

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page ix.

 First Edition (December 2008)

 This edition applies to IBM InfoSphere Warehouse Cubing Services, Version 9.5.1 Refresh and IBM Cognos 8.4 BI.

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 AIX®

 Alerts®

 Balanced Warehouse™

 Blox®

 Cognos®

 Cube Views™

 Database 2™

 DataStage®

 DB2®

 Distributed Relational Database Architecture™

 DRDA®

 Extreme Blue™

 IBM®

 IMS™

 Informix®

 InfoSphere™

 Intelligent Miner™

 Rational®

 Red Brick™

 Redbooks®

 Redbooks (logo)[image:]®

 WebSphere®

 The following terms are trademarks of other companies:

 Cognos, and the Cognos logo are trademarks or registered trademarks of Cognos Incorporated, an IBM Company, in the United States and/or other countries.

 SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries.

 EJB, J2EE, Java, JavaScript, JDBC, JDK, JRE, JSP, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

 ActiveX, Excel, Expression, Internet Explorer, Microsoft, MS, PivotChart, PivotTable, Windows Server, Windows Vista, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 IBM® provides end-to-end technologies, services, and solutions for business intelligence (BI). This includes information integration, master data management, data warehousing, industry models, BI tools, and industry frameworks. Enabling and supporting all these capabilities requires a robust data warehousing infrastructure. IBM provides powerful offerings for developing such an infrastructure. The current offering is called the IBM InfoSphere™ Warehouse.

 Formerly known as DB2® Warehouse, InfoSphere Warehouse enables a unified, powerful data warehousing environment. It provides access to structured and unstructured data, as well as operational and transactional data. In this IBM Redbooks® publication, we provide a brief overview of InfoSphere Warehouse for a better understanding of its content and capabilities.

 The primary objective of this book is to discuss and describe the capabilities of one particular component of the InfoSphere Warehouse, the InfoSphere Warehouse Cubing Services (IWCS), V9.5.1. We address what IWCS is, how it works, how to implement it, and how to use it.

 IWCS is designed to provide a multidimensional view of data stored in a relational database for significantly improved query and analysis capabilities. For this, there are particular schema designs that are typically used for these data warehouse and data mart databases, called dimensional models.

 Dimensional models make it easier to pose business questions related to a particular business process or business area. When the data is organized in dimension hierarchies, the structure is more intuitive to users and facilitates their understanding of the data relationships. This is what enables more detailed analysis, and what is called OnLine Analytical Processing (OLAP).

 InfoSphere Warehouse Cubing Services makes the data warehouse the platform of choice for managing, deploying, and providing multidimensional data across the enterprise. It provides easier-to-manage OLAP solutions quickly and improves performance across analytical applications. With it, you can also create, edit, import, export, and deploy cube models over the relational warehouse schema. In addition, it provides optimization techniques to dramatically improve query performance.

 Cubing Services works with BI tools such as Alphablox, Cognos®, and Microsoft® Excel®, through their client interfaces, to accelerate OLAP queries from many data sources. It works by using cube metadata to design specialized summary tables (DB2 materialized query tables, or MQTs) that contain critical dimensions and levels, or slices, of the cube.

 The Cubing Services cube optimization process recommends summary tables that can be created to improve the performance of OLAP queries. The DB2 optimizer transparently rewrites incoming queries and routes eligible queries to the appropriate summary tables for significantly faster query performance.

 Ready to learn more about cubing services? Then this is the book for you.

 The team that wrote this book

 This book was produced by a team of specialists from around the world working with the International Technical Support Organization, in San Jose California. The team members are shown below, with a short biographical sketch of each:

 [image:]Chuck Ballard is a Project Manager at the International Technical Support organization, in San Jose, California. He has over 35 years experience, holding positions in the areas of Product Engineering, Sales, Marketing, Technical Support, and Management. His expertise is in the areas of database, data management, data warehousing, business intelligence, and process re-engineering. He has written extensively on these subjects, taught classes, and presented at conferences and seminars worldwide. Chuck has both a Bachelors degree and a Masters degree in Industrial Engineering from Purdue University.

 [image:]Deepak Rangarao is a Technical Sales Specialist on the IBM Americas BI Best Practices team, focussing on analytics. He has over 9 years of cross industry experience in data warehousing and analytics working for customers and vendors in both a pre-sales and post sales capacity in retail, banking, telecommunication and public services. Deepak has also taught in universities, on subjects that include electrical engineering, Java™ network programming, and multimedia/Web development. Deepak holds a Masters degree in Information Technology from R.M.I.T, in Melbourne, Australia.

 [image:]Jimmy Tang is the team lead for the IBM Information Management Technical Pre-sales team in Canada. He has over 25 years of IBM experience in Finance Industry and Business Intelligence providing support to customers in data warehouse architecture and design, and the implementation of data warehousing and analytics solutions. Jimmy is a constant technical leader on the IBM America’s BI competency team in Dynamic Warehousing and Analytics. He holds a Bachelors Degree in Science from the University of Hong Kong.

 [image:]Philip Wittann is a Proven Practice Advisor for Cognos Business Intelligence Reporting with IBM, Canada. He has worked with business intelligence reporting for 6 years and through this time has created and identified some of the key approaches to successful implementation of relational and dimensional reporting applications with IBM Cognos products. He has also taught courses on data design, report design, metadata modeling, and understanding queries, from both SQL and MDX query perspectives across multiple relational and OLAP providers. Phil holds a degree in Physics from the University of Waterloo, Canada.

 [image:]Zach Zakharian is a Software Engineer at the IBM Silicon Valley Laboratory, San Jose, California. He is a member of the Business Intelligence Technical Support team, providing advanced technical support for the Alphablox and InfoSphere Warehouse Cubing Services products. Zach holds a Bachelor of Science degree in Information Systems Management from the University of California, Santa Cruz, and is currently pursuing a Masters degree in Software Engineering at San Jose State University.

 [image:]Andy Perkins is a Business Intelligence specialist for the IBM TechWorks team in Dallas, Texas. He has 23 years of experience with customer database and Business Intelligence projects, providing support in consulting, architecture design, data modeling, and implementation of data warehouses and analytical solutions. Over the years Andy has worked with the majority of the IBM and Information Management products portfolio on platforms ranging from the mainframe to the PC.

 [image:]Robert Frankus is a Consultant IT Specialist for the Business Intelligence Best Practices Team focused on Analytics, and is based in San Francisco, CA. His areas of expertise are in analytics, data warehousing, and information integration. Over the last seven years, he has architected and developed a number of analytical applications, dashboards, and corporate performance management solutions for Fortune 500 clients, in industries such as retail, high tech, and financial services. He teaches extensively on dimensional modeling and building business intelligence applications. He holds a Masters of Management Information Systems from the University of Cologne, Germany and was a Visiting Fellow at the Massachusetts Institute of Technology Sloan School of Management, Boston, Massachusetts.

 Other Contributors:

 In this section we thank others who have either contributed directly to the content of this Redbooks publication or to its development and publication.

 A special thanks to the following for their advice, guidance, and written content on Cognos BI and how it can be used to leverage your Cubing Services investment. They are Patricia Defosse, Product Manager - Cognos BI, Daniel Wagemann, Proven Practice Advisor, and Craig Taylor, Proven Practices Engineer, all from IBM Software Group, located in Ottawa, ON.

 A special thanks to Michael Alcorn, InfoSphere Warehouse Performance Quality Assurance, and Pat Bates, InfoSphere Warehouse Product Manager, for their contributions to this IBM Redbooks publication. Their IBM Internal paper InfoSphere Warehouse Cubing Services Cube Server - Best Practices was a source of valuable content in the development of this Redbooks publication.

 Thanks to Veronica Woody and Suzanna Khatchatrian, Extreme Blue™ Organization - Almaden Research Center, San Jose, CA, for providing a great working environment for the Redbooks Team.

 Thanks also to the following people for their contributions to this project:

 Laura Bellamy
Alphablox, Cubing Services, Warehouse Team Leader, Silicon Valley Lab, San Jose, CA

 Kevin Cheung
Information Developer for Cubing Services, Silicon Valley Lab, San Jose, CA

 Daniel DeKimpe
Software Developer, Cubing Services Development, Silicon Valley Lab, San Jose, CA

 Bruno Fischel
Software Developer, Warehouse Tools Development - OLAP, Silicon Valley Lab, San Jose, CA

 Robert Kickhofel
Technical Support Professional, Client Resolution Specialty, Silicon Valley Lab, San Jose, CA

 Kevin Low
Software Developer, InfoSphere Warehouse Cubing Services, Silicon Valley Lab, San Jose, CA

 Warren Pettit
Information Management Instructor and developer for data warehouse courses, Menlo Park, CA.

 John Poelman
Software Developer, InfoSphere Warehouse Cubing Services, Silicon Valley Lab, San Jose, CA.

 Velimir Radanovic
Software Developer, InfoSphere Warehouse Cubing Services, Silicon Valley Lab, San Jose, CA

 David Wilhite
InfoSphere Warehouse Cubing Services Technical Lead and Architect, Silicon Valley Lab, San Jose, CA

 Cheung-Yuk Wu
Software Developer, Common AD Tooling, Silicon Vallen Lab, San Jose, CA

 Christopher Yao
InfoSphere Warehouse Cubing Services FVT Software Test Specialist, Silicon Valley Lab, San Jose, CA

 From the International Technical Support Organization, San Jose Center:

 Mary Comianos: Publications Management

 Emma Jacobs: Graphics

 Deanna Polm: Residency Administration

 Become a published author

 Join us for a two- to six-week residency program! Help write a book dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You will have the opportunity to team with IBM technical professionals, Business Partners, and Clients.

 Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you will develop a network of contacts in IBM development labs, and increase your productivity and marketability.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an e-mail to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

[image:]
[image:]

Introduction

 Getting the right information at the right time with fast response times is critical for optimal business operations. InfoSphere Warehouse Cubing Services (IWCS), a key component of the IBM InfoSphere Warehouse Embedded Analytics, will help you achieve the speed and flexibility required to realize the significant benefits that can be realized when you can provide users with information on demand.

 In this chapter, we provide a brief overview of the Cubing Services offering, including a business case for when you should consider an MDX interface to the data warehouse, and how IWCS will help you achieve that.

 To establish a common level of understanding of the subject matter of this book, we look at the current business landscape, and provide a brief introduction to the IBM InfoSphere Warehouse and how you can plan, design, implement, and use it. The intent is not to go into great detail here, but to look at the today’s business needs and describe both how those needs can be satisfied and how to provide significant added value with the IBM InfoSphere Warehouse.

 	
 Note: All reference to the InfoSphere Warehouse in this book relate to the IBM InfoSphere Warehouse Enterprise Edition. Be aware that there are several different offerings of the InfoSphere Warehouse, each of which come with a specific subset of the Enterprise Edition components that we describe here.

 1.1 Business landscape

 With the globalization and increasing competition of today’s market, there has been a tremendous growth in data collection. Organizations are collecting more information and retaining it for longer periods so they can analyze and use it to maintain a focus on such key business criteria as the following:

 •Performance monitoring

 •Customer satisfaction

 •Financial awareness

 •Regulatory requirements based on the industry’s governing body

 The numerous acquisitions and mergers in recent years have brought with them the requirement to access multiple data sources of both structured and unstructured data, on multiple platforms, and from multiple heterogeneous database environments. These changes in the market, the ever-increasing competitive threat, and growing customer demands have demonstrated that status quo data warehousing solutions often cannot meet modern business requirements. These requirements include enabling employees and management to gain insight from relevant real-time and historical information sources to optimize strategic and tactical decision making. Meeting these requirements necessitates transforming business information and the way it is accessed, analyzed, and acted upon to turn it into competitive advantage.

 To be successful today and grow the business means overcoming the limitations of the current infrastructures and moving towards a more flexible and powerful data warehousing environment. Businesses must strive to enhance their data warehousing environment and enable it to support a variety of data sources with both structured and unstructured data, and enable it to expose all of that information to the users through a unified interface. They must make use of more of their available information (for example, the annotations in the call center system). There is useful information there, much of which is seldom leveraged in growing the business. For many, there has not been the capability to access and use these types of data.

 The following sections elaborate on these capabilities and the current information environment. In addition, we provide a brief overview of the IBM solution for creating such an environment, which is the IBM InfoSphere Warehouse. We discuss and describe the components of the InfoSphere Warehouse, with a focus specifically on Cubing Services, and the MDX interface to the InfoSphere Warehouse.

 1.2 Information environment

 The enterprise information environments are experiencing significant change, which is prompting changes in their business strategies and directions. For example, businesses today are demanding more current information and they want it faster. Weekly and daily reports rarely meet the requirement. Users are demanding current, up-to-the-minute results in the evolution towards real-time business intelligence.

 One such direction is the movement towards data mart consolidation. Businesses have created many data marts in an effort to move data closer to users and improve response times. This helped, but brought with it the limitations of data currency and consistency across the enterprise. These current requirements can seldom be met in an environment with many independent data marts.

 With the powerful and fast servers and networks of today, however, these limitations can be overcome by consolidating the data in an enterprise data warehouse. An enterprise data warehouse can enable a more dynamic and flexible information environment. Data can now be better organized and managed to meet the current requirements of different user types in an enterprise. We refer to the organization and structure of that information environment as the information pyramid, shown in Figure 1-1 on page 4.

 Data in the information pyramid is organized in layers, or as we have shown them, on different floors. IT has traditionally seen these as separate layers, which typically requires the data to be copied from one layer to another to satisfy the requirements of a specific set of users. With the information pyramid, that is no longer a requirement.

 Even though Figure 1-1 on page 4 shows the data on separate floors, that is just a visualization for understanding. We are not implying that these are physically different layers of data. The floors can be understood simply as being different views of the same information, but with the different characteristics required by the users to perform a specific task. We have labeled them as floors, rather than layers of information, to help emphasize that notion.

 [image:]

 Figure 1-1 Information pyramid by data volume

 With the physical layer approach, such as with data marts or other distributed data sources, there was a requirement to copy and move data between the layers, typically from the lower to the higher layers. There are other approaches that can enable integration of the data in the enterprise, and there are tools that can enable those approaches, but at IBM, information integration implies the result, which is integrated information, not the approach.

 We have stated that the data on each floor has different characteristics, such as volume, structure, and access method. Now we can choose how best to physically instantiate the floors. For example, we can decide if the best technology solution is to build the floors separately or to build the floors together in a single environment. An exception is floor zero, with the operational transaction data, which will remain separate for some time. For example, an OLTP system may reside in another enterprise, or even in another country. Though separate, we can still access the data and can move it into our enterprise data warehouse environment.

 Floors one to five of the information pyramid can be mapped to the layers in an existing data warehouse architecture. However, this should only be used to supplement understanding and subsequent migration of the data. The preferred view is one of an integrated enterprise source of data for decision making and, a view that is current, or real-time.

 1.2.1 Data warehousing for analytics

 As a consequence of growth and change over time, there is a large volume of data sources and data repositories in every organization. This has been caused by, and resulted in, the proliferation of transactional systems and data marts alike. To operate in this environment, users must cast a wider net over the various sources and types of information in these multiple repositories to make use of it to support their decision-making requirements.

 These multiple data sources can result in inconsistencies, and inaccuracies in data analysis, which results in inconsistencies in the reporting structures. This is one of the key considerations for moving to a centralized repository, or enterprise data warehouse. Moving to a centralized repository includes these other considerations as well:

 •Cost savings

  –	Less hardware for data storage.

  –	Lower licensing cost from less software on fewer machines.

  –	Reduced cost of operations and maintenance for activities such as software updates, backup/recovery, data capture and synchronization, data transformations and problem resolution.

  –	Reduced cost of resources required for support, including the cost of training and ongoing skills maintenance. This is a particularly high cost in a heterogeneous environment.

  –	Reduced cost associated with networking for connectivity and operations.

 •Increased productivity

 Data consolidation results in more productivity from an IT perspective as the available resources have to be trained in fewer software products, and fewer hardware environments.

 •Improved data quality and integrity

 There is a significant advantage that can restore or even enhance user confidence in the data. Implementation of common and consistent data definitions, as well as managed update cycles, can result in query and reporting results that are consistent across the business functional areas of the enterprise.

 	
 Keep in mind: The power of retaining the data in an enterprise warehouse is the ability to have a single version of the truth, and in addition, being able to share the metadata across the enterprise.

 This notion of a single version of the truth has been an elusive goal for businesses for some time now. With InfoSphere Warehouse, we are now closer than ever to that goal. A key methodology to enable this is by embedding analytics in the data warehouse. This is achieved with InfoSphere Warehouse Cubing Services. It uses an MDX interface to the data warehouse that leverages the Online Analytical Processing (OLAP) metadata stored in the data warehouse and exposes a well-structured cubing environment to enhance the user analytic capabilities.

 OLAP analytics, which has previously required data to be moved out of the data warehouse and resulted in creation of multiple silos of information, can now be performed without moving the data out of the data warehouse. This is a significant advantage.

 OLAP, using InfoSphere Warehouse Cubing Services, not only enables the single version of the truth but it also enables near real-time analytics as a result of the reduced latency in getting access to the data.

 Cubing Services is one of the core components of the InfoSphere Warehouse. In the following sections we provide an overview of the InfoSphere Warehouse architecture, and a brief description of its components.

 1.3 InfoSphere Warehouse architecture

 InfoSphere Warehouse is a suite of components that combines the strength of the DB2 database engine with a powerful business analytics infrastructure from IBM. InfoSphere Warehouse provides a comprehensive business analytics platform with the tools required to enable you to design, develop, and deploy next generation analytical applications in your enterprise.

 InfoSphere Warehouse can be used to build a complete data warehousing solution that includes a highly-scalable relational database engine, data access capabilities, business analytics, and user analysis tools. It integrates core components for warehouse administration, data mining, OLAP, inline analytics and reporting, and workload management.

 1.3.1 The component groups

 The InfoSphere Warehouse is a component-based architecture with client and server components. Those components are arranged into three logical component groups, shown in Figure 1-2. These component groups are typically installed on three different computers, but can be installed on one or two, because they can operate in a multi-tier configuration. The component groups are as follows:

 •Data server components

 This includes DB2, DB2 Query Patroller, Cubing Services, and Data Mining.

 •Application server components

 This category includes WebSphere® application server, InfoSphere Warehouse Administration Console, SQL Warehousing Tool, IBM Alphablox and Miningblox.

 •Client components

 The client components are Design Studio, IBM Data Server Client, Intelligent Miner™ visualizer, and Miningblox.

 In addition to these component products, the InfoSphere Warehouse documentation and tutorials can also be installed in any of the logical component groups.

 [image:]

 Figure 1-2 Logical component groups in the IBM InfoSphere Warehouse

 The highly scalable and robust DB2 database servers are the foundation of the InfoSphere Warehouse. All the design and development is performed using Design Studio, an eclipse-based development environment. The IBM WebSphere application server is used as the run-time environment for deployment and management of all Warehouse-based applications.

 1.3.2 InfoSphere Warehouse components

 The IBM InfoSphere Warehouse components are organized into the six major categories of the architecture, which are as follows:

 •Database management system

 •Data movement and transformation. See page 9 for more information.

 •Performance optimization. See page 9 for more information.

 •Embedded analytics. See page 12 for more information.

 •Modeling and design. See page 12 for more information.

 •Administration and control. See page13 for more information.

 The categories and components of the architecture are shown in Figure 1-3.

 [image:]

 Figure 1-3 IBM InfoSphere Warehouse 9.5.1

 IBM InfoSphere Warehouse has the highly scalable and reliable DB2 database engine as the database management system.

 Data movement and transformation

 One of the key operating principles of the IBM InfoSphere Warehouse is to maintain simplicity and, more importantly, to have integrated tooling to design, develop, and deploy, data warehouse applications.

 In the information environment, we typically find that organizations have several DBAs that spend a significant amount of time writing SQL scripts to maintain data in the data warehouse and data marts. They must create documentation for those SQL scripts, and keep it up to date and maintained over time. This is not only time consuming for them, but also for new staff to enable them to perform the data warehouse maintenance. With the InfoSphere Warehouse, the data movement and transformation for intra-warehouse data movement is accomplished by using the SQL Warehousing tool (SQW). SQW tooling is part of the Eclipse-based tooling Design Studio.

 SQW enables the DBAs to define data transformation and data movement tasks using the simple, intuitive, drag-and-drop interface as data flows. These data transformation jobs can then be grouped by using control flows.

 Control flows created using SQW are then deployed and managed using the InfoSphere Administration Console. The InfoSphere Administration Console allows for variables to be introduced in transformation jobs that can be modified at deployment or run time.

 Performance optimization

 The InfoSphere Warehouse has several features that can be leveraged to enhance the performance of analytical applications, using data from the data warehouse.

 The InfoSphere Warehouse includes the following performance optimization features:

 •Database partitioning. See page 10.

 •Multidimensional clustering. See page 10.

 •Table partitioning. See page 11.

 •DB2 compression. See page 11.

 •Workload management. See page 11.

 Database partitioning

 Also known as DPF (Database Partitioning Feature), this feature enables you to divide a database into multiple database partitions. Each database partition can be allocated its own set of computing resources, including CPU and storage. Each table row is distributed to a database partition based on the partitioning key specified in the CREATE TABLE statement. This is shown in Figure 1-4.

 [image:]

 Figure 1-4 Database Partitioning Feature

 When a query is processed, the request for data is segmented so that each database partition processes the rows that are stored in the particular partition for that segment. This allows for consistent query performance, as the table grows by providing the capability to add more processing capability, in the form of additional database partitions. This is shown in Figure 1-5.

 [image:]

 Figure 1-5 DPF—query routing

 Multidimensional clustering

 Multidimensional clustering (MDC) allows for rows of data with similar values across multiple dimensions to be physically clustered together on disk. This clustering then enables efficient I/O for analytical queries.

 An example of MDC is shown in Figure 1-6 on page 11. All rows where Product=car, Region=East, and SalesMonthYear=Jan09, can be stored in the same storage location (known as blocks).

 [image:]

 Figure 1-6 Multidimensional clustering

 Table partitioning

 Table partitioning, also known as range partitioning, is similar to MDC in that it enables rows with similar data to be stored together. The following characteristics, however, distinguish it from MDC:

 •Table partitioning supports partitioning a table into data partitions along a single dimension or column. MDC supports clustering of data across multiple dimensions.

 •Table partitioning allows the user to manually define each data partition and the range of values to include in the data partition. MDC automatically aligns each cell of data based on the combination of the MDC dimension values.

 DB2 compression

 The DB2 compression feature allows for data rows to be compressed based on repeating values across the columns in the table. New data added to the table is automatically compressed and the key values added to the dictionary object. This allows for more rows per page of data, which can reduce the number of I/O requests, and thus improve performance. The backup and restore times are also substantially reduced because the volume of data to be backed up and restored is substantially less.

 Workload management

 The workload management feature in the InfoSphere Warehouse identifies the incoming workload and enables the request to be isolated in an execution environment so that resource consumption can be controlled. Resources, such as CPU, can be controlled explicitly or implicitly by controlling the work requests themselves.

 Embedded analytics

 IBM InfoSphere Warehouse has embedded analytics, in the form of OLAP and data mining, as part of the data warehouse infrastructure.

 The InfoSphere Warehouse includes the following components:

 •Data mining and visualization

 The IBM Intelligent Miner is embedded in the InfoSphere Warehouse. This allows for mining models to be deployed to the enterprise data warehouse and scoring to be performed against these mining models from within the data warehouse.

 •Inline analytics

 Inline analytics, in the form of Alphablox, allow you to create Web-based interfaces to OLAP metadata. Alphablox-based applications can be embedded in existing Web pages which, in turn, enable you to embed analytics as part of the business process.

 •Cubing services

 Cubing services uses an MDX interface to access data in the data warehouse. This allows you to retain data in the warehouse and dynamically perform aggregations, thus enabling near real-time OLAP analysis. In addition to utilizing the performance optimization features in the DB2 database engine, Cubing services has another performance optimization layer in the form of in-memory data caching.

 •Unstructured text analytics

 Practically every organization has data stored in both structured and unstructured format. The unstructured text analytics component enables you to analyze unstructured text data and to use unstructured text data alongside structured data to gain better business insight.

 Modeling and design

 All the modeling and design for the InfoSphere data warehouse is done using an eclipse-based integrated design environment (IDE) interface, Design Studio. This IDE allows for design and development of data models, OLAP models, data mining models, and intra-warehouse data movement tasks.

 From a data modeling perspective, Design Studio, as part of the InfoSphere Warehouse, allows you to do physical data modeling. If you need to do logical data modeling, this can be achieved through the IBM Rational® plug-in for logical data modeling as an add-on to the InfoSphere Warehouse suite.

 A unique and useful feature in Design Studio is the ability to reverse engineer an existing data model from an existing database schema or from Data Definition Language (DDL). This is valuable when designing and developing OLAP and data mining models offline before deploying them to the data warehouse.

 Data mining models are created using a drag-and-drop interface in Design Studio. This same interface is also used to define intra-warehouse data movement and transformation jobs in the form of data flows and control flows.

 	
 Keep in mind: The power is in being able to design, develop and deploy all data warehouse based applications, including OLAP and data mining, by using the same intuitive Design Studio interface.

 Administration and control

 All InfoSphere Warehouse-based applications are administered using a centralized Web-based interface, the InfoSphere Warehouse Administration Console. This Web-based interface runs on the IBM WebSphere application server that is included with the InfoSphere Warehouse suite.

 The Administration Console allows you to perform the following tasks:

 •Create and manage database and system resources, view log files, and manage SQW processes.

 •Run and monitor data warehouse applications and view deployment histories and execution statistics.

 •Manage Cube Server, import cube models, explore cube models and cubes, and run the OLAP metadata optimization advisor.

 •Enable a database for mining, load, and import and export mining models.

 1.4 InfoSphere Warehouse Cubing Services

 The IBM data warehouse offering, InfoSphere Warehouse, provides a complete platform for all stages of the data warehouse life cycle, from data modeling to analytics delivery. Key to this platform is the built-in capability for multidimensional analysis, data mining, and unstructured text analysis.

 OLAP is a core component of data warehousing and analytics. It gives users the ability to interrogate data by intuitively navigating data from summary to detail. InfoSphere Warehouse Cubing Services, a multidimensional analysis server, enables OLAP applications access to terabyte volumes of data through industry-standard OLAP connectivity. This warehouse-based OLAP capability is a core pillar of the InfoSphere Warehouse analytics platform.

 1.4.1 Helping the DBA

 In a traditional OLAP environment, the DBA plays a major role in the maintenance of the data source for the OLAP applications. The typical tasks the DBA undertakes include the following tasks:

 •Creating an appropriate database schema to enable OLAP analysis

 •Creating data transformation jobs to prepare the data for OLAP analysis

 •Creating data movement jobs to isolate data required for the different OLAP applications

 •Maintaining the data transformation jobs to support changes to the business process or business metrics

 •Maintaining the data movement jobs

 •Monitoring the performance of the data transformation and data movement jobs as the database grows over time

 While these tasks may be technically trivial, they can be time consuming. This additional workload can impact the DBA and minimize the time available to perform other responsibilities. The ROLAP capabilities, with optimized performance, that come with InfoSphere Warehouse Cubing Services help alleviate these issues.

 With InfoSphere Warehouse Cubing Services, the data remains at the source and all the performance optimization features of the data warehouse are used. Cubing Services uses Materialized Query Tables (MQTs) and Multidimensional Clustering (MDC) to enhance the performance of OLAP applications. While MQTs are in essence summary tables that require maintenance on an ongoing basis, this maintenance can be done automatically with the Immediate or Deferred summary table data refresh options, based on the business needs.

 This automatic maintenance of summary tables not only reduces the DBA workload but it helps to eliminate inconsistencies in data summarization and other errors commonly seen in the manual data summarization process.

 Another advantage of this incremental automatic maintenance of summarized data is that it significantly reduces the latency in access to summarized data. The DBA does not have to monitor the data summarization process.

 In terms of OLAP metadata such as dimension members and metrics, the Cubing Services architecture leverages the OLAP metadata repository as part of the InfoSphere Warehouse. This is a centralized repository for all dimensional metadata and metrics definitions. The DBA does not need to maintain data load jobs for OLAP metadata. Because the OLAP metadata is stored at the source, it fits into the single version of the truth for metadata as well.

 In summary, highlights of the Cubing Services ROLAP architecture are as follows:

  –	Reduced DBA effort by eliminating data movement from the source.

  –	Increased DBA productivity by reducing data monitoring and management.

 1.4.2 Empowering the users

 The traditional SQL-based reports are usually built using data sourced from two-dimensional relational database tables. This data is then formatted and presented to the users. This is simple and powerful, but it has the following disadvantages:

 •The reports are canned reports predefined by the reporting applications. In many cases they cannot be easily modified to incorporate the changing business reporting requirements.

 •IT involvement is required to change reports and to build new reports.

 •The report user is relatively isolated from the business data.

 Cubing Services-based OLAP reporting, on the other hand, integrates the complex issues of business data structures, procedures, algorithms, and logic into its multidimensional data structures, and then presents intuitive, easy-to-understand dimensional information views to the users while empowering them to explore their business data in a hierarchical fashion. Multidimensionality sounds complicated, but it is not. OLAP does not add extra data structures or dimensions to business data, it simply recognizes complex data in a dimensional format and presents it to the data consumers in an easy to understand fashion.

 With Cubing Services cubes, users can easily navigate the pre-defined reports and explore business data or perform ad hoc analytics with little training or assistance from IT professionals on OLAP.

 	
 Keep in mind: Providing quick answers to commonly asked business questions is the core value of multidimensional analysis.

 There are three key concepts in Cubing Services OLAP analysis:

 •Dimensions

 •Categories

 •Measures

 Dimensions

 A dimension is a classification of an activity and represents the ways in which people measure success or failure in an organization.

 For example, you may have a Sales cube with the following dimensions:

 •Time

 The business user may have the following questions:

  –	How did we do this month versus last month?

  –	How did we do this year versus last year?

  –	How did we do today versus yesterday?

 •Product

 The product dimension may have the following questions:

  –	What percentage of my overall revenue comes from the Computer Technology group of products?

  –	Has the revenue mix changed between the product groups?

  –	Which product group is the most profitable?

 •Store

 A store dimension may be hierarchically organized as subdivisions, regions, districts and stores. Sales managers are often interested in divisional or regional performance, asking the following questions:

  –	How does sales growth in Region 44 compare to Region 45?

  –	What are the top 10 stores in terms of revenue generation?

 Categories

 The second key concept is a category. These are the individual data points within given dimensions. For example, categories in the Time dimension could be year “2002” or year “2003.” This hierarchical organization makes it possible to roll up or aggregate values for groups of categories to higher levels.

 Measures

 The third key concept is a measure. These are quantitative elements used for analysis and to build reports. For sales, typical measures could be revenue, cost, and returns. Because of the way multidimensional analysis manages measure values, users do not have to worry about the arithmetic behind allocations. Users can simply sort the data to see trends and values that are important to them.

 An advanced type of analytics, in the form of OLAP analytics, has typically been performed by knowledge workers in the corporate office using specialized tools. While this has provided much value to the corporation, as more decision making is pushed to the line of business workers, the requirement for delivering advanced analytical applications outside of the corporate office, and sometimes outside of the corporation, has become a competitive edge.

 InfoSphere Warehouse Cubing Services OLAP analytics enables this advanced analytics capability with near real-time latencies, as well as with data consistency and accuracy. This is a real power of the Cubing Services ROLAP architecture for the business users.

 Many users are already familiar with using applications over the Web, typically through Web Browsers. Corporations have found that delivering operational applications over the Web effective and these line of business workers are well-versed in using Web browsers. The goal is to deliver advanced analytic capabilities without the user realizing that they are performing advanced functions. They do not need to be cognizant that they are doing something different than they normally do everyday in their job. When a worker logs into the corporate portal, there should be objects on the window that represent things that they need to do, whether it be running payroll, ordering inventory, scheduling personnel, or interacting with an OLAP database using interactive charts.

 This concept of integrating advanced analytics into every day business processes is commonly referred to as Operational Business Intelligence. It is critical to have the ability to embed analytic functionality into the daily routine of a line of business employee with a minimum amount of effort and interruption.

 Figure 1-7 on page 18 depicts some windows from a Web-based workbench for a grocery store manager. It is not necessary to read or understand all the information in Figure 1-7 on page 18, it is simply a depiction of the types of information that might be made available. For example, this workbench contains access to all of the applications that the store manager needs to accomplish his daily job in one integrated workbench. Some of the functionality is delivered by traditional applications and some is delivered by analytical applications, but the store manager does not know or care as these are seamlessly embedded and integrated into the workbench. In the example, the store manager is using the workbench to analyze some out of stock (OOS) situations that were highlighted by the key performance indicator (KPI) component on the home page.

 The OOS alert directs the store manager through a series of analytics to determine where the problem lies and how best to handle it. It results in a stock reorder being generated. All of this is done seamlessly without the store manager noticing the difference between analytics and operational systems. He is simply interacting with functional objects on his workbench.

 [image:]

 Figure 1-7 Grocery store manager workbench with embedded analytics

 1.5 Focus of this Redbooks publication

 The focus of this Redbooks publication is to highlight the Cubing Services feature in the IBM InfoSphere Warehouse. The following is a brief description of the topics presented in this Redbooks publication and how this book is organized.

 •Chapter 2, “The cubing life cycle” on page 21, goes through the Cubing life cycle and the Cubing Services architecture, outlining the different steps involved in creating the cube models, deploying these cube models, and administering them on an ongoing basis.

 •Chapter 3, “Modeling using IBM InfoSphere Warehouse Design Studio” on page 51, takes an in-depth look at Design Studio, the IDE used to develop data warehouse application in the InfoSphere Warehouse. This chapter presents step-by-step instructions on how to create a data project for OLAP applications and how to create a physical data model by reverse engineering an existing database schema.

 •Chapter 4, “Creating the Cube Model” on page 71, provides a walkthrough of the cube model development process, including the steps necessary to create the different components in the Cubing Services cube model.

 •Chapter 5, “Designing Cubes” on page 119, presents a step by step walkthrough of the cube definition process, including instructions on how to obtain recommendations on the performance optimization layer for the defined cube, and how to import and export OLAP metadata using Design Studio.

 •Chapter 6, “Deploying and managing the cube” on page 147, takes you through a discussion of how to deploy cubes to make them available for user access, and how to manage and maintain them after they have been deployed. The primary tool used for these processes is the Administration Console. It is the Web-based tool used for managing the various runtime components of InfoSphere Warehouse.

 •Chapter 7, “Cube Server performance” on page 177, discusses Cube Server performance. The Cube Server was designed to enable fast multidimensional access to relational data that is referenced by the OLAP cubes defined in the Cubing Services metadata database. The chapter discusses the roles of materialized query tables, multidimensional clusters (MDCs), cube modeling, and indexes on the database tables for significant performance improvements.

 •Chapter 8, “Using the Excel Client Interface” on page 195, lists the system requirements for the Excel ODBO interface to access Cubing Services cubes. It has step-by-step instructions on how to connect to Cubing Services cubes and retrieve data using Pivot Table Services.

 •Chapter 9, “Cognos and the cube model” on page 215, describes how to use the metadata investment contained within the cube model and use the tuning and optimization performed when deploying cubes to the OLAP server. Steps are provided showing how to import a cube model into the IBM Cognos 8 Framework Manager. Special cases, such as calculated members and recursive hierarchies, are outlined and resolved using the Framework Manager.

 •Chapter 10, “Using the Alphablox Client Interface” on page 235, has an overview of the Alphablox architecture and the components included. Here we look at how to use Alphablox to connect to Cubing Services cubes, retrieve data, and perform ad hoc analysis. The last part of this chapter is dedicated to BloxBuilder, the drag-and-drop interface to develop Alphablox reports and dashboards.

 •Chapter 11, “MDX Overview” on page 253, starts with the basic MDX syntax, including key dimensional constructs such as dimensions, hierarchies, members, sets, and tuples. The supported MDX functions are listed and a set of function groupings are defined to assist with understanding the numerous functions. Each function is defined with appropriate syntax, an isolated example of the function, and the expected results. For some of the more common business scenarios, such as relative time calculations and semi-additive measures, additional complex examples are shown.

 •Chapter 12, “Best Practices” on page 379, deals with the best practices around dimensional data modeling (star schema), designing cube models in Cubing Services, tuning query performance in Cubing Services, and the deployment of Cubing Services in the InfoSphere Balanced Warehouse™.

 The Cube Server is designed to enable fast multidimensional access to relational data that is referenced by the OLAP cubes defined in the Cubing Services metadata database. The Cube Server relies on the relational data source to store the persistent low-level and aggregated data, which is fetched into the Cube Server memory only as needed. When the Cube Server starts, it loads the cubes that are configured to start with the Cube Server. For each of these cubes, the Cube Server will load all dimensions and hierarchies from the cube model into the member cache.

 Once a cube is loaded, MDX queries can begin requesting data from the cube. When this happens, the Cube Server first checks to see if the data being requested is in the data cache. If this is the case, the data requested is immediately available. If this is not the case, data cache misses are serviced through SQL queries submitted to the relational database. Therefore, SQL query performance is crucial. The presence of the appropriate MQTs (or materialized views/summary tables/aggregate tables), MDCs, and indexes on the database tables can make the much talked about capability of speed of thought analysis possible.

 Cube modeling also plays an important role in the performance of the Cube Server. While an exhaustive discussion is outside the scope of this book, we do provide selected best practices for cube modeling This includes discussions around such as issues as the number of dimensions, fan-out of members, and where to express measure calculations.

[image:]
[image:]

The cubing life cycle

 In this chapter we describe the phases that comprise the cubing life cycle. We then discuss the cubing services architecture. Upon establishing the core components involved in the design, development, test, deployment, and administration of cubes, we go through the steps in cubing development as a process flow, starting with the gathering of user requirements to providing an MDX interface to the data in the data warehouse.

 With InfoSphere Warehouse Cubing Services, the cubing process goes through four stages. The components within the InfoSphere Warehouse Cubing Services architecture play a key role in each of these stages in the cubing life cycle. Those four phases are shown in Figure 2-1 on page 22, and are defined as follows:

 1.	Design

 Some of the core activities in this phase include reverse engineering an existing database schema to be used in building the cube model and designing/editing the cube models.

 2.	Optimize

 The cube model is analyzed in this phase, both for structural inconsistencies and to determine what Materialized Query Tables (MQTs) can be used to enhance the performance of the cube model. This analysis can be based on both the cardinality of the data, and the structure and hierarchies in the dimensions. This process can be used for ongoing maintenance.

 3.	Deploy

 This phase is performed when all available Cube Servers are identified and the cube model is allocated to a Cube Server. This decision is made based on the size of the cube, the number of potential users, and the available resources across the different Cube Server instances.

 4.	Run

 Once the cube model is designed and deployed onto the Cube Servers, the next step is to run the cube model. The cube model is started by using the InfoSphere Warehouse Administration Console. The client tools for Cubing Services can then be used to connect to, and query, data in a cube.

 [image:]

 Figure 2-1 The Cubing Life cycle with InfoSphere Warehouse Cubing Services

 2.1 Cubing services architecture

 IBM InfoSphere Warehouse Cubing Services is designed to provide a multidimensional view of data stored in relational databases. The Cubing Services architecture includes several core components that are used for designing, developing, testing, deploying, and administering cubes. In this section, we describe the individual components in the Cubing Services architecture and provide a discussion on where each of these core components fit into that architecture.

 2.1.1 Cubing Services core components

 In this section we describe the cubing services core components, which are shown in Figure 2-2.

 [image:]

 Figure 2-2 Cubing Services Architecture - Core Components

 The core components in the Cubing Services architecture are as follows:

 •Design Studio. See page 24.

 •Administration Console. See page 26.

 •InfoSphere Warehouse Metadata database. See page 27.

 •Cubing Services Cube Server. See page 28.

 Design Studio

 This is the Eclipse-based integrated design environment (IDE) that is used to design, develop and deploy the data warehousing applications. The Design Studio integrates the following tasks in a unified graphical environment:

 •Physical data modeling. See below.

 •DB2 SQL-based warehouse construction. See page 25.

 •OLAP cube modeling. See page 25.

 •Data mining modeling. See page 26.

 Using a single interface, designers can connect to source and target databases, reverse engineer physical data models, build DB2 SQL-based data flows and mining flows, setup Online Analytical Processing (OLAP) cubes, and prepare applications for deployment to runtime systems. An example of this process, with some of the primary functions highlighted for your familiarity, is shown in Figure 2-3 on page 25.

 Physical data modeling

 All data warehouse-based applications require a physical data model. The physical data model is a database-specific data model that represents relational data objects, including tables, views, columns, primary and foreign keys, and their relationships. The physical data model can be created for source and target databases, and staging tables, for data warehouse applications. The Data Definition Language (DDL) statements generated by the process can be deployed directly to a database server through the Database Explorer in the Design Studio IDE.

 Design Studio can also be used to compare data objects, and analyze impacts and dependencies. Any differences in the data objects can then be merged with the source or destination database.

 [image:]

 Figure 2-3 Design Studio—Integrated Development Environment

 The DDL can also be generated for any changes that have been made. The structural differences in data objects can also be exported to an XML file in the file system.

 DB2 SQL-based warehouse construction

 In a traditional warehouse, the DBAs tend to maintain a multitude of SQL scripts that are used to move data within the data warehouse. These are required for tasks such as creating data marts, and to cleanse and stage the data for use in data marts, and for other data feeds. All of these SQL scripts can now be developed and maintained more easily and efficiently by using the Design Studio interface.

 InfoSphere Warehouse Design Studio has a drag-and-drop interface to develop, maintain, and deploy intra-warehouse data movement data flows. It also enables data flows to be grouped and organized inside control flows. Control flows can then be deployed in the InfoSphere Warehouse, and managed by using the InfoSphere Warehouse Administration Console.

 OLAP cube modeling

 OLAP cube models and cubes in InfoSphere Warehouse Cubing Services are developed using the Design Studio IDE. Cube models and the dimensions and hierarchies that comprise the cube model are developed using InfoSphere Warehouse Design Studio. This greatly improves productivity in the organization because the developers need not spend time getting trained on multiple tools for the design-, develop- and maintain-the-data-warehouse applications.

 Design Studio can be also be used to analyze the cube models and invoke the Optimization Advisor to recommend MQTs for the cube model. The developer will need to execute the SQL scripts generated by the Optimization Advisor on the InfoSphere Warehouse.

 Data mining modeling

 InfoSphere Warehouse includes embedded analytics in the form of data mining and OLAP. All the data mining models are stored inside of the warehouse. Design Studio is used to design, develop, and test the data mining models, and visualize the mining results by using the data mining visualizer.

 Design Studio is an Eclipse-based interface that uses the concept of perspectives to expose relevant palettes and functionality based on whether the user is creating data mining models or performing any of the other activities we have previously described. The developer can do some data manipulations and join data from multiple tables, or flat files, before applying a data mining algorithm and any additional parameters that are required by the data mining algorithms.

 The developer can then encapsulate the mining flow inside a control flow, in addition to any other data flows that are included in the control flow. The control flow can then be deployed and managed using the InfoSphere Warehouse Administration Console.

 Administration Console

 The InfoSphere Warehouse Administration Console is a Web-based tool for managing and monitoring data warehouse applications. Installed on the WebSphere application server, the InfoSphere Warehouse Administration Console uses Web clients to access and deploy data warehouse applications that have been modeled and designed in the InfoSphere Warehouse.

 The Administration Console makes use of the WebSphere security model, allowing users with administrator, manager, and operator roles to perform a variety of administrative tasks from a single unified set of console pages. The console supports the following five categories of functions:

 •InfoSphere Warehouse Common

 This function group allows the administrator to create data sources, create and manage user roles for Cubing Services, review logs and debug or manage failed SQW job instances.

 •SQL Warehousing

 With this function, the administrator can deploy, schedule, and monitor data warehouse applications that were created using the Design Studio.

 •Cubing Services

 This function allows management of Cube Servers including configuring caching, management of cube models including importing and exporting cube models and using the OLAP optimizer.

 •Mining

 The mining function allows the administrator to enable a database for mining, manage the mining models in the database, including importing, exporting and deletion of mining models, and management of cached mining models.

 •Alphablox

 This function launches the native Alphablox administration tool.

 InfoSphere Warehouse Metadata database

 The Cubing Services metadata is stored in the InfoSphere Warehouse metadata database (or repository). This metadata repository exposes the Cubing Services metadata at runtime and allows for unlimited scalability. Objects critical to the operation of Cubing Services are stored in this metadata repository, which provides for a more robust and reliable system implementation.

 The metadata is accessible from the metadata database in read and write mode to all three clients, the Cubing Services server, Design Studio, and the InfoSphere Warehouse Administration Console.

 For Cubing Services, this metadata repository provides a relational repository that has the following characteristics:

 •It can be accessed by multiple Cubing Services server instances.

 •It provides all of the industrial strength tools that are available in a database environment for activities such as transactional integrity, backup and restore operations, rollback to a consistent state, and database replication.

 Cubing Services Cube Server

 The Cubing Services Cube Server is a high performance, scalable cubing engine that is designed to support high volumes of queries from many users across multiple cubes. The Cubing Services Cube Server enables fast multidimensional access to relational data that is referenced by the OLAP cubes defined in the Cubing Services metadata database. The logical flow of analytics in the Cube Server is shown in Figure 2-4.

 [image:]

 Figure 2-4 Logical flow of analytics in the Cube Server

 The Cubing Services Cube Server relies on the relational data source to store the persistent low-level data. It uses the performance optimization features in the InfoSphere Warehouse to improve the data access performance of data access.

 This low-level and summarized data is fetched into the Cube Server memory as needed. This in-memory caching adds another performance optimization layer to the cubes.

 When a Cube Server starts, it loads the cubes that are configured to start with the Cube Server. For each of the cubes registered in the Cube Server, all the dimensional metadata is stored either on the disk or in memory when the cube loads. This metadata consists of high level information about the cube, including its dimensions and hierarchies, levels, dimension members, member attributes, calculated members and calculated metrics, and the mapping of these multidimensional objects to relational database tables and columns. This is shown in Figure 2-5.

 [image:]

 Figure 2-5 InfoSphere Warehouse multi-tier Cubing Services configuration

 2.1.2 Software architecture

 Each of the components in the InfoSphere Warehouse Cubing Services architecture are physically located in either the data server, application server, or on the client machines. The Cubing Services Cube Server is a Java process that is used as the run-time for the cube model deployed onto the InfoSphere Warehouse. This java process manages the caching layer and handles all user requests for data from the client tools.

 The InfoSphere Warehouse Administration Console, a Web-based administration tool, runs on the WebSphere application server that comes with the InfoSphere Warehouse suite. We provide an pictorial view of the architecture in Figure 2-6 on page 30.

 [image:]

 Figure 2-6 Software architecture

 2.2 Requirements identification

 Based on the InfoSphere Warehouse Cubing Services architecture, the following sections describe the steps in the cubing life cycle.

 2.2.1 Identify business requirements

 Before embarking on a BI tool acquisition or an analytics solution, the enterprise needs to ask some fundamental questions around the data they have available and their business needs. These questions will help validate the effectiveness of an OLAP solution, and should be a precursor to the actual implementation tasks.

 With the assumption that a business problem, or opportunity, exists and that the organization has collected data over the years that will help them solve the business problem, some of the following questions may be asked of the business users to help validate an OLAP solution:

 •What type of reporting do you do?

 •Do you provide more ad hoc or more canned reports?

 •Do you have large amounts of data you use for your analysis?

 •Are the current reports slow?

 •Does the current process require you to go to IT to create new views of data?

 •Does the current process constrain you from doing what-if analyses?

 •Does the current process stop you from inputting data and immediately reviewing the effects on the rest of the business?

 If you find the answer to most or all of the above questions is Yes, then OLAP is a good solution that can help the business users leverage their data and perform analysis independently.

 Online Analytical Processing (OLAP) helps organize data as dimensions and metrics/measures. This allows the user to create ad hoc reports quickly without needing to go back to IT for data preparation. That is, the user is able to manipulate the data, pivot the data, and aggregate the same data as different hierarchical views.

 The performance of OLAP cubes is much faster than having to aggregate and merge data from multiple relational queries, and is realized by using the performance optimization features in the InfoSphere Warehouse.

 The performance optimization features that can be used to improve the performance of InfoSphere Warehouse Cubing Services cubes include MQTs, Multidimensional Clustering (MDC), compression, and data partitioning.

 2.2.2 Designing cube models and cubes

 InfoSphere Warehouse Cubing Services allows the OLAP metadata to be organized as cube models and cubes in the metadata repository. Upon validating the need for an OLAP solution, the next step is to identify the dimensions and the metrics that is required for analysis by the business users.

 This process of identifying dimensions and metrics can be done with the user by asking them to identify logical components in their data that is of interest for both ad hoc analysis and canned reports. These logical components are essentially columns in their relational data source.

 It is important to have the data organized in a usable format prior to defining the dimensions and metrics required for reporting. Let us look at some of the design considerations for the database schema in an OLAP solution. A typical database is comprised of one or more tables, and the relationships among all the tables in the database are collectively called the database schema. Although there are many different database schema designs, the databases used for querying and reporting on historical data are usually set up with a dimensional schema design.

 A dimensional schema design is typically a star schema or a snowflake schema. There are many historical and practical reasons for using a dimensional schema, but the reason for their growth in popularity for decision support is driven by two primary benefits:

 •The ability to easily form queries that answer business questions. As an example, a typical query might calculate some measure of performance over several dimensions.

 •Minimizing the necessity to form these queries in the SQL language used by most RDBMS vendors.

 A dimensional schema physically separates measures (also know as facts) that quantify a business from the descriptive elements (also known as dimensions) that describe and categorize the business. The dimensional schema may be a physical or logical schema. A physical schema is typically represented in the form of a star or snowflake schema where the objects in the star or snowflake are actually database tables or views. While not a common scenario, the dimensional schema can also take the form of a single database table or view where all the facts and the dimensions are simply in different columns of that table or view.

 Star schema

 A star schema is a type of relational database schema that is comprised of a single, centralized fact table surrounded by dimension tables. A star schema can have any number of dimensional tables. The dimension and fact tables have a one-to-many relationship, as shown in Figure 2-7.

 [image:]

 Figure 2-7 Illustration of a Star schema

 Snowflake schema

 A snowflake schema, sometimes called a snowflake join schema, consists of one fact table connected to many dimension tables. These dimension tables can in turn be connected to other dimension tables. Individual levels in a hierarchy can be organized as separate tables in a snowflake schema. This is shown in Figure 2-8.

 [image:]

 Figure 2-8 Illustration of a snowflake schema

 Once the dimensional schema is finalized you should be able to nominate the tables and columns that is used in defining dimensions and metrics.

 	
 Note: Having a star schema or snowflake schema data warehouse not only simplifies the data model but it also allows you to achieve the desired performance and data quality in your analytics.

 2.2.3 Validating cubes with business users

 Now that we have a cube model, the next step is to validate the cube in the cube model with the business users. The following checks need to be performed on the cube:

 •Is the user able to create all the required canned reports using the dimensions in the cube?

 •Do the cube dimensions have all the necessary hierarchies and levels?

 The hierarchy and level definitions are based on the type and content of reports being used by the business.

 •Are the aggregations for the individual metrics defined correctly?

 For example, sales is summed across the other dimensions, whereas average sales is averaged across the other dimensions.

 This level of validation can be performed by using client tools that can access InfoSphere Warehouse Cubing Services cubes. In the following sections we use Microsoft Excel and Alphablox as examples of client tools that can access InfoSphere Warehouse Cubing Services cubes.

 Microsoft Excel as a client tool using an ODBO interface

 Pivot Table Services is a component of Microsoft Excel 2003 and 2007. It allows the user to connect to InfoSphere Warehouse Cubing Services cubes and explore the dimensions in the cubes. The user can then drag dimensions and metrics/measures on the worksheet to ensure that the cube has all the required dimensionality. An example of this is shown in Figure 2-9.

 [image:]

 Figure 2-9 Excel Pivot Table Services interface to Cubing Services

 Alphablox as a client tool

 Alphablox, the inline analytics component of the InfoSphere Warehouse, can also be used to validate the cube definition with the business users. Alphablox comes with a Web-based application, called Query Builder, that allows the users to connect to existing cubes, and drag dimensions and metrics on the row and column axis, much the same as the Excel Pivot Table interface. This can be used to validate the cube structure with the business users, and is shown in Figure 2-10.

 [image:]

 Figure 2-10 Alphablox QueryBuilder application

 2.2.4 Deploying cube models

 When the structure of the cube has been validated by the business users in the test environment, the next step is to deploy the cube model into the production environment. All cube models need to be deployed to the InfoSphere Warehouse server before being exposed to the client access tools.

 Cube models can be deployed by either using the Design Studio interface or the Web-based InfoSphere Warehouse Administration Console.

 Deploying the cube model with Design Studio

 If you choose to deploy the cube model using the Design Studio, perform the following steps:

 1.	Analyze the cube model. This is the process of validating the cube model based on some predefined rules. The developer can also selectively validate the cube model against a portion of the available rules.

 2.	Determine the InfoSphere Warehouse server where the cube model is to be deployed.

 Deploying the cube model with the administration console

 If you choose to use the Web-based administration console to deploy a cube model, then the cube model needs to be exported to an XML file using the Design Studio interface. This XML file can then be stored either on a client machine or on a server from which it can be deployed. The InfoSphere Warehouse Administration Console allows the developer to select the XML file that is created and import the cube model onto the Cube Server.

 2.3 Cube development process flow

 The cube development process is all about defining the OLAP metadata objects in the InfoSphere Warehouse. OLAP metadata objects are used to describe relational tables as OLAP structures. This is different from working with traditional OLAP objects in that this describes where pertinent data is located and the relationships in the base data. This metadata is stored separately in the InfoSphere Warehouse metadata repository.

 Some metadata objects act as a base to directly access data in relational tables, while other metadata objects are used to describe relationships between the base metadata objects. All of the metadata objects can be grouped by their relationships to each other, in a metadata object called the cube model. Essentially, a cube model reflects a particular grouping and configuration of relational tables. This is shown in Figure 2-11 on page 37.

 [image:]

 Figure 2-11 OLAP metadata objects in the InfoSphere Warehouse

 A cube model in the InfoSphere Warehouse is a logical star schema or snowflake schema. It groups relevant dimension objects around a central fact object. Cube models define a complex set of relationships and can be used to selectively expose relevant fact objects and dimensions to an application.

 The cube development process is centered around the definition of the cube model. With the assumption that the business requirements have been identified, the developer goes through the steps, shown in the process flow of Figure 2-12, to define the OLAP metadata, optimize access to the underlying data using the OLAP interface, test the validity of the OLAP interface, and deploy it to the user for executing analytics.

 [image:]

 Figure 2-12 Cube development process flow

 In the following sections, we discuss the components that make up a cube model, and the best practices around the development of each of these components.

 2.3.1 Fact objects

 A fact object is used in a cube model as the center of the star schema, and groups related measures/metrics that are of interest to a particular application. A fact object contains a set of measures that describe how to aggregate data from the fact table, across dimensions. Measures describe data calculations from columns in a relational table, and they are joined to create the fact object.

 The fact object references the attributes that are used in fact-to-dimension joins. In addition to a set of measures, a fact object stores a set of attributes and a set of joins. This is shown in Figure 2-13.

 [image:]

 Figure 2-13 Fact object in the OLAP metadata

 A Fact object has the properties described in the following list:

 •Set of measures

 This property is a set of all related measures in a fact object.

 •Default measure

 This property is a measure that is selected as a default value for the fact object and that is displayed in vendor applications.

 •Set of Attributes

 This property is a set of all attributes that are used in the fact object for dimension-fact table joins, and fact-fact table joins.

 •Set of Joins

 This property is a set of relational database table joins that are needed to join all specified measures and attributes.

 2.3.2 Dimensions

 Dimensions in cube models are used to organize a set of related attributes that together describe one aspect of a measure. Dimensions in a cube model organize the data in the fact object according to logical categorizations such as Location and Time.

 Dimensions can reference zero or more hierarchies. Hierarchies describe the relationship and structure of the referenced attributes that are grouped into levels and provides a navigational and computational way to traverse the dimension.

 Dimensions also have a type that defines a time-oriented dimension. Defining a dimension to be a Time dimension allows for the use of Time Series MDX functions that rely on a Time dimension.

 The relationship between the dimension and fact objects needs to be defined for each dimension in a cube model. This is the facts-to-dimension join. If a dimension is based on data in a fact table, the dimension is called a degenerate dimension and does not require you to specify a facts-to-dimension join.

 A dimension can either be created manually or by using a dimension Wizard. And, dimensions can be shared across cube models by using the Add Dimension Wizard.

 A dimension object has properties described in the following list:

 •Set of attributes

 This property is a list of attributes that are used in the dimension. Attributes can either be pointers to columns in the dimension table, can be calculations based on columns in the dimension tables, or can even be calculations based on other attributes.

 •Set of joins

 This property is a set of joins required to obtain all the specified attributes. Only the joins that are required to join the dimension tables are specified here.

 •Set of hierarchies

 This property is the set of all the different ways in which the levels of this dimension are organized for analysis. A cube can have multiple hierarchies.

 •Set of levels

 This property is the set of are all the levels that are used by this dimension.

 •Type

 This property identifies the type of this dimension.

 2.3.3 Levels

 Levels are elements of the dimension definition. A level is a set of attributes that work together as one logical step in the hierarchy definition for a dimension. A level can have four types of attributes:

 •Level key attributes

 These key attributes are one or more attributes that uniquely identify each of the members in the level. This is the key column, or a group of columns, identified in the dimension table that uniquely identifies every row in the dimension table.

 •Default related attribute

 This is the attribute that is displayed by default in a reporting application to provide meaningful names for each member in the level. The default related attribute is a required field and must be functionally determined by the level key attributes.

 •Related attributes

 Related attributes are all the optional attributes that provided additional information about the members in a level. These attributes are functionally determined by the level key attributes.

 •Ordering attributes

 Ordering attributes are optional attributes that provide additional information about the ordering of members in a level, regardless of what hierarchy the level is in.

 There are different types of levels, including unknown, regular, or a specific date or time. A list of level types and their definitions are included in Table 2-1.

 Table 2-1 Level types and their definitions

 	
 Level type

 	
 Definition

 	
 Unknown

 	
 No level type has been specified.

 	
 Regular

 	
 Level not related to time.

 	
 Complete date

 	
 Level refers to members that are a complete date [Ex: 04/16/2008].

 	
 Undefined time

 	
 Level refers to an indeterminate or non standard measurement of time.

 	
 Years

 	
 Level refers to members of type year.

 	
 Half Years

 	
 Level refers to members of type half years.

 	
 Quarters

 	
 Level refers to members of type calendar quarters.

 	
 Months

 	
 Level refers to members of type months.

 	
 Weeks

 	
 Level refers to members of type weeks.

 	
 Days

 	
 Level refers to members of type days.

 	
 Hours

 	
 Level refers to members of type hours.

 	
 Minutes

 	
 Level refers to members of type minutes.

 	
 Seconds

 	
 Level refers to members of type seconds.

 			

 	
 Note: Level keys play an important role in the performance of the cubes. Ensure that you try and keep the size of the level keys as small as possible. In database terms, it is better to have a single column primary key in the dimension tables than to have a composite key to distinguish members in each level. For more information, see Chapter 12, “Best Practices” on page 379.

 2.3.4 Hierarchies

 A hierarchy defines the relationships among a set of attributes that are grouped by levels in the dimension of a cube model. More than one hierarchy can be defined for a given dimension in the cube model. Hierarchies are simply a grouping of levels in the dimension.

 A hierarchy can have an All level as the top most level in the hierarchy, which is a single member that represents the aggregation of all of the members in the levels below in the hierarchy.

 There are several types of hierarchies, but we will only describe balanced, unbalanced, and ragged hierarchies in the following sections. We first provide a simple description based on a member tree. For example, there is a root member in the member tree, there are leaf members, there is a parent-child relationship between members, and every member has an assigned hierarchy level.

 In a balanced hierarchy, every leaf member has exactly the same number of ancestors. In an unbalanced hierarchy, this is not the case because members at the leaf level, or interior levels, may be missing. Where interior level members are missing in the hierarchy is called a ragged hierarchy. From a more theoretical perspective, they could be described as in the following sections.

 Balanced hierarchy

 In a balanced hierarchy all the branches in the hierarchy are balanced. That is, they are balanced or descend to the same level with each member’s parent being at the level immediately above the member.

 A balanced hierarchy can represent time, as an example, where the meaning and depth of each level, such as Year, Quarter, and Month, is consistent. This consistency is achieved in data domains where all the members in a level represent the same type of information and each level is logically equivalent. This is shown in Figure 2-14.

 [image:]

 Figure 2-14 Balanced hierarchy

 Unbalanced Hierarchy

 Unbalanced hierarchies include levels that have consistent parent-child relationship but have logically inconsistent levels. The hierarchy branches can also have inconsistent depths. An example of an unbalanced hierarchy is an organization chart that shows reporting relationships among employees in an organization (Figure 2-15). The levels within the organizational structure are unbalanced, with some branches in the hierarchy having more levels than the others.

 [image:]

 Figure 2-15 Unbalanced hierarchy

 Ragged hierarchy

 In a ragged hierarchy, the parent member of at least one member of a dimension is not in the level immediately above the member. Like unbalanced hierarchies, the branches of the hierarchies can descend to different levels.

 An example of a ragged hierarchy would be a geographic hierarchy in which the meaning of each level, such as city or country, is used consistently, but the depth of the hierarchy varies. This is shown in Figure 2-16 on page 45.

 [image:]

 Figure 2-16 Ragged hierarchy

 In Figure 2-16, we have the geographic hierarchy that has Continent, Country, Province/State, and City levels defined. One branch has North America as the Continent, United States as the Country, California as the State and San Francisco as the City. However, the hierarchy becomes ragged when one member does not have an entry at all the levels. In this case, the Europe branch has a member at the Continent, Country and City levels but no member at the State/Province level, but it is still a valid scenario for this dataset.

 Cubing Services supports the use of ragged hierarchies. Skipped levels are simply ignored, and treated as though they do not exist. Only standard deployment hierarchies are supported for ragged hierarchies. Having the levels of the hierarchy used for at least one column in the dimension table is required for each level, and missing levels will contain NULL values.

 Network hierarchy

 A network hierarchy is one in which the order of levels is not specified, but the levels have a semantic meaning.

 In Figure 2-17 on page 46, the product hierarchy has attributes such as Color, Size, and Package Type. Because the levels do not have an inherent parent-child relationship the order of the levels is not important.

 [image:]

 Figure 2-17 Illustration of a network hierarchy

 2.3.5 Measures

 Measures define a measurable entity and are used in fact objects. Measures can be defined as columns in the fact table or they can be calculated measures. A calculated measure could be an SQL expression with an existing column in the fact table or it could be an MDX expression.

 An aggregate function is used to summarize the value of the measure for dimensional analysis. This could be any aggregate function, such as sum, average, maximum, and minimum.

 Measures become meaningful only within the context of a set of dimensions in a cube model. As an example, a revenue of 300 is not meaningful. However, when you say the revenue for the clothing line in the eastern region is 300, it becomes meaningful.

 A measure is defined by a combination of two properties, an SQL expression list and an aggregation list. Table columns, attributes, and measures are mapped to a template to build SQL expressions. The resulting SQL expression is then subject to the first aggregation function of the measure. If a measure has more than one aggregation, then the aggregation functions are performed in the order in which they are listed with each subsequent aggregation taking the previous aggregations result as the input. If a measure is defined as a calculation of another measure, then the aggregation is optional for the measure as it will inherit the aggregation from the other measure being used.

 2.3.6 Attributes

 An attribute represents the basic abstraction of a database column. It contains a SQL expression that can either be a simple mapping to a table column or a more complex expression. The more complex expressions can combine multiple columns or attributes and can use all SQL functions, including user-defined functions when necessary.

 The Design Studio for InfoSphere Warehouse hides much of the complexity of the attribute object definition. In the Design Studio, you do not need to define the expression template or parameter list of the attribute explicitly. If you want to create an attribute that maps directly to a column in the table, you select the source column when creating the attribute in the Dimension Wizard, or the Dimension Properties window when defining the dimension manually. To create a calculated attribute, use the SQL expression builder to create the source expression. The SQL expression builder provides a list of available attributes, columns, operators, functions, and constants.

 2.3.7 Optimization Advisor in Cubing Services

 InfoSphere Warehouse Cubing Services cube models are a multidimensional overlay on relational data. The Cubing Services Cube Server itself does not provide any persistence of cube data objects in multidimensional form. Instead, it relies on the relational data source to store the persistent low-level and aggregated data which is fetched into the Cube Server memory only as needed. This means that the performance of the cube models is dependant on both the caching layer in Cubing Services and the performance optimization layer in the InfoSphere Warehouse. With the dimensional metadata, when the Cube Server starts, it will query the underlying relational data source and cache the metadata on the Cube Server.

 The performance optimization layer in the InfoSphere Warehouse needs to be built with consideration for the cube model that is designed and the data that is exposed using Cubing Services cube model. The Cubing Services Optimization Advisor will help optimize the star or snowflake schema, and improve the performance of the OLAP-style SQL queries. This optimization process includes creating, implementing, and maintaining the summary tables recommended by the Optimization Advisor as depicted in Figure 2-18.

 The Optimization Advisor helps optimize cube models by recommending summary tables. DB2 summary tables can improve query performance because they contain precomputed results from one or more tables that can be used in a query. Costly table joins and complex calculations can be computed in advance and stored in a summary table so that future queries that use these aggregations can run much faster.

 [image:]

 Figure 2-18 Summary table usage—DB2 Optimizer in action

 The Optimization Advisor will analyze the metadata and the information provided to the Wizard and recommend appropriate summary tables. Upon running the Optimization Advisor, an SQL file is created that can build the set of recommended summary tables. You have the option, however, of modifying the SQL before running it to create the summary tables.

 Running the Optimization Advisor is just one step in the optimization process, as depicted in Figure 2-19. Before you begin optimizing you need to think about the following issues:

 •How to effectively use DB2 constraints on the base tables.

 •How to define the cube model so that it follows the optimization validation rules.

 •The type of queries that are to be optimized.

 •The volume of space you want to provide for the summary tables.

 •How to maintain the summary tables to keep the data they contain current.

 Optimization of the cube model performance is an iterative process. The high level tasks in the optimization process include the following tasks:

 •Measure performance of the cube model and establish a benchmark.

 •Run the Optimization Advisor Wizard.

 •Create the summary tables.

 •Maintain the summary tables.

 •Periodically reevaluate the performance optimization layer.

 [image:]

 Figure 2-19 Cube model Optimization process

[image:]
[image:]

Modeling using IBM InfoSphere Warehouse Design Studio

 Cubing Services was introduced in IBM InfoSphere Warehouse to provide a robust Online Analytical Processing (OLAP) capability for business analysis. Similar to the OLAP Accelerator in DB2 Warehouse 9.1, cube models and cube objects are created using Design Studio. The OLAP objects created are stored in a metadata repository database. There are several setup tasks within Design Studio that need to be performed before starting to create the OLAP cube models. In this chapter, we describe those tasks in detail.

 3.1 Using Design Studio

 In this section we provide information to help familiarize you with the InfoSphere Warehouse Design Studio interface, which is in the form of a workbench. But before beginning to use the Workbench, there are some basic concepts to know and understand.

 3.1.1 The Workspace

 The workspace is the central repository for your data files. It is created as a directory in your file system, and contains a collection of resources. Every time Design Studio is launched, you are prompted to provide the path to the workspace, as shown in Figure 3-1.

 [image:]

 Figure 3-1 Workspace Launcher

 InfoSphere Warehouse Design Studio, like other Eclipse-based tools, helps you manage resources, which take the form of projects, folders, and files.

 A project is a container used to organize resources pertaining to a specific subject area. The workspace resources are displayed in a tree structure with projects that contain folders and files being at the highest level. Projects may not contain other projects.

 You may specify different workspaces for different projects, but only one workspace is active per running instance of the Design Studio. To change the workspace, in order to gain access to other projects, choose File → Switch Workspace. A workspace may hold multiple projects.

 	
 Note: If you specify a local directory for your workspace, we recommend that this directory be backed-up on a regular basis.

 3.1.2 Projects and the local file system

 When creating a new project, you will find a new subdirectory on the disk, located under the workspace directory that was specified at start-up. Within the project directory there is a file called .project. The .project file holds metadata about the project, including information that can be viewed by selecting the Properties View within Design Studio. Inside the project subdirectory you will see all of the files and folders that have been created as part of the project. The file names and content are the same, whether accessed from the file system or through the Design Studio. You will also see a folder called .metadata, located under the workspace directory, at the same level as the projects that are part of the workspace. The .metadata directory holds platform-specific information, including workspace structure information.

 	
 Important: The contents of this directory should never be altered or manipulated outside of the Design Studio API.

 The project type determines the kinds of objects that are available for you to work with. In the InfoSphere Warehouse Design Studio, the data design project type (OLAP) allows you to work with physical data models and OLAP objects.

 3.1.3 Perspectives

 After specifying the directory path in the workspace launcher, the Design Studio workbench interface is displayed. The workbench delivers the mechanism for navigating the functions provided by the various Design Studio plug-ins. The workbench offers one or more windows, which contain one or more perspectives, views, and editors, allowing you to manipulate the resources within the project.

 Perspectives define an initial layout of views and editors within a workbench window. They provide the functionality required to accomplish a particular task or work with a particular resource. Perspectives also control what options may appear in menus and task bars. They can be customized or modified, and then saved for reuse by selecting Window → Save Perspective as. If you have rearranged views or closed views, you may easily reset the perspective by choosing Window → Reset Perspectives.

 There are a number of perspectives available in the InfoSphere Warehouse Design Studio, with the default being the business intelligence (BI) perspective. It includes functions that are tailored for building information warehouses and enabling warehouse-based analytics such as OLAP and data mining. A sample BI perspective is shown in Figure 3-2 on page 54.

 [image:]

 Figure 3-2 The Business Intelligence Perspective

 3.1.4 Editors

 Within the Design Studio, there are different editors available for different types of files. Text and SQL editors are provided for resources such as SQL scripts. Diagram editors are available for resources such as data models. An editor is a visual component that you typically use to edit or browse a resource.

 	
 Important: Modifications made in an editor are not always automatically saved. It is a good practice to always explicitly save your changes.

 Tabs in the editor area reflect the names of the resources that are open for editing. An asterisk (*) by the name of a resource in the tab indicates that there are unsaved changes to that resource. The border area on the left margin of the editing window may contain icons that indicate errors and warnings. The editors that are available in the BI perspective depend on the type of object with which you are working. The editors usually include a customized palette, which is located to the right of the canvas.

 3.1.5 Views

 A view is a component that you use to navigate the hierarchy of information, open an editor, or display properties for the active editor. Modifications made in a view are saved immediately. Perspectives, which are a combination of views and editors, may be arranged on the monitor to accommodate your preferences. Views may be docked and stacked by grabbing the view title bar and dragging it from one area of the user interface (UI) to another. As the view is dragged within the workbench window, you will notice a drop cursor that reflects where the view is docked. Views may also be closed by clicking the X located on the right side of its title bar. Once closed, a view may be displayed by going to Window → Show View and selecting the view you wish to display. In order to maximize a view or editor, double-click its title bar. Double-clicking the title bar of a maximized view or editor will return it to its original size.

 In OLAP Modeling for Cubing Services, the relevant views are as follows:

 •Data Project Explorer view

 •Database Explorer view

 •Properties view

 Database Explorer view

 The Database Explorer provides a tree view that allows the user to browse the catalog contents of a relational database. Initially, a connection to a database is created, then the connection node can be expanded to reveal a database icon, which can be further expanded to display nodes representing the catalog contents of the database, as shown in Figure 3-3 on page 56.

 OLAP objects, as with all other database objects, are displayed within the context of the database schema in which they are contained. Within the Database Explorer, existing OLAP objects can only be viewed. However, OLAP objects can be imported from an XML file and created as new physical objects in the Database Explorer. Otherwise, creating new OLAP objects takes place in the Data Project Explorer.

 [image:]

 Figure 3-3 Database Explorer

 Data Project Explorer view

 The Data Project Explorer view in Design Studio is used to view projects and data models. A project can contain one or more physical data models, and each physical data model is a model of either a complete relational database or a part of a relational database, such as a schema, and its contents. Physical data models can contain OLAP objects as well as the traditional relational objects such as tables and views, as shown in Figure 3-4 on page 57. As new projects are created, each project maps to a folder in the Windows® file system, while each physical data model maps to a file in the folder.

 [image:]

 Figure 3-4 Data Project Explorer

 Context menus, accessed using the right mouse button, are available from selected objects in the view to create, delete, and alter the objects. A physical data model is first needed in order to model OLAP metadata objects. A physical data model containing OLAP objects can be created in either of the following manners:

 •Reverse engineering an existing DB2 database containing OLAP objects

 •Creating an empty physical model, and then creating OLAP objects by performing one of the following tasks:

  –	Importing objects from an OLAP XML file

  –	Using the quick start Wizard

  –	Using the context menus (right-click)

  –	Manually copying objects from a database in the Database Explorer using either the clipboard, or drag and drop

 Properties view

 The Properties view, as shown in Figure 3-5, allows the user to view the properties of the selected object. The Properties view is applicable to objects in either the Database Explorer or Data Project Explorer. Properties for objects selected in the Database Explorer are read only. However, properties for objects selected in the Project Explorer are editable.

 [image:]

 Figure 3-5 Properties view

 3.2 Set up the environment for OLAP

 Now that we have defined and described some of the concepts of the Design Studio interface, we can move on to create OLAP models. However, before doing that, you need to set up the appropriate environment in Design Studio. That can be done either by creating new metadata catalog tables or by migrating existing catalog tables in the metadata repository database. The metadata database should be created before these set up tasks are performed. The default metadata repository database is DWECTRL, which was created during the initial install of InfoSphere Warehouse. The metadata catalog tables store all the OLAP objects that you are going to create or modify in the OLAP model.

 3.2.1 Setting preferences for a metadata repository connection

 You can set up the connection to the metadata repository through the preference option in Design Studio. The step is required to access all of the OLAP objects that are defined or modified in cube modeling. To do this, obtain the metadata repository database name, host name, port number, and a valid DB2 user ID and password for the connection.

 	
 Note: Be sure that you have adequate access privileges to perform the tasks to be completed.

 To define the metadata repository connection in Design Studio, perform the following steps:

 1.	Start the Design Studio.

 2.	Select Window → Preferences (Figure 3-6).

 [image:]

 Figure 3-6 Select Preferences

 3.	Select Data Warehousing → Repository (Figure 3-7).

 [image:]

 Figure 3-7 Set Connection to Repository

 4.	In the Repository window, enter the database name, host name and port number.

  –	Database name: This value should be the name of the DB2 database to which you want to connect. You can connect to databases on your computer, or to databases on remote servers.

  –	Host: This value should be the name of the host, or IP address of the DB2 instance, where the specified database is located.

  –	Port number: This value should be the number used to connect to the DB2 instance on the host.

 5.	Click Apply to save the settings and connect to the repository. When prompted, type your user ID and password, then click OK.

 	
 Note: To undo your changes, click Restore Defaults.

 6.	Click OK to save the settings and close the Preferences page.

 3.2.2 Setting preferences in the Design Studio

 In this section we describe how to set Cubing Services logging and tracing preferences in the Design Studio. If you need to perform problem determination while modeling, this facility would be a good way to obtain information. You can define a specific log file in which you want to keep the messages.

 To set preferences for logging and tracing in the Design Studio, perform the following steps, as shown in Figure 3-8:

 1.	Start the Design Studio.

 2.	Select Window → Preference → Data Warehousing → Cubing Services Logging.

 [image:]

 Figure 3-8 Cubing Services Logging

 3.	Specify the options according to the requirements. If you select the Warning option, both warning and error messages are recorded in the log file. Similarly, if you select the Informational option, all informational, warning, and error messages are recorded in the log file. The same concept applies to Trace level options.

 	
 Tip: The tracing function provides the logging of debugging messages, called traces. These traces can be useful when fixing problems. However, as with any other tracing facilities, it consumes system resources. Therefore, to save system resources, the default should be set to Off.

 4.	Click Apply to save the settings.

 5.	Click OK to save the settings and close the Preferences page.

 3.2.3 Creating the DWESAMP sample database

 The installation of InfoSphere Warehouse provides sample data to create a sample database called DWESAMP. The sample data includes a set of tables that contain data about a fictitious retail company that sells various types of products through a number of different channels and stores. A set of metadata objects that describe the sample data tables is also included.

 If you installed InfoSphere Warehouse using the default directory, you should be able to access the sample data by using the following path:

 C:\Program Files\IBM\dwe\samples\data

 	
 Note: The sample data is also available in UNIX® and Linux® installs, and the typical path is /opt/ibm/dwe/samples/data.

 To create and populate the sample database, perform the following steps:

 1.	Launch a DB2 command window on the database server. From Windows, the DB2 command window can be found by navigating to Start → All Programs → IBM DB2 → DB2COPY01(default) → Command Line Tools → Command Window.

 2.	Change to the C:\Program Files\IBM\dwe\samples\data directory and then run the setupolapandmining.bat file to create the DWESAMP tables.

 The batch command launches and runs a set of DB2 scripts to create the sample schemas and tables for OLAP modeling. The schema that is used for the sample OLAP modeling is MARTS.

 3.3 Creating a new data project for OLAP

 A project should be created in the Design Studio so that you can manage the OLAP metadata objects. There are several types of Data Projects. InfoSphere Warehouse OLAP uses the data design project (OLAP).

 To create a new data design project for OLAP, perform the following steps:

 1.	In Design Studio, select File → New → Data Design Project, as shown in Figure 3-9.

 [image:]

 Figure 3-9 New Data Design Project

 2.	Enter DWESAMP Project in the Project name text box and click Finish, as shown in Figure 3-10.

 [image:]

 Figure 3-10 New Data Design Project prompt

 3.4 Creating a new physical data model

 Before the OLAP model is created, a physical data model of the underlying base tables (facts and dimensions), should be defined. The physical data model is created in the Data Design Project within the Data Project Explorer, and is used to manage the OLAP metadata.

 To create a new physical data model, perform the following steps:

 1.	From the Business Intelligence perspective, select the DWESAMP project.

 2.	Right-click DWESAMP and select New → Physical Data Model, as shown in Figure 3-11 on page 65.

 [image:]

 Figure 3-11 New Physical Data Model

 3.	Enter DWESAMP in the File name text box, as shown in Figure 3-12, and select the appropriate version of DB2. In this example, we selected V9.5.

 [image:]

 Figure 3-12 Model File

 4.	Select the Create from reverse engineering radio button (as shown in Figure 3-12), and click Next.

 5.	From the Source menu of the New Physical Data Model window, select the Database radio button, as shown in Figure 3-13, and click Next.

 [image:]

 Figure 3-13 Source for New Physical Data Model

 6.	From the Select Connection menu of the New Physical Data Model window, select the Use an existing connection radio button. Next, select DWESAMP as the connection, as shown in Figure 3-14, and click Next.

 [image:]

 Figure 3-14 Select Connection

 7.	From the Schema menu of the New Physical Data Model window, select the MARTS check box (as shown in Figure 3-15) to import the schema, then click Next.

 [image:]

 Figure 3-15 Schema

 8.	Click Next in the Database Elements menu of the New Physical Data Model window to accept the default database elements, as shown in Figure 3-16.

 [image:]

 Figure 3-16 Database Elements

 9.	From the Options menu of the New Physical Data Model window, select the Overview check box in the Generate diagram box. Select the Infer implicit primary keys and Infer implicit relationships check boxes, as shown in Figure 3-17. Click Finish.

 A physical data model, MARTS, is created within the Data Design Project (DWESAMP Project).

 [image:]

 Figure 3-17 Option

 10.	From the new physical data model MARTS folder, select MARTS → Diagram → MARTS as shown in Figure 3-18 on page 69. A new editor, MARTS, is displayed in the editor view. The view is a pictorial of the star schema model just created in Design Studio. The diagram also shows the primary key to foreign key relationships among the tables.

 [image:]

 Figure 3-18 New Physical Data Model

 3.5 Summary

 In this chapter we have provided some basic concepts of Design Studio, and some techniques on how to set up the operating environment of Design Studio for OLAP modeling. We also provided examples of creating a data design project and physical data model. With such an environment designed and configured, you are ready to create OLAP models and cubes. We discuss and provide examples of how to create models and cubes, in the subsequent chapters of this book.

[image:]
[image:]

Creating the Cube Model

 After creating a data design project with reference to a physical star schema or snowflake schema, you are ready to create a cube model. This can be performed in multiple ways. In this chapter we describe two methods:

 •Design Studio

 Use Design Studio to create and modify cube models and their corresponding metadata, which includes facts objects, dimensions, hierarchies, levels, measures, attributes, and joins.

 For example, use the Quick Start Wizard to create a cube model and the corresponding fact object, measures, dimensions, attributes, and joins all at once based on the relational schema

 •Manual creation

 Create a complete cube model from start to finish manually. To do that, you create an empty cube model and then add a facts table, dimensions, hierarchies, and levels for each dimension in that cube model. Cube models define the relationships between the data in your star schema or snowflake schema so that you can optimize queries to the relational data.

 Whichever method is used to create the cube model, it is always important for you to validate the cube model to ensure it is correctly defined. To do that, you can use the Analyze Model Wizard to check that your cube model is complete, verify that the metadata objects are valid, and validate that the cube model can be optimized successfully.

 We use the Data Design Project, DWESAMP, created in Section 3.3, “Creating a new data project for OLAP” on page 63, to demonstrate the creation of a cube model.

 4.1 Creating a cube model using the Quick Start Wizard

 Using the Design Studio, you can use the Quick Start Wizard to create a cube model and the corresponding facts object, measures, dimensions, attributes, and joins all at once based on your relational schema. The relational schema is shown in the physical data model that will have been defined.

 The Quick Start Wizard creates the Online Analytical Processing (OLAP) objects that it can logically infer from the relational star schema or snowflake schema. Based on the fact table, the Wizard detects the corresponding dimensions, joins, attributes, and measures. After completing the Quick Start Wizard, you can add, drop, and modify the metadata objects as needed.

 The generated cube model does not contain any hierarchies, levels, or cubes, so you will need to create them after the Quick Start Wizard has finished.

 	
 Attention: Before using the Quick Start Wizard, make sure that the star schema database is well-formed with primary keys and foreign keys, pairs, and referential integrity (RI) in place, either enforced or informational. The Wizard completes the cube model by creating the dimensions, attributes, and joins using the RI constraints.

 To create a cube model, perform the following steps:

 1.	To open the Quick Start Wizard, right-click the OLAP Objects folder or the Cube Models folder in the Data Project Explorer, and click Add Cube Model - Quick Start as shown in Figure 4-1. The Quick Start Wizard opens.

 [image:]

 Figure 4-1 Quick Start

 2.	An introduction of the Quick Start Wizard is shown, which describes what the Quick Start Wizard can do. Click Next.

 3.	From the Specify Fact Table window, expand the MARTS schema tree. A list of fact tables and dimension tables opens, as shown in Figure 4-2. Select the fact table, which, in this example, is PRCHS_PRFL_ANLYSIS. Click Next.

 [image:]

 Figure 4-2 Specify fact table

 A summary window of the cube model opens for your review, as shown in Figure 4-3 on page 75. You can expand the cube model PRCHS_PRFL_ANLYSIS to review the metadata objects that the Quick Start Wizard is going to create. The fact table that you select directly maps to the facts object in the cube model. Columns that are used as foreign keys in the specified fact table map to attribute objects in the cube model.

 [image:]

 Figure 4-3 Summary window

 4.	Click Finish to create the cube model and corresponding metadata objects. After you click Finish, the Quick Start Wizard creates the following metadata objects that are deployed to the InfoSphere Warehouse metadata database:

  –	A cube model that contains all of the other metadata objects.

  –	A facts object that corresponds to the fact table that you specified.

  –	Measures that correspond to the fact table columns.

  –	Dimensions that correspond to each dimension table that is joined to the facts table. Outrigger tables are tables that are joined to a dimension table and are included in the appropriate dimension object.

  –	Attributes that correspond to each column in the dimension and outrigger tables, and also correspond to any foreign keys in the facts table.

  –	Join objects that serve as facts: dimension joins and joins within a dimension object that join the dimension table and any corresponding outrigger tables.

 The cube model PRCHS_PRFL_ANLYSIS is added to the Data Design Project DWESAMP (Figure 4-4).

 [image:]

 Figure 4-4 Cube model created by Quick Start

 	
 Note: The Wizard cannot detect degenerate dimensions (dimensions whose columns exist in the fact table). You can add degenerate dimensions to the cube model after completing the Quick Start Wizard.

 The generated cube model does not contain any hierarchies, levels, or cubes, so these have to be created by the user after the Quick Start Wizard has finished.

 4.2 Creating a complete cube model using Design Studio

 To create a complete cube model, you need to create an empty cube model and add facts objects, dimensions, hierarchies, and levels for each dimension in that cube model. Cube models define the relationships between the relational data in the schema so that you can optimize queries to the relational data.

 The cube model is the highest level OLAP object and represents a relational star schema, including information about all tables, columns, joins, and the relationship between each of these objects.

 To create a complete cube model, perform the following steps:

 1.	In the Data Project Explorer view, expand the schema Marts in the data design project DWESAMP. Right-click the OLAP Objects folder and click Add Cube Model (Figure 4-5). Make sure that you can see the Properties view. It is typically located in the lower left quadrant of the Design Studio.

 If you cannot see the Properties view, click Window → Show View → Properties on the toolbar. You might need to select the OLAP object from the Data Project Explorer again.

 [image:]

 Figure 4-5 Add cube model

 2.	Enter Sales Model as the name of the model (Figure 4-6). The Sales Model is added to the DWESAMP tree in the OLAP Model folder.

 [image:]

 Figure 4-6 Add Sales Model

 In the Properties view of cube model, the name and label of the cube model are automatically updated with the name Sales Model.

 	
 Note: Typically, when you name an object in the tree structure of the data design project, the name is automatically populated to the Properties view.

 After creating the cube model structure, you need to define properties for the empty facts object that is created by default, and you need to add dimensions with corresponding joins.

 4.2.1 Creating the facts object

 The first step to complete a cube model is to identify the fact table. An empty facts object folder is created when you add a cube model. A facts object groups related measures that are interesting to a given application. You can create simple and calculated measures to the facts object later.

 To create a facts object, perform the following steps:

 1.	In the Data Project Explorer view, expand the cube model Sales Model for which you want to define the Facts object. Click the Facts object. View the properties of the Facts object in the Properties view. Expand the Facts object, select, and then right-click, Tables. Select Add Existing Tables, as shown in Figure 4-7.

 [image:]

 Figure 4-7 Add facts object

 2.	From the Available tables window, expand the schema Marts to display a list of fact tables (including facts and dimension tables). Select the fact table PRCHS_PRFL_ANLYSIS as shown in Figure 4-8, then click OK.

 [image:]

 Figure 4-8 Select facts table

 	
 Note: If more than one table is needed to build the fact object, then the join between fact tables needs to be defined. You can create a fact-to-fact join between two fact tables and then add that join to the facts object.

 4.2.2 Creating a measure from a column

 You can define a measure derived from a column of the facts table. A measure defines a measurement entity and is used in facts objects.

 Measures become meaningful within the context of a set of dimensions in a cube model. For example, a revenue of 300 is not meaningful by itself. However, when you put a revenue measure in the context of dimensions, such as Region and Time, the measure becomes meaningful. For example, the revenue for New York in January is 300. Other common examples of measures are Revenue, Cost, and Profit.

 To create a measure from column, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP → Objects → Cube Models → Sales Model → Facts. Right-click Measures, and select Add Measures from Columns from the menu, as shown in Figure 4-9.

 [image:]

 Figure 4-9 Select Add Measures from Columns

 2.	In the Select columns to create measures window (Figure 4-10), expand the tree MARTS → PRCHS_PRFL_ANLYSIS. Then, press CTRL and select the following measures:

  –	CST_OF_GDS_SLD_CGS

  –	NMBER_OF_MRKT_BSKTS

  –	NUMBER_OF_ITEMS

  –	PRDCT_BK_PRC_AMUNT

  –	SALES_AMOUNT

 Click OK.

 [image:]

 Figure 4-10 Select measures from columns

 The measures are added to the Measures folder as shown in Figure 4-11 on page 83. When you select a measure from the list, the properties of that measure are shown in the Properties View. The view provides descriptions of some basic information about the measure, such as Name, Source, and Aggregations. You can also add more metadata information or comments, such as Units, Documentation, and Annotation to a specific measure.

 	
 Tip: You may, as examples, specify dollars for a sales measure or boxes sold for a quantity sold measure. Vendor tools may display the units property with the measure value or measure name.

 [image:]

 Figure 4-11 Measure properties

 4.2.3 Creating a calculated measure

 If the cube model design requires more measures than the facts table columns provide, you may need to define additional measures leveraging the existing available measures. You can create calculated measures easily from Design Studio.

 Similar to the measure created from column, a calculated measure also defines a measurement entity and is used in facts objects. A measure is defined by expression mapping and an aggregation. The aggregation can be a simple function or a more complex aggregation script. An aggregation script can include a multi-parameter function or define how to aggregate the data using multiple functions across the dimensions.

 To create a calculated measure, perform the following steps:

 1.	In the Data Project Explorer, expand the tree MARTS → OLAP Objects → Cube Models → Sales Model → Facts. Right-click Measures, then select Add Calculated Measures from the menu, as shown in Figure 4-12. The OLAP SQL Expression® Builder window will open.

 [image:]

 Figure 4-12 Add calculated measure

 2.	Specify the SQL expression for the calculated measure in the OLAP SQL Expression Builder window.

 For example, you can create a calculated measure PROFIT which is the difference between the SALES_AMOUNT and CST_OF_GDS_SLD_CGS. You can either manually enter the expression in the field or use the lists below the Expression field to add data sources, operto add data sources, operators, and functions and constants.

 To use the lists, perform the following steps:

 a.	Expand the Measures folder.

 b.	Double-click SALES_AMOUNT.

 c.	Double-click the - (minus sign) operator.

 d.	Double-click CST_OF_GDS_SLD_CGS, as shown in Figure 4-13.

 The following expression appears in the Expression field:

 @Measure(MARTS.SALES_AMOUNT (PRCHS_PRFL_ANLYSIS)) - @Measure(MARTS.CST_OF_GDS_SLD_CGS (PRCHS_PRFL_ANLYSIS))

 e.	Click OK.

 [image:]

 Figure 4-13 SQL expression

 3.	Enter PROFIT as the name of the new calculated measure. Notice that name is automatically populated to the Properties view of the calculated measure. The calculated measure PROFIT is created as shown in Figure 4-14.

 	
 Tip: Click Validate to verify the SQL expression structure and syntax are correct.

 [image:]

 Figure 4-14 Calculated measure—PROFIT

 You can set a measure as default in the Measures list, as shown in Figure 4-15. Right-click the measure and select Set as default from the menu. The default measure is shown with a small blue triangle attached to it in the navigation tree.

 When Business Intelligence (B)I tools access cubes from the cube model, the initial query will display the result based on the default measure.

 [image:]

 Figure 4-15 Set default measure

 Specifying aggregation for a measure

 The default aggregation for a measure is SUM. If you need to change the aggregation for a particular measure, modify it through the Aggregation tab in the Properties view.

 To modify aggregation of a measure, perform the following steps:

 1.	Select a measure from the cube model. From the Properties view, select the Aggregation tab.

 2.	Select the Aggregation script radio button and click Edit Script, as shown in Figure 4-16. The OLAP Aggregation Builder window opens. From this window, you may add either single parameter or multi parameter functions.

 [image:]

 Figure 4-16 OLAP Aggregation Builder

 3.	Add either a single parameter function or a multi-parameter function to the script.

 To add a single parameter function to the script, perform the following steps:

 a.	Select Single parameter functions from the Column functions menu.

 b.	Double-click a function, such as AVG in the Column functions list to add the aggregation script. You can also select the function and click Add to Script.

 To add a multi-parameter function to the script, perform the following steps:

 a.	Select Multiparameter functions from the Column functions menu

 b.	Select the function and click Add to Script. The function is added to the top of the aggregation script.

 c.	For the second parameter, you can specify an existing measure, as shown in Figure 4-17, or you can build a new expression by using the OLAP SQL Expression Builder.

 [image:]

 Figure 4-17 Multi parameter aggregation script

 4.	To remove a function from the script, select the function in the aggregation script and click the red X at the top of the Aggregation script.

 4.2.4 Creating MDX calculated Measures

 An MDX calculated measure defines a measurement entity and is used in fact objects. Cubing Services enables users to leverage MDX functions to build powerful analytics within the cube model.

 	
 Note: To create an MDX calculated measure, you need to have dimensions pre-created in the cube model. The example that follows is based on a model with pre-built dimensions.

 To create an MDX-calculated measure, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → Facts. Right-click the Facts object and select Add Data Objects from the menu. Select Add MDX Calculated Measure from the menu, as shown in Figure 4-18.

 [image:]

 Figure 4-18 Add MDX Calculated Measure

 2.	From the MDX Expression Builder window, you can either manually enter the expression in the field or use the lists below the Expression field to add data sources, operators, and functions and constants.

 In this example, enter the following MDX expression in the Expression field (Figure 4-19):

 [Measures].[Sales Amount] / ([Product].CURRENTMEMBER.PARENT, [Measures].[Sales Amount])*100

 The expression represents the percentage of the sales amount of a member over its parent in a hierarchy, along the product dimension.

 	
 Note: You need some basic MDX knowledge to create an MDX expression. More information about MDX can be found in Chapter 11, “MDX Overview” on page 253.

 [image:]

 Figure 4-19 MDX Expression Builder

 3.	Click Validate to validate the syntax of the expression, then click OK to complete the definition of the expression.

 4.	Enter the MDX calculated measure name, Sales Percentage, as shown in Figure 4-20.

 [image:]

 Figure 4-20 Add MDX calculated measure name

 4.2.5 Creating MDX calculated members

 An MDX calculated member is similar to an MDX calculated measure, but is created in dimension instead of the facts object. Cubing Services enables users to leverage MDX functions to build powerful analytics within the cube model.

 	
 Note: To create MDX calculated member, you need to have dimensions pre-created in the cube model. The example used below is based on a model with pre-built dimensions.

 To create an MDX calculated member, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → Time → Hierarchies → Calendar Year Hierarchy.

 Right-click Calendar Year Hierarchy, click Add Data Objects, and select Add MDX Calculated Member from the menu, as shown in Figure 4-21.

 [image:]

 Figure 4-21 Add MDX calculated member

 2.	From the MDX Expression Builder window, either manually enter the expression in the field or use the lists below the Expression field to add data sources, operators, and functions and constants. In this example, enter the following MDX expression in the Expression field, as shown in Figure 4-22:

 (CLOSINGPERIOD([Time].[Calendar Year Level]) - CLOSINGPERIOD([Time].[Calendar Year Level]).PREVMEMBER) / CLOSINGPERIOD([Time].[Calendar Year Level]).PREVMEMBER

 The expression represents the year-to-year growth member in the Time dimension.

 	
 Note: You need some basic MDX knowledge to create an MDX expression. More information about MDX can be found in Chapter 11, “MDX Overview” on page 253.

 [image:]

 Figure 4-22 MDX expression for calculated member

 3.	Click Validate to validate the syntax of the expression, and then click OK to complete the definition of the expression.

 4.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → Time → Hierarchies → Calendar Year Hierarchy.

 Click the newly-created MDX calculated member. In the Properties view, on the General page, enter Year to Year Growth in both the Name and Label fields. The member name is automatically updated in the hierarchy tree, as shown in Figure 4-23.

 [image:]

 Figure 4-23 Added MDX calculated member

 4.2.6 Creating dimensions

 Dimensions provide a way to categorize a set of related attributes and joins that together describe one aspect of a measure. Dimensions in cube models organize the data in the facts object according to logical categories such as region, product, or time. The dimension folder in the navigation tree is used to pair a dimension and its corresponding facts-to-dimension join.

 To create a dimension, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model. Right-click the Sales Model folder, click Add Data Object, and select Dimension from the menu, as shown in Figure 4-24.

 [image:]

 Figure 4-24 Add dimension

 2.	In the Properties view, on the General page, specify the name ProductDim for the dimension. The dimension folder name is automatically updated with the new specified name, as shown in Figure 4-25.

 [image:]

 Figure 4-25 Add dimension name

 3.	Expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → ProductDim.

 Right-click the Tables folder and select Add Existing Table from the menu, as shown in Figure 4-26.

 [image:]

 Figure 4-26 Add existing table

 4.	In the Available tables window (Figure 4-27), select PRODUCT and click OK.

 [image:]

 Figure 4-27 Select available tables

 5.	The PRODUCT table is added to the model and is used to input the table to generate the ProductDim dimension.

 	
 Changing a dimension: Select the specific dimension and use the Properties view to make changes to that dimension. If you cannot see the Properties view, click Window → Show View → Properties.

 On the General page, when you specify a name for the dimension information folder, the dimension contained in the folder automatically takes the same name. In the other pages of the Properties view, table selections for the dimension, joins between the tables in a dimension, attributes for the dimension, and the type of the dimension can be modified after they have been defined using the context menus.

 Adding an existing dimension

 If there are dimensions previously defined in the same data design project, you can reuse those dimensions in the OLAP model. A dimension created in each OLAP model is automatically added to the Shared Dimensions folder. The shared dimensions would then be conveniently available for any new or existing OLAP model.

 To add existing dimension, perform the following steps:

 1.	Expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model. Click Add Data Object and then Existing Dimension from their respective menus, as shown in Figure 4-28. The Available dimensions window opens.

 [image:]

 Figure 4-28 Add existing dimension

 2.	Expand MARTS, and select the PRODUCT, STORE and TIME dimensions, as shown in Figure 4-29. These dimensions were previously defined in the cube model.

 [image:]

 Figure 4-29 Select available dimensions

 3.	Click OK to add the dimensions in the Sales Model, as shown in Figure 4-30.

 [image:]

 Figure 4-30 Dimensions added

 4.2.7 Creating joins

 The relationship between a dimension and the fact object must be defined for each dimension in a cube model. The relationship is defined by a fact-to-dimension join.

 To create a fact-to-dimension join, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → ProductDim. Right-click ProductDim. Click Add Data Object and then Join from their respective menus, as shown in Figure 4-31.

 [image:]

 Figure 4-31 Add Fact-to-Dimension join

 2.	In the Properties view, on the General page, enter Facts-Product in the Name field for the facts-to-dimension join.

 The name is automatically updated in the Label field and tree structure under the ProductDim dimension folder, as shown in Figure 4-32.

 [image:]

 Figure 4-32 Added join Fact-Product

 3.	In the Properties view, on the Details page, add the attribute pair for the facts-to-dimension join, as shown in Figure 4-33. Click the Details tab and then the Plus Icon as indicated by the two callouts. The Attribute pair window opens, showing the two join columns. Expand the tree from both columns and select the column you used to the create the join. In this example, expand the table PRCHS_PRFL_ANLYSIS and select PD_ID from the Left column. Expand the table PRODUCT and select PD_ID from the Right column, then click OK.

 [image:]

 Figure 4-33 Add attribute pair for a join

 4.	Specify the Join type and Cardinality properties for the join (as shown in Figure 4-34) as follows:

  –	Join type: Inner

  –	Cardinality: Many:1

 [image:]

 Figure 4-34 Join type

 	
 Tip: Dimension-to-dimension joins are used if a snowflake schema is being modeled. Before you can create a dimension-to-dimension join, you must create a dimension and add two or more tables to the dimension.

 4.2.8 Creating Attributes

 An attribute maps either to a single column in a table or to an expression that is a combination of a set of columns or other attributes. You can create an attribute by using the Design Studio.

 To create an attribute in a dimension, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → ProductDim. Right-click the Attributes folder and select Add attributes from Columns from the menu, as shown in Figure 4-35.

 [image:]

 Figure 4-35 Adding attributes

 2.	From the Select columns to create attributes window, expand the table and select all of the columns by pressing the Shift key and clicking OK, as shown in Figure 4-36.

 [image:]

 Figure 4-36 Select attributes

 Creating calculated attributes will bring up the OLAP SQL Expression Builder window to create the source expression. The SQL Expression Builder provides lists of available attributes, columns, operators, functions, and constants, as shown in Figure 4-37.

 [image:]

 Figure 4-37 Add calculated attributes

 	
 Tip: You can rename the attributes through the Name field in the General page of the Attributes Properties view to make it more meaningful to users.

 4.2.9 Creating levels

 The level object represents a set of information (attributes) that is logically related at the same level of detail and uniquely identifies the data in the level. Year, quarter, month, week, and day would be examples of different levels. Levels are used in defining dimensional hierarchies.

 When possible, InfoSphere Warehouse creates functional dependencies that define the relationship between the level attributes.

 To create a level for a hierarchy, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → Time. Right-click the Levels folder and select Add Level, as shown in Figure 4-38.

 [image:]

 Figure 4-38 Add level

 2.	In the Properties view, on the General page, enter Year in the Name field. The Label field and the Level folder are updated automatically, as shown in Figure 4-39.

 [image:]

 Figure 4-39 General level properties

 3.	From the Properties view, select the Level Key page. Click the green + (plus sign) button as shown in Figure 4-40. The Add level key attribute window opens. Select CDR_YR(TIME), and click OK.

 	
 Tip: You can select multiple attributes in the appropriate order to define a level key, and which would create a concatenated level key. This is useful when you need to ensure member uniqueness of a level key in OLAP modeling.

 [image:]

 Figure 4-40 Add level key attribute

 4.	A related attribute of a level is used by BI tools to display as member name in their query and report. From the Properties view, select the Related page. Click the + (plus sign) button, as shown in Figure 4-41. The Add related attribute window opens. Select CDR_YR(TIME), and click OK.

 In this example, we define CDR_YR(TIME) as both level key and related attribute. In some scenarios, you may use a different attribute for level key and related attribute. For example, when defining a Month level in the Time dimension, you can use CDR_MO(TIME) as the level key and MO_NAME as the related attribute. In that case, you would see January as the member name in the report, instead of 01.

 [image:]

 Figure 4-41 Add related attributes

 5.	From the Properties view, on the Type page, define the level type as shown in Figure 4-42.

 [image:]

 Figure 4-42 Select level type

 4.2.10 Creating hierarchies

 Hierarchies define relationships between two or more levels within a given dimension of a cube model. For example, year-quarter-month could be a hierarchy within a time dimension. Defining these relationships provides a navigational and computational means of traversing a given dimension.

 	
 Recommendation: Although a dimension can have multiple hierarchies, you should create only one hierarchy per dimension in the cube model. The hierarchy should include all of the attributes in the dimension. You can use the cubes to subset the hierarchy for different uses. If you need a hierarchy with a different set of levels in the same dimension, however, you would then build a new hierarchy.

 	
 Note: Defining hierarchies with various levels requires that the levels first be defined. In the following examples, we have completed the creation of the required dimensions and levels in the Sales Model to facilitate the creation of the hierarchy.

 To create a hierarchy in a dimension, perform the following steps:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model → Time → Time. Right-click the Hierarchies folder, and select Add Hierarchy as shown in Figure 4-43.

 [image:]

 Figure 4-43 Add hierarchy

 2.	From the Properties tab, on the General page, specify Fiscal Year Hierarchy in the Name field as shown in Figure 4-44. The Label field and the new hierarchy in the Time dimension are automatically updated.

 [image:]

 Figure 4-44 Specify hierarchy name

 3.	From the Properties tab, on the Levels page, and click the green + (plus sign) button to add levels to the hierarchy as shown in Figure 4-45. From the Available levels window, select the following values:

  –	Fiscal Year Level

  –	Fiscal Year-Quarter Level

  –	Fiscal Year-Quarter-Month Level

 [image:]

 Figure 4-45 Select levels

 4.	From the Properties tab, on the Type/Deployment page, select the hierarchy deployment type, as shown in Figure 4-46.

 [image:]

 Figure 4-46 Deployment type

 4.3 Summary

 In this chapter we discussed the techniques for creating the basic elements of a cube model, such as attributes, measures, dimensions, levels and hierarchy. We also described two methods to create a cube mode, which were using the Quick Start Wizard and manually from beginning to end. In subsequent chapters of this book, we continue to describe how to create cubes in a cube model, and OLAP metadata management in Design Studio.

[image:]
[image:]

Designing Cubes

 After a cube model is defined, you can create cubes that contain all (or a subset) of the cube model objects. You can then deploy the cube model and cubes to the database for optimization. In this chapter, we discuss that process, and we also describe the metadata import and export process to facilitate metadata exchange, sharing, and migration.

 We start with a discussion on creating cubes.

 5.1 Creating a cube

 A cube model precisely defines an Online Analytical Processing (OLAP) cube and includes cube facts, cube dimensions, cube hierarchies, cube levels and cube measures.

 Cubes specify regions of the cube model that are significant, which are called cube objects. The cube objects can be considered similar to the MOLAP cubes in that they are often built for a specific subject area. The cube object also defines a subset of the data for the Cubing Services Cube Server, which can then be used by a vendor business intelligence (BI) tool or an application. The cube is the OLAP object that is served by the Cubing Services Cube Server and queried through the MDX query language.

 One or more cubes can be derived from a cube model, and a cube has a cube fact as the central object and cube dimensions. The cube facts (measures) and cube dimensions are subsets of the corresponding objects referenced in the cube model. So, cube hierarchies are scaled down to the cube and each can be a subset of the parent hierarchy that it references. Each dimension in a cube can have only one hierarchy defined.

 Cubes are appropriate for tools and applications that do not use multiple hierarchies because cube dimensions allow only one cube hierarchy for each cube dimension. You can create customized cubes for different applications by specifying the cube levels and related attributes to include in a cube hierarchy for each cube dimension

 	
 Note: A cube model must have a fact object and at least one dimension with a hierarchy before a cube can be defined.

 The following steps are an example of how to create a cube:

 1.	In the Data Project Explorer, expand DWESAMP.dbm → MARTS → OLAP Objects → Cube Models → Sales Model, from which you want to derive the cube. Right-click the Cubes folder and select Add Cube, as shown in Figure 5-1.

 [image:]

 Figure 5-1 Add cube

 2.	Enter the cube name Sales Analysis in the Cubes folder when prompted, as shown in Figure 5-2. The Name and Label fields on the General page, in the Properties view are updated automatically with the same name.

 [image:]

 Figure 5-2 Add cube name

 3.	Click the Cube Facts (Sales Analysis) object under the Sales Analysis cube in the Data Project Explorer. In the Properties view, select the Measures page and click the green + (plus sign) button. The Available measures window opens.

 4.	Select the measures needed in the Sales Analysis cube, as shown in Figure 5-3 on page 123, and click OK.

 [image:]

 Figure 5-3 Select measures to the cube facts

 5.	The measures are added as shown in the Properties view, on the Measures page, in Figure 5-4. The Sales Amount measure is inherited from the cube model Sales Model as the default measure.

 [image:]

 Figure 5-4 Measures added

 6.	Click the Sales Model cube object in the Data Project Explorer. Then select the Dimensions page in the Properties view. Click the green plus + (plus sign) button to open the Available dimensions window. Add dimensions to the cube as shown in Figure 5-5. Click Select All to select all the dimensions listed. Then click OK.

 [image:]

 Figure 5-5 Add dimensions to cube object

 7.	The dimensions are added in the cube as shown in Figure 5-6.

 [image:]

 Figure 5-6 Dimensions added

 8.	In the Data Project Explorer, select the Time dimension under the Sales Analysis cube object. Then, in the Properties view, on the Cube Hierarchy page, click the browse button to the right of the Name field indicated in Figure 5-7. The Available hierarchies window opens. Select Calendar Year Hierarchy, then click OK.

 [image:]

 Figure 5-7 Select hierarchy

 The Calendar year hierarchy is added to the Time dimension of the Sales Analysis cube object as shown in Figure 5-8 on page 126.

 	
 Note: Because you can define only one hierarchy in each dimension of a cube, step 7 and 8 are only needed if there is more than one hierarchy available in a dimension of a cube model. A hierarchy is automatically selected if it is the only one available in a dimension.

 9.	Repeat step 7 for each dimension.

 [image:]

 Figure 5-8 Calendar year hierarchy added to dimension object

 5.2 Analyzing OLAP objects for validity

 After creating a physical data model and an OLAP model, the models can be validated using the Analyze Model option available from the menus on the Data Project Explorer, as shown in Figure 5-9 on page 127.

 The Model Analysis Rules dialog box in the Analog Model window can be used to check OLAP base rules or OLAP optimization rules. If all OLAP-based rules are followed, the OLAP objects are valid to be deployed to a DB2 database. Furthermore, if all the OLAP optimization rules are followed, the OLAP cube models are good for the Optimization Wizard to be run and produce optimization recommendations. If any rules are broken by the model, the Properties view in Design Studio displays the rule that was broken and the object.

 A cube model can be validated successfully only after you have added the following mandatory components:

 •At least one facts object

 •At least one dimension

 •A hierarchy defined for at least one dimension

 •Joins between the existing facts object and dimensions

 •Attributes that reference existing table columns

 [image:]

 Figure 5-9 Analyze Model

 To analyze OLAP objects for validity, perform the following steps:

 1.	Expand Database Model.dbm → MARTS → OLAP Objects → Cube Models → Sales Mode. Right-click Sales Model and select Analyze Model from the menu.

 2.	From the Analyze Model window, click OK.

 If there are any validation problems in the model, the problems and status are displayed in the Properties view for diagnosis.

 5.3 Deploying objects to a DB2 database

 Once a physical data model and its OLAP objects have been created and validated successfully, the objects can be deployed to the metadata repository for the target warehouse database. After the deployment, you can only list the OLAP cube model objects in the database schema from the Database Explorer, and only if you have established a live connection to the metadata repository.

 To deploy OLAP objects, and their child objects, from the Data Project Explorer to a target database in the Database Explorer, perform the following steps:

 1.	From the Data Project Explorer, expand Database Model.dbm → MARTS → OLAP Objects → Cube Models → Sales Model. Right-click the Sales Model object. Select Deploy to Database from the menu as shown in Figure 5-10.

 When deployed, the OLAP objects are stored in the InfoSphere Warehouse metadata repository database.

 [image:]

 Figure 5-10 Deploy to database

 2.	From the Deploy OLAP Objects window (Figure 5-11), in the Target database pane, expand DB2 Databases, select dwesamp and click Finish.

 [image:]

 Figure 5-11 Select target database

 3.	Enter the user ID and password when prompted. This is needed to establish the connection to the metadata repository database.

 4.	Click OK when the OLAP objects have been deployed successfully.

 5.4 Optimization Advisor

 Optimizing your star schema or snowflake schema with InfoSphere Warehouse can improve the performance of OLAP-style SQL queries. The optimization process includes creating, implementing, and maintaining the summary tables and indexes recommended by the Optimization Advisor.

 DB2 summary tables are called Materialized Query Tables (MQTs). They can improve query performance because they contain precomputed results from one or more tables that can be used in a query. Costly table joins and complex calculations can be computed in advance and stored in an MQT. Then, future queries that use these aggregations can realize significantly improved performance.

 When running queries that can use the precomputed data, DB2 will reroute the queries to the MQT summary table. A query does not need to match the precomputed calculations exactly. If you use simple analytics, such as SUM and COUNT, DB2 can dynamically aggregate the results from the precomputed data. In addition, many different queries can be satisfied by one summary table. Using summary tables can dramatically improve query performance for queries that access commonly used data or that involve aggregated data over one or more dimensions or tables.

 	
 Note: Details on MQTs can be found in the IBM DB2 9.5 for Linux, UnIX and Windows Information Center at the following Web site:

 http://www.ibm.com/software/data/db2/udb/winos2unix/support

 The Optimization Advisor will analyze the metadata and other information that you provide to the Wizard and recommend the appropriate MQTs. After running the Optimization Advisor, you will have an SQL file (DDL scripts) that can build the set of recommended MQTs. You have the option of modifying the SQL scripts before running them to create the summary tables.

 5.4.1 Maintain the materialized query tables

 After the MQTs have been created, they should be regularly maintained to ensure that they stay appropriately synchronized with the data. When you run the Optimization Advisor, choose either a refresh-immediate or refresh-deferred update option.

 Refresh immediate option

 If you choose the immediate update option, DB2 keeps the base tables and summary tables synchronized, and incrementally updates the MQT tables when the underlying tables are changed. DB2 supports incremental maintenance for simple aggregations such as SUM and COUNT. For other aggregations, the Optimization Advisor recommends summary tables that use the refresh-deferred option regardless of which refresh option you select.

 Refresh deferred option

 If you choose the deferred option, you will rebuild your MQT tables to update them. You decide when to perform the summary table update. If significant changes are made throughout the base tables, performing deferred updates can be more efficient than incremental updates.

 5.4.2 Optimization Advisor in Design Studio

 Because the Optimization Advisor function performs sampling on rows in the tables, it can only be run against a cube model in the Database Explorer.

 	
 Note: The Optimization Advisor requires a fully defined OLAP model, so we use the sample OLAP model (Purchase Profile Analysis) that comes as part of the installation.

 Optimizing in Design Studio

 To perform optimization in Design Studio, perform the following steps:

 1.	From the Database Explorer, expand dwesamp.dbm → MARTS → OLAP Objects → Cube Models. Right-click Purchase Profile Analysis and select Optimization Advisor from the menu, as shown in Figure 5-12. The OLAP Optimization Advisor window opens.

 [image:]

 Figure 5-12 Launch optimization advisor

 2.	From the OLAP Optimization Advisor window (Figure 5-13), ensure the DB2 Cubing Services Cube Server radio button (the default) is selected. Click the browse button beside the Price Analysis cube, and the Optimization Slices window opens.

 [image:]

 Figure 5-13 Specify target queries

 3.	From the Optimization Slices window, you can define specific optimization slices. These are areas of the cube that are expected to be queried most frequently. An optimization slice is a method of defining the critical cube regions that have the most query activity and are to be prioritized for inclusion in the MQTs recommended by the Advisor. You can specify an optimization slice by pressing the green + (plus sign) button as shown in Figure 5-14 on page 133. Define the optimization slices as described below by specifying the following factors:

  –	a specific level in a cube dimension, such as month in the Calendar Year Level in the time cube dimension, if you know that the specified level is important or frequently queried.

  –	All in a cube dimension if the highest aggregation of the cube dimension is important or frequently queried.

  –	Any in a cube dimension if no level is significantly more important than any other level in that cube dimension, many levels in that cube dimension are queried, or you do not know how often each level in that cube dimension is queried.

 Click OK, then click Next in the OLAP Optimization Advisor.

 [image:]

 Figure 5-14 Add optimization slice

 	
 Keep in mind: After the optimization slices are determined, several MQT (Summary Table) options must be specified. These decisions must be made, and typically involve a database administrator. They include information such as:

  –	Whether to create the MQTs as immediate refresh or deferred refresh

  –	Which tablespace to use for the MQTs

  –	Which index tablespace to use for the MQTs

  –	How much disk space the Optimization Advisor can use when determining MQT recommendations

  –	How much time the Optimization Advisor can take when determining MQT recommendations

  –	Whether the Optimization Advisor uses data sampling in determining MQT recommendations

 4.	From the Summary Tables panel (Figure 5-15), select the Deferred radio button, and click Next. The Limitations panel opens. Select the Do not specify a disk space limit radio box. Check the Data sampling option. Click Start Advisor to start the optimization process.

 	
 Note: The advisor may take a while to determine the MQT recommendation, so be patient.

 [image:]

 Figure 5-15 Specify options and limitations

 	
 Note: Implementations should specify the parameters according to the particular environment rather than taking the default. That typically involves several iterations to determine the optimized recommended MQTs.

 5.	When the optimization advisor process is finished, click Next in the OLAP Optimization window.

 6.	From the SQL scripts panel, two SQL scripts are generated: one to create the MQTs and another to refresh the MQTs, as shown in Figure 5-16.

 [image:]

 Figure 5-16 Optimization Advisor recommendations

 Click Browse to specify the location for DDL scripts to be saved, then click Finish to complete the process of saving the DDL scripts.

 Example 5-1 provides an example of the DDL script generated to create the MQT.

 Example 5-1 Create MQT sample

 [image:]

 -- ***

 -- * Script to create/refresh summary tables.

 -- *

 -- * Cube model schema: MARTS

 -- * Cube model name: Purchase Profile Analysis

 -- * Diskspace limit: Unlimited

 -- * Time limit: Unlimited

 -- * Sampling: Yes

 -- * Refresh type: Refresh deferred

 -- * Target queries: DB2 Cubing Services Cube Server

 -- * Tablespace name: USERSPACE1

 -- * Indexspace name: USERSPACE1

 -- ***

 DROP TABLE DB2INFO.MQT8106123710T01;

 DROP TABLE DB2INFO.MQT8106123710T02;

 UPDATE COMMAND OPTIONS USING c OFF;

 CREATE TABLE DB2INFO.MQT8106123710T01 AS

 (SELECT

 SUM(T1."PRDCT_BK_PRC_AMUNT") AS "Product Book Price Amount",

 SUM(CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Number Of Items",

 AVG(T1."PRDCT_BK_PRC_AMUNT"/ CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Average Product Book Price",

 SUM(T1."SALES_AMOUNT") AS "Sales Amount",

 SUM(T1."CST_OF_GDS_SLD_CGS") AS "Cost Of Goods Sold (COGS)",

 T4."CDR_YR" AS "Calendar Year",

 T2."PD_DEPT_NM" AS "Product Department Name",

 T2."PD_SUB_DEPT_NM" AS "Product Sub Department Name",

 T3."STR_IP_ID" AS "Store Id"

 FROM

 "MARTS"."PRCHS_PRFL_ANLYSIS" AS T1,

 "MARTS"."PRODUCT" AS T2,

 "MARTS"."STORE" AS T3,

 "MARTS"."TIME" AS T4

 WHERE

 T1."PD_ID"=T2."PD_ID" AND

 T1."STR_IP_ID"=T3."STR_IP_ID" AND

 T1."TIME_ID"=T4."TIME_ID"

 GROUP BY

 T4."CDR_YR",

 T2."PD_DEPT_NM",

 T2."PD_SUB_DEPT_NM",

 T3."STR_IP_ID")

 DATA INITIALLY DEFERRED

 REFRESH DEFERRED

 ENABLE QUERY OPTIMIZATION

 MAINTAINED BY SYSTEM

 IN "USERSPACE1"

 INDEX IN "USERSPACE1"

 NOT LOGGED INITIALLY

 ;

 COMMENT ON TABLE DB2INFO.MQT8106123710T01 IS 'AST created for cube model MARTS.Purchase Profile Analysis';

 COMMIT;

 DECLARE C_MQT8106123710T01 CURSOR FOR

 (SELECT

 SUM(T1."PRDCT_BK_PRC_AMUNT") AS "Product Book Price Amount",

 SUM(CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Number Of Items",

 AVG(T1."PRDCT_BK_PRC_AMUNT"/ CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Average Product Book Price",

 SUM(T1."SALES_AMOUNT") AS "Sales Amount",

 SUM(T1."CST_OF_GDS_SLD_CGS") AS "Cost Of Goods Sold (COGS)",

 T4."CDR_YR" AS "Calendar Year",

 T2."PD_DEPT_NM" AS "Product Department Name",

 T2."PD_SUB_DEPT_NM" AS "Product Sub Department Name",

 T3."STR_IP_ID" AS "Store Id"

 FROM

 "MARTS"."PRCHS_PRFL_ANLYSIS" AS T1,

 "MARTS"."PRODUCT" AS T2,

 "MARTS"."STORE" AS T3,

 "MARTS"."TIME" AS T4

 WHERE

 T1."PD_ID"=T2."PD_ID" AND

 T1."STR_IP_ID"=T3."STR_IP_ID" AND

 T1."TIME_ID"=T4."TIME_ID"

 GROUP BY

 T4."CDR_YR",

 T2."PD_DEPT_NM",

 T2."PD_SUB_DEPT_NM",

 T3."STR_IP_ID");

 LOAD FROM C_MQT8106123710T01 OF CURSOR REPLACE INTO DB2INFO.MQT8106123710T01 NONRECOVERABLE;

 SET INTEGRITY FOR DB2INFO.MQT8106123710T01 ALL IMMEDIATE UNCHECKED;

 CREATE INDEX DB2INFO.IDX8106123710T0101 ON DB2INFO.MQT8106123710T01("Product Department Name");

 RUNSTATS ON TABLE DB2INFO.MQT8106123710T01 AND INDEXES ALL;

 COMMIT;

 CREATE TABLE DB2INFO.MQT8106123710T02 AS

 (SELECT

 SUM(T1."PRDCT_BK_PRC_AMUNT") AS "Product Book Price Amount",

 SUM(CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Number Of Items",

 AVG(T1."PRDCT_BK_PRC_AMUNT"/ CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Average Product Book Price",

 SUM(T1."SALES_AMOUNT") AS "Sales Amount",

 SUM(T1."CST_OF_GDS_SLD_CGS") AS "Cost Of Goods Sold (COGS)",

 T4."CDR_YR" AS "Calendar Year",

 GROUPING(T4."CDR_YR") AS "GRP_Calendar Year",

 T2."PD_DEPT_NM" AS "Product Department Name",

 T3."STR_SUB_DIV_NM" AS "Sub Division Name"

 FROM

 "MARTS"."PRCHS_PRFL_ANLYSIS" AS T1,

 "MARTS"."PRODUCT" AS T2,

 "MARTS"."STORE" AS T3,

 "MARTS"."TIME" AS T4

 WHERE

 T1."PD_ID"=T2."PD_ID" AND

 T1."STR_IP_ID"=T3."STR_IP_ID" AND

 T1."TIME_ID"=T4."TIME_ID"

 GROUP BY

 ROLLUP(T4."CDR_YR"),

 ROLLUP(T2."PD_DEPT_NM"),

 ROLLUP(T3."STR_SUB_DIV_NM"))

 DATA INITIALLY DEFERRED

 REFRESH DEFERRED

 ENABLE QUERY OPTIMIZATION

 MAINTAINED BY SYSTEM

 IN "USERSPACE1"

 INDEX IN "USERSPACE1"

 NOT LOGGED INITIALLY

 ;

 COMMENT ON TABLE DB2INFO.MQT8106123710T02 IS 'AST created for cube model MARTS.Purchase Profile Analysis';

 COMMIT;

 DECLARE C_MQT8106123710T02 CURSOR FOR

 (SELECT

 SUM(T1."PRDCT_BK_PRC_AMUNT") AS "Product Book Price Amount",

 SUM(CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Number Of Items",

 AVG(T1."PRDCT_BK_PRC_AMUNT"/ CASE T1."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE T1."NUMBER_OF_ITEMS" END) AS "Average Product Book Price",

 SUM(T1."SALES_AMOUNT") AS "Sales Amount",

 SUM(T1."CST_OF_GDS_SLD_CGS") AS "Cost Of Goods Sold (COGS)",

 T4."CDR_YR" AS "Calendar Year",

 GROUPING(T4."CDR_YR") AS "GRP_Calendar Year",

 T2."PD_DEPT_NM" AS "Product Department Name",

 T3."STR_SUB_DIV_NM" AS "Sub Division Name"

 FROM

 "MARTS"."PRCHS_PRFL_ANLYSIS" AS T1,

 "MARTS"."PRODUCT" AS T2,

 "MARTS"."STORE" AS T3,

 "MARTS"."TIME" AS T4

 WHERE

 T1."PD_ID"=T2."PD_ID" AND

 T1."STR_IP_ID"=T3."STR_IP_ID" AND

 T1."TIME_ID"=T4."TIME_ID"

 GROUP BY

 ROLLUP(T4."CDR_YR"),

 ROLLUP(T2."PD_DEPT_NM"),

 ROLLUP(T3."STR_SUB_DIV_NM"));

 LOAD FROM C_MQT8106123710T02 OF CURSOR REPLACE INTO DB2INFO.MQT8106123710T02 NONRECOVERABLE;

 SET INTEGRITY FOR DB2INFO.MQT8106123710T02 ALL IMMEDIATE UNCHECKED;

 CREATE INDEX DB2INFO.IDX8106123710T0201 ON DB2INFO.MQT8106123710T02("Sub Division Name");

 RUNSTATS ON TABLE DB2INFO.MQT8106123710T02 AND INDEXES ALL;

 COMMIT;

 [image:]

 5.5 Importing and exporting OLAP objects

 OLAP objects can be easily imported and exported to the Data Design Project in Design Studio. The process is performed by using XML files.

 5.5.1 Importing OLAP objects

 Using the Import OLAP Objects Wizard, you can import OLAP metadata objects to a target database so that you can manage the metadata objects. You can import OLAP metadata objects to a DB2 database in the Database Explorer or to a physical data model in the Data Project Explorer. You can also import DB2 Cube Views™ XML files if you are upgrading from previous release of DB2 Data Warehouse Edition.

 To import OLAP metadata objects to a DB2 database in the Database Explorer, you must have SELECT, INSERT, and DELETE privileges for the tables in the InfoSphere Warehouse metadata database with which you are working.

 	
 Attention: If you import OLAP objects to a database in the Database Explorer, you are essentially deploying OLAP objects to the metadata repository. This will not update the metadata in the Data Project Explorer, however, and would result in an out-of-sync scenario between the objects in the Data Project Explorer and Database Explorer.

 An appropriate flow would be to import the OLAP objects into Data Project Explorer, validate/analyze the model and then deploy them to Database Explorer to ensure synchronization.

 Because the measures and attributes in the OLAP XML file refer to columns in tables, make sure the tables exist in the model before importing the OLAP objects. If the tables do not exist, Design Studio has a feature that will try to create tables in the model. This will allow the OLAP measures and attributes to be imported. However, these tables that Design Studio creates are not guaranteed to be identical to the tables that OLAP objects originally referred to in the database from which the OLAP objects were exported.

 	
 Tip: A sample cube model of the dwesamp database is provided and can be found in the C:\Program Files\IBM\dwe\samples\OLAP subdirectory in a file called dweSample.xml. After creating the dwesamp database, you can use the import dialog box to import the dweSample.xml file to see a full example of an OLAP model.

 To import OLAP metadata, perform the following steps:

 1.	From the Design Studio toolbar, select File → Import as shown in Figure 5-17. This opens the Import window. Select OLAP Metadata and then click Next to view the File and Target panel.

 [image:]

 Figure 5-17 Import OLAP metadata

 2.	From the File and Target panel (Figure 5-18), click Browse to locate the import XML file, select the data project where you want to import, and then click Next.

 [image:]

 Figure 5-18 Select import file and target

 3.	From the Objects to Import panel (Figure 5-19), select the Purchase Profile Analysis object to import. Select the Replace existing objects radio button and click Next.

 The Import ends with a successful OLAP message.

 [image:]

 Figure 5-19 Select objects to import

 	
 Note: If you select the Do not replace existing objects radio button and a name collision occurs with a low-level object, the low-level object in the XML file will not be prompted and any high-level objects that contain the low-level object will not be updated.

 5.5.2 Exporting OLAP objects

 You can use Design Studio to export OLAP metadata to an XML file so that you can migrate the metadata objects to other vendor tools or another DB2 OLAP environment.

 OLAP metadata can be exported either from a physical data model in the Data Project Explorer or an existing DB2 database in the Database Explorer. If the metadata is exported as InfoSphere Warehouse Cubing Services version 9.5, you can import the metadata into the Administration Console for analytics.

 To avoid any potential problem during import subsequently, it is important to ensure the validity of the OLAP objects. Use the Analyze Model Wizard to ensure the metadata is valid before it is exported.

 To export OLAP metadata, perform the following steps:

 1.	From Design Studio, Select File → Export, as shown in Figure 5-20. From the Export window, expand the Data Warehouse folder and select OLAP Metadata, then click Next.

 [image:]

 Figure 5-20 Export Wizard

 2.	In the Specify Cubing Services objects and Destination File panel (Figure 5-21), enter the export file name or click Browse to locate the export file. Select the data project from where you want to export the metadata. In the Specify Metadata Version panel, select the InfoSphere Warehouse Cubing Services v9.5 radio button, and click Finish.

 The Export should end with a successful OLAP message.

 [image:]

 Figure 5-21 Specify metadata objects and export file

 With the cube model and cubes in place, you are ready to define the Cubing Server, and import the OLAP metadata in the InfoSphere Warehouse Administration Console where the cubes are made available to Alphablox. In Chapter 6, “Deploying and managing the cube” on page 147, we show how the Administration Console is used to manage the Cube Server and the OLAP metadata.

[image:]
[image:]

Deploying and managing the cube

 In the Design Studio environment, when working with a cube, you are basically defining meta information about the structure of the cube and how the Cube Server will instantiate the cube structure at runtime.

 The cube can be queried only after it is deployed to the Cube Server, and started within that server. Note that the cube dimension hierarchy member metadata needs to be loaded before cube is operational.

 In this chapter, we discuss how to work with the Administration Console to deploy and manage cubes and make them available for user access.

 6.1 Administration Console

 In Chapter 3, “Modeling using IBM InfoSphere Warehouse Design Studio” on page 51, we introduced the Design Studio as a means to create cube models and define cubes. To do that required defining meta information that describes how to build all of the elements of the cube from the relational database. However, the cube does not actually exist until it is instantiated in a Cube Server. The Cube Server is the runtime component that can understand the cube meta information. It creates the appropriate queries to retrieve the dimension and fact data from DB2 to create the cube structure in memory. This instantiates the cube, making it available for users. Before any of this can happen, of course, there are some tasks that need to be accomplished that define the runtime environment. This is done by using the InfoSphere Warehouse Administration Console.

 The Administration Console is the Web-based tool for managing the various runtime components of InfoSphere Warehouse. The Administration Console is implemented as part of the IBM Integrated Solutions Console (ISC) which, in the case of InfoSphere Warehouse, includes the WebSphere Administration Console and the InfoSphere Warehouse Administration Console, as seen in Figure 6-1.

 [image:]

 Figure 6-1 WebSphere and InfoSphere Warehouse Administration Consoles

 The view can be changed to show only the InfoSphere Warehouse functions by using the Views menu. This results in the display shown in Figure 6-2. The warehouse administration tasks are divided into categories based on the major features of InfoSphere Warehouse, and they are as follows:

 •Common administration tasks

 •SQL Warehousing administration tasks

 •Cubing Services administration tasks

 •Mining administration tasks

 •Alphablox administration tasks

 [image:]

 Figure 6-2 InfoSphere Warehouse Administration Console

 The common tasks are general administrative tasks that may apply across the components. Data Sources for relational databases are managed here as well as System Resources, such as DataStage® and FTP servers. There is a task for managing Cubing Services Roles too, which is presented in subsequent sections of this chapter. There are tasks to view Server and SQW Process logs and a task to help manage failed SQW process instances.

 Managing data movement and transformation flows is the purpose of the SQL Warehouse category of administrative tasks. There are tasks to deploy and manage Warehouse applications containing the flows created the Design Studio. There is a group of tasks associated the with managing, executing, scheduling, and monitoring of executable processes. Finally, there is a group of tasks to view the application deployment history and various process execution statistics.

 The Cubing Services tasks are where Cube Servers and cubes are managed. Cube Servers must be defined and managed, cube definitions deployed and cubes must be associated with Cube Servers. There are more detail on these tasks in subsequent sections of this chapter.

 If data mining functions are to be used in a data warehouse, there are some administrative tasks which are found in the Mining category. For example, databases that are used to perform data mining must be enabled, which simply means that the functions to do in database data mining are installed, and tables defined to hold data mining models. Data mining models can also be viewed, imported, exported and deleted. For applications that perform high speed, real-time scoring, there are functions to manage a cache used to keep the associated data models loaded in memory. And, finally, there is one task to invoke the Alphablox Administration function.

 6.2 Cubing Services Runtime Environment

 Understanding the components that comprise the Cubing Services runtime environment is key to effective administration of Cubing Services. In this section, we take a look at the underlying components to get an overview and the relationship between them, and then we discuss each component in more detail.

 6.2.1 Runtime overview

 The Cubing Services runtime environment is comprised of several components. Figure 6-3 on page 151 represents a basic runtime architecture for Cubing Services.

 [image:]

 Figure 6-3 A basic Cubing Services runtime architecture

 At the base, of course, is the source database that contains the data, in dimension form, with dimension tables and a fact table which would typically be on a dedicated database server. The source database would also have optimization elements, called Materialized Query Tables (MQTs), that are created for performance reasons. They are not shown here as they are elements used by the DB2 optimizer and not directly exposed outside of the database.

 In the development environment, the Design Studio was used to model the cube structure, which describes how the dimensions and facts are to be built from the underlying relational tables. This meta information is needed in the runtime environment so that the Cube Server can build the in-memory instantiation of the cube. To bring the cube meta information into the runtime environment, the cube designer will export the cube model to an XML file which is then given to the administrator of the runtime environment. Using the Manage OLAP Metadata task of the Administration Console, the XML file is imported and stored in a relational table within the InfoSphere Warehouse Control Database. This process is called cube deployment. The Control Database is an integrated store of metadata across the components of the InfoSphere Warehouse tooling.

 The Cube Server is a server process that executes on a dedicated system or perhaps co-located with other applications. It is generally recommended that the Cube Server not be on the same machine as the database server. The Cube Server is defined by the runtime system administrator, using the Administration Console, which can also be used to start and stop the Cube Server. The Cube Server must be started before it can load cubes.

 A Cube Server without a cube is not useful. But once a Cube Server exists and the cube has been deployed to the control database, the cube can be added to a Cube Server, started, and made available to the user community. Again, the runtime system administrator uses the Administration Console to add the deployed cube to the Cube Server. As part of this task, the cube must be associated with, or mapped to, the DB2 database that contains the dimensional relational data. The Administration Console is also used to start and stop the cube.

 At the time the Cube Server is started, it reads cube models from the control database for all cubes deployed to the server. The cube models describe how the cube is to be formed with the data from the underlying relational tables. With the cube start command, dimension hierarchy members are loaded from the dimension tables. After the cube load completes, the cube is ready to be queried. Optionally, a seed query may be defined to partially populate the cube data cache with cells retrieved from the fact table.

 The user tools will connect to the Cube Server and start issuing MDX queries. When an MDX query is received, and the data is already in memory, the results are passed back to the user. However, if some of the data is not found, the Cube Server will generate SQL queries to retrieve the data from DB2 before it can return results back to the user.

 6.2.2 Cubing Services topologies

 So far, we have looked at basic cubing service architecture with one Cube Server and one cube. In a production environment, however, there is likely to be many cubes, and many Cube Servers, across several machines. There is a flexibility in how Cube Servers and cubes may be defined. Examples are as follows:

 •Multiple Cube Servers may be defined on one system. This might be done to isolate different application areas for any number of reasons, such as differing performance requirements or operational requirements.

 •Multiple cubes may be added to one Cube Server.

 •A cube may be added to multiple Cube Servers resulting in multiple independent instantiations of the cube, all accessing the same underlying relational tables. This might be done for horizontal scalability to spread the workload across servers, or to serve different user communities that need access to the same information but with a different starting point or different parameters.

 •Cube Servers can be defined on multiple systems, consistent with your licensed limit.

 •Multiple Cube Servers can also access a common control database to share the cube meta information.

 Figure 6-4 shows a more complex topology of cubes and Cube Servers. This installation contains three Cube Servers across two physical machines with a total of four cubes defined, all of which are supported by two relational star schemas. Notice that there is only one control database that is accessed by all three Cube Servers, which allows maximum sharing of the OLAP metadata.

 [image:]

 Figure 6-4 A more complex Cubing Services topology

 As is typical, this installation started with one star schema, one Cube Server (Cube Server 1), and one cube (CUBE 1). With the passing of time, there were additional requirements to create another star schema, over which CUBE 2 was modeled and deployed in Cube Server 1. This made for two star schemas, two cubes, and one Cube Server.

 A third application area realized how productive the other two application areas were when using their cubes, so they also wanted access. Upon analyzing their requirements, it was determined that while their data needs were similar to application area two, there was enough of a difference that their cube requirements were different from CUBE 2. This could occur for any number of reasons. As an example, perhaps their dimension requirements were different, or needed some additional calculated facts. Using the Design Studio, a different cube, CUBE 3, was designed based on the same cube model as CUBE 2. In addition, there were different operational and performance needs that caused the runtime system administrator to decide to create a new Cube Server, Cube Server 2, for this cube. Now there are still two star schemas, but three cubes, two of which are supported by the same star schema. In addition, there are two Cube Servers running on the same machine.

 We see that CUBE1 is extremely popular and its user community has grown in size significantly, while CUBE2 and CUBE 3 usage has remained steady and relatively low. Now, the one machine is reaching capacity and adding new user groups will impact overall performance. An analysis shows that there are two distinct user communities and each accesses, somewhat exclusively, different parts of the cube according to their specific application areas. That is, one group performs analyses on commercial customers while another performs analyses on residential customers, while each needs occasional access to other data. This has the unfortunate effect of creating a higher possibility of not having the data in the cache when needed, which leads to inefficient cache usage. For example, if a number of commercial related queries are executed, followed by a residential related query, the data for the residential query may have been eliminated from the cache by the previous commercial queries.

 So, a new machine, Server 2, is purchased, a new Cube Server, Cube Server 3, is defined, and another instance of CUBE 1 is deployed in Cube Server 3. It is still the same cube definition as CUBE 1, in Cube Server 1, and still accesses the same underlying star schema. The administrator decided to segment the users across the two servers according to their application areas, commercial versus residential. This has the benefit that users of one instance of CUBE1 will likely be accessing the same part of the cube, thereby increasing the likelihood that the data for a query is in the cache and making much more efficient use of the cache. In fact, a different seed query can be defined for each cube instance which will preload the cache with the data for that particular user group. That is, it would preload residential data for the residential analysts and commercial data for the commercial analysts.

 So, this installation has grown to four cubes deployed across three Cube Servers on two machines. In addition, two of these cubes are just different instances of the same cube definition and access the same underlying data. The other two cubes are actually different cubes, but both access the same underlying star schema.

 6.2.3 Metadata repository

 As mentioned in section 6.2, “Cubing Services Runtime Environment” on page 150, there is a DB2 database that contains the definition, or metadata, of the cubes. That repository database is usually referred to as the InfoSphere Warehouse Control Database. This database contains the metadata from all of the components that is required for the runtime environment. For example, in addition to cube metadata, metadata for the data movement and transformation component, SQW, is also in the control database.

 There is one control database for each runtime environment, represented by one instance of the InfoSphere Warehouse Administration Console. The control database is defined and associated with the runtime environment using the InfoSphere Warehouse Configuration Tool. This configuration tool is used by an administrator to set up and configure the runtime environment. This is typically done when the runtime environment is initially installed, but it can be repeated anytime the configuration needs to be changed, which is seldom.

 6.3 Cube deployment workflow	

 There is a specific order of administrative tasks that need to happen to properly prepare a cube for the users. There are databases to be defined, metadata to be imported and optimized, Cube Servers to be defined, and cubes to be added to Cube Servers. This cube deployment workflow is shown in Figure 6-5.

 [image:]

 Figure 6-5 Cube deployment workflow

 Some steps may not be needed for each and every cube deployment. For example, if a cube connects to the same data source, the data source only needs to be defined once.

 6.3.1 Create a data source

 All of the data for a cube permanently resides in a DB2 database, in a star schema type of design. There is no permanent storage of a cube as the cube is cached in memory and is not permanently copied, but rather loads the dimensions and fact data directly from the DB2 database. A connection needs to be established to the database that contains the data.

 A data source connection definition to a database is a common need across the components. More than one component may need a connection to the same database. As seen in Figure 6-6, there is a group of tasks that are common across components.

 [image:]

 Figure 6-6 Common resources—Data sources

 Opening the tree to Common → Resources → Manage Data Sources shows the list of currently defined data sources. New data sources can be created by clicking Create.

 Data sources can be defined as managed or non-managed. Managed data sources are defined to, and managed by, WebSphere. Data sources that are referenced by cubes must not be defined as managed, but must be defined as standalone direct connections.

 We now consider an example in which a data source is defined to a database that contains the relational star schema for our cube. For this, we used the InfoSphere Warehouse sample database, DWESAMP. Refer to Figure 6-7 as we go through the process to create data source dialogs.

 [image:]

 Figure 6-7 Defining a data source for a cube

 On the Step 1: Database Resource panel of the Manage Data Sources window, specify the display name in the list of data sources, and a description of the data source. For data sources that are referenced by cube, clear the Managed by WebSphere check box. Only non-managed data sources can be used by cubing services.

 The Step 2: Connection Information panel of the Manage Data Sources window defines the connectivity information for the data source. Most of this information is typical DB2 connection information, such as the name and alias used for the database, the host name (or TCP/IP address), and the port number defined for the database server. However, the JNDI name may not be as familiar to you. This is just a java type name but has no specific requirement except that it is case sensitive and must be unique in this instance of WebSphere. However, as a rule of thumb, start the name with jdbc/ followed by a unique name. The result should be similar in appearance to the following sample name - jdbc/dwe/dwesamp.

 Define the security information on the Step 3: Security panel of the Manage Data Sources window. This includes the user ID and password used to connect to the database and the access role. Access Public is the default and is sufficient for typical analytic usage. See the DB2 Information Center for other specific types of access roles.

 At this point, it is a good idea to test that the connection information is correct by clicking Test Connection. Once the dialog is successfully completed, the data source will appear in the Manage Data Sources list. From this page you can test connectivity, update, or remove the definition. You also have the ability to check if the data source is being used by any warehouse applications or cube models.

 6.3.2 Import OLAP metadata

 The OLAP cube definitions that were defined in the InfoSphere Warehouse Design Studio must be made available to the runtime environment. This means that the metadata must be inserted into repository tables that reside in the control database.

 Figure 6-8 on page 159 shows an example of the cube metadata deployment workflow. Once the cube model has been created in the Design Studio, the modeler can use the Design Studio to export the cube metadata into an XML file. This file is given to the administrator of the runtime environment who will use the Administration Console to import the metadata from the XML file into the control database. This must be completed before the cube can be added to any Cube Servers.

 The XML file must be exported using the V9.5.x format. If it is a supported but older version of metadata, it must first be imported to the Design Studio and then exported using the V9.5.x format.

 [image:]

 Figure 6-8 Cube metadata deployment workflow

 Importing is a simple process. It is just a matter of selecting the XML file, mapping it to the correct source, and defining how to handle name collisions. The XML file is read, parsed, and inserted into the appropriate repository tables of the control database.

 The first step in the cube metadata deployment process is to start the Administration Console and select Cubing Services → Manage OLAP Metadata. This will invoke the procedure that walks you through the metadata import process, as shown in Figure 6-9 on page 160.

 [image:]

 Figure 6-9 Manage OLAP metadata dialog

 The metadata import process is as follows:

 1.	Enter the location of the XML file that contains the metadata exported from the Design Studio. The XML file may reside on the client machine running the Web browser or on the server. Click the appropriate browse button to select the file.

 2.	The step of the dialog box displays the names of the cube models that are found in the XML file. They are displayed for the purpose of verifying that the correct file has been selected.

 3.	This step is important because it associates the metadata to the actual database source. This is an additional item of information that is stored as part of the metadata of the control database. The Cube Server uses this to know to which database it needs to connect to access the star schema.

 4.	The final step is to decide what to do if the cube metadata already exists, by deciding how to handle name collisions. Choosing replace will remove the existing objects and replace them with the imported objects. With Merge replace, will merge the imported metadata into the current objects. Any incoming objects that do not exist in the current metadata are added, any incoming objects that exist in the current metadata will replace the old objects while leaving the other existing objects as is. Merge ignore will merge the imported metadata with current objects, but it will not replace any existing objects. The Do not import metadata if it affects a cube that is still in use check box will avoid any synchronization issues if there is at least one affected cube running.

 Once the import is successful, the metadata for the cube models has been stored in the control database and is now shown in the Manage OLAP Metadata list. From there, there are other tasks that can be invoked for the cube models, including tasks associated with optimizing access to the underlying star schema tables.

 6.3.3 Optimize the cube

 The underlying base data of the star schema remains in the relational database and the cube is realized in the memory cache of the Cube Server. This means that if the required data is not yet in the memory cache, the relational database will have to be accessed to retrieve it. This will obviously take longer than if the data is already in the cache. Reducing the time that it takes to retrieve data from the base tables is the purpose of this optimization function.

 Materialized Query Tables

 This level of optimization occurs at the database and uses DB2 materialized query tables (MQTs). MQTs can dramatically improve the performance of complex queries, such as those used when the Cube Server needs more data from the relational database. An MQT is populated based on a SQL query defined as part of the MQT create statement. We have shown a simple example of the create statement in Example 6-1.

 Example 6-1 Creating an MQT for summarizing sales

 [image:]

 create table sales_summary as (select sales_person, region, sum(sales)

 as total_sales

 from sales group by sales_person, region)

 data initially deferred refresh deferred

 [image:]

 The key to understanding MQTs is the fact that they are transparent to the user or application. The user or application is only aware of the base table, and the query is written directly against the base table. As an example, consider the query process for accessing the sales table in Example 6-1. When DB2 receives the query, the DB2 optimizer will analyze the query and create the lowest cost plan to access the data. If MQTs exist, the DB2 optimizer may choose to satisfy the query by rewriting, or rerouting, the query to access the MQT table instead of the base table.

 As shown in Figure 6-10, there are three scenarios to consider.

 •There is no match or the MQT cannot be used. This could be for several reasons, such as having stale data. In this case, the base table would have to be accessed to fetch and sum the rows, as if the MQT did not exist.

 •When the DB2 optimizer determines that a MQT exists that contains exactly the data needed and the result can be obtained by doing a simple fetch and sum from the MQT, thereby avoiding having to access the base table and calculate the sum.

 •There is a MQT, but it is not at the correct level of aggregation. For example, the base table keeps sales transactions by day and the MQT summarizes sales at a month level, but the query needs sales at the quarter level. In this case, the optimizer may choose to fetch from the MQT and use the monthly sales to calculate the quarterly sales instead of using the base table. DB2 can use a MQT even if there is only a partial aggregate.

 [image:]

 Figure 6-10 Rerouting queries to MQTs

 OLAP analysis typically deals with large volumes of aggregated data, occasionally drilling down to the lowest level of detail. Cubing services uses MQTs to provide aggregated data in a special type of MQT, called summary tables. If a set of summary tables can be used to satisfy aggregation queries coming from the Cube Server, the time needed to obtain data from the relational database can be dramatically reduced.

 Model-based cube optimization

 How do you decide what MQTs to build? Typically this is done based on the knowledge of what data the user will need and how the data is accessed. However, inherent in the process of OLAP analysis is the fact that we do not know exactly how the user will access the data. That, however, is exactly the power of OLAP. We could conceivably build MQTs for every permutation of aggregations, assuming that we had enough time and disk space. This would be a difficult task at best.

 The good news is that these MQTs do not have to be created manually by the DBA. There is a model-based advisor in the InfoSphere Warehouse Administration Console that will recommend a set of MQTs based on simple input, such as the cube metadata, information from the DB2 catalog tables, and some samples of the data from the base tables, as can be seen in the optimization process shown in Figure 6-11.

 [image:]

 Figure 6-11 Model-based optimization

 The Optimization Wizard used in the Administration Console is a simplified version of the Wizard that is used in the Design Studio that is discussed in Section 5.4, “Optimization Advisor” on page 129. The primary difference is that there is no ability to choose a specific optimization slice.

 The Optimization Wizard is invoked in the Administration Console from the Manage OLAP metadata panel by checking the cube model and clicking Optimize as shown in Figure 6-12 on page 164.

 [image:]

 Figure 6-12 Invoking the Optimization Wizard

 The Optimization Wizard is a three step process, as seen in Figure 6-13 on page 165. Refer to Section 5.4, “Optimization Advisor” on page 129, for a detailed description of the parameters. The steps are as follows:

 1.	In the Step 1: Specify summary table parameters window, choose either the Deferred or Immediate check box as the update option. Indicate a value for both Tablespace for summary tables and tablespace for indexes.

 2.	In the Step 2: Specify summary table parameters window, make selections in the Disk space limit for summary tables panel, the Time limit for running the advisor panel, and the Options panel. Execute the advisor by clicking Run Advisor. The advisor may take a while to run.

 3.	When the advisor finishes, there are links to the create and refresh scripts step to display. Then you can download and review the scripts. The scripts can be executed from the Manage OLAP metadata dialog box by clicking Run SQL Script, after the download completes, or they or they can be given to a DBA for execution.

 [image:]

 Figure 6-13 The Optimization Wizard dialog box panels

 After the cube has been deployed to the repository, optimized, and the MQTs created, then it is ready to be added to one or more Cube Servers.

 6.3.4 Managing Cube Servers

 The Cube Server is the MDX provider. It is a standalone multi-threaded Java daemon process, which accepts MDX queries from OLAP tools and returns the results. It can support multiple cubes and multiple MDX queries in parallel, as shown in Figure 6-3 on page 151 and Figure 6-4 on page 153. The Cube Server runs as a Windows service or a Unix daemon, and must have a database connection to the metadata repository.

 To define a Cube Server, select DB2 Warehouse → Cubing Services → Manage Cube Servers from the Administration Console menu tree, as seen in Figure 6-14. From here, you can:

 •Create and delete Cube Servers

 •Start, Stop and Restart Cube Servers

 •Query the status of a Cube Server

 [image:]

 Figure 6-14 Manage Cube Servers dialog box

 Create a Cube Server

 From the Manage Cube Servers panel, click Create to define a new Cube Server by using the Cube Server properties panel, shown in Figure 6-15 on page 167. Primary properties are defined in the General tab.

 [image:]

 Figure 6-15 Cube Server properties window

 You must give the Cube Server a name and it must be unique for this runtime environment. Also select the language for this Cube Server location.

 Define the host name or IP address and port number for the machine, for this Cube Server. The combination of address and port number must be unique and the port number and the two following consecutive port numbers must be free, or the Cube Server will not start. For example, if the host address is 9.5.1.223 and the designated port number is 9050, then ports 9050, 9051, and 9052 on host 9.5.1.223 must be free. The defined port is the user port for MDX queries and navigation requests. The other two ports are for XMLA/ODBO requests through the HTTP port and an Admin port for communicating with the Administration Console.

 The General Cube Setting panel defines some properties that apply to all cubes added to this Cube Server. The Cube Server will attempt to start the cubes at Cube Server startup (if the Start cubes when Cube Server starts check box is selected) up to the maximum number specified in the Maximum number of concurrently running cubes menu. Each started cube will require memory and CPU resources. Therefore, setting this value too high can impact performance.

 The Member cache file system location text box specifies the file system location to use whenever a cube specifies dynamic member caching. Dynamic member caching will allow the member cache to spill into compressed files on disk to allow support of large dimensions. Static caching, on the other hand, will keep all of the dimension members in memory which, of course, gives the best performance. If there is not enough memory to support all of the dimension members, then dynamic caching for a cube should be enabled.

 In the Performance panel, the Maximum number of concurrently processed MDX queries text box can be used to tune resource utilization.

 If authentication and authorization is required, the Cube Server will pass the incoming user ID and password to DB2 for the security check. The security section defines when a DB2 authentication and authorization check takes place as follows:

 •Disabled

 No authentication check is performed by the Cube Server.

 •Enabled, authenticate for each request

 Each incoming request for a user requires an authentication check. If a user submits two queries, that results in two authorization requests being sent to DB2.

 •Enabled, authenticate for each connection

 Only the first incoming request for a user session is sent to DB2 for authorization. The results are cached and all subsequent user requests for this session will use the cached results. If a user submits two queries, only the first query will result in an authentication request to DB2.

 •Enabled, authenticate for each refresh

 The behavior is the same as for Each Connection except that the cached authentication result will expire after the set time period and are discarded. The next user request will result in a new authorization request being sent to DB2.

 Starting the Cube Server

 Once the Cube Server has been created, the cube must be started. If the Cube Server is on the same system as the Administration Console, it can be started from the Manage Cube Servers list by checking the Cube Server and clicking Start. Multiple Cube Servers may be selected to be started and they will start in the order that they appear in the list.

 A Cube Server can also be started as a Windows service or a unix daemon, allowing the cube to be started automatically when the system starts. Provided command scripts can also be used start and stop the Cube Server on demand. See the InfoSphere Warehouse v9.5 Information Center for more details.

 	
 Important: If the IP address of the Cube Server is remote to the machine of the Administration Console, the Administration Console cannot be used to start and stop the Cube Server. In this case, the command scripts must be used to start, stop and restart the Cube Server.

 6.3.5 Adding a cube to a Cube Server

 Once a Cube Server has been created, cubes can be added and made available to users. Of course any cube may also be added to multiple Cube Servers, as discussed in Section 6.2, “Cubing Services Runtime Environment” on page 150.

 To add a cube to a Cube Server, perform the following steps:

 1.	From the Manage Cube Servers list (Figure 6-14 on page 166), click the Cube Server name hyperlink to open the Cube Server properties (Figure 6-15 on page 167).

 2.	From the Cube Servers properties page, click the Cubes tab. This page (Figure 6-16) lists the cubes that have been added to this Cube Server.

 [image:]

 Figure 6-16 List of cubes assigned to the Cube Server, CS_1

 This page is used to manage the cubes in this Cube Server. Cubes can be added, removed, started, stopped and restarted. The member cache can be rebuilt, which will clear the cache and reload it from the underlying relational tables. The data cache can be emptied, and then be repopulated from the underlying relational tables as MDX queries need to be satisfied. These cache options can be used to manually refresh the cube cache if the data in the underlying relational tables has changed.

 3.	Click Add. A page listing the cubes that exist in the metadata repository, that have not yet been added to this Cube Server, opens (Figure 6-17).

 4.	Highlight the cubes to be added and click Add to add the selected cubes to the Cube Server. The cubes will now be in the cube list.

 Cube properties

 Clicking on the cube name hyperlink, from the cube list, will open the cube properties.

 [image:]

 Figure 6-17 Cubes that are available to add to the Cube Server

 Cube properties general tab

 From the properties tab of the cube properties, shown in Figure 6-18 on page 171, you can enable the cube by selecting the Enable this cube check box in the General panel. You can set the refresh rules on the Refresh Setting panel.

 The cube is enabled by default, which makes it eligible to be started. If the cube is disabled, it cannot be started manually and will not be started automatically. The cube member and data caches can be automatically refreshed. A refresh will rebuild the member cache and empty the data cache. This could be useful if the data in the underlying relational tables is updated throughout the day. The cube can also be updated on a time-interval basis throughout the day. For example, setting the refresh interval to 1 hour 30 minutes will cause the cube to be refreshed every 90 minutes. A refresh can also be scheduled across days at a particular time. If the relational tables are updated nightly, consider automatically refreshing the cube every day at, say, 5:00 am.

 [image:]

 Figure 6-18 Cube properties—General tab

 Cube properties Cache tab

 By using the properties on the Cache tab (Figure 6-19), the cache settings can be modified. By default, the member cache is a static cache where all dimension members are preloaded into memory. For cubes with a large number of dimension members, memory may not be sufficient to hold all members.

 Selecting the Enable dynamic caching check box will load the members into a compressed data file in a user-specified directory on the Cube Server from where they will dynamically read into memory as needed. The data cache is where the data measures are stored in cells, which are fetched from the relational database. Once loaded, a cell remains in memory and is used to satisfy other MDX queries. See Chapter 7, “Cube Server performance” on page 177, for more information on data and member caching.

 By default, the data cache is empty upon startup of the cube and is populated as MDX queries from users are executed. The first users will have some performance impact as the data has to be initially fetched from the relational database and stored in the cells of the data cache. To help mitigate this, the data cache can be pre-populated at startup by supplying an MDX query.

 [image:]

 Figure 6-19 Managing the member and data caches

 6.3.6 Starting the cube

 A cube can be started manually using the Administration Console, or automatically when the Cube Server starts. In either case, it is helpful to understand what happens during startup of the cube.

 As seen in Figure 6-20, when the cube is started the metadata for this cube is read from the metadata repository. This metadata has the information needed to map the cube structure to tables and columns in the relational database. This information is used to first populate the member cache by generating SQL to read the dimension tables. The dimension hierarchies are created and added to the member cache.

 [image:]

 Figure 6-20 Cube start

 Population of the data cache happens as MDX queries are submitted to the Cube Server by users performing their analyses. In addition, if there has been a MDX query defined in the cube properties, that query is executed at startup to pre-populate the data cache. When a MDX query is received by the Cube Server, the MDX engine accesses in-memory virtual cubes to satisfy the query. If the required cells are in the data cache, then the results are immediately sent back to the requestor. If the required cells are not in the data cache, then one or more SQL queries are generated to fetch the data from the relational database to build the cells in memory before the results can be returned to the requestor as depicted in Figure 6-21 on page 174. The queries are generated to access the base tables, but the DB2 optimizer is able to reroute the requests to the MQTs, resulting in a faster retrieval of the data.

 [image:]

 Figure 6-21 Populating the data cache

 6.3.7 Logging and tracing

 For each Cube Server there are six logs into which it might create records. Log properties are found on the Logging tab of the Cube Server properties and can be set for each of the six logs. The log properties page is shown in Figure 6-22 on page 175. Each log file can be a text, html, or xml file. A rolling log can be specified along with the maximum file size and the number of files save. If the Cube Server is executing in a console window, the log entries can be displayed in the console. The log level property defines how much detail is sent to each log, and varies depending on the log file. The logging can be turned off for any log file.

 [image:]

 Figure 6-22 Properties for the Cube Server logs

 Each log is an individual file that is found in the directory <installation directory path>\CubingServices\<Cube Server name>\logs. If, in a Windows environment, the default installation directory is used and the Cube Server name is CS_1, then the logs for CS_1 are found in c:\Program Files\dwe\Cubing Services\CS_1\logs. Each log filename is of the format, <Cube Server name>.<log filename>.<format> where format is txt, html, or xml.

 Table 6-1 Cubing Services logs

 	
 Log Name

 	
 Filename

 	
 Description

 	
 Activity Log

 	
 InfoLog

 	
 Regular informational messages

 	
 MDX Log

 	
 MDXLog

 	
 Records MDX query text

 	
 SQL Log

 	
 SQLlog

 	
 Records SQL query text

 	
 Performance Log

 	
 PerformanceLog

 	
 Performance statistics

 	
 Trace Log

 	
 TraceLog

 	
 Internal traces

 	
 Exception Log

 	
 ExceptionLog

 	
 Main source for problem determination

 Together, the MDXLog, SQLLog and PerformanceLog may yield valuable information by showing the MDX request that was submitted to the Cube Server, the SQL query (if any) that was generated, and some performance information. Figure 6-23 shows related records from all three of these logs.

 [image:]

 Figure 6-23 Sample log records

 Each log record produced on behalf of an MDX query has a unique identifier containing the ID of the user who submitted the query, the user connection (session-id), the MDX query statement-id (query sequence number within the session), and the cube name that the MDX query is running against. Because of this, the log records in the various Cube Server log files can be mapped to the particular MDX query statement, issued by particular user, from within particular session, against the particular cube.

 An example is highlighted in bold and with arrows, in Figure 6-23. The format for this identifier is (<user>,<session id>,<statement id>,<cube name>) which is (db2admin,6,14,Price Analysis) in the sample records. The MDXLog shows the MDXQuery that was submitted by the user. The SQLLog shows that one SQL statement had to be generated to fetch the data from the relational database. The Performance log shows some basic data cache performance information and query elapsed time.

[image:]
[image:]

Cube Server performance

 The Cube Server is designed to enable fast multidimensional access to relational data that is referenced by the Online Analytical Processing (OLAP) cubes defined in the Cubing Services metadata database. The Cube Server relies on the relational data source to store the persistent low-level and aggregated data, which is fetched into the Cube Server memory only as needed. When the Cube Server starts, it loads the cubes that are configured to start with the Cube Server. For each of these cubes, the Cube Server will load all dimensions and hierarchies from the cube model into the member cache.

 Once a cube is loaded, MDX queries can begin requesting data from the cube. When this happens, the Cube Server first checks to see if the data being requested is in the data cache. If it is, the data requested is immediately available. If it is not, data cache misses are serviced through SQL queries submitted to the relational database. This makes SQL query performance crucial. The presence of the appropriate materialized query tables (MQTs, also known as materialized views/summary tables/aggregate tables), multidimensional clusters (MDCs) and indexes on the database tables can make the much talked about capability of speed of thought analysis possible.

 Cube modeling also plays an important role in the performance of the Cube Server.

 7.1 Member Cache

 The first thing to note about cube performance is that the Cube Server exploits DB2 ROLAP technologies. The Cube Server itself does not provide any persistence of a cube data objects in multidimensional form. Instead, it relies on the relational data source to store the persistent low-level and aggregated data, which is fetched into Cube Server memory only as needed.

 Dimension member information is loaded from the underlying relational data source. Thus, when a cube is started, several SQL queries are submitted to generate the dimensions. There is one SQL query per dimension, and one SQL query for each level that has member properties. Each of these queries is of the type Select Distinct (). So for large dimensions, such queries can take a measurable amount of time. The dimension metadata (members) can be stored in static member cache or dynamic member cache.

 7.1.1 Static Member Caching

 In static member caching mode, all dimension metadata is stored in memory. As a result, the Java Virtual Machine (JVM™) needs to be appropriately sized so that all members will fit into the assigned memory space.

 7.1.2 Dynamic Member Caching

 When dynamic caching mode is used, the dimension members are read from the database and stored in an indexed format in a user-specified repository on the file system. These members are then cached in memory as needed by the queries. Thus, at any given time, only a subset of the dimension members are memory-resident. Even though this gives the cube greater scalability in terms of number of members, there are also performance implications.

 7.1.3 Sizing the Member Cache

 The space utilization of the members under dynamic caching can be considered in the context of the amount of memory used and the amount of disk space used. The amount of memory used depends on factors such as the number of members cached in the member cache, number of index blocks cached, a fixed cost that is proportional to the number of members in the dimensions, plus another fixed cost proportional to the number of non-leaf members in each dimension.

 The volume of disk space used for the members is proportional to the total number of members in the cube. The Cube Server will create 2 files for each dimension in the cube. The first file stores actual member information in a compressed file format, and the second file stores an index associated with the dimension. In addition, the Cube Server will create a single top level index file for the entire cube. So, if there are N dimensions in the cube, there are (2N + 1) files on the file system for that particular cube.

 When dynamic member caching is used, the dimension hierarchy member data is stored on disk and brought into memory as needed. The member data remains memory resident as long as number of cached members is below the maximum member cache size. At such time that a requested member is not in memory and more members than the allowed maximum are memory resident, a certain amount of cache is freed. That is, certain members are evicted from the cache to keep the amount of memory resident members within the configured size.

 The following characteristics and parameters are used when sizing the member cache.

 •Fixed cost

 The fixed cost consists of the fixed cost of the member, plus the fixed cost of the indexes per member. As examples:

  –	The fixed cost of member is 160 bytes per member for a 32-bit JVM.

  –	The fixed cost of indexes per member is 120 bytes per member for a 32-bit JVM.

 	
 Note: These measurements were done with an IBM JVM.

 •Variable costs

 There are of five types of variable costs:

  –	Member name size

 This is calculated as 2× (length of member name, in bytes), as Java uses 2 bytes per character. In cases where a dimension level corresponds to a single column in a table, a simple SQL command can be used to estimate the average member length for all members at that level. The following command is given as an example:

 SELECT AVG(LENGTH(col)) from <Table>

  –	Children hash table size

 Note that a hash table is created for each member if the number of children is greater than 256. The minimum size of the hash table is 2 KB (for 32-bit), with the maximum size depending on the number of children. An average is estimated to be 4096 bytes, or 4 KB.

  –	Member properties size

 This is determined as about 4 bytes per property fixed overhead plus the variable cost, depending on the data type of the property. Examples are provided in Table 7-1.

  –	Level keys size

 This is calculated as about 4 bytes per key element fixed overhead plus the variable cost, depending on the data type of the key element. For String values that are already part of the member name, only 4 bytes for the member reference are necessary.

  –	Java overhead percentage

 This overhead is due to the way Java grows its heap and deferred garbage collection. Based on testing performed, the overhead is about 5%.

 The member property and level key cost by data type are shown in Table 7-1.

 Table 7-1 Costs by Data Type

 	
 RDB Type

 	
 Java Type

 	
 Size

 	
 Integer

 	
 Integer (Object)

 	
 16 bytes

 	
 Double

 	
 Double (Object)

 	
 16 bytes

 	
 Char, Varchar

 	
 String (Object)

 	
 38 bytes + 2(length of string)

 •Size of member = Fixed cost of member + Member name size + Sumof (member property size) + Sumof (Level Key size) bytes

 •Children hash table size = Total Number of Members × Percentage of Members with more than 256 children * 4096 bytes

 •Base cost = (Size of member + Fixed cost of indexes per member) × Total Number of Members + Children hash table size

 •Final cost = Base cost × Java overhead percentage

 As an example, consider a cube with the following characteristics:

 •Total Number of Members = 1,000,000

 •Percentage of Members with more than 256 children = 1%

 •Average Member Name Characters = 20

 •Average Member Properties per Member = 3 integer and 1 varchar on an average of 20 chars

 •Average Level Keys per Member = 1 integer and 1 varchar

 •Size of member = 160 + (2 × 20) + ((4+16)×3 + (4+38+2×20)) + ((4+16) + 4) = 366 bytes

 •Children hash table size = 1,000,000 × 0.01 × 4096 = 40,960,000 bytes

 •Base cost = (366 + 120) × 1,000,000 + 40,960,000 = 526,960,000 bytes

 •Final cost = 526,960,000 × 1.05 = 553,308,000 bytes = 527.68 MB

 7.2 Data Cache

 Once the cube is loaded, dimensional metadata is either entirely in memory (for static caching) or partly in memory (for dynamic caching), but the cube cell data itself still resides at the relational data source. Several factors play significant roles in the performance of an MDX query:

 •Whether the cube cell data required by the query is in the data cache

 •For cells not in the data cache, how many SQL queries must be submitted to the relational source

 •The performance of the SQL queries

 The member cache and the data cache content are shared by all concurrent users. For maximum performance, it is important to minimize the number of round trips to the relational data source as much as possible. This is done by configuring the data cache large enough that it can hold the entire working set of cellsets in memory.

 	
 Note: The term cellset simply refers to a cube cell that contains all of its measures

 The working set is dependent on the query workload across all user queries, and is affected by how much overlap there is in cube cellsets which are referenced by those queries. In general, as the size of the data cache is increased, overall query workload response time will increase, up until the entire cube cellset working set can fit in memory.

 It should also be noted that if the data cache is enabled, and the same MDX query is run twice in a row, the performance can be dramatically different. This will happen, for example, if the data cache is empty or cold for the first run of the query, and all cube cellsets required by the query have to be fetched from the relational data source. Assuming that the data cache is large enough to store this set of cellsets, the second time the MDX query is executed the relevant cellsets will already be in the cache and the query is executed without accessing the relational source at all.

 7.2.1 Data Cache size

 The size of the data cache can be configured using the administration pages by editing cube tuning parameters. The size of the data cache is specified in terms of Maximum Rows Cached. This represents the maximum number of cube cellsets that can be stored in the cache. The data cache size can be set to unlimited, in which case no cellset is removed from the cache. There is an increased risk that the Cube Server will run out of either Java heap space or process space, however.

 If an application requires real-time cell computation at the relational database, the data cache can be effectively disabled by setting the Maximum Rows Cached to 1. A setting of 0 implies the data cache is unlimited.

 Obviously, MDX query performance can degrade with this configuration as compared to an enabled data cache. However, this can be monitored because the data cache statistics are logged. Once statistics are logged, they can be viewed to determine whether or not the size of the data cache should be adjusted based on the workload.

 The more data stored that is in a cache, the less often MDX queries will need to retrieve results from the underlying database, resulting in faster query response times. However, if the cache grows too large, it will use more of the memory on the machine, which could potentially slow the performance for all users. To determine the optimal size, you will need to experiment and give consideration to memory resources, user load, and query load. You will need to balance the trade-offs in setting the best data and member cache sizes with the number of users and query workload.

 The data cache is initially empty when the cube starts. It is possible to populate the data cache with a seed query immediately after the cube starts, without requiring any users to access the server. After that, the data cache is populated on demand as users submit MDX queries against the cubing engine. The MDX gets decomposed into a set of SQL queries and the results of each SQL query is stored in the data cache. Each row returned from the SQL query is a row in the data cache. It is important to understand that for every MDX query, the requested data cells are added to the cache. Also added are all measures as they relate to the intersection, as well as all the data that relates to the siblings of members on the row and columns axis. An exception is if the cube contains non-aggregated measures such as count(distinct) or stddev, and the MDX query is not asking for those measures. In that case, the non-aggregated measures are excluded to increase the chances for MQT re-routing.

 An example MDX query

 Lets look at an example where a user executes an MDX query, as shown in Example 7-1.

 Example 7-1 MDX query

 [image:]

 SELECT

 DISTINCT({[Time].[All Time (Calendar)].[2004].[Aug], [Time].[All Time (Calendar)].[2004].[Sep], [Time].[All Time (Calendar)].[2004].[Oct]}) ON AXIS(0), DISTINCT(Distinct({[Product].[All Products].[ELECTRONICS],[Product].[All Products].[ELECTRONICS].children})) ON AXIS(1)

 FROM [Price Analysis4]

 WHERE

 (

 [Price Analysis4].[Measures].[Sales Amount],

 [Price Analysis4].[Store].[All Stores].[Subdivision 1A]

)

 [image:]

 As a result, the two SQL statements shown in Figure 7-1 are executed against DB2.

 [image:]

 Figure 7-1 SQL Statements

 The first query retrieves all measures for all months of the year 2004 and all Product Departments (ELECTRONICS and its siblings), and is shown in Example 7-2.

 Example 7-2 Query 1

 [image:]

 SELECT d1."CDR_YR",d1."CDR_MO",d1."CDR_QTR",d2."PD_DEPT_NM",

 SUM(f0."SALES_AMOUNT"),SUM(f0."PRDCT_BK_PRC_AMUNT")

 FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d1,"MARTS"."PRODUCT" d2,"MARTS"."STORE" d3

 WHERE f0."TIME_ID" = d1."TIME_ID" AND f0."PD_ID" = d2."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" AND (d1."CDR_YR"=2004) AND (d3."STR_SUB_DIV_NM"='Subdivision 1A')

 GROUP BY d1."CDR_YR",d1."CDR_MO",d1."CDR_QTR",d2."PD_DEPT_NM"

 ORDER BY 1".

 This query returns 380 rows.

 [image:]

 The second query retrieves all measures for all months of the year 2004 and all Product Sub Departments that belong to ELECTRONICS, as shown in Example 7-3.

 Example 7-3 Query 2

 [image:]

 SELECT d1."CDR_YR",d1."CDR_MO",d1."CDR_QTR",d2."PD_DEPT_NM",d2."PD_SUB_DEPT_NM",

 SUM(f0."SALES_AMOUNT"),SUM(f0."PRDCT_BK_PRC_AMUNT")

 FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d1,"MARTS"."PRODUCT" d2,"MARTS"."STORE" d3

 WHERE f0."TIME_ID" = d1."TIME_ID" AND f0."PD_ID" = d2."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" AND (d1."CDR_YR"=2004 AND d2."PD_DEPT_NM"='ELECTRONICS') AND (d3."STR_SUB_DIV_NM"='Subdivision 1A')

 GROUP BY d1."CDR_YR",d1."CDR_MO",d1."CDR_QTR",d2."PD_DEPT_NM",d2."PD_SUB_DEPT_NM"

 ORDER BY 1,4".

 This query returns 78 rows.

 [image:]

 This result of Query 1 and Query 2 is that 458 rows are stored in the data cache containing all measures.

 As previously mentioned, if a cube has a non-aggregate measure, such as count(distinct), the cubing engine will only ask for that measure if the measure is asked for in the MDX query. To illustrate this, consider a cube that has two measures:

 1.	[Measures].[Sales Amount] = SUM(SALES_AMOUNT")

 2.	[Measures].[Unique Stores] = COUNT(DISTINCT "STR_IP_ID")

 First we execute the MDX statement shown in Example 7-4.

 Example 7-4 MDX 1

 [image:]

 MDX 1:

 SELECT

 DISTINCT({[Measures].[Sales Amount]}) ON AXIS(0)

 , DISTINCT(Distinct({[Product].[All Products].[ELECTRONICS],[Product].[All Products].[ELECTRONICS].children})) ON AXIS(1)

 FROM [Price Analysis4]

 [image:]

 This will produce the two SQL queries shown in Example 7-5. Note that the count(distinct) measure is not included because the MDX query only asked for Sales Amount.

 Example 7-5 MDX 1 - SQL queries

 [image:]

 MDX 1 - SQL 1:

 SELECT d1."PD_DEPT_NM",SUM(f0."SALES_AMOUNT") FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d2,"MARTS"."PRODUCT" d1,"MARTS"."STORE" d3 WHERE f0."TIME_ID" = d2."TIME_ID" AND f0."PD_ID" = d1."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" AND (d2."CDR_YR"=2004 AND d3."STR_SUB_DIV_NM"='Subdivision 1A') GROUP BY d1."PD_DEPT_NM"

 MDX 1 - SQL 2:

 SELECT d1."PD_DEPT_NM",d1."PD_SUB_DEPT_NM",SUM(f0."SALES_AMOUNT") FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d2,"MARTS"."PRODUCT" d1,"MARTS"."STORE" d3 WHERE f0."TIME_ID" = d2."TIME_ID" AND f0."PD_ID" = d1."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" AND (d1."PD_DEPT_NM"='ELECTRONICS') AND (d2."CDR_YR"=2004 AND d3."STR_SUB_DIV_NM"='Subdivision 1A') GROUP BY d1."PD_DEPT_NM",d1."PD_SUB_DEPT_NM" ORDER BY 1

 [image:]

 Next we execute the MDX statement that specifically asked for Unique Stores, as shown in Example 7-6.

 Example 7-6 MDX 2

 [image:]

 MDX 2:

 SELECT

 DISTINCT({ [Measures].[Unique Stores]}) ON AXIS(0)

 , DISTINCT(Distinct({[Product].[All Products].[ELECTRONICS],[Product].[All Products].[ELECTRONICS].children})) ON AXIS(1)

 FROM [Price Analysis4]

 [image:]

 This will generate two SQL queries again, but this time the count(distinct) is included. Those queries are shown in Example 7-7.

 Example 7-7 MDX 2 - SQL queries

 [image:]

 MDX 2 - SQL 1:

 SELECT d1."PD_DEPT_NM",COUNT(DISTINCT f0."STR_IP_ID") FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d2,"MARTS"."PRODUCT" d1,"MARTS"."STORE" d3 WHERE f0."TIME_ID" = d2."TIME_ID" AND f0."PD_ID" = d1."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" AND (d2."CDR_YR"=2004 AND d3."STR_SUB_DIV_NM"='Subdivision 1A') GROUP BY d1."PD_DEPT_NM"

 MDX 2 - SQL 2:

 SELECT d1."PD_DEPT_NM",d1."PD_SUB_DEPT_NM", COUNT(DISTINCT f0."STR_IP_ID") FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d2,"MARTS"."PRODUCT" d1,"MARTS"."STORE" d3 WHERE f0."TIME_ID" = d2."TIME_ID" AND f0."PD_ID" = d1."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" AND (d1."PD_DEPT_NM"='ELECTRONICS') AND (d2."CDR_YR"=2004 AND d3."STR_SUB_DIV_NM"='Subdivision 1A') GROUP BY d1."PD_DEPT_NM",d1."PD_SUB_DEPT_NM" ORDER BY 1

 [image:]

 7.3 Balancing Caching with available resources

 In order to get good performance from Cubing Services, it is important to make the right resources available and choose the correct cube structure. The four key factors that influence performance are as follows:

 •Caching resources

 •Memory settings

 •Cube structure design

 •Database performance.

 7.3.1 Static versus Dynamic Member Caching

 In general, it is recommended to use static member caching because it provides better performance. And, with the availability of 64bit systems and the cost of memory, larger JVM's can easily be configured.

 Table 7-2 summarizes the performance differences and trade-offs between static and dynamic member caching.

 Table 7-2 Static and Dynamic Member Caching

 	
 Performance metric

 	
 Static member caching

 	
 Dynamic member caching

 	
 Cube loading time

 	
 If all cube members can fit in the specified JVM heap size, cube loading could be about 5× faster compared to dynamic caching. If they cannot fit in the given JVM heap, an out-of-memory error will result.

 	
 Loading is significantly slower because members are extracted from dimension hierarchies and stored in the file system. Additionally, disk-resident indexes are built. Thus, there is I/O cost of writing the members and their indexes to disk.

 	
 Total size of cubes that can be loaded

 	
 Equal to the maximum number of processes × maximum amount of memory per process.

 	
 Unlike static caching which requires the entire member information to be memory-resident, dynamic caching has only about 30 bytes fixed overhead per member. This means cubes which are an order of magnitude larger (or a higher number of cubes) can be loaded.

 	
 Query performance

 	
 Member cache misses is zero, hence query performance is generally better unless the number of objects in memory is relatively large. Data cache misses are handled independently of the member cache.

 	
 Depends on size of member cache, inter-query locality of access, file system performance, warm or cold cache, and so forth. Warm cache performance is comparable to static caching, and in some cases better because the Garbage Collector needs to manage fewer objects in memory.

 	
 Disk space utilization

 	
 Zero. Nothing related to dimension members is stored on disk.

 	
 Member data and indexes are stored on disk, but the data is stored in a compressed format.

 	
 Memory used

 	
 High. All members are memory-resident.

 	
 Low. Depends on the number of members that are actually cached.

 	
 Garbage collection overhead

 	
 High. Larger number of memory-resident objects need to be managed.

 	
 Low. Aa relatively small number objects need to be managed.

 	
 Number of concurrent users

 	
 Fewer concurrent users are supported because a large proportion of the JVM heap is occupied by the members, leaving less room for user-specific allocations.

 	
 Larger number of concurrent users supported.

 Query performance under dynamic member caching is dependent on three factors:

 •Size of the member cache

 This value determines the maximum number of members that can be cached in memory. The query performance depends on the hit rates in the member cache, which in turn depends on the size of the member cache.

 •Locality of access among queries

 The member cache hit rates of the queries also depend on the amount of locality (sharing) of access among queries. For example, if a majority of the queries are accessing the cities of California, the members corresponding to these cities are cached in memory and will likely never be discarded as a result of cache replacement.

 •Performance of the underlying file system

 The I/O performance issues previously identified for the cube load performance also apply for the query performance. The main difference is that queries are dependent on the read I/O performance, whereas the load phase is dependent on the write I/O performance.

 7.3.2 Java Memory

 Cubing Services can run multiple Cube Servers, where each Cube Server runs a 32-bit or 64-bit JVM. The Cube Servers can be located on single or multiple servers.

 The Cube Server runs in a single Java process, so in one way the scalability of the Cube Server is fundamentally limited by the Java heap size and process size. A 64-bit system and 64-bit JVM can theoretically exploit large memory configurations. However, there may be a realistic limit on the size of a Java process somewhere between 10 GB and 100 GB (at which point the cost of Java memory management overhead increases dramatically). At that limit, the performance of the process suffers significantly, and scalability is effectively limited.

 The JVM heap size is set in <cubingservices_home> /bin/cubeserver.{sh,bat}. The current defaults are as follows:

 •JAVA_INIT_HEAP=128m

 •JAVA_MAX_HEAP=1024

 It is recommended to run larger cubes on a separate JVM to reduce the impact of the garbage collection.

 7.3.3 Physical memory

 The physical memory amount is always a performance-related requirement as the machine would work with more and less physical memory, but with more physical memory it works better. For performance reasons it is important that the system has enough physical memory for all the Cube Server JVM's. Otherwise, file swapping occurs and that will slow down the system.

 7.3.4 Selecting the cube structure

 MQT effectiveness is also dependent on several modeling considerations. Once again, some types of measures, such as COUNT(Distinct), may not allow an MQT to be used to answer queries at a higher level of granularity. That is, the data in the MQT cannot be rolled up. Attributes that contain complex expressions have an impact on SQL performance and the ability to create an appropriate MQT.

 As an example, using IF THEN ELSE expressions to create buckets at higher levels rather than creating the data in a fact or dimension table. It should be mentioned that an efficient data model should not be filled-in with unnecessary calculations. Rather, the underlying data structures should be corrected to support an efficient cube.

 In order to increase the chances for MQT re-routing, it is important to note that constraints should be defined, and that they can be enforced (referential) or un-enforced (informational). Foreign keys and join columns should be not-nullable and should have an index. It is also a best practice that all level keys are integers and that they are indexed as well.

 The cube definition itself can impact the performance of the engine. As the number of dimensions in a cube grows, the size of a cube cellset address grows, and the more expensive cellset address comparisons become. In addition, with more dimensions in a cube, the SQL that is generated to fetch cellset values will generally require more joins. Essentially, fetching cube cellset data for a cube with n dimensions from the relational data source can potentially require on the order of n-way joins. This complexity may impact query optimization, and MQT rerouting may also become an issue.

 Explore the creation of artificial levels in the hierarchy if it is too flat. In this case, dimension members with many (thousands of) children can adversely affect performance, and the data cache becomes less effective. As a similar point, dimensions with many members but few levels (short, wide dimensions) produce the same issues. In general, dimensions with many levels are supported without any issues in the Cube Server, and such dimensions are encouraged in cases where it results in members not having thousands of children.

 The Cube Server currently only supports a single fact table object. For cases where the relational schema has multiple fact tables, one option is to create a view over the join of the fact tables and use the view as the fact table object in the cube definition.

 Level keys uniquely identify a member at a level. A few recommendations should be kept in mind while specifying the level keys:

 •Keep the level keys small

 For example, a level key that consists of level expressions from all ancestors of the member, such as: [USA].[West].[CA].[Santa Clara County].[San Jose] is typically going to be less efficient when compared to a compact level key such as [<City_id of San Jose>].

 •Avoid redundant information in the keys

 For example, in a Time dimension, the Month level keys do not need to contain the Quarter level. That is, instead of [Year].[Quarter].[Month] a more efficient representation is [Year].[Month]. The elimination of redundant information also keeps the keys smaller.

 •Avoid level keys whose expression resolves to a String

 String objects in Java have a large fixed overhead (about 48 bytes on a 64-bit JVM) and level keys that evaluate to a String will consume more memory. The only exception to this is when the String value is also the member name because the Cube Server already stores the member name as part of its core metadata. Level keys are used for grouping expressions in SQL queries. In general, grouping over numbers is more efficient than grouping over strings.

 •Measure calculations can be expressed in either the MDX query or the SQL expression for the measure in the definition of the cube

 For example, if the relational data source has columns for sales and cost, and we wish to define a profit measure, then we could define it as a measure in the cube, or we could calculate it dynamically for each query. If we define it as a measure in the cube, with the expression sales - cost and an aggregation of SUM, then the following MDX query is an example of how to fetch it:

 Select {[Measures].[profit]} on columns from <cube>

 In this case, the computation of profit is performed by the relational data source through the following SQL query:

 Select sum(sales - cost) from <fact table>

 On the other hand, if we decide to calculate it dynamically based on measures that are defined for sales and cost individually, then the following MDX query is required to produce the same result:

 With member [Measures].[profit] as '[Measures].[sales] - [Measures].[cost]'Select {[Measures].[profit]} on columns from <cube>

 With this MDX query, the Cube Server will fetch the sales and cost measures from the fact table using the following SQL:

 Select sum(sales), sum(cost) from <fact table>

 Once the two measures are fetched, then the Cube Server will compute profit itself. In general, it is better to push the computation as low as possible. If it can be expressed in the SQL expression and pushed to the DB2 relational source, then that is the preferred approach. DB2 has a much better ability to optimize and parallelize this computation than the Cube Server.

 In some cases, such as count(distinct) measures, it can be favorable to use the MDX calculation because it significantly increases the complexity of the SQL and therefore decreases the chances of MQT re-routing. It should also be noted that not everything can be easily defined through SQL. For example, time series analysis, such as year over year comparisons, are easily expressed in MDX but not in SQL.

 7.4 Cube Server scalability

 Here, scalability can be considered in a number of ways. Consider the following as examples:

 •Number of cubes

 •Size of a cube

 •Number of dimensions

 •Number of members in a dimension

 •Size of the relational fact table related to a cube

 •Number of concurrent queries

 •Number of users.

 Given that there is an upper limit on the amount of memory available to the Cube Server, a static caching policy of dimension members, which requires all members to be memory-resident, effectively limits the size and number of cubes that can be loaded at once. Under the dynamic caching policy of dimension members, the size and number of cubes that can be loaded depends on the amount of disk space available in the file system that is used as the repository for dimension members.

 It should be noted here that any limit on the size of a cube does not imply that the size of the underlying relational data is limited in any way. Cubes can be defined at a level of granularity higher than the fact table, and the gating factor is really the number of members in the cube, not the size of the relational data. Consider the static caching scenario. As long as all the members defined in the cube can fit in memory, any size of fact table can be supported, and supported better through the use of effective DB2 MQTs.

 One current limitation of the Cube Server is that it does not have the notion of shared dimensions. If several cubes are defined, all of the dimensions are treated independently from each other, even if multiple cubes contain the same logical dimension. The members of the dimension are loaded into memory for each of the cubes containing that dimension.

 In general, the Cube Server does not have an inherent limitation on the number of dimensions in a cube. If you are using the static caching policy for members, the overriding factor remains that all members of all dimensions must be loaded into the metadata cache when the cube is started. Thus, the Cube Server will theoretically support a cube that has hundreds of small dimensions as long as all the metadata fits in memory.

 With a dynamic caching policy, there is again no inherent limitation on the number of dimensions in a cube and the limits on the total number of members in a cube is significantly higher compared to static caching as long as the underlying file system can store all members from all dimensions of the cube. The number of users supported by the Cube Server depends to some extent on the memory usage profile of the cubes and the queries running.

[image:]
[image:]

Using the Excel Client Interface

 Spreadsheets provide an intuitive and powerful front end to represent and manipulate business information. One issue with using spreadsheets is their inability to seamlessly transfer information between a relational database and the spreadsheet, such as DB2. And without this capability, sharing of spreadsheet information across the enterprise is inhibited. Often the users end up writing complex macros to do this. This process is expensive, difficult to maintain, and frequently beyond the skill set of the typical user.

 IBM InfoSphere Warehouse 9.5.1 delivers a Cubing Services ODBO provider (IBM OLE DB Provider for OLAP) which enables Microsoft (MS®) Excel to use a standard method of interacting with Cube Server, and thereby perform sophisticated multidimensional analysis by importing the cube data into Microsoft Excel Pivot Tables.

 In this chapter we describe how you can perform the following activities to demonstrate the use of the Excel interface with Cubing Services:

 •Connect to Cube Server from Excel

 •Retrieve cube metadata from the Cube Server

 •Create PivotReports and PivotCharts by simply dragging and dropping dimensions and measures from the cube list into the Excel Pivot Table report area

 8.1 System requirements

 OLE DB for OLAP is an industry standard for multidimensional data processing. You can use IBM OLE DB Provider for OLAP to retrieve data from the Cubing Services OLAP server using MS Excel, as shown in Figure 8-1.

 [image:]

 Figure 8-1 Using MS Excel as the Client to your Cube Server

 8.1.1 Supported platforms

 The IBM OLE DB Provider for OLAP (ODBO) driver can be installed and used in the following client platforms:

 •Windows Vista® 32-bit

 •Windows XP 32-bit

 •Windows Server® 2003 32-bit

 •Windows Server 2003 64-bit

 The following .NET runtime modules need to be installed in the client platforms:

 •.NET 2.0

 •.NET 3.0

 To download .Net runtime modules visit the following Web pages:

 http://www.microsoft.com/downloads/details.aspx?FamilyID=10cc340b-f857-4a14-83f5-25634c3bf043

 http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-aab15c5e04f5

 8.1.2 Supported MS Excel Versions

 The IBM OLE DB Provider for OLAP driver can be used with Pivot Table Service on the following Excel versions:

 •Excel 2003 with Pivot Table Service 8.0

 •Excel 2007 with Pivot Table Service 9.0

 	
 Attention: If Excel 2003 is used, a MS Office Update (KB907417) is required.

 8.2 Installing IBM OLE DB Provider for OLAP

 In this section we describe the procedure for installing Cubing Services IBM OLE DB Provider for OLAP.

 Use the Client installation launchpad to install the IBM InfoSphere Warehouse 9.5.1 Cubing Services Client components. When presented with the list of available features to install, select “Cubing Services Client” as shown in Figure 8-2, and click Next to continue.

 The installer checks to see if the required version of .NET runtime installed. If the required version is not found, you are presented with an error message asking you to install the correct version of .NET before continuing. Follow the steps in the Client Installation Wizard to complete the installation.

 [image:]

 Figure 8-2 IBM InfoSphere Warehouse 9.5.1 Client Installation Wizard

 8.3 Connecting to Cube Server from MS Excel

 In this section we describe how to connect to Cubing Services using IBM OLE DB Provider for OLAP from MS Excel 2003 and MS Excel 2007.

 8.3.1 Using MS Excel 2003

 Perform the following steps to setup a connection to the Cube Server, when using MS Excel 2003:

 1.	Launch MS Excel 2003.

 2.	On the Data menu, click Import External Data and then Import Data, as shown in Figure 8-3.

 [image:]

 Figure 8-3 Import Data in MS Excel 2003

 3.	In the Select Data Source window, choose Connect to New Data Source and click Open, as shown in Figure 8-4.

 [image:]

 Figure 8-4 Select Data Source

 4.	In the Data Connection Wizard window, choose Other/Advanced and click Next, as shown in Figure 8-5.

 [image:]

 Figure 8-5 Data Connection Wizard

 5.	In the Data Link Properties window, choose IBM OLE DB Provider for OLAP and click Next, as shown in Figure 8-6.

 [image:]

 Figure 8-6 Data Link Provider Properties

 6.	Input values for the Data Source (including the port number of the Cube Server being connected to), User name and Password text boxes, as shown in Figure 8-7.

 [image:]

 Figure 8-7 Data Link Connection Properties

 7.	To test the connection to the Cube Server, click Test data source connection, then click OK. Next, close the Data Link Properties panel by clicking OK one more time, as shown in Figure 8-8.

 [image:]

 Figure 8-8 Test Connection

 8.	In the Select Database and Table panel, choose the cube to which you would like to connect and click Next, as shown in Figure 8-9.

 [image:]

 Figure 8-9 Data Connection Wizard

 9.	You can save your password information in a file by selecting the Save Password in File check box, as shown in Figure 8-10. Click Finish to save this connection information into a new data connection file.

 [image:]

 Figure 8-10 Data Connection Wizard

 8.3.2 Using MS Excel 2007

 Perform the following steps to setup a connection to the Cube Server, when using MS Excel 2007:

 1.	Launch MS Excel 2007.

 2.	On the Data menu, click Get External Data → From Other Sources → From Data Connection Wizard, as shown in Figure 8-11.

 [image:]

 Figure 8-11 Import Data in MS Excel 2007

 3.	In the Data Connection Wizard window, select Other/Advanced (as indicated by the red arrow) and click Next, as shown in Figure 8-12.

 [image:]

 Figure 8-12 Data Connection Wizard

 4.	In the Data Link Properties window, choose IBM OLE DB Provider for OLAP and click Next, as shown in Figure 8-13.

 [image:]

 Figure 8-13 Data Link Properties

 5.	Input values for the Data Source (including the port number of the Cube Server being connected to), User name and Password text boxes, as shown in Figure 8-14.

 [image:]

 Figure 8-14 Data Link Properties

 6.	To test the connection to the Cube Server, click Test data source connection, then click OK. Close the Data Link Properties panel by clicking OK one more time, as shown in Figure 8-15.

 [image:]

 Figure 8-15 Data Link Properties

 7.	In the Data Connection Wizard, choose the cube to which you would like to connect, and click Next, as shown in Figure 8-16.

 [image:]

 Figure 8-16 Data Connection Wizard

 8.	You can save your password information in a file by selecting the Save Password in File check box, as shown in Figure 8-17. Click Finish to save this connection information into a new data connection file.

 [image:]

 Figure 8-17 Data Connection Wizard

 8.4 Retrieving data using MS Excel

 After connecting to a cube, the next task is to retrieve and manipulate data to help answer your business questions. In this section we show you how to retrieve data from the selected cube in Cubing Services using MS Excel 2003 and MS Excel 2007, and to execute MDX queries against the cube by simply dragging and dropping from the cube dimensions and measures list into the Excel Pivot Table report area. We also walk you through a simple scenario to enable you to answer a simple business question.

 	
 Note: MDX queries are transparent to your users.

 8.4.1 Retrieve cube data in MS Excel 2003

 If you have already created a connection to your cube using the steps in section 8.3.1, “Using MS Excel 2003” on page 198, then you need only perform the following steps:

 1.	On the Data menu (see Figure 8-3 on page 198), click Import External Data and then Import Data. Select your cube and click Open, as shown in Figure 8-18.

 [image:]

 Figure 8-18 Connecting to a cube

 2.	Click Finish to close the Pivot Table and Pivot Chart Wizard, as shown in Figure 8-19.

 [image:]

 Figure 8-19 Pivot Table and Pivot Chart Wizard

 3.	To build the Pivot report, simply drag the dimensions to either the row, column or page area, and the measures into data area of the report. This is shown in Figure 8-20.

 [image:]

 Figure 8-20 Cube Metadata is available in the Pivot Table field list

 4.	Now let us answer a business question by using the cube data in Excel.

 The question is “What were the Sales for Product categories in Year 2003 for all Stores?” To answer the question, perform the following steps:

 a.	Add Sales Amount to Data Area.

 b.	Add Product to Row Area.

 c.	Add Store to Page Area.

 d.	Add Time to Column Area.

 e.	Use the Year Filter to select 2003 only.

 f.	The resulting report will look similar to the one shown in Figure 8-21.

 [image:]

 Figure 8-21 Sample Pivot Report in Excel

 g.	To add a Pivot Chart, click the Chart Wizard icon in the Pivot Table tool bar. Go through the Wizard, click Finish, and you should get a chart similar to the one shown in Figure 8-22.

 [image:]

 Figure 8-22 Pivot Chart

 h.	To perform drill down and drill up actions, double-click the member names in the Pivot Table (Figure 8-23), or use the Hide Detail and Show Detail icons on the Pivot Table tool bar (Figure 8-22 on page 209).

 [image:]

 Figure 8-23 Drill Down on ‘Children School Apparel’ member in Product dimension

 If you save your worksheet, and re-open it at a later time, it should automatically find and re-use the existing connection. Use the Refresh Data function from Pivot Table tool bar if you need to retrieve fresh data from the server.

 8.4.2 Retrieve Cube Data in MS Excel 2007

 If you have already created a connection to your cube using the steps in section 8.3.2, “Using MS Excel 2007” on page 203, then you need only perform the following steps:

 1.	On the Data menu, click Get External Data → Existing Connections. Select your cube and click Open, as shown in Figure 8-24.

 [image:]

 Figure 8-24 Connecting to a cube

 2.	Select PivotChart® and PivotTable® Report (Figure 8-25). Click OK to close the Pivot Table and Pivot Chart Wizard.

 [image:]

 Figure 8-25 Import Data

 3.	To start building the Pivot report, simply select the check box next to the dimensions and measures you want to use from the PivotTable Field List. Drag the dimensions to either the row, column or page area of the report, as shown in Figure 8-26.

 [image:]

 Figure 8-26 Build your report

 If you save your worksheet, and re-open it at a later time, it should automatically find and re-use the existing connection. Use the Refresh All function from the Data menu to refresh your report at any time.

 	
 Note: Excel 2007 does not return calculated members by default, which is different from Excel 2003. To enable calculated members, go to the Pivot Table Options and select show calculated members from the OLAP Server check box under the Display tab.

[image:]
[image:]

Cognos and the cube model

 IBM Cognos 8 Business Intelligence can leverage your existing Cubing Services investment by providing the ability to access the existing dimensions, levels, and hierarchies as an Cognos 8 data source.

 To further understand the relationship of Cognos 8 to Cubing Services we introduce the Cognos 8 architecture as well as discuss the process of importing the required metadata and preparing your reporting package.

 9.1 Cognos architecture

 Cognos 8 uses a service-oriented architecture that allows different components to be applied within a single application framework. For the purpose of this document we will focus on the components involved in reporting using the Business Intelligence components of the Cognos 8 platform. The base structure, as shown in Figure 9-1, consists of a tiered architecture. The individual services of the Cognos 8 server run within an application server and can be distributed across multiple application server instances.

 [image:]

 Figure 9-1 IBM Cognos 8 Business Intelligence Architecture

 A zero-footprint browser interface provides users with the ability to create reports and access published content from the Central Content Store database repository. This is presented to users in the default portal interface called IBM Cognos Connection. This portal also allows for administration and configuration of the Cognos 8 server properties.

 The IBM Cognos Framework is the modeling and development tool that is used to generate the metadata model for end-user reporting. This is a full client application that is installed on the computer of the metadata modeler. Communication is still directed through the common tiered architecture when publishing packages to, or retrieving information from, the IBM Cognos 8 server.

 9.2 IBM Cognos 8 Metadata

 Cognos 8 supports a direct connection to Cubing Services. This means that the metadata for the published package can be obtained directly from the Cube Server at run-time instead of requiring full metadata import into Framework Manager. You will still need to publish a package from Framework Manager to enable access to the cube but there will not be any required changes to the cube properties in this scenario.

 To connect to Cubing Services you will need to define a data source connection to the Cube Server within Cognos 8 and import the cube into Framework Manager. In this instance the cube is simply a stub object that is used to reference the cube from the Cubing Services Cube Server. The full set of metadata for the dimensions, hierarchies, and levels remains within Cubing Services.

 9.3 Importing into Framework Manager

 To import into Framework Manager, perform the following steps.

 	
 Note: When creating a new model in Framework Manager you are shown a Metadata Import Wizard. We will start our import from the first screen of the Import Wizard.

 1.	If you are using an existing model, start the Import Wizard by selecting any namespace or folder object in your model, and using the Actions → Run Metadata Wizard... menu option.

 2.	Because Cognos 8 can use Cubing Services as a data source, choose Data Sources as the source for our metadata import. Choose this option in the Select Metadata Source panel of the Import Wizard (Figure 9-2 on page 218). Click Next.

 [image:]

 Figure 9-2 Choosing the Metadata source

 3.	If you have not already created a data source connection to your Cubing Services data source in Cognos 8 you have the option to do so from the Metadata Import Wizard. To create a data source connection, perform the following steps.

 a.	Click New to launch the New Data Source Wizard and click Next on the first page of the Wizard to pass the welcome message. This will present you with the window shown in Figure 9-3 on page 219.

 b.	Enter a name in the Name text box. The name can be any logical name that you would like to use to identify your Cubing Services data source connection.

 Entering information in the Description and Screen tip text boxes is optional.

 Click Next.

 [image:]

 Figure 9-3 Naming the Cubing Services Data Source

 c.	Select IBM InfoSphere Warehouse Cubing Services (XMLA) from the Type menu as shown in Figure 9-4. Click Next.

 [image:]

 Figure 9-4 Choosing the Data Source Type

 d.	The Cubing Services connection is established using the XMLA protocol, so you need only supply a server URL (in the form server:port/InstanceName) and a valid Cubing Services user ID and password for the Cubing Services connection, as shown in Figure 9-5 on page 221.

 [image:]

 Figure 9-5 Data Source Server and Signon

 e.	Click the Test the connection link in the final screen of the New Data Source Wizard to test the connection from the Cognos 8 server.

 	
 About the test: This is not a test of the connection from the computer running Framework Manager. To reduce server load during modeling, Framework Manager establishes its own connection to the relational and OLAP data sources.

 Once the connection tests successfully, click Next to finish creating the data source.

 Upon completion the data source wizard will present you with an affirmation as illustrated in Figure 9-6.

 [image:]

 Figure 9-6 Successful data source creation

 Figure 9-7 shows the newly created data source available as a selectable data source, within the metadata wizard window.

 [image:]

 Figure 9-7 Available data source connections

 4.	By clicking Next, the metadata wizard will display a list of cubes on the Cube Server. This is illustrated in Figure 9-8.

 [image:]

 Figure 9-8 Listing of available cubes from the Cube Server

 After you select the cube object desired, you are given the option to import it. When importing a cube object you are prompted at the end of the Metadata Import Wizard to create a package. Typically, this is the default action that you would want to use for cube sources. Using this option will create a package containing the single cube reference. Once you have completed the Package Wizard you are prompted to publish the package. Because there are no modeling tasks that are required for cube sources you can simply publish the new package to the IBM Cognos 8 server. The resulting model created by this import would appear as in Figure 9-9 on page 224.

 [image:]

 Figure 9-9 Framework Manager view after a cube import

 If your business needs require multiple cubes, as shown in Figure 9-10 on page 225, repeat the Metadata Import Wizard to include the additional cubes from the Cube Server in your Framework Manager model. Once you have all the required cubes, you can then create a package containing the individual cubes that you require. Note that including many cubes will mean that the metadata for each cube must be loaded when a report author is creating a report. If the business users will only use a subset of the cubes that are available, then it would be best to tailor your package contents to the business needs rather than include all available cubes.

 [image:]

 Figure 9-10 Framework Manager after importing multiple cubes

 9.4 Publishing a Framework Manager Package

 Once you have created your consolidated package you can publish the contents to the Cognos 8 server using either the right-click menu or the Actions menu after selecting the package in Framework Manager. Either one of these actions will open the Publish Wizard, as shown in Figure 9-11.

 This window allows you to specify the publish location and whether or not you would like to use model versioning. For more detailed information on this process and its settings can be found in the IBM Cognos Framework Manager Users Guide.

 [image:]

 Figure 9-11 Publishing to the IBM Cognos 8 Content Store

 Ensure that you are publishing the package to the IBM Cognos 8 Content Store and click Next to open the add security dialog box of the Publish Wizard, as shown in Figure 9-12.

 [image:]

 Figure 9-12 Add Security Dialog Box

 In this window you can set the default IBM Cognos 8 access permissions for the package about to be published to IBM Cognos Connection.

 If User Access is not defined, the package access rights are inherited from the parent container within the IBM Cognos Connection portal. With the default object settings in IBM Cognos Connection, any user with access to IBM Cognos 8 will have access to the new Cubing Services package. Administrative access is restricted by default to the set of default administrative groups defined within IBM Cognos 8. Additional information on these default groups and access rights can be found in the IBM Cognos 8 Administration and Security Guide.

 Clicking Next will bring you into the Option dialog box of the Publish Wizard, due to the fact that the Cubing Services package is acting as a pointer and does not contain any actual metadata.

 The verify the package before publishing option can be unchecked before proceeding to the Finish dialog box of the Publish Wizard.

 This is shown in Figure 9-13.

 [image:]

 Figure 9-13 Options Dialog box with default Verify enabled

 The Finish dialog box, as shown in Figure 9-14, displays the default IBM Cognos Connection Package Access Definitions.

 [image:]

 Figure 9-14 Finish dialog box of the Publish Wizard

 9.5 Empowering users

 Once the cube model has been published to Cognos 8, the user experience will start with the access to the common Web portal, IBM Cognos Connection, as shown in Figure 9-15.

 [image:]

 Figure 9-15 IBM Cognos Connection Displaying a Published Sales Package

 Cognos Connection provides the entry-level access point to the published packages, saved reports, dashboards, and metrics. The portal also provides Web-based access to the following tools for reporting and analysis.

 •Query Studio

 •Analysis Studio

 •Report Studio

 Query Studio, shown in Figure 9-16, allows users to create simple queries for data from the published packages.

 [image:]

 Figure 9-16 IBM Cognos Query Studio

 For ad hoc analysis, the Analysis Studio interface is also available from the Cognos Connection portal. This interface, shown in Figure 9-17, provides powerful analytical capabilities and allows users to quickly analyze dimensional data to identify the driving factors and figures within the business.

 [image:]

 Figure 9-17 IBM Cognos Analysis Studio

 The Report Studio interface, shown in Figure 9-18, extends the capabilities of Query Studio and Analysis Studio by providing many additional authoring capabilities for creating more extensive formatted reports and dashboards.

 [image:]

 Figure 9-18 IBM Cognos Report Studio

 All of this is accomplished through the centralized Cognos 8 infrastructure that empowers users to take control of their business reporting requirements without requiring any complicated client software installation. The resulting reports and output files are stored within the Content Store Repository for access from anywhere that the network can reach. Likewise, e-mail delivery of the report content allows you to reach a much larger audience than with the reporting solution.

[image:]
[image:]

Using the Alphablox Client Interface

 Alphablox is a premier application development platform for rapidly building and deploying custom analytic solutions across the enterprise. Alphablox applications run as J2EE™-compliant applications in an application server and are accessed using a Web browser.

 Alphablox works together with Cubing Services to provide OLAP access to data directly from InfoSphere Warehouse. As shown in Figure 10-1 on page 237, Alphablox can access and interact with Cubing Services and DB2.

 In this chapter we introduce Alphablox and show how it can be used to connect to a Cubing Services multidimensional data source and query it using the Multidimensional Expressions (MDX) query language.

 We include an example of how to build JSP™ pages using Alphablox components (such as Grid, Chart, and Present) which will allow business users to perform real-time, highly customizable multidimensional analysis in a standard Web browser.

 We also describe how to build Alphablox applications using the Blox® Builder framework included in Design Studio, which will enable you to develop, create, and design analytic applications without the requirement to write Java code or create JSP pages.

 10.1 Alphablox overview

 Alphablox provides the ability to rapidly create custom, Web-based applications that fit into the corporate infrastructure and have the ability to reach a wide range of users.

 Applications built with the Alphablox Platform run in standard Web browsers. To users, an Alphablox application appears as a collection of Web pages to browse, just as with other Web sites. Regardless of role or technical experience level, users find Alphablox intuitive and easy to use. Anyone comfortable using a Web browser can navigate through the application and understand the available functionality.

 Alphablox is built to access Cubing Services multidimensional data sources, which allows users to interact with different levels of data using analysis actions such as drilling, sorting, filtering, and pivoting to display interactively the exact view of data desired.

 Alphablox supports a standard J2EE application development model, offering a complete development paradigm for application delivery. It provides application developers extensive flexibility in customizing the user interface and adding their own business and application logic by exposing every component as a Java bean and allowing programmatic access to those beans through a rich set of Java APIs.

 With Alphablox tag libraries, JSP coders do not have to know the low-level technical details behind the components. They need only know the syntax and function for that respective component. Each Alphablox component (Blox) has a comprehensive set of properties, which by using the tags could be easily set to custom values in the JSP pages.

 One of the features introduced in Alphablox V9.5 was called Blox Builder, which is an Eclipse plug-in for Design Studio. It provides a GUI, and the underlying infrastructure and components for building Alphablox applications. Blox Builder enables non-Java developers to build interactive reports with Alphablox components, through the use of Wizards and editors. It also provides Java developers extension points for customizing and creating components, reports, and applications.

 The positioning of Alphablox, and Blox Builder, with the Business Intelligence implementation layers of InfoSphere Warehouse, is shown in Figure 10-1 on page 237.

 [image:]

 Figure 10-1 Business Intelligence Implementation layers in InfoSphere Warehouse

 10.2 Alphablox architecture

 The Alphablox Server runs within WebSphere Application Server as a set of JAR files and Servlets, and gets installed as 2 EAR files (AlphabloxPlatform and ApplicationStudio).

 Alphablox takes advantage of all aspects of the application server, such as authentication, session management, clustering, and deployment management.

 Alphablox provides an extensive library of modular, reusable components called Blox to help meet the analytic application design requirements for maximum usability. This includes the following components:

 •Data access Blox

 •User interface Blox

 •Business logic Blox

 •Analytic infrastructure Blox,

 The Alphablox architecture is shown in Figure 10-2 on page 238.

 [image:]

 Figure 10-2 Alphablox Architecture

 10.2.1 Data access Blox

 Data access Blox, or Data Blox, handles the connections to databases, regardless of the database type. It is responsible for submitting queries and retrieving results sets from database. The syntax used for queries will vary depending on the data source that in being accessed. In the case of Cubing Services, the Multidimensional Expressions (MDX) query language is used.

 10.2.2 User Interface Blox

 The user interface (UI) is a crucial factor in application usability. Alphablox provides the User Interface Blox, which is highly functional, interactive, and completely customizable. The User Interface Blox in an Alphablox-enabled application includes the following components:

 •Grid Blox

 This component provides a table of data and all the UI functions to manipulate the data in a multidimensional way. As examples, users can drill up, drill down, sort, pivot, swap axes, or choose to view the top n or bottom n members based on the values of a given data column.

 •Chart Blox

 This component is used for advanced visualization of data, and supports a large number of chart types including bar, line, pie, scatter, and bubble charts, as well as bipolar and dual-axis charts.

 •Data Layout Blox

 This component makes it easy to move and reorder dimensions across axes.

 •Page Blox

 This component provides lists to manage the setting of slice dimensions.

 •Toolbar Blox

 This component offers easy access to common data analysis functionality through the click of a button.

 •Present Blox

 This component combines Grid Blox, Chart Blox, Data Layout Blox, Toolbar Blox, and Page Blox into a single, well-orchestrated, interconnected user interface along with user toolbars and menus. It implements additional logic to interconnect the various underlying Blox, as shown in Figure 10-3. For example, in a PresentBlox, drilling down in the grid automatically updates both the grid and chart with the new data. These UI elements employ cutting-edge Dynamic HTML (DHTML) technology to provide a rich user experience, including menu bars, right-click menus, and custom layouts, in a thin client. That is, there is no need for Java, Microsoft ActiveX®, or other browser plug-ins.

 [image:]

 Figure 10-3 Example of the PresentBlox

 10.2.3 Business Components

 Alphablox offers the following set of business components that enrich the result set or perform presentation functions:

 •Calculations

 This component details Ranking, Percentage of Total, Arithmetic functions, and some statistical functions.

 •Bookmark

 This component allows you to save the state of a blox/report, and publish it to private group or to public.

 •Alerts®

 This component highlights data based on exception conditions.

 •Comments

 This component supports cell level comments and page level comments.

 •PDF Generation

 When users want to save their work or share a static view of the data, they can leverage the Alphablox ability to generate a PDF document from the data displayed in a DB2 Alphablox component

 10.2.4 Alphablox UI Model

 The Alphablox UI Model provides a model of all presentation components, which allows additional manipulation using EventHandlers.

 10.2.5 Client

 All of the Alphablox components are rendered as DHTML in a Web browser. The client is based on AJAX (Asynchronous JavaScript™ and XML), a widely-spread standard approach for creating dynamic Web applications that do not require any plug-ins. All the information between the client and the server gets exchanged using XMLHttpRequest.

 Alphablox supports Internet Explorer® (IE) 6.0 SP1+, Mozilla Firefox 2.0+ and Mozilla 1.7+.

 10.3 Developing Alphablox applications

 An Alphablox application can be any J2EE application containing Alphablox building blocks, known as Blox. The application can be simple as one JSP page, or as complex as a collection of Web pages.

 The focus of this section is to show you the following features:

 •How to connect to Cubing Services data source from Alphablox

 •How to access a Cubing Services data source using Alphablox Query Builder

 •How to use the Blox Builder framework

 •How to build simple Alphablox JSP page using custom Alphablox JSP tags

 10.3.1 Defining a data source to Cubing Services

 After successfully deploying and starting cube(s) in Cubing Services, you are now ready to define a data source in Alphablox to Cubing Services, to be able to access and interact with the data.

 To define the data source, perform the following steps:

 1.	Open the Alphablox Admin pages in a browser window with the following URL:

 http://<your server>:<port>/AlphabloxAdmin/home

 2.	Select the Administration > Data Sources tab.

 3.	Click Create to create a data source connection.

 4.	In the Data Source Name field, enter your data source name (for example, ICSA) and select IBM Cubing Services Adapter from the Adapter menu.

 5.	Specify the appropriate connection parameters to connect to your Cubing Services server, as shown in Figure 10-4 on page 242.

 6.	Click Save.

 7.	Click Test Selected Data Source to make verify that you can successfully connect to it.

 [image:]

 Figure 10-4 Defining a data source to connect to Cubing Services

 10.3.2 Accessing a Cubing Services data source using Query Builder

 Now that you have defined a data source to Cubing Services, the easiest way to test access to that data source is to use Alphablox Query Builder. The Query Builder is an application that is installed by default when Alphablox is installed. It provides easy access to the data source and can also help with developing and testing queries. Query Builder is shown in Figure 10-5 on page 243.

 To access Query Builder, perform the following steps:

 1.	Open the Alphablox Admin pages in a browser, using the following URL:

 http://<your server>:<port>/AlphabloxAdmin/home

 2.	Select Administration > IBM Alphablox Query Builder. The URL format is as follows:

 http://<your server>:<port>/DHTMLQueryBuilder/querybuilder/index.jsp

 3.	Click Connection Settings and select the Cubing Services data source (for example, ICSA).

 4.	Click Connect. Upon connection, you see the string Connected in the Status Frame.

 Above the Query text window you see the list of cubes running in the particular Cubing Services server. The default query is automatically displayed in the query text window.

 5.	To view the results of the query, click Execute Query. They are presented in an out-of-the-box Alphablox PresentBlox.

 You can drag dimensions from DataLayoutBlox into, or out of, GridBlox and PageBlox.

 6.	Right-click the Grid or Chart to access analysis actions such as drilling, sorting, filtering,and pivoting to interactively display the exact view of data desired.

 	
 Note: Every time you perform analysis actions, the MDX query can be dynamically updated in the query text box by selecting the Automatically Update Queries check box. This is a useful feature, if you are new to MDX language

 [image:]

 Figure 10-5 Alphablox Query Builder

 10.3.3 Introduction to the Blox Builder framework

 Blox Builder enables you to develop, create, and design analytic applications without writing Java code or creating JSP Pages. Blox Builder is an Eclipse plug-in for InfoSphere Warehouse Design Studio. It provides tooling and infrastructure which allows Business Intelligence (BI) developers to easily deliver rich interactive applications to their user communities, without having to write any additional programming (coding).

 Blox Builder has the following features and capabilities:

 •A code-free report builder for creating reports, adding report components, and editing their properties. The following are some of the key capabilities:

  –	A graphical interface for creating and connecting components such as DataBlox, GridBlox, and ChartBlox, and setting their properties. Components on the Palette are dragged into the view and can be snapped together with the dragging of an arrow. Model view (Figure 10-6) provides a network view of the components and their relationships.

 [image:]

 Figure 10-6 Blox Builder Model View

  –	Support for a rich set of Blox user interface components such as DateChooser, MessageBoxes, member selectors, and data-bound versions of standard HTML controls such as RadioButtons, ComboBoxes, and selection lists.

  –	A layout editor for designing the layout of visual components (Figure 10-7), including positioning and sizing of the components in the browser.

 [image:]

 Figure 10-7 Blox Builder Layout View

  –	A query editor (Figure 10-8) that provides a standard methodology for building and using dynamic queries across reports. Query editor includes a number of tools for the generation of MDX and SQL queries.

 [image:]

 Figure 10-8 Query Editor View

  –	Code-free support for events, actions, and behaviors for report components. See Figure 10-9.

 [image:]

 Figure 10-9 Blox Builder Action Lists

  –	A GUI (Figure 10-10) for specifying of a rich set of properties and expressions that can easily be used to drive all components, reports, queries, and applications.

 [image:]

 Figure 10-10 Property References and Expressions

  –	A Report Catalog (Figure 10-11) for specifying the navigation for your application.

 [image:]

 Figure 10-11 Report Catalog

  –	GUI for specification of the locales supported by the report, to easily construct multi-language applications.

 •Support for real-time report and application previews, as shown in Figure 10-12.

 [image:]

 Figure 10-12 Real-time application preview

 •Support for real-time deployment of applications and supporting artifacts.

 •Support for reusable queries, reports, and applications to reduce development and maintenance requirements.

 •Support for management of these objects from modeling and deployment to maintenance.

 Applications built using Blox Builder are fixed-format, as shown in Figure 10-13, and includes the following features:

 •Tree-based Navigation

 •Report Viewer

 •Report Tracker

 •Title Bar

 [image:]

 Figure 10-13 Sample Alphablox application built using Blox Builder framework

 For more information on Blox Builder, refer to the Alphablox Information Center at the following Web page:

 http://publib.boulder.ibm.com/infocenter/ablxhelp/v9r5m0/index.jsp?topic=/com.ibm.abxtutorial.doc/abxtutorial_overview.html

 The Information Center includes an Alphablox tutorial which has viewlets to guide you step-by-step on how to build highly interactive Alphablox applications using Blox Builder.

 10.3.4 Developing JSP code for the DB2 Alphablox application

 As a BI developer there is a choice of how to build the Alphablox applications using Java Server Pages (JSP). Developing an Alphablox Web application is similar to developing any JSP application. Alphablox components are added to the JSP page by embedding custom Alphablox JSP tags into the page. Each tag has a number of properties that can be specified to customize the look, feel, and behavior of an Alphablox component.

 Development tools you can use

 Alphablox does not dictate the use of any particular development tool. Any tool that supports the development of J2EE applications can be used, whether a simple editor such as Notepad or a sophisticated Integrated Development Environment (IDE) such as the Rational Application Developer (RAD). IDEs typically provide many advanced development, test, and deployment functions. Alphablox provides an Alphablox Toolkit for RAD and Eclipse that will make it easier to begin developing Web-based applications with Alphablox content. To learn more about the Alphablox Toolkit, refer to the Alphablox Information Center at the following Web page:

 http://publib.boulder.ibm.com/infocenter/ablxhelp/v9r5m0/index.jsp

 Using Alphablox Query Builder to generate the Blox tags

 This section describes how you can use Query Builder to generate Blox tags, and then insert those tags in the code of the JSP page.

 1.	Connect to your data source in Query Builder, as shown in Section 10.3.2, “Accessing a Cubing Services data source using Query Builder” on page 242. Use analysis actions such as drilling, sorting, filtering and pivoting to create a desired view of the data.

 2.	Generate the Blox tag for that report by clicking Generate Blox Tag. This function brings up a dialog box and provides the Blox tag equivalent of the report view that was just created. The JSP tag is shown in Figure 10-14 on page 250.

 3.	Copy the Blox tag from the dialog box and paste it into the JSP page where you wish to embed the interactive Alphablox report.

 [image:]

 Figure 10-14 JSP tag Produced by the Generate Blox tag Function

 In Figure 10-15 on page 251, we show a simple JSP page that displays a PresentBlox component that was generated using Query Builder. The following points pertain to Figure 10-15 on page 251.

 •Note that near to the top of the JSP page we added the following line:

 <%@ taglib uri="bloxtld" prefix="blox" %>

 This line is a JSP taglib directive that informs the server that you intend to use the Blox tag library. The URI is a pointer to the tag library descriptor file. The prefix value, defined as blox, tells the server to process the contents of any tags on this page that begin with blox, by using the Blox tag library as defined in the tag library descriptor file.

 •The <head> section of the page contains the following special Blox tag for adding important code to the page before the page is rendered:

 <blox:header/>

 This tag is used by Alphablox to automatically add required HTML, JavaScript, and CSS code into the head section of the page. Enter this tag into every JSP page that uses Blox components. If this tag is not included, the page does not render properly.

 •Below the taglib directive, the PresentBlox component is specified by the following tags and their tag attributes:

 < blox:present>

 ...

 <blox:present/>

 The <blox:present> tag specifies that you want a PresentBlox to appear in the body of the page.

 [image:]

 Figure 10-15 Structure of a Simple Alphablox JSP

 Running the JSP page under the WebSphere Application Server will display the view shown in Figure 10-16.

 [image:]

 Figure 10-16 Simple JSP page containing a PresentBlox rendered

 For more details on how to develop Alphablox applications using JSP, refer to the Alphablox Information Center article Getting Started Guide: Building your first application. The information center is located at the following Web page:

 http://publib.boulder.ibm.com/infocenter/ablxhelp/v9r5m0/index.jsp

[image:]
[image:]

 MDX Overview

 In this chapter we provide a brief summary of the Multidimensional Expression language, MDX. Originally created by Microsoft, the MDX language has become a de facto standard for accessing and leveraging the power of multidimensional data.

 We discuss the following topics:

 •The basic elements of MDX

 •MDX Syntax

 •Functions and associated MDX examples

 •Measure calculations

 •Putting it all together to solve more complex business scenarios

 11.1 Background information

 For this chapter we need a common framework for discussion. As a starting point we introduce two hierarchies that are familiar to most people: Time and Geography. These two groups of information fall into natural hierarchies as seen in Figure 11-1 and Figure 11-2.

 [image:]

 Figure 11-1 Time Hierarchy

 [image:]

 Figure 11-2 Geographical Hierarchy

 Speaking in cube terms, each of these is a hierarchy under a separate dimension; one dimension for Time and one dimension for Geography. Likewise, these hierarchies have distinct levels. For the Time hierarchy you can see that there are Year, Quarter, and Month levels, while the Geography hierarchy is divided into Continent and Country levels. See Figure 11-3 on page 255 for the Time hierarchy levels. We are referring back to these levels as we describe concepts in the subsequent sections.

 [image:]

 Figure 11-3 Levels of the Time Hierarchy

 11.2 The basic elements of MDX

 When working with MDX, there are several elements or objects that you can reference in the statements or expressions. The basic elements are as follows:

 •Dimensions

 •Levels

 •Hierarchies

 •Members

 •Tuples

 •Sets

 11.2.1 Dimensions, Levels, and Hierarchies

 A dimension is simply a collection of related information that describes some associated fact or measure value. Conceptually, the information contained within a dimension stands on its own and has no direct relationship or dependency on information from other dimensions. Returning to the Time and Geography information, these collections of information are independent and would be used to define two different dimensions.

 	
 Note: If you are setting up the cube model and are having problems identifying discrete dimensions, then look to the cardinality of the data. If there is a high degree of correlation between elements of the data, then this could indicate that these items should be part of the same dimension.

 A dimension is composed of one or more levels. These levels serve to group the information in the dimension into different grains. For example, the Year level of the Time dimension contains data at a much higher grain than the Month level. Likewise, if you had an attribute that defined the number of days in the month, then this would naturally be associated to the Month level as the information has little to do with information at higher levels such as Quarter and Year.

 Once the dimension has been sorted into different levels of granularity you can use a hierarchy to define how these levels relate to each other. In Figure 11-3 on page 255 we saw that the Year, Quarter, and Month levels were arranged into a hierarchy based on the granularity of the data. Hierarchies allow the common levels of a dimension to be viewed from different perspectives to satisfy varying business requirements and differences in data correlation.

 If the Time dimension were to contain a Week of Year level, then we could have created a hierarchy based on Year and Week. In such a case we leave out Quarter and Month because the weeks of a year do not naturally break at the start and end of a Quarter or Month.

 In a similar scenario, a dimension containing employee data, for instance, it would be equally valid to organize employees by their last name or by their Social Security Number. Because the Social Security Number is confidential, this would be incorporated into a hierarchy that would only be accessible to authorized groups, such as the Human Resources department. Another hierarchy would be defined to organize employees by their last name. This could be set as the standard hierarchy accessible to everyone.

 11.2.2 Members

 A member is the most basic element of an MDX query. It serves to encapsulate all the relevant details of a subject at a specific level of granularity. What this means is that a member should fundamentally mean something on its own that is different than any other member. In practical terms, members serve to group fact or measure values into understandable groups.

 We can see this in action in the sample Time hierarchy in Figure 11-3 on page 255. Here, each month, quarter, and year are individual members in the Time hierarchy.

 The members of an individual level are all at a common level of granularity and the hierarchy defines the relationships between the levels and the members within each level. In the hierarchy, you can see that months January, February, and March are all child members of the Q1 quarter member.

 While this would appear to be a relatively easy concept, there are a few special members that require additional explanation.

 Root Members

 These are the members at the top of the hierarchy. The default when designing a hierarchy is to create a single member, All, that becomes the parent to the members in the first level of the hierarchy. This default All member is created automatically and is not based on the data used to create the remaining members in the hierarchy. The sample hierarchies in Figure 11-1 on page 254 and Figure 11-2 on page 254 show the All member at the top of the respective hierarchies.

 It is important to note that this is a default behavior and the creation of an All root member can be overridden by the cube designer. For example, the root member could be renamed or removed entirely from the hierarchy. If the default root member is removed, then the members of the first level in the hierarchy become the root members.

 It is more common that the generated root member are renamed rather than removed, but there are some common scenarios where removing the root member is valid and even required to make sense of the data.

 For example, when working with finance data you may have a scenario dimension containing Actual, Budget, and Forecast members. In such a case, rolling up the measure values for these members does not make any business sense. Further, allowing users to select a single root member for the scenario dimension could lead to unexpected or invalid results depending on how measure values are aggregated at the All root member.

 To prevent inappropriate queries with such a dimension, the hierarchy for a scenario dimension should be configured without the All level and the All root member. This means that each of the Actual, Budget, and Forecast members is a root member of the scenario hierarchy.

 Without a single root member, however, there is a question regarding which member is active when the dimension is not explicitly referenced in a query. If the Actual member is not selected, then how do we know what the query result represents? Will we see Actual, Budget, or Forecast measure values? To solve this ambiguity, a default member can be specified for the hierarchy.

 Default Member

 Under normal circumstances a hierarchy is using the default All level and member as the root member of the hierarchy. There are some cases, however, where it is useful to specify another member as the default for the hierarchy.

 When the cube is created, a member other than the All member can be assigned as the default member of the hierarchy. When a default member is assigned, any query that does not explicitly reference a member from this hierarchy will use the default member to evaluate expressions and retrieve measure values.

 A default member is most commonly assigned to satisfy reporting demands. For example, if the majority of the queries will focus on the last reported period in the Time dimension, then assigning the last period as the default member will ensure that the initial query results will always reflect the most recent data in the cube. In such a case, the small percentage of queries that do not use the last period can be created with an explicit reference to the desired member of the Time dimension to override the context defined by the default member.

 Similarly, as mentioned in “Root Members” on page 257, a scenario dimension is another good example where a single root member would not be desirable for the hierarchy. Here the members do not have a valid rollup to a single consolidated member. Likewise, most financial reporting will typically start out with viewing the measure values for the Actuals member. Defining Actuals as the default member will simplify reporting for the financial user community.

 While it is rare to find a default member that is not the root of the hierarchy, it is important to know which dimensions have a default member specified. If you do not know which member is assigned as the default member of the dimension hierarchies you run the risk of retrieving unexpected data results because any measure values will use this default member unless otherwise specified in the query.

 While we have been discussing regular dimensions, it is important to note that measure dimensions will also have a default member. For a measure dimension, the default member is also referred to as the default measure.

 A default measure serves the same purpose as a default member and supplies the context to a query when a measure is not explicitly defined in the MDX. If the cube is set to use Revenue as the default measure, then the default query will result in a Revenue value. To display a different measure, such as Quantity, you would need to define the MDX query to explicitly retrieve Quantity instead of Revenue.

 Current Member

 The concept of the current member is powerful. The current member is identified based on the query context rather than through a fixed member reference. This allows you to generate expressions relative to the current results of the query and create expressions that reflect the current position in a hierarchy.

 As a simple example, you could create a percent of base calculation that divides the measure value of the current member by the measure value for the parent member in the hierarchy. Because this is a relative expression, the results of the calculation will update as you navigate the hierarchy.

 To identify the current member you need to know the context in which you are evaluating an expression. In Figure 11-4 we see the result of a query with members from different levels of the Time hierarchy across the columns, and members from different levels of the Geography hierarchy on the rows.

 [image:]

 Figure 11-4 Query with Time columns and Geography Rows

 Now we have two visible hierarchies where there would be an applicable current member. The current member of each hierarchy is determined based on where an expression is being evaluated.

 	
 Note: You will frequently have additional dimensions in the query context that are not displayed on the rows or columns of the result set. We will discuss this in additional detail in later sections of this chapter.

 Figure 11-5 shows a single measure cell highlighted in red. The cell is at the intersection of the Q2 Time column and the France Geography row. Speaking in terms of current members, the current member of the Geography hierarchy for this cell is France and the current member of the Time hierarchy is Q2.

 [image:]

 Figure 11-5 Measure Cell intersection 1

 Figure 11-6 shows a new measure cell. Selecting a new cell changes the context for the hierarchies. In this case the current member of the Time hierarchy has changed to Nov while the current member of the Geography hierarchy remains France.

 [image:]

 Figure 11-6 Measure Cell Intersection 2

 These examples show how to identify the context of the measure cells in our query result, but there is also dimensional context within the rows and columns themselves. Figure 11-7 shows a highlighted cell in the rows of the result set. Here Canada is the current member of the Geography hierarchy, but there is no corresponding column context to define the current member of the Time hierarchy. In this case the current member for Time reverts to the default member of the Time hierarchy.

 [image:]

 Figure 11-7 Row Cell

 In this cube, the default Time member is the All Time root member. This means that the current member of the Time hierarchy within the Canada row context is All Time.

 	
 Note: Even though All Time is displayed in the columns, it is the default of the hierarchy rather than the column itself that sets the current Time member in the row context.

 11.2.3 Tuples

 For most people starting out with MDX, the word tuple (pronounced either as toople or tuhple) causes the most confusion. In our experience this in part due to the word itself and in part due to explanations that fail to supply a visual understanding of tuples.

 In mathematical terms, the word tuple comes from the sequence of terms, such as single, double, triple, quadruple, quintuple, and sextuple. An n-tuple is any combination of n elements where a 1-tuple is a single and a 4-tuple is a quadruple.

 In more practical cube terms, a tuple can be considered an intersection between (or combination of) the members from different dimensions. For now, if you are more comfortable with the word intersection, then feel free to use it instead of tuple until you are more familiar with the concepts.

 Now that the mystery of the word tuple has been partially dispelled, we can establish a visual context for understanding what this means for our cubes and how tuples are used in MDX. Figure 11-8 shows a representation of a cube with three dimensions. Things get a bit harder to visualize once you start working with more than three dimensions but three dimensions will serve to explain tuples.

 [image:]

 Figure 11-8 A simple cube of three dimensions

 For our tuple examples, the default member of each hierarchy is the single root member of the respective hierarchy.

 Figure 11-9 highlights the portion of the cube that makes up the tuple for the Germany member.

 [image:]

 Figure 11-9 A tuple of Germany

 While the expression for the tuple may only specify Germany, there is an implicit association to the members of the other dimensions. The Germany tuple is really a combination of

 •The Germany member from the Geography hierarchy

 •The default member of the Groceries hierarchy.

 •The default member of the Time hierarchy.

 •The default measure for the cube.

 The intersection actually involves all the dimensions, but we only need to specify the non-default members to define the intersection that we really want.

 Figure 11-10 on page 263 shows another tuple from the same hierarchy that references France instead of Germany. Again, the default members of the unreferenced dimensions are understood to be part of the context of the tuple even though they are not explicitly defined.

 [image:]

 Figure 11-10 A tuple of France

 A tuple can be defined for any dimension in a cube. To further fix this as a visual concept, see Figure 11-11 where a tuple is defined for Q2 from the Time hierarchy. Because the geography hierarchy is no longer referenced in our tuple, the default member, All Geography, is the context that is used for geography.

 [image:]

 Figure 11-11 Q2 tuple, from a different hierarchy

 Now members can exist at any level of a hierarchy. To define a tuple you do not need to limit yourself to the leaf members of the hierarchy. Figure 11-12 shows the tuple for the Dairy member of the Groceries hierarchy.

 [image:]

 Figure 11-12 Dairy tuple, at a higher level of the hierarchy

 	
 Note: The diagram in Figure 11-12 shows highlighted cells encapsulating the child members of Dairy. The actual rollup of the measure values to the Dairy member is controlled by the cube design and may not be a direct aggregate of the child members. Conceptually, however, it is easier to visualize the tuple for Dairy in this manner.

 So far we have discussed tuples that reference single members with the implicit reference to the unreferenced default members. Remember, in our simple three-dimensional cube each tuple is really referencing 3 members and a default measure. With this in mind it is not a great leap to creating tuples that explicitly reference more than one dimension. In such a case all we are doing is overriding one of the default measures that is being added for a previously unreferenced dimension.

 Figure 11-13 on page 265 shows a tuple that is generated for the combination of the Germany and Q2 members. As a short form we will refer to this tuple as (Germany, Q2). From the diagram, you can see the highlighted cells for the individual contributions from Germany and Q2. The intersection of these two areas defines the tuple (Germany, Q2).

 [image:]

 Figure 11-13 A tuple, (Germany, Q2), across multiple dimensions.

 Taking this one step further, we can add in yet another dimension to our tuple. By adding Cheese to our tuple, we get the tuple (Germany, Q2, Cheese). The single cell in Figure 11-14, the single cell at the intersection of these three members, highlights the portion of the cube that is used to define the result for this tuple.

 [image:]

 Figure 11-14 A more complex tuple, (Germany, Q2, Cheese).

 If our default measure were a Revenue value we would have just retrieved the revenue associated with cheese sold in the second quarter of 2008 in Germany. Note that we are still using the default measure context. If we wanted to reference some other measure, such as Quantity, we can easily extend our tuple to select a different measure. We will get to the formal syntax later but the expression is as easy as writing (Germany, Q2, Cheese, Quantity) and all of a sudden we have retrieved the Quantity of cheese sold in the second quarter of 2008 in Germany.

 Unlike some other expressions, the order of the members in a tuple does not change the result of the tuple itself. The cell in Figure 11-14 on page 265 could have been obtained as easily by using (Q2, Cheese, Germany), (Cheese, Germany, Q2), or any other such combination of the same member elements.

 One point to remember when generating a tuple is that all the component members must be from different dimensions. Including elements from the same dimension would be asking for the intersection of the members of the same dimension. For example, asking for a tuple of (Jan, Feb) would be like asking for all the revenue that was generated simultaneously in both January and February. A single date, and associated measure value, exists in one month only so there is no valid intersection of these members from the same dimension.

 There are methods for consolidating multiple members of the same dimension to produce a single tuple expression but we would need some aggregate functions to perform this operation. We will discuss this in Section 11.5.3, “WHERE Clause With Multiple Members” on page 368 once we have introduced the required functions and syntax.

 11.2.4 Sets

 So far we have discussed single members and single tuples. This section discuses sets, which are collections of zero or more members or tuples. We will use braces { } to denote a set. For example, we could define a set of members from the Geography hierarchy as {Germany, North America, France}. This set of members can then be referenced as a single unit in later expressions rather than having to reference each of the individual members over and over again.

 The common factor for a set is that all the elements of the set must be of the same dimensionality. This means that if we start out defining a set with the Geography members Germany and Mexico we cannot then add the member 2008 from the Time hierarchy because the new dimension does not match the existing Geography members.

 The same restrictions would apply if we could define a set of tuples that all reference Time and Geography: {(2008, France), (Q2, Germany)}. An additional element that references Geography alone could not be added to the set because the explicit dimensionality of the tuple is different than the existing elements of the set.

 Other than the dimensionality of the elements, there are no real restrictions to the elements that can be added to a set. Elements can be selected at will, as a result of some function. Duplicate members are allowed. You could create the set {USA, USA, USA} and although you end up with three references to the exact same member, the set is still valid.

 11.3 MDX Syntax

 With the understanding of the basic concepts of a dimensional query we can define the syntax that you will need to reference these elements through MDX.

 	
 Tip: When using Query Builder to test the sample MDX statements in this section, clear the Automatically Update Queries check box. This setting is useful when navigating within the PresentBlox. We disable this setting to keep control of the MDX statement and any functions implemented in the query.

 11.3.1 Comments

 Other than the query itself, the most important (and the least used) part of MDX is the ability to insert comments into MDX queries. We recommend that you document the queries with appropriate comment text so that they are understandable to others. Comments can also be useful when authoring queries, as they allow you easily switch between different expression definitions when creating complex queries.

 There are two comment forms: single-line and multi-line. A single line comment can occur anywhere in a line of MDX and any subsequent text on the same line is treated as comment text. The single line comment is identified by two forward slashes, //, or two dashes, --. Example 11-1 shows two single-line comments.

 Example 11-1 Single-line comments

 [image:]

 // This is a comment at the start of a line

 <expression> // This is a comment at the end of an existing line

 <expression> -- This is another form of a single-line comment

 [image:]

 The start of a multi-line comment is identified by /* and terminated by */. These tags can occur anywhere within an MDX statement and any characters following the starting identifier is treated as comment text until a closing comment identifier is encountered. A multi-line comment can contain single-line comments, which are treated as part of the multi-line comment.

 Example 11-2 Multi-line comment containing expressions and single-line comments

 [image:]

 /* This is a multi-line comment and any text contained

 here will be treated as part of the comment itself.

 <expression>

 // A single-line comment contained within a multi-line comment

 */

 [image:]

 11.3.2 Members, Measures, Levels, and Dimensions

 There are several ways that these elements can be reference but the basic syntax is similar for each of them. Each element can be referenced by name when surrounded by square brackets.

 If the name of the object is unique then it can be referenced without additional qualification. For example, we could reference the Germany member using [Germany], the Time dimension using [Time], or the Year level using [Year] because there is only one such member, level, or dimension in the entire cube.

 However, if the name is not unique then we need to provide additional information to locate the specific object in the cube. This additional context can be obtained by referencing an identifying parent or containing object.

 For example, in Figure 11-1 on page 254, we see that Q2 is present in both 2007 and 2008. To reference the Q2 member from 2008 we could use [2008].[Q2] because [2008] is a unique member and it allows us to locate a specific instance of [Q2] in the hierarchy.

 On a similar note, it is possible to have the same level name in two different dimensions. If our cube contained a Fiscal Time dimension then Year could be such a duplicate named level. To identify the unique level we would qualify the reference with the dimension, [Time].[Year] or [Fiscal Time].[Year].

 You can further qualify references by adding the cube name but at this time such additional qualification is not strictly necessary. However, adding the cube qualifier to the object reference does not incur additional processing.

 Also, keep in mind that in addition to a parent member, a level or dimension can also serve as a parent object reference to a member. For example, our Geography dimension could be extended to include State and City levels. In which case, the USA branch of our hierarchy would contain New York as distinct members at both the State and City levels. By using a level qualifier we could uniquely identify the member at the State level by using [Geography].[State].[New York] and the city with [Geography].[City].[New York].

 If the member is unique within a level then referencing by the level is often preferable to using the parent members in the hierarchy. For example, [Geography].[City].[New York] is easier to use than the full hierarchical path, [Geography].[North America].[USA].[New York].[New York].

 As an additional point, avoiding the full hierarchical member path can introduce some protection from change when members are allowed to move within dimensions. For example, you could have a customer dimension that breaks customers down by geography. If a customer were to move from one country to another, their location will change and they will show under a different parent member in hierarchy. If you were referencing a customer by the hierarchical member path, such as [Dimension].[Region].[Country].[State].[Customer Name], then this reference is invalidated if any of the Region, Country, or State information for the customer changes. By using the level reference you avoid this type of problem. To make use of this approach, however, you must be certain that the member in the level is unique.

 Measures are referenced in the same way as the other objects. It is useful to note that the default name of the measure dimension is [Measures]. If we have a measure named Revenue then it can be located with either [Revenue] or [Measures].[Revenue].

 The following list is a summary of these and other referencing approaches.

 •Unique member reference:

 [Member Name]

 •Unique level reference:

 [Level Name]

 •Member name duplicated within a level:

 [Unique Parent Member Name].[Member Name]

 •Member name duplicated within different levels of a dimension:

 [Level Name].[Member Name]

 •Member name duplicated within different dimensions:

 [Dimension Name].[Member Name]

 •Level name duplicated in different dimensions:

 [Dimension Name].[Level Name]

 •Other valid member references:

 [Cube Name].[Dimension].[Root member].[Level 0 member].[Level 1 member].[Level 2 member].[Level N member]

 [Dimension].[Level N].[Level N Member].[Level N+1 Member]

 •Measure references:

 [Measure Name]

 [Measures].[Measure Name]

 The methods for referencing objects in the MDX queries will depend on the uniqueness of the object name and the examples are a subset of all the possible ways that a qualified reference can be formed.

 11.3.3 Sets and Tuples

 Sets and tuples can be produced by function results. To create them manually, it is necessary to identify one from the other within the MDX statements. To identify a tuple, as in Example 11-3, all we need to do is surround the comma delimited combination of members with parentheses, ().

 Each member reference in a tuple must be from a different dimension.

 Example 11-3 Sample tuples

 [image:]

 ([Germany], [2008])

 ([Cheese], [Measures].[Quantity], [Time].[Year].[2007])

 [image:]

 On the other hand, a set is identified with surrounding braces, curly brackets, as in Example 11-4. Each comma delimited member or tuple in a set must have the same dimensionality.

 Example 11-4 Sample sets

 [image:]

 Sets of members:

 {[2008], [2007]}

 {[Time].[2007].[Q4].[Dec], [Time].[Year].[2008], [2008].[Q2]}

 {[USA], [Europe], [Mexico]}

 {[Canada], [North America], [Canada], [Canada]}

 {[Europe]}

 Sets of tuples:

 {([2007],[Canada]), ([2008], [Mexico])}

 {([Canada], [Measures].[Revenue]), ([Canada], [Measures].[Quantity])}

 {([Mexico]), ([Canada]), ([France]), ([Europe])}

 {([Germany], [2008)}

 [image:]

 As an additional point to defining sets, when defining a range of members, it is not necessary to list every member reference in the set. If all of the members between a start member and an end member are to be included then the range operator, a colon, can be used to define a range. Example 11-5 on page 271 shows the range operator in use to define the entire set of members between February of 2007 and January of 2008, inclusive.

 Example 11-5 Range operator for sets

 [image:]

 A complete range of distinct members

 {[2007].[Feb], [2007].[Mar], [2007].[Apr], [2007].[May], [2007].[Jun], [2007].[Jul], [2007].[Aug], [2007].[Sep], [2007].[Oct], [2007].[Nov], [2007].[Dec], [2008].[Jan]}

 Can be expressed with the range operator as

 {[2007].[Feb]:[2008].[Jan]}

 [image:]

 11.3.4 SELECT FROM

 To put all the various references together into an actual MDX query we use a SELECT statement. The SELECT statement take the following form:

 SELECT <Axis Definitions> FROM <Cube> WHERE <slicer tuple>

 If you have an SQL background this may look familiar. However, MDX gives you something important that SQL does not. Where SQL allows you to generate a set of records or rows, MDX allows you to specify rows, columns, and any number of dimensions for the result set.

 Conceptually, an MDX query defines a new cube that is a subset of the existing cube.

 FROM

 The FROM clause defines the cube that is used to execute the query. Where SQL will reference many tables in a FROM clause, an MDX statement references only a single cube as all the information we need for the query has been built into the many dimensions, levels, and measures in the single cube reference.

 When we reference the cube name, we do so using the cube name surrounded by square brackets. For example, if our cube were named Sales then the FROM clause of our SELECT statement would be as follows:

 SELECT <Axis Definitions> FROM [Sales]

 Axis Definitions

 Each query is constructed from one or more axes. An axis is defined by assigning a set to a specific axis number. The axes are numbered starting from zero and count upwards. The first few axes (from index 0 to 4) are commonly named as follows:

 •Columns

 •Rows

 •Pages

 •Chapters

 •Sections

 Each axis is separated from the next with a comma separator as shown in Example 11-6.

 Example 11-6 Defining Query Axes

 [image:]

 SELECT

 <set expression 1> ON AXIS(0),

 <set expression 2> ON AXIS(1),

 <set expression 3> ON AXIS(2),

 ...

 FROM [Sales]

 [image:]

 It is equally valid to use the common names for the axes. Using the sample Time and Geography dimensions we can construct a simple query, as shown in Example 11-7.

 Example 11-7 Using Axis Names

 [image:]

 SELECT

 {[2007], [2008]} ON COLUMNS,

 {[Canada], [USA], [France]} ON ROWS

 FROM [Sales]

 [image:]

 The result of this sample query would be a crosstab containing the two years on the column axis and three countries on the crosstab rows. The cells would be populated based on the default measure as we have not explicitly defined a measure for the query.

 The sets that are used to define the individual axes can be created by explicit member, level, or dimension references. More commonly though, sets are defined as the result of one or more MDX functions.

 The vast majority of the queries that you will write will only deal with the first two axes: columns and rows. The reason for this is that it is difficult to display the result of a query that contains more than two axes. Typically, queries with additional axes are used for subsequent processing where the additional axes are used to create slices of the data that will then be displayed to consumers in a two-dimensional, crosstab, form.

 As an additional point of interest, most client applications will display a set of tuples as nested members on the particular axis. Example 11-8 shows a query with tuples on the column axis.

 Example 11-8 Member nesting with tuples

 [image:]

 SELECT

 {([Revenue],[Time].[2007]), ([Revenue],[Time].[2008])} ON COLUMNS,

 {[USA],[Canada]} ON ROWS

 FROM [Sales]

 [image:]

 Most client applications will represent this query with nested members on the columns as in Figure 11-15.

 [image:]

 Figure 11-15 Nested tuples on the column edge

 In some cases a set may return members that do not have any measure values. This may occur because the intersection of the members is not defined or the measure value does not exist for the given tuple. When working with large sets, it is often more appropriate to review results where measure values actually exist. To assist with this there is a operator, NON EMPTY, that can be applied to sets to specify that only cells with data should be returned. The NON EMPTY operator is applied at the beginning of the axis definition, as in Example 11-9, where any empty members, such as the future year 2009, on the row edge is removed from the query.

 Example 11-9 Using NON EMPTY

 [image:]

 SELECT

 	{[Measures].[Revenue]} ON COLUMNS

 	NON EMPTY {[Time].[2007], [Time].[2008], [Time].[2009]} ON ROWS

 FROM [Sales]

 [image:]

 	
 Important: The NON EMPTY clause is applied to the query result set rather than the axis context. For example, if an additional measure were added to the column axis of Example 11-9 that contained data values for 2009, then the year would not be removed by the NON EMPTY clause. The additional point to remember is that the full result set must be retrieved before the NON EMPTY clause can be applied.

 WHERE

 The WHERE clause of a SELECT statement allows you to define restrictions to dimensions that are not being displayed on any of the query axes. The dimensions listed in the WHERE clause are referred to as Slicer Dimensions and the WHERE clause itself as a Slicer. The various dimensions that are referenced in the WHERE clause are built up using a tuple expression.

 The purpose of a slicer is to define additional context for the query being evaluated. For example, the query in Example 11-7 on page 272 will return results using the default measure for the cube. If we wanted to override the default measure, [Revenue] to instead show a [Quantity] we could use the slicer to specify the new measure as in Example 11-10. If you look back to Section 11.2.3, “Tuples” on page 261, the definition of a slicer is similar in the way additional context is used to narrow the scope of the cube data that is being retrieved.

 Example 11-10 Selecting a measure using the WHERE clause

 [image:]

 SELECT

 {[2007], [2008]} ON COLUMNS,

 {[Canada], [USA], [France]} ON ROWS

 FROM [Sales]

 WHERE ([Measures].[Quantity])

 [image:]

 The tuple in the slicer becomes part of the overall tuple that populates each cell in the resulting crosstab. If it helps, picture the result of such a query as a series of tuples based on all the possible row and column member combinations with the additional context supplied by the slicer. From Example 11-10 we would then obtain a result set that is defined with the following tuples:

 •([2007], [Canada], [Measures].[Quantity])

 •([2008], [Canada], [Measures].[Quantity])

 •([2007], [USA], [Measures].[Quantity])

 •([2008], [USA], [Measures].[Quantity])

 •([2007], [France], [Measures].[Quantity])

 •([2008], [France], [Measures].[Quantity])

 If we were to add more slicer dimensions to the tuple in our WHERE clause, then the additional member would be added to the tuple expression used to populate the measure cells.

 Note that the slicer members also define the context for expressions evaluated on the query axes as well as the measure cells themselves. Returning to a previous discussion regarding the Section “Current Member” on page 258, if we were to include a Scenario dimension with an Actuals and Budget member and use [Actuals] within our slicer, then the current Member of the Scenario dimension is [Actuals] on the rows, columns, and within the measure cells.

 When evaluating expressions to define the sets for the axis, it is important to remember the slicer members are present in the query. While the slicer members may not be explicitly referenced in the axis expression, they will still have an impact on the measure values and any references to the current member of the slicer dimensions.

 11.3.5 WITH MEMBER

 Occasionally, when writing an MDX query you will need to either create fairly lengthy expressions or leverage the same member or measure expression multiple times in different contexts. Making these lengthy or duplicate expressions part of the inline axis definition can make the query difficult to read and maintain.

 Fortunately, the WITH MEMBER statement can be added to our MDX query to define a reusable alias for an expression. For the duration of the query this new alias will exist as a member that can be treated like any other member source directly from the cube.

 The WITH MEMBER statement take the following form and must be defined in the query prior to the SELECT statement.

 WITH MEMBER <Member Alias> AS '<Member Expression>'

 The member alias must be qualified to an existing parent member within the cube. This is a requirement to ensure that the appropriate dimensionality can be determined when using the new member in a tuple or other such expression. Likewise, assigning an appropriate parent member allows subsequent expressions to reference existing cube members relative to the calculated member. For example, if we wanted a Unit Revenue measure that is the result of dividing the existing Revenue measure by the Quantity measure, then this would be defined as follows:

 WITH MEMBER [Measures].[Unit Revenue] AS '[Measures].[Revenue]/[Measures].[Quantity]'

 Taking the basic query from Example 11-10 on page 274 we can modify the query to retrieve the Unit Revenue figures as in Example 11-11.

 Example 11-11 A Calculated Measure Using WITH MEMBER

 [image:]

 WITH MEMBER [Measures].[Unit Revenue] AS '[Measures].[Revenue]/[Measures].[Quantity]'

 SELECT

 {[2007], [2008]} ON COLUMNS,

 {[Canada], [USA], [France]} ON ROWS

 FROM [Sales]

 WHERE ([Measures].[Unit Revenue])

 [image:]

 We can use the same type of expression to create members in other dimensions as well. Occasionally, it is useful to compare the measure values for different time periods. We can use the WITH MEMBER expression to create a Growth member in our time dimension that can be used to calculate the growth of any measure in the cube.

 Example 11-12 shows the calculated Growth time member as a relationship between the year members 2007 and 2008. Note the dimensional context for the member alias and how it can be used in a set along with other regular members of the Time dimension. By using the Time dimension, the calculated member is created at the root level of the Time hierarchy.

 Example 11-12 A Calculated Member of the Time Dimension

 [image:]

 WITH MEMBER [Time].[Growth] AS '([Time].[2008] - [Time].[2007])/[Time].[2007]'

 SELECT

 {[2007], [2008], [Time].[Growth]} ON COLUMNS,

 {[Canada], [USA], [France]} ON ROWS

 FROM [Sales]

 WHERE ([Measures].[Quantity])

 [image:]

 If we were to define our alias as [Time].[All].[Growth] then our new member would be defined beneath the existing root member of the hierarchy, at the same level as the year members for 2007 and 2008. Assigning an appropriate root member is handy when calculations need to identify members in the hierarchy relative to the newly calculated member.

 The query result will contain a new column next to 2008 that shows the growth in sales Quantity from 2007 to 2008.

 We can reuse this time member to analyze the growth figures for any measure within our cube. By changing the slicer to use [Measures].[Revenue], the values returned for the calculated Growth member would update automatically to reflect Revenue growth.

 	
 Tip: If you find that you are creating the expression in many of the queries then you might want to include the expression as a calculated member or measure within the OLAP model. The expression that you use in the MDX statement can be copied directly into the Calculated Member or MDX measure expression in the Design Studio cube model.

 11.3.6 WITH SET

 Like WITH MEMBER, if you find yourself creating large set expressions or defining the same set multiple times within the query, then the WITH SET statement will allow you to define a reusable alias for the set. Using this construct can significantly increase the legibility of the query. The basic syntax of the expression is similar to WITH MEMBER, with the exception that you do not define a parent member for the set.

 WITH SET <Set Alias> AS '<Set Expression>'

 Example 11-13 defines a set of members from the Time dimension that, if inserted directly within the axis definition, would make our query less legible.

 Example 11-13 Using WITH SET

 [image:]

 WITH SET [Time Periods] AS '{[Time].[2007], [Time].[2007].[Q1], [Time].[2007].[Q1].[Jan], [Time].[2007].[Q2], [Time].[2007].[Q2].[Apr], [Time].[2007].[Q3], [Time].[2007].[Q3].[Jul], [Time].[2007].[Q4], [Time].[2007].[Q4].[Oct]}'

 SELECT

 {[Measures].[Revenue], [Measures].[Quantity]} ON COLUMNS,

 {[Time Periods]} ON ROWS

 FROM [Sales]

 [image:]

 Any valid set can be used in the WITH SET statement. In the Example 11-14 we show a calculated measure that is incorporated into a calculated set of measures to simplify the final SELECT statement of an MDX query.

 Example 11-14 WITH SET to create a set of measures

 [image:]

 WITH MEMBER [Measures].[Unit Revenue] AS '[Measures].[Revenue]/[Measures].[Quantity]'

 SET [Measure Set] AS '{[Measures].[Revenue] , [Measures].[Quantity], [Measures].[Unit Revenue]}'

 SELECT

 {[Time].[2007], [Time].2008]} ON COLUMNS,

 {[Measure Set]} ON ROWS

 FROM [Sales]

 [image:]

 	
 Note: The key word WITH only needs to be defined once at the start of the query. Any following MEMBER or SET definitions listed prior to the SELECT statement is part of the MDX WITH block.

 One important thing to note for the WITH SET statement is that the set is evaluated at the query scope. This means that the set is evaluated only once for the entire query. The timing of the evaluation means that WITH SET cannot be used to evaluate different sets based on changing context within the various axes of the query.

 Sets defined in this manner that reference the current member of a hierarchy will obtain the currentMember from the slicer dimensions rather than a row or column member. If the slicer does not contain an explicit reference to the dimension then the current member of a hierarchy is determined by the default member.

 11.3.7 Additional Statements

 Beyond the basic level required to create MDX queries there are several other statements and constructs that you may find useful in the later query development. For example, CREATE MEMBER and CREATE SET are statements that can be used in place of WITH MEMBER and WITH SET to establish session-persistent members and sets rather being scoped to the single MDX query.

 The InfoSphere Warehouse documentation will contain additional details on these constructs.

 11.4 Functions

 The basic MDX syntax allows us to create any query we need as long as appropriate set and tuple expressions are defined. While you can select the individual members to populate these sets, the majority of the sets will need to be more dynamic in nature. The rich set of functions available in MDX allow you to do some complex actions with simple expressions.

 While there is no formal grouping of these functions there are some functional groupings that will make using and remembering these functions easier. The majority of the functions can be clustered under the following groups:

 •Member and Tuple

 •Level and Hierarchy

 •Set

 •Aggregation

 •Numeric

 •Strings

 •Family

 •Relative Time

 •Logical

 •Filter

 The contents of the Family, Relative Time, Drill, and Filter function groupings overlap with the Member and Set functions in that they also produce members and sets as outputs. However, these separate groupings help address a common theme and set of business applications, and deserve a bit more attention than a generic discussion of Set or Member functions.

 The MDX functions that you will work with come in two forms, standard functions and dot functions. Standard functions can be called on their own while the dot functions require an object reference for the function to be called. For example, if we had a function named functionName then the standard function call would b as follows:

 functionName(<arguments>)

 The dot notation would take the following form:

 [Object].functionName(<arguments>)

 Any given function will only have one of these two forms. One way to differentiate the two syntax forms is to remember that dot functions operate on a specific object reference while the standard functions can operate on multiple objects or variable object types.

 In addition to the various functions there are also several available operators. The standard mathematical operators are as follows:

 •+ (plus sign)

 •- (minus sign)

 •/ (slash, or division symbol)

 •* (multiply sign)

 •% (modulus).

 Likewise, there are several standard logical operators that can be used within the MDX statements:

 •Is

 •And

 •Or

 •Not

 •XOR

 These are common operators, and not specific to MDX, they will only be covered briefly in this material.

 	
 Note: For the associated function examples, we are using the sample Price Analysis cube that is provided with Cubing Services. Refer to the product documentation for details configuring this sample cube. Using this sample cube will allow you to reproduce the sample MDX queries within your own environment to gain additional understanding of the functions themselves.

 11.4.1 Member and Tuple

 In this section we discuss member types and tuples.

 CurrentMember

 CurrentMember is a dot function that allows the current member of a hierarchy to be determined from the current query context, as shown in Example 11-15.

 The function takes the following form:

 >>-HierarchyExpr--.--CurrentMember-----------------------><

 Example 11-15 CurrentMember

 [image:]

 /* Referencing the currentMember of the Measures dimension (in this case the default measure) and the currentMember of the Time dimension in a calculation to produce a percent of base. */

 WITH MEMBER [Measures].[Ex currentMember] AS '([Time].currentMember,[Measures].[Sales Amount]) / ([Time].[All Time (Calendar)],[Measures].[Sales Amount])'

 SELECT

 	{[Time].[2002], [Time].[2003], [Time].[2004]} ON COLUMNS,

 	{[Measures].currentMember, [Measures].[Sales Amount], [Measures].[Ex currentMember]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 CoalesceEmpty

 This function replaces empty string or number values with the first available non-empty value. It is shown in Example 11-16 on page 282. The arguments of the function are referenced from left to right to determine the first non-empty value. If all of the values are empty then the function returns an empty value.

 The function takes the following form:

 											 .-,-------------.

 											 V					|

 >>-CoalesceEmpty--(--+-NumericExpr1----NumericExprN-+-+--)-><

 						 	| 					.-,------------.						|

 							| 					V					|	|

 							'-StringExpr1----StringExprN-+---'

 Example 11-16 CoalesceEmpty

 [image:]

 /* Replacing the empty values in months 11 and 12 with zero */

 WITH MEMBER [Measures].[Zeroed Sales Amount] AS 'coalesceEmpty([Measures].[Sales Amount], 0)'

 SELECT

 	{[Time].[2004].[4].[10],[Time].[2004].[4].[11], [Time].[2004].[4].[12]} ON COLUMNS,

 	{[Measures].[Sales Amount], [Measures].[Zeroed Sales Amount]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Take care when using the CoalesceEmpty function with the NON EMPTY axis operator because the function will define values for measure cells that you may want not want to include in the query. In Example 11-16, we see that the Sales Amount measure does not contain values for months 11 and 12 of 2004. If the query did not include the CoalesceEmpty calculated measure, then applying NON EMPTY to the column axis would remove months 11 and 12. However, with the calculated member added to the query the NON EMPTY clause will no longer remove months 11 and 12 because there is now a row in the result set that contains measure values for these months.

 DataMember

 In an unbalanced or recursive hierarchy, you may have non-leaf members that have associated measure values or records in the fact table. In such a case the hierarchy can be configured to create a new leaf member to show all the discrete data values. The naming conventions for these data members can vary, so the DataMember dot function can be used to identify the child data member that is created by the cubing server.

 For example, in a recursive employee hierarchy, a sales manager might have multiple direct employees. In cases where both the sales manager and the employees contribute to the sales measures, creating a data member beneath the sales manager will allow the individual sales manager contribution to be separated from the rollup of the employees. The data member is displayed as a leaf member beneath the sales manager. This is shown in Example 11-17 on page 283.

 In the event that a child data member does not exist, the current member is returned.

 The function takes the following form:

 >>---MemberExpr----.--DataMember-------------------------><

 Example 11-17 DataMember

 [image:]

 /* Using dataMember on a standard hierarchy because the Price Analysis cube does not contain a recursive/unbalanced hierarchy */

 SELECT

 	{[Time].[2004], [Time].[2004].dataMember} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 DefaultMember

 This function returns the default member of a hierarchy. While this is typically the All root member of a hierarchy, it is possible that the cube has been designed with a different, non-root, default member. This is demonstrated in Example 11-18.

 The function takes the following form:

 >>-HierarchyExpr--.--DefaultMember-----------------------><

 Example 11-18 DefaultMember

 [image:]

 /* Identifying the default member of the Time hierarchy */

 SELECT

 	{[Time].[2004], [Time].defaultMember} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 Item

 The item function can be applied to both sets and tuples. When applied to a set, the function will return the element of the set at the position defined by IndexExpr. Because sets can contain either members or tuples, the result of applying the item function to a set can be either a member or a tuple.

 Because a tuple can only contain member references, applying the item function to a tuple will return a member.

 The index of the elements is zero-based, so the first element of a set or tuple is identified by using 0 for IndexExpr. This is shown in Example 11-19.

 The function takes the following form:

 >>-+-SetExpr--.--Item--(--IndexExpr--)---+---------><

 	'-TupleExpr--.--Item--(--IndexExpr--)-'

 Example 11-19 Item

 [image:]

 /* Retrieving a year member from a set and a measure from a tuple. Note that the remaining members of the tuple are not applied to the query context. The row value is simply the Sales Amount measure and has no association to [Product].[LAMPS] or [Time].[2004] */

 WITH SET [Time Set] AS '{[Time].[2004], [Time].[2003], [Time].[2002]}'

 SELECT

 	{[Time Set].item(2)} ON COLUMNS,

 	{([Product].[LAMPS], [Measures].[Sales Amount], [Time].[2004]).item(1)} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Lag and Lead

 These complementary functions identify a member at the same level as the reference member that is IndexExpr positions ahead (Lead) or behind (Lag) the referenced member. The parent members of the hierarchy do not play any role here, as the lag and lead functions operate on the contents of the level without regard for the higher-level structure of the hierarchy.

 IndexExpr is zero-based and the functions will return the original member if the input argument is defined as 0.

 If there is no member in the hierarchy that is IndexExpr positions away from the reference member, then the function returns no member at all. Refer to Example 11-20 on page 285.

 Lag

 The function takes the following form:

 >>-MemberExpr--.--Lag--(--IndexExpr--)-------------><

 Lead

 The function takes the following form:

 >>-MemberExpr--.--Lead--(--IndexExpr--)------------><

 Example 11-20 Lag and Lead

 [image:]

 /* 2004 is the last year of data in this cube. Using October (month 10) from 2004 we can identify members ahead or behind by 2 and 12 members. Note that 12 months ahead of October, 2004, does not exist and 12 months behind October, 2004, is actually October from the prior year, 2003.*/

 SELECT

 	{[Time].[2004].[4].[10], [Time].[2004].[4].[10].lag(2), [Time].[2004].[4].[10].lag(12), [Time].[2004].[4].[10].lead(2), [Time].[2004].[4].[10].lead(12)} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 NextMember and PrevMember

 Similar to Lag and Lead, NextMember and PrevMember will find a member before or after the reference member in the same level regardless of the parent members of the hierarchy. Essentially, these functions are the same as using Lag and Lead with an IndexExp value of 1 to identify the member immediately before (PrevMember) or immediately after (NextMember) the reference member.

 Like Lag and Lead, if the next or previous member does not exist, then no member is returned. Refer to Example 11-21 on page 286.

 NextMember

 The function takes the following form:

 >>---MemberExpr---.--NextMember-------------------------><

 PrevMember

 The function takes the following form:

 >>---MemberExpr----.--PrevMember-------------------------><

 Example 11-21 NextMember and PrevMember

 [image:]

 /* Using January (month 1) of 2004 we can select december (month 12) of 2003, the previous member, and February (month 2) of 2004, the next member. */

 SELECT

 	{[Time].[2004].[1].[1], [Time].[2004].[1].[1].prevMember, [Time].[2004].[1].[1].nextMember} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.2 Level and Hierarchy

 Hierarchy and Dimension

 In InfoSphere Warehouse, the hierarchy and dimension dot functions return a reference to the dimension object that contains the referenced level or member. These functions are more commonly used in automation where the dimension reference can be used to identify information such as the available levels, default member, and other associated properties. This can be seen in Example 11-22 on page 287.

 Hierarchy

 The function takes the following form:

 >>-+-LevelExpr----+--.--Hierarchy--------------------------><

 	'-MemberExpr-'

 Dimension

 The function takes the following form:

 >>-+-LevelExpr----+--.--Dimension--------------------------><

 	'-MemberExpr-

 Example 11-22 Hierarchy

 [image:]

 /* Identifying the default member of the hierarchy based on a known member reference and the hierarchy function */

 SELECT

 	{[2004].[1].[1].hierarchy.defaultMember} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 Level

 This function identifies the level to which a reference member belongs. The resulting level reference can be used in later expressions to identify another member or set. This is shown in Example 11-23.

 The function takes the following form:

 >>---MemberExpr----.--Level------------------------------><

 Example 11-23 Level

 [image:]

 /* Using the level function to identify all the members at the same level as the year 2004 */

 SELECT

 	{[2004].Level.members } ON AXIS(0)

 FROM [Price Analysis]

 [image:]

 [image:]

 Levels

 This function identifies a level based on a given name or index expression. The level index is zero-based so the root level is level 0 and the next level down in the hierarchy is level 1. This is shown in Example 11-24.

 The function takes the following form:

 >>---HierarchyExpr----.--Levels--(--+-LevelNameExpr---+--)-><

 											'-LevelNumberExpr-'

 Example 11-24 Levels

 [image:]

 /* Using the levels function to identify the year level by name and index. Note that the two references to the same set will duplicate the members on the row axis. */

 WITH MEMBER [Measures].[Level Name] AS '[Time].currentMember.Level.caption'

 SELECT

 	{[Measures].[Level Name] } ON AXIS(0),

 	{[Time].Levels(1).members, [Time].Levels("Calendar Year Level").members} ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Ordinal

 The Ordinal dot function returns an integer index representing the level in the hierarchy. The index is zero-based so the root level will return 0 from the result of the Ordinal dot function.

 The Ordinal function typically serves to address display and conditional calculation purposes, as shown in Example 11-25 on page 289. For display, the level number can be used to address formatting by applying white-space indentation or other such formatting. To address calculations, the ordinal can be used within an IIf function (Refer to Section “IIf” on page 346) to conditionally return different values at different levels of a hierarchy.

 The function takes the following form:

 >>---LevelExpr----.--Ordinal-----------------------------><

 Example 11-25 Ordinal

 [image:]

 /* Using the ordinal function to conditionally suppress the display of measure values at or below the quarter level of the time hierarchy. This can be useful if multiple grains of data have been added to a single cube and the lower-level values are invalid for display to consumers. */

 WITH MEMBER [Measures].[Suppressed Sales Amount] AS 'IIf([Time].currentMember.level.ordinal >= 2, "--", [Measures].[Sales Amount])'

 SELECT

 	{[Measures].[Sales Amount],[Measures].[Suppressed Sales Amount]} ON COLUMNS,

 	descendants([Time].defaultMember, 2, SELF_AND_BEFORE) ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.3 Set

 AddCalculatedMembers and StripCalculatedMembers

 When referencing the members of a level, any calculated members are typically excluded. The AddCalculatedMembers function will use the input set of members to find any calculated members beneath the same parent member and append these calculated members to the set. This is shown in Example 11-26. Conversely, the StripCalculatedMembers parses a set of members and removes any that are calculated members rather than regular members of the hierarchy.

 AddCalculatedMembers

 The function takes the following form:

 >>-AddCalculatedMembers--(--SetExpr--)-------------------><

 StripCalculatedMembers

 The function takes the following form:

 >>-StripCalculatedMembers--(--SetExpr--)-----------------><

 Example 11-26 AddCalculatedMembers and StripCalculatedMembers

 [image:]

 /* Although the calculated member is not explictly referenced, it is included by AddCalculatedMembers because it has been defined as a sibling of 2004. However, the constructed set of measures does not include the calculted measure because StripCalculatedMembers removes it from the set. */

 WITH

 SET [Time Set] as '{[Time].[2003],[Time].[2004]}'

 MEMBER [Time].[All Time (Calendar)].[Calculated Member] AS '([Time].[2004])/([Time].[2003])'

 MEMBER [Measures].[Max Sales Amount] as 'Max([Time Set], [Measures].[Sales Amount])'

 SET [Measure Set] AS '{[Measures].[Sales Amount], [Measures].[Max Sales Amount]}'

 SELECT

 	AddCalculatedMembers([Time Set]) ON AXIS(0),

 	StripCalculatedMembers([Measure Set]) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Crossjoin and NonEmptyCrossjoin

 Both Crossjoin and NonEmptyCrossjoin perform the same base operations. The basic purpose of these functions is to match each member of the first set to each member of the second set. The result is a set of tuples of all the various member combinations of the two sets. Because these functions generate tuples as a result, the two input sets must be from different dimensions so that a valid tuple can be formed.

 The difference between Crossjoin and NonEmptyCrossjoin is that the NonEmptyCrossjoin will only return the tuples that have measure values. This is different than the NON EMPTY operator applied to an axis as in the section “Axis Definitions” on page 272. The NON EMPTY operator is applied to the result set while the NonEmptyCrossjoin evaluates the set of tuples produced by the Crossjoin before the entire result set for the query is retrieved.

 The end effect is that NonEmptyCrossjoin will remove the tuples that are empty, do not have any associated data values, or are the result of calculated members.

 While the Crossjoin and NonEmptyCrossjoin functions are powerful, care should be taken when working with multiple dimensions, because the cross product of the sets can become large. For example, performing a crossjoin between 4 sets of 10 members means the result set would contain 10000 (104) tuples. Generating such large result sets will consume additional server resources and can impact system performance. This is shown in Example 11-27 on page 292.

 Crossjoin

 The function takes the following form:

 >>-Crossjoin--(--SetExpr1--,--SetExpr2--)----------><

 NonEmptyCrossjoin

 The function takes the following form:

 												.-,-----------.

 												V					|

 >>-NonEmptyCrossjoin--(--SetExpr1----+--------+--+--+-----------+--)-><

 												 	'-SetExprN-'					'-,--CountExpr-'

 Example 11-27 CrossJoin [image:]

 /* Creating a set of tuples using CrossJoin to match a set of months to a set of measures */

 WITH MEMBER [Measures].[Calc] AS 'coalesceEmpty([Measures].[Sales Amount], 0)'

 SET [Time Set] AS '{[Time].[2004].[4].[10]:[Time].[2004].[4].[12]}'

 SET [Measure Set] AS '{[Measures].[Sales Amount], [Measures].[Calc]}'

 SELECT

 	CrossJoin([Time Set], [Measure Set]) ON AXIS(0)

 FROM [Price Analysis]

 [image:]

 [image:]

 In Example 11-28 note that the empty Sales Amount tuples are removed for the last two months. In addition, while the calculated member is non-empty for the first month, it is also removed as the NonEmptyCrossJoin does not return tuples with calculated members.

 Example 11-28 NonEmptyCrossJoin [image:]

 /* Creating a set of tuples using CrossJoin to match a set of months to a set of measures */

 WITH MEMBER [Measures].[Calc] AS 'coalesceEmpty([Measures].[Sales Amount], 0)'

 SET [Time Set] AS '{[Time].[2004].[4].[10]:[Time].[2004].[4].[12]}'

 SET [Measure Set] AS '{[Measures].[Sales Amount], [Measures].[Calc]}'

 SELECT

 	NonEmptyCrossJoin([Time Set], [Measure Set]) ON AXIS(0)

 FROM [Price Analysis]

 [image:]

 [image:]

 	
 Using NonEmptyCrossJoin: Using NonEmptyCrossJoin when working with large sets of sparse data can improve query performance. By restricting the axis to tuples that contain data the cubing engine does not need to create all the empty tuples.

 As an example, if you have two sets which each contain five members with data and five that have empty measures then there will only be 25 non-empty tuples (5×5). However, there are 75 empty tuples (10×10 - 5×5). CrossJoin will force all 100 tuples to be evaluated but NonEmptyCrossJoin will only retrieve the 25 tuples that contain data values. NonEmptyCrossJoin eliminates the processing involved with the 75 empty tuples. As the empty tuples are unnecessary in most queries, this is a significant savings in query processing.

 Distinct

 The distinct function identifies all the unique members or tuples in a set and returns a set where the duplicates have been removed, as shown in Example 11-29.

 The function takes the following form:

 >>-Distinct--(--SetExpr--)-------------------------------><

 Example 11-29 Distinct

 [image:]

 /* Distinct removes the duplicate tuple for 2004 and Sales Amount. Typically the distinct function would be used a more complex scenario where, instead of a fixed set, the input set is a result of one or more other functions that may produce overlapping results. */

 SELECT

 	DISTINCT({([2004], [Sales Amount]), ([All Time (Calendar)], [Measures].defaultMember),([2004], [Sales Amount]) }) ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 Extract

 The Extract function operates on an input set of tuples, SetExpr, to extract the members of the hierarchy or hierarchies specified by HierarchyN. The result is a set of tuples defined using only the hierarchies specified in the extract function. This is demonstrated in Example 11-30.

 If an empty set is supplied to the extract function, then an empty set is returned. If a hierarchy is referenced multiple times in the list of hierarchies, or the list includes a hierarchy that is not part of the tuples, then an exception is returned.

 The function takes the following form:

 								.-,----------.

 								V |

 >>-Extract--(--SetExpr--,----HierarchyN-+--)-------------><

 Example 11-30 Extract

 [image:]

 /* Extract the store members from the top 3 stores by individual product groups so that the overall sales of each store can be displayed. Note that the same store member could potentially have the three highest individual product group sales amounts. */

 WITH

 /* Identify the Sales Amounts by Store and Product Group */

 SET [Store Product Group Sales Amounts] AS '{Crossjoin([Product].Levels(1).members,

 Descendants([Store].[All Stores], -1 ,LEAVES))}'

 /* Identify the 3 stores with the highest individual product group sales amounts */

 SET [Top 3 Store Product Groups] AS 'TopCount([Store Product Group Sales Amounts], 3,

 [Measures].[Sales Amount])'

 SELECT

 {[Measures].[Sales Amount]} ON AXIS(0),

 Extract([Top 3 Store Product Groups],[Store]) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Generate

 Like Crossjoin, Generate is one of the more powerful expressions in the MDX language. This function operates by iterating through the first set, SetExpr1, and evaluating the second set, SetExpr2, or string expression, StringExpr, in the context of each member from the SetExpr1. The results are then merged into a single set or string expression.

 The ALL keyword optionally allows duplicate members to be preserved when the results of each evaluation of SetExpr2 are combined in the final function result.

 For string results, the optional Delimiter defines a string that is inserted between each of the resulting StringExpr instances when the strings are concatenated together.

 The idea of Generate is to allow repetitive actions to be performed across a varying set of conditions. When using sets, Generate is typically used with filter functions (see Section 11.4.10, “Filter” on page 350). Example 11-31 demonstrates Generate with TopCount to evaluate the top Store per Region.

 The function takes the following form:

 >>-Generate--(--+-SetExpr1--,--SetExpr2--+--------+--------+--)-><

 				 	 |								'-,--ALL-'					|

 					'-SetExpr--,--StringExpr--+--------------+-'

 													'-,--Delimiter-'

 Example 11-31 Generate with Sets

 [image:]

 /* Identifying the top district in each region using the Generate function */

 SELECT

 	{[Measures].[Sales Amount]} ON COLUMNS,

 	GENERATE([Store].[Organization Unit Region Level].members, TopCount(Descendants([Store].currentMember, [Store].[Organization Unit District Level]), 1, [Measures].[Sales Amount])) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Example 11-32 builds upon Example 11-31 on page 295 to produce a string measure that lists the stores that contribute to each of the top regional districts.

 Example 11-32 Generate with Strings

 [image:]

 /* Identifying the stores that contributed to the top district in each region.*/

 WITH MEMBER [Measures].[Stores in District] AS 'GENERATE([Store].currentMember.children, [Store].currentMember.name, ", ")'

 SELECT

 	{[Measures].[Sales Amount], [Measures].[Stores in District]} ON COLUMNS,

 	GENERATE([Store].[Organization Unit Region Level].members, TopCount(Descendants([Store].currentMember, [Store].[Organization Unit District Level]), 1, [Measures].[Sales Amount])) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Because the Generate function returns a set defined by the second set expression, you may not always be able to return a set of tuples that include the members from the first set. Example 11-33 on page 297 shows how to use a nested Generate function to create a set of tuples that will display the multi-dimensional nature of the set that is being evaluated by the first Generate function.

 Example 11-33 Generate to return tuples

 [image:]

 /* Using Generate to return a set of tuples for another set produced by Generate. The non-tuple example is available in the commented line. When testing the non-tuple result note that the values are higher because the measure values are obtained just for the store and not for the store in the specific year. */

 WITH

 SET [Time Set] AS {[Time].[2004], [Time].[2003]}

 SET [Store Set] AS {[Store].Levels(4).members}

 /* SET [Top Stores by Year] AS 'Generate([Time Set], topCount([Store Set], 2, ([Measures].[Sales Amount], [Time].currentMember)))' */

 SET [Top Stores by Year] AS 'Generate([Time Set], Generate(topCount([Store Set], 2, ([Measures].[Sales Amount], [Time].currentMember)),([Time].currentMember,[Store].currentMember)))'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Top Stores by Year]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Head and Tail

 These functions represent another complementary pair.

 Head retrieves NumericExpr members or tuples from the start of a set. Tail retrieves NumericExpr members or tuples from the end of a set, as shown in Example 11-34 on page 298.

 If no value is specified for NumericExpr, then the default value is 1. Any value less than 1 will result in an empty set.

 Head

 The function takes the following form:

 >>-Head--(--SetExpr--+----------------+--)---------><

 							'-,--NumericExpr-'

 Tail

 The function takes the following form:

 >>-Tail--(--SetExpr--+--------------+--)-----------><

 						'-,--CountExpr-'

 Example 11-34 Head and Tail

 [image:]

 /* The inner tail function retrieves the last 5 members at the month level of the Time hierarchy: months 8, 9, 10, 11, and 12 from 2004. The head function then retrieves the first two members from the tail function: month 8 and 9 of 2004. */

 SELECT

 	{[Measures].[Sales Amount]} ON COLUMNS,

 	head(tail([Time].[Calendar Month Level (Price Analysis)].members, 5), 2) ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Hierarchize and Hierarchise

 Hierarchise is an alias for Hierarchize. Both functions arrange the members of SetExpr into the order of the members defined by the hierarchy. These functions do not apply to sets of tuples because there is no single hierarchy that can be applied to determine the appropriate order of the tuples.

 The hierarchical ordering is useful when working with sets that contain members from multiple levels of the hierarchy. For example, a reporting with an Accounts dimension generally requires that the members be preserved in the order of the hierarchy. However, many of the functions that you will use and operations such as merging two sets will give you sets that no longer follow the order of the members in the hierarchy. Hierarchize is useful to restore the hierarchical order of the members. This is shown in Example 11-35 on page 299.

 The optional POST key word for these functions will force the child members to be displayed before the parent members when the hierarchical order is applied.

 	
 Tip: Given that many functions will impact the member order in a set, it is often best to save hierarchize until the complete set of members is available.

 Hierarchize

 The function takes the following form:

 >>-Hierarchize--(--SetExpr--+---------+--)---------------><

 									'-,--POST-'

 Hierarchise

 The function takes the following form:

 >>-Hierarchise--(--SetExpr--+---------+--)---------------><

 									'-,--POST-'

 Example 11-35 Hierarchize

 [image:]

 /* Arranging Years and Quarters in hierarchical order with the Year trailing the related Quarters*/

 SELECT

 	{[Price Analysis].[Measures].[Sales Amount]} ON AXIS(0),

 	Hierarchize({[Time].Levels(1).members, [Time].Levels(2).members}, POST) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Members and All Members

 The Members and AllMembers dot functions both retrieve all the regular members from the given Hierarchy or Level reference. AllMembers extends the Members function by also retrieving calculated members that have been defined in the level or hierarchy, as shown in Example 11-36 on page 301.

 	
 Note: Applying these functions to a hierarchy will retrieve all members of the hierarchy regardless of the level. For large hierarchies with many members this can have an impact on query performance. If only a subset of the members are required in the query, then we recommend that you use other functions to retrieve the required members because processing intermediate result sets with the full hierarchy of members may be resource intensive.

 Members

 The function takes the following form:

 >>-+-HierarchyExpr-+--.--Members-------------------------><

 '-LevelExpr-----'

 AllMembers

 The function takes the following form:

 >>-+-HierarchyExpr-+--.--AllMembers----------------------><

 '-LevelExpr-----'

 Example 11-36 Members and AllMembers

 [image:]

 /* Retrieving all the Measures (including calculated) using AllMembers and all the Years in the Time hierarchy using Members. Notice that the calculated year member is not included in the resulting columns.*/

 WITH MEMBER [Measures].[Calculated Measure] AS '[Measures].[Sales Amount]/[Measures].[Number Of Items]'

 MEMBER [Time].[All Time (Calendar)].[Calculated Year] AS '[Time].[2004]/[Time].[2003]'

 SELECT

 	{[Time].Levels(1).members} ON AXIS(0),

 	{[Measures].AllMembers } ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 NameToSet

 The NameToSet function creates a set of a single member based on a StringExpr that defines the name of a member. If the member does not exist, then an empty set is returned. If the member name does not contain sufficient qualification and matches more than one member, then the first instance of the member name is returned. This is shown in Example 11-37 on page 302.

 Note that the StringExpr must define a member rather than an expression that results in a member.

 This function is typically used for automation purposes where a member reference is constructed without knowledge of the cube contents. When writing queries you will typically define member references directly rather than through strings and the NameToSet function.

 The function takes the following form:

 >>-NameToSet--(--StringExpr--)---------------------------><

 Example 11-37 NameToSet

 [image:]

 /* Using NameToSet to turn a static string into a set containing the identified quarter member. Note that [Time].[1] could identify multiple members. Quarter 1 of 2002 is the first instance that matches the given name and this is the member that is returned by the NameToSet function. */

 SELECT

 	NameToSet("[Time].[1]") ON AXIS(0),

 	{[Measures].[Sales Amount] } ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Order

 The Order function allows the members of a set, SetExpr, to be arranged according to an associated numeric or string value. This is demonstrated in Example 11-38 on page 303. The final optional argument defines the ordering method to use with the numeric or string values:

 •ASC

 Ascending with the hierarchical structure preserved

 •DESC

 Descending with the hierarchical structure preserved

 •BASC

 Ascending with the hierarchical structure broken

 •BDESC

 Descending with the hierarchical structure broken

 When the hierarchical structure is preserved, the higher level members are displayed before the associated descendant members. Sibling members are sorted according to the value of the numeric or string expression.

 When the hierarchy is broken, members from different branches and levels of the hierarchy are sorted based on the value of the numeric or string expression.

 The function takes the following form:

 >>-Order--(--SetExpr----,--+-NumericExpr-+----+--------------+--)-><

 								'-StringExpr--'						'-,--+-ASC---+-'

 																+-DESC--+

 																+-BASC--+

 																'-BDESC-'

 Example 11-38 Order

 [image:]

 /* Ordering the Years and Quarters hierarchically by Sales Amount and the first three levels of the Store dimension descending by the member name without regard to the hierarchy.*/

 WITH MEMBER [Measures].[Store Name] AS '[Store].currentMember.name'

 SELECT

 	Order(descendants([Store].defaultmember, [Store].Levels(2), SELF_AND_BEFORE), [Measures].[Store Name], BDESC) ON AXIS(0),

 	Order({[Time].Levels(1).members, [Time].Levels(2).members}, [Measures].[Sales Amount], ASC) ON AXIS(1)

 FROM [Price Analysis]

 WHERE [Measures].[Sales Amount]

 [image:]

 [image:]

 Subset

 The Subset function will return the set of members or tuples from SetExpr, starting from the element at the StartIndex position in the set, and terminating after CountExpr elements (including the starting element). Refer to Example 11-39.

 The set index is zero-based and the first element of the set is identified by a StartIndex of 0.

 If the member count is not specified, then the subset will include all the members from the starting member to the end of the set.

 The resulting set maintains the order and any duplication of the elements in the original set.

 The function takes the following form:

 >>-Subset--(--SetExpr--,--StartIndex--+--------------+--)-><

 												'-,--CountExpr-'

 Example 11-39 Subset

 [image:]

 /* Selecting the first 6 months of 2003 and 2004 using a subset. Thee months of each year are determined using the Generate function on the set of years and the descendants function to find the associated months.*/

 SELECT

 	{[Measures].[Sales Amount]} ON AXIS(0),

 	Generate({[2003],[2004]}, subset(descendants([Time].currentMember, [Time].Levels(3)),0, 6)) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Union, Intersect, and Except

 These three functions deal with the combinations of two sets. Union merges two sets to produce a single set with all the elements of the two source sets. Intersect produces a set containing the elements of the two sets that are the same or overlap each other. Except returns the opposite of an Intersect and only returns the elements that do not match or overlap. Visually this can be represented as shown in Figure 11-16.

 [image:]

 Figure 11-16 Union, Intersect, and Except

 In each function, a final, optional, argument allows a key word, ALL, to be added. When ALL is added to the functions, any duplicate members are preserved in the resulting set. The default behavior is to remove any duplicate members from the set produced by the Union, Intersect, and Except functions. This is demonstrated in Example 11-40 on page 306.

 Union

 The function takes the following form:

 >>-Union--(--SetExpr1--,--SetExpr2--+--------+--)--><

 											'-,--ALL-'

 Note that there are alternatives to the formal Union function syntax. The short form notation that we have already been using for a set, braces or curly brackets, is the same as defining a Union function with the ALL argument. The Formal syntax for the Union ALL is as follows:

 >>-{--SetExpr1--,-- SetExpr2--}--><

 Intersect

 The function takes the following form:

 >>-Intersect--(--SetExpr1--,--SetExpr2--+--------+--)--><

 													'-,--ALL-'

 Except

 The function takes the following form:

 >>-Except--(--SetExpr1--,--SetExpr2--+--------+--)--><

 												'-,--ALL-'

 Example 11-40 Union, Intersect, and Except

 [image:]

 /* Union is used to populate a combined set of years on the column axis where the duplicate year, 2004, is preserved with the ALL argument. The nested Intersect function on the rows combines Product Set 1 and Product Set 2 to find the overlapping members, ELECTRONICS and FURNITURE. LAMPS is not in both sets so the Intersect drops this member. The outer Except function then operates on the result of the Intersect to remove the ELECTRONICS member. */

 WITH SET [Time Set 1] AS '{[Time].[2003], [Time].[2004]}'

 SET [Time Set 2] AS '{[Time].[2002], [Time].[2004]}'

 SET [Product Set 1] AS '{[ELECTRONICS], [FURNITURE], [LAMPS]}'

 SET [Product Set 2] AS '{[ELECTRONICS], [FURNITURE]}'

 SET [Product Set 3] AS '{[ELECTRONICS]}'

 SELECT

 	UNION([Time Set 1] , [Time Set 2], ALL) ON AXIS(0),

 	EXCEPT(INTERSECT([Product Set 1], [Product Set 2]), [Product Set 3]) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.4 Aggregation

 In this section we describe the various aggregation functions.

 Aggregate

 This is one of the more important methods of rolling up measure values from a cube. Rather than defining that a measure should use a Sum, Average, or other such rollup, the Aggregate function uses the rollup method defined within the cube itself for each measure.

 When working with multiple measures, the Aggregate function allows you to roll all of the measures up while respecting the different methods of aggregation being applied to each measure. For example, with an Average and a Sum on the column axis you can use the Aggregate function on the row axis to produce summary values that are the appropriate Average and Sum of the two measure columns. Other aggregate functions do not allow this type of operation and will apply a single rollup to every measure regardless of the settings applied to the measures in the cube.

 If the appropriate function for the aggregation cannot be determined from the cube metadata then the default operation is to apply a Sum to the measure values.

 The SetExpr argument of the Aggregate function defines the set that is used to perform the rollup. This will often be the visible set of members displayed on one of the query axes. However, as shown in the section 11.6, “Putting it all together” on page 369, there are scenarios where the aggregate is performed over a set that is not displayed on the report.

 If the input set is empty, then the Aggregate function will return an empty value.

 If NumericExpr is not defined, then the numeric measure value is determined based on the query context (the current member of the Measures dimension).

 The function takes the following form:

 >>-Aggregate--(--SetExpr--+----------------+--)----><

 								'-,--NumericExpr-'

 Avg

 The Avg function applies an average over the non-empty numeric values associated with the set SetExpr. If there are elements of the input set that have empty values, these will not be used in either the numerator or the divisor when calculating the average value.

 If the input set is empty, the Avg function will return an empty value.

 If NumericExpr is not defined, the numeric measure value is determined based on the query context (the current member of the Measures dimension).

 The function takes the following form:

 >>-Avg--(--SetExpr--+----------------+--)----------><

 						'-,--NumericExpr-'

 Count

 The Count function has two forms. The first form is a standard function. The SetExpr input argument can be a set of members or tuples.

 By default, the Count function will count all the elements of the set and return the associated numeric count value. This default behavior corresponds to the optional INCLUDEEMPTY argument of the Count function.

 Using the EXCLUDEEMPTY argument will cause any empty elements of the set to be excluded from the Count. This option is often useful when allocating a summarized measure value across a time series where only the time periods with measure values should be considered.

 The function takes the following form:

 >>-Count--(--SetExpr--+-----------------+--)-------------><

 							+-,--INCLUDEEMPTY-+

 							'-,--EXCLUDEEMPTY-'

 The second form of Count is as a dot function.

 The function takes the following form:

 >>-+-SetExpr--------------+--.--Count--------------------><

 '-HierarchyExpr.Levels-'

 Applying the Count dot function to a set or level reference will return a count of all the elements of a set or levels of a hierarchy. The Count dot function includes empty elements in the count. Both forms of the Count function will return zero if the input set (or hierarchy for the dot function) is empty.

 Max

 The Max function finds the greatest value from the values associated with the elements of the input set, SetExpr.

 If the input set is empty, the Max function will return an empty value.

 If NumericExpr is not defined, then the numeric measure value is determined based on the query context (the current member of the Measures dimension).

 The function takes the following form:

 >>-Max--(--SetExpr--+----------------+--)----------><

 						'-,--NumericExpr-'

 Median

 The Median function returns the value associated with the middle of the ordered, non-empty, values for elements of SetExpr. In the case where there are an even number of non-empty elements then the median is calculated as an interpolation between the two middle, non-empty, elements of the ordered values for the set.

 The function takes the following form:

 >>-Median--(--SetExpr--+----------------+--)-------><

 							'-,--NumericExpr-'

 Min

 The Min function finds the least value from the values associated with the elements of the input set, SetExpr.

 If the input set is empty, the Min function will return an empty value.

 If NumericExpr is not defined, then the numeric measure value is determined based on the query context (the current member of the Measures dimension).

 The function takes the following form:

 >>-Min--(--SetExpr--+----------------+--)----------><

 						'-,--NumericExpr-'

 Sum

 The Sum function produces a total of the non-empty numeric values for the elements of the set, SetExpr. If the input set is empty, the Sum function will return an empty value. If NumericExpr is not defined, then the numeric measure value is determined based on the query context (the current member of the Measures dimension).

 The function takes the following form:

 >>-Sum--(--SetExpr--+----------------+--)----------><

 						'-,--NumericExpr-'

 Aggregation measures can be created on the same, or opposite, axis of a reference set. This is shown in Example 11-41 and Example 11-42 on page 311.

 Example 11-41 Aggregates on opposite query edge

 [image:]

 /* Creating aggregation measures on the opposite axis of a reference set */

 WITH

 	SET [Months of 2004] AS 'descendants([Time].[2004],2)'

 	SET [First 6 Months] AS 'head([Months of 2004],6)'

 	MEMBER [Measures].[Count] AS 'Count([Months of 2004])'

 	MEMBER [Measures].[Agg] AS 'Aggregate([Months of 2004], [Measures].[Sales Amount])'

 	MEMBER [Measures].[Min] AS 'Min([Months of 2004], [Measures].[Sales Amount])'

 	MEMBER [Measures].[Max] AS 'Max([Months of 2004], [Measures].[Sales Amount])'

 	MEMBER [Measures].[Avg] AS 'Avg([Months of 2004], [Measures].[Sales Amount])'

 	MEMBER [Measures].[Avg 6 month] AS 'Avg([First 6 Months], [Measures].[Sales Amount])'

 SELECT	

 	{[Measures].[Sales Amount], [Count], [Agg], [Min], [Max], [Avg], [Avg 6 month]} ON AXIS(0),

 	{[Months of 2004]} ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Example 11-42 Aggregates on same query edge

 [image:]

 /* Creating aggregation measures on the same axis of a reference set */

 WITH

 	SET [Months of 2004] AS 'descendants([Time].[2004],2)'

 	SET [First 6 Months] AS 'head([Months of 2004],6)'

 	SET [Last 6 Months] AS 'tail([Months of 2004],6)'

 	MEMBER [Time].[2004].[First 6 Summary] AS 'Aggregate([First 6 Months])'

 	MEMBER [Time].[2004].[Last 6 Summary] AS 'Aggregate([Last 6 Months])'

 /* Given that all of the months we are working with are contained under a single member we could use the ancestor member itself to define our overall summary value using:

 	MEMBER [Time].[2004].[Months Grand Summary] AS '[Time].[2004' */

 /* Addition between calculated aggregate members will apply a sum rather than using the aggregation defined for the measure itself and can lead to unexpected results:

 	MEMBER [Time].[2004].[Months Grand Summary] AS '[First 6 Subtotal] + [Last 6 Subtotal]' */

 /* If there is no single parent that encapsulates all the members and only all the members of the set then the aggregation must be performed across the set itself */

 	MEMBER [Time].[2004].[Months Grand Summary] AS 'Aggregate([Months of 2004])'

 SELECT

 	{[Measures].[Sales Amount], [Measures].[Profit Amount]} ON AXIS(0),

 	{[First 6 Months], [First 6 Summary], [Last 6 Months], [Last 6 Summary], [Months Grand Summary]}ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.5 Numeric

 In this section we explore the numeric functions, which are demonstrated in Example 11-43 on page 313.

 Abs

 Returns the absolute value of a number.

 The function takes the following form:

 >>-Abs--(--NumericExpr--)-><

 Sqr and Sqrt

 Sqrt is a synonym for the Sqr function. Both functions return the square root of a positive numeric value. Square roots of negative numbers will return a “not a number” message, NaN.

 Sqr

 The function takes the following form:

 >>-Sqr--(--NumericExpr--)-><

 Sqrt

 The function takes the following form:

 >>-Sqrt--(--NumericExpr--)-><

 Round

 This function returns a numeric value to the nearest integer using the half-up or Arithmetic rounding. This means that when a value is between two integers then the value is rounded up. For example, 2.5 is between 2 and 3; the half-up rounding will round 2.5 to the next greater integer, 3. A value such as -2.5 will also be rounded to the next greatest integer, 2.

 The function takes the following form:

 >>-Rank--(--TupleExpr--,--SetExpr--+----------------+--)-><

 											'-,--NumericExpr-'

 Example 11-43 Abs, Sqrt, and Round

 [image:]

 /* A series of calculations to demonstrate basic numeric functions within MDX */

 WITH

 SET [Time Set] AS 'descendants([Time].[2004], 2)'

 /* Create a series of integer values so that the subsequent calculations are easier to understand than would be possible with large measure values. */

 MEMBER [Measures].[Integers] AS 'Rank([Time].currentMember, [Time Set])'

 /* Create a sequence of positive and negative decimal values to demonstrate rounding and square roots */

 MEMBER [Measures].[Decimals] AS '[Measures].[Integers]/2 - 3'

 /* Note the half-up rounding */

 MEMBER [Measures].[Rounded Decimals] AS 'Round([Measures].[Decimals])'

 /* Note the NaN result for square roots of negative values */

 MEMBER [Measures].[Sqrt of Decimals] AS 'Sqrt([Measures].[Decimals])'

 SELECT

 {[Measures].[Integers], [Measures].[Decimals], [Measures].[Rounded Decimals], [Measures].[Sqrt of Decimals]} ON COLUMNS,

 [Time Set] on ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Rank

 Reviewing actual measure values to gauge the relative position of a member or tuple can often be tedious or confusing due to the amount of data or data format being displayed. The Rank function identifies the relative position of a member or tuple in a set based on either the exact tuple in the ordered set or by matching a numeric measure value in the set. This is demonstrated in Example 11-44.

 The first argument, TupleExpr, identifies an element from the set, SetExpr. If the NumericExpr is not specified, then the rank value of the tuple is determined based on the position of the exact tuple in the set. This means that different tuples with the same measure value will not receive the same rank number.

 If NumericExpr is defined, then the rank matches the measure value for the tuple evaluated with NumericExpr to the values of each of the tuples in the set using the same NumericExpr. This means that if the same numeric value is produced for two different elements of the set, there is the potential for a tie. The rank value returned is the position of the first element with the matching value. Subsequent rank values are incremented due to the duplicate numeric value in the set.

 The function takes the following form:

 >>-Rank--(--TupleExpr--,--SetExpr--+----------------+--)-><

 												 '-,--NumericExpr-'

 Example 11-44 Rank

 [image:]

 WITH

 SET [Time Set] AS 'tail([Time].Levels(1).members, 2)'

 SET [Store Set] AS '{[Store].Levels(4).members}'

 /* This calculation manufactures a duplicate measure value in the results. This allows us to demonstrate the handling of ties for Rank 2 and Rank 3. The Sales Amount value for store 1414 is set to the Sales Amount value of store 1199. */

 MEMBER [Measures].[Duplicate] AS 'IIf([Store].currentMember IS [ValueTrend Store 1414],([ValueTrend Store 1199],[Measures].[Sales Amount]), [Measures].[Sales Amount])'

 /* The set order for Rank 1 is determined by the hierarchy. The result for Rank 1 reflects the position of the store in the hierarchical order rather than based on a measure value. */

 MEMBER [Measures].[Rank 1] AS 'Rank([Store].currentMember, [Store Set])'

 /* The set for Rank 2 is ordered by the [Duplicate] measure values. The tied members, stores 1199 and 1414, are ordered relative to each other based on their position in the hierarchy. The rank identifies the tuples based on the position in the set so the stores 1414 and 1199 receive different rank values.*/

 MEMBER [Measures].[Rank 2] AS 'Rank([Store].currentMember, Order([Store Set], [Measures].[Duplicate], BDESC))'

 /* Rank 3 builds on Rank 2 by defining a numeric expression for the third argument of the rank function. The values of the numeric expression are evaluated for each tuple. Since stores 1414 and 1199 have duplicate values they receive the same rank value. Note that the following rank value is skipped (Rank 3 under 2003 does not have a rank value of 2) */

 MEMBER [Measures].[Rank 3] AS 'Rank([Store].currentMember, Order([Store Set], [Measures].[Duplicate], BDESC), [Measures].[Duplicate])'

 SET [Measure Set] AS '{[Measures].[Duplicate], [Rank 1], [Rank 2], [Rank 3]}'

 SELECT

 CROSSJOIN([Time Set], [Measure Set]) ON AXIS(0),

 ORDER([Store Set], ([Measures].[Duplicate],[Time Set].item(0)), BDESC) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Stddev (Stdev)

 The Stddev function is a synonym for the Stdev function. Both functions compute the sample standard deviation (unbiased).

 The set of values used to compute the sample standard deviation are defined by SetExpr. When NumericExpr is defined for the function, the values for the elements of the set are determined by the numeric expression. When NumericExpr is not defined, the values are determined based on the query context in combination with the elements of the set.

 The sample standard deviation is intended for applications where the data reflects a sampling of the overall data population.

 Stddev

 The function takes the following form:

 >>-Stddev--(--SetExpr--+----------------+--)-------><

 							'-,--NumericExpr-'

 Stdev

 The function takes the following form:

 >>-Stdev--(--SetExpr--+----------------+--)-------><

 							'-,--NumericExpr-'

 StddevP (StdevP)

 StddevP is a synonym of the StdevP function. Both functions calculate the population standard deviation (biased).

 The set of values used to compute the sample standard deviation are defined by SetExpr. When NumericExpr is defined for the function, the values for the elements of the set are determined by the numeric expression. When NumericExpr is not defined, the values are determined based on the query context in combination with the elements of the set.

 The population standard deviation applies a bias correction to estimate the standard deviation of the entire population based on the sample set. The bias correction is small over large data sets.

 StddevP

 The function takes the following form:

 >>-StddevP--(--SetExpr--+----------------+--)------><

 							'-,--NumericExpr-'

 StdevP

 The function takes the following form:

 >>-StdevP--(--SetExpr--+----------------+--)------><

 							'-,--NumericExpr-'

 Variance (Var)

 The Variance function is a synonym for the Var function. Both functions calculate the statistical (unbiased) variance of a sample data set.

 The set of values used to compute the variance are defined by SetExpr. When NumericExpr is defined for the function, the values for the elements of the set are determined by the numeric expression. When NumericExpr is not defined, the values are determined based on the query context in combination with the elements of the set.

 Variance

 The function takes the following form:

 >>-Variance--(--SetExpr--+----------------+--)----------><

 								'-,--NumericExpr-'

 Var

 The function takes the following form:

 >>-Var--(--SetExpr--+----------------+--)----------><

 						'-,--NumericExpr-'

 VarianceP (VarP)

 The VarianceP function is a synonym for the VarP function. Both functions calculate the statistical (biased) population variance.

 The set of values used to compute the variance are defined by SetExpr. When NumericExpr is defined for the function, the values for the elements of the set are determined by the numeric expression. When NumericExpr is not defined, the values are determined based on the query context in combination with the elements of the set.

 The population variance applies a bias correction to estimate the population variance based on the values of the sample set. The bias correction is small over large data sets.

 VarianceP

 The function takes the following form:

 >>-VarianceP--(--SetExpr--+----------------+--)----------><

 								'-,--NumericExpr-'

 VarP

 The function takes the following form:

 >>-VarP--(--SetExpr--+----------------+--)----------><

 						'-,--NumericExpr-'

 The standard deviation and variance are demonstrated in Example 11-45.

 Example 11-45 Standard Deviation and Variance

 [image:]

 /* Calculating sample and population standard deviation and variance.*/

 WITH

 SET [Store Set] AS '{[Store].Levels(4).members}'

 MEMBER [Store].[Stddev] AS 'Stddev([Store Set])'

 MEMBER [Store].[StddevP] AS 'StddevP([Store Set])'

 MEMBER [Store].[Variance] AS 'Variance([Store Set])'

 MEMBER [Store].[VarianceP] AS 'VarianceP([Store Set])'

 SELECT

 {[Measures].[Sales Amount]} ON AXIS(0),

 {[Store Set], [Stddev], [StddevP], [Variance], [VarianceP]} ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.6 Strings

 In this section, we describe various functions dealing with strings.

 Caption (Description and Name)

 These three functions all serve to retrieve the name of the reference object as a string. The string can be used with additional functions to extract information from the name, define conditional expressions, or create more meaningful data labels. These functions are demonstrated in Example 11-46 on page 320.

 	
 Note: If you find that you are manipulating object names to extract information from the string or build additional tables, consider building these string expressions into the cube. The information may be defined as a related attributes of a level or may in fact be an additional level that should be incorporated into the cube design.

 Caption

 The function takes the following form:

 >>-+-HierarchyExpr-+--.--Caption-------------------------><

 +-LevelExpr-----+

 '-MemberExpr----'

 Description

 The function takes the following form:

 >>-+-HierarchyExpr-+--.--Description---------------------><

 +-LevelExpr-----+

 '-MemberExpr----'

 Name

 The function takes the following form:

 >>-+-HierarchyExpr-+--.--Name----------------------------><

 +-LevelExpr-----+

 '-MemberExpr----'

 Example 11-46 Caption

 [image:]

 /* Using the caption function with a filter function to restrict the products by their member name. */

 SELECT

 	{[Measures].[Sales Amount]} ON AXIS(0),

 	Filter([Product].Levels(5).members, [Product].currentMember.caption >= "ZOO") ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 LCase and UCase

 These two functions shift character strings between upper and lower case characters. UCase raises the case while LCase lowers it. They are demonstrated in Example 11-47 on page 321.

 These two functions are useful when performing string comparisons because they allow you to ignore the character case when attempting to match strings.

 LCase

 The function takes the following form:

 >>-LCase--(--StringExpr--)-------------------------------><

 UCase

 The function takes the following form:

 >>-UCase--(--StringExpr--)-------------------------------><

 Left and Right

 These two functions return a substring from a character string, StringExpr. Left defines the substring as a series of characters taken from the left (start) of the string while Right creates the substring from characters taken from the right (end) of the string.

 The number of characters taken from the input string is defined by NumericExpr. If the number is larger than the length of the string then the original string is returned without any additional padding.

 Combining these functions will allow a substring to be taken from the middle characters of a string.

 Left

 The function takes the following form:

 >>-Left--(--StringExpr--,--NumericExpr--)----------><

 Right

 The function takes the following form:

 >>-Right--(--StringExpr--,--NumericExpr--)----------><

 Example 11-47 UCase, LCase, Left, and Right

 [image:]

 /* Demonstrate string manipulation with UCase, LCase, Left, and Right */

 WITH

 MEMBER [Measures].[Upper Store] AS 'UCase([Store].currentMember.name)'

 MEMBER [Measures].[Lower Store] AS 'LCase([Store].currentMember.name)'

 MEMBER [Measures].[Right 4] AS 'Right([Store].currentMember.name, 4)'

 MEMBER [Measures].[Left 3] AS 'Left([Right 4], 3)'

 SELECT

 {[Measures].[Upper Store], [Measures].[Lower Store], [Measures].[Right 4] , [Measures].[Left 3]} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 [image:]

 InStr

 The InStr function locates one string within another and returns the starting character position of the located string. If the string is not found, the function returns zero. The first character in the search string, StringExpr1, is located at position 1.

 The function also takes an optional Offset integer value. The effect of the offset is to force the search for StringExpr2 to start at a later character within the input string, StringExpr1. The first character of the string to be searched, StringExpr1, is located at index 1. It is demonstrated in Example 11-48 on page 322.

 The function takes the following form:

 >>-InStr--(--+-----------+--StringExpr1--,--StringExpr2--)-><

 '-Offset--,-'

 Example 11-48 InStr

 [image:]

 /* Identify all the electronics products names that contain radium. InStr is used to locate the string "RADIUM" in the upper case product names. */

 WITH

 MEMBER [Measures].[Contains Radium] AS 'InStr(UCase([Product].CurrentMember.Name), "RADIUM")'

 SELECT

 {[Measures].[Sales Amount]} ON AXIS(0),

 Filter(descendants([Product].[ELECTRONICS],-1, LEAVES), [Measures].[Contains Radium] > 0) ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Len

 The Len function returns the number of characters in the input string, StringExpr. It is demonstrated in Example 11-49.

 The function takes the following form:

 >>-Len--(--StringExpr--)---------------------------------><

 Example 11-49 Len

 [image:]

 /* Demonstrate string manipulation with Len, InStr, and Right to extract the member path from the unique name. */

 WITH

 -- Obtain the member unique name

 MEMBER [Measures].[Unique Name] AS '[Time].currentMember.uniquename'

 -- Calculate the name length in case it varies

 MEMBER [Measures].[Name Length] AS 'Len([Unique Name])'

 -- Identify the end of the dimension reference in the unique name

 MEMBER [Measures].[Dim End Pos] AS 'InStr([Unique Name], [Time].currentMember.dimension.name) + Len([Time].currentMember.dimension.name) + 1'

 -- Retrieve the right-hand characters excluding the dimension name

 MEMBER [Measures].[Member Path] AS 'Right([Unique Name], [Name Length] - [Dim End Pos])'

 SELECT

 {[Unique Name], [Member Path]} ON COLUMNS,

 {[Time].[2004].[4].children} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Properties

 The Properties function will grant you access to all the related attributes of a member by specifying the related attribute name as StringExpr in the Properties dot function.

 There are also several default properties available for each member. A list of these default properties can be found in Table 11-1 on page 324. Several can be accessed directly using other string functions, such as Caption or UniqueName. However, while many additional member properties can be calculated using various complex expressions, such as PARENTS or CHILDREN_CARDINALITY, it is much easier to use the Properties function to access this information. This is demonstrated in Example 11-50 on page 325.

 The function takes the following form:

 >>-MemberExpr--.--Properties--(--StringExpr--)-----><

 Table 11-1 Default properties available using the Properties function

 	
 StringExpr

 	
 Return Value

 	
 CAPTION

 	
 Returns the caption associated with the member. This property has the same value as MEMBER_NAME in InfoSphere Warehouse.

 	
 CHILDREN_CARDINALITY

 	
 Returns the number of children of the current member.

 	
 CUBE_NAME

 	
 Returns the name of the current cube.

 	
 DESCRIPTION

 	
 Returns the description of the current member. This property has the same value as MEMBER_NAME in InfoSphere Warehouse.

 	
 DIMENSION_UNIQUE_NAME

 	
 Returns the unique name of the current dimension.

 	
 HIERARCHY_UNIQUE_NAME

 	
 Returns the unique name of the current hierarchy.

 	
 LEVEL_NUMBER

 	
 Returns the number of the current level.

 	
 LEVEL_UNIQUE_NAME

 	
 Returns the unique name of the current level.

 	
 MEMBER_CAPTION

 	
 Returns the caption associated with the member. This property has the same value as MEMBER_NAME in InfoSphere Warehouse.

 	
 MEMBER_GUID

 	
 Returns the GUID (globally unique identifier) of the current member. This property is always null in InfoSphere Warehouse.

 	
 MEMBER_NAME

 	
 Returns the name of the current member.

 	
 MEMBER_ORDINAL

 	
 Returns the ordinal (sort rank) of the current member.

 	
 MEMBER_TYPE

 	
 Returns the type of the current member. The valid types are:

 •MDMEMBER_TYPE_REGULAR (1)

 •MDMEMBER_TYPE_ALL (2)

 •MDMEMBER_TYPE_FORMULA (4)

 •MDMEMBER_TYPE_MEASURE (3)

 •MDMEMBER_TYPE_UNKNOWN (0)

 A calculated measure will return 1 as the formula type takes precedence over the measure type.

 	
 MEMBER_UNIQUE_NAME

 	
 Returns the unique name of the current member.

 	
 PARENT_COUNT

 	
 Returns the number of parents of the current member. This value is always one in InfoSphere Warehouse.

 	
 PARENT_LEVEL

 	
 Returns the distance from the root of the hierarchy of the current member's parent.

 	
 PARENT_UNIQUE_NAME

 	
 Returns the unique name of the parent of the current member.

 	
 Note: For automation, the properties would typically be referenced using the PROPERTIES key word as part of the axis definition:

 {[Time].[2004], [Time].[2003]} PROPERTIES MEMBER_NAME ON AXIS(1)

 However, such applications are beyond the scope of this document.

 Example 11-50 Properties

 [image:]

 /* Using the properties function to retrieve additional information about the current member. Note that the member type allows you to identify calculated members from the set. */

 WITH

 MEMBER [Measures].[Child Count] AS '[Time].currentMember.properties("CHILDREN_CARDINALITY")'

 MEMBER [Measures].[Member Ordinal] AS '[Time].currentMember.properties("MEMBER_ORDINAL")'

 MEMBER [Measures].[Member Type] AS '[Time].currentMember.properties("MEMBER_TYPE")'

 -- A calculated time member to demonstrate the member type property.

 MEMBER [Time].[Month Rollup] AS 'aggregate([Time].[2004].[1].children)'

 SELECT

 	{[Measures].[Child Count], [Measures].[Member Ordinal], [Measures].[Member Type]} ON AXIS(0),

 	{[Time].defaultMember, [Time].[2004], [Time].[2004].[1], [Time].[2004].[1].children, [Month Rollup]} ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 UniqueName

 The UniqueName function returns the unique reference name of a hierarchy, level or member, as demonstrated in Example 11-51.

 The function takes the following form:

 >>-+-HierarchyExpr-+--.--UniqueName-----------------------><

 +-LevelExpr-----+

 '-MemberExpr----'

 Example 11-51 UniqueName functions

 [image:]

 /* Identifying unique object references using the UniqueName dot function. */

 WITH

 MEMBER [Measures].[Member Unique Name] AS '[Time].currentMember.uniqueName'

 MEMBER [Measures].[Level Unique Name] AS '[Time].currentMember.level.uniqueName'

 MEMBER [Measures].[Hierarchy Unique Name] AS '[Time].currentMember.hierarchy.uniqueName'

 SELECT

 	{[Time].[2004]} ON AXIS(0),

 	{[Member Unique Name], [Level Unique Name], [Hierarchy Unique Name]} ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 Value

 The Value function returns the number or string value associated with the member. The value dot function is optional because the default result of a member reference is to return the associated value. However, members of non-measure dimensions may not have an intrinsic value associated with them.

 The function takes the following form:

 >>-MemberExpr--+----------+------------------------------><

 					'-.--Value-'

 11.4.7 Family

 The family functions work with the structure of the hierarchy. The relationships between parent and child members allow for navigation both up and down the hierarchy. Likewise, the parent-child relationship allows members at a given level to be subdivided based on their parent member and the members in these subsets can be related as sibling members.

 	
 Note: None of these family functions will return calculated members. To include these members use the AddCalculatedMembers function.

 Children, Descendants, FirstChild, and LastChild

 This set of functions performs downward navigation within the hierarchy. Visually, these functions can be shown with our sample Geography hierarchy, as shown in Figure 11-17.

 [image:]

 Figure 11-17 Navigating down the hierarchy with Children, Descendants, FirstChild, and LastChild

 	
 Note: None of these functions will return calculated members. To include these members use the AddCalculatedMembers function.

 Children

 Returns the members that are the immediate children of the referenced member.

 The function takes the following form:

 >>---MemberExpr----.--Children---------------------------><

 Descendants

 Returns the members that are all part of the same branch of the hierarchy as defined by the member reference, MemberExpr. The depth at which the members are retrieved can either be specified based on a fixed level reference, LevelExpr, or a relative distance beneath MemberExpr, using the DistanceExpr integer value.

 If a distance is specified, note that the relative depth is zero-based where the current level of the member is at level 0.

 The function takes the following form:

 >>-Descendants--(--MemberExpr-+---------------------------------+--)-><

 						 				 '-,--+-LevelExpr----+--+-------+--'

 												'-DistanceExpr-'						 '-,-OPTION-'			

 The optional OPTION flag can take several values and will allow you to control which members are returned from the descendants function. A list of the possible values for the OPTION flag are described in Table 11-2.

 Table 11-2 OPTION flags for the descendants function

 	
 OPTION

 	
 Returns Members From

 	
 SELF

 	
 The specified level only. If you specify this flag and you specify the level of the reference member, MemberExpr, the function returns a set containing the reference member. If a level above the reference member is specified (or a negative distance), then the function returns an empty set.

 	
 AFTER

 	
 All levels below the specified level. If you specify this flag and you specify a level above the specified member (or a negative depth), the function returns a set containing the reference member and all of its descendants.

 	
 BEFORE

 	
 All levels between the reference member and the specified level, excluding those members from the specified level itself.

 	
 BEFORE_AND_AFTER

 	
 All levels below the reference member, excluding those members from the specified level. If you specify this flag and you specify a level above the reference member (or a negative depth), the function returns a set containing the reference member and all of its descendants.

 	
 SELF_AND_AFTER

 	
 The specified level and all levels below that level. If you specify this flag and you specify the level of the reference member, a level above the reference member (or a negative depth), the function returns a set containing the specified member and all of its descendants.

 	
 SELF_AND_BEFORE

 	
 The specified level and all levels between that level and the reference member. If you specify this flag and you specify the level of the reference member, the function returns a set containing the reference member.

 	
 SELF_BEFORE_AFTER

 	
 All levels below the level of the reference member. If you specify this flag and you specify the level of the specified member, a level above the reference member (or a negative depth), the function returns a set containing the specified member and all of its descendants.

 	
 LEAVES

 	
 All levels between the reference member and the specified level that do not themselves have descendants. If you specify this flag and you specify the level of the reference member, the function returns a set containing the reference member. If you specify this flag and you specify the level above the reference member, the function returns a set containing all of descendants members of the reference member that are leaves (have no further descendants).

 The default option, if one is not specified, is SELF. Thus, the default behavior is to return the descendant members at the specified level or an empty set if the level is above the reference member (or a negative distance is used).

 FirstChild

 The function takes the following form:

 >>---MemberExpr----.--FirstChild-------------------------><

 LastChild

 The function takes the following form:

 >>---MemberExpr----.--LastChild--------------------------><

 We depict this in Example 11-52 on page 330.

 Example 11-52 Children, Descendants, FirstChild, and LastChild

 [image:]

 /* Using the children, firstchild, lastchild, and descendants functions to determine the opening and closing month Sales Amount for each quarter of 2004 for all the members in the 3 levels below Subdivision 1B */

 WITH

 -- Determine the quarters through the immediate child members of 2004.

 SET [2004 Quarters] AS '[Time].[2004].children'

 -- Use the set of quarters to find the first and last child members for each quarter.

 SET [First Month of each Quarter] AS 'Generate([2004 Quarters], [Time].currentMember.firstChild)'

 SET [Last Month of each Quarter] AS 'Generate([2004 Quarters], [Time].currentMember.lastChild)'

 SELECT

 hierarchize({[First Month of each Quarter],[Last Month of each Quarter]}) on COLUMNS,

 -- Use SELF_AND_BEFORE to get the members from the 3 levels below Subdivision 1B, including Subdivision 1B.

 descendants([Store].[Subdivision 1B], 3, SELF_AND_BEFORE) ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Ancestor, Ancestors, Ascendants, and Parent

 While the prior set of functions allowed you to navigate down the hierarchy, this set of functions allows you to navigate up the hierarchy. Figure 11-18 displays these functions visually with the sample Geography hierarchy.

 [image:]

 Figure 11-18 Navigating up the hierarchy with Ancestor, Ancestors, Ascendants, and Parent

 Ancestor

 This function navigates up the hierarchy to return a member at the specified level (LevelExpr) or distance (DistanceExpr) above the reference member (MemberExpr) and with the same branch of the hierarchy.

 If the level of the reference member, or a distance of zero, is specified then the original reference member is returned.

 The function takes the following form:

 >>-Ancestor--(--MemberExpr--,--+-LevelExpr----+--)-><

 										 '-DistanceExpr-'

 Ancestors

 This function returns a set of the ancestors of a given member (MemberExpr) at a specified level (LevelExpr) or integer level distance (DistanceExpr) above the reference member.

 In InfoSphere Warehouse a member can only have a single parent member. This means that the set returned from the Ancestors function will contain a maximum of one member.

 This function is equivalent to the Ancestor function with the exception that Ancestors returns a set while Ancestor returns a member reference. Given this current overlap in functionality, the Ancestor function is often the more appropriate choice when writing the queries.

 The function takes the following form:

 >>-Ancestors--(--MemberExpr--,--+-LevelExpr----+--)-><

 											'-DistanceExpr-'

 Ascendants

 The Ascendants function returns the set of members between the referenced member (MemberExpr) and the root of the hierarchy. The order of the elements in the returned set starts with the referenced member and is followed by the immediate ancestor, the second level ancestor, and so forth, ending with the root member.

 The function takes the following form:

 >>-Ascendants--(--MemberExpr--)--------------------------><

 Parent

 The Parent function is a shortcut reference to the ancestor member one level above the referenced member, MemberExpr.

 Using the Parent dot function on a root member will return null.

 The function takes the following form:

 >>-MemberExpr--.--Parent---------------------------------><

 We demonstrate these functions in Example 11-53 on page 333.

 Example 11-53 Parent, Ancestor, Ancestors, and Ascendants

 [image:]

 /* Calculate various percent of base calculations using the parent and ancestors of the current member. Display the entire members from the hierarchical path to the division members using the ascendants function applied to each of the selected members. */

 WITH

 /* The percent of the current Sales Amount to the Sales Amount of the parent member. */

 MEMBER [Measures].[Pct of Parent Total] AS '[Measures].[Sales Amount]/([Store].currentMember.parent, [Measures].[Sales Amount])*100'

 /* The percent of the current Sales Amount to the Sales Amount of at the Subdivision level. */

 MEMBER [Measures].[Pct of Subdivision] AS '[Measures].[Sales Amount]/(ancestor([Store].currentMember,[Store].[Organization Unit Sub Division Level]), [Measures].[Sales Amount])*100'

 /* The set of two target divisions */

 SET [Selected District Set] AS '{[Store].[District 38], [Store].[District 127]}'

 /* The ascendants of the two selected divisions. */

 SET [District Set Ascendants] AS 'hierarchize(Generate([Selected District Set], ascendants([Store].currentMember)))'

 SELECT

 {[Measures].[Sales Amount], [Pct of Parent Total], [Pct of Subdivision]} on COLUMNS,

 [District Set Ascendants] ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Cousin

 The cousin function locates a member at the same level as a reference member, MemberExpr, at the same relative position under a new ancestor member, AncestorExpr.

 Functionally, the ancestor of MemberExpr is determined at the same level as the AncestorExpr member. The descendants of the ancestor of MemberExpr are obtained and the index of the reference member is identified in this set of descendants. The descendents of the new ancestor member, AncestorExpr, are then evaluated at the same level as MemberExpr. The cousin member is identified by locating the member at the same position index in the new set of descendants.

 Figure 11-19 provides a visual representation of how the cousin member is evaluated.

 [image:]

 Figure 11-19 The Cousin function

 If a member does not exist at the same index position under the new ancestor, then the cousin function returns null. This is demonstrated in Example 11-54 on page 335.

 Because the member order is a key factor in determining the cousin member, it may not make sense to apply the cousin function to dimensions where the member order does not indicate some fact or relationship within the data.

 One of the more common applications for the cousin function deals with Time dimensions. With a time dimension, the member order indicates some additional information about the data and, generally, the same number of descendants will exist under the new ancestor member.

 	
 Note: When identifying a member based on a relative ancestor (such as a prior year or two years ago) the ParallelPeriod function is more appropriate.

 The function takes the following form:

 >>-Cousin--(--MemberExpr--,--AncestorExpr--)-------><

 Example 11-54 Cousin

 [image:]

 /* Comparing the quarter Sales Amount values for each year to the quarterly Sales Amount reported in 2004. */

 WITH

 /* Display year label to identify each quarter */

 MEMBER [Measures].[Year] AS 'ancestor([Time].currentMember,[Time].[Calendar Year Level]).name'

 /* Locate the Sales Amount for the matching quarter under 2004 */

 MEMBER [Measures].[2004 Sales Amount] AS '(cousin([Time].currentMember, [Time].[2004]) , [Measures].[Sales Amount])'

 /* Compare the Sales Amount for the current quarter to the value for the same quarter in 2004 */

 MEMBER [Measures].[Comparison to 2004] AS '(1 + ([Measures].[Sales Amount]-[Measures].[2004 Sales Amount])/[Measures].[2004 Sales Amount])*100'

 SELECT

 {[Measures].[Year], [Measures].[Sales Amount], [Measures].[2004 Sales Amount], [Measures].[Comparison to 2004]} ON COLUMNS,

 {descendants([Time].defaultMember, 2)} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 Siblings, FirstSibling, and LastSibling

 These sibling functions all work with the child members of a common parent member. It is demonstrated in Example 11-55.

 Siblings

 The Siblings function returns the set of children members for the parent of the reference member, MemberExpr.

 The function takes the following form:

 >>---MemberExpr----.--Siblings---------------------------><

 FirstSibling

 The first sibling of the reference member, MemberExpr, is the FirstChild of the parent member. If the reference member does not have a parent member, then the first member at the same level as the reference member are returned by the FirstSibling function.

 The function takes the following form:

 >>---MemberExpr----.--FirstSibling-----------------------><

 LastSibling

 The last sibling of the reference member, MemberExpr, is the LastChild of the parent member. If the reference member does not have a parent member, then the last member at the same level as the reference member are returned by the LastSibling function.

 The function takes the following form:

 >>---MemberExpr----.--LastSibling------------------------><

 Example 11-55 Siblings, FirstSibling, and LastSibling

 [image:]

 /* Comparing a single quarter value (Q3 of 2004) to the first quarter, last quarter, and the rollup of all quarters in the same year */

 WITH

 /* Finding the first quarter in 2004 using firstSibling */

 MEMBER [Measures].[First Quarter Value] AS '([Time].currentMember.FirstSibling, [Measures].[Sales Amount])'

 /* Finding the last quarter in 2004 using lastSibling */

 MEMBER [Measures].[Last Quarter Value] AS '([Time].currentMember.LastSibling, [Measures].[Sales Amount])'

 /* Rolling up the values for all the quarters using the siblings function to find all the quarters in 2004 */

 MEMBER [Measures].[Total of All Quarters] AS 'Sum([Time].currentMember.Siblings, [Measures].[Sales Amount])'

 SELECT

 {[Measures].[Sales Amount], [Measures].[First Quarter Value], [Measures].[Last Quarter Value], [Measures].[Total of All Quarters]} ON COLUMNS,

 {[Time].[2004].[3]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.8 Relative Time

 The Relative Time functions are a specialized set that leverage the built-in order and hierarchical structure of a time dimension to create some of the standard time series and relationships for reporting.

 While most of these functions were created to improve time analysis, they are not restricted to time dimensions. However, these functions are logically only applicable to hierarchies where the member order establishes a strong relationship between members.

 For example, you may have a customer dimension where customers are ordered in ascending order based on their name. While the customer members are ordered, the alphabetical order does not tell us if there is any relationship between the customer “Kent Torokvei” and “Lazlo Hollyfeld.” However, the sequence of the members in a time dimension tells us that one member follows the other in time.

 ClosingPeriod and OpeningPeriod

 ClosingPeriod and OpeningPeriod locate the first and last member, respectively, within the set of descendants of MemberExpr at the level LevelExpr.

 Both input arguments are optional. If the level and member are not defined, then the current member of the time dimension is used as MemberExpr, and the level used is the first level below the current member of the time dimension. This scenario is equivalent to using the firstChild or lastChild of the current time member.

 If the functions only receive a level as an input argument, then the member used is the current member of the time hierarchy. The functions in this scenario would be equivalent to retrieving the head or tail member from the set of descendants at the given level. The ClosingPeriod and OpeningPeriod functions simplify this process by providing a more compact form of what could be a length expression.

 Visually, these two functions can be seen on our sample time hierarchy in Figure 11-20.

 [image:]

 Figure 11-20 OpeningPeriod, ClosingPeriod, and LastPeriods

 ClosingPeriod

 The function takes the following form:

 >>-ClosingPeriod--(--+------------------------------+--)-><

 						 	 '-LevelExpr--+---------------+-'

 										 	 	'-,--MemberExpr-'

 OpeningPeriod

 The function takes the following form:

 >>-OpeningPeriod--(--+------------------------------+--)-><

 			 	 			'-LevelExpr--+---------------+-'

 												'-,--MemberExpr-'

 The functions are demonstrated in Example 11-56 on page 339.

 Example 11-56 ClosingPeriod and OpeningPeriod

 [image:]

 /* Identifying the first and last month sales for each quarter. If we were working with an inventory measure then a similar approach could be used to identify opening and closing inventory values for the period. */

 WITH

 SET [Quarter Set] AS '[Time].[2004].children'

 MEMBER [Measures].[Year Name] AS 'ancestor([Time].currentMember, [Time].Levels(1)).name'

 MEMBER [Measures].[First Month Sales] AS '(OpeningPeriod([Time].Levels(3)), [Measures].[Sales Amount])'

 MEMBER [Measures].[Last Month Sales] AS '(ClosingPeriod([Time].Levels(3)), [Measures].[Sales Amount])'

 SELECT

 {[Measures].[Year Name],[Measures].[Sales Amount], [Measures].[First Month Sales], [Measures].[Last Month Sales]} ON AXIS(0),

 {[Quarter Set]} ON AXIS(1)

 FROM [Price Analysis]

 [image:]

 [image:]

 LastPeriods

 The LastPeriods function is handy when creating rolling time calculations. The function uses a member reference, MemberExpr, and then returns a set of members at the same level counting back IndexExpr members from the reference member.

 Positive index values will retrieve consecutive members moving backward in the set of members at the level of the reference member. Negative index values will retrieve consecutive members moving forward in the set of members at the level of the reference member. In both cases, the reference member will also be included as part of the returned set.

 If an index of 0 is specified, the function will return an empty set. If an index of 1 is specified, the reference member is returned.

 To help understand this function see Figure 11-20 on page 338, where Oct is used as the reference member to identify the next 3 (negative index) periods, Oct, Nov, and Dec. If a positive index had been used, the set would have spanned across multiple quarters to return Aug, Sep, and Oct.

 The function takes the following form:

 >>-LastPeriods--(--IndexExpr--,--MemberExpr---)-><

 LastPeriods is demonstrated in Example 11-57.

 Example 11-57 LastPeriods

 [image:]

 /* Calculating rolling period aggregates using the LastPeriods function. Note that although only the months of 2004 are displayed the lastPeriods function will access the month members from 2003 to satisfy the rolling periods for the first few months of 2004. */

 WITH

 SET [Month Set] AS 'descendants([Time].[2004], 2)'

 MEMBER [Measures].[Rolling 6 Month Total] AS 'Sum(lastPeriods(6, [Time].currentMember), [Measures].[Sales Amount])'

 MEMBER [Measures].[Rolling 3 Month Average] AS 'Avg(lastPeriods(3, [Time].currentMember), [Measures].[Sales Amount])'

 SELECT

 {[Measures].[Sales Amount], [Measures].[Rolling 6 Month Total], [Measures].[Rolling 3 Month Average]}ON COLUMNS,

 {[Month Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 ParallelPeriod

 The ParallelPeriod function allows you to find a matching member under a new ancestor member. This is similar in effect to the cousin function, except that the new ancestor is specified by a relative index, DistanceExpr, instead of with a fixed member reference.

 The process for evaluating the parallel period is to first identify the ancestor member of the reference member, MemberExpr, at the given level, LevelExpr. This ancestor member is then used for two things. First, the set of descendants at the same level of MemberExpr is used to identify the position of the reference member. Next, the ancestor is used to find a new ancestor member as a relative offset at the ancestor level. The new ancestor is offset by DistanceExpr members. The descendants of the new ancestor are then located at the same level as the original member reference. The ParallelPeriod member is located at the same position within this set as the position of the original member within the first set of descendants.

 While this may seem like an involved process, it works in a much more intuitive way. Conceptually, this is used to reference time periods as follows:

 •Same period in the prior Month

 •Same period in the prior Quarter

 •Same period in the prior Year

 •Same period two years ago

 •Same period in the next Quarter

 A positive DistanceExpr will determine a relative period backwards in time. A negative DistanceExpr will determine a relative period forward in time. An offset of zero will return the reference member.

 Figure 11-21 illustrates this logical process where the parallel period is obtained using the quarter level, a distance of -3, and the member reference to January of 2008. January is the first period in the quarter, Q1, and the resulting member, Oct, is the first period under the relative quarter, Q4.

 [image:]

 Figure 11-21 The parallel period of January, 3 quarters ahead.

 The function takes the following form:

 >>-ParallelPeriod--(--LevelExpr--,--DistanceExpr--,--MemberExpr--)--><'

 ParallelPeriod is demonstrated in Example 11-58.

 Example 11-58 ParallelPeriod

 [image:]

 /* Using parallel period to identify the Sales Amount for the same period from one and two years prior. The measure values from the parallel periods are then used to compare the current year results and establish a measure of growth in the Sales Amount over 2 years. */

 WITH

 /* Note that both a years and quarters are included in the set. The relative calculations will use the current member and identify the parallel period for members at both levels. */

 SET [Year and Quarter Set] AS '{[Time].[2004],[Time].[2004].children}'

 /* ParallelPeriod identifies the same member one year ago */

 MEMBER [Measures].[Amount 1Y Ago] AS '(parallelPeriod([Time].levels(1), 1, [Time].currentMember), [Measures].[Sales Amount])'

 /* ParallelPeriod identifies the same member one year ago */

 MEMBER [Measures].[Amount 2Y Ago] AS '(parallelPeriod([Time].levels(1), 2, [Time].currentMember), [Measures].[Sales Amount])'

 /* Calculating percent growth based on the acquired prior year measure values */

 MEMBER [Measures].[1Y Growth] AS '([Measures].[Sales Amount] - [Measures].[Amount 1Y Ago])/[Measures].[Amount 1Y Ago]*100'

 MEMBER [Measures].[2Y Growth] AS '([Measures].[Sales Amount] - [Measures].[Amount 2Y Ago])/[Measures].[Amount 2Y Ago]*100'

 SELECT

 {[Sales Amount],[Amount 1Y Ago], [Amount 2Y Ago], [1Y Growth], [2Y Growth]} ON COLUMNS,

 [Year and Quarter Set] ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 PeriodsToDate

 The PeriodsToDate function, like LastPeriods, returns a set of members. The set is determined by locating the ancestor of the reference member at the specified level, LevelExpr, and then retrieving the set of descendants of the ancestor from the first member in the descendants up to and including the reference member.

 If the reference member is at a higher level than is specified for the function, PeriodsToDate will return an empty set.

 If the reference member were at the month level and the level is set at the Year level, the resulting set would contain a set of members from the first month in the year to the reference member. This scenario would be a Year to Date set.

 The function takes the following form:

 >>-PeriodsToDate--(--LevelExpr--,--MemberExpr--)-----------><

 PeriodsToDate is demonstrated in Example 11-59 on page 344.

 Example 11-59 PeriodsToDate

 [image:]

 /* Using PeriodsToDate to identify the set of members in the year to January 14th. This set could be used within an aggregation function to create a "Year To Date" Summary member. */

 WITH

 SET [YTD to Jan 14, 2004] AS 'PeriodsToDate([Time].Levels(1), [Time].[2004].[1].[1].[14])'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 [YTD to Jan 14, 2004] ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 WTD, MTD, QTD, and YTD

 These functions are all short forms of the PeriodsToDate function. Based on the design of the cube model, the levels in the time dimension should have a defined time level assigned to them, such as Day, Week, Month, Quarter, and Year.

 Because the level information is readily identifiable from the cube, the level reference of a PeriodsToDate function can be pre-populated. The WTD (Week to Date), MTD (Month to Date), QTD (Quarter to Date), and YTD (Year to Date) functions are short forms of the pre-populated PeriodsToDate function.

 MemberExpr defines the time period to which the period is completed. For example, when calculating a YTD and using the March month member as MemberExpr, the result set would be populated with the members January to March.

 WTD

 The function takes the following form:

 >>-WTD--(---MemberExpr---)-----------------------------><

 MTD

 The function takes the following form:

 >>-MTD--(---MemberExpr---)-----------------------------><

 QTD

 The function takes the following form:

 >>-QTD--(---MemberExpr---)-----------------------------><

 YTD

 The function takes the following form:

 >>-YTD--(---MemberExpr---)-----------------------------><

 	
 Note: To use the MDX in Example 11-60, you will need to modify the levels of the Time dimension in the Price Analysis sample cube. The type properties of the dimension and levels will need to be set to use the appropriate time grain for Years, Quarters, Months, and Days.

 These functions are demonstrated in Example 11-60.

 Example 11-60 MTD, QTD, and YTD

 [image:]

 /* Demonstrating the MTD, QTD, and YTD functions at the Day, Month, Quarter, and Year level. Note that members above the given level will return a null value for the aggregate because the set returned by the functions will be empty. */

 WITH

 SET [Time Set] AS '{[Time].[2004], [Time].[2004].[2], [Time].[2004].[2].[5], [Time].[2004].[2].[5].[14]}'

 MEMBER [Measures].[MTD Rollup] AS 'Aggregate(MTD([Time].currentMember), [Measures].[Sales Amount])'

 MEMBER [Measures].[QTD Rollup] AS 'Aggregate(QTD([Time].currentMember), [Measures].[Sales Amount])'

 MEMBER [Measures].[YTD Rollup] AS 'Aggregate(YTD([Time].currentMember), [Measures].[Sales Amount])'

 SELECT

 {[Sales Amount], [MTD Rollup], [QTD Rollup], [YTD Rollup]} ON COLUMNS,

 [Time Set] ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.9 Logical

 When working with logical functions, we will often need to use Boolean operators to complete the expressions. The available operators are listed in Table 11-3.

 Table 11-3 Logical Operators

 	
 Operator

 	
 Description

 	
 IS

 	
 Used to compare objects. For example, you would test that one member is the same as another member by using [Member 1] IS [Member 2]. If the objects are the same, the result is true, otherwise false is returned.

 	
 And

 	
 Logical conjunction of two numeric operands.

 	
 Or

 	
 Logical disjunction of two numeric operands.

 	
 Not

 	
 Logical negation of a numeric operand.

 	
 XOR

 	
 Logical exclusion of two numeric operands.

 IIf

 The IIf function evaluates a logical expression, LogicalExpr, and returns Expr1 if the result is true, and Expr2 if the result is false. This is demonstrated in Example 11-61 on page 347.

 Expr1 and Expr2 can evaluate to any return type and do not need to be the same type within the IIf expression.

 The function takes the following form:

 >>-IIf--(--LogicalExpr--,--Expr1--,--Expr2--)-><

 Example 11-61 IIf

 [image:]

 /* If the measure values are large then we don't need to see the full precision of the numbers to review the magnitude of the numbers. If the measure is greater than a threshold value, 100000, then we will truncate the value to thousands only. */

 WITH

 MEMBER [Measures].[Reduce Precision] as 'IIf([Measures].[Sales Amount] > 100000, Round([Measures].[Sales Amount]/1000)*1000, Round([Measures].[Sales Amount]))'

 SELECT

 {[Measures].[Sales Amount], [Measures].[Reduce Precision]} ON COLUMNS,

 {except(descendants([Time].[2004], 2, SELF_AND_BEFORE), descendants([Time].[2004].[4],1, SELF_AND_BEFORE))} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 IsAncestor

 The IsAncestor evaluates the Ascendants of MemberExpr2 and identifies if MemberExpr1 is a part of this ascendants set (is an ancestor of MemberExpr2). If MemberExpr1 is an ancestor of MemberExpr2, the function returns true.

 To express this another way, the function returns true when MemberExpr2 is a descendant of MemberExpr1.

 The function takes the following form:

 >>-IsAncestor--(--MemberExpr1--,--MemberExpr2--)---><

 IsEmpty

 The IsEmpty function is used to display a message when empty values are encountered in the new calculation result. This is demonstrated in Example 11-62.

 The function takes the following form:

 >>-IsEmpty--(--ValueExpr--)------------------------------><

 Example 11-62 IsAncestor and IsEmpty

 [image:]

 /* Using the IsAncestor to identify the quarters that are under the last available year, 2004. If quarter is in 2004 then the value is returned. The IsEmpty function is used to display a message when empty values are encountered in the new calculation result. Really this could have all been done in a the Last Year Results calculation but that would not help demonstrate the IsEmpty function. */

 WITH

 SET [Time Set] AS 'descendants([Time].[2004],2)'

 MEMBER [Measures].[Last Year Results] AS 'IIf(IsAncestor([Time].defaultMember.lastChild, [Time].currentMember), [Measures].[Sales Amount], NULL)'

 MEMBER [Measures].[Message for Empty] AS 'IIf(IsEmpty([Measures].[Last Year Results]), "Not the latest year.", [Measures].[Last Year Results])'

 SELECT

 {[Measures].[Sales Amount], [Measures].[Last Year Results], [Measures].[Message for Empty]} ON COLUMNS,

 {[Time].Levels(2).members} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 PatternMatches

 The PatternMatches function performs a string comparison between the RegularExprString and StringExpr. However, the RegularExprString is defined using the Java API regular expression syntax. This expression syntax allows a great deal of flexibility in matching wildcard characters, character sequences, and special characters.

 The result of PatternMatches when the pattern can be located in the StringExpr is true. Otherwise the function returns false. PatternMatches is demonstrated in Example 11-63. Refer to the Java API documentation for additional details on the regular expression syntax.

 Information about the Java Platform Standard Ed. 6, Pattern Class can be found at the following Web site:

 http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#sum

 The function takes the following form:

 >>-PatternMatches--(--RegularExprString--,--StringExpr--)-><

 Example 11-63 PatternMatches

 [image:]

 /* Locate all products with a name that contains the characters "MOSES" or has the characters "CYBER" at the end of a word in the name. The "." portion of the string matches any single character. The "*" matches any number of instances of the preceding character. "\b" denotes a word boundary and is used here to identify the end of the word after the characters "CYBER". The "|" is a logical OR and will cause the pattern to match both the CYBER and MOSES expressions. */

 WITH

 SET [Filtered Products] AS 'FILTER([Product].members, PatternMatches(".*CYBER\b.*|.*MOSES.*", [Product].currentMember.name))'

 SELECT

 {[Price Analysis].[Measures].[Sales Amount]} ON COLUMNS,

 [Filtered Products] on ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.10 Filter

 In this section we describe and demonstrate the Filter function.

 Filter

 The Filter function is one of the more important MDX functions. It allows you to restrict a set of members or tuples, SetExpr, based on a logical expression, LogicalExpr. The result of the function is another set.

 The function takes the following form:

 >>-Filter--(--SetExpr--,--LogicalExpr--)-----------><

 Previous examples (Example 11-46 on page 320, Example 11-48 on page 322, and Example 11-63 on page 349) have shown the filter function using character expressions to locate specific criteria within a set. Example 11-64 shows how to use a numeric condition to restrict the input set.

 	
 Note: The IsEmpty function can be leveraged within a filter function to eliminate sparsity in the result set. However, if you are creating tuples for the axis, the NonEmptyCrossJoin may be a better choice for removing empty tuples.

 If the data has been populated with zeros instead of using empty cells, the filter function is useful for limiting the results to display only meaningful, non-zero, values.

 Example 11-64 Filter

 [image:]

 /* Using the filter function we can identify Stores that are having problems. The "Sales Growth to Volume Growth" measure compares the growth in Sales Amount to the Growth in sales volume. If the volume growth exceeds the growth in sales amount then this could signal a problem with a particular store. */

 WITH

 MEMBER [Measures].[Num Items PY] AS '(parallelPeriod([Time].Levels(1), 1, [Time].currentMember), [Measures].[Number Of Items])'

 MEMBER [Measures].[Vol Growth] AS '([Measures].[Number Of Items]-[Measures].[Num Items PY])/[Measures].[Num Items PY]'

 MEMBER [Measures].[Sales PY] AS '(parallelPeriod([Time].Levels(1), 1, [Time].currentMember), [Measures].[Sales Amount])'

 MEMBER [Measures].[Sales Growth] AS '([Measures].[Sales Amount]-[Measures].[Sales PY])/[Measures].[Sales PY]'

 MEMBER [Measures].[Sales Growth to Volume Growth] AS '[Measures].[Sales Growth]/[Measures].[Vol Growth]'

 SET [Volume Stores] AS 'Filter(descendants([Store].[All Stores], -1, LEAVES), [Measures].[Sales Growth to Volume Growth] < 1 AND [Measures].[Sales Growth to Volume Growth] >=0)'

 SELECT

 { [Measures].[Sales Growth], [Measures].[Vol Growth], [Measures].[Sales Growth to Volume Growth]} ON COLUMNS,

 {[Volume Stores]} ON ROWS

 FROM [Price Analysis]

 WHERE [Time].[2004].[1]

 [image:]

 [image:]

 TopCount and BottomCount

 These paired functions will return the top or bottom set of members or tuples based on a numeric or string value. They are demonstrated in Example 11-65 on page 352.

 The first step in determining the resulting set is to order the input set, SetExpr, by the numeric, NumericExpr, or string, StringExpr, value. The hierarchical structure is ignored when sorting the set of members. This is equivalent to using the order function with a BASC argument for BottomCount and BDESC for TopCount.

 The final result is obtained by taking a number of members, CountExpr, from the start of the ordered set. Ordering the members in descending order for TopCount ensures that the largest values are at the start of the set. Likewise, the ascending order means that BottomCount returns the lowest valued members.

 TopCount

 The function takes the following form:

 >>-TopCount--(--SetExpr--,--CountExpr--+--------------------+--)-><

 												'-,--+-NumericExpr-+-'

 														'-StringExpr--'

 BottomCount

 The function takes the following form:

 >>-BottomCount--(--SetExpr--,--CountExpr--+--------------------+--)-><

 													'-,--+-NumericExpr-+-'

 														'-StringExpr--'

 Example 11-65 TopCount and BottomCount

 [image:]

 /* Using TopCount and BottomCount to find the products with the 5 greatest and 5 smallest (non-empty) sales amount values. */

 WITH

 /* For the sake of this example we will remove the produts with empty sales amounts to show the sort order of the BottomCount set */

 SET [Non-Empty Product Set] AS 'Filter([Product].Levels(4).members, NOT IsEmpty([Measures].[Sales Amount]))'

 /* Note that the fist 5 products in the output are sorted in descending order by the TopCount function */

 SET [Top 5 Products] AS 'TopCount([Non-Empty Product Set], 5, [Measures].[Sales Amount])'

 /* Note that the last 5 products in the output are sorted in ascending order by the BottomCount function */

 SET [Bottom 5 Products] AS 'BottomCount([Non-Empty Product Set], 5, [Measures].[Sales Amount])'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Top 5 Products], [Bottom 5 Products]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 TopPercent and BottomPercent

 These functions operate similar to the TopCount and BottomCount. The set, SetExpr, is first ordered, either ascending for BottomPercent or descending for TopPercent, by the numeric expression, NumericExpr.

 The percentage value, PercentageExpr, corresponds to a percentage of the grand total for the set (defined as a value between 0 and 100). Members are taken from the start of the ordered set up to the point where the member total reaches or just exceeds the percentage of the set total.

 For example, assume the values for the members in the set are 3, 4, 7, 12, for a grand total of 26. If you wanted the bottom 50%, the set would need to meet or just exceed a value of 13 (26×0.5). The result would be the first 3 members of our set. If we look at the values progressively, as in Table 11-4, we can see why it takes the first three members.

 Table 11-4 Calculating the set for BottomPercent

 	
 Member Value

 	
 Cumulative Amount

 	
 Cumulative Percent of Total

 	
 3

 	
 3

 	
 11.5%

 	
 4

 	
 7

 	
 26.9%

 	
 7

 	
 14

 	
 53.8%

 	
 12

 	
 26

 	
 100%

 The first two members do not have values that will meet the percentage threshold. By including the third member, however, we reach the 50% threshold for our example scenario.

 The same process applies for TopPercent although the values would be sorted in descending order.

 TopPercent

 The function takes the following form:

 >>-TopPercent--(--SetExpr--,--PercentageExpr--+----------------+--)-><

 															'-,--NumericExpr-'

 BottomPercent

 The function takes the following form:

 >>-BottomPercent--(--SetExpr--,--PercentageExpr--+--------------+--)-><

 															'-,--NumericExpr-'

 The BottomPercent is demonstrated in Example 11-66.

 Example 11-66 BottomPercent

 [image:]

 /* A simple demonstration of BottomPercent. The majority of the calculations here are to generate a cumulative percentage value to show how BottomPercent works. Notice that the last member in the returned set causes the returned percentage to just exceed the specified percentage value of 45%. */

 WITH

 /* This is the base set to be used by BottomPercent. */

 SET [Base Store Set] AS 'descendants([Store].[All Stores], -1, LEAVES)'

 /* The next calculations are for the cumulative percent of total. There are other ways of achieving the cumulative percentage but this process shows the logical progression of the calculations. */

 /* The set is first ordered to be able to get a sequential subset of the members */

 SET [Store Set] AS 'order([Base Store Set], [Measures].[Sales Amount], BASC)'

 /* The grand total for the set is calculated */

 MEMBER [Measures].[Store total] AS 'sum([Store Set], [Measures].[Sales Amount])'

 /* The rank of the current member is used to determine the position of the member in the set */

 MEMBER [Measures].[Store Rank] AS 'rank([Store].currentMember, [Store Set])'

 /* The rank is used to obtain the set of members from the start of the set to the current member. This set is then totalled to create a cumulative store value. */

 MEMBER [Measures].[Cumulative Store] AS 'sum(subset([Store Set], 0, [Measures].[Store Rank]), [Measures].[Sales Amount])'

 /* The cumulative value is divided by the grand total to produce a cumulative grand total */

 MEMBER [Measures].[Cumulative Pct of Store Set Total] as '[Cumulative Store]/[Store total]*100'

 SELECT

 {[Measures].[Sales Amount], [Cumulative Pct of Store Set Total]} ON COLUMNS,

 {BottomPercent([Base Store Set], 45, [Measures].[Sales Amount])} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 TomSum and BottomSum

 The TopSum and BottomSum are much like the related percentage functions. The main difference is that the threshold is defined by a cumulative sum, ValueExpr, of the ordered members.

 The input set, SetExpr, is first sorted by the numeric input, NumericExpr. An ascending order (without regard to the hierarchy) is used for the BottomSum to place the members with the lowest values at the beginning of the set. Conversely, a descending sort is used by TopSum to place the highest valued members at the start of the set. The members are then retrieved from the start of the ordered set until the cumulative sum reaches or just exceeds the threshold, ValueExpr.

 TopSum

 The function takes the following form:

 >>-TopSum--(--SetExpr--,--ValueExpr--+----------------+--)-><

 													'-,--NumericExpr-'

 BottomSum

 The function takes the following form:

 >>-BottomSum--(--SetExpr--,--ValueExpr--+----------------+--)-><

 														'-,--NumericExpr-'

 TopSum and BottomSum are demonstrated in Example 11-67 on page 356.

 Example 11-67 TopSum and BottomSum

 [image:]

 /* A simple demonstration of TopSum and BottomSum. Notice that the result set contains a duplicate member, Store 1414, because the threshold value needs to include more than half the members to achieve the desired sum. The same thing can occur with the percentage and count versions of the Top and Bottom functions.*/

 WITH

 SET [Base Store Set] AS 'descendants([Store].[All Stores], -1, LEAVES)'

 SET [Top Stores] AS 'TopSum([Base Store Set], 1000000, [Measures].[Sales Amount])'

 SET [Bottom Stores] AS 'BottomSum([Base Store Set], 1800000, [Measures].[Sales Amount])'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Top Stores],[Bottom Stores]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.4.11 Drill

 The various drill functions operate by navigating up or down the hierarchy based on an input set of members. This differs from the family functions where the starting point was typically a single member.

 DrilldownLevel

 Retrieves the children of each member in the input set, SetExpr, that is at the specified level, LevelExpr. The returned set includes both the original set and the identified descendants.

 If the level is not specified, the lowest level in the set is used. For example, if you had a set containing Year and Month members, and you specified the Year level for LevelExpr, then the children of the Year members in the input set would be added to the original set. However, if the level were not defined, the Month level would be used and the children of each month would be added to the original set.

 When working with sets of tuples you may have multiple dimensions in the set. The optional IndexExpr allows you to identify the dimension of the tuple that you would like to use for the DrilldownLevel function. As with the item function, the index for the elements of a tuple are zero-based, so the first dimension in the tuple is index 0. If an index is not defined, then the first dimension in the tuple is used for by DrilldownLevel.

 A level cannot be specified when using the index argument to identify a dimension in the tuple. In this case the lowest level in the dimension is used to apply the DrilldownLevel.

 The function takes the following form:

 >>-DrilldownLevel--(--SetExpr--+-------------------------+--)-><

 											'-,----+-LevelExpr----+---'

 										 			'-,--IndexExpr-'

 DrilldownLevel is demonstrated in Example 11-68.

 Example 11-68 DrilldownLevel

 [image:]

 /* This query demonstrates using DrilldownLevel on a set of tuples. The second dimension in the tuple, the Store dimension, is used for the drill down. The children of the lowest level member, Subdivision 1A, are added to the set. In the output the first 4 rows (tuples) are the original set of tuples. The following 8 rows are the result of the DrilldownLevel function. */

 WITH

 SET [Time Set] AS '{[Time].[2004], [Time].[2003].[2]}'

 SET [Store Set] AS {[Store].[All Stores], [Store].[All Stores].firstChild}

 SET [Time and Stores] AS 'Crossjoin([Time Set], [Store Set])'

 SET [Drill Set] AS 'DrilldownLevel([Time and Stores], ,1)'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Time and Stores], [Drill Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 DrilldownLevelTop and DrilldownLevelBottom

 The Top and Bottom variations of the DrilldownLevel function allow you to restrict the number of child members that are returned.

 If a level (LevelExpr) is supplied, the members of the input set, SetExpr, at this level are used to determine the set of children to add to the original set. If the level is not defined then the lowest level in the set is used.

 The additional Count argument lets you define how many of each set of the child members are added to the original set. If SortExpr is defined, then the top function will return the members with the largest values associated with SortExpr and the bottom function will return the members with lowest values associated with SortExpr. If a value is not supplied for SortExpr, the measure value is obtained from the query context.

 Conceptually, these functions are a combination of DrilldownLevel and the TopCount and BottomCount functions applied to the each of the sets of child members.

 When working with sets that contain tuples, only the first dimension in the tuple is used for the DrilldownLevelTop and DrilldownLevelBottom. This is demonstrated in Example 11-69 on page 359.

 The function takes the following form:

 >>-FN--(--SetExpr--,--Count--+----------------------------------+-)-><

 										'-,--+-----------+--+------------+-'

 												'-LevelExpr-'				'-,-SortExpr-'

 	
 Note: FN is either DrilldownLevelTop or DrilldownLevelBottom.

 Example 11-69 DrilldownLevelTop

 [image:]

 /* This query demonstrates using DrilldownLevelTop on a set of tuples. The first dimension in the tuple, the Time dimension, is used for the drill down. The top 2 children of the each of the lowest level members (quarters 2 and 3 of 2003) are added to the set. */

 WITH

 SET [Time Set] AS '{[Time].[2004], [Time].[2003].[2], [Time].[2003].[3]}'

 SET [Store Set] AS {[Store].[All Stores], [Store].[All Stores].firstChild}

 SET [Time and Stores] AS 'Crossjoin([Time Set], [Store Set])'

 SET [Drill Set] AS 'DrilldownLevelTop([Time and Stores], 2, ,[Measures].[Sales Amount])'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Drill Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 DrilldownMember

 This function matches the members in SetExpr1 to the members in SetExpr2 before drilling down. If a member from SetExpr1 is present in SetExpr2, then the children of this member is added to the resulting set.

 The optional RECURSIVE argument will allow the function to evaluate the new child members against SetExpr2. If there are matches, the next set of children are added to the set returned from DrilldownMember.

 SetExpr2 must only contain one dimension. If SetExpr1 contains tuples then the dimension for the drill down is matched to the dimension of the members in SetExpr2.

 The function takes the following form:

 >>-DrilldownMember--(--SetExpr1--,--SetExpr2--+--------------+--)-><

 																'-,--RECURSIVE-'

 DrilldownMember is demonstrated in Example 11-70.

 Example 11-70 DrilldownMember

 [image:]

 /* This query demonstrates using DrilldownMember on a set of tuples. The dimension for the drill is obtained from the Drill Members set so the drill operates on the Store dimension. Adding the RECURSIVE argument means that the districts of Region 44 and the stores beneath District 38 are included in the output set. If RECURSIVE were not specified then the drill would terminate with the children of Subdivision 1A. */

 WITH

 SET [Time Set] AS '{[Time].[2004]}'

 SET [Store Set] AS {[Store].[All Stores], [Store].[All Stores].firstChild}

 SET [Time and Stores] AS 'Crossjoin([Time Set], [Store Set])'

 SET [Drill Members] AS '{[Store].[Subdivision 1A], [Store].[Region 44], [Store].[District 38]}'

 SET [Drill Set] AS 'DrilldownMember([Time and Stores], [Drill Members], RECURSIVE)'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Drill Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 DrilldownMemberTop and DrilldownMemberBottom

 The DrilldownMemberTop and DrilldownMemberBottom functions allow you to restrict how many child members are returned when performing a DrilldownMember.

 The members of SetExpr1 are matched to SetExpr2. Where a member of SetExpr1 is present in SetExpr2, the children of the member are added to the resulting set. The Count argument allows you to restrict how many of the children are added to the set.

 The SortExpr is a numeric value that is used when determining the largest member values for the DrilldownMemberTop or the lowest member values for DrilldownMemberBottom. If SortExpr is not defined, the member values are taken from the query context.

 The RECURSIVE key word can be added to the function to repeat the operation with the included top or bottom children members that were added to the result set from a previous iteration.

 As with DrilldownLevelTop and DrilldownLevelBottom, the top or bottom members are evaluated separately for each set of child members. Likewise, SetExpr2 must only contain elements of a single dimension. This dimension is used to determine the drill down dimension when SetExpr1 contains tuples.

 The function takes the following form:

 >>-FN-(-SetExpr1-,-SetExpr2-,-Count-+-----------------------------+-)><

 												 '-,-+---------+--+----------+-'

 														'-SortExpr-'				'-,-RECURSIVE-'

 	
 Note: FN is either DrilldownMemberTop or DrilldownMemberBottom.

 DrilldownMemberTop is demonstrated in Example 11-71 on page 362.

 Example 11-71 DrilldownMemberTop

 [image:]

 /* This query demonstrates using DrilldownMemberTop. Note that while District 38 is a child of Region 44 it is not included in the result set because we are only retrieving the top 1 child member. This means that while RECURSIVE is specified, there are no additional matching members in the set of drill members so there are no additional members to add due to recursion. */

 WITH

 SET [Store Set] AS {[Store].[All Stores], [Store].[All Stores].firstChild}

 SET [Drill Members] AS '{[Store].[Subdivision 1A], [Store].[Region 44], [Store].[District 38]}'

 SET [Drill Set] AS 'DrilldownMemberTop([Store Set], [Drill Members], 1, [Measures].[Sales Amount], RECURSIVE)'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Drill Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 DrillupLevel

 This function evaluates the members in SetExpr and returns all the members of the set that are at or above the specified level, LevelExpr.

 If a level is not identified, the level used for the drill up is determined as one level above the lowest level in the set.

 When the input set contains tuples, the dimension for the drill up is determined by the dimension referenced by the level. If the level is not specified, the first dimension in the tuples is used for the drill up. It is demonstrated in Example 11-72 on page 363.

 The function takes the following form:

 >>-DrillupLevel--(--SetExpr--,--+-----------+--)---><

 											'-LevelExpr-'

 Example 11-72 DrillupLevel

 [image:]

 /* DrillupLevel applies the drill up operation based on the specified level in this example. Since the level is from the Store dimension the second dimension in the input set of tuples is used for the drill up. Also the store level is set at the root level so all members below the store root level are removed from the resulting set of tuples. */

 WITH

 SET [Time Set] AS '{[Time].[2004], [Time].[2003].[2], [Time].[2003].[3].[9]}'

 SET [Store Set] AS {[Store].[All Stores], [Store].[All Stores].firstChild}

 SET [Time and Stores] AS 'Crossjoin([Time Set], [Store Set])'

 SET [Drill Set] AS 'DrillupLevel([Time and Stores] , [Store].Levels(0))'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Drill Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 DrillupMember

 The DrillupMember function compares the members of SetExpr1 to the descendants of the members in SetExpr2. If a member of SetExpr2 is present in SetExpr1, then any descendents of the member in SetExpr1 are removed to produce the DrillupMember result. SetExpr1 can contain descendents of members in SetExpr2, but if the ancestor member cannot be matched between the two sets, the descendent members will not be removed.

 SetExpr2 must contain only one dimension. The dimension referenced in SetExpr2 is used to match to the elements of a tuple if SetExpr1 contains tuples instead of individual members. DrillupMember is demonstrated in Example 11-73 on page 364.

 The function takes the following form:

 >>-DrillupMember--(--SetExpr1--,--SetExpr2--)------><

 Example 11-73 DrillupMember

 [image:]

 /* DrillupMember removes any members of first set that are descendants of a member from the second set. In this case there is a quarter and month from 2003 included in our original set of tuples. Specifying 2003 in our set of drill members causes the quarter and month beneath 2003 to be removed to product the result of DrillupMember. */

 WITH

 SET [Time Set] AS '{[Time].[2004], [Time].[2004].[1], [Time].[2003], [Time].[2003].[2], [Time].[2003].[3].[9]}'

 SET [Store Set] AS {[Store].[All Stores], [Store].[All Stores].firstChild}

 SET [Time and Stores] AS 'Crossjoin([Time Set], [Store Set])'

 SET [Drill Members] AS '{[Time].[2003]}'

 SET [Drill Set] AS 'DrillupMember([Time and Stores] , [Drill Members])'

 SELECT

 {[Measures].[Sales Amount]} ON COLUMNS,

 {[Drill Set]} ON ROWS

 FROM [Price Analysis]

 [image:]

 [image:]

 11.5 Measure calculations

 Now that we have gone through the various functions and have an understanding of what capabilities are available to us, we can put them to use. While the full scope of all the applications are too numerous to list, there are some common measure calculations that are useful in the queries.

 11.5.1 Semi-aggregates

 A semi-aggregate is a measure that does not have a common rollup function that can be applied to all dimensions. Another way of expressing this is to say that the measure rolls up in one way for some dimensions and a different way for other dimensions.

 One of the more common measures that is defined as a semi-aggregate is an opening balance. Here, the measure is non-additive across the time dimension but may be summed across the other available dimensions.

 For an opening balance, only the first period measure value is used at higher levels. Considering that the first period varies depending on what our current time period is, we cannot simply define a single opening balance measure value for all periods. You may in fact have an opening balance defined for each of the lowest level members in the time dimension.

 However, as we navigate up the time hierarchy, we need to select the appropriate starting measure value rather than apply a sum. This can be accommodated with a member calculation in our MDX query as in Example 11-74.

 Example 11-74 Determining the first period for an opening balance measure

 [image:]

 /* The opening period function is used to determine the first period at a specific level. Creating a tuple of the first member and our measure will determine the appropriate opening ballance. */

 WITH

 MEMBER [Measures].[Opening Sales Amount] AS '([Measures].[Sales Amount], OpeningPeriod([Time].Levels(4), [Time].currentMember))'

 [image:]

 A closing period measure, such as closing balance, would operate in a similar manner as using a Parallel Period, if the measure values are populated in the last available period member. However, as is often the case, the last available period may be empty. In such a scenario we would not be able to use closing period to find the closing balance. Example 11-75 on page 366 outlines an approach using a filter function to retrieve the last populated member for the closing balance.

 Example 11-75 Finding the last populated period for a closing balance measure

 [image:]

 /* While the nested functions may seem complex there is a logical progression to the steps being performed. The inner-most descendants function is used to find all the members at lowest level beneath the current time period. The filter function then removes any members with empty measure values. The tail function retieves a set containing the last member with a measure value and the item function extracts the member from the set to satisfy our tuple expression. */

 WITH

 MEMBER [Measures].[Closing Sales Amount] AS '([Measures].[Sales Amount], tail(filter(descendants([Time].currentMember, [Time].Levels(4)), NOT IsEmpty([Measures].[Sales Amount]))).item(0))'

 [image:]

 Other types of semi-aggregates can be produced in the same way. If, for example, a measure were to be averaged across the members of a given dimension then you might use the approach listed in Example 11-76.

 Example 11-76 Average across the Product dimension

 [image:]

 /* The descendants function is used to get the lowest level values. A specific level could be listed instead of using LEAVES if the level is know. Note that over a large dimension this calculation may take some time to calculate the results.*/

 WITH

 MEMBER [Measures].[Sale Amount Product Avg] AS 'Avg(descendants([Product].currentMember, -1 , LEAVES), [Measures].[Sales Amount])'

 [image:]

 	
 Tip: If you find yourself creating the same semi-aggregate expressions on a regular basis, consider creating the rollup members within the cube as either calculated MDX measure expressions or by using the Aggregation Script property of a measure.

 11.5.2 Solve Order

 When creating calculated member expressions you may run into situations where you have calculations on different axes of the query. When this happens there is an overlap in the cell where the two calculations intersect. Now there is a question regarding the order in which the calculations are applied. To control the order of operations we can add an additional SOLVE_ORDER property to the calculated members.

 By increasing the solve order of our calculations, we can tell the cubing engine to process these statements after the other expressions have been evaluated. In Example 11-77 we show a query that performs a maximum calculation across a set of members from the Store dimension and also creates a summary time member to perform an average across a set of months from the time dimension.

 Example 11-77 No SOLVE_ORDER for maximum and average

 [image:]

 WITH

 SET [Time Set] AS '{[Time].[2002].[2].children}'

 SET [Store Set] AS '{[Store].[Region 44].children}'

 MEMBER [Time].[2002].[2].[Month Avg] AS 'Avg([Time Set])'

 MEMBER [Store].[Region 44].[Store Max] AS 'Max([Store Set])'

 select

 addCalculatedMembers([Time Set]) ON COLUMNS,

 addCalculatedMembers([Store Set]) ON ROWS

 from [Price Analysis]

 [image:]

 [image:]

 Where the Month Avg and Store Max calculations intersect, there is a value of 14076.373. This value is the maximum of the average values.

 With the default solve order properties (none defined equates to a solve order of zero, 0), the axes are evaluated in order. This means that the columns, axis(0), are evaluated before the rows, axis(1), and thus, the maximum calculation on the rows is applied to the result of the average calculation on the columns.

 If we wanted to adjust this order of operations, we would increase the solve order of our column calculation as in Example 11-78.

 Example 11-78 SOLVE_ORDER for average calculation

 [image:]

 ...

 MEMBER [Time].[2002].[2].[Month Avg] AS 'Avg([Time Set])', SOLVE_ORDER=1

 ...

 [image:]

 [image:]

 Now the cell value where the calculations intersect changes to be the average of the maximum store values. The column calculation is now applied after the row calculation because it has a higher solve order.

 The same considerations can be applied to other calculated members within the query.

 	
 Important: SOLVE_ORDER can also be defined for calculated members defined within the cube model. The solve order of these members must also be taken into account when writing queries, as the order of the cube member, while not displayed, is applied to the query.

 11.5.3 WHERE Clause With Multiple Members

 In the earlier section, “WHERE” on page 274, we discussed creating a tuple for our slicer dimensions in the WHERE clause of a SELECT statement. Because a tuple is made out of single members from different dimensions, there may appear to be a limit on the number of members that you can include in the slicer.

 While a tuple can only use a single member from each dimension, there is no restriction on which member of the dimension is used in the tuple. This means that we can just as easily use a calculated member as a regular member from the dimension.

 In Section 11.4.4, “Aggregation” on page 307, we saw ways of creating calculated members from sets. This same method can be used to define a calculated member for use in a tuple for our slicer dimension that includes multiple members from a single dimension.

 In Example 11-79 we show a sample MDX query that incorporates the aggregate of two store members in the WHERE clause.

 Example 11-79 WHERE clause with multiple members of one dimension

 [image:]

 WITH

 MEMBER [Time].[Two Years] AS 'aggregate({[Time].[2004],[Time].[2003]})'

 select

 {[Store].defaultMember.children} ON COLUMNS

 FROM [Price Analysis]

 WHERE ([Time].[Two Years], [Measures].[Number Of Items])

 [image:]

 The results of this example will show the aggregated value of the Number Of Items measure across the two years included in the custom time member.

 11.6 Putting it all together

 While you can create an MDX query in nearly any fashion you want, there are some stylistic approaches that will help you build maintainable and reusable queries.

 11.6.1 The Business Question

 One of the most important concepts to remember for MDX is that the query axes are typically evaluated separately. When you are planning the query you can normally separate the design elements for the axes into different sections of the query. The business question that the query is to answer will indicate how to separate the query axes.

 For example, you might want the sales amounts for each year for the top five employees from each sales region in the report. There are four dimensions being referenced:

 •Employee dimension

 •Time dimension

 •Geography dimension

 •Measure dimension

 However, the business question identifies 2 separate axes for our MDX.

 The business question that the query is to answer requires input from three variables:

 •Sales Amount

 This measure is common to all the cells in our query, so it will become part of the slicer dimensions (the WHERE clause).

 •Sales Amount for each year

 The time dimension thus becomes a distinct axis for our query.

 •Top 5 employees from each region

 Because there is a relationship between the top 5 employees (we need the top 5 for each region rather than from all regions), the two dimensions will belong on a single axis. In this case we will end up creating a set of tuples from the two dimensions to populate the axis.

 While many business questions are more complicated than this simple example, there will always be some way that the information can be broken down into the different perspectives that will form the query axes. If you run into a situation where this is not possible, it might be useful to clarify the business question with the user community.

 11.6.2 Structuring the query

 Once you have identified the dimensions that are along each axis, you can create the query. Before diving into complex expressions in the SELECT statement, however, it would be good to understand what elements go into the expressions.

 By defining the individual components of the query using WITH SET and WITH MEMBER, you can provide a level of abstraction in the query that will allow you to easily read and maintain the MDX itself. Multiple short expressions are easier to read than one long extended expression.

 Consider the ability to reuse defined sets and members within the query. Once defined, the objects exist on their own and can be referenced in many different contexts within the query. See Example 11-80 as a simplified example of how defining reusable query components can simplify a query. In the example, the member references are not fully qualified, and thus take up less space than may be required in the queries.

 Example 11-80 Simplifying a query using defined query elements

 [image:]

 Without using sets:

 WITH

 MEMBER [Time].[All Time (Calendar)].[Year Summary] AS 'Sum({[Time].[2004].[1], [Time].[2003].[1], [Time].[2004].[2], [Time].[2003].[2]})'

 MEMBER [Time].[All Time (Calendar)].[Year Max] AS 'Max({[Time].[2004].[1], [Time].[2003].[1], [Time].[2004].[2], [Time].[2003].[2]})'

 SELECT

 {[Time].[2004].[1], [Time].[2003].[1], [Time].[2004].[2], [Time].[2003].[2], [Year Summary], [Year Max]} ON COLUMNS

 FROM [Price Analysis]

 However, expressed with sets the query becomes:

 WITH

 SET [Time Set] AS '{[Time].[2004].[1], [Time].[2003].[1], [Time].[2004].[2], [Time].[2003].[2]}'

 MEMBER [Time].[All Time (Calendar)].[Year Summary] AS 'Sum([Time Set])'

 MEMBER [Time].[All Time (Calendar)].[Year Max] AS 'Max([Time Set])'

 SELECT

 {[Time Set], [Year Summary], [Year Max]} ON COLUMNS

 FROM [Price Analysis]

 [image:]

 Updating the various member references when you do not use sets is tedious and prone to error. Using a common set reference means that the set can be updated in one location and all expressions will automatically use the new set definition.

 11.6.3 Functional Example

 The function examples will lead you through individual case scenarios. When you are creating queries you will likely deal with larger queries and more complicated requirements.

 Example 11-81 defines a slightly more involved query where we put together many of the concepts that are covered in the previous sections. An explanation of the individual calculations and elements of the query can be found within the example query as comment text.

 Example 11-81 Functional Example Query

 [image:]

 WITH

 ----- Define Base Sets ------

 /* Identify the current period for our query. This presents a common reference and single point for updating all later expressions. Try changing the query to use [Time].[2004].[1]. */

 SET [Current Period] AS '[Time].[All Time (Calendar)].lastChild'

 /* The same approach is used to reference the prior year period. Since the current perios uses a Set we need the item function to get a member object for the parallelPeriod function. */

 SET [Prior Year Period] AS '{parallelPeriod([Time].Levels(1), 1, [Current Period].item(0))}'

 /* Our rows will display the top 3 overall products in the current period for each of the first-level store members and the overall All Stores member. */

 SET [Store Set] As '{[Store].Levels(1).members, [Store].[All Stores]}'

 SET [Target Products] AS 'TopCount([Product].Levels(2).members, 3, ([Measures].[Sales Amount], [Current Period].item(0)))'

 ----- Create calculated measures and members ------

 /* Define a rollup of the target stores */

 MEMBER [Product].[Target Product Total] AS 'Sum([Target Products])'

 /* Compare the target store rollup to the store total and the total for all stores. */

 MEMBER [Product].[Target % of Store] AS 'round([Product].[Target Product Total]/ [Product].[All Products] * 10000)/100'

 MEMBER [Product].[Target % of All Stores] AS 'round(([Product].[Target Product Total], [Store].currentMember)/ ([Product].[All Products], [Store].[All Stores]) * 10000)/100'

 /* Calculating the growth figure as a member of the time dimension allows us to view the growth figures for multiple measures with the same expression */

 MEMBER [Time].[Current Period Growth] AS '([Current Period].item(0) - [Prior Year Period].item(0))/[Prior Year Period].item(0) * 100'

 /* A percent of base calculation that compares the current sales amount figures to that of all stores and all products for the current year. The IIf calculation removes invalid cells when a percent of base is being calculated on top of a percent of base. */

 MEMBER [Measures].[% Grand Total] AS 'IIf(NOT ([Product].currentMember IS [Product].[Target % of Store] OR [Product].currentMember IS [Product].[Target % of All Stores]), ([Measures].[Sales Amount], [Store].currentMember)/([Measures].[Sales Amount], [Product].[All Products], [Store].[All Stores]) * 100, NULL)', SOLVE_ORDER=1

 /* This calculation is similar to the prior percent of base except that the comparison is made to the figure for all products in the current store member. */

 MEMBER [Measures].[% Store Total] AS 'IIf(NOT ([Product].currentMember IS [Product].[Target % of Store] OR [Product].currentMember IS [Product].[Target % of All Stores]), ([Measures].[Sales Amount], [Store].currentMember)/([Measures].[Sales Amount], [Product].[All Products], [Store].currentMember) * 100, NULL)', SOLVE_ORDER=1

 ----- Create sets for final presentation ------

 /* Defining sets of measures so that we can display different measures under each of the time members in our query. This allows us to define a set of measures that does not include the percent of base figures for the overall growth calculation as the percent of base has no relevance beneath a growth calculation. Given that our report focuses on the current period we also restrict the measures that appear under the prior year period. */

 SET [Partial Measure Set] AS '{[Measures].[Sales Amount]}'

 SET [Full Measure Set] AS '{[Measures].[Sales Amount], [Measures].[% Store Total], [Measures].[% Grand Total], [Measures].[Profit Amount]}'

 SET [Summary Measure Set] AS '{[Measures].[Sales Amount], [Measures].[Profit Amount]}'

 /* Creating the set of tuples with crossjoin from the time and measure sets to match the periods to the appropriate display measures. */

 SET [Time and Measures] AS '{crossjoin([Prior Year Period],[Partial Measure Set]), crossjoin([Current Period], [Full Measure Set]), crossjoin({[Current Period Growth]}, [Summary Measure Set])}'

 /* Define the set of product and calculated product members to be displayed on the rows and then crossjoin these with the store members to create our nested row axis.*/

 SET [Product Set] AS '{[Target Products], [Target Product Total], [Target % of Store], [Target % of All Stores], [Product].[All Products]}'

 SET [Store and Product] AS 'crossjoin([Store Set], [Product Set])'

 ----- Define the Select statement ------

 /* The SELECT is fairly simple now because we have used sets and members to build the elements of our query. */

 SELECT

 {[Time and Measures]} ON COLUMNS,

 {[Store and Product]} ON ROWS

 FROM [Price Analysis]

 [image:]

 The output of the query can be seen in Figure 11-22 on page 374.

 [image:]

 Figure 11-22 Functional Example Output

 11.7 Alphabetical function cross-reference

 In this section we provide an alphabetical listing of functions and a cross-reference to their descriptions.

 Table 11-5 MDX Functions

 	
 Function Name

 	
 Dot

 	
 Grouping

 	
 Returns

 	
 Abs

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 AddCalculatedMembers

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Aggregate

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 AllMembers

 	
 Y

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Ancestor

 	
 N

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 Ancestors

 	
 N

 	
 11.4.7, “Family” on page 327

 	
 Set

 	
 Ascendants

 	
 N

 	
 11.4.7, “Family” on page 327

 	
 Set

 	
 Avg

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 BottomCount

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Set

 	
 BottomPercent

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Set

 	
 BottomSum

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Set

 	
 Caption

 	
 Y

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Children

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Set

 	
 ClosingPeriod

 	
 Y

 	
 11.4.8, “Relative Time” on page 337

 	
 Member

 	
 CoalesceEmpty

 	
 N

 	
 11.4.1, “Member and Tuple” on page 281

 	
 String, Number

 	
 Count

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 Cousin

 	
 N

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 Crossjoin

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 CurrentMember

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 DataMember

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 DefaultMember

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 Descendants

 	
 N

 	
 11.4.7, “Family” on page 327

 	
 Set

 	
 Description

 	
 Y

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Dimension

 	
 Y

 	
 11.4.2, “Level and Hierarchy” on page 286

 	
 Dimension

 	
 Distinct

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 DrilldownLevel

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 	
 DrilldownLevelBottom

 	
 N

 	
 Drill

 	
 Set

 	
 DrilldownLevelTop

 	
 N

 	
 Drill

 	
 Set

 	
 DrilldownMember

 	
 N

 	
 Drill

 	
 Set

 	
 DrilldownMemberBottom

 	
 N

 	
 Drill

 	
 Set

 	
 DrilldownMemberTop

 	
 N

 	
 Drill

 	
 Set

 	
 DrillupLevel

 	
 N

 	
 Drill

 	
 Set

 	
 DrillupMember

 	
 N

 	
 Drill

 	
 Set

 	
 Except

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Extract

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Filter

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Set

 	
 FirstChild

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 FirstSibling

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 Generate

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Head

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Hierarchise

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Hierarchize

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Hierarchy

 	
 Y

 	
 11.4.2, “Level and Hierarchy” on page 286

 	
 Dimension

 	
 IIf

 	
 N

 	
 11.4.9, “Logical” on page 346

 	
 Any

 	
 InStr

 	
 N

 	
 11.4.6, “Strings” on page 319

 	
 Number

 	
 Intersect

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 IsAncestor

 	
 N

 	
 11.4.9, “Logical” on page 346

 	
 Boolean

 	
 IsEmpty

 	
 N

 	
 11.4.9, “Logical” on page 346

 	
 Boolean

 	
 Item

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member, Tuple

 	
 Lag

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 LastChild

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 LastPeriods

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 	
 LastSibling

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 LCase

 	
 N

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Lead

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 Left

 	
 N

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Len

 	
 N

 	
 11.4.6, “Strings” on page 319

 	
 Number

 	
 Level

 	
 Y

 	
 11.4.2, “Level and Hierarchy” on page 286

 	
 Level

 	
 Levels

 	
 Y

 	
 11.4.2, “Level and Hierarchy” on page 286

 	
 Level

 	
 Max

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 Median

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 Members

 	
 Y

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Min

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 MTD

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 	
 Name

 	
 Y

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 NameToSet

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 NextMember

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 NonEmptyCrossjoin

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 OpeningPeriod

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Member

 	
 Order

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Ordinal

 	
 Y

 	
 11.4.2, “Level and Hierarchy” on page 286

 	
 Number

 	
 ParallelPeriod

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Member

 	
 Parent

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Member

 	
 PatternMatches

 	
 N

 	
 11.4.9, “Logical” on page 346

 	
 Boolean

 	
 PeriodsToDate

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 	
 PrevMember

 	
 Y

 	
 11.4.1, “Member and Tuple” on page 281

 	
 Member

 	
 Properties

 	
 Y

 	
 11.4.6, “Strings” on page 319

 	
 String, Number

 	
 QTD

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 	
 Rank

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 Right

 	
 N

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Round

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 Siblings

 	
 Y

 	
 11.4.7, “Family” on page 327

 	
 Set

 	
 Sqr

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 Sqrt

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 Stddev

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 StddevP

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 Stdev

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 StdevP

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 StripCalculatedMembers

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Subset

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 Sum

 	
 N

 	
 11.4.4, “Aggregation” on page 307

 	
 Number

 	
 Tail

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 TopCount

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Number

 	
 TopPercent

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Number

 	
 TopSum

 	
 N

 	
 11.4.10, “Filter” on page 350

 	
 Number

 	
 UCase

 	
 N

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Union

 	
 N

 	
 11.4.3, “Set” on page 290

 	
 Set

 	
 UniqueName

 	
 Y

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Value

 	
 Y

 	
 11.4.6, “Strings” on page 319

 	
 String

 	
 Var

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 Variance

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 VarianceP

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 VarP

 	
 N

 	
 11.4.5, “Numeric” on page 312

 	
 Number

 	
 WTD

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 	
 YTD

 	
 N

 	
 11.4.8, “Relative Time” on page 337

 	
 Set

 11.8 Dot Function Object Reference

 Each of the dot functions acts on a specific object type. The following is a quick reference to identify the appropriate object type when applying one of these functions.

 Table 11-6 Dot function object reference

 	
 Function Name

 	
 Applies to Object Type

 	
 AllMembers

 	
 Hierarchy, Level

 	
 Caption

 	
 Dimension, Hierarchy, Level, Member

 	
 Children

 	
 Member

 	
 CurrentMember

 	
 Hierarchy

 	
 DataMember

 	
 Member

 	
 DefaultMember

 	
 Hierarchy

 	
 Description

 	
 Dimension, Hierarchy, Level, Member

 	
 FirstChild

 	
 Member

 	
 FirstSibling

 	
 Member

 	
 Hierarchy

 	
 Level, Member

 	
 Item

 	
 Set, Tuple

 	
 Lag

 	
 Member

 	
 LastChild

 	
 Member

 	
 LastSibling

 	
 Member

 	
 Lead

 	
 Member

 	
 Level

 	
 Member

 	
 Levels

 	
 Hierarchy

 	
 Members

 	
 Hierarchy, Level

 	
 Name

 	
 Dimension, Hierarchy, Level, Member

 	
 NextMember

 	
 Member

 	
 Ordinal

 	
 Level

 	
 Parent

 	
 Member

 	
 PrevMember

 	
 Member

 	
 Properties

 	
 Member

 	
 Siblings

 	
 Member

 	
 UniqueName

 	
 Dimension, Hierarchy, Level, Member

 	
 Value

 	
 Member

[image:]
[image:]

Best Practices

 In most any business environment there are processes and methodologies used to accomplish one, or a set of, business activities or tasks. With the execution of these tasks over time, those processes are improved. That is, there are discoveries that make them more efficient in terms of time, cost, and resource requirements, and more effective in terms of the desired outcome.

 As these discoveries get repeated in the same, or similar, activities, they become proven and dependable. That is, they work in such a way as to minimize problems and make best use of the business resources. These discoveries are called Best Practices.

 Even when new and different processes are developed, it beneficial to test them to discover the best way to execute them to achieve the best and desired outcome. This also applies to the use of products and product solutions. Providing this type of information saves the purchasers and users of those products time, effort, and resources, which is beneficial for all involved.

 To help our readers, we have included this chapter on best practices with respect to cubing services, and in particular for the following topics:

 •Star Schema

 •Cube Modeling

 •Tuning Query Performance

 12.1 Best Practices for Star Schema

 Good performance starts with good relational and dimensional modeling. In this section we are not describing how to build a star or snowflake schema, but rather giving some pointers on what to take into consideration to achieve better query performance when defining a relational schemas.

 12.1.1 Constraints must exist for all joins

 In general, the purpose of defining referential integrity constraints is to guarantee that the fact to dimension table relationships are maintained, and the data entry rules are followed. In addition to the foregoing reasons, this allows the DB2 optimizer to exploit knowledge of these special relationships to process queries more efficiently. If the Referential Integrity constraints can be guaranteed by the application, and you do not want to incur the overhead of maintaining the constraints, consider using informational constraints. Informational constraints are constraint rules that can be used by the DB2 optimizer but are not enforced by the database manager. This permits queries to benefit from improved performance without incurring the overhead of referential constraints during data maintenance.

 Constraints are crucial for enabling the Cubing Services Optimization Advisor to recommend MQTs, and for the DB2 optimizer to match queries to MQTs.

 You must define referential integrity or informational constraints on the base tables before you can use the Optimization Advisor. These constraints need to enforce the base rules as well as cube model completeness and optimization rules.

 12.1.2 Foreign key columns should be not nullable

 Similar issues exist with NULLS as constraints. For that reason, Cubing Services requires that foreign keys be created as non-nullable. If a foreign key is nullable, DB2 assumes that it could contain NULLS. If all foreign keys are nullable, an MQT will only be used if the joins in the MQT exactly match with the joins in the query. In this case, many MQTs would be created in order to optimize the model. Therefore, Cubing Services requires non-nullable foreign keys to avoid an explosion of the number of MQTs.

 12.1.3 Level key columns should be not nullable

 Whenever possible, avoid having nulls for columns used as levels keys in your cubes. You will not be able to start a cube if you have a dimension with a level key which contains nulls when the hierarchy type is set to balanced. To get the cube to start whenever you have null values for the level key, a ragged hierarchy type should be specified in the dimension, where null values can appear in any of the level columns. Null column values between member names are skipped, so a parent can have a child member multiple levels below the parent level.

 12.1.4 Join Columns should be integers

 Joins are more efficient on integer columns as opposed to character or date data types. In a proper star schema, surrogate keys should be used that are simple integers. This also saves space when they are included in MQTs.

 12.1.5 Level Key Columns should be integers

 Level keys are used for grouping expressions in SQL queries. In general, grouping over numbers is more efficient than grouping over strings.

 12.1.6 Foreign Keys should have an index

 Because foreign keys are constantly used for joins, it is imperative that they have an index. For multi-column foreign keys, there should be a composite index.

 12.1.7 Level Keys should have an index

 Because level keys are constantly used for grouping, it is imperative that they have an index. For multi-column level keys, there should be a composite index.

 12.2 Best Practices for Cube Modeling

 Cube modeling plays an important role in the performance of the Cube Server. In this section, we discuss some best practices which will help you optimize the performance of the Cube Server.

 12.2.1 Defining Level Keys

 For each level in a dimension, you must have a level key defined. A level key consists of one or more level key attributes. Taken together, level key attributes should uniquely identify each member in the level. For example, the level key for a City level might consist of three level key attributes <Country, State, City>, or it could consist of a single attribute (for example, <City_ID>).

 	
 Note: A composite level key that consists of level attributes from all ancestors of the member, such as [USA].[West].[California].[San Jose] is typically going to be less efficient when compared to a compact level key such as City_ID.

 Level keys should uniquely identify a member in the level. Also level keys should contain a unique display name (default attribute that describes that level), otherwise the cube will not start.

 Let us take a slightly more advance scenario, which involves dimensions with unbalanced or ragged hierarchies, where the dimension table might have null values. Suppose there is a geography table which includes the columns as shown in Table 12-1:

 Table 12-1 Geography Table

 	
 Country

 	
 Region

 	
 State

 	
 City

 	
 City_ID

 	
 USA

 	
 West

 	
 California

 	
 San Jose

 	
 1

 	
 USA

 	
 East

 	
 <null>

 	
 Washington, DC

 	
 2

 	
 Canada

 	
 Quebec

 	
 <null>

 	
 Quebec

 	
 3

 	
 Canada

 	
 Quebec

 	
 <null>

 	
 Montreal

 	
 4

 An initial reaction might be to create the four levels in the Geography dimension as shown in Table 12-2:

 Table 12-2 Levels inside the Geography Dimension

 	
 Level

 	
 Level Key

 	
 Default Attribute

 	
 Country

 	
 Country

 	
 Country

 	
 Region

 	
 Country, Region

 	
 Region

 	
 State

 	
 State

 	
 State

 	
 City

 	
 City_ID

 	
 City

 Looking at the data represented in Table 12-1 on page 382, there are two countries, three regions, and four cities. But, how many states are there? Because of the null values, at first glance it seems that there is only one state (California). The Cubing Services Server, however, will create internal empty States for the null values. This would result in the cube not starting because there are three members (the three <null> values) with the same key at the State level.

 In the Cubing Services log you would see an error message similar to one shown in Example 12-1:

 Example 12-1 <cubeservername>.InfoLog.txt

 [image:]

 More than one member was found in [CubeName].[Geography].[State] with member key values [].

 [image:]

 To fix this so the cube will start, you need to change the level key for the State level to something that will make them unique, as shown in Table 12-3:

 Table 12-3 Modified level keys for the State level

 	
 Level

 	
 Level Key

 	
 Default Attribute

 	
 State

 	
 Country, Region, State

 	
 State

 Then the level keys for the three State members would be:

 •<USA, West, California>

 •<USA, East, null>

 •<Canada, Quebec, null>

 A few other recommendations should be kept in mind while specifying the level keys:

 •Avoid redundant information in the keys

 For example, in a Time dimension, the Month level keys do not need to contain the Quarter level. Instead of [Year].[Quarter].[Month], a more efficient representation is [Year].[Month]. The elimination of redundant information also keeps the keys smaller.

 •Avoid level keys whose expression resolves to a String

 String objects in Java have a large fixed overhead (about 48 bytes on a 64-bit JVM) and level keys that evaluate to a String will consume more memory. The only exception to this is when the String value is also the member name, because the Cube Server already stores the member name as part of its core metadata. Level keys are used for grouping expressions in SQL queries. In general, grouping over numbers is more efficient than grouping over strings.

 12.2.2 Cubes with many dimensions

 Cubes should focus on the core dimensions necessary for the users to accomplish their business task. As the number of dimensions in a cube grows, the size of a cube cellset address grows, and the more expensive cellset address comparisons become. In addition, with more dimensions in a cube, the SQL that is generated to fetch the cellset values will generally require more joins. Essentially, fetching cube cellset data for a cube with n dimensions from the relational data source can potentially require n-way joins. This complexity may impact query optimization.

 MQT rerouting may also become an issue. Cubes with many dimensions are harder for the Optimization Advisor to optimize. The general rule is that the smaller the base tables, the more dimensions that can likely be handled. There is no firm limit on the number of dimensions you can have in a given cube, but in general having too many dimensions may affect your cube performance.

 12.2.3 Dimensions with many children

 Dimensions with many (thousands of) children can adversely affect performance, and the data cache will become less effective under this scenario. As a similar point, dimensions with many members but few levels (short, wide dimensions) have the same issues.

 For example, a customer dimension can have many (thousands of) children but might be modeled with just one level in the hierarchy. Such dimensions are called flat dimensions.

 We recommend that you avoid such flat dimensions and make sure that all your high cardinality dimensions have multi-level hierarchies.

 In the case where there are no related attributes that you could use for adding more levels to the dimensions, explore the creation of artificial levels in the hierarchy.

 In the case of a flat customer dimension, you could introduce another level which divides members in your Customer dimension into ranges, perhaps by the first letter of the customer name. To do that you would define a calculated attribute in the Customer dimensions and would use it as the new top level in the Customer dimension. The calculated expression will look similar to Example 12-2.

 Example 12-2 Calculated Attribute to be used as a new level

 [image:]

 SUBSTR(@Column(DB2ADMIN.CUSTOMER.CUSTOMERNAME),1,1)

 [image:]

 	
 Note: Dimensions with many levels are supported without issues in the Cubing Services Cube Server, and such dimensions are encouraged.

 12.2.4 Schemas with multiple fact tables

 The Cube Server currently only supports a single fact table object even if Fact-to-Fact joins are allowed in the Design Studio.

 For cases where the relational schema has multiple fact tables, one option is to create a view over the join of the fact tables and use the view as the fact table object in the cube definition.

 12.2.5 Where to express measure calculations

 The measure calculations can be expressed in either the MDX query or the SQL expression for the measure in the definition of the cube. For example, if the relational data source has columns for sales and cost, and we wish to define a profit measure, then we could define it as a measure in the cube, or we could calculate it dynamically for each query. If we define it as a measure in the cube, with the expression sales - cost and an aggregation of SUM, then the MDX query to fetch it is shown in Example 12-3.

 Example 12-3 MDX query

 [image:]

 select {[Measures].[profit]} on columns from <cube>

 [image:]

 In this case, the computation of profit is performed by the relational data source through the SQL query, as shown in Example 12-4.

 Example 12-4 SQL query

 [image:]

 select sum(sales - cost) from <fact table>

 [image:]

 On the other hand, if we decide to calculate it dynamically, based on measures that are defined for sales and cost individually, then an MDX query, as shown in Example 12-5, is required to produce the same result.

 Example 12-5 MDX query using a calculated member

 [image:]

 with member [Measures].[profit] as

 '[Measures].[sales] - [Measures].[cost]’

 Select {[Measures].[profit]} on columns

 from <cube>

 [image:]

 With the MDX query in Example 12-5, the Cube Server will fetch the sales and cost measures from the fact table using the SQL as shown in Example 12-6.

 Example 12-6 SQL query

 [image:]

 select sum(sales), sum(cost) from <fact table>

 [image:]

 Once the two measures are fetched, the Cube Server will compute profit. In general, it is better to push the computation as low as possible. If it can be in the SQL expression and pushed to the DB2 relational source, then that is the preferred approach. DB2 has a much better ability to optimize and parallelize this computation than the Cube Server.

 	
 Note: It should be noted that not everything can be easily defined through SQL. For example, time series analysis, such as year over year comparisons, are easily expressed in MDX but not in SQL.

 12.2.6 Degenerate dimensions

 Degenerate dimensions are dimensions that refer only to the fact table and are most useful when you have dimension information (such as a time stamp) embedded in the fact table that you want to use to specify a dimension. Cubing Services supports such dimensions, but be aware that during the cube loading phase, the Cube Server must read the entire fact table to load cube metadata into memory or into a file-system-based repository. However, if you have a proper star or snowflake schema defined, the Cube Server is only required to read the dimension tables, which are usually relatively small compared to the fact table.

 	
 Note: Our recommendation is that you should consider having degenerate dimensions only if your fact table is small.

 12.2.7 Non-distributive measures

 Distributive measures use simple aggregation functions, such as SUM and COUNT, that can be aggregated from intermediate values. Non-distributive measures use more complex aggregation functions, such as STDDEV and AVG.

 The types of measures, either distributive or non-distributive, that you include in the cubes can affect optimization:

 If you have created MQTs, distributive measures can always be aggregated from one level to the next. For example, SUM(Sales) for Quarter, can be calculated by summing the monthly sales data in your MQT.

 For non-distributive measures, such as standard deviation, DB2 can only use an MQT if the query matches the MQT slice exactly. Otherwise, non-distributive measures must always be calculated directly from the base data and cannot be aggregated from one level to the next.

 You can still optimize a cube model that contains non-distributive measures, but keep in mind that you might get better optimization results if you omit the non-distributive measures that are not needed from the cubes.

 Be aware that when you are using non-distributive measures, the Optimization Advisor creates only summary tables with the DEFERRED update option.

 12.3 Tuning query performance

 In this section we provide a brief introduction to Materialized Query Tables (MQT) and describe how they can improve query performance.

 We also discuss available tools that can be used to get MQT recommendations:

 •Optimization Advisor, a tool included in InfoSphere Warehouse, which provides MQT recommendations based on the cube model.

 •DB2 Design Advisor, a tool provided by DB2, which takes SQL query workload as an input for recommending MQTs.

 We will guide you through the following topics:

 •How to determine what SQL queries are being generated by the Cube Server.

 •Tools which will help you determine if your SQL queries are being routed to MQTs, such as Visual Explain and db2explain.

 •Troubleshooting techniques to help determine why queries may not route to the recommended MQTs.

 12.3.1 MQTs: A brief introduction

 Data warehouses and datamarts generally contain large amounts of information, often exceeding terabytes in size. Decision support functions in a data warehouse or datamart, such as Online Analytical Processing (OLAP), involve hundreds of complex aggregate queries over these large volumes of data.

 Because many of these queries are run frequently, they may cause a significant workload on the systems supporting the data warehouse or data mart. Other queries may aggregate so much information that they impede or exclude other work scheduled to run on the system. Taken as a whole, available system resources prohibit the repeated aggregation of the base tables every time one of these queries are run, even when appropriate indexes exist.

 Therefore, as a solution to this problem, the decision support DBAs can build a number of summary tables, or materialized aggregate views, that pre-aggregate and store the results of these queries to help them increase the system performance. A summary table is a special type of a materialized query table (MQT) that specifically includes summary data.

 In modeling terms, the summary tables group the data along various dimensions, corresponding to specified levels of hierarchy, and compute various aggregate functions or measures.

 As an example, we might expect some of the following types of aggregate requests:

 •Sales of a specific product category in all stores by month

 •Sales of a specific product category by store type relative to campaigns

 •Sales data for a specific time period, product, and district

 •Sales data by consumer demographics

 These types of requests involve data scans, joins, aggregations, and sorts, and if they are performed repeatedly against the base fact table and dimension tables, they will result in poor query performance. Instead, when a DBA creates summary tables that have already performed this work and stored the results so that they are available for subsequent query users, the result can dramatically improve response times for the query workload.

 Summary tables are typically considerably smaller than the cross product of the base tables on which they are defined. Because of this, and the fact that they contain pre-aggregated data, queries requesting aggregates may experience dramatically improved performance through their use.

 Example 12-7 shows a simple DDL to create and populate an MQT aggregating data between the STORE and SALES tables.

 Example 12-7 MQT Example

 [image:]

 CREATE TABLE MQT1 AS (

 SELECT S.SID, SUM(SALES) AS SALES

 FROM STORE S, FACT F

 WHERE S.SID = F.SID

 GROUP BY S.SID)

 DATA INITIALLY DEFERRED

 REFRESH DEFERRED

 [image:]

 12.3.2 Optimization Advisor

 InfoSphere Warehouse includes an Optimization Advisor Wizard, which provides smart MQT recommendations based on the cube model. Because the Optimization Advisor will generate the MQTs for you, the good news is that you do not have to worry about creating the DDL yourself.

 Because the Optimization Advisor always recommends MQTs with summarized data, the term summary table and MQTs are used interchangeably in this book.

 The Cubing Services Optimization Advisor is a model based advisor which performs a cost/benefit analysis of a number of potential MQTs based on the following factors:

 •Multidimensional model:

  –	What is in the model?

  –	What cubes are included in the model?

  –	What dimensions, hierarchies, attributes and measures are in the cubes?

 •The anticipated workload type

 What are queries targeted at (Cubing Services Engine or 3rd party ROLAP product)?

 •Catalog statistics

 The advisor gets useful information from the statistics DB2 has for tables, so statistics must be up-to-date.

 •Block-level sampling of the data

 The advisor can also optionally get useful information from sampling the data.

 The extent of this cost/benefit analysis is governed by the database administrator’s specification of the amount of disk space available to store MQTs and the maximum amount of time to spend on the sampling process.

 The Optimization Advisor Wizard produces SQL scripts to create the recommended summary tables (MQTs). The SQL script contains the necessary SQL commands to build one or more summary tables. The number of MQTs recommended by the Optimization Advisor will vary based on the number of hierarchies defined in the model, the types of query workloads anticipated, and the existence of non-distributive measures.

 You can run the Optimization Advisor Wizard from either InfoSphere Design Studio or from InfoSphere Admin Console. For MQT creation and deployment details, refer to Chapter 3, “Modeling using IBM InfoSphere Warehouse Design Studio” on page 51 and Chapter 6, “Deploying and managing the cube” on page 147.

 12.3.3 Troubleshooting query performance problems

 After the Optimization Advisor has been run and the MQTs have been created, make sure that DB2 is actually using them. The first step in this process is to determine what SQL statements are being generated by the Cubing Services engine. The next step in this process is to use the DB2 EXPLAIN facility to gather information about the access path chosen by the DB2 optimizer and the rewritten (if appropriate) SQL, to see if the SQL statements are being routed to MQTs.

 What SQL statements are being run?

 When there is a long running MDX query, you can find out what SQL queries are being generated by the Cube Server based on your MDX query by turning on the appropriate level of logging inside Cubing Services Admin Console. Determining which SWL queries are being generated is a three step process, as follows.

 1.	Turn on the Cubing Services logging. See page 391.

 2.	Submitting an MDX query to the Cube Server. See page 392.

 3.	Examining the logs. See page 393.

 	
 Note: Each step listed above consists of a series of substages.

 Turn on the Cubing Services logging

 To turn on the logging, perform the following steps:

 1.	Logon to Cubing Services Admin Console.

 2.	Select DB2 Warehouse → Cubing Services → Manage Cube Servers.

 3.	Click the Cube Server name hyperlink in the list. The Properties page of the Cube Server will open.

 4.	Click the Logging tab.

 5.	Define the logging options, as shown in Figure 12-1 on page 392.

  –	Activity log, which records informational messages.

  –	Performance log, which records performance statistics.

  –	MDX log, which records MDX queries that were sent to the Cube Server for processing.

  –	SQL log, which records SQL queries that were generated based on MDX queries and sent to the Cube Server for processing.

 6.	Click Save and restart the Cube Server for the changes to take effect.

 [image:]

 Figure 12-1 Logging Tab for Cubing Services inside Admin Console

 Submitting an MDX query to the Cube Server

 For this exercise we use the Alphablox Query Builder to submit a simple MDX query to the Cube Server, as shown in Example 12-8, to demonstrate how you can determine what SQL queries have been generated by the Cube Server so you can analyze the query performance if the need arises.

 Example 12-8 Sample MDX query

 [image:]

 SELECT

 ({[Price Analysis].[Measures].[Product Book Price Amount]}) ON COLUMNS,

 ({[Price Analysis].[Product].[All Products].children}) ON ROWS

 FROM [Price Analysis]

 [image:]

 Examining the logs

 Now let us examine the Performance, MDX and SQL logs, which are located at <dwe_install_directory>\CubingServices\<cubeservename>\Logs directory, to find out about performance and to capture the SQL statements.

 First, let us take a look at the PerformanceLog file. You will notice that each query submitted to the Cube Server has an entry in the log. The Cube Server will internally assign a session ID and statement ID for every query. In turn, for every query entry in the Performance log, there is one or more corresponding entries with the same session and statement ID in the MDXLog and SQLLog files.

 Figure 12-2 depicts the information about query identifiers and shows you how to interpret them. As you can see, the identifier contains information about the user name who submitted the query, session ID, transaction ID, and the cube name.

 [image:]

 Figure 12-2 Query identifier info

 For instance the PerformanceLog in the Example 12-9 contains a query with session ID of 6 and transaction ID of 5, and which was submitted by db2admin user against the Price Analysis cube. In the PerformanceLog you can find performance statistics such as the following

 •Total time spent in the execution of a particular query

 •Performance statistics broken down as follows:

  –	Time spent in (DB2 and JDBC™)

  –	Time spent for processing the query in the Cube Server itself.

 The total query execution time is approximately 1.375 seconds, the time spent in DB2 is 1.219 seconds, and the time spent in Cube Server is 0.156 seconds.

 Example 12-9 <cubeservername>.PerformanceLog.txt

 [image:]

 DBWSRV 2008-04-18 10:12:08 [3496][PIC1]C MDX00003Z CubeServer logger PERF is receiving records for file: C:\dwe951\CubingServices\mycubeserver1\Logs\mycubeserver1.PerformanceLog.txt of maximum size 100,000KB in roll-on mode, 1 backup editions, level filter: mdx.

 DBWSRV 2008-04-18 10:12:36 [3496][PmU26]U MDX03012Z (db2admin,6,5,Price Analysis) Query elapsed time statistics for Price Analysis_MDXQuery_0 <Total query elapsed time = 1.375s, SQL elapsed time(DB + JDBC) = 1.219s, MDX elapsed time in CubeServer = 0.156s>

 [image:]

 The next step is to check the MDXLog and find an entree with session ID of 6 and transaction ID of 5 to see the MDX statement. As you can see, the MDX query shown in Example 12-10 is the same as in our Example 12-8 on page 392.

 Example 12-10 <cubeservername>.MDXLog.txt

 [image:]

 DBWSRV 2008-04-18 10:12:08 [3496][MIC1]C MDX00005Z CubeServer logger MDX is receiving records for file: C:\dwe951\CubingServices\mycubeserver1\Logs\mycubeserver1.MDXLog.txt of maximum size 100,000KB in roll-on mode, 1 backup editions, logging is ON.

 DBWSRV 2008-04-18 10:12:35 [3496][MQU26]U MDX02400Z (db2admin,6,5,Price Analysis) Executing: Price Analysis_MDXQuery_0: SELECT

 ({[Price Analysis].[Measures].[Product Book Price Amount]}) ON COLUMNS,

 ({[Price Analysis].[Product].[All Products].children}) ON ROWS

 FROM [Price Analysis].

 [image:]

 The final step is look at the SQLLog which contains the SQL queries generated as a result of submitting the MDX with session ID of 6 and transactionID of 5. See the SQL in Example 12-11.

 Example 12-11 <cubeservername>.SQLLog.txt

 [image:]

 DBWSRV 2008-04-18 10:12:35 [3496][SQU26]U MDX90248Z (db2admin,6,5,Price Analysis) Generated SQL for cube Price Analysis : "SELECT d1."PD_DEPT_NM",SUM(f0."PRDCT_BK_PRC_AMUNT"),SUM(CASE f0."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE f0."NUMBER_OF_ITEMS" END),(SUM(f0."SALES_AMOUNT"))/ (SUM(CASE f0."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE f0."NUMBER_OF_ITEMS" END)),((SUM(f0."SALES_AMOUNT"))- (SUM(f0."CST_OF_GDS_SLD_CGS")))/ (SUM(CASE f0."NUMBER_OF_ITEMS" WHEN 0 THEN -1 ELSE f0."NUMBER_OF_ITEMS" END)),CASE (SUM(f0."SALES_AMOUNT")) WHEN 0 THEN 0 ELSE ((SUM(f0."SALES_AMOUNT"))- (SUM(f0."CST_OF_GDS_SLD_CGS")))*100.00/ (SUM(f0."SALES_AMOUNT")) END,SUM(f0."SALES_AMOUNT"),(SUM(f0."SALES_AMOUNT"))- (SUM(f0."CST_OF_GDS_SLD_CGS")) FROM "MARTS"."PRCHS_PRFL_ANLYSIS" f0,"MARTS"."TIME" d2,"MARTS"."PRODUCT" d1,"MARTS"."STORE" d3 WHERE f0."TIME_ID" = d2."TIME_ID" AND f0."PD_ID" = d1."PD_ID" AND f0."STR_IP_ID" = d3."STR_IP_ID" GROUP BY d1."PD_DEPT_NM"".

 [image:]

 You can use the information about the SQL queries generated by the Cube Server to better tune the DB2 performance. Next we are going to demonstrate how you can use those SQL queries to check whether or not they are being routed to the MQTs.

 Are the SQL statements using the MQTs?

 You can use the DB2 EXPLAIN facility to gather information about the access path chosen by the optimizer and the rewritten (if appropriate) SQL.

 Before using EXPLAIN, the EXPLAIN tables must be created. The EXPLAIN tables capture access plans when the EXPLAIN facility is activated. You can create them by invoking the sample command line processor (CLP) script provided in the EXPLAIN.DDL file, which is typically located in the MISC subdirectory of the sqllib directory. To invoke the script, connect to the database where the Explain tables are required, then issue the following command:

 db2 -tvf EXPLAIN.DDL

 IBM Data Studio includes the Visual Explain feature, which can be used to view explained SQL statements as a graph. You can use the information available from the graph to tune the SQL queries for better performance and see if the SQL queries are being routed to MQTs. The nodes in the graph represent tables and indexes and each operation on them. The links between the node represent the flow of data.

 IBM Data Studio is available at no charge for DB2 customers, across all platforms. You can get your copy of IBM Data Studio at the following Web site:

 http://www-306.ibm.com/software/data/studio/features.html

 Using Visual Explain for an SQL statement

 To use Visual Explain for an SQL statement perform the following steps in the Data Project Explorer:

 1.	Expand a data development project, and then expand the SQL Scripts folder.

 2.	Right-click an SQL statement, and then click Visual Explain on the menu, as shown in Figure 12-3.

 [image:]

 Figure 12-3 Using Visual Explain in Data Studio

 3.	In the Settings for explaining the query panel of the Collect Explain Data window, enter the following values, as shown in Figure 12-4:

  –	Current Query Optimization level: 5 or higher

  –	Current Refresh Age: ANY

 [image:]

 Figure 12-4 Explain Settings

 The output you will get is a visual Access Plan diagram that shows that base tables are used and not the MQTs, as shown in Figure 12-5.

 [image:]

 Figure 12-5 Access PLan Diagram

 	
 Note: In some earlier DB2 9.5 versions you may have a problem when using the Data Studio Visual Explain facility when the SQL query does route to the MQT. This issue has been identified as a defect and will be fixed.

 You can also use Explain Table Format Command (db2exfmt) to explain the SQL queries.

 You can create a simple batch script to run the EXPLAIN. You will need to create a file called explain.bat and copy the information from Example 12-12 on page 399 into the file. Make sure to replace db2admin and <password> to match the actual user and password from your system.

 Example 12-12 Sample Batch Script

 [image:]

 @echo off

 rem Explain a query and put the output in a file.

 @if %2()==() goto help

 @goto :continue

 :help

 @echo explain [database] [sql_file]

 @goto :end

 :continue

 db2 connect to %1 user db2admin using <password>

 db2 set current refresh age any

 db2 set current explain mode explain

 db2 -tvf %2

 db2 set current explain mode yes

 db2exfmt -d %1 -1 -o output_explain_new.txt -u db2admin <password>

 db2 connect reset

 notepad output_explain_new.txt

 :end

 [image:]

 You can run the script as follows:

 C:\>explain dwesamp sql1.txt

 Dwesamp is the database name, and sql1.txt is a text file that contains the SQL for which you want to run an EXPLAIN, as shown in Figure 12-6.

 [image:]

 Figure 12-6 sql1.txt

 A portion of the output is shown in Example 12-13 on page 400, where you can see how the query was re-written to use an MQT.

 Example 12-13 db2exfmt output

 [image:]

 Optimized Statement:

 SELECT Q1."Product Department Name" AS "PD_DEPT_NM", Q1."Product Book Price Amount", Q1."Number Of Items", (Q1."Sales Amount" / Q1."Number Of

 Items"), ((Q1."Sales Amount" - Q1."Cost Of Goods Sold (COGS)") /

 Q1."Number Of Items"), CASE WHEN (Q1."Sales Amount" = +00000000000000000000000000000.00) THEN +00000000000000000000000000000.00 ELSE (((Q1."Sales Amount" - Q1."Cost Of Goods Sold (COGS)") * +100.00) / Q1."Sales Amount") END , Q1."Sales Amount", (Q1."Sales Amount" - Q1."Cost Of Goods Sold (COGS)")

 FROM DB2INFO.MQT8106155914T02 AS Q1 WHERE Q1."Product Department Name" IS NOT NULL AND (Q1."GRP_Calendar Year" = 1) AND Q1."Sub Division Name" IS NULL

 Access Plan:

 	Total Cost: 		121.578

 	Query Degree:		1

 Rows

 RETURN

 (1)

 Cost

 I/O

 |

 82.9882

 FETCH

 (2)

 121.569

 24.2283

 /----+---\

 507 507

 IXSCAN TABLE: DB2INFO

 (3) MQT8106155914T02

 15.3269

 2

 |

 507

 INDEX: DB2INFO

 IDX8106155914T0201

 [image:]

 12.3.4 Things to check if MQTs are not being used

 This section describes what to check for when the Optimization Advisor has recommended MQTs and the MQTs have been created, but the database queries do not seem to reroute to the MQTs.

 The following sections detail possible solutions.

 Are RUNSTATS current?

 	Make sure that the catalog statistics on both the base tables and MQTs have been updated recently. If the catalog statistics are not up to date, the DB2 optimizer may have inaccurate cost estimates for the query plans going against the MQTs and base tables, which may affect MQT routing.

 Is the query optimization level correct?

 Check either the default optimization level (DFT_QUERYOPT database configuration parameter) or the CURRENT QUERY OPTIMIZATION setting of the database connection being used to execute the queries. Routing of queries to MQTs will not be performed unless the optimization level is set to 2, 5, 7, or 9.

 Have the MQTs been created with the REFRESH DEFERRED option?

 In the DB2 script generated by the Optimization Advisor, check the DDL for the CREATE TABLE statements for the MQTs to see if they have been created with the REFRESH DEFERRED option. If they are REFRESH DEFERRED MQTs, try setting the value of the DFT_REFRESH_AGE database parameter to ANY (user will need database administrator privileges), using the following command from a DB2 command prompt:

 DB2 UPDATE DB CFG FOR <database> USING DFT_REFRESH_AGE ANY

 	
 Note: All connections to the database must be disconnected first for this setting to take effect.

 Try running the SQL statements using the Explain SQL facility to see whether the queries get routed to the MQTs now that the refresh age has been set.

 If, after changing this setting, the queries route to the MQTs, then the MQTs have the ability to help the user queries, but the refresh age settings for the database connection prevent the queries from routing the MQTs.

 Possible courses of action include the following options:

 •If the queries are simply being run from a DB2 prompt, execute the following command to allow the current DB2 session to make use of REFRESH DEFERRED MQTs. This will not affect the results of any other user queries. This setting probably cannot be performed if the queries are being run from a front-end tool that connects to DB2:

 DB2 SET CURRENT REFRESH AGE ANY

 •The database administrator may choose to keep the DFT_REFRESH_AGE database parameter set to ANY, which means that by default REFRESH DEFERRED MQTs will always be considered for queries when possible. The database administrator should be careful with this setting. If there are MQTs in the database which have old values and have not been updated in a while, then there is a chance that user queries are routed to this MQT and incorrect results are returned.

 •If you want queries to be able to route automatically to MQTs, but cannot set the CURRENT REFRESH AGE during the connection and do not want to set the DFT_REFRESH_AGE parameter, then you may want to consider creating REFRESH IMMEDIATE MQTs. This can be done by specifying the IMMEDIATE summary table update option in the Optimization Advisor Wizard.

 	
 Note: Make sure to change the DFT_REFRESH_AGE parameter back to its original value if you wish to retain the original database environment. The change will take effect once all database connections have disconnected.

 Is the MQT accessible?

 An MQT may be in CHECK PENDING NO ACCESS state under the following circumstances:

 •After an initial creation prior to population

 •On a REFRESH IMMEDIATE MQT after a LOAD INSERT and SET INTEGRITY on the base table

 You can determine its status with:

 SELECT TABNAME, STATUS FROM SYSCAT.TABLES WHERE TABNAME='<mqt name>'

 In all cases the following statement should clear the CHECK PENDING state:

 REFRESH TABLE <mqt name>

 If after going through the above checks the problem has not been resolved, then a closer look will have to be taken at both the MQTs and the SQL queries being run. It may be that the queries are using parts of the warehouse which are not covered by the generated MQTs, which may require changing the cube model, or running the Optimization Advisor with a higher diskspace limit to get different MQT recommendations.

 12.3.5 DB2 Design Advisor

 The DB2 Design Advisor is another tool which can advise you with the creation of materialized query tables (MQTs) based on one or more SQL statements which you provide to the tool. A group of related SQL statements is referred to as a workload.

 In addition to using the Cubing Services Optimization Advisor to get recommendations for MQTs, which is a model based MQT advisor, you can optionally use DB2 Design Advisor to get recommendations based on your SQL workload.

 DB2 Design Advisor comes with two options. You can use DB2 Design Advisor command (db2advis) or have the Design Advisor GUI included in DB2 Control Center.

 For the DB2 Design Advisor usage and to learn more how to define a workload definition, refer to the following Web site for more information:

 http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.admin.perf.doc/doc/t0021648.html

 	
 Note: There have been cases when the Design Advisor identifies MQTs which already exist in your system, such as the MQTs recommended by the Optimization Advisor, and suggests that you drop them. Ignore such warnings and do not drop any of your MQTs. The Design Advisor is different from the Optimization Advisor, and it only bases its MQT recommendations on your SQL workload and is unaware of the multidimensional model in place.

 [image:]

 	
 ACS

 	
 access control system

 	
 ADK

 	
 Archive Development Kit

 	
 AIX®

 	
 Advanced Interactive eXecutive from IBM

 	
 API

 	
 Application Programming Interface

 	
 AQR

 	
 automatic query re-write

 	
 AR

 	
 access register

 	
 ARM

 	
 automatic restart manager

 	
 ART

 	
 access register translation

 	
 ASCII

 	
 American Standard Code for Information Interchange

 	
 AST

 	
 Application Summary Table

 	
 BLOB

 	
 Binary Large OBject

 	
 BW

 	
 Business Information Warehouse (SAP®)

 	
 CCMS

 	
 Computing Center Management System

 	
 CFG

 	
 Configuration

 	
 CLI

 	
 Call Level Interface

 	
 CLOB

 	
 Character Large OBject

 	
 CLP

 	
 Command Line Processor

 	
 CORBA

 	
 Common Object Request Broker Architecture

 	
 CPU

 	
 Central Processing Unit

 	
 CS

 	
 Cursor Stability or Cubing Services depending on context of use.

 	
 DAS

 	
 DB2 Administration Server

 	
 DB

 	
 Database

 	
 DB2

 	
 Database 2™

 	
 DB2 UDB

 	
 DB2 Universal DataBase

 	
 DBA

 	
 Database Administrator

 	
 DBM

 	
 DataBase Manager

 	
 DBMS

 	
 DataBase Management System

 	
 DCE

 	
 Distributed Computing Environment

 	
 DCM

 	
 Dynamic Coserver Management

 	
 DCOM

 	
 Distributed Component Object Model

 	
 DDL

 	
 Data Definition Language. An SQL statement that creates or modifies the structure of a table or database. For example, CREATE TABLE, DROP TABLE.

 	
 DES

 	
 Data Encryption Standard

 	
 DIMID

 	
 Dimension Identifier

 	
 DLL

 	
 Dynamically Linked Library

 	
 DML

 	
 Data Manipulation Language. An INSERT, UPDATE, DELETE, or SELECT SQL statement.

 	
 DMS

 	
 Database Managed Space

 	
 DPF

 	
 Data Partitioning Facility

 	
 DRDA®

 	
 Distributed Relational Database Architecture™

 	
 DSA

 	
 Dynamic Scalable Architecture

 	
 DSN

 	
 Data Source Name

 	
 DSS

 	
 Decision Support System

 	
 EAI

 	
 Enterprise Application Integration

 	
 EBCDIC

 	
 Extended Binary Coded Decimal Interchange Code

 	
 EDA

 	
 Enterprise Data Architecture

 	
 EDU

 	
 Engine Dispatchable Unit

 	
 EDW

 	
 Enterprise Data Warehouse

 	
 EGM

 	
 Enterprise Gateway Manager

 	
 EJB™

 	
 Enterprise Java Beans

 	
 ER

 	
 Enterprise Replication

 	
 ERP

 	
 Enterprise Resource Planning

 	
 ESE

 	
 Enterprise Server Edition

 	
 ETL

 	
 Extract, Transform, and Load

 	
 ETTL

 	
 Extract, Transform/Transport, and Load

 	
 FP

 	
 Fix Pack

 	
 FTP

 	
 File Transfer Protocol

 	
 Gb

 	
 Giga bits

 	
 GB

 	
 Giga Bytes

 	
 GUI

 	
 Graphical User Interface

 	
 HADR

 	
 High Availability Disaster Recovery

 	
 HDR

 	
 High availability Data Replication

 	
 HPL

 	
 High Performance Loader

 	
 I/O

 	
 Input/Output

 	
 IBM

 	
 International Business Machines Corporation

 	
 ID

 	
 Identifier

 	
 IDE

 	
 Integrated Development Environment

 	
 IDS

 	
 Informix® Dynamic Server

 	
 II

 	
 Information Integrator

 	
 IMG

 	
 Integrated Implementation Guide (for SAP)

 	
 IMS™

 	
 Information Management System

 	
 ISAM

 	
 Indexed Sequential Access Method

 	
 ISM

 	
 Informix Storage Manager

 	
 ISV

 	
 Independent Software Vendor

 	
 IT

 	
 Information Technology

 	
 ITR

 	
 Internal Throughput Rate

 	
 ITSO

 	
 International Technical Support Organization

 	
 IWCS

 	
 InfoSphere Warehouse Cubing Services

 	
 IX

 	
 Index

 	
 J2EE

 	
 Java 2 Platform Enterprise Edition

 	
 JAR

 	
 Java Archive

 	
 JDBC

 	
 Java DataBase Connectivity

 	
 JDK™

 	
 Java Development Kit

 	
 JE

 	
 Java Edition

 	
 JMS

 	
 Java Message Service

 	
 JRE™

 	
 Java Runtime Environment

 	
 JVM

 	
 Java Virtual Machine

 	
 KB

 	
 Kilobyte (1024 bytes)

 	
 LDAP

 	
 Lightweight Directory Access Protocol

 	
 LPAR

 	
 Logical Partition

 	
 LV

 	
 Logical Volume

 	
 Mb

 	
 Mega bits

 	
 MB

 	
 Mega Bytes

 	
 MDC

 	
 Multidimensional Clustering

 	
 MDX

 	
 Multidimensional Expressions Language

 	
 MPP

 	
 Massively Parallel Processing

 	
 MQI

 	
 Message Queuing Interface

 	
 MQT

 	
 Materialized Query Table

 	
 MRM

 	
 Message Repository Manager

 	
 MTK

 	
 DB2 Migration ToolKit for Informix

 	
 NPI

 	
 Non-Partitioning Index

 	
 ODBC

 	
 Open DataBase Connectivity

 	
 ODBO

 	
 OLE DB for OLAP

 	
 ODS

 	
 Operational Data Store

 	
 OLAP

 	
 OnLine Analytical Processing

 	
 OLE

 	
 Object Linking and Embedding

 	
 OLTP

 	
 OnLine Transaction Processing

 	
 ORDBMS

 	
 Object Relational DataBase Management System

 	
 OS

 	
 Operating System

 	
 O/S

 	
 Operating System

 	
 PDS

 	
 Partitioned Data Set

 	
 PIB

 	
 Parallel Index Build

 	
 PSA

 	
 Persistent Staging Area

 	
 RBA

 	
 Relative Byte Address

 	
 RBW

 	
 Red Brick™ Warehouse

 	
 RDBMS

 	
 Relational DataBase Management System

 	
 RID

 	
 Record Identifier

 	
 RR

 	
 Repeatable Read

 	
 RS

 	
 Read Stability

 	
 SCB

 	
 Session Control Block

 	
 SDK

 	
 Software Developers Kit

 	
 SID

 	
 Surrogage Identifier

 	
 SMIT

 	
 Systems Management Interface Tool

 	
 SMP

 	
 Symmetric MultiProcessing

 	
 SMS

 	
 System Managed Space

 	
 SOA

 	
 Service Oriented Architecture

 	
 SOAP

 	
 Simple Object Access Protocol

 	
 SPL

 	
 Stored Procedure Language

 	
 SQL

 	
 Structured Query

 	
 TCB

 	
 Thread Control Block

 	
 TMU

 	
 Table Management Utility

 	
 TS

 	
 Tablespace

 	
 UDB

 	
 Universal DataBase

 	
 UDF

 	
 User Defined Function

 	
 UDR

 	
 User Defined Routine

 	
 URL

 	
 Uniform Resource Locator

 	
 VG

 	
 Volume Group (Raid disk terminology).

 	
 VLDB

 	
 Very Large DataBase

 	
 VP

 	
 Virtual Processor

 	
 VSAM

 	
 Virtual Sequential Access Method

 	
 VTI

 	
 Virtual Table Interface

 	
 WSDL

 	
 Web Services Definition Language

 	
 WWW

 	
 World Wide Web

 	
 XBSA

 	
 X-Open Backup and Restore APIs

 	
 XML

 	
 eXtensible Markup Language

 	
 XPS

 	
 Informix eXtended Parallel Server

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Glossary

 	
 Access Control List (ACL). The list of principals that have explicit permission (to publish, to subscribe to, and to request persistent delivery of a publication message) against a topic in the topic tree. The ACLs define the implementation of topic-based security.

 	
 Aggregate. Pre-calculated and pre-stored summaries, kept in the data warehouse to improve query performance

 	
 Aggregation. An attribute level transformation that reduces the level of detail of available data. For example, having a Total Quantity by Category of Items rather than the individual quantity of each item in the category.

 	
 Analytic. An application or capability that performs some analysis on a set of data.

 	
 Application Programming Interface. An interface provided by a software product that enables programs to request services.

 	
 Asynchronous Messaging. A method of communication between programs in which a program places a message on a message queue, then proceeds with its own processing without waiting for a reply to its message.

 	
 Attribute. A field in a dimension table.

 	
 BLOB. Binary Large Object. A block of bytes of data (for example, the body of a message) that has no discernible meaning, but is treated as one solid entity that cannot be interpreted.

 	
 Commit. An operation that applies all the changes made during the current unit of recovery or unit of work. After the operation is complete, a new unit of recovery or unit of work begins.

 	
 Compensation. The ability of DB2 to process SQL that is not supported by a data source on the data from that data source.

 	
 Composite Key. A key in a fact table that is the concatenation of the foreign keys in the dimension tables.

 	
 Computer. A device that accepts information (in the form of digitalized data) and manipulates it for some result based on a program or sequence of instructions on how the data is to be processed.

 	
 Configuration. The collection of brokers, their execution groups, the message flows, and sets that are assigned to them, and the topics and associated access control specifications.

 	
 Connector. See Message processing node connector.

 	
 Cube. A mechanism to provide a multidimensional view of data stored in a relational database.

 	
 DDL. (Data Definition Language). An SQL statement that creates or modifies the structure of a table or database. For example, CREATE TABLE, DROP TABLE, ALTER TABLE, CREATE DATABASE.

 	
 DML. (Data Manipulation Language). An INSERT, UPDATE, DELETE, or SELECT SQL statement.

 	
 Data Append. A data loading technique where new data is added to the database leaving the existing data unaltered.

 	
 Data Append. A data loading technique where new data is added to the database leaving the existing data unaltered.

 	
 Data Cleansing. A process of data manipulation and transformation to eliminate variations and inconsistencies in data content. This is typically to improve the quality, consistency, and usability of the data.

 	
 Data Federation. The process of enabling data from multiple heterogeneous data sources to appear as if it is contained in a single relational database. Can also be referred to “distributed access.”

 	
 Data mart. An implementation of a data warehouse, typically with a smaller and more tightly restricted scope such as for a department, workgroup, or subject area. It could be independent, or derived from another data warehouse environment (dependent).

 	
 Data mart—Dependent. A data mart that is consistent with, and extracts its data from, a data warehouse.

 	
 Data mart—Independent. A data mart that is standalone, and does not conform with any other data mart or data warehouse.

 	
 Data Mining. A mode of data analysis that has a focus on the discovery of new information, such as unknown facts, data relationships, or data patterns.

 	
 Data Partition. A segment of a database that can be accessed and operated on independently even though it is part of a larger data structure.

 	
 Data Refresh. A data loading technique where all the data in a database is completely replaced with a new set of data.

 	
 Data silo. A standalone set of data in a particular department or organization used for analysis, but typically not shared with other departments or organizations in the enterprise.

 	
 Data Warehouse. A specialized data environment developed, structured, shared, and used specifically for decision support and informational (analytic) applications. It is subject-oriented rather than application-oriented, and is integrated, non-volatile, and time variant.

 	
 Database Instance. A specific independent implementation of a DBMS in a specific environment. For example, there might be an independent DB2 DBMS implementation on a Linux server in Boston supporting the Eastern offices, and another separate and independent DB2 DBMS on the same Linux server supporting the western offices. They would represent two instances of DB2.

 	
 Database Partition. Part of a database that consists of its own data, indexes, configuration files, and transaction logs.

 	
 DataBlades. These are program modules that provide extended capabilities for Informix databases, and are tightly integrated with the DBMS.

 	
 DB Connect. Enables connection to several relational database systems and the transfer of data from these database systems into the SAP Business Information Warehouse.

 	
 Debugger. A facility on the Message Flows view in the Control Center that enables message flows to be visually debugged.

 	
 Deploy. Make operational the configuration and topology of the broker domain.

 	
 Dimension. Data that further qualifies and/or describes a measure, such as amounts or durations.

 	
 Distributed Application In message queuing, a set of application programs that can each be connected to a different queue manager, but that collectively constitute a single application.

 	
 Drill-down. Iterative analysis, exploring facts at more detailed levels of the dimension hierarchies.

 	
 Dynamic SQL. SQL that is interpreted during execution of the statement.

 	
 Engine. A program that performs a core or essential function for other programs. A database engine performs database functions on behalf of the database user programs.

 	
 Environment. The creation of derived data. An attribute level transformation performed by some type of algorithm to create one or more new (derived) attributes.

 	
 Extenders. These are program modules that provide extended capabilities for DB2, and are tightly integrated with DB2.

 	
 FACTS. A collection of measures, and the information to interpret those measures in a given context.

 	
 Federated data. A set of physically separate data structures that are logically linked together by some mechanism, for analysis, but which remain physically in place.

 	
 Federated Server. Any DB2 server where the WebSphere Information Integrator is installed.

 	
 Federation. Providing a unified interface to diverse data.

 	
 Gateway. A means to access a heterogeneous data source. It can use native access or ODBC technology.

 	
 Grain. The fundamental lowest level of data represented in a dimensional fact table.

 	
 Instance. A particular realization of a computer process. Relative to database, the realization of a complete database environment.

 	
 Java Database Connectivity. An application programming interface that has the same characteristics as ODBC but is specifically designed for use by Java database applications.

 	
 Java Development Kit. Software package used to write, compile, debug, and run Java applets and applications.

 	
 Java Message Service. An application programming interface that provides Java language functions for handling messages.

 	
 Java Runtime Environment. A subset of the Java Development Kit that allows you to run Java applets and applications.

 	
 Materialized Query Table. A table where the results of a query are stored for later reuse.

 	
 Measure. A data item that measures the performance or behavior of business processes.

 	
 Message domain. The value that determines how the message is interpreted (parsed).

 	
 Message flow. A directed graph that represents the set of activities performed on a message or event as it passes through a broker. A message flow consists of a set of message processing nodes and message processing connectors.

 	
 Message parser. A program that interprets the bit stream of an incoming message and creates an internal representation of the message in a tree structure. A parser is also responsible to generate a bit stream for an outgoing message from the internal representation.

 	
 Meta Data. Typically called data (or information) about data. It describes or defines data elements.

 	
 MOLAP. Multi-dimensional OLAP. Can be called MD-OLAP. It is OLAP that uses a multi-dimensional database as the underlying data structure.

 	
 Multi-dimensional analysis. Analysis of data along several dimensions. For example, analyzing revenue by product, store, and date.

 	
 Multidimensional Clustering. A technique that allows for rows of data with similar values across multiple dimensions to be physically clustered together on disk.

 	
 Multi-Tasking. Operating system capability which allows multiple tasks to run concurrently, taking turns using the resources of the computer.

 	
 Multi-Threading. Operating system capability that enables multiple concurrent users to use the same program. This saves the overhead of initiating the program multiple times.

 	
 Nickname. An identifier that is used to reference the object located at the data source that you want to access.

 	
 Node Group. Group of one or more database partitions.

 	
 Node. See Message processing node and Plug-in node.

 	
 ODS. (1) Operational data store. A relational table for holding clean data to load into InfoCubes, and can support some query activity. (2) Online Dynamic Server. An older name for IDS.

 	
 OLAP. OnLine Analytical Processing. Multi-dimensional data analysis, performed in real-time. Not dependent on underlying data schema.

 	
 Open Database Connectivity. A standard application programming interface for accessing data in both relational and non-relational database management systems. Using this API, database applications can access data stored in database management systems on a variety of computers even if each database management system uses a different data storage format and programming interface. ODBC is based on the call level interface (CLI) specification of the X/Open SQL Access Group.

 	
 Optimization. The capability to enable a process to execute and perform in such a way as to maximize performance, minimize resource utilization, and minimize the process execution response time delivered to the user.

 	
 Partition. Part of a database that consists of its own data, indexes, configuration files, and transaction logs.

 	
 Pass-through. The act of passing the SQL for an operation directly to the data source without being changed by the federation server.

 	
 Pivoting. Analysis operation where user takes a different viewpoint of the results. For example, by changing the way the dimensions are arranged.

 	
 Primary Key. Field in a table that is uniquely different for each record in the table.

 	
 Process. An instance of a program running in a computer.

 	
 Program. A specific set of ordered operations for a computer to perform.

 	
 Pushdown. The act of optimizing a data operation by pushing the SQL down to the lowest point in the federated architecture where that operation can be executed. More simply, a pushdown operation is one that is executed at a remote server.

 	
 ROLAP. Relational OLAP. Multi-dimensional analysis using a multi-dimensional view of relational data. A relational database is used as the underlying data structure.

 	
 Roll-up. Iterative analysis, exploring facts at a higher level of summarization.

 	
 Server. A computer program that provides services to other computer programs (and their users) in the same or other computers. However, the computer that a server program runs in is also frequently referred to as a server.

 	
 Shared nothing. A data management architecture where nothing is shared between processes. Each process has its own processor, memory, and disk space.

 	
 Spreadmart. A standalone, non-conforming, non-integrated set of data, such as a spreadsheet, used for analysis by a particular person, department, or organization.

 	
 Static SQL. SQL that has been compiled prior to execution. Typically provides best performance.

 	
 Static SQL. SQL that has been compiled prior to execution. Typically provides best performance.

 	
 Subject Area. A logical grouping of data by categories, such as customers or items.

 	
 Synchronous Messaging. A method of communication between programs in which a program places a message on a message queue and then waits for a reply before resuming its own processing.

 	
 Task. The basic unit of programming that an operating system controls. Also see Multi-Tasking.

 	
 Thread. The placeholder information associated with a single use of a program that can handle multiple concurrent users. Also see Multi-Threading.

 	
 Type Mapping. The mapping of a specific data source type to a DB2 UDB data type	

 	
 Unit of Work. A recoverable sequence of operations performed by an application between two points of consistency.

 	
 User Mapping. An association made between the federated server user ID and password and the data source (to be accessed) used ID and password.

 	
 Virtual Database. A federation of multiple heterogeneous relational databases.

 	
 Warehouse Catalog. A subsystem that stores and manages all the system metadata.

 	
 Wrapper. The means by which a data federation engine interacts with heterogeneous sources of data. Wrappers take the SQL that the federation engine uses and maps it to the API of the data source to be accessed. For example, they take DB2 SQL and transform it to the language understood by the data source to be accessed.

 	
 xtree. A query-tree tool that allows you to monitor the query plan execution of individual queries in a graphical environment.	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 For information about ordering these publications, see “How to get Redbooks” on page 416. Note that some of the documents referenced here may be available in softcopy only.

 •DB2 Cube Views: A Primer, SG24-7002.

 •Leveraging DB2 Data Warehouse Edition for Business Intelligence, SG24-7274.

 •Dimensional Modeling: In a Business Intelligence Environment, SG24-7138.

 Online resources

 These Web sites are also relevant as further information sources:

 •Cognos White Paper: The strategic importance of OLAP and multidimensional analysis, available at the following Web page:

 http://www.cognos.com/pdfs/whitepapers/wp_strategic_importance_of_olap_and_multidimensional_analysis.pdf

 •IBM DB2 9.5 Information Center article: OLAP and Cubing Overview, available at the following Web page:

 http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.dwe.cubeserv.doc/olap_cs_overview.html

 •IBM InfoSphere Warehouse product site:

 http://www-306.ibm.com/software/data/infosphere/warehouse/

 How to get Redbooks

 You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications and Additional materials, as well as order hardcopy Redbooks, at this Web site:

 ibm.com/redbooks

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 InfoSphere Warehouse: Cubing Services and Client Access Interfaces

 InfoSphere Warehouse:

 Cubing Services and

 Client Access Interfaces

 Creating cubes for fast access and multidimensional data analysis

Getting more from your data warehouse, and faster

Alphablox, Cognos, and Microsoft Excel clients

 Formerly known as DB2 Warehouse, InfoSphere Warehouse enables a unified, powerful data warehousing environment. It provides access to structured and unstructured data, as well as operational and transactional data. In this IBM redbook, we provide a brief overview of InfoSphere Warehouse, but the primary objective is to discuss and describe the capabilities of one particular component of the InfoSphere Warehouse, which is InfoSphere Warehouse Cubing Services.

 InfoSphere Warehouse Cubing Services is designed to provide a multidimensional view of data stored in relational databases, for significantly improved query and analysis capabilities. For this, there are particular schema designs that are typically used for these data warehouse and data mart databases, called dimensional, or cube, models. Optimization techniques are used to dramatically improve the performance of the OLAP queries, which are a core component of data warehousing and analytics.

 InfoSphere Warehouse Cubing Services works with business intelligence (BI) tools, and clients, such as Cognos, Alphablox, and Microsoft Excel, through client interfaces, to accelerate OLAP queries from many data sources. We describe these interfaces and provide examples of how to use them to improve the performance of your OLAP queries.

 Back cover

 Acrobat bookmark

 OPS/images/Cognos_Connection.jpg
O - [E)rwipoctostmmossiaoniomosca [v] %)% |

Ele Edt View Favories Toos Help

BB B e G

& & [@ruicroders T cogmos Comecton ||

184 Cognos Connection Y — 1@~ i@ 8- wnne -
e | |
Public Folders CEEEIsBEXIEH

Envies: [1_ |-z]IO] | [«

O] [nemee [Hodified & [Actions

O @ ss September 17, 2008 11:25:06 AM £ More

OPS/images/PW-Finish.jpg
Publish Wizard - Finish

You have successiuly pubished the package to the folwing location
Public Folders > Sales

Do you want to
=y
 Publish another package

The folowing groups have adinitrator access to the package:
[Report Adminsirators [Directory > Cognos]

Metrics Administrators [Diectory > Cognos]

[PowerPlay Adminstators [Diectory > Cognos]

(Cortroler Administators [Drsctory > Cognos]

Planring Fights Adminirators [Diectory > Cognos]

OPS/images/PW-Options.jpg
Exemalized query subjects

I~ Generate the flesfor extemaiized query subjects

Network location

[Veriy the package befors publishing:
Clck Publshto publish yourpackage.

<gacc Concel

OPS/images/PW_Security.jpg
S (3

Use Acsss | AdmitrtorAcces |

Apackage aready exists wih the same name. Package access pemissions could ot be
overidden.

Cognos Fole [Path [

OPS/images/7582ch04.08.1.21.jpg

OPS/images/PW-Select_Location.jpg
Publish Wizard - Select Location Type

=h (

‘Select publish location

© §B Coges 8 Corisnt Sl

Folder location i the Contert Store:

¥ Enable model versioning

Number of modsl versions o reain (enter Ofor unlmted versions)
o

I™ Delete 3l previous model versions
" Location onthe network

Hetyork ocation

o s

OPS/images/7582ch04.08.1.22.jpg
e £t Lo Sorch foec Demiaomarg Oop Bn Linon:

®oar D
2 (0ot (5 s e)

o .. e [=

P i

Business Intlligence (B) - DWESAMD. b - In

55 cberaies
B ssesmoce

s

¥ O s

0 s ot o)

= 0 areves

o O besres

5 40 Closseduesmaes

oo

8, podut

5%]

S ——

0 G o

B ovesap dm 11| Dasbee ot

Physical Data Model Editor
Databoe normation

2106

5

ormaton
o s oo e ks s
tore: [veswe
ot |t strmimrstat v
se (s

OPS/images/FM_Import_Multiple.jpg
A\

Deine the objects you wantto include in tis package:
 Using existing packages

@ Fromihe project,

= I Vodel
2 [o|[7] Seles
][] Warehouse

(| Cancel <feck

OPS/images/FM_Import.jpg
nager

Ele Edt Vew Projct Repositry Actons Toos Hep

D[S HE|Duwe o | & @it X || B

e

| mBack =rorward | § F [[cubingServices > Model

Project Vewer o x| ;

=@ osbngsevos
= 8 Mo £
o s

9 Data Sources
Parameter Haps

5@ Packages
B Sales
Propeties o
ropertes | Longuece
Name Seles
Description Seles Hocel
Last Changed 20809271
Lost Changed By Anorymous
Model Comments
Screen Tip

Explorer | & Diagram | [[[] Dimension vap | [Tools o x|

£ summary |§] serch <

Design Language
Engish
Active Language

Engish

e
Namespsce 2
B ¢
—

Run Metadata Wizerd
Find Report

OPS/images/7582ch04.08.1.20.jpg

OPS/images/MetaWiz-Select.jpg

OPS/images/Cognos_Analysis_Studio.jpg
File Edit View Settings Run Help

DESHB | Xo®aq b~

™

5 Customers
o Canada
o Mexico
musa

& . Educaton Level
cmBachelors Degree
o Graduate Degree
cmtigh Schol Degree
cmpartal Colege
mPartal Hgh School

@ . Gender

22 Vi Status

2 product

22 Promoton Meda

. promotons

2 store

2 Store Type

Camme

2. Yearly Income

2 Store Sie n SOFT

& EMeasures
[Lproft
L Seles Average
L ssles Count
L tore Cost
L tore Sales
L tore Saes et
L UnitSales

X ®

|7-Z- @ #- B2~

Rows
{uenont..] —
40,000 All Education Level
M Bachelors Degree
35,000 adunte Degree
M High School Degree
1 Partial College:
30,000 B Partal High School
25,000
p]
& 20,000
5

15,000 I

10,000 ¥
I
W

5,000
State Province

[Education Level = Figh School Degree,
Junit Sales = 21,131

= & E
T T
‘High School Degree 21,131 20,702 36,831
N o~ o o
Partial High School 2,842 20,491 35,822
e T

OPS/images/QueryStudio-New.jpg
O - (&l noioshestcogrossia-binicognos.s

[v][42][x

e Edt Vew Favorites

Tools

teb

& & [@new-querysudo

[

BB @ o Qe

Query Studio - New

HMenu
Insert Data

EdtData
Chence Lavout
RunReport
Menage Fie

g sses
P Customers

&P Educstontevel
0 (Al)

5 Educatonevel
P ender

P arta stots

P product

P promoton Heda
= (Al)

5 MedaType

P promotons

P store

P swreType

P Time

P veary Income

P StoreSize mSQFT
Elvessres

81 Country: Descendng rder

A

B I U

Store Sales

7 Country: Canad, UsA AND Education Level: Bachelrs Decree. Graduate Decree

ta -

% B
M |

MITEERER

& B

[Courey | el sos | Elucatonteve | productronty [siore saes
usa M Bachelors Degree Drink
Bachelors Degree Food
SacheosDeqee. ton-Consumate
Graduate Degree | Drink i
Graduate Dearee Food 11,866.91 3
GodueDeqee tonCommatie 3,125
" 942178
s Bachelors Degree | Drink 6,312.96
Bachelors Degree Food
SacheosDegee tonConumat_13,869.82
GrodusteDeqes punk 2.7
GrodusteDeqes Food 1152108
GodueDeqes tonCommatie 3,29.53
s om0
usa 84016
Canada M Bachelors Degree | Drink 3,866.91
Bachelors Dearee Food 631296 L

i3]

OPS/images/7582ch04.08.1.14.jpg
o e e et S ey G- e e
OoHEi IR B ie e wor

R

OPS/images/Cognos_Report_Studio.jpg
File Edit View Structure Table Data Run Tools Help

DSH $B@BX 0o @b -[@lH: <= §18 T 7o 442

DB

B- W ?

Ft][t -] A- B Z U

EINEEIS-—[r Fl4dB-E- 25 Riz-v@
1 [Context fier: o
@ Select an object with a query to see

= gsees
P Customers
P Educaton Level

®
@ Gencer
@ P Martl Status
P product

Joioghcq abed [

Render Varizble
Text Source Varizble
Text Source
Source Type

Text

= pata

jse Detai Value on Pace No

Text
Vear Store s

Store Sales

<sCity=>

Defaut measure (y-xss) Seres:
<siore G- B oonees
@ CMembers E3
&0 () = o B oot namess
@ 59 product Famly
= Product Department W~ Droptemhere
@ 9 product Category
3 == Product Subcategory 9 bt i)
e dbc o sbe s
Bics tes:
RS ‘Categories (x-axis):
= = -
= Conditional -
Conditonal Styies
Stye Varisbe

<sCity=>

<strand
Nemez> |

<srand | <z12345>
Name=>

<srand | <z12345>
Neme#> |

<srand | <z12345>
Name=>

<sYears>

<s12348>

<s12345>

<s12348>

<s12345>

<s12345>

<s12345>

OPS/images/7582ch04.08.1.15.jpg
Dol et o 035 o 5. s,

SHesnr e HUATS SALES AT RO PR RS
RO o A

o vt
56 coamme al [+
' 5 mos sen_wwrss :

1oem ot s v || ¢
v o TS RO,
FROCT 5 FRC_AMAT BRC
SES v BRos R0

esne TS CST_OF 08 50635

Fectos s Cnvats

ax
as
ac
@0
Qe
ar
@
an

OPS/images/7582ch04.08.1.12.jpg

OPS/images/7582ch04.08.1.13.jpg
o s, ot)

OPS/images/7582ch04.08.1.18.jpg

OPS/images/7582ch04.08.1.19.jpg

OPS/images/7582ch04.08.1.16.jpg
e A

R S

‘:mmww.
+

L .
Pt e
et

LEEIIRE

Stusiuss

ey

OPS/images/7582ch04.08.1.17.jpg

OPS/images/7582ch07.11.1.09.jpg

OPS/images/7582ch07.11.1.07.jpg

OPS/images/7582ch07.11.1.08.jpg

OPS/images/7582ch04.08.1.10.jpg
1 Available tables

OPS/images/7582ch07.11.1.05.jpg
Store [subavisien 12 =]
Query 1

Query 2

OPS/images/7582ch04.08.1.11.jpg
o- Wi iBidiG-

£ (e 5 b om0 |

e 5 o ewch e Com ey o on i 1o

[

wer

5% 770 @ovewwan 11|

Physical Data Model Editor
[rRe——

e (288
-
s, [Ciosaners e
st om0

SBaadiir

OPS/images/7582ch07.11.1.06.jpg

OPS/images/7582ch07.11.1.03.jpg

OPS/images/7582ch07.11.1.04.jpg

OPS/images/7582ch07.11.1.01.jpg

OPS/images/7582ch07.11.1.02.jpg

OPS/images/7582ch04.08.1.40.jpg
¥imos s surssoe

Physical Data Model Editor
ontabase st

Outa Hote ormatin
et o e s s

Lot [g e

OPS/images/7582ch04.08.1.43.jpg
o ® oAy v
o B 5 ke

suimesme
PR

S5 physial Data Moo Edtor

B-7e o
R T ——

|

OPS/images/7582ch05.09.1.11.jpg
5
ismmmnnnny R

B (===

OPS/images/7582ch04.08.1.44.jpg

OPS/images/7582ch05.09.1.12.jpg
PP ——

OPS/images/7582ch04.08.1.41.jpg
5] 8 an e [
5 sl Dot ot Etor

OPS/images/7582ch04.08.1.42.jpg
(o e
Physical Data odel dtor

OPS/images/7582ch05.09.1.10.jpg
950 kG Bi7ia e L

=}

EwBaauwas"
i . "

OPS/images/query_editor.jpg
Gldemo | [2 NewAppication1 [[0) "cube cQuery 1 2
Text Query:

SELECT
DISTINGT (QLastPeriods (3, Iacc 20031, Time (Calender)]. [Al Te (Calendar)].[2003].[Qtr 21, Lunl)}) ON AXIS(0),
From (e ooy SRS

1>

] ([etadata ronser....] [_Query Designer... TestQuery...
S=n
ol (g8
:l Show All Values
v] (]

OPS/images/7582ch04.08.1.36.jpg

OPS/images/7582ch04.08.1.37.jpg
B P ren

T s iy

Physical Data Model Edtor

OPS/images/7582ch04.08.1.34.jpg

OPS/images/7582ch04.08.1.35.jpg
Hra.

OPS/images/7582ch04.08.1.38.jpg

OPS/images/7582ch04.08.1.39.jpg

OPS/images/7582ch06.10.1.08.jpg
Yo, ol

BeEar A

)

st et el b s bk el

OPS/images/7582ch06.10.1.09.jpg

OPS/images/7582ch04.08.1.32.jpg

OPS/images/7582ch06.10.1.06.jpg

OPS/images/7582ch04.08.1.33.jpg
MRS G R B1e G e W
X e

Py

OPS/images/7582ch06.10.1.07.jpg
Create a data source.

Import OLAP metadata

Optimize your cube model

Configure a cube server

'Add one or more cubes
to 2 cube server

OPS/images/7582ch04.08.1.30.jpg
Physical Data Model Edtor

i
fimorm ez
e

OPS/images/7582ch06.10.1.04.jpg

OPS/images/7582ch04.08.1.31.jpg

OPS/images/7582ch06.10.1.05.jpg
o
£
=
S
[

‘Admin Console

Database Server

OPS/images/7582ch04.08.1.25.jpg
e
Saiadss

OPS/images/7582ch06.10.1.02.jpg

OPS/images/7582ch04.08.1.26.jpg
() =i

OPS/images/7582ch06.10.1.03.jpg
T

Epamimme

InfoSphers Warshouss Administation Tasks.

P ...‘..,_-m...___..,-J

b

1

3

?

e i
ohers Acmiistation Taske

g

OPS/images/7582ch04.08.1.23.jpg
PRSI o
B
(e ot e (Y O oo o £ S

Physical Data Model Edtor

OPS/images/7582ch04.08.1.24.jpg

OPS/images/7582ch06.10.1.01.jpg

OPS/images/7582ch04.08.1.29.jpg
57 Avalable tobles

OPS/images/7582ch04.08.1.27.jpg

OPS/images/7582ch04.08.1.28.jpg
5 o 0 ros S O A ke
PR e
B E—r)
e R p——r

7] Physical Data Model Editor
B i ot st bt

OPS/images/7582ch03.07.1.10.jpg
Gor
Ome
Orme

OPS/images/Naming_New_Data_Source-Server.jpg
‘Specify the IBM DB2 InfoSphere Warehouse cubing services (XMLA) connection

Edit the parameters to buld an I8M D32 InfoSphere Warehouse cubing services (MLA)
connection string,

Server URL:
[servername.ibmcognos.com:9417/IBMCognosCS

T~ Open SSL connection

‘Signon
elect whether a user ID and password i required n the connectin string and, if so, nhether
o create a signon.

¥ User D
¥ Password
[Create a signon that the Everyane group can use:

user:
e

Password:

Confirm password:

Testing
Test the connection.

Cancel <Back | | Next> Finish

OPS/images/Naming_New_Data_Source-Close.jpg
“The New Dats Source wizard successfully crested a data source and a frst connection
in the I8M Cognos 8 server

OPS/images/Naming_New_Data_Source-CS.jpg
‘Specify a name and description - New Data Source wizard

Specify a name and location for tis entry. You can also spefy a description and screen tp.

Hame:
[cubing Services

Description:

Screen tip:

Location:
Directory > Cognos

Cancel <Back | | Next> Finish

OPS/images/Choose_Data_Source_Type.jpg
Specify the parameters for the connection of tis new data source, The name of the data
Source s used to set the name of the connection.

Type:
[1BM Infosphere Warehouse cubing services (XMLA) ~|

Tsolation level:
@ Use the default object gateway

 Specy a value:

Cancel <Back | | Next> Finish

OPS/images/7582ch09.13.1.03.jpg
Client Query Tools.

- Web Browser
Zoffics

Access Tier

"™ Cognos Content T

(e Data Access

InfoSphere Warchouse

=]
L) H ,jﬁ] Data Tier

Content Store Cube Server

OPS/images/Metadata_Source.jpg
‘Select Metadata Source:

a

55 M Cognos 8 Model

3 1BM Cognos Archtect (am)

[BE118M Cognos Impromptu (i)

B, 1BM Cognos DecisionStream (*anl)

85 18M Cognos 8 Data Manager (i)
1B Metacata Sources

Trird Paty Metadata Sources

Help Cancel <Back Net > Eish

OPS/images/7582ch09.13.1.01.jpg

OPS/images/7582ch09.13.1.02.jpg

OPS/images/action_lists.jpg
[propertes 93 | Tasks | Problems

[[E] Test_DateChooser_02
oy

Event Action List
‘selectionChangedEvent [Create)

Create action list for event: selectionChangedEvent

Test Set Property with Name: ${report:endingPeriodDate}

Edit...

Create Action REmore
Create a new action

Move Up

Move Down
Actionname Test Set Property
Description: Test Action that sets a property to a specific event property val
OK Cancel

Scope] (=
*Name ${report:endingPeriodDate}

OPS/images/property_references.jpg
1 @ Test_DateChooser_02 o pE———
| General
'
i = Valie: [ctem:dateTime). datePeriod (MC v]
¢ff ™ | Test_DateChooser_02]vpropellv‘/nll m
Desaription: Scope: | report [v]
Use this dislog to
property reference [a
Property Value:
BiDDirection:
R ¥ [7 stoystomaterimes datspericaonTsnoy |

D | StsystemdateTime) datePeriod(MONTHEND) | [Property Name
The reference will be replaced by the value of the property named here. Properties are
DeteFormatType: [por < @ published by action lsts or can be predefined on reports, appications, etc.
Choose a property:
endingPeriodDate| v

Propd|

OPS/images/report_catalog.jpg
€l PresentAndCalendar | [8) testapn 83

Report Catalog:

= (@ Report Catalog
=-(@) Products by Time
Roling 3 Months

New Folder...

New Report Link...

The report catalog provides the navigation for this
‘application. Drag reports from the navigator to the
catalog to create links to those reports. Reports editors
must be dosed before dragging.

Clo| ProPer®s: | propertyName | Defauit Value | New Value
numberOfPeriods 3 12 L
= iR RS Lo o e — (=

OPS/images/7582ch10.14.1.14.jpg

OPS/images/credit_card.jpg
Credit Card Analysis

a

B

E}

Report
Catalog

3 fnabysts

3 Customers.

Summary
View

i v]

Analysis for Card 4123-4409-1187-3284

s B

o [¥]

EE I e ngson oy 211082
7000 2 | Jamie Kingston Aug 21,1992
o —

 Month End Batnce
> Credt Limit

=

e

1504 55
| 200704 57202 167742 39464
[F200705! 3250 50000 194290 -20035
% 3340 25783 130950 -8064

26226 146291 6033
| 200708 1s0zse 120239 9697
[ITotal 5 6590 788924 819098 85677

59565

3977.47
71076
127505
129557
10032

w127 3043
495673 448950

66771
480803
446950

Fier By
200708] ©a Orees O

NUMBER

Jul31,2007 Jul31,2007 FOYBTRCT

OPS/images/Tag_Generator.jpg
2 IBM Alphablox Tag Generator, -- Web Page Dialog

present Al
id="gueryBuilderd_present”
caleulationEditorEnabled="true”
chartFirst=reruen
height="s00"
splitPaneorientation="horizontal”
width="100%">
<blox:grid
expandCollapseliods
<blox:chart
chartCurrentDinensions="[Price Analysis].[Heasures] .[Product
Book Price bmount]”
chartType="Pie"/>
<blox:page/>
<blox:data
datagourcelane="ICSA"
onErrorClearResultSet="erue” =
Gquery=" SELECT
DISTINCT({([Price inalysis] .[Neasures].[Product Book Price Amount]}
o Ax1S (D)
, DISTINCT(Distinct (Hierarchize(([Price Analysis].[Store].[All
Stores], AddCaloulatedlenbers ([Price Analysis].[Store] .[All
Stores].children)))) | ON AXTS(1
FROM [Price Analysis:
WHERE.

meruen/>

OPS/images/MetaWiz_Select_Source.jpg
SN (G

Select data souros fromth it ceinc i [BM Cogros 8, o crete 3 new ore.
Cubing Services e

Help Cancel <Back Next> Eish

OPS/images/7582ch10.14.1.17.jpg

OPS/images/finaljspreport.jpg
File Edi View Bookmarks Data Chan Tools Help =

B n Y-v-@ A A @

B8 row
[store

& column
] Measures 00w

& [Fage

8 oter
[Product

0 Time

1 Subduvision 1A B Subdivision 18

EIAl Stores 2858700.57
Subdivision 1A 14965278
Subdnvision 1B 1362172.77

OPS/images/7582ch05.09.1.09.jpg
EOPYE EOu

OPS/images/7582ch05.09.1.08.jpg
2 vt problems Executon st oSt Cose semrc|

9 <Cube> Sales Avalysis

OPS/images/7582ch05.09.1.07.jpg

OPS/images/7582ch05.09.1.06.jpg
Data Output Problems Executon Status Job Statis Console Search ~ ™ O

15 <ube Facts> Cube racts (sales Analyss)

%
‘mn vesare

l-%ﬂ_
Aversge prodct ok re

C] Number Oftems
; 6] Product Book Price Amaunt
2] sses amount

OPS/images/7582ch05.09.1.05.jpg
LYY EXY

o e e

OPS/images/7582ch02.06.1.21.jpg
:_.;]

L Wm

OPS/images/7582ch05.09.1.04.jpg
e £ v e . v W Do v un o e
Bi% iB:iFiG @ e

3 (oo [s e

e e D

e 3
8 moo
& moourmos

) e
& Hare
b oagu
& C oo
B e
3l e ot A

OPS/images/7582ch05.09.1.03.jpg
5 [Dote |5 ausmess irtebgence (50

e Rl [CET ST
“ | Physical Data Model Editor
0 oo 3
=0 cevorns Oatabse formaton

OPS/images/7582ch05.09.1.02.jpg

OPS/images/7582ch05.09.1.01.jpg

OPS/images/7582ch11.15.1.198.jpg

OPS/images/7582ch11.15.1.197.jpg
"P/CYBER INANES GY 10 ANIMATOR
4019 ROSE APPLE WOSES
DENOUNTABLE PROI NOSES
RUC 16703 CYBER AUTO

DOG 70100 CYEER

BASICTBD11 CAT CYBER FIG

FIG CYBER CAT TBD13 GUN

OPS/images/7582ch11.15.1.199.jpg

OPS/images/7582ch11.15.1.012.jpg
Bogots

2008

OPS/images/7582ch11.15.1.013.jpg

OPS/images/7582ch11.15.1.014.jpg
EEEEEE

wwwww

OPS/images/7582ch11.15.1.015.jpg

OPS/images/7582ch11.15.1.016.jpg
~

OPS/images/7582ch11.15.1.017.jpg

OPS/images/7582ch11.15.1.018.jpg

OPS/images/7582ch11.15.1.019.jpg

OPS/images/7582ch11.15.1.020.jpg

OPS/images/7582ch11.15.1.021.jpg

OPS/images/7582ch11.15.1.022.jpg

OPS/images/7582ch11.15.1.190.jpg

OPS/images/7582ch11.15.1.192.jpg

OPS/images/7582ch11.15.1.191.jpg
2008 1003053 47 1003000
1 sassies 356000
w2 124000
2 1m0 152000
30 e s2774
2 aznes 262000
o e arris
5 790318 79022
6 ousiz 94051
5 267000
7 102200 119000
8 a0 es310
9 275312 82753

OPS/images/7582ch11.15.1.194.jpg
T e T

20 Zuosis Notthe latestyear
S s12278 Not the latest year.
e Notthe latest year.
BE 30230354 Notthe latest year
23503819 Nothe Isest jear
i EEn et
77811 Notthe ltest ear
B 35835465 3535465 35635465
20 26231795 26231795 26231795
28729334 26729334 28729334
R s Lt

OPS/images/7582ch11.15.1.193.jpg

OPS/images/7582ch11.15.1.196.jpg

OPS/images/7582ch11.15.1.195.jpg

OPS/images/figure9-6.gif
B Data Link Properties
Provider | Connctn | Advarced | A1 |

Selectthe data you want to comnect to

OLE DB Provider(s]

MedaCatalogDB DLE DE Provider
MedaCataloghergedDB OLE DB Frovider
MedaCatalogiw/ebDB DLE DB Provider

Microsaft 1544 1.1 OLE DB Pravider

MicrosaftJet 4.0 OLE DE Provider

Mictosaft OLE DB Provider for Anayss Services 90
Microsaft OLE DB Provider Far Data Mining Services
Microsaft OLE DB Provider forIndesing Service.
Mictosaft OLE DB Provider for Inernet Publishing
Microsaft OLE DB Provider for ODBC Diivers
Microsaft OLE DB Provider for OLAP Services 8.0
Microsaft OLE DB Provider for Oracle

Mictosoft OLE DB Provider for STIL Server

Mictosaft OLE DB Simple Provider

MSDataShape

OLE DB Provider fr Mictosolt Diestary Services

o Cweel |t

OPS/images/7582ch11.15.1.187.jpg

OPS/images/figure9-7.gif
B Data Link Properties
Provider Comectin | Advnced | Al |

Enter the data source, user name, and password o connect to
I8 Infosphere Warehouse Cube Server.

Enter the Cube Server hast name and port number.

Dsta source: 5115V bm.com:3000

For exampl, localhost:5000

User pame; dhzadmin

password: T

<t data source connection

cone |t

OPS/images/7582ch11.15.1.186.jpg

OPS/images/figure9-4.gif
Select Data Source

My Data sources

My Recent
Documents

My Network.
Places.

[f@itoefauit Price Analysis.ode

| #ew 50 Servr Connectionodk
S5 Honey Central Tnvestor Curency Rs.ay
RN Honey Centrl Tvestor et i,y
IR Honey Contral Investor Sock Quetesiay

File pame: | [ewsource

Files of typei | all Data sources (*.odc; *.mdb; *mde, v

Open

OPS/images/7582ch11.15.1.189.jpg

OPS/images/figure9-5.gif
Data Connection Wizard|

Welcome to the Data Gonnection Wizard
This wizard wil help you connect to 3 rerote data source.

hat ind of data source do you wank to connect to?

Mirosoft 5QL Server
Microsoft 5QL Server OLAP Services
ODBC DS

OPS/images/7582ch11.15.1.188.jpg
Time | Sales Amount | NTD Rollup | QTD Rollup.
ook To0s0m547

100305347
2 e 26231705 6200726
5 798318 798318 16706567 52602132

44 208405 4126835 12900322 48735787

OPS/images/CubingServicesClient.gif
& 1BM InfoSphere Warehouse V9.5.1

Selectthe features for"IBM InfoSphers Warshouse V3 5.1 you would like to instalt

- IBM InfoSphere Warehouse V2 5.1
Client cormponents
] 1BM Data Server Client
- [Design Studio
] Inteligent Miner plug-ins
(] 80L Warshousing plug-ins
] Cubing Sevices plug-ins
] Unstructured Text Anaysis plug-ins
] Workioad Management plug-ins
] Blox Builder plug-ins
] Migration Tool plugrins
[DB2 Query Patroller Center
] Inteligent Miner Visualization

- [] Documentation
[InfoSphere Warehouse Sarnples and Tutorial
] InfoSphere Warshouse Information Center

Description

Cubing Services Client components, including client API's such s [BM OLE DB for OLAP Provider

OPS/images/figure9-3.gif
st
Eiter
Subtotals

Valdation

Text to Columns.

PivotTable and PivotChart Report.

Import External Data

&

Import Data,

Refresh Data

Hew Web Query.

New Database Query.

Edit Query,
Dt Range Propeties.

Parameters.

OPS/images/7582ch08.12.1.02.jpg

OPS/images/7582ch03.07.1.20.jpg

OPS/images/7582ch08.12.1.03.jpg

OPS/images/7582ch03.07.1.19.jpg
X Now Physical Data Model

options

Choose aptons for e model. 1 yu selct o generate o daans,
e g reviie g g e oS

Genertedocrams

OPS/images/7582ch04.08.1.09.jpg
S o) [Ty —

——

OPS/images/7582ch04.08.1.08.jpg
i 1 o oo 5 S
N TYY IO

OPS/images/7582ch11.15.1.010.jpg
— Spain

= Garmany

oary F““

Lorans. [h

Boges

.

OPS/images/7582ch04.08.1.07.jpg
TeET

OPS/images/7582ch11.15.1.011.jpg

OPS/images/7582ch03.07.1.12.jpg
Create adata design project
Sty basc et for e Rt T et ot s .

P
B e staatn

OPS/images/7582ch04.08.1.06.jpg
e

OPS/images/7582ch03.07.1.11.jpg
e T

OPS/images/7582ch04.08.1.05.jpg
e
FRTSEIIIIANERES @

OPS/images/7582ch08.12.1.01.jpg

OPS/images/7582ch03.07.1.14.jpg
Modelrle
Soncy o b, vron, it o e .

O fom e

© e tomreee oreers

OPS/images/7582ch04.08.1.04.jpg
o e—

‘Speafy the fact table that wil be used to create a cube mode! and its:
Pty]

Factabe
5 8 wats
Jerors prr_avursis|
3 prODUCT
3 sToRe.
=me

[(BT T)

OPS/images/7582ch11.15.1.181.jpg

OPS/images/7582ch03.07.1.13.jpg
[!

Emr

OPS/images/7582ch04.08.1.03.jpg
e o e o 7 O o o i
[TR BECSEN R AT AE B8 utEakt X id
£ (e |5 a0

Physical Data Model Editor

OPS/images/7582ch11.15.1.180.jpg
1
G

OPS/images/7582ch03.07.1.16.jpg
Select Connection
(st 105 v conncin o st an e e,

Ocreste s en comectan
@ se a exstng omecton

sty comectors

@

OPS/images/7582ch04.08.1.02.jpg

OPS/images/7582ch11.15.1.183.jpg

OPS/images/7582ch03.07.1.15.jpg
5 New Physical Data Model

Source

selct e tpe of srce o reverseennes fom.

©psbme
Opotsapt

OPS/images/7582ch04.08.1.01.jpg

OPS/images/7582ch11.15.1.182.jpg
Anoust W Ago,

2004

2
3
-

100305347
5838465
26231795
26729334

9500753

84407049
0230354
23593019
2202278

77811

Amount 2V A
8712011
uane
2340513
2512378
773831

5100
624
12077
1720
T

OPS/images/7582ch03.07.1.18.jpg

OPS/images/7582ch11.15.1.185.jpg
Sales Amount

1
2 s546
3 420582
s 52648
5 464400
5

7 6457
1 08713
9 508554
0 a7sese
11 442690
2 a8t
7

14 581006

OPS/images/7582ch03.07.1.17.jpg
=

o) Crm] (e

OPS/images/7582ch11.15.1.184.jpg

OPS/images/7582ch06.10.1.24.jpg

OPS/images/7582ch11.15.1.176.jpg

OPS/images/7582ch06.10.1.25.jpg

OPS/images/7582ch11.15.1.175.jpg
Amount | First Month Sales | LastMonth Sales

0 2004 35835465 1230212 8277406
2 2000 26231795 773487 9165128
3 2000 720334 11922093 a2rs3 2
& 2004 9500753 9500757

OPS/images/7582ch06.10.1.22.jpg
Manane e servers > Cue servc aroeris: 51> Cobe popere

Moty e s corurson o i s

[

© s e

[T ——
@ Batresn e cchs or e e sarver was i o [T o BT s

© patesn e cch overy [T dors FED

Pl G st M0 ol B s .

OPS/images/7582ch11.15.1.178.jpg
1230212
15155939
8277408
a773487
790318
a4es128
11922093
8531029
275312
9508753

34207269
2000265
43616565
4508052
2002132

6200726
01598133
54953223
54951129
55696385
arr03215
38238087

1230212

127700295

11045155
10736944
s2ea0263
87439317
9793757

997305
95704 447
771696
88920.325
'95087.53

OPS/images/7582ch06.10.1.23.jpg
e cobe seears > b srus argets 51> Cabe prapries: e Ansss

Moty e ot on s b s

s i canng

ottt st s
@ ikt s

€ a2 et s ot e

et e cxcre gt o DX iy

OPS/images/7582ch11.15.1.177.jpg

OPS/images/7582ch06.10.1.20.jpg
Sansa b sruss > Cobeserer proprtis 51

Otz
=
4| Semeee| staw| ywe | Sesar | schebtwonbercue | _tmeu dsrcacte

[e[eTFeTaT]5 o) f sed

o B e e s et ol it b

OPS/images/7582ch06.10.1.21.jpg

OPS/images/7582ch11.15.1.179.jpg

OPS/images/7582ch06.10.1.26.jpg
—

el [|

e 5

e SRt

e =]

]

e

st g [b o)

OPS/images/7582ch06.10.1.27.jpg
ORISR 20073 134017 N MO 00 (G4 Pric Ay v P
At MGy 5 SELEGT CISTINGT, Deticierachice([P sy Tl 41

(G| At dpcrberr Ay T 4 o (e ik)
Pt Al S 4 Src | G SO i A HERE (e A
ek e Ao e Asya] Pl P

WDXLog

B
SRS S
RS s S s e
e
S

SaLiog

DRVSRY 20053 13 4 12 o U1 Ao 2 i 14 e) s Gy
S o P b MEXCuey iir o SO G 1o

DRSPS0 05 12 242 P13 MDA (b 14 ke Arslyse) Dt Cache ey
e b MGt <t s 2 G s 1 Ca o - 1 S
DESH 50050 134,13 400261 Moo 17 s 14ice Al Gy i e
e e oy e S S 8

PerfomanceLog

OPS/images/7582ch11.15.1.170.jpg

OPS/images/7582ch11.15.1.172.jpg

OPS/images/7582ch11.15.1.171.jpg
Time | Sales Amount First Quarter Value | Last Quarter Value | Total of All Quarters_
e 28729334 358354 65 '95087.53 100305347

OPS/images/7582ch11.15.1.174.jpg

OPS/images/7582ch11.15.1.173.jpg
P DD P

r T il r T 1
GO G))) G

OPS/images/7582ch06.10.1.13.jpg

OPS/images/7582ch11.15.1.005.jpg
Year

=t =1
mww‘u Quarter L‘i‘_J&HﬂJL‘"_J

Month

OPS/images/7582ch11.15.1.165.jpg

OPS/images/7582ch06.10.1.14.jpg
DB Optimizer

Full Aggregate?
‘Simple Fetch

OPS/images/7582ch11.15.1.006.jpg
et m o ma mm me bo Am o bw o bm Bwo bw
T ..

OPS/images/7582ch11.15.1.164.jpg
LTI

Al Stores. 271912106 - =
Subdiision 1A 1423778 43 232 100
Regon 44 87242317 61275 61215
Distict38 | 41349111 735 2042
Region 45 ss135532 w725 38725

DiStiet127. 55125532 100 38728

OPS/images/7582ch06.10.1.11.jpg

OPS/images/7582ch11.15.1.003.jpg
(2008)
(o] (ez) (2] (1) (o] (ez] (2] (aa)

r 1 r 1 r 1
(0 (New) (o) (Ban) (Feb) (W) (0t (o) (Bec)

OPS/images/7582ch11.15.1.167.jpg

OPS/images/7582ch06.10.1.12.jpg

OPS/images/7582ch11.15.1.004.jpg
Euro

Norih America

(Germany) (France) (Switzerland) (“Canada] [

Mexico] [

Ush

OPS/images/7582ch11.15.1.166.jpg
Coorone)
[

()

e e N T D

Thecouinof Move (o sacod descandant amar o Mot Anarc)
et Europ & Frncs (g socond descandan o o Euro)

OPS/images/7582ch11.15.1.001.jpg

OPS/images/7582ch11.15.1.169.jpg

OPS/images/7582ch06.10.1.10.jpg

OPS/images/7582ch11.15.1.002.jpg
11

OPS/images/7582ch11.15.1.168.jpg
2002
20 2002
3 20
o an
e 2003

2003

Zo0s

Zo0s
A 2006
2 200
S 2004
S 2004

31483282
2340513
2u512378
773831
30230354
23503910
22802270
77811
35635465
26231795
2720334
9500753

35835465
20231795
26728334

9506753
35835465
26231795
26729334

9508753
3se35465
2231795
20720334

9508753

OPS/images/7582ch06.10.1.19.jpg
g

OPS/images/7582ch06.10.1.17.jpg
. |
ey - |

e o TR ——

ot of ke e

L e

e

OPS/images/7582ch11.15.1.009.jpg

OPS/images/7582ch06.10.1.18.jpg
oo | ooy | s s | _swsat| s |
CArYy ey o

RETE]

e et A s e A b B

OPS/images/7582ch06.10.1.15.jpg
Administrator

0

Catalog Tables Base Tables.

7
Modsl Imumllnan Smmmx

Time & Space consraints nm Samples

Query Types
\ MaTs
»

OPS/images/7582ch11.15.1.007.jpg

OPS/images/7582ch06.10.1.16.jpg
T ey e | s

prerh [—
© et sont:__eeronerp O

TS T T e

OPS/images/7582ch11.15.1.008.jpg
e e

OPS/images/7582ch03.07.1.09.jpg
fooe fte te] Repository
3 Someh % sty e dabse e e meadata ety reses.
= oo hany
Gbrseest | Doaterane [DUECT
@ Dsabrg i | oabost
Seatnsits
fomoy | otnnts [0
ooasine

HSl Coreion g

& i
& et
& e

Logg

Vot it
& Wodiny
& PgnDescionent
& Reptoesgn
Runbebg
P
5 SQLDevekpnert

OPS/images/7582ch03.07.1.08.jpg

OPS/images/7582ch03.07.1.07.jpg
S ity
n

s
P s

OPS/images/7582ch03.07.1.06.jpg
e

i

OPS/images/7582ch03.07.1.05.jpg

OPS/images/7582ch03.07.1.04.jpg
ey
Byl arir e

o 8]
] Pt Dota Mot cator

e L

OPS/images/7582ch03.07.1.03.jpg
‘Select 2 workspace

e Wb Do S, 195 e s i cd voapce.
B o e o

s | ST = =

[STESpEp—

o) o)

OPS/images/7582ch11.15.1.161.jpg

OPS/images/7582ch03.07.1.02.jpg

OPS/images/7582ch11.15.1.160.jpg
‘Subdison 18,
Rogon 22
District 77
ValueTrend Sore 116
ValusTrend Sore 278
Rogon 2¢
District 226
ValueTrend Store 375
ValueTrend Store 881

e p—

5170319
2533
24753
1087493

16004
022765
w48
1260154
173094
1289538
1298

4060825
1818125
1818125
26215
o101
2862101
012231
1136471
1575
75047
75047

21255
2005022
2065022
s
128717
217528
Testaz
708501
042
12388
512308

s
567882
890
1746903
900011
siss22
216970
99107
51019
T1as0.11
1019872
W T2

7
517041
27081
2375981
1406838
97143
24108
211142
01962
16918
152964
152904

4163559
1900182
1906102
788051
1118121
2577
826731
925252
a9sa79
25 45
7y

v e a2

5132532
183411
1834151
118079
553371
208371
21761
01685
990175
12065.1
120081

OPS/images/7582ch03.07.1.01.jpg

OPS/images/7582ch11.15.1.163.jpg

OPS/images/7582ch11.15.1.162.jpg
Roat Level

Cortinet Ge=)

cony () | ()| G

OPS/images/7582ch07.11.1.15.jpg

OPS/images/7582ch11.15.1.154.jpg

OPS/images/7582ch07.11.1.14.jpg

OPS/images/7582ch11.15.1.153.jpg
ount | Member Ordinal | Member Type

3 0 2
4 755 1
3 780 1

31 77 1

2 7% 1

3 29 1
0 s I3

OPS/images/7582ch07.11.1.13.jpg

OPS/images/7582ch11.15.1.156.jpg
Measure
Wember Unique Name [Pice
LevelUnique Name [Price »
PTG IR (Frioe

2004
aysi) Tmel Al Time (Calendan) 200
aysis e (Calendar Year Leve]
valysis) [Time]

OPS/images/7582ch07.11.1.12.jpg

OPS/images/7582ch11.15.1.155.jpg

OPS/images/7582ch07.11.1.11.jpg

OPS/images/7582ch11.15.1.158.jpg
Roat Lavel (D)

Continert

FirsiChid Lastchid
C j J] 1
couty |(Gomany) (Cronee) (Govawtind) D e B

Ghidren of Europe,

U)

Descendants of [Al] st the County level

OPS/images/7582ch07.11.1.10.jpg

OPS/images/7582ch11.15.1.157.jpg

OPS/images/7582ch02.06.1.20.jpg

OPS/images/7582ch11.15.1.159.jpg

OPS/images/7582ch07.11.1.17.jpg

OPS/images/7582ch07.11.1.16.jpg

OPS/images/7582ch02.06.1.19.jpg

OPS/images/7582ch02.06.1.18.jpg

OPS/images/7582ch02.06.1.11.jpg

OPS/images/7582ch02.06.1.10.jpg
il

q

OPS/images/7582ch02.06.1.13.jpg
OLAP Model Objects
Cube Model]
Dimensios
1
Hierarchy
1
Join Fact
object Level
T Join
Measure Attribute

Relational tables in DB2 ‘ ‘

OPS/images/7582ch02.06.1.12.jpg

OPS/images/7582ch02.06.1.15.jpg
Reltionsi tablss in DE2

=

=

OPS/images/7582ch11.15.1.150.jpg
501 Pricesasis Tme] 1 Time (Galendan) 2041101 AITime (Calendanj 2004410
91 [pce Avhi) Time A Time (colenda) 200941 (T Calenda) 2004 11

42 [Price Analysis] [Time] [All Time (Calendani[2004][4]12] [All Time (Calendar) [2004] [4][12]

OPS/images/7582ch02.06.1.14.jpg
E

3

e e

3
Depcy O et
e HsEprere Ve
3
e G o it v
o emend T

OPS/images/7582ch02.06.1.17.jpg

OPS/images/7582ch11.15.1.152.jpg

OPS/images/7582ch02.06.1.16.jpg

OPS/images/7582ch11.15.1.151.jpg

OPS/images/ICSA.GIF
Canned
IENDEZODEQ

test

Data Source Narne
Description

Adapter

Cubing Senvices Host Name
Port Number

Default Usernarne

Default Password

Use IBM Alphablox Usemame and
Password

Maximum Rows
Maximum Columns

Maximurn DrillThrough Rows

csA

IBN Cubing Services Adapter

£211.5vL. ibm. com

5000

dhzadnin

10000

10000

100000

OPS/images/7582ch11.15.1.143.jpg

OPS/images/7582ch10.14.1.07.jpg

OPS/images/7582ch11.15.1.142.jpg

OPS/images/7582ch10.14.1.04.jpg
Web Browser F
o ssachomwarg e 8 @ Firefox.... (1]

XMLHttpRequest

WebSphere |
Application

[Gidio] [Chanbiox] [Presendiox |
]

[Celoubtions | [Bookmarks | [Aleds] [Commerts

OPS/images/7582ch11.15.1.145.jpg

OPS/images/7582ch10.14.1.05.jpg
Ghart Biox.

OPS/images/7582ch11.15.1.144.jpg
ALL STORES all stores ores

OPS/images/7582ch10.14.1.02.jpg
10

OPS/images/7582ch11.15.1.147.jpg
‘CODE0 SONY CO RADIM
PERCRLA111 AWARADIUM
PER CRLAZI AVARADUI
PER CRLAQS AMARADIUH
T RIS RIS

OPS/images/BI_Implementation_Layers.gif
Dimensions || Hierarchies

Measures ||Calculations

MQTs, MDC, etc. star, Schema

OPS/images/7582ch11.15.1.146.jpg

OPS/images/7582ch11.15.1.149.jpg

OPS/images/7582ch10.14.1.01.jpg

OPS/images/7582ch11.15.1.148.jpg

OPS/images/model_view.jpg

OPS/images/layout_view.jpg
Model |Layout | HTML | XML

OPS/images/7582ch02.06.1.09.jpg
=

ey

OPS/images/7582ch02.06.1.08.jpg
S —

s s
e

e —

OPS/images/7582ch02.06.1.07.jpg
Gubing Services Gube Server

Alphablox

OPS/images/7582ch02.06.1.06.jpg
P
S Rrehcose

OPS/images/7582ch02.06.1.05.jpg

OPS/images/7582ch02.06.1.04.jpg
1BM Alphablox

!

Cubing Services
tration Console <—» 0109 eV

\. s

Relational database
Metadala database

OPS/images/7582ch02.06.1.03.jpg
Cube Server

Design Studio

Design

Deploy

Administration Console

10sIApY Seo1AIeS Buign)

OPS/images/7582ch02.06.1.02.jpg

OPS/images/7582ch11.15.1.141.jpg
Product
200LOGICAL 115 TREKKER

2P3 SAMSON CASE

200190 1335 EXAM Chacuta U_FOT
2001900 1336 EXAM Chacuta _FOT
200 LIFE 19074-000VIE TPI78X152

OPS/images/7582ch02.06.1.01.jpg

OPS/images/7582ch11.15.1.140.jpg

OPS/images/7582ch11.15.1.132.jpg
25) NaN
e = NaN
15 4 Nan
E = Nan
05 o Nan
0 o o
05 1 o707
1 1 1
15 2 1225
2 2 1418
2 3 1581
3 3 1732

OPS/images/7582ch11.15.1.131.jpg

OPS/images/7582ch11.15.1.134.jpg

OPS/images/7582ch11.15.1.133.jpg

OPS/images/7582ch11.15.1.136.jpg

OPS/images/7582ch11.15.1.135.jpg
1 2003 2004
Dupicais | Ran 1 Rank2 | Rank | Dupicats | Ran 1] Rank2 | RankS

ValueTienSioe 1414 6761207 3 1 1 Sears 3 3
ValusTrendSiore 1991 6751207 5 2 1 9883476 5 4
ValusTrendSloe 6% 6563361 7 3 3 9souats 7§
VilueTendsre278 | 23907 8 4 4 093 5 8
ValueTiendSiow8a1 | s10sost 10 5 5 f0aoeste f0 2
ValueTrendSiowd7s 6125200 o 6 5 odoee2 9 6
ValieTrendSiore 10881 7636333 5 7 7 10sess 5 1
ValueTiendSloe87s | 758912 11 8 B oitstes 11 7
VaeTrendSioe782 | 160594 2 9 9 ewxxs 2 9
ValueTiendSloe83s | ssiaes 4 10 10 eswez2 4 1
O £313731 1 11 11 719442 1 10

OPS/images/7582ch11.15.1.138.jpg
ValueTrend SoreS64 | 164520.49
ValueTrondStore782. | 22897052
ValueTrendStore 1414, 26763150
ValusTrendSore835 | 19110047

ValusTrendSore 1085, 270315.30
ValueTrendStore 1199, 261036.90

ValueTrendStore 16| 271526.06
ValuoTrendSore278 | 248856.36
ValusTrendStore375 | 257877.76
ValueTrandSiore 881 | 260521.19
ValuoTrend Sore 875 | 256457.16

Stddev 2304772

Sudp 30877.668

Vanance 1048773451.44

VarianceP 9534304104

OPS/images/7582ch11.15.1.137.jpg

OPS/images/7582ch11.15.1.139.jpg

OPS/images/7582ch11.15.1.130.jpg

OPS/images/7582ch01.05.1.1.jpg

OPS/images/7582ch11.15.1.121.jpg

OPS/images/7582ch11.15.1.242.jpg

OPS/images/7582ch11.15.1.120.jpg

OPS/images/7582ch11.15.1.241.jpg

OPS/images/7582ch11.15.1.123.jpg

OPS/images/7582ch11.15.1.244.jpg

OPS/images/7582ch11.15.1.122.jpg

OPS/images/7582ch11.15.1.243.jpg

OPS/images/7582abrv.17.1.1.jpg
Abbreviations and acronyms

OPS/images/7582ch11.15.1.125.jpg

OPS/images/7582ch11.15.1.246.jpg

OPS/images/7582ch11.15.1.124.jpg

OPS/images/7582ch11.15.1.245.jpg

OPS/images/7582ch11.15.1.127.jpg

OPS/images/7582ch11.15.1.126.jpg
Time | Sales Amount [Count L Agg | Min Avg | Avg 6 month
1230212 100305347 799318 15165939 100305347 103445433

i 12 10005 e 79918 1o 1oomear Toses
8277405 12 100305347 799318 15165030 100305347 103445433
8773487 12 100305347 799318 15165030 100305347 103445433
799318 12 100305347 799318 15165033 100305347 103445433
9465128 12 100305347 799318 15165039 100305347 103445433
11922093 12 100305347 799318 15165039 100305347 103445433
8531020 12 100305347 799318 15165039 100305347 103445433
8275212 12 100305347 799318 15165039 100305347 103445423
950875 12 100305347 799318 15165039 100305347 103445433

12 100305347 799318 15165039 100305347 103445433

12 100305347 799318 15165039 100305347 103445433

BEEEENSEEENS

OPS/images/7582ch11.15.1.247.jpg
‘Couputaes
Teolon
ey
Sionioon 1A TGP AT 3505950
To g
Taakome 7
s amits
Couputtes s
Vedion =

o s
Coupuites 7o
Veoion s
s S

TP 1151

T orsers e

Tk 106

OPS/images/7582ch11.15.1.129.jpg
e DTS S32 Aot Pl Anount
Tezne a7z

st orass
G zieisor
sram osotss
Tossts i3
sigstzm s
Gauerze 1a009as
iz setess
sssom ey
sz e
Ghoss asa0s

39230087 11540059
T

OPS/images/7582ch11.15.1.128.jpg

OPS/images/7582ch01.05.1.9.jpg

OPS/images/7582ch01.05.1.8.jpg

OPS/images/7582ch01.05.1.7.jpg
SELECT* FROM SALES

wHeRe
'SALES_DATE >= 1112007 AND

SALES_DATE <= 5112007

seLecT FROM Y

12007 AND
SALES_DATE< 1012007

TBSP1 | TBSP2 | TBSP3 | TBSP4
JAN APR JuL ocT
FEB MAY AUG NOV
MAR JUN SEP DEC

OPS/images/7582ch01.05.1.6.jpg
Without Partitioning

With Partitioning

Tablespace1

Tablespace A|

Tablespace B

[Tablespace c|

Table_1

Table_1.p1

Table_1.p2|

Table_1.p3]

OPS/images/7582ch01.05.1.5.jpg
Modeling and Design

Embedded Analytics.

Data wining & [nine cubing | |unstructured
Visusiization || Anaiyics || Servc ‘anaiyice
Performance Optimization
Database Doop
Partiioning Compression

Data Movement and Transformation

Database Management

Administration and Control

OPS/images/7582ch01.05.1.4.jpg
WebSphere Applcation Server
Administration Console
1BM Data Server Client

Server components of:
DB2 Enterprice

DB2 Query Patroller —
Cubing Services SQL Warehousing Tool
Data Mining 1BM Alphablox and Miningblox
Client

Design Studio

1B Data Server Client

Inielligent Miner Visualization|

DB2 Query Patrolier center

OPS/images/7582ch01.05.1.3.jpg
Dashboard
Static roports.
Fixed poriod

Dimensional
Data marts, cubss
fioor s Duration: Years
‘Summarized performance
Pollod - up data

fioors Duration: Year

third normal form, subject area
Code and reference tables
oor 2 Duration: Yoars

Staging, details, denormalized, ODS

Duration: 60, 120, 180 days otc.
Fioor 1

Detail, transaction, operational, raw content
Duration: As requirad

Fioor 0

OPS/images/7582ch11.15.1.240.jpg

OPS/images/7582ch01.05.1.2.jpg

OPS/images/importdata_2007.gif
Import Data

Select how yau wank to view this data n your workboak.

5 © Bl Report
5 O Pivoighert snd Tl Report
B O o Cresto Comecton

Where do you wank to put the data?
© Existing worksheet:

O ew worksheet.

OPS/images/7582ch11.15.1.110.jpg
2002 2003

ProductBook Price Amounl. 91579969 68547155 10544292

NumberOfffems aosso a5 ssess
uerage tlem Pice Sold 25 w4 218
AesgeProftAmountPerie. 551 517 01
Froft argn Percentage 020 3021 302
AragePioductBookPrica | 25501 24151 2558
‘Sales Amount 712011 84457649 10020347
Froft Amout 26362408 26521496 20341044

Pemsimeem— 21538 2044, 21881

OPS/images/7582ch11.15.1.231.jpg

OPS/images/Existing_Connections_2007.gif
™~

Insert Pagelayout _Formul

Bookl - Microsoft Excel

s | Data | Review view

P} “:a O Y 5 () Connections || 5| 575 & Clear E = E‘

@l L0 Lu | Lu |&) . |21 N ¢ % R E =

Access Web Text Sources~ | Connections All~ =2 Edit Links 7 Advanced | Columns Duplicates Validation ~

Existing Connections

Show:

[All Comnections

Selecta Connection:

Comnections n this Workbook.

<Mo connections found>

Connectin fles on the Network.

(Default) Price Analysis

[Rurving]

SN HoneyCentral Investor Currency Rates
k]

MSH HoneyCentral Investor Major Indicies
k]

MSN HoneyCentral Investor Stock Quotes
k]

OPS/images/7582ch11.15.1.230.jpg

OPS/images/figure9-15.gif
4 Product Department Level Product Sub Department Level 2003 Grand Total *|

[CHILDREN SCHOOL APPAREL [BLAZER SCHOOL 174,38 33109
6 CLOTHES SPORTS SCHOOL 217.42 56616
7 OVERALL SCHOOL 98182 27233
8 PANTS SCHOOL 4445.22| 1329909
9 PARKAS/ SPORTS JACKET SCHOOL 115988 33471
10 SCHOOL APPAREL ALL SEASON 58154 2121.37)
11 SHIRTS SCHOOL 268399 8370.08)
12 SOCKS SCHOOL 212481| 568864
13 UNDERWEAR 4474 154857
14 [WOOL TOPS SCHOOL 249043 7227.17)
15 [CHILDREN SCHOOL APPAREL Tatal * 16306.69] 4821001
16 [COLORED TELEVISIONS 36647.07] 12569162
17 [COMPUTER TECHNOLOGY 102758.56] 38078476}
18 [DRESS CASUAL 26664.93] _ 79371.97)
19 [DRESS FORMAL 10249.72]_38147.04]
20 | Grand Total ~ 544676.49] 2719121.06}

OPS/images/7582ch11.15.1.112.jpg

OPS/images/7582ch11.15.1.233.jpg

OPS/images/7582ch08.12.1.24.jpg

OPS/images/7582ch11.15.1.111.jpg

OPS/images/7582ch11.15.1.232.jpg

OPS/images/figure9-13.gif
&8 H;
1 [Store [All Stores

2
3 |Sales Amount

4_[Product Department Level
CHILDREN SCHOOL APPAREL
COLORED TELEVISIONS
COMPUTER TECHNOLOGY
DRESS CASUAL

DRESS FORMAL

[Calendar Year Level

(Grand Total
T6306.69| 4821001
36847.07| 125691.62)

102758.56| 38078476}
2666493 79371.97)
1024972 38147 04|

OPS/images/7582ch11.15.1.114.jpg

OPS/images/7582ch11.15.1.235.jpg

OPS/images/figure9-12.gif
100% ~

HI].9_sortsnd10p 10, _offe 0P

[1] E F G H ! J K
2
3 Drop Column Fields Here Drag items to the PivotTable report
5] S = Fstore
7 & [Time
5| & [g2]average ttem price Sold
9] = [28Average Product Book Prce
wl o | Drop Data Items Here [{| st
o 2 [28]cost OF Goods Sold (C0GS)
13 o [38]Mumber O 1tems
14 T [38]product Baok price Amourt
15 O [38]profic Amourt
15 ol [gaoft Margi Percentage
i [38]5eles Amount:
19
20
21

2 AddTo] [Row Area v

OPS/images/7582ch11.15.1.113.jpg
‘Sales Amount. 314532.92

OPS/images/7582ch11.15.1.234.jpg

OPS/images/figure9-11.gif
PivotTable and PivotChart Wizard - Step 3 of 3

Where do you wank to put the PivotTable report?

© ew worksheet.

© Existing worksheet
[

Clck Finish to create your PivotTable report

OPS/images/7582ch11.15.1.116.jpg
Tiny | ShAtues L D0

1167028 14360767 5543008 8814760 7024548 4RG4S 26231795
4167747 14541567 5462049 0076930 86360 5540747 2672933
16350574 19484891 7641050 11842032 102180.86 6132488 35835465

2003 40553033 43774610 1050754 27177076 23870082 16822051 8447649
@ 417005 361015 138352 2223708 20157 1830793 77BN
B} 10048728 11913548 4232387 7681161 633011 dseda1r 22862275
2 1467783 12125136 4795560 730567 6045142 4522641 23503919
1 14105572 16124782 6183232 904155 6200872 50047 30230254
2002 41551477 45507633 18108065 27476568 24608136 16043341 713811
4 368087 300223 150377 2096453 2194399 1663688 773831
2 1058373 120418 5202155 7609244 6430908 4124825 2340513
3 11967048 1264533 4985841 7556480 7096092 4670050 24512378
1 15162012 1632005 5295208 10028382 BTETAT 6283871 31463202
2008 720747 530155 20429027 32585673 20017397 1627235 10030347
« 478308 4830355 1781321 2849034 3136763 1741835 9508753
2

=

1

OPS/images/7582ch11.15.1.237.jpg

OPS/images/figure9-10.gif
Select Data Source

My Data sources

My Recent
Documents

My Network.
Places.

i+ Comnctto e Data Sorce o
| #ew 50 Servr Connection ok

S5 Honey Central Tnvestor Curency Res.ay
IR0 N Money Centrl Tvestor el i,y
IR Honey Contral Investor Sock Quetesiay

File pame: | [ewsource

Files of typei | all Data sources (*.odc; *.mdb; *mde, v

OPS/images/7582ch11.15.1.115.jpg

OPS/images/7582ch11.15.1.236.jpg
L
Distnci38. 115203 1201805 1337413 12564 45
Ditietna) 152007 1013704 1075070 14070373
B T s e e

OPS/images/7582ch11.15.1.118.jpg

OPS/images/7582ch11.15.1.239.jpg
L
Distnci38. 176203 1291805 1331413 12584453
Ditietna) 153007 1013704 1075070 14070373
B T o e e

OPS/images/7582ch11.15.1.117.jpg

OPS/images/7582ch11.15.1.238.jpg

OPS/images/7582ch11.15.1.119.jpg
11069209
12670735
5690400
st0azs
sen3052
as2s572
1230212
15185030
a217400
a773487
709318
0465128

OPS/images/7582ch08.12.1.28.jpg

OPS/images/7582pref.04.1.2.jpg
X

48

OPS/images/data_link_properties_2_2007.gif
B Data Link Properties
Provider Comectin | Advnced | Al |

Enter the data source, user name, and password o connect to
I8 Infosphere Warehouse Cube Server.

Enter the Cube Server hast name and port number.

Dsta source: 5115V bm.com:3000

For exampl, localhost:5000

User pame; dhzadmin

password: o]

<t data source connection

o Cweel |t

OPS/images/7582ch11.15.1.220.jpg

OPS/images/7582ch12.16.1.05.jpg

OPS/images/Chuck.jpg

OPS/images/data_link_properties_2007.gif
B Data Link Properties

Provider | Connctn | Advarced | A1 |

Selectthe data you want to comnect to

OLE DB Provider(s]
1BM DLE DB Provicer for DB2

MedaCatalogDB DLE DE Provider
MedaCataloghergedDB OLE DB Frovider
MedaCatalogiw/ebDB DLE DB Provider

Microsaft 1544 1.1 OLE DB Pravider

MicrosaftJet 4.0 OLE DE Provider

Microsaft Ofice 12.0 Access Database Engine OLE DB Pror
Mictosaft OLE DB Provider for Anapsis Services 9.0
Microsaft OLE DB Provider Far Data Mining Services
Microsaft OLE DB Provider forIndesing Service.

Mictosaft OLE DB Provider for Inernet Publishing

Microsaft OLE DB Provider for ODBC Diivers

Microsaft OLE DB Provider for OLAP Services 8.0

Microsaft OLE DB Provider for Oracle

<

OPS/images/7582ch12.16.1.04.jpg

OPS/images/7582ch08.12.1.14.jpg
‘Welcome 1o the Data Connection Wizard
e -

b o s o youwar o ot 15

Pt S Srvr Ares v

Bt O s - O 0 Prover o Crce
e

OPS/images/7582ch11.15.1.101.jpg
oa VaSTiEn Sre 1085
ValieTiend Sre 681
ValieTtend Sore 1160

e

2003

OPS/images/7582ch11.15.1.222.jpg

OPS/images/7582ch12.16.1.03.jpg

OPS/images/figure9-9.gif
L 90)° Bookl - Microsoft Excel
3
Home nset Pagelajout Fomuas | Data | Review View

2030

From From From
Access Web Text

Get Exf

EESe IR SE-cl - ==
e

Refresh o
Al = EditLinks Advanced || Columns Duplicates Validation ~
ort & Filter DataTools

Create a connection to 3 SQL Server table. Import data
into Excel as a Table or PivotTable report.

From Analysis Services H | 3 K L ™
Create a connection to a SQL Server Analysis Services cube.

Import data into Excel a5 a Table of PivtTable report
From XML Data Import

Open or map a XMILfile into Excel.

From Microsoft Query.
Import data for an unlisted format by using the Microsoft
Query Wizard and ODEC.

DO D

OPS/images/7582ch11.15.1.100.jpg

OPS/images/7582ch11.15.1.221.jpg

OPS/images/7582ch12.16.1.02.jpg
12

OPS/images/data_connection_wizard_cube_save_password_2003.gif
Data Connection Wizard|
Save Data Gonnection File and Finish
Enter a name and descipton for your new Data Connection i, and press Finsh to

File fame:

(Defauit) Prce Analysis.ode

e

e passnord n e

Descripton

[Running]

Search Keywords:

OPS/images/7582ch11.15.1.103.jpg

OPS/images/7582ch11.15.1.224.jpg
2004 Al Stores
2 AlStores
9 Al Stores

10030

a7

235030.19

56511

OPS/images/7582ch12.16.1.01.jpg

OPS/images/data_connection_wizard_cube_2007.gif
Data Connection Wizard|

Select Database and Table

Select the Database and TablejCube which contains the data you want.

Select the database that contains the data you want;

onnect o & specic cube:

Description Modfied Created Type
[Running] 4/22/2008 10:05:00 AM ~ 4]22/2008 10:05.00 A CUBE

R)

OPS/images/7582ch11.15.1.102.jpg

OPS/images/7582ch11.15.1.223.jpg

OPS/images/figure9-8.gif
) Data Link Properties
Provider Comecton | Advnced | A1 |

Enter the data source, user name, and password o connect to
I8 Infosphere Warehouse Cube Server.

Enter the Cube Server hast name and port number.

Dsta source: 5115V bm.com:3000

For exampl, localhost:5000

User game; dozadmin
Connecting

MDXO1104: The connecton was successful

E3

Test data source connection

o Cweel |t

OPS/images/7582ch11.15.1.105.jpg

OPS/images/7582ch11.15.1.226.jpg

OPS/images/7582ch11.15.1.104.jpg
=
B sz

9 8275312

OPS/images/7582ch11.15.1.225.jpg

OPS/images/7582ch11.15.1.107.jpg
El

ERERAZERRRRARAR]

les Amount
31463292
2340513
2512278
71
a712011
20230254
20593010
2862275
77811
84467649
35835405
26231795
2er29234
0508752
1003053.47

OPS/images/7582ch11.15.1.228.jpg

OPS/images/7582ch11.15.1.106.jpg

OPS/images/7582ch11.15.1.227.jpg
A Stores >
204 Suncaason 1a
L arsoes
Subdasiontn 10icis 01
'Siores prieoet

20 codmsionA 437

OPS/images/7582ch11.15.1.109.jpg

OPS/images/7582ch11.15.1.108.jpg

OPS/images/7582ch11.15.1.229.jpg

OPS/images/7582ch12.16.1.09.jpg

OPS/images/data_connection_wizard_cube_save_password_2007.gif
Data Connection Wizard|

Save Data Gonnection File and Finish

Enter a name and descipton for your new Data Connection i, and press Finsh to

File fame:

(Defaul) Price Analysi.odc [bromse.

e passnord i)

Descripton
[Running]

Friendly Name:
(Defauit) Prce analysis

Search Keywords:

] ways sttemp to uss this file to refresh data

Excel Services: entication Settings.

s

OPS/images/7582ch12.16.1.08.jpg

OPS/images/7582ch12.16.1.07.jpg

OPS/images/data_link_properties_3_2007.gif
B Data Link Properties

Provider Comecton | Advnced | A1 |

Enter the data source, user name, and password o connect to
I8 Infosphere Warehouse Cube Server.

Enter the Cube Server hast name and port number.

Dsta source:

User pame;

5115V bm.com:3000

For exampl, localhost:5000

dhzadmin

PO necting

MDXO1104: The connecton was successful

E3

Test data source connection

o Cweel |t

OPS/images/7582ch12.16.1.06.jpg

OPS/images/7582pref.04.1.7.jpg

OPS/images/Andy.JPG

OPS/images/Zach.jpg

OPS/images/7582pref.04.1.4.jpg

OPS/images/Jimmy.JPG

OPS/images/7582ch11.15.1.211.jpg

OPS/images/7582ch11.15.1.210.jpg

OPS/images/7582ch11.15.1.213.jpg

OPS/images/7582ch11.15.1.212.jpg
Al Stores 100305347
2004 “sudiision A 530156
, Ausiores 23593018
SubdisionA 12125130
Al stores. 1003053 47
Swavisionta 0150
2004 Ragion4s 2505073
Rogion 45 20420027
At stores 235930.19
, | Swawsonta 1212513
Rogion 44 7230857

Region 45 4795560

OPS/images/7582ch11.15.1.215.jpg
Store | Sales Amount

Subdision 1A 119135 43
Subdwsionth 4003z
S 3715344

Al Stores 1003053 47
204 “pausiontA za01sc
2 miStoes 2593019
5 AiStores Ba285 72
4 iStores 5104385
2 swdvisonta 12126135
6 subdusiontA siio32e
4 SdwsontA 4372057
3 AiStores 2882275
7 iStores 8820227
8 AlStores 7372982
3

7

=

OPS/images/7582ch11.15.1.214.jpg

OPS/images/7582ch11.15.1.217.jpg

OPS/images/7582ch11.15.1.216.jpg

OPS/images/7582ch11.15.1.219.jpg

OPS/images/7582ch11.15.1.218.jpg
1003053 47
53015

255673

District 38 18567055

204 VaueTenasioesss 719442
ValueTinaSioe 82 8372635

District 84 17018617

Reglonds 20420027

OPS/images/7582spec.03.1.1.jpg

OPS/images/7582ch11.15.1.200.jpg
ValueTrend Store 762
ValusTrend Store 1199 9053
ValueTrend Store 116 0011 0014 0805
ValueTrend Store 681 0026 0165 0157

OPS/images/7582ch11.15.1.202.jpg

OPS/images/7582ch11.15.1.201.jpg

OPS/images/7582ch11.15.1.204.jpg

OPS/images/7582ch11.15.1.203.jpg
HALF LINE

WASHING MACHINE AUTOMAT CLOTHES.
SHORT LINE

2021 v

NI COMPONENTS

UGHTS

SPORTS APPARE SHORT ALG.
PROMOTIONAL PRESENTS

LACY

BLAZER WINTER

9050755
9003091
8023457
7128613
056
084
120
197
167

OPS/images/7582ch11.15.1.206.jpg
16452049
19110047
2807062
24885836
25645718
25787778

OPS/images/7582ch11.15.1.205.jpg

OPS/images/7582ch11.15.1.208.jpg

OPS/images/7582ch11.15.1.207.jpg

OPS/images/7582ch11.15.1.209.jpg
ValueTrendSiore 119! 261036.93
ValueTrend Siore 116 271524.05
ValueTrendSioe 1096 21031539
ValueTenaSiore 1414 26783159
ValueTiendSioiesss | 16452049

ValueTiendStoes3s 19110047
ValueTienoSioeT8z | 223970
ValueTrend Sore 278

ValueTrend Sore 675
ValueTrendSioe 375 25767775
ValueTrendSio 661 26052110
ValueTrendSiore 1418, 26783150

OPS/images/7582ch11.15.1.034.jpg

OPS/images/7582ch11.15.1.035.jpg

OPS/images/7582ch11.15.1.036.jpg

OPS/images/7582ch11.15.1.037.jpg

OPS/images/7582ch11.15.1.038.jpg

OPS/images/7582ch11.15.1.039.jpg

OPS/images/7582ch11.15.1.040.jpg

OPS/images/7582ch11.15.1.041.jpg

OPS/images/7582ch12.16.1.10.jpg

OPS/images/7582ch11.15.1.042.jpg

OPS/images/7582ch11.15.1.043.jpg

OPS/images/7582ch12.16.1.12.jpg

OPS/images/7582ch11.15.1.044.jpg

OPS/images/7582ch12.16.1.11.jpg

OPS/images/7582ch11.15.1.023.jpg

OPS/images/7582ch11.15.1.024.jpg

OPS/images/7582ch11.15.1.025.jpg

OPS/images/7582ch11.15.1.026.jpg

OPS/images/7582ch11.15.1.027.jpg

OPS/images/7582ch11.15.1.028.jpg

OPS/images/7582ch11.15.1.029.jpg

OPS/7582cover.jpg
InfoSphere Warehouse:
Cubing Services and
Client Access Interfaces

Creating cubes for fast access and
multidimensional data analysis

Getting more from your data
warehouse, and faster

Alphablox, Cognos, and
Microsoft Excel clients

Chuck Ballard
Deepak Rangarao
Jimmy Tang
Philip Wittann
Zach Zakharian
Andy Perkins
Robert Frankus

ibm.com/redbooks REdbOOks

OPS/images/7582ch11.15.1.030.jpg

OPS/images/7582ch11.15.1.031.jpg

OPS/images/7582ch11.15.1.032.jpg

OPS/images/7582ch11.15.1.033.jpg
Geography

|Canada

Revenue

35901067 00
17478633 00

55704422.00
26780948.00

OPS/images/7582ch11.15.1.056.jpg
2004 L All Time (Calendar)
10544292 285070057

OPS/images/7582ch12.16.1.25.jpg

OPS/images/7582ch11.15.1.057.jpg

OPS/images/7582ch12.16.1.24.jpg

OPS/images/7582ch11.15.1.058.jpg

OPS/images/VisualExplain.jpg
Data - Statement1.sql - IBM Data Stud

Fle Edt Navigate Search Project Data Run Scpt Window Help

=it Q- i ila- @ E el
= 51 i statementisal 23
Bg Y E_ID" = d2."T:

=1 11 Projectt (DWESALL jdbridbz: ftst 1 svlt
203 504 Seripts

- G
() Stored Procedures Open With »
(0 UserDefined Fune
G5 web Services
O Copy

Rename

Valdate
Team »
Compare With »
Replace With »

B Add to Web Service.

80 Generate tored Procedure

OPS/images/7582ch11.15.1.059.jpg
L Measures | 2002 J
Bl ARG 071

OPS/images/7582ch12.16.1.26.jpg

OPS/images/7582ch12.16.1.29.jpg

OPS/images/7582ch12.16.1.28.jpg

OPS/images/7582ch11.15.1.060.jpg

OPS/images/7582ch11.15.1.061.jpg

OPS/images/7582ch12.16.1.30.jpg

OPS/images/7582ch11.15.1.062.jpg
AR R
9991208 8976358 51955

OPS/images/7582ch11.15.1.063.jpg

OPS/images/sql1txt.jpg
I sql1.txt - Notepad BX

PROCT_BK_PRC_AMUNT "),
D), (sum(fo. "
; WHEN 0 THEN -1 _ ELSE T0."NUMBER_OF_ITEMS
END)), ((SUMCFD. "SALES_AMOUNT "))~ (SUM(FO. "CST_OF _GDS_SLD_CGS")))/ (SUM(CASE
0. "NIMEER_OF_ITEMS" WHEN O THEN -1 ELSE T0. NUMBER_ OF_ITEMS" ~ ENDJJ,CASE
SALES_AMOUNT)) WHEN O THEN O ELSE ((SUM(FO. "SALES_AMOUNT)=
(SUMCFO. "CST_OF_GDS_SLD_CGS")))¥*100, 00/ (SUMCTO. "SALES_AMOUNT "))
"SALES_AMOUNT "), (SUMCFO. "SALES_AMOUNT"))- (SUM(FO0. "C5T_OF_GDS_SLD_CGS
PRCHS_PRFL_ANLYSTS" 0, " g2, "MARTS". "PRODLCT" OL, "MARTS"
WHERE 0. "TIME_ID" = d2.] . "PD_ dl. "Pp_ID" AND 0.
d3. "STR_IP_ID" GROUP BY dl."PD_DEPT_WM";

OPS/images/7582ch11.15.1.064.jpg

OPS/images/7582ch12.16.1.31.jpg

OPS/images/7582ch11.15.1.065.jpg

OPS/images/7582ch12.16.1.34.jpg

OPS/images/7582ch11.15.1.066.jpg

OPS/images/7582ch12.16.1.33.jpg

OPS/images/7582ch11.15.1.045.jpg

OPS/images/7582ch12.16.1.14.jpg

OPS/images/7582ch11.15.1.046.jpg

OPS/images/7582ch12.16.1.13.jpg

OPS/images/7582ch11.15.1.047.jpg
Measure: 2002
Product ook Prce Amount. 91579950 83647168 10544202

Sales Amount 8713911 84457649 100305347
et 032 0311 036

OPS/images/7582ch12.16.1.16.jpg

OPS/images/7582ch11.15.1.048.jpg

OPS/images/7582ch12.16.1.15.jpg

OPS/images/7582ch11.15.1.049.jpg

OPS/images/7582ch12.16.1.18.jpg

OPS/images/Fugure12-1.jpg
General | Cubes

Logging

ActivityLog

Log Format

Uz Ralling Log

Masimmum log fl size (b)

Mssimmum number of fles zavad

Display on console []

Use Roling Log []

Masimmum log fl size (b)

Mssimmum number of fles zavad

Display on console []

Uz Ralling Log

Masimmum log fl size (b)

Mssimmum number of fles zavad

Display on console []

Perfomance Log

Uz Ralling Log

Masimmum log fl size (b)

Mssimmum number of fles zavad

Merber Cach Locar
Member Cache Glabal
LogLevel

Display on console []

OPS/images/7582ch12.16.1.19.jpg

OPS/images/7582ch11.15.1.050.jpg
‘Sales Amaunt
i ——

OPS/images/7582ch11.15.1.051.jpg

OPS/images/7582ch11.15.1.052.jpg

OPS/images/7582ch12.16.1.21.jpg

OPS/images/7582ch11.15.1.053.jpg
2004 | 2004

OPS/images/7582ch12.16.1.20.jpg
{db2admin,5, ¢, Price Analysis)

OPS/images/7582ch11.15.1.054.jpg

OPS/images/7582ch12.16.1.23.jpg

OPS/images/7582ch11.15.1.055.jpg

OPS/images/7582ch12.16.1.22.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/7582ch11.15.1.078.jpg

OPS/images/7582ch11.15.1.079.jpg

OPS/images/7582ch11.15.1.081.jpg

OPS/images/7582ch11.15.1.082.jpg

OPS/images/7582ch11.15.1.083.jpg
10 M 12
Saies Amount|_Calc | Sales Amourt Cale | Saes Amourt] Cale

OPS/images/7582ch11.15.1.084.jpg

OPS/images/7582ch11.15.1.085.jpg

OPS/images/7582ch11.15.1.086.jpg
10
Saies Amourt

OPS/images/7582ch11.15.1.087.jpg

OPS/images/7582ch11.15.1.088.jpg

OPS/images/7582ch05.09.1.24.jpg

OPS/images/7582ch05.09.1.25.jpg
Specty etadata Version

e —————

O o gAY
Ozt st 0628 3w S
Omsiemargens
Omnrtaz

o Ce] - (=]

OPS/images/7582ch11.15.1.080.jpg
2004 | Calculated Member
Sae8 AOUND 54467649 100305347 1188

OPS/images/7582ch05.09.1.22.jpg
‘Import Fle and Target

Soaty e ndoahf e a4 fle t you st .
e e T A o eslsy

—
Fie e | £ Progran Fles M due pares O nesarpie | [Bonse..]

= & oo

0 s e rsct s il)

1 nesae (dessno rectomsose Mo o)
& ceacumnmes

0 onecr. puecTay

0 resaeo DuESIE)

@ Cees e)

OPS/images/7582ch05.09.1.23.jpg

OPS/images/7582ch05.09.1.20.jpg

OPS/images/7582ch05.09.1.21.jpg

OPS/images/7582ch11.15.1.067.jpg

OPS/images/7582ch11.15.1.068.jpg
All Time {Calendar)
285870057

OPS/images/7582ch11.15.1.069.jpg

OPS/images/7582ch11.15.1.070.jpg

OPS/images/7582ch11.15.1.071.jpg
'915790.60 88847168 10544292

OPS/images/7582ch11.15.1.072.jpg

OPS/images/7582ch11.15.1.073.jpg

OPS/images/7582ch11.15.1.074.jpg
Level Name
alendar Year

Galendar Yoar Level
Galendar Year Leve
Galendar Year Level
Galendar Year Lovo
CaloadarVearionl

5

HHH

OPS/images/7582ch11.15.1.075.jpg

OPS/images/7582ch11.15.1.076.jpg

OPS/images/7582ch11.15.1.077.jpg
ime | Sales Amount
‘AllTime (Calendar) 271312106 271912106
6713911 E71391.1
31483202 —
2340513 —
20512378 —
773831 —
Ba6To49 BaeTadn
0730358 —
Zsw019 -
2802270 -
7811 —
100305347 100305347
35635455 —
26231795 -
26120334 -
9508753

L e

OPS/images/7582ch04.08.1.47.jpg

OPS/images/7582ch05.09.1.15.jpg
Oom2brgsevciteseve
Omznaw
e =)

OPS/images/7582ch04.08.1.48.jpg
[C:Pocmans s Setings Admr st ke DUESAV® romctOWEAP .

v b e o 50 e =0

o 3, i,

P R —

s O e

O
v e
O i
Opevon swars

OPS/images/7582ch05.09.1.16.jpg
TP) o s A e)

e B ioir) o e e e)
o o

OPS/images/7582ch04.08.1.45.jpg
5 b e .
Ot Dutstne.. |

v Y = O @ ovesor n 1 @owmmroian | |

: S5 7] physical Data Model Editor
& 0w A
® Govom [RR—
S gaeraies et (308
et
@il Vs[5
S pen

OPS/images/7582ch05.09.1.13.jpg
‘Specify the Target Database

Specty the datbase nhere you yant 0 deply the OLAP etadata, @LJ
‘Orly the D82 databases that you are comected to re displayed.|

Torget databese
[© D82Databases
0 dwesanp DwESP)

OPS/images/7582ch04.08.1.46.jpg
o——

=i e rrr—

Saiadss

OPS/images/7582ch05.09.1.14.jpg

OPS/images/7582ch05.09.1.19.jpg

OPS/images/7582ch05.09.1.17.jpg

OPS/images/7582ch05.09.1.18.jpg
sauscrpts
T s b st ot ek sy e

o ozl o e s
S erwonmec iy s v . 78t .

ot oo ey s
e | e G e T s e 5735 | B

S ot et oy s
Pt | on e e G e o o 905353 o)

OPS/images/7582ch11.15.1.089.jpg
Al Time (Calendar)

OPS/images/7582ch11.15.1.092.jpg
ValueTrend Store 875
ValueTrend Store 681
ValueTrend Store 1199

OPS/images/7582ch11.15.1.093.jpg

OPS/images/7582ch11.15.1.094.jpg

OPS/images/7582ch11.15.1.095.jpg
D84 4695200
D127 105522
Distetdr?. 2030042
o

OPS/images/7582ch11.15.1.096.jpg

OPS/images/7582ch11.15.1.097.jpg

OPS/images/7582ch11.15.1.098.jpg
District 84 93206 ValuaTrend Store 1414, ValuaTrend Store 835
Distict127. 55135532 ValueTrend Store 1095, ValueTrend Store 1199
DISWICH4T?. 520350 42 ValueTrend Store 115, ValueTrend Store 275
District226 51849897 ValueTrend Store 375, ValueTrend Store 681

OPS/images/7582ch11.15.1.099.jpg

OPS/images/7582ch11.15.1.090.jpg

OPS/images/7582ch11.15.1.091.jpg

