $sts to each single status element within the loop that is set up with the for keyword. This variable definition refers to $i1 instead of $st/status/statusItem. As a result, you have to read through the only documents once.

 If you had used the let keyword to assign the variable $sts to each single status element by referring to the element directly, instead of through the for loop, you code the let expression as follows:

 let $sts := $st/status/statusItem/status

 This code produces an incorrect result because the where keyword operates on the $sts variable, and the $sts variable is based on the entire element name. It does not refer to the for loop. Therefore, the criteria specified in the where clause is not applied to the data returned by the for loop, and you get data that you do not expect to be returned.

 Use of FLWOR expression to join two tables

 The next example takes the FLWOR expression capability one step further. Using the two tables created earlier, purchaseOrdersXML and statusXML, this example writes an XQuery FLWOR expression to find those purchase orders that were ordered by a “premier” customer. A join of the two tables is required to produce this result. Example 8-10 shows the FLWOR expression.

 Example 8-10 XQuery FLWOR expression to express a join

 [image:]

 SELECT XMLSERIALIZE(XMLQUERY(

 'declare namespace ipo="http://www.example.com/IPO";

 for $i in $po/ipo:purchaseOrder,

 $j in $status/status/statusItem

 where $j/name=$i/billTo/name and $j/status="premier"

 return $i'

 PASSING T1.PO as "po", T2.status as "status")

 AS CLOB VERSION '1.0' EXCLUDING XMLDECLARATION)

 FROM purchaseOrdersXML T1, statusXML T2

 WHERE XMLEXISTS('declare namespace ipo="http://www.example.com/IPO";

 $status/status/statusItem[status="premier"

 and

 name =$po/ipo:purchaseOrder/billTo/name]'

 PASSING T1.PO as "po", T2.status as "status");

 [image:]

 Note that three of the FLWOR keywords are present in this example. The for keyword is used to allow us to loop through all of the purchase orders (using variable $i) and through all of the customer statuses (using variable $j). The where keyword is used to join the two tables on name and to only show rows with a status of “premier.” The return keyword is used to return the purchase order data specified in the variable $i.

 Example 8-11 shows the results.

 Example 8-11 Results of XQuery FLWOR expression to express a join

 [image:]

 <ipo:purchaseOrder

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ipo="http://www.example.com/IPO"

 orderDate="1999-12-01">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">

 <name>Helen Zoe</name>

 <street>55 Eden Street</street>

 <city>San Jose</city>

 <state>CA</state>

 <postcode>CB1 1JR</postcode>

 </shipTo>

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">

 <name>Joe Lee</name>

 <street>66 University Avenue</street>

 <city>Palo Alto</city>

 <state>CA</state>

 <postcode>CB1 1JR</postcode>

 </shipTo>

 <billTo xsi:type="ipo:USAddress">

 <name>Robert Smith</name>

 <street>8 Oak Avenue</street>

 <city>Old Town</city>

 <state>PA</state>

 <zip>95819</zip>

 </billTo>

 <items>

 <item partNum="833-AA">

 <productName>Lapis necklace</productName>

 <quantity>1</quantity>

 <USPrice>99.95</USPrice>

 <ipo:comment>Want this for the holidays!</ipo:comment>

 <shipDate>1999-12-05</shipDate>

 </item>

 <item partNum="945-ZG">

 <productName>Sapphire Bracelet</productName>

 <quantity>2</quantity>

 <USPrice>178.99</USPrice>

 <shipDate>2000-01-03</shipDate>

 </item>

 </items>

 </ipo:purchaseOrder>

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 [image:]

 If you look at the data that was inserted into the statusXML table, Robert Smith is the only premier customer. Therefore, the results of the query show only the purchase order that was billed to Robert Smith.

 Note that an XQuery “join” is different from an SQL join. An XQuery join is used to join nodes between two documents. It is not intended to join multiple rows of a DB2 table. The XMLEXISTS and XMLTABLE functions can be used for that purpose. Use an XQuery join as an extension to the SQL syntax, not in place of the SQL join. That is why the example shows an XQuery join on the name nodes as an XMLEXISTS function. The XQuery join produces the intended results, but it does not eliminate those rows that do not qualify. The result is returned as empty rows. The XMLEXISTS function eliminates the non-qualifying rows.

 It is best to ensure that an XML index exists for this type of query. An XML index can be used only with the XMLEXISTS and XMLTABLE functions; it cannot be used for the XMLQUERY function because of the non-qualifying empty rows.

 8.1.2 XQuery constructors

 Constructors create XML structures within a query. DB2 9 supported only SQL/XML constructors, such as XMLELEMENT and XMLATTRIBUTES. The XQuery language provides the following kinds of constructors:

 •Direct constructors

 •Computed constructors

 DB2 11 supports both direct element constructors and document node constructors. Direct constructors use an XML-like notation to create XML structures within a query. XQuery provides direct constructors for creating element nodes (which might include attribute nodes, text nodes, and nested element nodes), processing instruction nodes, and comment nodes. For example, the constructor shown in Example 8-12 creates a book element that contains an attribute and some nested elements.

 Example 8-12 Example of an XQuery constructor

 [image:]

 <book isbn="isbn-0060229357">

 <title>Harold and the Purple Crayon</title>

 <author>

 <first>Crockett</first>

 <last>Johnson</last>

 </author>

 </book>

 [image:]

 A document node constructor constructs the root node of an XML document. It is equivalent to the XMLDOCUMENT function but can be used in an XQuery expression.

 Enclosed expressions are used in constructors to provide computed values for element and attribute content. These expressions are evaluated and replaced by their value when the constructor is processed. Enclosed expressions are enclosed in curly braces ({}) to distinguish them from literal text. Enclosed expressions can be used in the following constructors to provide computed values:

 •Direct element constructors:

  –	An attribute value in the start tag of a direct element constructor can include an enclosed expression.

  –	The content of a direct element constructor can include an enclosed expression that computes both the content and the attributes of the constructed node.

 •Document node constructor:

  –	An enclosed expression can be used to generate the content of the node.

 The FLWOR example shown in Example 8-5 on page 157 includes two examples of using braces to build an XQuery constructor based on a computed element or attribute value:

 <to> {$i/shipTo/name/text()} </to>

 <items> {$i/items/item} </items>

 These two cases constructed the elements <to> and <items>. Example 8-6 on page 157 shows the results from this query, which includes the following lines:

 <to>Helen ZoeJoe Lee</to>

 <items>

 These two lines represent the XQuery elements constructed in the example.

 8.1.3 Conditional expressions

 Conditional expressions use the keywords if, then, and else to evaluate one of two expressions based on whether the value of a test expression is true or false. DB2 11 supports conditional expressions within an XQuery expression.

 This example shows how conditional expressions work in XQuery. Example 8-13 shows a query that produces a shipping cost for items in purchase orders. If the price of the item is less than US $100, the shipping cost is US $5.00. Otherwise, the shipping cost is US $10.00.

 Example 8-13 Sample XQuery using conditional expression

 [image:]

 SELECT XMLQUERY(

 'declare namespace ipo="http://www.example.com/IPO";

 for $i in $po/ipo:purchaseOrder/items/item

 return (

 if (xs:decimal($i/USPrice) < 100)

 then fn:concat($i/productName, " : shipping=US$", 5)

 else fn:concat($i/productName, " : shipping=US$", 10))'

 PASSING po as "po")

 FROM purchaseordersXML;

 [image:]

 Example 8-14 shows the results of the query.

 Example 8-14 Results of sample XQuery using conditional expression

 [image:]

 Lapis necklace : shipping=US$5 Sapphire Bracelet : shipping=US$10

 Lapis bracelet : shipping=US$5 Sapphire Earring : shipping=US$10

 [image:]

 8.1.4 Built-in functions

 DB2 9 provided some built-in functions that you could use with your XPath queries. With the implementation of XQuery, you can now take advantage of a fn:avg built-in function to return the average of the values in a sequence.

 This example uses the fn:avg function to show the average US price for items in a purchase order. Example 8-15 shows a sample XQuery statement to calculate this average.

 Example 8-15 Sample XQuery using fn:avg built-in function

 [image:]

 SELECT XMLQUERY(

 'declare namespace ipo="http://www.example.com/IPO";

 for $i in $po/ipo:purchaseOrder/items

 return (fn:avg($i/item/USPrice))'

 PASSING po as "po")

 FROM purchaseordersXML;

 [image:]

 Because there are two purchase orders in the purchaseordersXML table, with two items in each purchase order, when the query is run, it produces two rows with one value in each row.

 139.47

 138.97

 The US prices for the two items in the first purchase order are $99.95 and $178.99, and the US prices for the two items in the second purchase order are $89.95 and $187.99. If you do the math, you can see that the function is producing the average value for each purchase order.

 8.1.5 XQuery prolog

 The prolog is series of declarations that define the processing environment for a query. Each declaration in the prolog is followed by a semicolon (;). The prolog is an optional part of the query; a valid query can consist of a query body with no prolog.

 The prolog can contain the following different types of declarations:

 •Boundary space declaration

 •Copy namespaces declaration

 •Namespace declarations

 •Default namespace declaration

 The namespace declarations and default namespace declaration are available in the XPath query language. The boundary space declaration and copy namespaces declaration are added with the XQuery support.

 Boundary space declaration

 The boundary space declaration controls whether whitespace between the tags is preserved. Example 8-16 shows the syntax for the declaration.

 Example 8-16 Syntax for boundary-space declaration

 [image:]

 >>----declare--boundary-space--+--strip-----+--;----><

 '--preserve--'

 [image:]

 The boundary-space declaration can have the following values:

 strip 	Specifies that boundary whitespace is removed when elements are constructed.

 preserve 	Specifies that boundary whitespace is preserved when elements are constructed.

 The default behavior is to strip the boundary whitespace.

 Copy namespaces declaration

 XML namespaces are used for providing uniquely named elements and attributes in an XML document. They are defined in a W3C recommendation. An XML instance can contain element or attribute names from more than one XML vocabulary, which is a collection of element and attribute names with definitions of their meanings and their structural relationships and constraints.

 Because there can potentially be some ambiguity between identically named elements or attributes, each vocabulary can be given a namespace, and the namespace can be referenced in the XML expression to resolve any ambiguity. A namespace name is a uniform resource identifier (URI).

 XML lets you create your own vocabulary or tags that are meaningful. After you have created the vocabulary using XSD, you can associate it with an XML instance using an xsi namespace. Consider the following example of a namespace in XML:

 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="833-AA">

 Although a namespace is associated with an XML document, you might or might not want to display the namespace information when you display data from the document.

 The copy namespaces declaration controls how the namespace bindings are assigned when an existing element node is copied by an element constructor or document node constructor. Example 8-17 shows the syntax for a copy namespaces declaration.

 Example 8-17 Syntax for copy namespaces declaration

 [image:]

 >>----declare--copy-namespaces--+--preserve-----+-,--inherit--;----><

 '--no-preserve--'

 [image:]

 The copy namespaces declaration can have the following values:

 preserve 	Specifies that all in-scope namespaces of the original element are retained in the new copy.

 no-preserve	Specifies that unreferenced in-scope namespaces of the original element are not retained in the new copy.

 The inherit option specifies that the copied node inherits in-scope namespaces from the constructed node.

 Use of boundary space and copy namespaces declarations

 These two new declarations introduced with the XQuery support can make a considerable difference in how the result of your queries are displayed, as shown in the following examples.

 The query in Example 8-18 specifies that you want to reserve and whitespace between the tags and that all in-scope namespaces of the original element are retained in the new copy that is created by the XQuery expression. This query shows that some whitespace in the definition of the <product> element.

 Example 8-18 Declaration example preserving boundary space and copy namespaces

 [image:]

 SELECT XMLSERIALIZE(

 XMLQUERY (

 'declare namespace ipo="http://www.example.com/IPO";

 declare boundary-space preserve;

 declare namespace ipo2="http://www.example.com/IPO2";

 declare copy-namespaces preserve, inherit;

 <order_list> {

 for $i in $po/ipo:purchaseOrder/items/item

 return

 <product> {$i/productName, $i/USPrice} </product>}

 </order_list>'

 PASSING po as "po")

 AS CLOB

 VERSION '1.0'

 EXCLUDING XMLDECLARATION)

 FROM purchaseordersXML

 ;

 [image:]

 Example 8-19 shows the results of this query. Note the space between the elements <order_list> and <product> and between <product> and <productName>.

 Example 8-19 Results of query to preserve boundary space and copy namespaces

 [image:]

 <order_list> <product> <productName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">Lapis necklace</productName><USPrice xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">99.95</USPrice> </product><product> <productName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">Sapphire Bracelet</productName><USPrice xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">178.99</USPrice> </product> </order_list>

 <order_list> <product> <productName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">Lapis bracelet</productName><USPrice xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">89.95</USPrice> </product><product> <productName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">Sapphire Earring</productName><USPrice xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ipo="http://www.example.com/IPO">187.99</USPrice> </product> </order_list>

 DSNE610I NUMBER OF ROWS DISPLAYED IS 2

 [image:]

 The next example runs the same query with the declarations changed. It strips out any whitespace and does not preserve any copied namespaces. Example 8-20 shows this query.

 Example 8-20 Declaration example not preserving boundary space and copy namespaces

 [image:]

 SELECT XMLSERIALIZE(

 XMLQUERY (

 'declare namespace ipo="http://www.example.com/IPO";

 declare boundary-space strip;

 declare namespace ipo2="http://www.example.com/IPO2";

 declare copy-namespaces no-preserve, inherit;

 <order_list> {

 for $i in $po/ipo:purchaseOrder/items/item

 return

 <product> {$i/productName, $i/USPrice} </product>}

 </order_list>'

 PASSING po as "po")

 AS CLOB

 VERSION '1.0'

 EXCLUDING XMLDECLARATION)

 FROM purchaseordersXML

 ;

 [image:]

 Example 8-21 shows the results.

 Example 8-21 Results of query to not preserve boundary space and copy namespaces

 [image:]

 <order_list><product><productName>Lapis necklace</productName><USPrice>99.95</USPrice></product><product><productName>Sapphire Bracelet</productName><USPrice>178.99</USPrice></product></order_list>

 <order_list><product><productName>Lapis bracelet</productName><USPrice>89.95</USPrice></product><product><productName>Sapphire Earring</productName><USPrice>187.99</USPrice></product></order_list>

 DSNE610I NUMBER OF ROWS DISPLAYED IS 2

 [image:]

 Notice that there is no space between the element names and that the namespaces are not listed. As a result, the output is much smaller than in the case where the boundary spaces and the copy namespaces are preserved.

 8.2 XML performance enhancements in DB2 10 and DB2 11

 There are a number of performance enhancements to XML processing in DB2 11 that were also retrofitted to DB2 10. This section describes the following XML performance enhancements:

 •Eliminate hotspots during XML insert

 •Validate binary XML

 •Avoid revalidation during LOAD

 •Partial revalidation

 •XMLTABLE performance improvements

 8.2.1 Eliminate hotspots during XML insert

 A performance issue with XML documents in DB2 10 might occur when a document is inserted. Because DB2 10 generates DOCID values in sequential order through an implicitly created sequence object, and the indexes on the XML DOCID and NODEID are non-partitioned indexes (NPIs), concurrent inserts of XML documents into the same table causes hotspots in these NPIs. As the number of threads increases, the time spent waiting for a page latch increases.

 DB2 11 allows randomization of the DOCIDs, which eliminates the hotspots in both indexes. To enable randomization of the DOCIDs, set the RANDOMIZE XML DOCID system parameter on installation panel DSNTIP8 to YES. This change affects only newly created XML columns; it has no impact on existing XML columns.

 There is a slight regression in the performance of sequential prefetch due to the loss of index look-aside capabilities.

 This feature is also retrofitted to DB2 10 through APARs PM31486, PM31487, and PM44216.

 8.2.2 Validate binary XML

 When DB2 10 validates binary XML, DB2 needs to serialize the binary XML into string XML, which defeats the purpose of using binary XML. DB2 11 now validates binary XML directly, without the need to serialize it.

 DB2 11 can now perform an INSERT of an XML column with type modifier using binary XML. This results in a 30-40% CPU reduction compared to DB2 10, and a 15-18% CPU reduction versus the INSERT performance of string XML.

 The LOAD utility also benefits from this enhancement, with a 41% CPU reduction compared to DB2 10, and an 18% improvement versus string XML.

 This performance enhancement requires z/OS V1R13 with PTF UA63422 or z/OS V1R12 with PTF UA65591.

 8.2.3 Avoid revalidation during LOAD

 XML schema validation is the process of determining whether the structure, content, and data types of an XML document are valid according to an XML schema. In addition, XML schema validation strips ignorable whitespace from the input document.

 Consider the case where you have two tables that contain the same XML column with the same schema. You want to unload the data from one table and load it into another table. Example 8-22 shows what the steps to perform this task might look like.

 Example 8-22 Example of avoiding XML schema revalidation

 [image:]

 1. CREATE TABLE T1

 	(ID				INTEGER,

 	XMLCOL				XML(XMLSCHEMA ID SYSXSR.PO1));

 2. CREATE TABLE T2

 	(ID				INTEGER,

 	XMLCOL				XML(XMLSCHEMA ID SYSXSR.PO1));

 3. Populate table T1

 4. UNLOAD from T1 using binary XML

 5. LOAD into T2 using binary XML

 [image:]

 In the example case, DB2 11 provides savings during step 5 by avoiding XML validation because the data was already validated according to the same schema when it was initially loaded or inserted into table T1. Tests to avoid this revalidation have shown elapsed time savings between 29 and 43% and CPU savings between 61 and 76%.

 8.2.4 Partial revalidation

 The initial implementation of XML required that, when an XML document was modified, the whole document had to be revalidated. This could be costly if it is a large document.

 DB2 11 provides the capability to revalidate only the changed part of a document. Consider the sequence of steps shown in Example 8-23.

 Example 8-23 UPDATE of an XML document with partial revalidation

 [image:]

 1. CREATE TABLE T1 (ORDER 				XML(XMLSCHEMA ID sysxsr.PO1));

 2. INSERT INTO T1 (ORDER) VALUES (...);

 3. UPDATE T1 SET ORDER =

 		XMLModify(‘replace value of node //item[1]/shipDate with “2012-05-25”’);

 [image:]

 In this example, only <shipDate> is revalidated. The performance benefit depends on the size of the document and the size of the updated portion. For documents that are 10 MB in size, we have seen up to a 92% CPU reduction. For smaller documents that are only 10 KB in size, we have seen up to a 60% CPU reduction.

 8.2.5 XMLTABLE performance improvements

 The following XMLTABLE performance improvements are available in both DB2 10 and DB2 11:

 •Remove unreferenced column definitions, which resulted in a 47% CPU reduction on an XMLTABLE expression with 30 columns

 •Merge common column path expressions, which resulted in up to a 74% reduction on XPath storage consumption

 •Storage reuse for output XML columns, which resolves an SQLCODE -904 issue and is available with APAR PM69176.

 8.3 XQuery FLWOR expressions performance enhancements

 Although XQuery support is also provided in DB2 10 with some maintenance applied, there are additional XQuery performance enhancements that are available only in DB2 that are related to FLWOR expression. These enhancements are described in this section.

 Just as there is the concept of predicate push down when evaluating SQL predicates, there is the same concept with the XQuery language. In the case of XQuery, the predicates are pushed down from an XQuery expression to an XPath expression.

 Consider the following FLWOR expression:

 for $i in /order/items/item

 where $i/price > 100

 return $i/desc

 DB2 pushes the WHERE predicate into XPath as follows:

 for $i in /order/items/item[price > 100]

 return $i/desc

 Another performance improvement is that DB2 can translate a simple FLWOR expression to XPath. For example, the following FLWOR expression:

 for $i in /order/shipTo return $i

 Can be rewritten into an XPath expression as follows:

 /order/shipTo

 These enhancements can provide up to a 60% CPU reduction for qualified queries.

 8.4 XMLTABLE performance enhancements in DB2 11

 The following XMLTABLE enhancements are available only in DB2 11:

 •Date/Time predicate pushdown

 •Optimize index key range for varchar predicates

 •Pushdown of column casting into XPath

 8.4.1 Date/Time predicate pushdown

 You can code some XML queries that require you to evaluate date and time predicates. An example of such a query using the XMLTABLE function is as follows:

 SELECT X.* FROM T1,

 XMLTABLE(‘//item’ passing T1.order

 COLUMN partNO varchar(8) path ‘@partNo’,

 shipDate Date path ‘shipDate’) X

 Where x.shipDate = ‘2011-05-23’;

 In this particular example, the date predicate is outside of the XMLTABLE function. Thus, even if there is an XML index, it is not used.

 DB2 11 pushes the date predicate into XPath, enabling the use of an existing XML index. The translated query looks as follows:

 SELECT * FROM T1,

 XMLTABLE(‘//item[shipDate=$d]’ passing T1.order,

 cast(‘2011-05-23’ as Date) as “d”

 COLUMN partNO varchar(8) path ‘@partNo’,

 shipDate Date path ‘shipDate’) X;

 	
 Note: The date predicate is now within the XMLTABLE function. An index can now be used, which provides magnitudes of performance improvement.

 8.4.2 Optimize index key range for varchar predicates

 When you use the XMLTABLE function to return the results of an XQuery expression as a table, and you define a column in that XMLTABLE function as VARCHAR, prior to DB2 11 there was no way to specify an upper limit to the values that could qualify for the query. Consider the following example query:

 SELECT X.* FROM T1,

 XMLTABLE(‘//item’ passing T1.order

 COLUMN partNO varchar(6) path ‘@partNo’,

 shipDate Date path ‘shipDate’) X

 Where x.partNo = ‘872-AA’;

 Evaluation of this query was challenging because there was no upper end to the index values, because the results were VARCHAR.

 DB2 11 improves the performance of this query by adding an extra upper bound predicate to reduce the index key range. The query is rewritten as follows:

 SELECT * FROM T1,

 XMLTABLE(‘//item[left(@partNo,6)=$d]’

 passing T1.order, ‘872-AA’ as “d”

 COLUMN partNO char(8) path ‘@partNo’,

 shipDate Date path ‘shipDate’) X

 where XMLEXISTS (‘//item[@partNo>=$d and

 @partNo <= $u]’ passing

 T1.order, ‘872-AA’ as “d”, ‘872-AA’||X’FF’ as “u”);

 Tests resulted in orders of magnitude improvement in CPU time and Getpage counts for affected queries.

 8.4.3 Pushdown of column casting into XPath

 When the XMLTABLE function’s output columns are of any SQL type, DB2 used to evaluate the column XPath first and generate an intermediate XML node sequence, then cast the intermediate result to the SQL data type. DB2 11 now combines these two steps into one.

 This enhancement provides up to a 40% CPU reduction and a 20% savings in storage for some XMLTABLE queries with many output columns.

[image:]
[image:]

Connectivity and administration routines

 DB2 11 sees further improvements of universal drivers for accessing data on any local or remote server. In addition, DB2 11 for z/OS provides a number of enhancements to improve the availability and performance of distributed applications.

 This chapter describes these topics:

 •Client information enhancements

 •Cancel thread and cancel SQL statement improvements

 •Continuous block fetching

 •Support for global variables

 •Local stored procedure execution improvement

 •Multi-threaded Java stored procedure environment

 •ADMIN_COMMAND_MVS stored procedure

 •Drivers, clients, and connectivity requirements

 9.1 Client information enhancements

 The DB2 client information fields are available on each distributed connection to a DB2 for z/OS database server. These fields are also available in other members of the DB2 family of databases. They enable a distributed application to provide additional information to DB2 that can be used to classify the workload within WLM, or to filter accounting reports, for example.

 Up to DB2 10 for z/OS, client information lengths are arbitrary and are restrictive compared to other platforms of the DB2 product family.

 Changes introduced in DB2 11 help to address the following needs:

 •To be able to use longer fields to store business meaningful information in the client application registers

 •To be able to override the current DRDA correlation token with a business value to correlate application work across the enterprise

 At a glance, the improvements introduced by DB2 11 for z/OS in this area can be summarized as follows:

 •Expansion of the length of some Client information fields

 •Introduction of a new Client information field: Client Correlation Token

 •Introduction of a new built-in session global variable: SYSIBM.CLIENT_IPADDR

 These changes, how to take advantage of them, and their practical considerations are described in the following sections.

 9.1.1 Expansion of the length of some Client information fields

 DB2 11 enhances Client information in DB2 for z/OS by expanding the lengths of these fields:

 •Client User ID

 •Client Application Name

 •Client Workstation Name

 •Client Accounting Information

 Table 9-1 list the Client information field length DB2 11 for z/OS in contrast with the lengths of these fields in DB2 10.

 Table 9-1 Client information fields length changes with DB2 11 for z/OS

 	
 Field name

 	
 Max length in DB2 10

 	
 Max length in DB2 11

 	
 Client User ID

 	
 16 bytes

 	
 128 bytes

 	
 Client Application Name

 	
 32 bytes

 	
 255 bytes

 	
 Client Accounting Information

 	
 200 bytes

 	
 255 bytes

 	
 Client Workstation Name

 	
 18 bytes

 	
 255 bytes

 	
 Client Correlation Token

 	
 N/A

 	
 255 bytes

 The longer client information length provide better granularity in the exploitation of this information, and compatibility with other databases member of the DB2 family of products. The longer client info strings are exploited in:

 •WLM enclave classification

 •DB2 supplied SYSPROC.WLM_SET_CLIENT_INFO stored procedure

 •RRSAF DSNRLI SET_CLIENT_ID function

 •Rollup accounting

 •Profile Monitoring for remote threads and connections

 •Resource Limit Facility (RLF)

 •Client information special registers

 •DISPLAY THREAD command output

 •Various trace records, such as IFCIDs 172, 196, 313, and 316

 •Various messages that present thread-info

 The 9.1.4, “Using the client information fields” on page 178 provides examples and guidelines to exploit the longer client information fields.

 9.1.2 Introduction the new client information field Client Correlation Token

 DB2 11 introduces a the client correlation token client information field, which is an unique token that allows the application to correlate application work across the distributed transaction. The default value of the client correlation token is the DRDA correlation token, The data type is VARCHAR(255).

 Example 9-1 shows the results of the -DIS THD(*) DETAIL command. Note the DSNV442I message.

 Example 9-1 -DIS THD(*) DETAIL

 [image:]

 DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS -

 DSNV402I -DB1A ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SERVER RA * 6 db2jcc_appli DB2R1 DISTSERV 0131 395

 V437-WORKSTATION=9.55.137.33

 USERID=DB2R1

 APPLICATION NAME=db2jcc_application

 V441-ACCOUNTING=JCC036609.55.137.33

 V442-CRTKN=::9.55.137.33.52646.CBBF468B1B73

 V482-WLM-INFO=DDFBAT:1:3:1

 V445-G9378921.CDA6.CBBF468B1B73=395 ACCESSING DATA FOR

 (1)::9.55.137.33

 V447--INDEX SESSID A ST TIME

 V448--(1) 38420:52646 W R2 1321311013868

 [image:]

 The DB2 DSNV442I message contains detail output from the DISPLAY THREAD command. It provides details about the correlation token after the V442-CRTKN keyword.

 The CURRENT CLIENT_CORR_TOKEN special register

 The CURRENT CLIENT_CORR_TOKEN special register contains the value of the client correlation token from the client information that is specified for the connection. The data type is VARCHAR(255).

 Example 9-2 shows a simple query example that can be used to retrieve the value of this special register using SQL.

 Example 9-2 Retrieve the CURRENT CLIENT_CORR_TOKEN value using SQL

 [image:]

 SELECT CURRENT CLIENT_CORR_TOKEN

 FROM SYSIBM.SYSDUMMY1;

 [image:]

 Example 9-3 shows the output of the execution of this query in this environment.

 Example 9-3 Value of CURRENT CLIENT_CORR_TOKEN

 [image:]

 ::9.55.137.33.54132.CBBF794F9C68

 [image:]

 The correlation token is made up of three components separated by periods. Its structure is shown in Example 9-4.

 Example 9-4 Client correlation token components

 [image:]

 ip-address.port-address.unique-id

 [image:]

 The the correlation token includes the following components:

 ip-address	The IP address of the originating requester, which is 3 to 39 characters in length

 port-address	The port address, which is 1 to 8 characters in length

 unique-id	An unique logical unit of work identifier, which is 12 characters in length

 You can change the value of this special register to a more meaningful value, for example by using one of the following application programming interfaces:

 •SQLE_CLIENT_INFO_PROGRAMID (sqleseti)

 •java.sql.Connection.setClientInfo (JDBC)

 •The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function

 Example 9-5 shows how to extract and how to override this special register in a Java program.

 Example 9-5 Java and CURRENT CLIENT_CORR_TOKEN

 [image:]

 import com.ibm.db2.jcc.DB2Connection;

 import java.sql.*;

 public class DB211NewDriverCorrToken {

 public static Connection con = null;

 public static CallableStatement cstmt;

 public static ResultSet results;

 public static boolean debug = true;

 public static void main(String args[]) throws Exception {

 Statement stmt; ResultSet rs; String corr_token;

 String url = "jdbc:db2://redbook8:38420/DB1A" +

 ":user=db2r1;password=******;";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 } catch (java.lang.ClassNotFoundException e) {

 System.err.print("ClassNotFoundException: ");

 System.err.println(e.getMessage());

 }

 con = DriverManager.getConnection(url);

 DB2Connection db2con = (DB2Connection) con;

 con.setAutoCommit(false);

 // Extract original Correlation Token

 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT CURRENT CLIENT_CORR_TOKEN FROM SYSIBM.SYSDUMMY1;");

 rs.next(); corr_token = rs.getString(1);

 System.out.println("CORR TOKEN = " + corr_token);

 rs.close(); stmt.close();

 // Override original Correlation Token

 db2con.setClientInfo("ClientCorrelationToken","BRXLS_APPCRIS");

 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT CURRENT CLIENT_CORR_TOKEN FROM SYSIBM.SYSDUMMY1;");

 rs.next();

 corr_token = rs.getString(1);

 System.out.println("CORR TOKEN = " + corr_token);

 rs.close(); stmt.close();

 }

 }

 [image:]

 This program connect to DB2, selects the CURRENT CLIENT_CORR_TOKEN value in a string variable, overrides this information, and prints the new value. Example 9-6 shows the execution results.

 Example 9-6 Java program output, overriding the correlation token

 [image:]

 CORR TOKEN = ::9.55.137.134.62461.CBC82DBC97F5

 CORR TOKEN = BRXLS_APPCRIS

 [image:]

 Example 9-7 shows how the -DIS THD(*) DETAIL command provides the correlation token information in DSNV442I message.

 Example 9-7 -DIS THD(*) DETAIL and the client correlation token value

 [image:]

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SERVER RA * 8 db2jcc_appli DB2R1 DISTSERV 0133 139

 V437-WORKSTATION=192.168.150.1

 USERID=db2r1

 APPLICATION NAME=db2jcc_application

 V441-ACCOUNTING=JCC04170192.168.150.1

 V442-CRTKN=BRXLS_APPCRIS

 V482-WLM-INFO=DDFBAT:1:3:1

 V445-G9378986.F843.CBC840370D33=139 ACCESSING DATA FOR

 (1)::9.55.137.134

 V447--INDEX SESSID A ST TIME

 V448--(1) 38420:63555 W R2 1322014211550

 [image:]

 In DB2 11, you can override the client correlation token. This option allows you to use this register for application purposes. You can, for example, feedback a program with different data depending on the value of this register.

 As an example, consider the simple table created and populated with the information shown in Example 9-8.

 Example 9-8 DDL and Insert for example table

 [image:]

 CREATE TABLE COD_TAB (BUS_COD INTEGER, CORR_ID VARCHAR(255));

 INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (1000,'BRXLS_APPCRIS');

 INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (2000,'ROME_APPCRIS');

 INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (3000,'MILANO_APPCRIS');

 INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (4000,'PARIS_APPCRIS');

 INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (5000,'SJOSE_APPCRIS');

 INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (5000,'MADRID_APPCRIS');

 [image:]

 Example 9-9 shows the contents of the table after the execution of the SQL.

 Example 9-9 Contents of example table

 [image:]

 ---------+---------+---------+---------+---------+---------+---------+

 SELECT * FROM COD_TAB;

 ---------+---------+---------+---------+---------+---------+---------+

 BUS_COD CORR_ID

 ---------+---------+---------+---------+---------+---------+---------+

 1000 BRXLS_APPCRIS

 2000 ROME_APPCRIS

 3000 MILANO_APPCRIS

 4000 PARIS_APPCRIS

 5000 SJOSE_APPCRIS

 5000 MADRID_APPCRIS

 DSNE610I NUMBER OF ROWS DISPLAYED IS 6

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+---------+

 [image:]

 In this table, the BUS_COD column represents any kind of business information, such as a business code. The CORR_ID column contains the information to be matched with the value of the correlation token. Example 9-10 shows a SQL example where the BUS_COD value is returned based on the information in the special register CURRENT CLIENT_CORR_TOKEN.

 Example 9-10 Using the CURRENT CLIENT_CORR_TOKEN in SQL

 [image:]

 SELECT BUS_COD

 FROM COD_TAB

 WHERE CORR_ID = CURRENT CLIENT_CORR_TOKEN

 [image:]

 Example 9-11 is a Java implementation of this technique. When invoked, this program receives a certain value as input parameter. This value is used in the program to set the client correlation token information. The value of the CURRENT CLIENT_CORR_TOKEN in the exploited in the embedded SQL.

 Example 9-11 Java and SQL exploiting CURRENT CLIENT_CORR_TOKEN

 [image:]

 import com.ibm.db2.jcc.DB2Connection;

 import java.sql.*;

 public class DB211NewDriverCorrToken {

 public static Connection con = null;

 public static CallableStatement cstmt;

 public static ResultSet results;

 public static boolean debug = true;

 public static void main(String args[]) throws Exception {

 System.out.println("Input correlation token = " + args[0]);

 Statement stmt;

 ResultSet rs;

 String corr_token;

 String url = "jdbc:db2://redbook8:38420/DB1A"

 + ":user=db2r1;password=******;";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 } catch (java.lang.ClassNotFoundException e) {

 System.err.print("ClassNotFoundException: ");

 System.err.println(e.getMessage());

 }

 con = DriverManager.getConnection(url);

 DB2Connection db2con = (DB2Connection) con;

 con.setAutoCommit(false);

 // Override original Correlation Token

 db2con.setClientInfo("ClientCorrelationToken", args[0]);

 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT CURRENT CLIENT_CORR_TOKEN FROM SYSIBM.SYSDUMMY1;");

 rs.next();

 corr_token = rs.getString(1);

 System.out.println("CORR TOKEN = " + corr_token);

 rs.close();

 stmt.close();

 // Use new Correlation Token value

 db2con.setClientInfo("ClientCorrelationToken", args[0]);

 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT BUS_COD FROM COD_TAB\n"

 + " WHERE CORR_ID = CURRENT CLIENT_CORR_TOKEN;");

 rs.next();

 corr_token = rs.getString(1);

 System.out.println("BUS CODE = " + corr_token);

 rs.close();

 stmt.close();

 }

 }

 [image:]

 These tests executed the program by passing the BRXLS_APPCRIS value as the parameter. Example 9-12 shows the execution output when running this program.

 Example 9-12 Java application execution output

 [image:]

 Input correlation token = BRXLS_APPCRIS

 CORR TOKEN = BRXLS_APPCRIS

 BUS CODE = 1000

 [image:]

 This client information field cannot be used for classifying DDF work within WLM.

 9.1.3 Introduction of a new built-in session global variable

 DB2 11 provides a new built-in session global variable named SYSIBM.CLIENT_IPADDR. This global variable contains the value of the client IP address for the connection, as follows:

 •For remote client connections, the value is the host IP address the application that is used to establish the connection.

 •For local host applications, the value is NULL.

 •For remote host applications, the value is the IP address that is associated with the DB2 subsystem used to establish the connection.

 The data type is CHAR(39). SYSIBM.CLIENT_IPADDR displays the TCP/IP IPv6 colon hexadecimal format. For example:

 IPv6 : 1111:2222:3333:4444:5555:6666:7777:8888

 IPv4 : (9.30.115.135) mapped as IPv6 : 0000:0000:0000:FFFF:9:30:115:135

 DB2 obtains TCP/IP IPv6 address value from network, the client does not provide it or set it. DB2 sets this value only if client is using TCP/IP or SSL protocol.

 	
 Note: The value of SYSIBM.CLIENT_IPADDR is NULL if the client did not connect to TCP/IP or SSL protocol.

 SYSIBM.CLIENT_IPADDR can be used for classifying DDF work with WLM using the Client IP Address (CIP) WLM workload qualifier. For DDF workload type, the CIP is the source client IPv6 address associated with the DDF server thread. The maximum length is 39 bytes.

 Example 9-13 shows how you can query the DB2 SYSIBM.SYSVARIABLES table to get details about CLIENT_IPADDR.

 Example 9-13 Query on SYSIBM.SYSVARIABLES

 [image:]

 ---------+---------+---------+---------+---------+---------+---------+

 SELECT

 CAST(SCHEMA AS CHAR(10)) AS SCHEMA,

 CAST(NAME AS CHAR(20)) AS NAME,

 CAST(TYPENAME AS CHAR(10)) AS TYPE , LENGTH , DEFAULT

 FROM SYSIBM.SYSVARIABLES

 WHERE NAME = 'CLIENT_IPADDR' WITH UR;

 ---------+---------+---------+---------+---------+---------+---------+

 SCHEMA NAME TYPE LENGTH DEFAULT

 ---------+---------+---------+---------+---------+---------+---------+

 SYSIBM CLIENT_IPADDR CHAR 39 N

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+---------+

 [image:]

 9.1.4 Using the client information fields

 This section describes how the changes in client information fields are used.

 DB2 messages

 The following DB2 messages are updated in DB2 11 to take advantage of longer field lengths:

 DSNB260I	A long-running reader has reached the maximum permitted time without issuing either a COMMIT or ROLLBACK statement.

 DSNI031I	Lock escalation has occurred for the specified object.

 DSNR048I	This message is produced periodically during the backout process of an in-abort unit of recovery.

 DSNR035I	This message indicates that during checkpoint processing, DB2 encountered an uncommitted unit of recovery (UR) that has an inflight or indoubt status.

 DSNJ031I	A UR has reached the threshold number of log records that were written without a commit or rollback operation.

 DSNT318I	A plan cannot get an internal resource lock manager (IRLM) lock because the resource is held by a P-lock in the data sharing group, and the maximum amount of time to wait for the locked resource was exceeded.

 DSNT375I	A plan has been denied an IRLM lock because of a detected deadlock.

 DSNT376I	A plan has been denied an IRLM lock because of a timeout.

 DSNT377I	A plan cannot gain an IRLM lock because a required resource is currently undergoing recovery.

 DSNT378I	A plan cannot get an IRLM lock because the resource is held by a retained lock on behalf of another member in the data sharing group, and the amount of time to wait for the locked resource was exceeded.

 Accounting with OMPE1

 The START TRACE command starts DB2 traces. You can limit the collection of trace data to particular applications or users and to limit the data collected to particular traces and trace events. You can use trace filters to exclude the collection of trace data from specific contexts and to exclude the collection of specific traces and trace events. The following types of trace filters are available:

 •USERID or XUSERID

 Specifies the user ID. Use USERID to constrain the trace to the specified user IDs or XUSERID to exclude the specified user IDs. You can specify multiple values and wildcard values. The value can be up to 16 characters.

 •APPNAME or XAPPNAME

 Specifies the application name. Use APPNAME to constrain the trace to the specified applications or XAPPNAME to exclude the specified applications. You can specify multiple values and wildcard values.

 •WRKSTN or XWRKSTN

 Specifies the workstation name. Use WRKSTN to constrain the trace to the specified workstations or XWRKSTN to exclude the specified workstations. You can specify multiple values and wildcard values.

 	
 Note: The START TRACE command filtering parameters, USERID and XUSERID, APPNAME and XAPPNAME, and WRKSTN and XWRKSTN are not be enhanced to support the new longer lengths for the client information fields.

 Example 9-14 shows an OMPE JCL example as used in this environment for the creation of the reports exposed in this section.

 Example 9-14 OMPE command JCL example

 [image:]

 //PE EXEC PGM=FPECMAIN

 //STEPLIB DD DISP=SHR,DSN=OMPE.V520.D130306.V11DRP5.TKANMOD

 //INPUTDD DD DISP=SHR,DSN=SMFDATA.DB2RECS.G4829V00

 //JOBSUMDD DD SYSOUT=*

 //SYSOUT DD SYSOUT=*

 //ACRPTDD DD SYSOUT=*

 //UTTRCDD1 DD SYSOUT=*

 //SYSIN DD *

 ACCOUNTING

 REPORT

 LAYOUT(LONG)

 INCLUDE(SUBSYSTEM(DB1A))

 TRACE

 LAYOUT(LONG)

 INCLUDE(SUBSYSTEM(DB1A))

 EXEC

 /*

 [image:]

 Example 9-15 shows part of a OMPE Accounting Trace Long report. The report was created using records produced by an application using a supported version of JDBC driver. Being the driver 10.1 fix pack 0 if it is supported by DB2 11. However, this driver cannot use the longer client information fields.

 Example 9-15 OMPE Accounting Trace Long - JDBC driver 10.1 fix pack 0

 [image:]

 1 LOCATION: DB1A OMEGAMON XE FOR DB2 PERFORMANCE EXPERT (V5R2M0) PAGE: 1-159

 GROUP: N/P ACCOUNTING TRACE - LONG REQUESTED FROM: NOT SPECIFIED

 MEMBER: N/P TO: NOT SPECIFIED

 SUBSYSTEM: DB1A ACTUAL FROM: 08/01/13 20:56:51.31

 DB2 VERSION: V11

 ---- IDENTIFICATION --

 ACCT TSTAMP: 08/01/13 22:38:35.36 PLANNAME: DB211Jav WLM SCL: DDFBAT CICS NET: N/A

 BEGIN TIME : 08/01/13 22:38:13.08 PROD TYP: JDBC DRIVER CICS LUN: N/A

 END TIME : 08/01/13 22:38:35.36 PROD VER: V4 R13M0 LUW NET: G9378921 CICS INS: N/A

 REQUESTER : ::9.55.137.33 CORRNAME: db2jcc_a LUW LUN: D8DE

 MAINPACK : DB211Jav CORRNMBR: ppli LUW INS: CBBFAC8093E3 ENDUSER : ClientUser_01234

 PRIMAUTH : DB2R1 CONNTYPE: DRDA LUW SEQ: 2 TRANSACT: DB211JavaNewDriver_0123456789012

 ORIGAUTH : DB2R1 CONNECT : SERVER WSNAME : WorkstationName_01

 [image:]

 Example 9-16 show a report that belongs to the same application but running with the DB2 10.5 fix pack 2 of the driver. In this case, the application is able to exploit the longer fields. In these reports, note the ENDUSER, TRANSACT, and WSNAME fields differences.

 Example 9-16 OMPE Accounting Trace Long - JDBC driver 10.5 fix pack 2

 [image:]

 1 LOCATION: DB1A OMEGAMON XE FOR DB2 PERFORMANCE EXPERT (V5R2M0) PAGE: 1-148

 GROUP: N/P ACCOUNTING TRACE - LONG REQUESTED FROM: NOT SPECIFIED

 MEMBER: N/P TO: NOT SPECIFIED

 SUBSYSTEM: DB1A ACTUAL FROM: 08/01/13 20:56:51.31

 DB2 VERSION: V11

 ---- IDENTIFICATION --

 ACCT TSTAMP: 08/01/13 22:36:37.38 PLANNAME: DB211Jav WLM SCL: DDFBAT CICS NET: N/A

 BEGIN TIME : 08/01/13 22:36:15.07 PROD TYP: JDBC DRIVER CICS LUN: N/A

 END TIME : 08/01/13 22:36:37.38 PROD VER: V4 R17M0 LUW NET: G9378921 CICS INS: N/A

 REQUESTER : ::9.55.137.33 CORRNAME: db2jcc_a LUW LUN: D8D9

 MAINPACK : DB211Jav CORRNMBR: ppli LUW INS: CBBFAC100F80 ENDUSER : ClientUser_012#1

 PRIMAUTH : DB2R1 CONNTYPE: DRDA LUW SEQ: 2 TRANSACT: DB211JavaNewDriver_01234567890#1

 ORIGAUTH : DB2R1 CONNECT : SERVER WSNAME : WorkstationName_#1

 [image:]

 Example 9-17 shows the JDBC driver correlation section as produced with the SMF records created by the application using the old Java driver.

 Example 9-17 JDBC driver correlation: Old Java driver

 [image:]

 ---- INITIAL DB2 COMMON SERVER OR UNIVERSAL JDBC DRIVER CORRELATION --

 PRODUCT ID : JDBC DRIVER

 PRODUCT VERSION: V4 R13M0

 CLIENT PLATFORM: WorkstationName_01

 CLIENT APPLNAME: DB211JavaNewDriver_0

 CLIENT AUTHID : ClientUs

 DDCS ACC.SUFFIX: ClientAccountingInformation_01234567890123456789012345678901234567890123456789012345678901234567890123456789012345

 67890123456789012345678901234567890123456789012345678901234567890123456789012345678901

 [image:]

 Example 9-18 shows the same section of the report for the records created using the new Java driver. There is no difference in both cases.

 Example 9-18 JDBC driver correlation: New Java driver

 [image:]

 ---- INITIAL DB2 COMMON SERVER OR UNIVERSAL JDBC DRIVER CORRELATION --

 PRODUCT ID : JDBC DRIVER

 PRODUCT VERSION: V4 R17M0

 CLIENT PLATFORM: WorkstationName_01

 CLIENT APPLNAME: DB211JavaNewDriver_0

 CLIENT AUTHID : ClientUs

 DDCS ACC.SUFFIX: ClientAccountingInformation_01234567890123456789012345678901234567890123456789012345678901234567890123456789012345

 67890123456789012345678901234567890123456789012345678901234567890123456789012345678901

 [image:]

 However, using the new Java driver results in an expended identification section, as shown in Example 9-19. This example shows how the longer client field information fields are truncated in the OMPE report. This section is not available if the application was executed with the old Java driver.

 Example 9-19 OMPE Accounting Trace report, identification section

 [image:]

 ---- IDENTIFICATION --

 ACCT TSTAMP: 08/01/13 22:36:37.38 PLANNAME: DB211Jav WLM SCL: DDFBAT CICS NET: N/A

 BEGIN TIME : 08/01/13 22:36:15.07 PROD TYP: JDBC DRIVER CICS LUN: N/A

 END TIME : 08/01/13 22:36:37.38 PROD VER: V4 R17M0 LUW NET: G9378921 CICS INS: N/A

 REQUESTER : ::9.55.137.33 CORRNAME: db2jcc_a LUW LUN: D8D9

 MAINPACK : DB211Jav CORRNMBR: ppli LUW INS: CBBFAC100F80 ENDUSER : ClientUser_012#1

 PRIMAUTH : DB2R1 CONNTYPE: DRDA LUW SEQ: 2 TRANSACT: DB211JavaNewDriver_01234567890#1

 ORIGAUTH : DB2R1 CONNECT : SERVER WSNAME : WorkstationName_#1

 --

 |TRUNCATED VALUE FULL VALUE |

 |ClientUser_012#1 ClientUser_0123456789012345678901234567890123456789012345678901234567890123456789012345678901|

 | 23456789012345678901234567890123456 |

 |DB211JavaNewDriver_01234567890#1 DB211JavaNewDriver_01234567890123456789012345678901234567890123456789012345678901234567890123|

 | 456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456|

 | 7890123456789012345678901234567890123456789 |

 |WorkstationName_#1 WorkstationName_01234567890123456789012345678901234567890123456789012345678901234567890123456|

 | 789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789|

 | 0123456789012345678901234567890123456789 |

 --

 [image:]

 Application and SQL release incompatibility considerations

 This section covers Application and SQL release incompatibility considerations that apply to the DB2 11 changes related to client information fields changes.

 Truncated client information values

 In previous versions of DB2, client information values were truncated and padded to the maximum length. In DB2 11, trailing blanks are removed.

 	
 Attention: In DB2 11 New Function Mode (NFM), special registers for client information fields might return different length values

 When the application compatibility of a package is set to V11R1, the application might receive a different length client information value than in previous versions of DB2. The value is no longer padded to the supported maximum length and trailing blanks are removed.

 You can find more information about application compatibility in 6.6, “SET CURRENT APPLICATION COMPATIBILITY” on page 114.

 SYSPROC.ADMIN_COMMAND_DB2 stored procedure

 The DB2 provided SYSPROC.ADMIN_COMMAND_DB2 stored procedure executes DB2 commands on a connected DB2 subsystem, or on a DB2 data sharing group member. This stored procedure also returns the command output messages.

 Starting in DB2 11 conversion mode (CM), the ADMIN_COMMAND_DB2 result set row returned in the created SYSIBM.DB2_THREAD_STATUS global temporary table when processing-type = “THD” has changed. The column data type and maximum lengths for WORKSTATION, USERID, APPLICATION, and ACCOUNTING has changed. Existing applications now receive a VARCHAR data type and possibly a different length client information value. The length is no longer padded to the supported maximum length.

 Client information special registers length

 In DB2 11 NFM, special registers for client information fields might return different length values. The values in these special registers change:

 •CURRENT CLIENT_USERID

 •CURRENT CLIENT_WRKSTNAME

 •CURRENT CLIENT_APPLNAME

 •CURRENT CLIENT_ACCTNG

 In addition, the value of these special register change based on the application compatibility level. Whereas in previous version of DB2 special register values were truncated and padded, trailing blanks are removed in DB2 11. In consequence, when the application compatibility for a package is set to V11R1, the application might receive a different length client information value than they did previously.

 Special registers

 A special register is a storage area that is defined for an application process by DB2 and is used to store information that can be referenced in SQL statements. A reference to a special register is a reference to a value provided by the current server.

 The following special registers related to the client information are available:

 •CURRENT CLIENT_ACCTNG contains the value of the accounting string from the client information that is specified for the connection.

 •CURRENT CLIENT_APPLNAME contains the value of the application name from the client information that is specified for the connection.

 •CURRENT CLIENT_CORR_TOKEN contains the value of the client correlation token from the client information that is specified for the connection.

 •CURRENT CLIENT_USERID contains the value of the client user ID from the client information that is specified for the connection.

 •CURRENT CLIENT_WRKSTNNAME contains the value of the workstation name from the client information that is specified for the connection.

 Resource Limit Facility

 Resource limit tables can be used to limit the amount of resources used by SQL statements that run on middleware servers. Statements can be limited based on this client information:

 •Application name

 •User ID

 •Workstation ID

 •IP address

 Resource limits apply only to dynamic SQL statements. The resource limit facility does not control static SQL statements regardless of whether they are issued locally or remotely.

 The RLF table DSNRLMTxx columns are changed to support the longer lengths for client information fields, as summarized in Table 9-2.

 Table 9-2 DSNRLMTxx longer columns in DB2 11

 	
 Column name

 	
 DB2 11

 	
 Comment

 	
 RLFEUAN

 	
 VARCHAR(255)

 	
 Specifies an application name

 	
 RLFEUID

 	
 VARCHAR(128)

 	
 Specifies a user ID

 	
 RLFEUWN

 	
 VARCHAR(255)

 	
 Specifies a user’s workstation name

 	
 RLFIP

 	
 CHAR(254)

 	
 The IP address of the location where the request originated

 The DDL use to create the RLMT table (DSNRLMTxx) are provided in the DB2 DSNTIJSG installation job. DB2 11 provides the long field version of the table in DSNTIJSG.

 	
 Note: The DB2 11 DSNTIJSG installation job provides the DDL for the long field version of the RLMT table, but long fields can be used in NFM only

 Example 9-20 shows the long field version DDL as provided in DSNTIJSG in DB2 11. The DDL is commented out in the job.

 Example 9-20 DDL to create the RLMT table DSNRLMT01, DB2 11 version

 [image:]

 //**

 //* USE THE FOLLOWING DDL TO CREATE AN OPTIONAL RLST AND INDEX FOR

 //* RLF GOVERNING BASED ON END-USER ID, APPLICATION NAME, WORKSTATION

 //* ID, AND IP ADDRESS. SEE THE DB2 PERFORMANCE MONITORING AND TUNING

 //* GUIDE FOR MORE INFORMATION ABOUT THIS TABLE.

 //*

 //* CREATE TABLE DSNRLMT01

 //* (RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,

 //* RLFEUAN VARCHAR(255) NOT NULL WITH DEFAULT,

 //* RLFEUID VARCHAR(128) NOT NULL WITH DEFAULT,

 //* RLFEUWN VARCHAR(255) NOT NULL WITH DEFAULT,

 //* RLFIP CHAR(254) NOT NULL WITH DEFAULT,

 //* ASUTIME INTEGER,

 //* RLFASUERR INTEGER,

 //* RLFASUWARN INTEGER,

 //* RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)

 //* IN DSNRLST.DSNRLS01;

 //*

 //* CREATE UNIQUE INDEX DSNMRL01

 //* ON DSNRLMT01

 //* (RLFFUNC, RLFEUAN DESC, RLFEUID DESC,

 //* RLFEUWN DESC, RLFIP DESC)

 //* CLUSTER CLOSE NO;

 //**

 [image:]

 For comparison, Example 9-21 shows the DSNRLMT01 DDL as provided in DSNTIJSG in DB2 10. The DDL is commented out in the job.

 Example 9-21 DDL to create the RLMT table DSNRLMT01, DB2 10 version

 [image:]

 //**

 //* USE THE FOLLOWING DDL TO CREATE AN OPTIONAL RLST AND INDEX FOR

 //* RLF GOVERNING BASED ON END-USER ID, APPLICATION NAME, WORKSTATION

 //* ID, AND IP ADDRESS. SEE THE DB2 PERFORMANCE MONITORING AND TUNING

 //* GUIDE FOR MORE INFORMATION ABOUT THIS TABLE.

 //*

 //* CREATE TABLE DSNRLMT01

 //* (RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,

 //* RLFEUAN CHAR(32) NOT NULL WITH DEFAULT,

 //* RLFEUID CHAR(16) NOT NULL WITH DEFAULT,

 //* RLFEUWN CHAR(18) NOT NULL WITH DEFAULT,

 //* RLFIP CHAR(254) NOT NULL WITH DEFAULT,

 //* ASUTIME INTEGER,

 //* RLFASUERR INTEGER,

 //* RLFASUWARN INTEGER,

 //* RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)

 //* IN DSNRLST.DSNRLS01;

 //*

 //* CREATE UNIQUE INDEX DSNMRL01

 //* ON DSNRLMT01

 //* (RLFFUNC, RLFEUAN DESC, RLFEUID DESC,

 //* RLFEUWN DESC, RLFIP DESC)

 //* CLUSTER CLOSE NO;

 //**

 [image:]

 	
 Tip: Verify that the value in RLFAUTH results as the table creator when running these DDL statements. This system parameter defines the authorization ID of the DB2 governor RLF

 Table 9-3 summarizes the column definition differences between the DB2 10 and DB2 11 versions of the DSNRLMTxx tables.

 Table 9-3 DSNRLMTxx column difference summary DB2 10 versus DB2 11

 	
 Column name

 	
 DB2 10

 	
 DB2 11

 	
 Comment

 	
 RLFEUAN

 	
 CHAR(32)

 	
 VARCHAR(255)

 	
 Specifies an application name

 	
 RLFEUID

 	
 CHAR(16)

 	
 VARCHAR(128)

 	
 Specifies a user ID

 	
 RLFEUWN

 	
 CHAR(18)

 	
 VARCHAR(255)

 	
 Specifies a user’s workstation name

 	
 RLFIP

 	
 CHAR(254)

 	
 CHAR(254)

 	
 The IP address of the location where the request originated

 Special considerations with DSNRLMT01 and DB2 versions

 Special considerations apply for different combinations of RLMT table and DB2 versions. This section describes the different behaviors observed for different scenarios.

 Example 9-22 shows the command used for starting the resource limit facility using the set of RLF tables 01.

 Example 9-22 Start Resource Limit Facility command

 [image:]

 -STA RLIMIT ID=01

 [image:]

 For DB2 11 NFM with DB2 10 version of DSNRLMT01, Example 9-23 shows the output of the START RLIMIT command.

 Example 9-23 Successful start of RLF

 [image:]

 DSNT704I -DB1A SYSIBM.DSNRLST01 HAS BEEN STARTED FOR THE RESOURCE

 LIMIT FACILITY

 DSNT704I -DB1A SYSIBM.DSNRLMT01 HAS BEEN STARTED FOR THE RESOURCE

 LIMIT FACILITY

 DSN9022I -DB1A DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

 [image:]

 RLF starts correctly when running DB2 11 and the DB2 10 version of the RLF tables.

 For DB2 10 NFM with DB2 11 version of DSNRLMT01, Example 9-24 shows the output of the START RLIMIT command.

 Example 9-24 Starting RLIMIT in DB2 10 with DSNRLMT01 version DB2 11

 [image:]

 DSNT707I -DB0A COLUMN RLFEUAN IN TABLE SYSIBM.DSNRLMT01 IS

 INCORRECTLY DEFINED. THE COLUMN DEFINITION IS VARCHAR WITH LENGTH 255

 AND NULL ATTRIBUTE N. THE COLUMN DEFINITION SHOULD BE CHAR WITH

 LENGTH 32 AND NULL ATTRIBUTE N. THE START RLIMIT COMMAND WILL NOT USE

 THIS TABLE.

 DSNT707I -DB0A COLUMN RLFEUID IN TABLE SYSIBM.DSNRLMT01 IS

 INCORRECTLY DEFINED. THE COLUMN DEFINITION IS VARCHAR WITH LENGTH 128

 AND NULL ATTRIBUTE N. THE COLUMN DEFINITION SHOULD BE CHAR WITH

 LENGTH 16 AND NULL ATTRIBUTE N. THE START RLIMIT COMMAND WILL NOT USE

 THIS TABLE.

 DSNT707I -DB0A COLUMN RLFEUWN IN TABLE SYSIBM.DSNRLMT01 IS

 INCORRECTLY DEFINED. THE COLUMN DEFINITION IS VARCHAR WITH LENGTH 255

 AND NULL ATTRIBUTE N. THE COLUMN DEFINITION SHOULD BE CHAR WITH

 LENGTH 18 AND NULL ATTRIBUTE N. THE START RLIMIT COMMAND WILL NOT USE

 THIS TABLE.

 DSNT704I -DB0A SYSIBM.DSNRLST01 HAS BEEN STARTED FOR THE RESOURCE

 LIMIT FACILITY

 DSNT727I -DB0A TABLE SYSIBM.DSNRLMT01 WILL NOT BE USED BY THE

 RESOURCE LIMIT FACILITY

 DSN9022I -DB0A DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

 [image:]

 This example shows that the DB2 11 version of the RLMT table is not usable in a DB2 10 subsystem. As a result, RLF is partially started and there is no support for the RLMT table in this case. Example 9-25 shows this evidence, this is the output of the -DISPLAY RLIMIT command.

 Example 9-25 -DIS RLIMIT: RLF partially started

 [image:]

 DSNT700I -DB0A SYSIBM.DSNRLST01 IS THE ACTIVE RESOURCE LIMIT

 SPECIFICATION TABLE

 DSN9022I -DB0A DSNTCDIS 'DISPLAY RLIMIT' NORMAL COMPLETION

 [image:]

 For DB2 11 CM with DB2 11 version of DSNRLMT01, Example 9-26 shows the output of the START RLIMIT command.

 Example 9-26 Starting RLIMIT in DB2 11 CM with DSNRLMT01 version DB2 11

 [image:]

 DSNT728I -DB0B THE FORMAT OF TABLE SYSIBM.DSNRLMT01 IS NOT SUPPORTED

 IN COMPATIBILITY MODE. THE START RLIMIT COMMAND WILL NOT USE THIS

 TABLE.

 DSNT704I -DB0B SYSIBM.DSNRLST01 HAS BEEN STARTED FOR THE RESOURCE

 LIMIT FACILITY

 DSNT727I -DB0B TABLE SYSIBM.DSNRLMT01 WILL NOT BE USED BY THE

 RESOURCE LIMIT FACILITY

 DSN9022I -DB0B DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

 [image:]

 The DB2 11 of the RLMT table is not compatible with DB2 11 CM. There is no support for RLMT in this scenario. Example 9-27 shows that RLF is partially active.

 Example 9-27 -DIS RLIMIT: RLF partially started

 [image:]

 DSNT700I -DB0B SYSIBM.DSNRLST01 IS THE ACTIVE RESOURCE LIMIT

 SPECIFICATION TABLE

 DSN9022I -DB0B DSNTCDIS 'DISPLAY RLIMIT' NORMAL COMPLETION

 [image:]

 Converting resource limit facility (RLF) tables

 When migrated to DB2 11 NFM, you have to convert the resource limit facility (RLF) tables to take advantage of the longer client information fields. Follow these steps to alter and existing RLF table. Verify the status of RLF by executing a -DIS RLIMIT command. An output example is shown in Example 9-28.

 Example 9-28 -DIS RLIMIT output example

 [image:]

 DSNT700I -DB1A SYSIBM.DSNRLST01 IS THE ACTIVE RESOURCE LIMIT

 SPECIFICATION TABLE

 DSNT700I -DB1A SYSIBM.DSNRLMT01 IS THE ACTIVE RESOURCE LIMIT

 SPECIFICATION TABLE

 DSN9022I -DB1A DSNTCDIS 'DISPLAY RLIMIT' NORMAL COMPLETION

 [image:]

 After stopping RLF you can alter the RLMT table to the new format. Example 9-29 shows the SQL used for altering the RLMT table to the DB2 11 NFM supported format.

 Example 9-29 ALTER TABLE SYSIBM.DSNRLMT01

 [image:]

 ALTER TABLE SYSIBM.DSNRLMT01 ALTER COLUMN RLFEUAN

 SET DATA TYPE VARCHAR(255);

 ALTER TABLE SYSIBM.DSNRLMT01 ALTER COLUMN RLFEUID

 SET DATA TYPE VARCHAR(128);

 ALTER TABLE SYSIBM.DSNRLMT01 ALTER COLUMN RLFEUWN

 SET DATA TYPE VARCHAR(255);

 [image:]

 Converting resource limit facility (RLF) tables, no RLF outage

 If your installation cannot afford to run without RLF active, this alternative method allows for a RLMT migration without RLF outage. Using the DB2 11 DDL in DSNTIJSG, create a new RMT table with a non -used ID. For example, create DSNRLMT02 where the current RLMT table is DSNRLMT01. If needed, create an ID=02 of the table DSNRLSTxx as well.

 You can copy the RLF definitions from the ID=01 to the ID=02 tables using SQL. Example 9-30 documents the SQL used to copy data from the old to the new version of the RLMT table.

 Example 9-30 Copying RLMT data to a DB2 11 version of the table

 [image:]

 INSERT INTO SYSIBM.DSNRLMT02

 (RLFFUNC, RLFEUAN, RLFEUID, RLFEUWN, RLFIP,

 ASUTIME, RLFASUERR, RLFASUWARN, RLF_CATEGORY_B)

 SELECT

 RLFFUNC, RLFEUAN, RLFEUID, RLFEUWN, RLFIP,

 ASUTIME, RLFASUERR, RLFASUWARN, RLF_CATEGORY_B

 FROM SYSIBM.DSNRLMT01;

 [image:]

 Example 9-31 shows the SQL used to copy data between RLST tables.

 Example 9-31 Copying RLST data to a DB2 11 version of the table

 [image:]

 INSERT INTO SYSIBM.DSNRLST02

 (AUTHID, PLANNAME, ASUTIME, LUNAME, RLFFUNC,

 RLFBIND, RLFCOLLN, RLFPKG, RLFASUERR,

 RLFASUWARN, RLF_CATEGORY_B)

 SELECT

 AUTHID, PLANNAME, ASUTIME, LUNAME, RLFFUNC,

 RLFBIND, RLFCOLLN, RLFPKG, RLFASUERR,

 RLFASUWARN, RLF_CATEGORY_B

 FROM SYSIBM.DSNRLST01;

 [image:]

 After the new RLST and RLMT tables are populated with the original data, you can switch the RLF definitions without outage. In this example, you can issue the START RLIMIT command using ID=02, as shown in Example 9-32, even if RLF is active with ID=01.

 Example 9-32 -STA RLIMIT command

 [image:]

 -STA RLIMIT ID=02

 [image:]

 	
 Tip: While RLF is active, you can switch RLF tables by executing the START RLIMIT command using a new ID.

 Example 9-33 shows the output of this command. Note the DSNT709I message. This message informs that a START RLIMIT command was entered and that the facility was already active. The facility remains active and switches from using the old table name to the new one.

 Example 9-33 Starting RLIMIT on a new set of RLF tables

 [image:]

 DSNT709I -DB1A SYSIBM.DSNRLST02 NOW ACTIVE. SYSIBM.DSNRLST01 WAS OLD

 RESOURCE LIMIT SPECIFICATION TABLE

 DSNT709I -DB1A SYSIBM.DSNRLMT02 NOW ACTIVE. SYSIBM.DSNRLMT01 WAS OLD

 RESOURCE LIMIT SPECIFICATION TABLE

 DSN9022I -DB1A DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

 [image:]

 Profile monitoring for remote threads and connections

 Profile tables identify contexts in which DB2 takes particular actions such resource monitoring, subsystem parameter customization, and dynamic SQL stabilization. The contexts might identify statements, threads, or connections based on information about the originating application, system, or user.

 A profile is a set of criteria that identifies a particular context on a DB2 subsystem. A profile is defined by a record in the SYSIBM.DSN_PROFILE_TABLE table. The profile tables and related indexes are created by the DSNTIJSG job during DB2 installation or migration.

 A complete set of profile tables and related indexes includes the following objects:

 •SYSIBM.DSN_PROFILE_TABLE

 •SYSIBM.DSN_PROFILE_HISTORY

 •SYSIBM.DSN_PROFILE_ATTRIBUTES

 •SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY

 •SYSIBM.DSN_PROFILE_TABLE_IX_ALL

 •SYSIBM.DSN_PROFILE_TABLE_IX2_ALL

 •SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

 	
 Tip: Refer toDB2 11 for z/OS Managing Performance, SC19-4060 for details about the profile tables

 The monitoring functions are defined by inserting rows in the DSN_PROFILE_ATTRIBUTES table. You can specify the following values in the KEYWORD column of the DSN_PROFILE_ATTRIBUTES table:

 •MONITOR THREADS

 •MONITOR CONNECTIONS

 •MONITOR IDLE THREADS

 MONITOR THREADS indicates that the profile monitors the total number of concurrent active remote threads according to the following filter criteria defined on SYSIBM.DSN_PROFILE_TABLE:

 •LOCATION

 •IPADDR

 •PRDID

 •ROLE AUTHID

 •COLLID

 •PKGNAME

 The system-wide threshold that is defined by the value of the MAXDBAT subsystem parameter continues to apply.

 MONITOR CONNECTIONS indicates that the profile monitors the total number of remote connections from TCP/IP requesters. The only filtering criteria is the LOCATION column in the SYSIBM. DSN_PROFILE_TABLE. Nevertheless, you can specify either an IP address or a domain name for its value. The system-wide threshold that is defined by the value of the CONDBAT subsystem parameter continues to apply.

 MONITOR IDLE THREADS indicates that the profile monitors the approximate time (in seconds) that an active server thread is allowed to remain idle. A zero value means that matching threads are allowed to remain idle indefinitely.

 At a glance, system profile monitoring allows to tailor the values of the following otherwise subsystem-level parameters to the need of any application:

 •MAXDBAT

 •CONDBAT

 •IDTHTOIN

 	
 Important: By making client information fields longer, DB2 11 provides greater granularity for managing DDF connections, threads, and idle thread timeout.

 After profiling is correctly defined, use the -START PROFILE DB2 command to start profile monitoring. Issue a -STOP PROFILE command. to disable all profile functions.

 The following DSN_PROFILE_TABLE columns are defined as VARCHAR(255) in DB2 10 for z/OS, but their values are truncated as follows:

 •CLIENT_APPLNAME: truncated to 32 bytes

 •CLIENT_USERID: truncated to 16 bytes

 •CLIENT_WRKSTNNAME: truncated to 18 bytes

 There is no change in behavior in DB2 11 conversion mode. The -START PROFILE command continues to truncate the client information field’s information in the DSN_PROFILE_TABLE, as in DB2 10.

 In DB2 11 New Function Mode (NFM), the complete value of columns CLIENT_APPLNAME and CLIENT_WRKSTNNAME, up to 255 bytes, is honoured. The value in column CLIENT_USERID is considered up to 128 bytes.

 	
 Important: IBM Data Server Driver or Client level DB2 10.5 Fix Pack 2 is required to exploit the enhanced client information fields. Previous levels do not take advantage, even if the DB2 server is running DB2 11 for z/OS NFM

 Workload management

 For mixed workloads, the general recommendation is to use multiple WLM service classes to differentiate users and applications that have different levels of importance for the business.

 A WLM Service class describes a group of work within a workload with similar performance characteristics. A service class is a key construct for WLM. Each service class has at least one period, and each period has one goal. Address spaces and transactions are assigned to service classes using classification rules. Within a workload, a group of work with similar performance requirements can share the same service class.

 WLM Report Classes refers to an aggregate set of work for reporting purposes. You can use report classes to analyze the performances of individual workloads running in the same or different service classes. Work is classified into report classes using the same classification rules that are used for classification into service classes. A useful way to contrast report classes to service classes is that report classes are used for monitoring work; service classes are primarily to be used for managing work.

 As an example, the following general considerations might apply to your workload environment:

 •Use WLM service classes with percentile response time goals for early periods that have frequent completions of short consumption work.

 •Use WLM service classes with velocity goals for later periods containing work having less-frequent completions and larger, perhaps more varying, resource consumption characteristics.

 •Potentially use a discretionary goal for the last period, which might not be applicable in OLTP environments with high CPU utilization, because it can result in severe DB2 locking issues.

 The design of a WLM strategy must match the workload characteristics. For example, operational BI queries are typically numerous and small CPU consumers. Therefore, they have WLM service classes with response time goals and fall into early periods. Alternatively, data mining activity might be less frequent, long-running, and have wide variability in resource consumption. It is therefore likely to be targeted for WLM service classes with velocity goals and later periods.

 WLM Classification rules are the filters that WLM uses to associate a transaction’s external properties (also called work qualifiers, such as LU name or user ID) with a WLM service class. As a preferred practice, classify each distributed request within WLM. If you do not classify your DDF transactions into specific WLM service classes, they are assigned to the default service class for the DDF workload.

 Optionally, you can assign incoming work to a report class. Report classes can be used to report on a subset of transactions running in a single service class but also to combine transactions running in different service classes within one report class.

 Figure 9-1 shows a LPAR level CPU utilization report for a given DB2 workload. This report is based on the RMF Workload (type 72) records. In this example, it is not possible to identify how the CPU utilization is distributed by application.

 [image:]

 Figure 9-1 RMF Workload, LPAR CPU utilization

 For the same workload, it is possible to obtain a more detailed overview of the CPU utilization by using WLM Report Class. Figure 9-2 shows a graph of the same scenario when the CPU utilization report is plotted by Report Class. In this case it is possible to identify which part of the application is active a different periods.

 [image:]

 Figure 9-2 RMF Workload, LPAR CPU utilization per WLM Report Class

 WLM Classification Rules are the rules you define to categorize work into service classes, and optionally report classes, based on work qualifiers. A work qualifier is what identifies a work request to the system. The first qualifier is the subsystem type that receives the work request.

 Table 9-4 list the WLM classification attributes, or qualifiers, that pertain to DB2 DDF threads in z/OS 1.13.

 Table 9-4 DDF - WLM classification attributes in z/OS 1.13

 	
 Attribute

 	
 Classify workload based on

 	
 AI

 	
 Accounting information

 	
 CAI

 	
 Client accounting information

 	
 CI

 	
 DB2 correlation ID of the DDF thread

 	
 CN

 	
 Collection name

 	
 LU

 	
 IBM VTAM® LUNAME

 	
 NET

 	
 VTAM NETID

 	
 PK

 	
 Name of the first package accessed

 	
 PN

 	
 Plan name

 	
 PR

 	
 Stored procedure name

 	
 SI

 	
 Subsystem instance

 	
 SSC

 	
 Subsystem collection name

 	
 UI

 	
 User id

 z/OS 2.1 introduces a new WLM classify work request macro service, IWM4CLSY. this new macro supports the new longer lengths client information fields to classify DDF server threads. There are new WLM classification attributes to support the longer lengths client information fields. These new attributes are listed in Table 9-5.

 Table 9-5 New DDF - WLM classification attributes in z/OS 2.1

 	
 Attribute

 	
 Classify workload based on

 	
 Maximum length

 	
 CUI

 	
 Client user ID

 	
 128 bytes

 	
 CWN

 	
 Client workstation name

 	
 255 bytes

 	
 CTN

 	
 Client transaction (application) name

 	
 255 bytes

 	
 CIP

 	
 Client IP address

 	
 39 bytes

 	
 CAI

 	
 Client accounting information

 	
 512 bytes

 	
 PC

 	
 Process name

 	
 32 bytes

 	
 SPM

 	
 Subsystem parameter

 	
 255 bytes

 	
 Note: Refer to the IBM publication “z/OS MVS Planning Workload Management” for more details about WLM and its components.

 The SPM qualifier has a maximum length of 255 bytes. The first 16 bytes contain the client's user ID. The next 18 bytes contain the client's workstation name. The remaining 221 bytes are reserved. If the length of the client's user ID is less than 16 bytes, SPM uses blanks after the user ID to pad the length. If the length of the client's workstation name is less than 18 bytes, SPM uses blanks after the workstation name to pad the length. The values of the client user ID and client workstation name are the truncated to 16 bytes and 18 bytes respectively. The full lengths, 128 bytes and 255 bytes respectively, are specified in the CUI and CWN attributes, as listed in Table 9-5.

 Example 9-34 shows an example of the WLM ISPF panel Modify Rules for the Subsystem Type in a z/OS 2.1 LPAR.

 Example 9-34 WLM Modify Rules for the Subsystem Type panel

 [image:]

 .

 Subsystem-Type Xref Notes Options Help

 --

 Modify Rules for the Subsystem Type Row 1 to 2 of 2

 Command ===> ___ Scroll ===> PAGE

 Subsystem Type . : DDF Fold qualifier names? N (Y or N)

 Description . . . DDF clasificatoin rules

 Action codes: A=After C=Copy M=Move I=Insert rule

 B=Before D=Delete row R=Repeat IS=Insert Sub-rule

 More ===>

 --------Qualifier-------- -------Class--------

 Action Type Name Start Service Report

 DEFAULTS: DDFUNKWN REPUNKWN

 ____ 1 SI DB1D* ___ DDFDEFLT REPDEFLT

 ____ 2 AI Bxls* 56 DDFHI REPBXLS

 [image:]

 In this example, if a DDF work request comes in from an DB2 subsystem other than DB1D, then it is assigned to the default Service and Report Class DDFUNKWN and REPUNKWN. A request coming from DB1D with Accounting Information starting with the string Bxls gets assigned to DDFHI and REPBXLS. The order of the nesting and the order of the level 1 qualifiers, determine the hierarchy of the classification rules.

 Example 9-35 uses a Java application to drive the distributed workload. In the program, the accounting information is set.

 Example 9-35 Setting accounting information in a Java program

 [image:]

 con = DriverManager.getConnection(url);

 DB2Connection db2con = (DB2Connection) con;

 con.setAutoCommit(false);

 db2con.setClientInfo("ClientAccountingInformation", "BxlsAPP_Choco01");

 [image:]

 	
 Important: The start of the Client Accounting Information string has to be 56 in the WLM ISPF panel to match the beginning of the string used in the program

 In the “Fold qualifier names” option, set to the default Y, means that the qualifier names is folded to uppercase as soon as you type them and press Enter. If you set this option to N, the qualifier names remains in the case they are typed in. Leave this option set to Y unless you know that you need mixed case qualifier names in your classification rules.

 You can use masking and wild card notation to group qualifiers that share a common substring. For work qualifiers that run longer than eight characters, you can use a start position to indicate how far to index into the character string. The name field for work qualifiers is 8 characters long. You can use nesting for the work qualifiers that run longer than 8 characters. Use the following fields:

 •Accounting information

 •Client accounting information

 •Client IP address

 •Client transaction name

 •Client user ID

 •Client workstation name

 •Collection name

 •Correlation information

 •Package name

 •Procedure name

 •Process name

 •Scheduling environment

 •Subsystem parameter

 •zEnterprise service class name

 From this list, the fields Scheduling environment and zEnterprise service class name are not applicable for DDF workloads.

 For example, for DDF workload, Accounting Information is the value of the DB2 accounting string associated with the DDF server thread. Because DB2 supports more than 8 characters in accounting information, and the WLM ISPF application allows only 8 characters per rule, the application allows “nesting” for accounting information.

 By nesting work qualifiers you can exploit the longer client information fields introduced in DB2 11. Example 9-36 shows an example.

 Example 9-36 WLM classification rules: nesting accounting information

 [image:]

 	Subsystem-Type Xref Notes Options Help

 --

 Modify Rules for the Subsystem Type Row 1 to 3 of 3

 Command ===> ___ Scroll ===> PAGE

 Subsystem Type . : DDF Fold qualifier names? N (Y or N)

 Description . . . DDF clasificatoin rules

 Action codes: A=After C=Copy M=Move I=Insert rule

 B=Before D=Delete row R=Repeat IS=Insert Sub-rule

 More ===>

 --------Qualifier-------- -------Class--------

 Action Type Name Start Service Report

 DEFAULTS: DDFUNKWN REPUNKWN

 ____ 1 SI DB1D* ___ DDFDEFLT REPDEFLT

 ____ 2 AI BxlsAPP* 56 DDFHI REPBXLS

 ____ 3 AI Choco* 63 DDFHI REPCHOCO

 [image:]

 In this configuration, and application with accounting information starting with the string BxlsAPP is classified in the DDFHI service class and REPBXLS report class. If the application has an accounting information field starting with BxlsAPP_Choco uses the REPCHOCO report class instead.

 To activate the WLM changes use the Utilities menu entry, and then option 1 Install definition, as shown in Example 9-37.

 Example 9-37 installing WLM definitions

 [image:]

 File Utilities Notes Options Help

 ----- +---+ ----------------

 Funct | 1 1. Install definition | Appl LEVEL029

 Comma | 2. Extract definition | _______________

 | 3. Activate service policy |

 Defin | 4. Allocate couple data set |

 | 5. Allocate couple data set using CDS values |

 Defin | 6. Validate definition |

 Descr +---+ _

 Select one of the

 following options. ___ 1. Policies

 2. Workloads

 3. Resource Groups

 [image:]

 When installation is successful, the system provide the feedback shown in Example 9-38

 Example 9-38 WLM Service definition installation successful

 [image:]

 Service definition was installed. (IWMAM038)

 [image:]

 Changes to the WLM policy have to be activated to be made effective.

 Example 9-39 shows how the WLM policy activation can be done using the WLM ISPF panels.

 Example 9-39 Activating WLM definitions

 [image:]

 File Utilities Notes Options Help

 ----- +---+ ----------------

 Funct | 3 1. Install definition | Appl LEVEL029

 Comma | 2. Extract definition | _______________

 | 3. Activate service policy |

 Defin | 4. Allocate couple data set |

 | 5. Allocate couple data set using CDS values |

 Defin | 6. Validate definition |

 Descr +---+ _

 Select one of the

 following options. ___ 1. Policies

 2. Workloads

 3. Resource Groups

 [image:]

 As confirmation, the IWM001I system message is written in to system console, as shown in Example 9-40.

 Example 9-40 WLM Policy activated

 [image:]

 IWM001I WORKLOAD MANAGEMENT POLICY DB211TO NOW IN EFFECT

 [image:]

 There are many ways of verifying of the WLM classification is working as expected. A simple and quick way is to explore the DDF activity in the RMF Enclave Report panel. The Enclave report provides detailed information about the activities of enclaves.

 Example 9-41 shows an example of the RMF Enclave Report panel in z/OS 2.1.

 Example 9-41 RMF Enclave Report panel

 [image:]

 RMF V2R1 Enclave Report Line 1 of 5

 Command ===> Scroll ===> CSR

 Samples: 100 System: SC76 Date: 08/07/13 Time: 19.36.40 Range: 100 Sec

 Current options: Subsystem Type: ALL -- CPU Util --

 Enclave Owner: Appl% EAppl%

 Class/Group: 0.2 1.9

 Enclave Attribute CLS/GRP P Goal % D X EAppl% TCPU USG DLY IDL

 *SUMMARY 0.811

 ENC00002 SYSSTC 1 N/A Y 0.736 12.62 34 3.0 0.0

 ENC00004 DDFHI 2 50 0.040 0.100 100 0.0 0.0

 ENC00003 DDFHI 2 50 W 0.036 0.083 0.0 0.0 0.0

 ENC00001 SYSSTC 1 N/A Y 0.000 0.025 0.0 0.0 0.0

 [image:]

 This example shows the ENC00004 and ENC00003 enclaves running on the DDFHI service class. Selecting one of the enclaves provide access to the Enclave Classification Attributes panel where you can obtain more details, as shown in Example 9-42.

 Example 9-42 Enclave details in RMF Enclave report

 [image:]

 								RMF V2R1 Enclave Report Line 1 of 5

 Command ===> Scroll ===> CSR

 Samples: +---+

 | RMF Enclave Classification Attributes |

 Current o | |

 | The following details are available for enclave ENC00004 |

 | Press Enter to return to the Report panel. |

 | |

 Enclave | More: + |

 | Subsystem Type: DDF Owner: DB1DDIST System: SC76 |

 *SUMMARY | Accounting Information . . . : |

 ENC00002 | JCC04170192.168.150.1 BxlsA |

 ENC00004 | PP_Choco01 |

 ENC00003 | |

 ENC00001 | Collection Name : NULLID |

 | Connection Type : SERVER |

 | Correlation Information . . : db2jcc_appli |

 | LU Name : |

 | Net ID : |

 | Plan Name : DISTSERV |

 | Priority : |

 | Process Name : db2jcc_application |

 | Transaction/Job Class . . . : |

 | Transaction/Job Name : |

 | User ID : DB2RS1 |

 [image:]

 Navigating down this panels provide access to the Client Information Field values. A partial example is shown in Example 9-43.

 Example 9-43 RMF Enclave Classification Attributes

 [image:]

 RMF V2R1 Enclave Report Line 1 of 5

 Command ===> Scroll ===> CSR

 Samples: +---+

 | RMF Enclave Classification Attributes |

 Current o | |

 | The following details are available for enclave ENC00004 |

 | Press Enter to return to the Report panel. |

 | |

 Enclave | More: - + |

 | |

 *SUMMARY | |

 ENC00002 | Client IP Address : |

 ENC00004 | 0000:0000:0000:0000:0000:0000:9.55.137. |

 ENC00003 | Client User ID : |

 ENC00001 | db2rs1 |

 | |

 | |

 | Client Transaction Name . . : |

 | db2jcc_application |

 | |

 | |

 | |

 | |

 | Client Workstation/Host Name : |

 | 192.168.150.1 |

 [image:]

 As discussed in this chapter, the driver version can influence the length of the client information field that is sent to the DB2 server. For example, a Java program setting the client accounting information with a string of 255 characters sends the complete string when using a DB2 driver 10.5 fix pack 2. The same application executed with a lower version of the driver sends the string truncated to 200 characters. WLM classification rules taking advantage of the longer client information fields introduced in DB2 11 behave different if the driver used by the applications is not the one required to fully exploit the DRDA changes in DB2 11 (9.5 fix pack 2).

 	
 Important: With DB2 11 longer client information fields, WLM classification rules might behave inconsistently, depending on the driver version used by the applications.

 Setting Client info fields

 This section discusses these topics related to how to change the Client info values:

 •WLM_SET_CLIENT_INFO stored procedure

 •Setting Client info in Java applications

 •Setting Client info in DB2 command line processor scripts

 WLM_SET_CLIENT_INFO stored procedure

 WLM_SET_CLIENT_INFO is a DB2 provided, WLM established, stored procedure. It allows the caller to set client information that is associated with the current connection at the DB2 for z/OS server. It is of particular use for connections where DB2 for z/OS is the requester because in such situations there is no other way of setting the client information values. These DB2 for z/OS client special registers can be changed by calling WLM_SET_CLIENT_INFO:

 •CURRENT CLIENT_ACCTNG

 •CURRENT CLIENT_USERID

 •CURRENT CLIENT_WRKSTNNAME

 •CURRENT CLIENT_APPLNAME

 	
 Important: The WLM_SET_CLIENT_INFO stored procedure that is shipped with DB2 11 for z/OS does not allow to change the value of the new client information register CURRENT CLIENT_CORR_TOKEN, nor to update the system built-in session global variable SYSIBM.CLIENT_IPADDR.

 Example 9-44 shows the WLM_SET_CLIENT_INFO call syntax.

 Example 9-44 WLM_SET_CLIENT_INFO syntax

 [image:]

 >>-WLM_SET_CLIENT_INFO--(--+-client_userid-+--,--+-client_wrkstnname-+--,-->

 '-NULL----------' '-NULL--------------'

 >--+-client_applname-+--,--+-client_acctstr-+--)---------------><

 '-NULL------------' '-NULL-----------'

 [image:]

 The WLM_SET_CLIENT_INFO procedure uses the following parameters:

 client_userid	A VARCHAR(255) input parameter that specifies the user ID for the client. If NULL is specified, the value remains unchanged. If an empty string is specified, the user ID for the client is reset to the default value. If the value specified exceeds 128 bytes, it is truncated to 128 bytes.

 client_wrkstnname	A VARCHAR(255) input parameter that specifies the workstation name for the client. If NULL is specified, the value remains unchanged. If an empty string is specified, the workstation name for the client is reset to the default value.

 client_applname	A VARCHAR(255) input parameter that specifies the application name for the client. If NULL is specified, the value remains unchanged. If an empty string is specified, the application name for the client is reset to the default value.

 client_acctstr	A VARCHAR(255) input parameter that specifies the accounting string for the client. If NULL is specified, the value remains unchanged. If an empty string is specified, the accounting string for the client is reset to the default value.

 Setting Client info in Java applications

 Table 9-6 summarizes the client information properties values for Java type 4 connectivity to DB2 for z/OS. It also shows the default values and the DB2 special register that can be used to read this information at run time.

 Table 9-6 Client information property values for type 4 connectivity to DB2 for z/OS

 	
 Name

 	
 Max length

 	
 Default value

 	
 Special register

 	
 ApplicationName

 	
 255 bytes

 	
 The string “db2jcc_application”

 	
 CURRENT CLIENT_APPLNAME

 	
 ClientAccountingInformation

 	
 255

 	
 JCCversionclient-ip

 	
 CURRENT CLIENT_ACCTNG

 	
 ClientCorrelationToken

 	
 255

 	
 Data server generated LUWID

 	
 CURRENT CLIENT_CORR_TOKEN

 	
 ClientHostname

 	
 255

 	
 The string “db2jcc_local”

 	
 CURRENT CLIENT_WRKSTNNAME

 	
 ClientUser

 	
 128

 	
 The user ID that was specified when the connection was established

 	
 CURRENT CLIENT_USERID

 These properties can be modified using the setClientInfo Java method. Example 9-45 shows how to setup the client user ID using this method. In this example, db2con is an established connection to DB2 for z/OS.

 Example 9-45 Using the setClientInfo Java method

 [image:]

 db2con.setClientInfo("ClientUser", "ClientUser_0123456789");

 [image:]

 Example 9-46 shows a fully functional Java program that can be used to test the new lengths provided by DB2 11. This example sets 4 client information fields and execute some SQL code.

 Example 9-46 Java program: setting client information fields

 [image:]

 import com.ibm.db2.jcc.DB2Connection;

 import java.sql.*;

 public class DB211NewDriver {

 public static Connection con = null;

 public static CallableStatement cstmt;

 public static ResultSet results;

 public static boolean debug = true;

 public static void main(String args[]) throws Exception {

 String url = "jdbc:db2://redbook8:38420/DB1A"

 + ":user=db2r1;password=********;"

 + "traceLevel="

 + (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";"

 + "traceFile=c:\\work\\Author\\Redbook#8\\DRDA_traces\\DB211NewDriver.trace;";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 } catch (java.lang.ClassNotFoundException e) {

 System.err.print("ClassNotFoundException: ");

 System.err.println(e.getMessage());

 }

 con = DriverManager.getConnection(url);

 DB2Connection db2con = (DB2Connection) con;

 con.setAutoCommit(false);

 db2con.setClientInfo("ClientUser", "ClientUser_0123456789");

 db2con.setClientInfo("ClientAccountingInformation", "ClientAccountingInformation_0123456789");

 db2con.setClientInfo("ClientHostname", "WorkstationName_0123456789");

 db2con.setClientInfo("ApplicationName", "DB211JavaNewDriver_0123456789");

 db2con.setClientInfo("ClientCorrelationToken", "BXLS001");

 query1(con);

 query2(con);

 }

 public static void query1(Connection con) {

 System.out.println("Starting DB211NewDriver V1");

 Statement stmt;

 ResultSet rs;

 String planname;

 try {

 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT NAME FROM SYSIBM.SYSPLAN WHERE PROGAUTH = 'D'");

 System.out.println("--> Query executed. resultset follows");

 while (rs.next()) {

 planname = rs.getString(1);

 System.out.println("PLAN NAME = " + planname);

 // Force 1 second sleep for easier monitoring

 try {

 Thread.sleep(1000);

 } catch (InterruptedException ex) {

 Thread.currentThread().interrupt();

 }

 }

 System.out.println("--> Resultset exhausted");

 rs.close();

 stmt.close();

 } catch (SQLException e) {

 System.out.println("==> SQLException = " + e);

 System.out.println("==> SQLCODE = " + e.getErrorCode());

 System.out.println("==> SQLSTATE = " + e.getSQLState());

 System.out.println("==> Text of Error Message = " + e.getMessage());

 }

 }

 public static void query2(Connection con) {

 System.out.println("Starting query2");

 Statement stmt;

 ResultSet rs;

 String currclntacctng;

 try {

 stmt = con.createStatement();

 rs = stmt.executeQuery("select CURRENT CLIENT_ACCTNG from sysibm.sysdummy1;");

 System.out.println("--> Query executed. resultset follows");

 while (rs.next()) {

 currclntacctng = rs.getString(1);

 System.out.println("CURRENT CLIENT_ACCTNG = " + currclntacctng);

 // Force 1 second sleep for easier monitoring

 try {

 Thread.sleep(1000);

 } catch (InterruptedException ex) {

 Thread.currentThread().interrupt();

 }

 }

 System.out.println("--> Resultset exhausted");

 rs.close();

 stmt.close();

 } catch (SQLException e) {

 System.out.println("==> SQLException = " + e);

 System.out.println("==> SQLCODE = " + e.getErrorCode());

 System.out.println("==> SQLSTATE = " + e.getSQLState());

 System.out.println("==> Text of Error Message = " + e.getMessage());

 }

 }

 }

 [image:]

 	
 Tip: To keep an active connection with DB2 during the complete execution of the program and to make easier to monitor it online using commands, disable Autocommit by modifying the connection with con.setAutoCommit(false);

 Example 9-47 shows the output of the execution of this program in this example test environment.

 Example 9-47 Java sample program output

 [image:]

 Starting DB211NewDriver V1

 --> Query executed. resultset follows

 PLAN NAME = DSNTIA11

 PLAN NAME = DSNREXX

 PLAN NAME = DSNESPCS

 PLAN NAME = ADB2RIP

 PLAN NAME = ADB2WCL

 PLAN NAME = ADB27SPC

 --> Resultset exhausted

 Starting query2

 --> Query executed. resultset follows

 CURRENT CLIENT_ACCTNG = ClientAccountingInformation_0123456789

 --> Resultset exhausted

 [image:]

 Example 9-48 shows the result of the DB2 command -DIS THD(*) DETAIL when the type 4 driver is DB2 10.5 fix pack 2.

 Example 9-48 -DIS THD(*) DETAIL

 [image:]

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SERVER RA * 2 db2jcc_appli DB2R1 DISTSERV 0131 621

 V437-WORKSTATION=WorkstationName_012345678901234567890123456789012345

 67890123456789012345678901234567890123456789012345678901234567

 89012345678901234567890123456789012345678901234567890123456789

 01234567890123456789012345678901234567890123456789

 USERID=ClientUser_0123456789012345678901234567890123456789012345

 67890123456789012345678901234567890123456789012345678901234567

 890123456

 APPLICATION NAME=DB211JavaNewDriver_0123456789012345678901234567

 89012345678901234567890123456789012345678901234567890123456789

 01234567890123456789012345678901234567890123456789012345678901

 2345678901234567890123456789012345678901234567890123456789

 V441-ACCOUNTING=ClientAccountingInformation_0123456789012345678901234

 5678901234567890123456789012345678901234567890123456789012345678

 9012345678901234567890123456789012345678901234567890123456789012

 345678901234567890123456789012345678901234567890123456789

 V442-CRTKN=BXLS001

 V482-WLM-INFO=DDFBAT:1:3:1

 V445-G9378921.D8D9.CBBFAC100F80=621 ACCESSING DATA FOR

 (1)::9.55.137.33

 V447--INDEX SESSID A ST TIME

 V448--(1) 38420:55513 W R2 1321318355007

 [image:]

 DB2 DSNV436I message contains detail output from the DISPLAY THREAD command, which is part of the DSNV401I message. If a thread is processing an SQL statement, the output includes the following information about the SQL statement and the program that contains the statement.

 Example 9-49 illustrates the output of the -DIS THD(*) DETAIL command while a Java application was executing a SQL statement. This results in the inclusion of message V436 in the output.

 Example 9-49 DIS THD(*) DETAIL and message V436

 [image:]

 -DB1A DIS THD(*) DET

 DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS - DSNV402I -DB1A ACTIVE THREADS - 717

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SERVER RA * 2 db2jcc_appli DB2R6 DISTSERV 00A2 839

 V437-WORKSTATION=9.55.137.146

 USERID=db2r6

 APPLICATION NAME=db2jcc_application

 V441-ACCOUNTING=JCC041709.55.137.146

 V436-PGM=NULLID.SYSLH200, SEC=1, STMNT=0, THREAD-INFO=DB2R6:9.55.137.

 146:db2r6:db2jcc_application:DYNAMIC:59:*:<BRXLS_APPCRIS>

 V442-CRTKN=BRXLS_APPCRIS

 V482-WLM-INFO=DDFDEF:2:4:*

 V445-G9378992.CB66.CBF19D605478=839 ACCESSING DATA FOR

 (1)::9.55.137.146

 V447--INDEX SESSID A ST TIME

 V448--(1) 38420:52070 S2 1325311562154

 [image:]

 In V436 message, the section THREAD-INFO provides information about the thread presented in a colon-delimited list that contains the following segments:

 •The primary authorization ID that is associated with the thread.

 •The name of the user's workstation.

 •The ID of the user.

 •The name of the application.

 •The statement type for the currently executing statement: dynamic or static.

 •The statement identifier for the currently executing statement, if available. The statement identifier can be used to identify the particular SQL statement.

  –	For static statements, the statement identifier correlates to the STMT_ID column in the SYSIBM.SYSPACKSTMT table.

  –	For dynamic statements, the statement identifier correlates to the STMT_ID column in the DSN_STATEMENT_CACHE_TABLE table

 •The name of the role that is associated with the thread.

 •The correlation token that can be used to correlate work at the remote system with work that runs at the DB2 subsystem. The default correlation token, if available, is enclosed in < and > characters, and contains three components, which are separated by periods:

  –	A 3 - 39 character IP address

  –	A 1 - 8 character port address

  –	A 12 character unique identifier

 Example 9-50 shows the output of -DIS THD(*) DETAIL for the same scenario, with the original application still running but not executing a query in DB2. This results in V436 not be presented in the output.

 Example 9-50 DIS THD(*) DETAIL and message V436 missing

 [image:]

 -DB1A DIS THD(*) DET DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS - DSNV402I -DB1A ACTIVE THREADS - 721

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SERVER RA * 3 db2jcc_appli DB2R6 DISTSERV 00A2 839

 V437-WORKSTATION=9.55.137.146

 USERID=db2r6

 APPLICATION NAME=db2jcc_application

 V441-ACCOUNTING=JCC041709.55.137.146

 V442-CRTKN=BRXLS_APPCRIS

 V482-WLM-INFO=DDFDEF:2:4:20

 V445-G9378992.CB66.CBF19D605478=839 ACCESSING DATA FOR

 (1)::9.55.137.146

 V447--INDEX SESSID A ST TIME

 V448--(1) 38420:52070 N R2 1325311562639

 [image:]

 9.2 Cancel thread and cancel SQL statement improvements

 This section discusses the following improvements for distributed application accessing DB2 11 for z/OS:

 •Changes in Cancel DDF thread

 •Changes in SQL statement interruption processing

 9.2.1 Changes in Cancel DDF thread

 The DB2 CANCEL THREAD command cancels processing for specific local or distributed threads. The DDF option is used to identify distributed threads for which you want to cancel processing.

 In previous versions of DB2 for z/OS, the DDF cancel command and the SQL Cancel command might not work to cancel hung threads or interrupt long running SQL statements. DB2 11 for z/OS introduces the following improvements:

 •Enhance the DDF cancel command to use a new z/OS function to terminate a preemptable SRB

 •Remove the restrictions preventing the SQL Cancel from interrupting any long running SQL statement

 The DB2 for z/OS CANCEL THREAD command is a reactive command by design. A DB2 thread is flagged only as being canceled. The thread processing continues until it reaches a cancel detection point where the thread reacts by abnormally terminating itself. These cancel detection points are numerous and strategically distributed in the DB2 code.

 This reactive cancel behavior is usually sufficient and successful, but there are cases where the continued processing of the thread might be such that a cancel detection point might not be encountered in a timely manner, or not at all, including in the following cases:

 •Relatively tight loops in DB2 processing due to the extensive processing nature of the a SQL statement

 •Relatively tight loops in DB2 processing due to a DB2 logic error

 In these cases, the reactive nature of the DB2 CANCEL THREAD command is ineffective and a more proactive cancel behavior would be more reliable.

 To satisfy this requirement, a new z/OS function allows to terminate DBAT related SRB and Enclave processing in a way that allows for DB2 functional recovery. A new z/OS CALLRTM TYPE=SRBTERM service is provided in z/OS 1.13 to allow the DB2 CANCEL THREAD command processing to proactively cancel the thread when it is executing under an SRB.

 	
 Important: z/OS CALLRTM TYPE=SRBTERM service is provided in z/OS 2.1 or z/OS 1.13 retrofitted through APAR OA39392.

 To allow for this, the CANCEL THREAD command in DB2 11 includes a new FORCE option. Example 9-51 shows the syntax of the CANCEL THREAD command in DB2 11. Note the addition of the new FORCE option.

 Example 9-51 CANCEL THREAD command in DB2 11

 [image:]

 >>-CANCEL--+-THREAD(token)-----------+--+------+--+-------+----->

 '-DDF THREAD(-+-luwid-+-)-' '-DUMP-' '-LOCAL-'

 '-token-'

 >--+-----------+--+-------+------------------------------------><

 '-NOBACKOUT-' '-FORCE-'

 [image:]

 Use the FORCE option to instruct DB2 to attempt to purge the thread of a remote connection in the DB2 server. The FORCE option is accepted only after a request to CANCEL THREAD is issued without the FORCE option.

 	
 Attention: The FORCE option can potentially affect theDB2 subsystem. Use it to cancel threads that impact the DB2 subsystem and cannot be canceled without FORCE.

 	
 Important: Even with the FORCE option, sensitive processing is still shielded to protect the subsystem. In these situations, FORCE might not work as expected.

 You can use the DISPLAY THREAD command to display information by location. Example 9-52 shows the results of the DISPLAY THREAD(*) LOCATION(*) command.

 Example 9-52 -DISPLAY THREAD(*) LOCATION(*) command

 [image:]

 DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS -

 DSNV402I -DB1A ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SERVER RA * 4 db2jcc_appli DB2R1 DISTSERV 0130 60

 V437-WORKSTATION=9.55.137.139

 USERID=db2r1

 APPLICATION NAME=db2jcc_application

 V442-CRTKN=::9.55.137.139.52107.CBC10606A950

 V445-G937898B.CB8B.CBC10606A950=60 ACCESSING DATA FOR

 ::9.55.137.139

 DISPLAY ACTIVE REPORT COMPLETE

 DSN9022I -DB1A DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

 [image:]

 In this example, the thread token that is assigned to the thread is 60, as shown under the TOKEN keyword. The CANCEL DDF THREAD command syntax accepts either a thread token or a thread luwid as input, as shown in Example 9-53.

 Example 9-53 CANCEL DDF THREAD command syntax

 [image:]

 -CANCEL DDF THREAD (token or luwid)

 [image:]

 As from DB2 11, the CANCEL DDF THREAD commands accepts the FORCE option. For this example, when using the thread token as input parameter, this command can be written as shown in Example 9-54.

 Example 9-54 CANCEL DDF THD FORCE example

 [image:]

 -CAN DDF THD(60) FORCE

 [image:]

 	
 Note: The CANCEL THREAD command has no effect if the thread is not active or suspended in DB2.

 Example 9-55 shows the DB2 feedback after the execution of this command.

 Example 9-55 DB2 11 new message DSNV519I

 [image:]

 DSNV519I -DB1A DSNLCNCL CANCEL THREAD COMMAND WITH FORCE OPTION FOR

 '60' HAS COMPLETED WITH RETURN CODE X'0001'

 [image:]

 DB2 11 introduces the DSNV519I message. This message is provided when the CANCEL THREAD FORCE command is issued and indicates the success or failure of the command through a return code. That is: to determine the successful or failure of this command, you have to interpret the return code provided by DSNV519I.

 Example 9-56 shows the structure of the message DSNV519I.

 Example 9-56 Structure of DB2 message DSNV519I

 [image:]

 CANCEL THREAD COMMAND WITH FORCE OPTION FOR token-id HAS COMPLETED WITH RETURN CODE return-code

 [image:]

 The DSNV519I message provides this information:

 token-id	Either a thread identifier or a logical unit of work identifier (luwid) returned from the DISPLAY THREAD command

 return-code	A numeric value that indicates the success or failure of the CANCEL THREAD command

 The return-code can use the following possible values:

 X’0000’	The CANCEL THREAD command successfully completed.

 X’0001’	The CANCEL THREAD command was not accepted. The FORCE option is not allowed until a CANCEL THREAD without the FORCE option is first attempted.

 X’0002’	The CANCEL THREAD command was not accepted. The CANCEL THREAD command with the FORCE option for the same token-id cannot be repeated.

 X’0003’	The CANCEL THREAD command was not accepted. The token-id cannot be found.

 X’0004’	The CANCEL THREAD command was not accepted. The token-id is associated with a DDF disconnected DBAT on the DB2 server.

 Example 9-55 receives an X’0001’ return code when executing the CANCEL THD command in Example 9-54. This return code is a consequence of using the FORCE option before executing a non-FORCE command. At this point, no action against the target thread has been performed by DB2. In this scenario the only next option to cancel this tread is then to execute a non-FORCE CANCEL THD command as shown in Example 9-57.

 Example 9-57 CANCEL DDF THREAD command

 [image:]

 -CAN DDF THD(60)

 [image:]

 Example 9-58 shows the DB2 feedback on the execution of this command.

 Example 9-58 CANCEL THREAD command output example

 [image:]

 DSNL010I -DB1A DDF THREAD '60' HAS BEEN CANCELLED

 [image:]

 In this example, the thread was effectively and immediately cancelled. This can be confirmed by a DISPLAY THREAD command, or by inspecting the DB2 MSTR address space feedback. Example 9-59 shows how the termination of the thread is reported in the MSTR address space of this example DB2 subsystem.

 Example 9-59 Cancelled thread: DB2 MSTR feedback

 [image:]

 20.24.21 STC06973 DSNL027I -DB1A SERVER DISTRIBUTED AGENT WITH 220

 220 LUWID=G937898B.CB8B.CBC10606A950=60

 220

 220 THREAD-INFO=DB2R1:9.55.137.139:db2r1:db2jcc_application:*:*:*:<::9.55

 220 .137.139.52107.CBC10606A950>

 220 RECEIVED ABEND=04E

 220 FOR REASON=00D3001A

 20.24.21 STC06973 DSNL028I -DB1A G937898B.CB8B.CBC10606A950=60 221

 221 ACCESSING DATA FOR

 221 LOCATION ::9.55.137.139

 221 IPADDR ::9.55.137.139

 20.24.21 STC06973 DSNL511I -DB1A DSNLIENO TCP/IP CONVERSATION FAILED 222

 222 TO LOCATION ::9.55.137.139

 222 IPADDR=::9.55.137.139 PORT=52107

 222 SOCKET=SENDMSG RETURN CODE=3448 REASON CODE=00000000

 [image:]

 The 00D3001A reason code indicates that a CANCEL DDF THREAD command naming a distributed thread caused the thread to be terminated. If the thread not being cancelled because of the reason discussed previously in this section, a CANCEL DDF THREAD option FORCE would be accepted by DB2.

 9.2.2 Changes in SQL statement interruption processing

 Prior to DB2 for z/OS Version 8, the only way to interrupt SQL statement processing that was executing on behalf of a remote application was for the remote application to terminate its connection to the DB2 for z/OS server. This interrupted the SQL statement by terminating the entire DB2 for z/OS server thread (DBAT) and all SQL in the transaction were also aborted.

 To allow applications to remain connected to the DB2 for z/OS sever, DB2 for z/OS V8 introduced the ability to interrupt the operation of individual SQL statements. DB2 returns an SQLCODE indicating that the specific SQL statement was canceled, while maintaining the connection with the remote application and the effects of all previous SQL in the transaction.

 Application driver environments typically have the following property settings that determine which form of SQL Interruption are used:

 •To interrupt the SQL statement

 •To interrupt the entire connection

 The default client driver behavior is the more granular approach to interrupt just the SQL statement, as opposed to terminating the connection.

 For example, the interruptProcessingMode property specifies the behavior of the IBM Data Server Driver for JDBC and SQLJ when an application executes the Statement.cancel method. Possible values are:

 •DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_DISABLED (0)

 Interrupt processing is disabled. When an application executes Statement.cancel, the IBM Data Server Driver for JDBC and SQLJ does nothing

 •DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1)

 This is the default value. When an application executes Statement.cancel, the IBM Data Server Driver for JDBC and SQLJ cancels the currently executing statement. If the data server does not support interrupt processing, the driver throws an SQLException.

 •DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2)

 When an application executes Statement.cancel, the driver drops the underlying socket

 Example 9-60 shows a portion of a JCC trace for a Java application connecting to a DB2 11 for z/OS server.This example highlights the default queryTimeoutInterruptProcessingMode=1 property value. This value indicates that the driver is working with interrupt processing.

 Example 9-60 JCC trace and the default interrupt processing mode

 [image:]

 [jcc] pureQuery present = false

 [jcc] END TRACE_DRIVER_CONFIGURATION

 [jcc] BEGIN TRACE_CONNECTS

 [jcc] Attempting connection to redbook8:38420/DB1A

 [jcc] Using properties: { maxStatements=0, currentPackagePath=null, currentLockTimeout=-2147483647, timerLevelForQueryTimeOut=0, optimizationProfileToFlush=null, timeFormat=1, monitorPort=0, sendCharInputsUTF8=0,

 ...

 currentSchema=null, CR_LOCKBLOB=null, traceLevel=-1, enableRowsetSupport=0, clientDebugInfo=null, dataSourceName=null, enableAlternateServerListFirstConnect=0, maxRetriesForClientReroute=-1, fetchSize=-1, queryDataSize=0, queryTimeoutInterruptProcessingMode=1, alternateGroupServerName=null, clientRerouteAlternateServerName=null, DBTEMP=/tmp, enableT2zosLBF=0, SUBQCACHESZ=10, ssid=null, maxConnCachedParamBufferSize=1048576, fullyMaterializeInputStreamsOnBatchExecution=0, alternateGroupPortNumber=null,

 ...

 defaultIsolationLevel=2, deferPrepares=true, currentDegree=null, DUMPMEM=null, memberConnectTimeout=0 }

 [jcc] END TRACE_CONNECTS

 [image:]

 The SQL statement Interruption technique is the more granular and preferred operation with respect to remote applications. Nevertheless, the statement interruption processing is not completely reliable in some scenarios. As a consequence, there is a strong recommendation for users to use the more drastic, but more effective, INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET method that terminates the connection.

 However, it is often difficult for users to modify the client driver property to use the more reliable form. As a consequence, until the DB2 SQL statement Interrupt processing can be made more reliable, DB2 compensates by changing its SQL Interruption processing to behave as though the connection had been terminated.

 This way, SQL statement interruption is more reliable at a DB2 for z/OS server system, but at the expense of terminating the connection with the remote application. This condition should be handled by the application.

 In DB2 11, when DB2 receives a DRDA SQL Interrupt from a remote client, it closes the connection and terminate the thread under which the statement is running, instead of interrupting just the statement and returning an SQLCODE=-952.

 Depending on whether the remote client has enabled Sysplex Workload Balancing (sysplexWLB) and if the application has resources that need to persist across transactions preventing the connection from being reused by a different application at the end of a transaction, the remote application might receive the following SQLCODEs:

 -30081	An application gets this SQLCODE if the client does not support sysplexWLB or the connection cannot be reused. The client has to reconnect to DB2 before executing the application again

 -30108	An application gets this SQLCODE if the client supports sysplexWLB and the connection can be reused but the client cannot retry the failed statement seamless to the application. The client, however, reconnects to DB2 before returning the SQLCODE to the application so that the application can retry the failed transaction immediately

 0	An application can get this SQLCODE if the client supports sysplexWLB, the connection can be reused and the client seamlessly retried the failed statement which completed successfully

 9.3 Continuous block fetching

 DB2 11 introduces package-based continuous block fetch. It can improve performance for retrieval of large, read-only result sets from a remote DB2 for z/OS server.

 	
 Important: DB2 11for z/OS provides improved performance for distributed applications that return large result sets

 Like the previously existing SQL-based continuous block fetch, package-based continuous block fetch causes fewer messages to be transmitted from the requester to retrieve the entire result set. However, package-based continuous block fetch is easier to configure. It requires only that you bind your applications with the new DBPROTOCOL(DRDACBF) option. You do not need to modify your applications or set subsystem parameters to indicate the maximum number of blocks to be returned for a remote request. This change is available in NFM and requires APPLCOMPAT = V11R1 to be set.

 The new package-based continuous block fetch is more efficient than SQL-based continuous block fetch. With package-based continuous block fetch, the requester opens a secondary connection to the DB2 server for each read-only cursor. The DB2 server returns extra query blocks until the all rows for the cursor have been retrieved. When the cursor is closed, the secondary connection is implicitly closed.

 Figure 9-3 shows a representation of how SQL Based Continuous Block Fetch works. Using this technique, DB2 can send numerous query blocks per request. A single connection is used for all SQL. The implication for the single connection is that other SQL, outside of the cursors, cannot use the connection while the cursor driven blocks are using the connection.

 [image:]

 Figure 9-3 SQL based continuous block fetch

 Figure 9-4 shows a representation of the Package Based Continuous Block Fetch, introduced in DB2 11. With this method, query blocks flow on a secondary connection until the cursor is exhausted. As a consequence, the network latency is significantly improved. When the result set or cursor is exhausted, the DB2 server terminates the connection and the thread is immediately pooled.

 [image:]

 Figure 9-4 Package based continuous block fetch

 Example 9-61 shows the changes to the SPUFI REBIND panels to indicate the DRDACBF option.

 Example 9-61 SPUFI panel DSNEBP11, defaults for REBIND PACKAGE

 [image:]

 DSNEBP11 DEFAULTS FOR REBIND PACKAGE SSID: DB1A

 COMMAND ===>

 Change default options as necessary.

 ----------------- Use the UP/DOWN keys to access all options ------------------

 More: -

 UNICODE, or ccsid)

 11 OPTIMIZATION HINT ===> SAME > (SAME or 'hint-id')

 12 IMMEDIATE WRITE.......... ===> SAME (SAME, NO, YES,

 or INHERITFROMPLAN)

 13 DBPROTOCOL ===> SAME (SAME, DRDA, DRDACBF)

 14 DYNAMIC RULES ===> SAME (SAME, RUN, BIND,

 DEFINERUN, DEFINEBIND,

 INVOKERUN or INVOKEBIND)

 15 PLAN MANAGEMENT ===> DEFAULT (DEFAULT, BASIC, EXTENDED, OFF)

 16 ACCESS PATH REUSE ===> DEFAULT (DEFAULT, ERROR, NONE, or WARN)

 17 ACCESS PATH COMPARISON .. ===> DEFAULT (DEFAULT, ERROR, NONE, or WARN)

 18 ACCESS PATH RETAIN DUPS . ===> DEFAULT (DEFAULT, NO, or YES)

 19 SYSTEM_TIME SENSITIVE ... ===> SAME (SAME, NO, or YES)

 20 BUSINESS_TIME SENSITIVE . ===> SAME (SAME, NO, or YES)

 21 ARCHIVE SENSITIVE ===> SAME (SAME, NO, or YES)

 22 APPLICATION COMPATIBILITY ===> SAME (SAME, V10R1, or V11R1)

 PRESS: ENTER to continue UP/DOWN to scroll RETURN to EXIT

 [image:]

 Example 9-62 shows an example of REBIND PACKAGE command using the DBPROTOCOL(DRDACBF) option.

 Example 9-62 REBIND PACKAGE with DBPROTOCOL(DRDACBF) option

 [image:]

 //DRDACBF1 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)

 //STEPLIB DD DSN=DB1AT.SDSNLOAD,DISP=SHR

 //SYSTSPRT DD SYSOUT=*

 //SYSTSIN DD *

 DSN SYSTEM(DB1A)

 REBIND PACKAGE(DSN8BH11.DSN8BC3) DBPROTOCOL(DRDACBF)

 /*

 [image:]

 Example 9-63 shows the output of the execution of this REBIND command.

 Example 9-63 REBIND output

 [image:]

 1READY

 DSN SYSTEM(DB1A)

 DSN

 REBIND PACKAGE(DSN8BH11.DSN8BC3) DBPROTOCOL(DRDACBF)

 WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"

 WARNING, ONLY IBM-SUPPLIED PACKAGE-IDS SHOULD BEGIN WITH "DSN"

 DSNT254I -DB1A DSNTBRB2 REBIND OPTIONS FOR

 PACKAGE = DB1A.DSN8BH11.DSN8BC3.()

 ACTION

 OWNER SYSADM

 QUALIFIER SYSADM

 VALIDATE RUN

 EXPLAIN NO

 ISOLATION CS

 RELEASE

 COPY

 APREUSE

 APCOMPARE

 APRETAINDUP YES

 BUSTIMESENSITIVE YES

 SYSTIMESENSITIVE YES

 ARCHIVESENSITIVE YES

 APPLCOMPAT V11R1

 DSNT255I -DB1A DSNTBRB2 REBIND OPTIONS FOR

 PACKAGE = DB1A.DSN8BH11.DSN8BC3.()

 SQLERROR NOPACKAGE

 CURRENTDATA YES

 DEGREE 1

 DYNAMICRULES

 DEFER

 REOPT NONE

 KEEPDYNAMIC NO

 IMMEDWRITE INHERITFROMPLAN

 DBPROTOCOL DRDACBF

 OPTHINT

 ENCODING EBCDIC(00037)

 PLANMGMT EXTENDED

 PLANMGMTSCOPE STATIC

 CONCURRENTACCESSRESOLUTION

 EXTENDEDINDICATOR

 PATH

 DSNT232I -DB1A SUCCESSFUL REBIND FOR

 PACKAGE = DB1A.DSN8BH11.DSN8BC3.()

 DSN

 END

 READY

 END

 [image:]

 Package-based continuous block fetch provides a performance advantage for a DB2 for z/OS application with the following characteristics:

 •The application queries only remote sites

 •The application does not contain INSERT, UPDATE, DELETE or MERGE statements

 •No statement in the application creates a unit of recovery on the remote site. This situation results in an SQL error when the application package is bound for package-based continuous block fetch

 Table 9-7 shows the results observed during IBM conducted preliminary internal lab performance tests. In this table, results are expressed as delta %.

 Table 9-7 Preliminary internal lab performance results

 	
 Delta %

 	
 Class 1 Elapsed Time

 	
 Class 2 Elapsed Time

 	
 Class 1 CPU Time

 	
 Class 2 CPU Time

 	
 Server

 	
 -29,5

 	
 -8,3

 	
 -20

 	
 -5,8

 	
 Requester

 	
 -31,1

 	
 -31,1

 	
 -13

 	
 -13

 9.4 Support for global variables

 This section describes the use of global variables.

 DB2 supports the following types of distributed protocols an application can use to execute a statement on a remote system:

 •When the application explicitly connects to the remote server, application-directed access

 •When the application implicitly connects to the remote server by using three-part name references, system-directed access

 Application-directed access

 When using application-directed access, the location and platform of the system executing the statement is known to the application. The application, which had connected to DB2 and possibly run some statements, now connects to another location. In doing so, the application must then establish the session environment it needs to run any of its statements while connected to this new location. Thus, any session information, special registers and user-defined session global variables, are maintained between the application itself and the current serving location. If the application decides to temporarily move away from this location to another, the session information would be preserved at this serving location until the connection between the requesting and serving locations was terminated.

 System-directed access

 When using system-directed access, the location and platform of the system executing the statement is transparent to the application. The application connects to DB2 and runs the statement as though executing on the local system. You can create aliases for remote objects which allows you to reference remote objects without any change to your application. Users access them with the same syntax and application environment as local objects. When DB2 parses the statement and determines the object is on a remote system, DB2 implicitly connects to the system and forwards the statement to the other system.

 For example, an application connects to the EAST location and queries the DEPT table. If the DEPT table is moved to the WEST location, you can create an alias on the EAST location for the DEPT table on the WEST location, the application can continue to issue the query without change. Even if the application directly references the DEPT table at the WEST location by using an explicit 3-part name reference, the application is still just referencing a table/view object without regard to the fact that communications have to be established to the WEST location to access the DEPT table

 To maintain location transparency, DB2 ensures the application execution environment is maintained across systems. Special registers used to store information that can be referenced in SQL statements and set by the application are maintained by DB2 on both the local and remote systems transparent to the application. For example, if an application issues the SET CURRENT PRECISION statement to assign a value to the CURRENT PRECISION special register, The CURRENT PRECISION register value is propagated to the remote system prior to executing the statement. When the statement is executed, special register settings set by the application are used to process the statement on the other system.

 To maintain location transparency for user-defined session global variables, DB2 ensures the global variables and their values set by the application context are maintained and persist across systems. Because any statement executed locally can reference or alter any user-defined session global variable, an instance of any global variable with its last updated value must be created on the remote system prior to executing the statement. Thus, global variables values are maintained by DB2 on both the local and remote systems for the application process.

 For example, if an application sets some global variables and then executes a system-directed SQL statement, the global variable settings are propagated to the remote system. Prior to the execution of the statement, the remote system uses the global variable definitions and values sent from the requesting system to create instances of the user-defined global variables. The statement is then executed on the remote system.

 If any changes are made to user-defined session global variables on the remote system by the just executed statement, the definitions and updated values of the changed user-defined session global variables are returned to the requesting system. The requesting system then updates any already instantiated user-defined session global variables or creates instances of newly set user-defined session global variables. For this all to work correctly, the definitions of the global variables, that is CREATE VARIABLE statements, must be identical on both the requesting and serving systems or SQLCODE -30045 is issued.

 	
 Important: The global variable definitions must exist at every remote location that is accessed by an application, and the definitions must be identical. Otherwise, the application receives SQLCODE -30045.

 Example 9-64 shows the structure of the SQL error code -30045.

 Example 9-64 Structure of SQLCODE -30045

 [image:]

 EXECUTION FAILED BECAUSE THE DEFINITION OF OBJECT object-name OF TYPE object-type BEING ACCESSED AT server-name-1 DIFFERS FROM THE DEFINITION OF THE OBJECT AT server-name-2

 [image:]

 As a result of the error reported by the SQL error code -30045, the statement cannot be processed. Refer to the IBM documentation “DB2 for z/OS Codes” for more details about this SQL error code.

 Finally, an application can intermix application-directed and system-directed statements on the same connection. How session information is maintained is dependent on the persistence of any connection created between the two locations. Mixing protocols that utilize user-defined session global variables can result in unexpected behavior and is prevented. If an application intermixes distributed protocols where a statement first used application-directed protocols and was then followed by a statement using system-directed protocols, an SQLCODE -30047 exception is generated.

 For example, an application issues a statement that uses an ALIAS to refer to a table at another location and then calls a procedure which issues a CONNECT statement and issues statements to the same location, the connection has executed statements using both protocols.

 Persistence of connections is governed by the SQL RELEASE statement and how the plan was bound as follows:

 •For z/OS applications, the DISCONNECT bind plan option determines when connections are dropped during commit operations. The default value is EXPLICIT. If EXPLICIT is used, the application must issue a RELEASE statement prior to a COMMIT to have a connection dropped during commit processing.

 If no RELEASE statements are issued, the connections persist until the application ends. Another possible option is AUTOMATIC. When the AUTOMATIC bind option is in control, all connections to remote servers from the requester is dropped when a COMMIT is processed. The final value of the DISCONNECT bind option is CONDITIONAL. It behaves similarly to AUTOMATIC with one exception. If a WITH HOLD cursor is still open against a location, the connection is not dropped when a COMMIT is processed. If the application eventually closes the cursor, a subsequent COMMIT then causes the connection to be dropped.

 •For IBM DB2 Connect™ applications, the EXPLICIT behavior is used and cannot be changed.

 •The above connection persistence rules apply whether or not the application was prepared (not bound) under connect type-1 or connect type-2 rules.

 Based on the above connection persistence rules, SQL statements that are processed at a location under application-directed protocols behave as follows:

 •All statement references to user-defined session global variables, both input and output, refer to the user-defined session global variables at the serving location. User-defined session global variables at the requesting location are neither updated nor referenced as a result of either dynamic or static SQL statements in this scenario.

 •The content of the user-defined session global variables at the serving location persists until the connection is dropped. Whether connect type-1 or connect type-2 rules are used, the connection type is not be a factor and doesn't affect when a connection is dropped. Any subsequent references to user defined session global variables at the location where the connection had been dropped cause the user defined session global variables to be instantiated with default values again; otherwise, subsequent references to the user-defined session global variables use the values last updated.

 Based on these connection persistence rules, SQL statements that are processed using system-directed protocols behave as follows:

 •Contents of the user-defined session global variables that are instantiated at the requesting location are sent to the serving location, such that the same user-defined session global variable values are used during the processing of the SQL statement at both locations.

 •User-defined session global variables that are the target of the output process from the SQL statement are made to both the user-defined session global variables at both locations.

 •For static SQL statements referencing objects and user-defined session global variables that use system-directed access, a package must be bound at both locations. If at the time of the static bind, different definition exists on the requester location and server location for the same user defined session global variable, the executable runtime structures are generated differently. At execution time, DB2 issues an -30045 exception to indicate a mismatch of user-defined session global variable definitions if referenced on both sites.

 •For dynamic statements referencing objects and user-defined session global variables at remote locations through system-directed distributed processing, there is no corresponding restriction as static statements. However, if the SQL statement uses a user-defined session global variable and DB2 determines there is a definition mismatch, DB2 issues the -30045 error.

 If the application connected to DB2 issues statements that use both system-directed protocols and application directed protocols to the same location, they share the same connection. For example, an application connects to the HDQ location and issues a statement that uses an ALIAS to query a table at the MFG location. The next statement calls a procedure on the HDQ location. If procedure issues a CONNECT statement to the MFG location, the same connection is used. Mixing protocols which use user-defined global variables can cause nondeterministic results. Mixing distributed protocol statements on the same connection that use user-defined session variables is prevented by DB2 issuing an SQLCODE -30047 exception.

 For DB2 Connect clients that are sysplexWLB enabled which performs transaction level load balancing across a data sharing group, connections persist across different members of the data sharing group. To support user defined session global variables an upgrade of the client is needed with this feature enabled. DB2 returns changed user-defined session global variables to the client driver to allow the client to replay them when the application connection is transparently moved to a different member of the data sharing group.

 Global variables in SQL statements referencing remote servers

 In the case of static statements referencing a 3-part remote object, or a statically bound statement executed when the CURRENT SERVER is a remote server, DB2 marks the current section as a distributed-section at the requester site, and all SQL processing occurs at the target server site.

 This means, the created global variables at the local requester site are not used in the processing of the SQL statement, because the processing occurs at the server.

 DB2 requires the package to exist at both the requester and the server sites for DRDA communication protocol. Thus, the packages on all sites need to be created first using some form of BIND PACKAGE command. However, because the bind occurs on different sites, the global variables might not be all created, or if created might not share the same definition nor DEFAULT expressions. Incongruous definitions or instantiation of global variables can result in different outcomes when the same SQL statement is executed locally versus remotely

 Global variables scope with Thread-Reuse

 DB2 Distributed Data Facility (DDF) can employ thread-reuse to enhance performance when multiple connections are made to the DB2 server. If a connection (or thread) in DB2 qualifies for reuse, then it is returned to the reusable thread pool at COMMIT or ROLLBACK, waiting for the next connection request. The next connection request can be from a different application, or it can be the continuation of the previous application. Because global variables are not affected by COMMIT nor ROLLBACK, the content must persist across COMMIT and ROLLBACK, and therefore, across reusable threads.

 When a thread is reused for an application that referenced global variables, all instantiated variables are “replayed” for the reused thread such that all values recorded from the previous thread are copied over to the current reused thread. This ensures the persistence of the instantiated global variable across reusable threads.

 9.5 Local stored procedure execution improvement

 DB2 11 delivers performance optimization for processing stored procedure calls from local ODBC and JDBC applications by improving stored procedure result set processing. This is beneficial for customers who call stored procedures from a local JDBC or ODBC environment, such as WebSphere on z/OS or MessageBroker on z/OS, encapsulating SQL in stored procedures. The enhancements do not require changes to the application and are available in CM.

 The enhancements are in the following areas:

 •The communication between the ODBC or JDBC/SQLJ driver and DB2 to execute the CALL statement.

 Bundling CALL and DESCRIBE PROCEDURE and bundling ALLOCATE CURSOR and DESCRIBE CURSOR to reduce trips from ODBC/JDBC driver to DBM1.

 •The communication between the ODBC or JDBC/SQLJ driver and DB2 to return the result set metadata.

 •The processing of the result sets returned from the called stored procedure using limited block fetch and progressive streaming (which is better performing than multi-row fetch).

 •The communication between ODBC or JDBC/SQLJ driver and DB2 by implicitly closing the result sets at their termination (SQLCODE +100).

 •Support of 64bit private variables area for in/out parameters.

 Allows the exchange of parameter larger than 32 KB, such as parameter of data type LOB (with usage of 64-bit DB2VAR for input/output parameters).

 •More efficient way to describe stored procedure parameters.

 Similar enhancements had been introduced with DB2 10 for local ODBC/JDBC, but not for stored procedures.

 Figure 9-5 summarizes the enhancements.

 [image:]

 Figure 9-5 Summary of local stored procedure improvements

 The ODBC driver supports the optimization of stored procedure result set processing by enabling block fetch through the LIMITEDBLOCK, QUERYDATASIZE, and STREAMBUFFERSIZE keywords in the initialization file data source section. The keyword values are read from the data source stanza following a successful connect.

 The LIMITEDBLOCK keyword specifies if the driver is to attempt a block fetch when fetching a result set at the connected data source (server). The acceptable keyword values are 0 and 1:

 0	No block fetch.

 1 (default)	The driver would attempt a block fetch and return as many rows as can fit in a data block in a single fetch provided that blocking is supported at the server for the result set being fetched. The driver currently does not perform block fetch if any of the columns in the result set is a LOB, XML, or file reference.

 QUERYDATASIZE specifies the size of the data block in bytes. The default for QUERYDATASIZE is 32 KB (32767). The maximum data block size is 1048575 in 32 KB increments.

 STREAMBUFFERSIZE is the threshold value, in bytes (default 1 MB) to return LOB or XML as inline data or as internal token:

 •If size of LOB or XML object <= STREAMBUFFERSIZE, data returned inline

 •If size of LOB or XML object >= STREAMBUFFERSIZE, progressive reference returned

 The JDBC driver supports stored procedure optimization transparently.

 •The queryDataSize property also used for stored procedure result sets

 32 KB, up to 1 MB in 32 KB increments

 •FET_BUF_SIZE (64 KB) keyword can be used to limit rows per buffer

 The tests have shown better performance for local ODBC and Type 2 applications that call local stored procedures because of:

 •More efficient blocking of data in returned result sets

 •More efficient retrieval of LOB and XML result sets

 •Reduced traffic for implicit close

 9.6 Multi-threaded Java stored procedure environment

 DB2 11 adds support for running Java stored procedures in a 64-bit Java virtual machines (JVM). Earlier versions of DB2 run Java stored procedures in 31-bit JVM only, and each JVM can run only one Java stored procedure at a time.

 With DB2 10, the behavior is single threaded JVM for Java stored procedures can be summarized as follows:

 •WLM stored procedure address space (WLM-SPAS)

 •1 JVM per TCB in WLM-SPAS

  –	Large storage footprint per TCB

  –	Overhead on starting JVMs

 •The recommended NUMTCB is 8 or less per WLM application environment

  –	NUMTCB used is typically 2-5

 •There are performance and scalability implications for Java stored procedures

 •They use a 31-bit JVM

 With DB2 11, see Figure 9-6, Java stored procedures use multi-threaded JVMs. DB2 11 can concurrently run multiple Java stored procedures in 64-bit JVMs. Therefore, more Java stored procedures can run in a single stored procedure address space than in earlier DB2 versions.

 •One 64-bit JVM per WLM-SPAS

  –	Less overhead to start JVM

  –	Smaller JVM storage footprint

 •NUMTCB of 25 or more per WLM application environment

  –	Better scalability

 •It requires JDK 1.6

  –	64-bit JDK

  –	IBM Data Server Driver for JDBC and SQLJ

 The multi-threaded JVM executes a new DSNX9WJM module in the WLM application environment which is specified on the start-up JCL.

 The existing application environments need to be modified or new application environments defined to take advantage of more TCBs (larger NUMTCB).

 [image:]

 Figure 9-6 Moving to multi-threaded JVM environment

 Most existing Java stored procedures can be altered to run in new multi-threaded environment. If the Java stored procedure invokes a native method through JNI calls, the dynamic link library (DLL) for native functions must be compiled and linked in 64-bit mode.

 	
 Note: Native non-Java code must be rebuilt and tested for the 64-bit environment.

 While in data sharing coexistence, multi-threaded Java stored procedures can be used in CM mode but all members must use new DSNX9WJM module for that WLM environment if stored procedures uses native JNI calls.

 9.7 ADMIN_COMMAND_MVS stored procedure

 DB2 provides stored procedures that you can call in your application programs to perform administrative functions.

 You can use the DB2 provided SYSPROC.ADMIN_COMMAND_MVS stored procedure to issue the following z/OS commands:

 •QUERY COPYPOOL

 •LIST COPYPOOL

 •DB2 START

 •DB2 STOP

 •DUMP

 •DISPLAY WLM

 SYSPROC.ADMIN_COMMAND_MVS (also retrofitted to DB2 10 by APAR PM93773) extends the list to the following available command related stored procedures:

 •ADMIN_COMMAND_DB2

 •ADMIN_COMMAND_DSN

 •ADMIN_COMMAND_UNIX

 This stored procedure runs in a WLM-established stored procedures address space, and all of the libraries that are specified in the STEPLIB DD statement must be APF-authorized. Example 9-65 shows the syntax for calling ADMIN_COMMAND_MVS.

 Example 9-65 Syntax CALL ADMIN_COMMAND_MVS

 [image:]

 >>-CALL--ADMIN_COMMAND_MVS--(----type---,----------------------->

 >--+-command_prefix-+-,--+-remote_system-+-,--+-jobname-+-,----->

 '-NULL-----------' '-NULL----------' '-NULL----'

 >----command---,--+-parameters-+-,--+-subparameters-+-,--------->

 '-NULL-------' '-NULL----------'

 >--+-wait_timeout-+--return-code,--command_completion_code,----->

 '-NULL---------'

 >--+-message-+--)--><

 '-NULL----'

 [image:]

 The call parameter type cannot be NULL, and it accepts these values:

 •HSM

 •DB2

 •DUMP

 •WLM

 This stored procedure returns the following output parameters:

 return-code	Provides the return code from the stored procedure. Possible values are 0,4,8, and 12.

 command_completion_code	Indicates the completion status of the command. Possible values are 0,4,8,12 and 16.

 message	Contains messages that describe the error that was encountered by the stored procedure.

 	
 Tip: Refer to DB2 11 for z/OS Administration Guide, SC19-4050 for details about ADMIN_COMMAND_MVS parameters.

 Execution example: display WLM

 To display the WLM application environments using ADMIN_COMMAND_MVS you have to specify these parameters:

 •Type: Use the value WLM

 •Command: Use the value DISPLAY

 •Parameters: Specify either APPLENV=name or APPLENV=*

 All the other parameters have to be defined as NULL. Figure 9-7 shows an example of calling ADMIN_COMMAND_MVS from Data Studio.

 [image:]

 Figure 9-7 Calling ADMIN_COMMAND_MVS from Data Studio

 For parameter that are not filled in, use the Set to Null button in this dialog box. Otherwise, the execution of the stored procedure fails with return code 12 and DSNA601I message.

 Example 9-66 is an illustration of the feedback received when using an invalid COMMAND_PREFIX parameter.

 Example 9-66 Message DSNA601I

 [image:]

 DSNA601I DSNADMCM THE PARAMETER COMMAND_PREFIX IS NOT VALID. INVALID REASON CODE=5

 [image:]

 DSNA601I indicates that the parameter specified in the message is not valid. The cause of the invalid error is identified by the INVALID REASON CODE value in the message text. The specified parameter is not valid for the indicated reason, as follows:

 •REASON CODE=1: Value is not an acceptable value

 •REASON CODE=2: Value is not unique

 •REASON CODE=3: Value is null

 •REASON CODE=4: Value is blank

 •REASON CODE=5: Value is not null

 •REASON CODE=6: Value is too long

 •REASON CODE=7: Named parameter is not known

 •REASON CODE=8: Named parameter is missing

 Figure 9-8 shows the parameters panel in Data Studio after successful execution. Note the parameters RETURN_CODE = 0 and COMMAND_COMPLETION_CODE = 0. MSG is Null.

 [image:]

 Figure 9-8 ADMIN_COMMAND_MVS parameters in Data Studio

 The actual WLM DISPLAY results are reported in the Result1 panel, as shown in Figure 9-9.

 [image:]

 Figure 9-9 Calling ADMIN_COMMAND_MVS: Result1 panel

 In addition, the WLM DISPLAY output command is listed in the system log, as shown in Example 9-67.

 Example 9-67 ADMIN_COMMAND_MVS and WLM DISPLAY: system log messages

 [image:]

 15:52:51.67 STC06093 00000090 ICH70001I DB2R1 LAST ACCESS AT 15:39:32 ON FRIDAY, JULY 26, 2013

 15:52:51.70 STC06093 00000290 IEA630I OPERATOR DSNADMCM NOW ACTIVE, SYSTEM=SC63 , LU=DSNADMCM

 15:52:51.70 DSNADMCM 00000290 DISPLAY WLM,APPLENV=*

 15:52:51.73 DSNADMCM 00000090 IWM029I 15.52.51 WLM DISPLAY 337

 337 00000090 APPLICATION ENVIRONMENT NAME STATE STATE DATA

 337 00000090 BARTSRV AVAILABLE

 337 00000090 BBOASR1 AVAILABLE

 337 00000090 BBOASR2 AVAILABLE

 337 00000090 CBINTFRP AVAILABLE

 337 00000090 CBNAMING AVAILABLE

 ...

 [image:]

 In this example, STC06093 is the WLM address space that supports the execution of the stored procedure. DSNADMCM is the name of the extended MCS console that issue the requested command.

 Security considerations

 To execute the CALL statement, the owner of the package or plan that contains the CALL statement must have one or more of the following privileges:

 •The EXECUTE privilege on the stored procedure

 •Ownership of the stored procedure

 •SYSADM authority

 The load module for ADMIN_COMMAND_MVS is named DSNADMCM. This name can be used in the definition of some specific RACF resources as a way of increasing security.

 The caller of ADMIN_COMMAND_MVS must have READ access to the RACF MVS.MCSOPER.* or to the MVS.MCSOPER.DSNADMCM resource profile of the OPERCMDS class. RACF perform access checks starting by the most restrictive resource profile. If MVS.MCSOPER.DSNADMCM is not defined, RACF checks for MVS.MCSOPER.*.

 You can use the RACF ISPF panels to investigate the access defined on the resource MVS.MCSOPER.* following these steps:

 1.	Open the RACF ISPF main menu to receive the SERVICES OPTION MENU.

 2.	Select option 2. GENERAL RESOURCE PROFILES.

 3.	You are now in the GENERAL RESOURCE PROFILE SERVICES panel. Select option S. SEARCH.

 4.	Press Enter to access to the GENERAL RESOURCE SERVICES - SEARCH panel.

 5.	Enter OPERCMDS in the CLASS option, as shown in Example 9-68.

 Example 9-68 RACF - GENERAL RESOURCE SERVICES panel

 [image:]

 RACF - GENERAL RESOURCE SERVICES - SEARCH

 OPTION ===>

 ENTER THE FOLLOWING PROFILE INFORMATION:

 CLASS ===> OPERCMDS

 PROFILE ===>

 [image:]

 6.	Press Enter to access the SEARCH FOR GENERAL RESOURCE PROFILES panel. Fill-in MASK1 with MVS, and MASK2 with MCSOPER, as shown in Example 9-69. Press Enter to continue.

 Example 9-69 RACF SEARCH FOR GENERAL RESOURCE PROFILES panel

 [image:]

 RACF - SEARCH FOR GENERAL RESOURCE PROFILES

 COMMAND ===>

 ENTER MASK(S) OR FILTER (OPTIONAL):

 MASK1 ===> MVS

 <= end of data

 MASK2 ===> MCSOPER

 <= end of data

 [image:]

 7.	In next panel, SEARCH FOR GENERAL RESOURCE PROFILES, just press Enter to continue.

 8.	Example 9-70 shows the RACF command output.

 Example 9-70 RACF COMMAND OUTPUT, MVS.MCSOPER

 [image:]

 BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080

 COMMAND ===> SCROLL ===> CSR

 ********************************* Top of Data **********************************

 MVS.MCSOPER.ABC

 MVS.MCSOPER.AOPAOP1C

 MVS.MCSOPER.PLUGH

 MVS.MCSOPER.* (G)

 ******************************** Bottom of Data ********************************

 [image:]

 The MVS.MCSOPER.DSNADMCM profile is not defined in this environment. Access is controlled by the profile MVS.MCSOPER.*, a RACF generic profile. Using the RACF ISPF panel GENERAL RESOURCE SERVICES - DISPLAY you can browse the access definitions on this resource. Example 9-71 illustrates the RACF command output obtained when using this panel.

 Example 9-71 RACF COMMAND OUTPUT, resource MVS.MCSOPER.*

 [image:]

 BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080

 COMMAND ===> SCROLL ===> CSR

 ********************************* Top of Data **********************************

 CLASS NAME

 ----- ----

 OPERCMDS MVS.MCSOPER.* (G)

 LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING

 ----- -------- ---------------- ----------- -------

 00 TRAUNER CONTROL CONTROL NO

 ...

 ******************************** Bottom of Data ********************************

 [image:]

 The RACF Universal Access Authority (UACC) is assigned by default to a user id unless there is a more restrictive access definition. In this example, every user receives CONTROL access on the resource MVS.MCSOPER.* and, in consequence, there is no RACF restriction on the execution of the ADMIN_COMMAND_MVS stored procedure.

 A way to increase the security control is to create the MVS.MCSOPER.DSNADMCM resource and to administer granular access to it. Example 9-72 shows the RACF command. Note that the access by default is NONE, that is, initially no user ID has access to the resource.

 Example 9-72 RACF define resource MVS.MCSOPER.DSNADMCM

 [image:]

 RDEFINE OPERCMDS MVS.MCSOPER.DSNADMCM UACC(NONE)

 [image:]

 Example 9-73 shows the resulting output at execution.

 Example 9-73 RACF define resource output example

 [image:]

 RACLISTED PROFILES FOR OPERCMDS WILL NOT REFLECT THE ADDITION(S) UNTIL A SETROPTS REFRESH IS ISSUED.

 [image:]

 The RACF class has to be refreshed to activate the changes. Example 9-74 shows the command to execute a RACF SETROPTS REFRESH command.

 Example 9-74 RACF SETROPTS REFRESH command

 [image:]

 SETROPTS RACLIST(OPERCMDS) REFRESH

 [image:]

 Example 9-75 shows the resulting resource definitions after the execution of these RACF commands.

 Example 9-75 RACF resources search result

 [image:]

 BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080

 COMMAND ===> SCROLL ===> CSR

 ********************************* Top of Data **********************************

 MVS.MCSOPER.ABC

 MVS.MCSOPER.AOPAOP1C

 MVS.MCSOPER.DSNADMCM

 MVS.MCSOPER.PLUGH

 MVS.MCSOPER.* (G)

 ******************************** Bottom of Data ********************************

 [image:]

 Example 9-76 shows the details of the MVS.MCSOPER.DSNADMCM RACF resource.

 Example 9-76 RACF resource MVS.MCSOPER.DSNADMCM

 [image:]

 BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080

 COMMAND ===> SCROLL ===> CSR

 ********************************* Top of Data **********************************

 CLASS NAME

 ----- ----

 OPERCMDS MVS.MCSOPER.DSNADMCM

 LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING

 ----- -------- ---------------- ----------- -------

 00 DB2R1 NONE NONE NO

 ...

 ******************************** Bottom of Data ********************************

 [image:]

 This example shows that both universal access and user id DB2R1’s access is NONE. As a result, any attempt to execute the ADMIN_COMMAND_MVS by the user id DB2R1, or any other user not explicitly authorized in RACF, fails. Under these settings, the calling application receives Return Code 12 at call. Example 9-77 shows the accompanying error message.

 Example 9-77 Error message DSNA628I

 [image:]

 DSNA628I DSNADMCM THE STORED PROCEDURE SYSPROC.ADMIN_COMMAND_MVS ENCOUNTERED AN ERROR WHILE USING THE EXTENDED MCS CONSOLE TO ISSUE THE MVS SYSTEM COMMAND DISPLAY WLM,APPLENV=*. EMCS activation failed. Macro MCSOPER: RC=0C,RSN=00

 [image:]

 At failure, RACF writes a ICH408I error message in the system console, as shown in Example 9-78.

 Example 9-78 RACF message ICH408I

 [image:]

 IEA631I OPERATOR DSNADMCM NOW INACTIVE, SYSTEM=SC63 , LU=DSNADMCM

 ICH70001I DB2R1 LAST ACCESS AT 17:53:40 ON FRIDAY, JULY 26, 2013

 ICH408I USER(DB2R1) GROUP(SYS1) NAME(PAOLO BRUNI) 481

 MVS.MCSOPER.DSNADMCM CL(OPERCMDS)

 INSUFFICIENT ACCESS AUTHORITY

 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

 [image:]

 This message shows that RACF is not allowing the user id DB2R1 to access the RACF resource MVS.MCSOPER.DSNADMCM. Because this is a requirement for the execution of the ADMIN_COMMAND_MVS stored procedure, the call fails. To provide access to this resource, you can use the RACF PERMIT command as shown in Example 9-79.

 Example 9-79 RACF PERMIT MVS.MCSOPER.DSNADMCM

 [image:]

 PERMIT MVS.MCSOPER.DSNADMCM CLASS(OPERCMDS) ACC(READ) ID(DB2R1)

 [image:]

 The execution of this command has to be followed by a RACF SETROPTS command to activate changes, as shown in Example 9-80.

 Example 9-80 RACF SETROPTS RACLIST(OPERCMDS) REFRESH command

 [image:]

 SETROPTS RACLIST(OPERCMDS) REFRESH

 [image:]

 Example 9-81 shows that DB2R1 has READ access on the resource MVS.MCSOPER.DSNADMCM. The call of the ADMIN_COMMAND_MVS stored procedure by DB2R1 is now allowed by RACF.

 Example 9-81 RACF MVS.MCSOPER.DSNADMCM resource details

 [image:]

 BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080

 COMMAND ===> SCROLL ===> CSR

 ********************************* Top of Data **********************************

 CLASS NAME

 ----- ----

 OPERCMDS MVS.MCSOPER.DSNADMCM

 LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING

 ----- -------- ---------------- ----------- -------

 00 DB2R1 NONE READ NO

 ...

 ******************************** Bottom of Data ********************************

 [image:]

 9.8 Drivers, clients, and connectivity requirements

 Distributed clients communicate to DB2 11 for z/OS using the IBM Distributed Relational Database Architecture™ (DRDA) protocol. DRDA is an open, vendor-independent architecture that supports the connectivity between a client and database servers. It was initially developed by IBM and then adopted by The Open Group as an industry standard interoperability protocol.

 In DRDA terms, the Application Requester function accepts SQL requests from an application and redirect them to an Application Server for processing. The Application Server function receives requests from Application Requesters and processes them. The Application Server can process part of the request and forwards the applicable portion of the request to a database server.

 In a distributed application environment accessing DB2 for z/OS, the Application Requester function is supported by a DB2 Client, by a DB2 driver, or by a DB2 Connect server. The Application Server function is integrated in DB2 for z/OS.

 Figure 9-10 shows a schematic representation of the AR and AS DRDA components involved in a client to DB2 communication.

 [image:]

 Figure 9-10 AR and AS DRDA components

 Improvements related to the distributed access to DB2 11 to z/OS might require changes at the Client, driver or DB2 Connect side.

 DB2 Clients, Drivers and DB2 Connect DB2 10.5 FP2 are required to fully take advantage of DB2 11 for z/OS distributed features, such as:

 •CALL with array type arguments

 •Larger CLIENT INFO properties (including new correlation token)

 •Implicit COMMIT for stored procedures

 •Sysplex support for Global Session Variables

 The DRDA protocol implements DRDA levels to group improvements and features. A down level DRDA Client works with DB2 11, but it cannot use all the benefits of DB2 11. Any in-service level of DB2 Client, DB2 Drivers, or DB2 Connect server should work with DB2 11 CM and DB2 11 NFM. At the moment of this writing, versions 9.5 and later are in-service. DB2 Connect V9.5 is planned to be out of service at April-2014.

 DB2 Connect drivers seamlessly handle the migration path from DB2 10 for z/OS to DB2 11 CM, and from them to DB2 11 NFM. In a data sharing environment, applications continue to function as members are migrated one by one.

 During migration, these considerations apply:

 •While in DB2 11 CM, applications continue to see DB2 10 function level.

 •After migrating to DB2 11 NFM, new connections see DB2 11 function level when using APPLCOMPAT set to V11R1.

 Verifying the level of DB2 Clients and DB2 Drivers

 To exploit the latest DB2 11 distributed access improvements, you have to work with a DB2 driver or client DB2 10.5 fix pack 2.

 	
 Note: At the moment of this writing, the latest drivers and clients are available at the web page “Download initial DB2 10.5 clients and drivers” at http://www.ibm.com/support/docview.wss?uid=swg21385217

 Use the db2level command to show the current version and service level of a DB2 client or DB2 Connect server. Example 9-82 shows the execution of db2level on a Windows machine. Among other details, this example shows that this Client in DB2 10.5 with Fix Pack 0.

 Example 9-82 Using the db2level command

 [image:]

 C:\Program Files\IBM\SQLLIB_03\BIN>db2level

 DB21085I This instance or install (instance name, where applicable: "DB2_03")

 uses "64" bits and DB2 code release "SQL10050" with level identifier

 "0601010E".

 Informational tokens are "DB2 v10.5.0.420", "s130528", "NTX64105", and Fix Pack

 "0".

 Product is installed at "C:\PROGRA~1\IBM\SQLLIB~3" with DB2 Copy Name

 "DB2V10R5".

 C:\Program Files\IBM\SQLLIB_03\BIN>

 [image:]

 The db2level command is not available for Java drivers. For JDBC or SQLJ applications, if you are using the IBM DB2 driver for SQLJ and JDBC, you can determine the level of the driver by running the db2jcc utility, as shown in Example 9-83.

 Example 9-83 Running the db2jcc utility

 [image:]

 java com.ibm.db2.jcc.DB2Jcc -version

 [image:]

 Example 9-84 shows the db2jcc output in this example test environment. There is no information about the driver version nor Fix Pack level. This can be an inconvenient because the DB2 11 for z/OS requirements for Clients and Drivers are expressed on these terms.

 Example 9-84 Db2jcc utility output

 [image:]

 C:\Program Files\IBM\SQLLIB_03\BIN>java com.ibm.db2.jcc.DB2Jcc -version

 IBM DB2 JDBC Universal Driver Architecture 3.66.46

 C:\Program Files\IBM\SQLLIB_03\BIN>

 [image:]

 There is no direct way to discern which JDBC driver (JCC) version corresponds with each DB2 release and Fix Pack level. Nevertheless, there is a way to map the driver architecture, provided by db2jcc -version, with that information.

 	
 Note: To find the correlation between the Java driver architecture and the driver version visit the page “DB2 JDBC driver Versions” at http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866

 Figure 9-11 shows a partial view of the DB2 JDBC driver Versions web page. It highlights how to match the driver’s architecture to the DB2 version and Fix Pack level.

 [image:]

 Figure 9-11 DB2 JDBC driver Versions web page

 The IBM DB2 JDBC Universal Driver Architecture 3.66.46, as shown in Example 9-84, correspond to DB2 DB2 10.5 FP0 (GA).

 Example 9-85 shows how the JDBC connection string can be used to activate a JDBC trace.

 Example 9-85 JDBC connection url String with TRACE_ALL

 [image:]

 String url = "jdbc:db2://redbook8:38420/DB1A" +

 ":user=db2r1;password=******;" +

 "traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";" +

 "traceFile=c:\\work\\Author\\Redbook#8\\DRDA_traces\\DB211OldDriver.trace;";

 [image:]

 Example 9-86 shows a partial example of the JDBC trace output as a result of the syntax in Example 9-85.

 Example 9-86 JDBC trace output

 [image:]

 [jcc] BEGIN TRACE_XML_CONFIGURATION_FILE

 [jcc] dsdriverConfigFile=null

 [jcc] END TRACE_XML_CONFIGURATION_FILE

 [jcc] BEGIN TRACE_DRIVER_CONFIGURATION

 [jcc] Driver: IBM Data Server driver for JDBC and SQLJ 4.13.127

 [jcc] Compatible JRE versions: { 1.6, 1.7 }

 [jcc] Target server licensing restrictions: { z/OS: enabled; SQLDS: enabled

 [jcc] License editions: { O: not found; ZS: not found; IS: not found; AS: n

 [jcc] Range checking enabled: true

 [jcc] Bug check level: 0xff

 [jcc] Default fetch size: 64

 [jcc] Default isolation: 2

 [jcc] Collect performance statistics: false

 [jcc] No security manager detected.

 [jcc] Detected local client host: x1/9.55.137.33

 [image:]

 Figure 9-12 shows a portion of the “DB2 JDBC driver Versions” at:

 http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866

 This figure highlights the link between the driver version and the DB2 level of the driver.

 [image:]

 Figure 9-12 db2 JDBC driver versions web page

 Data Studio

 IBM Data Studio provides database developers and database administrators with an integrated, modular environment for development and productive administration of DB2 databases. IBM Data Studio is a fully licensed product available at no charge and with no time restrictions.

 	
 Important: IBM Data Studio supports DB2 11 for z/OS with V4.1 or later, which can be downloaded at no additional charge from:

 http://www.ibm.com/developerworks/downloads/im/data/

 Figure 9-13 shows that IBM Data Studio V3.2 identifies a DB2 11 NFM database as a DB2 10 NFM subsystem.

 [image:]

 Figure 9-13 IBM Data Studio 3.2 and DB2 11

 Figure 9-14 shows that IBM Data Studio 4.1 correctly identifies the server as a DB2 11 NFM.

 [image:]

 Figure 9-14 IBM Data Studio 4.1 and DB2 11

 Using the Data Studio application menu, select Help → About IBM Data Studio to verify the Data Studio version. Figure 9-15 shows the About IBM Data Studio window with the version information.

 [image:]

 Figure 9-15 How to identify the Data Studio version

 You can use Data Studio 4.1 with a DB2 10 for z/OS database. In that case, the PTF UK91146 must be applied to the DB2 10 for z/OS data server that you want to connect to prevent connectivity problems. Refer to the technote (troubleshooting) “Connecting to DB2 z/OS 10 with Data Studio V4.1 or InfoSphere Data Architect V9.1 results in SQL error code -4499 or -1224” available at:

 http://www.ibm.com/support/docview.wss?uid=swg21641377

 How to catalog a DB2 for z/OS database using commands

 To access a DB2 for z/OS server using a Client, you have to catalog it. The DB2 Client version 10 does not comes with the Configuration Assistant. In previous versions, the Configuration Assistance, a GUI tool, can be used to catalog a DB2 for z/OS database as a ODBC data source in a Windows system machine. With DB2 10, the configuration has to be done using commands. This section describes the steps involved on the process.

 Start by getting the host database configuration information by issuing the -DIS DDF DETAIL command. Example 9-87 shows the output of this command.

 Example 9-87 -DIS DDF output example

 [image:]

 DSNL080I -DB1A DSNLTDDF DISPLAY DDF REPORT FOLLOWS:

 DSNL081I STATUS=STARTD

 DSNL082I LOCATION LUNAME GENERICLU

 DSNL083I DB1A USIBMSC.SCPDB1A -NONE

 DSNL084I TCPPORT=38420 SECPORT=38422 RESPORT=38421 IPNAME=-NONE

 DSNL085I IPADDR=::9.12.6.70

 DSNL086I SQL DOMAIN=wtsc63.itso.ibm.com

 DSNL090I DT=I CONDBAT= 10000 MDBAT= 200

 DSNL092I ADBAT= 1 QUEDBAT= 0 INADBAT= 0 CONQUED= 0

 DSNL093I DSCDBAT= 1 INACONN= 2

 DSNL105I CURRENT DDF OPTIONS ARE:

 DSNL106I PKGREL = COMMIT

 DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

 [image:]

 Note the following information:

 •Location, provided in message DSNL083I. DB1A in this example.

 •TCP/IP port, provided in message DSNL084I. 38420 in this example.

 The IP address provided in message DSNL085I might not work as a target IP from your workstation, depending from where it was obtained. Refer to the documentation of message DSNL085I for more details. In this example environment, the DB2 server can be reached by using the 9.12.6.70 IP address. This information is used in commands within the DB2 CLP. The CLP is part of the DB2 client, and it is included in other DB2 offerings as well.

 If you have installed a DB2 client, you can use a DB2 CLP command window to catalog a DB2 for z/OS database in a windows server or workstation. Example 9-88 shows the initial contents when opening a DB2 Client 10.5.0 CLP window.

 Example 9-88 DB2 Command Line Processor initial contents

 [image:]

 Command Line Processor for DB2 Client 10.5.0

 You can issue database manager commands and SQL statements from the command

 prompt. For example:

 db2 => connect to sample

 db2 => bind sample.bnd

 For general help, type: ?.

 For command help, type: ? command, where command can be

 the first few keywords of a database manager command. For example:

 ? CATALOG DATABASE for help on the CATALOG DATABASE command

 ? CATALOG for help on all of the CATALOG commands.

 To exit db2 interactive mode, type QUIT at the command prompt. Outside

 interactive mode, all commands must be prefixed with 'db2'.

 To list the current command option settings, type LIST COMMAND OPTIONS.

 For more detailed help, refer to the Online Reference Manual.

 db2 =>

 [image:]

 The first step is to catalog a TCP/IP node using the CLP. Cataloging a TCP/IP node adds an entry to the Data Server Client node directory that describes the remote node. This entry specifies the chosen alias (node_name), the host name (or ip_address), and the svcename (or port_number) that the client uses to access the remote host.

 Example 9-89 shows the commands that can be used.

 Example 9-89 DB2 catalog TCP/IP node example

 [image:]

 catalog tcpip node SC63 remote 9.12.6.70 server 38420 ostype mvs

 [image:]

 In general, it is a preferred practice to use machine names instead if IP addresses when cataloging a remote server. Using names means fewer configuration points to maintain in case of an IP address change. You can use a DNS (domain name server) for mapping a server name to an IP address to make this information available to your network. If the scope is your own workstation, it is in general simpler to just maintain a hosts file. In Windows 7, the hosts files are located at C:\Windows\System32\drivers\etc\hosts.

 Example 9-90 shows a sample Windows hosts file that is customized with the information about the System z server that runs the target DB2 11 for z/OS.

 Example 9-90 Sample Windows hosts file

 [image:]

 # This is a sample HOSTS file used by Microsoft TCP/IP for Windows.

 #

 # This file contains the mappings of IP addresses to host names. Each

 # entry should be kept on an individual line. The IP address should

 # be placed in the first column followed by the corresponding host name.

 # The IP address and the host name should be separated by at least one

 # space.

 #

 # localhost name resolution is handled within DNS itself.

 #	127.0.0.1 localhost

 #	::1 localhost

 9.12.6.70 						redbook8

 [image:]

 After updating the hosts file as shown in this example, a reference to redbook8 is redirected to the IP address 9.12.6.70. In consequence, the DB2 catalog TCP/IP node can be simplified as shown in Example 9-91.

 Example 9-91 DB2 catalog TCP/IP node example using an hosts file entry

 [image:]

 catalog tcpip node SC63 remote redbook8 server 38420 ostype mvs

 [image:]

 Example 9-92 illustrates the output of this command.

 Example 9-92 DB2 catalog TCP/IP node output example

 [image:]

 db2 => catalog tcpip node SC63 remote redbook8 server 38420 ostype mvs

 DB20000I The CATALOG TCPIP NODE command completed successfully.

 DB21056W Directory changes may not be effective until the directory cache is

 refreshed.

 db2 =>

 [image:]

 The DB21056W message indicates that changes might not be effective immediately, and that a directory refresh might be required to make the updates effective. Execute the terminate command, as illustrated in Example 9-93.

 Example 9-93 DB2 terminate example

 [image:]

 db2 => terminate

 DB20000I The TERMINATE command completed successfully.

 C:\Program Files\IBM\SQLLIB_03\BIN>

 [image:]

 	
 Tip: To refresh the CLP directory cache, issue a db2 terminate command. To refresh the directory information for another application, stop and restart that application. To refresh the directory information for the database, stop (db2stop) and restart (db2start) the database

 The node directory is created and maintained on each database client. The directory contains an entry for each remote database partition server having one or more databases that the client can access. The DB2 client uses the communication endpoint information in the node directory whenever a database connection or instance attachment is requested. The entries in the directory also contain information about the type of communication protocol to be used to communicate from the client to the remote database partition. Cataloging a local database partition creates an alias for an instance that resides on the same computer.

 Example 9-94 illustrates the execution of a list node directory command in this example test environment. Use this command to verify the successful addition of the node.

 Example 9-94 DB2 list node directory command example

 [image:]

 C:\Program Files\IBM\SQLLIB_03\BIN>db2 list node directory

 Node Directory

 Number of entries in the directory = 1

 Node 1 entry:

 Node name = SC63

 Comment =

 Directory entry type = LOCAL

 Protocol = TCPIP

 Hostname = redbook8

 Service name = 38420

 C:\Program Files\IBM\SQLLIB_03\BIN>

 [image:]

 The catalog database command stores database location information in the system database directory. The database can be located either on the local workstation or on a remote database partition server. Example 9-95 illustrates the command used in this example test environment to catalog the DB2 11 target database.

 Example 9-95 DB2 catalog database command example

 [image:]

 catalog database DB1A as DB1A at node SC63 authentication SERVER_ENCRYPT

 [image:]

 Example 9-96 shows the results of executing this command.

 Example 9-96 DB2 catalog database command output example

 [image:]

 db2 => catalog database DB1A as DB1A at node SC63 authentication SERVER_ENCRYPT

 DB20000I The CATALOG DATABASE command completed successfully.

 DB21056W Directory changes may not be effective until the directory cache is

 refreshed.

 db2 =>

 [image:]

 The list database directory command lists the contents of the system database directory. Use this command to verify the addition of a database, as illustrated in Example 9-97.

 Example 9-97 DB2 list database directory command output example

 [image:]

 db2 => list database directory

 System Database Directory

 Number of entries in the directory = 3

 Database 1 entry:

 Database alias = BLUDB01

 Database name = BLUDB01

 Local database directory = C:

 Database release level = 10.00

 Comment =

 Directory entry type = Indirect

 Catalog database partition number = 0

 Alternate server hostname =

 Alternate server port number =

 Database 2 entry:

 Database alias = DB1A

 Database name = DB1A

 Node name = SC63

 Database release level = 10.00

 Comment =

 Directory entry type = Remote

 Authentication = SERVER_ENCRYPT

 Catalog database partition number = -1

 Alternate server hostname =

 Alternate server port number =

 Database 3 entry:

 Database alias = SAMPLE

 Database name = SAMPLE

 Local database directory = C:

 Database release level = 10.00

 Comment =

 Directory entry type = Indirect

 Catalog database partition number = 0

 Alternate server hostname =

 Alternate server port number =

 db2 =>

 [image:]

 This example shows that the DB2 Client can be used to connect to two local databases (SAMPLE and BLUDB01) and to the remote database DB1A, the target. Applications connect using the database alias value that is provided in this command.

 Finally, connect to the target database using the CLP for verification, as shown in Example 9-98.

 Example 9-98 Connect to a DB2 for z/OS database using the CLP

 [image:]

 db2 => connect to DB1A user db2r1

 Enter current password for db2r1:

 Database Connection Information

 Database server = DB2 z/OS 11.1.5

 SQL authorization ID = DB2R1

 Local database alias = DB1A

 db2 =>

 [image:]

 This example shows a connection to the target DB1A, which is DB2 11 for z/OS database.

 A data source, in ODBC (Open Database Connectivity) terminology, is a user-defined name for a specific database or file system. That name is used to access the database or file system through ODBC APIs. Either user or system data sources can be cataloged. A user data source is only visible to the user who cataloged it, whereas a system data source is visible to and can be used by all other users. The CATALOG ODBC DATA SOURCE command is used to catalog a user or system ODBC data source. Example 9-99 shows the command to be executed in this example environment.

 Example 9-99 DB2 catalog ODBC data source command example

 [image:]

 catalog odbc data source DB1A

 [image:]

 Example 9-100 illustrates the execution results in this environment.

 Example 9-100 DB2 catalog ODBC data source command output example

 [image:]

 db2 => catalog odbc data source DB1A

 DB20000I The CATALOG USER ODBC DATA SOURCE command completed successfully.

 db2 =>

 [image:]

 Use the list ODBC data sources command to confirm the changes, as shown in Example 9-101.

 Example 9-101 DB2 LIST ODBC DATA SOURCES command example

 [image:]

 db2 => list odbc data sources

 User ODBC Data Sources

 Data source name Description

 -------------------------------- --

 MS Access Database Microsoft Access driver (*.mdb)

 Excel Files Microsoft Excel driver (*.xls)

 dBASE Files Microsoft dBase driver (*.dbf)

 DZA1 IBM DB2 ODBC DRIVER - DB2COPY1

 BRUXLS IBM DB2 ODBC DRIVER - DB2COPY1

 DB1A IBM DB2 ODBC DRIVER - DB2V10R5

 db2 =>

 [image:]

 1 IBM Tivoli® OMEGAMON® XE for DB2 Performance Expert on z/OS

[image:]
[image:]

Operations and performance

 Integration of DB2 11 with z/OS Security Server (RACF) helps in operational compliance (both regulatory and governance) and separation of duty and more flexibility is added to masking functions.

 DB2 Utilities Suite for z/OS V11 (program number 5655-W87) delivers full support for the significant enhancements in DB2 11 and delivers improvements in availability (online REORG granularity) and zIIP eligibility.

 DB2 11 can improve performance by taking advantage of the platform functions, reducing path length in several situations, and further reducing virtual storage requirements below the bar. In addition, installation and migration functions use the established conversion mode and New Function Mode (NFM) statuses and allow new options to reduce incompatibility situations.

 This part includes the following chapters:

 •Chapter 10, “Security” on page 239

 •Chapter 11, “Utilities” on page 269

 •Chapter 12, “Installation and migration” on page 315

 •Chapter 13, “Performance” on page 383

[image:]
[image:]

Security

 DB2 includes the following main security topics:

 •DB2 enhancements for exit authorization checking

  –	DB2 provides the accessor environment element (ACEE) of the package owner for authorization checking when the access control authorization exit is active

  –	DB2 also refreshes the cache entries of the package authorization, the routine authorization, the DDF user authorization, and the dynamic statement when a user profile or resource access is changed in RACF and the access control authorization exit is active.

 •DB2 enhancements for program authorization

 DB2 provides the capability to check whether an application program is authorized to use a plan.

 •DB2 enhancement to the masking functions

 DB2 removes some restrictions related to aggregation of data while using the masking functions.

 This chapter describes these changes in the following sections:

 •Enhancements for exit authorization checking

 •Enhancements to program authorization

 •Column masking enhancements

 10.1 Enhancements for exit authorization checking

 The Access Control Authorization Exit (DSNX@XAC) enables to use external security such as RACF for authorization checking for DB2 objects, authorities, commands, and utilities. There are certain instances where the authorization checking done by RACF is different from the authorization checking done by DB2. Due to new regulations and separation of duties requirements, customers who are moving to use RACF for authorization consider the differences as serious limitations in adopting RACF authorization.

 Figure 10-1 provides an overview of the relationship between DB2 10 and the RACF Access Control Authorization Exit Authorization.

 [image:]

 Figure 10-1 DB2 10 and RACF Access Control Authorization Exit Authorization

 The authorization process, when DB2 security is in RACF, flows as follows:

 •DB2 obtains RACF information through the DSNX@XAC exit

 •DB2 caches the successful authorization for packages, routines and dynamic statements execution in the three caches. They are represented with dotted boxes in Figure 10-1.

 As a result of the DB2 security in RACF implementation in DB2 10, the following concerns can appear:

 •The OWNER keyword is not honored when RACF exit is used to control authorization

  –	RACF checks the invoker (primary authorization ID) not the owner during BIND, REBIND, and AUTOBIND

  –	AUTOBIND fails if the invoker is not authorized

 •Use of the DYNAMICRULES(BIND) option with dynamic SQL

 RACF checks the invoker ID regardless of DYNAMICRULES specification. RACF authorization fails if the invoker is not authorized to execute the SQL statements in the package.

 •AUTOBIND

 Invoker is checked for authorization to execute the SQL statements. RACF authorization fails if the invoker is not authorized to execute the SQL statements in the package.

 •DB2 10 static packages not invalidated following a RACF REVOKE

 RACF authorization checked at BIND/REBIND

 •DB2 10 dynamic statement cache and authorization caches never flushed at RACF change

  –	DB2 cache can retain privileges after RACF REVOKE

  –	DBAs must take action (GRANT/REVOKE/RUNSTATS) to sync with RACF

 •DB2 10 caches are refreshed every 3 minutes

 Flushing the cache takes time and resources

 DB2 11 introduces changes that address these issues. The following sections describe these enhancements.

 10.1.1 Use owner privileges for authorization

 During AUTOBIND, DB2 provides the ACEE of the runner for exit authorization. Most of the time, runner does not have the privilege to execute the SQL statements in the package, which causes AUTOBIND to fail.

 Similarly, when BIND OWNER option is specified, RACF always checks authorization on the runner. Also, when embedded dynamic SQL in packages bound with DYNAMICRULES(BIND) option is executed, it is expected that the auth-id checked for authorization is the package owner. However, DB2 provides the ACEE of the runner. Thus, every user executing the package has to be provided access.

 Previous to DB2 11, when using Access Control Authorization Exit (DSNX@XAC) for authorization:

 •BIND and REBIND commands do not support the OWNER keyword.

 •The AUTOBIND fails, which causes application outage.

 •For packages bound with DYNAMICRULES(BIND), the dynamic SQL statement authorization requires the runner to have the privilege.

 DB2 11 addresses this limitation by providing the ACEE of the package owner to perform authorization checking when processing auto bind, the BIND and REBIND commands; and the ACEE of the authorization ID to perform dynamic SQL authorization checking, when DYNAMICRULES value other than RUN is in effect. For dynamic SQL authorization checking, the DYNAMICRULES behavior determines whether the authorization ID is the package owner, the routine definer or the routine invoker.

 DB2 11 for z/OS, when using DSNX@XAC exit authorization, is enhanced to:

 •Support of the OWNER keyword for the BIND and REBIND commands.

 •Support owner authorization during AUTOBIND.

 •Support DYNAMICRULES(BIND) behavior for dynamic SQL statements.

 DB2 11 introduces the capability to provide the owner ACEE for authorization checking, when access control authorization exit is active. The owner can be a valid user or a group in ACF, which allows the package owner to be used for authorization checking during auto bind and BIND or REBIND command processing. This function also allows package owner or routine definer or routine invoker as determined by the DYNAMICRULES behavior to be used for dynamic SQL authorization checking, when the DYNAMICRULES bind option value other than RUN is in effect and that DYNAMICRULES authorization ID is cached in the dynamic statement cache.

 DB2 11 introduces the AUTHEXIT_CHECK installation parameter, which allows you to specify whether the owner or the primary authorization ID is to be used for authorization checks when the access control authorization exit is active. This parameter takes the following values:

 DB2	Specifies that DB2 provides the ACEE of the package owner to perform authorization checking when processing the AUTOBIND, BIND, and REBIND commands. DB2 provides the ACEE of the authorization ID as determined by the DYNAMICRULES option to perform dynamic SQL authorization checking. The access control authorization exit uses the ACEE for XAPLUCHK for authorization checking. The XAPLUCHK authorization ID can be a user or a group in RACF

 PRIMARY	Specifies that DB2 provides the ACEE of the primary authorization ID to perform all authorization checks. The primary authorization ID must be permitted access to the resources in RACF.

 The default value is PRIMARY. This install parameter is not online updatable. It is part of the DSN6SPRM macro. This parameter in added to the DB2 Protection panel, DSNTIPP.

 If system parameter, AUTHEXIT_CHECK is set to DB2, then DB2 provides the ACEE of the package owner to perform authorization checking when processing auto bind, the BIND and REBIND commands; and the ACEE of the authorization ID to perform dynamic SQL authorization checking, when DYNAMICRULES value other than RUN is in effect. For dynamic SQL authorization checking, the DYNAMICRULES behavior determines whether the authorization ID is the package owner, the routine definer or the routine invoker. Hence, this owner authorization ID has to be permitted access to resources in RACF in the previously described scenarios.

 To ensure successful authorization checks with the owner ACEE, the owner authorization ID in XAPLUCHK must be permitted access to the resources in RACF. If the owner is a group in RACF, you need to permit the group access to the resource associated with the connection in the RACF DSNR class. You can issue the PERMIT command to grant a group access to the resource BATCH in the DSNR class. Example 10-1 illustrates the RACF command to permit access on the DB2 subsystem DB1A to the DB2GRP group.

 Example 10-1 RACF permit ACCESS(READ) on CLASS(DSNR)

 [image:]

 PERMIT DB1A.BATCH CLASS(DSNR) ID(DB2GRP) ACCESS(READ)

 [image:]

 Also, this owner RACF group must have authorization to execute all the statements embedded in the package for successful processing of BIND/REBIND command, auto bind, and dynamic SQL authorization when DYNAMICRULES value other than RUN is in effect.

 10.1.2 Refresh DB2 cache entries when RACF permissions change

 Previous to DB2 11, when DB2 caches are enabled and RACF permissions change in RACF, then the package authorization cache, routine authorization cache and dynamic statement cache are not refreshed to reflect the change. To refresh the cache entries, SQL GRANT and REVOKE statements have to be issued or to invalidate the entry from dynamic statement cache, RUNSTATS utility has to be executed.

 DB2 11 introduces the capability to refresh the DB2 following cache entries when access control authorization exit is active and RACF permissions change:

 •Package

 •Authorization cache

 •Routine authorization cache

 •Dynamic statement cache

 DB2 11 implements this enhancement by listening to the following ENF signals sent by RACF and refreshing the DB2 authorization related cache entries:

 •Type 71 ENF signals when a user’s permission is changed in RACF

 •Type 79 ENF signals when a user’s permission to access a resource is changed in RACF

 •Type 62 ENF signals when RACF options are refreshed

 	
 Important: DB2 only listens to the ENF signals sent by RACF. If other vendor products are used for access control, the caches cannot be refreshed.

 Figure 10-2 is a schema of the relationship between DB2 11 and RACF. Changes made in RACF (point 1 in the figure) are communicated to DB2 to take action accordingly (point 2 in the figure).

 [image:]

 Figure 10-2 DB2 11 and RACF Access Control Authorization Exit Authorization

 ENF 71 is issued for change in a user or group profile. When ENF 71 is issued, DB2 refreshes the cache entries for the affected user or group.

 ENF 79 is issued for change in a user’s or group’s authorization to resources. When ENF 79 is issued, DB2 caches the resource changes, as the resource changes will not take effect until the SETROPTS RACLIST REFRESH command is issued.

 ENF 62 is issued for the SETROPTS RACLIST REFRESH command. When ENF 62 is issued, DB2 refreshes the cache entries for the resources that are cached during ENF 79 notification.

 DB2 11 listens to the type 71 ENF signal issued by RACF for the following RACF commands:

 •ALTUSER

 •CONNECT

 •DELUSER

 •DELGROUP

 •REMOVE

 	
 Note: For ALTUSER and CONNECT command notifications, DB2 processes the signal only when REVOKE option is specified.

 DB2 listens to the type 79 ENF signal issued by RACF for the following RACF commands:

 •PERMIT options:

  –	DELETE

  –	ACCESS(NONE)

  –	RESET

  –	WHEN(CRITERIA(SQLROLE ….))

 •RALTER options:

  –	UACC(NONE)

  –	DELMEM

 •RDELETE

 	
 Attention: The cache entries are not refreshed when the RDELETE command is issued to delete general resource profiles for DSNADM and MDSNSM/GDSNSM classes without a profile name

 ENF 79 signal is issued only for classes that have been defined in the RACF Class Descriptor Table with the SIGNAL=YES option. The SIGNAL=YES option is enabled, by default, for the following IBM supplied RACF resource classes for DB2:

 •MDSNPK / GDSNPK

 •MDSNTB / GDSNTB

 •MDSNSP / GDSNSP

 •MDSNSQ / GDSNSQ

 •DSNADM and MDSNSM / GDSNSM

 •MDSNUF / GDSNUF

 •MDSNGV / GDSNGV

 	
 Tip: If you are defining classes for DB2 objects and administrative authorities and not using IBM supplied RACF resource classes for DB2, then you need to enable the SIGNAL=YES option for these classes.

 The class names for DB2 objects in both single-subsystem scope and multiple-subsystem scope are supported.

 This list shows the RACF classes and the corresponding caches that are impacted by the revocation:

 •MDSNPK, Package Authorization Cache

 •MDSNTB, MDSNSQ, and MDSNGV, Dynamic Statement Cache

 •MDSNSP, Routine Authorization Cache

 •MDSNUF, Routine Authorization Cache, Dynamic Statement Cache

 •DSNADM and MDSNSM, Package and Routine Authorization Caches, Dynamic Statement Cache

 The RACF discrete and generic resource names in the profile are supported with the following restrictions:

 •Generic character ampersand (&) indicates that RACF is to use a profile in the RACFVARS class to determine the actual values to use for that part of the profile name. The ENF signal notification for profile that contains ampersand is ignored and not processed by DB2 for cache refresh

 •Generic character % is not supported in the privilege part of the profile for cache refresh. The ENF signal notification is ignored. Example 10-2 illustrates this situation.

 Example 10-2 RACF PERMIT command and % generic resource character

 [image:]

 PERMIT SYS1.SCHM1.PROCA2.EXE%UTE ID(CRIS03) DELETE CLASS(MDSNSP)

 [image:]

 •Generic characters in profile names for all classes other than DSNADM class: If a profile has less number of parts than supported by the CLASS parameter and contains generic characters * or **, then depending on the specification of the generic character all objects or all privileges for the specified CLASS parameter can be considered for cache refresh. As an illustration, the command in Example 10-3 results in all the entries in the package authorization cache for user USER01 being deleted.

 Example 10-3 RACF PERMIT DELETE command

 [image:]

 PERMIT SYS1.** ID(USER01) DELETE CLASS(MDSNPK)

 [image:]

 •Revoking DSNADM class authority or MDSNSM class SQLADM authority:

  –	ID(*) is not supported for cache refresh. The ENF signal notification is ignored.

  –	When ID (auth-id) is specified, all the entries in the caches for the specified auth-id can be deleted.

 DB2 also checks for static package dependency and invalidates the package when one of the following resource class permissions is removed from the user:

 •INSERT, UPDATE, DELETE, or SELECT on a table

 •USAGE on a sequence

 •EXECUTE on a stored procedure

 •EXECUTE on an UDF (Dependent packages are marked inoperative.)

 •READ or WRITE on a global variable

 If EXECUTE on a package is revoked from the user, DB2 will check for plan dependency and invalidates the plan.

 A package can be invalidated only when DB2 is active during ENF notification and if the name of the affected RACF profile contains discrete characters. ENF notification ignores a profile if it is associated with the DSNADM class or if its name contains any generic characters (*, **, &, %).

 If the package owner is a user (not a RACF group) and if the user is associated with a group that had the required privileges when the package was bound, you need to explicitly permit the user all the privileges required for invalidating the package and then delete the permissions in RACF.

 	
 Note: Static package invalidation for the revoked privilege is supported with some restrictions, if a group associated with the user allowed access.

 DB2 11 introduces the AUTHEXIT_CACHEREFRESH installation parameter to support the implementation of this function. This system parameter specifies whether the cache entries of the package authorization, the routine authorization, the DDF user authentication, and the dynamic statement are refreshed and whether the dependent packages are invalidated when a user profile or resource access is changed in RACF. The cache entries are refreshed only when the access control authorization exit (DSNX@XAC) is active

 This parameter supports the following values:

 ALL	Specifies that DB2 refreshes the cache entries of the package authorization, the routine authorization, and the dynamic statement and invalidates dependent packages when the user profile or resource access is changed in RACF.

 NONE	Specifies that DB2 does not refresh the cache entries of the package authorization, the routine authorization, and the dynamic statement or invalidate dependent packages when the user profile or resource access is changed in RACF.

 The default value is NONE. This install parameter is not online updatable. It is part of the DSN6SPRM macro. This parameter in added to the DB2 Protection panel, DSNTIPP.

 When access control authorization exit is active and system parameter, AUTHEXIT_CACHEREFRESH is set to YES, then DB2 listens to the type 62, type 71, and type 79 ENF signals issued by RACF for user profile or resource access changes and refreshes the DB2 cache entries accordingly. If you are defining classes for DB2 objects and administrative authorities and not using IBM supplied RACF resource classes for DB2, then you need to enable the SIGNAL=YES option for these classes.

 RACF access control module (DSNXRXAC) support

 To support new functionality, DB2 11 introduces the following changes in the RACF access control module (DSNXRXAC):

 •Support the Global Variable privileges, READ (READAUTH) and WRITE (WRITEAUTH). IBM supplied RACF resource class for global variable is MDSNGV/GDSNGV.

 •Return the RACLISTED classes at DB2 start in the new XAPL field, XAPLCLST.

 •Support all authorization checks that are associated with AUTOBIND requests for user-defined functions. This removes the return code 8 and reason code 17 issued for the authorization failures associated with AUTOBIND requests for user-defined functions.

 DB2 11 introduces the IFCID 386 for the serviceability of RACF ENF signal processing. This trace is written when DB2 receives the ENF signal that is processed by DB2.

 The explanation of the SQLCODE -551 (auth-id DOES NOT HAVE THE PRIVILEGE TO PERFORM OPERATION operation ON OBJECT object-name) is enhanced as shown in Example 10-4.

 Example 10-4 SQLCODE -551 explanation and RACF changes

 [image:]

 This error might occur for packages that are bound with the DYNAMICRULES(BIND) option when authorization caching, statement caching, or both are enabled and if the following conditions exist:

 	The access control authorization exit routine is active

 	The AUTHEXIT_CHECK system parameter is set to PRIMARY

 	The authorization ID of the process does not have the necessary privileges.

 If the access control authorization exit is active and the AUTHEXIT_CHECK system parameter is set to DB2, this error might occur if ACEE cannot be created for the authorization ID auth-id.

 [image:]

 The “Explanation” and “System programmer response” sections are updated in the DSNT210I, DSNT235I, DSNT241I, and DSNX101I message. Example 10-5 shows the changes in the DSNT210I message.

 Example 10-5 Updates to DB2 message DSNT210I

 [image:]

 ...

 Explanation

 The indicated authorization ID does not have the indicated privilege and therefore cannot invoke the indicated BIND subcommand against the indicated application plan. If the access control authorization exit is active and the AUTHEXIT_CHECK system parameter is set to DB2, this error might occur if ACEE cannot be created for the indicated authorization ID.

 System programmer response

 If the indicated privilege is BINDADD, then the privilege to invoke the BIND subcommand with the ACTION(ADD) option must be granted to the indicated authorization ID. If the indicated privilege is BIND, the privilege to invoke a BIND subcommand against the indicated application plan must be granted to the indicated authorization ID.

 If you use the access control authorization exit, ensure that the indicated authorization ID is defined in RACF and granted the indicated privilege in RACF.

 [image:]

 DB2 introduces the following DB2 messages:

 •DSNX235I

 •DSNX236I

 •DSNX237I

 Their contents are listed in Example 10-6, Example 10-7, and Example 10-8.

 Example 10-6 DSNX235I

 [image:]

 REGISTRATION OF THE RACF ENF MESSAGE LISTENER EXIT WITH THE ENF FACILITY FOR ENF enf-signal FAILED WITH RETURN CODE return-code.

 Explanation

 The process that registers DB2 with the RACF Event Notification Facility (ENF) message listener exit for listening to the specified ENF signal returned an unexpected return code.

 enf-signal

 The possible values are 62, 71, and 79.

 return-code

 Hexadecimal value of the z/OS ENFREQ macro return code.

 System action

 DB2 is not registered to listen to the specified ENF signal notification. DB2 continues its startup.

 System administrator response

 Notify the security administrator. Restart DB2 after the ENF signal notification problem is fixed.

 Security administrator response

 Make sure that DB2 is registered to listen to the specified ENF signal notification.

 Operator response

 No action is required.

 [image:]

 Example 10-7 DSNX236I

 [image:]

 DSNX236I

 A RESOURCE resource-name TYPE OF RESOURCE resource-type FOR PROCESSING ENF SIGNAL FOR AUTHID authid OPERATION operation ON OBJECT object-name IS NOT AVAILABLE FOR REASON reason-code. ENF SIGNALS RECEIVED FOR CLASS class-name ARE NOT PROCESSED FOR PACKAGE INVALIDATION.

 Explanation

 The ENF signal process for package invalidation has failed because a required resource resource-name is not available. The ENF signals received for the class class-name are not processed.

 resource-name

 The name of the resource.

 resource-type

 The type of the resource.

 authorization-ID

 The authorization identifier that is identified in the message. The authorization-ID can be a role.

 operation

 The operation that is performed.

 object-name

 The name of the object. If the operation is EXECUTE PACKAGE, the object name consists of the collection ID and the package name. For all other operations, the object name consists of the schema name and the object name.

 reason-code

 A numeric value that indicates the reason for the failure of the operation.

 class-name

 The name of the RACF resource class for DB2 objects and administrative authorities.

 System action

 The ENF signal processing continues.

 System administrator response

 Ensure that the required resource is available for the ENF signal process. Manually restart the package invalidation process. Notify the security administrator.

 Security administrator response

 Identify the RACF commands that were issued to remove resource access for the specified RACF class. Permit the user access to the identified resources and then delete the permissions in RACF.

 Operator response

 No action is required.

 [image:]

 Example 10-8 DSNX237I

 [image:]

 DSNX237I

 AN ABEND HAS OCCURRED DURING ENF SIGNAL PROCESSING. ENF SIGNALS RECEIVED FOR CLASS class-name ARE NOT PROCESSED.

 Explanation

 An abend has occurred in DB2 when processing the ENF signal received from the security server. The ENF signals received for the class-name are not processed.

 class-name

 RACF resource class for DB2 objects and administrative authorities

 System action

 The ENF signal processing continues.

 System administrator response

 Manually restart the cache refresh and package invalidation processes. Notify the security administrator.

 Security administrator response

 Identify the RACF commands that were issued to remove resource access for the specified RACF class. Permit the user access to the identified resources and then delete the permissions in RACF.

 Operator response

 No action is required.

 [image:]

 Performance expectations

 Performance is expected to improve when package owner is used for dynamic SQL authorization checking when DYNAMICRULES(BIND) is in effect, because the package owner ID along with the authorization information will be cached with the dynamic SQL statements for subsequent executions after initial invocations, DB2 will no longer need to go through RACF to check runner’s SQL ID at run time. It is expected that, performance wise, using DB2 authorization is now similar to AUTHEXIT_CHECK = DB2 and slower than AUTHEXIT_CHECK = PRIMARY. Also some improvements are expected in both statement level cache and package cache.

 10.2 Enhancements to program authorization

 DB2 11 provides an approach to verify that an application program using a DB2 application plan is correct when accessing DB2. An DB2 plan relates an application process to a local instance of DB2 and specifies processing options. One of the options is a list of package names that can be used by the application plan.

 This list controls packages that can be used by any program that uses the plan. It is provided by the owner of the plan when the plan is bound to DB2. If any user is granted execute privilege on the plan, the user can execute any program using the plan and any package identified in the package list.

 Plan owners might not know in advance which programs or packages that might use a plan. In these cases, the plan owner must create a plan that allows any collection or any package to be used by any program executing the plan. If a user has execute authority to run the plan, the user can accidentally invoke the wrong program or change the application program to execute different packages. A user can execute packages the plan owner never intended to be called. To protect from these types of mistakes, a new bind option is added to the BIND PLAN and REBIND PLAN commands. When the new option is set, DB2 performs an extra check when the program identifies to DB2. The check verifies if the program is a valid program that can execute the plan.

 	
 Important: DB2 11 program authorization provides an approach to verify that an application program using a DB2 application plan is correct when accessing DB2.

 Program authorization is a useful technique when you do not know all of the programs and packages that might use a plan. In addition, program authorization lets you determine at the time that a program is loaded whether it has been modified. Program authorization is performed in addition to package authorization.

 Some restrictions apply. Programs that run in the following environments do not support program authorization:

 •RRSAF applications that issue CREATE THREAD with a collection name and, therefore, use the special default plan name ?RRSAF.

 •Multicontext ODBC applications that use the RRSAF attachment facility and the plan name DSNACLI

 •Programs that run in stored procedure address spaces

 Enabling program authorization

 Program authorization is enabled for a program and its plan if the following conditions are true:

 •The plan is bound with the new BIND PLAN and REBIND PLAN option PROGAUTH(ENABLE)

 •The SYSIBM.DSNPROGAUTH table contains a row for the program and the plan.

 BIND and REBIND option PROGAUTH

 The PROGAUTH BIND and REBIND option specifies whether DB2 performs program authorization checking to determine whether DB2 can execute a plan. It accepts the following values:

 DISABLE	Specifies that program authorization checking is not performed.

 ENABLE	Specifies that program authorization checking is performed.

 The default value for BIND PLAN is DISABLE. The default value for REBIND PLAN is the existing value. This option is not applicable for BIND and REBIND PACKAGE.

 Figure 10-3 shows a partial representation of the DB2 11 REBIND PLAN command, including the new PROGAUTH option.

 	

 .-,---------.

 V |

 >>-REBIND PLAN--(-+---plan-name-+-+-)--------------------------->

 '-*-------------'

 >--+---------------------------+--+-------------------------+--->

 | .-COLLID(*)-------------. | '-OWNER(authorization-id)-'

 '-+-COLLID(collection-id)-+-'

 ...

 >--+-------------------------+---------------------------------><

 | .-DISABLE-. |

 '-PROGAUTH(-+-ENABLE--+-)-'

 Figure 10-3 DB2 11 REBIND PLAN command and PROGAUTH

 DB2 11 updates the SYSIBM.SYSPLAN catalog table to include the new PROGAUTH column. This column is defined as CHAR(1) NOT NULL WITH DEFAULT 'D’. It indicates DB2 to check program association with the plan. It takes the following values:

 E	Verify if program is enabled to execute the plan

 D	Disabled

 The default value is D, disabled.

 Example 10-9 shows a simple example of a REBIND using a DB2 PLAN, DSNTIA11, to implement DB2 program authorization by using the PROGAUTH REBIND option.

 Example 10-9 REBIND to enable PROGAUTH

 [image:]

 //YOUR_JOB_CARD_COMES_HERE...

 //*---

 //REBIND EXEC PGM=IKJEFT01,DYNAMNBR=20

 //STEPLIB DD DISP=(SHR),DSN=DB1AT.SDSNLOAD

 //SYSTSPRT DD SYSOUT=*

 //SYSPRINT DD SYSOUT=*

 //SYSOUT DD SYSOUT=*

 //SYSTSIN DD *

 DSN SYSTEM(DB1A)

 REBIND PLAN (DSNTIA11) +

 PROGAUTH (E)

 END

 /*

 [image:]

 Table SYSIBM.DSNPROGAUTH

 The SYSIBM.DSNPROGAUTH table enables program authorization with or without program data integrity checking. Add a row in the SYSIBM.DSNPROGAUTH table for each program and plan combination for which the plan is bound with PROGAUTH(ENABLE).

 The program name that you need to insert in the row depends on the attachment facility that the program uses to connect to DB2, as follows:

 •If the program uses the TSO attachment facility, the program name is the name that you specify in the DSN RUN subcommand.

 •If the program uses any other attachment facility, the program name is the name of the module that is executed first under the job step TCB.

 The DSNTIJSG job contains a sample INSERT statement for a SYSIBM.DSNPROGAUTH row. You can modify the INSERT statement and execute it to add a row for a program and plan. The SYSIBM.DSNPROGAUTH program authorization table is used to verify that a program is authorized to use a plan. The table is created by the DB2 provided the DSNTIJSG installation job.

 Example 10-10 illustrates a DDL that can be used for creating this table.

 Example 10-10 DDL for creating the table SYSIBM.DSNPROGAUTH

 [image:]

 CREATE DATABASE DSNMDCDB STOGROUP SYSDEFLT CCSID UNICODE;

 CREATE TABLESPACE DSNMDCTS IN DSNMDCDB

 BUFFERPOOL BP0 LOCKSIZE ROW LOCKMAX SYSTEM

 CLOSE NO CCSID UNICODE USING STOGROUP SYSDEFLT;

 	

 CREATE TABLE SYSIBM.DSNPROGAUTH

 ("PROGNAME" VARCHAR(24) NOT NULL

 , "PLANNAME" VARCHAR(24) NOT NULL

 , "PROGMDCVAL" CHAR(16) FOR BIT DATA

 NOT NULL

 WITH DEFAULT

 X'00000000000000000000000000000000'

 , "PROGMDCPAD" CHAR(1) NOT NULL

 WITH DEFAULT '2'

 CHECK(PROGMDCPAD = '2'

 OR PROGMDCPAD = '4')

 , "CREATOR" VARCHAR(128) NOT NULL

 WITH DEFAULT

 CURRENT SQLID

 , "ENABLED" CHAR(1) NOT NULL

 WITH DEFAULT 'N'

 CHECK(ENABLED = 'Y'

 OR ENABLED = 'N')

 , "CREATETS" TIMESTAMP NOT NULL WITH DEFAULT

 , "REMARKS" VARCHAR(762)

)

 IN DSNMDCDB.DSNMDCTS CCSID UNICODE;

 	

 CREATE UNIQUE INDEX SYSIBM.DSNPROGAUTH_IDX1

 ON SYSIBM.DSNPROGAUTH

 ("PROGNAME"

 , "PLANNAME"

)

 BUFFERPOOL BP0 CLOSE NO USING STOGROUP SYSDEFLT;

 [image:]

 Table 10-1 shows the SYSIBM.DSNPROGAUTH column’s description.

 Table 10-1 SYSIBM.DSNPROGAUTH fields description

 	
 Column name

 	
 Description

 	
 PROGNAME

 	
 Name of the application program enabled to run the plan

 	
 PLANNAME

 	
 Name of the application plan that the program can execute

 	
 PROGMDCVAL

 	
 Reserved

 	
 PROGMDCPAD

 	
 Reserved

 	
 CREATOR

 	
 Authorization ID that inserted or last modified the row

 	
 ENABLED

 	
 Indicates whether the program authorization is enabled. This column can have one of the

 following values:

 Y Program authorization is enabled

 N Program authorization is disabled

 	
 CREATETS

 	
 Time when the row was inserted or updated

 	
 REMARKS

 	
 Comments about this program authorization record

 Table 10-2 shows the SYSIBM.DSNPROGAUTH column’s data type and default values.

 Table 10-2 SYSIBM.DSNPROGAUTH fields description

 	
 Column name

 	
 Data type and default value

 	
 PROGNAME

 	
 VARCHAR(24) NOT NULL

 	
 PLANNAME

 	
 VARCHAR(24) NOT NUL

 	
 PROGMDCVAL

 	
 CHAR(16) NOT NULL FOR BIT DATA WITH DEFAULT

 	
 PROGMDCPAD

 	
 CHAR(1) NOT NULL WITH DEFAULT '2’

 	
 CREATOR

 	
 ARCHAR(128) NOT NULL WITH DEFAULT CURRENT SQLID

 	
 ENABLED

 	
 CHAR(1) NOT NULL WITH DEFAULT 'N’

 	
 CREATETS

 	
 TIMESTAMP NOT NULL WITH DEFAULT

 	
 REMARKS

 	
 VARCHAR(762)

 SYSIBM.DSNPROGAUTH is a user maintained table. A sample INSERT statement is provided in the DB2 provided DSNTIJSG job, as shown in Example 10-11.

 Example 10-11 DSNTIJSG extract: sample INSERT in SYSIBM.DSNPROGAUTH

 [image:]

 //* *

 //* Here is a sample insert statement for the DSNPROGAUTH table.

 //* *

 //* INSERT INTO SYSIBM.DSNPROGAUTH

 //* ("PROGNAME"

 //* , "PLANNAME"

 //* , "PROGMDCVAL"

 //* , "PROGMDCPAD"

 //* , "CREATOR"

 //* , "ENABLED"

 //* , "CREATETS"

 //* , "REMARKS"

 //*)

 //* VALUES('DSNTIAD'

 //* , 'DSNTIA!!'

 //* , X'00000000000000000000000000000000'

 //* , '2'

 //* , CURRENT SQLID

 //* , 'N'

 //* , CURRENT TIMESTAMP

 //* , 'EXAMPLE DSNPROGAUTH ENTRY (DISABLED)'

 //*);

 //*

 [image:]

 Problem determination

 To support the program authorization functionality, DB2 11 adds the following error reason codes:

 00F3003A	An error occurred while processing the Program Name parameter. This parameter was provided by the attachment facility on a request to allocate a DB2 plan to the application. Either an abend occurred accessing the Program Name or the starting character of the parameter string is out of range. As a result, the request is not processed.

 00F3003B	The program authorization is enabled by specifying PROGAUTH option when the plan was bound. The program name associated with this connection is not authorized to use the specified plan name. The request to allocate a plan to the program name is denied.

 00E70026	The program authorization is enabled by specifying PROGAUTH option when the plan was bound. The SYSIBM.DSNPROGAUTH program name validation table or SYSIBM.DSNPROGAUTH_INDX1 index do not exist. The request to allocate the plan is not processed.

 00E70028	The program authorization is enabled by specifying the PROGAUTH option when the plan was bound. The SYSIBM.DSNPROGAUTH program name validation table or SYSIBM.DSNPROGAUTH_INDX1 index is not defined correctly. The request to allocate the plan is not processed.

 The DB2 DSNT252I message is updated to display the PROGAUTH option. This message shows the BIND or REBIND options that were used for the plan during bind or rebind processing. Example 10-12 shows the message DSNT252I.

 Example 10-12 REBIND PLAN output showing PROGAUTH enabled

 [image:]

 READY

 DSN SYSTEM(DB1A)

 DSN

 DSN

 REBIND PLAN (DSNTIA11) PROGAUTH (E)

 WARNING, ONLY IBM-SUPPLIED PLAN SHOULD BEGIN WITH "DSN"

 DSNT252I -DB1A DSNTBRB REBIND OPTIONS FOR PLAN DSNTIA11

 ACTION

 OWNER SYSADM

 VALIDATE RUN

 ISOLATION CS

 ACQUIRE USE

 RELEASE COMMIT

 EXPLAIN NO

 DYNAMICRULES RUN

 PROGAUTH ENABLE

 DSNT253I -DB1A DSNTBRB REBIND OPTIONS FOR PLAN DSNTIA11

 NODEFER PREPARE

 CACHESIZE 3072

 QUALIFIER SYSADM

 CURRENTSERVER

 CURRENTDATA YES

 DEGREE 1

 SQLRULES DB2

 DISCONNECT EXPLICIT

 REOPT NONE

 KEEPDYNAMIC NO

 IMMEDWRITE NO

 DBPROTOCOL DRDA

 OPTHINT

 ENCODING EBCDIC(00037)

 CONCURRENTACCESSRESOLUTION

 PATH

 DSNT200I -DB1A REBIND FOR PLAN DSNTIA11 SUCCESSFUL

 DSN

 END

 READY

 END

 [image:]

 Implementation example

 This section describes the steps involved in enabling a DB2 11 program authorization for a existing PLAN with the following objectives:

 •To limit and secure the packages that can be executed through a PLAN

 •To guaranty that a package is not altered

 The DB2 provided JCL DSNTIJTM, that is part of the DB2 installation stream, performs the BIND of the DSNTIAD package and its PLAN, DSNTIA11 for DB2 11. Example 10-13 shows the JCL used for this example.

 Example 10-13 BIND PLAN DSNTIA11 in job DSNTIJTM

 [image:]

 //DSNTIAS EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)

 //SYSTSPRT DD SYSOUT=*

 //SYSPRINT DD SYSOUT=*

 //SYSUDUMP DD SYSOUT=*

 //SYSTSIN DD *

 DSN SYSTEM(DB1A)

 BIND PACKAGE(DSNTIA11) MEM(DSNTIAD) -

 ACT(REP) ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC) -

 LIB('DB1AM.DBRMLIB.DATA')

 BIND PLAN(DSNTIA11) PKLIST(DSNTIA11.DSNTIAD) -

 ACTION(REPLACE) RETAIN +

 ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)

 END

 //*

 [image:]

 Example 10-14 shows a portion of the output of the BIND PLAN DSNTIA11 command. This example exposes the defaults used in this example environment. It also highlights the PROGAUTH keyword in the DSNT252I message. Because PROGAUTH was not specified during BIND, the resulting value for this option is DISABLE, as shown in this example.

 Example 10-14 BIND PLAN DSNTIA11 output

 [image:]

 DSN

 BIND PLAN(DSNTIA11) PKLIST(DSNTIA11.DSNTIAD)

 ACTION(REPLACE) RETAIN ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)

 WARNING, ONLY IBM-SUPPLIED PLAN SHOULD BEGIN WITH "DSN"

 DSNT252I -DB1A DSNTBCM1 BIND OPTIONS FOR PLAN DSNTIA11

 ACTION REPLACE RETAIN

 OWNER DB2R1

 VALIDATE RUN

 ISOLATION CS

 ACQUIRE USE

 RELEASE COMMIT

 EXPLAIN NO

 DYNAMICRULES RUN

 PROGAUTH DISABLE

 DSNT253I -DB1A DSNTBCM1 BIND OPTIONS FOR PLAN DSNTIA11

 NODEFER PREPARE

 CACHESIZE 3072

 QUALIFIER DB2R1

 CURRENTSERVER

 CURRENTDATA YES

 DEGREE 1

 SQLRULES DB2

 DISCONNECT EXPLICIT

 NOREOPT VARS

 KEEPDYNAMIC NO

 IMMEDWRITE NO

 DBPROTOCOL DRDA

 OPTHINT

 ENCODING EBCDIC(00037)

 CONCURRENTACCESSRESOLUTION

 PATH

 DSNT200I -DB1A BIND FOR PLAN DSNTIA11 SUCCESSFUL 		

 [image:]

 A SQL query on the DB2 SYSPLAN catalog table allows to check the value of PROGAUTH, as shown in Example 10-15. The query result of this example is consistent with the DB2 DSNT252I message obtained during the BIND PLAN command execution.

 Example 10-15 SYSPLAN query to show a PLAN’s PROGAUTH value

 [image:]

 ---------+---------+---------+---------+---------+---------+---------+---------+---------+

 SELECT

 NAME, VALID,OPERATIVE,

 CAST(QUALIFIER AS CHAR(10)) AS QUALIFIER,

 RELBOUND, PROGAUTH, PLENTRIES

 FROM SYSIBM.SYSPLAN

 WHERE NAME = 'DSNTIA11'

 WITH UR

 ---------+---------+---------+---------+---------+---------+---------+---------+---------+

 NAME VALID OPERATIVE QUALIFIER RELBOUND PROGAUTH PLENTRIES

 ---------+---------+---------+---------+---------+---------+---------+---------+---------+

 DSNTIA11 Y Y DB2R1 P D 1

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+---------+---------+---------+

 [image:]

 In this example, the PLENTRIES column indicates that the number of package list entries in the SYSIBM.SYSPACKLIST table is 1 for this plan. The SYSIBM.SYSPACKLIST table contains one or more rows for every local application plan bound with a package list. Each row represents a unique entry in the plan's package list.

 Example 10-16 shows an example of SQL query on SYSIBM.SYSPACKLIST to find the relationship between a PLAN and a package list (or collection).

 Example 10-16 SQL query on SYSIBM.SYSPACKLIST

 [image:]

 SELECT

 PLANNAME, CAST(COLLID AS CHAR(10)) AS COLLID, NAME

 FROM SYSIBM.SYSPACKLIST

 WHERE PLANNAME = 'DSNTIA11'

 WITH UR;

 ---------+---------+---------+---------+---------+---------+

 PLANNAME COLLID NAME

 ---------+---------+---------+---------+---------+---------+

 DSNTIA11 DSNTIA11 DSNTIAD

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 [image:]

 The COLLID column indicates the collection name for the package. An asterisk (*) indicates that the collection name is determined at run time. This example explicitly defines the collection DSNTIA11. The column NAME indicates the name of the package. An asterisk (*) indicates an entire collection. Example 10-17 shows an example of SQL query on SQL query on SYSIBM.SYSPACKAGE.

 Example 10-17 SQL query on SYSIBM.SYSPACKAGE

 [image:]

 ---------+---------+---------+---------+---------+---------+

 SELECT

 CAST(COLLID AS CHAR(10)) AS COLLID,

 CAST(NAME AS CHAR(10)) AS NAME,

 VALID, OPERATIVE, APPLCOMPAT

 FROM SYSIBM.SYSPACKAGE

 WHERE COLLID = 'DSNTIA11'

 WITH UR;

 ---------+---------+---------+---------+---------+---------+

 COLLID NAME VALID OPERATIVE APPLCOMPAT

 ---------+---------+---------+---------+---------+---------+

 DSNTIA11 DSNTIAD Y Y V11R1

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+

 [image:]

 To enable program authorization control, the following minimum information for the SYSIBM.DSNPROGAUTH table is required:

 PROGNAME	The program name

 PLANNAME	The PLAN name

 ENABLED	Insert value Y to enable program authorization

 The following columns are not explicitly populated for this example:

 •PROGMDCVAL: Modification detection code (MDC) value of the application program. The default value (a string of binary zeros) specifies that MDC is not to be used.

 •PROGMDCPAD: The type of padding used to calculate the MDC value. Not applicable in this example, as per the value for PROGMDCVAL.

 •CREATOR: The default for this column, CURRENT SQLID, is OK for the purposes of this example.

 •CREATETS: The default for this column, CURRENT TIMESTAMP, is OK for the purposes of this example.

 •The column REMARKS can be used for documentation purposes.

 Example 10-18 shows the SQL used for this test.

 Example 10-18 INSERT SQL on SYSIBM.DSNPROGAUTH

 [image:]

 INSERT INTO SYSIBM.DSNPROGAUTH

 ("PROGNAME"

 , "PLANNAME"

 , "REMARKS"

)

 VALUES('DSNTIAD'

 , 'DSNTIA11'

 , 'DB2 11 program authorization test1'

);

 [image:]

 Example 10-19 shows the INSERT results as reported with a SQL query on SYSIBM.DSNPROGAUTH. Notice the value N for the ENABLED column.

 Example 10-19 SQL query on SYSIBM.DSNPROGAUTH

 [image:]

 ---------+---------+---------+---------+---------+---------+---------+---

 SELECT

 CAST(PROGNAME AS CHAR(10)) AS PROGRNAME,

 CAST(PLANNAME AS CHAR(10)) AS PLANNAME,

 PROGMDCVAL, PROGMDCPAD,

 CAST(CREATOR AS CHAR(10)) AS CREATOR,

 ENABLED

 FROM SYSIBM.DSNPROGAUTH

 WITH UR;

 ---------+---------+---------+---------+---------+---------+---------+---

 PROGRNAME PLANNAME PROGMDCVAL PROGMDCPAD CREATOR ENABLED

 ---------+---------+---------+---------+---------+---------+---------+---

 DSNTIAD DSNTIA11 2 DB2R1 N

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 [image:]

 Example 10-20 shows the JCL used to invoke DSNTIAD for testing the program authentication functionality.

 Example 10-20 Testing program authentication with DSNTIAD

 [image:]

 //*---

 //RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20

 //STEPLIB DD DISP=(SHR),DSN=DB1AT.SDSNLOAD

 //SYSTSPRT DD SYSOUT=*

 //SYSTSIN DD *

 DSN SYSTEM(DB1A)

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) -

 LIB('DB1AM.RUNLIB.LOAD')

 //SYSPRINT DD SYSOUT=*

 //SYSUDUMP DD SYSOUT=*

 //SYSIN DD *

 SET CURRENT SQLID = 'SYSADM';

 CREATE VARIABLE CRISTIAN.TEMPVAR01 CHAR(10) DEFAULT 'NOT_INIT';

 /*

 [image:]

 The execution of the program fails as reported in Example 10-21.

 Example 10-21 Program authentication preventing execution

 [image:]

 READY

 DSN SYSTEM(DB1A)

 DSN

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')

 PLAN DSNTIA11 NOT AUTHORIZED FOR SUBSYSTEM DB1A AND AUTH ID DB2R1

 DSN

 END

 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'

 SQL ERROR DURING EXECUTE IMMEDIATE

 DSNT408I SQLCODE = -924, ERROR: DB2 CONNECTION INTERNAL ERROR, 0001, 0008, 00F3003B

 DSNT418I SQLSTATE = 58006 SQLSTATE RETURN CODE

 DSNT415I SQLERRP = DSNAET03 SQL PROCEDURE DETECTING ERROR

 [image:]

 To allow the execution of the program, the ENABLED column of the SYSIBM.DSNPROGAUTH table has to be changed to Y, as shown in Example 10-22.

 Example 10-22 Updating SYSIBM.DSNPROGAUTH to allow program execution

 [image:]

 ---------+---------+---------+---------+---------+---------+---------+

 UPDATE SYSIBM.DSNPROGAUTH

 SET ENABLED = 'Y'

 WHERE PROGNAME = 'DSNTIAD';

 ---------+---------+---------+---------+---------+---------+---------+

 DSNE615I NUMBER OF ROWS AFFECTED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

 ---------+---------+---------+---------+---------+---------+---------+

 [image:]

 Example 10-23 shows the results. Note the value Y for ENABLED.

 Example 10-23 SQL query on SYSIBM.DSNPROGAUTH, ENABLED = ‘Y’

 [image:]

 SELECT

 CAST(PROGNAME AS CHAR(10)) AS PROGRNAME,

 CAST(PLANNAME AS CHAR(10)) AS PLANNAME,

 PROGMDCVAL, PROGMDCPAD,

 CAST(CREATOR AS CHAR(10)) AS CREATOR,

 ENABLED

 FROM SYSIBM.DSNPROGAUTH

 WITH UR;

 ---------+---------+---------+---------+---------+---------+---------+---------+

 PROGRNAME PLANNAME PROGMDCVAL PROGMDCPAD CREATOR ENABLED

 ---------+---------+---------+---------+---------+---------+---------+---------+

 DSNTIAD DSNTIA11 2 DB2R1 Y

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 [image:]

 The execution of the program is now allowed, and the results are shown in Example 10-24.

 Example 10-24 Program authentication allowing execution

 [image:]

 READY

 DSN SYSTEM(DB1A)

 DSN

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')

 DSN

 END

 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'

 DSNT400I SQLCODE = 000, SUCCESSFUL EXECUTION

 [image:]

 Troubleshooting: table DSNPROGAUTH not available

 This section describes the DB2 behavior when a PLAN is enabled for program authentication, but the DB2 SYSIBM.DSNPROGAUTH table is not available. The query in Example 10-25 shows the database and table space name of the SYSIBM.DSNPROGAUTH table as created in this test environment.

 Example 10-25 SQL to find DBNAME and TSNAME of SYSIBM.DSNPROGAUTH

 [image:]

 ---------+---------+---------+---------+---------+---------+

 SELECT

 DBNAME, TSNAME

 FROM SYSIBM.SYSTABLES WHERE NAME = 'DSNPROGAUTH'

 AND OWNER = 'SYSIBM'

 WITH UR;

 ---------+---------+---------+---------+---------+---------+

 DBNAME TSNAME

 ---------+---------+---------+---------+---------+---------+

 DSNMDCDB DSNMDCTS

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+

 [image:]

 To force a resource not available error, this example stops the SYSIBM.DSNPROGAUTH table space. The unavailability of the table space is confirmed with a display command. Example 10-26 shows the output of this command.

 Example 10-26 Display status of SYSIBM.DSNPROGAUTH table space status

 [image:]

 DSNT360I -DB1A ***********************************

 DSNT361I -DB1A * DISPLAY DATABASE SUMMARY

 * GLOBAL

 DSNT360I -DB1A ***********************************

 DSNT362I -DB1A DATABASE = DSNMDCDB STATUS = RW

 DBD LENGTH = 4028

 DSNT397I -DB1A

 NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

 -------- ---- ----- ----------------- -------- -------- -------- -----

 DSNMDCTS TS STOP

 ******* DISPLAY OF DATABASE DSNMDCDB ENDED **********************

 DSN9022I -DB1A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

 [image:]

 At this point, the execution of any program defined with program authentication fails, as shown in Example 10-27.

 Example 10-27 SYSIBM.DSNPROGAUTH not available prevents program execution

 [image:]

 READY

 DSN SYSTEM(DB1A)

 DSN

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')

 SUBSYSTEM RESOURCE NEEDED FOR PLAN DSNTIA11, AUTH ID DB2R1, AND SUBSYSTEM DB1A IS NOT AVAILABLE

 FEEDBACK - REASON CODE X'00C90081' TYPE X'00000200' RESOURCE NAME- DSNMDCDB.DSNMDCTS

 DSN

 END

 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'

 SQL ERROR DURING EXECUTE IMMEDIATE

 DSNT408I SQLCODE = -923, ERROR: CONNECTION NOT ESTABLISHED: DB2 ACCESS, REASON 00C90081, TYPE 00000200, NAME

 DSNMDCDB.DSNMDCTS

 DSNT418I SQLSTATE = 57015 SQLSTATE RETURN CODE

 DSNT415I SQLERRP = DSNAET03 SQL PROCEDURE DETECTING ERROR

 [image:]

 The DB2 MSTR address space reports message 00C90081, as shown in Example 10-28. The 00C90081 message indicates that an attempt was made to allocate a resource that is stopped for all access.

 Example 10-28 DB2 MSTR message 00C90081

 [image:]

 DSNT501I -DB1A DSNIDBET RESOURCE UNAVAILABLE 734

 CORRELATION-ID=DB2R1

 CONNECTION-ID=TSO

 LUW-ID=USIBMSC.SCPDB1A.CBB6B8D881E6=829

 REASON 00C90081

 TYPE 00000200

 NAME DSNMDCDB.DSNMDCTS

 [image:]

 	
 Important: A PLAN with program authentication enabled will fail the execution of a package if DB2 cannot verify the contents of SYSIBM.DSNPROGAUTH.

 Troubleshooting: contention on table DSNPROGAUTH

 To simulate locking contention on the table SYSIBM.DSNPROGAUTH, this example performs an update on the table using SPUFI with AUTOCOMMIT set to NO, as shown in Example 10-29.

 Example 10-29 SPUFI option AUTOCOMMIT = NO

 [image:]

 SPUFI SSID: DB1A

 ===>

 Enter the input data set name: (Can be sequential or partitioned)

 1 DATA SET NAME ... ===> 'DB2R1.UTIL.SECURITY(DSNPROG)'

 2 VOLUME SERIAL ... ===> (Enter if not cataloged)

 3 DATA SET PASSWORD ===> (Enter if password protected)

 Enter the output data set name: (Must be a sequential data set)

 4 DATA SET NAME ... ===> 'DB2R1.SPUFIOUT'

 Specify processing options:

 5 CHANGE DEFAULTS ===> YES (Y/N - Display SPUFI defaults panel?)

 6 EDIT INPUT ===> YES (Y/N - Enter SQL statements?)

 7 EXECUTE ===> YES (Y/N - Execute SQL statements?)

 8 AUTOCOMMIT ===> NO (Y/N - Commit after successful run?)

 9 BROWSE OUTPUT ... ===> YES (Y/N - Browse output data set?)

 For remote SQL processing:

 10 CONNECT LOCATION ===>

 PRESS: ENTER to process END to exit HELP for more information

 [image:]

 The SQL query used in this test is shown in Example 10-30. Notice the DB2 DSNE6141 message.

 Example 10-30 SQL to update SYSIBM.DSNPROGAUTH

 [image:]

 ---------+---------+---------+---------+---------+---------+

 UPDATE SYSIBM.DSNPROGAUTH

 SET ENABLED = 'Y'

 WHERE PROGNAME = 'DSNTIAD';

 ---------+---------+---------+---------+---------+---------+

 DSNE615I NUMBER OF ROWS AFFECTED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

 ---------+---------+---------+---------+---------+---------+

 DSNE614I AUTOCOMMIT IS NO; NO CHANGES COMMITTED

 ---------+---------+---------+---------+---------+---------+-

 [image:]

 As a result of the SPUFI AUTOCOMMIT = NO option, there are locks held by SPUFI on the SYSIBM.DSNPROGAUTH table until the user explicitly commits the changes. A batch program running a PLAN with program authentication enabled attempts to access the table previous allowing the execution of a package.

 The locks are shown with a DISPLAY command, of which output can be seen in Example 10-31.

 Example 10-31 Locks on SYSIBM.DSNPROGAUTH table space

 [image:]

 DSNT360I -DB1A ***********************************

 DSNT361I -DB1A * DISPLAY DATABASE SUMMARY

 * GLOBAL LOCKS

 DSNT360I -DB1A ***********************************

 DSNT362I -DB1A DATABASE = DSNMDCDB STATUS = RW

 DBD LENGTH = 4028

 DSNT397I -DB1A

 NAME TYPE PART STATUS CONNID CORRID LOCKINFO

 -------- ---- ----- ----------------- -------- ------------ ---------

 DSNMDCTS TS RW BATCH DB2R1S H-IS,S,C

 - AGENT TOKEN 851

 DSNMDCTS TS RW TSO DB2R1 H-IX,S,C

 - AGENT TOKEN 844

 3 TB BATCH DB2R1S H-IS,T,C

 - AGENT TOKEN 851

 3 TB TSO DB2R1 H-IX,T,C

 - AGENT TOKEN 844

 ******* DISPLAY OF DATABASE DSNMDCDB ENDED **********************

 DSN9022I -DB1A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

 [image:]

 This example show the locks originated by the TSO user DB2R1, using SPUFI, and the batch correlation ID DB2R1S. The batch program fails as shown in Example 10-32.

 Example 10-32 Program failure due to locks on SYSIBM.DSNPROGAUTH

 [image:]

 READY

 DSN SYSTEM(DB1A)

 DSN

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')

 SUBSYSTEM RESOURCE NEEDED FOR PLAN DSNTIA11, AUTH ID DB2R1, AND SUBSYSTEM DB1A IS NOT AVAILABLE

 FEEDBACK - REASON CODE X'00C9008E' TYPE X'00000304' RESOURCE NAME- DSNMDCDB.DSNMDCTS.X'000002' '.X'01'

 DSN

 END

 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'

 SQL ERROR DURING EXECUTE IMMEDIATE

 DSNT408I SQLCODE = -923, ERROR: CONNECTION NOT ESTABLISHED: DB2 ACCESS, REASON 00C9008E, TYPE 00000304, NAME

 DSNMDCDB.DSNMDCTS.X'000002' '.X'01'

 DSNT418I SQLSTATE = 57015 SQLSTATE RETURN CODE

 DSNT415I SQLERRP = DSNAET03 SQL PROCEDURE DETECTING ERROR

 [image:]

 Note the DB2 00C9008E message. It indicates that a lock request cannot be granted, and the request waited for a period longer than the maximum specified by the installation. As indicated by NAME in this message, the lock was not obtained on the SYSIBM.DSNPROGAUTH table.

 	
 Attention: Contention on the SYSIBM.DSNPROGAUTH table can cause application performance or application availability problems

 10.3 Column masking enhancements

 Row and column access control enables you to manage access to a table at the level of a row, a column, or both. You can implement row access control through row permissions and column access control through column masks.

 A column mask is a database object that describes a specific column access control rule for a column. In the form of an SQL CASE expression, the rule specifies the condition under which a user, group, or role can receive the masked values that are returned for a column.

 If the SEPARATE_SECURITY system parameter is set to YES, you must have the SECADM authority to create a column mask. If SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM authority.

 Example 10-33 shows a sample DDL and DML code that you can use to test column masks. This code creates a simple table and add some sample records into it.

 Example 10-33 Sample table and data for column mask example

 [image:]

 CREATE TABLE CLIENTS

 (NAME CHAR(10),

 COUNTRY CHAR(10),

 PHONE# CHAR(10));

 INSERT INTO CLIENTS VALUES ('CRISTIAN','BELGIUM','+321234567');

 INSERT INTO CLIENTS VALUES ('FERNANDO','SPAIN ','+331234567');

 INSERT INTO CLIENTS VALUES ('TATIANA ','BELGIUM','+341234567');

 INSERT INTO CLIENTS VALUES ('MARTINA ','ITALY ','+391234567');

 INSERT INTO CLIENTS VALUES ('KATRIN ','GERMANY','+321234567');

 [image:]

 Example 10-34 shows the SQL that can be used to create 2 column masks on the table. With these examples, DB2 will mask the values of the columns COUNTRY and PHONE# for users other than CRIS.

 Example 10-34 Creating a column mask

 [image:]

 CREATE MASK COUNTRY_MASK ON CLIENTS

 FOR COLUMN COUNTRY

 RETURN

 CASE WHEN CURRENT SQLID = 'CRIS'

 THEN COUNTRY

 ELSE CHAR('----------')

 END

 ENABLE;

 CREATE MASK PHONE#_MASK ON CLIENTS

 FOR COLUMN PHONE#

 RETURN

 CASE WHEN CURRENT SQLID = 'CRIS'

 THEN PHONE#

 ELSE SUBSTR(PHONE#, 1, 3) || CHAR('-XXX-XX')

 END

 ENABLE;

 [image:]

 To activate column access control on this table, issue the ALTER statement shown in Example 10-35.

 Example 10-35 Activating column access control

 [image:]

 ALTER TABLE CLIENTS ACTIVATE COLUMN ACCESS CONTROL;

 [image:]

 Example 10-36 shows the results of executing the same SELECT statement with different SQLIDs on a table with column access control activated.

 Example 10-36 Column access control effects on SELECT

 [image:]

 ---------+---------+---------+---------+---------+---------+---------+

 SET CURRENT SCHEMA = 'CRIS';

 ---------+---------+---------+---------+---------+---------+---------+

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

 ---------+---------+---------+---------+---------+---------+---------+

 SET CURRENT SQLID = 'CRIS';

 ---------+---------+---------+---------+---------+---------+---------+

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

 ---------+---------+---------+---------+---------+---------+---------+

 SELECT * FROM CLIENTS;

 ---------+---------+---------+---------+---------+---------+---------+

 NAME COUNTRY PHONE#

 ---------+---------+---------+---------+---------+---------+---------+

 CRISTIAN BELGIUM +321234567

 FERNANDO SPAIN +331234567

 TATIANA BELGIUM +341234567

 MARTINA ITALY +391234567

 KATRIN GERMANY +321234567

 DSNE610I NUMBER OF ROWS DISPLAYED IS 5

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+---------+

 SET CURRENT SQLID = 'TOTO';

 ---------+---------+---------+---------+---------+---------+---------+

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

 ---------+---------+---------+---------+---------+---------+---------+

 SELECT * FROM CLIENTS;

 ---------+---------+---------+---------+---------+---------+---------+

 NAME COUNTRY PHONE#

 ---------+---------+---------+---------+---------+---------+---------+

 CRISTIAN ---------- +32-XXX-XX

 FERNANDO ---------- +33-XXX-XX

 TATIANA ---------- +34-XXX-XX

 MARTINA ---------- +39-XXX-XX

 KATRIN ---------- +32-XXX-XX

 DSNE610I NUMBER OF ROWS DISPLAYED IS 5

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 ---------+---------+---------+---------+---------+---------+---------+

 [image:]

 To deactivate column access control on this example table, issue the ALTER statement shown in Example 10-37.

 Example 10-37 Deactivating column access control

 [image:]

 ALTER TABLE CLIENTS DEACTIVATE COLUMN ACCESS CONTROL;

 [image:]

 10.3.1 Remove column access control restrictions for GROUP BY

 In DB2 10 for z/OS, column access control (column mask) is restricted for GROUP BY in the statements for some scenarios. After definition and activation of column access control on a table, users might receive SQLCODE -20478 reason codes 3, 4, 5, or 6 at query execution. An abstract of the SQLCODE -20478 message definition is shown in Example 10-38.

 Example 10-38 SQLCODE -20478

 [image:]

 THE STATEMENT CANNOT BE PROCESSED BECAUSE COLUMN MASK mask-name (DEFINED FOR COLUMN column-name) EXISTS AND THE COLUMN MASK CANNOT BE APPLIED OR THE DEFINITION OF THE MASK CONFLICTS WITH THE REQUESTED STATEMENT. REASON CODE reason-code.

 [image:]

 In DB2 10, the user can receive one of the following reason codes:

 •3: The column is also referenced in a grouping expression of the GROUP BY clause.

 •4: When a table contains a column that has a column mask defined on it, each column that is in the table must be referenced as a simple column reference in the GROUP BY clause. Such columns must not be referenced in a grouping expression in the GROUP BY clause.

 •5: The select list includes an aggregate function and the column that is identified by column-name is specified as an input argument to the function. In this case, the column mask must not reference a scalar fullselect or an aggregate function.

 •6: A column in the select list maps directly or indirectly to the column column-name of a table expression, view, or common table expression. Such a column must be referenced only as an argument to an aggregate function in the select list.

 Use the following possible solutions for these reason codes:

 •reason code 3: Either do not reference the column in the select list or do not reference the column in an expression in the GROUP BY clause.

 •reason code 4: Either do not reference the column in the select list or change the GROUP BY clause to include only a simple column reference for each column of the same table that is referenced in the mask-name mask.

 •reason code 5: Either do not reference the column in the select list or do not specify the column as an argument to the aggregate function.

 •reason code 6: Either change the query to specify the column as an argument to an aggregate function or remove the GROUP BY clause.

 DB2 11 removes column access control restrictions for GROUP BY as follows:

 •Remove SQLCODE -20478 reason code 5: if column mask contains a scalar fullselect or an aggregate function, allow to apply the column mask under an aggregate function

 •Remove SQLCODE -20478 reason codes 3, 4, or 6: if column mask contains non-grouping columns, allow to apply the column mask when there is a GROUP BY clause

 The support for GROUP BY column access control starts in DB2 11 New Function Mode (NFM) when APPLCOMPAT='V11R1'. No REBIND is needed to get the GROUP BY support.

 10.3.2 Correct implementation of aggregate function with DISTINCT

 In DB2 10, after APAR PM61099, DB2 disallows a column mask on a column that is the input to an aggregate DISTINCT function by issuing -20478 reason code 26.

 Example 10-39 shows a sample query that can show this behavior.

 Example 10-39 Aggregate function with DISTINCT in SQL

 [image:]

 SELECT COUNT(DISTINCT PHONE#) FROM CLIENTS;

 [image:]

 Table 10-3 summarizes the changes in behavior when comparing DB2 10 to DB2 11.

 Table 10-3 DISTINCT and aggregation with column masking in DB2 10 versus DB2 11

 	

 	
 DISTINCT

 	
 Aggregation

 	
 DB2 10

 	
 On masked value

 	
 On masked value

 	
 DB2 11

 	
 On unmasked value

 	
 On masked value

 Support for aggregate function with DISTINCT column starts in DB2 11 NFM when APPLCOMPAT = 'V11R1'. To avoid the inconsistent result during migration and fallback, the correction is retrofitted to DB2 10 NFM. Rebind is needed to correct the aggregate functions with the DISTINCT keyword.

 10.3.3 Column access control for UNION

 DB2 10 restricted the column access control (column masks) from all set operations, like UNION, INTERSECT, and EXCEPT, by issuing SQLCODE -20478 reason code 1 and 2.

 DB2 11 supports the column access control for UNION DISTINCT and UNION ALL in DB2 11 NFM when APPLCOMPAT = 'V11R1'.

 The expression corresponding to the nth column in R1 and R2 can reference columns with column masks. The nth column of the result of the union can be derived from the masked values in R1 or R2.

 With UNION DISTINCT, the duplication elimination is based on the unmasked values in R1 and R2. Because each row of the result table of the union is either a row from R1 or a row from R2, the output values in the result table of the union might vary. For example, if a row in R1 is derived from the masked value but a row in R2 is derived from the unmasked value, and if the row in the result table of the union is from R1, the masked value is returned, but if the row in the result table of the union is from R2, the unmasked value is returned.

 The following examples illustrate when the values in the result table of the union can vary:

 •The expression corresponding to the nth column in R1 references columns with column masks but the expression corresponding to the nth column in R2 does not, or vise versa.

 •Both expressions corresponding to the nth column in R1 and R2 reference columns with column masks but they are different column masks.

 •The column mask definition references columns that are not the same column for which the column mask is defined and those columns are not part of the UNION DISTINCT operation. It is recommended not to reference other columns in the column mask definition.

 EXCEPT and INTERSECT can be intermixed with UNION, as long as the rows in R1 and R2 for EXCEPT and INTERSECT do not reference columns with column masks.

[image:]
[image:]

Utilities

 IBM DB2 Utilities Suite for z/OS is a comprehensive set of tools for managing all DB2 data maintenance tasks. DB2 11 includes a variety of improvements to utilities. These utilities are enhanced to support all new functions in DB2 11. The support also includes more widespread use of the System z platform functions, such as more zIIP exploitation. Finally, DB2 11 utilities show the trend to simplifying data management, resource consumption, and maximize availability.

 The best utility is the one that you do not need to schedule, or even better you do not need to run. One example is the function described at 4.10, “Idle thread break-in” on page 82, which relieves the need to run REORG INDEX for the purpose of removing the pseudo deleted index entries.

 This chapter describes enhancements to utilities and includes the following topics:

 •Online REORG enhancements

 •Enhanced statistics

 •Backup and recovery enhancements

 •LOAD and UNLOAD enhancements

 •Compression dictionaries for Change Data Capture

 •General enhancements

 •Deprecated functions

 For more information, see DB2 11 for z/OS Utility Guide and Reference, SC19-4067.

 11.1 Online REORG enhancements

 Online REORG is an availability enhancement to DB2 introduced in DB2 V5. It increases availability of a table space or index while it is being reorganized. Online REORG reloads the reorganized table space and rebuilds the indexes into shadow table spaces and indexes. It then switches the original data sets and the new ones at the end of the REORG making the objects unavailable for a short time. There is just a small unavailability when the applications are drained in the final log iteration phase (CHANGE only) and the switch phase. By using drain and retry options, the draining process can be controlled without leading to resource unavailability conditions for the applications and the process can be repeated until the REORG finishes successfully.

 By online REORG, we mean REORG.... SHRLEVEL REFERENCE or REORG.... SHRLEVEL CHANGE. REORG SHRLEVEL NONE continues to delete and rebuild the DB2 objects.

 Online REORG is enhanced throughout several DB2 releases to bring more usability and help users to reach continuous availability.

 This section describes the following DB2 11 improvements to online REORG:

 •Improve performance of partition-level REORG with non partitioned secondary indexes

 •SWITCH phase impact reduction

 •Physically delete empty partition-by-growth partitions

 •Automated REORG mapping table management

 •REORG without SORTing data

 •Partition-level inline image copy

 •Improved REORG LISTDEF processing

 •REBALANCE enhancements

 •REORG of LOB enhancements

 •Improved REORG serviceability

 •REORG change of defaults to match preferred practices

 11.1.1 Improve performance of partition-level REORG with non partitioned secondary indexes

 Since the removal of the BUILD2 phase for partition-level REORG in DB2 9, the performance of REORG was degraded in some cases due to the cost of building shadow non partitioned secondary indexes (NPSIs). Shadow NPSIs are populated initially with keys of partitions which are not in the scope of the REORG during the UNLOAD phase. Then keys from parts within the scope of the REORG are sorted and inserted into the shadow NPSI during the SORT and REBUILD phases, respectively.

 Significant performance improvement can be achieved by sorting all keys of the NPSI in the same sort operation and rebuilding the index from the entire set of sorted keys.

 DB2 11 modifies the processing of NPSIs for REORG TABLESPACE PART SHRLEVEL CHANGE/REFERENCE when NPSIs are defined on the table space. Processing of NPSIs in this case is done in one of the following ways:

 •During UNLOAD, one or more subtasks unload NPSI keys from partitions not within the scope of the REORG and build the shadow NPSI. Keys from partitions within the scope of the REORG are generated from the reorganized data rows, sorted, and inserted in the shadow index.

 •During UNLOAD, one or more subtasks process NPSI keys from partitions not within the scope of the REORG. These keys are routed to a sort process to be sorted with the keys from partitions within the scope of the REORG. The shadow NPSI is built from this sorted set of keys.

 This function can improve performance and leaves the previous behavior intact. It also allows the user to control the behavior through the DSNZPARM REORG_PART_SORT_NPSI value with a SORTNPSI keyword. See Figure 11-1.

 [image:]

 Figure 11-1 REORG TABLE SPACE PART with NPSIs

 This keyword is ignored for a REORG that is not partition-level or a REORG with no NPSIs.

 Figure 11-2 shows the following possible set of options for the SORTNPSI keyword:

 •When SORTNPSI is specified as YES or AUTO, all keys can be sorted.

 •When SORTNPSI is not specified, and REORG_PART_SORT_NPSI is set to YES or AUTO, all keys can be sorted as well.

 •If any of the two parameters are set to NO, the previous method is used.

 [image:]

 Figure 11-2 New SORTNPSI keyword

 If the SORTNPSI keyword is not specified, the value is determined by the DSNZPARM REORG_PART_SORT_NPSI value (default is NO). The REORG_PART_SORT_NPSI default is changeable online and has member scope in data sharing.

 Figure 11-3 shows the options for the DSNZPARM REORG_PART_SORT_NPSI value.

 [image:]

 Figure 11-3 New DSNZPARM REORG_PART_SORT_NPSI

 The following options are available for the DSNZPARM REORG_PART_SORT_NPSI value:

 AUTO 	Specifies that if sorting all keys of the non-partitioned secondary indexes improves the elapsed time and CPU performance, all keys are sorted.It uses catalog statistics and RTS information.

 YES	Specifies that if sorting all keys of the non-partitioned secondary indexes improves the elapsed time, all keys are sorted.

 NO	Specifies that only keys of the non-partitioned secondary indexes that are in the scope of the REORG are sorted.

 The following new message is issued when all keys of an NPSI are sorted during a partition-level REORG TABLESPACE.

 DSNU1242I

 csect-name ALL KEYS OF A NON-PARTITIONED SECONDARY INDEX WILL BE SORTED

 Example 11-1 shows an example of REORG TABLESPACE PART WITH SORTNPSI YES.

 Example 11-1 REORG TABLESPACE PART WITH SORTNPSI YES

 [image:]

 /*JOB

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'

 DISP (NEW,CATLG,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)

 SORTNPSI YES

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL REFERENCE

 [image:]

 Example 11-2 shows the job output.

 Example 11-2 REORG TABLESPACE PART WITH SORTNPSI YES job output

 [image:]

 DSNU000I 205 14:13:42.62 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU050I 205 14:13:42.64 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)

 SORTNPSI YES COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL REFERENCE

 DSNU2904I -DB1A 205 14:13:43.45 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU1242I -DB1A 205 14:13:43.45 DSNURFUI - ALL KEYS OF A NON-PARTITIONED SECONDARY INDEX WILL BE SORTED

 DSNU2903I 205 14:13:43.45 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED

 DSNU010I 205 14:13:46.19 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 The measurements results show that REORG of 40% of partitions showed 55% reduction on elapsed time and an increase of 22% in CPU time. DB2 SORT gives additional reduction on elapsed time and reduces CPU time. In general, when reorganizing more than 50% of your table, this option is a good option.

 	
 Note: This function was retrofitted by APAR PM55051 to DB2 9 with PTF UK78231 and DB2 10 with PTF UK78229.

 11.1.2 SWITCH phase impact reduction

 This new feature provides relief for online REORG when acquiring DRAIN during the SWITCH phase (for example, in a situation where users have a partitioned table space with 10 partitions and need to REORG the first five partitions). DB2 10 utility requests a DRAIN for partition 1, then partition 2, and so on until gets the DRAIN for the five partitions. However, often this process runs out of the specified DRAIN_WAIT time before it arrives on part five. This process causes the utility to abend and leaves the table space partition in UTRO access, with the updates failing with -904 reason code.

 DB2 11 sets a flag to prevent new CLAIM for the PARTs specified on REORG, before starting DRAIN for part 1. Thus, new application threads need to wait until REORG acquires all the DRAINs to proceeded, as illustrated in Figure 11-4.

 [image:]

 Figure 11-4 Switch phase impact reduction

 This technique solves the issue on DRAIN PARTs but it can still be a problem when draining the NPSI. When REORG is requesting DRAIN for part 1 to 5, an application can come in and request a row that is on PART 6. REORG lets the application get this CLAIM, but more importantly is that the application also gets a CLAIM on the NPSI. Later, the application wants a row that is on PART 3 and waits for REORG to finish, but REORG is waiting to the application to finish as well and release the NPSI. In this case, a deadlock situation occurs.

 To solve this issue, DB2 11 provides the new DRAIN_ALLPARTS YES option, that tells DB2 to obtains the table space level drain on the entire partitioned table space temporarily first, then DRAIN the NPSIs, release the drain on the entire partitioned table space, and start draining the target data partitions and the indexes.

 This process provides relief by eliminating DRAIN timeout or deadlocks caused by the reverse order of object-draining by REORG and object-claiming by DML statement.

 The DRAIN_ALLPARTS option specifies the action to take during a part level REORG TABLESPACE SHRLEVEL REFERENCE or CHANGE when a non partitioned secondary index is defined on a partitioned table space. It supports the following values:

 NO 	REORG drains the target data partitions serially followed by the non partitioned secondary indexes. This option is the default behavior.

 YES	REORG obtains the table space level drain on the entire partitioned table space first, before draining the target data partitions and the indexes. This option can provide relief by eliminating drain timeout or deadlocks caused by the reverse order of object-draining by REORG and object-claiming by DML statements.

 Example 11-3 shows an example of REORG TABLESPACE PART with DRAIN_ALLPARTS YES.

 Example 11-3 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES

 [image:]

 /*JOB

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'

 DISP (NEW,CATLG,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)

 DRAIN_ALLPARTS YES

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL REFERENCE

 [image:]

 Example 11-4 shows the job output.

 Example 11-4 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES job output

 [image:]

 DSNU000I 206 14:39:24.36 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 0DSNU050I 206 14:39:24.39 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4) DRAIN_ALLPARTS YES COPYDDN(

 COPY) UNLDDN REC LOG NO SHRLEVEL REFERENCE

 -DB1A 206 14:39:26.89 DSNURLOG - DRAIN ALL WITH START TIME 2013-07-25-14.39.26.899227 HAS COMPLETED SUCCESSFULLY

 DSNU1139I 206 14:39:26.94 DSNURLGD - FINAL LOG ITERATION STATISTICS. NUMBER OF LOG RECORDS = 0

 DSNU386I 206 14:39:26.94 DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG RECORDS = 0

 DSNU385I 206 14:39:26.94 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU387I 206 14:39:27.11 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 1

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 2

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 3

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 4

 DSNU010I 206 14:39:27.97 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 	
 Note: This feature does not affect REORG of the whole table space because it is only one DRAIN on the whole table space.

 Timing of SWITCH phase with MAXRO DEFER

 During an online REORG SHRLEVEL CHANGE, DB2 allows changes during each iteration of the LOG phase, which can cause the LOG phase to never end. Thus, the REORG utility must at some time switch to read-only access during the LOG phase. Then, it has to apply only the changes accumulated during the previous iteration before it enters the SWITCH phase. Because the switching to read-only access impacts your applications, the REORG utility allows you to decide and specify, using the MAXRO utility, how long can you tolerate a read-only period in your environment.

 Based on the changes for the previous iteration, the REORG utility estimates how long the next iteration takes. If its estimate is lower than or equal to the value specified using the MAXRO parameter, the REORG utility switches to read-only access or even to no access allowed, depending on what you have requested, and the last iteration takes place.

 The MAXRO DEFER option causes log processing to continue indefinitely until you change MAXRO using the ALTER UTILITY command, or the last iteration is forced by LONGLOG, or the reorganization is terminated.

 DB2 11 allows you to govern the timing of drain and switch for long-running REORGs without the need to schedule a separate ALTER UTILITY command with a new SWITCHTIME parameter to determine the earliest point at which drain processing is attempted. The timestamp option determines the time at which the final log iteration of the LOG phase is to begin. This time must not have already occurred when REORG is run. It simply tells REORG when you want to apply the DRAIN and switch without the need of issuing the ALTER UTILITY command.

 The SWITCHTIME option specifies the time for the final log iteration of the LOG phase to begin. The final result and all the time stamp calculation of DEADLINE is in TIMESTAMP(6). This keyword can be specified in conjunction with the MAXRO keyword. REORG can enter the final log iteration of the LOG phase before the specified SWITCHTIME value if the MAXRO criteria is met. This option supports the following values:

 NONE	Does not specify a time for the final log iteration of the LOG phase. This option is the default behavior.

 timestamp	Specifies the time the final log iteration of the LOG phase is to begin. This time must not have already occurred when REORG is run.

 labeled-duration-expression	Calculates the time for the final log iteration of LOG phase is to begin. The calculation is based on either CURRENT TIMESTAMP or CURRENT DATE.

 To add a labeled duration expression, select to begin your labeled duration expression with either the Current date or the Current time stamp using the following expression:

 labeled-duration-expression:

 CURRENT_DATE

 CURRENT_TIMESTAMP WITH TIME ZONE +/- constant YEAR

 																YEARS

 																MONTH

 																MONTHS

 																DAY

 																DAYS

 																HOUR

 																HOURS

 																MINUTE

 																MINUTES

 																SECOND

 																SECONDS

 																MICROSECOND

 																MICROSECONDS

 The NEWMAXRO option specifies the maximum amount of time for the last log iteration after SWITCHTIME is met. Requires keyword SWITCHTIME to be specified. This value overrides the existing MAXRO parameter specified. This option supports the following values:

 NONE	Specifies that when the specified SWITCHTIME is met, REORG proceeds to the last log iteration without taking into log processing time into consideration. Specifying NONE results in REORG entering the last log iteration almost immediately at or after the specified SWITCHTIME. This value is the default.

 integer	Specifies the number of seconds. Specifying a small positive value reduces the length of the period of read-only access, but it might increase the elapsed time for REORG to complete. If you specify a huge positive value, it probably ensure REORG enters the last log iteration almost immediately at or after the specified SWITCHTIME.

 You can add or subtract one or more constant values to specify the switch time. This switch time must not have already occurred when REORG is run. CURRENT TIMESTAMP and CURRENT DATE are evaluated once, when the REORG statement is first processed. If a list of objects is specified, the same value is in effect for all objects in the list.

 11.1.3 Physically delete empty partition-by-growth partitions

 REORG a partition-by-growth (PBG) table space prior to DB2 11 can result in empty physical partitions at the end. To avoid this issue, DB2 11 includes the DSNZPARM REORG_DROP_PBG_PARTS value. This option specifies whether the REORG utility removes trailing empty partitions when operating on an entire PBG table space. It uses the following syntax:

 Acceptable values: DISABLE, ENABLE

 Default: DISABLE

 Update: option 31 on panel DSNTIPB

 DSNZPxxx: DSN6SPRM REORG_DROP_PBG_PARTS

 An empty trailing partition occurs when the REORG utility moves all data records from a partition into lower numbered partitions. This parameter is meaningful only when the REORG utility is run against an entire PBG table space. It is ignored for the others types of table spaces and for REORG of a PBG if you specify PARTs. It cannot be specified at the REORG statement level only as a DSNZPARM value.

 	
 Note: You cannot run a PIT recovery prior to such (pruning) REORG.

 11.1.4 Automated REORG mapping table management

 During the REORG LOG phase, DB2 log records for the changes done to the original table space are applied to the shadow table space. In order to map these changes to the shadow table space, the REORG utility uses a mapping table. The mapping table and the index must be created before the REORG utility is executed.

 The mapping table DDL must change in DB2 11 due to the RBA/LRSN change. In order to help DBAs, DB2 11 can automatically create a mapping table, but if users do not want to pay the cost of creating mapping table automatically during all REORGs, the users can continue to create their own mapping tables.

 Here are the rules on creating mapping tables:

 •If the mapping table is specified and it is in correct format, then honor the specification.

 •Else if specified but in the incorrect format, then create a new mapping table in the same database as the original mapping table.

 •Else if the mapping table is not specified and the DSNZPARM REORG_MAPPING_DATABASE value is specified, then create in the DSNZPARM database. The REORG utility fails with RC8 and a DSNU2902I message occurs, if the specified database name in the keyword or zParm is not found.

 •Else create in the implicit database.

 •DROP at end of REORG or end of last REORG, if there are multiple REORGs in the job step.

 The MAPPINGDATABASE option specifies the database in which REORG implicitly creates the mapping table and index objects. This keyword overrides the subsystem parameter value in REORG_MAPPING_DATABASE. The value cannot be DSNDB01, DSNDB06, or DSNDB07, implicit database, a work file or temporary database.

 As an example, consider the following scenario, which executes a REORG:

 1.	Create a mapping table with the DB2 10 format and run REORG, as shown in Example 11-5.

 Example 11-5 Mapping table with the DB2 10 format and run REORG

 [image:]

 CREATE TABLE DB2R2.MAPPTBL (

 		TYPE CHAR(1) FOR SBCS DATA NOT NULL,

 		SOURCE_RID CHAR(5) FOR SBCS DATA NOT NULL,

 		TARGET_XRID CHAR(9) FOR SBCS DATA NOT NULL,

 		LRSN CHAR(6) FOR SBCS DATA NOT NULL --- DB2 10 format

)

 	IN DSN8D11P.DSN8S11Q

 	AUDIT NONE

 	DATA CAPTURE NONE

 	CCSID EBCDIC;

 CREATE UNIQUE INDEX DB2R2.XMAPPTBL

 	ON DB2R2.MAPPTBL

 	(SOURCE_RID		ASC,

 	 TYPE		ASC,

 	 TARGET_XRID		ASC,

 	 LRSN		ASC)

 	NOT CLUSTER

 	USING STOGROUP DSN8G110

 	 PRIQTY -1

 	 SECQTY -1

 	BUFFERPOOL BP0

 	CLOSE NO

 	PIECESIZE 2097152 K;

 //DSNUPROC.SYSIN DD *

 REORG TABLESPACE DSN8D11A.DSN8S11E

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL CHANGE

 MAPPINGTABLE DB2R2.MAPPTBL

 //

 1DSNU000I 207 16:33:32.49 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 0DSNU050I 207 16:33:32.51 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL

 CHANGE MAPPINGTABLE DB2R2.MAPPTBL

 DSNU2900I -DB1A 207 16:33:32.51 DSNURMAP - MAPPING TABLE IS SPECIFIED WITH A NON-EXPANDED LRSN COLUMN

 DSNU2904I -DB1A 207 16:33:34.59 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU2901I -DB1A 207 16:33:34.67 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000

 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000

 CREATED IN DSN8D11P.RM23B859

 DSNU010I 207 16:33:38.47 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 2.	Create a mapping table with the DB2 11 format and run REORG, as shown in Example 11-6.

 Example 11-6 Mapping table with the DB2 11 format and run REORG

 [image:]

 CREATE TABLE DB2R2.MAPPTBL (

 		TYPE CHAR(1) FOR SBCS DATA NOT NULL,

 		SOURCE_RID CHAR(5) FOR SBCS DATA NOT NULL,

 		TARGET_XRID CHAR(9) FOR SBCS DATA NOT NULL,

 		LRSN CHAR(10) FOR SBCS DATA NOT NULL -- DB2 11 format

)

 	IN DSN8D11P.DSN8S11Q

 	AUDIT NONE

 	DATA CAPTURE NONE

 	CCSID EBCDIC;

 CREATE UNIQUE INDEX DB2R2.XMAPPTBL

 	ON DB2R2.MAPPTBL

 	(SOURCE_RID		ASC,

 	 TYPE		ASC,

 	 TARGET_XRID		ASC,

 	 LRSN		ASC)

 	NOT CLUSTER

 	USING STOGROUP DSN8G110

 	 PRIQTY -1

 	 SECQTY -1

 	BUFFERPOOL BP0

 	CLOSE NO

 	PIECESIZE 2097152 K;

 //DSNUPROC.SYSIN DD *

 REORG TABLESPACE DSN8D11A.DSN8S11E

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL CHANGE

 MAPPINGTABLE DB2R2.MAPPTBL

 //

 1DSNU000I 207 16:37:49.77 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 0DSNU050I 207 16:37:49.79 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL

 CHANGE MAPPINGTABLE DB2R2.MAPPTBL

 DSNU2904I -DB1A 207 16:37:51.73 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU010I 207 16:37:55.22 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 3.	On the last scenario, there is no mapping table, and REORG was run. DB2 automatically creates a mapping table, as shown in Example 11-7.

 Example 11-7 Mapping table and run REORG

 [image:]

 //DSNUPROC.SYSIN DD *

 REORG TABLESPACE DSN8D11A.DSN8S11E

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL CHANGE

 //

 1DSNU000I 207 16:04:46.22 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 0DSNU050I 207 16:04:46.27 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL

 CHANGE

 DSNU2904I -DB1A 207 16:04:48.53 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU2901I -DB1A 207 16:04:48.70 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000

 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000

 CREATED IN DSN00035.REORGRMA

 DSNU010I 207 16:04:52.69 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 Example 11-8 shows how the database and table space look when automatically created.

 Example 11-8 Database and table space format when automatically created by DB2

 [image:]

 CREATE DATABASE "DSN00035"

 	BUFFERPOOL BP0

 	INDEXBP BP0

 	STOGROUP SYSDEFLT

 	CCSID EBCDIC;

 CREATE TABLESPACE "REORGRMA"

 	IN DSN00035

 	USING STOGROUP SYSDEFLT

 	 PRIQTY -1

 	 SECQTY -1

 	DSSIZE 4 G

 	MAXPARTITIONS 256

 	SEGSIZE 32

 	BUFFERPOOL BP0

 	CCSID EBCDIC

 	LOCKMAX SYSTEM

 	LOCKSIZE ROW

 	MAXROWS 255;

 [image:]

 Prior to DB2 11, the mapping table needs to be create in a segmented table space which limits the number of rows to REORG. DB2 11 allows the mapping table to be created in segmented and the PBG table space. The PBG definition allows to increase the mapping table max size to 16 TB, and it was also retrofitted to DB2 10 and 9 through APAR PM58177.

 	
 Note: DB2 11 New Function Mode (NFM) requires a new format mapping table and conversion mode (CM), CM*, ENFM, and ENFM* support the traditional and new format of mapping tables.

 11.1.5 REORG without SORTing data

 When SORTDATA is specified on the REORG utility control statement for a segmented table space, DB2 always unloads rows in physical sequence, that is, table by table, segment by segment, page by page, and row by row. If at least one of the tables in the segmented table space has an explicit clustering index, rows are passed to DFSORT for sorting. Rows are sorted in the sequence of the table’s explicit or implicit clustering index. If the table does not have an index, rows are not sorted. If a table does not have an explicit clustering index, then the first index created on the table is called the implicit clustering index.

 For a partitioned table space, rows of the entire table space or of the partitions to be reorganized are unloaded in physical sequence, that is, page by page and row by row, and passed to DFSORT (or an equivalent sort utility) to be sorted in the sequence implied by the partitioning index.

 Generally, physically unloading rows and sorting them by DFSORT is faster than unloading rows by using a clustering index, especially when the cluster ratio (CLUSTERRATIOF) of the index is less than 95%. Thus, so the lower the cluster ratio, the higher is the performance improvement when using SORTDATA.

 Increasingly, REORGs are performed for reasons other than to gain clustering of data. Examples are when REORG is used for database conversion, alter segmented size, alter page size, materialize pending changes.

 Prior of DB2 11, users do not have the ability to avoid the cost of reclustering.

 DB2 11 has implemented the support of SORTDATA NO with SHRLEVEL CHANGE and also a new REORG parameter RECLUSTER YES/NO option on SORTDATA NO, With RECLUSTER NO, REORG does not unload data through the clustering index and does not sort data records in clustering order.

 If users want to run a REORG and they do not care about CLUSTERing data, because this is a conversion table space operation or because the data is already in cluster order, or because the application does not take advantages of clustering data order, you can now specify the option SORTDATA NO RECLUSTER NO and DB2 does not sort data. This new feature cuts down the cost of SORTing your data. The option also helps some users that like the use of SORTDATA NO but they do not have enough DASD space that DFSORT needs to sort your data.

 SORTDATA NO tells DB2 to unload using the cluster index or unloading the physical order and pass it to DFSORT. On both ways, your table is in cluster order at the end.

 Table 11-1 summarizes the SORTDATA YES/NO RECLUSTER YES/NO behavior.

 Table 11-1 SORTDATA YES/NO RECLUSTER YES/NO summary

 	
 Object description

 	
 SORTDATA

 	
 SORTDATA NO, RECLUSTER NO

 	
 SORTDATA NO, RECLUSTER YES

 	
 Segmented table space without index

 	
 Unloaded table by table, segment by segment, page by page, and row by row

 	
 Unloaded table by table, segment by segment, page by page, and row by row

 	
 Unloaded table by table, segment by segment, page by page, and row by row, reclustered following the column sequence

 	
 Partitioned table space without index

 	
 Unloaded table by table, segment by segment, page by page, and row by row

 	
 Unloaded segment by segment (if UTS), page by page, and row by row

 	
 Unloaded table by table, segment by segment, page by page, and row by row, reclustered following the partitioning key

 	
 Table space with one clustering index

 	
 Rows are passed to DFSORT for sorting, reloaded in sequence of the clustering index

 	
 Unloaded table by table, segment by segment (if UTS), page by page, and row by row. Clustering Index is NOT used

 	
 Data records are to be reclustered and to be unloaded by the clustering index.

 	
 Table space with indexes, but no clustering

 	
 Rows are passed to DFSORT for sorting, the index which was created first is used for clustering sequence

 	
 Unloaded table by table, segment by

 segment (if UTS), page by page, and row by row. Clustering Index is NOT used

 	
 Data records are to be reclustered and to be unloaded by the 1st index created for any table in the table space

 Example 11-9 shows an example of REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO.

 Example 11-9 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO

 [image:]

 /*JOB

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..T&TIME.'

 DISP (NEW,CATLG,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..SYSUT1'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..SORTOUT'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..SYSREC'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 REORG TABLESPACE DSN8D11A.DSN8S11E

 SORTDATA NO RECLUSTER NO

 SORTDEVT SYSDA SORTNUM 32

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL CHANGE

 [image:]

 Example 11-10 shows the job output.

 Example 11-10 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO job output

 [image:]

 1DSNU000I 211 14:59:33.41 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU1044I 211 14:59:33.42 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 211 14:59:33.42 DSNUGUTC - TEMPLATE

 DSNU1035I 211 14:59:33.43 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 211 14:59:33.43 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E SORTDATA NO RECLUSTER NO SORTDEVT SYSDA

 SORTNUM 32 COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL CHANGE

 DSNU2904I -DB1A 211 14:59:34.68 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU2901I -DB1A 211 14:59:34.91 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000

 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000

 CREATED IN DSN00043.REORGRMA

 DSNU251I 211 14:59:36.49 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=32

 DSNU252I 211 14:59:36.49 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=32 FOR TABLESPACE DSN8D11A.DSN8S11E

 DSNU302I 211 14:59:36.85 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=32

 DSNU300I 211 14:59:36.85 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU394I -DB1A 211 14:59:36.94 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=32 FOR INDEX

 DB2R2.REORG_MAPINDEX_OREORG_0000

 DSNU393I -DB1A 211 14:59:37.00 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=32 FOR INDEX DSN81110.XEMP1 PART 1

 DSNU394I -DB1A 211 14:59:37.06 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=32 FOR INDEX DSN81110.XEMP2

 DSNU391I 211 14:59:37.06 DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 3

 DSNU392I 211 14:59:37.06 DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU1138I -DB1A 211 14:59:37.38 DSNURLOG - DRAIN ALL WITH START TIME 2013-07-30-14.59.37.382492 HAS COMPLETED SUCCESSFULLY

 DSNU010I 211 14:59:38.95 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 11.1.6 Partition-level inline image copy

 Prior to DB2 11, when you take an inline image copy during a REORG of a table space with a lot of partitions, DB2 creates one large inline image copy data set with all the partitions. If later on you decide to recovery a single partition, the recovery time for reading the large image copy to return one partition is much higher than if you have an image copy data set per partition.

 DB2 11 takes an image copy per partition when you specify &PA. or &PART on the TEMPLATEs. Example 11-11 shows a REORG TABLESPACE PART WITH INLINE IMAGE COPY.

 Example 11-11 REORG TABLESPACE PART WITH INLINE IMAGE COPY

 [image:]

 /*JOB

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'

 DISP (NEW,CATLG,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL REFERENCE

 [image:]

 Example 11-12 shows the job output.

 Example 11-12 REORG TABLESPACE PART WITH INLINE IMAGE COPY job output

 [image:]

 1DSNU000I 206 14:39:24.36 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU1044I 206 14:39:24.39 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.' DISP(NEW, CATLG, DELETE)

 UNIT SYSDA SPACE(5, 5) CYL

 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1' DISP(NEW, DELETE, DELETE)

 UNIT SYSDA SPACE(5, 5) CYL

 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT' DISP(NEW, DELETE,

 DELETE) UNIT SYSDA SPACE(5, 5) CYL

 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC' DISP(NEW, DELETE, DELETE)

 UNIT SYSDA SPACE(5, 5) CYL

 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 206 14:39:24.39 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4) COPYDDN(

 COPY) UNLDDN REC LOG NO SHRLEVEL REFERENCE

 DSNU2903I 206 14:39:25.78 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED

 DSNU1038I 206 14:39:25.82 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY

 DDNAME=SYS00001

 DSN=DB2R2.DSN8D11A.DSN8S11E.P00001.T183949

 DSNU1038I 206 14:39:25.87 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY

 DDNAME=SYS00002

 DSN=DB2R2.DSN8D11A.DSN8S11E.P00002.T183949

 DSNU1038I 206 14:39:25.88 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY

 DDNAME=SYS00003

 DSN=DB2R2.DSN8D11A.DSN8S11E.P00003.T183949

 DSNU1038I 206 14:39:25.94 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY

 DDNAME=SYS00004

 DSN=DB2R2.DSN8D11A.DSN8S11E.P00004.T183949

 DSNU250I 206 14:39:26.27 DSNURPRD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU400I 206 14:39:26.41 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 1

 NUMBER OF PAGES=10

 AVERAGE PERCENT FREE SPACE PER PAGE = 6.60

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:00:00

 DSNU400I 206 14:39:26.42 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 2

 NUMBER OF PAGES=2

 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:00:00

 DSNU400I 206 14:39:26.42 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 3

 NUMBER OF PAGES=4

 AVERAGE PERCENT FREE SPACE PER PAGE = 19.75

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:00:00

 DSNU400I 206 14:39:26.44 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 4

 NUMBER OF PAGES=2

 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:00:00

 DSNU387I 206 14:39:27.11 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 1

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 2

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 3

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 4

 DSNU010I 206 14:39:27.97 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 Figure 11-5 shows the performance improvement for RECOVERY of a single partition of a twenty partitions table space. The elapsed time is reduced by 28% and CPU time is reduced by 49%.

 [image:]

 Figure 11-5 Partition-level inline image copy performance

 11.1.7 Improved REORG LISTDEF processing

 Prior of DB2 9, when you specify a set of partitions on a REORG, such as partition 1 to 10, DB2 REORGs partition 1, when finished that, then REORGs partition 2, and so on until partition 10. On DB2 9 DB2 starts to process all specified partition together, which is much more efficient, but it also needs more DASD space to shadow all PARTs.

 In order to give the users an option to choose between all PARTS together or not, DB2 10 implements the PARALLEL keyword YES|NO where PARALLEL NO means REORG reorganizes one data partition at a time if data partitions are specified at the part level in the LISTDEF. DB2 11 provide a new option, LISTPARTS n, where user can determine the n maximum number of data partitions to be reorganized in a single REORG execution. This option enables customer to further fine-tune and balance between the resource consumption and performance trade off of the REORG utility. If customer does not have enough DASD for all parts but are able to handle say 20% of them.

 When LISTPARTS keyword is not specified, REORG defaults to the setting of the existent REORG_LIST_PROCESSING zParm in determining whether to process data partitions together or not. If REORG_LIST_PROCESSING is set to SERIAL, this equates to specifying LISTPARTS 1. If REORG_LIST_PROCESSING is set to PARALLEL, then all specified partitions will be reorganized in a single REORG.

 PARALLEL YES/NO is deprecated but still supported in DB2 11. The following rules apply to existing REORG jobs:

 •If PARALLEL YES is specified, it equates to not specifying LISTPARTS but overriding the REORG_LIST_PROCESSING zParm value to PARALLEL for current REORG execution. It means, REORG all specified partition together.

 •If PARALLEL NO is specified, it equates to LISTPARTS 1, and REORG will process data partitions one at a time as specified in the LISTDEF.

 The LISTPARTS option specifies the maximum number of data partitions to be reorganized in a single REORG on a LISTDEF that contains PARTLEVEL list items. It supports the following values:

 n 	Specifies an integer that represents the maximum number of data partitions to be reorganized at the same time. A valid value is greater than 0. If LISTPARTS is not specified, the default value is the setting of the REORG_LIST_PROCESSING subsystem parameter.

 Example 11-13 shows an example of REORG TABLESPACE PART WITH LISTPARTS n.

 Example 11-13 REORG TABLESPACE PART WITH LISTPARTS

 [image:]

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'

 DISP (NEW,CATLG,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 LISTDEF REOLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 4

 REORG TABLESPACE LIST REOLIST

 LISTPARTS 3

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL REFERENCE

 [image:]

 Example 11-14 shows the job output. Note that, because LISTPARTS 3 was specified, DB2 processes the first three parts and, when it finishes, DB2 starts part four.

 Example 11-14 REORG TABLESPACE PART WITH LISTPARTS job output

 [image:]

 1DSNU000I 211 13:38:50.09 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU1044I 211 13:38:50.11 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 211 13:38:50.11 DSNUGUTC - TEMPLATE

 DSNU1035I 211 13:38:50.11 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0D0DSNU050I 211 13:38:50.11 DSNUGUTC - LISTDEF REOLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 4

 DSNU1035I 211 13:38:50.11 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 211 13:38:50.11 DSNUGUTC - REORG TABLESPACE LIST REOLIST LISTPARTS 3 COPYDDN(COPY) UNLDDN REC LOG NO

 SHRLEVEL REFERENCE

 DSNU1039I 211 13:38:50.13 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 1 -- only 3 PARTS

 DSNU1039I 211 13:38:50.13 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 2

 DSNU1039I 211 13:38:50.13 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 3

 DSNU2904I -DB1A 211 13:38:51.15 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU1242I -DB1A 211 13:38:51.15 DSNURFUI - ALL KEYS OF A NON-PARTITIONED SECONDARY INDEX WILL BE SORTED

 DSNU2903I 211 13:38:51.15 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED

 DSNU251I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=32 FOR TABLESPACE

 DSN8D11A.DSN8S11E PART 1

 DSNU251I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE

 DSN8D11A.DSN8S11E PART 2

 DSNU251I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=10 FOR TABLESPACE

 DSN8D11A.DSN8S11E PART 3

 DSNU252I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=42 FOR TABLESPACE

 DSN8D11A.DSN8S11E

 DSNU250I 211 13:38:51.51 DSNURPRD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU1138I -DB1A 211 13:38:52.44 DSNURLOG - DRAIN ALL WITH START TIME 2013-07-30-13.38.52.447315 HAS COMPLETED SUCCESSFULLY

 DSNU1139I 211 13:38:52.49 DSNURLGD - FINAL LOG ITERATION STATISTICS. NUMBER OF LOG RECORDS = 0

 DSNU386I 211 13:38:52.49 DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG RECORDS = 0

 DSNU385I 211 13:38:52.49 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU387I 211 13:38:52.63 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU428I 211 13:38:52.63 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 1

 DSNU428I 211 13:38:52.63 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 2

 DSNU428I 211 13:38:52.63 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 3

 DSNU1039I 211 13:38:53.77 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 4 -- Then parts 4

 DSNU2904I -DB1A 211 13:38:54.34 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU2903I 211 13:38:54.34 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED

 DSNU1038I 211 13:38:54.38 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY

 DDNAME=SYS00005

 DSN=DB2R2.DSN8D11A.DSN8S11E.P00004.T173915

 DSNU3345I 211 13:38:54.38 DSNURPCT - MAXIMUM UTILITY PARALLELISM IS 6 BASED ON NUMBER OF PARTITIONS AND INDEXES

 DSNU251I -DB1A 211 13:38:54.58 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE DSN8D11A.DSN8S11E PART 4

 DSNU252I -DB1A 211 13:38:54.58 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE DSN8D11A.DSN8S11E

 DSNU250I 211 13:38:54.59 DSNURPRD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU400I 211 13:38:54.65 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 4

 NUMBER OF PAGES=2

 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:00:00

 DSNU303I -DB1A 211 13:38:54.66 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE DSN81110.EMP PART=4

 DSNU302I 211 13:38:54.66 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=0

 DSNU300I 211 13:38:54.66 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU393I -DB1A 211 13:38:54.68 DSNURBXE - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=0 FOR INDEX DSN81110.XEMP1 PART 4

 DSNU385I 211 13:38:55.09 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU387I 211 13:38:55.22 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU428I 211 13:38:55.22 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 4

 DSNU010I 211 13:38:55.61 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 11.1.8 REBALANCE enhancements

 REORG REBALANCE allows the partitions of a partitioned table space to be rebalanced, altering their limit keys, avoiding expensive unloading, recreating, and reloading of the entire table space and, thus, improving its availability.

 With versions prior of DB2 11, users are not able to execute REORG REBALANCE SHRLEVEL CHANGE. This option is now allowed in DB2 11.

 Example 11-15 shows an example of REORG TABLESPACE REBALANCE SHRLEVEL CHANGE.

 Example 11-15 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE

 [image:]

 set current sqlid = 'DB2R2';

 CREATE DATABASE DB2RDB4

 CREATE TABLESPACE DB2RTS1

 IN DB2RDB4

 CREATE TABLE DB2R2.DB2RTB4

 (DBNAME CHAR(8) FOR SBCS DATA NOT NULL,

 ...

 MODECREATED CHAR(2) FOR SBCS DATA NOT NULL

 WITH DEFAULT)

 IN db2rDB4.db2rTS1

 PARTITION BY (DBNAME ASC)

 (PARTITION 1 ENDING AT ('AAAAAA'),

 PARTITION 2 ENDING AT ('BBBBBB'),

 PARTITION 3 ENDING AT ('ZZZZZZ'))

 ;

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'

 DISP (NEW,CATLG,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'

 DISP (NEW,DELETE,DELETE)

 UNIT SYSDA

 SPACE (5,5) CYL

 REORG TABLESPACE DB2RDB4.DB2RTS1

 REBALANCE

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL CHANGE

 [image:]

 Example 11-16 shows the job output.

 Example 11-16 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE job output

 [image:]

 1DSNU000I 217 14:43:26.54 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU1044I 217 14:43:26.57 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 217 14:43:26.58 DSNUGUTC - TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.' DISP(NEW, CATLG, DELETE)

 UNIT SYSDA SPACE(5, 5) CYL

 DSNU1035I 217 14:43:26.58 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 217 14:43:26.58 DSNUGUTC - REORG TABLESPACE DB2RDB4.DB2RTS1 REBALANCE COPYDDN(COPY) UNLDDN REC LOG NO

 SHRLEVEL CHANGE

 DSNU2904I -DB1A 217 14:43:27.15 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN

 DSNU2901I -DB1A 217 14:43:27.48 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000

 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000

 CREATED IN DSN00062.REORGRMA

 DSNU3340I 217 14:43:28.14 DSNUGSRT - UTILITY PERFORMS DYNAMIC ALLOCATION OF SORT DISK SPACE

 DSNU251I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE

 DB2RDB4.DB2RTS1 PART 1

 DSNU251I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=25 FOR TABLESPACE

 DB2RDB4.DB2RTS1 PART 2

 DSNU251I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=260 FOR TABLESPACE

 DB2RDB4.DB2RTS1 PART 3

 DSNU252I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=285 FOR TABLESPACE

 DB2RDB4.DB2RTS1

 DSNU250I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU3345I 217 14:43:28.30 DSNURPIB - MAXIMUM UTILITY PARALLELISM IS 3 BASED ON NUMBER OF PARTITIONS AND INDEXES

 DSNU397I 217 14:43:28.30 DSNURPIB - NUMBER OF TASKS CONSTRAINED BY CPUS TO 3

 DSNU3340I 217 14:43:28.30 DSNUGSOR - UTILITY PERFORMS DYNAMIC ALLOCATION OF SORT DISK SPACE

 DSNU2906I -DB1A 217 14:43:28.30 DSNURBAT - REBALANCE PARTITION SUMMARY ON DB2RDB4.DB2RTS1

 LPART PPART ROWCOUNT LIMITKEY

 ------ ------ -------------------- --

 1 1 89 X'C4E2D5F0F0F0F2F7'

 2 2 114 X'C4E2D5F8C4F1F1C1'

 3 3 82 X'E9E9E9E9E9E9FFFF'

 DSNU303I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=89 FOR TABLE DB2R2.DB2RTB4

 PART=1

 DSNU303I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=114 FOR TABLE DB2R2.DB2RTB4

 PART=2

 DSNU303I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=82 FOR TABLE DB2R2.DB2RTB4

 PART=3

 DSNU304I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=285 FOR TABLE DB2R2.DB2RTB4

 DSNU302I 217 14:43:28.41 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=285

 DSNU300I 217 14:43:28.41 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU387I 217 14:43:28.67 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00

 DSNU010I 217 14:43:29.49 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 REORG REBALANCE issue with data distribution

 Today, when REORG REBALANCE is run on a partitioned table space with high skewed data distribution, often times the REORG utility fails with RC8 and the DSNU1130I – NOT ALL PARTITIONS POPULATED BY REBALANCE – PROCESSING TERMINATES message. In the extreme cases, the REBALANCE option might be suppressed by the DSNU1128I – FEWER PAGES THAN PARTS – REBALANCE message ignored. These error scenarios tend to happen on a table space where the number of records or number of unique limit key values are small in relation to the number of partitions being reorganized, resulting in the 'insufficient data' to rebalance type of errors.

 To address these issues, DB2 11 REBALANCE logic was optimized to become more resilient against failures on table space with skewed data distribution. This includes getting better statistics on the data being reorganized, to leaving trailing empty partitions at successful rebalance operation. Note that this does not mean the DSNU1130I and DSNU1128I limitations will be eliminated altogether, but rather aim to reduce the likelihood that data rebalancing fails with these symptoms.

 Empty partitions with compression dictionary

 Traditionally, REORG builds a compression dictionary on the data partitions as data got unloaded during the UNLOAD phase, which presents a problem to REORG REBALANCE execution, where there might not be any or enough data records unloaded from a partition to build a compression dictionary during UNLOAD. If data records get loaded into this partition later on as a result of data rebalancing, then none of these data records will get compressed, requiring a subsequent REORG to gain compression.

 To address this issue, REORG REBALANCE will now build a single compression dictionary for all target partitions. The primary reason for this behavior is that today, compression dictionaries are built based on the unloaded records, which do not represent the records that got loaded back into the same partition in reload. Thus, this solution mimics that of partition-by-growth table space, and provides relief for partitions that do not have compression dictionaries built today. If users are satisfied with the existing compression ratio, KEEPDICTIONARY should be specified.

 REORG SORTCLUSTER option

 With DB2 10, REORG REBALANCE sorts the data records based on the limit key value. In the event that the limit key columns is not defined as a superset of (or identical to) the clustering index columns, REORG REBALANCE sets the affected data partitions in AREO* on successful completion. This behavior was a contradictory statement to many users who have had just run the REORG utility, by recommending another subsequent REORG to put the data records into clustering order.

 With DB2 11, a new keyword option is introduced to specify whether or not REBALANCE should also sort the data records in clustering order, in addition to the existing partitioning order. This is an optional keyword because there is additional resource consumption on sort due to the extra sort field for clustering order. Clustering might be not important for the target table space in some situations. Figure 11-6 shows this behavior.

 [image:]

 Figure 11-6 AREO status after REORG REBALANCE

 The SORTCLUSTER option determines if REBALANCE is to attempt to sort the data records into clustering order. This option is ignored if no clustering index exists in the table, or when the limit key columns are identical to or are a superset of the clustering index columns. It supports the following values:

 NO	Specifies that the data records are not to be explicitly sorted into clustering order. This option is the default behavior. If SORTCLUSTER NO is explicitly specified, AREO* is not set on the affected data partitions upon REORG REBALANCE completion.

 YES	Specifies that the data records are to be explicitly sorted into clustering order as needed.

 11.1.9 REORG of LOB enhancements

 DB2 10 implemented REORG LOB SHRLEVEL CHANGE and it also removed REORG LOB SHRLEVE NONE. However, in DB2 10 specifying REORG with SHRLEVEL NONE returns RC0 with MSGDSNU126.

 DB2 11 changes the return code from RC0 to RC8.

 Example 11-17 shows the new return code of REORG LOB SHRLEVE NONE.

 Example 11-17 REORG LOB SHRLEVE NONE

 [image:]

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 REORG TABLESPACE ADBDCHG.ADBSCFGL

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL NONE

 [image:]

 Example 11-18 shows the job output.

 Example 11-18 REORG LOB SHRLEVE NONE job output

 [image:]

 1DSNU000I 212 10:10:30.78 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU1044I 212 10:10:30.79 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 DSNU1035I 212 10:10:30.80 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 DSNU050I 212 10:10:30.80 DSNUGUTC - REORG TABLESPACE ADBDCHG.ADBSCFGL COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL NONE

 DSNU126I -DB1A 212 10:10:30.80 DSNURFIT - REORG SHRLEVEL NONE ON LOB TABLE SPACE IS NO LONGER SUPPORTED

 DSNU012I 212 10:10:30.80 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

 [image:]

 11.1.10 Improved REORG serviceability

 When something goes wrong with SYSLGRNX, IBM support can recommend users to run REORG LOGRANGES NO; however, this option cannot be execute with SHRLEVEL CHANGE prior of DB2 11.

 DB2 11allows to use online REORG even when SYSLGRNX cannot be relied upon, by supporting the LOGRANGES NO option for REORG SHRLEVEL CHANGE. This option tells REORG not to use SYSLGRNX information during the LOGAPPLY phase. The downside of this option is that it can cause REORG to run much longer. In a data sharing environment this option can result in the merging of all logs from all members.

 Example 11-19 shows an example of REORG SHRLEVEL CHANGE LOGRANGES NO.

 Example 11-19 REORG SHRLEVEL CHANGE LOGRANGES NO

 [image:]

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OREORG' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 REORG TABLESPACE DSN8D11A.DSN8S11E

 COPYDDN(COPY) UNLDDN REC

 LOG NO

 SHRLEVEL CHANGE

 LOGRANGES NO

 [image:]

 Example 11-20 shows the job output.

 Example 11-20 REORG SHRLEVEL CHANGE LOGRANGES NO job output

 [image:]

 1DSNU000I 213 18:14:44.47 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

 DSNU1044I 213 18:14:44.48 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 213 18:14:44.49 DSNUGUTC - TEMPLATE DSNU1035I

 0DSNU050I 213 18:14:44.49 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL

 CHANGE LOGRANGES NO

 DSNU250I 213 18:14:48.14 DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU1136I -DB1A 213 18:14:49.00 DSNURLOG - SYSLGRNX IS NOT USED FOR LOG READ DUE TO LOGRANGES NO SPECIFICATION

 D DSNU010I 213 18:14:52.32 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 11.1.11 REORG change of defaults to match preferred practices

 To improve experience and to reinforce the preferred practices, the following default behaviors and values of REORG are modified:

 •DRAIN from WRITERS to DRAIN ALL.

 DRAIN ALL is the new default instead of the existing DRAIN WRITERS default setting. In numerous cases DRAIN ALL tends to increase the likelihood of online REORG breaking-in for the SWITCH phase outage. This is applicable to both REORG TABLESPACE and REORG INDEX.

 •DISCARD to DISCARD NOPAD YES and UNLOAD EXTERNAL to UNLOAD EXTERNAL NOPAD YES.

 The NOPAD option in UNLOAD EXTERNAL and also in DISCARD clause is the default settings. This option improves performance of the REORG utility because padding the variable length data might result in significant overhead. However, because today the only way to ask for padding of the unloaded or discarded data is by not specifying the NOPAD keyword, making the NOPAD keyword the default does not allow the option to unload or discard data in the padded format. As a result, the NOPAD keyword accepts an additional YES | NO parameter. The default is NOPAD specified, which has the same behavior as NOPAD YES. But users can then specify NOPAD NO to request padded data.

 11.2 Enhanced statistics

 Starting from DB2 10, a portion of the RUNSTATS utility is made eligible for zIIP redirection. Less complex statistics (for example, frequency statistics) get most of their execution eligible for zIIP. Complex statistics requiring call to a sort product, such as DFSORT, can benefit from zIIP eligibility of the sort product. zIIP eligibility can reach up to 99.9% for RUNSTATS with no additional parameters and it goes down for more complex statistics.

 Basically, with DB2 10, you find a varying degree of zIIP eligibility when you execute your RUNSTATS utility workload and there is no zIIP eligibility for inline statistics in DB2 10.

 DB2 11 has the ability to route more RUNSTATS workload to zIIP, the complex statistics, and the distribution statistics, reaching up to 80% zIIP-eligible. DB2 11 also can reroute up to 30% of inline statistics to zIIP.

 To avoid the need of RUNSTATS after a REORG, DB2 11 implement the following enhancement for inline statistics:

 •Inline statistics collection on NPSIs during REORG with SORTNPSI

 •Inline histogram statistics

 •Inline DSTATS

 This section describes the following RUNSTATS enhancements:

 •RUNSTATS RESET ACCESSPATH

 •RUNSTATS USE PROFILE usability for LISTDEF

 11.2.1 RUNSTATS RESET ACCESSPATH

 You can use the RUNSTATS utility to remove out-of-date access path statistics for DB2 objects. When the RUNSTATS utility is invoked over a period of time, statistics are collected incrementally for target objects. The combination of many changes to target objects and many RUNSTATS invocations, perhaps with different options, might result in some previously collected statistics becoming outdated. Such out-of-date statistics might cause DB2 to choose inefficient access paths for SQL statements. One solution is to invoke the RUNSTATS utility again to refresh the statistics. However, the task of formulating RUNSTATS invocations to solve the problem might prove difficult because of the complicated nature of the many previous RUNSTATS invocations.

 When this situation occurs, you can invoke the RUNSTATS utility to reset the access path statistics for all tables and indexes in a specified table space. When you reset the statistics, the default values are used. No statistics are gathered or reported. Space statistics and real-time statistics are not reset for the specified objects. After your reset access path statistics, the previous values cannot be recovered if no statistics history is available

 To reset access path statistics invoke the RUNSTATS utility, and specify the following options:

 •Specify the RESET ACCESSPATH option.

 •Optionally specify the HISTORY ACCESSPATH option to record that the access path statistics were reset in rows in the SYSIBM.SYSTABLES_HIST and SYSIBM.SYSINDEXES_HIST statistics tables. This option only records that the reset occurred and does not save the access path statistics values that are reset.

 For example, you might issue the following utility control statement:

 RUNSTATS TABLESPACE db-name.ts-name TABLE table-name RESET ACCESSPATH

 Statistics are not collected. Instead, the RUNSTATS utility resets the access path statistics.

 Certain catalog table rows are updated with default values, and rows are deleted from other catalog tables. All updated rows in the catalog tables contain the same timestamp value. Real-time statistics and space for the specified object are not reset. However, the dynamic statement cache is invalidated.

 Table 11-2 shows the new default values for statistics.

 Table 11-2 New default statistics values

 	
 Catalog table

 	
 Column

 	
 Changed value

 	
 SYSTABLESPACE

 	
 NACTIVE

 	
 -1

 	
 NACVTIVEF

 	
 -1

 	
 STATSTIME

 	
 The TIMESTAMP value for the reset operation

 	
 SYSCOLUMNS

 	
 COLCARD

 	
 -1

 	
 COLCARDF

 	
 -1

 	
 HIGH2KEY

 	
 Zero-length blank

 	
 LOW2KEY

 	
 Zero-length blank

 	
 STATSTIME

 	
 The TIMESTAMP value for the reset operation

 	
 STATS_FORMAT

 	
 Blank

 	
 SYSTABLES

 	
 CARD

 	
 -1

 	
 CARDF

 	
 -1

 	
 NPAGES

 	
 -1

 	
 NPAGESF

 	
 -1

 	
 PCTPAGES

 	
 -1

 	
 PCTROWCOMP

 	
 -1

 	
 STATSTIME

 	
 The TIMESTAMP value for the reset operation

 	
 SYSINDEXES

 	
 CLUSTERED

 	
 ‘N’

 	
 NLEAF

 	
 -1

 	
 NLEVELS

 	
 -1

 	
 FIRSTKEYCARD

 	
 -1

 	
 FULLKEYCARD

 	
 -1

 	
 FIRSTKEYCARDF

 	
 -1

 	
 FULLKEYCARDF

 	
 -1

 	
 CLUSTERRATIO

 	
 0

 	
 CLUSTERRATIOF

 	
 0

 	
 DATAREPEATFACTORF

 	
 -1

 	
 STATSTIME

 	
 The TIMESTAMP value for the reset operation

 	
 SYSKEYTARGETS

 	
 CARDF

 	
 -1

 	
 HIGH2KEY

 	
 Zero-length blank

 	
 LOW2KEY

 	
 Zero-length blank

 	
 STATSTIME

 	
 TIMESTAMP

 	
 STATS_FORMAT

 	
 Blank

 Applicable rows are deleted from the following catalog tables for the specified objects:

 •SYSIBM.SYSTABSTATS

 •SYSIBM.SYSCOLSTATS

 •SYSIBM.SYSINDEXSTATS

 •SYSIBM.SYSCOLDIST

 •SYSIBM.SYSCOLDISTSTATS

 •SYSIBM.SYSKEYTARGETSTATS

 •SYSIBM.SYSKEYTGTDIST

 •SYSIBM.SYSKEYTGTDISTSTATS

 After resetting the statistics, you might want to invoke the RUNSTATS utility again with different options to capture new statistic.

 Example 11-21 shows an example of RUNSTATS RESET option.

 Example 11-21 RUNSTATS RESET option

 [image:]

 Statistics before reset

 select NACTIVE

 ,STATSTIME

 from sysibm.SYSTABLESPACE

 where NAME = 'DSN8S11E';

 NACTIVE STATSTIME

 15 2013-08-01-19.37.32.770296

 select COLCARD

 ,HIGH2KEY

 ,LOW2KEY

 from sysibm.SYSCOLUMNS

 where tbcreator = 'DSN81110' and TBNAME = 'EMP';

 COLCARD HIGH2KEY LOW2KEY

 32 000330 000020

 30 WILLIAM CHRISTINE

 19 W A

 31 WALKER BROWN

 8 E11 B01

 32 9001 0942

 31

 8 PRES CLERK

 8

 2 M F

 30

 32 0 0

 8 0 � 0

 32 0 0

 select CARD

 ,NPAGES

 ,PCTPAGES

 ,PCTROWCOMP

 from sysibm.SYSTABLES

 where creator = 'DSN81110' and NAME = 'EMP';

 CARD NPAGES PCTPAGES PCTROWCOMP

 32 1 6 100

 select CLUSTERED

 ,NLEAF

 ,NLEVELS

 ,FIRSTKEYCARD

 ,FULLKEYCARD

 ,CLUSTERRATIO

 from sysibm.SYSINDEXES

 where creator = 'DSN81110' and TBNAME = 'EMP';

 CLUSTERED NLEAF NLEVELS FIRSTKEYCARD FULLKEYCARD CLUSTERRATIO

 Y 1 2 32 32 100

 N -1 -1 -1 -1 0

 DSNE610I NUMBER OF ROWS DISPLAYED IS 2

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='ORUN' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 RUNSTATS TABLESPACE DSN8D11A.DSN8S11E RESET ACCESSPATH

 Statistics after reset

 select NACTIVE

 ,STATSTIME

 from sysibm.SYSTABLESPACE

 where NAME = 'DSN8S11E';

 NACTIVE STATSTIME

 -1 2013-08-05-22.02.23.547981

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 select COLCARD

 ,HIGH2KEY

 ,LOW2KEY

 from sysibm.SYSCOLUMNS

 where tbcreator = 'DSN81110' and TBNAME = 'EMP';

 COLCARD HIGH2KEY LOW2KEY

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 -1

 DSNE610I NUMBER OF ROWS DISPLAYED IS 14

 select CARD

 ,NPAGES

 ,PCTPAGES

 ,PCTROWCOMP

 from sysibm.SYSTABLES

 where creator = 'DSN81110' and NAME = 'DSN8S11E';

 CARD NPAGES PCTPAGES PCTROWCOMP

 -1 -1 -1 -1

 select CLUSTERED

 ,NLEAF

 ,NLEVELS

 ,FIRSTKEYCARD

 ,FULLKEYCARD

 ,CLUSTERRATIO

 from sysibm.SYSINDEXES

 where creator = 'DSN81110' and TBNAME = 'EMP';

 CLUSTERED NLEAF NLEVELS FIRSTKEYCARD FULLKEYCARD CLUSTERRATIO

 N -1 -1 -1 -1 0

 N -1 -1 -1 -1 0

 DSNE610I NUMBER OF ROWS DISPLAYED IS 2

 [image:]

 Example 11-22 shows the job output.

 Example 11-22 RUNSTATS RESET job output

 [image:]

 1DSNU000I 213 18:49:50.21 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = ORUN

 DSNU1044I 213 18:49:50.22 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 213 18:49:50.22 DSNUGUTC - RUNSTATS TABLESPACE DSN8D11A.DSN8S11E RESET ACCESSPATH

 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSCOLSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSTABSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSCOLDISTSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSCOLUMNS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSTABLES CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSCOLDIST CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSTABLESPACE CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSINDEXSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSINDEXES CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

 DSNU620I -DB1A 213 18:49:50.23 DSNUSRST - RUNSTATS CATALOG TIMESTAMP = 2013-08-01-18.49.50.227714

 DSNU010I 213 18:49:50.23 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 11.2.2 RUNSTATS USE PROFILE usability for LISTDEF

 DB2 11 improves RUNSTATS USE PROFILE usability for LISTDEF processing. If users execute a RUNSTATS USE PROFILE for a list of table spaces and one table space in the list does not have a profile, DB2 will gather default statistics, before DB2 11 utility terminate with error.

 Example 11-23 shows an example of RUNSTATS USE PROFILE with LISTDEF when a table spaces in the list does not have a profile.

 Example 11-23 RUNSTATS USE PROFILE usability for LISTDEF

 [image:]

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='ORUN' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 LISTDEF RUNLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3

 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 4

 RUNSTATS TABLESPACE LIST RUNLIST TABLE ALL USE PROFILE

 [image:]

 Example 11-24 shows the job output.

 Example 11-24 RUNSTATS USE PROFILE usability for LISTDEF job output

 [image:]

 1DS

 1DSNU000I 213 19:37:32.45 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = ORUN

 DSNU1044I 213 19:37:32.46 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 213 19:37:32.47 DSNUGUTC - LISTDEF RUNLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1 INCLUDE

 TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3 INCLUDE TABLESPACE

 DSN8D11A.DSN8S11E PARTLEVEL 4

 DSNU1035I 213 19:37:32.47 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 213 19:37:32.47 DSNUGUTC - RUNSTATS TABLESPACE LIST RUNLIST TABLE ALL USE PROFILE

 DSNU1039I 213 19:37:32.48 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 1

 DSNU1382I -DB1A 213 19:37:32.48 DSNUGPRF - THE STATS PROFILE FOR TABLE EMP NOT FOUND.

 DEFAULT PROFILE STATS COLLECTED

 DSNU1368I 213 19:37:32.48 DSNUGPRB - PARSING STATS PROFILE FOR TABLE EMP

 DSNU1369I 213 19:37:32.48 DSNUGPRB - PARSING STATS PROFILE FOR TABLE EMP COMPLETED

 DSNU610I -DB1A 213 19:37:32.61 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DSN8D11A.DSN8S11E SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.61 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.62 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.62 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DSN8D11A.DSN8S11E SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL

 DSNU610I -DB1A 213 19:37:32.63 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL

 DSNU620I -DB1A 213 19:37:32.63 DSNUSEOF - RUNSTATS CATALOG TIMESTAMP = 2013-08-01-19.37.32.488783

 DSNU010I 213 19:37:32.84 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

 [image:]

 11.3 Backup and recovery enhancements

 This section describes the following major backup and recovery enhancements:

 •SYSLGRNX recording for catalog and directory table

 •VCAT name translation for RESTORE SYSTEM

 •Remove the incompatibility of REORG and COPY

 •Removal of many point-in-time recovery restrictions

 11.3.1 SYSLGRNX recording for catalog and directory table

 Prior to DB2 11, the update ranges for some DB2 directory objects are not recorded in SYSIBM.SYSLGRNX. This can result in an unnecessary full log scan extended recovery time for critical directory objects. DB2 11 enables SYSLGRNX recording for the following objects:

 •DSNDB01.SCT02

 •DSNDB01.SPT01

 •DSNDB01.SYSSPUXA

 •DSNDB01.SYSSPUXB

 •Indexes over the above table spaces.

 The RECOVER utility uses the SYSLGRNX records to selectively read and apply the log records for ranges of update. Thus, users have a faster catalog and directory recovery process, because DB2 filters the part of log to read and apply using SYSLGRNX.

 11.3.2 VCAT name translation for RESTORE SYSTEM

 With DB2 10, users who clone their DB2 systems within the same SYSPLEX using a system-level backup as a base, do not have a way to apply log records to update their data to a desired point in time. This restriction exists because the high-level qualifier, the ICF catalog VCAT alias, on the cloned DB2 system must be different from the high level qualifier on the source DB2 system.

 DB2 11 implements a new VCAT name translation for RESTORE SYSTEM for system cloning. It also supports log apply. A new sequential input data set that contains the old and new VCAT alias values, identified by using the SYSVALUEDDN option is to be provided by the user. Figure 11-7 shows the syntax diagram.

 [image:]

 Figure 11-7 RESTORE SYSTEM syntax diagram with SWITCH VCAT and SYSVALUEDDN

 The SYSVALUEDDN option supports the following values:

 SWITCH VCAT 	Indicates that the integrated catalog facility (ICF) alias (VCAT) names are to be substituted with those names that are provided when the log is processed. Every VCAT encountered in the log must be specified in the SYSVALUEDDN data set. This option might be used in the process of cloning a DB2 subsystem.

 SYSVALUEDDN ('ddname')	Specifies that the DD statement for the control statements specifying the integrated catalog facility (ICF) VCAT aliases used when processing log records.ddname can be up to eight characters, and must start with an alphabetic or national bank character.

 	The default value is SYSVALUEDDN(SYSVALUE), where SYSVALUE identifies the primary data set.

 SYSVALUE Data set description	VCAT alias values data set Defines a set of records which contain integrated catalog facility (ICF) catalog VCAT alias names. Each record must contain a pair of VCAT alias names separated by only a comma. The first VCAT alias name is the name used when the system level backup was created.

 Example 11-25 recovering a backup system after the database volumes have already been restored and VCAT aliases renamed The LOGONLY keyword in the following control statement indicates that RESTORE SYSTEM is to apply any outstanding log changes to the database, the utility is not to restore the volume copies. In this example, the database volumes have already been restored outside of DB2. Note that RESTORE SYSTEM applies log changes; it never restores the log copy pool. The SWITCH VCAT SYSVALUEDDN(SYSVALUE) keywords indicate that the SYSVALUE DD name data set contains a list of pairs of integrated catalog facility VCAT aliases. The first VCAT alias is the name when the backup was created and the second VCAT alias is the name after any renaming has completed. The VCAT alias DSNC000 is specified as both the first and second alias since it was not renamed and might be encountered in the log.

 Example 11-25 RESTORE SYSTEM LOGONLY SWITCH VCAT

 [image:]

 //STEP1 EXEC DSNUPROC,TIME=1440,

 // UTPROC='',

 // SYSTEM='DSN'

 //SYSIN DD *

 RESTORE SYSTEM LOGONLY SWITCH VCAT SYSVALUEDDN(SYSVALUE)

 /*

 //SYSVALUE DD *

 VCAT1,VCAT2

 VCAT5,Z1234567

 DSNC000,DSNC000

 /*

 [image:]

 11.3.3 Remove the incompatibility of REORG and COPY

 Some users run online REORG for a whole weekend and for business reason they also need to take frequent image copies. DB2 11 removes the incompatibility of REORG and COPY and it allows COPY TABLESPACE SHRLEVEL CHANGE to run at the same time as REORG TABLESPACE SHRLEVEL CHANGE, until REORG is able to drain the claimers.

 For details about which utilities can run concurrently with COPY on the same target object, see DB2 11 for z/OS Utility Guide and Reference, SC19-4067.

 11.3.4 Removal of many point-in-time recovery restrictions

 DB2 11 removes many restrictions on point-in-time (PIT), which is recovery to a point prior to the execution of the materializing REORG.

 PIT recovery restrictions are removed for the following points:

 •LOB table spaces

 •XML table spaces

 •PBR table spaces

 •Including when immediate alters have occurred since materializing REORG

 PIT recovery restrictions are still in place for the following points:

 •Table space conversion

 •PBG table spaces

 •PBG partition pruning

 •Online DROP COLUMN

 There is further information about PIT recovery on 4.1.1, “Scope of enhancements for online schema changes in DB2 11” on page 52.

 11.4 LOAD and UNLOAD enhancements

 This section describes the following LOAD and UNLOAD enhancements:

 •LOAD SHRLEVEL NONE with PARALLEL option

 •LOAD SHRLEVEL CHANGE with PARALLEL option

 •Addition of crossloader support for XML

 •More offload to zIIP with NPSIs

 11.4.1 LOAD SHRLEVEL NONE with PARALLEL option

 The best way to LOAD is split your input data set into part and load individual data set into part of partition table space. However, splitting your input data set sometimes is not an easy process and you may need to create a batch job to do the work using DFSORT, REXX, COBOL program. DB2 11 deliveries a performance improvement for LOAD SHRLEVEL NONE when the input data is in a single input data set with the new PARALLEL option, If you specify the PARALLEL keyword, the LOAD utility can use multiple parallel subtasks, which can reduce the elapsed time for the load.

 This kind of parallelism is useful when the utility is CPU bound. It does not increase I/O parallelism. CPU bottlenecks are typical of CCSID conversion, numeric conversion, compression, complex data types and VARCHAR columns. This kind of parallelism is also useful to overlap the synchronous I/Os of multiple indexes. Hence, the more indexes, the greater the benefit.

 SHRLEVEL NONE appends to the end of the end of the table instead of trying to store the rows in cluster sequence. Free space searches are not a consideration. However, there is still overhead to insert keys into the index. There can be synchronous I/Os and index splits. Performance is sensitive to whether or not the input data is sorted. If the input data is unsorted, parallelism is of greater value than it would be for presorted input. The CPU overhead of parallelism is also somewhat higher for sorted input. Nevertheless, if the LOAD is the type that uses a lot of CPU time, parallelism will help reduce the elapsed time.

 With a high degree of parallelism there will be an extra overhead on CPU time, so that should be factored in when determining the degree of parallelism specified with the PARALLEL keyword. The recommendation is to specify PARALLEL 0 or PARALLEL without a number specified so DB2 can determine the most optimal degree of parallelism. Whether or not the input data is sorted also affects the performance, because the parallel tasks may suffer from contention.

 Measurements show that LOAD SHRLEVEL NONE PARALLEL reduced up to 50% of elapsed time with unsorted data, as shown in Figure 11-8.

 [image:]

 Figure 11-8 LOAD SHRLEVEL NONE PARALLEL

 Example 11-26 shows an example of LOAD SHRLEVEL NONE with PARALLEL option.

 Example 11-26 LOAD SHRLEVEL NONE with PARALLEL option

 [image:]

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //LOAD EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='LOADPP' UTPROC='PREVIEW'

 //DSNUPROC.SYSREC DD DSN=DB2R2.SYSREC,DISP=SHR

 //DSNUPROC.SYSIN DD *

 TEMPLATE ...

 LOAD DATA INDDN SYSREC

 LOG NO REPLACE PARALLEL

 EBCDIC CCSID(00037,00000,00000)

 WORKDDN(UT1,SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR

 COPYDDN COPY STATISTICS TABLE(ALL) INDEX(ALL)

 INTO TABLE

 "DB2R2".

 "DB2RTB4"

 WHEN(00001:00002) = X'0003'

 NUMRECS 285

 			(COLUMNS..)

 [image:]

 Example 11-24 shows the job output.

 Example 11-27 LOAD SHRLEVEL NONE with PARALLEL option job output

 [image:]

 1DSNU000I 218 16:43:44.86 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = LOADPP

 DSNU1044I 218 16:43:44.87 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 218 16:43:44.88 DSNUGUTC - TEMPLATE

 0DSNU050I 218 16:43:44.88 DSNUGUTC - LOAD DATA INDDN SYSREC LOG NO REPLACE PARALLEL EBCDIC CCSID(37, 0, 0)

 WORKDDN(UT1, SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR COPYDDN COPY STATISTICS TABLE(ALL) INDEX(ALL)

 DSNU650I -DB1A 218 16:43:44.88 DSNURWI - INTO TABLE "DB2R2". "DB2RTB4" WHEN(1:2)=X'0003' NUMRECS 285

 DSNU650I -DB1A 218 16:43:44.88 DSNURWI - ("DBNAME" POSITION(3:10) CHAR(8),

 DSNU650I -DB1A 218 16:43:44.88 DSNURWI - "MODECREATED" POSITION(2005:2006) CHAR(2))

 DSNU350I -DB1A 218 16:43:45.89 DSNURRST - EXISTING RECORDS DELETED FROM TABLESPACE

 DSNU1177I 218 16:43:45.91 DSNURPNP - TABLE SPACE WILL BE LOADED IN PARALLEL, NUMBER OF TASKS = 4

 DSNU400I 218 16:43:45.99 DSNURBID - COPY

 DSNU304I -DB1A 218 16:43:46.14 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=285 FOR TABLE DB2R2.DB2RTB4

 DSNU1147I -DB1A 218 16:43:46.14 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=285 FOR TABLESPACE

 DB2RDB4.DB2RTS1

 DSNU428I 218 16:43:46.14 DSNURILD - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DB2RDB4.DB2RTS1

 DSNU302I 218 16:43:46.14 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=285

 DSNU300I 218 16:43:46.14 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:01

 DSNU610I -DB1A 218 16:43:46.43 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DB2RDB4.DB2RTS1 SUCCESSFUL

 DSNU610I -DB1A 218 16:43:46.43 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL

 DSNU610I -DB1A 218 16:43:46.45 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL

 DSNU610I -DB1A 218 16:43:46.45 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL

 DSNU610I -DB1A 218 16:43:46.46 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL

 DSNU610I -DB1A 218 16:43:46.46 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DB2RDB4.DB2RTS1 SUCCESSFUL

 DSNU620I -DB1A 218 16:43:46.46 DSNUSEF2 - RUNSTATS CATALOG TIMESTAMP = 2013-08-06-16.43.45.909408

 DSNU010I 218 16:43:46.51 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 11.4.2 LOAD SHRLEVEL CHANGE with PARALLEL option

 The SHRLEVEL CHANGE option usually has higher CPU time than the SHRLEVEL NONE option. Thus, parallelism provides more value for SHRLEVEL CHANGE than it does for SHRLEVEL NONE.

 Unlike SHRLEVEL NONE, SHRLEVEL CHANGE stores the rows in cluster sequence (rather than appending the rows to the end of the table). As with ordinary SQL inserts, performance is sensitive to space search algorithms and contention between parallel inserts. If the table space has free space, DB2 spends less time searching for space and there is less contention. Whether or not there is contention, parallelism may significantly reduce the elapsed time for the LOAD utility. However, if there is contention, expect a more significant increase in the CPU time, and a lot more CPU increase, than you have with SHRLEVEL NONE.

 LOAD SHRLEVEL CHANGE PARALLEL for single input data set shows 80% reduction on elapsed time due to multiple parallel subtasks allocation, as shown in Figure 11-9.

 [image:]

 Figure 11-9 LOAD SHRLEVEL CHANGE PARALLEL

 Example 11-28 shows an example of LOAD SHRLEVEL CHANGE with PARALLEL option.

 Example 11-28 LOAD SHRLEVEL CHANGE with PARALLEL option

 [image:]

 /*JOBPARM S=SC63,L=9999

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //LOAD EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='LOADPP' UTPROC='PREVIEW'

 //DSNUPROC.SYSREC DD DSN=DB2R2.SYSREC,DISP=SHR

 //DSNUPROC.SYSIN DD *

 TEMPLATE ...

 		LOAD DATA INDDN SYSREC

 RESUME YES PARALLEL SHRLEVEL CHANGE

 EBCDIC CCSID(00037,00000,00000)

 WORKDDN(UT1,SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR

 INTO TABLE

 "DB2R2".

 "DB2RTB4"

 WHEN(00001:00002) = X'0003'

 NUMRECS 285

 			(COLUMNS..)

 [image:]

 Example 11-29 shows the job output.

 Example 11-29 LOAD SHRLEVEL CHANGE with PARALLEL option job output

 [image:]

 1DSNU000I 218 16:45:21.01 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = LOADPP

 DSNU1044I 218 16:45:21.05 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 218 16:45:21.06 DSNUGUTC - TEMPLATE

 0DSNU050I 218 16:45:21.06 DSNUGUTC - LOAD DATA INDDN SYSREC RESUME YES PARALLEL SHRLEVEL CHANGE

 EBCDIC CCSID(37, 0, 0) WORKDDN(UT1, SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR

 DSNU650I -DB1A 218 16:45:21.06 DSNURWI - INTO TABLE "DB2R2". "DB2RTB4" WHEN(1:2)=X'0003' NUMRECS 285

 DSNU650I -DB1A 218 16:45:21.06 DSNURWI - ("DBNAME" POSITION(3:10) CHAR(8),

 DSNU650I -DB1A 218 16:45:21.06 DSNURWI - "MODECREATED" POSITION(2005:2006) CHAR(2))

 DSNU1177I 218 16:45:21.17 DSNURPLL - TABLE SPACE WILL BE LOADED IN PARALLEL, NUMBER OF TASKS = 24

 DSNU397I 218 16:45:21.17 DSNURPLL - NUMBER OF TASKS CONSTRAINED BY CPUS TO 24

 DSNU1114I -DB1A 218 16:45:21.20 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS LOADED =285 FOR TABLE

 DB2R2.DB2RTB4

 DSNU1147I -DB1A 218 16:45:21.20 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=285 FOR TABLESPACE

 DB2RDB4.DB2RTS1

 DSNU302I 218 16:45:21.21 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=285

 DSNU300I 218 16:45:21.21 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU010I 218 16:45:21.23 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 [image:]

 	
 Note: WIth the LOAD PARALLEL option, enable parallelism for the following table space types:

 •Simple

 •Segmented

 •Classic partitioned

 •Partition by range

 PBG is not supported.

 	
 PARALLEL keyword for faster utilities: DB2 11 improves the algorithm that decides the level of utilities parallelism for faster utilities. You can find further information about the use of PARALLEL keyword for utilities in 4.5, “Governing of parallel processing of utilities” on page 70.

 11.4.3 Addition of crossloader support for XML

 DB2 10 implemented the crossloader support for LOB and DB2 11 adds the support for XML data and it also reduces virtual storage requirement and avoids DSNU1178i errors by exploiting FETCH CONTINUE for processing large LOBs and XML data in crossloader.

 11.4.4 More offload to zIIP with NPSIs

 When users want to clean the whole partition of a table space executing LOAD REPLACE PART with dummy input, DB2 11 reroutes up to 100% of the workload to eliminate the rows from NPSIs to zIIP.

 11.5 Compression dictionaries for Change Data Capture

 For users that use IFI 306, QREP users need to read log records, decompress them and process them. If the users have run a REORG or LOAD and built a new compression dictionary, IFI 306 readers still need the old dictionary to read data in the log. DB2 11 stores the old compression dictionary in the log and IFI 306 read automatically retrieves old compression dictionary if necessary. This new feature is transparent for IFI 306 readers, because it was implemented in DB2.

 You can find more information about compression dictionary in 4.6, “Compression dictionary availability for CDC tables” on page 72.

 11.6 General enhancements

 This section describes the following DB2 utilities general enhancements:

 •DISPLAY UTILITY additional output

 •Improved TEMPLATE for extended format data sets

 •DSN1COPY

 •Command to externalize RTS statistics

 •DSNACCOX

 11.6.1 DISPLAY UTILITY additional output

 Users match utility ID with the job name to identify the job when executing the -DISPLAY UTILITY command. DB2 11 modifies this command output to show JOBNAME and the start time stamp. See Example 11-30.

 Example 11-30 DISPLAY UTILITY command output

 [image:]

 DSNU105I -DB1A DSNUGDIS - USERID = DB2R2

 MEMBER =

 UTILID = OREORG

 PROCESSING UTILITY STATEMENT 1

 UTILITY = REORG

 PHASE = RELOAD COUNT = 0

 NUMBER OF OBJECTS IN LIST = 1

 LAST OBJECT STARTED = 1

 STATUS = ACTIVE

 JOBNAME = DB2R2TSC

 TIME STARTED = 2013-08-08-20:30:05

 DSNU347I -DB1A DSNUGDIS -

 DEADLINE = NONE

 DSNU384I -DB1A DSNUGDIS -

 MAXRO = 180 SECONDS

 LONGLOG = CONTINUE

 DELAY = 1200 SECONDS

 DSNU111I -DB1A DSNUGDIS - SUBPHASE = COPY COUNT = 10

 DSN9022I -DB1A DSNUGCCC '-DIS UTIL' NORMAL COMPLETION

 [image:]

 11.6.2 Improved TEMPLATE for extended format data sets

 Utility TEMPLATEs are heavily used by users to automatically allocate utility data sets. As user data has grown, the size of the utility data sets has also increased and it can exceed the maximum size of basic sequential data sets.

 Users would like to specify DSNTYPE on their TEMPLATEs to easily automate the allocation of large format or extended format sequential data sets which have a much larger maximum size than basic sequential data sets. Today users must change their SMS data class routines to use large format or extended format sequential data sets. Also, the date and time variables for TEMPLATE data set names are always resolved to reflect the Coordinated Universal Time (UTC) values rather than the local date and time. This makes it difficult to correlate the utility data set to the local date and time when it was created.

 DB2 11 enhances TEMPLATEs by adding a new DSNTYPE options to support large format and extended format data sets and adds new TEMPLATE data set name DATE and TIME variables to support the options.

 DSNTYPE	Specifies the type of data set to be allocated.

 The new options are as follows:

 BASIC	Specifies a basic format data set. No more than 65535 tracks can be allocated.

 LARGE	Specifies a large format data set. Greater than 65535 tracks can be allocated.

 EXTREQ	Specifies an extended format data set is required.

 EXTPREF	Specifies an extended format data set is preferred.

 TIME	Specifies time used in expansion of date and time DSN variables. The default TIME value is determined by the TEMPLATE_TIME subsystem parameter.

 LOCAL	Use local time at the DB2 server in the expansion of date and time in DSN variables.

 UTC	Use Coordinated Universal Time (UTC) in the expansion of date and time in DSN variable

 Example 11-31 shows a COPY utility execution with extended format required and time (of the store clock of the INIT phase) in local time.

 Example 11-31 TEMPLATE with DSNTYPE EXTREQ and TIME LOCAL

 [image:]

 /*JOB

 //PROCLIB JCLLIB ORDER=DB1AM.PROCLIB

 //REORG EXEC DSNUPROC,SYSTEM=DB1A,

 // LIB='DB1AT.SDSNLOAD',

 // UID='OCOPY' UTPROC='PREVIEW'

 //DSNUPROC.SYSIN DD *

 TEMPLATE COPY DSN 'DB1AD.&DB..&TS..T&TIME.'

 DISP (NEW,CATLG,DELETE) UNIT SYSDA

 DSNTYPE EXTREQ TIME LOCAL

 SPACE (5,5) CYL

 COPY TABLESPACE DSN8D11A.DSN8S11E

 COPYDDN(COPY)

 1DSNU000I 220 20:54:12.94 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OCOPY

 DSNU1044I 220 20:54:12.95 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

 0DSNU050I 220 20:54:12.95 DSNUGUTC - TEMPLATE COPY DSN 'DB1AD.&DB..&TS..T&TIME.' DISP(NEW, CATLG, DELETE) UNIT SYSDA DSNTYPE EXTREQ TIME LOCAL SPACE(5, 5) CYL

 DSNU1035I 220 20:54:12.95 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

 0DSNU050I 220 20:54:12.95 DSNUGUTC - COPY TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY)

 DSNU1038I 220 20:54:13.00 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY

 DDNAME=SYS00001

 DSN=DB1AD.DSN8D11A.DSN8S11E.T205412

 DSNU400I 220 20:54:13.07 DSNUBBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E

 NUMBER OF PAGES=15

 AVERAGE PERCENT FREE SPACE PER PAGE = 4.40

 PERCENT OF CHANGED PAGES = 0.00

 ELAPSED TIME=00:00:00

 DSNU428I -DB1A 220 20:54:13.08 DSNUBAFI - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E

 DSNU010I 220 20:54:13.08 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

 Here is generated dataset.

 NONVSAM ------- DB1AD.DSN8D11A.DSN8S11E.T205412

 IN-CAT --- UCAT.DB1ADATA

 HISTORY

 DATASET-OWNER-----(NULL) CREATION--------2013.220

 RELEASE----------------2 EXPIRATION------0000.000

 ACCOUNT-INFO-----------------------------------(NULL)

 SMSDATA

 STORAGECLASS ---DB1ADATA MANAGEMENTCLASS---MCDB22

 DATACLASS --------(NULL) LBACKUP ---0000.000.0000

 VOLUMES

 VOLSER------------SBOXG2 DEVTYPE------X'3010200F' FSEQN---------

 ---------0

 ASSOCIATIONS--------(NULL)

 ATTRIBUTES

 STRIPE-COUNT-----------1

 EXTENDED

 [image:]

 11.6.3 DSN1COPY

 Users very often take a DSN1COPY of a table space and use that copy to populate another table space in the same or different DB2 subsystem. If an improper process is used to transfer data with DSN1COPY, it can cause abends, data corruption or storage overlays in the target table space. The data integrity issue usually is not discovered until data has been stored into the target table space and system failure has occurred.

 The typical scenarios are the following:

 •A wrong DBID, PSID or OBID is specified while transferring the data using DSN1COPY OBIDXLAT option.

 •The user copies data from one type of table space and populates it to a different type of table space, except XML table space.

 •The user takes a DSN1COPY of a table space and populates data to the other table space which has a different data version number and/or table schema definition.

 •The user takes a DSN1COPY of a table space that is in basic row format (BRF) and copies it to a table space that is in reordered row format (RRF) or vice versa.

 •The DSN1COPY table has 10 bytes expanded RBA format but the target table space has still the basic 6 bytes RBA format or vice versa.

 DB2 11 improves data availability by providing the validation between data and catalog definition during the first physical open of the page set. If any inconsistency is found in the process, access to the data is blocked and an error message is issued. The following data mismatch is detected during physical open:

 •DBID, PSID, or OBID

 •SEGSIZE or PAGESIZE

 •Table space type definition. This includes the following table space type:

  –	Segmented table space

  –	Classic partition table space

  –	Partition by range universal table space

  –	Partition by range universal table space with MEMBER CLUSTER attribute

  –	Partitioned by growth universal table space

  –	Partitioned by growth universal table space with MEMBER CLUSTER attribute

  –	XML version table space

 •Table schema definition if there is only one table in the table space and there is an OBDREC stored in the system page.

 In addition, the REPAIR CATALOG utility can also correct the following mismatches in the catalog (Record format, RBA format, Data Version number and Hash Data Page value) see 11.6.4, “REPAIR utility” on page 310.

 As an example, if the physical open of data set triggered by DML detects that the data is populated by DSN1COPY, the following data is validated.

 •DBID, PSID, or OBID on the header page is validated. The OBID on the header page only records the first table on the table space. Therefore, the OBID validation can be done if one table resides in the table space. If error found for this case, a SQLCODE -904 with reason code 00C900E0 is issued.

 •The SEGSIZE or PAGESIZE and table space type definition on the header page is validated.

  –	If error found due to mismatch of SEGSIZE, a SQLCODE -904 with reason code 00C900E1 is issued.

  –	If error found due to mismatch of page size, a SQLCODE -904 with reason code 00C900E2 is issued.

 •Table schema definition is validate if there is only one table in the table space and also the system page exists in the page set. If the system page exists, then the latest version of the OBDREC will be retrieved from system page. Total number of columns and each column's data type and its data length is validated with current OBDREC.

  –	If any error found due to mismatch of schema, a SQLCODE -904 with reason code 00C900E3

 As a result, any error found during this process, a SQLCODE -904 with proper reason code is issued. The physical open process is terminated.

 To avoid any performance impact during physical open, the validation of data against catalog definition is not performed if the following condition exists:

 •Physical open is triggered by Utility.

 This include REPAIR VERSIONS and REPAIR CATALOG utility

 •Restart of the DB2

 •Header page has not been formatted yet.

 •REPAIR utility operates on the header page.

 At the end of REPAIR utility, it will close the page set. Therefore, the validation can be done by the subsequent physical open.

 •LOG apply phase

 11.6.4 REPAIR utility

 The REPAIR utility now checks for and fixes any inconsistencies between the information in the catalog and the data. Specifically the REPAIR utility can check the values for DBID, PSID, OBID, SEGSIZE, PAGESIZE, table space type, table schema, record format, RBA format, data version number, and the hash data page.

 The record row format, RRF, BRF or RBA, format such as 6 byte verse 10 byte RBA format will not be validated during physical open because the information about the header page can represent the actual data format. The mismatch between catalog and data will not interfere with the accessing of data.The DB2 REPAIR utility will provide the similar capability to detect the data inconsistency as data set open triggered by DML explained above.

 There are two new keywords added to the REPAIR Utility:

 •REPAIR CATALOG

 •REPAIR CATALOG TEST

 REPAIR Utility with CATALOG keyword

 Example of statement:

 REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01

 A new keyword CATALOG is introduced. This includes validation of metadata and the original function of REPAIR VERSION utility. As the result, the following data is modified in the OBDs.

 •RRF/BRF format. During the mainline DML code path or utility path, the reference of record format is always based on the physical data. However, if it is necessary, the REPAIR utility can be used to fix the catalog definition.

 •The format now supports 6 bytes RBA format versus 10 bytes RBA format, which is similar to RRF/BRF format.

 •Data version information. This process is equivalent to the current REPAIR VERSION utility. Unlike data checking during the physical open, the REPAIR utility checks the table’s schema for all the tables in the table space. However, only the table space has system page and its latest version from the system page will be used to validate its schema with catalog.

 •Hash data page value. This is similar to RRF/BRF record format behavior, the mainline or utility code path can tolerate the inconsistency between data and catalog definition. However, this value can effect REORG or LOAD REPLACE utility if it is not being corrected. As the result, the REPAIR utility will modify the catalog be match the data set.

 The REPAIR utility updates the following catalog columns to match the physical data in the table space, as listed in Table 11-3.

 Table 11-3 REPAIR CATALOG utility will update the following catalog columns

 	
 Table

 	
 Column

 	
 Description

 	
 SYSTABLEPART

 	
 FORMAT

 	
 Updated to match the Reorder Row Format of the table space

 	
 SYSTABLEPART

 	
 RBA_FORMAT

 	
 Updated to match the RBA format of the Table Space

 	
 SYSTABLEPART

 	
 HASHDATAPAGES

 	
 Updated with the hash data page found in the PBR Universal Table Space if table has hash organization

 	
 SYSTABLESPACE

 	
 HASHDATAPAGES

 	
 Updated with the hash data page found in the PBG Universal Table Space if table has hash organization

 	
 SYSTABLES

 	
 VERSION

 	
 Updated with the highest version in the table space

 	
 SYSTABLEPART

 	
 OLDEST_VERSION

 	
 Updated with the lowest version in the table space

 	
 SYSTABLESPACE

 	
 OLDEST_VERSION

 	
 Updated with the lowest version in the table space

 	
 SYSTABLESPACE

 	
 CURRENT_VERSION

 	
 Updated the highest version in the table space

 	
 SYSCOPY

 	
 ICTYPE

 	
 Put a new row with ICTYPE='V' to indicate REPAIR touched the object

 In addition, the REPAIR utility with the CATALOG keyword also validates the following information.

 •DBID/PSID mismatch. If there is only one table in the table space, the REPAIR utility also validates OBID mismatch between page set and catalog.

 •Table space type mismatch.

 •SEGSIZE mismatch.

 •PAGESIZE mismatch.

 •Table definition mismatch. This validation includes the total number of columns, column data type and column defined length of the table.

 As a result, If any mismatch is found between the data and catalog, the REPAIR utility cannot repair the information in catalog. The REPAIR utility fails with a return code 8 and reports the mismatch with a message. You need to take an action to correct the mismatch information.

 	
 Note: REPAIR CATALOG does not check limit key values.

 You cannot specify CATALOG for LOB or XML table spaces

 REPAIR CATALOG does not make any corrections for indexes. If you or REPAIR made corrections to the data or catalog as a result of running REPAIR CATALOG, rebuild any indexes on the target tables

 REPAIR CATALOG TEST utility

 Example of statement:

 REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01 TEST

 A new keyword CATALOG TEST is introduced. The function of this keyword is similar to the REPAIR CATALOG except the mismatch information will not be corrected in the catalog. The mismatch information that results in none zero return code will be reported.

 11.6.5 Command to externalize RTS statistics

 The real-time SYSIBM.SYSTABLESPACESTATS and SYSIBM.SYSINDEXSPACESTATS statistic tables provide statistical information about the table and index spaces in the database system. The tables are updated every 30 minutes (by default). As a consequence, the statistics are 15 minutes old (on average) when a user or a tool are querying the tables. This can causes some tools which rely on RTS information, such as DSNACCOX, to provide wrong recommendations on heavily changed objects. DB2 11 implements a new command option added to the DB2 ACCESS command, so that the users can trigger the externalization of the in-memory RTS blocks, before calling recommendation tools, such as DSNACCOX.

 A new STATS keyword value added to the existing MODE keyword on the DB2 ACCESS command. The MODE(STATS) option results in the externalization of the real-time statistics in memory blocks.

 The DB2 ACCESS DATABASE command forces a physical open of a table space, index space, or partition, or removes the GBP-dependent status for a table space, index space, or partition, and externalizes the real-time statistics in-memory blocks to the real-time statistics tables. The MODE keyword specifies the desired action.

 MODE(STATS)	Externalizes the in-memory statistics to the real-time statistic tables. In data sharing environments, the in-memory statistics are externalized for all members. This mode does not physically open the page sets or change the states of the page sets.

 Examples are:

 ACCESS DB(dbname) SP(spname) MODE(STATS) PART(part)

 ACCESS DB(dbname) SP(spname) MODE(STATS)

 ACCESS DB(dbname) SP(*) MODE(STATS)

 ACCESS DB(*) SP(*) MODE(STATS)

 The last sample command externalizes all in-memory statistics that are currently held in the system to the real-time statistics table.

 11.6.6 DSNACCOX

 DSNACCOX is a sample stored procedure that uses data from the SYSIBM.SYSTABLESPACESTATS and SYSIBM.SYSSYSINDEXSPACESTATS real-time statistics tables to make the following recommendations:

 •It recommends when you should reorganize, image copy, or update statistics for table spaces or index spaces.

 •Indicates when a data set has exceeded a specified threshold for the number of extents that it occupies.

 •Indicates whether objects are in a restricted state.

 DB2 11 implements the following enhancement on DSNACCOX:

 •When the user has a lot of small objects that are almost empty, DSNACCOX recommends REORG on the objects because the DATASPACERATIO threshold had been exceeded, so for small objects Space Allocated/Space Used is always larger than the default DATASPACERATIO of 2. DB2 11 changes the default to -1 which turn off this 	criteria and it does not effect users which had changed the value. If you want to use DATASPACERATIO, modify the application to pass a positive value for DATASPACERATIO parameter.

 •Unable to differentiate between LOB, XML, or base table spaces, DSNACCOX used to return all table space as TS (standard table space). DB2 11 returns object type XS and LS to differentiate XML and LOB table spaces from TS for regular table space.

 •DSNACCOX used to recommend REORG on an NPI even when one or more of the table space partitions have been recommended for REORG or RUNSTATS. DB2 11 enhances DSNACCOX to optionally skip REORG recommendation on NPI index when any of the table space partitions had been recommended for REORG.

 •Better granularity in the evaluation. Many users rely on frequent runs of DSNACCOX, but they might be interested only in a certain objects. DB2 10 evaluates every rows in the RTS tables and eliminates them using an SQL WHERE clause when the return cursor is opened. DB2 11enhances DSNACCOX to parse the CRITERIA input parameter, and if possible, apply the CRITERIA as a WHERE clause when DSNACCOX queries RTS tables. This action results in less objects to be evaluated, improving performance.

 Figure 11-10 shows DSNACCOX performance when the DBNAME criterion is applied.

 [image:]

 Figure 11-10 DSNACCOX performance

 11.7 Deprecated functions

 DB2 10 NFM does not support REORG SHRLEVEL NONE for LOBs, but it returns RC0 with MSGDSNU126I. In DB2 11 when users try to run REORG SHRLEVEL NONE for LOBs the return code changed to RC8.

 When DSN1CHKR is invoked in DB2 11, you will see the same messages as DB2 10 NFM. It will produce following messages:

 DSN1800I START OF DSN1CHKR FOR JOB - DSN1CHKM, DURING JOBSTEP - xxxxxxxx

 DSN1998I INPUT DSNAME = DSNC000.xxxxxx.xxxxxxx.xxxxxxxx.I0001.A001 , VSAM

 DSN1810I INPUT DATA SET INVALID, NOT A CHECKABLE SYSTEM TABLESPACE

 DSN1816I DSN1CHKR TERMINATED WITH ERRORS, 00000000 PAGES PROCESSED

 The DB2 11 documentation was updated to indicate that DSN1CHKR is no longer supported, and that DSN1810I and DSN1816I error messages continue to be generated when it is invoked. The DB2 10 documentation was updated to indicate that DSN1CHKR is deprecated.

 DB2 11 begins the deprecation process of utility functions which are replaced by a new feature or can now be done by a non utility application. The INDREFLIMIT, OFFPOSLIMIT, LEAFDISTLIMIT, and CHANGELIMIT keywords were introduced before tools or stored procedures were available to give recommendations when an object needed to be reorganized or copied. However, tools and a stored procedure are now available to provide recommendations for REORG and COPY. Thus, you can use those tools or the DSNACCOX stored procedure.

 The DB2 Utility options in Table 11-4 are deprecated. Although they are supported in DB2 V11, they will be removed in a later release of DB2.

 Table 11-4 DB2 Utility options deprecated

 	
 Function

 	
 Option

 	
 REORG TABLESPACE UNLOAD ONLY

 	
 Use the UNLOAD utility instead

 	
 REORG TABLESPACE UNLOAD PAUSE

 	
 Use the UNLOAD FORMAT INTERNAL utility instead

 	
 REORG TABLESPACE UNLOAD EXTERNAL

 	
 Use the UNLOAD utility instead

 	
 REORG TABLESPACE INDREFLIMIT

 	
 Use the DSNACCOX to determine whether the object needs to be reorganized

 	
 REORG TABLESPACE OFFPOSLIMIT

 	
 Use the DSNACCOX to determine whether the object needs to be reorganized

 	
 REORG TABLESPACE INDREFLIMIT|OFFPOSLIMIT REPORTONLY

 	
 REPORTONLY valid only with INDREFLIMIT or OFFPOSLIMIT

 	
 REORG INDEX LEAFDISTLIMIT REPORTONLY

 	
 REPORTONLY valid only when LEAFDISTLIMIT is specified

 	
 REORG INDEX UNLOAD ONLY

 	
 If the function is needed, use DIAGNOSE to stop the process

 	
 REORG INDEX UNLOAD PAUSE

 	
 If function is needed, use DIAGNOSE to stop the process

 	
 REORG INDEX LEAFDISTLIMIT

 	
 Use DSNACCOX to determine whether the object needs to be reorganized

 	
 LOAD FORMAT UNLOAD

 	
 Use LOAD FORMAT INTERNAL to load data unloaded with UNLOAD FORMAT INTERNAL

 	
 COPY CHANGELIMIT

 	
 Use DSNACCOX to determine whether the object needs to be copied

 	
 REPAIR VERSIONS

 	
 Use the REPAIR CATALOG instead

[image:]
[image:]

Installation and migration

 This chapter provides information to help you evaluate the changes in DB2 11 for z/OS and to plan for a successful installation of or migration to DB2 11 for z/OS. It includes the following topics:

 •Currency of versions and migration paths

 •Prerequisites for DB2 11

 •DB2 11 installation changes and considerations

 •Considerations for migrating to DB2 11

 •Subsystem parameters

 •Release incompatibilities

 •Controlling application compatibility

 12.1 Currency of versions and migration paths

 Figure 12-1 is an overview over the general availability (GA) and end of service (EOS) dates for DB2 for z/OS.

 [image:]

 Figure 12-1 Currency of versions

 Before you begin the installation or migration process, look at the big picture. You need to be aware of the major requirements to get from your current version of DB2 to DB2 11 for z/OS. You need to know where you are currently and where you need to be before you embark on this process considering DB2, z/OS, and tools.

 Figure 12-2 points out the versions, currency dates, and the minimum required z/OS levels.

 [image:]

 Figure 12-2 DB2 versions and required z/OS level

 The discussion in this book, and mostly in Chapter 2, “Synergy with System z” on page 7, has described the functions of DB2 that you can enable if your z/OS level is z/OS 2.1, rather than the minimum required level z/OS 1.13. If there are functions you need with z/OS 2.1, you need to take into account the z/OS migration first.

 As shown in Figure 12-1, for DB2 10 provides the opportunity to get to it by using a skip-level migration from DB2 V8. For DB2 11 skipping level is not allowed. Thus, if you are on DB2 9, you first have to move to DB2 10 to migrate to DB2 11. As a result, the migration process has fewer modes than for the migration to DB2 10.

 The modes that you can use while migrating to DB2 10 are DB2 11 conversion mode (CM), DB2 11 CM*, DB2 11 ENFM, DB2 11 ENFM*, DB2 11 NFM.

 Figure 12-3 summarizes the possible migration modes and how you can get to each of them.

 [image:]

 Figure 12-3 Migration modes and paths

 DB2 can operate in the following various mode during the migration to DB2 11: =

 CM 	Conversion mode is the mode DB2 is in when DB2 11 is started for the first time after migration from DB2 10. When DB2 11 is started for the first time, you see messages indicating that the code DB2 is running under is the DB2 11 code, but that the catalog is still in DB2 10. You must fix this mismatch after you started DB2 with V11 code. Job DSNTIJTC is the installation job that handles this catalog adjustment. After successful execution of DSNTIJTC DB2 still remains in DB2 11 CM. Data sharing systems can be migrated from DB2 10 NFM to DB2 11 CM one member at a time. DSNTIJTC needs to be executed only once, because it is in the nature of a DB2 data sharing group that the catalog is common and shared among the members. CM is the only mode that allows for release co-existence between DB2 10 and DB2 11 members.

 	

 	
 Important: Fallback to DB2 10 NFM is possible only from CM. This point is illustrated by the vertical bar in Figure 12-3 and is labelled as the Point of no return.

 ENFM 	The Enabling New Function Mode is entered after installation job DSNTIJEN is executed. This job invokes the CATENFM utility with the START option, which prepares the DB2 catalog for DB2 11. H describe this step in 12.4.3, “DB2 11 ENFM and NFM” on page 339.

 	DB2 remains in this mode until all the enabling functions are completed. Data sharing systems can only have DB2 11 members in this mode.

 NFM	After the catalog migration completes successfully, you can use job DSNTIJNF, which also invokes the CATENFM utility, but this time with the COMPLETE option to reach New Function Mode. This mode indicates that all catalog changes are complete and new functions can now be used.

 ENFM*	The ENFM* mode is the same as ENFM, but the * indicates that at one time DB2 was at DB2 11 NFM. Objects that were created when the system was at NFM can still be accessed but no new objects can be created. When the system is in ENFM* it cannot fallback to DB2 10 or coexist with a DB2 10 system.

 CM*	This mode is the same as CM, but the * indicates that at one time the subsystem was at a higher level. Objects that were created at the higher level can still be accessed. When DB2 is in CM* it cannot fallback to DB2 10 or coexist with a DB2 10 system.

 12.2 Prerequisites for DB2 11

 This section describes the prerequisite requirements for hardware and software to successfully install and work with DB2 11 for z/OS.

 12.2.1 Processors

 DB2 11 operates on IBM z10™ or later processors running z/OS 1.13 or later. The processors must have enough real storage to satisfy the combined requirements of:

 •DB2 11 for z/OS

 •z/OS

 •The appropriate DFSMS storage management subsystem components, access methods, telecommunications, batch requirements and other applications required in your environment.

 	
 Tip: DB2 11 requires increased real storage as compared to DB2 10 for z/OS.

 12.2.2 Auxiliary storage

 The minimum disk space requirement, based on installing DB2 using the panel default values is approximately 1.3 GB. You need additional space for your data.

 	
 Note: The default values might not meet your installation’s needs. Over time more disk space might be required for your DB2 subsystems.

 12.2.3 Operational requirements

 Operational requirements are the products that are required and must be present on the system or the products that are not required but should be present on the system for this product to operate all or part it its functions.

 Mandatory requirements

 Mandatory operational requisites identify products that are required for DB2 to operate its basic functions. Table 12-1 lists these requirements tor DB2 11.

 Table 12-1 Mandatory operational requirements

 	
 Program number

 	
 Product name and minimum service level

 	
 5615-DB2

 	
 DB2 11 for z/OS, DB2 base APAR PM93577

 	
 5615-DB2

 	
 DB2 11 for z/OS, internal resource lock manager (IRLM) 2.3, plus APARs PM84765 and PM85053

 	
 Any one of the following:

 	
 5694-A01

 	
 z/OS (DFSMS, IBM Language Environment® Base Services, Security Server/RACF) V1.13

 	
 5650-ZOS

 	
 z/OS (DFSMS, Language Environment Base Services, Security Server/RACF) V2.1

 The following functions in DB2 11 require z/OS V2.1

 •2 GB large pages

 •1 MB fixed page frames for DB2 execution code

 •Improved performance of batch updates in data sharing

 •Improved usability and consistency for security administration

 For details, see Chapter 2, “Synergy with System z” on page 7.

 Conditional operational requirements

 Conditional operational requisites identify products that are not required for DB2 11 to operate its basic functions but are required at run time to operate specific functions. Table 12-2 lists the requirements.

 Table 12-2 Target system conditional operational requirements	

 	
 Program number

 	
 Product name and minimum service level

 	
 Function

 	
 5655-N98

 	
 IBM SDK for z/OS, Java 2 Technology Edition

 	
 Applications or stored procedures written in Java, such as those using the JDBC or SQLJ interfaces to DB2;

 Decimal Float data type usage in Java (in a 31-bit environment)

 	
 5655-N99

 	
 IBM SDK for z/OS, Java 2 Technology Edition

 	
 Applications or stored procedures written in Java, such as those using the JDBC or SQLJ interfaces to DB2;

 Decimal Float data type usage in Java (in a 64-bit environment)

 	
 5697-A01

 	
 z/OS 1.13 Web Deliverable

 	
 1 MB pageable for new FRAMESIZE and PGFIX(NO) in DB2 11 for buffer pool

 	
 5697-A01

 	
 z/OS 1.13 APAR OA40967

 	
 2 GB page for new FRAMESIZE option in DB2 11 for buffer pool

 	
 5635-A02

 	
 Information Management System (IMS) V11.01.00

 	
 Transaction Management

 	
 5655-M15

 	
 Customer Information Control System (CICS) Transaction Server for z/OS V03.01.00 and V03.02.00

 	
 Transaction Management

 For V03.01.00 and V03.02.00 you need APAR PM01800 to return the correct Version and Release number for DB2 11

 12.2.4 Optional program requirements

 This section describes which version of associated products are tolerated by DB2 11.

 Connectivity

 DB2 for z/OS supports DRDA as an open interface allowing access from any client.

 DB2 Connect Version 10.1 Fixpack 2 or DB2 Connect Version 9.7 Fixpack 6 clients or higher are the minimum required levels for a seamless migration.

 However, DB2 Connect Version 10.5 Fixpack 2 is required to support some DB2 11 for z/OS features, such as:

 •Array support

 •Autocommit performance improvements for procedures and cursors

 •Data sharing support for global variables

 •Longer client information fields

 For details, see Chapter 9, “Connectivity and administration routines” on page 171.

 DB2 11 acting as a client supports the following relational database products:

 •DB2 Enterprise Server (ESE) for Linux, UNIX and Windows, V9.5 (575-F41) or later

 •DB2 Express Edition for Linux, UNIX and Windows, V9.5 (5724-E49) or later

 •Database Enterprise Developer Edition V 9.5 (5724-N76) or later

 •DB2 for IBM iSeries® V6.1. (5761-SS1) or later

 •DB2 Server for VSE & VM V7.3 (5697-F42) or later

 •Any other DRDA compliant client or relational DBMS server

 Development tools

 The following products improve the productivity of database designers, administrators and application developers that are working with DB2 11:

 •InfoSphere Optim™ pureQuery™ Runtime for z/OS V3.3 (5655-W92)

 •InfoSphere Optim Configuration Manager for DB2 for z/OS V3.1 (5655-AA3)

 •IBM Data Studio V4.1

 Programming languages

 The minimum levels for programming languages are:

 •Enterprise COBOL for z/OS V3.4 (5655-G53) or later

 •VS Fortran 2.6 (5668-806, 5688-087, 5668-805). New data type and function are not supported since DB2 9.

 •Enterprise PL/I for z/OS V3.9 (5655-H31)

 IBM DB2 Accessories Suite for z/OS

 IBM DB2 Accessories Suite for z/OS, V3.1 (5697-Q04) is a no-charge offering consisting of three features, each bundling components designed to enhance your use of DB2 for z/OS, including the addition of and changes to the following components:

 •The DB2 Accessories Suite V11 feature provides spatial functions supporting DB2 11 for z/OS.

 •The JSON capability bundles necessary components that enable DB2 10 for z/OS to be used as a JSON document store.

 •An update to Data Studio 4.1 delivers health monitoring, single query tuning, and application development tools for DB2 for z/OS.

 12.3 DB2 11 installation changes and considerations

 As DB2 evolves in its overall improved functionality, there are also several changes which apply to the installation of a DB2 11 subsystem. This section describes the following DB2 11 installation changes and considerations:

 •More support of naming standards in install and IVP jobs

 •No more EDM calculations

 •Modified installation jobs

 •New installation job DSNTIJCB

 •Miscellaneous

 12.3.1 More support of naming standards in install and IVP jobs

 When you enter the installation panel through CLIST DSNTINST, the first panel that you see is DSNTIDA1. This panel was changed in DB2 10, allowing you to use different prefixes for the SMP/E target library names and for everything else. This enhancement avoids the additional editing on subsequent panels such as panel DSNTIPT, where you can specify all the output library names that you would like to use.

 Starting with DB2 11, a new panel DSNTIPG has been added to the install dialog. Figure 12-4 shows the new install panel DSNTIPG. The information that you can provide here gives great flexibility to change user IDs and library name prefixes for the installation and IVP job which are generated through the dialog.

 	
 DSNTIPG INSTALL DB2 - INSTALLATION PREFERENCES

 ===>

 Enter authorization IDs for installing DB2-supplied routines:

 1 ROUTINES CREATOR ===> SYSADM Authid to create and bind DB2 routines

 2 SEC DEF CREATOR ===> SYSADM Authid for routines w/ SECURITY DEFINER

 Enter authorization IDs for other installation and IVP jobs:

 3 INSTALL SQL ID ===> SYSADM To process SQL in install jobs

 4 INSTALL PKG OWNER ===> To own packages bound by install jobs

 5 INSTALL GRANTEE(S)===> PUBLIC > To be granted access on objects created

 by install jobs

 Enter the prefix for data sets created by installation and IVP jobs:

 6 INSTALL IC PREFIX ===> DSN1110 For COPY data sets

 7 INSTALL DS PREFIX ===> DSN1110 For other data sets

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

 . .

 Figure 12-4 DSNTIPG install panel

 The following options are available in the new panel:

 •1 ROUTINES CREATOR

 The ROUTINES CREATOR field specifies the CURRENT SQLID setting that is to be used when creating, configuring, and validating most DB2-supplied routines. This field also specifies the default OWNER that is to be used when binding packages for these routines.

 Acceptable values are 1 to 8 characters, the first of which must be an alphabetic character.

 The value that you enter in the ROUTINES CREATOR field is assigned by the installation CLIST as the setting of the AUTHID parameter for installation programs DSNTRIN in job DSNTIJRT and DSNTRVFY in DSNTIJRV job.

 The AUTHID parameter is used by the DSNTRIN program as the CURRENT SQLID setting when creating and configuring DB2-supplied routines. The DSNTRIN program also uses the AUTHID parameter as the default OWNER when binding packages for the DB2-supplied routines.

 The AUTHID parameter is used by the DSNTRVFY program as the CURRENT SQLID setting when validating DB2-supplied routines. The DSNTRVFY program also uses the AUTHID parameter as the default OWNER when binding packages for validation of these routines.

 	
 Note: Specify an authorization ID that has installation system administrator authority. Routines that are created or configured with installation system administrator authority are marked as system-defined.

 System-defined routines can be executed by the system DBADM and SQLADM authorities, which fits well with popular SQL tuning tools. For example, IBM Optim Query Tuner requires many of the DB2-supplied stored procedures to be available and accessible by an authority that focuses on SQL tuning activities.

 •2 SEC DEF CREATOR

 The value of the SEC DEF CREATOR field specifies the CURRENT SQLID setting that is to be used when creating and configuring DB2-supplied routines that are defined with the SECURITY DEFINER option.

 Acceptable values are 1 to 8 characters, the first of which must be an alphabetic character.

 The value that you enter in the SEC DEF CREATOR field is assigned by the installation CLIST as the setting of the SECDEFID parameter for installation program DSNTRIN in job DSNTIJRT.

 The SECDEFID parameter is used by the DSNTRIN program as the CURRENT SQLID setting when creating and configuring DB2-supplied routines that have the SECURITY DEFINER attribute. The default owner of the packages that are bound for these routines is the ID that is specified in the ROUTINES CREATOR field.

 	
 Note: Specify an ID that can be used as a logon ID because it is used by WLM to execute routines that have the SECURITY DEFINER attribute.

 •3 INSTALL SQL ID

 The INSTALL SQL ID field specifies the CURRENT SQLID setting that is to be used when SQL is processed by most DB2 installation and sample jobs.

 This field does not apply to the DSNTIJRT and DSNTIJRV jobs. For these jobs, you can use the ROUTINES CREATOR and SEC DEF CREATOR fields, which are also on the DSNTIPG panel, to specify the CURRENT SQLID.

 •4 INSTALL PACKAGE OWNER

 The INSTALL PKG OWNER field specifies the authorization ID to assign as the owner of packages and plans that are bound by most installation and sample jobs.

 This field does not apply to the DSNTIJRT and DSNTIJRV jobs. Use installation panels DSNTIPRA - DSNTIPRP to specify package owners for stored procedures that are provided by DB2.

 •5 INSTALL GRANTEE(S)

 The INSTALL GRANTEE(S) field specifies the authorization IDs that are to be granted access to objects that are created and bound by most installation and sample jobs.

 This field does not apply to the DSNTIJRT and DSNTIJRV jobs. Use installation panels DSNTIPRA - DSNTIPRP to specify authorization IDs for routines that are provided by DB2.

 Use commas to separate individual IDs. Do not use embedded blanks. You can enter up to 44 characters, including commas.

 To be able to enter more than one ID, type EXPAND in the command line, place the cursor on the input field, and hit enter. You then get a screen that allows you to enter various IDs up to a length of 44 bytes in total.

 Alternatively, you can also assign EXPAND to one of your function keys, place the cursor into the input field, and press Enter to open the ISPEXPND screen shown in Figure 12-5.

 [image:]

 Figure 12-5 EXPAND screen for panel DSNTIPG

 The authorization IDs that you enter in this field are granted the following privileges:

  –	The USE privilege for STOGROUPs and table spaces that are created by IVP jobs

  –	The USE privilege for buffer pool BP0, the SYSDEFLT storage group, and table space DSNDB04.SYSDEFLT

  –	The DBADM privilege for databases that are created by IVP jobs

  –	The CREATETAB and CREATETS privileges for the temporary database, DSNDB04

  –	The DELETE, INSERT, SELECT, and UPDATE privileges for tables and created global temporary tables that are created by IVP and installation jobs other than DSNTIJRT

  –	The EXECUTE privilege for packages and plans that are bound by IVP and installation jobs other than DSNTIJRT

  –	The BIND privilege on most plans that are bound by IVP jobs

 •6 INSTALL IC PREFIX field

 The INSTALL IC PREFIX field specifies the prefix for image copy data sets that are created by DB2 installation and IVP jobs.

 This is especially beneficial because the image copy prefix almost always had to be changed in the past in jobs, for example DSNTEJ0.

 The value that you can specify here are 1 to 17 characters that form a valid z/OS data set name prefix.

 •7 INSTALL DS PREFIX field

 The INSTALL DS PREFIX field specifies the prefix for most data sets that are created by most DB2 installation and IVP jobs. This field does not apply to data sets that are created by job DSNTIJIN, which applies for example to TEMPLATE or LISTDEFs that are created as part of the IVP jobs.

 Again, the value that you can specify here are 1 to 17 characters that form a valid z/OS data set name prefix.

 12.3.2 No more EDM calculations

 Traditionally the installation CLIST used linear calculations based on the estimate number of databases, plan, and so on to determine the settings of the various EDM pools. These calculations have changed with the changes in virtual storage use by DB2 and have now been replaced by stepped sizing according to your site’s size. These are the five defined stepped sizes:

 Small site: 	About 100 plans, 50 application databases, and 1000 tables

 Small-Medium site: 	About 200 plans, 200 application databases, and 4000 tables

 Medium site: 	About 400 plans, 400 application databases, and 8000 tables

 Medium-Large site: 	About 600 plans, 600 application databases and 12,000 tables

 Large site: 	About 800 plans, 800 application databases, and 16,000 tables

 These settings are starting points. You have to check your actual requirements.

 Based on the numbers indicated on the installation CLIST panels, Table 12-3 lists pool sizes.

 Table 12-3 EDM Pool stepped sizings

 	
 System size/ parameter name

 	
 EDMDBDC (KB)

 	
 EDMSTMTC (KB)

 	
 EDM_SKELETON_ POOL (KB)

 	
 Small

 	
 40960

 	
 122880

 	
 81920

 	
 Small-Medium

 	
 102400

 	
 307200

 	
 204800

 	
 Medium

 	
 204800

 	
 614400

 	
 409600

 	
 Medium-Large

 	
 409600

 	
 1228800

 	
 819200

 	
 Large

 	
 819200

 	
 2457600

 	
 1638400

 When you get to the DSNTIPC panel, shown in Figure 12-6, you can override the calculated stepped sizes. This example decreases the storage sizes that installation CLIST has picked based on the values entered on previous installation panels.

 If you compare the values in Table 12-3 with the values that were assigned to the 3 EDM pools, you can see that they match with the ones for a small site. This, in fact is what you would get if you accept the default values coming from input member DSNTIDXA.

 	
 DSNTIPC INSTALL DB2 - CLIST CALCULATIONS - PANEL 1

 ===>

 You can update the DSMAX, EDMPOOL STATEMENT CACHE (if CACHE DYNAMIC is YES),

 EDM DBD CACHE, SORT POOL, and RID POOL sizes if necessary.

 Calculated Override

 1 DSMAX - MAXIMUM OPEN DATA SETS = 20000 (1-200000)

 2 DSNT485I EDM STATEMENT CACHE = 122880 K K

 3 DSNT485I EDM DBD CACHE = 40960 K K

 4 DSNT485I EDM SKELETON POOL SIZE = 81920 K K

 5 DSNT485I EDM LIMIT BELOW THE BAR = 0 K K

 6 DSNT485I BUFFER POOL SIZE = 109 M

 7 DSNT485I SORT POOL SIZE = 10000 K K

 8 DSNT485I MAX IN-MEMORY SORT SIZE = 1000 K K

 9 DSNT485I RID POOL SIZE = 400000 K K

 10 DSNT485I DATA SET STORAGE SIZE = 26000 K

 11 DSNT485I CODE STORAGE SIZE = 38200 K

 12 DSNT485I WORKING STORAGE SIZE = 45024 K

 13 DSNT486I TOTAL MAIN STORAGE = 617 M M

 14 DSNT487I TOTAL STORAGE BELOW 16M = 1036 K WITH SWA ABOVE 16M LINE

 15 DSNT438I IRLM LOCK MAXIMUM SPACE = 2160 M, AVAILABLE = 2160 M

 PRESS: ENTER to continue RETURN to exit HELP for more information

 Figure 12-6 Install Panel DSNTIPC

 If you are installing DB2 for the first time and not using SAP, use the supplied defaults input member, DSNTIDXA. If you are using SAP, you should specify DSNTIDXB, the SAP-specific input member. If you process the panels several times within a single run of the CLIST, all the previous values that are entered, except edited output data sets, remain the same.

 If you use the SAP input member, the calculated storage sizes are quite different as shown in Figure 12-7.

 	
 DSNTIPC INSTALL DB2 - CLIST CALCULATIONS - PANEL 1

 ===>

 You can update the DSMAX, EDM STATEMENT CACHE (if CACHE DYNAMIC is YES),

 EDM DBD CACHE, EDM SKELETON POOL, SORT POOL, and RID POOL sizes if necessary.

 Calculated Override

 1 DSMAX - MAXIMUM OPEN DATA SETS = 20000 20000 (1-200000)

 2 DSNT485I EDM STATEMENT CACHE = 300000 K K

 3 DSNT485I EDM DBD CACHE = 150000 K K

 4 DSNT485I EDM SKELETON POOL SIZE = 81920 K K

 5 DSNT485I EDM LIMIT BELOW THE BAR = 0 K K

 6 DSNT485I BUFFER POOL SIZE = 2085 M

 7 DSNT485I SORT POOL SIZE = 10000 K 64000 K

 8 DSNT485I MAX IN-MEMORY SORT SIZE = 1000 K K

 9 DSNT485I RID POOL SIZE = 400000 K 100000 K

 10 DSNT485I DATA SET STORAGE SIZE = 26000 K

 11 DSNT485I CODE STORAGE SIZE = 38200 K

 12 DSNT485I WORKING STORAGE SIZE = 17404 K

 13 DSNT486I TOTAL MAIN STORAGE = 2566 M 2326 M

 14 DSNT487I TOTAL STORAGE BELOW 16M = 1269 K WITH SWA ABOVE 16M LINE

 15 DSNT438I IRLM LOCK MAXIMUM SPACE = 1292763 M, AVAILABLE = 4096 M

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

 . .

 Figure 12-7 DSNTIPC results when using DSNTIDXB member

 12.3.3 Modified installation jobs

 Several installation jobs have been changed fromDB2 10 to reflect the product layout in DB2 11. This section lists the changed jobs and provides a few details about the changes:

 •DSNTIJIN

 •DSNTIJUZ

 •DSNTIJID, DSNTIJIE, and DSNTIJIF

 •DSNTIJSG

 •DSNTIJRT

 •DSNTIJIC

 DSNTIJIN

 During installation, the DSNTIJIN job defines VSAM and non-VSAM data sets for DB2. The following groups of changes are applied to this job:

 •The VSAM DEFINE statement for the BSDS data sets have been modified. The changes are necessary to support for longer RBA/LRSN.

 •The job steps that were used to defined the following table space have been removed:

  –	DSNDB06.SYSCOPY

 The SYSIBM.SYSCOPY table now resides in the DSNDB06.SYSTSCPY table space.

  –	DSNDB06.SYSSTR

 This table space used to contain the following tables:

  •	SYSIBM.SYSSTRINGS

  •	SYSIBM.SYSCHECKS

  •	SYSIBM.SYSCHECKDEP

  •	SYSIBM.SYSCHECKS2

 DB2 11 defines one table space for each table. The following new table spaces are listed in the order corresponding to the tables:

  •	DSNDB06.SYSTSSRG

  •	DSNDB06.SYSTSCHKS

  •	DSNDB06.SYSTSCHKD

  •	DSNDB06.SYSTSCHX

  –	DSNDB06.SYSRTSTS

 This table space used to contain the following tables:

  •	SYSIBM.SYSTABLESPACESTATS

  •	SYSIBM.SYSINDEXSPACESTATS

 DB2 11 defines one table space per each of these tables. The following new table spaces are listed in the order corresponding to the tables:

  •	DSNDB06.SYSTSTSS

  •	DSNDB06.SYSTSISS

 •New job steps have been added for new table spaces and index spaces.

 DB2 11 has 16 new table spaces and 17 new index spaces, including the table spaces and associated index spaces that listed previously.

 The additional four table spaces are:

  –	DSNDB06.SYSTSQRE for the SYSIBM.SYSQUERYPREDICATE table (plus two indexes)

  –	DSNDB06.SYSTSQRS for the SYSIBM.SYSQUERYSEL table (plus two indexes)

  –	DSNDB06.SYSTSIXS for the SYSIBM.SYSINDEXES table (plus two indexes)

  –	DSNDB06.SYSTSSFB for the SYSIBM.SYSSTATFEEDBACK table (plus three indexes)

 DSNTIJUZ

 The DSNTIJUZ job defines the DB2 data-only DSNZPxxx subsystem parameter module, the application defaults load module, and the data-only DSNHMCID load module.

 As with every release, there are multiple changes to this job. Many system parameters were added, some updated and some removed. Refer to the 12.5.1, “New system parameters” on page 346, 12.5.2, “Changed defaults for existing system parameters” on page 354, and 12.5.3, “Removed system parameters” on page 355.

 DSNTIJID, DSNTIJIE, and DSNTIJIF

 After you define your system data sets and DB2 initialization parameters, you must initialize your system data sets executing these jobs in the shown sequence.

 The DSNTIJID job records the active log data set names to the BSDS, formats the active log data sets, and initializes the DB2 directory table spaces and indexes. The BSDS is initialized in the basic, pre-DB2 11 format. After you complete your installation, you can optionally use the DSNTIJCB job to convert the BSDS to the new format that supports 10-byte RBA and LRSN fields.

 The DSNTIJIE job initializes the DB2 catalog table spaces and indexes.

 The DSNTIJIF job initializes the remaining DB2 catalog table spaces and indexes.

 Those jobs are adjusted to the removed and new catalog and directory table spaces and indexes. See “DSNTIJIN” on page 327 for additional information about which objects these are.

 DSNTIJSG

 During installation, the DSNTIJSG job binds DB2-supplied packages, plans and creates a few objects such as the RLF database and related objects. This job added the creation of the query optimization database in step DSNTIJQ (EXPLAIN tables in schema SYSIBM.)

 In DB2 11 is, this job also creates, the program authorization database, table space, table, and index. The SYSIBM.DSNPROGAUTH program authorization table is used to verify that a program is authorized to use a plan. A sample INSERT statement is provided, which you can uncomment, customize, and execute to populate the table. See 10.2, “Enhancements to program authorization” on page 250.

 DSNTIJRT

 DSNTIJRT creates all DB2-provided routines. It is good practice to run this job in CM and again after DB2 enters NFM in case any packages for DB2-supplied routines need to be refreshed. Some new routines might also be added to DB2 11 and not created until NFM.

 DSNTIJIC

 This job takes image copies of the DB2 11 catalog and directory.

 In addition to adjusting the job to the correct table space names, the SHRLEVEL option has also been changed to SHRLEVEL (CHANGE) for all catalog and directory table spaces. It was SHRLEVEL(REFERENCE) in DB2 10.

 12.3.4 New installation job DSNTIJCB

 The DSNTIJCB job is an optional job to convert existing BSDSs to the extended format.

 	
 Important: Do not run this job before you are in NFM. The DB2 subsystem must be stopped in order to run this job.

 Refer to the discussion in 3.1, “Extended RBA and LRSN” on page 24.

 12.3.5 Miscellaneous

 In addition to the changes in the installation process that discussed earlier in this chapter, there are some minor but useful things listed in this section:

 •How to create a DB2 11 INSTALL member from your DB2 10 member

 •BIND PLAN with RETAIN option

 •Use of SYNONYMS replaced by ALIASES

 How to create a DB2 11 INSTALL member from your DB2 10 member

 If you already have one or more DB2 for z/OS subsystems installed on your system, and you need to create one more, it is sometimes convenient to install the new one using the configuration (system parameter) settings of an existing DB2 system. One reason might be that system tests before you actually start migrating an existing subsystem to DB2 11.

 To generate customized installation jobs, you have to go through the installation CLIST. The installation CLIST needs an input member containing pre-set values for most of the system parameters. DB2 11 provides an input member with default settings to get started. However you might not want to start with the IBM provided default values, but with values as they are set for one of your subsystems in DB2 10.

 One way to get the current values is to manually compare the defaults that DB2 11 provides in member prefix.sdsnsamp(DSNTIDXA) and override those with what you currently have available for DB2 10. This process might not be the best method for the following reasons:

 •You might overlook something that can cause issues later.

 •The DSNTIDxx member that you used during your DB2 10 installation or migration might be stale, because after the installation or migration you might have changed several system parameters not going through the official update process but through manual changes in the DSNTIJUZ job instead.

 You can follow the procedure documented here to convert your stale DB2 10 DSNTIDxx member to a DB2 11 DSNTIDxx member and start the installation from there.

 First, remember the DSNTIJXZ job. This job calls the DSNTXAZP program to update a stale DSNTIDxx member with the current DSNZPARM settings. Refer to Figure 12-8. DSNTIJXZ connects to an active DB2 and reads the active system parameter settings. The result is a new DSNTIDyy member, which is up-to-date. The job output on the right gives you a listing with information about how the input DSNTIDxx differs from the actual settings of this subsystem.

 [image:]

 Figure 12-8 DSNTIJXC/DSNTXAZP

 The following steps look at the process that involves using this DSNTIJXC job. Figure 12-9 assumes that the whole process starts with a stale DSNTIDxx and an intact, existing DB2 subsystem. Start on the top left.

 1.	Run DSNTIJXZ on DB2 10 to refresh you DB2 10 DSNTIDxx member. Figure 12-9 assumes the output member would be DSNTIDyy.

 2.	Run the DB2 11 install CLIST in MIGRATE mode and specify:

  –	DSNTIDyy as migration input member

  –	DB2 11 DSNTIDXA as input member

  –	A member, for example DSNTIDzz to receive the changes

 3.	Discard the customized migration jobs. They are not needed for the task here.

 4.	Run the DB2 11 install CLIST in INSTALL mode and specify DSNTIDzz as the input member.

 You are now ready to use the generated, customized install jobs for the installation of a new DB2 subsystem, which uses system parameter settings like the subsystems that you identified as a good one to get started with.

 [image:]

 Figure 12-9 CREATE new DB2 11 DSNTIDxx input from old DB2 10 DSNTIDxx

 BIND PLAN with RETAIN option

 Many installation and IVP jobs bind plans that are sometimes used during the installation or verification process and can also be used for various tasks by different users later.

 Up to DB2 10, the BIND PLAN statements did not include the RETAIN® option on the ACTION keyword. The RETAIN option preserves EXECUTE privileges when you replace a plan. If ownership of the plan changes, the new owner has to grant the privileges BIND and EXECUTE to the previous owner. RETAIN is not the default. If you do not specify RETAIN, everyone but the plan owner loses the EXECUTE privilege (but not the BIND privilege).

 In DB2 11 the following Installation and verification jobs now specify RETAIN on their BIND PLAN statements:

 •IVP jobs

  –	DSNTEJ1L

  –	DSNTEJ1P

  –	DSNTEJ1S

  –	DSNTEJ2A

  –	DSNTEJ2C

  –	DSNTEJ2D

  –	DSNTEJ2E

  –	DSNTEJ2F

  –	DSNTEJ2H

  –	DSNTEJ2P

  –	DSNTEJ3C

  –	DSNTEJ3P

  –	DSNTEJ4C

  –	DSNTEJ4P

  –	DSNTEJ5C

  –	DSNTEJ5P

  –	DSNTEJ6U

  –	DSNTEJ71

  –	DSNTEJ73

  –	DSNTEJ75

  –	DSNTEJ76

  –	DSNTEJ77

  –	DSNTEJ78

 •Installation jobs

  –	DSNTIJSG

  –	DSNTIJTM

 Use of SYNONYMS replaced by ALIASES

 In DB2 10, SYNONYMs are deprecated and will not be enhanced starting from DB2 10. Synonyms behave differently with DB2 for z/OS than with the other DB2 family products. Synonyms are not recommended for use when writing new SQL statements or when creating portable applications. Use aliases instead.

 Synonyms are no longer used in DB2 11 IVP jobs. The following jobs have changed to use ALIASES instead of SYNONYMs:

 •DSNTEJ1

 The DSNTEJ1 job creates all objects that are to be used by the sample verification jobs.

 •DSNTEJ1U

 The DSNTEJ1U job creates a database, table space, and table with Unicode CCSID.

 DSNTEJ1U loads data into the table from a data set that contains a full range of characters in an EBCDIC Latin-1 code page, which results in a mix of single and double-byte characters in the Unicode table. It then runs DSNTEP2 to select and display the data in hex format.

 •DSNTEJ7

 The DSNTEJ7 job demonstrates how to create a LOB table with all the accompanying LOB table spaces, auxiliary tables, and indexes. DSNTEJ7 also demonstrates how to use the DB2 LOAD utility to load a LOB table.

 12.4 Considerations for migrating to DB2 11

 Migrating a DB2 subsystem means to move from one software version to another. As stated earlier in this chapter, a migration to DB2 11 is possible only if your subsystem is on DB2 10 NFM when you start the migration process. The sequence of jobs shown in Figure 12-10 gives an overview of the migration process, listing changes in the speech bubbles next to the boxes representing individual migration steps.

 [image:]

 Figure 12-10 DB2 11 migration process at a glance

 The next sections discuss what has changed in terms of the following functions:

 •Premigration considerations

 •DB2 11 CM

 •DB2 11 ENFM and NFM

 12.4.1 Premigration considerations

 Before you actually start your DB2 subsystem in conversion mode using the DB2 11 code, plan for the new version. This planning includes completing the activities listed in this section and carefully reviewing the release incompatibilities discussed in 12.6, “Release incompatibilities” on page 357.

 Items deprecated in earlier versions are now eliminated

 Each DB2 release deprecates items. To deprecate something does not mean that the function does not exist anymore. Instead, no new development effort is spent on these items. Thus, you need to prepare for the removal of the function in a subsequent release. The following items are eliminated in DB2 11:

 •Password protection for active log and archive log data sets

 •DSNH CLIST NEWFUN values of V8 and V9

 •Some DB2 supplied routines:

  –	SYSPROC.DSNAEXP

  –	AMI-based DB2 MQ functions, see APAR PK37290 for guidance

  –	DB2MQ1C.*

  –	DB2MQ2C.*

  –	DB2MQ1N.*

  –	DB2MQ2N.*

 •CHARSET application programming default value is removed in DB2 11.

 CHARSET was a DSNHDECP parameter used to specify whether the character set associated with the default EBCDIC CCSID was either ALPHANUM or KATAKANA. Prior to DB2 8, this function was needed by DB2 parser for parsing in EBCDIC. Beginning in DB2 V8, parser parses statements in Unicode and no longer needs to know whether the character set is alphanumeric or Katakana.

 •BIND PACKAGE options ENABLE and DISABLE (REMOTE) REMOTE (location-name,…,<luname>,…)

 In DB2 11, you cannot use the BIND PACKAGE options ENABLE and DISABLE (REMOTE) REMOTE (location-name,…,<luname>,…) to enable or disable specific remote connections. You can use the ENABLE(REMOTE) or DISABLE(REMOTE) options to enable or disable all remote connections.

 •Sysplex query parallelism

 In DB2 11, sysplex query parallelism is no longer supported. Packages that used sysplex query parallelism in releases before DB2 11 use CPU parallelism in DB2 11.

 If you system was allowed to use sysplex query parallelism at all was determined by the setting of system parameter COORDNTR. Because sysplex query parallelism is eliminated from DB2 11, the system parameter is also removed from the DSNZPARM module.

 •DSN1CHKR

 In DB2 11, the DSN1CHKR utility is no longer needed and therefore not longer supported. You can use DSN1CHKR in versions prior to DB2 10 NFM to scan the specified table space for broken links, broken hash chains, and records that are not part of any link or chain.

 Because DB2 10 New Function Mode (NFM), catalog and directory table spaces do not contain hashes or links. Thus, DSN1CHKR is unnecessary.

 The DSN1810I and DSN1816I messages are issued when the DSN1CHKR utility is invoked.

 Fallback PTF

 In the rare case of a severe error while operating under DB2 11 conversion mode, you might need to return to operation on the previous version. This process is called fallback. After fallback, the catalog remains a DB2 11 CM catalog.

 DB2 10 by its nature does not support all the changes that occurred to the catalog during the CATMAINT utility execution that made the catalog a DB2 11 CM catalog. This means that a certain maintenance level is required on your DB2 10 code to tolerate these changes.

 A fallback PTF plus prerequisite PTFs prepare the DB2 10 code to handle a DB2 11 catalog. DB2 10 must have started at least once with this fallback PTF applied. When you try to start DB2 with the DB2 11 code base for the first time, and your DB2 10 system has never been started with this PTF applied, you receive the error message shown in Example 12-1.

 Example 12-1 Missing fallback PTF error message

 [image:]

 DSNR045I -DB0B DSNRRPRC DB2 SUBSYSTEM IS STARTING 883

 AND

 IT WAS NOT STARTED IN A

 PREVIOUS RELEASE WITH THE FALLBACK SPE APPLIED.

 FALLBACK SPE APAR: PM31841

 NEW RELEASE LEVEL: 0000D780

 KNOWN LEVEL(S): 0000D6700000D6720000D6750000D680000

 [image:]

 	
 Important: As you can see from message DSNR45i, the V10/V11 Fallback SPE APAR is PM31841, PTF UK96357 for the fallback SPE. You need to install the PTF to prepare your subsystems for the migration to DB2 11.

 Premigration checkout job DSNTIJPM

 On DB2 11 target data set prefix.SDSNSAMP, that is, not on the customized NEW.SDSNSAMP, you can find job DSNTIJPM. Run this job on DB2 10 prior to your migration to DB2 11. It queries the DB2 catalog to identify conditions that you need to take into account before you attempt to of after you migrated to DB2 11.

 To allow customers maximum time to prepare for migration to a new release, the DSNTIJPM job is also shipped under a different name in the previous release. For example:

 •V8 DSNTIJPM is shipped as DSNTIJP8 in V7

 •V9 DSNTIJPM is shipped as DSNTIJP9 in V8

 •V10 DSNTIJPM is shipped as DSNTIJPA in V8 and V9

 •V11 DSNTIJPM is shipped as DSNTIJPB in V10

 This arrangement permits customers to begin preparing for migration in advance of buying and SMP/E-installing the new version.

 The DSNTIJPB job is added to DB2 10 through maintenance (APAR PM94057) some time before DB2 11 is generally available (GA), which allows you to run these reports as early as possible so that you have enough time to action on the items that might be found in your catalog.

 DSNTIJPB uses DB2 REXX Language Support, which is bound by running installation job DSNTIJTM, job step DSNTIRX. If you did not bind the packages and plan for DB2 REXX when you migrated to DB2 10 for z/OS, use the DSNTIJTM job, the DSNTIRX job step, to do so before running DSNTIJPB.

 At the time this book was written, this job generates 24 reports, that include the following information:

 1.	Existence of the previous-release sample database. The objects in this database are needed for the IVP jobs that you are supposed to run in CM.

 2.	User-defined indexes on the DB2 catalog that reside in user-managed page sets. Because these indexes reside on user-managed storage, you need to modify the ENFM catalog conversion job, DSNTIJEN, to define shadow data sets for them for use by DB2 online REORG. Use the job step descriptions in the prolog of DSNTIJEN to determine the appropriate placement of the AMS DELETE and DEFINE statements for each shadow data set you need to add.

 3.	User-defined indexes on the DB2 catalog that reside in DB2-controlled page sets. DSNTIJEN is going to handle those indexes automatically, but before running DSNTIJEN, you should review the current space allocations for the data sets for these indexes and increase the space for any that are approaching capacity to accommodate expansion during catalog conversion.

 4.	Plans last bound prior to DB2 9. These plans are auto-rebound when they are called for the first time in DB2 11 if your setting for system parameter ABIND is set to YES or COEXIST. If COEXIST. If ABIND is set to NO, DB2 V11 returns SQLCODE -908 (SQLSTATE 23510) for all attempts to use any such plan until it is explicitly rebound.

 5.	Plans last bound prior to DB2 9. Same as 4.

 6.	EXPLAIN tables, which are not in the expected DB2 10 format. Consider running the DSNTIJXA job for those tables.

 	
 Attention: The DSNTIJXA job converts all EXPLAIN tables in the system to DB2 10. DB2 10 format explain tables are only allowed encoded in UNICODE. Thus, if the DSNTIJXA job expands the format of any EXPLAIN tables from say DB2 9 format to DB2 10 format, but those are still encoded in EBCDIC, they are unusable after the expansion. You must then use the DSNTIJXB and DSNTIJXC jobs to convert it from EBCDIC to UNICODE!

 7.	Reserved report.

 8.	A list of MQTs that are affected by migration job DSNTIJEN. You need to drop these MQTs before starting migration to DB2 V11 ENFM, otherwise CATENFM processing might fail. You can recreate them after you have completed running job DSNTIJEN.

 9.	AMI IBM MQSeries® functions that were deprecated in V8 and 9 and became obsolete in DB2 10. These are now dropped when you run DSNTIJRT, the job that creates DB2 provided routines and related objects.

 10.	XML MQSeries functions that were deprecated in V8 and 9 and became obsolete in DB2 10. These are now dropped when you run DSNTIJRT, the job that creates DB2 provided routines and related objects.

 11.	A list of simple table spaces. Simple table spaces were deprecated with DB2 9. You can still keep them in DB2 11, but you should migrate them to any other table space type, because if you accidently drop a simple table space, you are unable to recreate it as such in DB2 11. The same is true for DB2 10.

 12.	Trigger packages that have an invalid SECTNOI. These invalid SECTNOI were caused by a bug, which were corrected by PTF UK42129. Drop and re-create those triggers, because they might cause unpredictable results.

 13.	Views that contain a reference to a temporal table, such as for example:

 CREATE VIEW VW1 AS (SELECT * FROM POLICY_INFO

 FOR BUSINESS_TIME AS OF '2008-06-15'

 WHERE POLICY_ID = 'A123') ;

 The use of such views was allowed at DB2 10 GA, but the support was discontinued with APAR PM45015 later. These views should be dropped to avoid migration errors.

 14.	MQTs with a period specification. See 13 for an explanation

 15.	SQL functions with a period specification. See 13 for an explanation.

 16.	Catalog table spaces with version errors. It might occur that the oldest version is larger than the current version. You must correct this problem by running MODIFY RECOVERY, followed by an REORG before you start your catalog migration.

 17.	A list of packages that reference catalog tables that are stored in one of the following catalog table spaces:

  –	SYSCOPY

  –	SYSSTR

  –	SYSRTSTS

 As discussed earlier in this chapter, these table spaces are dropped and replaced by new table spaces in DB2 11. The first time you touch these tables in DB2 11, DB2 executes an automatic rebuild if ABIND is set to YES or COEXIST. If ABIND = NO, then SQLCODE -908 occurs.

 18.	The SYSIBM.SYSCOPY and SYSIBM.SYSOBDS catalog tables can contain orphaned rows due to a bug that is now fixed. These rows do not cause trouble while you are on DB2 10 but might interfere with the catalog migration. If report 18 returns a few rows, you must run the REPAIR utility as follows for each of the RIDs listed in this report:

 REPAIR OBJECT

 LOCATE TABLESPACE DSNDB06.SYSALTER RID X'<rid>' DELETE

 19.	Report orphaned rows in SYSTABSTATS.

 20.	Report orphaned rows in SYSCOLAUTH.

 21.	Report inconsistent version numbers in the DB2 catalog.

 22.	Report plan dependencies on table spaces processed by ENFM.

 23.	Report package dependencies on table spaces processed by DSNTIJTC.

 24.	Report plan dependencies on table spaces processed by DSNTIJTC.

 12.4.2 DB2 11 CM

 Conversion mode is the first mode you enter when you migrate to DB2 11. It is an important step in the migration process, because after you are in DB2 11 CM, all operation is done using the new code base. Refer to DB2 11 for z/OS Installation and Migration, SC19-4056 for a detailed description about all jobs and the sequence to use to execute those to migrate your DB2 subsystems to CM.

 This section focuses on the changes in this process from DB2 10 for the following jobs:

 •DSNTIJMV

 •DSNTIJUZ

 •DSNTIJRT

 •DSNTIJIC

 Consider using the DB2 10 DSNTIJXZ job to refresh your DB2 10 DSNTIDxx member before you use it as migration input to the DB2 11 installation CLIST. Refer to 12.3.5, “Miscellaneous” on page 329 for information about how to create a member for installing a new DB2 11 based on an existing DB2 10.

 DSNTIJMV

 The DSNTIJMV migration job is not new in DB2 11. DSNTIJMV first renames existing members containing started task JCL, such as xxxxMSTR, xxxxDBM1, and so on.

 In a second step, it updates JCL, which can, for example, contain release dependent data set names for data sets, such as SDSNLOAD and so on. The JCL is generated into the procedure library that you indicated on the data set names panel of the installation CLIST.

 Since DB2 10, the installation CLIST also generates the procedure JCL for the core WLM environments which are associated with the many DB2 supplied stored procedures. The library names used in these JCL members might also require changes. For this purpose, the DB2 11 CLIST now also renames the members containing the WLM procedure JCL. This task adds 11 additional RENAME statements to this job.

 DSNTIJUZ

 DSNTIJUZ creates the DSNZPARM and DSNHDECP load modules. If you compare the DB2 10 version of this job with DB2 11, you find that there are many new and removed system parameters. System parameters are discussed in 12.5.1, “New system parameters” on page 346, 12.5.2, “Changed defaults for existing system parameters” on page 354, and 12.5.3, “Removed system parameters” on page 355.

 DSNTIJRT

 Execute this job twice when you are migrating from DB2 10 to DB2 11. The first time is when you are in conversion mode and the second time when you are in NFM.

 DSNTIJRT creates stored procedure ADMIN_COMMAND_MVS in DB2 11 CM (if it was not already created before migrating from DB2 10). The DB2-supplied stored procedure is described at 9.7, “ADMIN_COMMAND_MVS stored procedure” on page 217.

 Conversion mode

 Changes that occur when you run this job in CM are:

 1.	Drop all existing obsolete AMI-based DB2 MQ functions and all DB2 XML MQ routines. You can use the following query if you would like to identify the affected routines:

 SELECT SCHEMA

 , NAME

 , SPECIFICNAME

 , ROUTINETYPE

 FROM SYSIBM.SYSROUTINES

 WHERE SCHEMA IN ('DB2MQ1C' , 'DB2MQ2C'

 , 'DB2MQ1N' , 'DB2MQ2N'

 , 'DMQXML1C', 'DMQXML2C'

)

 ORDER BY SCHEMA, SPECIFICNAME;

 These routines are also identified in one report after running job DSNTIJPM/B as described in “Premigration checkout job DSNTIJPM” on page 335.

 2.	Bind all packages from DB2 11 DBRMs.

 NFM

 You must run this job a second time in NFM. This time, DB2 creates:

 •Associated created global temporary table SYSIBM.MVS_CMD_OUTPUT

 	
 Note: DSNTRIN is a program called by job DSNTIJRT to install and configure DB2-supplied routines. This includes validation and adjustment of various SQL objects that are used by the routines and that have been modified in the service stream or on a product version/release boundary. Current APARs for this program are PM45652 and PM93782.

 DSNTIJIC

 DSNTIJTC is a sample job that copies DB2 subsystem’s catalog and directory. Starting with DB2 11 CM, this job has seven additional table spaces included in the list of objects to copy.

 These following table spaces in ENFM replace three DB2 10 table spaces as follows:

 •DSNDB06.SYSTSCPY replaces DSNDB06.SYSCOPY

 •DSNDB06.SYSTSCKS, DSNDB06.SYSTSCHX, DSNDB06.SYSTSCKD, and DSNDB06.SYSTSSRG replace DSNDB06.SYSSTR

 •DSNDB06.SYSTSISS and DSNDB06.SYSTSTSS replace DSNDB06.SYSRTSTS

 These new table spaces are only created in ENFM, but DSNTIJIC is changed starting in CM, so the following message indicates that there is special handling in place for those objects by DB2:

 DSNU1530I CSECT-NAME - OBSOLETE OR NFM CATALOG OR DIRECTORY OBJECT object-type DSNDB0n.object-name WILL NOT BE PROCESSED

 The same message is issued if you run DSNTIJIC in NFM and the three replaced table spaces have been removed from the catalog.

 	
 Tip: DSNTIJIC is not changed in NFM. You can remove the job steps to remove those three COPY steps from the job manually.

 In case you do not use DSNTIJIC to copy your catalog and directory, make sure to adjust your own copy job accordingly. You might want to refer to DSNTIJIC if you are not sure about the order by which copy the catalog and directory objects.

 A second change in DSNTIJIC is that the copies are produced using SHRLEVEL CHANGE instead of SHRLEVEL REFERENCE. You might want to consider changing your own image copy jobs accordingly.

 Application compatibility

 A new DB2 version typically comes with several changes or enhancements to SQL. These changes are listed in 12.6.1, “Application and SQL release incompatibilities” on page 357.

 In the past releases all applications affected by those incompatibilities had to be adjusted to the new behavior of DB2 prior to the migration.

 DB2 11 introduces support of SQL application compatibility using a system parameter, special register and bind option. This function is described in 12.7.1, “Example of DB2 10 application compatibility” on page 373.

 12.4.3 DB2 11 ENFM and NFM

 After you have successfully tested DB2 11 in CM for a reasonable time, you continue the migration to NFM. If you complete the few panels of the installation CLIST in ENFM mode, the CLIST generates the necessary installation and IVP on the library that you specified. Example 12-2 shows the list of generated jobs.

 Example 12-2 Install and IVP jobs generated as result of ENFM installation CLIST completion

 [image:]

 DSNT478I BEGINNING EDITED DATA SET OUTPUT

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJEN)', ENFM PROCESSING

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNH)', HALT ENFM PROCESSING

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNF)', TURN NEW FUNCTION MODE ON

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNX)', CREATE NFM-DEPENDENT OBJECTS

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJES)', DISABLE USE OF NEW

 FUNCTION (ENFM*)

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJCS)', RETURN FROM ENFM OR

 ENFM* TO CM*

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJCI)', CHECK INDEXES AFTER

 ENFM

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJCV)', CONVERT CATALOG AND

 DIRECTORY FORMAT

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESC)', SAMPLE DATA

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESH)', SAMPLE DATA

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESD)', SAMPLE DATA

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESA)', SAMPLE DATA

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESE)', SAMPLE DATA

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ0)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1L)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1P)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1S)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1T)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1U)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2A)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2C)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2D)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2E)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2F)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2H)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2P)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2U)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ3C)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ3P)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ3M)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ4C)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ4P)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ5A)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ5C)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ5P)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6O)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6R)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6U)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6V)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6W)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6Z)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSN8ES1)', SAMPLE SQL PROCEDURE

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSN8ES2)', SAMPLE SQL PROCEDURE

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ63)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ64)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ65)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ66)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ67)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ7)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ71)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ73)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ75)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ76)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ77)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ78)', SAMPLE JCL

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNG)', UPDATE DSNHDECP FOR

 ENFM

 [image:]

 The number of installation jobs, that is the ones that start with DSNTI, are just a handful. You most likely only run few of them because the majority deals with halting processes or going backwards rather than forward.

 Refer to Figure 12-10 on page 333 for an overview of the job steps described here:

 •DSNTIJEN

 •DSNTIJNX

 •DSNTIJRT

 DSNTIJEN

 DSNTIJEN prepares the DB2 catalog and directory for NFM. This job has been around since DB2 8. However, each version requires different changes to the DB2 catalog and therefore contains different steps and its execution time varies accordingly. After you have first started DSNTIJEN, the status of your DB2 11 subsystem changes from CM to enabling-NFM (ENFM).

 After DSNTIJEN has completed, all DB2 11 catalog changes are completed as well. Table 12-4 show the progression of the number of objects of the DB2 catalog and directory across the DB2 versions.

 Table 12-4 Number of catalog and directory objects

 	
 Version

 	
 Table Spaces

 	
 Tables

 	
 Indexes

 	
 Columns

 	
 LOB columns

 	
 Inline LOB columns

 	
 V1

 	
 11

 	
 25

 	
 27

 	
 269

 	
 0

 	
 0

 	
 V3

 	
 11

 	
 43

 	
 44

 	
 584

 	
 0

 	
 0

 	
 V5

 	
 12

 	
 54

 	
 62

 	
 731

 	
 0

 	
 0

 	
 V7

 	
 20

 	
 84

 	
 118

 	
 1212

 	
 2

 	
 0

 	
 V8

 	
 22

 	
 85

 	
 132

 	
 1265

 	
 2

 	
 0

 	
 V9

 	
 28

 	
 104

 	
 165

 	
 1652

 	
 6

 	
 0

 	
 V10

 	
 95

 	
 134

 	
 233

 	
 2036

 	
 36

 	
 4

 	
 V11

 	
 108

 	
 143

 	
 250

 	
 2202

 	
 42

 	
 9

 The following SELECT statement lists the names of the catalog columns defined as inline LOBs and their table names, as shown in Table 12-5:

 SELECT NAME,TBNAME,TBCREATOR,LENGTH FROM SYSIBM.SYSCOLUMNS WHERE TBCREATOR LIKE ‘SYS%’ AND COLTYPE IN (‘BLOB’,‘CLOB’) AND LENGTH > 4;

 Table 12-5 Tables having inline LOB columns

 	
 COLUMN NAME

 	
 TBNAME

 	
 TBCREATOR

 	
 INLINE LENGTH

 	
 SPT_DATA

 	
 SPTR

 	
 SYSIBM

 	
 32146

 	
 DESCRIPTOR

 	
 SYSCONTROLS

 	
 SYSIBM

 	
 12004

 	
 RULETEXT

 	
 SYSCONTROLS

 	
 SYSIBM

 	
 16004

 	
 STATEMENT

 	
 SYSPACKSTMT

 	
 SYSIBM

 	
 15364

 	
 STMTBLOB

 	
 SYSPACKSTMT

 	
 SYSIBM

 	
 7172

 	
 STMTTEXT

 	
 SYSQUERY

 	
 SYSIBM

 	
 2052

 	
 DEFAULTTEXT

 	
 SYSVARIABLE

 	
 SYSIBM

 	
 2004

 	
 DESCRIPTOR

 	
 SYSVARIABLES

 	
 SYSIBM

 	
 2004

 	
 PARSETREE

 	
 SYSVIEWS

 	
 SYSIBM

 	
 27674

 	
 Tip: If you are not sure in which mode your DB2 subsystem currently runs, you can use DB2 command -DIS GROUP or -DIS GROUP DETAIL. The command works in data sharing and non-data sharing.

 The output of -DIS GROUP to check the mode is shown in Example 12-3.

 Example 12-3 -DIS GROUP result from non-data-sharing subsystem

 [image:]

 DSN7100I -DB0B DSN7GCMD

 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(CM)

 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)

 --

 DB2 DB2 SYSTEM IRLM

 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC

 -------- --- ---- -------- -------- --- -------- ---- --------

 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM

 --

 SPT01 INLINE LENGTH: 32138

 *** END DISPLAY OF GROUP(........)

 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

 [image:]

 In general, job DSNTIJEN performs the following functions:

 •Saves the current RBA or LRSN in the BSDS.

 •Converts SYSCOPY to a new table space, SYSTSCPY.

 •Converts SYSRTSTS to two new table spaces, SYSTSISS and SYSTSTSS.

 •Converts SYSSTR to four new table spaces, SYSTSCKS, SYSTSCHX, SYSTSCKD, and SYSTSSRG.

 •During REORG, converts all table spaces and indexes that are processed by DSNTIJEN to use the RBA and LRSN format that is specified in the DSN6SPRM.UTILITY_OBJECT_CONVERSION setting.

 •Resets and re-initializes the SYSUTILX table space in step ENFM0010. Therefore, utilities should not be run during this step.

 •Changes types and lengths of existing catalog columns.

 DSNTIJEN consists of the following job steps:

 ENFM0000 	Terminates pending DSNENFM.* utilities.

 ENFM000A 	Gets a list of table spaces that are in ICOPY and COPY status.

 ENFM000B 	Image copies table spaces that are identified in job step ENFM000A.

 ENFM0001 	Updates the catalog for the new release.

 ENFM0010 	Enabling-NFM for SYSUTILX.

 ENFM002x 	Enabling-NFM steps for SYSLGRNX.

 ENFM003x 	Enabling-NFM steps for SYSCOPY.

 ENFM004x 	Enabling-NFM steps for SYSRTSTS.

 ENFM005x 	Enabling-NFM steps for SYSTSIXS.

 ENFM006x 	Enabling-NFM steps for SYSTSTAB.

 ENFM007x 	Enabling-NFM steps for SYSSTR.

 ENFM9900 	Terminates pending DSNENFM.* utilities

 When the DSNTIJEN job ran to migrate the DB2 subsystem to DB2 11 ENFM, the error message shown in Example 12-4 was encountered.

 Example 12-4 DSNU2902I error message

 [image:]

 DSNU2902I -DB0B 251 04:29:53.96 DSNURMAP - MAPPING DATABASE MAPDB IS INVALID

 [image:]

 This is a new error message. The autonomic creation of mapping tables for REORG SHRLEVEL CHANGE is described in 11.1.4, “Automated REORG mapping table management” on page 278.

 The message text clearly describes the problem as shown in Example 12-5. This example uses the MAPDB in REORG_MAPPING_DATABASE system parameter but have not created this database in the subsystem. To correct the problem, which caused DSNTIJEN to end with RC 8, the database MAPDB needs to be created.

 Example 12-5 DSNU2902I message text

 [image:]

 DSNU2902I

 csect-name MAPPING DATABASE database-name IS INVALID

 Explanation

 The REORG utility statement has detected that the database that is specified for the REORG TABLESPACE utility MAPPINGDATABASE keyword or the REORG_MAPPING_DATABASE subsystem parameter does not exist or cannot be used to implicitly create a mapping table.

 csect-name

 The name of the control section that issued the message.

 database-name

 The name of the database.

 System action

 Utility processing terminates.

 Administrator response

 Specify a valid database name for the REORG TABLESPACE utility MAPPINGDATABASE keyword or specify a valid value for the REORG_MAPPING_DATABASE subsystem parameter.

 Severity

 8 (error)

 [image:]

 Because DSNTIJEN failed, not all table spaces changed during ENFM catalog processing have been adjusted correctly. Example 12-6 shows the results of -DIS GROUP DETAIL DB2 command. Only SYSUTILX has been completed at this point. All other table spaces listed here still need to be processed.

 Note that the MODE this is displayed in the second line of the command output is already set to EN, because the example is now at a point of no return.

 	
 Restriction: When you entered mode EN and left CM, you cannot fallback to DB2 10 NFM anymore!

 Example 12-6 -DISPLAY GROUP DETAIL output

 [image:]

 DSN7100I -DB0B DSN7GCMD

 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(EN)

 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)

 --

 DB2 DB2 SYSTEM IRLM

 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC

 -------- --- ---- -------- -------- --- -------- ---- --------

 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM

 --

 TABLE ENABLED

 SPACE NEW FUNCTION

 -------- ------------

 SYSUTILX YES

 SYSLGRNX NO

 SYSCOPY NO

 SYSRTSTS NO

 SYSTSIXS NO

 SYSTSTAB NO

 SYSSTR NO

 --

 SPT01 INLINE LENGTH: 32138

 *** END DISPLAY OF GROUP(........)

 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

 [image:]

 After creation of database MAPDB, the DSNTIJEN job is run. After completion of DSNTIJEN, the -DISPLAY GROUP DETAIL command output in Example 12-7shows that all page sets, which are touched during CATENFM execution are now ready for NFM.

 Example 12-7 -DIS GROUP DETAIL output in ENFM

 [image:]

 DSN7100I -DB0B DSN7GCMD

 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(EN)

 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)

 --

 DB2 DB2 SYSTEM IRLM

 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC

 -------- --- ---- -------- -------- --- -------- ---- --------

 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM

 --

 TABLE ENABLED

 SPACE NEW FUNCTION

 -------- ------------

 SYSUTILX YES

 SYSLGRNX YES

 SYSCOPY YES

 SYSRTSTS YES

 SYSTSIXS YES

 SYSTSTAB YES

 SYSSTR YES

 --

 SPT01 INLINE LENGTH: 32138

 *** END DISPLAY OF GROUP(........)

 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

 [image:]

 	
 Tip: If DSNTIJEN fails, fix the reason for the failure and rerun the job without modifying it at all. Just re-submit it. Steps that were already completed previously are figured out and the job continues with the correct step.

 The subsystem in this example is a small sandbox system. The DSNTIJEN job completed in 0.78 minutes elapsed time. Experiences from the early support program show that the elapsed time for the ENFM-NFM migration of other subsystems was also short, that is approximately in the 2 minute interval.

 However, the majority of the time is spent reorganizing the following table spaces:

 •DSNDB01.SYSLGRNX

 •DSNDB06.SYSCOPY

 •DSNDB06.SYSRTSTS

 •DSNDB06.SYSTSIXS

 •DSNDB06.SYSTSTAB

 •DSNDB06.SYSSTR

 So if you want to determine what the expected elapsed time for your subsystems might be, you can reorg those table spaces and add up the elapsed time.

 	
 Tip: In order to reduce the elapsed time for CATENFM, make sure that you use MODIFY RECOVERY to clean up obsolete SYSLGRNX and SYSCOPY entries.

 DSNTIJNX

 The DSNTIJNX job creates installation objects that are dependent on NFM. DSNTIJNX creates a new DSNRLMTxx table (used by the Resource Limit Facility) in the new format plus statements for altering an existing DSNRLMTxx table to the new format after DB2 enters NFM.

 DSNTIJNX also rebinds both SPUFI packages and REXX Language Support packages with the bind options supported in DB2 11 NFM:

 •ARCHIVESENSITIVE

 Determines whether references to archive enabled tables in static SQL statements and dynamic SQL statements are affected by the value of a new SYSIBMADM.GET_ARCHIVE global variable. This global variable indicates whether a reference to an archive enabled table in a table-reference should include rows in the associated archive table.

 Refer to 6.2, “Global variables” on page 102 for an explanation about global variables.

 Archive enabled tables are discussed in 7.2, “Transparent archiving of temporal data” on page 130.

 •SYSTIMESENSITIVE

 Indicates whether references to system-period temporal tables in static and dynamic SQL statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register. When a system-periods temporal table is referenced and the value in effect for the CURRENT TEMPORAL SYSTEM_TIME special register is not the null value, the following period specification in implicit: FOR SYSTEM_TI;E AS OF CURRENT TEMPORAL SYSTEM_TIME.

 •BUSTIMESENSITIVE

 Indicates whether references to system-period temporal tables in static and dynamic SQL statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register. When a system-period temporal table is referenced and the value in effect for the CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, the following period specification is implicit: FOR SYSTEM_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME.

 DSNTIJRT

 If you are migrating from DB2 10, you should run this job two times. Refer to “DSNTIJRT” on page 338, which describes the steps necessary to get into DB2 11 conversion mode.

 When you execute the job, it creates the new stored procedure SYSPROC.ADMIN_COMMAND_MVS (if not already created in DB2 10) and its created global temporary table SYSIBM.MVS_CMD_OUTPUT.

 12.5 Subsystem parameters

 New DB2 releases typically have new and removed system parameters (DSNZPARMs) as well as changes in their default values. This section describes the following information:

 •New system parameters

 •Changed defaults for existing system parameters

 •Removed system parameters

 •Deprecated system parameters

 12.5.1 New system parameters

 This section describes new system parameters introduced with DB2 11 and gives a brief explanation about their functionality:

 •APPLCOMPAT

 •AUTHEXIT_CACHEREFRESH

 •AUTHEXIT_CHECK

 •INDEX_CLEANUP_THREADS

 •LIKE_BLANK_INSIGNIFICANT

 •MAXSORT_IN_MEMORY

 •OBJECT_CREATE_FORMAT

 •PARAMDEG_DPSI

 •PARAMDEG_UTIL

 •PCTFREE_UPD

 •PKGREL_COMMIT

 •PREVENT_ALTERTB_LIMITKEY

 •REORG_DROP_PBG_PARTS

 •REORG_MAPPING_DATABASE

 •STATFDBK_SCOPE

 •TEMPLATE TIME

 •UTILITY_OBJECT_CONVERSION

 •WFSTGUSE_AGENT_THRESHOLD

 •WFSTGUSE_SYSTEM_THRESHOLD

 APPLCOMPAT

 The APPL COMPAT LEVEL field on panel DSNTIP41 specifies the default release level value of the APPLCOMPAT BIND and REBIND option.

 Acceptable values are V10R1 and V11R1. The default behavior is V10R1 after migration and V11R1 for a new installation. See “Example of DB2 10 application compatibility” on page 373.

 AUTHEXIT_CACHEREFRESH

 The AUTHEXIT_CACHEREFRESH system parameter specifies whether entries in the cache package authorization cache, the routine authorization cache, the DDF user authentication cache, and the dynamic statement cache are refreshed or whether the dependent packages are invalidated when access control authorization exit is active and the user profile is changed in RACF. Acceptable values are ALL and NONE, with a default of NONE.

 ALL	Specifies that DB2 refreshes the cache entries of the package authorization, the routine authorization, and the dynamic statement and invalidates dependent packages when the user profile or resource access is changed in RACF. The cache entries are refreshed only when the access control authorization exit is active.

 NONE	Specifies that DB2 does not refresh the cache entries of the package authorization, the routine authorization, and the dynamic statement or invalidate dependent packages when the user profile or resource access is changed in RACF. This is the default value for the field.

 When the AUTHEXIT_CACHEREFRESH system parameter is set to ALL and the access control authorization exit is active, DB2 listens to type 62, type 71, and type 79 ENF signals from RACF for user profile or resource access changes and refreshes the DB2 cache entries accordingly. If you define RACF classes for DB2 objects and administrative authorities without using IBM-supplied RACF resource classes, you need to enable the SIGNAL=YES option for these classes in the RACF Class Descriptor Table.

 AUTHEXIT_CHECK

 The AUTHEXIT_CHECK subsystem parameter specifies whether the owner or the primary authorization ID is used for authorization checks when the access control authorization exit (DSNX@XAC) is active.

 Acceptable values are PRIMARY and DB2, the default is PRIMARY.

 PRIMARY	Specifies that DB2 provides the ACEE of the primary authorization ID to perform all authorization checks. The primary authorization ID must be permitted access to the resources in RACF. This is the default value for the field.

 DB2	Specifies that DB2 provides the ACEE of the package owner to perform authorization checking when processing the AUTOBIND, BIND, and REBIND commands. DB2 provides the ACEE of the authorization ID as determined by the DYNAMICRULES option to perform dynamic SQL authorization checking. The access control authorization exit uses the ACEE for XAPLUCHK for authorization checking.

 	The XAPLUCHK authorization ID can be a user or a group in RACF. To ensure successful authorization checks with the owner ACEE, the owner authorization ID in XAPLUCHK must be permitted access to the resources in RACF. If the owner is a group in RACF, you need to permit the group access to the resource associated with the connection in the RACF DSNR class. You can issue the PERMIT command to grant a group access to subsystem.BATCH in the DSNR class, as follows:

 	PERMIT DSN.BATCH CLASS(DSNR) ID(DB2GRP) ACCESS(READ)

 INDEX_CLEANUP_THREADS

 INDEX_CLEANUP_THREADS specifies the maximum number of threads that can be created to process the cleanup of pseudo-deleted index entries on this subsystem or data sharing member. Pseudo-deleted entries in an index are entries that are logically deleted but still physically present in the index.

 Acceptable values are in the range between 0 and 128, with a default of 10.

 This parameter works in conjunction with the SYSIBM.SYSINDEXCLEANUP catalog table, which controls cleanup processing of pseudo-deleted index entries.

 The default setting is appropriate for most situations. However, a larger setting might be appropriate in cases where large indexed tables or large numbers of indexed tables are constantly modified. A smaller value might be appropriate in cases where thread count is severely constrained.

 When INDEX_CLEANUP_THREADS is set to 0, no cleanup is performed by the subsystem or data sharing member regardless of the entries in the SYSIBM.SYSINDEXCLEANUP catalog table.

 Refer to 4.10, “Idle thread break-in” on page 82 for a discussion of index cleanup.

 LIKE_BLANK_INSIGNIFICANT

 The LIKE BLANK INSIGNIFICANT field specifies whether blanks are significant when applying the LIKE predicate to a string. If set, the blank insignificant behavior applies.

 Acceptable values are NO and YES. NO is the default setting, which actually represents the DB2 10 behavior.

 NO 	LIKE treats trailing blanks within fixed-length character strings as significant.

 YES	When the LIKE predicate is applied against fixed-length character column data, DB2 strips trailing blanks from the data before performing the comparison. If the data is all blank, DB2 reduces it to a single blank before performing the comparison.

 Refer to Example 12-8 for a few simple examples of the result DB2 returns based on the setting for this system parameter.

 Example 12-8 LIKE_BLANK_INSIGNIFICANT

 [image:]

 Given:

 CREATE TABLE LIKETEST (C1 CHAR(10));

 INSERT INTO LIKETEST VALUES(' AA ');

 INSERT INTO LIKETEST VALUES('A AA A');

 When LIKE_BLANK_INSIGNIFICANT=NO

 for:

 SELECT * FROM LIKETEST

 WHERE C1 LIKE 'AA%'

 => No rows are returned

 for:

 SELECT * FROM LIKETEST

 WHERE C1 LIKE '%AA'

 => No rows are returned

 for:

 SELECT * FROM LIKETEST

 WHERE C1 LIKE '%AA%'

 => ' AA ' and 'A AA A' are returned

 When LIKE_BLANK_INSIGNIFICANT=YES

 for:

 SELECT * FROM LIKETEST

 WHERE C1 LIKE 'AA%'

 => No rows are returned

 for:

 SELECT * FROM LIKETEST

 WHERE C1 LIKE '%AA'

 => ' AA ' is returned

 for:

 SELECT * FROM LIKETEST

 WHERE C1 LIKE '%AA%'

 => ' AA ' and 'A AA A' are returned

 [image:]

 MAXSORT_IN_MEMORY

 The MAXSORT_IN_MEMORY subsystem parameter specifies the maximum allocation of storage in kilobytes for a query that contains an ORDER BY clause, a GROUP BY clause, or both. The storage is allocated only during the processing of the query. Increasing the value in this field can improve performance of such queries but might require large amounts of real storage when several such queries run simultaneously.

 Acceptable values: 1000 to the value specified in SORT POOL SIZE, whichever is larger

 The default value: 1000.

 This value is used for the final in-memory work file storage for the final sort. So it can use up to this value. Because the default for the SORT POOL size is 10,000 and if this value is set to 1000, then sort will still only use up to 1 MB for the final in-memory sort work file.

 You would need to adjust this value to a larger number if you want more in-memory storage for the final work file. Say if you sets it to 128000 and you still have 10,000 for the SORT POOL SIZE, then sort will only use up to the maximum. Sort only allocates the storage needed for this which can be up to the value defined. So if sort only needs 10 KB, then that is all it will allocate.

 OBJECT_CREATE_FORMAT

 The OBJECT_CREATE_FORMAT subsystem parameter specifies whether DB2 is to create new table spaces and indexes to use a basic or extended log record format. See 3.1, “Extended RBA and LRSN” on page 24.

 PARAMDEG_DPSI

 The PARAMDEG_DPSI system parameter specifies the maximum degree of parallelism that you can specify for a parallel group in which a data partitioned secondary index (DPSI) is used to drive parallelism.

 A DPSI is a non partitioning index that is physically partitioned according to the partitioning scheme of the table. When you specify a value of greater than 0 for this parameter, you limit the degree of parallelism for DPSIs so that DB2 does not create too many parallel tasks that use virtual storage.

 Acceptable values are between 0-254, and DISABLE. The default is 0.

 0	Specifies that DB2 uses the value that is specified for the PARAMDEG subsystem parameter, instead of PARAMDEG_DPSI, to control the degree of parallelism when DPSI is used to drive parallelism. This is the default value for the field.

 1	Specifies that DB2 creates multiple child tasks but works on one task at a time when DPSI is used to drive parallelism.

 2-254	Specifies that DB2 creates multiple child tasks and works concurrently on the tasks that are specified. The number of specified tasks can be larger or smaller than the number of tasks as specified in PARAMDEG. When PARAMDEG is set to 1, the rest of the query does not have any parallelism.

 DISABLE	Specifies that DB2 does not use DPSI to drive parallelism. Parallelism might still occur for the query if PARAMDEG is greater than 1.

 PARAMDEG_UTIL

 The PARAMDEG_UTIL subsystem parameter specifies the maximum number of parallel subtasks for some utilities.

 PARAMDEG_UTIL affects the following utilities:

 •REORG TABLESPACE

 •REBUILD INDEX

 •CHECK INDEX

 •UNLOAD

 •LOAD

 Acceptable values are positive integers between 0 to 32767, with a default of 0.

 0	No additional constraint is placed on the maximum degree of parallelism in a utility.

 1 to 32767	Specifies the maximum number of parallel subtasks for all affected utilities.

 PCTFREE_UPD

 The PCTFREE_UPD subsystem parameter specifies the default value to use for the PCTFREE FOR UPDATE clause of CREATE TABLESPACE or ALTER TABLESPACE statements. It specifies the default amount of free space to reserve on each page for use by subsequent UPDATE operations when data is added to the table by INSERT operations or utilities. This parameter has no effect on table spaces that have fixed length rows.

 Acceptable values are AUTO and 0 to 99, with a default of 0. This value is used as the default FOR UPDATE value when no PCTFREE FOR UPDATE clause is specified for a CREATE TABLESPACE or ALTER TABLESPACE statement.

 AUTO	DB2 uses real-time statistics values to automatically calculate the percentage of free space that is to be used by update operations. This value is equivalent to specifying PCTFREE FOR UPDATE -1 in the CREATE TABLESPACE or ALTER TABLESPACE statement.

 0 to 99	DB2 reserves the specified percentage of space for use by update operations.

 Without having experience with this function, you would assume that setting a value at page set level is more efficient in most cases than setting a positive integer for the system parameter.

 For the use of PCTFREE_UPD, see 13.3, “Reduced need for REORG” on page 390.

 PKGREL_COMMIT

 The PKGREL_COMMIT subsystem parameter specifies whether, at COMMIT or ROLLBACK, a persistent DB2 thread will release a package that is active on that thread if certain DB2 operations are waiting for exclusive access to that package.

 The value in this field is meaningful only for packages that are bound with the RELEASE(DEALLOCATE) bind option.

 Acceptable values are YES and NO, with a default setting of YES

 •YES	

 For packages that are bound with the RELEASE(DEALLOCATE) option, the following operations are permitted at COMMIT or ROLLBACK while the package is active and allocated by DB2 for a persistent DB2 thread:

  –	BIND REPLACE PACKAGE and REBIND PACKAGE requests, including auto rebind online schema changes for tables and indexes that are statically referenced by the package

  –	Online REORG operations that materialize pending definition changes for objects that are statically referenced by the package

 •NO

 DB2 will not implicitly release an active package at COMMIT or ROLLBACK for a persistent DB2 thread. See 4.9, “Allow BIND, REBIND, and DDL to break-in persistent threads” on page 81.

 PREVENT_ALTERTB_LIMITKEY

 PREVENT_ALTERTB_LIMITKEY determines whether DB2 disallows altering the limit key by using an ALTER TABLE statement for index-controlled partitioned table spaces. This alter operation places the table space in REORG-pending (REORP) restrictive status, and the data is unavailable until the affected partitions are reorganized. Use PREVENT_ALTERTB_LIMITKEY to avoid this data unavailability.

 The values are acceptable:

 NO	Specifies that you can alter a limit key by using an ALTER TABLE statement for index-controlled partitioned table spaces. This is the default.

 YES	Specifies that altering a limit key by using an ALTER TABLE statement for index-controlled partitioned table spaces is not permitted. An ALTER TABLE statement must not attempt to alter the limit key for an index-controlled partitioned table.

 	
 Note: The focus here is on index-controlled partitioned table spaces. Altering an index key of a table-controlled partitioned table space is not this much of an issue, because this is considered a pending change, that is the table space is set to advisory state AREOR instead of restrictive state REORP.

 	
 Tip: Instead of wanting to make use of this system parameter, you might want to migrate your index-controlled partitioned table spaces to table-controlled partitioning. The easy way to accomplish this is to ALTER the clustering Index, which at the same time is the clustering index, to NOT CLUSTER and ALTER it back to CLUSTER right after this.

 REC_FASTREPLICATION

 The REC_FASTREPLICATION parameter specifies whether the RECOVER utility uses FlashCopy to recover from a FlashCopy image copy. The following values are acceptable:

 NONE	The RECOVER utility uses standard I/O to restore a FlashCopy image copy.

 PREFERRED	The RECOVER utility uses FlashCopy to recover from a FlashCopy image copy if FlashCopy support is available. This is the default.

 REQUIRED	The RECOVER utility forces the use of FlashCopy to recover from a FlashCopy image copy to ensure that recovery occurs as quickly as possible. This option causes RECOVERY to fail if FlashCopy cannot be used.

 	
 Note: The last sentence in the description for option REQUIRED does not mean that DB2 fails if you only have sequential image copies that are sufficient for the recovery of your page set. The whole DSNZPARM applies only to FlashCopy image copies.

 If you use BACKUP SYSTEM to create system-level backups, note that a recovery from a FlashCopy image copy that uses FlashCopy for the restore can cause BACKUP SYSTEM to fail because bidirectional FlashCopy is not supported.

 REORG_DROP_PBG_PARTS

 The REORG_DROP_PBG_PARTS subsystem parameter specifies whether the REORG utility removes trailing empty partitions when operating on an entire partition-by-growth table space. An empty trailing partition occurs when the REORG utility moves all data records from a partition into lower numbered partitions.

 Acceptable values are DISABLE and ENABLE, with a default setting of DISABLE.

 This parameter is meaningful only when the REORG utility is run against an entire PBG table space. It is ignored for a REORG of a non-partition-by-growth table space, for a partition-level REORG of partition-by-growth table spaces, and for a REORG of a hash partition-by-growth table space.

 ENABLE	Specifies that any trailing empty partitions that are present at the successful completion of the REORG are always removed. LOB table spaces and auxiliary indexes that are associated with these empty partition-by-growth partitions are also removed.

 DISABLE	Specifies that the number of partition-by-growth partitions at the successful completion of the REORG are always equal or greater than the number of partitions before the REORG utility was run. Even if the REORG is able to relocate all data records into the lowest numbered partitions, trailing empty partition-by-growth partitions are retained.

 REORG_MAPPING_DATABASE

 The REORG_MAPPING_DATABASE subsystem parameter specifies the default database that REORG TABLESPACE SHRLEVEL CHANGE uses to implicitly create the mapping table.

 An acceptable value is a character string of a maximum of 8 bytes length. The default value are 8 blanks, implying an implicitly defined database will be used

 When processing a REORG TABLESPACE SHRLEVEL CHANGE request, the REORG utility has the option to create its own mapping table and mapping index, instead of relying on user's input. Specifying this subsystem parameter with a valid database name directs REORG to allocate the mapping table in the database that is specified. By default, REORG uses an implicitly defined database for the mapping table allocation. For details, see 11.1.4, “Automated REORG mapping table management” on page 278.

 STATFDBK_SCOPE

 The STATFDBK_SCOPE subsystem parameter specifies the scope of the SQL statements that DB2 collects statistics recommendations for in the SYSIBM.SYSSTATFEEDBACK catalog table.

 The following are acceptable values:

 NONE 	No statistics recommendations are collected in the catalog table.

 DYNAMIC	Statistics recommendations are collected in the catalog table for dynamic SQL statements only.

 STATIC	Statistics recommendations are collected in the catalog table for static SQL statements only.

 ALL	Statistics recommendations are collected in the catalog table for all SQL Statements. This is the default.

 	
 Note: Even though all DB2 users can query the SYSIBM.SYSSTATFEEDBACK table, the implemented functionality is primarily meant to be used by certain SQL optimization tools to help you improve access path selection for SQL statements.

 Foe details, see 13.5.1, “Identification of critical statistics for improved query performance” on page 402.

 TEMPLATE TIME

 The TEMPLATE_TIME subsystem parameter specifies the default setting for the TIME option of the TEMPLATE statement.

 Acceptable values are UTC and LOCAL, with a default of UTC.

 UTC	Coordinated Universal Time.

 LOCAL	Local time at the DB2 database manager.

 	
 Tip: Set all DB2 data sharing members to the same value.

 UTILITY_OBJECT_CONVERSION

 The value of the UTILITY_OBJECT_CONVERSION parameter specifies whether DB2 utilities that accept the RBALRSN_CONVERSION option will convert existing table spaces and indexes to 6-byte page format, to a 10-byte page format or prevent conversion of a 10-byte format to a 6-byte page format.

 The default behavior normally applies when the utility control statement does not specify the RBALRSN_CONVERSION option. Alternatively, the UTILITY_OBJECT_CONVERSION parameter can also be used to prevent use of RBALRSN_CONVERSION options to convert existing table spaces and indexes to 6-byte page format

 For a more detailed description about this system parameter and extended RBAs and LRSNs in general, refer to 3.1, “Extended RBA and LRSN” on page 24.

 WFSTGUSE_AGENT_THRESHOLD

 The WFSTGUSE_AGENT_THRESHOLD subsystem parameter determines the percentage of available space in the work file database on a DB2 subsystem or data sharing member that can be consumed by a single agent before a warning message is issued.

 Refer to 4.4, “Work file database enhancements” on page 65 for the usage and implications of the settings for this system parameter.

 WFSTGUSE_SYSTEM_THRESHOLD

 The WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter determines the percentage of available space in the work file database on a DB2 subsystem or data sharing member that can be consumed by all agents before a warning message is issued.

 Refer to 4.4, “Work file database enhancements” on page 65 if you want to learn more about the usage and implications based on the settings for this system parameter

 12.5.2 Changed defaults for existing system parameters

 Besides the many new system parameters introduced with DB2 11 for z/OS, there are also a number of changed system parameters. Table 12-6 shows a list of affected system parameters.

 Table 12-6 System parameters with changed limits

 	
 System parameter

 	
 Change

 	
 Description

 	
 DSMAX

 	
 Upper limit increased from 100,000 to 200,000

 	
 The maximum number of data sets that can be open at one time.

 	
 EDMDBDC

 	
 Upper limit increased from 2097152 to 4194304

 	
 The minimum size (in KB) of the DBD cache that is to be used by EDM.

 	
 EDMSTMTC

 	
 Upper limit increased from 1048576 to 4194304

 	
 The size (in KB) of the statement cache that is to be used by the EDM.

 	
 EDM_SKELETON_POOL

 	
 Upper limit increased from 2097152 to 4194304

 	
 The minimum size of the EDM skeleton pool in KB.

 	
 MAXKEEPD

 	
 Upper limit increased from 65535 to 204800

 	
 The total number of prepared, dynamic SQL statements that can be saved past a commit point by all threads in the system using KEEPDYNAMIC(YES) bind option.

 	
 REORG_LIST_PROCESSING

 	
 Default was changed from SERIAL to PARALLEL

 	
 The default setting for the PARALLEL option of the DB2 REORG TABLESPACE utility. The PARALLEL option indicates whether REORG TABLESPACE processes all partitions specified in the input LISTDEF statement in a single utility execution (PARALLEL YES) or process each in a separate utility execution (PARALLEL NO).

 	
 REORG_PART_SORT_NPSI

 	
 Default was changed from NO to AUTO

 	
 Specifies the default method of building a non-partitioned secondary index (NPSI) during REORG TABLESPACE PART. This setting will be used when the SORTNPSI keyword is not provided in the utility control statement. The SORTNPSI keyword specifies whether REORG TABLESPACE PART decides to sort all keys of a NPSI and how to make that decision. The setting is ignored for a REORG which is not part-level or a REORG with no NPSIs.

 	
 SUBQ_MIDX

 	
 Default was changed from DISABLE to ENABLE

 	
 Whether to enable or disable multiple index access for queries having subquery predicates.

 	
 PREVENT_NEW_IXCTRL_

 PART

 	
 Default was changed from NO to YES.

 	
 Determines whether DB2 disallows the creation of new index-controlled partitioned tables. This subsystem parameter ensures that new partitioned tables use table-controlled partitioning, which is the preferred partitioning method for non-universal table spaces.

 12.5.3 Removed system parameters

 The category of system parameters described in this section are those that have been removed. The fact that system parameters have been removed does not necessarily mean that the functions that they influenced is taken out of DB2. Rather there is no way any longer to influence the behavior of DB2 with regards to the function of these system parameters.

 Table 12-7 lists the removed system parameters.

 Table 12-7 Removed system parameters

 	
 System parameter

 	
 DB2 11 behavior

 	
 Description

 	
 MVSGP and MVSGP2

 	

 	
 Names, respectively, a group of MSS volumes to be used for archive 1 log data sets and group of MSS values to be used for archive 2 log data sets. DB2 11 does not recognize these devices.

 There were opaque system parameter, residing in DSN6ARVP. They are still there, but ignored if set.

 	
 CCORDNTR

 	
 NO

 	
 Specifies whether this DB2 member can coordinate parallel processing on other members of the group.

 	
 ASSIST

 	
 NO

 	
 Specifies whether this DB2 member can assist a parallelism coordinator with parallel processing. Because there cannot be coordinators anymore, there cannot be any assistants either.

 	
 OPTIXIO

 	
 ON

 	
 OPTIXIO=ON means that DB2 provides stability to I/O costing for queries, with less sensitivity to buffer pool sizes. Use of OPTIXIO=OFF can cause access path selection to be heavily influenced by object size and buffer pool size.

 	
 OPTIOWGT

 	
 ENABLE

 	
 Controls how DB2 balances the I/O cost and CPU estimates when selecting access paths.

 	
 OJPERFEH

 	
 YES

 	
 Specifies whether to enable outer join enhancements.

 	
 PTCDIO

 	
 OFF

 	
 Enables an optimizer fix for inefficient index path for a single-table query.

 	
 RETVLCFK

 	
 NO

 	
 Specifies whether the VARCHAR column is to be retrieved from a padded index.

 	
 DISABSL

 	
 NO

 	
 Specifies whether SQLWARN1 and SQLWARN5 are set for non-scrollable cursors on OPEN and ALLOCATE CURSOR.

 	
 SMSDCFL

 	
 blank

 	
 Specifies the DFSMS data class for indexes

 	
 STATCLUS

 	
 ENHANCED

 	
 Specifies the type of clustering statistics to be collected by the RUNSTATS utility. ENHANCED means that DB2 uses an improved algorithm for collecting statistics in effect with the drawback that it can change many access paths.

 	
 SEQCACH

 	
 SEQ

 	
 Specifies whether to use the sequential mode to read cached data from a 3990 controller. Prefetch reads will always use sequential access.

 	
 SEQPRES

 	
 YES

 	
 Specifies whether DB2 utilities that do a scan of a non partitioning index followed by an update of a subset of the pages in the index allow data to remain in cache longer when reading data.

 	
 DISABSCL

 	
 NO

 	
 Specifies whether SQLWARN1 and SQLWARN5 are set for non-scrollable cursors on OPEN and ALLOCATE CURSOR.

 	
 OPTIOPIN

 	
 YES

 	
 Specifies whether the DB2 optimizer should use an improved costing formula to estimate the cost of index and data access to the inner table of a join.

 	
 PGRNGSCR

 	
 YES

 	
 Specifies whether to enable a DB2 optimizer change that can improve performance of queries that contain one or more of the following predicates:

 Timestamp < <host-var or string constant>

 Timestamp <= <host-var or string constant>

 Timestamp >= <host-var or string constant>

 Timestamp > <host-var or string constant>

 Timestamp BETWEEN <host-var or string constant> AND <host-var or string constant>

 	
 Note: All the system parameters that are listed in Table 12-7 were already defined as deprecated in DB2 10.

 12.5.4 Deprecated system parameters

 The only subsystem parameter deprecated in DB2 11 is PRIVATE_PROTOCOL.

 12.6 Release incompatibilities

 This section describes the following types of incompatibilities:

 •Application and SQL release incompatibilities

 •Example of DB2 10 application compatibility

 •Utility release incompatibilities

 •Command release incompatibilities

 •Storage release incompatibilities

 •Functions that are deprecated

 •Functions that are no longer supported

 12.6.1 Application and SQL release incompatibilities

 There are IBM and industry standards for SQL that DB2 for z/OS must be compliant with. DB2 for z/OS might be out of compliance because of a defect or an incomplete implementation. When detected and prioritized accordingly, try to fix those compliance issues with one of the upcoming new product releases. The fix might lead to an incompatible change. If the applications are not adjusted to the changed behavior before going to the new release, this might break existing applications after the release migration. These changes, which might lead to incompatibilities are saved up and introduced only on DB2 release boundary and not with maintenance stream within one major release.

 Change to determination of ASUTIME for dynamic statements

 In DB2 11 NFM with application compatibility set to V11R1, the dynamic SQL ASUTIME limit for each routine is used by the resource limit facility. The ASUTIME limit that is specified for the routine determines the limit. If the dynamic SQL statements in a routine use more ASUTIME than the limit, then SQLCODE -905 is returned. This SQLCODE occurs even if the value is lower than the ASUTIME limit of a top-level calling package. The ASUTIME limit that is specified for the top-level calling package is not considered. In previous versions of DB2, SQLCODE -905 is issued only when the limit of the top-level calling package is encountered.

 The possible impact to your DB2 environment might be that because the limit is enforced for each monitored routine, your applications might return more SQLCODE -905 errors.

 While in conversion mode with application compatibility for your package set to value V10R1, run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace output for incompatible changes with the identifier 1103. Review and, if necessary, adjust the ASUTIME limits on routines and packages that use dynamic SQL.

 Automatic rebind of plans and packages created before DB2 Version 9

 Plans and packages that were last bound before Version 9 are not supported in DB2 11 CM and later.

 •Possible impact to your DB2 environment:

 If you specify YES or COEXIST for the ABIND subsystem parameter, DB2 11 automatically rebinds plans and packages that were bound before Version 9. As a result, an execution delay might occur the first time that such a plan or package is loaded. Also, the automatic rebind might change the access path to a potentially more efficient access path.

 If you specify NO for the ABIND subsystem parameter, negative SQLCODEs are returned for each attempt to run a package or plan that was bound before Version 9. SQLCODE -908, SQLSTATE 23510 is returned for packages, and SQLCODE -923, SQLSTATE 57015 is returned for plans until they are rebound in DB2 11.

 •Actions to take:

 To identify plans and packages that were bound before Version 9, run the DB2 11 premigration job DSNTIJPM on your DB2 10 catalog. If the job output reports some packages, you might want to rebind while still in DB2 10 to prevent those automatic rebinds to occur.

 Invalidated plans and packages

 During the enabling-NFM processing, plans and packages that reference the DB2 catalog and directory table spaces which are changed by CATENFM, become invalidated.

 Refer to “DSNTIJEN” on page 341 for the list of table spaces which are modified during CATENFM:

 The packages that are dependent on the following catalog tables are also invalidated:

 •SYSIBM.SYSCOPY

 •SYSIBM.SYSCHECKS

 •SYSIBM.SYSCHECKS2

 •SYSIBM.SYSCHECKDEP

 •SYSIBM.SYSSTRINGS

 •SYSIBM.SYSINDEXSPACESTATS

 •SYSIBM.SYSTABLESPACESTATS

 Actions to take:

 •For SYSLGRNX, existing CHAR(6) columns were changed to CHAR(10). You might need to modify your application before it can run successfully.

 •For SYSUTILX, the RBA fields were moved to new fields.

 •The SYSCOPY table space was replaced by a new table space, SYSTSCPY.

 •The SYSRTSTS table space was replaced by two new table spaces, SYSTSTSS and SYSTSISS. SYSTSTSS contains the SYSIBM.SYSTABLESPACESTATS catalog table and SYSTSISS contains the SYSIBM.SYSINDEXSPACESTATS table.

 •The SYSSTR table space was replaced by the following table spaces:

  –	SYSTSCKS, which contains SYSIBM.SYSCHECKS

  –	SYSTSCHX, which contains SYSIBM.SYSCHECKS2

  –	SYSTSCKD, which contains SYSIBM.SYSCHECKDEP

  –	SYSTSSRG, which contains the SYSIBM.SYSSTRINGS catalog table

 	
 Important: For all the new table spaces mentioned previously, you must make sure that you adjust your procedures, such as COPY of the DB2 catalog and directory, as well RECOVER of catalog and directory. When you adjust your procedures, you must make sure that you remember that there is a specific order, which is required for copying and recovering your catalog and directory.

 Refer to the description of the RECOVER utility in DB2 11 for z/OS Utility Guide and Reference, SC19-4067 for more information.

 Also, make sure that you carefully thing about any other processes or products, which can rely on the old page set names and adjust those accordingly.

 Default for ODBC limited block fetch

 The default for the LIMITEDBLOCKFETCH initialization keyword changed.

 Limited block fetch guarantees the transfer of a minimum amount of data in response to each request from the requesting system.

 With limited block fetch, a single conversation is used to transfer messages and data between the requester and server for multiple cursors. Processing at the requester and server is synchronous. The requester sends a request to the server, which causes the server to send a response back to the requester. The server must then wait for another request to tell it what should be done next.

 In DB2 10, ODBC limited block fetch was disabled by default. In DB2 11 NFM, ODBC limited block fetch is enabled by default.

 The possible impact to your DB2 environment is that your applications might use limited block fetch, when they did not do so previously.

 	
 Tip: If the default is not appropriate for your ODBC applications, you can change it by modifying the value of the LIMITEDBLOCKFETCH initialization keyword.

 Views, MQTs, and SQL table functions with period specifications

 In DB2 11, views, materialized query tables, and SQL table functions that were created with period specifications in DB2 10 are not supported. Period specifications refer to either system-time or application-time (formerly known as system-time) temporal tables. If such views, materialized query tables, or SQL functions are used in DB2 11, incorrect results might occur.

 	
 Note: In DB2 11, you can still create a view to reference a System Period Temporal Table (STT), but a temporal predicate (For System_Time....) is not allowed in the view definition. The following option is allowed:

 CREATE VIEW V_STT1 AS SELECT * from STT1

 The following option not allowed:

 CREATE VIEW V_STT1_NO AS SELECT * FROM STT1 FOR SYSTEM_TIME AS OF 2013-09-26 15:25:00.0

 The temporal predicate is disallowed in a view definition to avoid nesting of temporal predicates, such as:

 SELECT * FROM V_STT1_NO FOR SYSTEM TIME AS OF 2012-09-27 09:00:00.0.

 In this case, there is no clearly defined semantic whether to use the temporal predicate from the outmost SELECT or the inner most SELECT.

 To prepare for this change, drop all views, materialized query tables, and SQL table functions that contain a SYSTEM_TIME or BUSINESS_TIME period specification.

 To identify such existing views, materialized query tables, and SQL table functions, run the DB2 11 premigration job DSNTIJPM on your DB2 10 catalog. You can also manually issue the following queries.

 •To identify views and materialized query tables that were created with a period specification, issue the following query:

 SELECT * FROM SYSIBM.SYSVIEWDEP WHERE BTYPE IN ('W', 'Z') AND DTYPE IN ('V', 'M');

 •To identify SQL table functions that were created with a period specification, issue the following query:

 SELECT * FROM SYSIBM.SYSDEPENDENCIES WHERE BTYPE = 'Z';

 •To identify SQL scalar functions that were created with a period specification or period clause, issue the following query:

 SELECT * FROM SYSIBM.SYSPACKDEP WHERE BTYPE IN ('W', 'Z') AND DTYPE = 'N';

 Dropping columns named CLONE, ORGANIZATION, or VERSIONING

 In DB2 11 NFM, a column that is named CLONE, ORGANIZATION, or VERSIONING should be specified as a delimited identifier to be dropped from a table.

 Prior to DB2 11, CLONE, ORGANIZATION, and VERSIONING are reserved keywords that can appear after the DROP keyword in an ALTER TABLE statement. When CLONE, ORGANIZATION, or VERSIONING is specified as a simple token (that is, not as a delimited identifier), these keywords can only match the DROP CLONE, DROP ORGANIZATION, or DROP VERSIONING clauses on an ALTER TABLE statement.

 If you intend to drop a column named CLONE, ORGANIZATION, or VERSIONING in DB2 11, and the name is specified as a simple token on the ALTER TABLE statement, the DB2 subsystem might interpret the ALTER TABLE statement as specifying the DROP CLONE, DROP ORGANIZATION, or DROP VERSIONING clauses instead of the DROP COLUMN clause.

 To drop a column named CLONE, ORGANIZATION, or VERSIONING in DB2 11, the name must be specified as a delimited identifier (for example, DROP "ORGANIZATION" or DROP "CLONE", assuming is the delimiter for a delimited identifier.

 Alternatively, you can specify the optional COLUMN keyword in the DROP COLUMN clause, for example DROP COLUMN ORGANIZATION or DROP COLUMN CLONE.

 See Table 12-8 for a summary of DROP COLUMN for CLONE.

 Table 12-8 DROP example for CLONE

 	
 Prerequisite status

 	
 SQL statement

 	
 Result

 	
 CLONE relationship exists

 	
 ALTER TABLE ... DROP CLONE

 	
 RC 0, Clone table dropped

 	
 CLONE relationship exists

 	
 ALTER TABLE ... DROP “CLONE”

 	
 SQLCODE -148, reason-code 11, which means: The ALTER statement attempted to change a table that has a defined clone, or a table that is a clone.

 	
 CLONE relationship exists

 	
 ALTER TABLE ... DROP COLUMN CLONE

 	
 SQLCODE +610, because this is a schema change which leads to AREOR, that is it is a pending change.

 	
 NO CLONE relationship

 	
 ALTER TABLE ... DROP CLONE

 	
 SQLCODE -650, reason-code 20, which means: ALTER TABLE DROP CLONE cannot be used to drop a clone when the table does not have a defined clone.

 	
 NO CLONE relationship

 	
 ALTER TABLE ... DROP “CLONE”

 	
 SQLCODE -104, because DROP COLUMN needs keyword RESTRICT

 	
 NO CLONE relationship

 	
 ALTER TABLE .. DROP “CLONE” RESTRICT

 	
 SQLCODE +610, because this is a schema change which leads to AREOR, that is it is a pending change.

 	
 NO CLONE relationship

 	
 ALTER TABLE ... DROP COLUMN CLONE

 	
 SQLCODE +610, because this is a schema change which leads to AREOR, that is it is a pending change.

 Allow XPath processing to continue with error on filtered results

 In DB2 11 NFM with application compatibility set to V11R1, XPath processing might return fewer errors on predicate expressions with an explicit cast or an operation with an invalid value.

 In previous versions of DB2, even though the invalid result is filtered from the result set, XPath processing returns an error SQLCODE. In DB2 11, examples of XPath expressions that have fewer errors include situations when:

 •Data is filtered from the result by the predicate before an invalid operation such as division of a number by zero

 •Data is explicitly cast to an incompatible data type

 	
 Tip: While in conversion mode with application compatibility for your package set to value V10R1, run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace output for incompatible changes with the identifier 1102.

 Here is an example, with the definition of two books. See Example 12-9.

 Example 12-9 Books definition

 [image:]

 <books>

 <book><title>XQuery 3.0</title>

 <publishDate>soon</publishDate>

 <price>40.00</price>

 <edition>kindle</edition>

 </book>

 <book><title>XQuery 3.0</title>

 <publishDate>2013-09-30</publishDate>

 <price>50.00</price>

 <edition>paper</edition>

 </book>

 </books>

 [image:]

 Here is the query:

 XMLQUERY('/books/book[title = "XQuery 3.0"][xs:date(publishDate) > "2013-10-01"][edition="paper"]' passing xmlcol)

 You can see that xs:date(publishDate) would be an error for the first book because “soon” cannot be cast to date. However, it depends on the order the predicates are evaluated. If [edition="paper"] is evaluated first, the first book would be filtered out before the cast on date. If xs:date(publishDate) > "2013-10-01" is evaluated first, then the error shows up.

 DB2 11 defers the error reporting until the last predicate is evaluated. Thus, the error is not reported. Due to the flexibility of XML, we try to provide more usability and fewer errors.

 XML document node implicitly added on insert and update

 In DB2 11 NFM with application compatibility set to V11R1, if an XML document does not have a document node, then one is added during insert and update operations.

 In previous versions of DB2, document nodes are not implicitly added and an SQL insert or update of an XML document returned SQLCODE -20345. To avoid the error, an application needs to invoke the XMLDOCUMENT function before the insert or update.

 In DB2 11, an XML document node is added, if one does not exist in the XML document.

 The result is, that your applications might return fewer errors on insert and update operations.

 	
 Tip: While in conversion mode with application compatibility for your package set to value V10R1, run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace output for incompatible changes with the identifier 1101. In addition, you can review your applications for use of the XMLDOCUMENT function.

 Here is an example:

 select xmlelement(element "test", 1) from sysibm.sysdummy1;

 returns

 <?xml version="1.0"><test>1</test>

 insert into T1(xmlcol) values ('<?xml version="1.0"><test>1</test>');

 works fine.

 However, if you use XMLELEMENT directly in the insert as shown in the following example, you get -20345 on DB2 10.

 insert into T1(xmlcol) values (xmlelement(element "test", 1));

 The reason is that in DB2 that XMLELEMENT generates an XML element node but it does not generate a document node which is an invisible root of an XML tree. Insert requires an document node. Thus, you get -20345.

 The reason that insert with XML string works is because the XMLPARSE function implicitly generates an XML document node. With DB2 10, you have to inject an XMLDOCUMENT function as shown in the following example to make the insert work.

 insert into T1(xmlcol) values (XMLDOCUMENT(xmlelement(element "test", 1)));

 On DB2 11, you do not have to do that. The original insert would work.

 Client information results from ADMIN_COMMAND_DB2

 Starting in DB2 11 CM, the ADMIN_COMMAND_DB2 result set row in the created global temporary table SYSIBM.DB2_THREAD_STATUS when processing-type = "THD" has changed. The column data type and maximum lengths for WORKSTATION, USERID, APPLICATION, and ACCOUNTING have changed.

 In DB2 11 the following column data types and lengths change:

 •WORKSTATION increases from CHAR(18) to VARCHAR(255).

 •USERID increases from CHAR(16) to VARCHAR(128).

 •APPLICATION increases from CHAR(32) to VARCHAR(255).

 •ACCOUNTING increases from CHAR(247) to VARCHAR(255).

 Your applications now receive a VARCHAR data type and possibly a different length client information value. The length is no longer padded to the supported maximum length.

 In DB2 11, the stored procedure SYSPROC.ADMIN_COMMAND_DB2 also allows users to specify PROCESSING_TYPE (formerly PARSE_TYPE) LOB tables spaces (LS), XML table spaces (XS) and unknown spaces (UN) to retrieve information about table spaces when issuing the command -DISPLAY DATABASE. Based on the three output messages by type from ADMIN_COMMAND_DB2, you can generate COPY utility jobs to create image copies for the table spaces.

 You should review your applications for use of the ADMIN_COMMAND_DB2 stored procedure.

 Altering limit keys blocks immediate definition changes

 In DB2 11 NFM, if you alter a limit key for certain table space types, you cannot make any immediate definition changes until the limit key changes are materialized.

 In previous versions of DB2, altering a limit key was an immediate definition change. In DB2 11, altering a limit key for one of the following types of partitioned table spaces is now a pending definition change:

 •Range-partitioned universal table spaces

 •Table spaces that are partitioned (non-universal) with table-controlled partitioning

 As in DB2 10, you cannot make immediate definition changes before pending definition changes are materialized.

 	
 Restriction: Some immediate alter operations that worked in previous versions of DB2 might fail in DB2 11 with SQLCODE -20385 reason code 1 or 2.

 The new way for altering limit keys is described in detail in 4.3, “Improved availability when altering limit keys” on page 61.

 Removing the SYSPUBLIC schema from the SQL PATH routine option

 Starting in DB2 11 conversion mode, SYSPUBLIC is the schema that is used for public aliases. As such, the SQL PATH routine option must not specify the SYSPUBLIC schema.

 In previous versions of DB2, you could not define functions, procedures, distinct types, and sequences in the SYSPUBLIC schema, but you were not restricted from specifying SYSPUBLIC as part of the SQL PATH. If you had specified SYSPUBLIC as part of the SQL PATH, it had no effect on their applications. With DB2 11 you will no longer be able to specify SYSPUBLIC as part of the SQL PATH.

 Creation or resolution of some objects that worked in previous versions of DB2 might fail in DB2 11 with SQLCODE -713 if SYSPUBLIC is specified as part of the SQL PATH.

 Query the catalog to see if any object schemas use SYSPUBLIC as the schema qualifier. This is highly unlikely for any object, but most likely with objects that use the SQL PATH (functions, procedures, distinct types, and sequences).

 Change any existing SET PATH statements to not specify SYSPUBLIC as a schema.

 SYSIBMADM schema added to the SQL path

 In DB2 11 NFM with application compatibility set to V11R1, SYSIBMADM is added to the SQL path as an implicit schema.

 If SYSIBMADM is not specified as an explicit schema in the SQL path, it is included as an implicit schema at the beginning of the path after SYSIBM, SYSFUN, and SYSPROC.

 Applications that reference the content of the CURRENT PATH special register now have the SYSIBMADM schema returned when implicit schemas are included in the path. For example, the statement SELECT CURRENT PATH FROM SYSIBM.SYSDUMMY1 now returns “SYSIBM”, ”SYSFUN”, ”SYSPROC”, ”SYSIBMADM”, ”authid”, where authid is the authorization ID of the statement, instead of “SYSIBM”, ”SYSFUN”, ”SYSPROC”, ”authid.”

 Change in result for CAST(string AS TIMESTAMP)

 In DB2 11 NFM with application compatibility set to V11R1, the result of CAST(string AS TIMESTAMP) is changed in some cases.

 Previously, when DB2 executed CAST(string AS TIMESTAMP), DB2 interpreted an 8-byte string as a Store Clock value and a 13-byte string as a GENERATE_UNIQUE value. This interpretation might result in an incorrect result from the CAST specification. Starting with DB2 11, with the application compatibility set to V11R1, when an 8-byte string or a 13-byte string is input to CAST(string AS TIMESTAMP), DB2 interprets the input strings as string representations of TIMESTAMP values.

 An invalid representation of an 8-byte or 13-byte string in CAST(string AS TIMESTAMP) results in SQLCODE -180.

 Suppose that you execute the SQL statements in DB2 11 NFM listed in Example 12-10 and Example 12-11 which show the DB2 10 and the DB2 11 behavior.

 The examples should help you understand the issue.

 Example 12-10 sets APPLCOMPAT special register to V10R1 to simulate the DB2 10 behavior. The casting character string 01/01/2013 to TIMESTAMP, which is supposed to represent January 1st, 2013, results in a completely different timestamp, dated 2034.

 In the second part of Example 12-10, you see that if you provide the first 8 bytes of the store clock value, that is X'CAB5060708090100', which represents January 1st, 2013, casting returns the expected date.

 Example 12-10 CAST as TIMESTAMP with APPLCOMPAT set to V10R1

 [image:]

 SELECT CAST('1/1/2013' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;

 ---------+---------+---------+---------+---------+---------+

 ---------+---------+---------+---------+---------+---------+

 2034-07-25-16.43.41.599503

 SELECT CAST(X'CAB5060708090100' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;

 ---------+---------+---------+---------+---------+---------+--------

 ---------+---------+---------+---------+---------+---------+--------

 2013-01-01-20.37.04.246928

 [image:]

 Example 12-11 uses the exact same SQL statements but sets the APPLCOMPAT special register to V11R1. The first SELECT statement now returns what you in fact might have expected, that is the date of January 1st, 2013.

 The second SELECT statement fails now, because in DB2 11, DB2 interprets the input strings as string representations of TIMESTAMP values, which X'CAB5060708090100' clearly not is.

 Example 12-11 CAST as TIMESTAMP with APPLCOMPAT set to V11R1

 [image:]

 SELECT CAST('1/1/2013' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;

 ---------+---------+---------+---------+---------+---------

 ---------+---------+---------+---------+---------+---------

 2013-01-01-00.00.00.000000

 SELECT CAST(X'CAB5060708090100' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1; 00

 ---------+---------+---------+---------+---------+---------+---------+----

 ---------+---------+---------+---------+---------+---------+---------+----

 DSNE610I NUMBER OF ROWS DISPLAYED IS 0

 DSNT408I SQLCODE = -180, ERROR: THE DATE, TIME, OR TIMESTAMP VALUE *N IS

 INVALID

 [image:]

 	
 Tip: While in DB2 11 conversion mode, or in DB2 11 NFM with application compatibility set to V10R1, identify applications with this incompatibility by starting a trace for IFCID 0366 or IFCID 0376, and then running the applications. Review the trace output for incompatible changes with the identifier 1109. If you need to convert Store Clock values to the TIMESTAMP data type, use the TIMESTAMP built-in function instead of CAST(string AS TIMESTAMP).

 Example 12-12 lists an example.

 Example 12-12 Invoke scalar function TIMESTAMP with store clock value

 [image:]

 SELECT TIMESTAMP(X'CAB5060708090100') FROM SYSIBM.SYSDUMMY1;

 ---------+---------+---------+---------+---------+---------+-

 ---------+---------+---------+---------+---------+---------+-

 2013-01-01-20.37.04.246928

 [image:]

 New maximum lengths for values that are returned for some built-in functions

 In DB2 11 NFM with application compatibility set to V11R1, the maximum lengths for values that are returned for the SPACE and VARCHAR built-in functions are decreased from 32767 to 32764.

 If the length of the output string for any of these functions is greater than 32764 bytes, SQLCODE -171 is returned.

 Review your applications for use of these functions, and, if necessary, modify the function input so that the result does not exceed 32764 bytes. While in conversion mode with application compatibility for your package set to value V10R1, run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace output for incompatible changes with the identifier 1110 or 1111.

 Timestamp string representations

 DB2 11 NFM with application compatibility set to V11R1 strictly enforces valid string representations of timestamp values.

 DB2 11 behavior with application compatibility set to V11R1 is equivalent to DB2 10 with subsystem parameter BIF_COMPATIBILITY = CURRENT. With application compatibility set to V10R1, the enforcement of valid string representations depends on the BIF_COMPATIBILITY value.

 Review your setting of the BIF_COMPATIBILITY subsystem parameter. If the value is not CURRENT, while in conversion mode with application compatibility for your package set to value V10R1, run your applications with IFCID 0366 or IFCID 0376. Then, review the trace output with the function identifier 3 to identify SQL with unsupported time stamp values. Make appropriate changes to your SQL.

 12.6.2 Utility release incompatibilities

 As for some other areas, utilities also have some incompatible changes, which are described in this section.

 Parallelism change to the REBUILD INDEX utility

 In DB2 11 conversion mode, the degree of parallelism can increase for the REBUILD INDEX utility.

 The REBUILD INDEX utility previously limited the degree of parallelism to 18 subtasks. Now, because of the PARALLEL option value or the PARAMDEG_UTIL subsystem parameter value, the amount of parallelism might increase.

 	
 Attention: Increasing the degree of parallelism could constrain your system resources.

 Refer to “PARAMDEG_UTIL” on page 350 if you want to read more about PARAMDEG_UTIL system parameter.

 Changes to REORG default values

 In DB2 11 conversion mode, the following changes are made to the default values for the REORG utilities:

 The following changes are made to the default values for the REORG TABLESPACE utility:

 •The default DRAIN value is changed from WRITERS to ALL.

 •The NOPAD keyword is now the default value in the UNLOAD EXTERNAL clause and the DISCARD clause.

 For the REORG INDEX utility the default for the DRAIN value is also changed from WRITERS to ALL.

 Change to DSNU126I return code when running REORG on an LOB table space

 DB2 10 deprecated the use of REORG TABLESPACE SHRLEVEL NONE for LOB table spaces. When you nevertheless used it, a REORG SHRLEVEL REFERENCE was performed and the DSNU126I message, which indicates that SHRLEVEL NONE is no longer supported, was associated with RC 0. If you try to use REORG LOG SHRLEVEL NONE, the job fails with DSNU126I and return code 8.

 In preparation for this change, review your REORG job outputs for instances of DSNU126I while you are still running in DB2 10.

 Changes to RECOVER utility

 The TOLOGPOINT, TORBA, and RESTOREBEFORE keywords can accept basic 6-byte format or extended 10-byte format based on the length of the RBA or LRSN value that is specified. Previously, any length was accepted and then extended or truncated as required.

 Operands of 6 bytes or less are interpreted as being in basic 6-byte format. Operands greater than 6 bytes are interpreted as being in ended 10-byte format. In both cases, padding on the left with X'00' occurs to form complete 6-byte or 10-byte operands. Conversion between basic and extended format is performed as required for the recovery operation.

 Changes to DSNACCOX stored procedure default values

 In DB2 11 NFM, changes are made to the defaults of the DSNACCOX stored procedure.

 RRTDataSpaceRat input parameter default value is -1. Previously, it was 2.0.

 RRTDataSpaceRat is the ratio of the space allocated to the actual space used. Specifies a criterion for recommending that the REORG utility is to be run on table space for space reclamation. If the following condition is true, DSNACCOX recommends running REORG:

 •The object is not using hash organization.

 •The SPACE allocated is greater than RRTDataSpaceRat multiplied by the actual space used. (SPACE > RRTDataSpaceRat × (DATASIZE/1024))

 	
 Tip: Review your calls to the DSNACCOX stored procedure. Look for NULL as the value of RRTDataSpaceRat. The new default turns off this criterion. Any positive values continue to be processed as in DB2 10.

 Changes to DSNACCOX stored procedure result set

 In DB2 11 NFM, ’XS’ for XML table spaces and ’LS’ for LOB table spaces are now possible values of the OBJECTTYPE column results.

 Review your processing of results from the DSNACCOX stored procedure. Unexpected values might be handled as invalid by applications processing these result sets.

 Changes to DSNACCOX processing for REORG and COPY recommendations

 In DB2 11 NFM, more information is evaluated when REORG or COPY is recommended.

 When the input parameter QueryType specifies REORG or COPY recommendations, DSNACCOX also checks the database exception table (DBET) entry for an exception state.

 Review your processing of results from the DSNACCOX stored procedure. Unexpected values might be handled as invalid. Database exception table (DBET) states are added to the OBJECTSTATUS column of the result set.

 Changes to DSNACCOX stored procedure processing for ChkLvl 8

 In DB2 11 NFM, a new row is not inserted if the result set already has a recommendation for a utility operation.

 When the input parameter ChkLvl specifies level 8 processing, DSNACCOX adds the utility operation recommendation to an existing row if one exists for the object. If an existing row does not exist, DSNACCOX continues to add a row.

 ChkLvl 8 means: Check for objects that have restricted states. The value of the QueryType option must be ALL or contain RESTRICTED when this value is specified. The OBJECTSTATUS column of the result set indicates the restricted state of the object. A row is added to the result set for each object that has a restricted state.

 Review your processing of results from the DSNACCOX stored procedure. Unexpected values might be handled as invalid. New rows for objects are only added to the result set if the object is not already present.

 Differences in materializing limit key changes

 In DB2 11 NFM, you can no longer materialize limit key changes for certain types of table spaces by using REORG TABLESPACE SHRLEVEL NONE or LOAD REPLACE.

 Instead, this alter is a pending definition change, and the data remains accessible before the limit key changes are materialized. However, you cannot use the REORG TABLESPACE utility with the SHRLEVEL NONE option or the LOAD utility with the REPLACE option to materialize these changes. (SHRLEVEL NONE is the default value for REORG TABLESPACE. If you do not specify the SHRLEVEL option for REORG TABLESPACE, SHRLEVEL NONE is in effect.)

 To learn more about the new behavior for limit key changes, you should refer to 4.3, “Improved availability when altering limit keys” on page 61.

 12.6.3 Command release incompatibilities

 In terms of commands, there are just a few incompatible changes that you should be aware of. They are listed within this section.

 Change to DISPLAY UTILITY output

 The output for the DISPLAY UTILITY command now includes the date and the time when the job was submitted.

 A sample output is available in 11.6.1, “DISPLAY UTILITY additional output” on page 306.

 	
 Tip: Determine if any of your applications parse output of the DISPLAY UTILITY command and update the applications if needed.

 Removing the SYSPUBLIC schema from the PATH bind option

 Starting in DB2 11 conversion mode, SYSPUBLIC is the schema that is used for public aliases. As such, the PATH bind option must not specify the SYSPUBLIC schema.

 In previous versions of DB2, you were not restricted from specifying SYSPUBLIC as part of the PATH bind option. With DB2 11 you will no longer be able to specify SYSPUBLIC as part of the PATH bind option.

 Creation or resolution of some objects that worked in previous versions of DB2 might fail in DB2 11 with SQLCODE -713 if SYSPUBLIC is specified as part of the PATH bind option.

 Query the catalog to see if any object schemas use SYSPUBLIC as the schema qualifier. This is highly unlikely for any object, but most likely with objects that use the PATH (functions, procedures, and sequences).

 Change any existing PATH bind option to not specify SYSPUBLIC as a schema.

 	
 Note: PUBLIC ALIASES can only be defined for SEQUENCEs. This functionality does not apply to tables.

 12.6.4 Storage release incompatibilities

 When you migrate to DB2 11, be aware of the storage release incompatibilities.

 There is a new minimum that your z/OS application programmers have to set for HVSHARE.

 In DB2 11, the required amount of contiguous 64-bit shared private storage for each DB2 subsystem is 1 TB. In previous releases, the minimum requirement was 128 GB.

 	
 Restriction: If you do not have an adequate amount of contiguous 64-bit shared private storage, DB2 11 will not start.

 12.6.5 Functions that are deprecated

 During migration, be aware of the functions that are deprecated in DB2 11. Although they are supported in DB2 11, support for these functions might be removed in the future. Avoid creating new dependencies that rely on these functions, and if you have existing dependencies on them, develop plans to remove these dependencies.

 The following functions are deprecated in DB2 11.

 NEWFUN SQL processing options and DECP values

 The SQL processing options NEWFUN(YES) and NEWFUN(NO) are deprecated, and the NEWFUN(V11) option is added in DB2 11. Use NEWFUN(V11) instead of NEWFUN(YES). Use NEWFUN(V10) instead of NEWFUN(NO). The NEWFUN(V8) and NEWFUN(V9) values are supported in DB2 11, but they cause the precompilation process to support only a Version 8 or Version 9 level of function.

 The DSNHDECP parameter values NEWFUN=YES and NEWFUN=NO are also deprecated. Although these values are supported in DB2 11, you should use NEWFUN=V11 instead of NEWFUN=YES and use NEWFUN=V10 instead of NEWFUN=NO.

 	
 Note: You can only use NEWFUN(V8) or NEWFUN(V9) as a precompiler option. It is not allowed as DSNHDECP parameter option.

 Some utility options

 The following DB2 utility options are deprecated. Although they are supported in DB2 11, they will be removed in a later release of DB2.

 •REORG TABLESPACE UNLOAD ONLY

 Use the UNLOAD utility instead.

 •REORG TABLESPACE UNLOAD PAUSE

 Use the UNLOAD FORMAT INTERNAL utility instead.

 •REORG TABLESPACE UNLOAD EXTERNAL

 Use the UNLOAD utility instead.

 •REORG TABLESPACE INDREFLIMIT

 Use the DSNACCOX stored procedure to determine if the object needs to be reorganized.

 •REORG TABLESPACE OFFPOSLIMIT

 Use the SYSPROC.DSNACCOX stored procedure to determine if the object needs to be reorganized.

 •REORG TABLESPACE INDREFLIMIT REPORTONLY and REORG TABLESPACE OFFPOSLIMIT REPORTONLY

 REPORTONLY is valid only when the INDREFLIMIT or OFFPOSLIMIT option is specified, and these options are deprecated.

 •REORG INDEX UNLOAD ONLY

 Use the DIAGNOSE utility stop the process instead.

 •REORG INDEX UNLOAD PAUSE

 Use the DIAGNOSE utility stop the process instead.

 •REORG INDEX LEAFDISTLIMIT

 Use the DSNACCOX stored procedure to determine if the object needs to be reorganized.

 •REORG INDEX LEAFDISTLIMIT REPORTONLY

 REPORTONLY is valid only when the LEAFDISTLIMIT option is specified, and this option is deprecated.

 •LOAD FORMAT UNLOAD

 This is what you used when you generated the SYSREC using REORG TABLESPACE UNLOAD ONLY. A few steps back indicated that this deprecated in DB2 11 and that you should use UNLOAD FORMAT INTERNAL if you want to generate the same type of date.

 Use the LOAD FORMAT INTERNAL option to load data that was unloaded with UNLOAD FORMAT INTERNAL.

 •COPY CHANGELIMIT

 Use the DSNACCOX stored procedure to determine if the object needs to be copied.

 •REPAIR VERSIONS

 Use the REPAIR CATALOG utility instead.

 12.6.6 Functions that are no longer supported

 If you are migrating to DB2 11 from DB2 10, be aware of the functions that are no longer supported.

 Password protection for active log and archive log data sets

 As of DB2 11, password protection for active log and archive log data sets is no longer supported.

 Previous NEWFUN values

 As of DB2 11, the DSNH CLIST no longer supports values of NEWFUN=V8 or NEWFUN=V9.

 Some DB2-supplied routines

 The following DB2-supplied routines are removed in DB2 11 and are unavailable to callers after migration to conversion mode. A report is added to the DSNTIJPM premigration job to detect occurrences of these routines on an existing subsystem or data sharing group, and to specify that these routines are not available in DB2 11.

 •SYSPROC.DSNAEXP

 •AMI-based DB2 MQ functions1

  –	DB2MQ1C.GETCOL

  –	DB2MQ1C.MQPUBLISH

  –	DB2MQ1C.MQREAD

  –	DB2MQ1C.MQREADALL

  –	DB2MQ1C.MQREADALLCLOB

  –	DB2MQ1C.MQREADCLOB

  –	DB2MQ1C.MQRECEIVE

  –	DB2MQ1C.MQRECEIVEALL

  –	DB2MQ1C.MQRECEIVEALLCLOB

  –	DB2MQ1C.MQRECEIVECLOB

  –	DB2MQ1C.MQSEND

  –	DB2MQ1C.MQSUBSCRIBE

  –	DB2MQ1C.MQUNSUBSCRIBE

  –	DB2MQ2C.GETCOL

  –	DB2MQ2C.MQPUBLISH

  –	DB2MQ2C.MQREAD

  –	DB2MQ2C.MQREADALL

  –	DB2MQ2C.MQREADALLCLOB

  –	DB2MQ2C.MQREADCLOB

  –	DB2MQ2C.MQRECEIVE

  –	DB2MQ2C.MQRECEIVEALL

  –	DB2MQ2C.MQRECEIVEALLCLOB

  –	DB2MQ2C.MQRECEIVECLOB

  –	DB2MQ2C.MQSEND

  –	DB2MQ2C.MQSUBSCRIBE

  –	DB2MQ2C.MQUNSUBSCRIBE

  –	DB2MQ1N.GETCOL

  –	DB2MQ1N.MQPUBLISH

  –	DB2MQ1N.MQREAD

  –	DB2MQ1N.MQREADALL

  –	DB2MQ1N.MQREADALLCLOB

  –	DB2MQ1N.MQREADCLOB

  –	DB2MQ1N.MQRECEIVE

  –	DB2MQ1N.MQRECEIVEALL

  –	DB2MQ1N.MQRECEIVEALLCLOB

  –	DB2MQ1N.MQRECEIVECLOB

  –	DB2MQ1N.MQSEND

  –	DB2MQ1N.MQSUBSCRIBE

  –	DB2MQ1N.MQUNSUBSCRIBE

  –	DB2MQ2N.GETCOL

  –	DB2MQ2N.MQPUBLISH

  –	DB2MQ2N.MQREAD

  –	DB2MQ2N.MQREADALL

  –	DB2MQ2N.MQREADALLCLOB

  –	DB2MQ2N.MQREADCLOB

  –	DB2MQ2N.MQRECEIVE

  –	DB2MQ2N.MQRECEIVEALL

  –	DB2MQ2N.MQRECEIVEALLCLOB

  –	DB2MQ2N.MQRECEIVECLOB

  –	DB2MQ2N.MQSEND

  –	DB2MQ2N.MQSUBSCRIBE

  –	DB2MQ2N.MQUNSUBSCRIBE

 An application programming default value

 The following application programming default value is removed in DB2 11:

 CHARSET

 ENABLE and DISABLE (REMOTE) REMOTE (location-name,…,<luname>,…)

 In DB2 11, you cannot use the BIND PACKAGE options ENABLE and DISABLE (REMOTE) REMOTE (location-name,…,<luname>,…) to enable or disable specific remote connections. You can use the ENABLE(REMOTE) or DISABLE(REMOTE) options to enable or disable all remote connections.

 Sysplex query parallelism

 In DB2 11, Sysplex query parallelism is no longer supported. Packages that used Sysplex query parallelism in releases before DB2 11 use CPU parallelism in DB2 11.

 DSN1CHKR utility

 In DB2 11, the DSN1CHKR utility is no longer supported. The DSN1810I and DSN1816I messages are issued when the DSN1CHKR utility is invoked.

 12.7 Controlling application compatibility

 Requirements coming from SQL standard compliance and completion of support for new functions produce changes that might impact the compatibility of existing applications.

 We look at a pervasive example of incompatibility in DB2 10 and provide an overview of the application compatibility support in DB2 11.

 •Example of DB2 10 application compatibility

 •Overview of application compatibility in DB2 11

 12.7.1 Example of DB2 10 application compatibility

 One example for an incompatible change in DB2 10 was the changed results of a CHAR built-in scalar function. V9 result for CHAR was not consistent with the result for VARCHAR and CAST of decimal data types.

 The problem that was raised for those functions was that leading zeroes were no longer returned when there is a decimal point. Though the functions were now working as designed to conform to SQL standards, this is an incompatible change if the applications rely on the leading zeros.

 Example 12-13 shows the result of the implicit casting of a decimal value using the CHAR built-in scalar function in DB2 9. Notice that the leading zeros are included in the result in column DEC2CHAR but not in DECVARCHAR.

 Example 12-13 V9 result of implicit cast of decimal using CHAR function

 [image:]

 SELECT CHAR (DECIMAL(00123.45,7,2)) AS DEC2CHAR

 , VARCHAR (DECIMAL(00123.45,7,2)) AS DEC2VARCHAR

 FROM SYSIBM.SYSDUMMY1 ;

 ---------+---------+---------+---------+---------+---------+---

 DEC2CHAR DEC2VARCHAR

 ---------+---------+---------+---------+---------+---------+---

 00123.45 123.45

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 [image:]

 The incompatible change in DB2 10 is shown in Example 12-14. The same SELECT in DB2 10 shows that the result of CHAR is consistent with what VARCHAR returns.

 Example 12-14 V10 result of implicit cast of decimal using CHAR function

 [image:]

 SELECT CHAR (DECIMAL(00123.45,7,2)) AS DEC2CHAR

 , VARCHAR (DECIMAL(00123.45,7,2)) AS DEC2VARCHAR

 FROM SYSIBM.SYSDUMMY1 ;

 ---------+---------+---------+---------+---------+---------+-----

 DEC2CHAR DEC2VARCHAR

 ---------+---------+---------+---------+---------+---------+-----

 123.45 123.45

 DSNE610I NUMBER OF ROWS DISPLAYED IS 1

 DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

 [image:]

 The explicit CAST of a 00123.45 decimal value to CHAR or VARCHAR always returned the 123.45 character string.

 The change to be consistent in DB2 10 caused some applications to be incompatible. DB2 10 introduced a BIF_COMPATIBILITY system parameter. If the BIF_COMPATIBILITY subsystem parameter is set to V9_DECIMAL_VARCHAR, it reverts the result to how it looked before migrating to DB2 10. Another way to bring back the DB2 9 behavior was at the SYSCOMPAT_V9 package-level setting to beginning of PATH BIND option or in CURRENT PATH.

 Because at some point you should have adjusted your applications to the SQL Standard, IFCID 366 was also introduced. You can use IFCID 366 to report applications that use the build-in scalar function CHAR with a decimal value. The trace record is written out once per thread for a particular SQL statement. Thus, this trace record can help identify which applications need to be changed to support the new behavior.

 	
 Note: If an index expression is created with the CHAR BIF in the index key, the trace is written during the execution of the INSERT SQL statement that inserts into the index. Likewise, for a materialized query table, the trace record is written on REFRESH TABLE.

 Start the trace by using the following DB2 command:

 -START TRACE(P) CLASS(32) IFCID(366)

 A detailed description about which information you can get from turning on the tracing of IFCID 366 is provided later in this section, after a description of the enhancements that are introduced for similar incompatibility situation in DB2 11.

 12.7.2 Overview of application compatibility in DB2 11

 Sometimes incompatible changes cannot be avoided when SQL functionality is changed in a new DB2 release. DB2 11 helps you decide when your applications are ready for new SQL functionality.

 You can influence the availability of new SQL functions after you are in NFM in the following ways:

 •A new system parameter providing the default BIND option

 New system parameter APPLCOMPAT is introduced to support the concept of V10 Application Compatibility. Acceptable values are V10R1 and V11R1. When you migrate a DB2 subsystem, the setting defaults to V10R1. When you install a new DB2 subsystem, it defaults to V11R1.

 V10R1	The default BIND option is V10R1 compatibility behavior.

 V11R1	The default BIND option is Vd11R1 compatibility behavior. This value is allowed in only NFM.

 	
 Attention: Even if you are still in DB2 11 compatibility mode, the assembly of your DSNZPARM works fine if you set the value to V11R1, which you are supposed to use only after you are in NFM.

 Also, activating the changed DSNZPARM by using the -SET SYSPARM command or by restarting your DB2 subsystem works fine. You will not see any indication that the system parameter is set to a “wrong” setting in the sense that you cannot use the V11R1 while in CM.

 If you try to BIND a package without specifying anything for APPLCOMPAT on the BIND statement, DB2 uses whatever is set in APPLCOMPAT system parameter and this would be V11R1 in this scenario. As a consequence, the BIND fails with the following error message:

 DSNT225I -DB0B BIND ERROR FOR PACKAGE DB0B.DSNESPCS.DSNESM68 APPLCOMPAT(V11R1) OPTION IS NOT SUPPORTED

 DSNT233I -DB0B UNSUCCESSFUL BIND FOR PACKAGE = DB0B.DSNESPCS.DSNESM68.(UK92200)

 •BIND/REBIND options for packages

 The APPLCOMPAT BIND option specifies the package compatibility level behavior for static SQL. The acceptable values and meanings are the same as described for the system parameter.

 Use Table 12-9 to determine defaults that apply if you do not specify the APPLCOMPAT keyword on the BIND or REBIND statements.

 Table 12-9 APPLCOMPAT defaults for BIND

 	
 Process

 	
 Default value

 	
 BIND PLAN

 	
 N/A

 	
 BIND PACKAGE

 	
 The value of subsystem parameter APPLCOMPAT

 	
 REBIND PLAN

 	
 N/A

 	
 REBIND PACKAGE

 	
 Existing value. If there is no existing value, the APPLCOMPAT subsystem parameter is used.

 	
 REBIND TRIGGER PACKAGE

 	
 Existing value. If there is no existing value, the APPLCOMPAT subsystem parameter is used.

 •Special Register for Dynamic SQL (CURRENT APPLICATION COMPATIBILITY)

 The CURRENT APPLICATION COMPATIBILITY specifies the compatibility level support for dynamic SQL.

 The data type is VARCHAR(10).

 The initial value of CURRENT APPLICATION COMPATIBILITY is determined by the value of the APPLCOMPAT bind parameter for the package. The initial value of CURRENT APPLICATION COMPATIBILITY in a user-defined function or stored procedure is inherited from the value of bind option APPLCOMPAT for the user-defined function or stored procedure package

 Set the value with the SET APPLICATION COMPATIBILITY statement.

 When your DB2 environment is migrated to NFM you can run applications with the features and behavior of either previous versions or the current version. For static SQL, the behavior is determined by application compatibility value of a package. For dynamic SQL, the behavior is determined by the APPLICATION COMPATIBILITY special register. If no application compatibility value is set, then the default value is determined by the APPLCOMPAT subsystem parameter. The default APPLCOMPAT value for a new installation is set to the current DB2 version. The default APPLCOMPAT value for a migrated environment is set to the previous DB2 version.

 	
 Attention: If you get an error testing DB2 11 DML in NFM, double check the setting of CURRENT APPLICATION COMPATIBILITY for dynamic SQL, and APPLCOMPAT bind option for static SQL.

 APPLCOMPAT = V10R1

 When you set the application compatibility value to V10R1, applications that attempt to use functions and features that are introduced in DB2 11 or later might behave differently or receive an error.

 When your DB2 11 environment is migrated to NFM, you can run individual applications with some of the features and behavior of DB2 10. If application compatibility is set to V10R1 and you attempt to use the new functions of a later version, SQL might behave differently or result in a negative SQLCODE, such as SQLCODE -4743.

 A migrated DB2 11 environment in conversion mode can have only applications that are bound with V10R1 application compatibility. This behavior ensures that fallback to a previous version of DB2 is successful.

 Table 12-10 shows many of the features and functions that are controlled by application compatibility, and the results if you specify V10R1.

 You might want to ignore the IFCID information in the third column for now. The contents of the IFCID records are discussed later.

 Table 12-10 Behavior of V10R1 application compatibility

 	
 Feature or function

 	
 Result with V10R1 application compatibility

 	
 IFCID 0366 or IFCID 0376 trace function code

 	
 Specification of bind option DBPROTOCOL(DRDACBF)

 	
 DSNT298I

 	

 	
 A period specification that follows the name of a view in the FROM clause of a query

 	
 SQLCODE -4743

 	

 	
 A period clause that follows the name of a target view in an UPDATE or DELETE statement

 	
 SQLCODE -4743

 	

 	
 A SET CURRENT TEMPORAL SYSTEM_TIME statement

 	
 SQLCODE -4743

 	

 	
 A SET CURRENT TEMPORAL BUSINESS_TIME statement

 	
 SQLCODE -4743

 	

 	
 A SET SYSIBMADM.MOVE_TO_ARCHIVE or SET SYSIBMADM.GET_ARCHIVE global variable assignment statement

 	
 SQLCODE -4743

 	

 	
 Use of array operations and built-in functions such as:

 •Use of the UNNEST collection-derived-table

 •Use of the ARRAY_FIRST, ARRAY_LAST, ARRAY_NEXT, ARRAY_PRIOR, ARRAY_AGG, TRIM_ARRAY, CARDINALITY, MAX_CARDINALITY built-in functions

 A SET assignment-statement of an array element as a target table

 A CAST specification with a parameter marker as the source and an array as the data type

 	
 SQLCODE -4743

 	

 	
 An aggregate function that contains the keyword DISTINCT and references a column that is defined with a column mask

 	
 SQLCODE -20478

 	

 	
 A reference to an alias for a sequence object or a public alias for a sequence object

 	
 SQLCODE -4743

 	

 	
 Invocation of the SPACE or VARCHAR built-in function when the result is defined as VARCHAR(32765), VARCHAR(32766), or VARCHAR(32767)

 	
 No error

 	
 1110, 1111

 	
 A SELECT with a table function reference that includes a typed correlation clause

 	
 SQLCODE -4743

 	

 	
 An implicit insert or update of an XML document node

 	
 SQLCODE -20345

 	
 1101

 	
 A predicate expression with an explicit cast or an operation with an invalid value that does not affect the results of XPath processing

 	
 SQLCODE -20345

 	
 1102

 	
 A CALL statement that specifies an autonomous procedure

 	
 SQLCODE -4743

 	

 	
 The lengths of values that are returned from CURRENT CLIENT_USERID, CURRENT CLIENT_WRKSTNNAME, CURRENT CLIENT_APPLNAME, or CURRENT CLIENT_ACCTNG special register are longer than the DB2 10 limits.

 	
 The special register values are truncated to the DB2 10 maximum lengths and padded with blanks

 	
 1104, 1105, 1106, 1107

 	
 How the resource limit facility uses ASUTIME value for nested routines

 	
 SQLCODE -905 is issued only when the ASUTIME limit of the top-level calling package is encountered.

 	
 1103

 	
 A CAST(string as TIMESTAMP) specification with an input string of length of 8 or an input string of length 13

 	
 An explicit cast specification from string as TIMESTAMP interprets an 8-byte character string as a Store Clock value and a 13-byte string as a GENERATE_UNIQUE value. CAST result might be incorrect.

 	
 1109

 	
 Attention: APPLCOMPAT(V10R1) is assumed for all static SQL packages bound prior to and in DB2 10.

 	
 Important: Static SQL packages, which were last bound prior to V9 are invalidated in conversion mode and go through automatic rebind the first time they are called. If you would like to prevent those automatic rebinds, you can:

 •SET system parameter ABIND to NO. If you do this, you must remember that the program would not be able to execute successfully, because it remains invalidated.

 •Rebind affected packages while you are still in DB2 10 NFM.

 The list of affected packages is one of the reports generated by pre-migration job DSNTIJPM/B as explained in “Premigration checkout job DSNTIJPM” on page 335.

 Valid time frame for APPLCOMPAT (V10R1)

 As described, APPLCOMPAT(V10R1) is valid in all modes of DB2 11. Which setting is valid in which mode is also summarized in

 [image:]

 Figure 12-11 V11 modes and APPLCOMPAT(V10R1)

 Even though you are just now starting with DB2 11, looking ahead into DB2 11+1, you might ask yourself if V10R1 is still a valid option there. Figure 12-12, shows what you can expect! In DB2 V11 + 1, you are allowed to still stick with APPLCOMPAT(V10R1) in all modes. In addition to that all modes also support APPLCOMPAT (V11R1). Just the new VnnR1 setting is only allowed once you are in DB2 11+1 NFM.

 Prior to migrating to DB2 11+1, if you run the pre-migration job DSNTIJPx, you can expect to see warnings for all packages, which are at that time bound with APPLCOMPAT(V10R1) and APPLCOMPAT(VnnR1).

 [image:]

 Figure 12-12 V11+1 modes and APPLCOMPAT(V10R1)

 Looking ahead to DB2 11 + 2, DSNTIJPx pre-migration job acts as listed here:

 •Warnings for packages bound with APPLCOMPAT for DB2 11 + 1

 •Warnings for packages bound with APPLCOMPAT for DB2 11

 •Errors for packages bound with APPLCOMPAT(V10R1)

  –	Packages set as Inoperative

  –	No AUTOBIND allowed

  –	SQL must be changed to be valid for DB2 11 or DB2 11 +1 or +2

 How to find applications that use incompatible SQL statements?

 After this extensive description of the Application Compatibility feature in DB2 11, and after you learned that at the second release past DB2 11 you are no longer allowed to use V10R1, you might ask yourself what IBM does for you to help identify the applications, for which you need to take action changing the used SQL to make them compatible with any subsequent release.

 The answer is instrumentation!

 IFCID 366 has already been introduced with DB2 10, which at that time primarily was intended to help identify applications which use implicit casting of decimal data using the CHAR function. IFCID 366 reports on packages affected in both modes and dynamic SQL

 DB2 11 introduces a second IFCID, IFCID 376. IFCID 376 is a roll up of 366. DB2 writes One record for each unique static or dynamic statement

 If you want to collect this type of information, you must turn on the tracing those IFCIDs.

 Example 12-15 shows the description of the information that you can gain from tracing IFCID 366. Also refer to the description of field QW0366FN. Different finding are categorized in different values. The numbers listed in there also corresponding to the trace function codes listed in Table 12-10 on page 376.

 Example 12-15 IFCID 366 record description

 [image:]

 0366 QW0366 ________________IFCID 0366______________________________

 0366 QW0366 IFCID 0366 RECORDS INFORMATION THAT CAN BE USED TO

 0366 QW0366 IDENTIFY APPLICATIONS THAT ARE AFFECTED BY INCOMPATIBLE

 0366 QW0366 CHANGE

 0366 QW0366

 0366 QW0366 THIS TRACE RECORD MIGHT CONTAIN INFORMATION ABOUT MULTIPLE

 0366 QW0366 INSTANCES OF AN SQL STATEMENT. FOR EXAMPLE, WHEN THE SAME

 0366 QW0366 DYNAMIC STATEMENT IS EXECUTED BY SEVERAL THREADS, OR

 0366 QW0366 MULTIPLE TIMES BY THE SAME THREAD, MULTIPLE RECORDS ARE

 0366 QW0366 WRITTEN.

 0366 QW0366

 0366 QW0366 THIS RECORD IS FOR SERVICEABILITY ONLY.

 0366 QW0366 ---

 0366 QW0366FN THIS FIELD CAN HAVE THE FOLLOWING VALUES:

 0366 QW0366FN 1: THE DB2 9 FOR Z/OS VERSION OF

 0366 QW0366FN SYSIBM.CHAR(DECIMAL-EXPR) WAS EXECUTED.

 0366 QW0366FN 2: THE DB2 9 FOR Z/OS VERSION OF

 0366 QW0366FN SYSIBM.VARCHAR(DECIMAL-EXPR),

 0366 QW0366FN CAST (DECIMAL AS VARCHAR), OR

 0366 QW0366FN CAST (DECIMAL AS CHAR) WAS EXECUTED.

 0366 QW0366FN 3: AN UNSUPPORTED CHARACTER STRING REPRESENTATION

 0366 QW0366FN OF A TIMESTAMP WAS USED.

 0366 QW0366FN 4: THE DB2 10 FOR Z/OS DEFAULT SQL PATH WAS USED,

 0366 QW0366FN INSTEAD OF THE V11 PATH, WHICH HAS MORE IMPLICIT

 0366 QW0366FN SCHEMAS.

 0366 QW0366FN 1101: AN INSERT STATEMENT THAT INSERTS INTO AN XML COLUMN

 0366 QW0366FN WITHOUT THE XMLDOCUMENT FUNCTION WAS EXECUTED,

 0366 QW0366FN WHICH GENERATES SQLCODE -20345 ON A DB2 RELEASE

 0366 QW0366FN PRIOR TO V11, BUT DOES NOT GENERATE AN ERROR

 0366 QW0366FN STARTING IN V11.

 0366 QW0366FN 1102: V10 XPATH EVALUATION BEHAVIOR WAS IN EFFECT, WHICH

 0366 QW0366FN RESULTED IN AN ERROR. FOR EXAMPLE, A DATA TYPE

 0366 QW0366FN CONVERSION ERROR OCCURRED FOR A PREDICATE THAT

 0366 QW0366FN WOULD OTHERWISE BE EVALUATED TO FALSE. STARTING IN

 0366 QW0366FN V11, SUCH ERRORS MIGHT ARE SUPPRESSED.

 0366 QW0366FN 1103: A DYNAMIC SQL STATEMENT USES THE ASUTIME LIMIT THAT

 0366 QW0366FN WAS SET FOR THE ENTIRE THREAD FOR RLF REACTIVE

 0366 QW0366FN GOVERNING. FOR EXAMPLE, WHEN A DYNAMIC SQL STATEMENT

 0366 QW0366FN IS PROCESSED FROM PACKAGE A, IF THE ASUTIME LIMIT

 0366 QW0366FN WAS ALREADY SET DURING OTHER DYNAMIC SQL PROCESSING

 0366 QW0366FN FROM PACKAGE B IN THE SAME THREAD, THE SQL FROM

 0366 QW0366FN PACKAGE A USES THE ASUTIME LIMIT THAT WAS SET DURING

 0366 QW0366FN THE SQL PROCESSING FROM PACKAGE B. STARTING WITH V11,

 0366 QW0366FN DYNAMIC SQL FROM MULTIPLE PACKAGES USES THE ASUTIME

 0366 QW0366FN LIMIT THAT IS SET IN THEIR OWN PACKAGE INFORMATION.

 0366 QW0366FN 1104: THE CLIENT_USERID SPECIAL REGISTER WAS SET TO A

 0366 QW0366FN VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH

 0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.

 0366 QW0366FN 1105: THE CLIENT_WRKSTNNAME SPECIAL REGISTER WAS SET TO

 0366 QW0366FN A VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH

 0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.

 0366 QW0366FN 1106: THE CLIENT_APPLNAME SPECIAL REGISTER WAS SET TO

 0366 QW0366FN A VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH

 0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.

 0366 QW0366FN 1107: THE CLIENT_ACCTNG SPECIAL REGISTER WAS SET TO

 0366 QW0366FN A VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH

 0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.

 0366 QW0366FN 1108: THE CLIENT_USERID, CLIENT_WRKSTNNAME,

 0366 QW0366FN CLIENT_APPLNAME, OR CLIENT_ACCTG SPECIAL REGISTER

 0366 QW0366FN WAS SET TO A VALUE THAT IS LONGER THAN THE

 0366 QW0366FN SUPPORTED LENGTH PRIOR TO V11. THE TRUNCATED VALUE

 0366 QW0366FN WAS USED FOR A RESOURCE LIMIT FACILITY SEARCH.

 0366 QW0366FN 1109: CAST(STRING AS TIMESTAMP) WAS EXECUTED WITH ONE

 0366 QW0366FN OF THE FOLLOWING TYPES OF INPUT STRINGS:

 0366 QW0366FN - A STRING OF LENGTH 8, WHICH DB2 TREATED AS A

 0366 QW0366FN STORE CLOCK VALUE.

 0366 QW0366FN - A STRING OF LENGTH 13, WHICH DB2 TREATED AS A

 0366 QW0366FN GENERATE_UNIQUE VALUE.

 0366 QW0366FN PRIOR TO V11, THIS BEHAVIOR IS INVALID FOR A CAST.

 0366 QW0366FN IT IS VALID FOR THE TIMESTAMP BUILT-IN FUNCTION

 0366 QW0366FN ONLY. STARTING IN V11, INPUT TO CAST IS NOT

 0366 QW0366FN TREATED AS A STORE CLOCK VALUE OR A

 0366 QW0366FN GENERATE_UNIQUE VALUE.

 0366 QW0366FN 1110: THE VALUE OF THE ARGUMENT OF THE SPACE BUILT-IN

 0366 QW0366FN FUNCTION WAS GREATER THAN 32764.

 0366 QW0366FN 1111: THE VALUE OF THE OPTIONAL INTEGER ARGUMENT OF THE

 0366 QW0366FN VARCHAR BUILT-IN FUNCTION WAS GREATER THAN 32764.

 0366 QW0366SN STATEMENT NUMBER FOR THE QUERY.

 0366 QW0366PL PLAN NAME FOR THE QUERY.

 0366 QW0366TS TIMESTAMP FOR THE QUERY.

 0366 QW0366SI STATEMENT IDENTIFIER.

 0366 QW0366TY STATEMENT INFORMATION:

 0366 QW0366DY X'8000': STATEMENT IS DYNAMIC.

 0366 QW0366SC X'4000': STATEMENT IS STATIC.

 0366 QW0366PC_OFF OFFSET FROM QW0366 TO QW0366PC_LEN.

 0366 QW0366PN_OFF OFFSET FROM QW0366 TO QW0366PN_LEN.

 0366 QW0366VL DS VERSION LENGTH.

 0366 QW0366VN DS VERSION.

 0366 QW0366PC_LEN LENGTH OF THE FOLLOWING FIELD.

 0366 QW0366PC_VAR %U PACKAGE COLLECTION ID.

 0366 QW0366PN_LEN LENGTH OF THE FOLLOWING FIELD.

 [image:]

 Example 12-16 lists the description of IFCID record 376.

 Example 12-16 IFCID 376 record description

 [image:]

 0376 QW0376 ________________IFCID 0376______________________________

 0376 QW0376 IFCID 0376 RECORDS INFORMATION ABOUT SQL STATEMENTS

 0376 QW0376 THAT HAVE POTENTIAL INCOMPATIBLE CHANGES WHEN YOU SWITCH

 0376 QW0376 TO NEW APPLICATION BEHAVIOR.

 0376 QW0376

 0376 QW0376 THIS TRACE RECORD IS SIMILAR TO THE IFCID 0366 RECORD,

 0376 QW0376 EXCEPT THAT THIS TRACE RECORD CONTAINS INFORMATION FOR

 0376 QW0376 UNIQUE INSTANCES OF SQL STATEMENTS. THIS TRACE

 0376 QW0376 RECORD IS WRITTEN ONCE FOR EACH UNIQUE INSTANCE

 0376 QW0376 OF THE FOLLOWING TYPES OF SQL STATEMENTS:

 0376 QW0376 - DYNAMIC STATEMENTS IN THE DYNAMIC STATEMENT CACHE

 0376 QW0376 - STATIC STATEMENTS THAT WERE BOUND IN VERSION 10

 0376 QW0376 NEW-FUNCTION MODE OR LATER

 0376 QW0376 FOR STATIC SQL STATEMENTS THAT WERE BOUND BEFORE VERSION

 0376 QW0376 10 NEW-FUNCTION MODE, THIS RECORD IS WRITTEN ONCE FOR

 0376 QW0376 UNIQUE COMBINATION OF PLAN, PACKAGE ID, AND STATEMENT

 0376 QW0376 NUMBER. ON RARE OCCASIONS, MORE THAN ONE TRACE RECORD

 0376 QW0376 MIGHT BE WRITTEN.

 0376 QW0376

 0376 QW0376 THIS RECORD IS FOR SERVICEABILITY ONLY.

 0376 QW0376 ---

 0376 QW0376FN THIS FIELD HAS THE SAME VALUES AS QW0366.

 0376 QW0376SN STATEMENT NUMBER FOR THE QUERY.

 0376 QW0376PL PLAN NAME FOR THE QUERY.

 0376 QW0376TS TIMESTAMP FOR THE QUERY.

 0376 QW0376SI STATEMENT IDENTIFIER.

 0376 QW0376TY STATEMENT INFORMATION:

 0376 QW0376TY X'8000': STATEMENT IS DYNAMIC.

 0376 QW0376TY X'4000': STATEMENT IS STATIC.

 0376 QW0376SE SECTION NUMBER.

 0376 QW0376PC_OFF OFFSET FROM QW0376 TO QW0376PC_LEN.

 0376 QW0376PN_OFF OFFSET FROM QW0376 TO QW0376PN_LEN.

 0376 QW0376VL DS VERSION LENGTH.

 0376 QW0376VN DS VERSION.

 0376 QW0376PC_LEN LENGTH OF THE FOLLOWING FIELD.

 0376 QW0376PC_VAR %U PACKAGE COLLECTION ID.

 0376 QW0376PN_LEN LENGTH OF THE FOLLOWING FIELD.

 0376 QW0376PN_VAR %U PROGRAM NAME.

 [image:]

 DB2 catalog support for APPLCOMPAT

 A new column APPLCOMPAT has been added to DB2 catalog tables SYSIBM.SYSPACKAGE and SYSIBM.SYSPACKCOPY. Possible values are:

 V10R1	SQL statements in the package have V10R1 compatibility behavior.

 V11R1	SQL statements in the package have V11R1 compatibility behavior.

 1 They were deprecated in DB2 9. You can convert those applications that use the AMI-based functions to use the MQI-based functions

[image:]
[image:]

Performance

 DB2 11 focuses on a number of performance benefits, especially in the area of CPU cost reduction, scalability enhancements and user pain points such as providing consistent system and application performance with less need to reorganize objects and with less need for performance tuning.

 This chapter describes performance enhancements in DB2 11. Many of these improvements are available by migrating to DB2 11 and rebinding.

 This chapter includes the following topics:

 •Performance expectations

 •System level performance

 •Reduced need for REORG

 •More opportunities for RELEASE(DEALLOCATE)

 •Optimizer enhancements

 13.1 Performance expectations

 DB2 11 provides many performance improvements. This section discusses the results of IBM’s early observations and the feedback from the ESP program.

 When reading this section, keep in mind that results can vary, depending on environment conditions. Nevertheless, it is important to realize that most of the storage and CPU improvements available in DB2 11 for z/OS can be achieved in conversion mode (CM) and only after REBIND.

 	
 Important: Although REBIND might not be needed to migrate to DB2 11, REBIND is often required to obtain the performance benefits of DB2 11

 The following observations are expected to be reported by users when comparing DB2 10 to DB2 11 workloads, after REBIND, and under the same working conditions, including equivalent BIND/REBIND options, such as RELEASE.

 OLTP workloads can show 0% to 10% CPU reduction in CM mode after REBIND. Results might be better for write intensive workloads. Statements processing large number of columns might show even further CPU reduction. Further improvements are executed for workloads accessing a single or a few table space partitions out of 500 or more partitions and using the RELEASE(COMMMIT) BIND/REBIND option.

 Data warehousing queries are expected to show from 5% to 40% CPU reduction. Higher improvement can be seen for queries that take advantage of access path improvements in DB2 11 after REBIND or PREPARE. Better results are expected if the tables being accessed are compressed. Queries with table space scan can show better results. Higher improvement are expected for processes with sort intensive workloads.

 Update Intensive Batch are expected to report from 5% to15% CPU reduction, with better results in data sharing environments, especially in New Function Mode (NFM) with EXTENDED LRSN format.

 Figure 13-1 illustrates the DB2 11 performance expectations per workload type.

 [image:]

 Figure 13-1 DB2 11 performance: CPU changes per workload type

 	
 Important: Additional CPU savings might been seen by taking advantage of other DB2 11 capabilities.

 As a reference, and for comparison purposes, Figure 13-2 shows the performance expectations published for DB2 10 for z/OS at the equivalent moment in the lifecycle of the database product.

 [image:]

 Figure 13-2 DB2 10 performance expectations

 Figure 13-3 rearranges the DB2 11 expected values in the same format and scale.

 [image:]

 Figure 13-3 DB2 11 performance expectations

 These figures allow you to compare the expected performance changes between DB2 10 and DB2 11 for z/OS.

 At a glance, DB2 11 for z/OS continues the CPU reduction trend introduced by DB2 10. Users obtain more functionality with less CPU. This fact has the potential to lead to a financial Total Cost of Ownership reduction by means of less CPU associated costs.

 The fundamentals for the DB1 CPU reductions are described in the following sections.

 13.2 System level performance

 There are a number of system level performance enhancements in DB2 11. This section describes the following topics:

 •Internal optimization

 •Logging

 •Synergy with System z

 •Buffer management

 •Data sharing

 13.2.1 Internal optimization

 DB2 11 provides performance benefits through some internal optimizations of the DB2 code. These optimizations fall into the following categories:

 Customized machine code generation for repeated operations

 The customized machine code can provide improved performance for SQL column processing and for RDS sort operations.

 Scalability Improvement

 z/OS V1.13 supports 64-bit code execution. DB2 takes advantage of this feature by using a 64-bit XProc that is above the bar and some code optimization, which results in a further reduction of DBM1 virtual storage consumption below the bar.

 New decompression routine

 DB2 11 provides a new decompression routine. This new routine provides a significant CPU reduction to speed up the expansion operation when compressed rows are read.

 The new decompression routine is compatible with the existing compression routine. You do not need to take any action to take advantage of this performance feature.

 Scalability improvement with large number of partitions

 This internal optimization enhancement will provide performance benefits for packages bound with RELEASE(COMMIT) and that are accessing partitioned table spaces. This enhancement works with all types of partitioned table spaces: classic partitioned; Universal Table Space (UTS) partition by range; and UTS partition by growth.

 The extreme case for biggest performance improvement is found for applications that issue a single SELECT statement that touches one partition of a UTS that has 4096 partitions.

 13.2.2 Logging

 This section describes the two key performance enhancements related to logging in DB2 11.

 Large RBA/LRSN support

 DB2 11 extends RBA and LRSN values from 6 to 10 bytes. You can find more details about the implementation of this feature in 3.1, “Extended RBA and LRSN” on page 24.

 DB2 11 uses the extended RBA and LRSN values internally and converts the logs to basic format in both CM and NFM. You need to run stand-alone utility DSNJCNVT to convert the BSDS to the extended format. Conversion to the new BSDS format is required to write new format log records and remove the 6-byte RBA and LRSN limits.

 Your application objects (tables and indexes) also eventually need to be converted to a new page format to accommodate the larger value. Until the BSDS and your application objects are converted to EXTENDED format, you can expect some conversion overhead associated with the extended log RBA and LRSN values.

 If you are running a data sharing environment, after you have completed the conversion to the extended LRSN values, there will be no more overhead associated with LRSN spin, which can provide a significant CPU reduction in batch write operations in data sharing. See 5.9, “Log record sequence number spin avoidance” on page 95 for more details.

 Log buffers in 64 bit common

 DB2 11 provides a reduction in CPU cost by removing cross address space operations for logging activity. There is an optional 1 MB of storage for log buffers, if the LPAR is configured with a large frame area (LFAREA). You can find more details about the LFAREA feature of the zEC12 in 2.1.3, “zEC12 hardware features” on page 8. This enhancement provides a significant CPU reduction for update intensive batch jobs.

 13.2.3 Synergy with System z

 There are a number of enhancements in DB2 10 and DB2 11 that take advantage of features in the System z hardware and operating system. These features are discussed in more detail in Chapter 2, “Synergy with System z” on page 7.

 This section describes performance benefits of the synergy between DB2 and System z.

 More usage of large page frames

 The large frame area (LFAREA) of storage on the zEC12 hardware is used for fixed 1 MB large page frames and fixed 2 GB large page frames. Log buffers can now take advantage of 1 MB fixed page frames. These changes make more frame sizes available for DB2 buffer pools. With DB2 11 and zEC12 hardware, buffer pools can utilize 2 GB fixed page frames for additional CPU reduction.

 Figure 13-4 shows the different combinations of frame size and page size that are supported in DB2 11 and prior versions and on the level of hardware. You can see that with 1 MB page fixed frames on DB2 10 and 11 on z10 and later hardware, or with 2 GB page fixed frames on DB2 11 with zEC12 hardware, you can benefit from CPU reductions during I/O processing and from an improved hit rate on the translation look-aside buffer (TLB), which is used to translate a virtual address to a physical address.

 [image:]

 Figure 13-4 DB2 buffer pool frame size options

 Flash Express

 The zEC12 supports an optional hardware feature called Flash Express memory cards. You can use this feature to improve the performance when accessing buffer pool control blocks and the performance of executing the DB2 code. You can find more details about Flash Express in 2.1.3, “zEC12 hardware features” on page 8.

 More zIIP Exploitation

 DB2 11 will further use the zIIP specialty processors by making additional processes available for zIIP redirect. Those processes are described in 2.3, “Using zIIP speciality processors” on page 14.

 13.2.4 Buffer management

 DB2 11 provides the following performance enhancements for buffer pool processing.

 Faster buffer pool allocation

 In DB2 11 it is significantly faster to allocate large buffer pools, such as ones that are 5 to 10 GB or larger. In DB2 10, buffer pool storage was allocated as it was needed. In DB2 11, there is virtual allocation of the buffer pool with the defined size, but real storage allocation is done as needed.

 Improved buffer pool metrics

 DB2 classifies Getpages as either random or sequential, and DB2 uses the VPSEQT buffer pool parameter to protect random pages from being overrun by sequential pages. DB2 11 enforces a more rigorous alignment between how the Getpages are classified and whether or not DB2 has prefetched the pages. For example, if dynamic prefetch was used, the Getpages will now be classified as sequential. Also, when DB2 is using list prefetch to read a disorganized index or to read pages in a RID list, the Getpages will not be classified as sequential. Utilities that use format writes will also classify the pages as sequential. The first consequence of this change is that the random buffer hit is a more accurate measure of buffer pool performance. A second consequence is that sequential synchronous I/Os can be used to identify the fact that either DB2 failed to prefetch those pages, or the pages were prefetched and then stolen prior to the getpages, which was a problem that was difficult to detect with prior DB2 versions. Buffer tuning is never easy, but DB2 11 makes it easier.

 In addition, DB2 now reports the length of the sequential LRU chain. This support was retrofitted to DB2 10 in PM70981. Using this statistic, you can more easily judge the degree to which prefetch activity is affecting the buffer pool. You can judge from this statistic whether lowering VPSEQT will help to increase the buffer pool hit ratio. (It will not be as long as the number of sequential buffers is less than VPSEQTxVPSIZE). Conversely, just because the length of the sequential LRU chain is less than VPSEQTxVPSIZE does not mean that the prefetch activity is not affecting the random buffer hit ratio. As always, remember that lowering VPSEQT might introduce synchronous sequential I/Os if you do not have enough sequential buffers to support the prefetch activity in your system.

 More MRU usage for utilities

 DB2 9 and DB2 10 provided reductions in CPU for utility processing due to changes in buffering from Least Recently Used (LRU) to Most Recently Used (MRU) for the COPY utility. DB2 11 further improves performance by expanding the MRU buffering to the UNLOAD utility and to the RUNSTATS utility for table spaces and indexes. In addition, the MRU processing will also be used for the UNLOAD phase of the following utilities:

 •REORG TABLESPACE

 •REBUILD INDEX

 •CHECK INDEX and DATA

 13.2.5 Data sharing

 DB2 11 provides the following performance enhancements for data sharing environments.

 Reduction of log force write during tree structure modification

 DB2 provides a throughput improvement for INSERT and DELETE workloads by reducing the number of log force writes per index modification event. This results in a reduction in elapsed time and a minor CPU time reduction. This enhancement also provides log disk I/O relief.

 Data sharing availability and performance improvements

 DB2 11 provides the following availability and performance improvements for data sharing:

 •CASTOUT performance improvement

 •GBP write around

 •CF DELETE NAME enhancement

 •Internal resource lock manager (IRLM) enhancements

 All of these enhancements are described in detail in Chapter 5, “Data sharing” on page 85.

 13.3 Reduced need for REORG

 The hardware enhancements that provide a foundation for reducing the need for REORGs are described in 2.4, “Reduced need for REORG” on page 15. However, DB2 10 for z/OS also decreased the need for REORGs with the following additional enhancements:

 •List prefetch to perform disorganized index scan

 DB2 9 RID list scans can benefit from the new hardware features, DB2 10 can also benefit from these hardware features when it scans a disorganized index. See GPFS in the Cloud: Storage Virtualization with NPIV on IBM System p and IBM System Storage DS5300, REDP-4682. The I/O time to read a disorganized index is still greater than the I/O time to read an organized index, but remember that the I/O is asynchronous. If the index scan is CPU intensive, then organizing the index will not reduce the elapsed time to scan the index at all.

 •Row level sequential detection (RLSD)

 RLSD makes sequential detection more robust as the cluster ratio drops below 100%, ensuring that DB2 uses dynamic prefetch for clustered pages and limiting the synchronous I/O to unclustered pages.

 As DB2 continues to move in the direction towards reduced REORGs, keep in mind that the goal is not to completely eliminate all REORGs. For example, the requirements for materializing pending ALTERs are not going away. However, the performance gap between organized and disorganized data should shrink and the tendency to run unnecessary REORG should be reduced.

 Some misconceptions abound about the value of redistributing or re-establishing free space. If you never reorganize an index and randomly insert keys into it, it will tend to have about 25% free space. If you reorganize the index and use PCTFREE 10, you will shrink the index and increase the likelihood of more index splits. Thus, do not try to use REORG for the purpose of avoiding index splits.

 The effect of clustering is also often misunderstood. The benefit of clustering is normally associated with the performance of a range scan, where the cluster index is used to determine a range of pages to read. If REORG can shrink the number of GETPAGEs, range scan performance might improve, which is often the case. However, when your query uses a screening predicate, it is often true that REORG does not reduce the number of GETPAGEs for such queries. If REORG does not reduce the number of GETPAGEs, it probably is not improving the performance. Thus, the need for REORG depends a lot on the types of queries that you run.

 DB2 11 is the next step in the evolution towards meeting the goal of reducing the need for Reorgs. The following features of DB2 11 move in this direction and provide a more consistent performance:

 •Asynchronous removal of pseudo-deleted indexes

 •Indirect reference avoidance

 In addition to reducing the need for REORGs, DB2 11 also improves the performance of the switch phase of REORG, reducing the amount of time during the switch phase that the objects are unavailable to the application. More about the switch phase is discussed in 11.1.2, “SWITCH phase impact reduction” on page 273.

 13.3.1 Asynchronous removal of pseudo-deleted indexes

 This enhancement can reduce the size of some indexes, which can improve SQL performance and reduce the need to run the REORG INDEX utility.

 Prior to DB2 11, when rows are deleted, index entries are not physically deleted unless the delete operation has exclusive control over the index page set. Instead, these index entries that correspond to deleted rows are marked as pseudo-deleted. These index entries are called pseudo-deleted index entries.

 Pseudo-empty index pages are pages that contain only pseudo-deleted index entries. DB2 attempts to clean up pseudo-empty index pages as part of the SQL DELETE processing. However, if some of the pseudo-deleted entries in the page are not committed during the SQL DELETE processing, cleanup cannot be performed. Therefore, some pseudo-empty pages are likely not cleaned up. Index entries are only marked pseudo-deleted to handle a combination of other processes using index access and the potential roll back of deleted rows.

 Subsequent searches continue to access these pseudo-deleted entries, which can gradually degrade performance as more rows are deleted. The pseudo-deleted index entries can also result in time-outs and deadlocks for applications that insert data into tables with unique indexes.

 A large amount of update activity over a period of time can provide for inconsistent performance and the need to REORG your tables and indexes regularly to restore desired performance. The average transaction response time increases throughout the week until a REORG is done.

 Figure 13-5 shows an example of the pseudo-delete process. The index entries for rows 2 and 4 both have a value of DBA for the RESP column and are marked as pseudo-deleted, as denoted by the PD in the figure.

 [image:]

 Figure 13-5 The pseudo-delete process

 There is a performance impact for maintaining index pseudo delete entries. SQL operations such as SELECT, FETCH, UPDATE, or DELETE that require an index search can result in more getpages and more lock requests to access the required data. INSERT, UPDATE, and DELETE operations might see concurrency issues. There can be collisions with committed pseudo-deleted index entries. Also, RID reuse by an INSERT statement following a DELETE statement can cause a deadlock. Frequent execution of the REORG INDEX utility is required to reduce the impact of the pseudo-deleted index entries.

 In DB2 11, in addition to the cleanup that was previously done, DB2 autonomically deletes pseudo-empty index pages and pseudo deleted index entries independently of the SQL DELETE transaction.

 	
 Note: When the system has been configured with one or multiple zIIP processors, this automated cleanup function runs under enclave service request blocks (SRBs) that are zIIP-eligible.

 Index cleanup is performed only on the indexes that have been opened for INSERT/DELETE/UPDATE by other DB2 processes. The presence of the pseudo deleted entries can be detected by SQL queries or INSERT/DELETE/UPDATE processes. There can be large number of pseudo deleted entries in an index, but if this index is not already opened for INSERT/DELETE/UPDATE, the cleanup does not happen. The cleanup rate depends on several factors such as the rate that the pseudo deleted entries are generated, the number of threads allowed to run cleanup concurrently, and the commit frequency of the unit of work which generates the pseudo deleted index entries.

 This function is designed to remove committed pseudo-deleted entries from the indexes with minimal or no disruption to other concurrent DB2 work in the system.

 INDEXCLEANUP_THREADS subsystem parameter

 DB2 11 provides an automated cleanup function that is completed under system tasks running as enclave SRBs. The new DB2 system parameter INDEX_CLEANUP_THREADS determines the number of threads that are allowed to work on the cleanup of pseudo deleted index entries. You can specify any value between 0 and 128. If you set this subsystem parameter to 0, this means that you do not want any additional index cleanup to occur.

 If system parameter INDEX_CLEANUP_THREADS has a value greater than zero, DB2 checks Real Time Statistics (RTS) information to identify the indexes with a large number of pseudo-deleted entries or pseudo empty pages. If the identified indexes have already been opened for update, then daemon code schedules a cleanup on these indexes. There is a parent daemon thread per DB2 member, which checks the RTS by looping through RTS blocks for all objects in the system, and identifies the candidate indexes for cleanup. Then the parent daemon thread dispatches child daemon threads (up to the number defined in INDEX_CLEANUP_THREADS) to perform the cleanup function. Each child thread works on one index at a time.

 The RTS information is checked periodically to identify the indexes with the most pseudo-deletes. There is a limited number of threads doing cleanup (the default is 10, the maximum is 128). The index can only be cleaned up when a thread is freed up, and the index candidates are sorted based on the number of pseudo-deletes, so the ones with the most pseudo-deletes get cleaned up first.

 Figure 13-6 shows the DB2 11 pseudo-delete cleanup process.

 [image:]

 Figure 13-6 Automated pseudo-delete cleanup process

 The automated cleanup of pseudo deleted entries in DB2 11 cleans up both pseudo empty index pages and pseudo deleted index entries. The benefits of this process are that it reduces the impact of pseudo delete entries and it reduces the need to run the REORG INDEX utility. The potential concerns about the automated clean up are possible CPU overhead, disruption to other concurrent threads and an increase in log volume introduced by the cleanup process.

 Potential disruption introduced by these concerns can be minimized by managing the number of cleanup threads through the value you choose for system parameter INDEX_CLEANUP_THREADS. In data sharing, each member of the group can use a different setting for INDEX_CLEANUP_THREADS.

 New catalog table SYSIBM.SYSINDEXCLEANUP

 You can also control the cleanup function on the object level by inserting rows into the new SYSIBM.SYSINDEXCLEANUP catalog table. You can use this table to specify the time when indexes are subject to cleanup. It indicates when and which indexes are enabled or disabled for cleanup. The catalog table includes the following information for use in the cleanup process:

 •Name of databases and indexes

 •Cleanup enabled or disabled

 •Day of week or day of month

 •Start time and end time

 Figure 13-7 shows an example of using the SYSIBM.SYSINDEXCLEANUP catalog table to control the cleanup of pseudo-deleted index entries for two databases. If the SYSIBM.SYSINDEXCLEANUP table is not accessible, index cleanup is disabled. Because the data is stored in a catalog table, a single set of values exists in each row for all members in a data sharing group, as opposed to the INDEX_CLEANUP_THREADS system parameter, which can have a separate value for each member.

 [image:]

 Figure 13-7 Example of using SYSINDEXCLEANUP for cleanup of pseudo-deleted entries

 Use the catalog table as an exception only, for those cases when you know there is a disruption.

 DB2 provides instrumentation for the cleanup by introducing IFCID 377, which is written once per index page being cleaned up.

 Table 13-1 shows the layout of the new catalog table with a short description of its columns.

 Table 13-1 SYSIBM.SYSINDEXCLEANUP

 	
 Column name

 	
 Description

 	
 DBNAME

 	
 The name of the database that contains the index space.

 	
 INDEXSPACE

 	
 The name of the index space

 	
 ENABLE_DISABLE

 	
 Specifies whether the row enables or disables cleanup for the specified index space.

 'E' Enabled

 'D' Disabled

 	
 MONTH_WEEK

 	
 Indicates the meaning of the value of the DAY column:

 'M' The value indicates the day of the month.

 'W' The value indicates a day of the week.

 	
 MONTH

 	
 The month in which the time window applies. For example a 1 value indicates January and a 12 value indicates December. If this column contains NULL, the time window applies to all months. If the value of the MONTH_WEEK column is 'W', this value must be NULL.

 	
 WEEK

 	
 The day of the month or the day of the week for which the time window applies, as specified by the value of the MONTH_WEEK column.

 For example, if MONTH_WEEK='W', a 1 value indicates Monday and 7 indicates Sunday.

 If the value of this column is NULL, the time window applies to every day of the month or every day of the week.

 	
 START_TIME

 	
 The local time at the beginning of the time window specified by the row. When this column contains a null value, the row applies at all times on the specified days. This column must contain NULL if the END_TIME column contains NULL.

 	
 END_TIME

 	
 The local time at the end of the time window specified by the row. When this column contains a null value, the row applies at all times on the specified days. This column must contain NULL if the START_TIME column contains NULL.

 When there is an index that needs to be cleaned up, DB2 checks the SYSIBM.SYSINDEXCLEANUP catalog table to see if entries in this table allow this index to be cleaned up at the current time.

 If the SYSIBM.SYSINDEXCLEANUP catalog table is not accessible, index cleanup is disabled, no index can be cleaned up in the system.

 Each row in the SYSIBM.SYSINDEXCLEANUP catalog table has database name (DBNAME) and index space name (INDEXSPACE) information. DBNAME and INDEXSPACE columns are nullable columns.

 There is also time window information specified in the SYSIBM.SYSINDEXCLEANUP catalog table.

 The value of the ENABLE_DISABLE column indicates whether the cleanup is enabled (value E) or disabled (value D) for the specified index space during the time window. In data sharing, the rows in the SYSIBM.SYSINDEXCLEANUP catalog table apply to all DB2 members.

 For the DB2 members with INDEXCLEANUP_THREADS set to a non zero value, if the SYSIBM.SYSINDEXCLEANUP table is empty, index cleanup is enabled for all indexes on the system. In order to disable the cleanup for certain indexes during certain time period, you can insert rows into the SYSIBM.SYSINDEXCLEANUP catalog table to control the cleanup at the object level.

 There are three levels of control that can be achieved with different settings on DBNAME and INDEXSPACE columns. When DBNAME and INDEXSPACE columns are both NULL, the row applies to all indexes on the system, it is defined on system level. When DBNAME is not NULL but INDEXSPACE is NULL, the row applies to all the indexes in the specified database, it is defined on database level. When the DBNAME and INDEXSPACE names are both not NULL, the row applies to a single index, it is defined on index level. If the DBNAME column has a NULL value, but INDEXSPACE column has a not NULL value, the row is not valid.

 If there are multiple rows applicable to the same index a nd these rows cover overlapping time window, but with conflicting information in the ENABLE_DISABLE column, the rows defined on index level override the rows defined on database level, which in turn override the rows defined on system level. If these rows are defined on same level, the index cleanup function is disabled during the overlapping time window for the specified indexes.

 To minimize the performance impact, the checking of the SYSIBM.SYSINDEXCLEANUP catalog table is no real-time. Instead there is up to 10 minutes delay between the time a row is inserted into the SYSIBM.SYSINDEXCLEANUP catalog table and the time that DB2 checks the newly inserted row. As a consequence, plan ahead of time when using this table to control the index cleanup.

 	
 Tip: If you need to turn off the index cleanup immediately, you can set the INDEXCLEANUP_THREADS system parameter to zero and activate the new setting using the -SET SYSPARM DB2 command.

 Use SYSIBM.SYSINDEXCLEANUP catalog table only as an exception table when the default behavior is not desired. Make sure that you keep this table at a reasonable size.

 The following examples show the use of the SYSIBM.SYSINDEXCLEANUP catalog table.

 Example 13-1 shows how to enable the cleanup on all indexes.

 Example 13-1 Enable the cleanup on all indexes

 [image:]

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'E', 'W', NULL, NULL, NULL , NULL);

 or

 keep the table empty

 [image:]

 Example 13-2 shows how to disable the cleanup on all indexes.

 Example 13-2 Disable the cleanup on all indexes

 [image:]

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, NULL, NULL , NULL);

 OR

 set subsystem parameter INDEXCLEANUP_THREADS to be zero.

 [image:]

 Example 13-3 shows how to disable the cleanup on all indexes except on every Saturday and Sunday.

 Example 13-3 Disable cleanup on all indexes except on every Saturday and Sunday

 [image:]

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, 1, NULL , NULL);

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, 2, NULL , NULL);

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, 3, NULL , NULL);

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, 4, NULL , NULL);

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, 5, NULL , NULL);

 [image:]

 Example 13-4 shows how to disable cleanup on all indexes every day from 8 am to 6 pm local time.

 Example 13-4 Disable cleanup on all indexes every day from 8am to 6pm local time

 [image:]

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values(NULL,NULL,'D', 'W', NULL, NULL,'08:00:00' , '18:00:00');

 Disable cleanup on index IX1 in database RMCDB00 on June 1st.

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values('RMCDB00','IX1','D', 'M', 6, 1,NULL,NULL);

 [image:]

 Example 13-5 shows how to disable cleanup on all indexes in database RMCDB00 on every Monday from 8 am to 5 pm.

 Example 13-5 Disable cleanup on all indexes in database RMCDB00

 [image:]

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values('RMCDB00',NULL,'D', 'W', NULL, 1,'08:00:00','17:00:00');

 Disable cleanup on all indexes in database RMCDB00 but enable cleanup on index IX1 in

 the same database.

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values('RMCDB00',NULL,'D', 'W', NULL, NULL,NULL,NULL);

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values('RMCDB00','IX1','E', 'W', NULL, NULL,NULL,NULL);

 [image:]

 Example 13-6 shows two rows on the same level with conflicting information about Monday, cleanup is disabled on Monday.

 Example 13-6 Two rows on the same level with conflicting information about Monday

 [image:]

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values('RMCDB00',NULL,'D', 'W', NULL, 1,NULL,NULL);

 INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,

 ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)

 values('RMCDB00',NULL,'E', 'W', NULL, 1,NULL,NULL);

 [image:]

 The cleanup of pseudo-deleted index entries starts with DB2 11 CM.

 	
 Note: You can activate IFCID 0377 to monitor the cleanup processing for pseudo-empty index pages and pseudo-deleted index entries.

 13.3.2 Indirect reference avoidance

 When using variable length rows, or when using data compression, if a row is updated and the row size increases but can no longer fit on the original page, DB2 finds another page to store the row. It then modifies the original RID (Row IDentifier) to point at the overflow RID, thus creating an indirect reference because every access to the row requires an extra level of indirection to find the row. An indirect reference requires an extra DB2 Getpage, which often requires extra synchronous I/O.

 How can you tell if your data base contains indirect references? You can tell by monitoring NEARINDREF and FARINDREF in SYSIBM.SYSTABLEPART. A “near” overflow is one that is likely to be prefetched by dynamic prefetch. However, random row access is more or less equally affected by both “near” and “far” indirect reference.

 Let’s consider now the type of applications that are most likely to suffer a lot of indirect references. Nullable VARCHAR columns are indicative of the worst case, because some applications insert null values and later update the null values. The greater the update size quantity is as a percentage of the original row size, the more likely it is that indirect references will occur.

 Indirect references are also possible when compression is used because a row might not compress as well after an update. Alternatively, a non-null VARCHAR column might grow. But, these situations do not necessarily cause indirect references in a systematic fashion the way nullable VARCHAR columns do.

 REORG cleans up existing indirect references and also re-establishes more free space through PCTFREE. PCTFREE is the percentage of space on each page that REORG reserves. LOAD REPLACE also establish such free space. That reserved space is used by both inserts and updates. The inserts use it to maintain clustering. There is nothing in DB2 10 to prevent the inserts from consuming all of the free space, leaving no reserved space for the updates to increase the row size. Consequently, cluster ratios and indirect references tend to be correlated. If the cluster ratio is high, there will not be a lot of indirect references. When the reserved space becomes exhausted, the cluster ratio starts to degrade and updates that increase the row size start to cause indirect references.

 When the reserved space is used up, the inserts start to become sequential. Thus, new rows are appended to the end of the table. If those newly inserted rows are also updated in the same order that the rows were inserted, then the overflows are sequential too, although the new rows and the overflows can be interspersed among each other. This function becomes important when you consider dynamic prefetch and sequential prefetch, but it is not important when you consider random fetch or list prefetch.

 MAXROWS is the only tuning feature in DB2 10 that enables customers to avoid indirect references. If MAXROWS is based on the maximum row size, there will never be any indirect references. Alternatively, if MAXROWS is based on the average row size, indirect references will usually be avoided. However, the success of MAXROWS depends on the row size distribution being somewhat static. If the new rows that are created on Tuesday are of a different size than the rows that were created on Monday, it is hard to choose an optimal MAXROWS value that can apply to both days. Such dynamically changing distributions are unlikely, but nevertheless using MAXROWS requires you to do some performance monitoring. is desirable. DB2 11 provides an autonomic solution.

 Figure 13-8 shows an example of how an update to a VARCHAR column or to a compressed row that results in a larger row can cause the row to no longer fit on the same page. These rows need to be relocated to a new page, and a pointer to the new page is placed on the original page.

 These indirect references cause the following negative impacts:

 •Additional getpages and potentially additional I/Os to the overflow pages

 •Lower clustering

 •REORG TS is necessary to remove indirect references

 [image:]

 Figure 13-8 Indirect reference - Overflow records

 DB2 11 provides the capability to reduce the number of indirect references by allowing the insert process to reserve the space for subsequent updates. This is accomplished through the new FOR UPDATE option of the CREATE TABLESPACE statement:

 CREATE/ALTER TABLESPACE PCTFREE x FOR UPDATE y

 The explanation of the syntax is as follows:

 •x = % of free space to leave in each data page by LOAD or REORG

 •y = % of free space to leave in each data page by INSERT, LOAD, or REORG

 An INSERT statement preserves the value provided by y% while REORG preserves (x+y) %.

 The PCTFREE_UPD (PERCENT FREE FOR UPDATE) system parameter provides the system default for the FOR UPDATE value. If the system parameter value is not specified, then the behavior is the same as in DB2 10.

 There is also an autonomic option available by specifying PERCENT FOR UPDATE on the CREATE TABLESPACE statement to override the default system parameter.

 Example 13-7 shows the use of the new FOR UPDATE option on the CREATE TABLESPACE statement.

 Example 13-7 Sample use of the new FOR UPDATE option of PCTFREE

 [image:]

 CREATE TABLESPACE TS1

 FREEPAGE 0

 PCTFREE 20 FOR UPDATE 10

 [image:]In either of these cases, DB2 determines the value to use by using the history of UPDATE behavior based on Real Time Statistics (RTS). Use FOR UPDATE -1 unless you know better due to consistent behavior of certain table spaces.

 PCTFREE FOR UPDATE 0 indicates that DB2 will not reserve any space for updates, unless the PCTFREE_UPD system parameter is set to AUTO, in which case the behavior is the same as PCTFREE FOR UPDATE -1. If you really want to force DB2 to honor PCTFREE FOR UPDATE 0 for some table spaces, then you cannot use PCTFREE_UPD AUTO. However, you can also minimize the effect of PCTFREE FOR UPDATE by setting it to 1%.

 The autonomic behavior (FOR UPDATE -1) is a learning process based on RTS values for update rate and updated row size. If there are no UPDATEs or an infrequent number of UPDATEs, then either no space or less space is reserved for update. If there is a significant UPDATE rate, then the INSERT process will calculate the row size and reserve the appropriate space for subsequent UPDATEs.

 The REORG and LOAD utilities calculate an estimated PCTFREE FOR UPDATE for INSERT statements to use. This value is stored in the PCTFREE_UPD_CALC column of catalog table SYSIBM.SYSTABLEPART.

 INSERT processing continues to adjust the value based on RTS values.

 Migration considerations

 For DB2 to begin to make intelligent autonomic decisions about free space management, RTS in DB2 11 collects UPDATE information about the growth (or reduction) in the update row sizes. This RTS information is stored in REORGUPDATESIZE in SYSIBM.SYSTABLESPACESTATS as soon as you migrate to NFM, no matter what you set for PCTFREE FOR UPDATE or PCTFREE_UPD.

 When you alter PCTFREE FOR UPDATE to -1 or modify PCTFREE_UPD to AUTO, DB2 uses REORGUPDATESIZE. However, unless the old RTS statistics for the number of inserts, updates and deletes are consistent, DB2 might not reserve much space, because the statistics are not consistent with each other.

 To make them consistent, you can manually update REORGINSERTS, REORGUPDATES, and REORGDELETES in SYSIBM.SYSTABLESPACESTATS to 0. Alternatively, you can run REORG. Subsequently, you might still see more indirect references initially, but because the RTS statistics are consistent, after there have been a sufficient number of updates after, DB2 can derive a proper amount of space to reserve for updates.

 When using the autonomic option, DB2 recalculates a new value after each RTS interval. Thus, the shorter the RTS interval is, the quicker DB2 reacts.

 For tables spaces with heavy update activity (and especially for compressed data), specify a PCTFREE FOR UPDATE value. The FOR UPDATE value specifies the percentage of each page that is reserved to be used only by future update operations. When you specify FOR UDPATE -1, DB2 uses real-time statistics to automatically calculate how much free space to reserve for updates.

 When you specify both PCTFREE and FOR UPDATE values, the percentage of free space reserved by a REORG or LOAD REPLACE operation is the sum of the two values.

 13.4 More opportunities for RELEASE(DEALLOCATE)

 In many cases, you specify RELEASE(DEALLOCATE) as a BIND option for applications that have critical performance needs, due to the CPU costs incurred to free resources at COMMIT points. You then reacquire those resources when needed if you specified RELEASE(COMMIT) instead. However, RELEASE(DEALLOCATE) needed to be used with caution, because in the case of persistent threads, the thread might not be deallocated for a long period of time.

 As a DBA, you might need to break into these persistent threads to take one of the following actions:

 •Perform a BIND REPLACE or REBIND PACKAGE for an application bound with RELEASE(DEALLOCATE)

 •Perform online schema changes to tables or indexes accessed by an application bound with RELEASE(DEALLOCATE)

 •Run an online REORG utility to materialize pending ALTERs that affect applications bound with RELEASE(DEALLOCATE)

 The problem in each of these scenarios is that you needed to identify and stop/cancel any active persistent DB2 threads running packages bound with RELEASE(DEALLOCATE) before you can take any of the actions listed previously.

 DB2 11 introduces the PKGREL_COMMIT system parameter, which you can use to handle those scenarios where you need to break into a persistent thread to accomplish one of these listed tasks. PKGREL_COMMIT is an online-changeable DB2 11 installation system parameter that, when set to YES, allows DB2 to break into persistent threads at COMMIT or ROLLBACK points. If the parameter is set to YES and a package is bound with RELEASE(DEALLOCATE) and if DB2 detects a BIND REPLACE or REBIND PACKAGE command, a DDL statement or a utility operation that needs to quiesce or invalidate the application’s DB2 package, then DB2 will implicitly de-allocate/release the package at a COMMIT or ROLLBACK.

 With the PKGREL_COMMIT system parameter set to YES, you no longer need to identify in advance and stop or cancel any active persistent DB2 threads running packages bound with RELEASE(DEALLOCATE) before attempting a BIND REPLACE/REBIND PACKAGE command, schema change or utility associated with those packages. Instead, the behavior is the same as though the package was bound with RELEASE(COMMIT).

 This new behavior is not supported for any of the following situations:

 •Packages that have OPEN and HELD cursors at the time of the COMMIT or ROLLBACK

 •Packages that are bound with KEEPDYNAMIC(YES)

 •When the COMMIT or ROLLBACK occurs within a DB2 stored procedure

 The DB2 11 default for parameter PKGREL_COMMIT is YES.

 13.5 Optimizer enhancements

 The following optimizer enhancements are provided in DB2 11 to improve application performance:

 13.5.1 Identification of critical statistics for improved query performance

 You might often find it challenging to know what statistics to collect to obtain the best possible access path for your SQL statements. At an individual query level, identification of important statistics is difficult. At an application or subsystem level, identification of important statistics requires that you have knowledge of each SQL statement. If you have ad-hoc dynamic SQL in your environment, then the closest representation of the workload is the contents of your dynamic statement cache, which by nature of realistic size limitations can only contain a portion of the dynamic SQL that is actually executed.

 If you collect insufficient statistics, you might end up with an inefficient access path and poor query performance. In general, collecting more complete and accurate statistics results in more accurately estimated selectivity, which results in improved access path choices. There are still scenarios where cost estimation is difficult and performance regression can occur. However, deciding to collect less information and depending on more inaccuracy to get a better access path by chance is not a viable long term strategy.

 Figure 13-9 illustrates the classic way of collecting and exploiting DB2 statistics, prior to DB2 11. The DB2 optimizer exploits the statistics in the DB2 catalog, does not takes advantage of the Real Time Statistics, and does not provide feedback about the value of the existing statistics.

 [image:]

 Figure 13-9 DB2 statistics and the optimizer, previous to DB2 11

 DB2 provides an enhancement to externalize missing statistics information during query optimization. Statistics collection utilities can then use this information as input to collect the missing statistics at the next execution.

 This enhancement externalizes statistics recommendations for missing or conflicting statistics encountered during query optimization. The statistics recommendations can then be used to drive RUNSTATS such that DB2 has more accurate and complete statistics during query optimization and, as a result, can choose more efficient access paths.

 Figure 13-10 illustrates how the DB2 11 optimizer provides feedback about the DB2 statistics at BIND, REBIND, and PREPARE.

 [image:]

 Figure 13-10 The DB2 11 optimizer and BIND, REBIND, and PREPARE: statistics feedback

 On every BIND and PREPARE DB2 identifies missing or conflicting statistics, which are then externalized to a SYSIBM.SYSSTATFEEDBACK catalog table. This catalog table is populated asynchronously to avoid any performance impact to the PREPARE process. The frequency with which the statistics recommendations are externalized to the SYSIBM.SYSSTATFEEDBACK table is controlled by existing STATSINT subsystem parameter.

 DB2 also externalizes statistics recommendations during EXPLAIN processing. A new DSN_STAT_FEEDBACK explain table is populated synchronously with the statistics recommendations during EXPLAIN processing.

 Figure 13-11 shows the relationship between the DB2 statistics, PREPARE, and the optimizer feedback.

 [image:]

 Figure 13-11 he DB2 11 optimizer and EXPLAIN: statistics feedback

 The contents of the SYSSTATFEEDBACK or DSN_STAT_FEEDBACK tables can be used to generate input to the RUNSTATS utility to allow more complete statistics to be collected. DB2 will not convert the output of the SYSIBM.SYSSTATFEEDBACK to a format directly consumable by RUNSTATS. However, you can use capabilities built into the Optim Query Workload Tuner tool to identify what statistics to collect and to generate RUNSTATS control statements to collect those statistics.

 	
 Note: Statistics recommendations are not made for volatile tables, declared global temporary tables (DGTTs), or created global temporary tables (CGTTs).

 To maintain an accurate picture of currently missing statistics in catalog table SYSIBM.SYSSTATFEEDBACK, the RUNSTATS utility ensures that recommendations for statistics that have subsequently been collected do not remain in the SYSSTATFEEDBACK catalog table. The DSN_STAT_FEEDBACK explain table maintains the set of missing statistics as of the EXPLAIN time and is not affected by the execution of the RUNSTATS utility.

 Interpreting the statistics recommendations

 In addition to using Optim Query Workload Tuner to generate statistics, you can manually create your own RUNSTATS jobs based on the information in the SYSSTATFEEDBACK table. Here are some guidelines on how to interpret the statistics recommendations and what to focus on.

 The statistics recommendations can be at the table, index or column level. Therefore, the SYSSTATFEEDBACK table includes columns that can represent any of these identifiers, as shown in Figure 13-12.

 [image:]

 Figure 13-12 Statistics granularity in SYSIBM.SYSSTATFEEDBACK table

 In addition to the identifying information, the following additional columns in the table contain information that you can use to determine what statistics to collect:

 •TYPE

 •REASON

 The TYPE column specifies the statistics to collect, and the REASON column identifies why the type of statistics were recommended. You can use the information in both of these columns to make decisions about what statistics to collect.

 The TYPE column is defined as CHAR(1). Table 13-2 lists the possible values for the TYPE column.

 Table 13-2 TYPE of statistics recommendation

 	
 TYPE value

 	
 Type of statistic to collect

 	
 C

 	
 Cardinality

 	
 F

 	
 Frequency

 	
 H

 	
 Histogram

 	
 I

 	
 Index

 	
 T

 	
 Table

 The REASON column is defined as CHAR(8). Table 13-3 lists the possible values for the REASON column.

 Table 13-3 REASON why statistics are recommended

 	
 REASON values

 	
 Description

 	
 BASIC

 	
 A basic statistic value for a column, table or index is missing.

 	
 KEYCARD

 	
 The cardinalities of index key columns are missing.

 	
 LOWCARD

 	
 The cardinality of the column is a low value, which indicates that data skew is likely.

 	
 NULLABLE

 	
 Distribution statistics are not available for a nullable column.

 	
 DEFAULT

 	
 A predicate references a value that is probably a default value.

 	
 RANGEPRD

 	
 Histogram statistics are not available for a range predicate.

 	
 PARALLEL

 	
 Parallelism can be improved by uniform partitioning of key ranges.

 	
 CONFLICT

 	
 Another statistic conflicts with this statistic.

 	
 COMPFFIX

 	
 Multi-column cardinality statistics are needed for an index compound filter factor.

 Interpreting the TYPE column

 The TYPE column identifies one of the following possible types of statistics that are recommended, depending on the value for TYPE:

 •If TYPE = T, then collect basic table statistics. The RUNSTATS format to use is:

 RUNSTATS TABLESPACE ...

 	TABLE(table-name)

 •If TYPE = I, then collect basic index statistics. The RUNSTATS format to use is:

 RUNSTATS INDEX

 •If TYPE = C, then collect cardinality statistics. The RUNSTATS format to use depends on whether the recommendation is for single column cardinality statistics or multi-column cardinality statistics, which is indicated by the NUMCOLUMNS column.

 For single column cardinality statistics, use the COLUMN option of RUNSTATS:

 RUNSTATS TABLESPACE ...

 	TABLE(table-name)

 	COLUMN(column-name)

 For multi-column cardinality statistics, use the COLGROUP option of RUNSTATS:

 RUNSTATS TABLESPACE ...

 	TABLE(table-name)

 	COLGROUP(column-name1,column-name2 ...)

 •If TYPE = F, then collect frequency statistics. Use the FREQVAL option of RUNSTATS:

 RUNSTATS TABLESPACE ...

 	TABLE(table-name

 	COLGROUP(column-name) FREQVAL COUNT integer

 •If TYPE = H, then collect histogram statistics. Use the HISTOGRAM option of RUNSTATS:

 RUNSTATS TABLESPACE ...

 	TABLE(table-name)

 	COLGROUP(column-name) HISTOGRAM

 Interpreting the REASON column

 The REASON column identifies one of nine possible reasons why the statistics are being recommended. Each REASON value is described in Table 13-3 on page 406. Here are some recommendations for interpreting the REASON values and focusing on those that will provide the most benefit.

 Your first priority should be to focus on any statistics recommendations with a REASON of BASIC. This reason indicates that basic table or index statistics are missing. The optimizer can only use default values if basic statistics are missing, and default statistics will not provide you with optimal access paths.

 Your second priority should be any statistics recommendations with a REASON of CONFLICT. This reason indicates that there is a conflict between table and index statistics or between frequency and cardinality statistics. The existence of a conflict implies that statistics were run on different objects at different times.

 After addressing any recommendations for BASIC and CONFLICT, focus on LOWCARD, NULLABLE, and DEFAULT recommendations. Any other reasons are targeted towards a more specific recommendation and might require further investigation.

 Additional notes on interpreting the recommendations

 The recommendations provided by this enhancement are only recommendations for a statistic that can be used if it is collected. The recommendation is not a guarantee that the statistic is needed.

 There is still a benefit to making an attempt to determine whether collecting the recommended statistics will add value, meaning whether it will provide information that will aid the optimizer in determining the least cost access path. For example, if the TYPE is F, for frequency, you might want to investigate whether the data is really skewed before collecting the frequency statistics. In addition, you need to decide what is a good value to use for the COUNT option. Typically, 10 is a good default, but if the value of COLCARDF column in SYSIBM.SYSCOLUMNS is less than or equal to 10, then use a COUNT value of one less than the COLCARDF value.

 In addition, you need to look at the REASON value when making your decision. For example. if the TYPE = F for frequency statistics, but the REASON is NULLABLE, and if NULL is the most frequently occurring value, then you only need a COUNT value of 1, not 10.

 Controlling externalization of statistics recommendations

 DB2 provides two mechanisms to control when statistics recommendations are externalized to the SYSIBM.SYSSTATFEEDBACK catalog table.

 The first mechanism is new subsystem parameter STATFDBK_SCOPE, which takes one of the following values:

 NONE 	Disable collection of recommended RUNSTATS

 STATIC 	Collect recommended RUNSTATS for static queries only

 DYNAMIC 	Collect recommended RUNSTATS for dynamic queries only

 ALL 	Collect recommended RUNSTATS for all SQL statements (default)

 The second mechanism is a new column in SYSTABLES named STATS_FEEDBACK, which provides control of statistics recommendations at the table level. If STATS_FEEDBACK is updated to a value of N for a given table, no statistics recommendations will be made for that table or its associated columns and indexes. The default value for this column is Y for YES.

 Independent of the settings of the STATFDBK_SCOPE parameter and STATS_FEEDBACK column in SYSTABLES, recommended statistics are written to the DSN_STAT_FEEDBACK explain table. These two mechanisms govern population of recommendations to the SYSSTATFEEDBACK catalog table only.

[image:]
[image:]

Appendixes

 This part of the book includes the following appendixes:

 •Appendix A, “Information about IFCID changes” on page 411

 •Appendix B, “Summary of relevant maintenance” on page 437

[image:]
[image:]

Information about IFCID changes

 This appendix includes the details of new or changed IFCIDs previously discussed in the chapters of this book. For more information about IFCIDs, refer to DB2 11 for z/OS What's New?, GC19-4068. For collecting accounting and statistics, see Subsystem and Transaction Monitoring and Tuning with DB2 11 for z/OS, SG24-8182.

 DB2 for z/OS has system limits, object and SQL limits, length limits for identifiers and strings, and limits for certain data type values. Restrictions exist on the use of certain names that are used by DB2. In some cases, names are reserved and cannot be used by application programs. In other cases, certain names are not recommended for use by application programs though not prevented by the database manager.

 For information about limits and name restrictions, refer to DB2 11 for z/OS SQL Reference, SC19-4066.

 You can find up-to-date mapping in the SDSNMACS data set that is delivered with DB2.

 This appendix includes the following topics:

 •New IFCIDs

 •Aggregate accounting overview and purpose

 •IFCID 53 and 58 enhancements overview

 •Accounting trace enhancements overview

 •IRLM Storage Accounting enhancement

 •Stored procedure monitoring overview and purpose

 •Other accounting changes

 A.1 New IFCIDs

 DB2 11 includes the following instrumentation facility component identifiers (IFCIDs):

 •IFCID 377: Pseudo-deleted index entries are automatically cleaned up

 •IFCID 27: Monitor sparse index usage

 •IFCID 382 and 383: Records suspend operations for parallel task

 A.1.1 IFCID 377: Pseudo-deleted index entries are automatically cleaned up

 IFCID 377 is introduced to monitor the index daemon activity when it cleans up committed pseudo deleted entries from an index. It includes the DBID, PSID of the index being cleaned up, the partition number of the index and the page number being cleaned up. It has an indicator to show if the cleanup is a pseudo empty page cleanup, in which case the pseudo empty index page is deleted from the index tree, or if the cleanup is pseudo deleted entry cleanup, in which case the index page remains in the index tree. Only committed pseudo deleted entries are removed from the index page. It also has a field to show the number of pseudo deleted entries removed from each index page.

 The IFCID 377 record is written once per each index page being cleaned up. It is not included in any trace class because its volume can be large.

 Example A-1 maps the new IFCID 377.

 Example A-1 New IFCID 377 to record index pseudo delete daemon cleanup

 [image:]

 * IFCID 0377 to record index pseudo delete daemon cleanup *

 *

 QW0377 DSECT IFCID(QWHS0377)

 QW0377DB DS CL2 DATA BASE ID

 QW0377OB DS CL2 INDEX PAGE SET ID

 QW0377PT DS CL2 PARTITION NUMBER

 QW0377FL DS CL1 FLAGS

 DS CL1 RESERVED

 QW0377PG DS CL4 PAGE NUMBER of the index page cleaned up

 QW0377NU DS CL4 NUMBER OF PSEUDO DELETED ENTRIES REMOVED

 QW0377DL EQU X'80' PSEUDO EMPTY PAGE IS DELETED

 QW0377CL EQU X'40' PSEUDO DELETED ENTRIES CLEANED UP

 *

 [image:]

 A.1.2 IFCID 106

 The QWP4IXCU field is added to trace the internal settings of the new INDEXCLEANUP_THREADS subsystem parameter. The IFCID 106 formatter stored procedures, SYSPROC.DSNWZP and SYSPROC.ADMIN_INFO_SYSPARM are updated to report the INDEXCLEANUP_THREADS setting.

 Example A-2 maps the new IFCID 106.

 Example A-2 Changed IFCID 106 to record INDEXCLEANUP_THREADS

 [image:]

 QWP4DM1636 DS CL8 (s) DM1636

 QWP4MIMTS DS F MAXSORT_IN_MEMORY N4504r5

 QWP4MUSE DS XL2 (s) N4504r5

 QWP4IXCU DS H INDEXCLEANUP_THREADS n0010r5

 QWP4DEGD DS F PARAMDEG_DPSI n231r5

 		 DS CL132 UNUSED n0010r5

 **

 * ASSEMBLY DATE *

 **

 QWP4DATE DS CL8 (S)

 [image:]

 A.1.3 IFCID 27: Monitor sparse index usage

 New IFCID 27 records are added to let the user know which type of sparse index is used for probing, the amount of storage used, and many other characteristics about the current sparse index. Also global trace records are added to IFCID 2 and 3 to let the user know if the sparse index cannot be optimized because not enough storage is available or if it had to be placed into a physical work file, which might hurt query performance.

 With this new instrumentation, you can adjust the MXDTCACH value higher or lower, depending on the storage available on your system and to make the query perform at its most optimal performance, as shown in Example A-3.

 Example A-3 New IFCID 27

 [image:]

 **

 * IFC ID 0027 FOR RMID 20 RECORDS DETAILED SORT INFORMATION. *

 * NUMBER OF SEQUENTIAL RECORDS IN THIS WORKFILE. *

 **

 *

 QW0027 DSECT IFCID(QWHS0027)

 QW0027NR DS D NUMBER OF RECORDS IN THE NEW WORKFILE

 QW0027SP DS CL1 TYPE OF QW0027 RECORD:

 * ****************** CONSTANTS FOR QW0027SP **************************

 QW0027CB EQU C'B' INPUT PHASE OR MERGE PASS END

 *							INDICATES SPARSE INDEX COMBINATION

 * 							OF HASH AND WORKFILE USED

 * 							(BOTH IN-MEMORY AND PHYS. WORKFILE)

 QW0027CH EQU C'H' INPUT PHASE OR MERGE PASS END

 *							INDICATES SPARSE INDEX HASH USED

 * 							(IN-MEMORY WORKFILE ONLY)

 QW0027CO EQU C'O' INPUT PHASE OR MERGE PASS END

 *							INDICATES SPARSE INDEX BINARY USED

 * 							(IN-MEMORY WORKFILE ONLY)

 QW0027CS EQU C'S' INPUT PHASE OR MERGE PASS END

 *							INDICATES NO SPARSE INDEX WAS USED

 * 							BECAUSE OF STORAGE CONSTRAINTS

 QW0027CT EQU C'T' INPUT PHASE OR MERGE PASS END

 *							INDICATES SPARSE INDEX WORKFILE USED

 QW0027CW EQU C'W' INPUT PHASE OR MERGE PASS END

 *							INDICATES NO SPARSE INDEX USED

 * **

 DS CL3 RESERVED

 **

 * THE FOLLOWING INFORMATION FOR IFC ID 27 WILL ONLY BE SET IF THE *

 * CURRENT SORT IS PROCESSING A SPARSE INDEX, OTHERWISE SET TO 0. *

 **

 QW0027SF DS F SKIP FACTOR IF SPARSE INDEX RECORDS

 * 							IN WORKFILE. 1 IF IN-MEMORY

 QW0027OZ DS D SIZE OF SPARSE INDEX SPACE USED

 * 							(IN KB)

 QW0027IE DS F NUMBER OF RECORDS IN IN-MEMORY

 * 						PART OF SPARSE INDEX

 QW0027WE DS F NUMBER OF RECORDS IN WORKFILE

 * 						PART OF SPARSE INDEX

 QW0027DS DS F DATA AREA SIZE FOR SPARSE INDEX

 * 						(IN BYTES)

 QW0027KS DS F KEY SIZE FOR SPARSE INDEX (IN BYTES)

 QW0027TS DS F TOTAL NUMBER OF SPARSE INDEXES IN QUERY

 QW0027SC DS F CURRENT SPARSE INDEX BEING PROCESSED

 QW0027TZ DS D APS ESTIMATED SIZE OF ALL SPARSE

 * 							INDEXES IN QUERY IF ALL IN-MEMORY (IN KB)

 QW0027IR DS D APS ESTIMATED NUMBER OF RECORDS IN CURRENT SPARSE INDEX

 [image:]

 The IFCID 2 trace record is for the system statistics records and IFCID 3 is for accounting records. Sparse index adds two additional records to the system statistics and accounting records to let the user know the number of times that sparse index used a physical work file and the number of times that sparse index ran into storage problems where it had to disable sparse index. This information is tracked per transaction. Below are the instrumentation changes for IFCID 2 and IFCID 3. See Example A-4 on page 414

 Example A-4 IFCID 2 and IFCID 3

 [image:]

 ...

 QXSISTOR DS D THE NUMBER OF TIMES THAT SPARSE INDEX

 * 							WAS DISABLED BECAUSE OF INSUFFICIENT

 * 							STORAGE.

 QXSIWF DS D THE NUMBER OF TIMES THAT SPARSE INDEX

 * 						BUILT A PHYSICAL WORK FILE FOR PROBING.

 ...

 [image:]

 A.1.4 IFCID 382 and 383: Records suspend operations for parallel task

 Two new IFCIDs are introduced that are part of the following classes:

 •Accounting Class 3

 •Accounting Class 8

 •Monitor Class 3

 •Monitor Class 8

 If IFCID382 and IFCID383 are started to an external destination. Example A-5 lists the new IFCID 382/383 to records suspend operations for parallel task.

 Example A-5 New IFCID 382 and 383 to record suspend operations for parallel task

 [image:]

 * BEGIN Suspend for parallel task synchronization *

 *QW0382 DSECT IFCID(QWHS0382)

 *QW0382ST DS CL1 Type of task suspended.

 *QW0382PT EQU C'P' Task suspended is a parent

 *QW0382CT EQU C'C' Task suspended is a child

 *

 * END Suspend for parallel task synchronization *

 *QW0383 DSECT IFCID(QWHS0383)

 *QW0383RT DS CL1 Type of task resumed.

 *QW0383PT EQU C'P' Task resumed is a parent

 *QW0383CT EQU C'C' Task resumed is a child

 *

 [image:]

 A.2 Aggregate accounting overview and purpose

 Users need to externalize accounting values at the statistics intervals. Analysis of various performance problems suffers greatly from the need to identify the correct time frame. In addition, to do so, analysis of all accounting records is required. DB2 10 added IFCID369 to STATISTICS CLASS 9 and externalize them every minute. IFCID369 externalizes the summation of all agents that completed processing during this 1 minute interval. See Example A-6 for details.

 Example A-6 IFCID369 - Aggregate accounting interface details

 [image:]

 **

 * IFCID 369 is a statistics record containing wait and CPU *

 * aggregated by connection type. It is written at statistics *

 * intervals and is available via the IFI READS interface. *

 * *

 * This record contains 4 sections mapped as follows: *

 * *

 * Data Section 1 is mapped by QW0369_1 *

 * Data Section 2 is a repeating group, each mapped by QW0369_2 *

 * Data Section 3 is a repeating group, each mapped by DSNDQWAC *

 * Data Section 4 is a repeating group, each mapped by DSNDQWAX *

 * *

 * Notes: *

 * 1.Statistics collection will become enabled when both IFCID 369 *

 * and IFCID 3 is enabled on the system. *

 * 2.All counters will be reset to zeroes when DB2 is restarted *

 * 3.Statistics are aggregated by connection type. If no agents *

 * for that connection type have executed since the 369 *

 * collection in enabled, no data will be externalized for that *

 * connection type. *

 * 4.QWACPCNT indicates the number of transactions aggregated for *

 * a given connection type. *

 * *

 **

 QW0369_1 DSECT

 QW0369ST DS CL8 Timestamp when 369 statistics collection

 * was enabled

 QW0369SP DS CL8 Timestamp when 369 statistics collection

 * was disabled

 *

 QW0369_2 DSECT

 QW0369CN DS CL8 Connection name

 [image:]

 A.3 IFCID 53 and 58 enhancements overview

 IFCIDs 53 and 58 are the end SQL statement IFCIDs for a number of SQL statement types. To understand which SQL statement type a given IFCID 53/58 closes, it is necessary to correlate to a specific begin SQL statement (IFCID 66). DB2 11 adds an identifier to IFCID 53/58 to make the beginning SQL statement IFCID unnecessary. The QW0058TOS and QW0053TOS fields are introduced.

 Example A-7 shows the details for IFCID0053.

 Example A-7 IFCID0053

 [image:]

 **

 * IFC ID 0053 FOR RMID 22 *

 * CHANGED 8-17-87 - THIS RECORD CHANGED TO DEFINE END OF DESCRIBE*

 * SQL COMMIT, SQL ROLLBACK, OR AN ERROR CONDITION OCCURRED BEFORE*

 * SQL STATEMENT ANALYZED. THE BEGINNING STATEMENT IS NOT *

 * RECORDED. IT IS AN UNPAIRED EVENT. *

 **

 *

 QW0053TOS DS X Type of SQL Request

 * Constants for QW0053TOS field are defined in

 * QW0058 mapping.

 *

 [image:]

 Example A-8 shows the details for IFCID0058.

 Example A-8 IFCID0058

 [image:]

 *

 */**/

 / IFC ID 0058 FOR RMID 22 RECORDS END SQL STATEMENT EXECUTION */

 */**/

 *

 QW0058TOS DS X Type of SQL Request

 *

 */**/

 [image:]

 	
 Note: IFCID0058 is identical to IFCID0053. If both IFCI0058 and IFCID0053 are started, IFCID0058s without an BEGIN SQL statement are written as IFCID0053.

 A.4 Accounting trace enhancements overview

 Accounting trace contains thread execution information, such as CPU consumed, waiting times, SQL executions, number of lock events, commits, buffer pool requests, RLF numbers, DDF process, RID pool, and start and stop times. This section includes information about the following trace enhancements:

 •New field QWHCAACE

 •QWACZIIP_ELIGIBLE field

 A.4.1 New field QWHCAACE

 Correlating some performance records that are written by system agents on behalf of an accounting interval is difficult. A QWHCAACE field is introduced to the correlation header (QWHC) to make correlation easier. QHWCAACE can be correlated to QWHSACE. See Example A-9. For child tasks, the ACE of the parent is stored in QWHCAACE.

 Example A-9 Accounting trace enhancements filed QHWCAACE

 [image:]

 QWHCAACE DS CL8 /* This field is 0 if this IFCID */

 * /* written outside an accounting */

 * /* interval. Otherwise it is the */

 * /* ACE of the agent that initiated*/

 * /* the accounting interval. This */

 * /* can be used to correlate to */

 * /* QWHSACE for the non-rollup */

 * /* IFCID3's. For DDF/RRSAF rollup */

 * /* accounting, it can be */

 * /* used to correlate to QWARACE. */

 [image:]

 A.4.2 QWACZIIP_ELIGIBLE field

 To show on a DB2 accounting report whether a user’s workload running on a general purpose engine is eligible to run on a zIIP specialty engine if one is installed, DB2 10 APAR PM57206 reintroduces the QWACZIIP_ELIGIBLE field in IFCID3 as a serviceability field. The field captures the IBM specialty engine eligible time that is run on a general purpose CP for a subset of IBM specialty engine eligible processing. More specifically, the time reflects the eligible time for the following functions:

 •Distributed DBATs

 •Parallel query parent threads

 •zIIP eligible utilities

 All other cases of IBM specialty engine offload are not reflected in this serviceability field. DB2 11 removes the restrictions and captures all zIIP and zAAP time for any kind of transaction.

 Example A-10 shows the QWACZIIP_ELIGIBLE field in DB2 10 and DB2 11.

 Example A-10 Accounting trace enhancements QWACZIIP_ELIGIBLE

 [image:]

 DB2 11

 QWACZIIP_ELIGIBLE DS CL8 /* (S) Accumulated CPU executed on a */

 * /* standard CP for IBM specialty engine */

 * /* eligible work. */

 * /* For parallel query parent records the */

 * /* value will reflect zIIP eligible time */

 * /* for the parent and the child tasks. */

 /* Child task records will have a 0 value.*/

 DB2 10

 QWACZIIP_ELIGIBLE DS CL8 /* (S) Accumulated CPU executed on a */

 * /* standard CP for zIIP-eligible work. */

 * /* This field will reflect zIIP eligible */

 * /* time for accounting records written */

 * /* for: */

 * /* 1) distributed DBATs */

 * /* 2) parallel query parents */

 * /* 3) zIIP eligible utilities */

 * /* For parallel query parent records the */

 * /* value will reflect zIIP eligible time */

 * /* for the parent and the child tasks. */

 * /* Child task records will have a 0 value.*/

 * /* All other cases of specialty engine */

 * /* offload are NOT reflected in this */

 * /* field. */

 [image:]

 A.5 IRLM Storage Accounting enhancement

 Enhanced monitoring of IRLM common and private storage usage. IRLM added additional information to the existing DXR100I message to provide details of IRLM storage usage in ECSA and Private, including tracking details like high water marks, compressions and expansions counts when F,IRLMxx, STATUS,STOR command is issued, See Example A-11.

 Example A-11 DXR100I message

 [image:]

 DXR100I IR21021 STOR STATS

 PC: YES LTEW:n/a LTE: M RLE: RLEUSE:

 BB PVT: 1495M AB PVT (MEMLIMIT): 16383P

 CSA USE: ACNT: 0K AHWM: 0K CUR: 309K HWM: 309K

 ABOVE 16M: 16 309K BELOW 16M: 0 0K

 AB CUR: 25M AB HWM: 150M

 PVT USE: BB CUR: 4377K AB CUR: 5M

 BB HWM: 1.5M AB HWM: 12M

 CLASS TYPE SEGS MEM TYPE SEGS MEM TYPE SEGS MEM

 ACCNT T-1 2 4M T-2 1 1M T-3 1 4K

 PROC WRK 4 20K SRB 1 1K OTH 1 1K

 MISC VAR 8 4310K N-V 12 323K FIX 1 24K

 **

 * IRLM Serviceability only: Storage subpool statistics *

 **

 Pool Name Ptype Storage #Segments #Elem/S #EXPN #CMPR

 DESP LCVBN -------- ------ ---- ---- ----

 IB LCFBN -------- ------ ---- ---- ----

 ISL GCFBN -------- ------ ---- ---- ----

 NCB GCFBN -------- ------ ---- ---- ----

 NPL GCFBN -------- ------ ---- ---- ----

 QEFX LNFBN -------- ------ ---- ---- ----

 QE28 GNFBN -------- ------ ---- ---- ----

 RHBL LNFAA -------- ------ ---- ---- ----

 RHLB LCFAA -------- ------ ---- ---- ----

 RHWK GCFBN -------- ------ ---- ---- ----

 RHWL LCFBN -------- ------ ---- ---- ----

 RLB LCFAA -------- ------ ---- ---- ----

 RLBI LNFBA -------- ------ ---- ---- ----

 SIDB GCFBN -------- ------ ---- ---- ----

 SPL GCFBN -------- ------ ---- ---- ----

 SRB GNFBN -------- ------ ---- ---- ----

 STKS GNFBN -------- ------ ---- ---- ----

 TRCE GNVBN -------- ------ ---- ---- ----

 VARG GCVBN -------- ------ ---- ---- ----

 VARL LCVBN -------- ------ ---- ---- ----

 VGFX GCVBN -------- ------ ---- ---- ----

 VMSG LCVBN -------- ------ ---- ---- ----

 WHB LCFBA -------- ------ ---- ---- ----

 DXR100I End of display

 [image:]

 DB2 also issue a STAT request to get the IRLM system statistics and capture into IFCID225, IFCID217 and IFCID106 traces. See Example A-12.

 Example A-12 IFCID217, IFCID225 and IFCID106

 [image:]

 **

 * IFCID 0217 for storage manager pool statistics. *

 **

 *

 * Section QWT02R1O is mapped by QW0217.

 *

 * Section QWT02R2O is mapped by QW02172. There will be

 * a repeating group entry for each:

 * 1. DBM1 private pool (31 or 64-bit)

 * 2. Common pool (31 or 64-bit)

 * 3. Shared pool

 * Agent local pools will not be reported in this section.

 *

 * Section QWT02R3O is mapped by QW02173. There will be a

 * repeating group entry for each agent local storage pool.

 * Agent local storage pools are in 31-bit DBM1 private or in

 * 64-bit shared storage.

 *

 * Section QWT02R40 is mapped by QW02174. There will be a

 * repeating group entry for each IRLM storage pool. IRLM pools

 * can be in ECSA, 31-bit private, 64-bit common, or 64-bit private.

 *

 * The maximum number of QW02172 or QW02173 sections in a single

 * record is 200. If there are more than 200 QW02172 or QW02173

 * sections to be reported then multiple IFCID217 records are

 * generated in a sequence.

 *

 * DB2 will generate 1 or more IFCID217 records per statistics

 * interval. The last IFCID 0217 in the sequence will contain

 * a QW02174 member with QW02174S = 0.

 *

 * When activated, IFCID217 is recorded at 1 minute intervals.

 QW0217QA DS CL24 Authorization ID %U

 QW02173N DS 0C End of QW02173 mapping

 *

 * IRLM Storage Pools

 QW02174 DSECT Pointed to by QWT02R40

 QW02174_PNM DS CL8 Pool Name

 QW02174_CSEG DS F Current number of segments

 QW02174_HSEG DS F High number of segments

 QW02174_PEX DS F Number of pool expansions

 QW02174_PCM DS F Number of pool compressions

 DS CL8 Reserved

 QW02174_FLG1 DS X Flags

 QW02174S EQU X'80' 1 = More QW02174 data will follow in one or

 * more IFCID217

 QW02174E EQU X'40' 1 = Internal error occurred while gathering

 * stats data. Data in this section is

 * invalid.

 QW02174N DS 0C End of QW02174 mapping

 * *

 **

 * ! IFCID225 summarizes system storage usage

 * ! The record is divided into data sections described as follows:

 * !

 * ! Data Section 1: Address Space Summary (QW0225)

 * ! This data section can be a repeating group.

 * ! It will report data for DBM1 and DIST

 * ! address spaces. Use QW0225AN to identify

 * ! the address space being described.

 * ! Data Section 2: Thread information (QW02252)

 * ! Data Section 3: Shared and Common Storage Summary (QW02253)

 * ! Data Section 4: Statement Cache and xPROC Detail (QW02254)

 * ! Data Section 5: Pool Details (QW02255)

 * ! Data Section 6: IRLM Pool Details (QW02256)

 QW0225RP DS D ! Total RID pool storage

 * ! (64-bit shared fixed pool)

 QW0225CD DS D ! Total compression dictionary storage

 * ! (64-bit DBM1 private GETMAINed)

 *

 * Data Section 6: IRLM Storage Information

 QW02256 DSECT

 QW0225I_ABCSA DS D ! Total of all currently used 64-bit common

 * ! storage in all IRLM 64-bit common pools

 QW0225I_ABCSH DS D ! High water mark for 64-bit common storage

 * ! requests of all 64-bit common IRLM pools

 QW0225I_BBPVT DS D ! Total of all currently used 31-bit private

 * ! storage in all IRLM 31-bit private pools

 QW0225I_BBPVH DS D ! High water mark for 31-bit private storage

 * ! requests of all 31-bit private IRLM pools

 QW0225I_ABPVT DS D ! Total of all currently used 64-bit private

 * ! storage in all IRLM 64-bit private pools

 QW0225I_ABPVH DS D ! High water mark for 64-bit private storage

 * ! requests of all 64-bit private IRLM pools

 QW0225I_BBESCA DS D ! Total of all currently used ESCA storage

 * ! in all IRLM ECSA pools

 QW0225I_BBESCAH DS D ! High water mark for ESCA storage requests

 * ! of all ESCA IRLM Pools

 *

 DSNDQWPZ.copy will be changed as following to include IRLM private

 storage limits.

 *

 **

 * IRLM processing parms. *

 **

 QWP5 DSECT

 QWP5FLG DS X /* Process flags */

 QWP5PCY EQU X'80' /* 1=PC yes specified */

 DS XL3 /* Reserved */

 QWP5DLOK DS H /* Wait time for local deadlock */

 QWP5DCYC DS H /* # of local cycles/global cycle */

 QWP5TVAL DS F /* Timeout interval */

 QWP5MCSA DS F /* IRLM maximum CSA usage allowed */

 QWP5HASH DS F /* MVS lock table hash entries */

 QWP5PHSH DS F /* Pending # Hash entries */

 QWP5RLE DS F /* MVS lock table list entries */

 DS F /* Reserved */

 QWP5BPM DS D /* Maximum amount of 31-Bit IRLM

 * private storage available (out

 * of total 2G virtual storage

 * limit) for normal operations in

 * IRLM. IRLM reserves an

 * additional 10% of the total 2G

 * virtual storage, for use by

 * requests in IRLM. */

 QWP5APM DS D /* Maximum amount of 64-Bit IRLM

 * private storage available (out

 * of total storage set as the

 * MEMLIMIT) for normal operations

 * in IRLM. IRLM reserves an

 * additional 10% of the total

 * MEMLIMIT storage, for use by

 * 'must complete' requests in

 * IRLM. */

 *

 **

 [image:]

 A.6 Stored procedure monitoring overview and purpose

 Stored procedure (SP) and user-defined function (UDF) performance and tuning analysis is typically performed by using a combination of IFCID3 and IFCID239. IFCID3 provides plan-level information and aggregates all executions of store procedures or UDFs into common fields. This method can create difficulty when tuning multiple procedures or functions that are executed in a given transaction.

 IFCID239 is also used for performance and tuning analysis at the package level. This method provides better granularity than IFCID3 but still might not be sufficient for all transactions, because multiple package executions reported together, CPU, elapsed, and suspend time reflect averages across many stored procedure packages.

 If a procedure or function is executed multiple times, the variation between executions cannot be identified. Instrumentation enhancements are needed. DB2 implements multiple IFCID enhancements to provide more effective performance and tuning analysis of stored procedures and UDF. they are:

 •IFCID233 is written at the beginning and end of a stored procedure or UDF invocation. This record is enhanced with the invoking statement ID, the invoking statement type, the version ID (applies only to versioned procedures), and the routine ID.

 	
 Note: The routine ID can be zero if a REBIND is not performed for packages containing CALL statements where the stored procedure name is a literal. See DSNDQW02 for mapping details

 •New IFCIDs 380 and 381 are created for stored procedure and UDF detail respectively. These records have the following data sections:

  –	Data section 1 is mapped by QW0233.

  –	Data section 2 is mapped by QW0380, which includes CP, specialty engine, and elapsed time details for nested activity.

 You can use a series of 380 or 381 records to determine the amount of class 1 and class 2 CP, specialty engine, and elapsed time relative to the execution of a given stored procedure or user-defined function. See DSNDQW05 for mapping details.

 •New IFCIDs 497, 498, and 499 are created for statement level detail. These records track dynamic and static DML statements executed by a transaction, including those executed within a stored procedure or user-defined function. A series of IFCID 497, 498, or 499 records can be used to determine the statements executed for a given transaction. Note: Any packages containing static SQL statements that existed prior to DB2 10 must be rebound in DB2 10 New Function Mode (NFM), not necessarily with this APAR applied, to obtain a valid statement ID.

 •A new performance class 24 is created to encapsulate IFCID380 and IFCID499 for stored procedure detail analysis (see Figure A-1).

 [image:]

 Figure A-1 Stored procedure monitoring

 If you are interested in using the functions provided, consider the following actions:

 •For a CALL statement to a DB2 for z/OS stored procedure, the stored procedure name can be identified by using a literal or by using a host variable or parameter marker. When using a literal for the stored procedure name and to benefit from the enhancement that provides a valid routine ID in various IFCID records, the packages that contain the CALL statement must be rebound.

 •For an SQL statement that invokes a DB2 for z/OS UDF, and to benefit from the enhancement to provide a valid routine ID in various IFCID records, the packages that contain the SQL statement must be rebound.

 •The mapping of IFCID233 remains compatible with prior versions and no immediate change is required. However, you need to change applications that parse this record to take advantage of the new fields.

 See the following IFCIDs definitions for further details:

 •QW0380

 •QW0381

 •QW0497

 •QW0498

 •QW0499

 Example A-13 shows the details for QW0380.

 Example A-13 IFCID0380

 [image:]

 * IFCID 380 is a stored procedure detail record. It is written at *

 * the beginning and the end of a CALL statement for both external *

 * and native stored procedures. *

 * *

 * The record contains 2 data sections mapped as follows: *

 * *

 * Data section 1 will be mapped by qw0233 in DSNDQW03 *

 * Data section 2 will be mapped by qw0380 below *

 * *

 * Notes: *

 * 1. The mapping of QW0380 is also used by IFCID381. *

 * 2. All times are in clock units. *

 * 3. Times for IFCID380 reflect the total time at the time of *

 * record write for all SP invocations. This includes SQLPL and *

 * WLM stored procedures. *

 * 4. Times for IFCID381 reflect the total time at the time of *

 * record write for all UDF invocations. This includes UDFs *

 * executed on the main application execution unit and WLM *

 * UDFs. *

 * 5. Class 1 accounting must be enabled for this *

 * section to be written. *

 * 6. If class 2 accounting is not enabled, the class 2 counters *

 * will be zero. *

 * 7. If class 1 and class 2 accounting are enabled during SP *

 * or UDF execution, the below values may be inconsistent *

 * (e.g., class 2 time may exceed class 1) *

 QW0380 DSECT

 QW0380_CLS1CP DS CL8 Current total nested

 * class 1 CP time. This does

 * not include time spent

 * executing on an IBM

 * specialty engine.

 QW0380_CLS1se DS CL8 Current total nested

 * class 1 specialty engine

 * time.

 QW0380_CLS2CP DS CL8 Current total nested

 * class 2 CP time. This is

 * time in DB2 processing

 * SQL statements. This time also

 * includes in DB2 time needed to

 * connect and disconnect the SP

 * task for non-SQLP stored

 * procedures. This does not

 * include time spent executing

 * on an IBM specialty engine.

 QW0380_CLS2se DS CL8 Current total nested

 * class 2 specialty engine time.

 * This is time in DB2 processing

 * SQL statements.

 QW0380_CLS2elap DS CL8 Current total nested

 * elapsed class 2 time. This is

 * time in DB2 processing

 * SQL statements. This time also

 * includes in DB2 time needed to

 * connect and disconnect the SP

 * task for non-SQLP stored

 * procedures.

 *

 [image:]

 Example A-14 shows the details for QW0381.

 Example A-14 QW0381 details

 [image:]

 * IFCID 381 is a UDF detail record. It is written at *

 * the beginning and the end of a UDF invocation. *

 * The record contains 2 data sections mapped as follows: *

 * *

 * Data section 1 will be mapped by qw0233 in DSNDQW03 *

 * Data section 2 will be mapped by qw0380 above *

 [image:]

 For QW0497 details, see Example A-15.

 Example A-15 QW0497 details

 [image:]

 * IFCID 497 is the statement ID detail record for statements *

 * executed outside of a stored procedure or UDF environment. *

 * This typically would be referred to as a non-nested environment *

 * with the exception that statements executed by triggers on the *

 * main application execution unit will be recorded in this record. *

 * *

 * It is mapped identically to IFCID499 and may be written for *

 * reasons: *

 * QW0499OV *

 * QW0499AC *

 * QW0499SB *

 * QW0499UB *

 * *

 * Notes: *

 * 1. Parallel child tasks will not externalize this IFCID. *

 * 2. Autonomous procedures will not externalize this IFCID. *

 * 3. For dynamic statements, only statements qualifying for the *

 * dynamic statement cache will be returned. *

 * 4. For static statements, some statement IDs may not *

 * correlate to IFCID401 static statement cache IDs. *

 * *

 [image:]

 Example A-16 shows the details for QW0498.

 Example A-16 QW0498 details

 [image:]

 * IFCID 498 is the statement ID detail record for statements *

 * executed inside of UDF environment. This includes WLM UDFs and *

 * non-inline scalar functions. *

 * *

 * It is mapped identically to IFCID499 and may be written for *

 * reasons: *

 * QW0499OV *

 * QW0499SB *

 * QW0499UB *

 * QW0499UE *

 * *

 * Notes: *

 * 1. Parallel child tasks will not externalize this IFCID. *

 * 2. Autonomous procedures will not externalize this IFCID. *

 * 3. For dynamic statements, only statements qualifying for the *

 * dynamic statement cache will be returned. *

 * 4. For static statements, some statement IDs may not *

 * correlate to IFCID401 static statement cache IDs. *

 * *

 [image:]

 Example A-17 shows the details for QW0499.

 Example A-17 QW0499 details

 [image:]

 * IFCID 499 is the statement ID detail record for statements *

 * executed inside of stored procedure environment. This includes *

 * WLM SPs and native stored procedures. *

 * *

 * It is mapped below and may be written for reasons: *

 * QW0499OV *

 * QW0499SB *

 * QW0499UB *

 * QW0499SE *

 * *

 * Notes: *

 * 1. Parallel child tasks will not externalize this IFCID. *

 * 2. Autonomous procedures will not externalize this IFCID. *

 * 3. For dynamic statements, only statements qualifying for the *

 * dynamic statement cache will be returned. *

 * 4. For static statements, some statement IDs may not *

 * correlate to IFCID401 static statement cache IDs. *

 * *

 *

 * Data section 1

 QW0499 DSECT IFCID(QWHS0499)

 QW0499RS DS XL4 Reason IFCID was externalized

 QW0499OV EQU X'00000001' The maximum number of unique

 * statement ID's were collected

 QW0499AC EQU X'00000002' The transaction/accounting

 * interval is ending

 QW0499SB EQU X'00000003' A stored procedure is beginning

 QW0499SE EQU X'00000004' A stored procedure is ending

 QW0499UB EQU X'00000005' A UDF is beginning

 QW0499UE EQU X'00000006' A UDF is ending

 *

 * Data section 2 is a repeating group of each individual unique

 * statement ID's

 QW04992 DSECT

 QW0499SID DS CL8 Statement ID

 QW0499NEC DS D Number of Executions

 QW0499STY DS CL2 Statement type

 QW0499DY EQU X'8000' Statement is dynamic

 QW0499SC EQU X'4000' Statement is static

 QW0499CL EQU X'2000' Statement is a CALL statement

 MEND */

 *

 [image:]

 A.7 Other accounting changes

 The section describes the following accounting changes:

 •Reduced NOT ACCOUNTED FOR time

 •Specialty engine time in the CPU header

 •Larger RBA and LRSN

 A.7.1 Reduced NOT ACCOUNTED FOR time

 DB2 further reduces the amount of NOT ACCOUNTED FOR times present in the following accounting records:

 •Buffer Manger force write, which is the time is added to the existing Buffer Manager Class three buckets

 •Parallel Query Parent/Child Synchronization, which is a New Class 3 bucket (qwac_pqs_wait/qwac_pqs_count) is added.

 •Log Manager read, which is the time is added to the existing Log Manager Class 3 buckets

 A.7.2 Specialty engine time in the CPU header

 DB2 adds a field to the CPU Header (DSNDQWHU) to quickly determine CPU time that was spent running on a Specialty Engine. See Example A-18.

 Example A-18 CPU time that was spent running on a Specialty Engine

 [image:]

 * /*INSTRUMENTATION CPU HEADER DATA */

 QWHULEN DS XL2 /* LENGTH OF HEADER */

 QWHUTYP DS XL1 /* TYPE OF HEADER - CPU MAPPED QWHSHU08 */

 DS XL1 /* RESERVED */

 QWHUCPU DS XL8 /* CPU time of the currently dispatched */

 * /* execution unit (TCB or SRB). This */

 * /* time includes CPU consumed on an IBM */

 * /* specialty engine. Binary zero */

 * /* indicates CPU time was not available. */

 QWHUCNT DS XL2 /* (S) COUNT FIELD RESERVED */

 QWHUSE DS XL8 /* CPU time of the currently dispatched */

 * /* execution unit (TCB or SRB) consumed */

 * /* on an IBM speciailty engine. */

 * /* Note: A given ACE token may */

 * /* run under one or more MVS dispatchable*/

 * /* execution units. Thus the CPU time for*/

 * /* a given ACE may decrease between */

 * /* events. This is true for both QWHUCPU */

 * /* and QWHUSE. */

 QWHUEND DS 0C

 [image:]

 A.7.3 Larger RBA and LRSN

 Numerous instrumentation changes are required to support a 10-byte RBA/LRSN. Any application parsing the following records needs to be modified to fully take advantage of the new RBA size in these records. An attempt was made to maintain the offsets of other record fields when possible. The following records or mappings in Example A-19 have incompatible changes with prior releases:

 •DSNDWQAL (while offsets are not changed for existing fields, applications using the pre-existing WQALLRBA offset ceases to function)

 •DSNDIFCA for IFCID129 and IFCID306 requests

 •IFCID32

 •IFCID34

 •IFCID36

 •IFCID38

 •IFCID39

 •IFCID43

 •IFCID114

 •IFCID119

 •IFCID126

 •IFCID129

 •IFCID185

 •IFCID203

 •IFCID261

 •IFCID306

 •IFCID335

 Other record changes result in parsing applications reading in zeroes for RBA/LRSN fields using the old offsets.

 Example A-19 Incompatible changes for new RBA/LRSN

 [image:]

 WQALLN6 EQU 264 /* VERSION 6 LENGTH - */

 * /* INCLUDES EUID, EUTX, EUWN */

 * /* FIELDS */

 WQALLN9 EQU 920 /* Version 9 length */

 WQALLN11 EQU 1024 /* Version 11 length */

 ...

 WQALCDCD DS CL1 /* DB2 CHANGED DATA CAPTURE REQUEST FLAG

 * /* Y - DATA DESCRIPTION RETURNED FOR EACH */

 * /* READS 185 (OTHER THAN REDRIVE */

 * /* REQUESTS) FOR A NEW TABLE */

 * /* N - NO DATA DESCRIPTIONS WILL BE */

 * /* RETURNED. */

 * /* A - A DATA DESCTIPTION WILL ONLY BE */

 * /* RETURNED THE FIRST TIME OR WHEN */

 * /* IT IS CHANGED FOR A GIVEN TABLE. */

 * /* THIS IS THE DEFAULT. */

 * /* SEE IFCID 185 IN DSNDQW02. DEFINITION */

 * /* OF DATA DESCRIPTION BEGINS WITH FIELD */

 * /* QW0185DD */

 DS CL9 /* Reserved */

 ...

 WQALFVAL64 DS D /* 64-bit threshold value for IFCID 316 and */

 * /* 401 requests. If this is non-zero and */

 * /* the target system is v10 or higher, this */

 * /* value will be used in place of WQALFVAL. */

 WQALLRBA DS 0CL12

 WQALRBAM DS CL2 /* For IFCID 306, this is the member ID */

 * /* for a WQALMODD call */

 WQALRBA10 DS CL10 /* For IFCID 129, this is the starting */

 * /* log RBA of the CI(s) to be returned */

 * /* For IFCID 306, this is the log RBA or */

 * /* LRSN to be used in a WQALMODF or */

 * /* WQALMODD call */

 DS CL100 /* Reserved */

 WQALEND DS 0F /* END OF BLOCK */

 [image:]

 A.7.4 Buffer manager force write

 Buffer manager force write Class 3 accounting times are added to the existing QWACAWTW and QWACARNW fields. In addition, Example A-20 shows the details of these IFCIDs.

 Example A-20 IFCID127 and IFCID 128

 [image:]

 QW0127F				 DS 			C 			FLAG FOR TYPE OF I/O

 QW0127FR 				EQU 			C'R' 			READ I/O WAIT

 QW0127FW 				EQU 			C'W' 			WRITE I/O WAIT

 QW0127FF 				EQU 			C'F' 			BUFFER MANAGER FORCE WRITE I/O WAIT

 QW0127BP 				DS			F 			BUFFER POOL INTERNAL ID (049

 QW0128F 				DS 			C 			FLAG FOR TYPE OF I/O

 QW0128FR 				EQU 			C'R' 			READ I/O WAIT

 QW0128FW 				EQU 			C'W' 			WRITE I/O WAIT

 QW0128FF 				EQU 			C'F' 			BUFFER MANAGER FORCE WRITE I/O WAIT

 QW0128AC 				DS 			F 			ACE TOKEN OF ACTUAL REQUESTOR.

 [image:]

 A.7.5 Parallelism performance enhancement

 The IFCIDs listed in the following tables were changed to track the effect of changes to the degree of parallelism after parallel system negotiation that occurs because of resource constraints.

 A.7.5.1 Accounting and statistics

 Table A-1 lists the accounting and statistics IFCIDs.

 Table A-1 The QXST control block size is enlarged

 	
 Name

 	
 Description

 	
 QXSTOREDGRP

 	
 Number of parallel group degree be reduced due to system negotiation result of system stress level

 	
 QXSTODGNGRP

 	
 Number of parallel group is degenerated to sequential due to system negotiation result of system stress level

 	
 QXMAXESTIDG

 	
 Maximum parallel group estimated degree. It is the bind time estimated degree based on the cost formula. If the parallel group contains a host variable or parameter marker, then bind time estimates the parallel group degree based on a valid assumption value.

 	
 QXMAXPLANDG

 	
 Maximum parallel group plan degree. It is the ideal parallel group degree obtained at execution time after the host variable or parameter marker value is plug-in and before buffer pool negotiation and system negotiation are performed.

 	
 QXPAROPT

 	
 Serviceability

 A.7.5.2 IFCID 221

 Table A-2 lists IFCID 221 details.

 Table A-2 IFCID221

 	
 Name

 	
 Description

 	
 QW0221STOLEV

 	
 Serviceability

 	
 QW0221STOMAP

 	
 Serviceability

 A.7.5.3 IFCID 225

 Table A-3 lists IFCIS 225 details.

 Table A-3 IFCID225

 	
 Name

 	
 Description

 	
 QW0225_RS

 	
 Serviceability

 A.7.5.4 IFCID 316

 Table A-4 lists IFCID 316 details.

 Table A-4 IFCID316, The QW0316 control block size is enlarged.

 	
 Name

 	
 Description

 	
 QW0316AVGESTI

 	
 Average of parallel group estimated degree. Estimated degree is the bind time estimated parallel group degree based on the cost formula. If the parallel group contains a host variable or parameter marker, then bind time estimates the parallel group degree based on a valid assumption value.

 	
 QX0316AVGPLAN

 	
 Average of parallel group plan degree. Plan degree is the ideal parallel group degree obtained at execution time after the host variable or parameter marker value is plug-in and before buffer pool negotiation and system negotiation are performed.

 	
 QW0316AVGACT

 	
 Average of parallel group actual degree. The actual degree is obtained at execution time after consider the buffer pool negotiation and system negotiation.

 A.7.5.5 IFCID 401

 Table A-5 lists IFCID 401 details.

 Table A-5 IFCID401, The QW0401 control block size is enlarged.

 	
 Name

 	
 Description

 	
 QW0401AVGESTI

 	
 Average of parallel group estimated degree. Estimated degree is the bind time estimated parallel group degree based on the cost formula. If the parallel group contains a host variable or parameter marker, then bind time estimates the parallel group degree based on a valid assumption value.

 	
 QW0401AVGPLAN

 	
 Average of parallel group plan degree. Plan degree is the ideal parallel group degree obtained at execution time after the host variable or parameter marker value is plug-in and before buffer pool negotiation and system negotiation are performed.

 	
 QW0401AVGACT

 	
 Average of parallel group actual degree. The actual degree is obtained at execution time after consider the buffer pool negotiation and system negotiation.

 A.7.6 Temporal support

 The following IFCIDs were changed to indicate the impacts of the CURRENT TEMPORAL BUSINESS_TIME special register, the CURRENT TEMPORAL SYSTEM_TIME special register, and the SYSIBMADM.GET_ARCHIVE built-in global variable:

 •0053

 •0058

 •0059

 •0060

 •0061

 •0064

 •0065

 •0066

 •0401

 See Table A-6.

 Table A-6 QW00xxER

 	
 Name

 	
 Description

 	
 QW00xxER

 	
 SB The query contains implicit query transformation driven by the CURRENT TEMPORAL SYSTEM_TIME special register and the CURRENT TEMPORAL BUSINESS_TIME special register.

 Blank The query does not contain implicit query transformation driven by the SYSIBMADM.GET_ARCHIVE built-in global variable, the CURRENT TEMPORAL BUSINESS_TIME special register, or the CURRENT TEMPORAL SYSTEM_TIME special register.

 A.7.7 IFCID 002/225: Arrays support

 Example A-21 lists the changes to IFCID 002 and 225 to support arrays.

 Example A-21 Changes IFCID 002/225 to record arrays support

 [image:]

 IFC ID 0002 IS RESERVED FOR DATA BASE STATISTICS RECORDS AND IS

 MAPPED BY MACRO DSNDQWST SUPTYPE=1

 ! IFCID225 summarizes system storage usage

 QW0225AR DS D ! Total array variable storage *

 [image:]

 A.7.8 IFCID 003/239: Autonomous transaction support

 Example A-22 lists the changes to IFCID 003 and 239 to support autonomous transactions.

 Example A-22 Changes IFCID 003/239 to record autonomous transactions

 [image:]

 IFC ID 0003 IS RESERVED FOR ACCOUNTING RECORDS AND IS

 MAPPED BY MACRO DSNDQWAS

 * IFCID 0239 FOR RMID 26 *

 * THIS RECORD IS WRITTEN WHEN A PACKAGE/DBRM ACCOUNTING INFORMATION*

 * IS AVAILABLE FOR MORE THAN 10 PACKAGES/DBRMs. *

 * SEE DSNDQWAS FOR THE MAPPING OF IFCID 239. *

 [image:]

 A.7.9 IFCID 366: Application incompatibility

 To reference the new longer lengths values, the application (package) bind option, APPLCOMPAT must specify the value, V11R1. If the application APPLCOMPAT bind option does not specify V11R1 (for example, V10R1) the application continues to reference the shorter (truncated) client information values.

 If the application APPLCOMPAT bind option is not set, the value of the APPLCOMPAT bind option is defaulted to the DB2 subsystem parameter APPLCOMPAT (DSN6PRM) value.

 	
 Note: Applications that wants to retrieve the new longer lengths client information special register values (for example, using the SET host-variable SQL statement) need to ensure the target (receiving) host variable is defined to be large enough to receive the maximum length of the new longer length values. If this is not performed, your application receives a warning message. An IFCID366 trace record is also recorded to indicate such incompatibility has been detected by DB2.

 Example A-23 lists the changes to IFCID 366 to record application incompatibility.

 Example A-23 Changes IFCID 366 to record application incompatibility

 [image:]

 ** IFCID 0366 is a serviceability trace. It can be used to identify *

 ** applications that are affected by incompatible changes. *

 ** The QW0366FN field indicates the type of incompatible change: *

 ** *

 ** QW0366FN = 1 *

 **

 ** QW0366FN = 2 *

 ** *

 ** QW0366FN = 3

 ** *

 ** QW0366FN = 1101 *

 ** Indicates that the INSERT statement that inserts into an XML *

 ** column without XMLDOCUMENT function has been processed (which *

 ** should result in SQLCODE -20345 when run on DB2 release prior *

 ** to DB2 11). Starting with DB2 11, SQL error will no longer be *

 ** issued. *

 ** Application will no longer recieve SQLCODE for this statement. *

 ** *

 ** QW0366FN = 1102 *

 ** Indicates that V10 XPath evaluation behavior was in effect which*

 ** resulted in an error. For instance, a data type conversion error*

 ** could have occured for a predicate that would otherwise be *

 ** evaluated to false. tarting from DB2 11,such "irrelevant" errors*

 ** might be suppressed so an application might no longer recieve *

 ** the SQLCODE for this statement. *

 ** *

 ** QW0366FN = 1103 *

 ** Indicates that a dynamic SQL uses the ASUTime limit that has *

 ** been set for the entire thread for RLF reactive governing. *

 ** For instance, when a dynamic SQL is processed from package A, *

 ** if the ASUTime limit is already set during other dynamic SQL *

 ** processing from package B in the same thread, the SQL from *

 ** package A will use the ASUTime limit set during the SQL *

 ** processing from package B.Stating with DB2 11, dynamic SQLs from*

 ** multiple packages will use the ASUTime limit that is set *

 ** considering its own package information. *

 ** *

 ** QW0366FN = 1104, 1105, 1106, 1107 *

 ** Indicates that CLIENT special register (CLIENT_USERID, *

 ** CLIENT_WRKSTNNAME, CLIENT_APPLNAME, CLIENT_ACCTNG) has been set *

 ** to a value that is longer than what is supported prior to DB2 11*

 ** A shorter value has been used instead. *

 ** *

 ** QW0366FN = 1108 *

 ** Indicates that CLIENT special register (CLIENT_USERID, *

 ** CLIENT_WRKSTNNAME, CLIENT_APPLNAME, CLIENT_ACCTNG) has been set *

 ** to a value that is longer than what is supported prior to DB2 11*

 ** Truncated values upto the supported lengths prior to DB2 11 have*

 ** been used for RLF table search instead. *

 ** *

 ** QW0366FN = 1109 *

 ** Indicates that CAST(string AS TIMESTAMP) was processed for the *

 ** input string of length 8 and input was treated as a store clock *

 ** value (or input string was of length 13 and was treated as a *

 ** GENERATE_UNIQUE value). This behavior is incorrect for a CAST *

 ** and is valid for TIMESTAMP built-in function only. This behavior*

 ** is being corrected in DB2 11 so that input to CAST is not *

 ** treated as a store clock value nor GENERATE_UNIQUE. *

 ** *

 ** QW0366FN = 1110 *

 ** Indicates the integer argument of SPACE function is greater *

 ** than 32764. *

 ** *

 ** QW0366FN = 1111 *

 ** Indicates the optional integer argument of VARCHAR function *

 ** has a value greater than 32764. *

 QW0366 DSECT

 QW0366FN DS F Incompatible change indicator

 *............................QW0366FN CONSTANTS........................

 C_QW0366_CHAR EQU 0001 V9 SYSIBM.CHAR(decimal-expr) function

 C_QW0366_VCHAR EQU 0002 V9 SYSIBM.VARCHAR(decimal-expr) function

 * CAST (decimal as VARCHAR or CHAR)

 C_QW0366_TMS EQU 0003 Unsupported character string

 * rpresentation of a timestamp

 C_QW0366_XMLINS EQU 1101 Insert into an XML column without

 * XMLDOCUMENT function

 C_QW0366_XPATHERR EQU 1102 XPath evaluation error

 C_QW0366_RLF EQU 1103 RLF governing

 C_QW0366_CLIENTAC EQU 1104 Long CLIENT_ACCTNG Special Reg value

 C_QW0366_CLIENTAP EQU 1105 Long CLIENT_APPLNAME Special Reg value

 C_QW0366_CLIENTUS EQU 1106 Long CLIENT_USERID Special Reg value

 C_QW0366_CLIENTWK EQU 1107 Long CLIENT_WRKSTNNAME Special Reg value

 C_QW0366_CLIENTSR EQU 1108 Long client Special Reg value for RLF

 C_QW0366_TMSCAST EQU 1109 CAST(string AS TIMESTAMP)

 C_QW0366_SPACEINT EQU 1110 SPACE integer argument greater than 32764

 C_QW0366_VCHARINT EQU 1111 VARCHAR int argument greater than 32764

 *..

 QW0366SN DS F Statement number of the query

 QW0366PL DS CL8 Plan name for this query

 QW0366TS DS CL8 Timestamp for this query

 QW0366SI DS CL8 Statement Identifier

 QW0366TY DS XL2 Statement information

 *............................QW0366TY CONSTANTS........................

 C_QW0366DYN EQU X'8000' Statement is dynamic

 C_QW0366STC EQU X'4000' Statement is static

 *..

 QW0366SE DS H Section number

 QW0366PC_Off DS H Offset from QW0366 to Package

 * Collection ID

 QW0366PN_Off DS H Offset from QW0366 to

 * Program name

 QW0366VER DS 0C Package Version

 QW0366VL DS H Version length

 QW0366VN DS CL64 Version name

 *

 QW0366PC_D DSECT

 QW0366PC_Len DS H Length of Package Collection ID

 QW0366PC_Var DS 0CL128 %U Package Collection ID

 *

 QW0366PN_D DSECT

 QW0366PN_Len DS H Length of Program Name

 QW0366PN_Var DS 0CL128 %U Program Name

 *

 [image:]

 A.7.10 IFCID 230/256: Castout enhancements

 Example A-24 lists the changes to IFCID 230 and 256 to record class castout queue threshold values, based on the number of pages.

 Example A-24 Changes IFCID 230/256 to record castout queue threshold

 [image:]

 * IFCID 0256 FOR RMID 10 TO RECORD THE EFFECTS OF AN ISSUED

 * DB2 -ALTER GROUPBUFFERPOOL COMMAND.

 *

 QW0256 DSECT IFCID(QWHS0256)

 QW0256GB DS CL8 GROUP BUFFER POOL NAME

 QW0256OR DS CL6 OLD DIRECTORY TO DATA RATIO VALUE

 QW0256OC DS XL1 OLD CLASST VALUE

 QW0256OG DS XL1 OLD GBPOOLT VALUE

 QW0256OK DS XL4 OLD GBPCHKPT VALUE

 QW0256NR DS CL6 NEW DIRECTORY TO DATA RATIO VALUE

 QW0256NC DS XL1 NEW CLASST VALUE

 QW0256NG DS XL1 NEW GBPOOLT VALUE

 QW0256ON DS XL2 OLD CLASST (BUF-NUM BASED)

 QW0256NN DS XL2 NEW CLASST (BUF-NUM BASED)

 QW0256NK DS XL4 NEW GBPCHKPT VALUE

 QW0256OA DS CL1 OLD AUTOREC SETTING rev code a

 QW0256NA DS CL1 NEW AUTOREC Setting rev code a

 QW0256OB DS CL1 Old GBPCACHE setting

 QW0256NB DS CL1 New GBPCACHE setting

 QW0256AY EQU C'Y' AUTOREC or GBPCACHE (YES)

 QW0256AN EQU C'N' AUTOREC or GBPCACHE (NO)

 QW0256EN DS 0C END OF QW0256

 [image:]

[image:]
[image:]

Summary of relevant maintenance

 With a new version of DB2 reaching general availability, the maintenance stream becomes extremely important. Feedback from early users and development of additional functions cause a flux of APARs that enrich and improve the product code.

 This appendix describes the following recent maintenance for DB2 11 for z/OS:

 •DB2 APARs

 •z/OS APARs

 •OMEGAMON/PE APARs

 These APARs represent a snapshot of the current maintenance at the time of writing. For an up-to-date list, ensure sure that you contact your IBM Service Representative for the most current maintenance at the time of your installation. Also check on IBM RETAIN for the applicability of these APARs to your environment and to verify prerequisites and post-requisites.

 Use the Consolidated Service Test (CST) as the base for service as described at:

 http://www.ibm.com/systems/z/os/zos/support/servicetest/

 DB2 11 is now included in the RSU.

 The most recent planned quarterly RSU is CST1Q14 (RSU1403), dated April 4 2014 for DB2 10 and DB2 11. This addendum is based on all service through the end of December 2013 not already marked RSU, PE resolution and HIPER/Security/Integrity/Pervasive PTFs and their associated requisites and supersedes through the end of February 2014.) as described at.

 http://www.ibm.com/systems/resources/RSU1312.pdf

 B.1 DB2 APARs

 Table B-1 lists the APARs that provide functional and performance enhancements to DB2 11 for z/OS. This list is not and cannot be exhaustive; check RETAIN and the DB2 website for a complete list.

 Table B-1 DB2 10 current function and performance related APARs

 	
 APAR #

 	
 Area

 	
 Text

 	
 PTF and notes

 	
 II10817

 	
 Storage

 	
 Info APAR for storage usage error

 	

 	
 II11334

 	
 TCP/IP

 	
 Info APAR for Communication Server

 	

 	
 II14219

 	
 zIIP

 	
 zIIP exploitation support use information

 	

 	
 II14334

 	
 LOBs

 	
 Info APAR to link together all the LOB support delivery APARs

 	

 	
 II14426

 	
 XML

 	
 Info APAR to link together all the XML support delivery APARs

 	

 	
 II14441

 	
 Incorrout PTFs

 	
 Preferred DB2 9 SQL INCORROUT PTFs

 	

 	
 II14587

 	
 Workfile

 	
 DB2 9 and 10 work file recommendations

 	

 	
 II14619

 	
 Migration

 	
 Info APAR for DB2 10 DDF migration

 	

 	
 II14660

 	
 V11 migration

 	
 Info APAR to link together all the migration APARs to V11

 	

 	
 PM31841

 	
 V11 Migration

 	
 Toleration of fall back to V10

 	
 UK96357

 V10

 	
 PM45652

 	
 Migration

 	
 prefix.SDSNLINK lib

 	
 UK74535

 V10

 	
 PM80004

 	
 DDF

 	
 Synchronous Receive

 	
 UK92097

 	
 PM84765

 	
 IRLM

 	
 New option (QWAITER) to QUERYFST request used

 by DB2

 	
 UK92494

 	
 PM85053

 	
 IRLM

 	
 IRLM enhancement for DB2 V11 to suppress unnecessary child lock propagation to the CF lock structure

 	
 UK92783

 	
 PM89117

 	
 V11 Migration

 	
 New functions

 	
 UK95677

 V10

 	
 PM89655

 	
 DSNZPARM

 	
 Restrictions for IXcontrolled TS

 PREVENT_NEW_IXCTRL_PART and PREVENT_ALTERTB_LIMITKEY

 	
 UK98189

 also V10

 	
 PM91565

 	
 Premigration

 DSNTIJPM

 	
 SQLCODE -104

 	
 UK95419

 	
 PM92730

 	
 DSNTIJMV

 	
 Corrections to job for migration

 	
 UK98196

 also V9, V10

 	
 PM93577

 	
 Query in DSNESQ

 	
 DSNTESQ insert INS32 needs to be updated.

 	
 UK98216

 also V9, V10

 	
 PM94681

 	
 ADMIN_INFO_SQL

 	
 Collection features, enhancements, and service

 	
 OPEN

 	
 PM94715

 	
 ENFM

 	
 Improve step ENFM001. Systems with a large number of rows in SYSIBM.SYSCOLUMNS the DSNTIJEN step ENFM0001 can take longer to complete.

 	
 UK97335

 	
 PM95294

 	
 ALTER

 	
 Reduce sync getpageS against DSNTPX01 index of SYSCOLDISTSTATS table.

 	
 UK97912

 also V10

 	
 PM95929

 	
 Thread break in

 	
 The need to break in for BIND/DDL activity - Early code

 	
 UI13368

 also V10

 	
 PM96001

 	
 Thread break in

 	
 Toleration code for all V11 members

 	
 UI12985

 also V10

 	
 PM96004

 	
 Thread break in

 	
 Enabling code

 	
 UI12985

 also V10

 B.2 z/OS APARs

 Table B-2 lists the APARs that provide additional enhancements for z/OS. This list is not and cannot be exhaustive; check RETAIN and the DB2 website for a complete list.

 Table B-2 z/OS DB2-related APARs

 	
 APAR #

 	
 Area

 	
 Text

 	
 PTF and notes

 	
 OA37550

 	
 Coupling Facility

 	
 Performance improvements are needed for coupling facility cache structures to avoid flooding the coupling facility cache with changed data and avoid excessive delays and backlogs for cast-out processing.

 	
 UA66419

 	
 OA39392

 	
 CALLRTM TYPE=SRBTERM

 	
 Terminate a pre-emptable SRB in the -CANCEL THREAD with FORCE option

 	
 UA66823

 	
 OA40967

 	
 RSM Enablement Offering

 	
 2 GB frame support

 	
 UA68169

 	
 OA41617

 	
 IGX00031/IGX00032 modules

 	
 DFSMS control block accessing support for NON_VSAM_XTIOT = YES in DEVSUPxx

 	
 UA69320

 B.3 OMEGAMON PE APARs

 Table B-3 lists the APARs that provide additional enhancements for IBM Tivoli OMEGAMON XE for DB2 PE on z/OS V5.2.0, PID 5655-W37. This list is not and cannot be exhaustive; check RETAIN and the DB2 tools website for a complete list.

 Table B-3 OMEGAMON PE GA and DB2 related APARs

 	
 APAR #

 	
 Area

 	
 Text

 	
 PTF and notes

 	
 II14438

 	

 	
 Info APAR for known issues causing high CPU utilization.

 	

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks publications

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 •DB2 10 for z/OS Technical Overview, SG24-7892

 •Extremely pureXML in DB2 10 for z/OS, SG24-7915

 •DB2 for z/OS and List Prefetch Optimizer, REDP-4862

 •Subsystem and Transaction Monitoring and Tuning with DB2 11 for z/OS, SG24-8182

 You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Other publications

 These publications are also relevant as further information sources:

 •DB2 11 for z/OS Administration Guide, SC19-4050

 •DB2 11 for z/OS Application Programming and SQL Guide, SC19-4051

 •DB2 11 for z/OS Application Programming Guide and Reference for Java, SC19-4052

 •DB2 11 for z/OS Codes, GC19-4053

 •DB2 11 for z/OS Command Reference, SC19-4054

 •DB2 11 for z/OS Data Sharing: Planning and Administration, SC19-4055

 •DB2 11 for z/OS Installation and Migration, SC19-4056

 •DB2 11 for z/OS Internationalization Guide, SC19-4057

 •Introduction to DB2 for z/OS, SC19-4058

 •DB2 11 for z/OS DB2 11 for z/OS IRLM Messages and Codes for IMS and DB2 for z/OS, GC19-2666

 •DB2 11 for z/OS Managing Performance, SC19-4060

 •DB2 11 for z/OS Managing Security, SC19-4061

 •DB2 11 for z/OS Messages, GC19-4062

 •DB2 11 for z/OS ODBC Guide and Reference, SC19-4063

 •DB2 11 for z/OS pureXML Guide, SC19-4064

 •DB2 11 for z/OS RACF Access Control Module Guide, SC19-4065

 •DB2 11 for z/OS SQL Reference, SC19-4066

 •DB2 11 for z/OS Utility Guide and Reference, SC19-4067

 •DB2 11 for z/OS What's New?, GC19-4068

 •DB2 11 for z/OS Diagnosis Guide and Reference, LY37-3222

 Online resources

 These websites are also relevant as further information sources:

 •DD2 11 for z/OS

 http://www-01.ibm.com/software/data/db2/zos/family/db211/

 •DB2 Information Management Tools and DB2 11 for z/OS Compatibility

 http://www-01.ibm.com/support/docview.wss?uid=swg21609691

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 IBM DB2 11 for z/OS Technical Overview

 IBM DB2 11 for z/OS Technical Overview

 IBM DB2 11 for z/OS Technical Overview

 IBM DB2 11 for z/OS Technical Overview

 IBM DB2 11 for z/OS Technical Overview

 IBM DB2 11 for z/OS Technical Overview

 IBM DB2 11 for z/OS Technical Overview

 Understand the synergy with System z platform

Enhance applications and avoid incompatibilities

Run business analytics and scoring adapter

 IBM DB2 Version 11.1 for z/OS (DB2 11 for z/OS or just DB2 11 throughout this book) is the fifteenth release of DB2 for MVS. It brings performance and synergy with the new System z hardware and new opportunities to drive business value in the following areas:

 •Unmatched reliability, availability, and scalability

  –	Improved data sharing performance and efficiency

  –	Even less downtime by removing growth limitations

  –	Simplified management, improved autonomics, and reduce planned outages with more online schema changes and utilities improvements

 •Save money, save time

  –	Aggressive CPU reduction goals

  –	Additional utilities performance and CPU improvements

  –	Save time and resources with new autonomic and application development capabilities

 •Simpler, faster migration

  –	SQL compatibility, divorce system migration from application migration

  –	Access path stability improvements

  –	Better application performance with SQL and XML enhancements

 •Enhanced business analytics

  –	Faster, more efficient performance for query workloads

  –	Accelerator enhancements

  –	More efficient inline database scoring enables predictive analytics

 The DB2 11 environment is available either for brand new installations of DB2, or for migrations from DB2 10 for z/OS subsystems only.

 This IBM Redbooks publication introduces the enhancements made available with DB2 11 for z/OS. The contents help database administrators understand the new functions and performance enhancements, start planning for exploiting the key new capabilities, and justify the investment in installing or migrating to DB2 11.

 Back cover

 Acrobat bookmark

OPS/images/8180p01.10.1.2.jpg
Part 1

OPS/images/8180p01.10.1.1.jpg

OPS/images/8180p1ch03.12.1.08.jpg

OPS/images/8180p1ch03.12.1.09.jpg

OPS/images/8180p1ch03.12.1.06.jpg

OPS/images/8180p1ch03.12.1.07.jpg

OPS/images/8180p1ch03.12.1.04.jpg
Ten byte RBA:

2bytes
00000000123456789AB CDEFL
[I
New 4 bytes 0ld 6 bytes
Ten byte LRSN for new log record:
Supports over 30000 years

00/123456789AB CDEF1000000
1

New1

bye 0ld 6 bytes New 3 bytes

Ten byte LRSN if generated by a utilty for an existing record :

00[123456789AB CDEF1FFFFFF | Supports over 30000 years
I
T

New 1

byte 0ld 6 bytes New 3 bytes

OPS/images/8180p1ch03.12.1.05.jpg

OPS/images/8180p1ch03.12.1.02.jpg

OPS/images/8180p1ch03.12.1.03.jpg
Enable data sharing on: August 05, 2013 at 10:00:00
Store Clock value for this time is: x'CBC40A7D1C80’ *

Assumption: Initial member operates at x'CFFFFFFFFFFF’
Calculate delta: x'D00000000000" ~ X CBC40A7DIC80’

EE) RSN delta = X43BF582E380

mm) instead of XCBCA0A7D1CSO; the log record uses
LRSN x'D43BFS82E380, which represents.
April 4, 2018 at 16:49:54, which makes it operate
‘in the future

OPS/images/8180p1ch03.12.1.01.jpg

OPS/images/8180p1ch02.11.1.14.jpg

OPS/images/8180p1ch02.11.1.13.jpg

OPS/images/8180p1ch02.11.1.12.jpg

OPS/images/8180p1ch02.11.1.11.jpg

OPS/images/8180p1ch02.11.1.10.jpg

OPS/images/8180p05.25.1.2.jpg
Part 4

OPS/images/8180p05.25.1.1.jpg

OPS/images/8180ax02.27.1.2.jpg

OPS/images/8180ax02.27.1.1.jpg

OPS/images/8180ax01.26.1.51.jpg

OPS/images/8180ax01.26.1.50.jpg

OPS/images/8180ax01.26.1.49.jpg

OPS/images/8180ax01.26.1.48.jpg

OPS/images/8180ax01.26.1.47.jpg

OPS/images/8180ax01.26.1.46.jpg

OPS/images/8180ax01.26.1.45.jpg

OPS/images/8180ax01.26.1.44.jpg

OPS/images/8180ax01.26.1.43.jpg

OPS/images/8180ax01.26.1.42.jpg

OPS/images/8180ax01.26.1.41.jpg

OPS/images/8180ax01.26.1.40.jpg

OPS/images/8180ax01.26.1.39.jpg

OPS/images/8180ax01.26.1.38.jpg

OPS/images/8180ax01.26.1.37.jpg

OPS/images/8180ax01.26.1.36.jpg

OPS/images/8180ax01.26.1.35.jpg

OPS/images/8180ax01.26.1.34.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/8180p03.20.1.2.jpg
Part 3

OPS/images/8180p03.20.1.1.jpg

OPS/images/8180p1ch02.11.1.09.jpg

OPS/images/8180p1ch03.12.1.38.jpg
i

as-result-table

o DECLARE GLOBAL TENPORARY TABLE—¢abie-i (=—{ cotum-definition [— g
L[:m_':amm copy-opt ions

| |

SCIL
£BCDIC
NICODE-

Focsit
[COmIT DELETE Rovs—)

t: COIT PRESERIE ks |
comi DR0p TBLE—
106623

o ROLLBACK DELETE RN

or Lo6sED

o ROLLBACK PRESERVE ROW:

OPS/images/8180p1ch03.12.1.37.jpg
System parameter OBJECT_CREATE_FORMAT = BASIC

RECOVER

T5TO
CREATETS copyTs REORGTS
(ExTeNDED TOFCL

T I I I
A < @ -

EXTENDED ~ RC4,
Format, TS FORMAT BASIC,
TTYPE=E IX in RBDP

OPS/images/8180p1ch02.11.1.07.jpg

OPS/images/8180p1ch03.12.1.36.jpg

OPS/images/8180p1ch02.11.1.08.jpg

OPS/images/8180p1ch03.12.1.35.jpg

OPS/images/8180p1ch02.11.1.05.jpg

OPS/images/8180p1ch03.12.1.34.jpg

OPS/images/8180p1ch02.11.1.06.jpg

OPS/images/8180p1ch03.12.1.33.jpg

OPS/images/8180p1ch02.11.1.03.jpg

OPS/images/8180p1ch03.12.1.32.jpg

OPS/images/8180p1ch02.11.1.04.jpg

OPS/images/8180p1ch03.12.1.31.jpg

OPS/images/8180p1ch03.12.1.39.jpg

OPS/images/8180p1ch02.11.1.01.jpg

OPS/images/8180p1ch02.11.1.02.jpg

OPS/images/8180p1ch03.12.1.40.jpg

OPS/images/8180ax01.26.1.11.jpg

OPS/images/8180ax01.26.1.10.jpg

OPS/images/8180p1ch04.13.1.07.jpg

OPS/images/8180p1ch04.13.1.08.jpg

OPS/images/8180p1ch04.13.1.05.jpg

OPS/images/8180p1ch04.13.1.06.jpg

OPS/images/8180p1ch04.13.1.03.jpg
cree;
CRETS) purents

2 entriesscded to SYSIBMLSYSOBDS:
OBID 1 - OBTYPE = L for OBDFILE)
08ID 2 - 0BDTYPE = P (for OBDPSET)

creTE;
SEGSZES! QuESCETS ReoRa TS

0BID 1~ OBDTYPE = L for OBDFLLE)
0BID 2 - OBDTYPE = P (for ORDPSET)

Add 2 more enties
to5vs0BDS

RECOVERTS ATERTS
Tocuiesce REORG TS SESSZES? geong s

TSisseto Rea
RWAREOR TsinRw

|
J J L

4 nca
ot 1 waAron T

v

100 oo ate
Stoncoo. B

OPS/images/8180p1ch04.13.1.04.jpg

OPS/images/8180p1ch04.13.1.01.jpg

OPS/images/8180p1ch04.13.1.02.jpg

OPS/images/8180p1ch01.09.1.2.jpg

OPS/images/8180p1ch01.09.1.1.jpg

OPS/images/8180ax01.26.1.33.jpg

OPS/images/8180ax01.26.1.32.jpg

OPS/images/8180ax01.26.1.31.jpg

OPS/images/8180ax01.26.1.30.jpg

OPS/images/8180ax01.26.1.29.jpg

OPS/images/8180ax01.26.1.28.jpg

OPS/images/8180ax01.26.1.27.jpg
Stored Procedure Monitoring

IFCID 497 wilten hera
with all norv-nested
statement DS executed
fi0. the CALL
statement)

‘Connect

cAL
mySP (p1)

IFCID 380 writtan hera
for mySP bogin. Wil
contain 0's for currant

P, specially ongine and

elapsod fimos

DR eEeer|

IFCID 499 writen here
wilh al statement IDs
executed n the SP
(ie., SaL1, S0L2)

>4

IFCID 380 writtan hera
for mySP end. Wil
contain values that can
b compared o the
bagin I FCIDSE0 racord
for mysP

OPS/images/8180ax01.26.1.26.jpg

OPS/images/8180ax01.26.1.25.jpg

OPS/images/8180ax01.26.1.24.jpg

OPS/images/8180ax01.26.1.23.jpg

OPS/images/8180ax01.26.1.22.jpg

OPS/images/8180ax01.26.1.21.jpg

OPS/images/8180ax01.26.1.20.jpg

OPS/images/8180ax01.26.1.19.jpg

OPS/images/8180ax01.26.1.18.jpg

OPS/images/8180ax01.26.1.17.jpg

OPS/images/8180ax01.26.1.16.jpg

OPS/images/8180ax01.26.1.15.jpg

OPS/images/8180ax01.26.1.14.jpg

OPS/images/8180ax01.26.1.13.jpg

OPS/images/8180ax01.26.1.12.jpg

OPS/images/8180ax01.26.1.06.jpg

OPS/images/8180ax01.26.1.05.jpg

OPS/images/8180ax01.26.1.04.jpg

OPS/images/8180ax01.26.1.03.jpg

OPS/images/8180ax01.26.1.02.jpg

OPS/images/8180ax01.26.1.01.jpg

OPS/images/8180ax01.26.1.09.jpg

OPS/images/8180ax01.26.1.08.jpg

OPS/images/8180ax01.26.1.07.jpg

OPS/images/8180p02.15.1.1.jpg

OPS/images/8180p02.15.1.2.jpg
Part 2

OPS/images/8180p1ch03.12.1.27.jpg

OPS/images/8180p1ch03.12.1.26.jpg

OPS/images/8180p1ch03.12.1.25.jpg

OPS/images/8180p1ch03.12.1.24.jpg

OPS/images/8180p1ch03.12.1.23.jpg

OPS/images/8180p1ch03.12.1.22.jpg
System parameter OBJECT_CREATE_FORMAT = EXTENDED

DSN1COPY REPAIR
FCltoTs CATALOG TS
CREATETS copyTs REORGTS d
[e A |
T I I 1 I
RCO, RCO,
BASICFORMAT 1o d
oy RBA_FORMAT=B, RBA_FORMAT=E,

Data format = £

EXTENDED
FORMAT == Mismatch!

Data format = E

OPS/images/8180p1ch03.12.1.21.jpg
System parameter OBJECT_CREATE_FORMAT = BASIC

CREATETs REORGTS CREATEIX REORGTS
| ‘-»E’TE"DED .EXTENDED

T T T T
L 4 L o @

BASIC EXTENDED IXin TS not changed,
Format, ~ Format, BASIC IXin EXTENDED Format,
TIVPE=B TTYPESE Format, ICTYPE W for TS /TTYPEF,

TIVPE=B Noentry for IX

OPS/images/8180p1ch03.12.1.20.jpg

OPS/images/8180p1ch03.12.1.29.jpg

OPS/images/8180p1ch03.12.1.28.jpg

OPS/images/8180p1ch03.12.1.30.jpg

OPS/images/8180p1ch03.12.1.16.jpg

OPS/images/8180p1ch03.12.1.15.jpg

OPS/images/8180p1ch03.12.1.14.jpg

OPS/images/8180p1ch03.12.1.13.jpg

OPS/images/8180p1ch03.12.1.12.jpg

OPS/images/8180p1ch03.12.1.11.jpg

OPS/images/8180p1ch03.12.1.10.jpg

OPS/images/8180p1ch03.12.1.19.jpg

OPS/images/8180p1ch03.12.1.18.jpg

OPS/images/8180p1ch03.12.1.17.jpg

OPS/8180cover.jpg
1BM. Information Management Software

IBM DB2 11 for z/0S
Technical Overview

—
Understand the synergy with System z
platform

Enhance applications and avoid
incompatibilities

Run business analytics and
scoring adapter

Paolo Bruni
Felipe Bortoletto

Ravikumar Kalyanasundaram
Sabine Kaschta

Glenn McGeoch

Cristian Molaro

ibm.com/redbooks e bOOks

