

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page v.

 First Edition (May 2013)

 This edition applies to the following software levels:

 •z/OS Version 1 Release 12 and Release 13

 •IBM 64-bit SDK for z/OS, Java Technology Edition, V6

 •Rational Application Developer V8.0.3 iFix1

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 CICS®

 DB2®

 IBM®

 MVS™

 Rational®

 Redbooks®

 Redbooks (logo)[image:]®

 System z®

 WebSphere®

 z/OS®

 The following terms are trademarks of other companies:

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 Mainframe computers play a central role in the daily operations of many of the worlds largest corporations. Batch processing is still a fundamental, mission-critical component of the workloads that run on the mainframe and a large portion of the workload on IBM® z/OS® systems is processed in batch mode.

 This IBM Redbooks® publication is the second volume in a series of four in which we describe new technologies introduced by IBM to facilitate the use of hybrid batch applications that combine the best aspects of Java and procedural programming languages such as COBOL. This volume specifically focuses on z/OS batch runtime.

 The audience for this book includes IT architects and application developers, with a focus on batch processing on the z/OS platform.

 Authors

 This book was produced by a team of specialists from around the world working at the International Technical Support Organization, Poughkeepsie Center.

 Zaid Faydi is a Software Engineer who is currently Test Manager at CSC in Perth, Australia. Previously he worked at IBM for 6 years. His areas of expertise include z/OS application quality assurance and Java programming.

 Alex Louwe Kooijmans is a Senior Architect at the Financial Services Center of Excellence at IBM Systems and Technology Group. Prior to this position, he spent almost 10 years in the International Technical Support Organization leading IBM Redbooks projects, teaching workshops, and running technical events with a focus on using the IBM mainframe in new ways. Alex also worked as Client Technical Advisor to various banks in the Netherlands and performed several job roles in application development. His current focus is on modernizing core banking systems and the role of IBM’s current mainframe technology.

 Elsie Ramos is a Project Leader at the International Technical Support Organization, Poughkeepsie Center. She has over 30 years of experience in IT, supporting various platforms, including IBM System z® servers.

 Thanks to the following people for their contributions to this project:

 Rich Conway, Michael Schwartz
International Technical Support Organization, Poughkeepsie Center

 Gary Puchkoff
Software Architect, IBM Systems and Technology Group. z/OS New Technology
IBM Poughkeepsie, USA

 Stephen Henkels, Ken Jonas, Ruth Ray
IBM Poughkeepsie, USA

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Modernizing enterprise batch with hybrid Java/COBOL applications

 Mainframe computers play a central role in the daily operations of many of the worlds largest corporations. Although other forms of computing are used extensively in various business capacities, the mainframe occupies a coveted place in today’s e-business environment. In banking, finance, healthcare, insurance, public utilities, government, and a multitude of other public and private enterprises, the mainframe computer continues to form the foundation of modern business.

 Batch processing is still a fundamental, mission-critical component for most companies in every industry. The IBM Redbooks publication, Batch Modernization on z/OS, SG24-7779, describes aspects of modern batch processing and why it might be necessary to change the current batch process to achieve modern business requirements. In this book, we focus specifically on technology introduced by IBM to facilitate the use of hybrid batch applications that combines the best aspects of Java and procedural programming languages such as COBOL.

 In this chapter, we introduce the concept of hybrid batch applications and discuss the benefits of using Java in combination with COBOL. We also introduce the z/OS Batch Runtime, a new z/OS V1.13 base component, which facilitates development and deployment of hybrid Java/COBOL applications without the requirement of having IBM WebSphere®, IBM CICS® or any other container. This provides hybrid COBOL/Java batch applications with the capability to share an IBM DB2® connection and execute transactions as a single unit of work (UOW).

 1.1 What do we mean by a hybrid batch application

 In this book, the term hybrid batch application is used for an application that combines programs written in a procedural language, such as COBOL, with programs written in Java. The reasons for choosing this approach for application development vary depending on the starting point for the development of the application:

 •If the starting point is a traditional z/OS batch application that is written in COBOL, then the reason to make some calls into Java might be to take advantage of the many available off the shelf software solutions that perform tasks such as XML conversion, PDF generation, email, and so on.

 •If the starting point is the development of a modern Java batch application, then there could be reasons to still write new or reuse certain existing routines in COBOL. These reasons might be performance-related issues, or the need to access native resources on z/OS, such as accessing a VSAM data set.

 1.2 Procedural language or Java

 In this section, we highlight the main reasons to choose a particular programming language, and why it might be appropriate to use both a procedural language and Java in the same batch application.

 1.2.1 Benefits of a procedural language

 A significant number of current business applications on the mainframe are written using traditional languages such as Assembler, COBOL, and PL/I. The data serving capabilities of System z provide a reliable foundation for an optimized IT infrastructure as required in today’s business environments. COBOL with its procedural programming model provides a huge strength for processing massive amounts of data. Programming languages such as COBOL provide exactly the functionality that is needed, and in a very efficient way, for massive database and file reads and updates, and this is still what many batch programs are all about. So, if your primary concern is to be able to perform massive database and file access in the fastest and most reliable way possible, then procedural programming languages such as COBOL are the best fit.

 1.2.2 Benefits of Java

 One of the major benefits of Java is its current popularity within the IT industry. This popularity means that there are plentiful skills and resources in the marketplace, which helps to keep development costs down. Third-party vendors produce software packages that can be bought off the shelf and there is also good tooling support. Some functions that are considered challenging to do in a language like COBOL, such as generating PDF documents or sending emails, are easy to do using readily available open source Java packages. Java programs running on z/OS are eligible for offload to a System z Application Assist Processor (zAAP), which can help to reduce the monetary cost of running a workload on z/OS.

 Refer to Batch Modernization on z/OS, SG24-7779 for a broad discussion about the benefits of using Java in an existing z/OS environment.

 1.3 Why hybrid batch applications?

 There are various reasons why it makes good business sense to consider hybrid batch applications. One reason is the need to modernize batch processing while continuing to realize the benefits of the existing, stable, efficient programs that you already have running within your organization. Some other reasons are the availability of skills and access to more functionality.

 1.3.1 Skills

 In the z/OS environments of today, many organizations want to re-engineer existing native z/OS COBOL applications to incorporate Java in order to benefit from its larger developer skill base and its many language features. Companies want to take advantage of the existing Java skills to create new batch applications because they can easily find the people and resources needed to make those applications a success. At the same time, it does not make business sense to rewrite existing COBOL applications. Therefore, there is the need to integrate Java and procedural languages such as COBOL in a seamless manner.

 1.3.2 Reuse of code

 Reuse of code can mean the reuse of existing assets built up over time in your organization, or utilizing a language such as Java to reuse functionality developed by third-party vendors or open source software packages.

 1.3.3 Access to more functionality

 Java packages are available to parse XML, invoke web services, build PDF documents, send emails, and perform many other functions. As organizations attempt to modernize and to provide more of these types of functions to their customers, it makes sense to enhance existing procedural batch applications by exploiting the thriving Java community and thus making the introduction of these technologies as easy as possible.

 Procedural languages such as COBOL are good at manipulating data, reading and writing records from z/OS resources such as VSAM files and relational databases. It might make sense to call out from a modern Java batch application to a COBOL routine to manipulate data and access the z/OS resources that are needed for the batch job.

 1.3.4 Exploiting speciality engines

 CPU-intensive routines can be written in Java to enable them to offload to zAAP processors. zAAP processors have a one time charge pricing model; therefore, by offloading processing to Java and then to a zAAP, the overall MIPS usage of the z/OS machine can be lowered, thus lowering the cost of running a workload.

 1.4 Transition considerations

 When moving to any new technology, a staged approach is recommended, to ensure that any unforeseen challenges have minimal impact on the business. For batch modernization using hybrid batch applications, consider starting with an application that is not on the critical path for the timeline of batch jobs that must complete within a batch window.

 1.4.1 Governance considerations

 This chapter has highlighted some of the reasons it makes sense to build hybrid applications. At the same time, the addition of hybrid applications is likely to introduce additional governance challenges that must be considered, such as the requirement to have both Java and COBOL skills available for application maintenance and problem determination, and build and test processes and tools that encompass both programming languages.

 1.5 Introduction to z/OS batch runtime

 Batch processing on mainframe computers continues to be the cornerstone of many of the worlds largest corporations. Government agencies, the military, and commercial enterprises use COBOL to run their business. Updating COBOL applications today to satisfy new business requirements can be difficult because of the dwindling number of COBOL developers and the limited support by the COBOL compilers and libraries for modern technologies. Fortunately, the IBM Enterprise COBOL for z/OS compiler features COBOL interoperability with Java, allowing developers to replace and extend the functionality of COBOL using Java’s rich features and a global developer population.

 When the benefits of two or more programming languages are combined, the result is called a hybrid application. This extended functionality can increase the complexity and present some domain-specific pitfalls. One such pitfall is the loss of transactional integrity when a unit of work spans different components. For example, a COBOL application issues an UPDATE change to a DB2 table, then invokes Java code that will issue another required UPDATE to the same resource. If the UPDATE in the Java code fails, the COBOL UPDATE will not be rolled back because the two transactions where not defined as a single unit of work.

 Natively, executing as a single transaction across more than one database connection increases the complexity of your code because transaction checking and failure recovery logic must be added.

 To extend a batch database COBOL application with Java functionality and also ensure data integrity, consider using the z/OS Batch Runtime. In a nutshell, this container offers a managed environment in which to execute a hybrid Java/COBOL program as a single unit of work. A single connection to a local database is established at startup and is shared across both the Java and COBOL portions of the program. Commit and rollback services are available to your program to either discard your changes or make them permanent.

 This book provides a detailed discussion of this container. It also covers design considerations and provides a development scenario to illustrate how this container can be used to extend a batch COBOL application with Java functionality using the modern development tooling of IBM Rational® Developer for System z.

[image:]
[image:]

What is z/OS Batch Runtime?

 In this chapter, we discuss the Batch Runtime environment, a new component that was introduced in z/OS V1R13. This component provides a new option for running batch work that is focused on Java. This new platform-neutral programming model, called the z/OS Batch Runtime, is a managed environment for Java that allows interoperability with COBOL. Batch code written to this new standard runs natively on z/OS. Executing DB2 hybrid applications in z/OS Batch Runtime simplifies the code, helps ensure the integrity of your data, and overcomes some common batch pitfalls.

 The z/OS Batch Runtime initializes the environment for COBOL and Java interoperability by doing the following:

 •Setting up the job step under a Resource Recovery Services (RRS) managed global transaction

 •Calling the primary COBOL or Java application after initialization of the environment.

 Refer to Batch Modernization on z/OS, SG24-7779, for further details about z/OS Batch Runtime and the updates in z/OS 1.13 to improve BATCH job processing.

 2.1 Topology

 The topology of the z/OS Batch Runtime is displayed in Figure 2-1. It depicts the following job flow:

 •Submission of the JCL

 •Execution of the BCDBATCH Proc (Java batch application that invokes z/OS Batch Runtime)

 •Instantiation of the z/OS batch container

 •Use of RRS to local DB2

 [image:]

 Figure 2-1 Topology of z/OS Batch Runtime

 The z/OS Batch Runtime provides an environment where your DB2 COBOL and Java applications can share a single database connection. The z/OS Batch Runtime also provides commit/rollback services by leveraging the z/OS Resource Recovery Services (RRS) and the Java Database Connectivity (JDBC) driver.

 2.2 Usage and invocation

 The following sections provide detailed information about how the z/OS Batch Runtime works.

 2.2.1 Invoking the primary application

 The primary application refers to the first or main application that executes in the batch container. The Batch Container is implemented in Java and it installs into the existing path /usr/lpp/bcp. In the z/OS Batch Runtime, a Java batch application BCDBATCH invokes the JZOS launcher to initialize a JVM before calling the primary application. The JZOS launcher is a tool that runs Java applications directly as batch jobs.

 In your JCL, you must specify the Java archive (JAR) and dynamic link library (DLL) files necessary to run your primary application and the z/OS Batch Runtime.

 The z/OS Batch Runtime configuration options are defined in the BCDIN data definition name (DDNAME). To specify the primary application, set the bcd.applicationName option to the name of your application and specify the programming language in bcd.applicationLanguage (Refer to Example 2-1).

 	
 Note: Only COBOL and Java are currently supported in this release.

 2.2.2 Passing arguments

 In this section, we demonstrate how to pass arguments to either COBOL or Java applications.

 •To pass a parameter to your primary COBOL application (up to 100 characters) declare and set the bcd.applicationArgs.1 option as shown in Example 2-1.

 Example 2-1 z/OS Batch Runtime configuration for a COBOL application

 [image:]

 bcd.applicationLanguage=COBOL

 bcd.applicationName=RECMANGR

 bcd.applicationArgs.1=Zaid Faydi

 [image:]

 •To pass a string array to your main Java application method, use the same option and increment the index for each element, as shown in Example 2-2.

 Example 2-2 z/OS Batch Runtime configuration for a Java application

 [image:]

 bcd.applicationLanguage=JAVA

 bcd.applicationName=RecordManager

 bcd.applicationArgs.1=Zaid

 bcd.applicationArgs.2=Faydi

 [image:]

 RecordManager class

 The RecordManager class contains the simple main method shown in Example 2-3.

 Example 2-3 Record Manager main method

 [image:]

 public static void main (String args[]) {

 System.out.println(“Firstname = >” + args[0] + “<”);

 System.out.println(“Surname = >” + args[1] + “<”);

 }

 [image:]

 Executing the RecordManager produces the output shown in Example 2-4.

 Example 2-4 RecordManager execution output

 [image:]

 Firstname = >Zaid<

 Surname = >Faydi<

 [image:]

 Exceptions

 If you reference an index that does not exist in the array, an exception occurs which terminates the container with return code 12. For further details, refer to “Handling return codes and Java exceptions” on page 9.

 If the bcd.applicationArgs.2 option is omitted, an ArrayIndexOutOfBoundsException occurs as shown in Example 2-5. This happens because a single element String array is passed to the RecordClass main method when it references the first and second elements.

 Example 2-5 Exception occurs due to missing option

 [image:]

 BCD0102E Exception occurred: java.lang.reflect.InvocationTargetException

 ...

 Caused by: java.lang.ArrayIndexOutOfBoundsException: Array index out of range: 1

 at RecordManager.main(RecordManager.java:4)

 [image:]

 If the bcd.applicationArgs.2 option is declared without a value, as illustrated in Example 2-6, then an empty string is passed.

 Example 2-6 applicationArgs without a value

 [image:]

 bcd.applicationLanguage=JAVA

 bcd.applicationName=RecordManager

 bcd.applicationArgs.1=Zaid

 bcd.applicationArgs.2=

 [image:]

 An empty string produces the output shown in Example 2-7.

 Example 2-7 Output when an empty string is passed

 [image:]

 Firstname = >Zaid<

 Surname = ><

 [image:]

 	
 Note: The bcd.applicationArgs option can be omitted from the JCL without affecting the application or the run time if no references are made to the application arguments.

 2.2.3 Viewing application and container output

 The following is a list of the z/OS Batch Runtime JES output with a description of what each data definition (DDNAME) shows:

 SYSOUT	Java Virtual Machine (JVM) output and COBOL DISPLAY output

 STDOUT	Java console output (System.out) from applications

 STDERR	Java error output (System.err) from both application and container

 BCDOUT	z/OS Batch Runtime output

 BCDTRACE	z/OS Batch Runtime trace output

 2.2.4 Handling return codes and Java exceptions

 The z/OS Batch Runtime can terminate with one of the following codes:

 00	Denotes successful processing.

 08	Primary application returns a code greater than 0.

 12	Could not launch the primary application or an unhandled abend or exception has occurred.

 Return code and exception handling by the primary application is important to ensure an accurate representation of execution. Both need to be programmatically implemented and taken into consideration when designing hybrid applications. The primary application decides the final return code to send based on its own processing and the values returned from the applications it called.

 Generally, the highest return code is cascaded to the primary application and returned. For example, a COBOL application that calls a Java method that returns an integer value needs to move this value to the return-code register if it is higher than the current return-code value. If the Java return value is a boolean and denotes the success of execution, then one possible implementation is to set the COBOL return code register to 12 only if the value is false.

 Failure to handle return values from other components returns the value of the return-code register upon completion of a COBOL primary application, which in some cases might not reflect the overall execution of the application.

 If the called Java method has an exception during processing that the COBOL primary application does not handle, then the container terminates with a return code of 12. Not all exceptions warrant a return code of 12; therefore, handling them appropriately is essential. It requires the primary application to decide whether an exception should cause the container to return a 0 or an 8. Despite that an exception occurred, the action was successful, so a return code of 0 can be returned, as well as a log message to warn about the cause of the exception.

 Example 2-8 provides a simple code snippet of a COBOL application that handles the return value of a Java method and checks to see if an exception has occurred.

 Example 2-8 Sample code to handle return code and exceptions from Java

 [image:]

 * Calling the returnRC Java method

 DISPLAY 'COBOL: Calling returnRC with parameter' INPUT-VALUE

 INVOKE DemoJava "returnRC"

 USING BY VALUE Parameter

 RETURNING RC

 IF RC > RETURN-CODE THEN

 MOVE RC TO RETURN-CODE.

 PERFORM EXCEPTION-CHECK.

 GOBACK.

 MAIN-FINISH.

 * Checks if an Exception has occurred

 EXCEPTION-CHECK.

 CALL ExceptionOccurred

 USING BY VALUE JNIEnvPtr

 RETURNING JavaException

 IF JavaException NOT = NULL THEN

 CALL ExceptionClear

 USING BY VALUE JNIEnvPtr

 DISPLAY "An Exception was caught from Java"

 ELSE

 DISPLAY "No Exception caught".

 GOBACK.

 [image:]

 2.2.5 Commit rollback services

 The z/OS Batch Runtime uses the two-phase commit protocol to coordinate whether to commit or roll back (abort) a transaction.

 Commit	A command that makes changes to a database permanent

 Transaction	A collection of changes between successive commit commands

 Rollback	A command that cancels the collection of changes since the last commit command call (transaction)

 Rather than implementing your own two-phase commit protocol in your hybrid applications, you can exploit the resource managers provided by the z/OS Resource Recovery Services (RRS). RRS is a general global sync point manager, and a component of z/OS that allows applications to guarantee that data changes have been made or backed out of a resource, such as a DB2 database.

 The Java Database Connection (JDBC) is a resource manager that exploits RRS to read and change database data, and take actions such as committing or backing out changes.

 The z/OS Batch Runtime implements RRS and JDBC calls to provide your applications with helper methods to simplify the usage of commit rollback. The commit and rollback methods reside in the com.ibm.batch.spi.UserControlledTransactionHelper. The use of these helper methods is illustrated in “End-to-end development scenario” on page 17.

 2.2.6 Terminating managed applications

 When the primary application is invoked, it runs on the same thread/task control blocks (TCB) as the z/OS Batch Runtime. Subsequent calls to other applications also run on the same thread/TCB. The Java System.exit method and COBOL STOP RUN must therefore not be used in your hybrid application because it will kill the thread/TCB and terminate the batch container.

 2.2.7 Sharing a DB2 connection

 A special mode of the JDBC type 2 (local) connectivity in conjunction with RRS is used to identify z/OS Batch Runtime transactions. When a database connection request is made from an application, it is detected and runs via the database attachment created at startup. A single DB2 attachment is shared when a single database connection is established by the batch container at startup and is used by applications when they communicate with the database. Only one single DB2 resource attachment is created and used by all the applications in the run time; therefore, only one local DB2 database is supported.

 	
 Note: Only local DB2 databases are supported in this release because applications and DB2 resources must exist on the same z/OS image.

 A new thread or TCB created that executes a database transaction is not identified as a z/OS Batch Runtime transaction. A new attachment is created and any transaction executed is out of scope of the global commit/rollback services that the container provides (via RRS and JDBC). We therefore discourage executing multi-threaded database applications in this container.

 2.2.8 Binding COBOL

 z/OS Batch Runtime binds COBOL applications to a default JDBC collection of packages called NULLID. You can include your own packages by using the IBM Data Server Driver for JDBC Ddb2.jcc.pkList configuration. Example 2-9 demonstrates how to concatenate the package BANK to the package list in your run JCL.

 Example 2-9 Concatenate package in JCL

 [image:]

 IJO="$IJO -Ddb2.jcc.ssid=DB0V -Ddb2.jcc.pkList=BANK.*,NULLID.*"

 [image:]

 Cleanup processing

 If the application terminates with an unhandled exception or an abend, then the z/OS Batch Runtime rolls back all the outstanding database changes. Otherwise, it commits them regardless of the return code.

 2.3 Required software

 The following software is required to run z/OS Batch Runtime:

 •IBM 31-bit SDK for z/OS, Java Technology Edition, V6.0.1(5655-R31)

 •Enterprise COBOL version 4.2 and later

 •One of the following versions and levels of DB2:

  –	DB2 V9 with PTF UK62190 for JDBC 3.0 specification level, or PTF UK62191for JDBC 4.0 specification level

  –	DB2 V10 with PTF UK62141 for JDBC 3.0 specification level, or PTF UK62145 for JDBC 4.0 specification level

 2.4 Invoking z/OS Batch Runtime

 z/OS Batch Runtime is invoked through a batch JCL. BCDPROC is the batch container JCL procedure. A sample JCL BCDPROC is shown in Example 2-10.

 Example 2-10 BCDPROC procedure

 [image:]

 //BCDPROC PROC VERSION='61', JVMLDM version: 61 (Java 6.0.1 31bit)

 // LOGLVL='+I', Debug level: +I(info) +T(trc)

 // LEPARM='' Language Environment parms

 //*

 //***

 //* *

 //* Proprietary Statement: *

 //* *

 //* Licensed Materials - Property of IBM *

 //* 5694-A01 *

 //* Copyright IBM Corp. 2011. *

 //* *

 //* Status = HBB7780 *

 //* *

 //* Component = z/OS Batch Runtime (SC1BC) *

 //* *

 //* EXTERNAL CLASSIFICATION = OTHER *

 //* END OF EXTERNAL CLASSIFICATION: *

 //* *

 //* Sample procedure JCL to invoke z/OS Batch Runtime *

 //* *

 //* Notes: *

 //* *

 //* 1. Override the VERSION symbolic parameter in your JCL *

 //* to match the level of the Java SDK you are running. *

 //* *

 //* VERSION=61 Java SDK 6.0.1 (31 bit) *

 //* *

 //* 2. Override the LOGLVL symbolic parameter to control *

 //* the messages issued by the jZOS Java launcher. *

 //* *

 //* Use the +T option when reporting problems to IBM or *

 //* to diagnose problems in the STDENV script. *

 //* *

 //* 3. Override the LEPARM symbolic parameter to add any *

 //* application specific language environment options *

 //* needed. *

 //* *

 //* Change History = *

 //* *

 //* $L0=BATCH,HBB7780,100324,KDKJ: *

 //* *

 //* *

 //***

 //JAVA EXEC PGM=JVMLDM&VERSION,REGION=0M,

 // PARM='&LEPARM/&LOGLVL'

 //*

 //SYSPRINT DD SYSOUT=* System stdout

 //SYSOUT DD SYSOUT=* System stderr

 //STDOUT DD SYSOUT=* Java System.out

 //STDERR DD SYSOUT=* Java System.err

 //BCDOUT DD SYSOUT=* Batch container messages

 //BCDTRACE DD SYSOUT=* Batch container trace

 //*

 //CEEDUMP DD SYSOUT=*

 //*[image:]

 The JCL that invokes z/OS Batch Runtime invokes the job BCDBATCH. BCDBATCH, in turn, invokes the JZOS launcher to initialize the Java environment.

 Because BCDBATCH invokes JZOS, one level of the JZOS launcher exists for each Java SDK level and bit mode. You define the level with a symbolic, and your installation can update the symbolic as new levels of the Java SDK are added or made the default.

 Batch runtime BCDBATCH can be used to launch a user COBOL or Java application, which itself can call another COBOL or Java application, and so on. The //BCDIN DD * JCL specifies the file containing the batch configuration options.

 Sample BCDBATCH and BCDIN JCLs with explanations are available in Chapter 2 of z/OS Batch Runtime: Planning and User’s Guide, SA23-7270.

 	
 Note: A current sample of the BCDBATCH job for z/OS Batch Runtime is always available in SYS1.SAMPLIB in the latest z/OS release.

 You must also configure the CLASSPATH and LIBPATH variables with the list of Java archive (JAR) files and dynamic link library (DLL) files that are required to run both the z/OS Batch Runtime and the application.

 2.5 Restrictions

 The following list identifies the limitations and restrictions on running the z/OS Batch Runtime:

 •Updates to multiple databases are not supported; only one local database attachment is created and used by all applications running in the batch container.

 •Only 31-bit EBCDIC applications are officially supported.

 •A 31-bit version of the Java Virtual Machine (JVM) must be used.

 •Multi-threaded Java DB2 applications are not supported.

 •Java System.exit and COBOL STOP BACK calls cannot be used because they prevent the z/OS Batch Runtime from gaining control of the thread/TCB. Use GOBACK instead in your COBOL applications.

 •COBOL applications must not code RRS Attach Facility (RRSAF) calls to initialize or end a DB2 connection. This can affect the DB2 connection managed by the z/OS Batch Runtime.

 •There is no support for multiple resource managers; currently only JDBC is available.

 2.6 Design considerations

 In this section, we discuss several issues to consider when migrating or extending a COBOL application with Java code in this batch container.

 2.6.1 Dynamic SQL versus static SQL

 SQL statements are categorized as either static or dynamic. The difference between the two is that the syntax of a static SQL statement is fully known at precompile time, whereas the dynamic SQL statement syntax is not known until run time.

 When compiling and linking an application with embedded static SQL statements, you must precompile and bind it. The precompiler converts the SQL statements into a form that the database manager understands and stores them into a bind file. The binding process creates a package from a bind file that the database manager uses to access the database when the application is run.

 You might come across cases where you do not have all the necessary information to construct your SQL statements at precompile time. Dynamically constructing your SQL statements at run time allows you to reference objects that might not exist at run time, use the most optimal access path based on current database statistics, or experiment with special registers.

 When designing your application for optimal performance, you must carefully decide whether to use static or dynamic SQL statements. The intended usage and working environment generally dictates this choice. The execution time of both these types of statements should be equivalent after they are compiled. Applications using dynamic SQL statements will require a higher initial cost per SQL statement because they need to be compiled before use. Despite the higher cost, dynamic SQL statements in some cases can run faster due to better access plans being chosen by the optimizer. The cost of compiling dynamic SQL statements can also vary because the statements might be implicitly recompiled by the system while the application is running.

 Sometimes there is no obvious decision and it is best to choose the method you are most comfortable with. Table 2-1 is extracted from IBM DB2 Universal Database Application Development Guide: Programming Client Applications, SC09-4826 and provides guidelines for choosing which approach to use.

 Table 2-1 Method to select SQL approach

 	
 Consideration

 	
 Likely Best Choice

 	
 Time to run the SQL statement

 •Less than 2 seconds

 •2 to 10 seconds

 •More than 10 seconds

 	

 •Static

 •Either

 •Dynamic

 	
 Data Uniformity

 •Uniform data distribution

 •Slight non-uniformity

 •Highly non-uniform distribution

 	

 •Static

 •Either

 •Dynamic

 	
 Range (<,>,BETWEEN,LIKE) Predicates

 •Very Infrequent

 •Occasional

 •Frequent

 	

 •Static

 •Either

 •Dynamic

 	
 Repetitious Execution

 •Runs many times (10 or more times)

 •Runs a few times (less than 10 times)

 •Runs once

 	

 •Either

 •Either

 •Static

 	
 Nature of Query

 •Random

 •Permanent

 	

 •Dynamic

 •Either

 	
 Run Time Environment (DML/DDL)

 •Transaction Processing (DML Only)

 •Mixed (DML and DDL - DDL affects packages)

 •Mixed (DML and DDL - DDL does not affect packages)

 	

 •Either

 •Dynamic

 •Either

 	
 Frequency of RUNSTATS

 •Very infrequently

 •Regularly

 •Frequently

 	

 •Static

 •Either

 •Dynamic

 2.6.2 Data recovery

 Software can fail. In the event that your applications or the DB2 subsystem terminate abnormally, you need to ensure the integrity of your data. To design your batch database application for recovery:

 1.	Place all changes that must be made at the same time in the same unit of work. This ensures that the data remains in a consistent state if your applications or the DB2 subsystem terminate abnormally. Be sure to use the commit/rollback helper methods that the z/OS Batch Runtime offers, as described in “Commit rollback services” on page 10.

 2.	Consider how often to commit changes. If your application terminates abnormally, z/OS Batch Runtime backs out all uncommitted data changes, as discussed in “Cleanup processing” on page 11.

 3.	Consider how exceptions and abends are handled because DB2 will not intercept them from your application. As stated in “Cleanup processing” on page 11, any unhandled exceptions or abends cause the z/OS Batch Runtime to roll back all outstanding transactions. If this is not the desired action, then you are required to handle them to your expectations. Refer to “Handling return codes and Java exceptions” on page 9 for details.

 2.6.3 JDBC Type 2

 The z/OS Batch Runtime uses the JDBC Type 2 driver, implemented from a combination of Java and native code that converts JDBC method calls to the database client-side libraries. The native method calls yield better performance than the Java-implemented Type 3 and Type 4 JDBC drivers. You need to be mindful of the following limitations when designing applications that use the Type 2 JDBC driver:

 •Database client-side libraries must be installed on the client system.

 •Not all databases have a client-side library.

 •The driver is platform dependent.

 •The driver does not support Java Applets.

 As mentioned in “Sharing a DB2 connection” on page 10, during startup, the z/OS Batch Runtime establishes a connection with the specified local database so that the applications running in the container can communicate with that database without having to create their own new connection.

 Your Java applications must use the Connection class in the java.sqlpackage and pass the URL String jdbc:default:connection to get the database connection (Example 2-11).

 Example 2-11 Connection class in java.sql package

 [image:]

 Connection connection = DriverManager.getConnection(“jdbc:default:connection”);

 [image:]

 2.7 Migrating a hybrid COBOL/Java application

 The reason to migrate your existing hybrid database application to this batch container is to take advantage of the single database connection sharing capability so that you can run your multi-component spanning database changes as a single unit of work.

 Consider the following questions when planning your migration:

 •Do you have any database transactions that span across your COBOL and Java applications?

 •Will your hybrid application be affected by the limitations of this release? See 2.3, “Required software” on page 11. For example, only a single local database can be established in the container, so if your applications communicate with multiple or remote databases, this container might not be ideal.

 If this batch container meets your requirements and your applications are not affected by its limitations, then the following simple code changes are required:

 •Remove all thread/TCB terminating calls – System.exit and STOP BACK, see “Terminating managed applications” on page 10.

 •In your Java code, ensure the DriverManager getConnections method uses the URL jdbc:default:connection to get the existing connection to the local database system.

 •Write and configure the z/OS Batch Runtime options in your JCL to invoke the application and the container.

[image:]
[image:]

End-to-end development scenario

 In this chapter, we describe the development scenario we used to extend a batch COBOL application with Java code to illustrate the design considerations and usage of the z/OS batch runtime container. In our scenario, we used IBM Rational Developer for System z (RDz) to demonstrate how modern tooling can be used to extend legacy batch applications, increase productivity, and accelerate mainframe application development.

 We also demonstrate how to extend an existing stand-alone batch DB2 COBOL application with new Java functionality. Samples of the source code and JCL are provided to illustrate the changes required to run the modified COBOL application in z/OS Batch Runtime.

 We used a step-by-step format and included screen shots that should be helpful for users who might not be familiar with Integrated Development Environments (IDEs) such as Eclipse.

 3.1 Software used in the scenario

 We used the following software levels for our scenario:

 •z/OS V1.13

 •IBM Rational Developer for System z with EGL 8.0.1

 •IBM 64-bit SDK for z/OS, Java Technology Edition, V6

 •Enterprise COBOL for z/OS Version 4 Release 2 Modification 0

 •DB2 9 for z/OS

 3.2 Infrastructure setup

 In “Invoking z/OS Batch Runtime” on page 11 we reviewed how to invoke z/OS Batch Runtime through a batch JCL. In this section we show how to verify the installation of Java and the z/OS Batch Runtime.

 3.2.1 z/OS Batch Runtime verification

 To verify the z/OS Batch Runtime installation, run the verification program BCDIVP as shown in Example 3-1.

 Example 3-1 Minimal version of BCDIVP

 [image:]

 //BCDIVP JOB 'ZAID FAYDI',CLASS=A,MSGLEVEL=(1,1),

 // MSGCLASS=T,NOTIFY=&SYSUID

 //*

 //BATCH EXEC BCDPROC,REGION=0M,LOGLVL='+I'

 //***

 //* UPDATE: If the jZOS Java launcher has not been installed in *

 //* the lnklst, add a steplib for it. *

 //***

 //*STEPLIB DD DSN=hlq.jzos.loadlib,DISP=SHR

 //STEPLIB DD DISP=SHR,DSN=DB0VT.SDSNLOAD

 // DD DISP=SHR,DSN=DB0VT.SDSNLOD2

 //*

 //STDENV DD *

 #--

 # UPDATE: Installation path for batch runtime.

 #--

 export BCD_HOME=/usr/lpp/bcp

 #--

 # UPDATE: Installation path for Java.

 #--

 export JAVA_HOME=/usr/lpp/java/J6.0.1

 #--

 # The following runs the batch runtime configuration script.

 # This script processes the exported container variables that

 # were defined above.

 #--

 . $BCD_HOME/bcdconfig.sh

 #--

 # UPDATE: Uncomment and update JDBC driver files.

 #--

 JDBC_HOME=/usr/lpp/db2/db0v/jdbc

 CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc.jar

 CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc_javax.jar

 export CLASSPATH="$CLASSPATH"

 #

 LIBPATH="$LIBPATH":$JDBC_HOME/lib

 export LIBPATH="$LIBPATH"

 #--

 # UPDATE: Add any JDBC options here. See the DB2 Information

 # Center for details on the options.

 #--

 IJO="$IJO -Ddb2.jcc.ssid=DB0V"

 #--

 # Exports JVM options set above.

 #--

 export IBM_JAVA_OPTIONS="$IJO "

 #--

 # The following runs the batch runtime configuration completion

 # script. This command must be last in the STDENV file.

 #--

 . $BCD_HOME/bcdconfigend.sh

 //***

 //* z/OS Batch Runtime Options *

 //***

 //BCDIN DD *

 #---*

 # The following sets the language and class name for the IVP program.

 #---*

 bcd.applicationLanguage=JAVA

 bcd.applicationName=com.ibm.zos.batch.container.BCDAbout

 #---*

 # UPDATE: Support class name used to manage transactions.

 #---*

 bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchcontainerSupport

 #---*

 //

 [image:]

 STDOUT should contain a report similar to what is displayed in Example 3-2.

 Example 3-2 Snippets of the BCPIVP report

 [image:]

 ...

 Product Information:

 Product Name: z/OS V1R13

 Product FMID: HBB7780

 Product number: 5694-A01

 Product component ID: 5752SC1BC

 Component name: Batch Runtime

 Build ID: 2011011_130751701_mt19483

 Framework ID: BATCC10.BATCH [cf011104.03]

 Java Environment:

 Java version: 1.6.0

 Java vm name: IBM J9 VM

 Java library path: /usr/lpp/java/J6.0.1/lib/s390/default: ...

 ...

 Class Levels in /Z1DRC1/usr/lpp/bcp/batch/bcdbatch.jar:

 --

 HBB7780 com.ibm.zos.batch.container.BCDAbout

 HBB7780 com.ibm.zos.batch.container.BCDBatchcontainer

 HBB7780 com.ibm.zos.batch.container.config.BCDConfig

 ...

 HBB7780 com.ibm.zos.batch.container.util.BCDMessage

 HBB7780 com.ibm.zos.batch.container.util.BCDUtil

 --

 End of Report

 [image:]

 3.2.2 Java

 The output from the BCPIVP program shows the level of Java installed.

 However, if you are having difficulties running the JCL and want to do dome troubleshooting, this is another way to check whether the required version and level of Java is installed on your system:

 •Enter the OMVS shell

 •From ISPF, enter TSO OMVS

 •At the console, enter java -version

 The output should be similar to Example 3-3.

 Example 3-3 Sample Java version output	

 [image:]

 FAYDI:/u/faydi: >java -version

 java version "1.6.0"

 Java(TM) SE Runtime Environment (build pmz3160sr9fp1-20110303_01(SR9 FP1))

 IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 z/OS s390-31 jvmmz3160sr9-20110203_74623 (JIT enabled, AOT enabled)

 J9VM - 20110203_074623

 JIT - r9_20101028_17488ifx3

 GC - 20101027_AA)

 JCL - 20110203_01

 [image:]

 To download and learn more about z/OS Java Technology Edition, refer to:

 http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html

 3.3 Setting up the development environment

 In this section we outline the steps to create all the sub-projects, data sets, files, and tables for the development scenario using Rational Developer for System z.

 3.3.1 Connecting to z/OS from Rational Developer for System z	

 1.	Start Rational Developer for System z. In the z/OS Project Perspective, click the New Connection button in the Remote Systems view (Figure 3-1).

 [image:]

 Figure 3-1 Rational Developer: Remote system view

 2.	Select z/OS as the System type and click Next (Figure 3-2).

 [image:]

 Figure 3-2 New connection: Select remote system type

 3.	Specify the host name of your z/OS system running the RDz server, then click Next (Figure 3-3).

 [image:]

 Figure 3-3 New connection: Specify host name

 4.	Specify the z/OS UNIX subsystem information, as customized by your systems programmer, then click Next (Figure 3-4).

 [image:]

 Figure 3-4 New connection: Define z/OS UNIX subsystem information

 5.	Specify the IBM MVS™ subsystem information, as customized by your systems programmer, then click Finish (Figure 3-5).

 [image:]

 Figure 3-5 New connection: Define MVS subsystem information

 6.	To connect to the z/OS system, right-click the newly created node in Remote Systems and select Connect (Figure 3-6).

 [image:]

 Figure 3-6 Connect to z/OS system

 7.	If prompted with the window shown in Figure 3-7, click Yes to proceed.

 [image:]

 Figure 3-7 Connection prompt

 8.	To confirm that you are connected and that your MVS and HFS subsystem information is correct, expand the z/OS UNIX Files and MVS Files nodes and their child nodes. Expand the JES node and confirm that a list of jobs is returned. If a list is not returned, then it might be that you have no jobs to retrieve or you need to set the correct JES Job Monitor port number, as shown in Figure 3-8. To correct the setting, right-click the JES node and select Properties.

 [image:]

 Figure 3-8 JES properties

 3.3.2 Creating the HFS directories

 Use the following steps to create the required HFS directories.

 1.	In the z/OS UNIX Files directory, right-click the My Home filter and select New → Folder (Figure 3-9).

 [image:]

 Figure 3-9 Remote systems - z/OS UNIX files

 2.	Enter com as the folder name and click Finish (Figure 3-10).

 [image:]

 Figure 3-10 Create new folder

 3.	Create a folder called sample under the newly created com folder, then create lib, src and statements folders under sample, as shown in Figure 3-11 on page 25.

 [image:]

 Figure 3-11 Create additional folders

 3.3.3 Creating the z/OS project and MVS and UNIX subprojects

 Use the following steps to create the z/OS project and MVS and UNIX subprojects.

 1.	In the z/OS Projects view, right-click and select z/OS Project (Figure 3-12).

 [image:]

 Figure 3-12 Select z/OS Project

 2.	Enter BatchProject as the Project name, ensure that the Create an MVS subproject radio button is selected, then click Finish (Figure 3-13).

 [image:]

 Figure 3-13 New z/OS project name

 3.	The New MVS Subproject window appears. Set the high-level qualifier field and the remaining fields as shown in Figure 3-14, then click Finish.

 [image:]

 Figure 3-14 New MVS subproject name and location

 4.	You also need a UNIX subproject for your new Java code. To create a UNIX subproject, right-click the BatchProject node and select New → z/OS UNIX Subproject. The New z/OS UNIX Subproject wizard appears. Select BatchProject as the parent project and click Next (Figure 3-15).

 [image:]

 Figure 3-15 Parent project selection

 5.	Enter JavaSubProject as the subproject name (Figure 3-16).

 [image:]

 Figure 3-16 Enter new z/OS UNIX subproject name

 6.	Click the Remote Working Directory Browse button, navigate to the sample folder you created earlier, and click OK (Figure 3-17).

 [image:]

 Figure 3-17 Select a folder

 7.	Select the Default Target Environment check box and click Next (Figure 3-18).

 [image:]hi

 Figure 3-18 Create a new z/OS UNIX subproject

 8.	Specify a filter for this new subproject. Enter sample as the filter name and click Next (Figure 3-19).

 [image:]

 Figure 3-19 New HFS file filter

 9.	To set this filter to only show the .java source files, click Add and enter * for the file name pattern, then click OK (Figure 3-20).

 [image:]

 Figure 3-20 Select folder

 10.	Click Finish to create the filter (Figure 3-21).

 [image:]

 Figure 3-21 Create filter string

 11.	You now should have the z/OS Project, MVS subproject, and UNIX subproject created under the z/OS Projects view, as shown in Figure 3-22.

 [image:]

 Figure 3-22 z/OS projects view

 3.3.4 Creating the DB2 QUERIES table

 Use the following steps to create a DB2 Queries table.

 1.	Open the Data perspective, click window → Open Perspective → Other, and select Data from the Open Perspective window (Figure 3-23).

 [image:]

 Figure 3-23 Open Perspective window

 2.	In the Data Source Explorer, click the New Connection button (Figure 3-24).

 [image:]

 Figure 3-24 Data Source Explorer

 3.	Select the DB2 for z/OS database manager and populate the required fields: Location, Host, Port number, User name, and Password (Figure 3-25).

 [image:]

 Figure 3-25 Connection Parameters	

 4.	Click Test Connection and confirm that the New Connection window appears with the message Connection succeeded (Figure 3-26).

 [image:]

 Figure 3-26 New connection window

 5.	Click Finish. The database connection should appear in the Data Source Explorer (Figure 3-27).

 [image:]

 Figure 3-27 Data Source Explorer

 6.	Before you can add the SQL statements to create the sample table, you must create a new Data Set Project. Right-click in the Data Project Explorer and select New → Data Design Project (Figure 3-28).

 [image:]

 Figure 3-28 Data Project Explorer

 7.	Enter BatchProjectData as the project and click Finish (Figure 3-29).

 [image:]

 Figure 3-29 Create data design project

 8.	To create a new SQL Script, expand the newly created BatchProjectData node, right-click SQL Scripts, and select New → SQL or XQuery Script (Figure 3-30).

 [image:]

 Figure 3-30 New SQL or XQuery Script

 9.	Name the SQL script CreateQueriesTable and click Finish (Figure 3-31).

 [image:]

 Figure 3-31 Select project and name script

 10.	In the Select Connection Profile window, select the database, in this case DB9J, and click Finish (Figure 3-32).

 [image:]

 Figure 3-32 Select connection profile

 11.	An editor is opened. Copy the SQL statements shown in Example 3-4 into the editor.

 Example 3-4 SQL statements

 [image:]

 CREATE TABLE QUERIES (

 AMOUNT DECIMAL(9,2) NOT NULL,

 INTEREST DECIMAL(4,2) NOT NULL,

 PERIODS INTEGER NOT NULL,

 PAYMENT VARCHAR(15) NOT NULL,

 PATH VARCHAR(100),

 PRIMARY KEY(AMOUNT,INTEREST,PERIODS)

);

 [image:]

 12.	Paste the SQL statements in Data Project Explorer → CreateQueriesTable.sql, as shown in Figure 3-33.

 [image:]

 Figure 3-33 Data Project Explorer: CreateQueriesTable.sql

 13.	Right-click the newly created CreateQueriesTable.sql SQL script and click Run SQL (Figure 3-34).

 [image:]

 Figure 3-34 Run SQL

 14.	In the Select Connection Profile window, select DB9J and click Finish (Figure 3-35).

 [image:]

 Figure 3-35 Select Connection Profile

 15.	In the SQL Results view you should see a successful execution and the table created under the Schemas → SQLID → Tables node in the Data Source Explorer view (Figure 3-36).

 [image:]

 Figure 3-36 Data Source Explorer view

 16.	Right-click the QUERIES table and select Data → Edit (Figure 3-37).

 [image:]

 Figure 3-37 Data Source Explorer: QUERIES table

 17.	From this editor, you can insert or delete records and set field data; for now, leave it as is (Figure 3-38).

 [image:]

 Figure 3-38 Edit QUERIES

 3.3.5 Creating sample data sets

 We provide these steps to illustrate how RDz can be used to create the different types of data sets without requiring the user to enter all the necessary details, such as record length and organization.

 1.	Create a filter to display only the created data sets. Right-click the My Data Sets node and select New → Filters (Figure 3-39).

 [image:]

 Figure 3-39 My Data Sets: New filter

 2.	Enter <HLQ>.ITSO.* as the filter string and click Next (Figure 3-40). HLQ is your high-level qualifier.

 [image:]

 Figure 3-40 Create new filter

 3.	Enter ITSO as the filter name and click Finish (Figure 3-41).

 [image:]

 Figure 3-41 Name the new filter

 4.	You should now have the ITSO filter with no matching data sets (Figure 3-42).

 [image:]

 Figure 3-42 ITSO filter with no matching data sets

 5.	To allocate data sets, right-click CobolSubProject in the z/OS Projects view and select New → Allocate Partitioned Data Set (Figure 3-43).

 [image:]

 Figure 3-43 New Allocate Partitioned Data Set

 6.	Enter ITSO.COBOL in the Data Set Name textbox and click Next (Figure 3-44).

 [image:]

 Figure 3-44 Allocate partitioned data set on z/OS

 7.	Select Category SOURCE and Type COBOL, then click Finish (Figure 3-45).

 [image:]

 Figure 3-45 Choose data set category

 8.	The <HLQ>.ITSO.COBOL data set is now allocated and should appear under CobolSubProject and the ITSO filter under MVS Files in the Remote Systems view, created earlier (Figure 3-46).

 [image:]

 Figure 3-46 View of ITSO.COBOL data set

 9.	Repeat steps 1 through 8 to create the following data sets:

  –	<HLQ>.ITSO.JCL - Category: SOURCE, Type: JCL

  –	<HLQ>.ITSO.LOAD - Category: Others, Type: LOADMOD

  –	<HLQ>.ITSO.COBYLIB - Category: SOURCE, Type: COBOL

  –	<HLQ>.ITSO.OBJLIB - Category: Others, Type: OBJECT

  –	<HLQ>.ITSO.LISTING - Category: LISTING, Type: COBOL

  –	<HLQ>.ITSO.DBRLM - Category: Others, Type: DBRLM

 3.4 Developing COBOL, Java, and JCL

 In this section, we provide all the steps and source code to create COBLOAN, PdfCreator, and the necessary JCL to compile, link, bind, and execute the application.

 COBLOAN is a simple stand-alone batch COBOL application that calculates the monthly repayments of a loan given the principle amount, fixed interest rate, and number of periods the interest is charged. The amount is displayed in the job output and all values are inserted into a DB2 table for record keeping.

 PdfCreator is a Java class that implements a new business requirement to generate Portable Document Format (PDF) files of each calculation. The path of the PDF file generated is stored in the same table COBLOAD uses. The two database transactions from COBLOAN and PdfCreator are set to be a single unit of work. If either transaction fails, both changes are discarded.

 For your convenience, we have provided the source files for this scenario. If you want to reproduce the development scenario without having to copy/paste the source code out of this chapter, you can FTP the files described in “Using the Web material” on page 63 to your system.

 3.4.1 Adding COBLOAN

 Use the following steps to add COBLOAN.

 1.	Right-click <HLQ>.ITSO.COBOL and select New → Create Member (Figure 3-47).

 [image:]

 Figure 3-47 z/OS Projects - Create Member

 2.	Enter COBLOAN into the Member Name textbox and click Finish (Figure 3-48).

 [image:]

 Figure 3-48 Enter new Member Name

 3.	COBLOAN will be created under <HLQ>.ITSO.COBOL with a .cbl extension, which is not set on the host. Double-click this new member to invoke the editor and copy the COBOL code shown in Example 3-5.

 Example 3-5 Sample COBOL code

 [image:]

 **

 * COBLOAN *

 * *

 * A simple program that calculates payment amount for a *

 * loan, stores the calculation into a DB2 table, and *

 * generates a PDF file containing the calculation. *

 * *

 * Example input: '30000 .09 24 ' *

 * *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. 'COBLOAN' RECURSIVE.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 REPOSITORY.

 Class PdfCreator is "PdfCreator"

 Class jstring is "jstring".

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 FIELDS.

 05 PAYMENT PIC S9(9)V99 USAGE COMP.

 05 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.

 05 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.

 05 LOAN-AMOUNT-IN PIC X(16).

 05 INTEREST-IN PIC X(5).

 05 INTEREST PIC S9(3)V99 USAGE COMP.

 05 NO-OF-PERIODS-IN PIC X(2).

 05 NO-OF-PERIODS PIC 99 USAGE COMP.

 01 RC PIC S9(9) COMP-5.

 01 parmString OBJECT REFERENCE jstring.

 01 PAYMENT-SQL PIC X(15).

 01 STRING-BUFFER PIC X(42).

 01 A-SQLCODE PIC S9(3) SIGN IS LEADING SEPARATE.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 LINKAGE SECTION.

 01 INPUT-PARM.

 05 INPUT-LENGTH PIC S9(4) COMP.

 05 INPUT-VALUE PIC X(26).

 COPY JNI.

 PROCEDURE DIVISION USING INPUT-PARM.

 SET ADDRESS OF JNIENV TO JNIENVPTR

 SET ADDRESS OF JNINATIVEINTERFACE TO JNIENV

 * Parse input

 UNSTRING INPUT-VALUE DELIMITED BY ALL " "

 INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.

 * Convert to numeric values

 COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL(LOAN-AMOUNT-IN).

 COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).

 COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

 * Calculate annuity amount required

 COMPUTE PAYMENT = LOAN-AMOUNT *

 FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).

 * Format then display payment

 MOVE PAYMENT TO PAYMENT-OUT.

 DISPLAY 'Payment ' PAYMENT-OUT.

 MOVE PAYMENT-OUT TO PAYMENT-SQL.

 DISPLAY LOAN-AMOUNT-IN ' '

 INTEREST-IN ' '

 NO-OF-PERIODS-IN ' '

 PAYMENT-SQL.

 * Insert calculate into a table

 EXEC SQL

 INSERT INTO INQUIRIES (

 AMOUNT,

 INTEREST,

 PERIODS,

 PAYMENT

)

 VALUES (

 DECIMAL(:LOAN-AMOUNT-IN,9,2),

 DECIMAL(:INTEREST-IN,4,2),

 INTEGER(:NO-OF-PERIODS-IN),

 :PAYMENT-SQL

)

 END-EXEC.

 IF SQLCODE NOT EQUAL ZERO

 MOVE SQLCODE TO A-SQLCODE

 DISPLAY 'Insert record failed ' A-SQLCODE ' ' SQLSTATE

 ELSE

 DISPLAY 'insert record successful'.

 * Create String Object of the calculations to pass to Java

 STRING

 PAYMENT-OUT DELIMITED BY SIZE

 ' ' DELIMITED BY SIZE

 INPUT-VALUE DELIMITED BY SIZE

 INTO STRING-BUFFER.

 CALL "NewStringPlatform"

 USING BY VALUE JNIEnvPtr

 ADDRESS OF STRING-BUFFER

 ADDRESS OF parmString

 0

 RETURNING RC

 IF RC NOT = ZERO THEN

 DISPLAY "Could not create jstring Object"

 GOBACK.

 * Call the Java code to generate PDF

 INVOKE PdfCreator "createStatement"

 USING BY VALUE parmString.

 GOBACK.

 [image:]

 4.	Paste the COBOL code into the editor and save it (Figure 3-49).

 [image:]

 Figure 3-49 Editor with sample COBOL code

 3.4.2 Generating the JCL to compile, link, bind, and run COBLOAN

 RDz can be used to generate JCL files with some customization to the RDz PROCs. This allows you to specify information such as the data sets and compiler options. Each site has its own configurations.

 Example 3-6 provides the compile, link, and bind JCL that we used in our scenario.

 Example 3-6 Sample compile and link JCL

 [image:]

 //COMPLINK JOB (ITSO),'ZAID FAYDI',CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

 /*JOBPARM L=9999,SYSAFF=*

 //DELETE EXEC PGM=IDCAMS

 //SYSPRINT DD SYSOUT=*

 //SYSIN DD *

 DELETE FAYDI.ITSO.LOAD(COBLOAN) PURGE

 DELETE FAYDI.ITSO.OBJLIB(COBLOAN) PURGE

 DELETE FAYDI.ITSO.DBRLM(COBLOAN) PURGE

 DELETE FAYDI.ITSO.LISTING(COBLOAN) PURGE

 SET MAXCC = 0

 /*

 //COMPILE EXEC PGM=IGYCRCTL,

 // PARM=(RENT,EXPORTALL,SQL,DLL,LIB,THREAD,PGMNAME(LONGMIXED),

 // TEST,DYNAM,QUOTE,NOWORD)

 //STEPLIB DD DSN=IGY.SIGYCOMP,DISP=SHR

 // DD DSN=DB9J9.SDSNLOAD,DISP=SHR

 //SYSLIB DD DSN=FAYDI.ITSO.COPYLIB(JNI),DISP=SHR

 //SYSLIN DD DSN=FAYDI.ITSO.OBJLIB(COBLOAN),DISP=SHR

 //DBRMLIB DD DSN=FAYDI.ITSO.DBRLM(COBLOAN),DISP=SHR

 //SYSPRINT DD DSN=FAYDI.ITSO.LISTING(COBLOAN),DISP=SHR

 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSIN DD DSN=FAYDI.ITSO.COBOL(COBLOAN),DISP=SHR

 //LKED EXEC PGM=IEWL,

 // PARM='RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)'

 //SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR

 // DD DSN=DB9J9.SDSNLOAD,DISP=SHR

 //SYSPRINT DD SYSOUT=*

 //SYSTERM DD SYSOUT=*

 //SYSLMOD DD DSN=FAYDI.ITSO.LOAD(COBLOAN),DISP=SHR

 //SYSDEFSD DD DUMMY

 //OBJMOD DD DSN=FAYDI.ITSO.OBJLIB(COBLOAN),DISP=SHR

 //SYSLIN DD *

 INCLUDE OBJMOD

 INCLUDE SYSLIB(DSNRLI)

 INCLUDE '/usr/lpp/cobol/lib/igzcjava.x'

 INCLUDE '/usr/lpp/java/J6.0.1/bin/j9vm/libjvm.x'

 /*

 //BIND EXEC PGM=IKJEFT01,COND=(4,LT)

 //STEPLIB DD DSN=IGY.SIGYCOMP,DISP=SHR

 // DD DSN=DB9J9.SDSNLOAD,DISP=SHR

 // DD DSN=DB9J9.SDSNEXIT,DISP=SHR

 //DBRMLIB DD DSN=FAYDI.ITSO.DBRLM(COBLOAN),DISP=SHR

 //SYSTSPRT DD SYSOUT=*

 //SYSPRINT DD SYSOUT=*

 //CEEDUMP DD DUMMY

 //SYSUDUMP DD DUMMY

 //SYSOUT DD SYSOUT=*

 //SYSTSIN DD *

 DSN SYSTEM(DB9J)

 BIND PACKAGE(NULLID) -

 MEMBER(COBLOAN) -

 ISO(CS) -

 ENCODING(EBCDIC) -

 OWNER(FAYDI) -

 ACTION(REPLACE) -

 LIBRARY('FAYDI.ITSO.DBRLM')

 END

 /*

 [image:]

 Example 3-7 provides the JCL we used to run the z/OS Batch Runtime, and add the members COMPLINK and BCDRUN, using the steps described in “Adding COBLOAN” on page 41.

 Example 3-7 JCL to run z/OS Batch Runtime

 [image:]

 //BCDRUN JOB (ITSO),'Zaid',CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

 /*JOBPARM L=9999,SYSAFF=*

 //*

 //PROCLIB JCLLIB ORDER=FAYDI.PROCLIB

 //BATCH EXEC BCDPROC,REGION=0M,LOGLVL='+I'

 //*

 //STEPLIB DD DISP=SHR,DSN=FAYDI.JZOS.LAUNCHER

 // DD DISP=SHR,DSN=FAYDI.ITSO.LOAD

 // DD DISP=SHR,DSN=DB9J9.SDSNLOAD

 // DD DISP=SHR,DSN=DB9J9.SDSNLOD2

 //*

 //STDENV DD *

 #

 #--

 # UPDATE: Installation path for batch runtime.

 #--

 export BCD_HOME=/usr/lpp/bcp

 #

 #--

 # UPDATE: Installation path for Java.

 #--

 export JAVA_HOME=/usr/lpp/java/J6.0.1

 #

 #--

 # The following runs the batch runtime configuration script.

 # This script processes the exported environment variables that

 # were defined above.

 #--

 . $BCD_HOME/bcdconfig.sh

 #

 #--

 # UPDATE: Uncomment and update JDBC driver files.

 #--

 JDBC_HOME="/usr/lpp/db2/db9j/db2910_jdbc"

 CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc.jar

 CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc_javax.jar

 export CLASSPATH="$CLASSPATH"

 #

 LIBPATH="$LIBPATH":$JDBC_HOME/lib

 export LIBPATH="$LIBPATH"

 #

 #--

 # UPDATE: Add your application jar files to the CLASSPATH here.

 #--

 CPATH="/u/faydi/com/sample"

 CLASSPATH="$CLASSPATH":$CPATH/src/

 CLASSPATH="$CLASSPATH":$CPATH/lib/itextpdf-5.1.2.jar

 export CLASSPATH="$CLASSPATH"

 #

 #--

 # UPDATE: Uncomment and add any additional JVM options here.

 #--

 IJO="-Xms256m -Xmx512m -Xquickstart"

 #--

 # UPDATE: Uncomment to enable batch runtime tracing

 #--------------------exi--

 IJO="$IJO -Dcom.ibm.zos.batch.container.BCDTraceConfig.trace=all"

 #

 #--

 # UPDATE: Add any JDBC options here. See the DB2 Information

 # Center for details on the options.

 #--

 IJO="$IJO -Ddb2.jcc.ssid=DB9J"

 #

 #--

 # Exports JVM options set above.

 #--

 export IBM_JAVA_OPTIONS="$IJO "

 #

 #--

 # The following runs the batch runtime configuration completion

 # script. This command must be last in the STDENV file.

 #--

 . $BCD_HOME/bcdconfigend.sh

 //*

 //* Batch Runtime Options

 //*

 //BCDIN DD *

 #---*

 # The following sets the language and class name for the IVP program.

 #---*

 bcd.applicationLanguage=COBOL

 bcd.applicationName=COBLOAN

 bcd.applicationArgs.1=30000 .09 24

 #

 #---*

 # UPDATE: Support class name used to manage transactions.

 #

 # For the DB2 JDBC driver, uncomment the following statement.

 #---*

 bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport

 #

 #---*

 # UPDATE: Verbose mode for additional diagnostics (default is false).

 #---*

 bcd.verbose=true

 [image:]

 3.4.3 Creating the Java launcher and copying the JNI copybook

 The JNI copybook contains sample COBOL data definitions that correspond to the Java JNI types. It also contains the JNINativeInterface and the JNI container structure that contains function pointers for accessing the JNI callable services.

 The JNI.cpy file is located in the subdirectory of the COBOL install directory, typically /usr/lpp/cobol/include.

 •You can use RDz to copy an HFS file to a MVS partitioned data set (Figure 3-50).

 [image:]

 Figure 3-50 Copy of HFS file

 •Then paste it to MVS partitioned data set, as shown in Figure 3-51.

 [image:]

 Figure 3-51 Paste to MVS data set

 The JZOS Launcher for V6.0.1(JVMLDM61) is located in the mvstools subdirectory of the JVM install, typically /usr/lpp/java/J6.0.1/mvstools/.

 Drag and drop the iText library to the lib folder

 The Java archive file itextpdf-5.1.2.jar should be copied to your lib folder under the sample filter in JavaSubProject. iText is a Java library that allows you to create and manipulate PDF documents. This library will be used to create statements containing the calculations made for customers to view.

 1.	In the Remote Systems view, expand the Local node.

 2.	Expand the My Home filter and navigate to the location where the archive file is stored.

 3.	After it is located, drag and drop the file straight to the lib folder.

 3.4.4 Creating the PdfCreator class

 PdfCreator is a Java class that extends the current COBOL functionality to create a PDF document containing the calculations made in COBLOAN. It also updates the record created in COBLOAN containing those calculations with the location the PDF document.

 1.	To create an HFS file, right-click the src folder under JavaSubProject New → HFS File (Figure 3-52).

 [image:]

 Figure 3-52 Create new HFS file

 2.	Enter the file name and click Finish (Figure 3-53).

 [image:]

 Figure 3-53 Enter name for new file

 3.	Double-click the newly created file to open it in the editor, then copy into it the Java source code from Example 3-8.

 Example 3-8 PdfCreator.java	

 [image:]

 import java.io.*;

 import com.itextpdf.text.*;

 import com.itextpdf.text.pdf.*;

 import com.itextpdf.text.pdf.draw.*;

 import java.sql.*;

 import com.ibm.batch.spi.UserControlledTransactionHelper;

 import java.util.StringTokenizer;

 import java.text.SimpleDateFormat;

 import java.util.Calendar;

 public class PdfCreator {

 	private static final String STATEMENTS_PATH = "/u/faydi/com/sample/statements/";

 	private static final String URL				= "jdbc:default:connection";

 	

 	public static void createStatement (String stringValues) {

 		try {

 			// Parse words from the parameter String

 			System.out.println("Parameter: " + stringValues);

 			String[] values = stringValues.trim().split(" ");

 			

 			System.out.println("Words in parameter: " + values.length);

 			if (values.length != 4) {

 				throw new Exception("Unexpected number of words in parameter '" + stringValues + "'");

 			}

 			// Data type conversions

 			String payment = values[0];

 			double amount = Double.parseDouble(values[1]);

 			double interest = Double.parseDouble(values[2]);

 			int periods = Integer.parseInt(values[3]);

 			

 			// Get timestamp to uniquely name PDF files

 			Calendar calendar = Calendar.getInstance();

 			String path = STATEMENTS_PATH + calendar.getTimeInMillis() + ".pdf";

 			System.out.println(path);

 			

 			FileOutputStream fileOutputStream = new FileOutputStream(path);

 			Document document = new Document();

 			PdfWriter.getInstance(document, fileOutputStream);

 			document.open();

 			Chunk chunk;

 			// Format and create the PDF file

 			Paragraph paragraph = new Paragraph();

 			chunk = new Chunk("Amount: " + amount + "\n");

 			paragraph.add(new Chunk(chunk));

 			chunk = new Chunk("Interest: " + interest + "\n");

 			paragraph.add(new Chunk(chunk));

 			chunk = new Chunk("Periods: " + periods + "\n");

 			paragraph.add(new Chunk(chunk));

 			chunk = new Chunk("Payment: " + payment + "\n");

 			paragraph.add(new Chunk(chunk));

 			document.add(paragraph);

 			

 			document.close();

 			System.out.println("PDF generated.");

 		

 			// Update QUERIES table with path

 			Connection connection = DriverManager.getConnection(URL);

 			Statement statement = connection.createStatement();

 			String sql = "UPDATE QUERIES SET PATH='" + path + "' WHERE " +

 			"AMOUNT=" + amount + " AND INTEREST=" + interest + " AND " +

 			"PERIODS=" + periods;

 				

 			System.out.println("About to execute SQL: " + sql);

 			statement.executeUpdate(sql);

 			UserControlledTransactionHelper.commit();

 			System.out.println("Record update committed");

 		}

 		catch (Exception exception) {

 			System.err.println("An exception has occurred, Rollback changes");

 			System.err.println(exception.getMessage());

 			// Handling an exception that occured to rollback

 			try {

 				UserControlledTransactionHelper.rollback();

 			}

 			catch (Exception exception2) {

 				System.err.println("Rollback failed");	

 				System.err.println(exception2.getMessage());	

 			}

 			System.err.println("Rollback complete");

 		}

 	}

 }

 [image:]

 3.4.5 Compiling PdfCreator

 The following steps demonstrate one way to compile the PdfCreator.

 1.	Copy the JCL shown in Example 3-9.

 Example 3-9 javac command to compile PdfCreator

 [image:]

 //JAVAC JOB (ITSO),'ZAID FAYDI',CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),

 // REGION=0M

 /*JOBPARM L=9999,SYSAFF=*

 //RUNSHELL EXEC PGM=BPXBATCH,

 // PARM='sh javac -verbose /u/faydi/com/sample/src/PdfCreator.java'

 //STDOUT DD SYSOUT=*

 [image:]

 2.	Create a new member called JAVAC under <HLQ>.ITSO.JCL and paste the JCL into it.

 3.	Right-click JAVAC.jcl and select Submit. Keep refreshing the My Jobs filter until the job is complete (Figure 3-55).

 Double-click RUNSHELL: STDOUT. You should see output similar to Example 3-10.

 Example 3-10 RUNSHELL:STDOUT

 [image:]

 Ýparsing started /u/faydi/com/sample/src/PdfCreator.java¨

 Ýparsing completed 44ms

 Ýsearch path for source files: .,/u/faydi/com/samples/lib/itextpdf-5.1.2.jar,/u/faydi/demo/samples/lib/itextpdf-5.1.2.jar,/usr/lpp/b

 Ýsearch path for class files: /Z1DRB1/usr/lpp/java/J6.0.1/lib/s390/default/jclSC160/vm.jar,/Z1DRB1/usr/lpp/java/J6.0.1/lib/annotatio

 ...

 Ýwrote /u/faydi/com/sample/src/PdfCreator.class¨

 Ýtotal 1289ms¨ [image:]

 4.	The PdfCreator.class should appear under the src folder (Figure 3-54).

 [image:]

 Figure 3-54 PdfCreator.class in src folder

 5.	The JAVAC job will appear under the My Jobs filter under the JES node in the Remote Systems view (Figure 3-55). Refresh this filter until the job completes.

 [image:]

 Figure 3-55 JAVAC job

 3.4.6 Running COBLOAN in the container

 Use the following steps to run COBLOAN in the container.

 1.	The JCL to run COBLOAN in the container was created in 3.4.2, “Generating the JCL to compile, link, bind, and run COBLOAN” on page 44.

 Submit BCDRUN and refresh the My Jobs filter until it is complete (Figure 3-56).

 [image:]

 Figure 3-56 My Jobs filters

 2.	As outlined in “Viewing application and container output” on page 8, all output from the JVM (messages prefixed with JVM) and COBLOAN (no message codes) appears in SYSOUT. The DISPLAY calls from COBLOAN are highlighted in Example 3-11. The output shows that the calculations record was successfully inserted into the QUERIES table.

 Example 3-11 SYSOUT

 [image:]

 JVMJZBL2004N Log level has been set to: I

 JVMJZBL1001N JZOS batch Launcher Version: 2.3.0 2010-12-14

 JVMJZBL1002N Copyright (C) IBM Corp. 2005. All rights reserved.

 JVMJZBL1029I Region requested = 0K, Actual below/above limit = 8168K / 1461M

 JVMJZBL1053I OS Release R23.00 Machine 2094

 JVMJZBL1005I Output from DD:STDENV config shell script:

 ...

 JVMJZBL1023N Invoking com.ibm.zos.batch.container.BCDBatchContainer.main()...

 Payment $1,370.54

 30000 .09 24 $1,370.54

 insert record successful

 JVMJZBL1024N com.ibm.zos.batch.container.BCDBatchContainer.main() completed.

 JVMJZBL1014I Waiting for non-deamon Java threads to finish before exiting...

 JVMJZBL2999I JZOS batch launcher elapsed time=5.869020 seconds, cpu time=3.3427240 seconds

 JVMJZBL1021N JZOS batch launcher completed, return code=0

 [image:]

 3.	To check that the record was inserted, open the Data perspective, navigate to the QUERIES table in the Data Source Explorer view, right-click it, and select Data → Return All Rows (Figure 3-57).

 [image:]

 Figure 3-57 QUERIES table in Data Source Explorer

 4.	The output for the query is shown in Figure 3-58.

 [image:]

 Figure 3-58 QUERIES output

 5.	The System.out output from PdfCreator appears in STDOUT. From the output (Example 3-12) it appears that the PDF file was created and the QUERIES record (inserted in COBLOAN) was updated to include the path of the PDF file.

 Example 3-12 STDOUT

 [image:]

 Parameter: $1,370.54 30000 .09 24

 Words in parameter: 4

 /u/faydi/com/sample/statements/1320734128585.pdf

 PDF generated.

 About to execute SQL: UPDATE QUERIES SET PATH='/u/faydi/com/sample/statements/1320734128585.pdf' WHERE AMOUNT=30000.0 AND INTEREST=0.09 AND PERIODS=24

 Record update committed

 [image:]

 6.	To view the PDF file, open and refresh the statements folder. Right-click the PDF document file and select Open With → System Editor (Figure 3-59).

 [image:]

 Figure 3-59 Open pdf with System Editor

 7.	The output is shown in Figure 3-60.

 [image:]

 Figure 3-60 View of output

 The BCDOUT outputs z/OS Batch Runtime messages. The BCD0412I message is key because it counts the number of transactions that were issued, committed, and rolled back.

 Example 3-13 shows that two transactions were committed successfully:

 •INSERT SQL statement in COBLOAN

 •UPDATE SQL statement in PdfCreator

 Example 3-13 BCDOUT

 [image:]

 BCD0206I Batch Runtime started at Tue Nov 08 01:35:25 EST 2011 (build 2011011_130751701_mt19483 framework BATCC10.BATCH Ýcf011104.03

 ¨).

 BCD0218I Batch Runtime options in effect:

 BCD0219I bcd.applicationArgs.1=30000 .09 24

 BCD0219I bcd.applicationLanguage=COBOL

 BCD0219I bcd.applicationName=COBLOAN

 BCD0219I bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport

 BCD0219I bcd.verbose=true

 BCD0230I Class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport" was loaded from file:/pp/db2v9/D110202/db2910_jdbc/classes/db2jcc.

 jar.

 BCD0208I Initialization started for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0227I Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport" version information: IBM DB2 JDBC Universal

 Driver Architecture 3.61.84.

 BCD0209I Initialization complete for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0406I Begin transaction processing started at Tue Nov 08 01:35:28 EST 2011.

 BCD0407I Begin transaction processing completed at Tue Nov 08 01:35:28 EST 2011.

 BCD0303I Launching application "COBLOAN".

 BCD0408I Commit transaction processing started at Tue Nov 08 01:35:29 EST 2011.

 BCD0409I Commit transaction processing completed at Tue Nov 08 01:35:29 EST 2011.

 BCD0406I Begin transaction processing started at Tue Nov 08 01:35:29 EST 2011.

 BCD0407I Begin transaction processing completed at Tue Nov 08 01:35:29 EST 2011.

 BCD0305I Application "COBLOAN" completed: return code=0.

 BCD0408I Commit transaction processing started at Tue Nov 08 01:35:29 EST 2011.

 BCD0409I Commit transaction processing completed at Tue Nov 08 01:35:29 EST 2011.

 BCD0214I Termination started for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0215I Termination complete for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0412I Transaction counts: Begin=2 Commit=2 Rollback=0.

 BCD0225I Batch Runtime ended at Tue Nov 08 01:35:29 EST 2011.

 [image:]

 Demonstrating a rollback

 The COBLOAN INSERT and PdfCreator UPDATE database changes are defined as a single transaction by the UserControlledTransactionHelper.commit() call at the end of PdfCreator. PdfCreator is only called when the COBLOAN INSERT is successful. If any exceptions occur in PdfCreator, then the INSERT from COBLOAN is discarded. One possible cause of an exception in PdfCreator is if the statements folder cannot be found.

 We took the following steps to demonstrate a rollback.

 1.	Select the Statements folder and click Rename (Figure 3-61).

 [image:]

 Figure 3-61 Rename statements folder

 2.	In the Name dialog, enter pdfs as the name of the folder (Figure 3-62).

 [image:]

 Figure 3-62 New Name Dialog: Enter unique name

 3.	The pdfs folder is created (Figure 3-63).

 [image:]

 Figure 3-63 pdfs folder

 •Example 3-14 demonstrates how this rollback changes the input values in BCDIN.

 Example 3-14 Changing COBLOAN arguments

 [image:]

 ...

 //*

 //* Batch Runtime Options

 //*

 //BCDIN DD *

 #---*

 # The following sets the language and class name for the IVP program.

 #---*

 bcd.applicationLanguage=COBOL

 bcd.applicationName=COBLOAN

 bcd.applicationArgs.1=125000 .07 36

 #

 ...

 [image:]

 4.	Submit the BCDRUN JCL. See Example 3-15 for the output in STDOUT. The STDOUT output from this execution also suggests that it did not complete compared to the STDOUT output from the previous execution shown in see Example 3-12 on page 54.

 Example 3-15 STDOUT

 [image:]

 Parameter: $3,859.64 125000 .07 36

 Words in parameter: 4

 /u/faydi/com/sample/statements/1320739595362.pdf

 [image:]

 5.	The output for STDERR is shown in Example 3-16. The output in STDERR is due to the System.err calls in the exception handling catch block of PdfCreator and indicates that an exception occurred.

 Example 3-16 STDERR

 [image:]

 An exception has occurred, Rollback changes

 /u/faydi/com/sample/statements/1320739595362.pdf (EDC5129I No such file or directory.)

 Rollback complete

 [image:]

 6.	The z/OS Batch Runtime output in BCDOUT shows that one change was committed and then rolled back (Example 3-17).

 Example 3-17 BCDOUT

 [image:]

 BCD0206I Batch Runtime started at Tue Nov 08 03:06:33 EST 2011 (build 2011011_130751701_mt19483 framework BATCC10.BATCH Ýcf011104.03

 ¨).

 BCD0218I Batch Runtime options in effect:

 BCD0219I bcd.applicationArgs.1=125000 .07 36

 BCD0219I bcd.applicationLanguage=COBOL

 BCD0219I bcd.applicationName=COBLOAN

 BCD0219I bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport

 BCD0219I bcd.verbose=true

 BCD0230I Class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport" was loaded from file:/pp/db2v9/D110202/db2910_jdbc/classes/db2jcc.

 jar.

 BCD0208I Initialization started for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0227I Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport" version information: IBM DB2 JDBC Universal

 Driver Architecture 3.61.84.

 BCD0209I Initialization complete for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0406I Begin transaction processing started at Tue Nov 08 03:06:35 EST 2011.

 BCD0407I Begin transaction processing completed at Tue Nov 08 03:06:35 EST 2011.

 BCD0303I Launching application "COBLOAN".

 BCD0410I Rollback transaction processing started at Tue Nov 08 03:06:35 EST 2011.

 BCD0411I Rollback transaction processing completed at Tue Nov 08 03:06:35 EST 2011.

 BCD0406I Begin transaction processing started at Tue Nov 08 03:06:35 EST 2011.

 BCD0407I Begin transaction processing completed at Tue Nov 08 03:06:35 EST 2011.

 BCD0305I Application "COBLOAN" completed: return code=0.

 BCD0408I Commit transaction processing started at Tue Nov 08 03:06:35 EST 2011.

 BCD0409I Commit transaction processing completed at Tue Nov 08 03:06:35 EST 2011.

 BCD0214I Termination started for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0215I Termination complete for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0412I Transaction counts: Begin=2 Commit=1 Rollback=1.

 BCD0225I Batch Runtime ended at Tue Nov 08 03:06:35 EST 2011.

 [image:]

 7.	No additional PDF document files were created (Figure 3-64).

 [image:]

 Figure 3-64 View of pdfs folder

 8.	There are no additional records in the QUERIES table (Figure 3-65).

 [image:]

 Figure 3-65 View of QUERIES table

 9.	 SYSOUT in the z/OS Batch Runtime returned a return code of 0 (Example 3-18). However, this is not a true reflection of the execution of COBLOAN. A proposed solution is outlined in the next section, 3.4.7, “Solution to reflect an exception in the return code”.

 Example 3-18 z/OS Batch Runtime return code 0

 [image:]

 ...

 VMJZBL1023N Invoking com.ibm.zos.batch.container.BCDBatchContainer.main()...

 Payment $3,859.64

 125000 .07 36 $3,859.64

 insert record successful

 JVMJZBL1024N com.ibm.zos.batch.container.BCDBatchContainer.main() completed.

 JVMJZBL1014I Waiting for non-deamon Java threads to finish before exiting...

 JVMJZBL2999I JZOS batch launcher elapsed time=4.973982 seconds, cpu time=2.2908413 seconds

 JVMJZBL1021N JZOS batch launcher completed, return code=0

 [image:]

 3.4.7 Solution to reflect an exception in the return code

 The current version of PdfCreator does not have any logic in the catch block to return an integer value representing the return code, nor is there any logic in COBLOAN to handle return integer value from PdfCreator. Refer to 2.2.4, “Handling return codes and Java exceptions” on page 9. The following is a way to implement passing back a return code from the application and its components.

 1.	In the PdfCreator, add a return type to the createStatement method (Example 3-19).

 Example 3-19 Changing return type from void to int

 [image:]

 ...

 	public static int createStatement (String stringValues) {

 ...

 [image:]

 2.	Add the return statements to return a 0 or 12 (Example 3-20).

 Example 3-20 Adding return statements to return a return code

 [image:]

 ...

 		catch (Exception exception) {

 			System.err.println("An exception has occurred, Rollback changes");

 			System.err.println(exception.getMessage());

 			// Handling an exception that occured to rollback

 			try {

 				UserControlledTransactionHelper.rollback();

 			}

 			catch (Exception exception2) {

 				System.err.println("Rollback failed");	

 				System.err.println(exception2.getMessage());

 				return 12;

 			}

 			System.err.println("Rollback complete");

 			return 12;

 		}

 		return 0;

 [image:]

 3.	Modify COBLOAN to accept a return code from PdfCreator and MOVE that value to the RETURN-CODE register (Example 3-21).

 Example 3-21 Adding return code handling to COBLOAN

 [image:]

 ...

 * Call the Java code to generate PDF

 INVOKE PdfCreator "createStatement"

 USING BY VALUE parmString

 RETURNING RC.

 IF RC > RETURN-CODE THEN

 MOVE RC TO RETURN-CODE.

 GOBACK.

 [image:]

 4.	Recompile COBLOAN via JCL COMPLINK and PdfCreator via JCL JAVAC. Submit BCDRUN when all the applications have been recompiled successfully. You should see a return code of 12 as shown in Example 3-22.

 Example 3-22 BCDOUT

 [image:]

 ...

 BCD0303I Launching application "COBLOAN".

 BCD0410I Rollback transaction processing started at Tue Nov 08 04:00:35 EST 2011.

 BCD0411I Rollback transaction processing completed at Tue Nov 08 04:00:35 EST 2011.

 BCD0406I Begin transaction processing started at Tue Nov 08 04:00:35 EST 2011.

 BCD0407I Begin transaction processing completed at Tue Nov 08 04:00:35 EST 2011.

 BCD0305I Application "COBLOAN" completed: return code=12.

 BCD0408I Commit transaction processing started at Tue Nov 08 04:00:35 EST 2011.

 BCD0409I Commit transaction processing completed at Tue Nov 08 04:00:35 EST 2011.

 BCD0214I Termination started for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0215I Termination complete for Batch Runtime support class "com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport".

 BCD0412I Transaction counts: Begin=2 Commit=1 Rollback=1.

 BCD0225I Batch Runtime ended at Tue Nov 08 04:00:35 EST 2011.

 [image:]

 5.	The JCL for the z/OS Batch Runtime BATCH step returns a return code of 8 (Example 3-23). As described in “Handling return codes and Java exceptions” on page 9 it indicates that the primary application, COBLOAN, returned a return code greater than 0.

 Example 3-23 JES JOB LOG

 [image:]

 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU

 -BCDRUN BATCH JAVA 08 37900 .06

 [image:]

 To reproduce this development scenario without having to copy/paste the source code listed in this chapter, you can be download the necessary files from the Internet as described in Appendix A., “Additional material” on page 63.

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the Internet as described in the following sections.

 Locating the Web material

 The Web material associated with this book is available in softcopy on the Internet from the IBM Redbooks web server. Point your web browser at:

 ftp://www.redbooks.ibm.com/redbooks/SG248116

 Alternatively, you can go to the IBM Redbooks website at:

 ibm.com/redbooks

 Select the Additional materials and open the directory that corresponds with the IBM Redbooks form number, SG248116.

 Using the Web material

 The additional Web material that accompanies this book includes the following files:

 File name		Description

 zOS_Batch_Runtime_sample.zip	
z/OS Batch Runtime development scenario as described in “End-to-end development scenario” on page 17.

 System requirements for downloading the Web material

 The Web material requires the following system configuration:

 Hard disk space:	1 MB minimum

 Operating System:	Windows

 Downloading and extracting the Web material

 Create a subdirectory (folder) on your workstation, and extract the contents of the Web material .zip file into this folder.

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks publications

 The following IBM Redbooks publication provides additional information about the topic in this document. Note that some publications referenced might be available in softcopy only.

 •Batch Modernization on z/OS, SG24-7779

 You can search for, view, download, or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Other publications

 These publications are also relevant as further information sources:

 •z/OS Batch Runtime: Planning and User’s Guide, SA23-7270

 •IBM DB2 Universal Database Application Development Guide: Programming Client Applications, SC09-4826

 Online resources

 •z/OS Java Technology Edition

 http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_31.html

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 New Ways of Running IBM z/OS Batch Applications

 New Ways of Running IBM z/OS Batch Applications

 New Ways of Running IBM z/OS Batch Applications

 New Ways of Running IBM z/OS Batch Applications

 New Ways of Running IBM z/OS Batch Applications

 New Ways of Running

 IBM z/OS

 Batch Applications

 Modernizing enterprise batch

Designing hybrid applications

Implementing a practical example

 Mainframe computers play a central role in the daily operations of many of the worlds largest corporations. Batch processing is still a fundamental, mission-critical component of the workloads that run on the mainframe and a large portion of the workload on IBM z/OS systems is processed in batch mode.

 This IBM Redbooks publication is the second volume in a series of four in which we describe new technologies introduced by IBM to facilitate the use of hybrid batch applications that combine the best aspects of Java and procedural programming languages such as COBOL. This volume specifically focuses on z/OS batch runtime.

 The audience for this book includes IT architects and application developers, with a focus on batch processing on the z/OS platform.

 Back cover

 Acrobat bookmark

 OPS/images/itsoFilter.png
€ New Filter

ilter

Create a new fiter

Filter string:

FAYDLITSOX

OPS/images/emptyItso.png
%% MVS Files
% Retrieved Data Sets
% My Data Sefs (FAYDLY)

@ Empty list
& My Search Queries
5 TSO Commands
@ Es
Local

OPS/images/newFilter.png
€ New Filter

er

Name the new fiter

Filtes are saved for easy re-use. Specify @ unique rame for this fiter. Tris riame wil appear i the
Remote Systems view, and wi be expandable.

Orly create fiter in this connection

<Back][Next>

OPS/images/allocatePds1.png
€ New Data Set

Allocate Par ned Data Set

Alocate a new partitioned data set residing on z/CS.

Host Name

Wisced.itso.bm.com

Data Set Name:
FAYDL ITS0.COBOL

OPS/images/mnuAllocatePDS.png
@ 2/0S Projects 7 Bv-=0o

= ¢l BatchProject
=& JavasubProject
b Java solrce

E Show in Table

Rename.
X Deete.

B search,

{2 MVS Subprofect,
& 2/0S UNIX SLbproject.

3] Alocate Sequential Data Set,

Ciri+2

OPS/images/menuRunSql.png
= Data Project Explorer &2 = 0| L CreateQuerie

EEN CREATE
= U BatchProjectData AN
(o Data Models "In
(3 Other Fies "BE
= (9 SQL Scripts "PR
PRI

(3 Data Diagrams Open

cpenwith *

Copy. P

8 Data Source Explorer 52
B % W |[5] | by ed || XD
= (> Database Connections Move,
& Des Rename.
3 Derby Sample Cornectior
= € ODA Data Sources

OPS/images/menuSqlEdit.png
1P Data Source Explor
EEFIBE
= 88 FAYDI
0 Alases
3 Depend
© Jars
©MQTs
) Packag:
£ Sequent
£ Stored
£ Synony
503 Tables

3Rebm Al Rows ror Lt

X Drop
[£8 Add to Overview Diagram
[Generate DDL.
25 Analyze Impact.
Compare With

[DCLGEN

Copy
Refresh

Load. QUEREES (
Exract ECIMAL(9,2) NOTNULL,
= ECIMAL(42) NOTNULL,
FoSample CoMens _pcer NOTMULL,
PAYMENT VARCHAR(LS) NOTNULL,
PATH VARCHAR(100),
PRIVARY KEY(AMOUNT,INTEREST PERIODS)
4)

Query execution time => 344 ms

FS

OPS/images/tableCreated.png
1P Data Source Explorer 57

= 88 FAYDI
0 Alases
) Dependencies

© Jars

©MQTs

) Packages

) Sequences

£ Stored Procedures
£ Synonyms
53 Tables

[QUERIES

< |

3 Properties [SQL Resuits £

Operation | Date
+/ Succe CREATE ... MNov

& Remote Error List

= 0] Type query expression here | status

5% @S g B 7| St

CREATE TABLE QUERIES (

AMOUNT ~ DECIMAL(9,2) NOT NULL,
INTEREST DECIMAL(4,2) NOTNULL,
NOTNULL,

PAYMENT VARCHAR(1S) NOTNULL,

PERIODS INTEGER

PATH VARCHAR(100),

PRIMARY KEY(AMOUNT INTEREST PERIODS)

Query execution time => 344 ms

OPS/images/menuNewFilter.png
[2/05 UNIX Shells ‘I

GolInto
GoTo

&8 openin New Window
£ Show n Table
& Moritor

»

Define Generation Data Gro

9 Alocate Partitioned Data Se
Allocate Sequential Data Set
Allocate YSAM.

OPS/images/queriesEditor.png
[QUERIES 53
AMOUNT [DECIMAL(S , 2)] | INTEREST [DECIMAL(4 ,)] PERIODS [INTEGER] | PAYMENT [VARCHAR(15)] PATH [VARCHAR (100)]

OPS/images/8116spec.03.1.1.jpg

OPS/images/8116BatchRuntime3.07.1.041.jpg

OPS/images/selectConnectionProfile.png
€ Select Connection Profile

Select Connection Profile

Select a connection profle from the list below or dlick the New.
bitton to create a new connection profie.

Connectionss

5 Derby Sample Connection

~ Properties

Property value
MName DBS)

Description
Category Database Connections

Database DBS)

JDBC Driver Class com.ibm.db2.jec.DBZDriver

Class Location Ci\Program Fles\IBM\SDPSharedipl
Connection URL jdbc:db2://wtsc64tso.ibm.com:383.
User ID fayd

OPS/images/sql.png
. Data Project Explorer 52

& & BatchProjectData
6 Data Models
3 Other Fies
= (9 SqL Scripts
@) CreateQueriesTable.sql
3 Data Diagrarns

8 Data Source Explorer 52

Connection profie

Type: | Name:

CRERTE TRBLE QUERIES (
AMOUNT DECIMAL (9,2)
INTEREST DECIMAL(4,2)
PERIODS ~ INTEGER
PAYMENT VARCHRR (15)
PATH VARCHAR (100) ,

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (AMOUNT, INTEREST, PERIODS)

OPS/images/8116BatchRuntime3.07.1.042.jpg

OPS/8116cover.jpg
New Ways of Runnmg
IBM z/0S
Batch Applications

ibm.com/redbooks RedbOOks

OPS/images/newConnection.png
7| #ARemote Systems 3 =0

£

@ Bls

=& New Connection

A unux
g Linux on System z
& Local
s Urix

Jzios |

& Local

OPS/images/8116BatchRuntime3.07.1.008.jpg

OPS/images/8116BatchRuntime3.07.1.007.jpg

OPS/images/connectionSucceeded.png
€ New Connection

\1‘) Connection stcceeded

OPS/images/8116BatchRuntime3.07.1.006.jpg

OPS/images/newConnectionParameters.png
Connection Parameters

Select the database manager, JDBC criver, and reqLired connection parameters.

Connection identification
Use defaul naming convention

Connection Name

Select a database manager

Cloudscape
DB2 for i5/05
DB2 for Linux, UNIX, and Windows

Derby
Generic 1DBC
HSQLDE
Informix
MaxDB
MySQL
racle

SQL Server
Sybase
Websphere

est: Connection

JDBC diver:

IBM Data Server Driver for OBC and SQL] (IDBC 4.0) v

Properties

General | Tr

racing | Optional |

Location:

Host:

User name:

Password;

Default schema: |

[oBsn

[wtscs4.tso.bm.com

Port number \ 38340

etrieve objects created by this ser orly

[faydi

aye password

Connection URL: | jdbc:db2:/wtsced.itso.brm.com: 38340/DBS D retrieveM 4

essagesFromServerOnGethessage=true;emuiateParam

OPS/images/8116BatchRuntime3.07.1.005.jpg

OPS/images/newDataProject.png
= Data ProjectExplor &~ O
5%~

o

2 Import., i Physical Data Model
A Export. 0 Stored Procedire
2 User-Defined Function
2 WebSphere M User-Defined Function

1 Data Design Project
8 Data Source Explol 1] Data Development Project
=& ML=
= ¢ Database Corrl
& B3] 9 Example.
3 Derby Sarmp
= & 0D Data Sour L 0" N
& Flat Fll Data SoLrce
& Web Services Data Sorce
& XML Data Source

51 Static Web Project

OPS/images/8116BatchRuntime3.07.1.004.jpg

OPS/images/databaseConnected.png
18 Data Source Explorer 52 =0
ERH|s] S ud B
= (> Database Connections

=3 B9 (UB2 for 2/05 Va.1 (New:
0 DBS1

= (> ODA Data Sources
= Flat Fil Data Source
& Web Services Data Source
& XML Data Source

OPS/images/8116BatchRuntime3.07.1.003.jpg

OPS/images/newSQL.png
% DataProject Explor 31~ 0
EE
= U BatchProjectData

6 Data Models
{3 Other Files.

(3 Data Diagr & SQL or XQuery Seript

8 Data Source Explc
ERE BN
= (= Database Conmections

OPS/images/8116BatchRuntime3.07.1.002.jpg

OPS/images/newDataDesignProject.png
© New Data Design Project

Create a data design project
Speaify a basic defiition for the riew project. This project stores data design objects.

Project name: | BatchProjectData

Use default location

Working sets
[Add project to working sets

OPS/images/8116BatchRuntime3.07.1.001.jpg

OPS/images/newSqlXquery.png
& New SOL or XQuery Script

Project, Script, and Tool

Select the profect, name the script, and choose the tool to Use to create it

Project: |BatchProjectData [rvew...]

Narne: | CreateQueriesTable

Edit Lsing
(®5qL and XQuery editor (for scripts that contain one or more SQL and XQuery statements)
(OSqL Query Buider (for single SQL SELECT, INSERT, UPDATE, or DELETE statement)

Statement type

OPS/images/8116BatchRuntime3.07.1.070.jpg

OPS/images/8116BatchRuntime3.07.1.072.jpg

OPS/images/8116BatchRuntime3.07.1.071.jpg

OPS/images/8116BatchRuntime3.07.1.074.jpg

OPS/images/8116BatchRuntime3.07.1.073.jpg

OPS/images/8116BatchRuntime2.06.1.20.jpg

OPS/images/pdfCreatorClass.PNG
=& JavaSubProject
&3 sample
©lb
=0 s
PdfCreator.class
(57 Pdfcreator java
9 statements

OPS/images/8116BatchRuntime3.07.1.075.jpg

OPS/images/8116BatchRuntime2.06.1.19.jpg

OPS/images/8116BatchRuntime2.06.1.18.jpg

OPS/images/8116BatchRuntime2.06.1.11.jpg

OPS/images/jni2,.png
=% CobolsubProject: [wtscs4.itso.bm.com]
= 0@ FAYDLITSO.COBOL
COBLOAN.cbl

CQFAYDLITSODBRLM | New »
COFAYDLITSOJCL | & Show in Table

@ FAYDLITSOLISTING

CaFsvDLITSOLOMD | Rename

8 FAYDLITSO.0B1LIE | [COPY

caFvoLTso syspes R

X Delete.

OPS/images/8116BatchRuntime2.06.1.10.jpg

OPS/images/jni1,.png
& & indude GoTo

a
o Open
© cpo Open with
© db2
5 dbzrepl_08_¢ £1Refiesn
g j:: I Rename. F2
X Delte, Delete

0 dfsms B
© egivart

3 EGLRUNtme

OPS/images/8116BatchRuntime2.06.1.13.jpg

OPS/images/newFilePdfCreator.PNG
& New File (Remote and Local) Wizard

Select a parent folder and type a name for the rew fle.
Choose a parert folder

@ Folder: fuffaydi/com/sample/src

=4 wiscs4.itso.bm.com
B2 2/0S UNIX Files
= % My Home
=0 com
& & sample
©lb
o sre
9 statements
© demo
F Root
Local

Fil name(s): | Pdfcreator java

Type one or more fle rarmes separated by ",". (e.g. source.c,source)

OPS/images/8116BatchRuntime2.06.1.12.jpg

OPS/images/createNewHfsFile.PNG
= ¢fd BatchProject
=& JavasubProject
&3 sample
@b

[= 205 UNIX Subproject.

= % Cobolst #8 Linux on System z Project
= CAFAYT 8 2/05 Project.

ol & Paste
caFavg (8 Paste Fiter Sngs 3 HFS Fle Fiter,
% Delete (3 HFS Folder.

OPS/images/8116BatchRuntime2.06.1.15.jpg

OPS/images/8116BatchRuntime2.06.1.14.jpg

OPS/images/8116BatchRuntime2.06.1.17.jpg

OPS/images/8116BatchRuntime2.06.1.16.jpg

OPS/images/addCOBLOAN3.png
Insert
T B A I E Y -
RAARRRRRRAARRRRAEERRRRREAKRRRREEKRRRAEERRREAEE KR RRREEK KRR

* COBLOAN
*

*
*
A sinple program that calculates payment amount for a *
loan, stores the calculation into a DB2 table, and *
generates a PDF file containing the calculation. *
*
*
*
*

*
*
*
*
* Example input: '30000 .09 24 °

*

R AR AR AR R AR AR AR R AR R AR AR AR RA AR RE R R REERREE R
IDENTIFICATION DIVISION.

PROGRAM-ID. 'COBLORN' RECURSIVE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSTTORY .
Class PdfCreator is "pdfCreator”
Class jstring is "jstring”.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 FIELDS.
05 PAYMENT PIC $9(9)V99 USAGE COMP.
05 PAYMENT-OUT PIC $$$5,$5%,$59.99 USAGE DISPLAY.
05 LOAN-AMOUNT PIC $9(7)V99 USAGE COMP.

05 LOAN-AMOUNT-IN PIC X (16) .

OPS/images/8116BatchRuntime3.07.1.060.jpg

OPS/images/8116BatchRuntime3.07.1.063.jpg

OPS/images/8116BatchRuntime3.07.1.062.jpg

OPS/images/8116BatchRuntime3.07.1.065.jpg

OPS/images/8116BatchRuntime3.07.1.064.jpg

OPS/images/8116BatchRuntime2.06.1.09.jpg

OPS/images/8116BatchRuntime2.06.1.08.jpg

OPS/images/allocatePds3.png
@ 2/0S Projects 7

= ¢l BatchProject
=& JavasubProject
b Java solrce

£ FAYDLITSO.COBOL

BEv=-0

= O A Rremote Systems 52

& New Conmection
=4 wiscs4.itso.bm.com
$ 2/05 UNIX Flles
[2/05 UNIX Shells
=% MVS Files
= 3 Retrieved Data Sets
@ Empty list
o My Data Sets (FAYDLY)
=39 TS0

£ FAYDLITSO.COBOL

G Wy Search Qeres
5 TSO Commands
ES
Ef Local

OPS/images/8116BatchRuntime2.06.1.07.jpg

OPS/images/allocatePds2.png
€ New Data Set

Data Set Allocation
Choose a category and/or type.

Data Set Name: FAYDLITSO.COBOL

(O Copy characteristics from an existing data set:

1]

(@ Specify characteristics by usage type

Category | SOURCE v

Type |COBOL v

(O specifyy characteristics (Advanced allocation)

<Back][Next>

OPS/images/8116BatchRuntime2.06.1.06.jpg

OPS/images/addCOBLOAN2.png
€ New Member

Create Member

Create anew member residng on z/0S.

Data Set; [FavoLITsO.COBOL

Mermber Narne: | COBLOAN

OPS/images/8116BatchRuntime2.06.1.05.jpg

OPS/images/addCOBLOAN1.png
@ 2/0S Projects 7 Bv-=0o
= ¢f BatchProject
=& JavasubProject
3 Java solrce
= {2 CobolsubProject: [wsc64.tso.bm.com]
cofE

caravormso.copyvL] 2/0S Project

@ FAYDLITSO.DBRLM | & Show in Table

(8 FAYDLITSO.JCL & 2/05 UNIX Subproject;
Rename.
CaFAYDLITSOLISTING - -
(8 FAYDLITSO LOAD O‘DV
caFavDLITSO.0B1L1E | % DEte Define Al

Remove from Subprofect

OPS/images/8116BatchRuntime2.06.1.04.jpg

OPS/images/8116BatchRuntime2.06.1.03.jpg
Subrit

JoL

BCDBATCH

Proc

ZOS JVM ZOS Baich Container

OPS/images/8116BatchRuntime3.07.1.059.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/8116BatchRuntime2.06.1.02.jpg

OPS/images/8116BatchRuntime2.06.1.01.jpg

OPS/images/8116BatchRuntime3.07.1.092.jpg

OPS/images/statementsRenamed.PNG
£ 2/0S Projects 7 Bv=0
= ¢f BatchProject ~
=& JavasubProject
&3 sample
©lb

5 1320734128585, pdf
=0 s L
PdfCreator.class
(57 Pdfcreator.java
= {2 CobolsUbProject: [wisc4tso.bm.corr

OPS/images/8116BatchRuntime3.07.1.094.jpg

OPS/images/8116BatchRuntime3.07.1.093.jpg

OPS/images/8116BatchRuntime3.07.1.096.jpg

OPS/images/8116BatchRuntime3.07.1.095.jpg

OPS/images/newZosConnection1.png
€ New Connection

Select Remote System Type

2/05 System

System type:

& & General
A unux
g Linux on System z
& Local
e Ui

“iz/08

OPS/images/8116BatchRuntime3.07.1.098.jpg

OPS/images/8116BatchRuntime3.07.1.097.jpg

OPS/images/8116BatchRuntime3.07.1.111.jpg

OPS/images/8116BatchRuntime3.07.1.110.jpg

OPS/images/8116BatchRuntime3.07.1.113.jpg

OPS/images/8116BatchRuntime3.07.1.112.jpg

OPS/images/pdfs.PNG
& New Name Dialog

Enter unique name

Enter a Lrique name for the folder.

New Name:

X

pdfs

OPS/images/renameFolder.PNG
= ¢ BatchProject
=& JavasubProject
&3 sample
©lb
=0 s
PdfCreator.class
(5} PdfCreator.java L

[£ 132073 New v

= {2 CobolSubProject
= (@ FAYDLITSO.CO
COBLOAN.¢
=08 FAYD TR0

< || X Dekete

SIproperties &2 g2 out & Move

Copy
[Paste

OPS/images/8116BatchRuntime3.07.1.088.jpg

OPS/images/8116Intro.05.1.1.jpg

OPS/images/returnAllRows.PNG
Edt
®Drop o
18 Data Source PR 5 | g 41 to overview Diagram Extract.
/@, Sampk Contents

B % & [&] < | pfE Generate DOL
0 dars
LI MQTs e —
3 Packages Cormpare With ,
(Sequences |
{0 Stored Proce
C3Synonyms | (= copy

= 0 Tables Refresh -

sofEs

25 Analyze Impact.

[DCLGEN

OPS/images/8116BatchRuntime3.07.1.108.jpg

OPS/images/8116BatchRuntime3.07.1.080.jpg

OPS/images/8116BatchRuntime3.07.1.107.jpg

OPS/images/8116BatchRuntime3.07.1.083.jpg

OPS/images/sqlResult.PNG
Status Resuitl

AMOUNT | INTEREST | PERIODS PAYMENT PATH

OPS/images/8116BatchRuntime3.07.1.109.jpg

OPS/images/openWithSystemEditor.PNG
& & JavasubProject
&3 sample
©lb
=0 s
PdfCreator.class
(57 Pdfcreator java
= 03 statements b

& (2 CobolSLbProject [wisco4.tso, New ,

(8 FAYDLITSO.COBOL
8 FAYDLITSO.COPYLIB Cpen
% FAVD TS0 DRRI 1

Copy

>roperties

OPS/images/8116BatchRuntime3.07.1.084.jpg

OPS/images/8116BatchRuntime3.07.1.087.jpg

OPS/images/pdf.PNG
1320734128585, pdf - Adobe Acrobat Pro.

Fle Edt View Document Comments Forms Tools

G crsate -) combine -) Colborate - () Secu

Amount: 30000.0
Interest: 0.09
Periods: 24
Payment: $1,370.54

OPS/images/8116BatchRuntime3.07.1.102.jpg

OPS/images/8116BatchRuntime3.07.1.104.jpg

OPS/images/8116BatchRuntime3.07.1.103.jpg

OPS/images/8116BatchRuntime3.07.1.106.jpg

OPS/images/8116BatchRuntime3.07.1.105.jpg

OPS/images/8116BatchRuntime2.06.1.22.jpg

OPS/images/bcdrunFinished.PNG
= ES
Hy Retrieved Jobs

=@ BCDRUN:IOB13635
(5 JES2:JESMSELG
[JEs2:JESICL
JESYSMSG
BATCH:STDENY
BATCHBCDIN
 BATCHISYSOUT
BATCH:STDOUT
© BATCHBCDOUT
BATCHBCOTRACE
© FAYDITSU13557

OPS/images/8116BatchRuntime2.06.1.21.jpg

OPS/images/javacComplete.PNG
=& kS
Hy Retrieved Jobs
= 3 My Jobs
=@ JAVACIOB13689
(5 JES2:JESMSELG
[JEs2:JESICL
(5 :ESYSMSG

@ FAYDLTSU13669

Ef Local

OPS/images/8116BatchRuntime2.06.1.24.jpg

OPS/images/8116BatchRuntime2.06.1.23.jpg

OPS/images/8116BatchRuntime3.07.1.079.jpg

OPS/images/8116BatchRuntime2.06.1.25.jpg

OPS/images/8116Intro.05.1.2.jpg

OPS/images/readyForNewFiles.png
@ 2/0S Projects 7 Bv-=0o

=& JavasubProject
2% sample
{2 CobolsubProject [wtsce itso.bm.com]

OPS/images/newDatabaseConnection.png
1P Data Source Explorer 5

=kl

ad

[2F%]

=g
B~

OPS/images/openPerspective.png
& Open Perspective

Bacssm
[&CVS Repository Exploring

(:Database Deblg

(B3 Database Development

FDebug

ESEnterprise Service Tools

EXFaLlt Analyzer Perspective

&lava

3ava Browsing

2 Java EE

2’ 3ava Type Hierarchy

& Javascript

7 iews Graph Layout for Ecipse Sample Editors
#* iews Graph Layout for Ecipse Sample Views
[EilModeling

=Pl in-in Pevelonment
<

[show al

OPS/images/newUnixSubProject.png
& New 2/0S UNIX Subproject Wizard

Parent project

Select a parent project

Select the parent projec

OPS/images/newMvsSubProject.png
& New MVS Subproject

MVS Subproject Name and Location
Create an MVS Subproject

Connection Name

Project Name:

Stbproject Name: CobolsubProfect

High-level Qualfier: |FAYDI

Runtime Environment: | Any

Property group.
(O Select a property group to associate with the new subproject.

Name Description

(® Create anew property group and associate it with the subproject. Click |

Narne: | BatchRuntimeGroup|

(O Do ot associate the subproject with a property group.

OPS/images/browseSrc.png
]

& Browse
Select p
Select a folder,

@ Folder: fuffaydi/com/sample/src

=4 wiscs4.itso.bm.com
B2 2/0S UNIX Files
= % My Home
=0 com

Olb

© e

© statements
© demo

30 Root

Ef Local

OPS/images/nameJavaSubProject.png
& New 2/0S UNIX Subproject Wizard

New z/0S UNIX Subproject

Select at least one target environment.

Stbproject name: | JavasubProject]

Project Local Directory
Use default

Stbproject Working Directory

Target Environments
Select the applicable target environments

[] Defauit Target Environment:

OPS/images/newHfsFilter.png
& New 2/0S UNIX Subproject Wizard

New HFS File Filter

Specify anarme for the new fer.

Fiter Name | sample

OPS/images/finishNewZosSubProject.png
& New 2/0S UNIX Subproject Wizard

New z/0S UNIX Subproject
Create a new z/OS UNIX Subproject.

Stbproject name: | JavasubProfect

Project Local Directory
Use default

Stbproject Working Directory

Remote Working Directory: | \WWTSCE4.ITS0.IBM.COMayd!,

Target Environments
Select the applicable target environments

Defauit Target Environment: [Current] Setas o

<Back][Next>

OPS/images/finishSrcFilter.png
& New 2/0S UNIX Subproject Wizard

New Filter String
Create fiter strings for this fiter.

System Name User ID Path File Na. Includes Subfolders
WTSC64.TS... fayd fuffaydijcom/samples/src * YES

OPS/images/8116BatchRuntime3.07.1.028.jpg

OPS/images/projectName.png
& New 2/0S Project

2/0S Project Name

Create az/0S Project

Project name: | BatchProject]]

Subproject

D0 your also want to create a sbproject now?
(® Create an MVS subproject

(O Create a 2/0S UNIX subproject

OPS/images/newZosProject.png
@ 2/0S Projects 2 v=0

o g Linux on System z Project:
[E Paste

(8 Paste Fiter Strings 3 HFS Fle Fiter,

X Delete £ HFS Folder.

<& Move, HFS File.

BIRename other

2 Import.
4 Export.

OPS/images/selectSrc.png
& New Connection
=4 wiscs4.itso.bm.com
-2 2/0S UNIX Files
= % My Home
= & com
& & sample
=13
& s
& statements

OPS/images/newZosConnection3.png
€ New Connection

z/0S UNIX Files

Define subsystem information

Indicate how the remote server shovid be launched by defalit:

(® Remote daemon
Authentication method [useridfpassword v

Daemon Port (1-65535)

OPS/images/newZosConnection2.png
€ New Connection

Remote z/0S System Connection
Define connection information

parentprofie: |faych

Host name: WiscE4.itso.bm.com

Connection name: | wiscé4.itso.br.com

Description: 1

Verify host name

Brish | [cancel

OPS/images/8116BatchRuntime3.07.1.099.jpg

OPS/images/newConnect.png
#ARemote Systems 2

£8 @B

-4 New Cornection

% 2/0S UNIX Fies
3 2/OS UNIX Shells
B MVS Fles

5 TS0 Commands
ES

Hew
Golnto
GoTo

EHopen in New Window

& Show in Table
[EIMoritor

&IRefresh

Renarme,
K Delete.
[Ecopy.
“Move,
Export,
Import,

Fs

F2
Delete

< Move Up
& Move Down

Clear Passwords

OPS/images/newZosConnection4.png
€ New Connection

MVS Files

Define subsystem information

Indicate how the remote server shovid be launched by defalit:

(® Remote daemon
Authentication method [useridfpassword v

Daemon Port (1-65535

OPS/images/jesProperties.png
% Properties for JES

[opefierexe 1) 3e8

xS

Subsystem JES Job Moritor Port (1-65535) 6725
Max Number of Lines to Download (1-2147483647) | 5000

OPS/images/8116addm.08.1.2.jpg

OPS/images/useSSL.png
€ RsEC2315

\1‘) Connection WTSC64.ITS0.IBM.COM has not been sectred Lsing SSL.

Proceed anyway?
Do ot show this message again

OPS/images/8116addm.08.1.1.jpg

OPS/images/newFolder.png
€ New Folder

Remote Folder

Create a New Folder

Connection name: | wisce4.itso.br.com

Parent folder. [fusfaydi

New folder name: | cor|

® [

OPS/images/menuNewFolder.png
ARemote Systems 57
| £8|¢2@/B[% 7]
& New Conmection
=4 wiscs4.itso.bm.com

B2 2/0S UNIX Files

G 2/05 UNIX

=% MVS Files
%, Retrieve £ Open in New Window

% My Dats B Show in Table
G My Sear| = Moritor

[Fie

4 Fiter,

